
Spring Boot Reference Guide

2.0.0.RC1

Phillip Webb , Dave Syer , Josh Long , Stéphane Nicoll , Rob Winch , Andy Wilkinson , Marcel
Overdijk , Christian Dupuis , Sébastien Deleuze , Michael Simons , Vedran Pavi# , Jay Bryant

Copyright © 2012-2018

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot ii

Table of Contents

I. Spring Boot Documentation .. 1
1. About the Documentation .. 2
2. Getting Help ... 3
3. First Steps .. 4
4. Working with Spring Boot .. 5
5. Learning about Spring Boot Features .. 6
6. Moving to Production .. 7
7. Advanced Topics .. 8

II. Getting Started ... 9
8. Introducing Spring Boot ... 10
9. System Requirements ... 11

9.1. Servlet Containers .. 11
10. Installing Spring Boot .. 12

10.1. Installation Instructions for the Java Developer .. 12
Maven Installation ... 12
Gradle Installation ... 13

10.2. Installing the Spring Boot CLI ... 14
Manual Installation .. 14
Installation with SDKMAN! ... 14
OSX Homebrew Installation ... 15
MacPorts Installation ... 15
Command-line Completion .. 15
Quick-start Spring CLI Example ... 16

10.3. Upgrading from an Earlier Version of Spring Boot .. 16
11. Developing Your First Spring Boot Application .. 17

11.1. Creating the POM .. 17
11.2. Adding Classpath Dependencies ... 18
11.3. Writing the Code .. 19

The @RestController and @RequestMapping Annotations 19
The @EnableAutoConfiguration Annotation .. 19
The “main” Method ... 20

11.4. Running the Example ... 20
11.5. Creating an Executable Jar ... 20

12. What to Read Next ... 22
III. Using Spring Boot .. 23

13. Build Systems ... 24
13.1. Dependency Management .. 24
13.2. Maven ... 24

Inheriting the Starter Parent .. 25
Using Spring Boot without the Parent POM .. 25
Using the Spring Boot Maven Plugin ... 26

13.3. Gradle ... 26
13.4. Ant .. 26
13.5. Starters .. 27

14. Structuring Your Code ... 33
14.1. Using the “default” Package .. 33
14.2. Locating the Main Application Class .. 33

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot iii

15. Configuration Classes ... 35
15.1. Importing Additional Configuration Classes .. 35
15.2. Importing XML Configuration ... 35

16. Auto-configuration ... 36
16.1. Gradually Replacing Auto-configuration ... 36
16.2. Disabling Specific Auto-configuration Classes .. 36

17. Spring Beans and Dependency Injection .. 37
18. Using the @SpringBootApplication Annotation .. 38
19. Running Your Application .. 39

19.1. Running from an IDE ... 39
19.2. Running as a Packaged Application .. 39
19.3. Using the Maven Plugin ... 39
19.4. Using the Gradle Plugin ... 40
19.5. Hot Swapping .. 40

20. Developer Tools .. 41
20.1. Property Defaults ... 41
20.2. Automatic Restart ... 42

Logging changes in condition evaluation .. 43
Excluding Resources ... 43
Watching Additional Paths ... 43
Disabling Restart .. 43
Using a Trigger File .. 44
Customizing the Restart Classloader ... 44
Known Limitations ... 45

20.3. LiveReload ... 45
20.4. Global Settings ... 45
20.5. Remote Applications ... 45

Running the Remote Client Application .. 46
Remote Update .. 47

21. Packaging Your Application for Production ... 48
22. What to Read Next ... 49

IV. Spring Boot features .. 50
23. SpringApplication .. 51

23.1. Startup Failure ... 51
23.2. Customizing the Banner ... 52
23.3. Customizing SpringApplication .. 53
23.4. Fluent Builder API .. 53
23.5. Application Events and Listeners .. 54
23.6. Web Environment ... 55
23.7. Accessing Application Arguments .. 55
23.8. Using the ApplicationRunner or CommandLineRunner 55
23.9. Application Exit .. 56
23.10. Admin Features .. 56

24. Externalized Configuration ... 58
24.1. Configuring Random Values ... 59
24.2. Accessing Command Line Properties .. 59
24.3. Application Property Files ... 60
24.4. Profile-specific Properties ... 61
24.5. Placeholders in Properties .. 62
24.6. Using YAML Instead of Properties .. 62

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot iv

Loading YAML .. 62
Exposing YAML as Properties in the Spring Environment 63
Multi-profile YAML Documents ... 63
YAML Shortcomings ... 64
Merging YAML Lists .. 64

24.7. Type-safe Configuration Properties ... 65
Third-party Configuration ... 68
Relaxed Binding .. 68
Properties Conversion ... 70
@ConfigurationProperties Validation .. 70
@ConfigurationProperties vs. @Value ... 71

25. Profiles ... 72
25.1. Adding Active Profiles .. 72
25.2. Programmatically Setting Profiles .. 73
25.3. Profile-specific Configuration Files ... 73

26. Logging .. 74
26.1. Log Format .. 74
26.2. Console Output .. 74

Color-coded Output ... 75
26.3. File Output ... 76
26.4. Log Levels ... 76
26.5. Custom Log Configuration .. 77
26.6. Logback Extensions ... 79

Profile-specific Configuration ... 79
Environment Properties ... 79

27. Developing Web Applications .. 81
27.1. The “Spring Web MVC Framework” .. 81

Spring MVC Auto-configuration .. 81
HttpMessageConverters .. 82
Custom JSON Serializers and Deserializers ... 82
MessageCodesResolver .. 83
Static Content ... 83
Welcome Page ... 85
Custom Favicon .. 85
Path Matching and Content Negotiation ... 85
ConfigurableWebBindingInitializer .. 85
Template Engines ... 86
Error Handling .. 86

Custom Error Pages ... 87
Mapping Error Pages outside of Spring MVC ... 88

Spring HATEOAS ... 88
CORS Support .. 89

27.2. The “Spring WebFlux Framework” ... 89
Spring WebFlux Auto-configuration .. 90
HTTP Codecs with HttpMessageReaders and HttpMessageWriters 91
Static Content ... 91
Template Engines ... 92
Error Handling .. 92

Custom Error Pages ... 93
Web Filters ... 93

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot v

27.3. JAX-RS and Jersey .. 93
27.4. Embedded Servlet Container Support .. 95

Servlets, Filters, and listeners .. 95
Registering Servlets, Filters, and Listeners as Spring Beans 95

Servlet Context Initialization .. 96
Scanning for Servlets, Filters, and listeners .. 96

The ServletWebServerApplicationContext .. 96
Customizing Embedded Servlet Containers .. 96

Programmatic Customization ... 97
Customizing ConfigurableServletWebServerFactory Directly 97

JSP Limitations ... 98
28. Security .. 99

28.1. MVC Security ... 99
28.2. WebFlux Security ... 100
28.3. OAuth2 .. 100

Client .. 100
28.4. Actuator Security .. 101

29. Working with SQL Databases .. 102
29.1. Configure a DataSource ... 102

Embedded Database Support .. 102
Connection to a Production Database .. 103
Connection to a JNDI DataSource ... 104

29.2. Using JdbcTemplate ... 104
29.3. JPA and “Spring Data” ... 105

Entity Classes ... 105
Spring Data JPA Repositories ... 106
Creating and Dropping JPA Databases .. 107
Open EntityManager in View ... 107

29.4. Using H2’s Web Console .. 107
Changing the H2 Console’s Path ... 108

29.5. Using jOOQ ... 108
Code Generation ... 108
Using DSLContext ... 108
jOOQ SQL Dialect .. 109
Customizing jOOQ .. 109

30. Working with NoSQL Technologies .. 110
30.1. Redis ... 110

Connecting to Redis .. 110
30.2. MongoDB ... 111

Connecting to a MongoDB Database ... 111
MongoTemplate .. 112
Spring Data MongoDB Repositories ... 112
Embedded Mongo ... 113

30.3. Neo4j ... 113
Connecting to a Neo4j Database ... 113
Using the Embedded Mode ... 114
Neo4jSession .. 114
Spring Data Neo4j Repositories ... 114
Repository Example .. 114

30.4. Gemfire .. 115

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot vi

30.5. Solr .. 115
Connecting to Solr .. 115
Spring Data Solr Repositories .. 115

30.6. Elasticsearch .. 116
Connecting to Elasticsearch by Using Jest ... 116
Connecting to Elasticsearch by Using Spring Data .. 116
Spring Data Elasticsearch Repositories .. 117

30.7. Cassandra .. 117
Connecting to Cassandra .. 117
Spring Data Cassandra Repositories .. 117

30.8. Couchbase ... 118
Connecting to Couchbase ... 118
Spring Data Couchbase Repositories ... 118

30.9. LDAP ... 119
Connecting to an LDAP Server .. 119
Spring Data LDAP Repositories ... 120
Embedded In-memory LDAP Server .. 120

30.10. InfluxDB ... 120
Connecting to InfluxDB .. 120

31. Caching .. 122
31.1. Supported Cache Providers .. 123

Generic ... 124
JCache (JSR-107) ... 124
EhCache 2.x ... 125
Hazelcast .. 125
Infinispan .. 125
Couchbase .. 125
Redis .. 126
Caffeine .. 126
Simple .. 127
None .. 127

32. Messaging .. 128
32.1. JMS ... 128

ActiveMQ Support ... 128
Artemis Support .. 129
Using a JNDI ConnectionFactory ... 129
Sending a Message .. 129
Receiving a Message .. 130

32.2. AMQP .. 131
RabbitMQ support ... 131
Sending a Message .. 131
Receiving a Message .. 132

32.3. Apache Kafka Support .. 133
Sending a Message .. 134
Receiving a Message .. 134
Additional Kafka Properties .. 134

33. Calling REST Services with RestTemplate .. 136
33.1. RestTemplate Customization ... 136

34. Calling REST Services with WebClient .. 138
34.1. WebClient Customization .. 138

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot vii

35. Validation .. 139
36. Sending Email ... 140
37. Distributed Transactions with JTA .. 141

37.1. Using an Atomikos Transaction Manager ... 141
37.2. Using a Bitronix Transaction Manager ... 141
37.3. Using a Narayana Transaction Manager .. 142
37.4. Using a Java EE Managed Transaction Manager ... 142
37.5. Mixing XA and Non-XA JMS Connections .. 142
37.6. Supporting an Alternative Embedded Transaction Manager 143

38. Hazelcast .. 144
39. Quartz Scheduler .. 145
40. Spring Integration .. 146
41. Spring Session .. 147
42. Monitoring and Management over JMX .. 148
43. Testing ... 149

43.1. Test Scope Dependencies .. 149
43.2. Testing Spring Applications ... 149
43.3. Testing Spring Boot Applications ... 149

Detecting Test Configuration .. 150
Excluding Test Configuration ... 151
Working with Random Ports .. 151
Mocking and Spying Beans ... 152
Auto-configured Tests ... 153
Auto-configured JSON Tests ... 154
Auto-configured Spring MVC Tests .. 155
Auto-configured Spring WebFlux Tests .. 157
Auto-configured Data JPA Tests .. 158
Auto-configured JDBC Tests .. 159
Auto-configured jOOQ Tests .. 159
Auto-configured Data MongoDB Tests ... 160
Auto-configured Data Neo4j Tests ... 160
Auto-configured Data Redis Tests .. 161
Auto-configured Data LDAP Tests ... 162
Auto-configured REST Clients ... 162
Auto-configured Spring REST Docs Tests .. 163

Auto-configured Spring REST Docs Tests with Mock MVC 163
Auto-configured Spring REST Docs Tests with REST Assured 164

User Configuration and Slicing .. 165
Using Spock to Test Spring Boot Applications .. 166

43.4. Test Utilities ... 166
ConfigFileApplicationContextInitializer .. 166
EnvironmentTestUtils ... 166
OutputCapture ... 166
TestRestTemplate ... 167

44. WebSockets .. 169
45. Web Services ... 170
46. Creating Your Own Auto-configuration ... 171

46.1. Understanding Auto-configured Beans ... 171
46.2. Locating Auto-configuration Candidates ... 171
46.3. Condition Annotations ... 171

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot viii

Class Conditions ... 172
Bean Conditions .. 172
Property Conditions ... 173
Resource Conditions ... 173
Web Application Conditions ... 173
SpEL Expression Conditions .. 173

46.4. Testing your Auto-configuration ... 173
Simulating a Web Context ... 174
Overriding the Classpath ... 174

46.5. Creating Your Own Starter .. 174
Naming ... 175
autoconfigure Module .. 175
Starter Module .. 175

47. What to Read Next ... 177
V. Spring Boot Actuator: Production-ready features .. 178

48. Enabling Production-ready Features ... 179
49. Endpoints .. 180

49.1. Enabling Endpoints ... 181
49.2. Exposing Endpoints .. 182
49.3. Securing HTTP Endpoints ... 183
49.4. Configuring Endpoints ... 184
49.5. Hypermedia for Actuator Web Endpoints ... 184
49.6. Actuator Web Endpoint Paths ... 184
49.7. CORS Support ... 185
49.8. Adding Custom Endpoints ... 185
49.9. Health Information .. 185

Auto-configured HealthIndicators .. 186
Writing Custom HealthIndicators .. 186
Reactive Health Indicators ... 187
Auto-configured ReactiveHealthIndicators ... 188

49.10. Application Information .. 188
Auto-configured InfoContributors .. 188
Custom Application Information ... 189
Git Commit Information ... 189
Build Information ... 189
Writing Custom InfoContributors .. 189

50. Monitoring and Management over HTTP .. 191
50.1. Customizing the Management Endpoint Paths ... 191
50.2. Customizing the Management Server Port ... 191
50.3. Configuring Management-specific SSL .. 191
50.4. Customizing the Management Server Address ... 192
50.5. Disabling HTTP Endpoints .. 192

51. Monitoring and Management over JMX .. 193
51.1. Customizing MBean Names .. 193
51.2. Disabling JMX Endpoints .. 193
51.3. Using Jolokia for JMX over HTTP ... 193

Customizing Jolokia .. 193
Disabling Jolokia ... 193

52. Loggers .. 195
52.1. Configure a Logger ... 195

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot ix

53. Metrics .. 196
53.1. Spring MVC Metrics ... 196

Spring MVC Metric Tags ... 196
53.2. WebFlux Metrics ... 196

WebFlux Metrics Tags ... 197
53.3. RestTemplate Metrics ... 197

RestTemplate Metric Tags ... 197
53.4. Cache metrics .. 197
53.5. DataSource Metrics .. 198
53.6. RabbitMQ metrics ... 198
53.7. Spring Integration Metrics ... 198

54. Auditing .. 200
55. HTTP Tracing ... 201

55.1. Custom HTTP tracing ... 201
56. Process Monitoring .. 202

56.1. Extending Configuration .. 202
56.2. Programmatically .. 202

57. Cloud Foundry Support ... 203
57.1. Disabling Extended Cloud Foundry Actuator Support .. 203
57.2. Cloud Foundry Self-signed Certificates .. 203
57.3. Custom Security Configuration .. 203

58. What to Read Next ... 205
VI. Deploying Spring Boot Applications .. 206

59. Deploying to the Cloud .. 207
59.1. Cloud Foundry ... 207

Binding to Services ... 208
59.2. Heroku ... 209
59.3. OpenShift ... 210
59.4. Amazon Web Services (AWS) .. 210

AWS Elastic Beanstalk .. 210
Using the Tomcat Platform .. 210
Using the Java SE Platform .. 210

Summary .. 211
59.5. Boxfuse and Amazon Web Services .. 211
59.6. Google Cloud ... 212

60. Installing Spring Boot Applications ... 214
60.1. Supported Operating Systems ... 214
60.2. Unix/Linux Services .. 214

Installation as an init.d Service (System V) .. 214
Securing an init.d Service ... 215

Installation as a systemd Service ... 216
Customizing the Startup Script .. 217

Customizing the Start Script when It Is Written ... 217
Customizing a Script When It Runs ... 218

60.3. Microsoft Windows Services .. 219
61. What to Read Next ... 220

VII. Spring Boot CLI .. 221
62. Installing the CLI ... 222
63. Using the CLI ... 223

63.1. Running Applications with the CLI ... 223

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot x

Deduced “grab” Dependencies .. 224
Deduced “grab” Coordinates .. 225
Default Import Statements ... 225
Automatic Main Method ... 225
Custom Dependency Management .. 225

63.2. Applications with Multiple Source Files .. 226
63.3. Packaging Your Application .. 226
63.4. Initialize a New Project ... 226
63.5. Using the Embedded Shell ... 227
63.6. Adding Extensions to the CLI .. 227

64. Developing Applications with the Groovy Beans DSL .. 229
65. Configuring the CLI with settings.xml ... 230
66. What to Read Next ... 231

VIII. Build tool plugins ... 232
67. Spring Boot Maven Plugin ... 233

67.1. Including the Plugin .. 233
67.2. Packaging Executable Jar and War Files ... 234

68. Spring Boot Gradle Plugin ... 235
69. Spring Boot AntLib Module .. 236

69.1. Spring Boot Ant Tasks .. 236
spring-boot:exejar .. 236
Examples .. 237

69.2. spring-boot:findmainclass .. 237
Examples .. 237

70. Supporting Other Build Systems .. 238
70.1. Repackaging Archives .. 238
70.2. Nested Libraries ... 238
70.3. Finding a Main Class .. 238
70.4. Example Repackage Implementation ... 238

71. What to Read Next ... 239
IX. ‘How-to’ guides .. 240

72. Spring Boot Application ... 241
72.1. Create Your Own FailureAnalyzer ... 241
72.2. Troubleshoot Auto-configuration .. 241
72.3. Customize the Environment or ApplicationContext Before It Starts 242
72.4. Build an ApplicationContext Hierarchy (Adding a Parent or Root Context) 243
72.5. Create a Non-web Application ... 243

73. Properties and Configuration ... 244
73.1. Automatically Expand Properties at Build Time .. 244

Automatic Property Expansion Using Maven .. 244
Automatic Property Expansion Using Gradle .. 245

73.2. Externalize the Configuration of SpringApplication 245
73.3. Change the Location of External Properties of an Application 246
73.4. Use ‘Short’ Command Line Arguments .. 246
73.5. Use YAML for External Properties ... 247
73.6. Set the Active Spring Profiles ... 247
73.7. Change Configuration Depending on the Environment 248
73.8. Discover Built-in Options for External Properties .. 248

74. Embedded Web Servers .. 249
74.1. Use Another Web Server .. 249

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot xi

74.2. Configure Jetty ... 250
74.3. Add a Servlet, Filter, or Listener to an Application .. 250

Add a Servlet, Filter, or Listener by Using a Spring Bean 250
Disable Registration of a Servlet or Filter ... 250

Add Servlets, Filters, and Listeners by Using Classpath Scanning 251
74.4. Change the HTTP Port ... 251
74.5. Use a Random Unassigned HTTP Port ... 251
74.6. Discover the HTTP Port at Runtime .. 251
74.7. Configure SSL .. 252
74.8. Configure HTTP/2 .. 252

HTTP/2 with Undertow .. 252
HTTP/2 with Jetty ... 252
HTTP/2 with Tomcat ... 252

74.9. Configure Access Logging .. 253
74.10. Running Behind a Front-end Proxy Server ... 253

Customize Tomcat’s Proxy Configuration ... 254
74.11. Configure Tomcat ... 254
74.12. Enable Multiple Connectors with Tomcat ... 254
74.13. Use Tomcat’s LegacyCookieProcessor .. 255
74.14. Configure Undertow .. 255
74.15. Enable Multiple Listeners with Undertow .. 255
74.16. Create WebSocket Endpoints Using @ServerEndpoint 256
74.17. Enable HTTP Response Compression ... 256

75. Spring MVC .. 257
75.1. Write a JSON REST Service .. 257
75.2. Write an XML REST Service ... 257
75.3. Customize the Jackson ObjectMapper ... 258
75.4. Customize the @ResponseBody Rendering ... 259
75.5. Handling Multipart File Uploads ... 259
75.6. Switch Off the Spring MVC DispatcherServlet .. 260
75.7. Switch off the Default MVC Configuration .. 260
75.8. Customize ViewResolvers ... 260

76. HTTP Clients .. 262
76.1. Configure RestTemplate to Use a Proxy .. 262

77. Logging ... 263
77.1. Configure Logback for Logging ... 263

Configure Logback for File-only Output .. 264
77.2. Configure Log4j for Logging .. 264

Use YAML or JSON to Configure Log4j 2 .. 265
78. Data Access ... 266

78.1. Configure a Custom DataSource ... 266
78.2. Configure Two DataSources ... 268
78.3. Use Spring Data Repositories ... 269
78.4. Separate @Entity Definitions from Spring Configuration 269
78.5. Configure JPA Properties .. 269
78.6. Configure Hibernate Naming Strategy .. 270
78.7. Use a Custom EntityManagerFactory .. 271
78.8. Use Two EntityManagers .. 271
78.9. Use a Traditional persistence.xml File ... 272
78.10. Use Spring Data JPA and Mongo Repositories .. 272

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot xii

78.11. Expose Spring Data Repositories as REST Endpoint 272
78.12. Configure a Component that is Used by JPA ... 272
78.13. Configure jOOQ with Two DataSources ... 273

79. Database Initialization .. 274
79.1. Initialize a Database Using JPA .. 274
79.2. Initialize a Database Using Hibernate .. 274
79.3. Initialize a Database ... 274
79.4. Initialize a Spring Batch Database ... 275
79.5. Use a Higher-level Database Migration Tool .. 275

Execute Flyway Database Migrations on Startup .. 275
Execute Liquibase Database Migrations on Startup .. 276

80. Messaging .. 277
80.1. Disable Transacted JMS Session .. 277

81. Batch Applications ... 278
81.1. Execute Spring Batch Jobs on Startup .. 278

82. Actuator .. 279
82.1. Change the HTTP Port or Address of the Actuator Endpoints 279
82.2. Customize the ‘whitelabel’ Error Page ... 279

83. Security .. 280
83.1. Switch off the Spring Boot Security Configuration ... 280
83.2. Change the AuthenticationManager and Add User Accounts 280
83.3. Enable HTTPS When Running behind a Proxy Server 280

84. Hot Swapping ... 281
84.1. Reload Static Content ... 281
84.2. Reload Templates without Restarting the Container .. 281

Thymeleaf Templates .. 281
FreeMarker Templates .. 281
Groovy Templates ... 281

84.3. Fast Application Restarts .. 281
84.4. Reload Java Classes without Restarting the Container 282

85. Build ... 283
85.1. Generate Build Information ... 283
85.2. Generate Git Information .. 283
85.3. Customize Dependency Versions .. 284
85.4. Create an Executable JAR with Maven .. 284
85.5. Use a Spring Boot Application as a Dependency .. 285
85.6. Extract Specific Libraries When an Executable Jar Runs 286
85.7. Create a Non-executable JAR with Exclusions ... 286
85.8. Remote Debug a Spring Boot Application Started with Maven 287
85.9. Build an Executable Archive from Ant without Using spring-boot-antlib 287

86. Traditional Deployment .. 289
86.1. Create a Deployable War File ... 289
86.2. Create a Deployable War File for Older Servlet Containers 290
86.3. Convert an Existing Application to Spring Boot ... 290
86.4. Deploying a WAR to WebLogic ... 292
86.5. Deploying a WAR in an Old (Servlet 2.5) Container .. 292
86.6. Use Jedis Instead of Lettuce ... 293

X. Appendices .. 295
A. Common application properties ... 296
B. Configuration Metadata ... 322

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot xiii

B.1. Metadata Format ... 322
Group Attributes .. 323
Property Attributes .. 324
Hint Attributes ... 326
Repeated Metadata Items ... 327

B.2. Providing Manual Hints .. 327
Value Hint ... 327
Value Providers .. 328

Any ... 328
Class Reference ... 329
Handle As ... 329
Logger Name .. 330
Spring Bean Reference ... 331
Spring Profile Name .. 332

B.3. Generating Your Own Metadata by Using the Annotation Processor 332
Nested Properties ... 333
Adding Additional Metadata ... 334

C. Auto-configuration classes .. 335
C.1. From the “spring-boot-autoconfigure” module .. 335
C.2. From the “spring-boot-actuator-autoconfigure” module 338

D. Test auto-configuration annotations ... 341
E. The Executable Jar Format ... 344

E.1. Nested JARs ... 344
The Executable Jar File Structure .. 344
The Executable War File Structure .. 344

E.2. Spring Boot’s “JarFile” Class .. 345
Compatibility with the Standard Java “JarFile” .. 345

E.3. Launching Executable Jars ... 345
Launcher Manifest ... 346
Exploded Archives .. 346

E.4. PropertiesLauncher Features ... 346
E.5. Executable Jar Restrictions .. 348
E.6. Alternative Single Jar Solutions .. 348

F. Dependency versions .. 349

Part I. Spring Boot Documentation
This section provides a brief overview of Spring Boot reference documentation. It serves as a map for
the rest of the document.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 2

1. About the Documentation

The Spring Boot reference guide is available as

• HTML

• PDF

• EPUB

The latest copy is available at docs.spring.io/spring-boot/docs/current/reference.

Copies of this document may be made for your own use and for distribution to others, provided that
you do not charge any fee for such copies and further provided that each copy contains this Copyright
Notice, whether distributed in print or electronically.

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/reference/html
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/reference/pdf/spring-boot-reference.pdf
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/reference/epub/spring-boot-reference.epub
http://docs.spring.io/spring-boot/docs/current/reference

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 3

2. Getting Help

If you have trouble with Spring Boot, we would like to help.

• Try the How-to documents. They provide solutions to the most common questions.

• Learn the Spring basics. Spring Boot builds on many other Spring projects. Check the spring.io web-
site for a wealth of reference documentation. If you are starting out with Spring, try one of the guides.

• Ask a question. We monitor stackoverflow.com for questions tagged with spring-boot.

• Report bugs with Spring Boot at github.com/spring-projects/spring-boot/issues.

Note

All of Spring Boot is open source, including the documentation. If you find problems with the docs
or if you want to improve them, please get involved.

http://spring.io
http://spring.io/guides
http://stackoverflow.com
http://stackoverflow.com/tags/spring-boot
https://github.com/spring-projects/spring-boot/issues
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 4

3. First Steps

If you are getting started with Spring Boot or 'Spring' in general, start with the following topics:

• From scratch: Overview | Requirements | Installation

• Tutorial: Part 1 | Part 2

• Running your example: Part 1 | Part 2

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 5

4. Working with Spring Boot

Ready to actually start using Spring Boot? We have you covered:

• Build systems: Maven | Gradle | Ant | Starters

• Best practices: Code Structure | @Configuration | @EnableAutoConfiguration | Beans and
Dependency Injection

• Running your code IDE | Packaged | Maven | Gradle

• Packaging your app: Production jars

• Spring Boot CLI: Using the CLI

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 6

5. Learning about Spring Boot Features

Need more details about Spring Boot’s core features? The following content is for you:

• Core Features: SpringApplication | External Configuration | Profiles | Logging

• Web Applications: MVC | Embedded Containers

• Working with data: SQL | NO-SQL

• Messaging: Overview | JMS

• Testing: Overview | Boot Applications | Utils

• Extending: Auto-configuration | @Conditions

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 7

6. Moving to Production

When you are ready to push your Spring Boot application to production, we have some tricks that you
might like:

• Management endpoints: Overview | Customization

• Connection options: HTTP | JMX

• Monitoring: Metrics | Auditing | Tracing | Process

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 8

7. Advanced Topics

Finally, we have a few topics for more advanced users:

• Spring Boot Applications Deployment: Cloud Deployment | OS Service

• Build tool plugins: Maven | Gradle

• Appendix: Application Properties | Auto-configuration classes | Executable Jars

Part II. Getting Started
If you are getting started with Spring Boot, or “Spring” in general, start by reading this section. It answers
the basic “what?”, “how?” and “why?” questions. It includes an introduction to Spring Boot, along with
installation instructions. We then walk you through building your first Spring Boot application, discussing
some core principles as we go.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 10

8. Introducing Spring Boot

Spring Boot makes it easy to create stand-alone, production-grade Spring-based Applications that you
can run. We take an opinionated view of the Spring platform and third-party libraries, so that you can
get started with minimum fuss. Most Spring Boot applications need very little Spring configuration.

You can use Spring Boot to create Java applications that can be started by using java -jar or more
traditional war deployments. We also provide a command line tool that runs “spring scripts”.

Our primary goals are:

• Provide a radically faster and widely accessible getting-started experience for all Spring development.

• Be opinionated out of the box but get out of the way quickly as requirements start to diverge from
the defaults.

• Provide a range of non-functional features that are common to large classes of projects (such as
embedded servers, security, metrics, health checks, and externalized configuration).

• Absolutely no code generation and no requirement for XML configuration.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 11

9. System Requirements

Spring Boot 2.0.0.RC1 requires Java 8 and Spring Framework 5.0.3.RELEASE or above. Explicit build
support is provided for Maven 3.2+ and Gradle 4.

9.1 Servlet Containers

Spring Boot supports the following embedded servlet containers:

Name Servlet Version

Tomcat 8.5 3.1

Jetty 9.4 3.1

Undertow 1.3 3.1

You can also deploy Spring Boot applications to any Servlet 3.0+ compatible container.

http://www.java.com
http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 12

10. Installing Spring Boot

Spring Boot can be used with “classic” Java development tools or installed as a command line tool.
Either way, you need Java SDK v1.8 or higher. Before you begin, you should check your current Java
installation by using the following command:

$ java -version

If you are new to Java development or if you want to experiment with Spring Boot, you might want
to try the Spring Boot CLI (Command Line Interface) first. Otherwise, read on for “classic” installation
instructions.

10.1 Installation Instructions for the Java Developer

You can use Spring Boot in the same way as any standard Java library. To do so, include the
appropriate spring-boot-*.jar files on your classpath. Spring Boot does not require any special
tools integration, so you can use any IDE or text editor. Also, there is nothing special about a Spring Boot
application, so you can run and debug a Spring Boot application as you would any other Java program.

Although you could copy Spring Boot jars, we generally recommend that you use a build tool that
supports dependency management (such as Maven or Gradle).

Maven Installation

Spring Boot is compatible with Apache Maven 3.2 or above. If you do not already have Maven installed,
you can follow the instructions at maven.apache.org.

Tip

On many operating systems, Maven can be installed with a package manager. If you use OSX
Homebrew, try brew install maven. Ubuntu users can run sudo apt-get install

maven. Windows users with Chocolatey can run choco install maven from an elevated
(administrator) prompt.

Spring Boot dependencies use the org.springframework.boot groupId. Typically, your Maven
POM file inherits from the spring-boot-starter-parent project and declares dependencies to
one or more “Starters”. Spring Boot also provides an optional Maven plugin to create executable jars.

The following listing shows a typical pom.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.example</groupId>

 <artifactId>myproject</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <!-- Inherit defaults from Spring Boot -->

 <parent>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-parent</artifactId>

 <version>2.0.0.RC1</version>

 </parent>

 <!-- Add typical dependencies for a web application -->

http://www.java.com
http://maven.apache.org
https://chocolatey.org/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 13

 <dependencies>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

 </dependency>

 </dependencies>

 <!-- Package as an executable jar -->

 <build>

 <plugins>

 <plugin>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-maven-plugin</artifactId>

 </plugin>

 </plugins>

 </build>

 <!-- Add Spring repositories -->

 <!-- (you don't need this if you are using a .RELEASE version) -->

 <repositories>

 <repository>

 <id>spring-snapshots</id>

 <url>http://repo.spring.io/snapshot</url>

 <snapshots><enabled>true</enabled></snapshots>

 </repository>

 <repository>

 <id>spring-milestones</id>

 <url>http://repo.spring.io/milestone</url>

 </repository>

 </repositories>

 <pluginRepositories>

 <pluginRepository>

 <id>spring-snapshots</id>

 <url>http://repo.spring.io/snapshot</url>

 </pluginRepository>

 <pluginRepository>

 <id>spring-milestones</id>

 <url>http://repo.spring.io/milestone</url>

 </pluginRepository>

 </pluginRepositories>

</project>

Tip

The spring-boot-starter-parent is a great way to use Spring Boot, but it might not be
suitable all of the time. Sometimes you may need to inherit from a different parent POM, or you
might not like our default settings. In those cases, see the section called “Using Spring Boot
without the Parent POM” for an alternative solution that uses an import scope.

Gradle Installation

Spring Boot is compatible with Gradle 4. If you do not already have Gradle installed, you can follow the
instructions at www.gradle.org/.

Spring Boot dependencies can be declared by using the org.springframework.boot group.
Typically, your project declares dependencies to one or more “Starters”. Spring Boot provides a useful
Gradle plugin that can be used to simplify dependency declarations and to create executable jars.

Gradle Wrapper

The Gradle Wrapper provides a nice way of “obtaining” Gradle when you need to build a project.
It is a small script and library that you commit alongside your code to bootstrap the build process.
See docs.gradle.org/4.2.1/userguide/gradle_wrapper.html for details.

http://www.gradle.org/
https://docs.gradle.org/4.2.1/userguide/gradle_wrapper.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 14

The following example shows a typical build.gradle file:

buildscript {

 repositories {

 jcenter()

 maven { url 'http://repo.spring.io/snapshot' }

 maven { url 'http://repo.spring.io/milestone' }

 }

 dependencies {

 classpath 'org.springframework.boot:spring-boot-gradle-plugin:2.0.0.RC1'

 }

}

apply plugin: 'java'

apply plugin: 'org.springframework.boot'

apply plugin: 'io.spring.dependency-management'

jar {

 baseName = 'myproject'

 version = '0.0.1-SNAPSHOT'

}

repositories {

 jcenter()

 maven { url "http://repo.spring.io/snapshot" }

 maven { url "http://repo.spring.io/milestone" }

}

dependencies {

 compile("org.springframework.boot:spring-boot-starter-web")

 testCompile("org.springframework.boot:spring-boot-starter-test")

}

10.2 Installing the Spring Boot CLI

The Spring Boot CLI (Command Line Interface) is a command line tool that you can use to quickly
prototype with Spring. It lets you run Groovy scripts, which means that you have a familiar Java-like
syntax without so much boilerplate code.

You do not need to use the CLI to work with Spring Boot, but it is definitely the quickest way to get a
Spring application off the ground.

Manual Installation

You can download the Spring CLI distribution from the Spring software repository:

• spring-boot-cli-2.0.0.RC1-bin.zip

• spring-boot-cli-2.0.0.RC1-bin.tar.gz

Cutting edge snapshot distributions are also available.

Once downloaded, follow the INSTALL.txt instructions from the unpacked archive. In summary, there is
a spring script (spring.bat for Windows) in a bin/ directory in the .zip file. Alternatively, you can
use java -jar with the .jar file (the script helps you to be sure that the classpath is set correctly).

Installation with SDKMAN!

SDKMAN! (The Software Development Kit Manager) can be used for managing multiple versions of
various binary SDKs, including Groovy and the Spring Boot CLI. Get SDKMAN! from sdkman.io and
install Spring Boot by using the following commands:

http://groovy-lang.org/
http://repo.spring.io/milestone/org/springframework/boot/spring-boot-cli/2.0.0.RC1/spring-boot-cli-2.0.0.RC1-bin.zip
http://repo.spring.io/milestone/org/springframework/boot/spring-boot-cli/2.0.0.RC1/spring-boot-cli-2.0.0.RC1-bin.tar.gz
http://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/
https://raw.github.com/spring-projects/spring-boot/v2.0.0.RC1/spring-boot-project/spring-boot-cli/src/main/content/INSTALL.txt
http://sdkman.io

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 15

$ sdk install springboot

$ spring --version

Spring Boot v2.0.0.RC1

If you develop features for the CLI and want easy access to the version you built, use the following
commands:

$ sdk install springboot dev /path/to/spring-boot/spring-boot-cli/target/spring-boot-cli-2.0.0.RC1-bin/

spring-2.0.0.RC1/

$ sdk default springboot dev

$ spring --version

Spring CLI v2.0.0.RC1

The preceding instructions install a local instance of spring called the dev instance. It points at your
target build location, so every time you rebuild Spring Boot, spring is up-to-date.

You can see it by running the following command:

$ sdk ls springboot

==

Available Springboot Versions

==

> + dev

* 2.0.0.RC1

==

+ - local version

* - installed

> - currently in use

==

OSX Homebrew Installation

If you are on a Mac and use Homebrew, you can install the Spring Boot CLI by using the following
commands:

$ brew tap pivotal/tap

$ brew install springboot

Homebrew installs spring to /usr/local/bin.

Note

If you do not see the formula, your installation of brew might be out-of-date. In that case, run brew
update and try again.

MacPorts Installation

If you are on a Mac and use MacPorts, you can install the Spring Boot CLI by using the following
command:

$ sudo port install spring-boot-cli

Command-line Completion

The Spring Boot CLI includes scripts that provide command completion for the BASH and zsh shells. You
can source the script (also named spring) in any shell or put it in your personal or system-wide bash
completion initialization. On a Debian system, the system-wide scripts are in /shell-completion/

http://brew.sh/
http://www.macports.org/
http://en.wikipedia.org/wiki/Bash_%28Unix_shell%29
http://en.wikipedia.org/wiki/Zsh

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 16

bash and all scripts in that directory are executed when a new shell starts. For example, to run the script
manually if you have installed by using SDKMAN!, use the following commands:

$. ~/.sdkman/candidates/springboot/current/shell-completion/bash/spring

$ spring <HIT TAB HERE>

 grab help jar run test version

Note

If you install the Spring Boot CLI by using Homebrew or MacPorts, the command-line completion
scripts are automatically registered with your shell.

Quick-start Spring CLI Example

You can use the following web application to test your installation. To start, create a file called
app.groovy, as follows:

@RestController

class ThisWillActuallyRun {

 @RequestMapping("/")

 String home() {

 "Hello World!"

 }

}

Then run it from a shell, as follows:

$ spring run app.groovy

Note

The first run of your application is slow, as dependencies are downloaded. Subsequent runs are
much quicker.

Open localhost:8080 in your favorite web browser. You should see the following output:

Hello World!

10.3 Upgrading from an Earlier Version of Spring Boot

If you are upgrading from an earlier release of Spring Boot, check the “migration guide” on the project
wiki that provides detailed upgrade instructions. Check also the “release notes” for a list of “new and
noteworthy” features for each release.

To upgrade an existing CLI installation, use the appropriate package manager command (for example,
brew upgrade) or, if you manually installed the CLI, follow the standard instructions, remembering to
update your PATH environment variable to remove any older references.

http://localhost:8080
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 17

11. Developing Your First Spring Boot Application

This section describes how to develop a simple “Hello World!” web application that highlights some of
Spring Boot’s key features. We use Maven to build this project, since most IDEs support it.

Tip

The spring.io web site contains many “Getting Started” guides that use Spring Boot. If you need
to solve a specific problem, check there first.

You can shortcut the steps below by going to start.spring.io and choosing the "Web" starter from
the dependencies searcher. Doing so generates a new project structure so that you can start
coding right away. Check the Spring Initializr documentation for more details.

Before we begin, open a terminal and run the following commands to ensure that you have valid versions
of Java and Maven installed:

$ java -version

java version "1.8.0_102"

Java(TM) SE Runtime Environment (build 1.8.0_102-b14)

Java HotSpot(TM) 64-Bit Server VM (build 25.102-b14, mixed mode)

$ mvn -v

Apache Maven 3.3.9 (bb52d8502b132ec0a5a3f4c09453c07478323dc5; 2015-11-10T16:41:47+00:00)

Maven home: /usr/local/Cellar/maven/3.3.9/libexec

Java version: 1.8.0_102, vendor: Oracle Corporation

Note

This sample needs to be created in its own folder. Subsequent instructions assume that you have
created a suitable folder and that it is your current directory.

11.1 Creating the POM

We need to start by creating a Maven pom.xml file. The pom.xml is the recipe that is used to build
your project. Open your favorite text editor and add the following:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.example</groupId>

 <artifactId>myproject</artifactId>

 <version>0.0.1-SNAPSHOT</version>

 <parent>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-parent</artifactId>

 <version>2.0.0.RC1</version>

 </parent>

 <!-- Additional lines to be added here... -->

 <!-- (you don't need this if you are using a .RELEASE version) -->

 <repositories>

 <repository>

 <id>spring-snapshots</id>

 <url>http://repo.spring.io/snapshot</url>

http://spring.io
http://spring.io/guides
https://start.spring.io
https://github.com/spring-io/initializr

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 18

 <snapshots><enabled>true</enabled></snapshots>

 </repository>

 <repository>

 <id>spring-milestones</id>

 <url>http://repo.spring.io/milestone</url>

 </repository>

 </repositories>

 <pluginRepositories>

 <pluginRepository>

 <id>spring-snapshots</id>

 <url>http://repo.spring.io/snapshot</url>

 </pluginRepository>

 <pluginRepository>

 <id>spring-milestones</id>

 <url>http://repo.spring.io/milestone</url>

 </pluginRepository>

 </pluginRepositories>

</project>

The preceding listing should give you a working build. You can test it by running mvn package (for
now, you can ignore the “jar will be empty - no content was marked for inclusion!” warning).

Note

At this point, you could import the project into an IDE (most modern Java IDEs include built-in
support for Maven). For simplicity, we continue to use a plain text editor for this example.

11.2 Adding Classpath Dependencies

Spring Boot provides a number of “Starters” that let you add jars to your classpath. Our sample
application has already used spring-boot-starter-parent in the parent section of the POM.
The spring-boot-starter-parent is a special starter that provides useful Maven defaults. It
also provides a dependency-management section so that you can omit version tags for “blessed”
dependencies.

Other “Starters” provide dependencies that you are likely to need when developing a specific type
of application. Since we are developing a web application, we add a spring-boot-starter-web
dependency. Before that, we can look at what we currently have by running the following command:

$ mvn dependency:tree

[INFO] com.example:myproject:jar:0.0.1-SNAPSHOT

The mvn dependency:tree command prints a tree representation of your project dependencies.
You can see that spring-boot-starter-parent provides no dependencies by itself. To add the
necessary dependencies, edit your pom.xml and add the spring-boot-starter-web dependency
immediately below the parent section:

<dependencies>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

 </dependency>

</dependencies>

If you run mvn dependency:tree again, you see that there are now a number of additional
dependencies, including the Tomcat web server and Spring Boot itself.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 19

11.3 Writing the Code

To finish our application, we need to create a single Java file. By default, Maven compiles sources from
src/main/java, so you need to create that folder structure and then add a file named src/main/
java/Example.java to contain the following code:

import org.springframework.boot.*;

import org.springframework.boot.autoconfigure.*;

import org.springframework.web.bind.annotation.*;

@RestController

@EnableAutoConfiguration

public class Example {

 @RequestMapping("/")

 String home() {

 return "Hello World!";

 }

 public static void main(String[] args) throws Exception {

 SpringApplication.run(Example.class, args);

 }

}

Although there is not much code here, quite a lot is going on. We step through the important parts in
the next few sections.

The @RestController and @RequestMapping Annotations

The first annotation on our Example class is @RestController. This is known as a stereotype
annotation. It provides hints for people reading the code and for Spring that the class plays a specific
role. In this case, our class is a web @Controller, so Spring considers it when handling incoming
web requests.

The @RequestMapping annotation provides “routing” information. It tells Spring that any HTTP request
with the / path should be mapped to the home method. The @RestController annotation tells Spring
to render the resulting string directly back to the caller.

Tip

The @RestController and @RequestMapping annotations are Spring MVC annotations.
(They are not specific to Spring Boot.) See the MVC section in the Spring Reference
Documentation for more details.

The @EnableAutoConfiguration Annotation

The second class-level annotation is @EnableAutoConfiguration. This annotation tells Spring Boot
to “guess” how you want to configure Spring, based on the jar dependencies that you have added. Since
spring-boot-starter-web added Tomcat and Spring MVC, the auto-configuration assumes that
you are developing a web application and sets up Spring accordingly.

Starters and Auto-Configuration

Auto-configuration is designed to work well with “Starters”, but the two concepts are not directly
tied. You are free to pick and choose jar dependencies outside of the starters. Spring Boot still
does its best to auto-configure your application.

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web.html#mvc

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 20

The “main” Method

The final part of our application is the main method. This is just a standard method that follows
the Java convention for an application entry point. Our main method delegates to Spring Boot’s
SpringApplication class by calling run. SpringApplication bootstraps our application, starting
Spring, which, in turn, starts the auto-configured Tomcat web server. We need to pass Example.class
as an argument to the run method to tell SpringApplication which is the primary Spring component.
The args array is also passed through to expose any command-line arguments.

11.4 Running the Example

At this point, your application should work. Since you used the spring-boot-starter-parent POM,
you have a useful run goal that you can use to start the application. Type mvn spring-boot:run
from the root project directory to start the application. You should see output similar to the following:

$ mvn spring-boot:run

 . ____ _ __ _ _

 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \

(()___ | '_ | '_| | '_ \/ _` | \ \ \ \

 \\/ ___)| |_)| | | | | || (_| |))))

 ' |____| .__|_| |_|_| |___, | / / / /

 =========|_|==============|___/=/_/_/_/

 :: Spring Boot :: (v2.0.0.RC1)

....... . . .

....... . . . (log output here)

....... . . .

........ Started Example in 2.222 seconds (JVM running for 6.514)

If you open a web browser to localhost:8080, you should see the following output:

Hello World!

To gracefully exit the application, press ctrl-c.

11.5 Creating an Executable Jar

We finish our example by creating a completely self-contained executable jar file that we could run in
production. Executable jars (sometimes called “fat jars”) are archives containing your compiled classes
along with all of the jar dependencies that your code needs to run.

Executable jars and Java

Java does not provide a standard way to load nested jar files (jar files that are themselves contained
within a jar). This can be problematic if you are looking to distribute a self-contained application.

To solve this problem, many developers use “uber” jars. An uber jar packages all the classes from
all the application’s dependencies into a single archive. The problem with this approach is that it
becomes hard to see which libraries are in your application. It can also be problematic if the same
filename is used (but with different content) in multiple jars.

Spring Boot takes a different approach and lets you actually nest jars directly.

To create an executable jar, we need to add the spring-boot-maven-plugin to our pom.xml. To
do so, insert the following lines just below the dependencies section:

http://localhost:8080

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 21

<build>

 <plugins>

 <plugin>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-maven-plugin</artifactId>

 </plugin>

 </plugins>

</build>

Note

The spring-boot-starter-parent POM includes <executions> configuration to bind the
repackage goal. If you do not use the parent POM, you need to declare this configuration
yourself. See the plugin documentation for details.

Save your pom.xml and run mvn package from the command line, as follows:

$ mvn package

[INFO] Scanning for projects...

[INFO]

[INFO] --

[INFO] Building myproject 0.0.1-SNAPSHOT

[INFO] --

[INFO]

[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ myproject ---

[INFO] Building jar: /Users/developer/example/spring-boot-example/target/myproject-0.0.1-SNAPSHOT.jar

[INFO]

[INFO] --- spring-boot-maven-plugin:2.0.0.RC1:repackage (default) @ myproject ---

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

If you look in the target directory, you should see myproject-0.0.1-SNAPSHOT.jar. The file
should be around 10 MB in size. If you want to peek inside, you can use jar tvf, as follows:

$ jar tvf target/myproject-0.0.1-SNAPSHOT.jar

You should also see a much smaller file named myproject-0.0.1-SNAPSHOT.jar.original in
the target directory. This is the original jar file that Maven created before it was repackaged by Spring
Boot.

To run that application, use the java -jar command, as follows:

$ java -jar target/myproject-0.0.1-SNAPSHOT.jar

 . ____ _ __ _ _

 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \

(()___ | '_ | '_| | '_ \/ _` | \ \ \ \

 \\/ ___)| |_)| | | | | || (_| |))))

 ' |____| .__|_| |_|_| |___, | / / / /

 =========|_|==============|___/=/_/_/_/

 :: Spring Boot :: (v2.0.0.RC1)

....... . . .

....... . . . (log output here)

....... . . .

........ Started Example in 2.536 seconds (JVM running for 2.864)

As before, to exit the application, press ctrl-c.

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/maven-plugin/usage.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 22

12. What to Read Next

Hopefully, this section provided some of the Spring Boot basics and got you on your way to writing your
own applications. If you are a task-oriented type of developer, you might want to jump over to spring.io
and check out some of the getting started guides that solve specific “How do I do that with Spring?”
problems. We also have Spring Boot-specific “How-to” reference documentation.

The Spring Boot repository also has a bunch of samples you can run. The samples are independent of
the rest of the code (that is, you do not need to build the rest to run or use the samples).

Otherwise, the next logical step is to read Part III, “Using Spring Boot”. If you are really impatient, you
could also jump ahead and read about Spring Boot features.

http://spring.io
http://spring.io/guides/
http://github.com/spring-projects/spring-boot
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-samples

Part III. Using Spring Boot
This section goes into more detail about how you should use Spring Boot. It covers topics such as build
systems, auto-configuration, and how to run your applications. We also cover some Spring Boot best
practices. Although there is nothing particularly special about Spring Boot (it is just another library that
you can consume), there are a few recommendations that, when followed, make your development
process a little easier.

If you are starting out with Spring Boot, you should probably read the Getting Started guide before diving
into this section.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 24

13. Build Systems

It is strongly recommended that you choose a build system that supports dependency management and
that can consume artifacts published to the “Maven Central” repository. We would recommend that you
choose Maven or Gradle. It is possible to get Spring Boot to work with other build systems (Ant, for
example), but they are not particularly well supported.

13.1 Dependency Management

Each release of Spring Boot provides a curated list of dependencies that it supports. In practice, you
do not need to provide a version for any of these dependencies in your build configuration, as Spring
Boot manages that for you. When you upgrade Spring Boot itself, these dependencies are upgraded
as well in a consistent way.

Note

You can still specify a version and override Spring Boot’s recommendations if you need to do so.

The curated list contains all the spring modules that you can use with Spring Boot as well as a
refined list of third party libraries. The list is available as a standard Bills of Materials (spring-boot-
dependencies) that can be used with both Maven and Gradle.

Warning

Each release of Spring Boot is associated with a base version of the Spring Framework. We
highly recommend that you not specify its version.

13.2 Maven

Maven users can inherit from the spring-boot-starter-parent project to obtain sensible defaults.
The parent project provides the following features:

• Java 1.8 as the default compiler level.

• UTF-8 source encoding.

• A Dependency Management section, inherited from the spring-boot-dependencies pom, that
manages the versions of common dependencies. This dependency management lets you omit
<version> tags for those dependencies when used in your own pom.

• Sensible resource filtering.

• Sensible plugin configuration (exec plugin, Git commit ID, and shade).

• Sensible resource filtering for application.properties and application.yml including
profile-specific files (for example, application-dev.properties and application-dev.yml)

Note that, since the application.properties and application.yml files accept Spring style
placeholders (${…}), the Maven filtering is changed to use @..@ placeholders. (You can override that
by setting a Maven property called resource.delimiter.)

https://maven.apache.org/plugins/maven-resources-plugin/examples/filter.html
http://www.mojohaus.org/exec-maven-plugin/
https://github.com/ktoso/maven-git-commit-id-plugin
http://maven.apache.org/plugins/maven-shade-plugin/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 25

Inheriting the Starter Parent

To configure your project to inherit from the spring-boot-starter-parent, set the parent as
follows:

<!-- Inherit defaults from Spring Boot -->

<parent>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-parent</artifactId>

 <version>2.0.0.RC1</version>

</parent>

Note

You should need to specify only the Spring Boot version number on this dependency. If you import
additional starters, you can safely omit the version number.

With that setup, you can also override individual dependencies by overriding a property in your own
project. For instance, to upgrade to another Spring Data release train, you would add the following to
your pom.xml:

<properties>

 <spring-data-releasetrain.version>Fowler-SR2</spring-data-releasetrain.version>

</properties>

Tip

Check the spring-boot-dependencies pom for a list of supported properties.

Using Spring Boot without the Parent POM

Not everyone likes inheriting from the spring-boot-starter-parent POM. You may have your
own corporate standard parent that you need to use or you may prefer to explicitly declare all your
Maven configuration.

If you do not want to use the spring-boot-starter-parent, you can still keep the benefit of the
dependency management (but not the plugin management) by using a scope=import dependency,
as follows:

<dependencyManagement>

 <dependencies>

 <dependency>

 <!-- Import dependency management from Spring Boot -->

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-dependencies</artifactId>

 <version>2.0.0.RC1</version>

 <type>pom</type>

 <scope>import</scope>

 </dependency>

 </dependencies>

</dependencyManagement>

The preceding sample setup does not let you override individual dependencies by using a property, as
explained above. To achieve the same result, you need to add an entry in the dependencyManagement
of your project before the spring-boot-dependencies entry. For instance, to upgrade to another
Spring Data release train, you could add the following element to your pom.xml:

<dependencyManagement>

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-dependencies/pom.xml

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 26

 <dependencies>

 <!-- Override Spring Data release train provided by Spring Boot -->

 <dependency>

 <groupId>org.springframework.data</groupId>

 <artifactId>spring-data-releasetrain</artifactId>

 <version>Fowler-SR2</version>

 <scope>import</scope>

 <type>pom</type>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-dependencies</artifactId>

 <version>2.0.0.RC1</version>

 <type>pom</type>

 <scope>import</scope>

 </dependency>

 </dependencies>

</dependencyManagement>

Note

In the preceding example, we specify a BOM, but any dependency type can be overridden in the
same way.

Using the Spring Boot Maven Plugin

Spring Boot includes a Maven plugin that can package the project as an executable jar. Add the plugin
to your <plugins> section if you want to use it, as shown in the following example:

<build>

 <plugins>

 <plugin>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-maven-plugin</artifactId>

 </plugin>

 </plugins>

</build>

Note

If you use the Spring Boot starter parent pom, you need to add only the plugin. There is no need
to configure it unless you want to change the settings defined in the parent.

13.3 Gradle

To learn about using Spring Boot with Gradle, please refer to the documentation for Spring Boot’s Gradle
plugin:

• Reference (HTML and PDF)

• API

13.4 Ant

It is possible to build a Spring Boot project using Apache Ant+Ivy. The spring-boot-antlib “AntLib”
module is also available to help Ant create executable jars.

To declare dependencies, a typical ivy.xml file looks something like the following example:

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/gradle-plugin/reference/html
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/gradle-plugin/reference/pdf/spring-boot-gradle-plugin-reference.pdf
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/gradle-plugin/api

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 27

<ivy-module version="2.0">

 <info organisation="org.springframework.boot" module="spring-boot-sample-ant" />

 <configurations>

 <conf name="compile" description="everything needed to compile this module" />

 <conf name="runtime" extends="compile" description="everything needed to run this module" />

 </configurations>

 <dependencies>

 <dependency org="org.springframework.boot" name="spring-boot-starter"

 rev="${spring-boot.version}" conf="compile" />

 </dependencies>

</ivy-module>

A typical build.xml looks like the following example:

<project

 xmlns:ivy="antlib:org.apache.ivy.ant"

 xmlns:spring-boot="antlib:org.springframework.boot.ant"

 name="myapp" default="build">

 <property name="spring-boot.version" value="2.0.0.RC1" />

 <target name="resolve" description="--> retrieve dependencies with ivy">

 <ivy:retrieve pattern="lib/[conf]/[artifact]-[type]-[revision].[ext]" />

 </target>

 <target name="classpaths" depends="resolve">

 <path id="compile.classpath">

 <fileset dir="lib/compile" includes="*.jar" />

 </path>

 </target>

 <target name="init" depends="classpaths">

 <mkdir dir="build/classes" />

 </target>

 <target name="compile" depends="init" description="compile">

 <javac srcdir="src/main/java" destdir="build/classes" classpathref="compile.classpath" />

 </target>

 <target name="build" depends="compile">

 <spring-boot:exejar destfile="build/myapp.jar" classes="build/classes">

 <spring-boot:lib>

 <fileset dir="lib/runtime" />

 </spring-boot:lib>

 </spring-boot:exejar>

 </target>

</project>

Tip

If you do not want to use the spring-boot-antlib module, see the Section 85.9, “Build an
Executable Archive from Ant without Using spring-boot-antlib” “How-to” .

13.5 Starters

Starters are a set of convenient dependency descriptors that you can include in your application. You
get a one-stop shop for all the Spring and related technologies that you need without having to hunt
through sample code and copy-paste loads of dependency descriptors. For example, if you want to get
started using Spring and JPA for database access, include the spring-boot-starter-data-jpa
dependency in your project.

The starters contain a lot of the dependencies that you need to get a project up and running quickly and
with a consistent, supported set of managed transitive dependencies.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 28

What’s in a name

All official starters follow a similar naming pattern; spring-boot-starter-*, where * is a
particular type of application. This naming structure is intended to help when you need to find a
starter. The Maven integration in many IDEs lets you search dependencies by name. For example,
with the appropriate Eclipse or STS plugin installed, you can press ctrl-space in the POM editor
and type “spring-boot-starter” for a complete list.

As explained in the “Creating Your Own Starter” section, third party starters should not start
with spring-boot, as it is reserved for official Spring Boot artifacts. Rather, a third-party
starter typically starts with the name of the project. For example, a third-party starter project
called thirdpartyproject would typically be named thirdpartyproject-spring-boot-
starter.

The following application starters are provided by Spring Boot under the
org.springframework.boot group:

Table 13.1. Spring Boot application starters

Name Description Pom

spring-boot-starter Core starter, including auto-
configuration support, logging
and YAML

Pom

spring-boot-starter-

activemq

Starter for JMS messaging
using Apache ActiveMQ

Pom

spring-boot-starter-

amqp

Starter for using Spring AMQP
and Rabbit MQ

Pom

spring-boot-starter-aop Starter for aspect-oriented
programming with Spring AOP
and AspectJ

Pom

spring-boot-starter-

artemis

Starter for JMS messaging
using Apache Artemis

Pom

spring-boot-starter-

batch

Starter for using Spring Batch Pom

spring-boot-starter-

cache

Starter for using Spring
Framework’s caching support

Pom

spring-boot-starter-

cloud-connectors

Starter for using Spring Cloud
Connectors which simplifies
connecting to services in cloud
platforms like Cloud Foundry
and Heroku

Pom

spring-boot-starter-

data-cassandra

Starter for using Cassandra
distributed database and Spring
Data Cassandra

Pom

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-activemq/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-amqp/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-aop/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-artemis/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-batch/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-cache/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-cloud-connectors/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-data-cassandra/pom.xml

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 29

Name Description Pom

spring-boot-starter-

data-cassandra-reactive

Starter for using Cassandra
distributed database and Spring
Data Cassandra Reactive

Pom

spring-boot-starter-

data-couchbase

Starter for using Couchbase
document-oriented database
and Spring Data Couchbase

Pom

spring-boot-starter-

data-couchbase-reactive

Starter for using Couchbase
document-oriented database
and Spring Data Couchbase
Reactive

Pom

spring-boot-starter-

data-elasticsearch

Starter for using Elasticsearch
search and analytics engine
and Spring Data Elasticsearch

Pom

spring-boot-starter-

data-jpa

Starter for using Spring Data
JPA with Hibernate

Pom

spring-boot-starter-

data-ldap

Starter for using Spring Data
LDAP

Pom

spring-boot-starter-

data-mongodb

Starter for using MongoDB
document-oriented database
and Spring Data MongoDB

Pom

spring-boot-starter-

data-mongodb-reactive

Starter for using MongoDB
document-oriented database
and Spring Data MongoDB
Reactive

Pom

spring-boot-starter-

data-neo4j

Starter for using Neo4j graph
database and Spring Data
Neo4j

Pom

spring-boot-starter-

data-redis

Starter for using Redis key-
value data store with Spring
Data Redis and the Lettuce
client

Pom

spring-boot-starter-

data-redis-reactive

Starter for using Redis key-
value data store with Spring
Data Redis reactive and the
Lettuce client

Pom

spring-boot-starter-

data-rest

Starter for exposing Spring
Data repositories over REST
using Spring Data REST

Pom

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-data-cassandra-reactive/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-data-couchbase/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-data-couchbase-reactive/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-data-elasticsearch/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-data-jpa/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-data-ldap/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-data-mongodb/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-data-mongodb-reactive/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-data-neo4j/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-data-redis/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-data-redis-reactive/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-data-rest/pom.xml

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 30

Name Description Pom

spring-boot-starter-

data-solr

Starter for using the Apache
Solr search platform with Spring
Data Solr

Pom

spring-boot-starter-

freemarker

Starter for building MVC web
applications using FreeMarker
views

Pom

spring-boot-starter-

groovy-templates

Starter for building MVC web
applications using Groovy
Templates views

Pom

spring-boot-starter-

hateoas

Starter for building hypermedia-
based RESTful web application
with Spring MVC and Spring
HATEOAS

Pom

spring-boot-starter-

integration

Starter for using Spring
Integration

Pom

spring-boot-starter-

jdbc

Starter for using JDBC with the
Tomcat JDBC connection pool

Pom

spring-boot-starter-

jersey

Starter for building RESTful
web applications using JAX-RS
and Jersey. An alternative to
spring-boot-starter-web

Pom

spring-boot-starter-

jooq

Starter for using jOOQ to
access SQL databases. An
alternative to spring-boot-
starter-data-jpa or
spring-boot-starter-

jdbc

Pom

spring-boot-starter-

json

Starter for reading and writing
json

Pom

spring-boot-starter-

jta-atomikos

Starter for JTA transactions
using Atomikos

Pom

spring-boot-starter-

jta-bitronix

Starter for JTA transactions
using Bitronix

Pom

spring-boot-starter-

jta-narayana

Spring Boot Narayana JTA
Starter

Pom

spring-boot-starter-

mail

Starter for using Java Mail
and Spring Framework’s email
sending support

Pom

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-data-solr/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-freemarker/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-groovy-templates/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-hateoas/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-integration/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-jdbc/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-jersey/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-jooq/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-json/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-jta-atomikos/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-jta-bitronix/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-jta-narayana/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-mail/pom.xml

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 31

Name Description Pom

spring-boot-starter-

mustache

Starter for building web
applications using Mustache
views

Pom

spring-boot-starter-

quartz

Spring Boot Quartz Starter Pom

spring-boot-starter-

security

Starter for using Spring Security Pom

spring-boot-starter-

test

Starter for testing Spring Boot
applications with libraries
including JUnit, Hamcrest and
Mockito

Pom

spring-boot-starter-

thymeleaf

Starter for building MVC web
applications using Thymeleaf
views

Pom

spring-boot-starter-

validation

Starter for using Java Bean
Validation with Hibernate
Validator

Pom

spring-boot-starter-web Starter for building web,
including RESTful, applications
using Spring MVC. Uses
Tomcat as the default
embedded container

Pom

spring-boot-starter-

web-services

Starter for using Spring Web
Services

Pom

spring-boot-starter-

webflux

Starter for building WebFlux
applications using Spring
Framework’s Reactive Web
support

Pom

spring-boot-starter-

websocket

Starter for building WebSocket
applications using Spring
Framework’s WebSocket
support

Pom

In addition to the application starters, the following starters can be used to add production ready features:

Table 13.2. Spring Boot production starters

Name Description Pom

spring-boot-starter-

actuator

Starter for using Spring Boot’s
Actuator which provides
production ready features to
help you monitor and manage
your application

Pom

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-mustache/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-quartz/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-security/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-test/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-thymeleaf/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-validation/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-web/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-web-services/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-webflux/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-websocket/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-actuator/pom.xml

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 32

Finally, Spring Boot also includes the following starters that can be used if you want to exclude or swap
specific technical facets:

Table 13.3. Spring Boot technical starters

Name Description Pom

spring-boot-starter-

jetty

Starter for using Jetty as the
embedded servlet container. An
alternative to spring-boot-
starter-tomcat

Pom

spring-boot-starter-

log4j2

Starter for using Log4j2 for
logging. An alternative to
spring-boot-starter-

logging

Pom

spring-boot-starter-

logging

Starter for logging using
Logback. Default logging starter

Pom

spring-boot-starter-

reactor-netty

Starter for using Reactor Netty
as the embedded reactive
HTTP server.

Pom

spring-boot-starter-

tomcat

Starter for using Tomcat as the
embedded servlet container.
Default servlet container starter
used by spring-boot-
starter-web

Pom

spring-boot-starter-

undertow

Starter for using Undertow
as the embedded servlet
container. An alternative to
spring-boot-starter-

tomcat

Pom

Tip

For a list of additional community contributed starters, see the README file in the spring-boot-
starters module on GitHub.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-jetty/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-log4j2/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-logging/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-reactor-netty/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-tomcat/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-undertow/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/README.adoc

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 33

14. Structuring Your Code

Spring Boot does not require any specific code layout to work. However, there are some best practices
that help.

14.1 Using the “default” Package

When a class does not include a package declaration, it is considered to be in the “default package”.
The use of the “default package” is generally discouraged and should be avoided. It can cause
particular problems for Spring Boot applications that use the @ComponentScan, @EntityScan, or
@SpringBootApplication annotations, since every class from every jar is read.

Tip

We recommend that you follow Java’s recommended package naming conventions and use a
reversed domain name (for example, com.example.project).

14.2 Locating the Main Application Class

We generally recommend that you locate your main application class in a root package above other
classes. The @EnableAutoConfiguration annotation is often placed on your main class, and it
implicitly defines a base “search package” for certain items. For example, if you are writing a JPA
application, the package of the @EnableAutoConfiguration annotated class is used to search for
@Entity items.

Using a root package also lets the @ComponentScan annotation be used without needing to specify
a basePackage attribute. You can also use the @SpringBootApplication annotation if your main
class is in the root package.

The following listing shows a typical layout:

com

 +- example

 +- myapplication

 +- Application.java

 |

 +- customer

 | +- Customer.java

 | +- CustomerController.java

 | +- CustomerService.java

 | +- CustomerRepository.java

 |

 +- order

 +- Order.java

 +- OrderController.java

 +- OrderService.java

 +- OrderRepository.java

The Application.java file would declare the main method, along with the basic @Configuration,
as follows:

package com.example.myapplication;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.EnableAutoConfiguration;

import org.springframework.context.annotation.ComponentScan;

import org.springframework.context.annotation.Configuration;

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 34

@Configuration

@EnableAutoConfiguration

@ComponentScan

public class Application {

 public static void main(String[] args) {

 SpringApplication.run(Application.class, args);

 }

}

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 35

15. Configuration Classes

Spring Boot favors Java-based configuration. Although it is possible to use SpringApplication with
XML sources, we generally recommend that your primary source be a single @Configuration class.
Usually the class that defines the main method is a good candidate as the primary @Configuration.

Tip

Many Spring configuration examples have been published on the Internet that use XML
configuration. If possible, always try to use the equivalent Java-based configuration. Searching
for Enable* annotations can be a good starting point.

15.1 Importing Additional Configuration Classes

You need not put all your @Configuration into a single class. The @Import annotation can be used
to import additional configuration classes. Alternatively, you can use @ComponentScan to automatically
pick up all Spring components, including @Configuration classes.

15.2 Importing XML Configuration

If you absolutely must use XML based configuration, we recommend that you still start with
a @Configuration class. You can then use an @ImportResource annotation to load XML
configuration files.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 36

16. Auto-configuration

Spring Boot auto-configuration attempts to automatically configure your Spring application based on the
jar dependencies that you have added. For example, if HSQLDB is on your classpath, and you have not
manually configured any database connection beans, then Spring Boot auto-configures an in-memory
database.

You need to opt-in to auto-configuration by adding the @EnableAutoConfiguration or
@SpringBootApplication annotations to one of your @Configuration classes.

Tip

You should only ever add one @EnableAutoConfiguration annotation. We generally
recommend that you add it to your primary @Configuration class.

16.1 Gradually Replacing Auto-configuration

Auto-configuration is non-invasive. At any point, you can start to define your own configuration to replace
specific parts of the auto-configuration. For example, if you add your own DataSource bean, the default
embedded database support backs away.

If you need to find out what auto-configuration is currently being applied, and why, start your application
with the --debug switch. Doing so enables debug logs for a selection of core loggers and logs a
conditions report to the console.

16.2 Disabling Specific Auto-configuration Classes

If you find that specific auto-configuration classes that you do not want are being applied, you can
use the exclude attribute of @EnableAutoConfiguration to disable them, as shown in the following
example:

import org.springframework.boot.autoconfigure.*;

import org.springframework.boot.autoconfigure.jdbc.*;

import org.springframework.context.annotation.*;

@Configuration

@EnableAutoConfiguration(exclude={DataSourceAutoConfiguration.class})

public class MyConfiguration {

}

If the class is not on the classpath, you can use the excludeName attribute of the annotation and specify
the fully qualified name instead. Finally, you can also control the list of auto-configuration classes to
exclude by using the spring.autoconfigure.exclude property.

Tip

You can define exclusions both at the annotation level and by using the property.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 37

17. Spring Beans and Dependency Injection

You are free to use any of the standard Spring Framework techniques to define your beans and their
injected dependencies. For simplicity, we often find that using @ComponentScan (to find your beans)
and using @Autowired (to do constructor injection) works well.

If you structure your code as suggested above (locating your application class in a root package), you
can add @ComponentScan without any arguments. All of your application components (@Component,
@Service, @Repository, @Controller etc.) are automatically registered as Spring Beans.

The following example shows a @Service Bean that uses constructor injection to obtain a required
RiskAssessor bean:

package com.example.service;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Service;

@Service

public class DatabaseAccountService implements AccountService {

 private final RiskAssessor riskAssessor;

 @Autowired

 public DatabaseAccountService(RiskAssessor riskAssessor) {

 this.riskAssessor = riskAssessor;

 }

 // ...

}

If a bean has one constructor, you can omit the @Autowired, as shown in the following example:

@Service

public class DatabaseAccountService implements AccountService {

 private final RiskAssessor riskAssessor;

 public DatabaseAccountService(RiskAssessor riskAssessor) {

 this.riskAssessor = riskAssessor;

 }

 // ...

}

Tip

Notice how using constructor injection lets the riskAssessor field be marked as final,
indicating that it cannot be subsequently changed.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 38

18. Using the @SpringBootApplication Annotation

Many Spring Boot developers always have their main class annotated with @Configuration,
@EnableAutoConfiguration, and @ComponentScan. Since these annotations are so frequently
used together (especially if you follow the best practices above), Spring Boot provides a convenient
@SpringBootApplication alternative.

The @SpringBootApplication annotation is equivalent to using @Configuration,
@EnableAutoConfiguration, and @ComponentScan with their default attributes, as shown in the
following example:

package com.example.myapplication;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication // same as @Configuration @EnableAutoConfiguration @ComponentScan

public class Application {

 public static void main(String[] args) {

 SpringApplication.run(Application.class, args);

 }

}

Note

@SpringBootApplication also provides aliases to customize the attributes of
@EnableAutoConfiguration and @ComponentScan.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 39

19. Running Your Application

One of the biggest advantages of packaging your application as a jar and using an embedded HTTP
server is that you can run your application as you would any other. Debugging Spring Boot applications
is also easy. You do not need any special IDE plugins or extensions.

Note

This section only covers jar based packaging. If you choose to package your application as a war
file, you should refer to your server and IDE documentation.

19.1 Running from an IDE

You can run a Spring Boot application from your IDE as a simple Java application. However, you first
need to import your project. Import steps vary depending on your IDE and build system. Most IDEs can
import Maven projects directly. For example, Eclipse users can select Import… → Existing Maven
Projects from the File menu.

If you cannot directly import your project into your IDE, you may be able to generate IDE metadata by
using a build plugin. Maven includes plugins for Eclipse and IDEA. Gradle offers plugins for various IDEs.

Tip

If you accidentally run a web application twice, you see a “Port already in use” error. STS users
can use the Relaunch button rather than the Run button to ensure that any existing instance
is closed.

19.2 Running as a Packaged Application

If you use the Spring Boot Maven or Gradle plugins to create an executable jar, you can run your
application using java -jar, as shown in the following example:

$ java -jar target/myapplication-0.0.1-SNAPSHOT.jar

It is also possible to run a packaged application with remote debugging support enabled. Doing so lets
you attach a debugger to your packaged application, as shown in the following example:

$ java -Xdebug -Xrunjdwp:server=y,transport=dt_socket,address=8000,suspend=n \

 -jar target/myapplication-0.0.1-SNAPSHOT.jar

19.3 Using the Maven Plugin

The Spring Boot Maven plugin includes a run goal that can be used to quickly compile and run your
application. Applications run in an exploded form, as they do in your IDE. The following example shows
a typical Maven command to run a Spring Boot application:

$ mvn spring-boot:run

You might also want to use the MAVEN_OPTS operating system environment variable, as shown in the
following example:

$ export MAVEN_OPTS=-Xmx1024m

http://maven.apache.org/plugins/maven-eclipse-plugin/
http://maven.apache.org/plugins/maven-idea-plugin/
https://docs.gradle.org/4.2.1/userguide/userguide.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 40

19.4 Using the Gradle Plugin

The Spring Boot Gradle plugin also includes a bootRun task that can be used to run your application in
an exploded form. The bootRun task is added whenever you apply the org.springframework.boot
and java plugins and is shown in the following example:

$ gradle bootRun

You might also want to use the JAVA_OPTS operating system environment variable, as shown in the
following example:

$ export JAVA_OPTS=-Xmx1024m

19.5 Hot Swapping

Since Spring Boot applications are just plain Java applications, JVM hot-swapping should work out of the
box. JVM hot swapping is somewhat limited with the bytecode that it can replace. For a more complete
solution, JRebel can be used.

The spring-boot-devtools module also includes support for quick application restarts. See the
Chapter 20, Developer Tools section later in this chapter and the Hot swapping “How-to” for details.

http://zeroturnaround.com/software/jrebel/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 41

20. Developer Tools

Spring Boot includes an additional set of tools that can make the application development experience a
little more pleasant. The spring-boot-devtools module can be included in any project to provide
additional development-time features. To include devtools support, add the module dependency to your
build, as shown in the following listings for Maven and Gradle:

Maven.

<dependencies>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-devtools</artifactId>

 <optional>true</optional>

 </dependency>

</dependencies>

Gradle.

dependencies {

 compile("org.springframework.boot:spring-boot-devtools")

}

Note

Developer tools are automatically disabled when running a fully packaged application. If your
application is launched from java -jar or if it is started from a special classloader, then it is
considered a “production application”. Flagging the dependency as optional is a best practice that
prevents devtools from being transitively applied to other modules that use your project. Gradle
does not support optional dependencies out-of-the-box, so you may want to have a look at the
propdeps-plugin.

Tip

Repackaged archives do not contain devtools by default. If you want to use a certain remote
devtools feature, you need to disable the excludeDevtools build property to include it. The
property is supported with both the Maven and Gradle plugins.

20.1 Property Defaults

Several of the libraries supported by Spring Boot use caches to improve performance. For example,
template engines cache compiled templates to avoid repeatedly parsing template files. Also, Spring
MVC can add HTTP caching headers to responses when serving static resources.

While caching is very beneficial in production, it can be counter-productive during development,
preventing you from seeing the changes you just made in your application. For this reason, spring-boot-
devtools disables the caching options by default.

Cache options are usually configured by settings in your application.properties file. For
example, Thymeleaf offers the spring.thymeleaf.cache property. Rather than needing to set
these properties manually, the spring-boot-devtools module automatically applies sensible
development-time configuration.

https://github.com/spring-projects/gradle-plugins/tree/master/propdeps-plugin

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 42

Tip

For a complete list of the properties that are applied by the devtools, see
DevToolsPropertyDefaultsPostProcessor.

20.2 Automatic Restart

Applications that use spring-boot-devtools automatically restart whenever files on the classpath
change. This can be a useful feature when working in an IDE, as it gives a very fast feedback loop for
code changes. By default, any entry on the classpath that points to a folder is monitored for changes.
Note that certain resources, such as static assets and view templates, do not need to restart the
application.

Triggering a restart

As DevTools monitors classpath resources, the only way to trigger a restart is to update the
classpath. The way in which you cause the classpath to be updated depends on the IDE that you
are using. In Eclipse, saving a modified file causes the classpath to be updated and triggers a
restart. In IntelliJ IDEA, building the project (Build -> Make Project) has the same effect.

Note

As long as forking is enabled, you can also start your application by using the supported build
plugins (Maven and Gradle), since DevTools needs an isolated application classloader to operate
properly. By default, Gradle and Maven do that when they detect DevTools on the classpath.

Tip

Automatic restart works very well when used with LiveReload. See the LiveReload section for
details. If you use JRebel, automatic restarts are disabled in favor of dynamic class reloading.
Other devtools features (such as LiveReload and property overrides) can still be used.

Note

DevTools relies on the application context’s shutdown hook to close it during
a restart. It does not work correctly if you have disabled the shutdown hook
(SpringApplication.setRegisterShutdownHook(false)).

Note

When deciding if an entry on the classpath should trigger a restart when it changes, DevTools
automatically ignores projects named spring-boot, spring-boot-devtools, spring-
boot-autoconfigure, spring-boot-actuator, and spring-boot-starter.

Note

DevTools needs to customize the ResourceLoader used by the ApplicationContext. If your
application provides one already, it is going to be wrapped. Direct override of the getResource
method on the ApplicationContext is not supported.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-devtools/src/main/java/org/springframework/boot/devtools/env/DevToolsPropertyDefaultsPostProcessor.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 43

Restart vs Reload

The restart technology provided by Spring Boot works by using two classloaders. Classes that do
not change (for example, those from third-party jars) are loaded into a base classloader. Classes
that you are actively developing are loaded into a restart classloader. When the application is
restarted, the restart classloader is thrown away and a new one is created. This approach means
that application restarts are typically much faster than “cold starts”, since the base classloader is
already available and populated.

If you find that restarts are not quick enough for your applications or you encounter classloading
issues, you could consider reloading technologies such as JRebel from ZeroTurnaround. These
work by rewriting classes as they are loaded to make them more amenable to reloading.

Logging changes in condition evaluation

By default, each time your application restarts, a report showing the condition evaluation delta is logged.
The report shows the changes to your application’s auto-configuration as you make changes such as
adding or removing beans and setting configuration properties.

To disable the logging of the report, set the following property:

spring.devtools.restart.log-condition-evaluation-delta=false

Excluding Resources

Certain resources do not necessarily need to trigger a restart when they are changed. For example,
Thymeleaf templates can be edited in-place. By default, changing resources in /META-INF/maven,
/META-INF/resources, /resources, /static, /public, or /templates does not trigger a
restart but does trigger a live reload. If you want to customize these exclusions, you can use the
spring.devtools.restart.exclude property. For example, to exclude only /static and /
public you would set the following property:

spring.devtools.restart.exclude=static/**,public/**

Tip

If you want to keep those defaults and add additional exclusions, use the
spring.devtools.restart.additional-exclude property instead.

Watching Additional Paths

You may want your application to be restarted or reloaded when you make changes to files
that are not on the classpath. To do so, use the spring.devtools.restart.additional-
paths property to configure additional paths to watch for changes. You can use the
spring.devtools.restart.exclude property described earlier to control whether changes
beneath the additional paths trigger a full restart or a live reload.

Disabling Restart

If you do not want to use the restart feature, you can disable it by using the
spring.devtools.restart.enabled property. In most cases, you can set this property in your
application.properties (doing so still initializes the restart classloader, but it does not watch for
file changes).

http://zeroturnaround.com/software/jrebel/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 44

If you need to completely disable restart support (for example, because it does not work with a specific
library), you need to set the spring.devtools.restart.enabled System property to false
before calling SpringApplication.run(…), as shown in the following example:

public static void main(String[] args) {

 System.setProperty("spring.devtools.restart.enabled", "false");

 SpringApplication.run(MyApp.class, args);

}

Using a Trigger File

If you work with an IDE that continuously compiles changed files, you might prefer to trigger restarts only
at specific times. To do so, you can use a “trigger file”, which is a special file that must be modified when
you want to actually trigger a restart check. Changing the file only triggers the check and the restart
only occurs if Devtools has detected it has to do something. The trigger file can be updated manually
or with an IDE plugin.

To use a trigger file, set the spring.devtools.restart.trigger-file property to the path of
your trigger file.

Tip

You might want to set spring.devtools.restart.trigger-file as a global setting, so
that all your projects behave in the same way.

Customizing the Restart Classloader

As described earlier in the Restart vs Reload section, restart functionality is implemented by using
two classloaders. For most applications, this approach works well. However, it can sometimes cause
classloading issues.

By default, any open project in your IDE is loaded with the “restart” classloader, and any regular .jar
file is loaded with the “base” classloader. If you work on a multi-module project, and not every module
is imported into your IDE, you may need to customize things. To do so, you can create a META-INF/
spring-devtools.properties file.

The spring-devtools.properties file can contain properties prefixed with restart.exclude
and restart.include. The include elements are items that should be pulled up into the “restart”
classloader, and the exclude elements are items that should be pushed down into the “base”
classloader. The value of the property is a regex pattern that is applied to the classpath, as shown in
the following example:

restart.exclude.companycommonlibs=/mycorp-common-[\\w-]+\.jar

restart.include.projectcommon=/mycorp-myproj-[\\w-]+\.jar

Note

All property keys must be unique. As long as a property starts with restart.include. or
restart.exclude. it is considered.

Tip

All META-INF/spring-devtools.properties from the classpath are loaded. You can
package files inside your project, or in the libraries that the project consumes.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 45

Known Limitations

Restart functionality does not work well with objects that are deserialized by
using a standard ObjectInputStream. If you need to deserialize data, you
may need to use Spring’s ConfigurableObjectInputStream in combination with
Thread.currentThread().getContextClassLoader().

Unfortunately, several third-party libraries deserialize without considering the context classloader. If you
find such a problem, you need to request a fix with the original authors.

20.3 LiveReload

The spring-boot-devtools module includes an embedded LiveReload server that can be used
to trigger a browser refresh when a resource is changed. LiveReload browser extensions are freely
available for Chrome, Firefox and Safari from livereload.com.

If you do not want to start the LiveReload server when your application runs, you can set the
spring.devtools.livereload.enabled property to false.

Note

You can only run one LiveReload server at a time. Before starting your application, ensure that
no other LiveReload servers are running. If you start multiple applications from your IDE, only the
first has LiveReload support.

20.4 Global Settings

You can configure global devtools settings by adding a file named .spring-boot-

devtools.properties to your $HOME folder (note that the filename starts with “.”). Any properties
added to this file apply to all Spring Boot applications on your machine that use devtools. For example,
to configure restart to always use a trigger file, you would add the following property:

~/.spring-boot-devtools.properties.

spring.devtools.reload.trigger-file=.reloadtrigger

20.5 Remote Applications

The Spring Boot developer tools are not limited to local development. You can also use several features
when running applications remotely. Remote support is opt-in. To enable it, you need to make sure that
devtools is included in the repackaged archive, as shown in the following listing:

<build>

 <plugins>

 <plugin>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-maven-plugin</artifactId>

 <configuration>

 <excludeDevtools>false</excludeDevtools>

 </configuration>

 </plugin>

 </plugins>

</build>

Then you need to set a spring.devtools.remote.secret property, as shown in the following
example:

http://livereload.com/extensions/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 46

spring.devtools.remote.secret=mysecret

Warning

Enabling spring-boot-devtools on a remote application is a security risk. You should never
enable support on a production deployment.

Remote devtools support is provided in two parts: a server-side endpoint that accepts connections and
a client application that you run in your IDE. The server component is automatically enabled when
the spring.devtools.remote.secret property is set. The client component must be launched
manually.

Running the Remote Client Application

The remote client application is designed to be run from within your IDE. You need to run
org.springframework.boot.devtools.RemoteSpringApplication with the same classpath
as the remote project that you connect to. The application’s single required argument is the remote URL
to which it connects.

For example, if you are using Eclipse or STS and you have a project named my-app that you have
deployed to Cloud Foundry, you would do the following:

• Select Run Configurations… from the Run menu.

• Create a new Java Application “launch configuration”.

• Browse for the my-app project.

• Use org.springframework.boot.devtools.RemoteSpringApplication as the main class.

• Add https://myapp.cfapps.io to the Program arguments (or whatever your remote URL is).

A running remote client might resemble the following listing:

 . ____ _ __ _ _

 /\\ / ___'_ __ _ _(_)_ __ __ _ ___ _ \ \ \ \

(()___ | '_ | '_| | '_ \/ _` | | _ ___ _ __ ___| |_ ___ \ \ \ \

 \\/ ___)| |_)| | | | | || (_| []::::::[] / -_) ' \/ _ \ _/ -_)))))

 ' |____| .__|_| |_|_| |___, | |_|____|_|_|____/_____|/ / / /

 =========|_|==============|___/===================================/_/_/_/

 :: Spring Boot Remote :: 2.0.0.RC1

2015-06-10 18:25:06.632 INFO 14938 --- [main] o.s.b.devtools.RemoteSpringApplication :

 Starting RemoteSpringApplication on pwmbp with PID 14938 (/Users/pwebb/projects/spring-boot/code/

spring-boot-devtools/target/classes started by pwebb in /Users/pwebb/projects/spring-boot/code/spring-

boot-samples/spring-boot-sample-devtools)

2015-06-10 18:25:06.671 INFO 14938 --- [main] s.c.a.AnnotationConfigApplicationContext :

 Refreshing org.springframework.context.annotation.AnnotationConfigApplicationContext@2a17b7b6: startup

 date [Wed Jun 10 18:25:06 PDT 2015]; root of context hierarchy

2015-06-10 18:25:07.043 WARN 14938 --- [main] o.s.b.d.r.c.RemoteClientConfiguration : The

 connection to http://localhost:8080 is insecure. You should use a URL starting with 'https://'.

2015-06-10 18:25:07.074 INFO 14938 --- [main] o.s.b.d.a.OptionalLiveReloadServer :

 LiveReload server is running on port 35729

2015-06-10 18:25:07.130 INFO 14938 --- [main] o.s.b.devtools.RemoteSpringApplication :

 Started RemoteSpringApplication in 0.74 seconds (JVM running for 1.105)

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 47

Note

Because the remote client is using the same classpath as the real application it can directly read
application properties. This is how the spring.devtools.remote.secret property is read
and passed to the server for authentication.

Tip

It is always advisable to use https:// as the connection protocol, so that traffic is encrypted
and passwords cannot be intercepted.

Tip

If you need to use a proxy to access the remote application, configure the
spring.devtools.remote.proxy.host and spring.devtools.remote.proxy.port
properties.

Remote Update

The remote client monitors your application classpath for changes in the same way as the local restart.
Any updated resource is pushed to the remote application and (if required) triggers a restart. This can
be helpful if you iterate on a feature that uses a cloud service that you do not have locally. Generally,
remote updates and restarts are much quicker than a full rebuild and deploy cycle.

Note

Files are only monitored when the remote client is running. If you change a file before starting the
remote client, it is not pushed to the remote server.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 48

21. Packaging Your Application for Production

Executable jars can be used for production deployment. As they are self-contained, they are also ideally
suited for cloud-based deployment.

For additional “production ready” features, such as health, auditing, and metric REST or JMX end-
points, consider adding spring-boot-actuator. See Part V, “Spring Boot Actuator: Production-
ready features” for details.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 49

22. What to Read Next

You should now understand how you can use Spring Boot and some best practices that you should
follow. You can now go on to learn about specific Spring Boot features in depth, or you could skip ahead
and read about the “production ready” aspects of Spring Boot.

Part IV. Spring Boot features
This section dives into the details of Spring Boot. Here you can learn about the key features that you may
want to use and customize. If you have not already done so, you might want to read the "Part II, “Getting
Started”" and "Part III, “Using Spring Boot”" sections, so that you have a good grounding of the basics.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 51

23. SpringApplication

The SpringApplication class provides a convenient way to bootstrap a Spring application
that is started from a main() method. In many situations, you can delegate to the static
SpringApplication.run method, as shown in the following example:

public static void main(String[] args) {

 SpringApplication.run(MySpringConfiguration.class, args);

}

When your application starts, you should see something similar to the following output:

 . ____ _ __ _ _

 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \

(()___ | '_ | '_| | '_ \/ _` | \ \ \ \

 \\/ ___)| |_)| | | | | || (_| |))))

 ' |____| .__|_| |_|_| |___, | / / / /

 =========|_|==============|___/=/_/_/_/

 :: Spring Boot :: v2.0.0.RC1

2013-07-31 00:08:16.117 INFO 56603 --- [main] o.s.b.s.app.SampleApplication :

 Starting SampleApplication v0.1.0 on mycomputer with PID 56603 (/apps/myapp.jar started by pwebb)

2013-07-31 00:08:16.166 INFO 56603 --- [main]

 ationConfigServletWebServerApplicationContext : Refreshing

 org.springframework.boot.web.servlet.context.AnnotationConfigServletWebServerApplicationContext@6e5a8246:

 startup date [Wed Jul 31 00:08:16 PDT 2013]; root of context hierarchy

2014-03-04 13:09:54.912 INFO 41370 --- [main] .t.TomcatServletWebServerFactory : Server

 initialized with port: 8080

2014-03-04 13:09:56.501 INFO 41370 --- [main] o.s.b.s.app.SampleApplication :

 Started SampleApplication in 2.992 seconds (JVM running for 3.658)

By default, INFO logging messages are shown, including some relevant startup details, such as the
user that launched the application. If you need a log level other than INFO, you can set it, as described
in Section 26.4, “Log Levels”,

23.1 Startup Failure

If your application fails to start, registered FailureAnalyzers get a chance to provide a dedicated
error message and a concrete action to fix the problem. For instance, if you start a web application on
port 8080 and that port is already in use, you should see something similar to the following message:

APPLICATION FAILED TO START

Description:

Embedded servlet container failed to start. Port 8080 was already in use.

Action:

Identify and stop the process that's listening on port 8080 or configure this application to listen on

 another port.

Note

Spring Boot provides numerous FailureAnalyzer implementations, and you can add your own.

If no failure analyzers are able to handle the exception, you can still
display the full conditions report to better understand what went wrong. To do

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 52

so, you need to enable the debug property or enable DEBUG logging for
org.springframework.boot.autoconfigure.logging.ConditionEvaluationReportLoggingListener.

For instance, if you are running your application by using java -jar, you can enable the debug
property as follows:

$ java -jar myproject-0.0.1-SNAPSHOT.jar --debug

23.2 Customizing the Banner

The banner that is printed on start up can be changed by adding a banner.txt file to your classpath
or by setting the spring.banner.location property to the location of such a file. If the file has
an encoding other than UTF-8, you can set spring.banner.charset. In addition to a text file, you
can also add a banner.gif, banner.jpg, or banner.png image file to your classpath or set the
spring.banner.image.location property. Images are converted into an ASCII art representation
and printed above any text banner.

Inside your banner.txt file, you can use any of the following placeholders:

Table 23.1. Banner variables

Variable Description

${application.version} The version number of your application, as
declared in MANIFEST.MF. For example,
Implementation-Version: 1.0 is printed
as 1.0.

${application.formatted-version} The version number of your application, as
declared in MANIFEST.MF and formatted for
display (surrounded with brackets and prefixed
with v). For example (v1.0).

${spring-boot.version} The Spring Boot version that you are using. For
example 2.0.0.RC1.

${spring-boot.formatted-version} The Spring Boot version that you are using,
formatted for display (surrounded with
brackets and prefixed with v). For example
(v2.0.0.RC1).

${Ansi.NAME} (or ${AnsiColor.NAME},
${AnsiBackground.NAME},
${AnsiStyle.NAME})

Where NAME is the name of an ANSI escape
code. See AnsiPropertySource for details.

${application.title} The title of your application, as declared
in MANIFEST.MF. For example
Implementation-Title: MyApp is printed
as MyApp.

Tip

The SpringApplication.setBanner(…) method can be used if you want to generate
a banner programmatically. Use the org.springframework.boot.Banner interface and
implement your own printBanner() method.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/ansi/AnsiPropertySource.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 53

You can also use the spring.main.banner-mode property to determine if the banner has to be
printed on System.out (console), sent to the configured logger (log), or not produced at all (off).

The printed banner is registered as a singleton bean under the following name: springBootBanner.

Note

YAML maps off to false, so be sure to add quotes if you want to disable the banner in your
application, as shown in the following example:

spring:

 main:

 banner-mode: "off"

23.3 Customizing SpringApplication

If the SpringApplication defaults are not to your taste, you can instead create a local instance and
customize it. For example, to turn off the banner, you could write:

public static void main(String[] args) {

 SpringApplication app = new SpringApplication(MySpringConfiguration.class);

 app.setBannerMode(Banner.Mode.OFF);

 app.run(args);

}

Note

The constructor arguments passed to SpringApplication are configuration sources for Spring
beans. In most cases, these are references to @Configuration classes, but they could also be
references to XML configuration or to packages that should be scanned.

It is also possible to configure the SpringApplication by using an application.properties
file. See Chapter 24, Externalized Configuration for details.

For a complete list of the configuration options, see the SpringApplication Javadoc.

23.4 Fluent Builder API

If you need to build an ApplicationContext hierarchy (multiple contexts with a parent/
child relationship) or if you prefer using a “fluent” builder API, you can use the
SpringApplicationBuilder.

The SpringApplicationBuilder lets you chain together multiple method calls and includes parent
and child methods that let you create a hierarchy, as shown in the following example:

new SpringApplicationBuilder()

 .sources(Parent.class)

 .child(Application.class)

 .bannerMode(Banner.Mode.OFF)

 .run(args);

Note

There are some restrictions when creating an ApplicationContext hierarchy. For example,
Web components must be contained within the child context, and the same Environment is

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/SpringApplication.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 54

used for both parent and child contexts. See the SpringApplicationBuilder Javadoc for
full details.

23.5 Application Events and Listeners

In addition to the usual Spring Framework events, such as ContextRefreshedEvent, a
SpringApplication sends some additional application events.

Note

Some events are actually triggered before the ApplicationContext is created,
so you cannot register a listener on those as a @Bean. You can
register them with the SpringApplication.addListeners(…) method or the
SpringApplicationBuilder.listeners(…) method.

If you want those listeners to be registered automatically, regardless of the way the application is
created, you can add a META-INF/spring.factories file to your project and reference your
listener(s) by using the org.springframework.context.ApplicationListener key, as
shown in the following example:

org.springframework.context.ApplicationListener=com.example.project.MyListener

Application events are sent in the following order, as your application runs:

1. An ApplicationStartingEvent is sent at the start of a run but before any processing, except
for the registration of listeners and initializers.

2. An ApplicationEnvironmentPreparedEvent is sent when the Environment to be used in the
context is known but before the context is created.

3. An ApplicationPreparedEvent is sent just before the refresh is started but after bean definitions
have been loaded.

4. An ApplicationStartedEvent is sent after the context has been refreshed but before any
application and command-line runners have been called.

5. An ApplicationReadyEvent is sent after any application and command-line runners have been
called. It indicates that the application is ready to service requests.

6. An ApplicationFailedEvent is sent if there is an exception on startup.

Tip

You often need not use application events, but it can be handy to know that they exist. Internally,
Spring Boot uses events to handle a variety of tasks.

Application events are sent by using Spring Framework’s event publishing mechanism. Part of this
mechanism ensures that an event published to the listeners in a child context is also published
to the listeners in any ancestor contexts. As a result of this, if your application uses a hierarchy
of SpringApplication instances, a listener may receive multiple instances of the same type of
application event.

To allow your listener to distinguish between an event for its context and an event for a
descendant context, it should request that its application context is injected and then compare

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/builder/SpringApplicationBuilder.html
http://docs.spring.io/spring/docs/5.0.3.RELEASE/javadoc-api/org/springframework/context/event/ContextRefreshedEvent.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 55

the injected context with the context of the event. The context can be injected by implementing
ApplicationContextAware or, if the listener is a bean, by using @Autowired.

23.6 Web Environment

A SpringApplication attempts to create the right type of ApplicationContext

on your behalf. By default, an AnnotationConfigApplicationContext or
AnnotationConfigServletWebServerApplicationContext is used, depending on whether
you are developing a web application or not.

The algorithm used to determine a “web environment” is fairly simplistic (it is based on the presence
of a few classes). If you need to override the default, you can use setWebEnvironment(boolean
webEnvironment).

It is also possible to take complete control of the ApplicationContext type that is used by calling
setApplicationContextClass(…).

Tip

It is often desirable to call setWebEnvironment(false) when using SpringApplication
within a JUnit test.

23.7 Accessing Application Arguments

If you need to access the application arguments that were passed to SpringApplication.run(…
), you can inject a org.springframework.boot.ApplicationArguments bean. The
ApplicationArguments interface provides access to both the raw String[] arguments as well as
parsed option and non-option arguments, as shown in the following example:

import org.springframework.boot.*

import org.springframework.beans.factory.annotation.*

import org.springframework.stereotype.*

@Component

public class MyBean {

 @Autowired

 public MyBean(ApplicationArguments args) {

 boolean debug = args.containsOption("debug");

 List<String> files = args.getNonOptionArgs();

 // if run with "--debug logfile.txt" debug=true, files=["logfile.txt"]

 }

}

Tip

Spring Boot also registers a CommandLinePropertySource with the Spring Environment.
This lets you also inject single application arguments by using the @Value annotation.

23.8 Using the ApplicationRunner or CommandLineRunner

If you need to run some specific code once the SpringApplication has started, you can implement
the ApplicationRunner or CommandLineRunner interfaces. Both interfaces work in the same way
and offer a single run method, which is called just before SpringApplication.run(…) completes.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 56

The CommandLineRunner interfaces provides access to application arguments as a simple string
array, whereas the ApplicationRunner uses the ApplicationArguments interface discussed
earlier. The following example shows a CommandLineRunner with a run method:

import org.springframework.boot.*

import org.springframework.stereotype.*

@Component

public class MyBean implements CommandLineRunner {

 public void run(String... args) {

 // Do something...

 }

}

If several CommandLineRunner or ApplicationRunner beans are defined that must be called in a
specific order, you can additionally implement the org.springframework.core.Ordered interface
or use the org.springframework.core.annotation.Order annotation.

23.9 Application Exit

Each SpringApplication registers a shutdown hook with the JVM to ensure that the
ApplicationContext closes gracefully on exit. All the standard Spring lifecycle callbacks (such as
the DisposableBean interface or the @PreDestroy annotation) can be used.

In addition, beans may implement the org.springframework.boot.ExitCodeGenerator
interface if they wish to return a specific exit code when SpringApplication.exit() is called. This
exit code can then be passed to System.exit() to return it as a status code, as shown in the following
example:

@SpringBootApplication

public class ExitCodeApplication {

 @Bean

 public ExitCodeGenerator exitCodeGenerator() {

 return () -> 42;

 }

 public static void main(String[] args) {

 System.exit(SpringApplication

 .exit(SpringApplication.run(ExitCodeApplication.class, args)));

 }

}

Also, the ExitCodeGenerator interface may be implemented by exceptions. When such an exception
is encountered, Spring Boot returns the exit code provided by the implemented getExitCode()
method.

23.10 Admin Features

It is possible to enable admin-related features for the application by
specifying the spring.application.admin.enabled property. This exposes the
SpringApplicationAdminMXBean on the platform MBeanServer. You could use this feature to
administer your Spring Boot application remotely. This feature could also be useful for any service
wrapper implementation.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/admin/SpringApplicationAdminMXBean.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 57

Tip

If you want to know on which HTTP port the application is running, get the property with a key
of local.server.port.

Caution

Take care when enabling this feature, as the MBean exposes a method to shutdown the
application.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 58

24. Externalized Configuration

Spring Boot lets you externalize your configuration so that you can work with the same application
code in different environments. You can use properties files, YAML files, environment variables, and
command-line arguments to externalize configuration. Property values can be injected directly into your
beans by using the @Value annotation, accessed through Spring’s Environment abstraction, or be
bound to structured objects through @ConfigurationProperties.

Spring Boot uses a very particular PropertySource order that is designed to allow sensible overriding
of values. Properties are considered in the following order:

1. Devtools global settings properties on your home directory (~/.spring-boot-
devtools.properties when devtools is active).

2. @TestPropertySource annotations on your tests.

3. @SpringBootTest#properties annotation attribute on your tests.

4. Command line arguments.

5. Properties from SPRING_APPLICATION_JSON (inline JSON embedded in an environment variable
or system property).

6. ServletConfig init parameters.

7. ServletContext init parameters.

8. JNDI attributes from java:comp/env.

9. Java System properties (System.getProperties()).

10.OS environment variables.

11.A RandomValuePropertySource that has properties only in random.*.

12.Profile-specific application properties outside of your packaged jar (application-
{profile}.properties and YAML variants).

13.Profile-specific application properties packaged inside your jar (application-
{profile}.properties and YAML variants).

14.Application properties outside of your packaged jar (application.properties and YAML
variants).

15.Application properties packaged inside your jar (application.properties and YAML variants).

16.@PropertySource annotations on your @Configuration classes.

17.Default properties (specified by setting SpringApplication.setDefaultProperties).

To provide a concrete example, suppose you develop a @Component that uses a name property, as
shown in the following example:

import org.springframework.stereotype.*

import org.springframework.beans.factory.annotation.*

http://docs.spring.io/spring/docs/5.0.3.RELEASE/javadoc-api/org/springframework/test/context/TestPropertySource.html
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/test/context/SpringBootTest.html
http://docs.spring.io/spring/docs/5.0.3.RELEASE/javadoc-api/org/springframework/context/annotation/PropertySource.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 59

@Component

public class MyBean {

 @Value("${name}")

 private String name;

 // ...

}

On your application classpath (for example, inside your jar) you can have an
application.properties file that provides a sensible default property value for name. When
running in a new environment, an application.properties file can be provided outside of your jar
that overrides the name. For one-off testing, you can launch with a specific command line switch (for
example, java -jar app.jar --name="Spring").

Tip

The SPRING_APPLICATION_JSON properties can be supplied on the command line with an
environment variable. For example, you could use the following line in a UN*X shell:

$ SPRING_APPLICATION_JSON='{"acme":{"name":"test"}}' java -jar myapp.jar

In the preceding example, you end up with acme.name=test in the Spring Environment. You
can also supply the JSON as spring.application.json in a System property, as shown in
the following example:

$ java -Dspring.application.json='{"name":"test"}' -jar myapp.jar

You can also supply the JSON by using a command line argument, as shown in the following
example:

$ java -jar myapp.jar --spring.application.json='{"name":"test"}'

You can also supply the JSON as a JNDI variable, as follows: java:comp/env/

spring.application.json.

24.1 Configuring Random Values

The RandomValuePropertySource is useful for injecting random values (for example, into secrets
or test cases). It can produce integers, longs, uuids, or strings, as shown in the following example:

my.secret=${random.value}

my.number=${random.int}

my.bignumber=${random.long}

my.uuid=${random.uuid}

my.number.less.than.ten=${random.int(10)}

my.number.in.range=${random.int[1024,65536]}

The random.int* syntax is OPEN value (,max) CLOSE where the OPEN,CLOSE are any character
and value,max are integers. If max is provided, then value is the minimum value and max is the
maximum value (exclusive).

24.2 Accessing Command Line Properties

By default, SpringApplication converts any command line option arguments (that is, arguments
starting with --, such as --server.port=9000) to a property and adds them to the Spring

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 60

Environment. As mentioned previously, command line properties always take precedence over other
property sources.

If you do not want command line properties to be added to the Environment, you can disable them
by using SpringApplication.setAddCommandLineProperties(false).

24.3 Application Property Files

SpringApplication loads properties from application.properties files in the following
locations and adds them to the Spring Environment:

1. A /config subdirectory of the current directory

2. The current directory

3. A classpath /config package

4. The classpath root

The list is ordered by precedence (properties defined in locations higher in the list override those defined
in lower locations).

Note

You can also use YAML ('.yml') files as an alternative to '.properties'.

If you do not like application.properties as the configuration file name, you can switch to another
file name by specifying a spring.config.name environment property. You can also refer to an explicit
location by using the spring.config.location environment property (which is a comma-separated
list of directory locations or file paths). The following example shows how to specify a different file name:

$ java -jar myproject.jar --spring.config.name=myproject

The following example shows how to specify two locations:

$ java -jar myproject.jar --spring.config.location=classpath:/default.properties,classpath:/

override.properties

Warning

spring.config.name and spring.config.location are used very early to determine
which files have to be loaded, so they must be defined as an environment property (typically an
OS environment variable, a system property, or a command-line argument).

If spring.config.location contains directories (as opposed to files), they should end in / (and,
at runtime, be appended with the names generated from spring.config.name before being loaded,
including profile-specific file names). Files specified in spring.config.location are used as-is,
with no support for profile-specific variants, and are overridden by any profile-specific properties.

Config locations are searched in reverse order. By default, the configured locations are
classpath:/,classpath:/config/,file:./,file:./config/. The resulting search order is
the following:

1. file:./config/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 61

2. file:./

3. classpath:/config/

4. classpath:/

When custom config locations are configured by using spring.config.location, they
replace the default locations. For example, if spring.config.location is configured with the
value classpath:/custom-config/,file:./custom-config/, the search order becomes the
following:

1. file:./custom-config/

2. classpath:custom-config/

Alternatively, when custom config locations are configured by using spring.config.additional-
location, they are used in addition to the default locations. Additional locations are searched
before the default locations. For example, if additional locations of classpath:/custom-
config/,file:./custom-config/ are configured, the search order becomes the following:

1. file:./custom-config/

2. classpath:custom-config/

3. file:./config/

4. file:./

5. classpath:/config/

6. classpath:/

This search ordering lets you specify default values in one configuration file and then selectively
override those values in another. You can provide default values for your application in
application.properties (or whatever other basename you choose with spring.config.name)
in one of the default locations. These default values can then be overridden at runtime with a different
file located in one of the custom locations.

Note

If you use environment variables rather than system properties, most operating systems
disallow period-separated key names, but you can use underscores instead (for example,
SPRING_CONFIG_NAME instead of spring.config.name).

Note

If your application runs in a container, then JNDI properties (in java:comp/env) or servlet
context initialization parameters can be used instead of, or as well as, environment variables or
system properties.

24.4 Profile-specific Properties

In addition to application.properties files, profile-specific properties can also be defined by using
the following naming convention: application-{profile}.properties. The Environment has

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 62

a set of default profiles (by default, [default]) that are used if no active profiles are set. In other words,
if no profiles are explicitly activated, then properties from application-default.properties are
loaded.

Profile-specific properties are loaded from the same locations as standard
application.properties, with profile-specific files always overriding the non-specific ones,
whether or not the profile-specific files are inside or outside your packaged jar.

If several profiles are specified, a last-wins strategy applies. For example, profiles specified
by the spring.profiles.active property are added after those configured through the
SpringApplication API and therefore take precedence.

Note

If you have specified any files in spring.config.location, profile-specific variants of those
files are not considered. Use directories in spring.config.location if you want to also use
profile-specific properties.

24.5 Placeholders in Properties

The values in application.properties are filtered through the existing Environment when they
are used, so you can refer back to previously defined values (for example, from System properties).

app.name=MyApp

app.description=${app.name} is a Spring Boot application

Tip

You can also use this technique to create “short” variants of existing Spring Boot properties. See
the Section 73.4, “Use ‘Short’ Command Line Arguments” how-to for details.

24.6 Using YAML Instead of Properties

YAML is a superset of JSON and, as such, is a convenient format for specifying hierarchical configuration
data. The SpringApplication class automatically supports YAML as an alternative to properties
whenever you have the SnakeYAML library on your classpath.

Note

If you use “Starters”, SnakeYAML is automatically provided by spring-boot-starter.

Loading YAML

Spring Framework provides two convenient classes that can be used to load YAML documents. The
YamlPropertiesFactoryBean loads YAML as Properties and the YamlMapFactoryBean loads
YAML as a Map.

For example, consider the following YAML document:

environments:

 dev:

 url: http://dev.example.com

 name: Developer Setup

http://yaml.org
http://www.snakeyaml.org/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 63

 prod:

 url: http://another.example.com

 name: My Cool App

The preceding example would be transformed into the following properties:

environments.dev.url=http://dev.example.com

environments.dev.name=Developer Setup

environments.prod.url=http://another.example.com

environments.prod.name=My Cool App

YAML lists are represented as property keys with [index] dereferencers. For example, consider the
following YAML:

my:

servers:

 - dev.example.com

 - another.example.com

The preceding example would be transformed into these properties:

my.servers[0]=dev.example.com

my.servers[1]=another.example.com

To bind to properties like that by using the Spring DataBinder utilities (which is what
@ConfigurationProperties does), you need to have a property in the target bean of type
java.util.List (or Set) and you either need to provide a setter or initialize it with a mutable value.
For example, the following example binds to the properties shown previously:

@ConfigurationProperties(prefix="my")

public class Config {

 private List<String> servers = new ArrayList<String>();

 public List<String> getServers() {

 return this.servers;

 }

}

Note

When lists are configured in more than one place, overriding works by replacing the entire list.
In the preceding example, when my.servers is defined in several places, the entire list from
the PropertySource with higher precedence overrides any other configuration for that list. Both
comma-separated lists and YAML lists can be used for completely overriding the contents of the
list.

Exposing YAML as Properties in the Spring Environment

The YamlPropertySourceLoader class can be used to expose YAML as a PropertySource in
the Spring Environment. Doing so lets you use the @Value annotation with placeholders syntax to
access YAML properties.

Multi-profile YAML Documents

You can specify multiple profile-specific YAML documents in a single file by using a spring.profiles
key to indicate when the document applies, as shown in the following example:

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 64

server:

 address: 192.168.1.100

spring:

 profiles: development

server:

 address: 127.0.0.1

spring:

 profiles: production

server:

 address: 192.168.1.120

In the preceding example, if the development profile is active, the server.address property
is 127.0.0.1. Similarly, if the production profile is active, the server.address property is
192.168.1.120. If the development and production profiles are not enabled, then the value for
the property is 192.168.1.100.

If none are explicitly active when the application context starts, the default profiles are activated. So,
in the following YAML, we set a value for spring.security.user.password that is available only
in the "default" profile:

server:

 port: 8000

spring:

 profiles: default

 security:

 user:

 password: weak

Whereas, in the following example, the password is always set because it is not attached to any profile,
and it would have to be explicitly reset in all other profiles as necessary:

server:

 port: 8000

spring:

 security:

 user:

 password: weak

Spring profiles designated by using the spring.profiles element may optionally be negated by
using the ! character. If both negated and non-negated profiles are specified for a single document, at
least one non-negated profile must match, and no negated profiles may match.

YAML Shortcomings

YAML files cannot be loaded by using the @PropertySource annotation. So, in the case that you need
to load values that way, you need to use a properties file.

Merging YAML Lists

As we showed earlier, any YAML content is ultimately transformed to properties. That process may be
counter-intuitive when overriding “list” properties through a profile.

For example, assume a MyPojo object with name and description attributes that are null by default.
The following example exposes a list of MyPojo objects from AcmeProperties:

@ConfigurationProperties("acme")

public class AcmeProperties {

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 65

 private final List<MyPojo> list = new ArrayList<>();

 public List<MyPojo> getList() {

 return this.list;

 }

}

Consider the following configuration:

acme:

 list:

 - name: my name

 description: my description

spring:

 profiles: dev

acme:

 list:

 - name: my another name

If the dev profile is not active, AcmeProperties.list contains one MyPojo entry, as previously
defined. If the dev profile is enabled, however, the list still contains only one entry (with a name of
my another name and a description of null). This configuration does not add a second MyPojo
instance to the list, and it does not merge the items.

When a collection is specified in multiple profiles, the one with the highest priority (and only that one)
is used. Consider the following example:

acme:

 list:

 - name: my name

 description: my description

 - name: another name

 description: another description

spring:

 profiles: dev

acme:

 list:

 - name: my another name

In the preceding example, if the dev profile is active, AcmeProperties.list contains one MyPojo
entry (with a name of my another name and a description of null).

24.7 Type-safe Configuration Properties

Using the @Value("${property}") annotation to inject configuration properties can sometimes be
cumbersome, especially if you are working with multiple properties or your data is hierarchical in nature.
Spring Boot provides an alternative method of working with properties that lets strongly typed beans
govern and validate the configuration of your application, as shown in the following example:

package com.example;

import java.net.InetAddress;

import java.util.ArrayList;

import java.util.Collections;

import java.util.List;

import org.springframework.boot.context.properties.ConfigurationProperties;

@ConfigurationProperties("acme")

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 66

public class AcmeProperties {

 private boolean enabled;

 private InetAddress remoteAddress;

 private final Security security = new Security();

 public boolean isEnabled() { ... }

 public void setEnabled(boolean enabled) { ... }

 public InetAddress getRemoteAddress() { ... }

 public void setRemoteAddress(InetAddress remoteAddress) { ... }

 public Security getSecurity() { ... }

 public static class Security {

 private String username;

 private String password;

 private List<String> roles = new ArrayList<>(Collections.singleton("USER"));

 public String getUsername() { ... }

 public void setUsername(String username) { ... }

 public String getPassword() { ... }

 public void setPassword(String password) { ... }

 public List<String> getRoles() { ... }

 public void setRoles(List<String> roles) { ... }

 }

}

The preceding POJO defines the following properties:

• acme.enabled, with a value of false by default.

• acme.remote-address, with a type that can be coerced from String.

• acme.security.username, with a nested "security" object whose name is determined by the
name of the property. In particular, the return type is not used at all there and could have been
SecurityProperties.

• acme.security.password.

• acme.security.roles, with a collection of String.

Note

Getters and setters are usually mandatory, since binding is through standard Java Beans property
descriptors, just like in Spring MVC. A setter may be omitted in the following cases:

• Maps, as long as they are initialized, need a getter but not necessarily a setter, since they can
be mutated by the binder.

• Collections and arrays can be accessed either through an index (typically with YAML) or by
using a single comma-separated value (properties). In the latter case, a setter is mandatory.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 67

We recommend to always add a setter for such types. If you initialize a collection, make sure
it is not immutable (as in the preceding example).

• If nested POJO properties are initialized (like the Security field in the preceding example), a
setter is not required. If you want the binder to create the instance on the fly by using its default
constructor, you need a setter.

Some people use Project Lombok to add getters and setters automatically. Make sure that Lombok
does not generate any particular constructor for such a type, as it is used automatically by the
container to instantiate the object.

Tip

See also the differences between @Value and @ConfigurationProperties.

You also need to list the properties classes to register in the @EnableConfigurationProperties
annotation, as shown in the following example:

@Configuration

@EnableConfigurationProperties(AcmeProperties.class)

public class MyConfiguration {

}

Note

When the @ConfigurationProperties bean is registered that way, the bean has a
conventional name: <prefix>-<fqn>, where <prefix> is the environment key prefix specified
in the @ConfigurationProperties annotation and <fqn> is the fully qualified name of the
bean. If the annotation does not provide any prefix, only the fully qualified name of the bean is
used.

The bean name in the example above is acme-com.example.AcmeProperties.

Even if the preceding configuration creates a regular bean for AcmeProperties, we recommend
that @ConfigurationProperties only deal with the environment and, in particular, does not
inject other beans from the context. Having said that, the @EnableConfigurationProperties
annotation is also automatically applied to your project so that any existing bean annotated
with @ConfigurationProperties is configured from the Environment. You could shortcut
MyConfiguration by making sure AcmeProperties is already a bean, as shown in the following
example:

@Component

@ConfigurationProperties(prefix="acme")

public class AcmeProperties {

 // ... see the preceding example

}

This style of configuration works particularly well with the SpringApplication external YAML
configuration, as shown in the following example:

application.yml

acme:

 remote-address: 192.168.1.1

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 68

 security:

 username: admin

 roles:

 - USER

 - ADMIN

additional configuration as required

To work with @ConfigurationProperties beans, you can inject them in the same way as any other
bean, as shown in the following example:

@Service

public class MyService {

 private final AcmeProperties properties;

 @Autowired

 public MyService(AcmeProperties properties) {

 this.properties = properties;

 }

 //...

 @PostConstruct

 public void openConnection() {

 Server server = new Server(this.properties.getRemoteAddress());

 // ...

 }

}

Tip

Using @ConfigurationProperties also lets you generate metadata files that can be used by
IDEs to offer auto-completion for your own keys. See the Appendix B, Configuration Metadata
appendix for details.

Third-party Configuration

As well as using @ConfigurationProperties to annotate a class, you can also use it on public
@Bean methods. Doing so can be particularly useful when you want to bind properties to third-party
components that are outside of your control.

To configure a bean from the Environment properties, add @ConfigurationProperties to its
bean registration, as shown in the following example:

@ConfigurationProperties(prefix = "another")

@Bean

public AnotherComponent anotherComponent() {

 ...

}

Any property defined with the another prefix is mapped onto that AnotherComponent bean in manner
similar to the preceding AcmeProperties example.

Relaxed Binding

Spring Boot uses some relaxed rules for binding Environment properties to
@ConfigurationProperties beans, so there does not need to be an exact match between the
Environment property name and the bean property name. Common examples where this is useful

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 69

include dash-separated environment properties (for example, context-path binds to contextPath),
and capitalized environment properties (for example, PORT binds to port).

For example, consider the following @ConfigurationProperties class:

@ConfigurationProperties(prefix="acme.my-project.person")

public class OwnerProperties {

 private String firstName;

 public String getFirstName() {

 return this.firstName;

 }

 public void setFirstName(String firstName) {

 this.firstName = firstName;

 }

}

In the preceding example, the following properties names can all be used:

Table 24.1. relaxed binding

Property Note

acme.my-

project.person.firstName

Standard camel case syntax.

acme.my-

project.person.first-

name

Kebab case, which is recommended for use in .properties and .yml files.

acme.my-

project.person.first_name

Underscore notation, which is an alternative format for use in .properties
and .yml files.

ACME_MYPROJECT_PERSON_FIRSTNAMEUpper case format, which is recommended when using system environment
variables.

Note

The prefix value for the annotation must be in kebab case (lowercase and separated by -, such
as acme.my-project.person).

Table 24.2. relaxed binding rules per property source

Property Source Simple List

Properties Files Camel case, kebab case, or
underscore notation

Standard list syntax using [] or
comma-separated values

YAML Files Camel case, kebab case, or
underscore notation

Standard YAML list syntax or comma-
separated values

Environment
Variables

Upper case format with underscore
as the delimiter. _ should not be used
within a property name

Numeric values surrounded
by underscores, such as
MY_ACME_1_OTHER =

my.acme[1].other

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 70

Property Source Simple List

System properties Camel case, kebab case, or
underscore notation

Standard list syntax using [] or
comma-separated values

Tip

We recommend that, when possible, properties are stored in lower-case kebab format, such as
my.property-name=acme.

Properties Conversion

Spring attempts to coerce the external application properties to the right type when it binds to
the @ConfigurationProperties beans. If you need custom type conversion, you can provide
a ConversionService bean (with a bean named conversionService) or custom property
editors (through a CustomEditorConfigurer bean) or custom Converters (with bean definitions
annotated as @ConfigurationPropertiesBinding).

Note

As this bean is requested very early during the application lifecycle, make sure to limit the
dependencies that your ConversionService is using. Typically, any dependency that you
require may not be fully initialized at creation time. You may want to rename your custom
ConversionService if it is not required for configuration keys coercion and only rely on custom
converters qualified with @ConfigurationPropertiesBinding.

@ConfigurationProperties Validation

Spring Boot attempts to validate @ConfigurationProperties classes whenever they are annotated
with Spring’s @Validated annotation. You can use JSR-303 javax.validation constraint
annotations directly on your configuration class. To do so, ensure that a compliant JSR-303
implementation is on your classpath and then add constraint annotations to your fields, as shown in
the following example:

@ConfigurationProperties(prefix="acme")

@Validated

public class AcmeProperties {

 @NotNull

 private InetAddress remoteAddress;

 // ... getters and setters

}

In order to validate the values of nested properties, you must annotate the associated field as @Valid
to trigger its validation. The following example builds on the preceding AcmeProperties example:

@ConfigurationProperties(prefix="acme")

@Validated

public class AcmeProperties {

 @NotNull

 private InetAddress remoteAddress;

 @Valid

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 71

 private final Security security = new Security();

 // ... getters and setters

 public static class Security {

 @NotEmpty

 public String username;

 // ... getters and setters

 }

}

You can also add a custom Spring Validator by creating a bean definition called
configurationPropertiesValidator. The @Bean method should be declared static. The
configuration properties validator is created very early in the application’s lifecycle, and declaring the
@Bean method as static lets the bean be created without having to instantiate the @Configuration
class. Doing so avoids any problems that may be caused by early instantiation. There is a property
validation sample that shows how to set things up.

Tip

The spring-boot-actuator module includes an endpoint that exposes all
@ConfigurationProperties beans. Point your web browser to /actuator/configprops
or use the equivalent JMX endpoint. See the "Production ready features" section for details.

@ConfigurationProperties vs. @Value

The @Value annotation is a core container feature, and it does not provide the same features as
type-safe configuration properties. The following table summarizes the features that are supported by
@ConfigurationProperties and @Value:

Feature @ConfigurationProperties@Value

Relaxed binding Yes No

Meta-data support Yes No

SpEL evaluation No Yes

If you define a set of configuration keys for your own components, we recommend you group them in a
POJO annotated with @ConfigurationProperties. You should also be aware that, since @Value
does not support relaxed binding, it is not a good candidate if you need to provide the value by using
environment variables.

Finally, while you can write a SpEL expression in @Value, such expressions are not processed from
application property files.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-samples/spring-boot-sample-property-validation
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-samples/spring-boot-sample-property-validation

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 72

25. Profiles

Spring Profiles provide a way to segregate parts of your application configuration and make it be
available only in certain environments. Any @Component or @Configuration can be marked with
@Profile to limit when it is loaded, as shown in the following example:

@Configuration

@Profile("production")

public class ProductionConfiguration {

 // ...

}

You can use a spring.profiles.active Environment property to specify which profiles are
active. You can specify the property in any of the ways described earlier in this chapter. For example,
you could include it in your application.properties, as shown in the following example:

spring.profiles.active=dev,hsqldb

You could also specify it on the command line by using the following switch: --

spring.profiles.active=dev,hsqldb.

25.1 Adding Active Profiles

The spring.profiles.active property follows the same ordering rules as other properties:
The highest PropertySource wins. This means that you can specify active profiles in
application.properties and then replace them by using the command line switch.

Sometimes, it is useful to have profile-specific properties that add to the active profiles rather
than replace them. The spring.profiles.include property can be used to unconditionally add
active profiles. The SpringApplication entry point also has a Java API for setting additional
profiles (that is, on top of those activated by the spring.profiles.active property). See the
setAdditionalProfiles() method in SpringApplication.

For example, when an application with the following properties is run by using the switch, --
spring.profiles.active=prod, the proddb and prodmq profiles are also activated:

my.property: fromyamlfile

spring.profiles: prod

spring.profiles.include:

 - proddb

 - prodmq

Note

Remember that the spring.profiles property can be defined in a YAML document to
determine when this particular document is included in the configuration. See Section 73.7,
“Change Configuration Depending on the Environment” for more details.

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/SpringApplication.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 73

25.2 Programmatically Setting Profiles

You can programmatically set active profiles by calling
SpringApplication.setAdditionalProfiles(…) before your application runs. It is also
possible to activate profiles by using Spring’s ConfigurableEnvironment interface.

25.3 Profile-specific Configuration Files

Profile-specific variants of both application.properties (or application.yml) and files
referenced through @ConfigurationProperties are considered as files and loaded. See
"Section 24.4, “Profile-specific Properties”" for details.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 74

26. Logging
Spring Boot uses Commons Logging for all internal logging but leaves the underlying log implementation
open. Default configurations are provided for Java Util Logging, Log4J2, and Logback. In each case,
loggers are pre-configured to use console output with optional file output also available.

By default, if you use the “Starters”, Logback is used for logging. Appropriate Logback routing is also
included to ensure that dependent libraries that use Java Util Logging, Commons Logging, Log4J, or
SLF4J all work correctly.

Tip

There are a lot of logging frameworks available for Java. Do not worry if the above list seems
confusing. Generally, you do not need to change your logging dependencies and the Spring Boot
defaults work just fine.

26.1 Log Format

The default log output from Spring Boot resembles the following example:

2014-03-05 10:57:51.112 INFO 45469 --- [main] org.apache.catalina.core.StandardEngine :

 Starting Servlet Engine: Apache Tomcat/7.0.52

2014-03-05 10:57:51.253 INFO 45469 --- [ost-startStop-1] o.a.c.c.C.[Tomcat].[localhost].[/] :

 Initializing Spring embedded WebApplicationContext

2014-03-05 10:57:51.253 INFO 45469 --- [ost-startStop-1] o.s.web.context.ContextLoader :

 Root WebApplicationContext: initialization completed in 1358 ms

2014-03-05 10:57:51.698 INFO 45469 --- [ost-startStop-1] o.s.b.c.e.ServletRegistrationBean :

 Mapping servlet: 'dispatcherServlet' to [/]

2014-03-05 10:57:51.702 INFO 45469 --- [ost-startStop-1] o.s.b.c.embedded.FilterRegistrationBean :

 Mapping filter: 'hiddenHttpMethodFilter' to: [/*]

The following items are output:

• Date and Time: Millisecond precision and easily sortable.

• Log Level: ERROR, WARN, INFO, DEBUG, or TRACE.

• Process ID.

• A --- separator to distinguish the start of actual log messages.

• Thread name: Enclosed in square brackets (may be truncated for console output).

• Logger name: This is usually the source class name (often abbreviated).

• The log message.

Note

Logback does not have a FATAL level. It is mapped to ERROR.

26.2 Console Output

The default log configuration echoes messages to the console as they are written. By default, ERROR-
level, WARN-level, and INFO-level messages are logged. You can also enable a “debug” mode by starting
your application with a --debug flag.

http://commons.apache.org/logging
http://docs.oracle.com/javase/8/docs/api/java/util/logging/package-summary.html
http://logging.apache.org/log4j/2.x/
http://logback.qos.ch/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 75

$ java -jar myapp.jar --debug

Note

You can also specify debug=true in your application.properties.

When the debug mode is enabled, a selection of core loggers (embedded container, Hibernate, and
Spring Boot) are configured to output more information. Enabling the debug mode does not configure
your application to log all messages with DEBUG level.

Alternatively, you can enable a “trace” mode by starting your application with a --trace flag (or
trace=true in your application.properties). Doing so enables trace logging for a selection of
core loggers (embedded container, Hibernate schema generation, and the whole Spring portfolio).

Color-coded Output

If your terminal supports ANSI, color output is used to aid readability. You can set
spring.output.ansi.enabled to a supported value to override the auto detection.

Color coding is configured by using the %clr conversion word. In its simplest form, the converter colors
the output according to the log level, as shown in the following example:

%clr(%5p)

The following table describes the mapping of log levels to colors:

Level Color

FATAL Red

ERROR Red

WARN Yellow

INFO Green

DEBUG Green

TRACE Green

Alternatively, you can specify the color or style that should be used by providing it as an option to the
conversion. For example, to make the text yellow, use the following setting:

%clr(%d{yyyy-MM-dd HH:mm:ss.SSS}){yellow}

The following colors and styles are supported:

• blue

• cyan

• faint

• green

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/ansi/AnsiOutput.Enabled.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 76

• magenta

• red

• yellow

26.3 File Output

By default, Spring Boot logs only to the console and does not write log files. If you want to write log files
in addition to the console output, you need to set a logging.file or logging.path property (for
example, in your application.properties).

The following table shows how the logging.* properties can be used together:

Table 26.1. Logging properties

logging.filelogging.pathExample Description

(none) (none) Console only logging.

Specific file (none) my.log Writes to the specified log file. Names can be an exact
location or relative to the current directory.

(none) Specific
directory

/var/log Writes spring.log to the specified directory. Names
can be an exact location or relative to the current
directory.

Log files rotate when they reach 10 MB and, as with console output, ERROR-level, WARN-level, and INFO-
level messages are logged by default. Size limits can be changed using the logging.file.max-size
property. Previously rotated files are archived indefinitely unless the logging.file.max-history
property has been set.

Note

The logging system is initialized early in the application lifecycle. Consequently, logging properties
are not found in property files loaded through @PropertySource annotations.

Tip

Logging properties are independent of the actual logging infrastructure. As a result, specific
configuration keys (such as logback.configurationFile for Logback) are not managed by
spring Boot.

26.4 Log Levels

All the supported logging systems can have the logger levels set in the Spring Environment
(for example, in application.properties) by using logging.level.*=LEVEL where LEVEL
is one of TRACE, DEBUG, INFO, WARN, ERROR, FATAL, or OFF. The root logger can be
configured by using logging.level.root. The following example shows potential logging settings
in application.properties:

logging.level.root=WARN

logging.level.org.springframework.web=DEBUG

logging.level.org.hibernate=ERROR

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 77

26.5 Custom Log Configuration

The various logging systems can be activated by including the appropriate libraries on the classpath
and can be further customized by providing a suitable configuration file in the root of the classpath or in
a location specified by the following Spring Environment property: logging.config.

You can force Spring Boot to use a particular logging system by using the
org.springframework.boot.logging.LoggingSystem system property. The value should be
the fully qualified class name of a LoggingSystem implementation. You can also disable Spring Boot’s
logging configuration entirely by using a value of none.

Note

Since logging is initialized before the ApplicationContext is created, it is not possible to
control logging from @PropertySources in Spring @Configuration files. System properties
and the conventional Spring Boot external configuration files work fine.)

Depending on your logging system, the following files are loaded:

Logging System Customization

Logback logback-spring.xml, logback-
spring.groovy, logback.xml, or
logback.groovy

Log4j2 log4j2-spring.xml or log4j2.xml

JDK (Java Util Logging) logging.properties

Note

When possible, we recommend that you use the -spring variants for your logging configuration
(for example, logback-spring.xml rather than logback.xml). If you use standard
configuration locations, Spring cannot completely control log initialization.

Warning

There are known classloading issues with Java Util Logging that cause problems when running
from an 'executable jar'. We recommend that you avoid it when running from an 'executable jar'
if at all possible.

To help with the customization, some other properties are transferred from the Spring Environment
to System properties, as described in the following table:

Spring Environment System Property Comments

logging.exception-

conversion-word

LOG_EXCEPTION_CONVERSION_WORDThe conversion word used
when logging exceptions.

logging.file LOG_FILE If defined, it is used in the
default log configuration.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 78

Spring Environment System Property Comments

logging.file.max-size LOG_FILE_MAX_SIZE Maximum log file size (if
LOG_FILE enabled). (Only
supported with the default
Logback setup.)

logging.file.max-

history

LOG_FILE_MAX_HISTORY Maximum number of archive
log files to keep (if LOG_FILE
enabled). (Only supported with
the default Logback setup.)

logging.path LOG_PATH If defined, it is used in the
default log configuration.

logging.pattern.console CONSOLE_LOG_PATTERN The log pattern to use on
the console (stdout). (Only
supported with the default
Logback setup.)

logging.pattern.dateformatLOG_DATEFORMAT_PATTERN Appender pattern for log date
format. (Only supported with the
default Logback setup.)

logging.pattern.file FILE_LOG_PATTERN The log pattern to use in a
file (if LOG_FILE is enabled).
(Only supported with the default
Logback setup.)

logging.pattern.level LOG_LEVEL_PATTERN The format to use when
rendering the log level (default
%5p). (Only supported with the
default Logback setup.)

PID PID The current process ID
(discovered if possible and
when not already defined as an
OS environment variable).

All the supported logging systems can consult System properties when parsing their configuration files.
See the default configurations in spring-boot.jar for examples:

• Logback

• Log4j 2

• Java Util logging

Tip

If you want to use a placeholder in a logging property, you should use Spring Boot’s syntax and
not the syntax of the underlying framework. Notably, if you use Logback, you should use : as the
delimiter between a property name and its default value and not use :-.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/resources/org/springframework/boot/logging/logback/defaults.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/resources/org/springframework/boot/logging/log4j2/log4j2.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/resources/org/springframework/boot/logging/java/logging-file.properties

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 79

Tip

You can add MDC and other ad-hoc content to log lines by overriding only the
LOG_LEVEL_PATTERN (or logging.pattern.level with Logback). For example, if you use
logging.pattern.level=user:%X{user} %5p, then the default log format contains an
MDC entry for "user", if it exists, as shown in the following example.

2015-09-30 12:30:04.031 user:someone INFO 22174 --- [nio-8080-exec-0] demo.Controller

Handling authenticated request

26.6 Logback Extensions

Spring Boot includes a number of extensions to Logback that can help with advanced configuration.
You can use these extensions in your logback-spring.xml configuration file.

Note

Because the standard logback.xml configuration file is loaded too early, you cannot use
extensions in it. You need to either use logback-spring.xml or define a logging.config
property.

Warning

The extensions cannot be used with Logback’s configuration scanning. If you attempt to do so,
making changes to the configuration file results in an error similar to one of the following being
logged:

ERROR in ch.qos.logback.core.joran.spi.Interpreter@4:71 - no applicable action for [springProperty],

 current ElementPath is [[configuration][springProperty]]

ERROR in ch.qos.logback.core.joran.spi.Interpreter@4:71 - no applicable action for [springProfile],

 current ElementPath is [[configuration][springProfile]]

Profile-specific Configuration

The <springProfile> tag lets you optionally include or exclude sections of configuration based
on the active Spring profiles. Profile sections are supported anywhere within the <configuration>
element. Use the name attribute to specify which profile accepts the configuration. Multiple profiles can
be specified with a comma-separated list. The following listing shows three sample profiles:

<springProfile name="staging">

 <!-- configuration to be enabled when the "staging" profile is active -->

</springProfile>

<springProfile name="dev, staging">

 <!-- configuration to be enabled when the "dev" or "staging" profiles are active -->

</springProfile>

<springProfile name="!production">

 <!-- configuration to be enabled when the "production" profile is not active -->

</springProfile>

Environment Properties

The <springProperty> tag lets you expose properties from the Spring Environment for use within
Logback. Doing so can be useful if you want to access values from your application.properties
file in your Logback configuration. The tag works in a similar way to Logback’s standard <property>

http://logback.qos.ch/manual/configuration.html#autoScan

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 80

tag. However, rather than specifying a direct value, you specify the source of the property (from the
Environment). If you need to store the property somewhere other than in local scope, you can use
the scope attribute. If you need a fallback value (in case the property is not set in the Environment),
you can use the defaultValue attribute. The following example shows how to expose properties for
use within Logback:

<springProperty scope="context" name="fluentHost" source="myapp.fluentd.host"

 defaultValue="localhost"/>

<appender name="FLUENT" class="ch.qos.logback.more.appenders.DataFluentAppender">

 <remoteHost>${fluentHost}</remoteHost>

 ...

</appender>

Note

The source must be specified in kebab case (such as my.property-name). However,
properties can be added to the Environment by using the relaxed rules.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 81

27. Developing Web Applications

Spring Boot is well suited for web application development. You can create a self-contained HTTP
server by using embedded Tomcat, Jetty, Undertow, or Netty. Most web applications use the spring-
boot-starter-web module to get up and running quickly. You can also choose to build reactive web
applications by using the spring-boot-starter-webflux module.

If you have not yet developed a Spring Boot web application, you can follow the "Hello World!" example
in the Getting started section.

27.1 The “Spring Web MVC Framework”

The Spring Web MVC framework (often referred to as simply “Spring MVC”) is a rich “model view
controller” web framework. Spring MVC lets you create special @Controller or @RestController
beans to handle incoming HTTP requests. Methods in your controller are mapped to HTTP by using
@RequestMapping annotations.

The following code shows a typical @RestController that serves JSON data:

@RestController

@RequestMapping(value="/users")

public class MyRestController {

 @RequestMapping(value="/{user}", method=RequestMethod.GET)

 public User getUser(@PathVariable Long user) {

 // ...

 }

 @RequestMapping(value="/{user}/customers", method=RequestMethod.GET)

 List<Customer> getUserCustomers(@PathVariable Long user) {

 // ...

 }

 @RequestMapping(value="/{user}", method=RequestMethod.DELETE)

 public User deleteUser(@PathVariable Long user) {

 // ...

 }

}

Spring MVC is part of the core Spring Framework, and detailed information is available in the reference
documentation. There are also several guides that cover Spring MVC available at spring.io/guides.

Spring MVC Auto-configuration

Spring Boot provides auto-configuration for Spring MVC that works well with most applications.

The auto-configuration adds the following features on top of Spring’s defaults:

• Inclusion of ContentNegotiatingViewResolver and BeanNameViewResolver beans.

• Support for serving static resources, including support for WebJars (covered later in this document)).

• Automatic registration of Converter, GenericConverter, and Formatter beans.

• Support for HttpMessageConverters (covered later in this document).

• Automatic registration of MessageCodesResolver (covered later in this document).

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web.html#mvc
http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web.html#mvc
http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web.html#mvc
http://spring.io/guides

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 82

• Static index.html support.

• Custom Favicon support (covered later in this document).

• Automatic use of a ConfigurableWebBindingInitializer bean (covered later in this
document).

If you want to keep Spring Boot MVC features and you want to add additional MVC configuration
(interceptors, formatters, view controllers, and other features), you can add your own @Configuration
class of type WebMvcConfigurer but without @EnableWebMvc. If you wish to provide
custom instances of RequestMappingHandlerMapping, RequestMappingHandlerAdapter, or
ExceptionHandlerExceptionResolver, you can declare a WebMvcRegistrationsAdapter
instance to provide such components.

If you want to take complete control of Spring MVC, you can add your own @Configuration annotated
with @EnableWebMvc.

HttpMessageConverters

Spring MVC uses the HttpMessageConverter interface to convert HTTP requests and responses.
Sensible defaults are included out of the box. For example, objects can be automatically converted to
JSON (by using the Jackson library) or XML (by using the Jackson XML extension, if available, or by
using JAXB if the Jackson XML extension is not available). By default, strings are encoded in UTF-8.

If you need to add or customize converters, you can use Spring Boot’s HttpMessageConverters
class, as shown in the following listing:

import org.springframework.boot.autoconfigure.web.HttpMessageConverters;

import org.springframework.context.annotation.*;

import org.springframework.http.converter.*;

@Configuration

public class MyConfiguration {

 @Bean

 public HttpMessageConverters customConverters() {

 HttpMessageConverter<?> additional = ...

 HttpMessageConverter<?> another = ...

 return new HttpMessageConverters(additional, another);

 }

}

Any HttpMessageConverter bean that is present in the context is added to the list of converters.
You can also override default converters in the same way.

Custom JSON Serializers and Deserializers

If you use Jackson to serialize and deserialize JSON data, you might want to write your own
JsonSerializer and JsonDeserializer classes. Custom serializers are usually registered with
Jackson through a module, but Spring Boot provides an alternative @JsonComponent annotation that
makes it easier to directly register Spring Beans.

You can use the @JsonComponent annotation directly on JsonSerializer or JsonDeserializer
implementations. You can also use it on classes that contain serializers/deserializers as inner classes,
as shown in the following example:

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web.html#mvc
http://wiki.fasterxml.com/JacksonHowToCustomDeserializers
http://wiki.fasterxml.com/JacksonHowToCustomDeserializers

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 83

import java.io.*;

import com.fasterxml.jackson.core.*;

import com.fasterxml.jackson.databind.*;

import org.springframework.boot.jackson.*;

@JsonComponent

public class Example {

 public static class Serializer extends JsonSerializer<SomeObject> {

 // ...

 }

 public static class Deserializer extends JsonDeserializer<SomeObject> {

 // ...

 }

}

All @JsonComponent beans in the ApplicationContext are automatically registered with Jackson.
Because @JsonComponent is meta-annotated with @Component, the usual component-scanning rules
apply.

Spring Boot also provides JsonObjectSerializer and JsonObjectDeserializer base classes
that provide useful alternatives to the standard Jackson versions when serializing objects. See
JsonObjectSerializer and JsonObjectDeserializer in the Javadoc for details.

MessageCodesResolver

Spring MVC has a strategy for generating error codes for rendering error messages from binding errors:
MessageCodesResolver. If you set the spring.mvc.message-codes-resolver.format
property PREFIX_ERROR_CODE or POSTFIX_ERROR_CODE, Spring Boot creates one for you (see the
enumeration in DefaultMessageCodesResolver.Format).

Static Content

By default, Spring Boot serves static content from a directory called /static (or /public or /
resources or /META-INF/resources) in the classpath or from the root of the ServletContext.
It uses the ResourceHttpRequestHandler from Spring MVC so that you can modify that behavior
by adding your own WebMvcConfigurer and overriding the addResourceHandlers method.

In a stand-alone web application, the default servlet from the container is also enabled and acts as a
fallback, serving content from the root of the ServletContext if Spring decides not to handle it. Most
of the time, this does not happen (unless you modify the default MVC configuration), because Spring
can always handle requests through the DispatcherServlet.

By default, resources are mapped on /**, but you can tune that with the spring.mvc.static-
path-pattern property. For instance, relocating all resources to /resources/** can be achieved
as follows:

spring.mvc.static-path-pattern=/resources/**

You can also customize the static resource locations by using the spring.resources.static-
locations property (replacing the default values with a list of directory locations). The root Servlet
context path, "/", is automatically added as a location as well.

In addition to the “standard” static resource locations mentioned earlier, a special case is made for
Webjars content. Any resources with a path in /webjars/** are served from jar files if they are
packaged in the Webjars format.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/jackson/JsonObjectSerializer.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/jackson/JsonObjectDeserializer.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/jackson/JsonObjectSerializer.html
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/jackson/JsonObjectDeserializer.html
http://docs.spring.io/spring/docs/5.0.3.RELEASE/javadoc-api/org/springframework/validation/DefaultMessageCodesResolver.Format.html
http://www.webjars.org/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 84

Tip

Do not use the src/main/webapp directory if your application is packaged as a jar. Although
this directory is a common standard, it works only with war packaging, and it is silently ignored
by most build tools if you generate a jar.

Spring Boot also supports the advanced resource handling features provided by Spring MVC, allowing
use cases such as cache-busting static resources or using version agnostic URLs for Webjars.

To use version agnostic URLs for Webjars, add the webjars-locator dependency. Then declare your
Webjar. Using jQuery as an example, adding "/webjars/jquery/dist/jquery.min.js" results
in "/webjars/jquery/x.y.z/dist/jquery.min.js". where x.y.z is the Webjar version.

Note

If you use JBoss, you need to declare the webjars-locator-jboss-vfs dependency instead
of the webjars-locator. Otherwise, all Webjars resolve as a 404.

To use cache busting, the following configuration configures a cache busting solution for
all static resources, effectively adding a content hash, such as <link href="/css/

spring-2a2d595e6ed9a0b24f027f2b63b134d6.css"/>, in URLs:

spring.resources.chain.strategy.content.enabled=true

spring.resources.chain.strategy.content.paths=/**

Note

Links to resources are rewritten in templates at runtime, thanks to a
ResourceUrlEncodingFilter that is auto-configured for Thymeleaf and FreeMarker. You
should manually declare this filter when using JSPs. Other template engines are currently not
automatically supported but can be with custom template macros/helpers and the use of the
ResourceUrlProvider.

When loading resources dynamically with, for example, a JavaScript module loader, renaming files is not
an option. That is why other strategies are also supported and can be combined. A "fixed" strategy adds
a static version string in the URL without changing the file name, as shown in the following example:

spring.resources.chain.strategy.content.enabled=true

spring.resources.chain.strategy.content.paths=/**

spring.resources.chain.strategy.fixed.enabled=true

spring.resources.chain.strategy.fixed.paths=/js/lib/

spring.resources.chain.strategy.fixed.version=v12

With this configuration, JavaScript modules located under "/js/lib/" use a fixed versioning strategy
("/v12/js/lib/mymodule.js"), while other resources still use the content one (<link href="/
css/spring-2a2d595e6ed9a0b24f027f2b63b134d6.css"/>).

See ResourceProperties for more supported options.

Tip

This feature has been thoroughly described in a dedicated blog post and in Spring Framework’s
reference documentation.

http://docs.spring.io/spring/docs/5.0.3.RELEASE/javadoc-api/org/springframework/web/servlet/resource/ResourceUrlProvider.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ResourceProperties.java
https://spring.io/blog/2014/07/24/spring-framework-4-1-handling-static-web-resources
http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web.html#mvc-config-static-resources

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 85

Welcome Page

Spring Boot supports both static and templated welcome pages. It first looks for an index.html file in
the configured static content locations. If one is not found, it then looks for an index template. If either
is found, it is automatically used as the welcome page of the application.

Custom Favicon

Spring Boot looks for a favicon.ico in the configured static content locations and the root of the
classpath (in that order). If such a file is present, it is automatically used as the favicon of the application.

Path Matching and Content Negotiation

Spring MVC can map incoming HTTP requests to handlers by looking at the request path and matching
it to the mappings defined in your application (for example, @GetMapping annotations on Controller
methods).

Spring Boot chooses to disable suffix pattern matching by default, which means that requests
like "GET /projects/spring-boot.json" won’t be matched to @GetMapping("/projects/
spring-boot") mappings. This is considered as a best practice for Spring MVC applications. This
feature was mainly useful in the past for HTTP clients which did not send proper "Accept" request
headers; we needed to make sure to send the correct Content Type to the client. Nowadays, Content
Negotiation is much more reliable.

There are other ways to deal with HTTP clients that don’t consistently send proper "Accept" request
headers. Instead of using suffix matching, we can use a query parameter to ensure that requests like
"GET /projects/spring-boot?format=json" will be mapped to @GetMapping("/projects/
spring-boot"):

spring.mvc.content-negotiation.favor-parameter=true

We can change the parameter name, which is "format" by default:

spring.mvc.content-negotiation.parameter-name=myparam

We can also register additional file extensions/media types with:

spring.mvc.content-negotiation.media-types.markdown=text/markdown

If you understand the caveats and would still like your application to use suffix pattern matching, the
following configuration is required:

spring.mvc.content-negotiation.favor-path-extension=true

You can also restrict that feature to known extensions only

spring.mvc.path-match.use-registered-suffix-pattern=true

We can also register additional file extensions/media types with:

spring.mvc.content-negotiation.media-types.adoc=text/asciidoc

ConfigurableWebBindingInitializer

Spring MVC uses a WebBindingInitializer to initialize a WebDataBinder for a particular request.
If you create your own ConfigurableWebBindingInitializer @Bean, Spring Boot automatically
configures Spring MVC to use it.

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web.html#mvc-ann-requestmapping-suffix-pattern-match

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 86

Template Engines

As well as REST web services, you can also use Spring MVC to serve dynamic HTML content. Spring
MVC supports a variety of templating technologies, including Thymeleaf, FreeMarker, and JSPs. Also,
many other templating engines include their own Spring MVC integrations.

Spring Boot includes auto-configuration support for the following templating engines:

• FreeMarker

• Groovy

• Thymeleaf

• Mustache

Tip

If possible, JSPs should be avoided. There are several known limitations when using them with
embedded servlet containers.

When you use one of these templating engines with the default configuration, your templates are picked
up automatically from src/main/resources/templates.

Tip

Depending on how you run your application, IntelliJ IDEA orders the classpath differently. Running
your application in the IDE from its main method results in a different ordering than when you
run your application by using Maven or Gradle or from its packaged jar. This can cause Spring
Boot to fail to find the templates on the classpath. If you have this problem, you can reorder the
classpath in the IDE to place the module’s classes and resources first. Alternatively, you can
configure the template prefix to search every templates directory on the classpath, as follows:
classpath*:/templates/.

Error Handling

By default, Spring Boot provides an /error mapping that handles all errors in a sensible way, and
it is registered as a “global” error page in the servlet container. For machine clients, it produces a
JSON response with details of the error, the HTTP status, and the exception message. For browser
clients, there is a “whitelabel” error view that renders the same data in HTML format (to customize it,
add a View that resolves to error). To replace the default behavior completely, you can implement
ErrorController and register a bean definition of that type or add a bean of type ErrorAttributes
to use the existing mechanism but replace the contents.

Tip

The BasicErrorController can be used as a base class for a custom ErrorController.
This is particularly useful if you want to add a handler for a new content type (the default
is to handle text/html specifically and provide a fallback for everything else). To do so,
extend BasicErrorController, add a public method with a @RequestMapping that has a
produces attribute, and create a bean of your new type.

http://freemarker.org/docs/
http://docs.groovy-lang.org/docs/next/html/documentation/template-engines.html#_the_markuptemplateengine
http://www.thymeleaf.org
http://mustache.github.io/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 87

You can also define a class annotated with @ControllerAdvice to customize the JSON document
to return for a particular controller and/or exception type, as shown in the following example:

@ControllerAdvice(basePackageClasses = AcmeController.class)

public class AcmeControllerAdvice extends ResponseEntityExceptionHandler {

 @ExceptionHandler(YourException.class)

 @ResponseBody

 ResponseEntity<?> handleControllerException(HttpServletRequest request, Throwable ex) {

 HttpStatus status = getStatus(request);

 return new ResponseEntity<>(new CustomErrorType(status.value(), ex.getMessage()), status);

 }

 private HttpStatus getStatus(HttpServletRequest request) {

 Integer statusCode = (Integer) request.getAttribute("javax.servlet.error.status_code");

 if (statusCode == null) {

 return HttpStatus.INTERNAL_SERVER_ERROR;

 }

 return HttpStatus.valueOf(statusCode);

 }

}

In the preceding example, if YourException is thrown by a controller defined in the same package
as AcmeController, a JSON representation of the CustomErrorType POJO is used instead of the
ErrorAttributes representation.

Custom Error Pages

If you want to display a custom HTML error page for a given status code, you can add a file to an /error
folder. Error pages can either be static HTML (that is, added under any of the static resource folders)
or be built by using templates. The name of the file should be the exact status code or a series mask.

For example, to map 404 to a static HTML file, your folder structure would be as follows:

src/

 +- main/

 +- java/

 | + <source code>

 +- resources/

 +- public/

 +- error/

 | +- 404.html

 +- <other public assets>

To map all 5xx errors by using a FreeMarker template, your folder structure would be as follows:

src/

 +- main/

 +- java/

 | + <source code>

 +- resources/

 +- templates/

 +- error/

 | +- 5xx.ftl

 +- <other templates>

For more complex mappings, you can also add beans that implement the ErrorViewResolver
interface, as shown in the following example:

public class MyErrorViewResolver implements ErrorViewResolver {

 @Override

 public ModelAndView resolveErrorView(HttpServletRequest request,

 HttpStatus status, Map<String, Object> model) {

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 88

 // Use the request or status to optionally return a ModelAndView

 return ...

 }

}

You can also use regular Spring MVC features such as @ExceptionHandler methods and
@ControllerAdvice. The ErrorController then picks up any unhandled exceptions.

Mapping Error Pages outside of Spring MVC

For applications that do not use Spring MVC, you can use the ErrorPageRegistrar interface to
directly register ErrorPages. This abstraction works directly with the underlying embedded servlet
container and works even if you do not have a Spring MVC DispatcherServlet.

@Bean

public ErrorPageRegistrar errorPageRegistrar(){

 return new MyErrorPageRegistrar();

}

// ...

private static class MyErrorPageRegistrar implements ErrorPageRegistrar {

 @Override

 public void registerErrorPages(ErrorPageRegistry registry) {

 registry.addErrorPages(new ErrorPage(HttpStatus.BAD_REQUEST, "/400"));

 }

}

Note

If you register an ErrorPage with a path that ends up being handled by a Filter (as is common
with some non-Spring web frameworks, like Jersey and Wicket), then the Filter has to be
explicitly registered as an ERROR dispatcher, as shown in the following example:

@Bean

public FilterRegistrationBean myFilter() {

 FilterRegistrationBean registration = new FilterRegistrationBean();

 registration.setFilter(new MyFilter());

 ...

 registration.setDispatcherTypes(EnumSet.allOf(DispatcherType.class));

 return registration;

}

Note that the default FilterRegistrationBean does not include the ERROR dispatcher type.

CAUTION:When deployed to a servlet container, Spring Boot uses its error page filter to
forward a request with an error status to the appropriate error page. The request can only
be forwarded to the correct error page if the response has not already been committed. By
default, WebSphere Application Server 8.0 and later commits the response upon successful
completion of a servlet’s service method. You should disable this behavior by setting
com.ibm.ws.webcontainer.invokeFlushAfterService to false.

Spring HATEOAS

If you develop a RESTful API that makes use of hypermedia, Spring Boot provides auto-configuration
for Spring HATEOAS that works well with most applications. The auto-configuration replaces the
need to use @EnableHypermediaSupport and registers a number of beans to ease building

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web.html#mvc-exceptionhandlers
http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web.html#mvc-ann-controller-advice

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 89

hypermedia-based applications, including a LinkDiscoverers (for client side support) and an
ObjectMapper configured to correctly marshal responses into the desired representation. The
ObjectMapper is customized by setting the various spring.jackson.* properties or, if one exists,
by a Jackson2ObjectMapperBuilder bean.

You can take control of Spring HATEOAS’s configuration by using @EnableHypermediaSupport.
Note that doing so disables the ObjectMapper customization described earlier.

CORS Support

Cross-origin resource sharing (CORS) is a W3C specification implemented by most browsers that lets
you specify in a flexible way what kind of cross-domain requests are authorized, instead of using some
less secure and less powerful approaches such as IFRAME or JSONP.

As of version 4.2, Spring MVC supports CORS. Using controller method CORS configuration with
@CrossOrigin annotations in your Spring Boot application does not require any specific configuration.
Global CORS configuration can be defined by registering a WebMvcConfigurer bean with a
customized addCorsMappings(CorsRegistry) method, as shown in the following example:

@Configuration

public class MyConfiguration {

 @Bean

 public WebMvcConfigurer corsConfigurer() {

 return new WebMvcConfigurer() {

 @Override

 public void addCorsMappings(CorsRegistry registry) {

 registry.addMapping("/api/**");

 }

 };

 }

}

27.2 The “Spring WebFlux Framework”

Spring WebFlux is the new reactive web framework introduced in Spring Framework 5.0. Unlike Spring
MVC, it does not require the Servlet API, is fully asynchronous and non-blocking, and implements the
Reactive Streams specification through the Reactor project.

Spring WebFlux comes in two flavors: functional and annotation-based. The annotation-based one is
quite close to the Spring MVC model, as shown in the following example:

@RestController

@RequestMapping("/users")

public class MyRestController {

 @GetMapping("/{user}")

 public Mono<User> getUser(@PathVariable Long user) {

 // ...

 }

 @GetMapping("/{user}/customers")

 public Flux<Customer> getUserCustomers(@PathVariable Long user) {

 // ...

 }

 @DeleteMapping("/{user}")

 public Mono<User> deleteUser(@PathVariable Long user) {

 // ...

 }

}

http://en.wikipedia.org/wiki/Cross-origin_resource_sharing
http://www.w3.org/TR/cors/
http://caniuse.com/#feat=cors
http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web.html#cors
http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web.html#controller-method-cors-configuration
http://docs.spring.io/spring/docs/5.0.3.RELEASE/javadoc-api/org/springframework/web/bind/annotation/CrossOrigin.html
http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web.html#global-cors-configuration
http://www.reactive-streams.org/
http://projectreactor.io/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 90

“WebFlux.fn”, the functional variant, separates the routing configuration from the actual handling of the
requests, as shown in the following example:

@Configuration

public class RoutingConfiguration {

 @Bean

 public RouterFunction<ServerResponse> monoRouterFunction(UserHandler userHandler) {

 return route(GET("/{user}").and(accept(APPLICATION_JSON)), userHandler::getUser)

 .andRoute(GET("/{user}/customers").and(accept(APPLICATION_JSON)), userHandler::getUserCustomers)

 .andRoute(DELETE("/{user}").and(accept(APPLICATION_JSON)), userHandler::deleteUser);

 }

}

@Component

public class UserHandler {

 public Mono<ServerResponse> getUser(ServerRequest request) {

 // ...

 }

 public Mono<ServerResponse> getUserCustomers(ServerRequest request) {

 // ...

 }

 public Mono<ServerResponse> deleteUser(ServerRequest request) {

 // ...

 }

}

WebFlux is part of the Spring Framework and detailed information is available in its reference
documentation.

Tip

You can define as many RouterFunction beans as you like to modularize the definition of the
router. Beans can be ordered if you need to apply a precedence.

To get started, add the spring-boot-starter-webflux module to your application.

Note

Adding both spring-boot-starter-web and spring-boot-starter-webflux modules
in your application results in Spring Boot auto-configuring Spring MVC, not WebFlux.
This behavior has been chosen because many Spring developers add spring-boot-
starter-webflux to their Spring MVC application to use the reactive WebClient.
You can still enforce your choice by setting the chosen application type to
SpringApplication.setWebApplicationType(WebApplicationType.REACTIVE).

Spring WebFlux Auto-configuration

Spring Boot provides auto-configuration for Spring WebFlux that works well with most applications.

The auto-configuration adds the following features on top of Spring’s defaults:

• Configuring codecs for HttpMessageReader and HttpMessageWriter instances (described later
in this document).

• Support for serving static resources, including support for WebJars (described later in this document).

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web-reactive.html#webflux-fn
http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web-reactive.html#webflux-fn

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 91

If you want to keep Spring Boot WebFlux features and you want to add additional WebFlux
configuration, you can add your own @Configuration class of type WebFluxConfigurer but
without @EnableWebFlux.

If you want to take complete control of Spring WebFlux, you can add your own @Configuration
annotated with @EnableWebFlux.

HTTP Codecs with HttpMessageReaders and HttpMessageWriters

Spring WebFlux uses the HttpMessageReader and HttpMessageWriter interfaces to convert
HTTP requests and responses. They are configured with CodecConfigurer to have sensible defaults
by looking at the libraries available in your classpath.

Spring Boot applies further customization by using CodecCustomizer instances. For example,
spring.jackson.* configuration keys are applied to the Jackson codec.

If you need to add or customize codecs, you can create a custom CodecCustomizer component, as
shown in the following example:

import org.springframework.boot.web.codec.CodecCustomizer;

@Configuration

public class MyConfiguration {

 @Bean

 public CodecCustomizer myCodecCustomizer() {

 return codecConfigurer -> {

 // ...

 }

 }

}

You can also leverage Boot’s custom JSON serializers and deserializers.

Static Content

By default, Spring Boot serves static content from a directory called /static (or /public or /
resources or /META-INF/resources) in the classpath. It uses the ResourceWebHandler from
Spring WebFlux so that you can modify that behavior by adding your own WebFluxConfigurer and
overriding the addResourceHandlers method.

By default, resources are mapped on /**, but you can tune that by setting the
spring.webflux.static-path-pattern property. For instance, relocating all resources to /
resources/** can be achieved as follows:

spring.webflux.static-path-pattern=/resources/**

You can also customize the static resource locations by using spring.resources.static-
locations. Doing so replaces the default values with a list of directory locations. If you do so, the
default welcome page detection switches to your custom locations. So, if there is an index.html in
any of your locations on startup, it is the home page of the application.

In addition to the “standard” static resource locations listed earlier, a special case is made for Webjars
content. Any resources with a path in /webjars/** are served from jar files if they are packaged in
the Webjars format.

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web.html#web-reactive
http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web.html#web-reactive
http://www.webjars.org/
http://www.webjars.org/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 92

Tip

Spring WebFlux applications do not strictly depend on the Servlet API, so they cannot be deployed
as war files and do not use the src/main/webapp directory.

Template Engines

As well as REST web services, you can also use Spring WebFlux to serve dynamic HTML content.
Spring WebFlux supports a variety of templating technologies, including Thymeleaf, FreeMarker, and
Mustache.

Spring Boot includes auto-configuration support for the following templating engines:

• FreeMarker

• Thymeleaf

• Mustache

When you use one of these templating engines with the default configuration, your templates are picked
up automatically from src/main/resources/templates.

Error Handling

Spring Boot provides a WebExceptionHandler that handles all errors in a sensible way. Its position
in the processing order is immediately before the handlers provided by WebFlux, which are considered
last. For machine clients, it produces a JSON response with details of the error, the HTTP status, and the
exception message. For browser clients, there is a “whitelabel” error handler that renders the same data
in HTML format. You can also provide your own HTML templates to display errors (see the next section).

The first step to customizing this feature often involves using the existing mechanism but replacing or
augmenting the error contents. For that, you can add a bean of type ErrorAttributes.

To change the error handling behavior, you can implement ErrorWebExceptionHandler and register
a bean definition of that type. Because a WebExceptionHandler is quite low-level, Spring Boot also
provides a convenient AbstractErrorWebExceptionHandler to let you handle errors in a WebFlux
functional way, as shown in the following example:

public class CustomErrorWebExceptionHandler extends AbstractErrorWebExceptionHandler {

 // Define constructor here

 @Override

 protected RouterFunction<ServerResponse> getRoutingFunction(ErrorAttributes errorAttributes) {

 return RouterFunctions

 .route(aPredicate, aHandler)

 .andRoute(anotherPredicate, anotherHandler);

 }

}

For a more complete picture, you can also subclass DefaultErrorWebExceptionHandler directly
and override specific methods.

http://freemarker.org/docs/
http://www.thymeleaf.org
http://mustache.github.io/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 93

Custom Error Pages

If you want to display a custom HTML error page for a given status code, you can add a file to an /
error folder. Error pages can either be static HTML (that is, added under any of the static resource
folders) or built with templates. The name of the file should be the exact status code or a series mask.

For example, to map 404 to a static HTML file, your folder structure would be as follows:

src/

 +- main/

 +- java/

 | + <source code>

 +- resources/

 +- public/

 +- error/

 | +- 404.html

 +- <other public assets>

To map all 5xx errors by using a Mustache template, your folder structure would be as follows:

src/

 +- main/

 +- java/

 | + <source code>

 +- resources/

 +- templates/

 +- error/

 | +- 5xx.mustache

 +- <other templates>

Web Filters

Spring WebFlux provides a WebFilter interface that can be implemented to filter HTTP request-
response exchanges. WebFilter beans found in the application context will be automatically used to
filter each exchange.

Where the order of the filters is important they can implemented Ordered or be annotated with @Order.
Spring Boot auto-configuration may configure web filters for you. When it does so, the orders shown
in the following table will be used:

Web Filter Order

MetricsWebFilter Ordered.HIGHEST_PRECEDENCE + 1

WebFilterChainProxy (Spring Security) -100

HttpTraceWebFilter Ordered.LOWEST_PRECEDENCE - 10

27.3 JAX-RS and Jersey

If you prefer the JAX-RS programming model for REST endpoints, you can use one of the available
implementations instead of Spring MVC. Jersey 1.x and Apache CXF work quite well out of the box if
you register their Servlet or Filter as a @Bean in your application context. Jersey 2.x has some
native Spring support, so we also provide auto-configuration support for it in Spring Boot, together with
a starter.

To get started with Jersey 2.x, include the spring-boot-starter-jersey as a dependency and
then you need one @Bean of type ResourceConfig in which you register all the endpoints, as shown
in the following example:

https://jersey.github.io/
http://cxf.apache.org/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 94

@Component

public class JerseyConfig extends ResourceConfig {

 public JerseyConfig() {

 register(Endpoint.class);

 }

}

Warning

Jersey’s support for scanning executable archives is rather limited. For example, it cannot scan
for endpoints in a package found in WEB-INF/classes when running an executable war file.
To avoid this limitation, the packages method should not be used, and endpoints should be
registered individually by using the register method, as shown in the preceding example.

For more advanced customizations, you can also register an arbitrary number of beans that implement
ResourceConfigCustomizer.

All the registered endpoints should be @Components with HTTP resource annotations (@GET and
others), as shown in the following example:

@Component

@Path("/hello")

public class Endpoint {

 @GET

 public String message() {

 return "Hello";

 }

}

Since the Endpoint is a Spring @Component, its lifecycle is managed by Spring and you can use
the @Autowired annotation to inject dependencies and use the @Value annotation to inject external
configuration. By default, the Jersey servlet is registered and mapped to /*. You can change the
mapping by adding @ApplicationPath to your ResourceConfig.

By default, Jersey is set up as a Servlet in a @Bean of type ServletRegistrationBean named
jerseyServletRegistration. By default, the servlet is initialized lazily, but you can customize
that behavior by setting spring.jersey.servlet.load-on-startup. You can disable or override
that bean by creating one of your own with the same name. You can also use a filter instead
of a servlet by setting spring.jersey.type=filter (in which case, the @Bean to replace or
override is jerseyFilterRegistration). The filter has an @Order, which you can set with
spring.jersey.filter.order. Both the servlet and the filter registrations can be given init
parameters by using spring.jersey.init.* to specify a map of properties.

There is a Jersey sample so that you can see how to set things up. There is also a Jersey 1.x sample.
Note that, in the Jersey 1.x sample, the spring-boot maven plugin has been configured to unpack some
Jersey jars so that they can be scanned by the JAX-RS implementation (because the sample asks for
them to be scanned in its Filter registration). If any of your JAX-RS resources are packaged as nested
jars, you may need to do the same.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-samples/spring-boot-sample-jersey
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-samples/spring-boot-sample-jersey1

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 95

27.4 Embedded Servlet Container Support

Spring Boot includes support for embedded Tomcat, Jetty, and Undertow servers. Most developers use
the appropriate “Starter” to obtain a fully configured instance. By default, the embedded server listens
for HTTP requests on port 8080.

Warning

If you choose to use Tomcat on CentOS, be aware that, by default, a temporary directory is used
to store compiled JSPs, file uploads, and so on. This directory may be deleted by tmpwatch
while your application is running, leading to failures. To avoid this behavior, you may want
to customize your tmpwatch configuration such that tomcat.* directories are not deleted or
configure server.tomcat.basedir such that embedded Tomcat uses a different location.

Servlets, Filters, and listeners

When using an embedded servlet container, you can register servlets, filters, and all the listeners (such
as HttpSessionListener) from the Servlet spec, either by using Spring beans or by scanning for
Servlet components.

Registering Servlets, Filters, and Listeners as Spring Beans

Any Servlet, Filter, or servlet *Listener instance that is a Spring bean is registered with the
embedded container. This can be particularly convenient if you want to refer to a value from your
application.properties during configuration.

By default, if the context contains only a single Servlet, it is mapped to /. In the case of multiple servlet
beans, the bean name is used as a path prefix. Filters map to /*.

If convention-based mapping is not flexible enough, you can use the ServletRegistrationBean,
FilterRegistrationBean, and ServletListenerRegistrationBean classes for complete
control.

Spring Boot ships with many auto-configurations that may define Filter beans. Here are a few examples
of Filters and their respective order (lower order value means higher precedence):

Servlet Filter Order

OrderedCharacterEncodingFilter Ordered.HIGHEST_PRECEDENCE

WebMvcMetricsFilter Ordered.HIGHEST_PRECEDENCE + 1

ErrorPageFilter Ordered.HIGHEST_PRECEDENCE + 1

HttpTraceFilter Ordered.LOWEST_PRECEDENCE - 10

It is usually safe to leave Filter beans unordered.

If a specific order is required, you should avoid configuring a Filter that reads the request body at
Ordered.HIGHEST_PRECEDENCE, since it might go against the character encoding configuration of
your application. If a Servlet filter wraps the request, it should be configured with an order that is less
than or equal to FilterRegistrationBean.REQUEST_WRAPPER_FILTER_MAX_ORDER.

http://tomcat.apache.org/
https://www.eclipse.org/jetty/
http://undertow.io/
https://www.centos.org/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 96

Servlet Context Initialization

Embedded servlet containers do not directly execute the Servlet
3.0+ javax.servlet.ServletContainerInitializer interface or Spring’s
org.springframework.web.WebApplicationInitializer interface. This is an intentional
design decision intended to reduce the risk that third party libraries designed to run inside a war may
break Spring Boot applications.

If you need to perform servlet context initialization in a Spring
Boot application, you should register a bean that implements the
org.springframework.boot.web.servlet.ServletContextInitializer interface. The
single onStartup method provides access to the ServletContext and, if necessary, can easily be
used as an adapter to an existing WebApplicationInitializer.

Scanning for Servlets, Filters, and listeners

When using an embedded container, automatic registration of classes annotated with @WebServlet,
@WebFilter, and @WebListener can be enabled by using @ServletComponentScan.

Tip

@ServletComponentScan has no effect in a standalone container, where the container’s built-
in discovery mechanisms are used instead.

The ServletWebServerApplicationContext

Under the hood, Spring Boot uses a different type of ApplicationContext for
embedded servlet container support. The ServletWebServerApplicationContext is a
special type of WebApplicationContext that bootstraps itself by searching for a
single ServletWebServerFactory bean. Usually a TomcatServletWebServerFactory,
JettyServletWebServerFactory, or UndertowServletWebServerFactory has been auto-
configured.

Note

You usually do not need to be aware of these implementation classes. Most applications are auto-
configured, and the appropriate ApplicationContext and ServletWebServerFactory are
created on your behalf.

Customizing Embedded Servlet Containers

Common servlet container settings can be configured by using Spring Environment properties.
Usually, you would define the properties in your application.properties file.

Common server settings include:

• Network settings: Listen port for incoming HTTP requests (server.port), interface address to bind
to server.address, and so on.

• Session settings: Whether the session is persistent (server.servlet.session.persistence),
session timeout (server.servlet.session.timeout), location of session

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 97

data (server.servlet.session.store-dir), and session-cookie configuration
(server.servlet.session.cookie.*).

• Error management: Location of the error page (server.error.path) and so on.

• SSL

• HTTP compression

Spring Boot tries as much as possible to expose common settings, but this is not always possible.
For those cases, dedicated namespaces offer server-specific customizations (see server.tomcat
and server.undertow). For instance, access logs can be configured with specific features of the
embedded servlet container.

Tip

See the ServerProperties class for a complete list.

Programmatic Customization

If you need to programmatically configure your embedded servlet
container, you can register a Spring bean that implements the
WebServerFactoryCustomizer interface. WebServerFactoryCustomizer provides access to
the ConfigurableServletWebServerFactory, which includes numerous customization setter
methods. Dedicated variants exist for Tomcat, Jetty, and Undertow. The following example shows
programmatically setting the port:

import org.springframework.boot.web.server.WebServerFactoryCustomizer;

import org.springframework.boot.web.servlet.server.ConfigurableServletWebServerFactory;

import org.springframework.stereotype.Component;

@Component

public class CustomizationBean implements

 WebServerFactoryCustomizer<ConfigurableServletWebServerFactory> {

 @Override

 public void customize(ConfigurableServletWebServerFactory server) {

 server.setPort(9000);

 }

}

Customizing ConfigurableServletWebServerFactory Directly

If the preceding customization techniques are too limited, you can
register the TomcatServletWebServerFactory, JettyServletWebServerFactory, or
UndertowServletWebServerFactory bean yourself.

@Bean

public ConfigurableServletWebServerFactory webServerFactory() {

 TomcatServletWebServerFactory factory = new TomcatServletWebServerFactory();

 factory.setPort(9000);

 factory.setSessionTimeout(10, TimeUnit.MINUTES);

 factory.addErrorPages(new ErrorPage(HttpStatus.NOT_FOUND, "/notfound.html"));

 return factory;

}

Setters are provided for many configuration options. Several protected method “hooks” are also provided
should you need to do something more exotic. See the source code documentation for details.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ServerProperties.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/web/servlet/server/ConfigurableServletWebServerFactory.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 98

JSP Limitations

When running a Spring Boot application that uses an embedded servlet container (and is packaged as
an executable archive), there are some limitations in the JSP support.

• With Tomcat, it should work if you use war packaging. That is, an executable war works and is also
deployable to a standard container (not limited to, but including Tomcat). An executable jar does not
work because of a hard-coded file pattern in Tomcat.

• With Jetty, it should work if you use war packaging. That is, an executable war works, and is also
deployable to any standard container.

• Undertow does not support JSPs.

• Creating a custom error.jsp page does not override the default view for error handling. Custom
error pages should be used instead.

There is a JSP sample so that you can see how to set things up.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-samples/spring-boot-sample-web-jsp

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 99

28. Security

If Spring Security is on the classpath, then web applications are secure by default. Spring
Boot relies on Spring Security’s content-negotiation strategy to determine whether to use
httpBasic or formLogin. To add method-level security to a web application, you can also add
@EnableGlobalMethodSecurity with your desired settings. Additional information can be found in
the Spring Security Reference Guide.

The default AuthenticationManager has a single user. The user name is user, and the password
is random and is printed at INFO level when the application starts, as shown in the following example:

Using generated security password: 78fa095d-3f4c-48b1-ad50-e24c31d5cf35

Note

If you fine-tune your logging configuration, ensure that the
org.springframework.boot.autoconfigure.security category is set to log INFO-level
messages. Otherwise, the default password is not printed.

You can change the username and password by providing a spring.security.user.name and
spring.security.user.password.

The basic features you get by default in a web application are:

• A UserDetailsService (or ReactiveUserDetailsService in case of a WebFlux
application) bean with in-memory store and a single user with a generated password (see
SecurityProperties.User for the properties of the user).

• Form-based login or HTTP Basic security (depending on Content-Type) for the entire application
(including actuator endpoints if actuator is on the classpath).

28.1 MVC Security

The default security configuration is implemented in SecurityAutoConfiguration and in the
classes imported from there (SpringBootWebSecurityConfiguration for web security and
AuthenticationManagerConfiguration for authentication configuration, which is also relevant
in non-web applications). To switch off the default web application security configuration completely,
you can add a bean of type WebSecurityConfigurerAdapter (doing so does not disable the
authentication manager configuration or Actuator’s security).

To also switch off the authentication manager configuration, you can add a bean of type
UserDetailsService, AuthenticationProvider, or AuthenticationManager. There are
several secure applications in the Spring Boot samples to get you started with common use cases.

Access rules can be overridden by adding a custom WebSecurityConfigurerAdapter. Spring Boot
provides convenience methods that can be used to override access rules for actuator endpoints and
static resources. EndpointRequest can be used to create a RequestMatcher that is based on
the management.endpoints.web.base-path property. PathRequest can be used to create a
RequestMatcher for resources in commonly used locations.

http://projects.spring.io/spring-security/
http://docs.spring.io/spring-security/site/docs/5.0.1.RELEASE/reference/htmlsingle#jc-method
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/security/SecurityProperties.User.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-samples/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 100

28.2 WebFlux Security

The default security configuration is implemented in ReactiveSecurityAutoConfiguration
and in the classes imported from there (WebFluxSecurityConfiguration for web security and
ReactiveAuthenticationManagerConfiguration for authentication configuration, which is also
relevant in non-web applications). To switch off the default web application security configuration
completely, you can add a bean of type WebFilterChainProxy (doing so does not disable the
authentication manager configuration or Actuator’s security).

To also switch off the authentication manager configuration, you can add a bean of type
ReactiveUserDetailsService or ReactiveAuthenticationManager.

Access rules can be configured by adding a custom SecurityWebFilterChain. Spring Boot provides
convenience methods that can be used to override access rules for actuator endpoints and static
resources. EndpointRequest can be used to create a ServerWebExchangeMatcher that is based
on the management.endpoints.web.base-path property.

PathRequest can be used to create a ServerWebExchangeMatcher for resources in commonly
used locations.

28.3 OAuth2

OAuth2 is a widely used authorization framework that is supported by Spring.

Client

If you have spring-security-oauth2-client on your classpath, you can take advantage of some
auto-configuration to make it easy to set up an OAuth2 Client. This configuration makes use of the
properties under OAuth2ClientProperties.

You can register multiple OAuth2 clients and providers under the
spring.security.oauth2.client prefix, as shown in the following example:

spring.security.oauth2.client.registration.my-client-1.client-id=abcd

spring.security.oauth2.client.registration.my-client-1.client-secret=password

spring.security.oauth2.client.registration.my-client-1.client-name=Client for user scope

spring.security.oauth2.client.registration.my-client-1.provider=my-oauth-provider

spring.security.oauth2.client.registration.my-client-1.scope=user

spring.security.oauth2.client.registration.my-client-1.redirect-uri-template=http://my-redirect-uri.com

spring.security.oauth2.client.registration.my-client-1.client-authentication-method=basic

spring.security.oauth2.client.registration.my-client-1.authorization-grant-type=authorization_code

spring.security.oauth2.client.registration.my-client-2.client-id=abcd

spring.security.oauth2.client.registration.my-client-2.client-secret=password

spring.security.oauth2.client.registration.my-client-2.client-name=Client for email scope

spring.security.oauth2.client.registration.my-client-2.provider=my-oauth-provider

spring.security.oauth2.client.registration.my-client-2.scope=email

spring.security.oauth2.client.registration.my-client-2.redirect-uri-template=http://my-redirect-uri.com

spring.security.oauth2.client.registration.my-client-2.client-authentication-method=basic

spring.security.oauth2.client.registration.my-client-2.authorization-grant-type=authorization_code

spring.security.oauth2.client.provider.my-oauth-provider.authorization-uri=http://my-auth-server/oauth/

authorize

spring.security.oauth2.client.provider.my-oauth-provider.token-uri=http://my-auth-server/oauth/token

spring.security.oauth2.client.provider.my-oauth-provider.user-info-uri=http://my-auth-server/userinfo

spring.security.oauth2.client.provider.my-oauth-provider.jwk-set-uri=http://my-auth-server/token_keys

spring.security.oauth2.client.provider.my-oauth-provider.user-name-attribute=name

By default, Spring Security’s OAuth2LoginAuthenticationFilter only processes URLs matching
/login/oauth2/code/*. If you want to customize the redirect-uri-template to use a different

https://oauth.net/2/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 101

pattern, you need to provide configuration to process that custom pattern. For example, you can add
your own WebSecurityConfigurerAdapter that resembles the following:

public class OAuth2LoginSecurityConfig extends WebSecurityConfigurerAdapter {

 @Override

 protected void configure(HttpSecurity http) throws Exception {

 http

 .authorizeRequests()

 .anyRequest().authenticated()

 .and()

 .oauth2Login()

 .redirectionEndpoint()

 .baseUri("/custom-callback");

 }

}

For common OAuth2 and OpenID providers, including Google, Github, Facebook, and Okta, we provide
a set of provider defaults (google, github, facebook, and okta, respectively).

If you do not need to customize these providers, you can set the provider attribute to the one for
which you need to infer defaults. Also, if the ID of your client matches the default supported provider,
Spring Boot infers that as well.

In other words, the two configurations in the following example use the Google provider:

spring.security.oauth2.client.registration.my-client.client-id=abcd

spring.security.oauth2.client.registration.my-client.client-secret=password

spring.security.oauth2.client.registration.my-client.provider=google

spring.security.oauth2.client.registration.google.client-id=abcd

spring.security.oauth2.client.registration.google.client-secret=password

28.4 Actuator Security

For security purposes, all actuators other than /health and /info are disabled by default. The
management.endpoints.web.expose flag can be used to enable the actuators. If Spring Security
is on the classpath and no other WebSecurityConfigurerAdapter is present, the actuators are secured
by Spring Boot auto-config. If you define a custom WebSecurityConfigurerAdapter, Spring Boot
auto-config will back off and you will be in full control of actuator access rules.

Note

Before setting the management.endpoints.web.expose, ensure that the exposed actuators
do not contain sensitive information and/or are secured by placing them behind a firewall or by
something like Spring Security.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 102

29. Working with SQL Databases

The Spring Framework provides extensive support for working with SQL databases, from direct JDBC
access using JdbcTemplate to complete “object relational mapping” technologies such as Hibernate.
Spring Data provides an additional level of functionality: creating Repository implementations directly
from interfaces and using conventions to generate queries from your method names.

29.1 Configure a DataSource

Java’s javax.sql.DataSource interface provides a standard method of working with database
connections. Traditionally, a 'DataSource' uses a URL along with some credentials to establish a
database connection.

Tip

See the “How-to” section for more advanced examples, typically to take full control over the
configuration of the DataSource.

Embedded Database Support

It is often convenient to develop applications by using an in-memory embedded database. Obviously,
in-memory databases do not provide persistent storage. You need to populate your database when your
application starts and be prepared to throw away data when your application ends.

Tip

The “How-to” section includes a section on how to initialize a database.

Spring Boot can auto-configure embedded H2, HSQL, and Derby databases. You need not provide any
connection URLs. You need only include a build dependency to the embedded database that you want
to use.

Note

If you are using this feature in your tests, you may notice that the same database is reused
by your whole test suite regardless of the number of application contexts that you use. If you
want to make sure that each context has a separate embedded database, you should set
spring.datasource.generate-unique-name to true.

For example, the typical POM dependencies would be as follows:

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-data-jpa</artifactId>

</dependency>

<dependency>

 <groupId>org.hsqldb</groupId>

 <artifactId>hsqldb</artifactId>

 <scope>runtime</scope>

</dependency>

http://projects.spring.io/spring-framework/
http://projects.spring.io/spring-data/
http://www.h2database.com
http://hsqldb.org/
http://db.apache.org/derby/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 103

Note

You need a dependency on spring-jdbc for an embedded database to be auto-configured. In
this example, it is pulled in transitively through spring-boot-starter-data-jpa.

Tip

If, for whatever reason, you do configure the connection URL for an embedded database,
take care to ensure that the database’s automatic shutdown is disabled. If you use H2, you
should use DB_CLOSE_ON_EXIT=FALSE to do so. If you use HSQLDB, you should ensure that
shutdown=true is not used. Disabling the database’s automatic shutdown lets Spring Boot
control when the database is closed, thereby ensuring that it happens once access to the database
is no longer needed.

Connection to a Production Database

Production database connections can also be auto-configured by using a pooling DataSource. Spring
Boot uses the following algorithm for choosing a specific implementation:

1. We prefer HikariCP for its performance and concurrency. If HikariCP is available, we always choose it.

2. Otherwise, if the Tomcat pooling DataSource is available, we use it.

3. If neither HikariCP nor the Tomcat pooling datasource are available and if Commons DBCP2 is
available, we use it.

If you use the spring-boot-starter-jdbc or spring-boot-starter-data-jpa “starters”, you
automatically get a dependency to HikariCP.

Note

You can bypass that algorithm completely and specify the connection pool to use by setting the
spring.datasource.type property. This is especially important if you run your application in
a Tomcat container, as tomcat-jdbc is provided by default.

Tip

Additional connection pools can always be configured manually. If you define your own
DataSource bean, auto-configuration does not occur.

DataSource configuration is controlled by external configuration properties in spring.datasource.*.
For example, you might declare the following section in application.properties:

spring.datasource.url=jdbc:mysql://localhost/test

spring.datasource.username=dbuser

spring.datasource.password=dbpass

spring.datasource.driver-class-name=com.mysql.jdbc.Driver

Note

You should at least specify the URL by setting the spring.datasource.url property.
Otherwise, Spring Boot tries to auto-configure an embedded database.

https://github.com/brettwooldridge/HikariCP
https://commons.apache.org/proper/commons-dbcp/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 104

Tip

You often do not need to specify the driver-class-name, since Spring Boot can deduce it for
most databases from the url.

Note

For a pooling DataSource to be created, we need to be able to verify that a valid Driver
class is available, so we check for that before doing anything. In other words, if you
set spring.datasource.driver-class-name=com.mysql.jdbc.Driver, then that class
has to be loadable.

See DataSourceProperties for more of the supported options. These are the standard
options that work regardless of the actual implementation. It is also possible to fine-tune
implementation-specific settings by using their respective prefix (spring.datasource.hikari.*,
spring.datasource.tomcat.*, and spring.datasource.dbcp2.*). Refer to the
documentation of the connection pool implementation you are using for more details.

For instance, if you use the Tomcat connection pool, you could customize many additional settings, as
shown in the following example:

Number of ms to wait before throwing an exception if no connection is available.

spring.datasource.tomcat.max-wait=10000

Maximum number of active connections that can be allocated from this pool at the same time.

spring.datasource.tomcat.max-active=50

Validate the connection before borrowing it from the pool.

spring.datasource.tomcat.test-on-borrow=true

Connection to a JNDI DataSource

If you deploy your Spring Boot application to an Application Server, you might want to configure and
manage your DataSource by using your Application Server’s built-in features and access it by using
JNDI.

The spring.datasource.jndi-name property can be used as an
alternative to the spring.datasource.url, spring.datasource.username, and
spring.datasource.password properties to access the DataSource from a specific JNDI location.
For example, the following section in application.properties shows how you can access a JBoss
AS defined DataSource:

spring.datasource.jndi-name=java:jboss/datasources/customers

29.2 Using JdbcTemplate

Spring’s JdbcTemplate and NamedParameterJdbcTemplate classes are auto-configured, and you
can @Autowire them directly into your own beans, as shown in the following example:

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.jdbc.core.JdbcTemplate;

import org.springframework.stereotype.Component;

@Component

public class MyBean {

 private final JdbcTemplate jdbcTemplate;

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/DataSourceProperties.java
http://tomcat.apache.org/tomcat-8.0-doc/jdbc-pool.html#Common_Attributes

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 105

 @Autowired

 public MyBean(JdbcTemplate jdbcTemplate) {

 this.jdbcTemplate = jdbcTemplate;

 }

 // ...

}

You can customize some properties of the template by using the spring.jdbc.template.*
properties, as shown in the following example:

spring.jdbc.template.max-rows=500

Note

The NamedParameterJdbcTemplate reuses the same JdbcTemplate instance behind the
scenes. If more than one JdbcTemplate is defined and no primary candidate exists, the
NamedParameterJdbcTemplate is not auto-configured.

29.3 JPA and “Spring Data”

The Java Persistence API is a standard technology that lets you “map” objects to relational databases.
The spring-boot-starter-data-jpa POM provides a quick way to get started. It provides the
following key dependencies:

• Hibernate: One of the most popular JPA implementations.

• Spring Data JPA: Makes it easy to implement JPA-based repositories.

• Spring ORMs: Core ORM support from the Spring Framework.

Tip

We do not go into too many details of JPA or Spring Data here. You can follow the “Accessing
Data with JPA” guide from spring.io and read the Spring Data JPA and Hibernate reference
documentation.

Entity Classes

Traditionally, JPA “Entity” classes are specified in a persistence.xml file. With Spring Boot,
this file is not necessary and “Entity Scanning” is used instead. By default, all packages
below your main configuration class (the one annotated with @EnableAutoConfiguration or
@SpringBootApplication) are searched.

Any classes annotated with @Entity, @Embeddable, or @MappedSuperclass are considered. A
typical entity class resembles the following example:

package com.example.myapp.domain;

import java.io.Serializable;

import javax.persistence.*;

@Entity

public class City implements Serializable {

 @Id

 @GeneratedValue

http://projects.spring.io/spring-data/
http://spring.io/guides/gs/accessing-data-jpa/
http://spring.io/guides/gs/accessing-data-jpa/
http://spring.io
http://projects.spring.io/spring-data-jpa/
http://hibernate.org/orm/documentation/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 106

 private Long id;

 @Column(nullable = false)

 private String name;

 @Column(nullable = false)

 private String state;

 // ... additional members, often include @OneToMany mappings

 protected City() {

 // no-args constructor required by JPA spec

 // this one is protected since it shouldn't be used directly

 }

 public City(String name, String state) {

 this.name = name;

 this.country = country;

 }

 public String getName() {

 return this.name;

 }

 public String getState() {

 return this.state;

 }

 // ... etc

}

Tip

You can customize entity scanning locations by using the @EntityScan annotation. See the
“Section 78.4, “Separate @Entity Definitions from Spring Configuration”” how-to.

Spring Data JPA Repositories

{http://projects.spring.io/spring-data-jpa/}[Spring Data JPA] repositories are interfaces that you can
define to access data. JPA queries are created automatically from your method names. For example,
a CityRepository interface might declare a findAllByState(String state) method to find all
the cities in a given state.

For more complex queries, you can annotate your method with Spring Data’s Query annotation.

Spring Data repositories usually extend from the Repository or CrudRepository interfaces. If you
use auto-configuration, repositories are searched from the package containing your main configuration
class (the one annotated with @EnableAutoConfiguration or @SpringBootApplication) down.

The following example shows a typical Spring Data repository interface definition:

package com.example.myapp.domain;

import org.springframework.data.domain.*;

import org.springframework.data.repository.*;

public interface CityRepository extends Repository<City, Long> {

 Page<City> findAll(Pageable pageable);

 City findByNameAndCountryAllIgnoringCase(String name, String country);

}

http://docs.spring.io/spring-data/jpa/docs/current/api/org/springframework/data/jpa/repository/Query.html
http://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/Repository.html
http://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/CrudRepository.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 107

Tip

We have barely scratched the surface of Spring Data JPA. For complete details, see the Spring
Data JPA reference documentation.

Creating and Dropping JPA Databases

By default, JPA databases are automatically created only if you use an embedded database (H2, HSQL,
or Derby). You can explicitly configure JPA settings by using spring.jpa.* properties. For example,
to create and drop tables you can add the following line to your application.properties:

spring.jpa.hibernate.ddl-auto=create-drop

Note

Hibernate’s own internal property name for this (if you happen to remember it better) is
hibernate.hbm2ddl.auto. You can set it, along with other Hibernate native properties, by
using spring.jpa.properties.* (the prefix is stripped before adding them to the entity
manager). The following line shows an example of setting JPA properties for Hibernate:

spring.jpa.properties.hibernate.globally_quoted_identifiers=true

The line in the preceding example passes a value of true for the
hibernate.globally_quoted_identifiers property to the Hibernate entity manager.

By default, the DDL execution (or validation) is deferred until the ApplicationContext has started.
There is also a spring.jpa.generate-ddl flag, but it is not used if Hibernate auto-configuration is
active, because the ddl-auto settings are more fine-grained.

Open EntityManager in View

If you are running a web application, Spring Boot by default registers
OpenEntityManagerInViewInterceptor to apply the “Open EntityManager in View” pattern, to
allow for lazy loading in web views. If you do not want this behavior, you should set spring.jpa.open-
in-view to false in your application.properties.

29.4 Using H2’s Web Console

The H2 database provides a browser-based console that Spring Boot can auto-configure for you. The
console is auto-configured when the following conditions are met:

• You are developing a web application.

• com.h2database:h2 is on the classpath.

• You are using Spring Boot’s developer tools.

Tip

If you are not using Spring Boot’s developer tools but would still like to make use of H2’s console,
you can configure the spring.h2.console.enabled property with a value of true.

https://docs.spring.io/spring-data/jpa/docs/current/reference/html/
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/
http://docs.spring.io/spring/docs/5.0.3.RELEASE/javadoc-api/org/springframework/orm/jpa/support/OpenEntityManagerInViewInterceptor.html
http://www.h2database.com
http://www.h2database.com/html/quickstart.html#h2_console

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 108

Note

The H2 console is only intended for use during development, so you should take care to ensure
that spring.h2.console.enabled is not set to true in production.

Changing the H2 Console’s Path

By default, the console is available at /h2-console. You can customize the console’s path by using
the spring.h2.console.path property.

29.5 Using jOOQ

Java Object Oriented Querying (jOOQ) is a popular product from Data Geekery which generates Java
code from your database and lets you build type-safe SQL queries through its fluent API. Both the
commercial and open source editions can be used with Spring Boot.

Code Generation

In order to use jOOQ type-safe queries, you need to generate Java classes from your database schema.
You can follow the instructions in the jOOQ user manual. If you use the jooq-codegen-maven plugin
and you also use the spring-boot-starter-parent “parent POM”, you can safely omit the plugin’s
<version> tag. You can also use Spring Boot-defined version variables (such as h2.version) to
declare the plugin’s database dependency. The following listing shows an example:

<plugin>

 <groupId>org.jooq</groupId>

 <artifactId>jooq-codegen-maven</artifactId>

 <executions>

 ...

 </executions>

 <dependencies>

 <dependency>

 <groupId>com.h2database</groupId>

 <artifactId>h2</artifactId>

 <version>${h2.version}</version>

 </dependency>

 </dependencies>

 <configuration>

 <jdbc>

 <driver>org.h2.Driver</driver>

 <url>jdbc:h2:~/yourdatabase</url>

 </jdbc>

 <generator>

 ...

 </generator>

 </configuration>

</plugin>

Using DSLContext

The fluent API offered by jOOQ is initiated through the org.jooq.DSLContext interface. Spring Boot
auto-configures a DSLContext as a Spring Bean and connects it to your application DataSource. To
use the DSLContext, you can @Autowire it, as shown in the following example:

@Component

public class JooqExample implements CommandLineRunner {

 private final DSLContext create;

 @Autowired

http://www.jooq.org/
http://www.datageekery.com/
http://www.jooq.org/doc/3.6/manual-single-page/#jooq-in-7-steps-step3

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 109

 public JooqExample(DSLContext dslContext) {

 this.create = dslContext;

 }

}

Tip

The jOOQ manual tends to use a variable named create to hold the DSLContext.

You can then use the DSLContext to construct your queries, as shown in the following example:

public List<GregorianCalendar> authorsBornAfter1980() {

 return this.create.selectFrom(AUTHOR)

 .where(AUTHOR.DATE_OF_BIRTH.greaterThan(new GregorianCalendar(1980, 0, 1)))

 .fetch(AUTHOR.DATE_OF_BIRTH);

}

jOOQ SQL Dialect

Unless the spring.jooq.sql-dialect property has been configured, Spring Boot determines the
SQL dialect to use for your datasource. If Spring Boot could not detect the dialect, it uses DEFAULT.

Note

Spring Boot can only auto-configure dialects supported by the open source version of jOOQ.

Customizing jOOQ

More advanced customizations can be achieved by defining your own @Bean definitions, which is used
when the jOOQ Configuration is created. You can define beans for the following jOOQ Types:

• ConnectionProvider

• TransactionProvider

• RecordMapperProvider

• RecordListenerProvider

• ExecuteListenerProvider

• VisitListenerProvider

You can also create your own org.jooq.Configuration @Bean if you want to take complete control
of the jOOQ configuration.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 110

30. Working with NoSQL Technologies

Spring Data provides additional projects that help you access a variety of NoSQL technologies,
including: MongoDB, Neo4J, Elasticsearch, Solr, Redis, Gemfire, Cassandra, Couchbase and LDAP.
Spring Boot provides auto-configuration for Redis, MongoDB, Neo4j, Elasticsearch, Solr Cassandra,
Couchbase, and LDAP. You can make use of the other projects, but you must configure them yourself.
Refer to the appropriate reference documentation at projects.spring.io/spring-data.

30.1 Redis

Redis is a cache, message broker, and richly-featured key-value store. Spring Boot offers basic auto-
configuration for the Lettuce and Jedis client libraries and the abstractions on top of them provided by
Spring Data Redis.

There is a spring-boot-starter-data-redis “Starter” for collecting the dependencies in a
convenient way. By default, it uses Lettuce. That starter handles both traditional and reactive
applications.

Tip

we also provide a spring-boot-starter-data-redis-reactive “Starter” for consistency
with the other stores with reactive support.

Connecting to Redis

You can inject an auto-configured RedisConnectionFactory, StringRedisTemplate, or vanilla
RedisTemplate instance as you would any other Spring Bean. By default, the instance tries to connect
to a Redis server at localhost:6379. The following listing shows an example of such a bean:

@Component

public class MyBean {

 private StringRedisTemplate template;

 @Autowired

 public MyBean(StringRedisTemplate template) {

 this.template = template;

 }

 // ...

}

Tip

You can also register an arbitrary number of beans that implement
LettuceClientConfigurationBuilderCustomizer for more advanced customizations. If
you use Jedis, JedisClientConfigurationBuilderCustomizer is also available.

If you add your own @Bean of any of the auto-configured types, it replaces the default (except in the
case of RedisTemplate, when the exclusion is based on the bean name, redisTemplate, not its
type). By default, if commons-pool2 is on the classpath, you get a pooled connection factory.

http://projects.spring.io/spring-data-mongodb/
http://projects.spring.io/spring-data-neo4j/
https://github.com/spring-projects/spring-data-elasticsearch/
http://projects.spring.io/spring-data-solr/
http://projects.spring.io/spring-data-redis/
http://projects.spring.io/spring-data-gemfire/
http://projects.spring.io/spring-data-cassandra/
http://projects.spring.io/spring-data-couchbase/
http://projects.spring.io/spring-data-ldap/
http://projects.spring.io/spring-data
http://redis.io/
https://github.com/lettuce-io/lettuce-core/
https://github.com/xetorthio/jedis/
https://github.com/spring-projects/spring-data-redis
https://github.com/lettuce-io/lettuce-core/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 111

30.2 MongoDB

MongoDB is an open-source NoSQL document database that uses a JSON-like schema instead
of traditional table-based relational data. Spring Boot offers several conveniences for working with
MongoDB, including the spring-boot-starter-data-mongodb and spring-boot-starter-
data-mongodb-reactive “Starters”.

Connecting to a MongoDB Database

To access Mongo databases, you can inject an auto-configured
org.springframework.data.mongodb.MongoDbFactory. By default, the instance tries to
connect to a MongoDB server at mongodb://localhost/test The following example shows how
to connect to a MongoDB database:

import org.springframework.data.mongodb.MongoDbFactory;

import com.mongodb.DB;

@Component

public class MyBean {

 private final MongoDbFactory mongo;

 @Autowired

 public MyBean(MongoDbFactory mongo) {

 this.mongo = mongo;

 }

 // ...

 public void example() {

 DB db = mongo.getDb();

 // ...

 }

}

You can set the spring.data.mongodb.uri property to change the URL and configure additional
settings such as the replica set, as shown in the following example:

spring.data.mongodb.uri=mongodb://user:secret@mongo1.example.com:12345,mongo2.example.com:23456/test

Alternatively, as long as you use Mongo 2.x, you can specify a host/port. For example, you might
declare the following settings in your application.properties:

spring.data.mongodb.host=mongoserver

spring.data.mongodb.port=27017

Note

If you use the Mongo 3.0 Java driver, spring.data.mongodb.host

and spring.data.mongodb.port are not supported. In such cases,
spring.data.mongodb.uri should be used to provide all of the configuration.

Tip

If spring.data.mongodb.port is not specified, the default of 27017 is used. You could delete
this line from the example shown earlier.

http://www.mongodb.com/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 112

Tip

If you do not use Spring Data Mongo, you can inject com.mongodb.MongoClient beans instead
of using MongoDbFactory. If you want to take complete control of establishing the MongoDB
connection, you can also declare your own MongoDbFactory or MongoClient bean.

Note

If you are using the reactive driver, Netty is required for SSL. The auto-configuration configures this
factory automatically if Netty is available and the factory to use hasn’t been customized already.

MongoTemplate

Spring Data MongoDB provides a MongoTemplate class that is very similar in its design to Spring’s
JdbcTemplate. As with JdbcTemplate, Spring Boot auto-configures a bean for you to inject the
template, as follows:

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.data.mongodb.core.MongoTemplate;

import org.springframework.stereotype.Component;

@Component

public class MyBean {

 private final MongoTemplate mongoTemplate;

 @Autowired

 public MyBean(MongoTemplate mongoTemplate) {

 this.mongoTemplate = mongoTemplate;

 }

 // ...

}

See the MongoOperations Javadoc for complete details.

Spring Data MongoDB Repositories

Spring Data includes repository support for MongoDB. As with the JPA repositories discussed earlier,
the basic principle is that queries are constructed automatically, based on method names.

In fact, both Spring Data JPA and Spring Data MongoDB share the same common infrastructure. You
could take the JPA example from earlier and, assuming that City is now a Mongo data class rather
than a JPA @Entity, it works in the same way, as shown in the following example:

package com.example.myapp.domain;

import org.springframework.data.domain.*;

import org.springframework.data.repository.*;

public interface CityRepository extends Repository<City, Long> {

 Page<City> findAll(Pageable pageable);

 City findByNameAndCountryAllIgnoringCase(String name, String country);

}

http://projects.spring.io/spring-data-mongodb/
http://docs.spring.io/spring-data/mongodb/docs/current/api/org/springframework/data/mongodb/core/MongoTemplate.html
https://docs.spring.io/spring-data/mongodb/docs/current/api/org/springframework/data/mongodb/core/MongoOperations.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 113

Tip

You can customize document scanning locations by using the @EntityScan annotation.

Tip

For complete details of Spring Data MongoDB, including its rich object mapping technologies,
refer to its reference documentation.

Embedded Mongo

Spring Boot offers auto-configuration for Embedded Mongo. To use it in your Spring Boot application,
add a dependency on de.flapdoodle.embed:de.flapdoodle.embed.mongo.

The port that Mongo listens on can be configured by setting the spring.data.mongodb.port
property. To use a randomly allocated free port, use a value of 0. The MongoClient created by
MongoAutoConfiguration is automatically configured to use the randomly allocated port.

Note

If you do not configure a custom port, the embedded support uses a random port (rather than
27017) by default.

If you have SLF4J on the classpath, the output produced by Mongo is automatically routed to a logger
named org.springframework.boot.autoconfigure.mongo.embedded.EmbeddedMongo.

You can declare your own IMongodConfig and IRuntimeConfig beans to take control of the Mongo
instance’s configuration and logging routing.

30.3 Neo4j

Neo4j is an open-source NoSQL graph database that uses a rich data model of nodes related
by first class relationships, which is better suited for connected big data than traditional rdbms
approaches. Spring Boot offers several conveniences for working with Neo4j, including the spring-
boot-starter-data-neo4j “Starter”.

Connecting to a Neo4j Database

You can inject an auto-configured Neo4jSession, Session, or Neo4jOperations instance as
you would any other Spring Bean. By default, the instance tries to connect to a Neo4j server at
localhost:7474. The following example shows how to inject a Neo4j bean:

@Component

public class MyBean {

 private final Neo4jTemplate neo4jTemplate;

 @Autowired

 public MyBean(Neo4jTemplate neo4jTemplate) {

 this.neo4jTemplate = neo4jTemplate;

 }

 // ...

}

http://projects.spring.io/spring-data-mongodb/
https://github.com/flapdoodle-oss/de.flapdoodle.embed.mongo
http://neo4j.com/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 114

You can take full control of the configuration by adding a org.neo4j.ogm.config.Configuration
@Bean of your own. Also, adding a @Bean of type Neo4jOperations disables the auto-configuration.

You can configure the user and credentials to use by setting the spring.data.neo4j.* properties,
as shown in the following example:

spring.data.neo4j.uri=http://my-server:7474

spring.data.neo4j.username=neo4j

spring.data.neo4j.password=secret

Using the Embedded Mode

If you add org.neo4j:neo4j-ogm-embedded-driver to the dependencies of your application,
Spring Boot automatically configures an in-process embedded instance of Neo4j that does not
persist any data when your application shuts down. You can explicitly disable that mode by
setting spring.data.neo4j.embedded.enabled=false. You can also enable persistence for the
embedded mode by providing a path to a database file, as shown in the following example:

 spring.data.neo4j.uri=file://var/tmp/graph.db

Note

The Neo4j OGM embedded driver does not provide the Neo4j kernel. Users are expected to
provide this dependency manually. See the documentation for more details.

Neo4jSession

By default, if you are running a web application, the session is bound to the thread for the entire
processing of the request (that is, it uses the "Open Session in View" pattern). If you do not want this
behavior, add the following line to your application.properties file:

spring.data.neo4j.open-in-view=false

Spring Data Neo4j Repositories

Spring Data includes repository support for Neo4j.

In fact, both Spring Data JPA and Spring Data Neo4j share the same common infrastructure. You could
take the JPA example from earlier and, assuming that City is now a Neo4j OGM @NodeEntity rather
than a JPA @Entity, it works in the same way.

Tip

You can customize entity scanning locations by using the @EntityScan annotation.

To enable repository support (and optionally support for @Transactional), add the following two
annotations to your Spring configuration:

@EnableNeo4jRepositories(basePackages = "com.example.myapp.repository")

@EnableTransactionManagement

Repository Example

The following example shows an interface definition for a Neo4j repository:

http://neo4j.com/docs/ogm-manual/current/reference/#reference:getting-started

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 115

package com.example.myapp.domain;

import org.springframework.data.domain.*;

import org.springframework.data.repository.*;

public interface CityRepository extends GraphRepository<City> {

 Page<City> findAll(Pageable pageable);

 City findByNameAndCountry(String name, String country);

}

Tip

For complete details of Spring Data Neo4j, including its rich object mapping technologies, refer
to the reference documentation.

30.4 Gemfire

Spring Data Gemfire provides convenient Spring-friendly tools for accessing the Pivotal Gemfire data
management platform. There is a spring-boot-starter-data-gemfire “Starter” for collecting the
dependencies in a convenient way. There is currently no auto-configuration support for Gemfire, but
you can enable Spring Data Repositories with a single annotation: @EnableGemfireRepositories.

30.5 Solr

Apache Solr is a search engine. Spring Boot offers basic auto-configuration for the Solr 5 client library
and the abstractions on top of it provided by Spring Data Solr. There is a spring-boot-starter-
data-solr “Starter” for collecting the dependencies in a convenient way.

Connecting to Solr

You can inject an auto-configured SolrClient instance as you would any other Spring bean. By
default, the instance tries to connect to a server at localhost:8983/solr. The following example
shows how to inject a Solr bean:

@Component

public class MyBean {

 private SolrClient solr;

 @Autowired

 public MyBean(SolrClient solr) {

 this.solr = solr;

 }

 // ...

}

If you add your own @Bean of type SolrClient, it replaces the default.

Spring Data Solr Repositories

Spring Data includes repository support for Apache Solr. As with the JPA repositories discussed earlier,
the basic principle is that queries are automatically constructed for \ you based on method names.

http://projects.spring.io/spring-data-neo4j/
https://github.com/spring-projects/spring-data-gemfire
http://pivotal.io/big-data/pivotal-gemfire#details
https://github.com/spring-projects/spring-data-gemfire/blob/master/src/main/java/org/springframework/data/gemfire/repository/config/EnableGemfireRepositories.java
http://lucene.apache.org/solr/
https://github.com/spring-projects/spring-data-solr
http://localhost:8983/solr

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 116

In fact, both Spring Data JPA and Spring Data Solr share the same common infrastructure. You could
take the JPA example from earlier and, assuming that City is now a @SolrDocument class rather
than a JPA @Entity, it works in the same way.

Tip

For complete details of Spring Data Solr, refer to the reference documentation.

30.6 Elasticsearch

Elasticsearch is an open source, distributed, real-time search and analytics engine. Spring Boot offers
basic auto-configuration for Elasticsearch and the abstractions on top of it provided by Spring Data
Elasticsearch. There is a spring-boot-starter-data-elasticsearch “Starter” for collecting the
dependencies in a convenient way. Spring Boot also supports Jest.

Connecting to Elasticsearch by Using Jest

If you have Jest on the classpath, you can inject an auto-configured JestClient that by default
targets localhost:9200. You can further tune how the client is configured, as shown in the following
example:

spring.elasticsearch.jest.uris=http://search.example.com:9200

spring.elasticsearch.jest.read-timeout=10000

spring.elasticsearch.jest.username=user

spring.elasticsearch.jest.password=secret

You can also register an arbitrary number of beans that implement
HttpClientConfigBuilderCustomizer for more advanced customizations. The following
example tunes additional HTTP settings:

static class HttpSettingsCustomizer implements HttpClientConfigBuilderCustomizer {

 @Override

 public void customize(HttpClientConfig.Builder builder) {

 builder.maxTotalConnection(100).defaultMaxTotalConnectionPerRoute(5);

 }

}

To take full control over the registration, define a JestClient bean.

Connecting to Elasticsearch by Using Spring Data

To connect to Elasticsearch, you must provide the address of one or more cluster nodes. The address
can be specified by setting the spring.data.elasticsearch.cluster-nodes property to a
comma-separated host:port list. With this configuration in place, an ElasticsearchTemplate or
TransportClient can be injected like any other Spring bean, as shown in the following example:

spring.data.elasticsearch.cluster-nodes=localhost:9300

@Component

public class MyBean {

 private final ElasticsearchTemplate template;

 public MyBean(ElasticsearchTemplate template) {

 this.template = template;

 }

http://projects.spring.io/spring-data-solr/
http://www.elasticsearch.org/
https://github.com/spring-projects/spring-data-elasticsearch
https://github.com/spring-projects/spring-data-elasticsearch
https://github.com/searchbox-io/Jest
http://localhost:9200

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 117

 // ...

}

If you add your own ElasticsearchTemplate or TransportClient @Bean, it replaces the default.

Spring Data Elasticsearch Repositories

Spring Data includes repository support for Elasticsearch. As with the JPA repositories discussed earlier,
the basic principle is that queries are constructed for you automatically based on method names.

In fact, both Spring Data JPA and Spring Data Elasticsearch share the same common infrastructure. You
could take the JPA example from earlier and, assuming that City is now an Elasticsearch @Document
class rather than a JPA @Entity, it works in the same way.

Tip

For complete details of Spring Data Elasticsearch, refer to the reference documentation.

30.7 Cassandra

Cassandra is an open source, distributed database management system designed to handle large
amounts of data across many commodity servers. Spring Boot offers auto-configuration for Cassandra
and the abstractions on top of it provided by Spring Data Cassandra. There is a spring-boot-
starter-data-cassandra “Starter” for collecting the dependencies in a convenient way.

Connecting to Cassandra

You can inject an auto-configured CassandraTemplate or a Cassandra Session instance as you
would with any other Spring Bean. The spring.data.cassandra.* properties can be used to
customize the connection. Generally, you provide keyspace-name and contact-points properties,
as shown in the following example:

spring.data.cassandra.keyspace-name=mykeyspace

spring.data.cassandra.contact-points=cassandrahost1,cassandrahost2

The following code listing shows how to inject a Cassandra bean:

@Component

public class MyBean {

 private CassandraTemplate template;

 @Autowired

 public MyBean(CassandraTemplate template) {

 this.template = template;

 }

 // ...

}

If you add your own @Bean of type CassandraTemplate, it replaces the default.

Spring Data Cassandra Repositories

Spring Data includes basic repository support for Cassandra. Currently, this is more limited than the
JPA repositories discussed earlier and needs to annotate finder methods with @Query.

http://docs.spring.io/spring-data/elasticsearch/docs/
http://cassandra.apache.org/
https://github.com/spring-projects/spring-data-cassandra

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 118

Tip

For complete details of Spring Data Cassandra, refer to the reference documentation.

30.8 Couchbase

Couchbase is an open-source, distributed, multi-model NoSQL document-oriented database that
is optimized for interactive applications. Spring Boot offers auto-configuration for Couchbase
and the abstractions on top of it provided by Spring Data Couchbase. There are spring-
boot-starter-data-couchbase and spring-boot-starter-data-couchbase-reactive
“Starters” for collecting the dependencies in a convenient way.

Connecting to Couchbase

You can get a Bucket and Cluster by adding the Couchbase SDK and some configuration. The
spring.couchbase.* properties can be used to customize the connection. Generally, you provide
the bootstrap hosts, bucket name, and password, as shown in the following example:

spring.couchbase.bootstrap-hosts=my-host-1,192.168.1.123

spring.couchbase.bucket.name=my-bucket

spring.couchbase.bucket.password=secret

Tip

You need to provide at least the bootstrap host(s), in which case the bucket name
is default and the password is an empty String. Alternatively, you can define your
own org.springframework.data.couchbase.config.CouchbaseConfigurer @Bean
to take control over the whole configuration.

It is also possible to customize some of the CouchbaseEnvironment settings. For instance, the
following configuration changes the timeout to use to open a new Bucket and enables SSL support:

spring.couchbase.env.timeouts.connect=3000

spring.couchbase.env.ssl.key-store=/location/of/keystore.jks

spring.couchbase.env.ssl.key-store-password=secret

Check the spring.couchbase.env.* properties for more details.

Spring Data Couchbase Repositories

Spring Data includes repository support for Couchbase. For complete details of Spring Data Couchbase,
refer to the reference documentation.

You can inject an auto-configured CouchbaseTemplate instance as you would with any other Spring
Bean, provided a default CouchbaseConfigurer is available (which happens when you enable
Couchbase support, as explained earlier).

The following examples shows how to inject a Couchbase bean:

@Component

public class MyBean {

 private final CouchbaseTemplate template;

 @Autowired

 public MyBean(CouchbaseTemplate template) {

http://docs.spring.io/spring-data/cassandra/docs/
http://www.couchbase.com/
https://github.com/spring-projects/spring-data-couchbase
http://docs.spring.io/spring-data/couchbase/docs/current/reference/html/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 119

 this.template = template;

 }

 // ...

}

There are a few beans that you can define in your own configuration to override those provided by the
auto-configuration:

• A CouchbaseTemplate @Bean with a name of couchbaseTemplate.

• An IndexManager @Bean with a name of couchbaseIndexManager.

• A CustomConversions @Bean with a name of couchbaseCustomConversions.

To avoid hard-coding those names in your own config, you can reuse BeanNames provided by Spring
Data Couchbase. For instance, you can customize the converters to use, as follows:

@Configuration

public class SomeConfiguration {

 @Bean(BeanNames.COUCHBASE_CUSTOM_CONVERSIONS)

 public CustomConversions myCustomConversions() {

 return new CustomConversions(...);

 }

 // ...

}

Tip

If you want to fully bypass the auto-configuration for
Spring Data Couchbase, provide your own implementation of
org.springframework.data.couchbase.config.AbstractCouchbaseDataConfiguration.

30.9 LDAP

LDAP (Lightweight Directory Access Protocol) is an open, vendor-neutral, industry standard application
protocol for accessing and maintaining distributed directory information services over an IP network.
Spring Boot offers auto-configuration for any compliant LDAP server as well as support for the
embedded in-memory LDAP server from UnboundID.

LDAP abstractions are provided by Spring Data LDAP. There is a spring-boot-starter-data-
ldap “Starter” for collecting the dependencies in a convenient way.

Connecting to an LDAP Server

To connect to an LDAP server, make sure you declare a dependency on the spring-boot-starter-
data-ldap “Starter” or spring-ldap-core and then declare the URLs of your server in your
application.properties, as shown in the following example:

spring.ldap.urls=ldap://myserver:1235

spring.ldap.username=admin

spring.ldap.password=secret

If you need to customize connection settings, you can use the spring.ldap.base and
spring.ldap.base-environment properties.

https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://www.ldap.com/unboundid-ldap-sdk-for-java
https://github.com/spring-projects/spring-data-ldap

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 120

Spring Data LDAP Repositories

Spring Data includes repository support for LDAP. For complete details of Spring Data LDAP, refer to
the reference documentation.

You can also inject an auto-configured LdapTemplate instance as you would with any other Spring
Bean, as shown in the following example:

@Component

public class MyBean {

 private final LdapTemplate template;

 @Autowired

 public MyBean(LdapTemplate template) {

 this.template = template;

 }

 // ...

}

Embedded In-memory LDAP Server

For testing purposes, Spring Boot supports auto-configuration of an in-memory LDAP server from
UnboundID. To configure the server, add a dependency to com.unboundid:unboundid-ldapsdk
and declare a base-dn property, as follows:

spring.ldap.embedded.base-dn=dc=spring,dc=io

By default, the server starts on a random port and triggers the regular LDAP support. There is no need
to specify a spring.ldap.urls property.

If there is a schema.ldif file on your classpath, it is used to initialize the server. If you want to load
the initialization script from a different resource, you can also use the spring.ldap.embedded.ldif
property.

By default, a standard schema is used to validate LDIF files. You can turn off validation altogether by
setting the spring.ldap.embedded.validation.enabled property. If you have custom attributes,
you can use spring.ldap.embedded.validation.schema to define your custom attribute types
or object classes.

30.10 InfluxDB

InfluxDB is an open-source time series database optimized for fast, high-availability storage and retrieval
of time series data in fields such as operations monitoring, application metrics, Internet-of-Things sensor
data, and real-time analytics.

Connecting to InfluxDB

Spring Boot auto-configures an InfluxDB instance, provided the influxdb-java client is on the
classpath and the URL of the database is set, as shown in the following example:

spring.influx.url=http://172.0.0.1:8086

If the connection to InfluxDB requires a user and password, you can set the spring.influx.user
and spring.influx.password properties accordingly.

http://docs.spring.io/spring-data/ldap/docs/1.0.x/reference/html/
https://www.ldap.com/unboundid-ldap-sdk-for-java
https://www.influxdata.com/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 121

InfluxDB relies on OkHttp. If you need to tune the http client InfluxDB uses behind the scenes, you
can register an OkHttpClient.Builder bean.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 122

31. Caching

The Spring Framework provides support for transparently adding caching to an application. At its core,
the abstraction applies caching to methods, thus reducing the number of executions based on the
information available in the cache. The caching logic is applied transparently, without any interference to
the invoker. Spring Boot auto-configures the cache infrastructure as long as caching support is enabled
via the @EnableCaching annotation.

Note

Check the relevant section of the Spring Framework reference for more details.

In a nutshell, adding caching to an operation of your service is as easy as adding the relevant annotation
to its method, as shown in the following example:

 import org.springframework.cache.annotation.Cacheable

import org.springframework.stereotype.Component;

@Component

public class MathService {

 @Cacheable("piDecimals")

 public int computePiDecimal(int i) {

 // ...

 }

}

This example demonstrates the use of caching on a potentially costly operation. Before invoking
computePiDecimal, the abstraction looks for an entry in the piDecimals cache that matches the i
argument. If an entry is found, the content in the cache is immediately returned to the caller, and the
method is not invoked. Otherwise, the method is invoked, and the cache is updated before returning
the value.

Caution

You can also use the standard JSR-107 (JCache) annotations (such as @CacheResult)
transparently. However, we strongly advise you to not mix and match the Spring Cache and
JCache annotations.

If you do not add any specific cache library, Spring Boot auto-configures a simple provider that uses
concurrent maps in memory. When a cache is required (such as piDecimals in the preceding
example), this provider creates it for you. The simple provider is not really recommended for production
usage, but it is great for getting started and making sure that you understand the features. When you
have made up your mind about the cache provider to use, please make sure to read its documentation
to figure out how to configure the caches that your application uses. Nearly all providers require you
to explicitly configure every cache that you use in the application. Some offer a way to customize the
default caches defined by the spring.cache.cache-names property.

Tip

It is also possible to transparently update or evict data from the cache.

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/integration.html#cache
http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/integration.html#cache-annotations-put
http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/integration.html#cache-annotations-evict

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 123

Note

If you use the cache infrastructure with beans that are not interface-based, make sure to enable
the proxyTargetClass attribute of @EnableCaching.

31.1 Supported Cache Providers

The cache abstraction does not provide an actual store and relies on abstraction materialized by
the org.springframework.cache.Cache and org.springframework.cache.CacheManager
interfaces.

If you have not defined a bean of type CacheManager or a CacheResolver named cacheResolver
(see CachingConfigurer), Spring Boot tries to detect the following providers (in the indicated order):

1. Generic

2. JCache (JSR-107) (EhCache 3, Hazelcast, Infinispan, and others)

3. EhCache 2.x

4. Hazelcast

5. Infinispan

6. Couchbase

7. Redis

8. Caffeine

9. Simple

Tip

It is also possible to force a particular cache provider by setting the spring.cache.type
property. Use this property if you need to disable caching altogether in certain environment (such
as tests).

Tip

Use the spring-boot-starter-cache “Starter” to quickly add basic caching dependencies.
The starter brings in spring-context-support. If you add dependencies manually, you must
include spring-context-support in order to use the JCache, EhCache 2.x, or Guava support.

If the CacheManager is auto-configured by Spring Boot, you can further tune its configuration before it
is fully initialized by exposing a bean that implements the CacheManagerCustomizer interface. The
following example sets a flag to say that null values should be passed down to the underlying map:

@Bean

public CacheManagerCustomizer<ConcurrentMapCacheManager> cacheManagerCustomizer() {

 return new CacheManagerCustomizer<ConcurrentMapCacheManager>() {

 @Override

 public void customize(ConcurrentMapCacheManager cacheManager) {

 cacheManager.setAllowNullValues(false);

 }

 };

}

http://docs.spring.io/spring/docs/5.0.3.RELEASE/javadoc-api/org/springframework/cache/annotation/CachingConfigurer.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 124

Note

In the preceding example, an auto-configured ConcurrentMapCacheManager is expected. If
that is not the case (either you provided your own config or a different cache provider was auto-
configured), the customizer is not invoked at all. You can have as many customizers as you want,
and you can also order them by using @Order or Ordered.

Generic

Generic caching is used if the context defines at least one org.springframework.cache.Cache
bean. A CacheManager wrapping all beans of that type is created.

JCache (JSR-107)

JCache is bootstrapped through the presence of a javax.cache.spi.CachingProvider on
the classpath (that is, a JSR-107 compliant caching library exists on the classpath), and the
JCacheCacheManager is provided by the spring-boot-starter-cache “Starter”. Various
compliant libraries are available, and Spring Boot provides dependency management for Ehcache 3,
Hazelcast, and Infinispan. Any other compliant library can be added as well.

It might happen that more than one provider is present, in which case the provider must be explicitly
specified. Even if the JSR-107 standard does not enforce a standardized way to define the location of
the configuration file, Spring Boot does its best to accommodate setting a cache with implementation
details, as shown in the following example:

 # Only necessary if more than one provider is present

spring.cache.jcache.provider=com.acme.MyCachingProvider

spring.cache.jcache.config=classpath:acme.xml

Note

When a cache library offers both a native implementation and JSR-107 support, Spring Boot
prefers the JSR-107 support, so that the same features are available if you switch to a different
JSR-107 implementation.

Tip

Spring Boot has general support for Hazelcast. If a single HazelcastInstance

is available, it is automatically reused for the CacheManager as well, unless the
spring.cache.jcache.config property is specified.

There are two ways to customize the underlying javax.cache.cacheManager:

• Caches can be created on startup by setting the spring.cache.cache-names property. If a custom
javax.cache.configuration.Configuration bean is defined, it is used to customize them.

• org.springframework.boot.autoconfigure.cache.JCacheManagerCustomizer beans
are invoked with the reference of the CacheManager for full customization.

Tip

If a standard javax.cache.CacheManager bean is defined, it is wrapped automatically in an
org.springframework.cache.CacheManager implementation that the abstraction expects.
No further customization is applied to it.

https://jcp.org/en/jsr/detail?id=107

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 125

EhCache 2.x

EhCache 2.x is used if a file named ehcache.xml can be found at the root of the classpath. If EhCache
2.x is found, the EhCacheCacheManager provided by the spring-boot-starter-cache “Starter”
is used to bootstrap the cache manager. An alternate configuration file can be provided as well, as
shown in the following example:

spring.cache.ehcache.config=classpath:config/another-config.xml

Hazelcast

Spring Boot has general support for Hazelcast. If a HazelcastInstance has been auto-configured,
it is automatically wrapped in a CacheManager.

Infinispan

Infinispan has no default configuration file location, so it must be specified explicitly. Otherwise, the
default bootstrap is used.

spring.cache.infinispan.config=infinispan.xml

Caches can be created on startup by setting the spring.cache.cache-names property. If a custom
ConfigurationBuilder bean is defined, it is used to customize the caches.

Note

The support of Infinispan in Spring Boot is restricted to the embedded mode and is quite basic.
If you want more options, you should use the official Infinispan Spring Boot starter instead. See
Infinispan’s documentation for more details.

Couchbase

If the Couchbase Java client and the couchbase-spring-cache implementation are available and
Couchbase is configured, a CouchbaseCacheManager is auto-configured. It is also possible to create
additional caches on startup by setting the spring.cache.cache-names property. These caches
operate on the Bucket that was auto-configured. You can also create additional caches on another
Bucket by using the customizer. Assume you need two caches (cache1 and cache2) on the "main"
Bucket and one (cache3) cache with a custom time to live of 2 seconds on the “another” Bucket.
You can create the first two caches through configuration, as follows:

spring.cache.cache-names=cache1,cache2

Then you can define a @Configuration class to configure the extra Bucket and the cache3 cache,
as follows:

@Configuration

public class CouchbaseCacheConfiguration {

 private final Cluster cluster;

 public CouchbaseCacheConfiguration(Cluster cluster) {

 this.cluster = cluster;

 }

 @Bean

 public Bucket anotherBucket() {

http://www.ehcache.org/
http://infinispan.org/
https://github.com/infinispan/infinispan-spring-boot
https://www.couchbase.com/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 126

 return this.cluster.openBucket("another", "secret");

 }

 @Bean

 public CacheManagerCustomizer<CouchbaseCacheManager> cacheManagerCustomizer() {

 return c -> {

 c.prepareCache("cache3", CacheBuilder.newInstance(anotherBucket())

 .withExpiration(2));

 };

 }

}

This sample configuration reuses the Cluster that was created through auto-configuration.

Redis

If Redis is available and configured, a RedisCacheManager is auto-configured. It is possible to
create additional caches on startup by setting the spring.cache.cache-names property and cache
defaults can be configured by using spring.cache.redis.* properties. For instance, the following
configuration creates cache1 and cache2 caches with a time to live of 10 minutes:

spring.cache.cache-names=cache1,cache2

spring.cache.redis.time-to-live=600000

Note

By default, a key prefix is added so that, if two separate caches use the same key, Redis does
not have overlapping keys and cannot return invalid values. We strongly recommend keeping this
setting enabled if you create your own RedisCacheManager.

Tip

You can take full control of the configuration by adding a RedisCacheConfiguration @Bean
of your own. This can be useful if you’re looking for customizing the serialization strategy.

Caffeine

Caffeine is a Java 8 rewrite of Guava’s cache that supersedes support for Guava. If Caffeine is
present, a CaffeineCacheManager (provided by the spring-boot-starter-cache “Starter”) is
auto-configured. Caches can be created on startup by setting the spring.cache.cache-names
property and can be customized by one of the following (in the indicated order):

1. A cache spec defined by spring.cache.caffeine.spec

2. A com.github.benmanes.caffeine.cache.CaffeineSpec bean is defined

3. A com.github.benmanes.caffeine.cache.Caffeine bean is defined

For instance, the following configuration creates cache1 and cache2 caches with a maximum size of
500 and a time to live of 10 minutes

spring.cache.cache-names=cache1,cache2

spring.cache.caffeine.spec=maximumSize=500,expireAfterAccess=600s

If a com.github.benmanes.caffeine.cache.CacheLoader bean is defined, it is automatically
associated to the CaffeineCacheManager. Since the CacheLoader is going to be associated with

http://redis.io/
https://github.com/ben-manes/caffeine

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 127

all caches managed by the cache manager, it must be defined as CacheLoader<Object, Object>.
The auto-configuration ignores any other generic type.

Simple

If none of the other providers can be found, a simple implementation using a ConcurrentHashMap as
the cache store is configured. This is the default if no caching library is present in your application. By
default, caches are created as needed, but you can restrict the list of available caches by setting the
cache-names property. For instance, if you want only cache1 and cache2 caches, set the cache-
names property as follows:

spring.cache.cache-names=cache1,cache2

If you do so and your application uses a cache not listed, then it fails at runtime when the cache is
needed, but not on startup. This is similar to the way the "real" cache providers behave if you use an
undeclared cache.

None

When @EnableCaching is present in your configuration, a suitable cache configuration is expected as
well. If you need to disable caching altogether in certain environments, force the cache type to none to
use a no-op implementation, as shown in the following example:

spring.cache.type=none

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 128

32. Messaging

The Spring Framework provides extensive support for integrating with messaging systems, from
simplified use of the JMS API using JmsTemplate to a complete infrastructure to receive messages
asynchronously. Spring AMQP provides a similar feature set for the Advanced Message Queuing
Protocol. Spring Boot also provides auto-configuration options for RabbitTemplate and RabbitMQ.
Spring WebSocket natively includes support for STOMP messaging, and Spring Boot has support for
that through starters and a small amount of auto-configuration. Spring Boot also has support for Apache
Kafka.

32.1 JMS

The javax.jms.ConnectionFactory interface provides a standard method of creating
a javax.jms.Connection for interacting with a JMS broker. Although Spring needs a
ConnectionFactory to work with JMS, you generally need not use it directly yourself and can
instead rely on higher level messaging abstractions. (See the relevant section of the Spring Framework
reference documentation for details.) Spring Boot also auto-configures the necessary infrastructure to
send and receive messages.

ActiveMQ Support

When ActiveMQ is available on the classpath, Spring Boot can also configure a ConnectionFactory.
If the broker is present, an embedded broker is automatically started and configured (provided no broker
URL is specified through configuration).

Note

If you use spring-boot-starter-activemq, the necessary dependencies to connect or
embed an ActiveMQ instance are provided, as is the Spring infrastructure to integrate with JMS.

ActiveMQ configuration is controlled by external configuration properties in spring.activemq.*. For
example, you might declare the following section in application.properties:

spring.activemq.broker-url=tcp://192.168.1.210:9876

spring.activemq.user=admin

spring.activemq.password=secret

You can also pool JMS resources by adding a dependency to org.apache.activemq:activemq-
pool and configuring the PooledConnectionFactory accordingly, as shown in the following
example:

spring.activemq.pool.enabled=true

spring.activemq.pool.max-connections=50

Tip

See ActiveMQProperties for more of the supported options. You can also register an
arbitrary number of beans that implement ActiveMQConnectionFactoryCustomizer for
more advanced customizations.

By default, ActiveMQ creates a destination if it does not yet exist so that destinations are resolved
against their provided names.

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/integration.html#jms
http://activemq.apache.org/
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/activemq/ActiveMQProperties.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 129

Artemis Support

Spring Boot can auto-configure a ConnectionFactory when it detects that Artemis is available on the
classpath. If the broker is present, an embedded broker is automatically started and configured (unless
the mode property has been explicitly set). The supported modes are embedded (to make explicit that
an embedded broker is required and that an error should occur if the broker is not available on the
classpath) and native (to connect to a broker using the netty transport protocol). When the latter is
configured, Spring Boot configures a ConnectionFactory that connects to a broker running on the
local machine with the default settings.

Note

If you use spring-boot-starter-artemis, the necessary dependencies to connect to an
existing Artemis instance are provided, as well as the Spring infrastructure to integrate with
JMS. Adding org.apache.activemq:artemis-jms-server to your application lets you use
embedded mode.

Artemis configuration is controlled by external configuration properties in spring.artemis.*. For
example, you might declare the following section in application.properties:

spring.artemis.mode=native

spring.artemis.host=192.168.1.210

spring.artemis.port=9876

spring.artemis.user=admin

spring.artemis.password=secret

When embedding the broker, you can choose if you want to enable persistence and list
the destinations that should be made available. These can be specified as a comma-
separated list to create them with the default options, or you can define bean(s)
of type org.apache.activemq.artemis.jms.server.config.JMSQueueConfiguration or
org.apache.activemq.artemis.jms.server.config.TopicConfiguration, for advanced
queue and topic configurations, respectively.

See ArtemisProperties for more supported options.

No JNDI lookup is involved, and destinations are resolved against their names, using either the name
attribute in the Artemis configuration or the names provided through configuration.

Using a JNDI ConnectionFactory

If you are running your application in an application server, Spring Boot tries to locate
a JMS ConnectionFactory by using JNDI. By default, the java:/JmsXA and java:/
XAConnectionFactory location are checked. You can use the spring.jms.jndi-name property
if you need to specify an alternative location, as shown in the following example:

spring.jms.jndi-name=java:/MyConnectionFactory

Sending a Message

Spring’s JmsTemplate is auto-configured, and you can autowire it directly into your own beans, as
shown in the following example:

import org.springframework.beans.factory.annotation.Autowired;

http://activemq.apache.org/artemis/
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/artemis/ArtemisProperties.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 130

import org.springframework.jms.core.JmsTemplate;

import org.springframework.stereotype.Component;

@Component

public class MyBean {

 private final JmsTemplate jmsTemplate;

 @Autowired

 public MyBean(JmsTemplate jmsTemplate) {

 this.jmsTemplate = jmsTemplate;

 }

 // ...

}

Note

JmsMessagingTemplate can be injected in a similar manner. If a DestinationResolver
or a MessageConverter bean is defined, it is associated automatically to the auto-configured
JmsTemplate.

Receiving a Message

When the JMS infrastructure is present, any bean can be annotated with @JmsListener to create
a listener endpoint. If no JmsListenerContainerFactory has been defined, a default one is
configured automatically. If a DestinationResolver or a MessageConverter beans is defined, it
is associated automatically to the default factory.

By default, the default factory is transactional. If you run in an infrastructure where a
JtaTransactionManager is present, it is associated to the listener container by default. If not, the
sessionTransacted flag is enabled. In that latter scenario, you can associate your local data store
transaction to the processing of an incoming message by adding @Transactional on your listener
method (or a delegate thereof). This ensures that the incoming message is acknowledged, once the local
transaction has completed. This also includes sending response messages that have been performed
on the same JMS session.

The following component creates a listener endpoint on the someQueue destination:

@Component

public class MyBean {

 @JmsListener(destination = "someQueue")

 public void processMessage(String content) {

 // ...

 }

}

Tip

See the Javadoc of @EnableJms for more details.

If you need to create more JmsListenerContainerFactory instances or if you want to override the
default, Spring Boot provides a DefaultJmsListenerContainerFactoryConfigurer that you
can use to initialize a DefaultJmsListenerContainerFactory with the same settings as the one
that is auto-configured.

http://docs.spring.io/spring/docs/5.0.3.RELEASE/javadoc-api/org/springframework/jms/core/JmsMessagingTemplate.html
http://docs.spring.io/spring/docs/5.0.3.RELEASE/javadoc-api/org/springframework/jms/annotation/EnableJms.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 131

For instance, the following example exposes another factory that uses a specific MessageConverter:

@Configuration

static class JmsConfiguration {

 @Bean

 public DefaultJmsListenerContainerFactory myFactory(

 DefaultJmsListenerContainerFactoryConfigurer configurer) {

 DefaultJmsListenerContainerFactory factory =

 new DefaultJmsListenerContainerFactory();

 configurer.configure(factory, connectionFactory());

 factory.setMessageConverter(myMessageConverter());

 return factory;

 }

}

Then you can use the factory in any @JmsListener-annotated method as follows:

@Component

public class MyBean {

 @JmsListener(destination = "someQueue", containerFactory="myFactory")

 public void processMessage(String content) {

 // ...

 }

}

32.2 AMQP

The Advanced Message Queuing Protocol (AMQP) is a platform-neutral, wire-level protocol for
message-oriented middleware. The Spring AMQP project applies core Spring concepts to the
development of AMQP-based messaging solutions. Spring Boot offers several conveniences for working
with AMQP through RabbitMQ, including the spring-boot-starter-amqp “Starter”.

RabbitMQ support

RabbitMQ is a lightweight, reliable, scalable, and portable message broker based on the AMQP protocol.
Spring uses RabbitMQ to communicate through the AMQP protocol.

RabbitMQ configuration is controlled by external configuration properties in spring.rabbitmq.*. For
example, you might declare the following section in application.properties:

spring.rabbitmq.host=localhost

spring.rabbitmq.port=5672

spring.rabbitmq.username=admin

spring.rabbitmq.password=secret

See RabbitProperties for more of the supported options.

Tip

See Understanding AMQP, the protocol used by RabbitMQ for more details.

Sending a Message

Spring’s AmqpTemplate and AmqpAdmin are auto-configured, and you can autowire them directly into
your own beans, as shown in the following example:

https://www.rabbitmq.com/
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/amqp/RabbitProperties.java
http://spring.io/blog/2010/06/14/understanding-amqp-the-protocol-used-by-rabbitmq/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 132

import org.springframework.amqp.core.AmqpAdmin;

import org.springframework.amqp.core.AmqpTemplate;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Component;

@Component

public class MyBean {

 private final AmqpAdmin amqpAdmin;

 private final AmqpTemplate amqpTemplate;

 @Autowired

 public MyBean(AmqpAdmin amqpAdmin, AmqpTemplate amqpTemplate) {

 this.amqpAdmin = amqpAdmin;

 this.amqpTemplate = amqpTemplate;

 }

 // ...

}

Note

RabbitMessagingTemplate can be injected in a similar manner. If a MessageConverter
bean is defined, it is associated automatically to the auto-configured AmqpTemplate.

If necessary, any org.springframework.amqp.core.Queue that is defined as a bean is
automatically used to declare a corresponding queue on the RabbitMQ instance.

To retry operations, you can enable retries on the AmqpTemplate (for example, in the event that the
broker connection is lost). Retries are disabled by default.

Receiving a Message

When the Rabbit infrastructure is present, any bean can be annotated with @RabbitListener to
create a listener endpoint. If no RabbitListenerContainerFactory has been defined, a default
SimpleRabbitListenerContainerFactory is automatically configured and you can switch to a
direct container using the spring.rabbitmq.listener.type property. If a MessageConverter
or a MessageRecoverer bean is defined, it is automatically associated with the default factory.

The following sample component creates a listener endpoint on the someQueue queue:

@Component

public class MyBean {

 @RabbitListener(queues = "someQueue")

 public void processMessage(String content) {

 // ...

 }

}

Tip

See the Javadoc of @EnableRabbit for more details.

If you need to create more RabbitListenerContainerFactory instances or if you want to override
the default, Spring Boot provides a SimpleRabbitListenerContainerFactoryConfigurer
and a DirectRabbitListenerContainerFactoryConfigurer that you can
use to initialize a SimpleRabbitListenerContainerFactory and a

http://docs.spring.io/spring-amqp/docs/current/api/org/springframework/amqp/rabbit/core/RabbitMessagingTemplate.html
http://docs.spring.io/spring-amqp/docs/current/api/org/springframework/amqp/rabbit/annotation/EnableRabbit.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 133

DirectRabbitListenerContainerFactory with the same settings as the factories used by the
auto-configuration.

Tip

It does not matter which container type you chose. Those two beans are exposed by the auto-
configuration.

For instance, the following configuration class exposes another factory that uses a specific
MessageConverter:

@Configuration

static class RabbitConfiguration {

 @Bean

 public SimpleRabbitListenerContainerFactory myFactory(

 SimpleRabbitListenerContainerFactoryConfigurer configurer) {

 SimpleRabbitListenerContainerFactory factory =

 new SimpleRabbitListenerContainerFactory();

 configurer.configure(factory, connectionFactory);

 factory.setMessageConverter(myMessageConverter());

 return factory;

 }

}

Then you can use the factory in any @RabbitListener-annotated method, as follows:

@Component

public class MyBean {

 @RabbitListener(queues = "someQueue", containerFactory="myFactory")

 public void processMessage(String content) {

 // ...

 }

}

You can enable retries to handle situations where your listener throws an exception. By default,
RejectAndDontRequeueRecoverer is used, but you can define a MessageRecoverer of your own.
When retries are exhausted, the message is rejected and either dropped or routed to a dead-letter
exchange if the broker is configured to do so. By default, retries are disabled.

Important

By default, if retries are disabled and the listener throws an exception, the
delivery is retried indefinitely. You can modify this behavior in two ways: Set the
defaultRequeueRejected property to false so that zero re-deliveries are attempted or throw
an AmqpRejectAndDontRequeueException to signal the message should be rejected. The
latter is the mechanism used when retries are enabled and the maximum number of delivery
attempts is reached.

32.3 Apache Kafka Support

Apache Kafka is supported by providing auto-configuration of the spring-kafka project.

Kafka configuration is controlled by external configuration properties in spring.kafka.*. For
example, you might declare the following section in application.properties:

http://kafka.apache.org/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 134

spring.kafka.bootstrap-servers=localhost:9092

spring.kafka.consumer.group-id=myGroup

Tip

To create a topic on startup, add a bean of type NewTopic. If the topic already exists, the bean
is ignored.

See KafkaProperties for more supported options.

Sending a Message

Spring’s KafkaTemplate is auto-configured, and you can autowire it directly in your own beans, as
shown in the following example:

@Component

public class MyBean {

 private final KafkaTemplate kafkaTemplate;

 @Autowired

 public MyBean(KafkaTemplate kafkaTemplate) {

 this.kafkaTemplate = kafkaTemplate;

 }

 // ...

}

Note

If a RecordMessageConverter bean is defined, it is automatically associated to the auto-
configured KafkaTemplate.

Receiving a Message

When the Apache Kafka infrastructure is present, any bean can be annotated with @KafkaListener
to create a listener endpoint. If no KafkaListenerContainerFactory has been defined, a
default one is automatically configured with keys defined in spring.kafka.listener.*. Also, if a
RecordMessageConverter bean is defined, it is automatically associated to the default factory.

The following component creates a listener endpoint on the someTopic topic:

@Component

public class MyBean {

 @KafkaListener(topics = "someTopic")

 public void processMessage(String content) {

 // ...

 }

}

Additional Kafka Properties

The properties supported by auto configuration are shown in Appendix A, Common application
properties. Note that, for the most part, these properties (hyphenated or camelCase) map directly to the
Apache Kafka dotted properties. Refer to the Apache Kafka documentation for details.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/kafka/KafkaProperties.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 135

The first few of these properties apply to both producers and consumers but can be specified at the
producer or consumer level if you wish to use different values for each. Apache Kafka designates
properties with an importance of HIGH, MEDIUM, or LOW. Spring Boot auto-configuration supports all
HIGH importance properties, some selected MEDIUM and LOW properties, and any properties that do
not have a default value.

Only a subset of the properties supported by Kafka are available through the KafkaProperties
class. If you wish to configure the producer or consumer with additional properties that are not directly
supported, use the following properties:

spring.kafka.properties.prop.one=first

spring.kafka.admin.properties.prop.two=second

spring.kafka.consumer.properties.prop.three=third

spring,kafka.producer.properties.prop.four=fourth

This sets the common prop.one Kafka property to first (applies to producers, consumers and
admins), the prop.two admin property to second, the prop.three consumer property to third and
the prop.four producer property to fourth.

You can also configure the Spring Kafka JsonDeserializer as follows:

spring.kafka.consumer.value-deserializer=org.springframework.kafka.support.serializer.JsonDeserializer

spring.kafka.consumer.properties.spring.json.value.default.type=org.foo.Invoice

spring.kafka.consumer.properties.spring.json.trusted.packages=org.foo,org.bar

Similarly, you can disable the JsonSerializer default behavior of sending type information in
headers:

spring.kafka.producer.value-serializer=org.springframework.kafka.support.serializer.JsonSerializer

spring.kafka.producer.properties.spring.json.add.type.headers=false

Important

Properties set in this way override any configuration item that Spring Boot explicitly supports.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 136

33. Calling REST Services with RestTemplate

If you need to call remote REST services from your application, you can use the Spring Framework’s
RestTemplate class. Since RestTemplate instances often need to be customized before being
used, Spring Boot does not provide any single auto-configured RestTemplate bean. It does,
however, auto-configure a RestTemplateBuilder, which can be used to create RestTemplate
instances when needed. The auto-configured RestTemplateBuilder ensures that sensible
HttpMessageConverters are applied to RestTemplate instances.

The following code shows a typical example:

@Service

public class MyService {

 private final RestTemplate restTemplate;

 public MyBean(RestTemplateBuilder restTemplateBuilder) {

 this.restTemplate = restTemplateBuilder.build();

 }

 public Details someRestCall(String name) {

 return this.restTemplate.getForObject("/{name}/details", Details.class, name);

 }

}

Tip

RestTemplateBuilder includes a number of useful methods that can be used to quickly
configure a RestTemplate. For example, to add BASIC auth support, you can use
builder.basicAuthorization("user", "password").build().

33.1 RestTemplate Customization

There are three main approaches to RestTemplate customization, depending on how broadly you
want the customizations to apply.

To make the scope of any customizations as narrow as possible, inject the auto-configured
RestTemplateBuilder and then call its methods as required. Each method call returns a new
RestTemplateBuilder instance, so the customizations only affect this use of the builder.

To make an application-wide, additive customization, use a RestTemplateCustomizer bean. All
such beans are automatically registered with the auto-configured RestTemplateBuilder and are
applied to any templates that are built with it.

The following example shows a customizer that configures the use of a proxy for all hosts except
192.168.0.5:

static class ProxyCustomizer implements RestTemplateCustomizer {

 @Override

 public void customize(RestTemplate restTemplate) {

 HttpHost proxy = new HttpHost("proxy.example.com");

 HttpClient httpClient = HttpClientBuilder.create()

 .setRoutePlanner(new DefaultProxyRoutePlanner(proxy) {

 @Override

 public HttpHost determineProxy(HttpHost target,

http://docs.spring.io/spring/docs/5.0.3.RELEASE/javadoc-api/org/springframework/web/client/RestTemplate.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 137

 HttpRequest request, HttpContext context)

 throws HttpException {

 if (target.getHostName().equals("192.168.0.5")) {

 return null;

 }

 return super.determineProxy(target, request, context);

 }

 }).build();

 restTemplate.setRequestFactory(

 new HttpComponentsClientHttpRequestFactory(httpClient));

 }

}

Finally, the most extreme (and rarely used) option is to create your own RestTemplateBuilder
bean. Doing so switches off the auto-configuration of a RestTemplateBuilder and prevents any
RestTemplateCustomizer beans from being used.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 138

34. Calling REST Services with WebClient

If you have Spring WebFlux on your classpath, you can also choose to use WebClient to call remote
REST services. Compared to RestTemplate, this client has a more functional feel and is fully reactive.
You can create your own client instance with the builder, WebClient.create(). See the relevant
section on WebClient.

Spring Boot creates and pre-configures such a builder for you. For example, client HTTP codecs are
configured in the same fashion as the server ones (see WebFlux HTTP codecs auto-configuration).

The following code shows a typical example:

@Service

public class MyService {

 private final WebClient webClient;

 public MyBean(WebClient.Builder webClientBuilder) {

 this.webClient = webClientBuilder.baseUrl("http://example.org").build();

 }

 public Mono<Details> someRestCall(String name) {

 return this.webClient.get().url("/{name}/details", name)

 .retrieve().bodyToMono(Details.class);

 }

}

34.1 WebClient Customization

There are three main approaches to WebClient customization, depending on how broadly you want
the customizations to apply.

To make the scope of any customizations as narrow as possible, inject the auto-configured
WebClient.Builder and then call its methods as required. WebClient.Builder instances are
stateful: Any change on the builder is reflected in all clients subsequently created with it. If you
want to create several clients with the same builder, you can also consider cloning the builder with
WebClient.Builder other = builder.clone();.

To make an application-wide, additive customization to all WebClient.Builder instances, you can
declare WebClientCustomizer beans and change the WebClient.Builder locally at the point of
injection.

Finally, you can fall back to the original API and use WebClient.create(). In that case, no auto-
configuration or WebClientCustomizer is applied.

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web.html#web-reactive-client
http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web.html#web-reactive-client

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 139

35. Validation

The method validation feature supported by Bean Validation 1.1 is automatically enabled as long as
a JSR-303 implementation (such as Hibernate validator) is on the classpath. This lets bean methods
be annotated with javax.validation constraints on their parameters and/or on their return value.
Target classes with such annotated methods need to be annotated with the @Validated annotation at
the type level for their methods to be searched for inline constraint annotations.

For instance, the following service triggers the validation of the first argument, making sure its size is
between 8 and 10:

@Service

@Validated

public class MyBean {

 public Archive findByCodeAndAuthor(@Size(min = 8, max = 10) String code,

 Author author) {

 ...

 }

}

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 140

36. Sending Email

The Spring Framework provides an easy abstraction for sending email by using the JavaMailSender
interface, and Spring Boot provides auto-configuration for it as well as a starter module.

Tip

See the reference documentation for a detailed explanation of how you can use
JavaMailSender.

If spring.mail.host and the relevant libraries (as defined by spring-boot-starter-mail) are
available, a default JavaMailSender is created if none exists. The sender can be further customized
by configuration items from the spring.mail namespace. See MailProperties for more details.

In particular, certain default timeout values are infinite, and you may want to change that to avoid having
a thread blocked by an unresponsive mail server, as shown in the following example:

spring.mail.properties.mail.smtp.connectiontimeout=5000

spring.mail.properties.mail.smtp.timeout=3000

spring.mail.properties.mail.smtp.writetimeout=5000

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/integration.html#mail
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mail/MailProperties.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 141

37. Distributed Transactions with JTA

Spring Boot supports distributed JTA transactions across multiple XA resources by using either an
Atomikos or Bitronix embedded transaction manager. JTA transactions are also supported when
deploying to a suitable Java EE Application Server.

When a JTA environment is detected, Spring’s JtaTransactionManager is used to manage
transactions. Auto-configured JMS, DataSource, and JPA beans are upgraded to support XA
transactions. You can use standard Spring idioms, such as @Transactional, to participate in a
distributed transaction. If you are within a JTA environment and still want to use local transactions, you
can set the spring.jta.enabled property to false to disable the JTA auto-configuration.

37.1 Using an Atomikos Transaction Manager

Atomikos is a popular open source transaction manager which can be embedded into your Spring
Boot application. You can use the spring-boot-starter-jta-atomikos Starter to pull in the
appropriate Atomikos libraries. Spring Boot auto-configures Atomikos and ensures that appropriate
depends-on settings are applied to your Spring beans for correct startup and shutdown ordering.

By default, Atomikos transaction logs are written to a transaction-logs directory in your
application’s home directory (the directory in which your application jar file resides). You can
customize the location of this directory by setting a spring.jta.log-dir property in your
application.properties file. Properties starting with spring.jta.atomikos.properties
can also be used to customize the Atomikos UserTransactionServiceImp. See the
AtomikosProperties Javadoc for complete details.

Note

To ensure that multiple transaction managers can safely coordinate the same resource managers,
each Atomikos instance must be configured with a unique ID. By default, this ID is the IP address
of the machine on which Atomikos is running. To ensure uniqueness in production, you should
configure the spring.jta.transaction-manager-id property with a different value for each
instance of your application.

37.2 Using a Bitronix Transaction Manager

Bitronix is a popular open-source JTA transaction manager implementation. You can use the spring-
boot-starter-jta-bitronix starter to add the appropriate Bitronix dependencies to your project.
As with Atomikos, Spring Boot automatically configures Bitronix and post-processes your beans to
ensure that startup and shutdown ordering is correct.

By default, Bitronix transaction log files (part1.btm and part2.btm) are written to a
transaction-logs directory in your application home directory. You can customize the
location of this directory by setting the spring.jta.log-dir property. Properties starting with
spring.jta.bitronix.properties are also bound to the bitronix.tm.Configuration bean,
allowing for complete customization. See the Bitronix documentation for details.

Note

To ensure that multiple transaction managers can safely coordinate the same resource managers,
each Bitronix instance must be configured with a unique ID. By default, this ID is the IP address

http://www.atomikos.com/
https://github.com/bitronix/btm
https://www.atomikos.com/
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/jta/atomikos/AtomikosProperties.html
https://github.com/bitronix/btm
https://github.com/bitronix/btm/wiki/Transaction-manager-configuration

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 142

of the machine on which Bitronix is running. To ensure uniqueness in production, you should
configure the spring.jta.transaction-manager-id property with a different value for each
instance of your application.

37.3 Using a Narayana Transaction Manager

Narayana is a popular open source JTA transaction manager implementation supported by JBoss.
You can use the spring-boot-starter-jta-narayana starter to add the appropriate Narayana
dependencies to your project. As with Atomikos and Bitronix, Spring Boot automatically configures
Narayana and post-processes your beans to ensure that startup and shutdown ordering is correct.

By default, Narayana transaction logs are written to a transaction-logs directory in your application
home directory (the directory in which your application jar file resides). You can customize the location
of this directory by setting a spring.jta.log-dir property in your application.properties
file. Properties starting with spring.jta.narayana.properties can also be used to customize the
Narayana configuration. See the NarayanaProperties Javadoc for complete details.

Note

To ensure that multiple transaction managers can safely coordinate the same resource managers,
each Narayana instance must be configured with a unique ID. By default, this ID is set to 1.
To ensure uniqueness in production, you should configure the spring.jta.transaction-
manager-id property with a different value for each instance of your application.

37.4 Using a Java EE Managed Transaction Manager

If you package your Spring Boot application as a war or ear file and deploy it to a Java EE
application server, you can use your application server’s built-in transaction manager. Spring Boot
tries to auto-configure a transaction manager by looking at common JNDI locations (java:comp/
UserTransaction, java:comp/TransactionManager, and so on). If you use a transaction service
provided by your application server, you generally also want to ensure that all resources are managed
by the server and exposed over JNDI. Spring Boot tries to auto-configure JMS by looking for a
ConnectionFactory at the JNDI path (java:/JmsXA or java:/XAConnectionFactory), and you
can use the spring.datasource.jndi-name property to configure your DataSource.

37.5 Mixing XA and Non-XA JMS Connections

When using JTA, the primary JMS ConnectionFactory bean is XA-aware and participates in
distributed transactions. In some situations, you might want to process certain JMS messages by using
a non-XA ConnectionFactory. For example, your JMS processing logic might take longer than the
XA timeout.

If you want to use a non-XA ConnectionFactory, you can inject the
nonXaJmsConnectionFactory bean rather than the @Primary jmsConnectionFactory bean.
For consistency, the jmsConnectionFactory bean is also provided by using the bean alias
xaJmsConnectionFactory.

The following example shows how to inject ConnectionFactory instances:

// Inject the primary (XA aware) ConnectionFactory

@Autowired

private ConnectionFactory defaultConnectionFactory;

http://narayana.io/
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/jta/narayana/NarayanaProperties.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 143

// Inject the XA aware ConnectionFactory (uses the alias and injects the same as above)

@Autowired

@Qualifier("xaJmsConnectionFactory")

private ConnectionFactory xaConnectionFactory;

// Inject the non-XA aware ConnectionFactory

@Autowired

@Qualifier("nonXaJmsConnectionFactory")

private ConnectionFactory nonXaConnectionFactory;

37.6 Supporting an Alternative Embedded Transaction
Manager

The XAConnectionFactoryWrapper and XADataSourceWrapper interfaces can be used
to support alternative embedded transaction managers. The interfaces are responsible for
wrapping XAConnectionFactory and XADataSource beans and exposing them as regular
ConnectionFactory and DataSource beans, which transparently enroll in the distributed
transaction. DataSource and JMS auto-configuration use JTA variants, provided you have a
JtaTransactionManager bean and appropriate XA wrapper beans registered within your
ApplicationContext.

The BitronixXAConnectionFactoryWrapper and BitronixXADataSourceWrapper provide good examples
of how to write XA wrappers.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/jta/XAConnectionFactoryWrapper.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/jta/XADataSourceWrapper.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/jta/bitronix/BitronixXAConnectionFactoryWrapper.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/jta/bitronix/BitronixXADataSourceWrapper.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 144

38. Hazelcast

If Hazelcast is on the classpath and a suitable configuration is found, Spring Boot auto-configures a
HazelcastInstance that you can inject in your application.

If you define a com.hazelcast.config.Config bean, Spring Boot uses that. If your configuration
defines an instance name, Spring Boot tries to locate an existing instance rather than creating a new one.

You could also specify the hazelcast.xml configuration file to use through configuration, as shown
in the following example:

spring.hazelcast.config=classpath:config/my-hazelcast.xml

Otherwise, Spring Boot tries to find the Hazelcast configuration from the default locations:
hazelcast.xml in the working directory or at the root of the classpath. We also check if the
hazelcast.config system property is set. See the Hazelcast documentation for more details.

If hazelcast-client is present on the classpath, Spring Boot first attempts to create a client by
checking the following configuration options:

• The presence of a com.hazelcast.client.config.ClientConfig bean.

• A configuration file defined by the spring.hazelcast.config property.

• The presence of the hazelcast.client.config system property.

• A hazelcast-client.xml in the working directory or at the root of the classpath.

Note

Spring Boot also has explicit caching support for Hazelcast. If caching is enabled, the
HazelcastInstance is automatically wrapped in a CacheManager implementation.

https://hazelcast.com/
http://docs.hazelcast.org/docs/latest/manual/html-single/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 145

39. Quartz Scheduler

Spring Boot offers several conveniences for working with the Quartz scheduler, including the spring-
boot-starter-quartz “Starter”. If Quartz is available, a Scheduler is auto-configured (through the
SchedulerFactoryBean abstraction).

Beans of the following types are automatically picked up and associated with the Scheduler:

• JobDetail: defines a particular Job. JobDetail instances can be built with the JobBuilder API.

• Calendar.

• Trigger: defines when a particular job is triggered.

By default, an in-memory JobStore is used. However, it is possible to configure a JDBC-based store
if a DataSource bean is available in your application and if the spring.quartz.job-store-type
property is configured accordingly, as shown in the following example:

spring.quartz.job-store-type=jdbc

When the JDBC store is used, the schema can be initialized on startup, as shown in the following
example:

spring.quartz.jdbc.initialize-schema=always

Note

By default, the database is detected and initialized by using the standard scripts provided
with the Quartz library. It is also possible to provide a custom script by setting the
spring.quartz.jdbc.schema property.

Quartz Scheduler configuration can be customized by using Quartz configuration properties
()spring.quartz.properties.*) and SchedulerFactoryBeanCustomizer beans, which allow
programmatic SchedulerFactoryBean customization.

Jobs can define setters to inject data map properties. Regular beans can also be injected in a similar
manner, as shown in the following example:

public class SampleJob extends QuartzJobBean {

 private MyService myService;

 private String name;

 // Inject "MyService" bean

 public void setMyService(MyService myService) { ... }

 // Inject the "name" job data property

 public void setName(String name) { ... }

 @Override

 protected void executeInternal(JobExecutionContext context)

 throws JobExecutionException {

 ...

 }

}

http://www.quartz-scheduler.org/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 146

40. Spring Integration

Spring Boot offers several conveniences for working with Spring Integration, including the spring-
boot-starter-integration “Starter”. Spring Integration provides abstractions over messaging and
also other transports such as HTTP, TCP, and others. If Spring Integration is available on your classpath,
it is initialized through the @EnableIntegration annotation.

Spring Boot also configures some features that are triggered by the presence of additional Spring
Integration modules. If spring-integration-jmx is also on the classpath, message processing
statistics are published over JMX . If spring-integration-jdbc is available, the default database
schema can be created on startup, as shown in the following line:

spring.integration.jdbc.initialize-schema=always

See the IntegrationAutoConfiguration and IntegrationProperties classes for more
details.

http://projects.spring.io/spring-integration/
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/integration/IntegrationAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/integration/IntegrationProperties.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 147

41. Spring Session

Spring Boot provides Spring Session auto-configuration for a wide range of data stores. When building
a Servlet web application, the following stores can be auto-configured:

• JDBC

• Redis

• Hazelcast

• MongoDB

When building a reactive web application, the following stores can be auto-configured:

• Redis

• MongoDB

If Spring Session is available, you must choose the StoreType that you wish to use to store the
sessions. For instance, to use JDBC as the back-end store, you can configure your application as
follows:

spring.session.store-type=jdbc

Tip

You can disable Spring Session by setting the store-type to none.

Each store has specific additional settings. For instance, it is possible to customize the name of the
table for the JDBC store, as shown in the following example:

spring.session.jdbc.table-name=SESSIONS

https://projects.spring.io/spring-session/
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/session/StoreType.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 148

42. Monitoring and Management over JMX

Java Management Extensions (JMX) provide a standard mechanism to monitor and manage
applications. By default, Spring Boot creates an MBeanServer bean with an ID of mbeanServer and
exposes any of your beans that are annotated with Spring JMX annotations (@ManagedResource,
@ManagedAttribute, or @ManagedOperation).

See the JmxAutoConfiguration class for more details.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jmx/JmxAutoConfiguration.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 149

43. Testing

Spring Boot provides a number of utilities and annotations to help when testing your application. Test
support is provided by two modules: spring-boot-test contains core items, and spring-boot-
test-autoconfigure supports auto-configuration for tests.

Most developers use the spring-boot-starter-test “Starter”, which imports both Spring Boot test
modules as well as JUnit, AssertJ, Hamcrest, and a number of other useful libraries.

43.1 Test Scope Dependencies

The spring-boot-starter-test “Starter” (in the test scope)contains the following provided
libraries:

• JUnit: The de-facto standard for unit testing Java applications.

• Spring Test & Spring Boot Test: Utilities and integration test support for Spring Boot applications.

• AssertJ: A fluent assertion library.

• Hamcrest: A library of matcher objects (also known as constraints or predicates).

• Mockito: A Java mocking framework.

• JSONassert: An assertion library for JSON.

• JsonPath: XPath for JSON.

We generally find these common libraries to be useful when writing tests. If these libraries do not suit
your needs, you can add additional test dependencies of your own.

43.2 Testing Spring Applications

One of the major advantages of dependency injection is that it should make your code easier to unit
test. You can instantiate objects by using the new operator without even involving Spring. You can also
use mock objects instead of real dependencies.

Often, you need to move beyond unit testing and start integration testing (with a Spring
ApplicationContext). It is useful to be able to perform integration testing without requiring
deployment of your application or needing to connect to other infrastructure.

The Spring Framework includes a dedicated test module for such integration testing. You can
declare a dependency directly to org.springframework:spring-test or use the spring-boot-
starter-test “Starter” to pull it in transitively.

If you have not used the spring-test module before, you should start by reading the relevant section
of the Spring Framework reference documentation.

43.3 Testing Spring Boot Applications

A Spring Boot application is a Spring ApplicationContext, so nothing very special has to be done
to test it beyond what you would normally do with a vanilla Spring context.

http://junit.org
http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/testing.html#integration-testing
http://joel-costigliola.github.io/assertj/
http://hamcrest.org/JavaHamcrest/
http://mockito.org/
https://github.com/skyscreamer/JSONassert
https://github.com/jayway/JsonPath
http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/testing.html#testing

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 150

Note

External properties, logging, and other features of Spring Boot are installed in the context by
default only if you use SpringApplication to create it.

Spring Boot provides a @SpringBootTest annotation, which can be used as an alternative to
the standard spring-test @ContextConfiguration annotation when you need Spring Boot
features. The annotation works by creating the ApplicationContext used in your tests through
SpringApplication.

You can use the webEnvironment attribute of @SpringBootTest to further refine how your tests run:

• MOCK: Loads a WebApplicationContext and provides a mock servlet environment. Embedded
servlet containers are not started when using this annotation. If servlet APIs are not on your classpath,
this mode transparently falls back to creating a regular non-web ApplicationContext. It can be
used in conjunction with @AutoConfigureMockMvc for MockMvc-based testing of your application.

• RANDOM_PORT: Loads an ServletWebServerApplicationContext and provides a real servlet
environment. Embedded servlet containers are started and listen on a random port.

• DEFINED_PORT: Loads a ServletWebServerApplicationContext and provides a real servlet
environment. Embedded servlet containers are started and listen on a defined port (from your
application.properties or on the default port of 8080).

• NONE: Loads an ApplicationContext by using SpringApplication but does not provide any
servlet environment (mock or otherwise).

Note

If your test is @Transactional, it rolls back the transaction at the end of each test method
by default. However, as using this arrangement with either RANDOM_PORT or DEFINED_PORT
implicitly provides a real servlet environment, the HTTP client and server run in separate threads
and, thus, in separate transactions. Any transaction initiated on the server does not roll back in
this case.

Note

In addition to @SpringBootTest, a number of other annotations are also provided for testing
more specific slices of an application. You can find more detail throughout this chapter.

Tip

Do not forget to add @RunWith(SpringRunner.class) to your test. Otherwise, the
annotations are ignored.

Detecting Test Configuration

If you are familiar with the Spring Test Framework, you may be used to using
@ContextConfiguration(classes=…) in order to specify which Spring @Configuration to load.
Alternatively, you might have often used nested @Configuration classes within your test.

When testing Spring Boot applications, this is often not required. Spring Boot’s @*Test annotations
search for your primary configuration automatically whenever you do not explicitly define one.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 151

The search algorithm works up from the package that contains the test until it finds a class annotated
with @SpringBootApplication or @SpringBootConfiguration. As long as you structured your
code in a sensible way, your main configuration is usually found.

Note

If you use a test annotation to test a more specific slice of your application, you should avoid adding
configuration settings that are specific to a particular area on the main method’s application class.

If you want to customize the primary configuration, you can use a nested @TestConfiguration class.
Unlike a nested @Configuration class, which would be used instead of your application’s primary
configuration, a nested @TestConfiguration class is used in addition to your application’s primary
configuration.

Note

Spring’s test framework caches application contexts between tests. Therefore, as long as your
tests share the same configuration (no matter how it is discovered), the potentially time-consuming
process of loading the context happens only once.

Excluding Test Configuration

If your application uses component scanning (for example, if you use @SpringBootApplication or
@ComponentScan), you may find top-level configuration classes that you created only for specific tests
accidentally get picked up everywhere.

As we have seen earlier, @TestConfiguration can be used on an inner class of a test to customize
the primary configuration. When placed on a top-level class, @TestConfiguration indicates that
classes in src/test/java should not be picked up by scanning. You can then import that class
explicitly where it is required, as shown in the following example:

@RunWith(SpringRunner.class)

@SpringBootTest

@Import(MyTestsConfiguration.class)

public class MyTests {

 @Test

 public void exampleTest() {

 ...

 }

}

Note

If you directly use @ComponentScan (that is, not through @SpringBootApplication) you
need to register the TypeExcludeFilter with it. See the Javadoc for details.

Working with Random Ports

If you need to start a full running server for tests, we recommend that you use random ports. If you
use @SpringBootTest(webEnvironment=WebEnvironment.RANDOM_PORT), an available port
is picked at random each time your test runs.

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/context/TypeExcludeFilter.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 152

The @LocalServerPort annotation can be used to inject the actual port used into your test. For
convenience, tests that need to make REST calls to the started server can additionally @Autowire
a TestRestTemplate, which resolves relative links to the running server, as shown in the following
example:

import org.junit.Test;

import org.junit.runner.RunWith;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.test.context.SpringBootTest;

import org.springframework.boot.test.context.SpringBootTest.WebEnvironment;

import org.springframework.boot.test.web.client.TestRestTemplate;

import org.springframework.test.context.junit4.SpringRunner;

import static org.assertj.core.api.Assertions.assertThat;

@RunWith(SpringRunner.class)

@SpringBootTest(webEnvironment = WebEnvironment.RANDOM_PORT)

public class RandomPortTestRestTemplateExampleTests {

 @Autowired

 private TestRestTemplate restTemplate;

 @Test

 public void exampleTest() {

 String body = this.restTemplate.getForObject("/", String.class);

 assertThat(body).isEqualTo("Hello World");

 }

}

If you prefer to use a WebTestClient, you can use that as well:

import org.junit.Test;

import org.junit.runner.RunWith;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.test.context.SpringBootTest;

import org.springframework.boot.test.context.SpringBootTest.WebEnvironment;

import org.springframework.test.context.junit4.SpringRunner;

import org.springframework.test.web.reactive.server.WebTestClient;

@RunWith(SpringRunner.class)

@SpringBootTest(webEnvironment = WebEnvironment.RANDOM_PORT)

public class RandomPortWebTestClientExampleTests {

 @Autowired

 private WebTestClient webClient;

 @Test

 public void exampleTest() {

 this.webClient.get().uri("/").exchange().expectStatus().isOk()

 .expectBody(String.class).isEqualTo("Hello World");

 }

}

Mocking and Spying Beans

When running tests, it is sometimes necessary to mock certain components within your application
context. For example, you may have a facade over some remote service that is unavailable during
development. Mocking can also be useful when you want to simulate failures that might be hard to
trigger in a real environment.

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/testing.html#webtestclient

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 153

Spring Boot includes a @MockBean annotation that can be used to define a Mockito mock for a bean
inside your ApplicationContext. You can use the annotation to add new beans or replace a single
existing bean definition. The annotation can be used directly on test classes, on fields within your test,
or on @Configuration classes and fields. When used on a field, the instance of the created mock is
also injected. Mock beans are automatically reset after each test method.

Note

If your test uses one of Spring Boot’s test annotations (such as @SpringBootTest), this feature
is automatically enabled. To use this feature with a different arrangement, a listener must be
explicitly added, as shown in the following example:

@TestExecutionListeners(MockitoTestExecutionListener.class)

The following example replaces an existing RemoteService bean with a mock implementation:

import org.junit.*;

import org.junit.runner.*;

import org.springframework.beans.factory.annotation.*;

import org.springframework.boot.test.context.*;

import org.springframework.boot.test.mock.mockito.*;

import org.springframework.test.context.junit4.*;

import static org.assertj.core.api.Assertions.*;

import static org.mockito.BDDMockito.*;

@RunWith(SpringRunner.class)

@SpringBootTest

public class MyTests {

 @MockBean

 private RemoteService remoteService;

 @Autowired

 private Reverser reverser;

 @Test

 public void exampleTest() {

 // RemoteService has been injected into the reverser bean

 given(this.remoteService.someCall()).willReturn("mock");

 String reverse = reverser.reverseSomeCall();

 assertThat(reverse).isEqualTo("kcom");

 }

}

Additionally, you can use @SpyBean to wrap any existing bean with a Mockito spy. See the Javadoc
for full details.

Auto-configured Tests

Spring Boot’s auto-configuration system works well for applications but can sometimes be a little too
much for tests. It often helps to load only the parts of the configuration that are required to test a “slice”
of your application. For example, you might want to test that Spring MVC controllers are mapping URLs
correctly, and you do not want to involve database calls in those tests, or you might want to test JPA
entities, and you are not interested in the web layer when those tests run.

The spring-boot-test-autoconfigure module includes a number of annotations that can be
used to automatically configure such “slices”. Each of them works in a similar way, providing a @…Test

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/test/mock/mockito/SpyBean.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 154

annotation that loads the ApplicationContext and one or more @AutoConfigure… annotations
that can be used to customize auto-configuration settings.

Note

Each slice loads a very restricted set of auto-configuration classes. If you need to exclude
one of them, most @…Test annotations provide an excludeAutoConfiguration attribute.
Alternatively, you can use @ImportAutoConfiguration#exclude.

Tip

It is also possible to use the @AutoConfigure… annotations with the standard
@SpringBootTest annotation. You can use this combination if you are not interested in “slicing”
your application but you want some of the auto-configured test beans.

Auto-configured JSON Tests

To test that object JSON serialization and deserialization is working as expected, you can use the
@JsonTest annotation. @JsonTest auto-configures the available supported JSON mapper, which can
be one of the following libraries:

• Jackson ObjectMapper, any @JsonComponent beans and any Jackson Modules

• Gson

• Jsonb

If you need to configure elements of the auto-configuration, you can use the
@AutoConfigureJsonTesters annotation.

Spring Boot includes AssertJ-based helpers that work with the JSONassert and JsonPath libraries
to check that JSON appears as expected. The JacksonTester, GsonTester, JsonbTester, and
BasicJsonTester classes can be used for Jackson, Gson, Jsonb, and Strings respectively. Any
helper fields on the test class can be @Autowired when using @JsonTest. The following example
shows a test class for Jackson:

import org.junit.*;

import org.junit.runner.*;

import org.springframework.beans.factory.annotation.*;

import org.springframework.boot.test.autoconfigure.json.*;

import org.springframework.boot.test.context.*;

import org.springframework.boot.test.json.*;

import org.springframework.test.context.junit4.*;

import static org.assertj.core.api.Assertions.*;

@RunWith(SpringRunner.class)

@JsonTest

public class MyJsonTests {

 @Autowired

 private JacksonTester<VehicleDetails> json;

 @Test

 public void testSerialize() throws Exception {

 VehicleDetails details = new VehicleDetails("Honda", "Civic");

 // Assert against a `.json` file in the same package as the test

 assertThat(this.json.write(details)).isEqualToJson("expected.json");

 // Or use JSON path based assertions

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 155

 assertThat(this.json.write(details)).hasJsonPathStringValue("@.make");

 assertThat(this.json.write(details)).extractingJsonPathStringValue("@.make")

 .isEqualTo("Honda");

 }

 @Test

 public void testDeserialize() throws Exception {

 String content = "{\"make\":\"Ford\",\"model\":\"Focus\"}";

 assertThat(this.json.parse(content))

 .isEqualTo(new VehicleDetails("Ford", "Focus"));

 assertThat(this.json.parseObject(content).getMake()).isEqualTo("Ford");

 }

}

Note

JSON helper classes can also be used directly in standard unit tests. To do so, call the
initFields method of the helper in your @Before method if you do not use @JsonTest.

A list of the auto-configuration that is enabled by @JsonTest can be found in the appendix.

Auto-configured Spring MVC Tests

To test whether Spring MVC controllers are working as expected, use the @WebMvcTest
annotation. @WebMvcTest auto-configures the Spring MVC infrastructure and limits scanned beans
to @Controller, @ControllerAdvice, @JsonComponent, Converter, GenericConverter,
Filter, WebMvcConfigurer, and HandlerMethodArgumentResolver. Regular @Component
beans are not scanned when using this annotation.

Tip

If you need to register extra components, such as the Jackson Module, you can import additional
configuration classes by using @Import on your test.

Often, @WebMvcTest is limited to a single controller and is used in combination with @MockBean to
provide mock implementations for required collaborators.

@WebMvcTest also auto-configures MockMvc. Mock MVC offers a powerful way to quickly test MVC
controllers without needing to start a full HTTP server.

Tip

You can also auto-configure MockMvc in a non-@WebMvcTest (such as @SpringBootTest) by
annotating it with @AutoConfigureMockMvc. The following example uses MockMvc:

import org.junit.*;

import org.junit.runner.*;

import org.springframework.beans.factory.annotation.*;

import org.springframework.boot.test.autoconfigure.web.servlet.*;

import org.springframework.boot.test.mock.mockito.*;

import static org.assertj.core.api.Assertions.*;

import static org.mockito.BDDMockito.*;

import static org.springframework.test.web.servlet.request.MockMvcRequestBuilders.*;

import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.*;

@RunWith(SpringRunner.class)

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 156

@WebMvcTest(UserVehicleController.class)

public class MyControllerTests {

 @Autowired

 private MockMvc mvc;

 @MockBean

 private UserVehicleService userVehicleService;

 @Test

 public void testExample() throws Exception {

 given(this.userVehicleService.getVehicleDetails("sboot"))

 .willReturn(new VehicleDetails("Honda", "Civic"));

 this.mvc.perform(get("/sboot/vehicle").accept(MediaType.TEXT_PLAIN))

 .andExpect(status().isOk()).andExpect(content().string("Honda Civic"));

 }

}

Tip

If you need to configure elements of the auto-configuration (for example, when servlet filters should
be applied) you can use attributes in the @AutoConfigureMockMvc annotation.

If you use HtmlUnit or Selenium, auto-configuration also provides an HTMLUnit WebClient bean and/
or a WebDriver bean. The following example uses HtmlUnit:

import com.gargoylesoftware.htmlunit.*;

import org.junit.*;

import org.junit.runner.*;

import org.springframework.beans.factory.annotation.*;

import org.springframework.boot.test.autoconfigure.web.servlet.*;

import org.springframework.boot.test.mock.mockito.*;

import static org.assertj.core.api.Assertions.*;

import static org.mockito.BDDMockito.*;

@RunWith(SpringRunner.class)

@WebMvcTest(UserVehicleController.class)

public class MyHtmlUnitTests {

 @Autowired

 private WebClient webClient;

 @MockBean

 private UserVehicleService userVehicleService;

 @Test

 public void testExample() throws Exception {

 given(this.userVehicleService.getVehicleDetails("sboot"))

 .willReturn(new VehicleDetails("Honda", "Civic"));

 HtmlPage page = this.webClient.getPage("/sboot/vehicle.html");

 assertThat(page.getBody().getTextContent()).isEqualTo("Honda Civic");

 }

}

Note

By default, Spring Boot puts WebDriver beans in a special “scope” to ensure that the driver exits
after each test and that a new instance is injected. If you do not want this behavior, you can add
@Scope("singleton") to your WebDriver @Bean definition.

A list of the auto-configuration settings that are enabled by @WebMvcTest can be found in the appendix.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 157

Auto-configured Spring WebFlux Tests

To test that Spring WebFlux controllers are working as expected, you can use the
@WebFluxTest annotation. @WebFluxTest auto-configures the Spring WebFlux infrastructure and
limits scanned beans to @Controller, @ControllerAdvice, @JsonComponent, Converter,
GenericConverter, and WebFluxConfigurer. Regular @Component beans are not scanned when
the @WebFluxTest annotation is used.

Tip

If you need to register extra components, such as Jackson Module, you can import additional
configuration classes using @Import on your test.

Often, @WebFluxTest is limited to a single controller and used in combination with the @MockBean
annotation to provide mock implementations for required collaborators.

@WebFluxTest also auto-configures WebTestClient, which offers a powerful way to quickly test
WebFlux controllers without needing to start a full HTTP server.

Tip

You can also auto-configure WebTestClient in a non-@WebFluxTest (such as
@SpringBootTest) by annotating it with @AutoConfigureWebTestClient. The following
example shows a class that uses both @WebFluxTest and a WebTestClient:

import org.junit.Test;

import org.junit.runner.RunWith;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.test.autoconfigure.web.reactive.WebFluxTest;

import org.springframework.http.MediaType;

import org.springframework.test.context.junit4.SpringRunner;

import org.springframework.test.web.reactive.server.WebTestClient;

@RunWith(SpringRunner.class)

@WebFluxTest(UserVehicleController.class)

public class MyControllerTests {

 @Autowired

 private WebTestClient webClient;

 @MockBean

 private UserVehicleService userVehicleService;

 @Test

 public void testExample() throws Exception {

 given(this.userVehicleService.getVehicleDetails("sboot"))

 .willReturn(new VehicleDetails("Honda", "Civic"));

 this.webClient.get().uri("/sboot/vehicle").accept(MediaType.TEXT_PLAIN)

 .exchange()

 .expectStatus().isOk()

 .expectBody(String.class).isEqualTo("Honda Civic");

 }

}

A list of the auto-configuration that is enabled by @WebFluxTest can be found in the appendix.

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference//web-reactive.html
http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/testing.html#webtestclient

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 158

Auto-configured Data JPA Tests

You can use the @DataJpaTest annotation to test JPA applications. By default, it configures an in-
memory embedded database, scans for @Entity classes, and configures Spring Data JPA repositories.
Regular @Component beans are not loaded into the ApplicationContext.

By default, data JPA tests are transactional and roll back at the end of each test. See the relevant section
in the Spring Framework Reference Documentation for more details. If that is not what you want, you
can disable transaction management for a test or for the whole class as follows:

import org.junit.Test;

import org.junit.runner.RunWith;

import org.springframework.boot.test.autoconfigure.orm.jpa.DataJpaTest;

import org.springframework.test.context.junit4.SpringRunner;

import org.springframework.transaction.annotation.Propagation;

import org.springframework.transaction.annotation.Transactional;

@RunWith(SpringRunner.class)

@DataJpaTest

@Transactional(propagation = Propagation.NOT_SUPPORTED)

public class ExampleNonTransactionalTests {

}

Data JPA tests may also inject a TestEntityManager bean, which provides an alternative
to the standard JPA EntityManager that is specifically designed for tests. If you want
to use TestEntityManager outside of @DataJpaTest instances, you can also use the
@AutoConfigureTestEntityManager annotation. A JdbcTemplate is also available if you need
that. The following example shows the @DataJpaTest annotation in use:

import org.junit.*;

import org.junit.runner.*;

import org.springframework.boot.test.autoconfigure.orm.jpa.*;

import static org.assertj.core.api.Assertions.*;

@RunWith(SpringRunner.class)

@DataJpaTest

public class ExampleRepositoryTests {

 @Autowired

 private TestEntityManager entityManager;

 @Autowired

 private UserRepository repository;

 @Test

 public void testExample() throws Exception {

 this.entityManager.persist(new User("sboot", "1234"));

 User user = this.repository.findByUsername("sboot");

 assertThat(user.getUsername()).isEqualTo("sboot");

 assertThat(user.getVin()).isEqualTo("1234");

 }

}

In-memory embedded databases generally work well for tests, since they are fast and do not require
any installation. If, however, you prefer to run tests against a real database you can use the
@AutoConfigureTestDatabase annotation, as shown in the following example:

@RunWith(SpringRunner.class)

@DataJpaTest

@AutoConfigureTestDatabase(replace=Replace.NONE)

public class ExampleRepositoryTests {

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/testing.html#testcontext-tx-enabling-transactions
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-test-autoconfigure/src/main/java/org/springframework/boot/test/autoconfigure/orm/jpa/TestEntityManager.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 159

 // ...

}

A list of the auto-configuration settings that are enabled by @DataJpaTest can be found in the
appendix.

Auto-configured JDBC Tests

@JdbcTest is similar to @DataJpaTest but is for pure JDBC-related tests. By default, it also configures
an in-memory embedded database and a JdbcTemplate. Regular @Component beans are not loaded
into the ApplicationContext.

By default, JDBC tests are transactional and roll back at the end of each test. See the relevant section
in the Spring Framework Reference Documentation for more details. If that is not what you want, you
can disable transaction management for a test or for the whole class, as follows:

import org.junit.Test;

import org.junit.runner.RunWith;

import org.springframework.boot.test.autoconfigure.jdbc.JdbcTest;

import org.springframework.test.context.junit4.SpringRunner;

import org.springframework.transaction.annotation.Propagation;

import org.springframework.transaction.annotation.Transactional;

@RunWith(SpringRunner.class)

@JdbcTest

@Transactional(propagation = Propagation.NOT_SUPPORTED)

public class ExampleNonTransactionalTests {

}

If you prefer your test to run against a real database, you can use the @AutoConfigureTestDatabase
annotation in the same way as for DataJpaTest. (See "the section called “Auto-configured Data JPA
Tests”".)

A list of the auto-configuration that is enabled by @JdbcTest can be found in the appendix.

Auto-configured jOOQ Tests

You can use @JooqTest in a similar fashion as @JdbcTest but for jOOQ-related tests. As
jOOQ relies heavily on a Java-based schema that corresponds with the database schema, the
existing DataSource is used. If you want to replace it with an in-memory database, you can use
@AutoconfigureTestDatabase to override those settings. (For more about using jOOQ with Spring
Boot, see "Section 29.5, “Using jOOQ”", earlier in this chapter.)

@JooqTest configures a DSLContext. Regular @Component beans are not loaded into the
ApplicationContext. The following example shows the @JooqTest annotation in use:

import org.jooq.DSLContext;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.springframework.boot.test.autoconfigure.jooq.JooqTest;

import org.springframework.test.context.junit4.SpringRunner;

@RunWith(SpringRunner.class)

@JooqTest

public class ExampleJooqTests {

 @Autowired

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/testing.html#testcontext-tx-enabling-transactions

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 160

 private DSLContext dslContext;

}

JOOQ tests are transactional and roll back at the end of each test by default. If that is not what you
want, you can disable transaction management for a test or for the whole test class as shown in the
JDBC example.

A list of the auto-configuration that is enabled by @JooqTest can be found in the appendix.

Auto-configured Data MongoDB Tests

You can use @DataMongoTest to test MongoDB applications. By default, it configures an in-memory
embedded MongoDB (if available), configures a MongoTemplate, scans for @Document classes,
and configures Spring Data MongoDB repositories. Regular @Component beans are not loaded into
the ApplicationContext. (For more about using MongoDB with Spring Boot, see "Section 30.2,
“MongoDB”", earlier in this chapter.)

The following class shows the @DataMongoTest annotation in use:

import org.junit.runner.RunWith;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.test.autoconfigure.data.mongo.DataMongoTest;

import org.springframework.data.mongodb.core.MongoTemplate;

import org.springframework.test.context.junit4.SpringRunner;

@RunWith(SpringRunner.class)

@DataMongoTest

public class ExampleDataMongoTests {

 @Autowired

 private MongoTemplate mongoTemplate;

 //

}

In-memory embedded MongoDB generally works well for tests, since it is fast and does not require any
developer installation. If, however, you prefer to run tests against a real MongoDB server, you should
exclude the embedded MongoDB auto-configuration, as shown in the following example:

import org.junit.runner.RunWith;

 import org.springframework.boot.autoconfigure.mongo.embedded.EmbeddedMongoAutoConfiguration;

import org.springframework.boot.test.autoconfigure.data.mongo.DataMongoTest;

import org.springframework.test.context.junit4.SpringRunner;

@RunWith(SpringRunner.class)

@DataMongoTest(excludeAutoConfiguration = EmbeddedMongoAutoConfiguration.class)

public class ExampleDataMongoNonEmbeddedTests {

}

A list of the auto-configuration settings that are enabled by @DataMongoTest can be found in the
appendix.

Auto-configured Data Neo4j Tests

You can use @DataNeo4jTest to test Neo4j applications. By default, it uses an in-memory embedded
Neo4j (if the embedded driver is available), scans for @NodeEntity classes, and configures Spring
Data Neo4j repositories. Regular @Component beans are not loaded into the ApplicationContext.
(For more about using Neo4J with Spring Boot, see "Section 30.3, “Neo4j”", earlier in this chapter.)

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 161

The following example shows a typical setup for using Neo4J tests in Spring Boot:

import org.junit.runner.RunWith;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.test.autoconfigure.data.neo4j.DataNeo4jTest;

import org.springframework.test.context.junit4.SpringRunner;

@RunWith(SpringRunner.class)

@DataNeo4jTest

public class ExampleDataNeo4jTests {

 @Autowired

 private YourRepository repository;

 //

}

By default, Data Neo4j tests are transactional and roll back at the end of each test. See the relevant
section in the Spring Framework Reference Documentation for more details. If that is not what you want,
you can disable transaction management for a test or for the whole class, as follows:

import org.junit.Test;

import org.junit.runner.RunWith;

import org.springframework.boot.test.autoconfigure.data.neo4j.DataNeo4jTest;

import org.springframework.test.context.junit4.SpringRunner;

import org.springframework.transaction.annotation.Propagation;

import org.springframework.transaction.annotation.Transactional;

@RunWith(SpringRunner.class)

@DataNeo4jTest

@Transactional(propagation = Propagation.NOT_SUPPORTED)

public class ExampleNonTransactionalTests {

}

A list of the auto-configuration settings that are enabled by @DataNeo4jTest can be found in the
appendix.

Auto-configured Data Redis Tests

You can use @DataRedisTest to test Redis applications. By default, it scans for @RedisHash classes
and configures Spring Data Redis repositories. Regular @Component beans are not loaded into the
ApplicationContext. (For more about using Redis with Spring Boot, see "Section 30.1, “Redis”",
earlier in this chapter.)

The following example shows the @DataRedisTest annotation in use:

import org.junit.runner.RunWith;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.test.autoconfigure.data.redis.DataRedisTest;

import org.springframework.test.context.junit4.SpringRunner;

@RunWith(SpringRunner.class)

@DataRedisTest

public class ExampleDataRedisTests {

 @Autowired

 private YourRepository repository;

 //

}

A list of the auto-configuration settings that are enabled by @DataRedisTest can be found in the
appendix.

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/testing.html#testcontext-tx-enabling-transactions
http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/testing.html#testcontext-tx-enabling-transactions

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 162

Auto-configured Data LDAP Tests

You can use @DataLdapTest to test LDAP applications. By default, it configures an in-memory
embedded LDAP (if available), configures an LdapTemplate, scans for @Entry classes, and
configures Spring Data LDAP repositories. Regular @Component beans are not loaded into the
ApplicationContext. (For more about using LDAP with Spring Boot, see "Section 30.9, “LDAP”",
earlier in this chapter.)

The following example shows the @DataLdapTest annotation in use:

import org.junit.runner.RunWith;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.test.autoconfigure.data.ldap.DataLdapTest;

import org.springframework.ldap.core.LdapTemplate;

import org.springframework.test.context.junit4.SpringRunner;

@RunWith(SpringRunner.class)

@DataLdapTest

public class ExampleDataLdapTests {

 @Autowired

 private LdapTemplate ldapTemplate;

 //

}

In-memory embedded LDAP generally works well for tests, since it is fast and does not require any
developer installation. If, however, you prefer to run tests against a real LDAP server, you should exclude
the embedded LDAP auto-configuration, as shown in the following example:

import org.junit.runner.RunWith;

import org.springframework.boot.autoconfigure.ldap.embedded.EmbeddedLdapAutoConfiguration;

import org.springframework.boot.test.autoconfigure.data.ldap.DataLdapTest;

import org.springframework.test.context.junit4.SpringRunner;

@RunWith(SpringRunner.class)

@DataLdapTest(excludeAutoConfiguration = EmbeddedLdapAutoConfiguration.class)

public class ExampleDataLdapNonEmbeddedTests {

}

A list of the auto-configuration settings that are enabled by @DataLdapTest can be found in the
appendix.

Auto-configured REST Clients

You can use the @RestClientTest annotation to test REST clients. By default, it auto-configures
Jackson, GSON, and Jsonb support, configures a RestTemplateBuilder, and adds support for
MockRestServiceServer. The specific beans that you want to test should be specified by using the
value or components attribute of @RestClientTest, as shown in the following example:

@RunWith(SpringRunner.class)

@RestClientTest(RemoteVehicleDetailsService.class)

public class ExampleRestClientTest {

 @Autowired

 private RemoteVehicleDetailsService service;

 @Autowired

 private MockRestServiceServer server;

 @Test

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 163

 public void getVehicleDetailsWhenResultIsSuccessShouldReturnDetails()

 throws Exception {

 this.server.expect(requestTo("/greet/details"))

 .andRespond(withSuccess("hello", MediaType.TEXT_PLAIN));

 String greeting = this.service.callRestService();

 assertThat(greeting).isEqualTo("hello");

 }

}

A list of the auto-configuration settings that are enabled by @RestClientTest can be found in the
appendix.

Auto-configured Spring REST Docs Tests

You can use the @AutoConfigureRestDocs annotation to use Spring REST Docs in your tests with
Mock MVC or REST Assured. It removes the need for the JUnit rule in Spring REST Docs.

@AutoConfigureRestDocs can be used to override the default output directory (target/
generated-snippets if you are using Maven or build/generated-snippets if you are using
Gradle). It can also be used to configure the host, scheme, and port that appears in any documented
URIs.

Auto-configured Spring REST Docs Tests with Mock MVC

@AutoConfigureRestDocs customizes the MockMvc bean to use Spring REST Docs. You can inject
it by using @Autowired and use it in your tests as you normally would when using Mock MVC and
Spring REST Docs, as shown in the following example:

import org.junit.Test;

import org.junit.runner.RunWith;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.test.autoconfigure.web.servlet.WebMvcTest;

import org.springframework.http.MediaType;

import org.springframework.test.context.junit4.SpringRunner;

import org.springframework.test.web.servlet.MockMvc;

import static org.springframework.restdocs.mockmvc.MockMvcRestDocumentation.document;

import static org.springframework.test.web.servlet.request.MockMvcRequestBuilders.get;

import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.*;

@RunWith(SpringRunner.class)

@WebMvcTest(UserController.class)

@AutoConfigureRestDocs

public class UserDocumentationTests {

 @Autowired

 private MockMvc mvc;

 @Test

 public void listUsers() throws Exception {

 this.mvc.perform(get("/users").accept(MediaType.TEXT_PLAIN))

 .andExpect(status().isOk())

 .andDo(document("list-users"));

 }

}

If you require more control over Spring REST Docs configuration than offered by the attributes
of @AutoConfigureRestDocs, you can use a RestDocsMockMvcConfigurationCustomizer
bean, as shown in the following example:

http://projects.spring.io/spring-restdocs/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 164

@TestConfiguration

static class CustomizationConfiguration

 implements RestDocsMockMvcConfigurationCustomizer {

 @Override

 public void customize(MockMvcRestDocumentationConfigurer configurer) {

 configurer.snippets().withTemplateFormat(TemplateFormats.markdown());

 }

}

If you want to make use of Spring REST Docs support for a parameterized output directory, you can
create a RestDocumentationResultHandler bean. The auto-configuration calls alwaysDo with
this result handler, thereby causing each MockMvc call to automatically generate the default snippets.
The following example shows a RestDocumentationResultHandler being defined:

@TestConfiguration

static class ResultHandlerConfiguration {

 @Bean

 public RestDocumentationResultHandler restDocumentation() {

 return MockMvcRestDocumentation.document("{method-name}");

 }

}

Auto-configured Spring REST Docs Tests with REST Assured

@AutoConfigureRestDocs makes a RequestSpecification bean, preconfigured to use Spring
REST Docs, available to your tests. You can inject it by using @Autowired and use it in your tests
as you normally would when using REST Assured and Spring REST Docs, as shown in the following
example:

import io.restassured.specification.RequestSpecification;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.test.autoconfigure.restdocs.AutoConfigureRestDocs;

import org.springframework.boot.test.context.SpringBootTest;

import org.springframework.boot.test.context.SpringBootTest.WebEnvironment;

import org.springframework.boot.web.server.LocalServerPort;

import org.springframework.test.context.junit4.SpringRunner;

import static io.restassured.RestAssured.given;

import static org.hamcrest.CoreMatchers.is;

import static org.springframework.restdocs.restassured3.RestAssuredRestDocumentation.document;

@RunWith(SpringRunner.class)

@SpringBootTest(webEnvironment = WebEnvironment.RANDOM_PORT)

@AutoConfigureRestDocs

public class UserDocumentationTests {

 @LocalServerPort

 private int port;

 @Autowired

 private RequestSpecification documentationSpec;

 @Test

 public void listUsers() {

 given(this.documentationSpec).filter(document("list-users")).when()

 .port(this.port).get("/").then().assertThat().statusCode(is(200));

 }

}

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 165

If you require more control over Spring REST Docs configuration than offered by the attributes of
@AutoConfigureRestDocs, a RestDocsRestAssuredConfigurationCustomizer bean can be
used, as shown in the following example:

@TestConfiguration

public static class CustomizationConfiguration

 implements RestDocsRestAssuredConfigurationCustomizer {

 @Override

 public void customize(RestAssuredRestDocumentationConfigurer configurer) {

 configurer.snippets().withTemplateFormat(TemplateFormats.markdown());

 }

}

User Configuration and Slicing

If you structure your code in a sensible way, your @SpringBootApplication class is used by default
as the configuration of your tests.

It then becomes important not to litter the application’s main class with configuration settings that are
specific to a particular area of its functionality.

Assume that you are using Spring Batch and you rely on the auto-configuration for it. You could define
your @SpringBootApplication as follows:

@SpringBootApplication

@EnableBatchProcessing

public class SampleApplication { ... }

Because this class is the source configuration for the test, any slice test actually tries to start Spring
Batch, which is definitely not what you want to do. A recommended approach is to move that area-
specific configuration to a separate @Configuration class at the same level as your application, as
shown in the following example:

@Configuration

@EnableBatchProcessing

public class BatchConfiguration { ... }

Note

Depending on the complexity of your application, you may either have a single @Configuration
class for your customizations or one class per domain area. The latter approach lets you enable
it in one of your tests, if necessary, with the @Import annotation.

Another source of confusion is classpath scanning. Assume that, while you structured your code in a
sensible way, you need to scan an additional package. Your application may resemble the following
code:

@SpringBootApplication

@ComponentScan({ "com.example.app", "org.acme.another" })

public class SampleApplication { ... }

Doing so effectively overrides the default component scan directive with the side effect of scanning those
two packages regardless of the slice that you chose. For instance, a @DataJpaTest seems to suddenly
scan components and user configurations of your application. Again, moving the custom directive to a
separate class is a good way to fix this issue.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 166

Tip

If this is not an option for you, you can create a @SpringBootConfiguration somewhere in
the hierarchy of your test so that it is used instead. Alternatively, you can specify a source for your
test, which disables the behavior of finding a default one.

Using Spock to Test Spring Boot Applications

If you wish to use Spock to test a Spring Boot application, you should add a dependency on Spock’s
spock-spring module to your application’s build. spock-spring integrates Spring’s test framework
into Spock. It is recommended that you use Spock 1.1 or later to benefit from a number of improvements
to Spock’s Spring Framework and Spring Boot integration. See the documentation for Spock’s Spring
module for further details.

43.4 Test Utilities

A few test utility classes that are generally useful when testing your application are packaged as part
of spring-boot.

ConfigFileApplicationContextInitializer

ConfigFileApplicationContextInitializer is an ApplicationContextInitializer that
you can apply to your tests to load Spring Boot application.properties files. You can use it when
you do not need the full set of features provided by @SpringBootTest, as shown in the following
example:

@ContextConfiguration(classes = Config.class,

 initializers = ConfigFileApplicationContextInitializer.class)

Note

Using ConfigFileApplicationContextInitializer alone does not provide support for
@Value("${…}") injection. Its only job is to ensure that application.properties files
are loaded into Spring’s Environment. For @Value support, you need to either additionally
configure a PropertySourcesPlaceholderConfigurer or use @SpringBootTest, which
auto-configures one for you.

EnvironmentTestUtils

EnvironmentTestUtils lets you quickly add properties to a ConfigurableEnvironment or
ConfigurableApplicationContext. You can call it with key=value strings, as follows:

EnvironmentTestUtils.addEnvironment(env, "org=Spring", "name=Boot");

OutputCapture

OutputCapture is a JUnit Rule that you can use to capture System.out and System.err output.
You can declare the capture as a @Rule and then use toString() for assertions, as follows:

import org.junit.Rule;

import org.junit.Test;

import org.springframework.boot.test.rule.OutputCapture;

import static org.hamcrest.Matchers.*;

http://spockframework.org/spock/docs/1.1/modules.html
http://spockframework.org/spock/docs/1.1/modules.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 167

import static org.junit.Assert.*;

public class MyTest {

 @Rule

 public OutputCapture capture = new OutputCapture();

 @Test

 public void testName() throws Exception {

 System.out.println("Hello World!");

 assertThat(capture.toString(), containsString("World"));

 }

}

TestRestTemplate

TestRestTemplate is a convenience alternative to Spring’s RestTemplate that is useful in
integration tests. You can get a vanilla template or one that sends Basic HTTP authentication (with a
username and password). In either case, the template behaves in a test-friendly way by not throwing
exceptions on server-side errors. It is recommended, but not mandatory, to use the Apache HTTP Client
(version 4.3.2 or better). If you have that on your classpath, the TestRestTemplate responds by
configuring the client appropriately. If you do use Apache’s HTTP client, some additional test-friendly
features are enabled:

• Redirects are not followed (so you can assert the response location).

• Cookies are ignored (so the template is stateless).

TestRestTemplate can be instantiated directly in your integration tests, as shown in the following
example:

public class MyTest {

 private TestRestTemplate template = new TestRestTemplate();

 @Test

 public void testRequest() throws Exception {

 HttpHeaders headers = template.getForEntity("http://myhost.com/example", String.class).getHeaders();

 assertThat(headers.getLocation().toString(), containsString("myotherhost"));

 }

}

Alternatively, if you use the @SpringBootTest annotation with WebEnvironment.RANDOM_PORT or
WebEnvironment.DEFINED_PORT, you can inject a fully configured TestRestTemplate and start
using it. If necessary, additional customizations can be applied through the RestTemplateBuilder
bean. Any URLs that do not specify a host and port automatically connect to the embedded server, as
shown in the following example:

@RunWith(SpringRunner.class)

@SpringBootTest

public class MyTest {

 @Autowired

 private TestRestTemplate template;

 @Test

 public void testRequest() throws Exception {

 HttpHeaders headers = template.getForEntity("/example", String.class).getHeaders();

 assertThat(headers.getLocation().toString(), containsString("myotherhost"));

 }

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 168

 @TestConfiguration

 static class Config {

 @Bean

 public RestTemplateBuilder restTemplateBuilder() {

 return new RestTemplateBuilder()

 .additionalMessageConverters(...)

 .customizers(...);

 }

 }

}

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 169

44. WebSockets

Spring Boot provides WebSockets auto-configuration for embedded Tomcat 8.5, Jetty 9, and Undertow.
If you deploy a war file to a standalone container, Spring Boot assumes that the container is responsible
for the configuration of its WebSocket support.

Spring Framework provides rich WebSocket support that can be easily accessed through the spring-
boot-starter-websocket module.

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web.html#websocket

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 170

45. Web Services

Spring Boot provides Web Services auto-configuration so that all you must do is define your Endpoints.

The Spring Web Services features can be easily accessed with the spring-boot-starter-
webservices module.

SimpleWsdl11Definition and SimpleXsdSchema beans can be automatically created for your
WSDLs and XSDs respectively. To do so, configure their location, as shown in the following example:

spring.webservices.wsdl-locations=classpath:/wsdl

http://docs.spring.io/spring-ws/docs/3.0.0.RELEASE/reference/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 171

46. Creating Your Own Auto-configuration
If you work in a company that develops shared libraries, or if you work on an open-source or commercial
library, you might want to develop your own auto-configuration. Auto-configuration classes can be
bundled in external jars and still be picked-up by Spring Boot.

Auto-configuration can be associated to a “starter” that provides the auto-configuration code as well as
the typical libraries that you would use with it. We first cover what you need to know to build your own
auto-configuration and then we move on to the typical steps required to create a custom starter.

Tip

A demo project is available to showcase how you can create a starter step-by-step.

46.1 Understanding Auto-configured Beans

Under the hood, auto-configuration is implemented with standard @Configuration classes. Additional
@Conditional annotations are used to constrain when the auto-configuration should apply. Usually,
auto-configuration classes use @ConditionalOnClass and @ConditionalOnMissingBean

annotations. This ensures that auto-configuration applies only when relevant classes are found and
when you have not declared your own @Configuration.

You can browse the source code of spring-boot-autoconfigure to see the @Configuration
classes that Spring provides (see the META-INF/spring.factories file).

46.2 Locating Auto-configuration Candidates

Spring Boot checks for the presence of a META-INF/spring.factories file within your published jar.
The file should list your configuration classes under the EnableAutoConfiguration key, as shown
in the following example:

org.springframework.boot.autoconfigure.EnableAutoConfiguration=\

com.mycorp.libx.autoconfigure.LibXAutoConfiguration,\

com.mycorp.libx.autoconfigure.LibXWebAutoConfiguration

You can use the @AutoConfigureAfter or @AutoConfigureBefore annotations if your
configuration needs to be applied in a specific order. For example, if you provide web-specific
configuration, your class may need to be applied after WebMvcAutoConfiguration.

If you want to order certain auto-configurations that should not have any direct knowledge of each other,
you can also use @AutoConfigureOrder. That annotation has the same semantic as the regular
@Order annotation but provides a dedicated order for auto-configuration classes.

Note

Auto-configurations must be loaded that way only. Make sure that they are defined in a specific
package space and that, in particular, they are never the target of component scanning.

46.3 Condition Annotations

You almost always want to include one or more @Conditional annotations on your auto-configuration
class. The @ConditionalOnMissingBean annotation is one common example that is used to allow
developers to override auto-configuration if they are not happy with your defaults.

https://github.com/snicoll-demos/spring-boot-master-auto-configuration
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/resources/META-INF/spring.factories
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/AutoConfigureAfter.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/AutoConfigureBefore.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 172

Spring Boot includes a number of @Conditional annotations that you can reuse in your own code by
annotating @Configuration classes or individual @Bean methods. These annotations include:

• the section called “Class Conditions”

• the section called “Bean Conditions”

• the section called “Property Conditions”

• the section called “Resource Conditions”

• the section called “Web Application Conditions”

• the section called “SpEL Expression Conditions”

Class Conditions

The @ConditionalOnClass and @ConditionalOnMissingClass annotations let configuration be
included based on the presence or absence of specific classes. Due to the fact that annotation metadata
is parsed by using ASM, you can use the value attribute to refer to the real class, even though that class
might not actually appear on the running application classpath. You can also use the name attribute if
you prefer to specify the class name by using a String value.

Tip

If you use @ConditionalOnClass or @ConditionalOnMissingClass as a part of a meta-
annotation to compose your own composed annotations, you must use name as referring to the
class in such a case is not handled.

Bean Conditions

The @ConditionalOnBean and @ConditionalOnMissingBean annotations let a bean be included
based on the presence or absence of specific beans. You can use the value attribute to specify
beans by type or name to specify beans by name. The search attribute lets you limit the
ApplicationContext hierarchy that should be considered when searching for beans.

When placed on a @Bean method, the target type defaults to the return type of the method, as shown
in the following example:

@Configuration

public class MyAutoConfiguration {

 @Bean

 @ConditionalOnMissingBean

 public MyService myService() { ... }

}

In the preceding example, the myService bean is going to be created if no bean of type MyService
is already contained in the ApplicationContext.

Tip

You need to be very careful about the order in which bean definitions are added, as
these conditions are evaluated based on what has been processed so far. For this reason,
we recommend using only @ConditionalOnBean and @ConditionalOnMissingBean

http://asm.ow2.org/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 173

annotations on auto-configuration classes (since these are guaranteed to load after any user-
defined bean definitions have been added).

Note

@ConditionalOnBean and @ConditionalOnMissingBean do not prevent
@Configuration classes from being created. Using these conditions at the class level is
equivalent to marking each contained @Bean method with the annotation.

Property Conditions

The @ConditionalOnProperty annotation lets configuration be included based on a Spring
Environment property. Use the prefix and name attributes to specify the property that should be
checked. By default, any property that exists and is not equal to false is matched. You can also create
more advanced checks by using the havingValue and matchIfMissing attributes.

Resource Conditions

The @ConditionalOnResource annotation lets configuration be included only when a specific
resource is present. Resources can be specified by using the usual Spring conventions, as shown in
the following example: file:/home/user/test.dat.

Web Application Conditions

The @ConditionalOnWebApplication and @ConditionalOnNotWebApplication annotations
let configuration be included depending on whether the application is a “web application”. A web
application is any application that uses a Spring WebApplicationContext, defines a session
scope, or has a StandardServletEnvironment.

SpEL Expression Conditions

The @ConditionalOnExpression annotation lets configuration be included based on the result of
a SpEL expression.

46.4 Testing your Auto-configuration

An auto-configuration can be affected by many factors: user configuration (@Bean definition and
Environment customization), condition evaluation (presence of a particular library), and others.
Concretely, each test should create a well defined ApplicationContext that represents a
combination of those customizations. ApplicationContextRunner provides a great way to achieve
that.

ApplicationContextRunner is usually defined as a field of the test class to gather the base,
common configuration. The following example makes sure that UserServiceAutoConfiguration
is always invoked:

private final ApplicationContextRunner contextRunner = new ApplicationContextRunner()

 .withConfiguration(AutoConfigurations.of(UserServiceAutoConfiguration.class));

Tip

If multiple auto-configurations have to be defined, there is no need to order their declarations as
they are invoked in the exact same order as when running the application.

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/core.html#expressions

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 174

Each test can use the runner to represent a particular use case. For instance, the sample below invokes
a user configuration (UserConfiguration) and checks that the auto-configuration backs off properly.
Invoking run provides a callback context that can be used with Assert4J.

@Test

public void defaultServiceBacksOff() {

 this.contextRunner.withUserConfiguration(UserConfiguration.class)

 .run((context) -> {

 assertThat(context).hasSingleBean(UserService.class);

 assertThat(context.getBean(UserService.class)).isSameAs(

 context.getBean(UserConfiguration.class).myUserService());

 });

}

@Configuration

static class UserConfiguration {

 @Bean

 public UserService myUserService() {

 return new UserService("mine");

 }

}

It is also possible to easily customize the Environment, as shown in the following example:

@Test

public void serviceNameCanBeConfigured() {

 this.contextRunner.withPropertyValues("user.name=test123").run((context) -> {

 assertThat(context).hasSingleBean(UserService.class);

 assertThat(context.getBean(UserService.class).getName()).isEqualTo("test123");

 });

}

Simulating a Web Context

If you need to test an auto-configuration that only operates in a Servlet
or Reactive web application context, use the WebApplicationContextRunner or
ReactiveWebApplicationContextRunner respectively.

Overriding the Classpath

It is also possible to test what happens when a particular class and/or package is not present at runtime.
Spring Boot ships with a FilteredClassLoader that can easily be used by the runner. In the following
example, we assert that if UserService is not present, the auto-configuration is properly disabled:

@Test

public void serviceIsIgnoredIfLibraryIsNotPresent() {

 this.contextRunner.withClassLoader(new FilteredClassLoader(UserService.class))

 .run((context) -> assertThat(context).doesNotHaveBean("userService"));

}

46.5 Creating Your Own Starter

A full Spring Boot starter for a library may contain the following components:

• The autoconfigure module that contains the auto-configuration code.

• The starter module that provides a dependency to the autoconfigure module as well as the
library and any additional dependencies that are typically useful. In a nutshell, adding the starter
should provide everything needed to start using that library.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 175

Tip

You may combine the auto-configuration code and the dependency management in a single
module if you do not need to separate those two concerns.

Naming

You should make sure to provide a proper namespace for your starter. Do not start your module names
with spring-boot, even if you use a different Maven groupId. We may offer official support for the
thing you auto-configure in the future.

As a rule of thumb, you should name a combined module after the starter. For example, assume that
you are creating a starter for "acme" and that you name the auto-configure module acme-spring-
boot-autoconfigure and the starter acme-spring-boot-starter. If you only have one module
that combines the two, name it acme-spring-boot-starter.

Also, if your starter provides configuration keys, use a unique namespace for them. In particular, do not
include your keys in the namespaces that Spring Boot uses (such as server, management, spring,
and so on). If you use the same namespace, we may modify these namespaces in the future in ways
that break your modules.

Make sure to trigger meta-data generation so that IDE assistance is available for your keys as
well. You may want to review the generated meta-data (META-INF/spring-configuration-
metadata.json) to make sure your keys are properly documented.

autoconfigure Module

The autoconfigure module contains everything that is necessary to get started with the library. It may
also contain configuration key definitions (such as @ConfigurationProperties) and any callback
interface that can be used to further customize how the components are initialized.

Tip

You should mark the dependencies to the library as optional so that you can include the
autoconfigure module in your projects more easily. If you do it that way, the library is not
provided and, by default, Spring Boot backs off.

Starter Module

The starter is really an empty jar. Its only purpose is to provide the necessary dependencies to work
with the library. You can think of it as an opinionated view of what is required to get started.

Do not make assumptions about the project in which your starter is added. If the library you are auto-
configuring typically requires other starters, mention them as well. Providing a proper set of default
dependencies may be hard if the number of optional dependencies is high, as you should avoid including
dependencies that are unnecessary for a typical usage of the library. In other words, you should not
include optional dependencies.

Note

Either way, your starter must reference the core Spring Boot starter (spring-boot-starter)
directly or indirectly (i.e. no need to add it if your starter relies on another starter). If a project

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 176

is created with only your custom starter, Spring Boot’s core features will be honoured by the
presence of the core starter.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 177

47. What to Read Next

If you want to learn more about any of the classes discussed in this section, you can check out the Spring
Boot API documentation or you can browse the source code directly. If you have specific questions,
take a look at the how-to section.

If you are comfortable with Spring Boot’s core features, you can continue on and read about production-
ready features.

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1

Part V. Spring Boot Actuator:
Production-ready features

Spring Boot includes a number of additional features to help you monitor and manage your application
when you push it to production. You can choose to manage and monitor your application by using HTTP
endpoints or with JMX. Auditing, health, and metrics gathering can also be automatically applied to your
application.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 179

48. Enabling Production-ready Features

The spring-boot-actuator module provides all of Spring Boot’s production-ready features. The
simplest way to enable the features is to add a dependency to the spring-boot-starter-actuator
‘Starter’.

Definition of Actuator

An actuator is a manufacturing term that refers to a mechanical device for moving or controlling
something. Actuators can generate a large amount of motion from a small change.

To add the actuator to a Maven based project, add the following ‘Starter’ dependency:

<dependencies>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-actuator</artifactId>

 </dependency>

</dependencies>

For Gradle, use the following declaration:

dependencies {

 compile("org.springframework.boot:spring-boot-starter-actuator")

}

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 180

49. Endpoints
Actuator endpoints let you monitor and interact with your application. Spring Boot includes a number
of built-in endpoints and lets you add your own. For example, the health endpoint provides basic
application health information.

Each individual endpoint can be enabled or disabled. This controls whether or not the endpoint is created
and its bean exists in the application context. To be remotely accessible an endpoint also has to be
exposed via JMX or HTTP. Most applications choose HTTP, where the ID of the endpoint along with
a prefix of /actuator is mapped to a URL. For example, by default, the health endpoint is mapped
to /actuator/health.

The following technology-agnostic endpoints are available:

ID Description Enabled by default

auditevents Exposes audit events information for the current
application.

Yes

beans Displays a complete list of all the Spring beans in your
application.

Yes

conditions Shows the conditions that were evaluated on
configuration and auto-configuration classes and the
reasons why they did or did not match.

Yes

configprops Displays a collated list of all
@ConfigurationProperties.

Yes

env Exposes properties from Spring’s
ConfigurableEnvironment.

Yes

flyway Shows any Flyway database migrations that have
been applied.

Yes

health Shows application health information. Yes

httptrace Displays HTTP trace information (by default, the last
100 HTTP request-response exchanges).

Yes

info Displays arbitrary application info. Yes

loggers Shows and modifies the configuration of loggers in the
application.

Yes

liquibase Shows any Liquibase database migrations that have
been applied.

Yes

metrics Shows ‘metrics’ information for the current application. Yes

mappings Displays a collated list of all @RequestMapping
paths.

Yes

scheduledtasks Displays the scheduled tasks in your application. Yes

sessions Allows retrieval and deletion of user sessions from a
Spring Session-backed session store. Not available

Yes

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 181

ID Description Enabled by default

when using Spring Session’s support for reactive web
applications.

shutdown Lets the application be gracefully shutdown. No

threaddump Performs a thread dump. Yes

If your application is a web application (Spring MVC, Spring WebFlux, or Jersey), you can use the
following additional endpoints:

ID Description Enabled by default

heapdump Returns a GZip compressed hprof heap dump file. Yes

jolokia Exposes JMX beans over HTTP (when Jolokia is on
the classpath, not available for WebFlux).

Yes

logfile Returns the contents of the logfile (if logging.file
or logging.path properties have been set).
Supports the use of the HTTP Range header to
retrieve part of the log file’s content.

Yes

prometheus Exposes metrics in a format that can be scraped by a
Prometheus server.

Yes

To learn more about the Actuator’s endpoints and their request and response formats, please refer to
the separate API documentation (HTML or PDF).

49.1 Enabling Endpoints

By default, all endpoints except for shutdown are enabled. To configure the enablement of an
endpoint, use its management.endpoints.<id>.enabled property. The following example enables
the shutdown endpoint:

management.endpoint.shutdown.enabled=true

If you prefer endpoint enablement to be opt-in rather than opt-out, set the
management.endpoints.enabled-by-default property to false and use individual endpoint
enabled properties to opt back in. The following example enables the info endpoint and disables all
other endpoints:

management.endpoints.enabled-by-default=false

management.endpoint.info.enabled=true

Note

Disabled endpoints are removed entirely from the application context. If you want to change only
the technologies over which an endpoint is exposed, use the expose and exclude properties
instead.

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/actuator-api//html
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/actuator-api//pdf/spring-boot-actuator-web-api.pdf

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 182

49.2 Exposing Endpoints

Since Endpoints may contain sensitive information, careful consideration should be given about when
to expose them. The following table shows the default exposure for the built-in endpoints:

ID JMX Web

auditevents Yes No

beans Yes No

conditions Yes No

configprops Yes No

env Yes No

flyway Yes No

health Yes Yes

heapdump N/A No

httptrace Yes No

info Yes Yes

jolokia N/A No

logfile N/A No

loggers Yes No

liquibase Yes No

metrics Yes No

mappings Yes No

prometheus N/A No

scheduledtasks Yes No

sessions Yes No

shutdown Yes No

threaddump Yes No

To change which endpoints are exposed, use the following technology-specific expose and exclude
properties:

Property Default

management.endpoints.jmx.exclude

management.endpoints.jmx.expose *

management.endpoints.web.exclude

management.endpoints.web.expose info, health

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 183

The expose property lists the IDs of the endpoints that are exposed. The exclude property lists the
IDs of the endpoints that should not be exposed. The exclude property takes precedence over the
expose property.

For example, to stop exposing all endpoints over JMX and only expose the health endpoint, use the
following property:

management.endpoints.jmx.expose=health

* can be used to select all endpoints. For example, to expose everything over HTTP except the env
endpoint, use the following properties:

management.endpoints.web.expose=*

management.endpoints.web.exclude=env

Note

If your application is exposed publicly, we strongly recommend that you also secure your
endpoints.

Tip

If you want to implement your own strategy for when endpoints are exposed, you can register an
EndpointFilter bean.

49.3 Securing HTTP Endpoints

You should take care to secure HTTP endpoints in the same way that you would any other sensitive
URL. If Spring Security is present, endpoints are secured by default using Spring Security’s content-
negotiation strategy. If you wish to configure custom security for HTTP endpoints, for example, only allow
users with a certain role to access them, Spring Boot provides some convenient RequestMatcher
objects that can be used in combination with Spring Security.

A typical Spring Security configuration might look something like the following example:

@Configuration

public class ActuatorSecurity extends WebSecurityConfigurerAdapter {

 @Override

 protected void configure(HttpSecurity http) throws Exception {

 http.requestMatcher(EndpointRequest.toAnyEndpoint()).authorizeRequests()

 .anyRequest().hasRole("ENDPOINT_ADMIN")

 .and()

 .httpBasic();

 }

}

The preceding example uses EndpointRequest.toAnyEndpoint() to match a request to any
endpoint and then ensures that all have the ENDPOINT_ADMIN role. Several other matcher methods
are also available on EndpointRequest. See the API documentation (HTML or PDF) for details.

If you deploy applications behind a firewall, you may prefer that all your actuator
endpoints can be accessed without requiring authentication. You can do so by changing the
management.endpoints.web.expose property, as follows:

application.properties.

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/actuator-api//html
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/actuator-api//pdf/spring-boot-actuator-web-api.pdf

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 184

management.endpoints.web.expose=*

Additionally, if Spring Security is present, you would need to add custom security configuration that
allows unauthenticated access to the endpoints as shown in the following example:

@Configuration

public class ActuatorSecurity extends WebSecurityConfigurerAdapter {

 @Override

 protected void configure(HttpSecurity http) throws Exception {

 http.requestMatcher(EndpointRequest.toAnyEndpoint()).authorizeRequests()

 .anyRequest().permitAll()

 }

}

49.4 Configuring Endpoints

Endpoints automatically cache responses to read operations that do not take any parameters. To
configure the amount of time for which an endpoint will cache a response, use its cache.time-to-
live property. The following example sets the time-to-live of the beans endpoint’s cache to 10 seconds:

application.properties.

management.endpoint.beans.cache.time-to-live=10s

Note

The prefix management.endpoint.<name> is used to uniquely identify the endpoint that is
being configured.

49.5 Hypermedia for Actuator Web Endpoints

A “discovery page” is added with links to all the endpoints. The “discovery page” is available on /
actuator by default.

When a custom management context path is configured, the “discovery page” automatically moves from
/actuator to the root of the management context. For example, if the management context path is /
management, then the discovery page is available from /management. When the management context
path is set to /, the discovery page is disabled to prevent the possibility of a clash with other mappings.

49.6 Actuator Web Endpoint Paths

By default, endpoints are exposed over HTTP under the /actuator path by using the ID of the
endpoint. For example, the beans endpoint is exposed under /actuator/beans. If you want to
map endpoints to a different path, you can use the management.endpoints.web.path-mapping
property. Also, if you want change the base path, you can use management.endpoints.web.base-
path.

The following example remaps /actuator/health to /healthcheck:

application.properties.

management.endpoints.web.base-path=/

management.endpoints.web.path-mapping.health=healthcheck

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 185

49.7 CORS Support

Cross-origin resource sharing (CORS) is a W3C specification that lets you specify in a flexible way what
kind of cross-domain requests are authorized. If you use Spring MVC or Spring WebFlux, Actuator’s
web endpoints can be configured to support such scenarios.

CORS support is disabled by default and is only enabled once the
management.endpoints.web.cors.allowed-origins property has been set. The following
configuration permits GET and POST calls from the example.com domain:

management.endpoints.web.cors.allowed-origins=http://example.com

management.endpoints.web.cors.allowed-methods=GET,POST

Tip

See CorsEndpointProperties for a complete list of options.

49.8 Adding Custom Endpoints

If you add a @Bean annotated with @Endpoint, any methods annotated with @ReadOperation,
@WriteOperation, or @DeleteOperation are automatically exposed over JMX and, in a web
application, over HTTP as well.

You can also write technology-specific endpoints by using @JmxEndpoint or @WebEndpoint. These
endpoints are filtered to their respective technologies. For example, @WebEndpoint is exposed only
over HTTP and not over JMX.

Finally, you can write technology-specific extensions by using @EndpointWebExtension and
@EndpointJmxExtension. These annotations let you provide technology-specific operations to
augment an existing endpoint.

Tip

If you add endpoints as a library feature, consider adding a configuration class annotated
with @ManagementContextConfiguration to /META-INF/spring.factories under the
following key:
org.springframework.boot.actuate.autoconfigure.web.ManagementContextConfiguration.
If you do so and if your users ask for a separate management port or address, the endpoint moves
to a child context with all the other web endpoints.

49.9 Health Information

You can use health information to check the status of your running application. It is often used by
monitoring software to alert someone when a production system goes down. The information exposed
by the health endpoint depends on the management.endpoint.health.show-details property.
By default, the property’s value is false and a simple “status” message is returned. When the property’s
value is set to true, additional details from the individual health indicators are also displayed.

Health information is collected from all HealthIndicator beans defined in your
ApplicationContext. Spring Boot includes a number of auto-configured HealthIndicators, and
you can also write your own. By default, the final system state is derived by the HealthAggregator,

http://en.wikipedia.org/wiki/Cross-origin_resource_sharing
http://www.w3.org/TR/cors/
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/endpoint/web/CorsEndpointProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/HealthIndicator.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 186

which sorts the statuses from each HealthIndicator based on an ordered list of statuses. The first
status in the sorted list is used as the overall health status. If no HealthIndicator returns a status
that is known to the HealthAggregator, an UNKNOWN status is used.

Auto-configured HealthIndicators

The following HealthIndicators are auto-configured by Spring Boot when appropriate:

Name Description

CassandraHealthIndicator Checks that a Cassandra database is up.

DiskSpaceHealthIndicator Checks for low disk space.

DataSourceHealthIndicator Checks that a connection to DataSource can be
obtained.

ElasticsearchHealthIndicator Checks that an Elasticsearch cluster is up.

InfluxDbHealthIndicator Checks that an InfluxDB server is up.

JmsHealthIndicator Checks that a JMS broker is up.

MailHealthIndicator Checks that a mail server is up.

MongoHealthIndicator Checks that a Mongo database is up.

Neo4jHealthIndicator Checks that a Neo4j server is up.

RabbitHealthIndicator Checks that a Rabbit server is up.

RedisHealthIndicator Checks that a Redis server is up.

SolrHealthIndicator Checks that a Solr server is up.

Tip

You can disable them all by setting the management.health.defaults.enabled property.

Writing Custom HealthIndicators

To provide custom health information, you can register Spring beans that implement the
HealthIndicator interface. You need to provide an implementation of the health() method
and return a Health response. The Health response should include a status and can optionally
include additional details to be displayed. The following code shows a sample HealthIndicator
implementation:

import org.springframework.boot.actuate.health.Health;

import org.springframework.boot.actuate.health.HealthIndicator;

import org.springframework.stereotype.Component;

@Component

public class MyHealthIndicator implements HealthIndicator {

 @Override

 public Health health() {

 int errorCode = check(); // perform some specific health check

 if (errorCode != 0) {

 return Health.down().withDetail("Error Code", errorCode).build();

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/cassandra/CassandraHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/system/DiskSpaceHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/jdbc/DataSourceHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/elasticsearch/ElasticsearchHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/influx/InfluxDbHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/jms/JmsHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/mail/MailHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/mongo/MongoHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/neo4j/Neo4jHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/amqp/RabbitHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/redis/RedisHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/solr/SolrHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/HealthIndicator.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 187

 }

 return Health.up().build();

 }

}

Note

The identifier for a given HealthIndicator is the name of the bean without the
HealthIndicator suffix, if it exists. In the preceding example, the health information is available
in an entry named my.

In addition to Spring Boot’s predefined Status types, it is also possible for Health to return a
custom Status that represents a new system state. In such cases, a custom implementation of the
HealthAggregator interface also needs to be provided, or the default implementation has to be
configured by using the management.health.status.order configuration property.

For example, assume a new Status with code FATAL is being used in one of your HealthIndicator
implementations. To configure the severity order, add the following property to your application
properties:

management.health.status.order=FATAL, DOWN, OUT_OF_SERVICE, UNKNOWN, UP

The HTTP status code in the response reflects the overall health status (for example, UP maps to
200, while OUT_OF_SERVICE and DOWN map to 503). You might also want to register custom status
mappings if you access the health endpoint over HTTP. For example, the following property maps FATAL
to 503 (service unavailable):

management.health.status.http-mapping.FATAL=503

Tip

If you need more control, you can define your own HealthStatusHttpMapper bean.

The following table shows the default status mappings for the built-in statuses:

Status Mapping

DOWN SERVICE_UNAVAILABLE (503)

OUT_OF_SERVICE SERVICE_UNAVAILABLE (503)

UP No mapping by default, so http status is 200

UNKNOWN No mapping by default, so http status is 200

Reactive Health Indicators

For reactive applications, such as those using Spring WebFlux, ReactiveHealthIndicator provides
a non-blocking contract for getting application health. Similar to a traditional HealthIndicator,
health information is collected from all ReactiveHealthIndicator beans defined in your
ApplicationContext. Regular HealthIndicator beans that do not check against a reactive API
are included and executed on the elastic scheduler.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/Status.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/HealthAggregator.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/ReactiveHealthIndicator.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 188

To provide custom health information from a reactive API, you can register Spring beans
that implement the ReactiveHealthIndicator interface. The following code shows a sample
ReactiveHealthIndicator implementation:

@Component

public class MyReactiveHealthIndicator implements ReactiveHealthIndicator {

 @Override

 public Mono<Health> health() {

 return doHealthCheck() //perform some specific health check that returns a Mono<Health>

 .onErrorResume(ex -> Mono.just(new Health.Builder().down(ex).build())));

 }

}

Tip

To handle the error automatically, consider extending from
AbstractReactiveHealthIndicator.

Auto-configured ReactiveHealthIndicators

The following ReactiveHealthIndicators are auto-configured by Spring Boot when appropriate:

Name Description

RedisReactiveHealthIndicatorChecks that a Redis server is up.

Tip

If necessary, reactive indicators replace the regular ones. Also, any HealthIndicator that is
not handled explicitly is wrapped automatically.

49.10 Application Information

Application information exposes various information collected from all InfoContributor beans
defined in your ApplicationContext. Spring Boot includes a number of auto-configured
InfoContributor beans, and you can write your own.

Auto-configured InfoContributors

The following InfoContributor beans are auto-configured by Spring Boot, when appropriate:

Name Description

EnvironmentInfoContributorExposes any key from the Environment under the info key.

GitInfoContributorExposes git information if a git.properties file is available.

BuildInfoContributorExposes build information if a META-INF/build-info.properties file is
available.

Tip

It is possible to disable them all by setting the management.info.defaults.enabled
property.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/ReactiveHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/redis/RedisReactiveHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/info/InfoContributor.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/info/EnvironmentInfoContributor.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/info/GitInfoContributor.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/info/BuildInfoContributor.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 189

Custom Application Information

You can customize the data exposed by the info endpoint by setting info.* Spring properties. All
Environment properties under the info key are automatically exposed. For example, you could add
the following settings to your application.properties file:

info.app.encoding=UTF-8

info.app.java.source=1.8

info.app.java.target=1.8

Tip

Rather than hardcoding those values, you could also expand info properties at build time.

Assuming you use Maven, you could rewrite the preceding example as follows:

info.app.encoding=@project.build.sourceEncoding@

info.app.java.source=@java.version@

info.app.java.target=@java.version@

Git Commit Information

Another useful feature of the info endpoint is its ability to publish information about the state of your
git source code repository when the project was built. If a GitProperties bean is available, the
git.branch, git.commit.id, and git.commit.time properties are exposed.

Tip

A GitProperties bean is auto-configured if a git.properties file is available at the root of
the classpath. See "Generate git information" for more details.

If you want to display the full git information (that is, the full content of git.properties), use the
management.info.git.mode property, as follows:

management.info.git.mode=full

Build Information

If a BuildProperties bean is available, the info endpoint can also publish information about your
build. This happens if a META-INF/build-info.properties file is available in the classpath.

Tip

The Maven and Gradle plugins can both generate that file. See "Generate build information" for
more details.

Writing Custom InfoContributors

To provide custom application information, you can register Spring beans that implement the
InfoContributor interface.

The following example contributes an example entry with a single value:

import java.util.Collections;

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/info/InfoContributor.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 190

import org.springframework.boot.actuate.info.Info;

import org.springframework.boot.actuate.info.InfoContributor;

import org.springframework.stereotype.Component;

@Component

public class ExampleInfoContributor implements InfoContributor {

 @Override

 public void contribute(Info.Builder builder) {

 builder.withDetail("example",

 Collections.singletonMap("key", "value"));

 }

}

If you reach the info endpoint, you should see a response that contains the following additional entry:

{

 "example": {

 "key" : "value"

 }

}

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 191

50. Monitoring and Management over HTTP
If you are developing a web application, Spring Boot Actuator auto-configures all enabled endpoints
to be exposed over HTTP. The default convention is to use the id of the endpoint with a prefix of /
actuator as the URL path. For example, health is exposed as /actuator/health.

Tip

Actuator is supported natively with Spring MVC, Spring WebFlux, and Jersey.

50.1 Customizing the Management Endpoint Paths

Sometimes, it is useful to customize the prefix for the management endpoints. For example,
your application might already use /actuator for another purpose. You can use the
management.endpoints.web.base-path property to change the prefix for your management
endpoint, as shown in the following example:

management.endpoints.web.base-path=/manage

The preceding application.properties example changes the endpoint from /actuator/{id}
to /manage/{id} (for example, /manage/info).

Note

Unless the management port has been configured to expose endpoints by using a different HTTP
port, management.endpoints.web.base-path is relative to server.servlet.context-
path. If management.server.port is configured, management.endpoints.web.base-
path is relative to management.server.servlet.context-path.

50.2 Customizing the Management Server Port

Exposing management endpoints by using the default HTTP port is a sensible choice for cloud-based
deployments. If, however, your application runs inside your own data center, you may prefer to expose
endpoints by using a different HTTP port.

You can set the management.server.port property to change the HTTP port, as shown in the
following example:

management.server.port=8081

50.3 Configuring Management-specific SSL

When configured to use a custom port, the management server can also be configured with its own
SSL by using the various management.server.ssl.* properties. For example, doing so lets a
management server be available over HTTP while the main application uses HTTPS, as shown in the
following property settings:

server.port=8443

server.ssl.enabled=true

server.ssl.key-store=classpath:store.jks

server.ssl.key-password=secret

management.server.port=8080

management.server.ssl.enabled=false

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 192

Alternatively, both the main server and the management server can use SSL but with different key
stores, as follows:

server.port=8443

server.ssl.enabled=true

server.ssl.key-store=classpath:main.jks

server.ssl.key-password=secret

management.server.port=8080

management.server.ssl.enabled=true

management.server.ssl.key-store=classpath:management.jks

management.server.ssl.key-password=secret

50.4 Customizing the Management Server Address

You can customize the address that the management endpoints are available on by setting the
management.server.address property. Doing so can be useful if you want to listen only on an
internal or ops-facing network or to listen only for connections from localhost.

Note

You can listen on a different address only when the port differs from the main server port.

The following example application.properties does not allow remote management connections:

management.server.port=8081

management.server.address=127.0.0.1

50.5 Disabling HTTP Endpoints

If you do not want to expose endpoints over HTTP, you can set the management port to -1, as shown
in the following example:

management.server.port=-1

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 193

51. Monitoring and Management over JMX
Java Management Extensions (JMX) provide a standard mechanism to monitor and manage
applications. By default, Spring Boot exposes management endpoints as JMX MBeans under the
org.springframework.boot domain.

51.1 Customizing MBean Names

The name of the MBean is usually generated from the id of the endpoint. For example, the health
endpoint is exposed as org.springframework.boot:type=Endpoint,name=Health.

If your application contains more than one Spring ApplicationContext, you may find that names
clash. To solve this problem, you can set the management.endpoints.jmx.unique-names
property to true so that MBean names are always unique.

You can also customize the JMX domain under which endpoints are exposed. The following settings
show an example of doing so in application.properties:

management.endpoints.jmx.domain=com.example.myapp

management.endpoints.jmx.unique-names=true

51.2 Disabling JMX Endpoints

If you do not want to expose endpoints over JMX, you can set the
management.endpoints.jmx.exclude property to *, as shown in the following example:

management.endpoints.jmx.exclude=*

51.3 Using Jolokia for JMX over HTTP

Jolokia is a JMX-HTTP bridge that provides an alternative method of accessing JMX beans. To use
Jolokia, include a dependency to org.jolokia:jolokia-core. For example, with Maven, you would
add the following dependency:

<dependency>

 <groupId>org.jolokia</groupId>

 <artifactId>jolokia-core</artifactId>

 </dependency>

The Jolokia endpoint can then be exposed by adding jolokia or * to the
management.endpoints.web.expose property. You can then access it by using /actuator/
jolokia on your management HTTP server.

Customizing Jolokia

Jolokia has a number of settings that you would traditionally configure by setting servlet parameters.
With Spring Boot, you can use your application.properties file. To do so, prefix the parameter
with management.endpoint.jolokia.config., as shown in the following example:

management.endpoint.jolokia.config.debug=true

Disabling Jolokia

If you use Jolokia but do not want Spring Boot to configure it, set the
management.endpoint.jolokia.enabled property to false, as follows:

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 194

management.jolokia.enabled=false

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 195

52. Loggers

Spring Boot Actuator includes the ability to view and configure the log levels of your application at
runtime. You can view either the entire list or an individual logger’s configuration, which is made up of
both the explicitly configured logging level as well as the effective logging level given to it by the logging
framework. These levels can be one of:

• TRACE

• DEBUG

• INFO

• WARN

• ERROR

• FATAL

• OFF

• null

null indicates that there is no explicit configuration.

52.1 Configure a Logger

To configure a given logger, POST a partial entity to the resource’s URI, as shown in the following
example:

{

 "configuredLevel": "DEBUG"

}

Tip

To “reset” the specific level of the logger (and use the default configuration instead), you can pass
a value of null as the configuredLevel.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 196

53. Metrics
Spring Boot Actuator provides dependency management and auto-configuration for Micrometer, an
application metrics facade that supports numerous monitoring systems, including:

• Atlas

• Datadog

• Ganglia

• Graphite

• Influx

• Prometheus

Note

At the time of this writing, the number of monitoring systems supported by Micrometer is growing
rapidly. See the Micrometer project for more information.

Micrometer provides a separate module for each supported monitoring system. Depending on one (or
more) of these modules is sufficient to get started with Micrometer in your Spring Boot application. To
learn more about Micrometer’s capabilities, please refer to its reference documentation.

53.1 Spring MVC Metrics

Auto-configuration enables the instrumentation of requests handled by Spring MVC. When
management.metrics.web.server.auto-time-requests is true, this instrumentation occurs
for all requests. Alternatively, when set to false, you can enable instrumentation by adding @Timed
to a request-handling method.

By default, metrics are generated with the name, http.server.requests. The name can
be customized by setting the management.metrics.web.server.requests-metric-name
property.

Spring MVC Metric Tags

By default, Spring MVC-related metrics are tagged with the following information:

• The request’s method.

• The request’s URI (templated if possible).

• The simple class name of any exception that was thrown while handling the request.

• The response’s status.

To customize the tags, provide a @Bean that implements WebMvcTagsProvider.

53.2 WebFlux Metrics

Auto-configuration enables the instrumentation of all requests handled by WebFlux controllers. You can
also use a helper class, RouterFunctionMetrics, to instrument applications that use WebFlux’s
functional programming model.

https://micrometer.io
https://github.com/Netflix/atlas
https://www.datadoghq.com
http://ganglia.sourceforge.net
https://graphiteapp.org
https://www.influxdata.com
https://prometheus.io
https://micrometer.io
https://micrometer.io/docs

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 197

By default, metrics are generated with the name http.server.requests. You can customize the
name by setting the management.metrics.web.server.requests-metric-name property.

WebFlux Metrics Tags

By default, WebFlux-related metrics for the annotation-based programming model are tagged with the
following information:

• The request’s method.

• The request’s URI (templated if possible).

• The simple class name of any exception that was thrown while handling the request.

• The response’s status.

To customize the tags, provide a @Bean that implements WebFluxTagsProvider.

By default, metrics for the functional programming model are tagged with the following information:

• The request’s method

• The request’s URI (templated if possible).

• The response’s status.

To customize the tags, use the defaultTags method on your RouterFunctionMetrics instance.

53.3 RestTemplate Metrics

The instrumentation of any RestTemplate created using the auto-configured
RestTemplateBuilder is enabled. It is also possible to apply MetricsRestTemplateCustomizer
manually.

By default, metrics are generated with the name, http.client.requests. The name can
be customized by setting the management.metrics.web.client.requests-metric-name
property.

RestTemplate Metric Tags

By default, metrics generated by an instrumented RestTemplate are tagged with the following
information:

• The request’s method.

• The request’s URI (templated if possible).

• The response’s status.

• The request URI’s host.

53.4 Cache metrics

Auto-configuration will enable the instrumentation of all available Caches on startup with a metric named
cache. The prefix can be customized by using the management.metrics.cache.metric-name
property. Cache instrumentation is specific to each cache library, refer to the micrometer documentation
for more details.

https://micrometer.io/docs

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 198

The following cache libraries are supported:

• Caffeine

• EhCache 2

• Hazelcast

• Any compliant JCache (JSR-107) implementation

Metrics will also be tagged by the name of the CacheManager computed based on the bean name.

Note

Only caches that are available on startup are bound to the registry. For caches created
on-the-fly or programmatically after the startup phase, an explicit registration is required. A
CacheMetricsRegistrar bean is made available to make that process easier.

53.5 DataSource Metrics

Auto-configuration enables the instrumentation of all available DataSource objects with a metric
named data.source. Data source instrumentation results in gauges representing the currently active,
maximum allowed, and minimum allowed connections in the pool. Each of these gauges has a
name that is prefixed by data.source by default. The prefix can be customized by setting the
management.metrics.jdbc.metric-name property.

Metrics are also tagged by the name of the DataSource computed based on the bean name.

53.6 RabbitMQ metrics

Auto-configuration will enable the instrumentation of all available RabbitMQ connection
factories with a metric named rabbitmq. The prefix can be customized by using the
management.metrics.rabbitmq.metric-name property.

53.7 Spring Integration Metrics

Auto-configuration enables binding of a number of Spring Integration-related metrics:

Table 53.1. General metrics

Metric Description

spring.integration.channelNames Number of Spring Integration channels

spring.integration.handlerNames Number of Spring Integration handlers

spring.integration.sourceNames Number of Spring Integration sources

Table 53.2. Channel metrics

Metric Description

spring.integration.channel.receives Number of receives

spring.integration.channel.sendErrors Number of failed sends

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 199

Metric Description

spring.integration.channel.sends Number of successful sends

Table 53.3. Handler metrics

Metric Description

spring.integration.handler.duration.maxMaximum handler duration in milliseconds

spring.integration.handler.duration.minMinimum handler duration in milliseconds

spring.integration.handler.duration.meanMean handler duration in milliseconds

spring.integration.handler.activeCountNumber of active handlers

Table 53.4. Source metrics

Metric Description

spring.integration.source.messages Number of successful source calls

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 200

54. Auditing

Once Spring Security is in play, Spring Boot Actuator has a flexible audit framework that publishes
events (by default, “authentication success”, “failure” and “access denied” exceptions). This feature
can be very useful for reporting and for implementing a lock-out policy based on authentication
failures. To customize published security events, you can provide your own implementations of
AbstractAuthenticationAuditListener and AbstractAuthorizationAuditListener.

You can also use the audit services for your own business events. To do so, either inject the
existing AuditEventRepository into your own components and use that directly or publish
an AuditApplicationEvent with the Spring ApplicationEventPublisher (by implementing
ApplicationEventPublisherAware).

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 201

55. HTTP Tracing

Tracing is automatically enabled for all HTTP requests. You can view the httptrace endpoint and
obtain basic information about the last 100 request-response exchanges.

55.1 Custom HTTP tracing

To customize the items that are included in each trace, use the management.httptrace.include
configuration property.

By default, an InMemoryHttpTraceRepository that stores traces for the last 100 request-
response exchanges is used. If you need to expand the capacity, you can define your own
instance of the InMemoryHttpTraceRepository bean. You can also create your own alternative
HttpTraceRepository implementation.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 202

56. Process Monitoring

In the spring-boot module, you can find two classes to create files that are often useful for process
monitoring:

• ApplicationPidFileWriter creates a file containing the application PID (by default, in the
application directory with a file name of application.pid).

• EmbeddedServerPortFileWriter creates a file (or files) containing the ports of the embedded
server (by default, in the application directory with a file name of application.port).

By default, these writers are not activated, but you can enable:

• By Extending Configuration

• Section 56.2, “Programmatically”

56.1 Extending Configuration

In the META-INF/spring.factories file, you can activate the listener(s) that writes a PID file, as
shown in the following example:

org.springframework.context.ApplicationListener=\

org.springframework.boot.system.ApplicationPidFileWriter,\

org.springframework.boot.system.EmbeddedServerPortFileWriter

56.2 Programmatically

You can also activate a listener by invoking the SpringApplication.addListeners(…) method
and passing the appropriate Writer object. This method also lets you customize the file name and
path in the Writer constructor.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 203

57. Cloud Foundry Support

Spring Boot’s actuator module includes additional support that is activated when you deploy to a
compatible Cloud Foundry instance. The /cloudfoundryapplication path provides an alternative
secured route to all @Endpoint beans.

The extended support lets Cloud Foundry management UIs (such as the web application that you can
use to view deployed applications) be augmented with Spring Boot actuator information. For example,
an application status page may include full health information instead of the typical “running” or “stopped”
status.

Note

The /cloudfoundryapplication path is not directly accessible to regular users. In order to
use the endpoint, a valid UAA token must be passed with the request.

57.1 Disabling Extended Cloud Foundry Actuator Support

If you want to fully disable the /cloudfoundryapplication endpoints, you can add the following
setting to your application.properties file:

application.properties.

management.cloudfoundry.enabled=false

57.2 Cloud Foundry Self-signed Certificates

By default, the security verification for /cloudfoundryapplication endpoints makes SSL calls to
various Cloud Foundry services. If your Cloud Foundry UAA or Cloud Controller services use self-signed
certificates, you need to set the following property:

application.properties.

management.cloudfoundry.skip-ssl-validation=true

57.3 Custom Security Configuration

If you define custom security configuration and you want extended Cloud Foundry actuator support, you
should ensure that /cloudfoundryapplication/** paths are open. Without a direct open route,
your Cloud Foundry application manager is not able to obtain endpoint data.

For Spring Security, you typically include something like mvcMatchers("/

cloudfoundryapplication/**").permitAll() in your configuration, as shown in the following
example:

@Override

protected void configure(HttpSecurity http) throws Exception {

 http

 .authorizeRequests()

 .mvcMatchers("/cloudfoundryapplication/**")

 .permitAll()

 .mvcMatchers("/mypath")

 .hasAnyRole("SUPERUSER")

 .anyRequest()

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 204

 .authenticated().and()

 .httpBasic();

}

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 205

58. What to Read Next

If you want to explore some of the concepts discussed in this chapter, you can take a look at the actuator
sample applications. You also might want to read about graphing tools such as Graphite.

Otherwise, you can continue on, to read about ‘deployment options’ or jump ahead for some in-depth
information about Spring Boot’s build tool plugins.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-samples
http://graphite.wikidot.com/

Part VI. Deploying
Spring Boot Applications

Spring Boot’s flexible packaging options provide a great deal of choice when it comes to deploying your
application. You can deploy Spring Boot applications to a variety of cloud platforms, to container images
(such as Docker), or to virtual/real machines.

This section covers some of the more common deployment scenarios.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 207

59. Deploying to the Cloud

Spring Boot’s executable jars are ready-made for most popular cloud PaaS (Platform-as-a-Service)
providers. These providers tend to require that you “bring your own container”. They manage application
processes (not Java applications specifically), so they need an intermediary layer that adapts your
application to the cloud’s notion of a running process.

Two popular cloud providers, Heroku and Cloud Foundry, employ a “buildpack” approach. The buildpack
wraps your deployed code in whatever is needed to start your application. It might be a JDK and a
call to java, an embedded web server, or a full-fledged application server. A buildpack is pluggable,
but ideally you should be able to get by with as few customizations to it as possible. This reduces the
footprint of functionality that is not under your control. It minimizes divergence between development
and production environments.

Ideally, your application, like a Spring Boot executable jar, has everything that it needs to run packaged
within it.

In this section, we look at what it takes to get the simple application that we developed in the “Getting
Started” section up and running in the Cloud.

59.1 Cloud Foundry

Cloud Foundry provides default buildpacks that come into play if no other buildpack is specified. The
Cloud Foundry Java buildpack has excellent support for Spring applications, including Spring Boot. You
can deploy stand-alone executable jar applications as well as traditional .war packaged applications.

Once you have built your application (by using, for example, mvn clean package) and have installed
the cf command line tool, deploy your application by using the cf push command, substituting the
path to your compiled .jar. Be sure to have logged in with your cf command line client before pushing
an application. The following line shows using the cf push command to deploy an application:

$ cf push acloudyspringtime -p target/demo-0.0.1-SNAPSHOT.jar

Note

In the preceding example, we substitute acloudyspringtime for whatever value you give cf
as the name of your application.

See the cf push documentation for more options. If there is a Cloud Foundry manifest.yml file
present in the same directory, it is considered.

At this point, cf starts uploading your application, producing output similar to the following example:

Uploading acloudyspringtime... OK

Preparing to start acloudyspringtime... OK

-----> Downloaded app package (8.9M)

-----> Java Buildpack Version: v3.12 (offline) | https://github.com/cloudfoundry/java-

buildpack.git#6f25b7e

-----> Downloading Open Jdk JRE 1.8.0_121 from https://java-buildpack.cloudfoundry.org/openjdk/trusty/

x86_64/openjdk-1.8.0_121.tar.gz (found in cache)

 Expanding Open Jdk JRE to .java-buildpack/open_jdk_jre (1.6s)

-----> Downloading Open JDK Like Memory Calculator 2.0.2_RELEASE from https://java-

buildpack.cloudfoundry.org/memory-calculator/trusty/x86_64/memory-calculator-2.0.2_RELEASE.tar.gz (found

 in cache)

 Memory Settings: -Xss349K -Xmx681574K -XX:MaxMetaspaceSize=104857K -Xms681574K -

XX:MetaspaceSize=104857K

https://github.com/cloudfoundry/java-buildpack
http://docs.cloudfoundry.org/devguide/installcf/install-go-cli.html
http://docs.cloudfoundry.org/devguide/installcf/install-go-cli.html
http://docs.cloudfoundry.org/devguide/installcf/whats-new-v6.html#login
http://docs.cloudfoundry.org/devguide/installcf/whats-new-v6.html#push
http://docs.cloudfoundry.org/devguide/deploy-apps/manifest.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 208

-----> Downloading Container Certificate Trust Store 1.0.0_RELEASE from https://java-

buildpack.cloudfoundry.org/container-certificate-trust-store/container-certificate-trust-

store-1.0.0_RELEASE.jar (found in cache)

 Adding certificates to .java-buildpack/container_certificate_trust_store/truststore.jks (0.6s)

-----> Downloading Spring Auto Reconfiguration 1.10.0_RELEASE from https://java-

buildpack.cloudfoundry.org/auto-reconfiguration/auto-reconfiguration-1.10.0_RELEASE.jar (found in cache)

Checking status of app 'acloudyspringtime'...

 0 of 1 instances running (1 starting)

 ...

 0 of 1 instances running (1 starting)

 ...

 0 of 1 instances running (1 starting)

 ...

 1 of 1 instances running (1 running)

App started

Congratulations! The application is now live!

Once your application is live, you can verify the status of the deployed application by using the cf apps
command, as shown in the following example:

$ cf apps

Getting applications in ...

OK

name requested state instances memory disk urls

...

acloudyspringtime started 1/1 512M 1G acloudyspringtime.cfapps.io

...

Once Cloud Foundry acknowledges that your application has been deployed, you should be able
to find the application at the URI given. In the preceding example, you could find it at http://
acloudyspringtime.cfapps.io/.

Binding to Services

By default, metadata about the running application as well as service connection information is exposed
to the application as environment variables (for example: $VCAP_SERVICES). This architecture decision
is due to Cloud Foundry’s polyglot (any language and platform can be supported as a buildpack) nature.
Process-scoped environment variables are language agnostic.

Environment variables do not always make for the easiest API, so Spring Boot automatically extracts
them and flattens the data into properties that can be accessed through Spring’s Environment
abstraction, as shown in the following example:

@Component

class MyBean implements EnvironmentAware {

 private String instanceId;

 @Override

 public void setEnvironment(Environment environment) {

 this.instanceId = environment.getProperty("vcap.application.instance_id");

 }

 // ...

}

All Cloud Foundry properties are prefixed with vcap. You can use vcap properties to access application
information (such as the public URL of the application) and service information (such as database
credentials). See the ‘CloudFoundryVcapEnvironmentPostProcessor’ Javadoc for complete details.

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/cloud/CloudFoundryVcapEnvironmentPostProcessor.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 209

Tip

The Spring Cloud Connectors project is a better fit for tasks such as configuring a DataSource.
Spring Boot includes auto-configuration support and a spring-boot-starter-cloud-
connectors starter.

59.2 Heroku

Heroku is another popular PaaS platform. To customize Heroku builds, you provide a Procfile,
which provides the incantation required to deploy an application. Heroku assigns a port for the Java
application to use and then ensures that routing to the external URI works.

You must configure your application to listen on the correct port. The following example shows the
Procfile for our starter REST application:

web: java -Dserver.port=$PORT -jar target/demo-0.0.1-SNAPSHOT.jar

Spring Boot makes -D arguments available as properties accessible from a Spring Environment
instance. The server.port configuration property is fed to the embedded Tomcat, Jetty, or Undertow
instance, which then uses the port when it starts up. The $PORT environment variable is assigned to
us by the Heroku PaaS.

This should be everything you need. The most common deployment workflow for Heroku deployments
is to git push the code to production, as shown in the following example:

$ git push heroku master

Initializing repository, done.

Counting objects: 95, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (78/78), done.

Writing objects: 100% (95/95), 8.66 MiB | 606.00 KiB/s, done.

Total 95 (delta 31), reused 0 (delta 0)

-----> Java app detected

-----> Installing OpenJDK 1.8... done

-----> Installing Maven 3.3.1... done

-----> Installing settings.xml... done

-----> Executing: mvn -B -DskipTests=true clean install

 [INFO] Scanning for projects...

 Downloading: http://repo.spring.io/...

 Downloaded: http://repo.spring.io/... (818 B at 1.8 KB/sec)

 Downloaded: http://s3pository.heroku.com/jvm/... (152 KB at 595.3 KB/sec)

 [INFO] Installing /tmp/build_0c35a5d2-a067-4abc-a232-14b1fb7a8229/target/...

 [INFO] Installing /tmp/build_0c35a5d2-a067-4abc-a232-14b1fb7a8229/pom.xml ...

 [INFO] --

 [INFO] BUILD SUCCESS

 [INFO] --

 [INFO] Total time: 59.358s

 [INFO] Finished at: Fri Mar 07 07:28:25 UTC 2014

 [INFO] Final Memory: 20M/493M

 [INFO] --

-----> Discovering process types

 Procfile declares types -> web

-----> Compressing... done, 70.4MB

-----> Launching... done, v6

 http://agile-sierra-1405.herokuapp.com/ deployed to Heroku

To git@heroku.com:agile-sierra-1405.git

http://cloud.spring.io/spring-cloud-connectors/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 210

 * [new branch] master -> master

Your application should now be up and running on Heroku.

59.3 OpenShift

OpenShift is the Red Hat public (and enterprise) extension of the Kubernetes container orchestration
platform. Similarly to Kubernetes, OpenShift has many options for installing Spring Boot based
applications.

OpenShift has many resources describing how to deploy Spring Boot applications, including:

• Using the S2I builder

• Architecture guide

• Running as a traditional web application on Wildfly

• OpenShift Commons Briefing

59.4 Amazon Web Services (AWS)

Amazon Web Services offers multiple ways to install Spring Boot-based applications, either as traditional
web applications (war) or as executable jar files with an embedded web server. The options include:

• AWS Elastic Beanstalk

• AWS Code Deploy

• AWS OPS Works

• AWS Cloud Formation

• AWS Container Registry

Each has different features and pricing models. In this document, we describe only the simplest option:
AWS Elastic Beanstalk.

AWS Elastic Beanstalk

As described in the official Elastic Beanstalk Java guide, there are two main options to deploy a Java
application. You can either use the “Tomcat Platform” or the “Java SE platform”.

Using the Tomcat Platform

This option applies to Spring Boot projects that produce a war file. No special configuration is required.
You need only follow the official guide.

Using the Java SE Platform

This option applies to Spring Boot projects that produce a jar file and run an embedded web container.
Elastic Beanstalk environments run an nginx instance on port 80 to proxy the actual application, running
on port 5000. To configure it, add the following line to your application.properties file:

https://www.openshift.com/
https://blog.openshift.com/using-openshift-enterprise-grade-spring-boot-deployments/
https://access.redhat.com/documentation/en-us/reference_architectures/2017/html-single/spring_boot_microservices_on_red_hat_openshift_container_platform_3/
https://blog.openshift.com/using-spring-boot-on-openshift/
https://blog.openshift.com/openshift-commons-briefing-96-cloud-native-applications-spring-rhoar/
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_Java.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 211

server.port=5000

Upload binaries instead of sources

By default, Elastic Beanstalk uploads sources and compiles them in AWS. However, it is
best to upload the binaries instead. To do so, add lines similar to the following to your
.elasticbeanstalk/config.yml file:

deploy:

 artifact: target/demo-0.0.1-SNAPSHOT.jar

Reduce costs by setting the environment type

By default an Elastic Beanstalk environment is load balanced. The load balancer has a significant
cost. To avoid that cost, set the environment type to “Single instance”, as described in the Amazon
documentation. You can also create single instance environments by using the CLI and the
following command:

eb create -s

Summary

This is one of the easiest ways to get to AWS, but there are more things to cover, such as how to integrate
Elastic Beanstalk into any CI / CD tool, use the Elastic Beanstalk Maven plugin instead of the CLI,
and others. There is a exampledriven.wordpress.com/2017/01/09/spring-boot-aws-elastic-beanstalk-
example/ [blog post] covering these topics more in detail.

59.5 Boxfuse and Amazon Web Services

Boxfuse works by turning your Spring Boot executable jar or war into a minimal VM image that can be
deployed unchanged either on VirtualBox or on AWS. Boxfuse comes with deep integration for Spring
Boot and uses the information from your Spring Boot configuration file to automatically configure ports
and health check URLs. Boxfuse leverages this information both for the images it produces as well as
for all the resources it provisions (instances, security groups, elastic load balancers, and so on).

Once you have created a Boxfuse account, connected it to your AWS account, installed the latest version
of the Boxfuse Client, and ensured that the application has been built by Maven or Gradle (by using, for
example, mvn clean package), you can deploy your Spring Boot application to AWS with a command
similar to the following:

$ boxfuse run myapp-1.0.jar -env=prod

See the boxfuse run documentation for more options. If there is a boxfuse.com/docs/commandline/
#configuration [boxfuse.conf] file present in the current directory, it is considered.

Tip

By default, Boxfuse activates a Spring profile named boxfuse on startup. If your executable jar
or war contains an boxfuse.com/docs/payloads/springboot.html#configuration [application-
boxfuse.properties] file, Boxfuse bases its configuration on the properties it contains.

At this point, boxfuse creates an image for your application, uploads it, and configures and starts the
necessary resources on AWS, resulting in output similar to the following example:

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-create-wizard.html#environments-create-wizard-capacity
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-create-wizard.html#environments-create-wizard-capacity
https://exampledriven.wordpress.com/2017/01/09/spring-boot-aws-elastic-beanstalk-example/
https://exampledriven.wordpress.com/2017/01/09/spring-boot-aws-elastic-beanstalk-example/
https://boxfuse.com/
https://console.boxfuse.com
https://boxfuse.com/docs/commandline/run.html
https://boxfuse.com/docs/commandline/#configuration
https://boxfuse.com/docs/commandline/#configuration
https://boxfuse.com/docs/payloads/springboot.html#configuration

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 212

Fusing Image for myapp-1.0.jar ...

Image fused in 00:06.838s (53937 K) -> axelfontaine/myapp:1.0

Creating axelfontaine/myapp ...

Pushing axelfontaine/myapp:1.0 ...

Verifying axelfontaine/myapp:1.0 ...

Creating Elastic IP ...

Mapping myapp-axelfontaine.boxfuse.io to 52.28.233.167 ...

Waiting for AWS to create an AMI for axelfontaine/myapp:1.0 in eu-central-1 (this may take up to 50

 seconds) ...

AMI created in 00:23.557s -> ami-d23f38cf

Creating security group boxfuse-sg_axelfontaine/myapp:1.0 ...

Launching t2.micro instance of axelfontaine/myapp:1.0 (ami-d23f38cf) in eu-central-1 ...

Instance launched in 00:30.306s -> i-92ef9f53

Waiting for AWS to boot Instance i-92ef9f53 and Payload to start at http://52.28.235.61/ ...

Payload started in 00:29.266s -> http://52.28.235.61/

Remapping Elastic IP 52.28.233.167 to i-92ef9f53 ...

Waiting 15s for AWS to complete Elastic IP Zero Downtime transition ...

Deployment completed successfully. axelfontaine/myapp:1.0 is up and running at http://myapp-

axelfontaine.boxfuse.io/

Your application should now be up and running on AWS.

See the blog post on deploying Spring Boot apps on EC2 as well as the documentation for the Boxfuse
Spring Boot integration to get started with a Maven build to run the app.

59.6 Google Cloud

Google Cloud has several options that can be used to launch Spring Boot applications. The easiest to
get started with is probably App Engine, but you could also find ways to run Spring Boot in a container
with Container Engine or on a virtual machine with Compute Engine.

To run in App Engine, you can create a project in the UI first, which sets up a unique identifier for you
and also sets up HTTP routes. Add a Java app to the project and leave it empty and then use the Google
Cloud SDK to push your Spring Boot app into that slot from the command line or CI build.

App Engine needs you to create an app.yaml file to describe the resources your app requires. Normally,
you put this file in src/main/appengine, and it should resemble the following file:

service: default

runtime: java

env: flex

runtime_config:

 jdk: openjdk8

handlers:

- url: /.*

 script: this field is required, but ignored

manual_scaling:

 instances: 1

health_check:

 enable_health_check: False

env_variables:

 ENCRYPT_KEY: your_encryption_key_here

You can deploy the app (for example, with a Maven plugin) by adding the project ID to the build
configuration, as shown in the following example:

<plugin>

https://boxfuse.com/blog/spring-boot-ec2.html
https://boxfuse.com/docs/payloads/springboot.html
https://boxfuse.com/docs/payloads/springboot.html
https://cloud.google.com/sdk/downloads
https://cloud.google.com/sdk/downloads

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 213

 <groupId>com.google.cloud.tools</groupId>

 <artifactId>appengine-maven-plugin</artifactId>

 <version>1.3.0</version>

 <configuration>

 <project>myproject</project>

 </configuration>

</plugin>

Then deploy with mvn appengine:deploy (if you need to authenticate first, the build fails).

Note

Google App Engine Classic is tied to the Servlet 2.5 API, so you cannot deploy a Spring Application
there without some modifications. See the Servlet 2.5 section of this guide.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 214

60. Installing Spring Boot Applications

In additional to running Spring Boot applications by using java -jar, it is also possible to make
fully executable applications for Unix systems. A fully executable jar can be executed like any other
executable binary or it can be registered with init.d or systemd. This makes it very easy to install
and manage Spring Boot applications in common production environments.

Caution

Fully executable jars work by embedding an extra script at the front of the file. Currently, some tools
do not accept this format, so you may not always be able to use this technique. For example, jar
-xf may silently fail to extract a jar or war that has been made fully executable. It is recommended
that you make your jar or war fully executable only if you intend to execute it directly, rather than
running it with java -jar or deploying it to a servlet container.

To create a ‘fully executable’ jar with Maven, use the following plugin configuration:

<plugin>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-maven-plugin</artifactId>

 <configuration>

 <executable>true</executable>

 </configuration>

</plugin>

The following example shows the equivalent Gradle configuration:

bootJar {

 launchScript()

}

You can then run your application by typing ./my-application.jar (where my-application is
the name of your artifact). The directory containing the jar is used as your application’s working directory.

60.1 Supported Operating Systems

The default script supports most Linux distributions and is tested on CentOS and Ubuntu. Other
platforms, such as OS X and FreeBSD, require the use of a custom embeddedLaunchScript.

60.2 Unix/Linux Services

Spring Boot application can be easily started as Unix/Linux services by using either init.d or
systemd.

Installation as an init.d Service (System V)

If you configured Spring Boot’s Maven or Gradle plugin to generate a fully executable jar, and you do not
use a custom embeddedLaunchScript, your application can be used as an init.d service. To do
so, symlink the jar to init.d to support the standard start, stop, restart, and status commands.

The script supports the following features:

• Starts the services as the user that owns the jar file

• Tracks the application’s PID by using /var/run/<appname>/<appname>.pid

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 215

• Writes console logs to /var/log/<appname>.log

Assuming that you have a Spring Boot application installed in /var/myapp, to install a Spring Boot
application as an init.d service, create a symlink, as follows:

$ sudo ln -s /var/myapp/myapp.jar /etc/init.d/myapp

Once installed, you can start and stop the service in the usual way. For example, on a Debian-based
system, you could start it with the following command:

$ service myapp start

Tip

If your application fails to start, check the log file written to /var/log/<appname>.log for errors.

You can also flag the application to start automatically by using your standard operating system tools.
For example, on Debian, you could use the following command:

$ update-rc.d myapp defaults <priority>

Securing an init.d Service

Note

The following is a set of guidelines on how to secure a Spring Boot application that runs as an
init.d service. It is not intended to be an exhaustive list of everything that should be done to harden
an application and the environment in which it runs.

When executed as root, as is the case when root is being used to start an init.d service, the default
executable script runs the application as the user who owns the jar file. You should never run a Spring
Boot application as root, so your application’s jar file should never be owned by root. Instead, create
a specific user to run your application and use chown to make it the owner of the jar file, as shown in
the following example:

$ chown bootapp:bootapp your-app.jar

In this case, the default executable script runs the application as the bootapp user.

Tip

To reduce the chances of the application’s user account being compromised, you should consider
preventing it from using a login shell. For example, you can set the account’s shell to /usr/
sbin/nologin.

You should also take steps to prevent the modification of your application’s jar file. Firstly, configure
its permissions so that it cannot be written and can only be read or executed by its owner, as shown
in the following example:

$ chmod 500 your-app.jar

Second, you should also take steps to limit the damage if your application or the account that’s running
it is compromised. If an attacker does gain access, they could make the jar file writable and change its

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 216

contents. One way to protect against this is to make it immutable by using chattr, as shown in the
following example:

$ sudo chattr +i your-app.jar

This will prevent any user, including root, from modifying the jar.

If root is used to control the application’s service and you use a .conf file to customize its startup,
the .conf file is read and evaluated by the root user. It should be secured accordingly. Use chmod
so that the file can only be read by the owner and use chown to make root the owner, as shown in
the following example:

$ chmod 400 your-app.conf

$ sudo chown root:root your-app.conf

Installation as a systemd Service

systemd is the successor of the System V init system and is now being used by many modern Linux
distributions. Although you can continue to use init.d scripts with systemd, it is also possible to
launch Spring Boot applications by using systemd ‘service’ scripts.

Assuming that you have a Spring Boot application installed in /var/myapp, to install a Spring Boot
application as a systemd service, create a script named myapp.service and place it in /etc/
systemd/system directory. The following script offers an example:

[Unit]

Description=myapp

After=syslog.target

[Service]

User=myapp

ExecStart=/var/myapp/myapp.jar

SuccessExitStatus=143

[Install]

WantedBy=multi-user.target

Important

Remember to change the Description, User, and ExecStart fields for your application.

Note

The ExecStart field does not declare the script action command, which means that the run
command is used by default.

Note that, unlike when running as an init.d service, the user that runs the application, the PID file,
and the console log file are managed by systemd itself and therefore must be configured by using
appropriate fields in the ‘service’ script. Consult the service unit configuration man page for more details.

To flag the application to start automatically on system boot, use the following command:

$ systemctl enable myapp.service

Refer to man systemctl for more details.

http://www.freedesktop.org/software/systemd/man/systemd.service.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 217

Customizing the Startup Script

The default embedded startup script written by the Maven or Gradle plugin can be customized
in a number of ways. For most people, using the default script along with a few customizations
is usually enough. If you find you cannot customize something that you need to, use the
embeddedLaunchScript option to write your own file entirely.

Customizing the Start Script when It Is Written

It often makes sense to customize elements of the start script as it is written into the jar file. For example,
init.d scripts can provide a “description”. Since you know the description up front (and it need not
change), you may as well provide it when the jar is generated.

To customize written elements, use the embeddedLaunchScriptProperties option of the Spring
Boot Maven or Gradle plugins.

The following property substitutions are supported with the default script:

Name Description

mode The script mode. Defaults to auto.

initInfoProvidesThe Provides section of “INIT INFO”. Defaults to spring-boot-application for
Gradle and to ${project.artifactId} for Maven.

initInfoRequiredStartThe Required-Start section of “INIT INFO”. Defaults to $remote_fs $syslog
$network.

initInfoRequiredStopThe Required-Stop section of “INIT INFO”. Defaults to $remote_fs $syslog
$network.

initInfoDefaultStartThe Default-Start section of “INIT INFO”. Defaults to 2 3 4 5.

initInfoDefaultStopThe Default-Stop section of “INIT INFO”. Defaults to 0 1 6.

initInfoShortDescriptionThe Short-Description section of “INIT INFO”. Defaults to Spring Boot
Application for Gradle and to ${project.name} for Maven.

initInfoDescriptionThe Description section of “INIT INFO”. Defaults to Spring Boot
Application for Gradle and to ${project.description} (falling back to
${project.name}) for Maven.

initInfoChkconfigThe chkconfig section of “INIT INFO”. Defaults to 2345 99 01.

confFolder The default value for CONF_FOLDER. Defaults to the folder containing the jar.

inlinedConfScriptReference to a file script that should be inlined in the default launch script. This can
be used to set environmental variables such as JAVA_OPTS before any external
config files are loaded.

logFolder The default value for LOG_FOLDER. Only valid for an init.d service.

logFilenameThe default value for LOG_FILENAME. Only valid for an init.d service.

pidFolder The default value for PID_FOLDER. Only valid for an init.d service.

pidFilenameThe default value for the name of the PID file in PID_FOLDER. Only valid for an
init.d service.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 218

Name Description

useStartStopDaemonWhether the start-stop-daemon command, when it’s available, should be used to
control the process. Defaults to true.

stopWaitTimeThe default value for STOP_WAIT_TIME. Only valid for an init.d service. Defaults
to 60 seconds.

Customizing a Script When It Runs

For items of the script that need to be customized after the jar has been written, you can use environment
variables or a config file.

The following environment properties are supported with the default script:

Variable Description

MODE The “mode” of operation. The default depends on the way the jar was built but
is usually auto (meaning it tries to guess if it is an init script by checking if it is a
symlink in a directory called init.d). You can explicitly set it to service so that the
stop|start|status|restart commands work or to run if you want to run the
script in the foreground.

USE_START_STOP_DAEMONWhether the start-stop-daemon command, when it’s available, should be used to
control the process. Defaults to true.

PID_FOLDER The root name of the pid folder (/var/run by default).

LOG_FOLDER The name of the folder in which to put log files (/var/log by default).

CONF_FOLDERThe name of the folder from which to read .conf files (same folder as jar-file by
default).

LOG_FILENAMEThe name of the log file in the LOG_FOLDER (<appname>.log by default).

APP_NAME The name of the app. If the jar is run from a symlink, the script guesses the app
name. If it is not a symlink or you want to explicitly set the app name, this can be
useful.

RUN_ARGS The arguments to pass to the program (the Spring Boot app).

JAVA_HOME The location of the java executable is discovered by using the PATH by default, but
you can set it explicitly if there is an executable file at $JAVA_HOME/bin/java.

JAVA_OPTS Options that are passed to the JVM when it is launched.

JARFILE The explicit location of the jar file, in case the script is being used to launch a jar that
it is not actually embedded.

DEBUG If not empty, sets the -x flag on the shell process, making it easy to see the logic in
the script.

STOP_WAIT_TIMEThe time in seconds to wait when stopping the application before forcing a shutdown
(60 by default).

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 219

Note

The PID_FOLDER, LOG_FOLDER, and LOG_FILENAME variables are only valid for an init.d
service. For systemd, the equivalent customizations are made by using the ‘service’ script. See
the service unit configuration man page for more details.

With the exception of JARFILE and APP_NAME, the settings listed in the preceding section can be
configured by using a .conf file. The file is expected to be next to the jar file and have the same name
but suffixed with .conf rather than .jar. For example, a jar named /var/myapp/myapp.jar uses
the configuration file named /var/myapp/myapp.conf, as shown in the following example:

myapp.conf.

JAVA_OPTS=-Xmx1024M

LOG_FOLDER=/custom/log/folder

Tip

If you do not like having the config file next to the jar file, you can set a CONF_FOLDER environment
variable to customize the location of the config file.

To learn about securing this file appropriately, see the guidelines for securing an init.d service.

60.3 Microsoft Windows Services

A Spring Boot application can be started as a Windows service by using winsw.

A (separately maintained sample) describes step-by-step how you can create a Windows service for
your Spring Boot application.

http://www.freedesktop.org/software/systemd/man/systemd.service.html
https://github.com/kohsuke/winsw
https://github.com/snicoll-scratches/spring-boot-daemon

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 220

61. What to Read Next

Check out the Cloud Foundry, Heroku, OpenShift, and Boxfuse web sites for more information about
the kinds of features that a PaaS can offer. These are just four of the most popular Java PaaS providers.
Since Spring Boot is so amenable to cloud-based deployment, you can freely consider other providers
as well.

The next section goes on to cover the Spring Boot CLI, or you can jump ahead to read about build
tool plugins.

http://www.cloudfoundry.com/
https://www.heroku.com/
https://www.openshift.com
https://boxfuse.com

Part VII. Spring Boot CLI
The Spring Boot CLI is a command line tool that you can use if you want to quickly develop a Spring
application. It lets you run Groovy scripts, which means that you have a familiar Java-like syntax without
so much boilerplate code. You can also bootstrap a new project or write your own command for it.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 222

62. Installing the CLI

The Spring Boot CLI (Command-Line Interface) can be installed manually by using SDKMAN! (the SDK
Manager) or by using Homebrew or MacPorts if you are an OSX user. See Section 10.2, “Installing the
Spring Boot CLI” in the “Getting started” section for comprehensive installation instructions.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 223

63. Using the CLI

Once you have installed the CLI, you can run it by typing spring and pressing Enter at the command
line. If you run spring without any arguments, a simple help screen is displayed, as follows:

$ spring

usage: spring [--help] [--version]

 <command> [<args>]

Available commands are:

 run [options] <files> [--] [args]

 Run a spring groovy script

 ... more command help is shown here

You can type spring help to get more details about any of the supported commands, as shown in
the following example:

$ spring help run

spring run - Run a spring groovy script

usage: spring run [options] <files> [--] [args]

Option Description

------ -----------

--autoconfigure [Boolean] Add autoconfigure compiler

 transformations (default: true)

--classpath, -cp Additional classpath entries

-e, --edit Open the file with the default system

 editor

--no-guess-dependencies Do not attempt to guess dependencies

--no-guess-imports Do not attempt to guess imports

-q, --quiet Quiet logging

-v, --verbose Verbose logging of dependency

 resolution

--watch Watch the specified file for changes

The version command provides a quick way to check which version of Spring Boot you are using,
as follows:

$ spring version

Spring CLI v2.0.0.RC1

63.1 Running Applications with the CLI

You can compile and run Groovy source code by using the run command. The Spring Boot CLI is
completely self-contained, so you do not need any external Groovy installation.

The following example shows a “hello world” web application written in Groovy:

hello.groovy.

@RestController

class WebApplication {

 @RequestMapping("/")

 String home() {

 "Hello World!"

 }

}

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 224

To compile and run the application, type the following command:

$ spring run hello.groovy

To pass command-line arguments to the application, use -- to separate the commands from the “spring”
command arguments, as shown in the following example:

$ spring run hello.groovy -- --server.port=9000

To set JVM command line arguments, you can use the JAVA_OPTS environment variable, as shown
in the following example:

$ JAVA_OPTS=-Xmx1024m spring run hello.groovy

Note

When setting JAVA_OPTS on Microsoft Windows, make sure to quote the entire instruction, such
as set "JAVA_OPTS=-Xms256m -Xmx2048m". Doing so ensures the values are properly
passed to the process.

Deduced “grab” Dependencies

Standard Groovy includes a @Grab annotation, which lets you declare dependencies on third-party
libraries. This useful technique lets Groovy download jars in the same way as Maven or Gradle would
but without requiring you to use a build tool.

Spring Boot extends this technique further and tries to deduce which libraries to “grab” based on your
code. For example, since the WebApplication code shown previously uses @RestController
annotations, Spring Boot grabs "Tomcat" and "Spring MVC".

The following items are used as “grab hints”:

Items Grabs

JdbcTemplate,
NamedParameterJdbcTemplate,
DataSource

JDBC Application.

@EnableJms JMS Application.

@EnableCaching Caching abstraction.

@Test JUnit.

@EnableRabbit RabbitMQ.

@EnableReactor Project Reactor.

extends Specification Spock test.

@EnableBatchProcessing Spring Batch.

@MessageEndpoint @EnableIntegration Spring Integration.

@Controller @RestController
@EnableWebMvc

Spring MVC + Embedded Tomcat.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 225

Items Grabs

@EnableWebSecurity Spring Security.

@EnableTransactionManagement Spring Transaction Management.

Tip

See subclasses of CompilerAutoConfiguration in the Spring Boot CLI source code to
understand exactly how customizations are applied.

Deduced “grab” Coordinates

Spring Boot extends Groovy’s standard @Grab support by letting you specify a dependency without
a group or version (for example, @Grab('freemarker')). Doing so consults Spring Boot’s default
dependency metadata to deduce the artifact’s group and version.

Note

The default metadata is tied to the version of the CLI that you use. it changes only when you move
to a new version of the CLI, putting you in control of when the versions of your dependencies
may change. A table showing the dependencies and their versions that are included in the default
metadata can be found in the appendix.

Default Import Statements

To help reduce the size of your Groovy code, several import statements are automatically
included. Notice how the preceding example refers to @Component, @RestController, and
@RequestMapping without needing to use fully-qualified names or import statements.

Tip

Many Spring annotations work without using import statements. Try running your application to
see what fails before adding imports.

Automatic Main Method

Unlike the equivalent Java application, you do not need to include a public static void

main(String[] args) method with your Groovy scripts. A SpringApplication is automatically
created, with your compiled code acting as the source.

Custom Dependency Management

By default, the CLI uses the dependency management declared in spring-boot-dependencies
when resolving @Grab dependencies. Additional dependency management, which overrides the default
dependency management, can be configured by using the @DependencyManagementBom annotation.
The annotation’s value should specify the coordinates (groupId:artifactId:version) of one or
more Maven BOMs.

For example, consider the following declaration:

@DependencyManagementBom("com.example.custom-bom:1.0.0")

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-cli/src/main/java/org/springframework/boot/cli/compiler/CompilerAutoConfiguration.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 226

The preceding declaration picks up custom-bom-1.0.0.pom in a Maven repository under com/
example/custom-versions/1.0.0/.

When you specify multiple BOMs, they are applied in the order in which you declare them, as shown
in the following example:

@DependencyManagementBom(["com.example.custom-bom:1.0.0",

 "com.example.another-bom:1.0.0"])

The preceding example indicates that the dependency management in another-bom overrides the
dependency management in custom-bom.

You can use @DependencyManagementBom anywhere that you can use @Grab. However, to ensure
consistent ordering of the dependency management, you can use @DependencyManagementBom at
most once in your application. A useful source of dependency management (which is a superset of
Spring Boot’s dependency management) is the Spring IO Platform, which you might include with the
following line:

@DependencyManagementBom('io.spring.platform:platform-bom:1.1.2.RELEASE')

63.2 Applications with Multiple Source Files

You can use “shell globbing” with all commands that accept file input. Doing so lets you use multiple
files from a single directory, as shown in the following example:

$ spring run *.groovy

63.3 Packaging Your Application

You can use the jar command to package your application into a self-contained executable jar file, as
shown in the following example:

$ spring jar my-app.jar *.groovy

The resulting jar contains the classes produced by compiling the application and all of the application’s
dependencies so that it can then be run by using java -jar. The jar file also contains entries from
the application’s classpath. You can add and remove explicit paths to the jar by using --include and
--exclude. Both are comma-separated, and both accept prefixes, in the form of “+” and “-”, to signify
that they should be removed from the defaults. The default includes are as follows:

public/**, resources/**, static/**, templates/**, META-INF/**, *

The default excludes are as follows:

.*, repository/**, build/**, target/**, **/*.jar, **/*.groovy

Type spring help jar on the command line for more information.

63.4 Initialize a New Project

The init command lets you create a new project by using start.spring.io without leaving the shell, as
shown in the following example:

$ spring init --dependencies=web,data-jpa my-project

Using service at https://start.spring.io

Project extracted to '/Users/developer/example/my-project'

http://platform.spring.io/
https://start.spring.io

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 227

The preceding example creates a my-project directory with a Maven-based project that uses
spring-boot-starter-web and spring-boot-starter-data-jpa. You can list the capabilities
of the service by using the --list flag, as shown in the following example:

$ spring init --list

=======================================

Capabilities of https://start.spring.io

=======================================

Available dependencies:

actuator - Actuator: Production ready features to help you monitor and manage your application

...

web - Web: Support for full-stack web development, including Tomcat and spring-webmvc

websocket - Websocket: Support for WebSocket development

ws - WS: Support for Spring Web Services

Available project types:

gradle-build - Gradle Config [format:build, build:gradle]

gradle-project - Gradle Project [format:project, build:gradle]

maven-build - Maven POM [format:build, build:maven]

maven-project - Maven Project [format:project, build:maven] (default)

...

The init command supports many options. See the help output for more details. For instance, the
following command creates a Gradle project that uses Java 8 and war packaging:

$ spring init --build=gradle --java-version=1.8 --dependencies=websocket --packaging=war sample-app.zip

Using service at https://start.spring.io

Content saved to 'sample-app.zip'

63.5 Using the Embedded Shell

Spring Boot includes command-line completion scripts for the BASH and zsh shells. If you do not use
either of these shells (perhaps you are a Windows user), you can use the shell command to launch
an integrated shell, as shown in the following example:

$ spring shell

Spring Boot (v2.0.0.RC1)

Hit TAB to complete. Type \'help' and hit RETURN for help, and \'exit' to quit.

From inside the embedded shell, you can run other commands directly:

$ version

Spring CLI v2.0.0.RC1

The embedded shell supports ANSI color output as well as tab completion. If you need to run a native
command, you can use the ! prefix. To exit the embedded shell, press ctrl-c.

63.6 Adding Extensions to the CLI

You can add extensions to the CLI by using the install command. The command takes one or
more sets of artifact coordinates in the format group:artifact:version, as shown in the following
example:

$ spring install com.example:spring-boot-cli-extension:1.0.0.RELEASE

In addition to installing the artifacts identified by the coordinates you supply, all of the artifacts'
dependencies are also installed.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 228

To uninstall a dependency, use the uninstall command. As with the install command, it takes
one or more sets of artifact coordinates in the format of group:artifact:version, as shown in the
following example:

$ spring uninstall com.example:spring-boot-cli-extension:1.0.0.RELEASE

It uninstalls the artifacts identified by the coordinates you supply and their dependencies.

To uninstall all additional dependencies, you can use the --all option, as shown in the following
example:

$ spring uninstall --all

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 229

64. Developing Applications with the Groovy Beans
DSL

Spring Framework 4.0 has native support for a beans{} “DSL” (borrowed from Grails), and you can
embed bean definitions in your Groovy application scripts by using the same format. This is sometimes a
good way to include external features like middleware declarations, as shown in the following example:

@Configuration

class Application implements CommandLineRunner {

 @Autowired

 SharedService service

 @Override

 void run(String... args) {

 println service.message

 }

}

import my.company.SharedService

beans {

 service(SharedService) {

 message = "Hello World"

 }

}

You can mix class declarations with beans{} in the same file as long as they stay at the top level, or,
if you prefer, you can put the beans DSL in a separate file.

http://grails.org/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 230

65. Configuring the CLI with settings.xml

The Spring Boot CLI uses Aether, Maven’s dependency resolution engine, to resolve dependencies.
The CLI makes use of the Maven configuration found in ~/.m2/settings.xml to configure Aether.
The following configuration settings are honored by the CLI:

• Offline

• Mirrors

• Servers

• Proxies

• Profiles

• Activation

• Repositories

• Active profiles

See Maven’s settings documentation for further information.

https://maven.apache.org/settings.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 231

66. What to Read Next

There are some sample groovy scripts available from the GitHub repository that you can use to try out
the Spring Boot CLI. There is also extensive Javadoc throughout the source code.

If you find that you reach the limit of the CLI tool, you probably want to look at converting your application
to a full Gradle or Maven built “Groovy project”. The next section covers Spring Boot’s "Build tool plugins",
which you can use with Gradle or Maven.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-cli/samples
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-cli/src/main/java/org/springframework/boot/cli

Part VIII. Build tool plugins
Spring Boot provides build tool plugins for Maven and Gradle. The plugins offer a variety of features,
including the packaging of executable jars. This section provides more details on both plugins as well
as some help should you need to extend an unsupported build system. If you are just getting started,
you might want to read “Chapter 13, Build Systems” from the “Part III, “Using Spring Boot”” section first.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 233

67. Spring Boot Maven Plugin

The Spring Boot Maven Plugin provides Spring Boot support in Maven, letting you package executable
jar or war archives and run an application “in-place”. To use it, you must use Maven 3.2 (or later).

Note

See the Spring Boot Maven Plugin Site for complete plugin documentation.

67.1 Including the Plugin

To use the Spring Boot Maven Plugin, include the appropriate XML in the plugins section of your
pom.xml, as shown in the following example:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <!-- ... -->

 <build>

 <plugins>

 <plugin>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-maven-plugin</artifactId>

 <version>2.0.0.RC1</version>

 <executions>

 <execution>

 <goals>

 <goal>repackage</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 </plugins>

 </build>

</project>

The preceding configuration repackages a jar or war that is built during the package phase of the
Maven lifecycle. The following example shows both the repackaged jar as well as the original jar in the
target directory:

$ mvn package

$ ls target/*.jar

target/myproject-1.0.0.jar target/myproject-1.0.0.jar.original

If you do not include the <execution/> configuration, as shown in the prior example, you can run the
plugin on its own (but only if the package goal is used as well), as shown in the following example:

$ mvn package spring-boot:repackage

$ ls target/*.jar

target/myproject-1.0.0.jar target/myproject-1.0.0.jar.original

If you use a milestone or snapshot release, you also need to add the appropriate pluginRepository
elements, as shown in the following listing:

<pluginRepositories>

 <pluginRepository>

 <id>spring-snapshots</id>

 <url>http://repo.spring.io/snapshot</url>

 </pluginRepository>

 <pluginRepository>

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/maven-plugin
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/maven-plugin

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 234

 <id>spring-milestones</id>

 <url>http://repo.spring.io/milestone</url>

 </pluginRepository>

</pluginRepositories>

67.2 Packaging Executable Jar and War Files

Once spring-boot-maven-plugin has been included in your pom.xml, it automatically tries to
rewrite archives to make them executable by using the spring-boot:repackage goal. You should
configure your project to build a jar or war (as appropriate) by using the usual packaging element, as
shown in the following example:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <!-- ... -->

 <packaging>jar</packaging>

 <!-- ... -->

</project>

Your existing archive is enhanced by Spring Boot during the package phase. The main class that you
want to launch can be specified either by using a configuration option or by adding a Main-Class
attribute to the manifest in the usual way. If you do not specify a main class, the plugin searches for a
class with a public static void main(String[] args) method.

To build and run a project artifact, you can type the following:

$ mvn package

$ java -jar target/mymodule-0.0.1-SNAPSHOT.jar

To build a war file that is both executable and deployable into an external container, you need to mark
the embedded container dependencies as “provided”, as shown in the following example:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <!-- ... -->

 <packaging>war</packaging>

 <!-- ... -->

 <dependencies>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-tomcat</artifactId>

 <scope>provided</scope>

 </dependency>

 <!-- ... -->

 </dependencies>

</project>

Tip

See the “Section 86.1, “Create a Deployable War File”” section for more details on how to create
a deployable war file.

Advanced configuration options and examples are available in the plugin info page.

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/maven-plugin

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 235

68. Spring Boot Gradle Plugin

The Spring Boot Gradle Plugin provides Spring Boot support in Gradle, letting you package executable
jar or war archives, run Spring Boot applications, and use the dependency management provided
by spring-boot-dependencies. It requires Gradle 4.0 or later. Please refer to the plugin’s
documentation to learn more:

• Reference (HTML and PDF)

• API

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/gradle-plugin/reference/html
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/gradle-plugin/reference/pdf/spring-boot-gradle-plugin-reference.pdf
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/gradle-plugin/api

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 236

69. Spring Boot AntLib Module

The Spring Boot AntLib module provides basic Spring Boot support for Apache Ant. You can use the
module to create executable jars. To use the module, you need to declare an additional spring-boot
namespace in your build.xml, as shown in the following example:

<project xmlns:ivy="antlib:org.apache.ivy.ant"

 xmlns:spring-boot="antlib:org.springframework.boot.ant"

 name="myapp" default="build">

 ...

</project>

You need to remember to start Ant using the -lib option, as shown in the following example:

$ ant -lib <folder containing spring-boot-antlib-2.0.0.RC1.jar>

Tip

The “Using Spring Boot” section includes a more complete example of using Apache Ant with
spring-boot-antlib.

69.1 Spring Boot Ant Tasks

Once the spring-boot-antlib namespace has been declared, the following additional tasks are
available:

• the section called “spring-boot:exejar”

• Section 69.2, “spring-boot:findmainclass”

spring-boot:exejar

You can use the exejar task to create a Spring Boot executable jar. The following attributes are
supported by the task:

Attribute Description Required

destfile The destination jar file to create Yes

classes The root directory of Java class files Yes

start-class The main application class to run No (the default is the first class found
that declares a main method)

The following nested elements can be used with the task:

Element Description

resources One or more Resource Collections describing a set of Resources that should
be added to the content of the created jar file.

lib One or more Resource Collections that should be added to the set of jar
libraries that make up the runtime dependency classpath of the application.

http://ant.apache.org/manual/Types/resources.html#collection
http://ant.apache.org/manual/Types/resources.html
http://ant.apache.org/manual/Types/resources.html#collection

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 237

Examples

This section shows two examples of Ant tasks.

Specify start-class.

<spring-boot:exejar destfile="target/my-application.jar"

 classes="target/classes" start-class="com.example.MyApplication">

 <resources>

 <fileset dir="src/main/resources" />

 </resources>

 <lib>

 <fileset dir="lib" />

 </lib>

</spring-boot:exejar>

Detect start-class.

<exejar destfile="target/my-application.jar" classes="target/classes">

 <lib>

 <fileset dir="lib" />

 </lib>

</exejar>

69.2 spring-boot:findmainclass

The findmainclass task is used internally by exejar to locate a class declaring a main. If necessary,
you can also use this task directly in your build. The following attributes are supported:

Attribute Description Required

classesroot The root directory of Java class files Yes (unless mainclass is specified)

mainclass Can be used to short-circuit the main
class search

No

property The Ant property that should be set
with the result

No (result will be logged if unspecified)

Examples

This section contains three examples of using findmainclass.

Find and log.

<findmainclass classesroot="target/classes" />

Find and set.

<findmainclass classesroot="target/classes" property="main-class" />

Override and set.

<findmainclass mainclass="com.example.MainClass" property="main-class" />

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 238

70. Supporting Other Build Systems

If you want to use a build tool other than Maven, Gradle, or Ant, you likely need to develop your own
plugin. Executable jars need to follow a specific format and certain entries need to be written in an
uncompressed form (see the “executable jar format” section in the appendix for details).

The Spring Boot Maven and Gradle plugins both make use of spring-boot-loader-tools to
actually generate jars. If you need to, you may use this library directly.

70.1 Repackaging Archives

To repackage an existing archive so that it becomes a self-contained executable archive, use
org.springframework.boot.loader.tools.Repackager. The Repackager class takes a
single constructor argument that refers to an existing jar or war archive. Use one of the two available
repackage() methods to either replace the original file or write to a new destination. Various settings
can also be configured on the repackager before it is run.

70.2 Nested Libraries

When repackaging an archive, you can include references to dependency files by using the
org.springframework.boot.loader.tools.Libraries interface. We do not provide any
concrete implementations of Libraries here as they are usually build-system-specific.

If your archive already includes libraries, you can use Libraries.NONE.

70.3 Finding a Main Class

If you do not use Repackager.setMainClass() to specify a main class, the repackager uses ASM
to read class files and tries to find a suitable class with a public static void main(String[]
args) method. An exception is thrown if more than one candidate is found.

70.4 Example Repackage Implementation

The following example shows a typical repackage implementation:

Repackager repackager = new Repackager(sourceJarFile);

repackager.setBackupSource(false);

repackager.repackage(new Libraries() {

 @Override

 public void doWithLibraries(LibraryCallback callback) throws IOException {

 // Build system specific implementation, callback for each dependency

 // callback.library(new Library(nestedFile, LibraryScope.COMPILE));

 }

 });

http://asm.ow2.org/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 239

71. What to Read Next

If you are interested in how the build tool plugins work, you can look at the spring-boot-tools
module on GitHub. More technical details of the executable jar format are covered in the appendix.

If you have specific build-related questions, you can check out the “how-to” guides.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-tools

Part IX. ‘How-to’ guides
This section provides answers to some common ‘how do I do that…’ questions that often arise when
using Spring Boot. Its coverage is not exhaustive, but it does cover quite a lot.

If you have a specific problem that we do not cover here, you might want to check out stackoverflow.com
to see if someone has already provided an answer. This is also a great place to ask new questions
(please use the spring-boot tag).

We are also more than happy to extend this section. If you want to add a ‘how-to’, send us a pull request.

http://stackoverflow.com/tags/spring-boot
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 241

72. Spring Boot Application

This section includes topics relating directly to Spring Boot applications.

72.1 Create Your Own FailureAnalyzer

FailureAnalyzer is a great way to intercept an exception on startup and turn it into a human-readable
message, wrapped in a FailureAnalysis. Spring Boot provides such an analyzer for application-
context-related exceptions, JSR-303 validations, and more. You can also create your own.

AbstractFailureAnalyzer is a convenient extension of FailureAnalyzer that checks the
presence of a specified exception type in the exception to handle. You can extend from that so that your
implementation gets a chance to handle the exception only when it is actually present. If, for whatever
reason, you cannot handle the exception, return null to give another implementation a chance to
handle the exception.

FailureAnalyzer implementations must be registered in META-INF/spring.factories. The
following example registers ProjectConstraintViolationFailureAnalyzer:

org.springframework.boot.diagnostics.FailureAnalyzer=\

com.example.ProjectConstraintViolationFailureAnalyzer

Note

If you need access to the BeanFactory or the Environment, your FailureAnalyzer can
simply implement BeanFactoryAware or EnvironmentAware respectively.

72.2 Troubleshoot Auto-configuration

The Spring Boot auto-configuration tries its best to “do the right thing”, but sometimes things fail, and
it can be hard to tell why.

There is a really useful ConditionEvaluationReport available in any Spring Boot
ApplicationContext. You can see it if you enable DEBUG logging output. If you use the spring-
boot-actuator (see the Actuator chapter), there is also a conditions endpoint that renders the
report in JSON. Use that endpoint to debug the application and see what features have been added
(and which have not been added) by Spring Boot at runtime.

Many more questions can be answered by looking at the source code and the Javadoc. When reading
the code, remember the following rules of thumb:

• Look for classes called *AutoConfiguration and read their sources. Pay special attention to the
@Conditional* annotations to find out what features they enable and when. Add --debug to the
command line or a System property -Ddebug to get a log on the console of all the auto-configuration
decisions that were made in your app. In a running Actuator app, look at the conditions endpoint
(/actuator/conditions or the JMX equivalent) for the same information.

• Look for classes that are @ConfigurationProperties (such as ServerProperties) and
read from there the available external configuration options. The @ConfigurationProperties
annotation has a name attribute that acts as a prefix to external properties. Thus,
ServerProperties has prefix="server" and its configuration properties are server.port,
server.address, and others. In a running Actuator app, look at the configprops endpoint.

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/diagnostics/FailureAnalyzer.html
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/diagnostics/FailureAnalysis.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ServerProperties.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 242

• Look for uses of the bind method on the Binder to pull configuration values explicitly out of the
Environment in a relaxed manner. It is often used with a prefix.

• Look for @Value annotations that bind directly to the Environment.

• Look for @ConditionalOnExpression annotations that switch features on and off in response to
SpEL expressions, normally evaluated with placeholders resolved from the Environment.

72.3 Customize the Environment or ApplicationContext Before
It Starts

A SpringApplication has ApplicationListeners and ApplicationContextInitializers
that are used to apply customizations to the context or environment. Spring Boot loads a number of
such customizations for use internally from META-INF/spring.factories. There is more than one
way to register additional customizations:

• Programmatically, per application, by calling the addListeners and addInitializers methods
on SpringApplication before you run it.

• Declaratively, per application, by setting the context.initializer.classes or
context.listener.classes properties.

• Declaratively, for all applications, by adding a META-INF/spring.factories and packaging a jar
file that the applications all use as a library.

The SpringApplication sends some special ApplicationEvents to the listeners (some
even before the context is created) and then registers the listeners for events published by the
ApplicationContext as well. See “Section 23.5, “Application Events and Listeners”” in the ‘Spring
Boot features’ section for a complete list.

It is also possible to customize the Environment before the application context is refreshed by
using EnvironmentPostProcessor. Each implementation should be registered in META-INF/
spring.factories, as shown in the following example:

org.springframework.boot.env.EnvironmentPostProcessor=com.example.YourEnvironmentPostProcessor

The implementation can load arbitrary files and add them to the Environment. For instance, the
following example loads a YAML configuration file from the classpath:

public class EnvironmentPostProcessorExample implements EnvironmentPostProcessor {

 private final YamlPropertySourceLoader loader = new YamlPropertySourceLoader();

 @Override

 public void postProcessEnvironment(ConfigurableEnvironment environment,

 SpringApplication application) {

 Resource path = new ClassPathResource("com/example/myapp/config.yml");

 PropertySource<?> propertySource = loadYaml(path);

 environment.getPropertySources().addLast(propertySource);

 }

 private PropertySource<?> loadYaml(Resource path) {

 if (!path.exists()) {

 throw new IllegalArgumentException("Resource " + path + " does not exist");

 }

 try {

 return this.loader.load("custom-resource", path, null);

 }

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 243

 catch (IOException ex) {

 throw new IllegalStateException(

 "Failed to load yaml configuration from " + path, ex);

 }

 }

}

Tip

The Environment has already been prepared with all the usual property sources that Spring
Boot loads by default. It is therefore possible to get the location of the file from the environment.
The preceding example adds the custom-resource property source at the end of the list so
that a key defined in any of the usual other locations takes precedence. A custom implementation
may define another order.

Caution

While using @PropertySource on your @SpringBootApplication may seem to be a
convenient and easy way to load a custom resource in the Environment, we do not recommend
it, because Spring Boot prepares the Environment before the ApplicationContext is
refreshed. Any key defined with @PropertySource is loaded too late to have any effect on auto-
configuration.

72.4 Build an ApplicationContext Hierarchy (Adding a Parent or
Root Context)

You can use the ApplicationBuilder class to create parent/child ApplicationContext
hierarchies. See “Section 23.4, “Fluent Builder API”” in the ‘Spring Boot features’ section for more
information.

72.5 Create a Non-web Application

Not all Spring applications have to be web applications (or web services). If you want to execute
some code in a main method but also bootstrap a Spring application to set up the infrastructure
to use, you can use the SpringApplication features of Spring Boot. A SpringApplication
changes its ApplicationContext class, depending on whether it thinks it needs a web application
or not. The first thing you can do to help it is to leave the servlet API dependencies off the classpath.
If you cannot do that (for example, you run two applications from the same code base) then you
can explicitly call setWebEnvironment(false) on your SpringApplication instance or set the
applicationContextClass property (through the Java API or with external properties). Application
code that you want to run as your business logic can be implemented as a CommandLineRunner and
dropped into the context as a @Bean definition.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 244

73. Properties and Configuration

This section includes topics about setting and reading properties and configuration settings and their
interaction with Spring Boot applications.

73.1 Automatically Expand Properties at Build Time

Rather than hardcoding some properties that are also specified in your project’s build configuration,
you can automatically expand them by instead using the existing build configuration. This is possible
in both Maven and Gradle.

Automatic Property Expansion Using Maven

You can automatically expand properties from the Maven project by using resource filtering. If you use
the spring-boot-starter-parent, you can then refer to your Maven ‘project properties’ with @..@
placeholders, as shown in the following example:

app.encoding=@project.build.sourceEncoding@

app.java.version=@java.version@

Note

Only production configuration is filtered that way (in other words, no filtering is applied on src/
test/resources).

Tip

If you enable the addResources flag, the spring-boot:run goal can add src/main/
resources directly to the classpath (for hot reloading purposes). Doing so circumvents the
resource filtering and this feature. Instead, you can use the exec:java goal or customize the
plugin’s configuration. See the plugin usage page for more details.

If you do not use the starter parent, you need to include the following element inside the <build/>
element of your pom.xml:

<resources>

 <resource>

 <directory>src/main/resources</directory>

 <filtering>true</filtering>

 </resource>

</resources>

You also need to include the following element inside <plugins/>:

<plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-resources-plugin</artifactId>

 <version>2.7</version>

 <configuration>

 <delimiters>

 <delimiter>@</delimiter>

 </delimiters>

 <useDefaultDelimiters>false</useDefaultDelimiters>

 </configuration>

</plugin>

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/maven-plugin/usage.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 245

Note

The useDefaultDelimiters property is important if you use standard Spring placeholders
(such as ${placeholder}) in your configuration. If that property is not set to false, these may
be expanded by the build.

Automatic Property Expansion Using Gradle

You can automatically expand properties from the Gradle project by configuring the Java plugin’s
processResources task to do so, as shown in the following example:

processResources {

 expand(project.properties)

}

You can then refer to your Gradle project’s properties by using placeholders, as shown in the following
example:

app.name=${name}

app.description=${description}

Note

Gradle’s expand method uses Groovy’s SimpleTemplateEngine, which transforms ${..}
tokens. The ${..} style conflicts with Spring’s own property placeholder mechanism. To use
Spring property placeholders together with automatic expansion, escape the Spring property
placeholders as follows: \${..}.

73.2 Externalize the Configuration of SpringApplication

A SpringApplication has bean properties (mainly setters), so you can use its Java API as you
create the application to modify its behavior. Alternatively, you can externalize the configuration by
setting properties in spring.main.*. For example, in application.properties, you might have
the following settings:

spring.main.web-environment=false

spring.main.banner-mode=off

Then the Spring Boot banner is not printed on startup, and the application is not a web application.

Note

The preceding example also demonstrates how flexible binding allows the use of underscores (_)
as well as dashes (-) in property names.

Properties defined in external configuration override the values specified with the Java API, with the
notable exception of the sources used to create the ApplicationContext. Consider the following
application:

new SpringApplicationBuilder()

 .bannerMode(Banner.Mode.OFF)

 .sources(demo.MyApp.class)

 .run(args);

Now consider the following configuration:

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 246

spring.main.sources=com.acme.Config,com.acme.ExtraConfig

spring.main.banner-mode=console

The actual application now shows the banner (as overridden by configuration) and uses three
sources for the ApplicationContext (in the following order): demo.MyApp, com.acme.Config,
and com.acme.ExtraConfig.

73.3 Change the Location of External Properties of an
Application

By default, properties from different sources are added to the Spring Environment in a defined order
(see “Chapter 24, Externalized Configuration” in the ‘Spring Boot features’ section for the exact order).

A nice way to augment and modify this ordering is to add @PropertySource annotations to your
application sources. Classes passed to the SpringApplication static convenience methods and
those added using setSources() are inspected to see if they have @PropertySources. If they
do, those properties are added to the Environment early enough to be used in all phases of the
ApplicationContext lifecycle. Properties added in this way have lower priority than any added by
using the default locations (such as application.properties), system properties, environment
variables, or the command line.

You can also provide the following System properties (or environment variables) to change the behavior:

• spring.config.name (SPRING_CONFIG_NAME): Defaults to application as the root of the file
name.

• spring.config.location (SPRING_CONFIG_LOCATION): The file to load (such as a classpath
resource or a URL). A separate Environment property source is set up for this document and it can
be overridden by system properties, environment variables, or the command line.

No matter what you set in the environment, Spring Boot always loads application.properties as
described above. By default, if YAML is used, then files with the ‘.yml’ extension are also added to the list.

Spring Boot logs the configuration files that are loaded at the DEBUG level and the candidates it has
not found at TRACE level.

See ConfigFileApplicationListener for more detail.

73.4 Use ‘Short’ Command Line Arguments

Some people like to use (for example) --port=9000 instead of --server.port=9000 to set
configuration properties on the command line. You can enable this behavior by using placeholders in
application.properties, as shown in the following example:

server.port=${port:8080}

Tip

If you inherit from the spring-boot-starter-parent POM, the default filter token of the
maven-resources-plugins has been changed from ${*} to @ (that is, @maven.token@
instead of ${maven.token}) to prevent conflicts with Spring-style placeholders. If you have
enabled Maven filtering for the application.properties directly, you may want to also
change the default filter token to use other delimiters.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/context/config/ConfigFileApplicationListener.java
http://maven.apache.org/plugins/maven-resources-plugin/resources-mojo.html#delimiters

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 247

Note

In this specific case, the port binding works in a PaaS environment such as Heroku or Cloud
Foundry. In those two platforms, the PORT environment variable is set automatically and Spring
can bind to capitalized synonyms for Environment properties.

73.5 Use YAML for External Properties

YAML is a superset of JSON and, as such, is a convenient syntax for storing external properties in a
hierarchical format, as shown in the following example:

spring:

 application:

 name: cruncher

 datasource:

 driverClassName: com.mysql.jdbc.Driver

 url: jdbc:mysql://localhost/test

server:

 port: 9000

Create a file called application.yml and put it in the root of your classpath. Then add snakeyaml
to your dependencies (Maven coordinates org.yaml:snakeyaml, already included if you use the
spring-boot-starter). A YAML file is parsed to a Java Map<String,Object> (like a JSON
object), and Spring Boot flattens the map so that it is one level deep and has period-separated keys, as
many people are used to with Properties files in Java.

The preceding example YAML corresponds to the following application.properties file:

spring.application.name=cruncher

spring.datasource.driverClassName=com.mysql.jdbc.Driver

spring.datasource.url=jdbc:mysql://localhost/test

server.port=9000

See “Section 24.6, “Using YAML Instead of Properties”” in the ‘Spring Boot features’ section for more
information about YAML.

73.6 Set the Active Spring Profiles

The Spring Environment has an API for this, but you would normally set a System property
(spring.profiles.active) or an OS environment variable (SPRING_PROFILES_ACTIVE). Also,
you can launch your application with a -D argument (remember to put it before the main class or jar
archive), as follows:

$ java -jar -Dspring.profiles.active=production demo-0.0.1-SNAPSHOT.jar

In Spring Boot, you can also set the active profile in application.properties, as shown in the
following example:

spring.profiles.active=production

A value set this way is replaced by the System property or environment variable setting but not by
the SpringApplicationBuilder.profiles() method. Thus, the latter Java API can be used to
augment the profiles without changing the defaults.

See “Chapter 25, Profiles” in the “Spring Boot features” section for more information.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 248

73.7 Change Configuration Depending on the Environment

A YAML file is actually a sequence of documents separated by --- lines, and each document is parsed
separately to a flattened map.

If a YAML document contains a spring.profiles key, then the profiles value (a comma-separated
list of profiles) is fed into the Spring Environment.acceptsProfiles() method. If any of those
profiles is active, that document is included in the final merge (otherwise, it is not), as shown in the
following example:

server:

 port: 9000

spring:

 profiles: development

server:

 port: 9001

spring:

 profiles: production

server:

 port: 0

In the preceding example, the default port is 9000. However, if the Spring profile called ‘development’
is active, then the port is 9001. If ‘production’ is active, then the port is 0.

Note

The YAML documents are merged in the order in which they are encountered. Later values
override earlier values.

To do the same thing with properties files, you can use application-${profile}.properties to
specify profile-specific values.

73.8 Discover Built-in Options for External Properties

Spring Boot binds external properties from application.properties (or .yml files and other
places) into an application at runtime. There is not (and technically cannot be) an exhaustive list of all
supported properties in a single location, because contributions can come from additional jar files on
your classpath.

A running application with the Actuator features has a configprops endpoint that shows all the bound
and bindable properties available through @ConfigurationProperties.

The appendix includes an application.properties example with a list of the most common
properties supported by Spring Boot. The definitive list comes from searching the source code for
@ConfigurationProperties and @Value annotations as well as the occasional use of Binder.
For more about the exact ordering of loading properties, see "Chapter 24, Externalized Configuration".

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 249

74. Embedded Web Servers

Each Spring Boot web application includes an embedded web server. This feature leads to a number of
how-to questions, including how to change the embedded server and how to configure the embedded
server. This section answers those questions.

74.1 Use Another Web Server

Many Spring Boot starters include default embedded containers. spring-boot-starter-web
includes Tomcat by including spring-boot-starter-tomcat, but you can use spring-
boot-starter-jetty or spring-boot-starter-undertow instead. spring-boot-starter-
webflux includes Reactor Netty by including spring-boot-starter-reactor-netty, but you
can use spring-boot-starter-tomcat, spring-boot-starter-jetty, or spring-boot-
starter-undertow instead.

Note

Many starters support only Spring MVC, so they transitively bring spring-boot-starter-web
into your application classpath.

If you need to use a different HTTP server, you need to exclude the default dependencies and include
the one you need. Spring Boot provides separate starters for HTTP servers to help make this process
as easy as possible.

The following Maven example shows how to exclude Tomcat and include Jetty for Spring MVC:

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

 <exclusions>

 <!-- Exclude the Tomcat dependency -->

 <exclusion>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-tomcat</artifactId>

 </exclusion>

 </exclusions>

</dependency>

<!-- Use Jetty instead -->

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-jetty</artifactId>

</dependency>

The following Gradle example shows how to exclude Netty and include Undertow for Spring WebFlux:

configurations {

 // exclude Reactor Netty

 compile.exclude module: 'spring-boot-starter-reactor-netty'

}

dependencies {

 compile 'org.springframework.boot:spring-boot-starter-webflux'

 // Use Undertow instead

 compile 'org.springframework.boot:spring-boot-starter-undertow'

 // ...

}

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 250

Note

spring-boot-starter-reactor-netty is required to use the WebClient class, so you may
need to keep a dependency on Netty even when you need to include a different HTTP server.

74.2 Configure Jetty

Generally, you can follow the advice from “Section 73.8, “Discover Built-in Options for External
Properties”” about @ConfigurationProperties (ServerProperties is the main one here).
However, you should also look at WebServerFactoryCustomizer. The Jetty APIs are quite rich,
so, once you have access to the JettyServletWebServerFactory, you can modify it in a
number of ways. Alternatively, if you need more control and customization, you can add your own
JettyServletWebServerFactory.

74.3 Add a Servlet, Filter, or Listener to an Application

There are two ways to add Servlet, Filter, ServletContextListener, and the other listeners
supported by the Servlet spec to your application:

• the section called “Add a Servlet, Filter, or Listener by Using a Spring Bean”

• the section called “Add Servlets, Filters, and Listeners by Using Classpath Scanning”

Add a Servlet, Filter, or Listener by Using a Spring Bean

To add a Servlet, Filter, or Servlet *Listener by using a Spring bean, you must provide a @Bean
definition for it. Doing so can be very useful when you want to inject configuration or dependencies.
However, you must be very careful that they do not cause eager initialization of too many other beans,
because they have to be installed in the container very early in the application lifecycle. (For example,
it is not a good idea to have them depend on your DataSource or JPA configuration.) You can work
around such restrictions by initializing the beans lazily when first used instead of on initialization.

In the case of Filters and Servlets, you can also add mappings and init parameters by adding
a FilterRegistrationBean or a ServletRegistrationBean instead of or in addition to the
underlying component.

Note

If no dispatcherType is specified on a filter registration, REQUEST is used. This aligns with the
Servlet Specification’s default dispatcher type.

Like any other Spring bean, you can define the order of Servlet filter beans; please make sure to check
the “the section called “Registering Servlets, Filters, and Listeners as Spring Beans”” section.

Disable Registration of a Servlet or Filter

As described earlier, any Servlet or Filter beans are registered with the servlet container
automatically. To disable registration of a particular Filter or Servlet bean, create a registration
bean for it and mark it as disabled, as shown in the following example:

@Bean

public FilterRegistrationBean registration(MyFilter filter) {

 FilterRegistrationBean registration = new FilterRegistrationBean(filter);

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/web/server/WebServerFactoryCustomizer.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 251

 registration.setEnabled(false);

 return registration;

}

Add Servlets, Filters, and Listeners by Using Classpath Scanning

@WebServlet, @WebFilter, and @WebListener annotated classes can be automatically
registered with an embedded servlet container by annotating a @Configuration class with
@ServletComponentScan and specifying the package(s) containing the components that you want
to register. By default, @ServletComponentScan scans from the package of the annotated class.

74.4 Change the HTTP Port

In a standalone application, the main HTTP port defaults to 8080 but can be set with server.port
(for example, in application.properties or as a System property). Thanks to relaxed binding of
Environment values, you can also use SERVER_PORT (for example, as an OS environment variable).

To switch off the HTTP endpoints completely but still create a WebApplicationContext, use
server.port=-1. (Doing so is sometimes useful for testing.)

For more details, see “the section called “Customizing Embedded Servlet Containers”” in the ‘Spring
Boot features’ section, or the ServerProperties source code.

74.5 Use a Random Unassigned HTTP Port

To scan for a free port (using OS natives to prevent clashes) use server.port=0.

74.6 Discover the HTTP Port at Runtime

You can access the port the server is running on from log output or from
the ServletWebServerApplicationContext through its WebServer. The best way to
get that and be sure that it has been initialized is to add a @Bean of type
ApplicationListener<ServletWebServerInitializedEvent> and pull the container out of
the event when it is published.

Tests that use @SpringBootTest(webEnvironment=WebEnvironment.RANDOM_PORT) can also
inject the actual port into a field by using the @LocalServerPort annotation, as shown in the following
example:

@RunWith(SpringJUnit4ClassRunner.class)

@SpringBootTest(webEnvironment=WebEnvironment.RANDOM_PORT)

public class MyWebIntegrationTests {

 @Autowired

 ServletWebServerApplicationContext server;

 @LocalServerPort

 int port;

 // ...

}

Note

@LocalServerPort is a meta-annotation for @Value("${local.server.port}"). Do not
try to inject the port in a regular application. As we just saw, the value is set only after the container

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ServerProperties.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 252

has been initialized. Contrary to a test, application code callbacks are processed early (before
the value is actually available).

74.7 Configure SSL

SSL can be configured declaratively by setting the various server.ssl.* properties, typically
in application.properties or application.yml. The following example shows setting SSL
properties in application.properties:

server.port=8443

server.ssl.key-store=classpath:keystore.jks

server.ssl.key-store-password=secret

server.ssl.key-password=another-secret

See Ssl for details of all of the supported properties.

Using configuration such as the preceding example means the application no longer supports a plain
HTTP connector at port 8080. Spring Boot does not support the configuration of both an HTTP connector
and an HTTPS connector through application.properties. If you want to have both, you need
to configure one of them programmatically. We recommend using application.properties to
configure HTTPS, as the HTTP connector is the easier of the two to configure programmatically. See
the spring-boot-sample-tomcat-multi-connectors sample project for an example.

74.8 Configure HTTP/2

You can enable HTTP/2 support in your Spring Boot application with the server.http2.enabled
configuration property. This support depends on the chosen web server and the application environment,
since that protocol is not supported out-of-the-box by JDK8.

Note

Spring Boot does not support h2c, the cleartext version of the HTTP/2 protocol. So you must
configure SSL first.

HTTP/2 with Undertow

As of Undertow 1.4.0+, HTTP/2 is supported without any additional requirement on JDK8.

HTTP/2 with Jetty

As of Jetty 9.4.8, HTTP/2 is also supported with the Conscrypt library. To enable that support,
your application needs to have two additional dependencies: org.eclipse.jetty:jetty-alpn-
conscrypt-server and org.eclipse.jetty.http2:http2-server.

HTTP/2 with Tomcat

Spring Boot ships by default with Tomcat 8.5.x. With that version, HTTP/2 is only supported if the
libtcnative library and its dependencies are installed on the host operating system.

The library folder must be made available, if not already, to the JVM library path. You can do so with
a JVM argument such as -Djava.library.path=/usr/local/opt/tomcat-native/lib. More
on this in the official Tomcat documentation.

Starting Tomcat 8.5.x without that native support logs the following error:

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/web/server/Ssl.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-samples/spring-boot-sample-tomcat-multi-connectors
https://www.conscrypt.org/
http://tomcat.apache.org/tomcat-8.5-doc/apr.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 253

ERROR 8787 --- [main] o.a.coyote.http11.Http11NioProtocol : The upgrade handler

 [org.apache.coyote.http2.Http2Protocol] for [h2] only supports upgrade via ALPN but has been configured

 for the ["https-jsse-nio-8443"] connector that does not support ALPN.

This error is not fatal, and the application still starts with HTTP/1.1 SSL support.

Running your application with Tomcat 9.0.x and JDK9 does not require any native library to be installed.
To use Tomcat 9, you can override the tomcat.version build property with the version of your choice.

74.9 Configure Access Logging

Access logs can be configured for Tomcat, Undertow, and Jetty through their respective namespaces.

For instance, the following settings log access on Tomcat with a custom pattern.

server.tomcat.basedir=my-tomcat

server.tomcat.accesslog.enabled=true

server.tomcat.accesslog.pattern=%t %a "%r" %s (%D ms)

Note

The default location for logs is a logs directory relative to the Tomcat base directory. By default,
the logs directory is a temporary directory, so you may want to fix Tomcat’s base directory or use
an absolute path for the logs. In the preceding example, the logs are available in my-tomcat/
logs relative to the working directory of the application.

Access logging for Undertow can be configured in a similar fashion, as shown in the following example:

server.undertow.accesslog.enabled=true

server.undertow.accesslog.pattern=%t %a "%r" %s (%D ms)

Logs are stored in a logs directory relative to the working directory of the application. You can customize
this location by setting the server.undertow.accesslog.directory property.

Finally, access logging for Jetty can also be configured as follows:

server.jetty.accesslog.enabled=true

server.jetty.accesslog.filename=/var/log/jetty-access.log

By default, logs are redirected to System.err. For more details, see the Jetty documentation.

74.10 Running Behind a Front-end Proxy Server

Your application might need to send 302 redirects or render content with absolute links back to itself.
When running behind a proxy, the caller wants a link to the proxy and not to the physical address of
the machine hosting your app. Typically, such situations are handled through a contract with the proxy,
which adds headers to tell the back end how to construct links to itself.

If the proxy adds conventional X-Forwarded-For and X-Forwarded-Proto headers (most proxy
servers do so), the absolute links should be rendered correctly, provided server.use-forward-
headers is set to true in your application.properties.

Note

If your application runs in Cloud Foundry or Heroku, the server.use-forward-headers
property defaults to true. In all other instances, it defaults to false.

https://tomcat.apache.org/tomcat-8.5-doc/config/valve.html#Access_Logging
https://www.eclipse.org/jetty/documentation/9.4.x/configuring-jetty-request-logs.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 254

Customize Tomcat’s Proxy Configuration

If you use Tomcat, you can additionally configure the names of the headers used to carry “forwarded”
information, as shown in the following example:

server.tomcat.remote-ip-header=x-your-remote-ip-header

server.tomcat.protocol-header=x-your-protocol-header

Tomcat is also configured with a default regular expression that matches internal proxies that are to
be trusted. By default, IP addresses in 10/8, 192.168/16, 169.254/16 and 127/8 are trusted. You
can customize the valve’s configuration by adding an entry to application.properties, as shown
in the following example:

server.tomcat.internal-proxies=192\\.168\\.\\d{1,3}\\.\\d{1,3}

Note

The double backslashes are required only when you use a properties file for configuration. If you
use YAML, single backslashes are sufficient, and a value equivalent to that shown in the preceding
example would be 192\.168\.\d{1,3}\.\d{1,3}.

Note

You can trust all proxies by setting the internal-proxies to empty (but do not do so in
production).

You can take complete control of the configuration of Tomcat’s RemoteIpValve by switching the
automatic one off (to do so, set server.use-forward-headers=false) and adding a new valve
instance in a TomcatServletWebServerFactory bean.

74.11 Configure Tomcat

Generally, you can follow the advice from “Section 73.8, “Discover Built-in Options for External
Properties”” about @ConfigurationProperties (ServerProperties is the main one here).
However, you should also look at WebServerFactoryCustomizer and various Tomcat-specific
*Customizers that you can add. The Tomcat APIs are quite rich. Consequently, once you have access
to the TomcatServletWebServerFactory, you can modify it in a number of ways. Alternatively, if you
need more control and customization, you can add your own TomcatServletWebServerFactory.

74.12 Enable Multiple Connectors with Tomcat

You can add an org.apache.catalina.connector.Connector to the
TomcatServletWebServerFactory, which can allow multiple connectors, including HTTP and
HTTPS connectors, as shown in the following example:

@Bean

public ServletWebServerFactory servletContainer() {

 TomcatServletWebServerFactory tomcat = new TomcatServletWebServerFactory();

 tomcat.addAdditionalTomcatConnectors(createSslConnector());

 return tomcat;

}

private Connector createSslConnector() {

 Connector connector = new Connector("org.apache.coyote.http11.Http11NioProtocol");

 Http11NioProtocol protocol = (Http11NioProtocol) connector.getProtocolHandler();

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 255

 try {

 File keystore = new ClassPathResource("keystore").getFile();

 File truststore = new ClassPathResource("keystore").getFile();

 connector.setScheme("https");

 connector.setSecure(true);

 connector.setPort(8443);

 protocol.setSSLEnabled(true);

 protocol.setKeystoreFile(keystore.getAbsolutePath());

 protocol.setKeystorePass("changeit");

 protocol.setTruststoreFile(truststore.getAbsolutePath());

 protocol.setTruststorePass("changeit");

 protocol.setKeyAlias("apitester");

 return connector;

 }

 catch (IOException ex) {

 throw new IllegalStateException("can't access keystore: [" + "keystore"

 + "] or truststore: [" + "keystore" + "]", ex);

 }

}

74.13 Use Tomcat’s LegacyCookieProcessor

By default, the embedded Tomcat used by Spring Boot does not support "Version 0" of the Cookie
format, so you may see the following error:

java.lang.IllegalArgumentException: An invalid character [32] was present in the Cookie value

If at all possible, you should consider updating your code to only store values compliant with later
Cookie specifications. If, however, you cannot change the way that cookies are written, you can instead
configure Tomcat to use a LegacyCookieProcessor. To switch to the LegacyCookieProcessor,
use an WebServerFactoryCustomizer bean that adds a TomcatContextCustomizer, as shown
in the following example:

@Bean

public WebServerFactoryCustomizer<TomcatServletWebServerFactory> cookieProcessorCustomizer() {

 return (factory) -> factory.addContextCustomizers(

 (context) -> context.setCookieProcessor(new LegacyCookieProcessor()));

}

74.14 Configure Undertow

Generally you can follow the advice from “Section 73.8, “Discover Built-in Options
for External Properties”” about @ConfigurationProperties (ServerProperties and
ServerProperties.Undertow are the main ones here). However, you should
also look at WebServerFactoryCustomizer. Once you have access to the
UndertowServletWebServerFactory, you can use an UndertowBuilderCustomizer to modify
Undertow’s configuration to meet your needs. Alternatively, if you need more control and customization,
you can add your own UndertowServletWebServerFactory.

74.15 Enable Multiple Listeners with Undertow

Add an UndertowBuilderCustomizer to the UndertowServletWebServerFactory and add a
listener to the Builder, as shown in the following example:

@Bean

public UndertowServletWebServerFactory servletWebServerFactory() {

 UndertowServletWebServerFactory factory = new UndertowServletWebServerFactory();

 factory.addBuilderCustomizers(new UndertowBuilderCustomizer() {

 @Override

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 256

 public void customize(Builder builder) {

 builder.addHttpListener(8080, "0.0.0.0");

 }

 });

 return factory;

}

74.16 Create WebSocket Endpoints Using @ServerEndpoint

If you want to use @ServerEndpoint in a Spring Boot application that used an embedded container,
you must declare a single ServerEndpointExporter @Bean, as shown in the following example:

@Bean

public ServerEndpointExporter serverEndpointExporter() {

 return new ServerEndpointExporter();

}

The bean shown in the preceding example registers any @ServerEndpoint annotated beans with
the underlying WebSocket container. When deployed to a standalone servlet container, this role is
performed by a servlet container initializer, and the ServerEndpointExporter bean is not required.

74.17 Enable HTTP Response Compression

HTTP response compression is supported by Jetty, Tomcat, and Undertow. It can be enabled in
application.properties, as follows:

server.compression.enabled=true

By default, responses must be at least 2048 bytes in length for compression to be performed. You can
configure this behavior by setting the server.compression.min-response-size property.

By default, responses are compressed only if their content type is one of the following:

• text/html

• text/xml

• text/plain

• text/css

You can configure this behavior by setting the server.compression.mime-types property.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 257

75. Spring MVC

Spring Boot has a number of starters that include Spring MVC. Note that some starters include a
dependency on Spring MVC rather than include it directly. This section answers common questions
about Spring MVC and Spring Boot.

75.1 Write a JSON REST Service

Any Spring @RestController in a Spring Boot application should render JSON response by default
as long as Jackson2 is on the classpath, as shown in the following example:

@RestController

public class MyController {

 @RequestMapping("/thing")

 public MyThing thing() {

 return new MyThing();

 }

}

As long as MyThing can be serialized by Jackson2 (true for a normal POJO or Groovy object), then
localhost:8080/thing serves a JSON representation of it by default. Note that, in a browser, you
might sometimes see XML responses, because browsers tend to send accept headers that prefer XML.

75.2 Write an XML REST Service

If you have the Jackson XML extension (jackson-dataformat-xml) on the classpath, you can use
it to render XML responses. The previous example that we used for JSON would work. To use the
Jackson XML renderer, add the following dependency to your project:

<dependency>

 <groupId>com.fasterxml.jackson.dataformat</groupId>

 <artifactId>jackson-dataformat-xml</artifactId>

</dependency>

You may also want to add a dependency on Woodstox. It is faster than the default StAX implementation
provided by the JDK and also adds pretty-print support and improved namespace handling. The
following listing shows how to include a dependency on Woodstox:

<dependency>

 <groupId>org.codehaus.woodstox</groupId>

 <artifactId>woodstox-core-asl</artifactId>

</dependency>

If Jackson’s XML extension is not available, JAXB (provided by default in the JDK) is used, with the
additional requirement of having MyThing annotated as @XmlRootElement, as shown in the following
example:

@XmlRootElement

public class MyThing {

 private String name;

 // .. getters and setters

}

To get the server to render XML instead of JSON, you might have to send an Accept: text/xml
header (or use a browser).

http://localhost:8080/thing
https://github.com/FasterXML/woodstox

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 258

75.3 Customize the Jackson ObjectMapper

Spring MVC (client and server side) uses HttpMessageConverters to negotiate content conversion
in an HTTP exchange. If Jackson is on the classpath, you already get the default converter(s) provided
by Jackson2ObjectMapperBuilder, an instance of which is auto-configured for you.

The ObjectMapper (or XmlMapper for Jackson XML converter) instance (created by default) has the
following customized properties:

• MapperFeature.DEFAULT_VIEW_INCLUSION is disabled

• DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES is disabled

Spring Boot also has some features to make it easier to customize this behavior.

You can configure the ObjectMapper and XmlMapper instances by using the environment. Jackson
provides an extensive suite of simple on/off features that can be used to configure various aspects of
its processing. These features are described in six enums (in Jackson) that map onto properties in the
environment:

Jackson enum Environment property

com.fasterxml.jackson.databind.DeserializationFeaturespring.jackson.deserialization.<feature_name>=true|

false

com.fasterxml.jackson.core.JsonGenerator.Featurespring.jackson.generator.<feature_name>=true|

false

com.fasterxml.jackson.databind.MapperFeaturespring.jackson.mapper.<feature_name>=true|

false

com.fasterxml.jackson.core.JsonParser.Featurespring.jackson.parser.<feature_name>=true|

false

com.fasterxml.jackson.databind.SerializationFeaturespring.jackson.serialization.<feature_name>=true|

false

com.fasterxml.jackson.annotation.JsonInclude.Includespring.jackson.default-property-

inclusion=always|non_null|

non_absent|non_default|non_empty

For example, to enable pretty print, set
spring.jackson.serialization.indent_output=true. Note that, thanks to the use of relaxed
binding, the case of indent_output does not have to match the case of the corresponding enum
constant, which is INDENT_OUTPUT.

This environment-based configuration is applied to the auto-configured
Jackson2ObjectMapperBuilder bean and applies to any mappers created by using the builder,
including the auto-configured ObjectMapper bean.

The context’s Jackson2ObjectMapperBuilder can be customized by one or more
Jackson2ObjectMapperBuilderCustomizer beans. Such customizer beans can be ordered
(Boot’s own customizer has an order of 0), letting additional customization be applied both before and
after Boot’s customization.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 259

Any beans of type com.fasterxml.jackson.databind.Module are automatically registered
with the auto-configured Jackson2ObjectMapperBuilder and are applied to any ObjectMapper
instances that it creates. This provides a global mechanism for contributing custom modules when you
add new features to your application.

If you want to replace the default ObjectMapper completely, either define a @Bean of
that type and mark it as @Primary or, if you prefer the builder-based approach, define a
Jackson2ObjectMapperBuilder @Bean. Note that, in either case, doing so disables all auto-
configuration of the ObjectMapper.

If you provide any @Beans of type MappingJackson2HttpMessageConverter, they replace the
default value in the MVC configuration. Also, a convenience bean of type HttpMessageConverters is
provided (and is always available if you use the default MVC configuration). It has some useful methods
to access the default and user-enhanced message converters.

See the “Section 75.4, “Customize the @ResponseBody Rendering”” section and the
WebMvcAutoConfiguration source code for more details.

75.4 Customize the @ResponseBody Rendering

Spring uses HttpMessageConverters to render @ResponseBody (or responses from
@RestController). You can contribute additional converters by adding beans of the appropriate type
in a Spring Boot context. If a bean you add is of a type that would have been included by default anyway
(such as MappingJackson2HttpMessageConverter for JSON conversions), it replaces the default
value. A convenience bean of type HttpMessageConverters is provided and is always available if
you use the default MVC configuration. It has some useful methods to access the default and user-
enhanced message converters (For example, it can be useful if you want to manually inject them into
a custom RestTemplate).

As in normal MVC usage, any WebMvcConfigurer beans that you provide can also contribute
converters by overriding the configureMessageConverters method. However, unlike with normal
MVC, you can supply only additional converters that you need (because Spring Boot uses the same
mechanism to contribute its defaults). Finally, if you opt out of the Spring Boot default MVC configuration
by providing your own @EnableWebMvc configuration, you can take control completely and do
everything manually by using getMessageConverters from WebMvcConfigurationSupport.

See the WebMvcAutoConfiguration source code for more details.

75.5 Handling Multipart File Uploads

Spring Boot embraces the Servlet 3 javax.servlet.http.Part API to support uploading files. By
default, Spring Boot configures Spring MVC with a maximum size of 1MB per file and a maximum of
10MB of file data in a single request. You may override these values, the location to which intermediate
data is stored (for example, to the /tmp directory), and the threshold past which data is flushed to disk by
using the properties exposed in the MultipartProperties class. For example, if you want to specify
that files be unlimited, set the spring.servlet.multipart.max-file-size property to -1.

The multipart support is helpful when you want to receive multipart encoded file data as a
@RequestParam-annotated parameter of type MultipartFile in a Spring MVC controller handler
method.

See the MultipartAutoConfiguration source for more details.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/servlet/WebMvcAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/servlet/WebMvcAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/servlet/MultipartAutoConfiguration.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 260

75.6 Switch Off the Spring MVC DispatcherServlet

Spring Boot wants to serve all content from the root of your application (/) down. If you would rather
map your own servlet to that URL, you can do it. However, you may lose some of the other Boot MVC
features. To add your own servlet and map it to the root resource, declare a @Bean of type Servlet
and give it the special bean name, dispatcherServlet. (You can also create a bean of a different
type with that name if you want to switch it off and not replace it.)

75.7 Switch off the Default MVC Configuration

The easiest way to take complete control over MVC configuration is to provide your own
@Configuration with the @EnableWebMvc annotation. Doing so leaves all MVC configuration in your
hands.

75.8 Customize ViewResolvers

A ViewResolver is a core component of Spring MVC, translating view names in @Controller
to actual View implementations. Note that ViewResolvers are mainly used in UI applications,
rather than REST-style services (a View is not used to render a @ResponseBody). There are many
implementations of ViewResolver to choose from, and Spring on its own is not opinionated about
which ones you should use. Spring Boot, on the other hand, installs one or two for you, depending on
what it finds on the classpath and in the application context. The DispatcherServlet uses all the
resolvers it finds in the application context, trying each one in turn until it gets a result, so, if you add
your own, you have to be aware of the order and in which position your resolver is added.

WebMvcAutoConfiguration adds the following ViewResolvers to your context:

• An InternalResourceViewResolver named ‘defaultViewResolver’. This one locates physical
resources that can be rendered by using the DefaultServlet (including static resources and JSP
pages, if you use those). It applies a prefix and a suffix to the view name and then looks for a
physical resource with that path in the servlet context (the defaults are both empty but are accessible
for external configuration through spring.mvc.view.prefix and spring.mvc.view.suffix).
You can override it by providing a bean of the same type.

• A BeanNameViewResolver named ‘beanNameViewResolver’. This is a useful member of the view
resolver chain and picks up any beans with the same name as the View being resolved. It should
not be necessary to override or replace it.

• A ContentNegotiatingViewResolver named ‘viewResolver’ is added only if there are actually
beans of type View present. This is a ‘master’ resolver, delegating to all the others and
attempting to find a match to the ‘Accept’ HTTP header sent by the client. There is a useful
blog about ContentNegotiatingViewResolver that you might like to study to learn more,
and you might also look at the source code for detail. You can switch off the auto-configured
ContentNegotiatingViewResolver by defining a bean named ‘viewResolver’.

• If you use Thymeleaf, you also have a ThymeleafViewResolver named ‘thymeleafViewResolver’.
It looks for resources by surrounding the view name with a prefix and suffix. The prefix is
spring.thymeleaf.prefix, and the suffix is spring.thymeleaf.suffix. The values of
the prefix and suffix default to ‘classpath:/templates/’ and ‘.html’, respectively. You can override
ThymeleafViewResolver by providing a bean of the same name.

• If you use FreeMarker, you also have a FreeMarkerViewResolver named
‘freeMarkerViewResolver’. It looks for resources in a loader path (which is externalized to

https://spring.io/blog/2013/06/03/content-negotiation-using-views

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 261

spring.freemarker.templateLoaderPath and has a default value of ‘classpath:/templates/’)
by surrounding the view name with a prefix and a suffix. The prefix is externalized to
spring.freemarker.prefix, and the suffix is externalized to spring.freemarker.suffix.
The default values of the prefix and suffix are empty and ‘.ftl’, respectively. You can override
FreeMarkerViewResolver by providing a bean of the same name.

• If you use Groovy templates (actually, if groovy-templates is on your classpath), you also
have a GroovyMarkupViewResolver named ‘groovyMarkupViewResolver’. It looks for resources
in a loader path by surrounding the view name with a prefix and suffix (externalized to
spring.groovy.template.prefix and spring.groovy.template.suffix). The prefix and
suffix have default values of ‘classpath:/templates/’ and ‘.tpl’, respectively. You can override
GroovyMarkupViewResolver by providing a bean of the same name.

For more detail, see the following sections:

• WebMvcAutoConfiguration

• ThymeleafAutoConfiguration

• FreeMarkerAutoConfiguration

• GroovyTemplateAutoConfiguration

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/servlet/WebMvcAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/thymeleaf/ThymeleafAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/freemarker/FreeMarkerAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/groovy/template/GroovyTemplateAutoConfiguration.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 262

76. HTTP Clients

Spring Boot offers a number of starters that work with HTTP clients. This section answers questions
related to using them.

76.1 Configure RestTemplate to Use a Proxy

As described in Section 33.1, “RestTemplate Customization”, you can use a
RestTemplateCustomizer with RestTemplateBuilder to build a customized RestTemplate.
This is the recommended approach for creating a RestTemplate configured to use a proxy.

The exact details of the proxy configuration depend on the underlying client request factory that is
being used. The following example configures HttpComponentsClientRequestFactory with an
HttpClient that uses a proxy for all hosts except 192.168.0.5:

static class ProxyCustomizer implements RestTemplateCustomizer {

 @Override

 public void customize(RestTemplate restTemplate) {

 HttpHost proxy = new HttpHost("proxy.example.com");

 HttpClient httpClient = HttpClientBuilder.create()

 .setRoutePlanner(new DefaultProxyRoutePlanner(proxy) {

 @Override

 public HttpHost determineProxy(HttpHost target,

 HttpRequest request, HttpContext context)

 throws HttpException {

 if (target.getHostName().equals("192.168.0.5")) {

 return null;

 }

 return super.determineProxy(target, request, context);

 }

 }).build();

 restTemplate.setRequestFactory(

 new HttpComponentsClientHttpRequestFactory(httpClient));

 }

}

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 263

77. Logging

Spring Boot has no mandatory logging dependency, except for the Commons Logging API, of which
there are many implementations to choose from. To use Logback, you need to include it and jcl-
over-slf4j (which implements the Commons Logging API) on the classpath. The simplest way to
do that is through the starters, which all depend on spring-boot-starter-logging. For a web
application, you need only spring-boot-starter-web, since it depends transitively on the logging
starter. If you use Maven, the following dependency adds logging for you:

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

</dependency>

Spring Boot has a LoggingSystem abstraction that attempts to configure logging based on the content
of the classpath. If Logback is available, it is the first choice.

If the only change you need to make to logging is to set the levels of various loggers, you can do so in
application.properties by using the "logging.level" prefix, as shown in the following example:

logging.level.org.springframework.web=DEBUG

logging.level.org.hibernate=ERROR

You can also set the location of a file to which to write the log (in addition to the console) by using
"logging.file".

To configure the more fine-grained settings of a logging system, you need to use the native configuration
format supported by the LoggingSystem in question. By default, Spring Boot picks up the native
configuration from its default location for the system (such as classpath:logback.xml for Logback),
but you can set the location of the config file by using the "logging.config" property.

77.1 Configure Logback for Logging

If you put a logback.xml in the root of your classpath, it is picked up from there (or from logback-
spring.xml, to take advantage of the templating features provided by Boot). Spring Boot provides
a default base configuration that you can include if you want to set levels, as shown in the following
example:

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <include resource="org/springframework/boot/logging/logback/base.xml"/>

 <logger name="org.springframework.web" level="DEBUG"/>

</configuration>

If you look at base.xml in the spring-boot jar, you can see that it uses some useful System properties
that the LoggingSystem takes care of creating for you:

• ${PID}: The current process ID.

• ${LOG_FILE}: Whether logging.file was set in Boot’s external configuration.

• ${LOG_PATH}: Whether logging.path (representing a directory for log files to live in) was set in
Boot’s external configuration.

• ${LOG_EXCEPTION_CONVERSION_WORD}: Whether logging.exception-conversion-word
was set in Boot’s external configuration.

http://logback.qos.ch

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 264

Spring Boot also provides some nice ANSI color terminal output on a console (but not in a log file) by
using a custom Logback converter. See the default base.xml configuration for details.

If Groovy is on the classpath, you should be able to configure Logback with logback.groovy as well.
If present, this setting is given preference.

Configure Logback for File-only Output

If you want to disable console logging and write output only to a file, you need a custom logback-
spring.xml that imports file-appender.xml but not console-appender.xml, as shown in the
following example:

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <include resource="org/springframework/boot/logging/logback/defaults.xml" />

 <property name="LOG_FILE" value="${LOG_FILE:-${LOG_PATH:-${LOG_TEMP:-${java.io.tmpdir:-/

tmp}}/}spring.log}"/>

 <include resource="org/springframework/boot/logging/logback/file-appender.xml" />

 <root level="INFO">

 <appender-ref ref="FILE" />

 </root>

</configuration>

You also need to add logging.file to your application.properties, as shown in the following
example:

logging.file=myapplication.log

77.2 Configure Log4j for Logging

Spring Boot supports Log4j 2 for logging configuration if it is on the classpath. If you use the starters for
assembling dependencies, you have to exclude Logback and then include log4j 2 instead. If you do not
use the starters, you need to provide (at least) jcl-over-slf4j in addition to Log4j 2.

The simplest path is probably through the starters, even though it requires some jiggling with excludes.
The following example shows how to set up the starters in Maven:

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

</dependency>

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter</artifactId>

 <exclusions>

 <exclusion>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-logging</artifactId>

 </exclusion>

 </exclusions>

</dependency>

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-log4j2</artifactId>

</dependency>

Note

The Log4j starters gather together the dependencies for common logging requirements (such
as having Tomcat use java.util.logging but configuring the output using Log4j 2). See the
Actuator Log4j 2 samples for more detail and to see it in action.

http://logging.apache.org/log4j/2.x
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-samples/spring-boot-sample-actuator-log4j2

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 265

Note

To ensure that debug logging performed using java.util.logging is routed into Log4j
2, configure its JDK logging adapter by setting the java.util.logging.manager system
property to org.apache.logging.log4j.jul.LogManager.

Use YAML or JSON to Configure Log4j 2

In addition to its default XML configuration format, Log4j 2 also supports YAML and JSON configuration
files. To configure Log4j 2 to use an alternative configuration file format, add the appropriate
dependencies to the classpath and name your configuration files to match your chosen file format, as
shown in the following example:

Format Dependencies File names

YAML com.fasterxml.jackson.core:jackson-databind

com.fasterxml.jackson.dataformat:jackson-dataformat-

yaml

log4j2.yaml

log4j2.yml

JSON com.fasterxml.jackson.core:jackson-databind log4j2.json

log4j2.jsn

https://logging.apache.org/log4j/2.0/log4j-jul/index.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 266

78. Data Access

Spring Boot includes a number of starters for working with data sources. This section answers questions
related to doing so.

78.1 Configure a Custom DataSource

To configure your own DataSource, define a @Bean of that type in your configuration. Spring Boot
reuses your DataSource anywhere one is required, including database initialization. If you need to
externalize some settings, you can bind your DataSource to the environment (see “the section called
“Third-party Configuration””).

The following example shows how to define a data source in a bean:

@Bean

@ConfigurationProperties(prefix="app.datasource")

public DataSource dataSource() {

 return new FancyDataSource();

}

The following example shows how to define a data source by setting properties:

app.datasource.url=jdbc:h2:mem:mydb

app.datasource.username=sa

app.datasource.pool-size=30

Assuming that your FancyDataSource has regular JavaBean properties for the URL, the username,
and the pool size, these settings are bound automatically before the DataSource is made available
to other components. The regular database initialization also happens (so the relevant sub-set of
spring.datasource.* can still be used with your custom configuration).

You can apply the same principle if you configure a custom JNDI DataSource, as shown in the following
example:

@Bean(destroyMethod="")

@ConfigurationProperties(prefix="app.datasource")

public DataSource dataSource() throws Exception {

 JndiDataSourceLookup dataSourceLookup = new JndiDataSourceLookup();

 return dataSourceLookup.getDataSource("java:comp/env/jdbc/YourDS");

}

Spring Boot also provides a utility builder class, called DataSourceBuilder, that can be used to create
one of the standard data sources (if it is on the classpath). The builder can detect the one to use based
on what’s available on the classpath. It also auto-detects the driver based on the JDBC URL.

The following example shows how to create a data source by using a DataSourceBuilder:

@Bean

@ConfigurationProperties("app.datasource")

public DataSource dataSource() {

 return DataSourceBuilder.create().build();

}

To run an app with that DataSource, all you need is the connection information. Pool-specific settings
can also be provided. Check the implementation that is going to be used at runtime for more details.

The following example shows how to define a JDBC data source by setting properties:

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 267

app.datasource.url=jdbc:mysql://localhost/test

app.datasource.username=dbuser

app.datasource.password=dbpass

app.datasource.pool-size=30

However, there is a catch. Because the actual type of the connection pool is not exposed, no keys
are generated in the metadata for your custom DataSource and no completion is available in your
IDE (because the DataSource interface exposes no properties). Also, if you happen to have Hikari on
the classpath, this basic setup does not work, because Hikari has no url property (but does have a
jdbcUrl property). In that case, you must rewrite your configuration as follows:

app.datasource.jdbc-url=jdbc:mysql://localhost/test

app.datasource.username=dbuser

app.datasource.password=dbpass

app.datasource.maximum-pool-size=30

You can fix that by forcing the connection pool to use and return a dedicated implementation rather than
DataSource. You cannot change the implementation at runtime, but the list of options will be explicit.

The following example shows how create a HikariDataSource with DataSourceBuilder:

@Bean

@ConfigurationProperties("app.datasource")

public HikariDataSource dataSource() {

 return DataSourceBuilder.create().type(HikariDataSource.class).build();

}

You can even go further by leveraging what DataSourceProperties does for you — that is, by
providing a default embedded database with a sensible username and password if no URL is provided.
You can easily initialize a DataSourceBuilder from the state of any DataSourceProperties
object, so you could also inject the DataSource that Spring Boot creates automatically. However, that
would split your configuration into two namespaces: url, username, password, type, and driver
on spring.datasource and the rest on your custom namespace (app.datasource). To avoid that,
you can redefine a custom DataSourceProperties on your custom namespace, as shown in the
following example:

@Bean

@Primary

@ConfigurationProperties("app.datasource")

public DataSourceProperties dataSourceProperties() {

 return new DataSourceProperties();

}

@Bean

@ConfigurationProperties("app.datasource")

public HikariDataSource dataSource(DataSourceProperties properties) {

 return properties.initializeDataSourceBuilder().type(HikariDataSource.class)

 .build();

}

This setup puts you in sync with what Spring Boot does for you by default, except that a dedicated
connection pool is chosen (in code) and its settings are exposed in the same namespace. Because
DataSourceProperties is taking care of the url/jdbcUrl translation for you, you can configure
it as follows:

app.datasource.url=jdbc:mysql://localhost/test

app.datasource.username=dbuser

app.datasource.password=dbpass

app.datasource.maximum-pool-size=30

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 268

Note

Because your custom configuration chooses to go with Hikari, app.datasource.type has no
effect. In practice, the builder is initialized with whatever value you might set there and then
overridden by the call to .type().

See “Section 29.1, “Configure a DataSource”” in the “Spring Boot features” section and the
DataSourceAutoConfiguration class for more details.

78.2 Configure Two DataSources

If you need to configure multiple data sources, you can apply the same tricks that are described in the
previous section. You must, however, mark one of the DataSource instances as @Primary, because
various auto-configurations down the road expect to be able to get one by type.

If you create your own DataSource, the auto-configuration backs off. In the following example, we
provide the exact same feature set as the auto-configuration provides on the primary data source:

@Bean

@Primary

@ConfigurationProperties("app.datasource.first")

public DataSourceProperties firstDataSourceProperties() {

 return new DataSourceProperties();

}

@Bean

@Primary

@ConfigurationProperties("app.datasource.first")

public DataSource firstDataSource() {

 return firstDataSourceProperties().initializeDataSourceBuilder().build();

}

@Bean

@ConfigurationProperties("app.datasource.second")

public BasicDataSource secondDataSource() {

 return DataSourceBuilder.create().type(BasicDataSource.class).build();

}

Tip

firstDataSourceProperties has to be flagged as @Primary so that the database initializer
feature uses your copy (if you use the initializer).

Both data sources are also bound for advanced customizations. For instance, you could configure them
as follows:

app.datasource.first.type=com.zaxxer.hikari.HikariDataSource

app.datasource.first.maximum-pool-size=30

app.datasource.second.url=jdbc:mysql://localhost/test

app.datasource.second.username=dbuser

app.datasource.second.password=dbpass

app.datasource.second.max-total=30

You can apply the same concept to the secondary DataSource as well, as shown in the following
example:

@Bean

@Primary

@ConfigurationProperties("app.datasource.first")

public DataSourceProperties firstDataSourceProperties() {

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/DataSourceAutoConfiguration.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 269

 return new DataSourceProperties();

}

@Bean

@Primary

@ConfigurationProperties("app.datasource.first")

public DataSource firstDataSource() {

 return firstDataSourceProperties().initializeDataSourceBuilder().build();

}

@Bean

@ConfigurationProperties("app.datasource.second")

public DataSourceProperties secondDataSourceProperties() {

 return new DataSourceProperties();

}

@Bean

@ConfigurationProperties("app.datasource.second")

public DataSource secondDataSource() {

 return secondDataSourceProperties().initializeDataSourceBuilder().build();

}

The preceding example configures two data sources on custom namespaces with the same logic as
Spring Boot would use in auto-configuration.

78.3 Use Spring Data Repositories

Spring Data can create implementations of @Repository interfaces of various flavors. Spring Boot
handles all of that for you, as long as those @Repositories are included in the same package (or a
sub-package) of your @EnableAutoConfiguration class.

For many applications, all you need is to put the right Spring Data dependencies on your classpath (there
is a spring-boot-starter-data-jpa for JPA and a spring-boot-starter-data-mongodb
for Mongodb) and create some repository interfaces to handle your @Entity objects. Examples are in
the JPA sample and the Mongodb sample.

Spring Boot tries to guess the location of your @Repository definitions, based on the
@EnableAutoConfiguration it finds. To get more control, use the @EnableJpaRepositories
annotation (from Spring Data JPA).

For more about Spring Data, see the Spring Data project page.

78.4 Separate @Entity Definitions from Spring Configuration

Spring Boot tries to guess the location of your @Entity definitions, based on the
@EnableAutoConfiguration it finds. To get more control, you can use the @EntityScan
annotation, as shown in the following example:

@Configuration

@EnableAutoConfiguration

@EntityScan(basePackageClasses=City.class)

public class Application {

 //...

}

78.5 Configure JPA Properties

Spring Data JPA already provides some vendor-independent configuration options (such as those
for SQL logging), and Spring Boot exposes those options and a few more for Hibernate as external

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-samples/spring-boot-sample-data-jpa
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-samples/spring-boot-sample-data-mongodb
http://projects.spring.io/spring-data/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 270

configuration properties. Some of them are automatically detected according to the context so you
should not have to set them.

The spring.jpa.hibernate.ddl-auto is a special case, because, depending on runtime
conditions, it has different defaults. If an embedded database is used and no schema manager (such
as Liquibase or Flyway) is handling the DataSource, it defaults to create-drop. In all other cases,
it defaults to none.

The dialect to use is also automatically detected based on the current DataSource, but you can set
spring.jpa.database yourself if you want to be explicit and bypass that check on startup.

Note

Specifying a database leads to the configuration of a well-defined Hibernate dialect. Several
databases have more than one Dialect, and this may not suit your needs. In that case, you
can either set spring.jpa.database to default to let Hibernate figure things out or set the
dialect by setting the spring.jpa.database-platform property.

The most common options to set are shown in the following example:

spring.jpa.hibernate.naming.physical-strategy=com.example.MyPhysicalNamingStrategy

spring.jpa.show-sql=true

In addition, all properties in spring.jpa.properties.* are passed through as normal JPA
properties (with the prefix stripped) when the local EntityManagerFactory is created.

Tip

If you need to apply advanced customization to Hibernate properties, consider registering
a HibernatePropertiesCustomizer bean that will be invoked prior to creating the
EntityManagerFactory. This takes precedence to anything that is applied by the auto-
configuration.

78.6 Configure Hibernate Naming Strategy

Hibernate uses two different naming strategies to map names from the object model to the
corresponding database names. The fully qualified class name of the physical and the implicit strategy
implementations can be configured by setting the spring.jpa.hibernate.naming.physical-
strategy and spring.jpa.hibernate.naming.implicit-strategy properties, respectively.
Alternatively, if ImplicitNamingStrategy or PhysicalNamingStrategy beans are available in
the application context, Hibernate will be automatically configured to use them.

By default, Spring Boot configures the physical naming strategy with
SpringPhysicalNamingStrategy. This implementation provides the same table structure as
Hibernate 4: all dots are replaced by underscores and camel casing is replaced by underscores as well.
By default, all table names are generated in lower case, but it is possible to override that flag if your
schema requires it.

For example, a TelephoneNumber entity is mapped to the telephone_number table.

If you prefer to use Hibernate 5’s default instead, set the following property:

spring.jpa.hibernate.naming.physical-

strategy=org.hibernate.boot.model.naming.PhysicalNamingStrategyStandardImpl

http://docs.jboss.org/hibernate/orm/5.2/userguide/html_single/Hibernate_User_Guide.html#naming

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 271

Alternatively, you can configure the following bean:

@Bean

public PhysicalNamingStrategy physicalNamingStrategy() {

 return new PhysicalNamingStrategyStandardImpl();

}

See HibernateJpaAutoConfiguration and JpaBaseConfiguration for more details.

78.7 Use a Custom EntityManagerFactory

To take full control of the configuration of the EntityManagerFactory, you need to add a @Bean
named ‘entityManagerFactory’. Spring Boot auto-configuration switches off its entity manager in the
presence of a bean of that type.

78.8 Use Two EntityManagers

Even if the default EntityManagerFactory works fine, you need to define a new one. Otherwise,
the presence of the second bean of that type switches off the default. To make it easy to do, you
can use the convenient EntityManagerBuilder provided by Spring Boot. Alternatively, you can
just the LocalContainerEntityManagerFactoryBean directly from Spring ORM, as shown in the
following example:

// add two data sources configured as above

@Bean

public LocalContainerEntityManagerFactoryBean customerEntityManagerFactory(

 EntityManagerFactoryBuilder builder) {

 return builder

 .dataSource(customerDataSource())

 .packages(Customer.class)

 .persistenceUnit("customers")

 .build();

}

@Bean

public LocalContainerEntityManagerFactoryBean orderEntityManagerFactory(

 EntityManagerFactoryBuilder builder) {

 return builder

 .dataSource(orderDataSource())

 .packages(Order.class)

 .persistenceUnit("orders")

 .build();

}

The configuration above almost works on its own. To complete the picture, you need to configure
TransactionManagers for the two EntityManagers as well. If you mark one of them as @Primary,
it could be picked up by the default JpaTransactionManager in Spring Boot. The other would have
to be explicitly injected into a new instance. Alternatively, you might be able to use a JTA transaction
manager that spans both.

If you use Spring Data, you need to configure @EnableJpaRepositories accordingly, as shown in
the following example:

@Configuration

@EnableJpaRepositories(basePackageClasses = Customer.class,

 entityManagerFactoryRef = "customerEntityManagerFactory")

public class CustomerConfiguration {

 ...

}

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/HibernateJpaAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/JpaBaseConfiguration.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 272

@Configuration

@EnableJpaRepositories(basePackageClasses = Order.class,

 entityManagerFactoryRef = "orderEntityManagerFactory")

public class OrderConfiguration {

 ...

}

78.9 Use a Traditional persistence.xml File

Spring does not require the use of XML to configure the JPA provider, and Spring Boot assumes you
want to take advantage of that feature. If you prefer to use persistence.xml, you need to define your
own @Bean of type LocalEntityManagerFactoryBean (with an ID of ‘entityManagerFactory’) and
set the persistence unit name there.

See JpaBaseConfiguration for the default settings.

78.10 Use Spring Data JPA and Mongo Repositories

Spring Data JPA and Spring Data Mongo can both automatically create Repository implementations
for you. If they are both present on the classpath, you might have to do some extra configuration to tell
Spring Boot which repositories to create. The most explicit way to do that is to use the standard Spring
Data @EnableJpaRepositories and @EnableMongoRepositories annotations and provide the
location of your Repository interfaces.

There are also flags (spring.data.*.repositories.enabled and
spring.data.*.repositories.type) that you can use to switch the auto-configured repositories
on and off in external configuration. Doing so is useful, for instance, in case you want to switch off the
Mongo repositories and still use the auto-configured MongoTemplate.

The same obstacle and the same features exist for other auto-configured Spring Data repository types
(Elasticsearch, Solr, and others). To work with them, change the names of the annotations and flags
accordingly.

78.11 Expose Spring Data Repositories as REST Endpoint

Spring Data REST can expose the Repository implementations as REST endpoints for you, provided
Spring MVC has been enabled for the application.

Spring Boot exposes a set of useful properties (from the spring.data.rest namespace) that
customize the RepositoryRestConfiguration. If you need to provide additional customization,
you should use a RepositoryRestConfigurer bean.

Note

If you do not specify any order on your custom RepositoryRestConfigurer, it runs after the
one Spring Boot uses internally. If you need to specify an order, make sure it is higher than 0.

78.12 Configure a Component that is Used by JPA

If you want to configure a component that JPA uses, then you need to ensure that the component is
initialized before JPA. When the component is auto-configured, Spring Boot takes care of this for you.
For example, when Flyway is auto-configured, Hibernate is configured to depend upon Flyway so that
Flyway has a chance to initialize the database before Hibernate tries to use it.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/JpaBaseConfiguration.java
http://docs.spring.io/spring-data/rest/docs/current/api/org/springframework/data/rest/core/config/RepositoryRestConfiguration.html
http://docs.spring.io/spring-data/rest/docs/current/api/org/springframework/data/rest/webmvc/config/RepositoryRestConfigurer.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 273

If you are configuring a component yourself, you can use an
EntityManagerFactoryDependsOnPostProcessor subclass as a convenient way of setting
up the necessary dependencies. For example, if you use Hibernate Search with Elasticsearch as
its index manager, any EntityManagerFactory beans must be configured to depend on the
elasticsearchClient bean, as shown in the following example:

/**

 * {@link EntityManagerFactoryDependsOnPostProcessor} that ensures that

 * {@link EntityManagerFactory} beans depend on the {@code elasticsearchClient} bean.

 */

@Configuration

static class ElasticsearchJpaDependencyConfiguration

 extends EntityManagerFactoryDependsOnPostProcessor {

 ElasticsearchJpaDependencyConfiguration() {

 super("elasticsearchClient");

 }

}

78.13 Configure jOOQ with Two DataSources

If you need to use jOOQ with multiple data sources, you should create your own DSLContext for each
one. Refer to JooqAutoConfiguration for more details.

Tip

In particular, JooqExceptionTranslator and SpringTransactionProvider can be
reused to provide similar features to what the auto-configuration does with a single DataSource.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jooq/JooqAutoConfiguration.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 274

79. Database Initialization

An SQL database can be initialized in different ways depending on what your stack is. Of course, you
can also do it manually, provided the database is a separate process.

79.1 Initialize a Database Using JPA

JPA has features for DDL generation, and these can be set up to run on startup against the database.
This is controlled through two external properties:

• spring.jpa.generate-ddl (boolean) switches the feature on and off and is vendor independent.

• spring.jpa.hibernate.ddl-auto (enum) is a Hibernate feature that controls the behavior in a
more fine-grained way. This feature is described in more detail later in this guide.

79.2 Initialize a Database Using Hibernate

You can set spring.jpa.hibernate.ddl-auto explicitly and the standard Hibernate property
values are none, validate, update, create, and create-drop. Spring Boot chooses a default
value for you based on whether it thinks your database is embedded. It defaults to create-drop if no
schema manager has been detected or none in all other cases. An embedded database is detected
by looking at the Connection type. hsqldb, h2, and derby are embedded, and others are not. Be
careful when switching from in-memory to a ‘real’ database that you do not make assumptions about
the existence of the tables and data in the new platform. You either have to set ddl-auto explicitly or
use one of the other mechanisms to initialize the database.

Note

You can output the schema creation by enabling the org.hibernate.SQL logger. This is done
for you automatically if you enable the debug mode.

In addition, a file named import.sql in the root of the classpath is executed on startup if Hibernate
creates the schema from scratch (that is, if the ddl-auto property is set to create or create-drop).
This can be useful for demos and for testing if you are careful but is probably not something you want
to be on the classpath in production. It is a Hibernate feature (and has nothing to do with Spring).

79.3 Initialize a Database

Spring Boot can automatically create the schema (DDL scripts) of your DataSource

and initialize it (DML scripts). It loads SQL from the standard root classpath locations:
schema.sql and data.sql, respectively. In addition, Spring Boot processes the schema-
${platform}.sql and data-${platform}.sql files (if present), where platform is the value of
spring.datasource.platform. This allows you to switch to database-specific scripts if necessary.
For example, you might choose to set it to the vendor name of the database (hsqldb, h2, oracle,
mysql, postgresql, and so on).

Spring Boot automatically creates the schema of an embedded DataSource. This behavior can be
customized by using the spring.datasource.initialization-mode property (and it can also be
always or never).

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 275

By default, Spring Boot enables the fail-fast feature of the Spring JDBC initializer. This means that,
if the scripts cause exceptions, the application fails to start. You can tune that behavior by setting
spring.datasource.continue-on-error.

Note

In a JPA-based app, you can choose to let Hibernate create the schema or use schema.sql,
but you cannot do both. Make sure to disable spring.jpa.hibernate.ddl-auto if you use
schema.sql.

79.4 Initialize a Spring Batch Database

If you use Spring Batch, it comes pre-packaged with SQL initialization scripts for most popular database
platforms. Spring Boot can detect your database type and execute those scripts on startup. If you use an
embedded database, this happens by default. You can also enable it for any database type, as shown
in the following example:

spring.batch.initialize-schema=always

You can also switch off the initialization explicitly by setting spring.batch.initialize-
schema=never.

79.5 Use a Higher-level Database Migration Tool

Spring Boot supports two higher-level migration tools: Flyway and Liquibase.

Execute Flyway Database Migrations on Startup

To automatically run Flyway database migrations on startup, add the org.flywaydb:flyway-core
to your classpath.

The migrations are scripts in the form V<VERSION>__<NAME>.sql (with <VERSION> an underscore-
separated version, such as ‘1’ or ‘2_1’). By default, they are in a folder called classpath:db/
migration, but you can modify that location by setting spring.flyway.locations. You can also
add a special {vendor} placeholder to use vendor-specific scripts. Assume the following:

spring.flyway.locations=db/migration/{vendor}

Rather than using db/migration, the preceding configuration sets the folder to use according to the
type of the database (such as db/migration/mysql for MySQL). The list of supported databases is
available in DatabaseDriver.

See the Flyway class from flyway-core for details of available settings such as schemas and others.
In addition, Spring Boot provides a small set of properties (in FlywayProperties) that can be used
to disable the migrations or switch off the location checking. Spring Boot calls Flyway.migrate()
to perform the database migration. If you would like more control, provide a @Bean that implements
FlywayMigrationStrategy.

Flyway supports SQL and Java callbacks. To use SQL-based callbacks, place the callback scripts
in the classpath:db/migration folder. To use Java-based callbacks, create one or more beans
that implement FlywayCallback or, preferably, extend BaseFlywayCallback. Any such beans
are automatically registered with Flyway. They can be ordered by using @Order or by implementing
Ordered.

http://flywaydb.org/
http://www.liquibase.org/
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/jdbc/DatabaseDriver.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/flyway/FlywayProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/flyway/FlywayMigrationStrategy.java
http://flywaydb.org/documentation/callbacks.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 276

By default, Flyway autowires the (@Primary) DataSource in your context and uses that
for migrations. If you like to use a different DataSource, you can create one and mark
its @Bean as @FlywayDataSource. If you do so and want two data sources, remember
to create another one and mark it as @Primary. Alternatively, you can use Flyway’s native
DataSource by setting spring.flyway.[url,user,password] in external properties. Setting
either spring.flyway.url or spring.flyway.user is sufficient to cause Flyway to use its
own DataSource. If any of the three properties has not be set, the value of its equivalent
spring.datasource property will be used.

There is a Flyway sample so that you can see how to set things up.

You can also use Flyway to provide data for specific scenarios. For example, you can place test-
specific migrations in src/test/resources and they are run only when your application starts for
testing. Also, you can use profile-specific configuration to customize spring.flyway.locations
so that certain migrations run only when a particular profile is active. For example, in application-
dev.properties, you might specify the following setting:

spring.flyway.locations=classpath:/db/migration,classpath:/dev/db/migration

With that setup, migrations in dev/db/migration run only when the dev profile is active.

Execute Liquibase Database Migrations on Startup

To automatically run Liquibase database migrations on startup, add the
org.liquibase:liquibase-core to your classpath.

By default, the master change log is read from db/changelog/db.changelog-master.yaml, but
you can change the location by setting spring.liquibase.change-log. In addition to YAML,
Liquibase also supports JSON, XML, and SQL change log formats.

By default, Liquibase autowires the (@Primary) DataSource in your context and uses that
for migrations. If you need to use a different DataSource, you can create one and mark its
@Bean as @LiquibaseDataSource. If you do so and you want two data sources, remember
to create another one and mark it as @Primary. Alternatively, you can use Liquibase’s native
DataSource by setting spring.liquibase.[url,user,password] in external properties. Setting
either spring.liquibase.url or spring.liquibase.user is sufficient to cause Liquibase to
use its own DataSource. If any of the three properties has not be set, the value of its equivalent
spring.datasource property will be used.

See LiquibaseProperties for details about available settings such as contexts, the default schema,
and others.

There is a Liquibase sample so that you can see how to set things up.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-samples/spring-boot-sample-flyway
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/liquibase/LiquibaseProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-samples/spring-boot-sample-liquibase

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 277

80. Messaging

Spring Boot offers a number of starters that include messaging. This section answers questions that
arise from using messaging with Spring Boot.

80.1 Disable Transacted JMS Session

If your JMS broker does not support transacted sessions, you have to disable the support
of transactions altogether. If you create your own JmsListenerContainerFactory, there
is nothing to do, since, by default it cannot be transacted. If you want to use the
DefaultJmsListenerContainerFactoryConfigurer to reuse Spring Boot’s default, you can
disable transacted sessions, as follows:

@Bean

public DefaultJmsListenerContainerFactory jmsListenerContainerFactory(

 ConnectionFactory connectionFactory,

 DefaultJmsListenerContainerFactoryConfigurer configurer) {

 DefaultJmsListenerContainerFactory listenerFactory =

 new DefaultJmsListenerContainerFactory();

 configurer.configure(listenerFactory, connectionFactory);

 listenerFactory.setTransactionManager(null);

 listenerFactory.setSessionTransacted(false);

 return listenerFactory;

}

The preceding example overrides the default factory, and it should be applied to any other factory that
your application defines, if any.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 278

81. Batch Applications

This section answers questions that arise from using Spring Batch with Spring Boot.

Note

By default, batch applications require a DataSource to store job details. If you want
to deviate from that, you need to implement BatchConfigurer. See The Javadoc of
@EnableBatchProcessing for more details.

For more about Spring Batch, see the Spring Batch project page.

81.1 Execute Spring Batch Jobs on Startup

Spring Batch auto-configuration is enabled by adding @EnableBatchProcessing (from Spring Batch)
somewhere in your context.

By default, it executes all Jobs in the application context on startup (see
JobLauncherCommandLineRunner for details). You can narrow down to a specific job or jobs by
specifying spring.batch.job.names (which takes a comma-separated list of job name patterns).

If the application context includes a JobRegistry, the jobs in spring.batch.job.names are looked
up in the registry instead of being autowired from the context. This is a common pattern with more
complex systems, where multiple jobs are defined in child contexts and registered centrally.

See BatchAutoConfiguration and @EnableBatchProcessing for more details.

http://docs.spring.io/spring-batch/apidocs/org/springframework/batch/core/configuration/annotation/EnableBatchProcessing.html
http://docs.spring.io/spring-batch/apidocs/org/springframework/batch/core/configuration/annotation/EnableBatchProcessing.html
https://projects.spring.io/spring-batch/
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/batch/JobLauncherCommandLineRunner.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/batch/BatchAutoConfiguration.java
https://github.com/spring-projects/spring-batch/blob/master/spring-batch-core/src/main/java/org/springframework/batch/core/configuration/annotation/EnableBatchProcessing.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 279

82. Actuator

Spring Boot includes the Spring Boot Actuator. This section answers questions that often arise from
its use.

82.1 Change the HTTP Port or Address of the Actuator
Endpoints

In a standalone application, the Actuator HTTP port defaults to the same as the main
HTTP port. To make the application listen on a different port, set the external property:
management.server.port. To listen on a completely different network address (such as when you
have an internal network for management and an external one for user applications), you can also set
management.server.address to a valid IP address to which the server is able to bind.

For more detail, see the ManagementServerProperties source code and “Section 50.2,
“Customizing the Management Server Port”” in the “Production-ready features” section.

82.2 Customize the ‘whitelabel’ Error Page

Spring Boot installs a ‘whitelabel’ error page that you see in a browser client if you encounter a server
error (machine clients consuming JSON and other media types should see a sensible response with
the right error code).

Note

Set server.error.whitelabel.enabled=false to switch the default error page off. Doing
so restores the default of the servlet container that you are using. Note that Spring Boot still tries
to resolve the error view, so you should probably add your own error page rather than disabling
it completely.

Overriding the error page with your own depends on the templating technology that you use. For
example, if you use Thymeleaf, you can add an error.html template. If you use FreeMarker, you can
add an error.ftl template. In general, you need a View that resolves with a name of error or a
@Controller that handles the /error path. Unless you replaced some of the default configuration,
you should find a BeanNameViewResolver in your ApplicationContext, so a @Bean named
error would be a simple way of doing that. See ErrorMvcAutoConfiguration for more options.

See also the section on “Error Handling” for details of how to register handlers in the servlet container.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/web/server/ManagementServerProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/servlet/error/ErrorMvcAutoConfiguration.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 280

83. Security

This section addresses questions about security when working with Spring Boot, including questions
that arise from using Spring Security with Spring Boot.

For more about Spring Security, see the Spring Security project page.

83.1 Switch off the Spring Boot Security Configuration

If you define a @Configuration with a WebSecurityConfigurerAdapter in your application, it
switches off the default webapp security settings in Spring Boot.

83.2 Change the AuthenticationManager and Add User
Accounts

If you provide a @Bean of type AuthenticationManager, AuthenticationProvider, or
UserDetailsService, the default @Bean for InMemoryUserDetailsManager is not created, so
you have the full feature set of Spring Security available (such as various authentication options).

The easiest way to add user accounts is to provide your own UserDetailsService bean.

83.3 Enable HTTPS When Running behind a Proxy Server

Ensuring that all your main endpoints are only available over HTTPS is an important chore for
any application. If you use Tomcat as a servlet container, then Spring Boot adds Tomcat’s own
RemoteIpValve automatically if it detects some environment settings, and you should be able to
rely on the HttpServletRequest to report whether it is secure or not (even downstream of a proxy
server that handles the real SSL termination). The standard behavior is determined by the presence or
absence of certain request headers (x-forwarded-for and x-forwarded-proto), whose names
are conventional, so it should work with most front-end proxies. You can switch on the valve by adding
some entries to application.properties, as shown in the following example:

server.tomcat.remote-ip-header=x-forwarded-for

server.tomcat.protocol-header=x-forwarded-proto

(The presence of either of those properties switches on the valve. Alternatively, you can add the
RemoteIpValve by adding a TomcatServletWebServerFactory bean.)

To configure Spring Security to require a secure channel for all (or some) requests, consider adding
your own WebSecurityConfigurerAdapter that adds the following HttpSecurity configuration:

@Configuration

public class SslWebSecurityConfigurerAdapter extends WebSecurityConfigurerAdapter {

 @Override

 protected void configure(HttpSecurity http) throws Exception {

 // Customize the application security

 http.requiresChannel().anyRequest().requiresSecure();

 }

}

http://projects.spring.io/spring-security/
http://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jc-authentication

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 281

84. Hot Swapping

Spring Boot supports hot swapping. This section answers questions about how it works.

84.1 Reload Static Content

There are several options for hot reloading. The recommended approach is to use spring-boot-
devtools, as it provides additional development-time features, such as support for fast application
restarts and LiveReload as well as sensible development-time configuration (such as template caching).
Devtools works by monitoring the classpath for changes. This means that static resource changes must
be "built" for the change to take affect. By default, this happens automatically in Eclipse when you save
your changes. In IntelliJ IDEA, the Make Project command triggers the necessary build. Due to the
default restart exclusions, changes to static resources do not trigger a restart of your application. They
do, however, trigger a live reload.

Alternatively, running in an IDE (especially with debugging on) is a good way to do development (all
modern IDEs allow reloading of static resources and usually also allow hot-swapping of Java class
changes).

Finally, the Maven and Gradle plugins can be configured (see the addResources property) to support
running from the command line with reloading of static files directly from source. You can use that with
an external css/js compiler process if you are writing that code with higher-level tools.

84.2 Reload Templates without Restarting the Container

Most of the templating technologies supported by Spring Boot include a configuration option to disable
caching (described later in this document). If you use the spring-boot-devtools module, these
properties are automatically configured for you at development time.

Thymeleaf Templates

If you use Thymeleaf, set spring.thymeleaf.cache to false. See
ThymeleafAutoConfiguration for other Thymeleaf customization options.

FreeMarker Templates

If you use FreeMarker, set spring.freemarker.cache to false. See
FreeMarkerAutoConfiguration for other FreeMarker customization options.

Groovy Templates

If you use Groovy templates, set spring.groovy.template.cache to false. See
GroovyTemplateAutoConfiguration for other Groovy customization options.

84.3 Fast Application Restarts

The spring-boot-devtools module includes support for automatic application restarts. While not
as fast as technologies such as JRebel it is usually significantly faster than a “cold start”. You should
probably give it a try before investigating some of the more complex reload options discussed later in
this document.

For more details, see the Chapter 20, Developer Tools section.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/thymeleaf/ThymeleafAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/freemarker/FreeMarkerAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/groovy/template/GroovyTemplateAutoConfiguration.java
http://zeroturnaround.com/software/jrebel/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 282

84.4 Reload Java Classes without Restarting the Container

Many modern IDEs (Eclipse, IDEA, and others) support hot swapping of bytecode. Consequently, if
you make a change that does not affect class or method signatures, it should reload cleanly with no
side effects.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 283

85. Build
Spring Boot includes build plugins for Maven and Gradle. This section answers common questions
about these plugins.

85.1 Generate Build Information

Both the Maven plugin and the Gradle plugin allow generating build information containing the
coordinates, name, and version of the project. The plugins can also be configured to add additional
properties through configuration. When such a file is present, Spring Boot auto-configures a
BuildProperties bean.

To generate build information with Maven, add an execution for the build-info goal, as shown in
the following example:

<build>

 <plugins>

 <plugin>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-maven-plugin</artifactId>

 <version>2.0.0.RC1</version>

 <executions>

 <execution>

 <goals>

 <goal>build-info</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 </plugins>

</build>

Tip

See the Spring Boot Maven Plugin documentation for more details.

The following example does the same with Gradle:

springBoot {

 buildInfo()

}

Additional properties can be added by using the DSL, as shown in the following example:

springBoot {

 buildInfo {

 additionalProperties = [

 'acme': 'test'

]

 }

}

85.2 Generate Git Information

Both Maven and Gradle allow generating a git.properties file containing information about the state
of your git source code repository when the project was built.

For Maven users, the spring-boot-starter-parent POM includes a pre-configured plugin to
generate a git.properties file. To use it, add the following declaration to your POM:

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/maven-plugin

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 284

<build>

 <plugins>

 <plugin>

 <groupId>pl.project13.maven</groupId>

 <artifactId>git-commit-id-plugin</artifactId>

 </plugin>

 </plugins>

</build>

Gradle users can achieve the same result by using the gradle-git-properties plugin, as shown
in the following example:

plugins {

 id "com.gorylenko.gradle-git-properties" version "1.4.17"

}

Tip

The commit time in git.properties is expected to match the following format: yyyy-MM-
dd’T’HH:mm:ssZ. This is the default format for both plugins listed above. Using this format lets
the time be parsed into a Date and its format, when serialized to JSON, to be controlled by
Jackson’s date serialization configuration settings.

85.3 Customize Dependency Versions

If you use a Maven build that inherits directly or indirectly from spring-boot-dependencies
(for instance, spring-boot-starter-parent) but you want to override a specific third-party
dependency, you can add appropriate <properties> elements. Browse the spring-boot-
dependencies POM for a complete list of properties. For example, to pick a different slf4j version,
you would add the following property:

<properties>

 <slf4j.version>1.7.5<slf4j.version>

</properties>

Note

Doing so only works if your Maven project inherits (directly or indirectly) from spring-
boot-dependencies. If you have added spring-boot-dependencies in your own
dependencyManagement section with <scope>import</scope>, you have to redefine the
artifact yourself instead of overriding the property.

Warning

Each Spring Boot release is designed and tested against this specific set of third-party
dependencies. Overriding versions may cause compatibility issues.

85.4 Create an Executable JAR with Maven

The spring-boot-maven-plugin can be used to create an executable “fat” JAR. If you use the
spring-boot-starter-parent POM, you can declare the plugin and your jars are repackaged as
follows:

<build>

https://plugins.gradle.org/plugin/com.gorylenko.gradle-git-properties
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-dependencies/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-dependencies/pom.xml

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 285

 <plugins>

 <plugin>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-maven-plugin</artifactId>

 </plugin>

 </plugins>

</build>

If you do not use the parent POM, you can still use the plugin. However, you must additionally add an
<executions> section, as follows:

<build>

 <plugins>

 <plugin>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-maven-plugin</artifactId>

 <version>2.0.0.RC1</version>

 <executions>

 <execution>

 <goals>

 <goal>repackage</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 </plugins>

</build>

See the plugin documentation for full usage details.

85.5 Use a Spring Boot Application as a Dependency

Like a war file, a Spring Boot application is not intended to be used as a dependency. If your application
contains classes that you want to share with other projects, the recommended approach is to move that
code into a separate module. The separate module can then be depended upon by your application
and other projects.

If you cannot rearrange your code as recommended above, Spring Boot’s Maven and Gradle plugins
must be configured to produce a separate artifact that is suitable for use as a dependency. The
executable archive cannot be used as a dependency as the executable jar format packages application
classes in BOOT-INF/classes. This means that they cannot be found when the executable jar is used
as a dependency.

To produce the two artifacts, one that can be used as a dependency and one that is executable, a
classifier must be specified. This classifier is applied to the name of the executable archive, leaving the
default archive for use as a dependency.

To configure a classifier of exec in Maven, you can use the following configuration:

<build>

 <plugins>

 <plugin>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-maven-plugin</artifactId>

 <configuration>

 <classifier>exec</classifier>

 </configuration>

 </plugin>

 </plugins>

</build>

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/maven-plugin/usage.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 286

85.6 Extract Specific Libraries When an Executable Jar Runs

Most nested libraries in an executable jar do not need to be unpacked in order to run. However, certain
libraries can have problems. For example, JRuby includes its own nested jar support, which assumes
that the jruby-complete.jar is always directly available as a file in its own right.

To deal with any problematic libraries, you can flag that specific nested jars should be automatically
unpacked to the “temp folder” when the executable jar first runs.

For example, to indicate that JRuby should be flagged for unpacking by using the Maven Plugin, you
would add the following configuration:

<build>

 <plugins>

 <plugin>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-maven-plugin</artifactId>

 <configuration>

 <requiresUnpack>

 <dependency>

 <groupId>org.jruby</groupId>

 <artifactId>jruby-complete</artifactId>

 </dependency>

 </requiresUnpack>

 </configuration>

 </plugin>

 </plugins>

</build>

85.7 Create a Non-executable JAR with Exclusions

Often, if you have an executable and a non-executable jar as two separate build products, the
executable version has additional configuration files that are not needed in a library jar. For example,
the application.yml configuration file might by excluded from the non-executable JAR.

In Maven, the executable jar must be the main artifact and you can add a classified jar for the library,
as follows:

<build>

 <plugins>

 <plugin>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-maven-plugin</artifactId>

 </plugin>

 <plugin>

 <artifactId>maven-jar-plugin</artifactId>

 <executions>

 <execution>

 <id>lib</id>

 <phase>package</phase>

 <goals>

 <goal>jar</goal>

 </goals>

 <configuration>

 <classifier>lib</classifier>

 <excludes>

 <exclude>application.yml</exclude>

 </excludes>

 </configuration>

 </execution>

 </executions>

 </plugin>

 </plugins>

</build>

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 287

85.8 Remote Debug a Spring Boot Application Started with
Maven

To attach a remote debugger to a Spring Boot application that was started with Maven, you can use the
jvmArguments property of the maven plugin.

See this example for more details.

85.9 Build an Executable Archive from Ant without Using
spring-boot-antlib

To build with Ant, you need to grab dependencies, compile, and then create a jar or war archive. To
make it executable, you can either use the spring-boot-antlib module or you can follow these
instructions:

1. If you are building a jar, package the application’s classes and resources in a nested BOOT-INF/
classes directory. If you are building a war, package the application’s classes in a nested WEB-
INF/classes directory as usual.

2. Add the runtime dependencies in a nested BOOT-INF/lib directory for a jar or WEB-INF/lib for
a war. Remember not to compress the entries in the archive.

3. Add the provided (embedded container) dependencies in a nested BOOT-INF/lib directory for a
jar or WEB-INF/lib-provided for a war. Remember not to compress the entries in the archive.

4. Add the spring-boot-loader classes at the root of the archive (so that the Main-Class is
available).

5. Use the appropriate launcher (such as JarLauncher for a jar file) as a Main-Class attribute in
the manifest and specify the other properties it needs as manifest entries — principally, by setting a
Start-Class property.

The following example shows how to build an executable archive with Ant:

<target name="build" depends="compile">

 <jar destfile="target/${ant.project.name}-${spring-boot.version}.jar" compress="false">

 <mappedresources>

 <fileset dir="target/classes" />

 <globmapper from="*" to="BOOT-INF/classes/*"/>

 </mappedresources>

 <mappedresources>

 <fileset dir="src/main/resources" erroronmissingdir="false"/>

 <globmapper from="*" to="BOOT-INF/classes/*"/>

 </mappedresources>

 <mappedresources>

 <fileset dir="${lib.dir}/runtime" />

 <globmapper from="*" to="BOOT-INF/lib/*"/>

 </mappedresources>

 <zipfileset src="${lib.dir}/loader/spring-boot-loader-jar-${spring-boot.version}.jar" />

 <manifest>

 <attribute name="Main-Class" value="org.springframework.boot.loader.JarLauncher" />

 <attribute name="Start-Class" value="${start-class}" />

 </manifest>

 </jar>

</target>

The Ant Sample has a build.xml file with a manual task that should work if you run it with the following
command:

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/maven-plugin
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/maven-plugin/examples/run-debug.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-samples/spring-boot-sample-ant

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 288

$ ant -lib <folder containing ivy-2.2.jar> clean manual

Then you can run the application with the following command:

$ java -jar target/*.jar

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 289

86. Traditional Deployment
Spring Boot supports traditional deployment as well as more modern forms of deployment. This section
answers common questions about traditional deployment.

86.1 Create a Deployable War File

The first step in producing a deployable war file is to provide a SpringBootServletInitializer
subclass and override its configure method. Doing so makes use of Spring Framework’s Servlet 3.0
support and lets you configure your application when it is launched by the servlet container. Typically,
you should update your application’s main class to extend SpringBootServletInitializer, as
shown in the following example:

@SpringBootApplication

public class Application extends SpringBootServletInitializer {

 @Override

 protected SpringApplicationBuilder configure(SpringApplicationBuilder application) {

 return application.sources(Application.class);

 }

 public static void main(String[] args) throws Exception {

 SpringApplication.run(Application.class, args);

 }

}

The next step is to update your build configuration such that your project produces a war file rather
than a jar file. If you use Maven and spring-boot-starter-parent (which configures Maven’s war
plugin for you), all you need to do is to modify pom.xml to change the packaging to war, as follows:

<packaging>war</packaging>

If you use Gradle, you need to modify build.gradle to apply the war plugin to the project, as follows:

apply plugin: 'war'

The final step in the process is to ensure that the embedded servlet container does not interfere with the
servlet container to which the war file is deployed. To do so, you need to mark the embedded servlet
container dependency as being provided.

If you use Maven, the following example marks the servlet container (Tomcat, in this case) as being
provided:

<dependencies>

 <!-- … -->

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-tomcat</artifactId>

 <scope>provided</scope>

 </dependency>

 <!-- … -->

</dependencies>

If you use Gradle, the following example marks the servlet container (Tomcat, in this case) as being
provided:

dependencies {

 // …

 providedRuntime 'org.springframework.boot:spring-boot-starter-tomcat'

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 290

 // …

}

Tip

providedRuntime is preferred to Gradle’s compileOnly configuration. Among other
limitations, compileOnly dependencies are not on the test classpath, so any web-based
integration tests fail.

If you use the Spring Boot build tools, marking the embedded servlet container dependency as provided
produces an executable war file with the provided dependencies packaged in a lib-provided
directory. This means that, in addition to being deployable to a servlet container, you can also run your
application by using java -jar on the command line.

Tip

Take a look at Spring Boot’s sample applications for a Maven-based example of the previously
described configuration.

86.2 Create a Deployable War File for Older Servlet Containers

Older Servlet containers do not have support for the ServletContextInitializer bootstrap
process used in Servlet 3.0. You can still use Spring and Spring Boot in these containers, but you are
going to need to add a web.xml to your application and configure it to load an ApplicationContext
via a DispatcherServlet.

86.3 Convert an Existing Application to Spring Boot

For a non-web application, it should be easy to convert an existing Spring application to a Spring Boot
application. To do so, throw away the code that creates your ApplicationContext and replace it
with calls to SpringApplication or SpringApplicationBuilder. Spring MVC web applications
are generally amenable to first creating a deployable war application and then migrating it later to an
executable war or jar. See the Getting Started Guide on Converting a jar to a war.

To create a deployable war by extending SpringBootServletInitializer (for example, in a class
called Application) and adding the Spring Boot @SpringBootApplication annotation, use code
similar to that shown in the following example:

@SpringBootApplication

public class Application extends SpringBootServletInitializer {

 @Override

 protected SpringApplicationBuilder configure(SpringApplicationBuilder application) {

 // Customize the application or call application.sources(...) to add sources

 // Since our example is itself a @Configuration class (via @SpringBootApplication)

 // we actually don't need to override this method.

 return application;

 }

}

Remember that, whatever you put in the sources is merely a Spring ApplicationContext.
Normally, anything that already works should work here. There might be some beans you can remove
later and let Spring Boot provide its own defaults for them, but it should be possible to get something
working before you need to do that.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-samples/spring-boot-sample-traditional/pom.xml
http://spring.io/guides/gs/convert-jar-to-war/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 291

Static resources can be moved to /public (or /static or /resources or /META-INF/resources)
in the classpath root. The same applies to messages.properties (which Spring Boot automatically
detects in the root of the classpath).

Vanilla usage of Spring DispatcherServlet and Spring Security should require no further changes.
If you have other features in your application (for instance, using other servlets or filters), you may
need to add some configuration to your Application context, by replacing those elements from the
web.xml, as follows:

• A @Bean of type Servlet or ServletRegistrationBean installs that bean in the container as if
it were a <servlet/> and <servlet-mapping/> in web.xml.

• A @Bean of type Filter or FilterRegistrationBean behaves similarly (as a <filter/> and
<filter-mapping/>).

• An ApplicationContext in an XML file can be added through an @ImportResource in your
Application. Alternatively, simple cases where annotation configuration is heavily used already
can be recreated in a few lines as @Bean definitions.

Once the war file is working, you can make it executable by adding a main method to your
Application, as shown in the following example:

public static void main(String[] args) {

 SpringApplication.run(Application.class, args);

}

Note

If you intend to start your application as a war or as an executable application, you
need to share the customizations of the builder in a method that is both available to the
SpringBootServletInitializer callback and in the main method in a class similar to the
following:

@SpringBootApplication

public class Application extends SpringBootServletInitializer {

 @Override

 protected SpringApplicationBuilder configure(SpringApplicationBuilder builder) {

 return configureApplication(builder);

 }

 public static void main(String[] args) {

 configureApplication(new SpringApplicationBuilder()).run(args);

 }

 private static SpringApplicationBuilder configureApplication(SpringApplicationBuilder builder) {

 return builder.sources(Application.class).bannerMode(Banner.Mode.OFF);

 }

}

Applications can fall into more than one category:

• Servlet 3.0+ applications with no web.xml.

• Applications with a web.xml.

• Applications with a context hierarchy.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 292

• Applications without a context hierarchy.

All of these should be amenable to translation, but each might require slightly different techniques.

Servlet 3.0+ applications might translate pretty easily if they already use the Spring Servlet 3.0+
initializer support classes. Normally, all the code from an existing WebApplicationInitializer
can be moved into a SpringBootServletInitializer. If your existing application has more than
one ApplicationContext (for example, if it uses AbstractDispatcherServletInitializer)
then you might be able to combine all your context sources into a single SpringApplication. The
main complication you might encounter is if combining does not work and you need to maintain the
context hierarchy. See the entry on building a hierarchy for examples. An existing parent context that
contains web-specific features usually needs to be broken up so that all the ServletContextAware
components are in the child context.

Applications that are not already Spring applications might be convertible to Spring Boot applications,
and the previously mentioned guidance may help. However, you may yet encounter problems. In that
case, we suggest asking questions on Stack Overflow with a tag of spring-boot.

86.4 Deploying a WAR to WebLogic

To deploy a Spring Boot application to WebLogic, you must ensure that your servlet initializer directly
implements WebApplicationInitializer (even if you extend from a base class that already
implements it).

A typical initializer for WebLogic should resemble the following example:

import org.springframework.boot.autoconfigure.SpringBootApplication;

import org.springframework.boot.web.servlet.support.SpringBootServletInitializer;

import org.springframework.web.WebApplicationInitializer;

@SpringBootApplication

public class MyApplication extends SpringBootServletInitializer implements WebApplicationInitializer {

}

If you use Logback, you also need to tell WebLogic to prefer the packaged version rather than the
version that was pre-installed with the server. You can do so by adding a WEB-INF/weblogic.xml
file with the following contents:

<?xml version="1.0" encoding="UTF-8"?>

<wls:weblogic-web-app

 xmlns:wls="http://xmlns.oracle.com/weblogic/weblogic-web-app"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

 http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd

 http://xmlns.oracle.com/weblogic/weblogic-web-app

 http://xmlns.oracle.com/weblogic/weblogic-web-app/1.4/weblogic-web-app.xsd">

 <wls:container-descriptor>

 <wls:prefer-application-packages>

 <wls:package-name>org.slf4j</wls:package-name>

 </wls:prefer-application-packages>

 </wls:container-descriptor>

</wls:weblogic-web-app>

86.5 Deploying a WAR in an Old (Servlet 2.5) Container

Spring Boot uses Servlet 3.0 APIs to initialize the ServletContext (register Servlets and so
on), so you cannot use the same application in a Servlet 2.5 container. It is, however, possible
to run a Spring Boot application on an older container with some special tools. If you include

https://stackoverflow.com/questions/tagged/spring-boot

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 293

org.springframework.boot:spring-boot-legacy as a dependency (maintained separately to
the core of Spring Boot and currently available at 1.1.0.RELEASE), all you need to do is create a
web.xml and declare a context listener to create the application context and your filters and servlets.
The context listener is a special purpose one for Spring Boot, but the rest of it is normal for a Spring
application in Servlet 2.5. The following Maven example shows how to set up a Spring Boot project to
run in a Servlet 2.5 container:

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-

app_2_5.xsd">

 <context-param>

 <param-name>contextConfigLocation</param-name>

 <param-value>demo.Application</param-value>

 </context-param>

 <listener>

 <listener-class>org.springframework.boot.legacy.context.web.SpringBootContextLoaderListener</listener-

class>

 </listener>

 <filter>

 <filter-name>metricsFilter</filter-name>

 <filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>

 </filter>

 <filter-mapping>

 <filter-name>metricsFilter</filter-name>

 <url-pattern>/*</url-pattern>

 </filter-mapping>

 <servlet>

 <servlet-name>appServlet</servlet-name>

 <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>

 <init-param>

 <param-name>contextAttribute</param-name>

 <param-value>org.springframework.web.context.WebApplicationContext.ROOT</param-value>

 </init-param>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>appServlet</servlet-name>

 <url-pattern>/</url-pattern>

 </servlet-mapping>

</web-app>

In the preceding example, we use a single application context (the one created by the context listener)
and attach it to the DispatcherServlet by using an init parameter. This is normal in a Spring Boot
application (you normally only have one application context).

86.6 Use Jedis Instead of Lettuce

By default, the Spring Boot starter (spring-boot-starter-data-redis) uses Lettuce. You need to
exclude that dependency and include the Jedis one instead. Spring Boot manages these dependencies
to help make this process as easy as possible.

The following example shows how to do so in Maven:

<dependency>

 <groupId>org.springframework.boot</groupId>

https://github.com/scratches/spring-boot-legacy
https://github.com/lettuce-io/lettuce-core/
https://github.com/xetorthio/jedis/

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 294

 <artifactId>spring-boot-starter-data-redis</artifactId>

 <exclusions>

 <exclusion>

 <groupId>io.lettuce</groupId>

 <artifactId>lettuce-core</artifactId>

 </exclusion>

 </exclusions>

</dependency>

<dependency>

 <groupId>redis.clients</groupId>

 <artifactId>jedis</artifactId>

</dependency>

The following example shows how to do so in Gradle:

configurations {

 compile.exclude module: "lettuce"

}

dependencies {

 compile("redis.clients:jedis")

 // ...

}

Part X. Appendices

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 296

Appendix A. Common application
properties
Various properties can be specified inside your application.properties file, inside your
application.yml file, or as command line switches. This appendix provides a list of common Spring
Boot properties and references to the underlying classes that consume them.

Note

Property contributions can come from additional jar files on your classpath, so you should not
consider this an exhaustive list. Also, you can define your own properties.

Warning

This sample file is meant as a guide only. Do not copy and paste the entire content into your
application. Rather, pick only the properties that you need.

===

COMMON SPRING BOOT PROPERTIES

#

This sample file is provided as a guideline. Do NOT copy it in its

entirety to your own application. ^^^

===

--

CORE PROPERTIES

--

debug=false # Enable debug logs.

trace=false # Enable trace logs.

LOGGING

logging.config= # Location of the logging configuration file. For instance, `classpath:logback.xml` for

 Logback

logging.exception-conversion-word=%wEx # Conversion word used when logging exceptions.

logging.file= # Log file name. For instance, `myapp.log`

logging.file.max-history= # Maximum of archive log files to keep. Only supported with the default

 logback setup.

logging.file.max-size= # Maximum log file size. Only supported with the default logback setup.

logging.level.*= # Log levels severity mapping. For instance, `logging.level.org.springframework=DEBUG`

logging.path= # Location of the log file. For instance, `/var/log`.

logging.pattern.console= # Appender pattern for output to the console. Supported only with the default

 Logback setup.

logging.pattern.dateformat=yyyy-MM-dd HH:mm:ss.SSS # Appender pattern for log date format. Supported

 only with the default Logback setup.

logging.pattern.file= # Appender pattern for output to a file. Supported only with the default Logback

 setup.

logging.pattern.level= # Appender pattern for log level (default: %5p). Supported only with the default

 Logback setup.

logging.register-shutdown-hook=false # Register a shutdown hook for the logging system when it is

 initialized.

AOP

spring.aop.auto=true # Add @EnableAspectJAutoProxy.

spring.aop.proxy-target-class=true # Whether subclass-based (CGLIB) proxies are to be created (true), as

 opposed to standard Java interface-based proxies (false).

IDENTITY (ContextIdApplicationContextInitializer)

spring.application.name= # Application name.

ADMIN (SpringApplicationAdminJmxAutoConfiguration)

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/context/ContextIdApplicationContextInitializer.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/admin/SpringApplicationAdminJmxAutoConfiguration.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 297

spring.application.admin.enabled=false # Whether to enable admin features for the application.

spring.application.admin.jmx-name=org.springframework.boot:type=Admin,name=SpringApplication # JMX name

 of the application admin MBean.

AUTO-CONFIGURATION

spring.autoconfigure.exclude= # Auto-configuration classes to exclude.

BANNER

spring.banner.charset=UTF-8 # Banner file encoding.

spring.banner.location=classpath:banner.txt # Banner file location.

spring.banner.image.location=classpath:banner.gif # Banner image file location (jpg or png can also be

 used).

spring.banner.image.width= # Width of the banner image in chars (default 76)

spring.banner.image.height= # Height of the banner image in chars (default based on image height)

spring.banner.image.margin= # Left hand image margin in chars (default 2)

spring.banner.image.invert= # Whether images should be inverted for dark terminal themes (default false)

SPRING CORE

spring.beaninfo.ignore=true # Whether to skip search of BeanInfo classes.

SPRING CACHE (CacheProperties)

spring.cache.cache-names= # Comma-separated list of cache names to create if supported by the underlying

 cache manager.

spring.cache.caffeine.spec= # The spec to use to create caches. See CaffeineSpec for more details on the

 spec format.

spring.cache.couchbase.expiration=0ms # Entry expiration in milliseconds. By default, the entries never

 expire.

spring.cache.ehcache.config= # The location of the configuration file to use to initialize EhCache.

spring.cache.infinispan.config= # The location of the configuration file to use to initialize

 Infinispan.

spring.cache.jcache.config= # The location of the configuration file to use to initialize the cache

 manager.

spring.cache.jcache.provider= # Fully qualified name of the CachingProvider implementation to use to

 retrieve the JSR-107 compliant cache manager. Needed only if more than one JSR-107 implementation is

 available on the classpath.

spring.cache.redis.cache-null-values=true # Allow caching null values.

spring.cache.redis.key-prefix= # Key prefix.

spring.cache.redis.time-to-live=0ms # Entry expiration. By default the entries never expire.

spring.cache.redis.use-key-prefix=true # Whether to use the key prefix when writing to Redis.

spring.cache.type= # Cache type. By default, auto-detected according to the environment.

SPRING CONFIG - using environment property only (ConfigFileApplicationListener)

spring.config.additional-location= # Config file locations used in addition to the defaults.

spring.config.location= # Config file locations.

spring.config.name=application # Config file name.

HAZELCAST (HazelcastProperties)

spring.hazelcast.config= # The location of the configuration file to use to initialize Hazelcast.

PROJECT INFORMATION (ProjectInfoProperties)

spring.info.build.location=classpath:META-INF/build-info.properties # Location of the generated build-

info.properties file.

spring.info.git.location=classpath:git.properties # Location of the generated git.properties file.

JMX

spring.jmx.default-domain= # JMX domain name.

spring.jmx.enabled=true # Expose management beans to the JMX domain.

spring.jmx.server=mbeanServer # MBeanServer bean name.

Email (MailProperties)

spring.mail.default-encoding=UTF-8 # Default MimeMessage encoding.

spring.mail.host= # SMTP server host. For instance, `smtp.example.com`

spring.mail.jndi-name= # Session JNDI name. When set, takes precedence over other mail settings.

spring.mail.password= # Login password of the SMTP server.

spring.mail.port= # SMTP server port.

spring.mail.properties.*= # Additional JavaMail session properties.

spring.mail.protocol=smtp # Protocol used by the SMTP server.

spring.mail.test-connection=false # Whether to test that the mail server is available on startup.

spring.mail.username= # Login user of the SMTP server.

APPLICATION SETTINGS (SpringApplication)

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/cache/CacheProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/context/config/ConfigFileApplicationListener.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/hazelcast/HazelcastProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/info/ProjectInfoProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mail/MailProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/SpringApplication.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 298

spring.main.banner-mode=console # Mode used to display the banner when the application runs.

spring.main.sources= # Sources (class names, package names, or XML resource locations) to include in the

 ApplicationContext.

spring.main.web-application-type= # Flag to explicitly request a specific type of web application. If

 not set, auto-detected based on the classpath.

FILE ENCODING (FileEncodingApplicationListener)

spring.mandatory-file-encoding= # Expected character encoding the application must use.

INTERNATIONALIZATION (MessageSourceProperties)

spring.messages.always-use-message-format=false # Whether to always apply the MessageFormat rules,

 parsing even messages without arguments.

spring.messages.basename=messages # Comma-separated list of basenames (essentially a fully-qualified

 classpath location), each following the ResourceBundle convention with relaxed support for slash based

 locations.

spring.messages.cache-duration=-1 # Loaded resource bundle files cache duration. When not set, bundles

 are cached forever.

spring.messages.encoding=UTF-8 # Message bundles encoding.

spring.messages.fallback-to-system-locale=true # Whether to fall back to the system Locale if no files

 for a specific Locale have been found.

spring.messages.use-code-as-default-message=false # Whether to use the message code as the default

 message instead of throwing a "NoSuchMessageException". Recommended during development only.

OUTPUT

spring.output.ansi.enabled=detect # Configures the ANSI output.

PID FILE (ApplicationPidFileWriter)

spring.pid.fail-on-write-error= # Fails if ApplicationPidFileWriter is used but it cannot write the PID

 file.

spring.pid.file= # Location of the PID file to write (if ApplicationPidFileWriter is used).

PROFILES

spring.profiles.active= # Comma-separated list (or list if using YAML) of active profiles.

spring.profiles.include= # Unconditionally activate the specified comma-separated list of profiles (or

 list of profiles if using YAML).

QUARTZ SCHEDULER (QuartzProperties)

spring.quartz.jdbc.initialize-schema=embedded # Database schema initialization mode.

spring.quartz.jdbc.schema=classpath:org/quartz/impl/jdbcjobstore/tables_@@platform@@.sql # Path to the

 SQL file to use to initialize the database schema.

spring.quartz.job-store-type=memory # Quartz job store type.

spring.quartz.properties.*= # Additional Quartz Scheduler properties.

REACTOR (ReactorCoreProperties)

spring.reactor.stacktrace-mode.enabled=false # Whether Reactor should collect stacktrace information at

 runtime.

SENDGRID (SendGridAutoConfiguration)

spring.sendgrid.api-key= # SendGrid API key.

spring.sendgrid.proxy.host= # SendGrid proxy host.

spring.sendgrid.proxy.port= # SendGrid proxy port.

--

WEB PROPERTIES

--

EMBEDDED SERVER CONFIGURATION (ServerProperties)

server.address= # Network address to which the server should bind.

server.compression.enabled=false # Whether response compression is enabled.

server.compression.excluded-user-agents= # List of user-agents to exclude from compression.

server.compression.mime-types=text/html,text/xml,text/plain,text/css,text/javascript,application/

javascript # Comma-separated list of MIME types that should be compressed.

server.compression.min-response-size=2048 # Minimum response size that is required for compression to be

 performed.

server.connection-timeout= # Time that connectors wait for another HTTP request before closing the

 connection. When not set, the connector's container-specific default is used. Use a value of -1 to

 indicate no (that is, an infinite) timeout.

server.display-name=application # Display name of the application.

server.error.include-exception=false # Include the "exception" attribute.

server.error.include-stacktrace=never # When to include a "stacktrace" attribute.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/context/FileEncodingApplicationListener.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/context/MessageSourceProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/system/ApplicationPidFileWriter.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/quartz/QuartzProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/reactor/core/ReactorCoreProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/sendgrid/SendGridAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ServerProperties.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 299

server.error.path=/error # Path of the error controller.

server.error.whitelabel.enabled=true # Enable the default error page displayed in browsers in case of a

 server error.

server.http2.enabled=false # Whether to enable HTTP/2 support, if the current environment supports it.

server.jetty.acceptors= # Number of acceptor threads to use.

server.jetty.accesslog.append=false # Append to log.

server.jetty.accesslog.date-format=dd/MMM/yyyy:HH:mm:ss Z # Timestamp format of the request log.

server.jetty.accesslog.enabled=false # Enable access log.

server.jetty.accesslog.extended-format=false # Enable extended NCSA format.

server.jetty.accesslog.file-date-format= # Date format to place in log file name.

server.jetty.accesslog.filename= # Log filename. If not specified, logs redirect to "System.err".

server.jetty.accesslog.locale= # Locale of the request log.

server.jetty.accesslog.log-cookies=false # Enable logging of the request cookies.

server.jetty.accesslog.log-latency=false # Enable logging of request processing time.

server.jetty.accesslog.log-server=false # Enable logging of the request hostname.

server.jetty.accesslog.retention-period=31 # Number of days before rotated log files are deleted.

server.jetty.accesslog.time-zone=GMT # Timezone of the request log.

server.jetty.max-http-post-size=0 # Maximum size, in bytes, of the HTTP post or put content.

server.jetty.selectors= # Number of selector threads to use.

server.max-http-header-size=0 # Maximum size, in bytes, of the HTTP message header.

server.port=8080 # Server HTTP port.

server.server-header= # Value to use for the Server response header (if empty, no header is sent)

server.use-forward-headers= # Whether X-Forwarded-* headers should be applied to the HttpRequest.

server.servlet.context-parameters.*= # Servlet context init parameters

server.servlet.context-path= # Context path of the application.

server.servlet.jsp.class-name=org.apache.jasper.servlet.JspServlet # The class name of the JSP servlet.

server.servlet.jsp.init-parameters.*= # Init parameters used to configure the JSP servlet.

server.servlet.jsp.registered=true # Whether the JSP servlet is registered.

server.servlet.path=/ # Path of the main dispatcher servlet.

server.servlet.session.cookie.comment= # Comment for the session cookie.

server.servlet.session.cookie.domain= # Domain for the session cookie.

server.servlet.session.cookie.http-only= # "HttpOnly" flag for the session cookie.

server.servlet.session.cookie.max-age= # Maximum age of the session cookie. If a duration suffix is not

 specified, seconds will be used.

server.servlet.session.cookie.name= # Session cookie name.

server.servlet.session.cookie.path= # Path of the session cookie.

server.servlet.session.cookie.secure= # "Secure" flag for the session cookie.

server.servlet.session.persistent=false # Whether to persist session data between restarts.

server.servlet.session.store-dir= # Directory used to store session data.

server.servlet.session.timeout= # Session timeout. If a duration suffix is not specified, seconds will

 be used.

server.servlet.session.tracking-modes= # Session tracking modes (one or more of the following: "cookie",

 "url", "ssl").

server.ssl.ciphers= # Supported SSL ciphers.

server.ssl.client-auth= # Whether client authentication is wanted ("want") or needed ("need"). Requires

 a trust store.

server.ssl.enabled= # Enable SSL support.

server.ssl.enabled-protocols= # Enabled SSL protocols.

server.ssl.key-alias= # Alias that identifies the key in the key store.

server.ssl.key-password= # Password used to access the key in the key store.

server.ssl.key-store= # Path to the key store that holds the SSL certificate (typically a jks file).

server.ssl.key-store-password= # Password used to access the key store.

server.ssl.key-store-provider= # Provider for the key store.

server.ssl.key-store-type= # Type of the key store.

server.ssl.protocol=TLS # SSL protocol to use.

server.ssl.trust-store= # Trust store that holds SSL certificates.

server.ssl.trust-store-password= # Password used to access the trust store.

server.ssl.trust-store-provider= # Provider for the trust store.

server.ssl.trust-store-type= # Type of the trust store.

server.tomcat.accept-count= # Maximum queue length for incoming connection requests when all possible

 request processing threads are in use.

server.tomcat.accesslog.buffered=true # Whether to buffer output such that it is flushed only

 periodically.

server.tomcat.accesslog.directory=logs # Directory in which log files are created. Can be absolute or

 relative to the Tomcat base dir.

server.tomcat.accesslog.enabled=false # Enable access log.

server.tomcat.accesslog.file-date-format=.yyyy-MM-dd # Date format to place in the log file name.

server.tomcat.accesslog.pattern=common # Format pattern for access logs.

server.tomcat.accesslog.prefix=access_log # Log file name prefix.

server.tomcat.accesslog.rename-on-rotate=false # Whether to defer inclusion of the date stamp in the

 file name until rotate time.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 300

server.tomcat.accesslog.request-attributes-enabled=false # Set request attributes for the IP address,

 Hostname, protocol, and port used for the request.

server.tomcat.accesslog.rotate=true # Whether to enable access log rotation.

server.tomcat.accesslog.suffix=.log # Log file name suffix.

server.tomcat.additional-tld-skip-patterns= # Comma-separated list of additional patterns that match

 jars to ignore for TLD scanning.

server.tomcat.background-processor-delay=30s # Delay between the invocation of backgroundProcess

 methods. If a duration suffix is not specified, seconds will be used.

server.tomcat.basedir= # Tomcat base directory. If not specified, a temporary directory is used.

server.tomcat.internal-proxies=10\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}|\\

 192\\.168\\.\\d{1,3}\\.\\d{1,3}|\\

 169\\.254\\.\\d{1,3}\\.\\d{1,3}|\\

 127\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}|\\

 172\\.1[6-9]{1}\\.\\d{1,3}\\.\\d{1,3}|\\

 172\\.2[0-9]{1}\\.\\d{1,3}\\.\\d{1,3}|\\

 172\\.3[0-1]{1}\\.\\d{1,3}\\.\\d{1,3} # regular expression matching trusted IP addresses.

server.tomcat.max-connections= # Maximum number of connections that the server accepts and processes at

 any given time.

server.tomcat.max-http-header-size=0 # Maximum size, in bytes, of the HTTP message header.

server.tomcat.max-http-post-size=0 # Maximum size, in bytes, of the HTTP post content.

server.tomcat.max-threads=0 # Maximum number of worker threads.

server.tomcat.min-spare-threads=0 # Minimum number of worker threads.

server.tomcat.port-header=X-Forwarded-Port # Name of the HTTP header used to override the original port

 value.

server.tomcat.protocol-header= # Header that holds the incoming protocol, usually named "X-Forwarded-

Proto".

server.tomcat.protocol-header-https-value=https # Value of the protocol header indicating whether the

 incoming request uses SSL.

server.tomcat.redirect-context-root= # Whether requests to the context root should be redirected by

 appending a / to the path.

server.tomcat.remote-ip-header= # Name of the HTTP header from which the remote IP is extracted. For

 instance, `X-FORWARDED-FOR`.

server.tomcat.resource.cache-ttl= # Time-to-live of the static resource cache.

server.tomcat.uri-encoding=UTF-8 # Character encoding to use to decode the URI.

server.tomcat.use-relative-redirects= # Whether HTTP 1.1 and later location headers generated by a call

 to sendRedirect will use relative or absolute redirects.

server.undertow.accesslog.dir= # Undertow access log directory.

server.undertow.accesslog.enabled=false # Whether to enable the access log.

server.undertow.accesslog.pattern=common # Format pattern for access logs.

server.undertow.accesslog.prefix=access_log. # Log file name prefix.

server.undertow.accesslog.rotate=true # Whether to enable access log rotation.

server.undertow.accesslog.suffix=log # Log file name suffix.

server.undertow.buffer-size= # Size of each buffer, in bytes.

server.undertow.direct-buffers= # Whether to allocate buffers outside the Java heap.

server.undertow.io-threads= # Number of I/O threads to create for the worker.

server.undertow.eager-filter-init=true # Whether servlet filters should be initialized on startup.

server.undertow.max-http-post-size=0 # Maximum size, in bytes, of the HTTP post content.

server.undertow.worker-threads= # Number of worker threads.

FREEMARKER (FreeMarkerProperties)

spring.freemarker.allow-request-override=false # Whether HttpServletRequest attributes are allowed to

 override (hide) controller generated model attributes of the same name.

spring.freemarker.allow-session-override=false # Whether HttpSession attributes are allowed to override

 (hide) controller generated model attributes of the same name.

spring.freemarker.cache=false # Whether to enable template caching.

spring.freemarker.charset=UTF-8 # Template encoding.

spring.freemarker.check-template-location=true # Whether to check that the templates location exists.

spring.freemarker.content-type=text/html # Content-Type value.

spring.freemarker.enabled=true # Whether to enable MVC view resolution for this technology.

spring.freemarker.expose-request-attributes=false # Whether all request attributes should be added to

 the model prior to merging with the template.

spring.freemarker.expose-session-attributes=false # Whether all HttpSession attributes should be added

 to the model prior to merging with the template.

spring.freemarker.expose-spring-macro-helpers=true # Whether to expose a RequestContext for use by

 Spring's macro library, under the name "springMacroRequestContext".

spring.freemarker.prefer-file-system-access=true # Whether to prefer file system access for template

 loading. File system access enables hot detection of template changes.

spring.freemarker.prefix= # Prefix that gets prepended to view names when building a URL.

spring.freemarker.request-context-attribute= # Name of the RequestContext attribute for all views.

spring.freemarker.settings.*= # Well-known FreeMarker keys which are passed to FreeMarker's

 Configuration.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/freemarker/FreeMarkerProperties.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 301

spring.freemarker.suffix=.ftl # Suffix that gets appended to view names when building a URL.

spring.freemarker.template-loader-path=classpath:/templates/ # Comma-separated list of template paths.

spring.freemarker.view-names= # White list of view names that can be resolved.

GROOVY TEMPLATES (GroovyTemplateProperties)

spring.groovy.template.allow-request-override=false # Whether HttpServletRequest attributes are allowed

 to override (hide) controller generated model attributes of the same name.

spring.groovy.template.allow-session-override=false # Whether HttpSession attributes are allowed to

 override (hide) controller generated model attributes of the same name.

spring.groovy.template.cache= # Whether to enable template caching.

spring.groovy.template.charset=UTF-8 # Template encoding.

spring.groovy.template.check-template-location=true # Check that the templates location exists.

spring.groovy.template.configuration.*= # See GroovyMarkupConfigurer

spring.groovy.template.content-type=test/html # Content-Type value.

spring.groovy.template.enabled=true # Whether to enable MVC view resolution for this technology.

spring.groovy.template.expose-request-attributes=false # Whether all request attributes should be added

 to the model prior to merging with the template.

spring.groovy.template.expose-session-attributes=false # Whether all HttpSession attributes should be

 added to the model prior to merging with the template.

spring.groovy.template.expose-spring-macro-helpers=true # Whether to expose a RequestContext for use by

 Spring's macro library, under the name "springMacroRequestContext".

spring.groovy.template.prefix= # Prefix that gets prepended to view names when building a URL.

spring.groovy.template.request-context-attribute= # Name of the RequestContext attribute for all views.

spring.groovy.template.resource-loader-path=classpath:/templates/ # Template path.

spring.groovy.template.suffix=.tpl # Suffix that gets appended to view names when building a URL.

spring.groovy.template.view-names= # White list of view names that can be resolved.

SPRING HATEOAS (HateoasProperties)

spring.hateoas.use-hal-as-default-json-media-type=true # Whether application/hal+json responses should

 be sent to requests that accept application/json.

HTTP message conversion

spring.http.converters.preferred-json-mapper= # Preferred JSON mapper to use for HTTP message

 conversion. By default, auto-detected according to the environment.

HTTP encoding (HttpEncodingProperties)

spring.http.encoding.charset=UTF-8 # Charset of HTTP requests and responses. Added to the "Content-Type"

 header if not set explicitly.

spring.http.encoding.enabled=true # Whether to enable http encoding support.

spring.http.encoding.force= # Whether to force the encoding to the configured charset on HTTP requests

 and responses.

spring.http.encoding.force-request= # Whether to force the encoding to the configured charset on HTTP

 requests. Defaults to true when "force" has not been specified.

spring.http.encoding.force-response= # Whether to force the encoding to the configured charset on HTTP

 responses.

spring.http.encoding.mapping= # Locale in which to encode mapping.

MULTIPART (MultipartProperties)

spring.servlet.multipart.enabled=true # Whether to enable support of multipart uploads.

spring.servlet.multipart.file-size-threshold=0 # Threshold after which files are written to disk. Values

 can use the suffixes "MB" or "KB" to indicate megabytes or kilobytes, respectively.

spring.servlet.multipart.location= # Intermediate location of uploaded files.

spring.servlet.multipart.max-file-size=1MB # Max file size. Values can use the suffixes "MB" or "KB" to

 indicate megabytes or kilobytes, respectively.

spring.servlet.multipart.max-request-size=10MB # Max request size. Values can use the suffixes "MB" or

 "KB" to indicate megabytes or kilobytes, respectively.

spring.servlet.multipart.resolve-lazily=false # Whether to resolve the multipart request lazily at the

 time of file or parameter access.

JACKSON (JacksonProperties)

spring.jackson.date-format= # Date format string or a fully-qualified date format class name. For

 instance, `yyyy-MM-dd HH:mm:ss`.

spring.jackson.default-property-inclusion= # Controls the inclusion of properties during serialization.

 Configured with one of the values in Jackson's JsonInclude.Include enumeration.

spring.jackson.deserialization.*= # Jackson on/off features that affect the way Java objects are

 deserialized.

spring.jackson.generator.*= # Jackson on/off features for generators.

spring.jackson.joda-date-time-format= # Joda date time format string. If not configured, "date-format"

 is used as a fallback if it is configured with a format string.

spring.jackson.locale= # Locale used for formatting.

spring.jackson.mapper.*= # Jackson general purpose on/off features.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/groovy/template/GroovyTemplateProperties.java
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/servlet/view/groovy/GroovyMarkupConfigurer.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/hateoas/HateoasProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/http/HttpEncodingProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/servlet/MultipartProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jackson/JacksonProperties.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 302

spring.jackson.parser.*= # Jackson on/off features for parsers.

spring.jackson.property-naming-strategy= # One of the constants on Jackson's PropertyNamingStrategy. Can

 also be a fully-qualified class name of a PropertyNamingStrategy subclass.

spring.jackson.serialization.*= # Jackson on/off features that affect the way Java objects are

 serialized.

spring.jackson.time-zone= # Time zone used when formatting dates. For instance, "America/Los_Angeles"

 or "GMT+10".

GSON (GsonProperties)

spring.gson.date-format= # Format to use when serializing Date objects.

spring.gson.disable-html-escaping= # Whether to disable the escaping of HTML characters such as '<',

 '>', etc.

spring.gson.disable-inner-class-serialization= # Whether to exclude inner classes during serialization.

spring.gson.enable-complex-map-key-serialization= # Whether to enable serialization of complex map keys

 (i.e. non-primitives).

spring.gson.exclude-fields-without-expose-annotation= # Whether to exclude all fields from consideration

 for serialization or deserialization that do not have the "Expose" annotation.

spring.gson.field-naming-policy= # Naming policy that should be applied to an object's field during

 serialization and deserialization.

spring.gson.generate-non-executable-json= # Whether to generate non executable JSON by prefixing the

 output with some special text.

spring.gson.lenient= # Whether to be lenient about parsing JSON that doesn't conform to RFC 4627.

spring.gson.long-serialization-policy= # Serialization policy for Long and long types.

spring.gson.pretty-printing= # Whether to output serialized JSON that fits in a page for pretty

 printing.

spring.gson.serialize-nulls= # Whether to serialize null fields.

JERSEY (JerseyProperties)

spring.jersey.application-path= # Path that serves as the base URI for the application. If specified,

 overrides the value of "@ApplicationPath".

spring.jersey.filter.order=0 # Jersey filter chain order.

spring.jersey.init.*= # Init parameters to pass to Jersey through the servlet or filter.

spring.jersey.servlet.load-on-startup=-1 # Load on startup priority of the Jersey servlet.

spring.jersey.type=servlet # Jersey integration type.

SPRING LDAP (LdapProperties)

spring.ldap.anonymous-read-only=false # Whether read-only operations should use an anonymous

 environment.

spring.ldap.base= # Base suffix from which all operations should originate.

spring.ldap.base-environment.*= # LDAP specification settings.

spring.ldap.password= # Login password of the server.

spring.ldap.urls= # LDAP URLs of the server.

spring.ldap.username= # Login username of the server.

EMBEDDED LDAP (EmbeddedLdapProperties)

spring.ldap.embedded.base-dn= # The base DN

spring.ldap.embedded.credential.username= # Embedded LDAP username.

spring.ldap.embedded.credential.password= # Embedded LDAP password.

spring.ldap.embedded.ldif=classpath:schema.ldif # Schema (LDIF) script resource reference.

spring.ldap.embedded.port= # Embedded LDAP port.

spring.ldap.embedded.validation.enabled=true # Whether to enable LDAP schema validation.

spring.ldap.embedded.validation.schema= # Path to the custom schema.

MUSTACHE TEMPLATES (MustacheAutoConfiguration)

spring.mustache.allow-request-override= # Whether HttpServletRequest attributes are allowed to override

 (hide) controller generated model attributes of the same name.

spring.mustache.allow-session-override= # Whether HttpSession attributes are allowed to override (hide)

 controller generated model attributes of the same name.

spring.mustache.cache= # Whether to enable template caching.

spring.mustache.charset= # Template encoding.

spring.mustache.check-template-location= # Whether to check that the templates location exists.

spring.mustache.content-type= # Content-Type value.

spring.mustache.enabled= # Whether to enable MVC view resolution for this technology.

spring.mustache.expose-request-attributes= # Whether all request attributes should be added to the model

 prior to merging with the template.

spring.mustache.expose-session-attributes= # Whether all HttpSession attributes should be added to the

 model prior to merging with the template.

spring.mustache.expose-spring-macro-helpers= # Whether to expose a RequestContext for use by Spring's

 macro library under the name "springMacroRequestContext".

spring.mustache.prefix=classpath:/templates/ # Prefix to apply to template names.

spring.mustache.request-context-attribute= # Name of the RequestContext attribute for all views.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/gson/GsonProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jersey/JerseyProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/ldap/LdapProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/ldap/embedded/EmbeddedLdapProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mustache/MustacheAutoConfiguration.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 303

spring.mustache.suffix=.mustache # Suffix to apply to template names.

spring.mustache.view-names= # White list of view names that can be resolved.

SPRING MVC (WebMvcProperties)

spring.mvc.async.request-timeout= # Amount of time before asynchronous request handling times out.

spring.mvc.content-negotiation.favor-parameter=false # Whether a request parameter ("format" by default)

 should be used to determine the requested media type.

spring.mvc.content-negotiation.favor-path-extension=false # Whether the path extension in the URL path

 should be used to determine the requested media type.

spring.mvc.content-negotiation.media-types.*= # Maps file extensions to media types for content

 negotiation.

spring.mvc.content-negotiation.parameter-name= # Query parameter name to use when "favor-parameter" is

 enabled.

spring.mvc.date-format= # Date format to use. For instance, `dd/MM/yyyy`.

spring.mvc.dispatch-trace-request=false # Whether to dispatch TRACE requests to the FrameworkServlet

 doService method.

spring.mvc.dispatch-options-request=true # Whether to dispatch OPTIONS requests to the FrameworkServlet

 doService method.

spring.mvc.favicon.enabled=true # Whether to enable resolution of favicon.ico.

spring.mvc.formcontent.putfilter.enabled=true # Whether to enable Spring's HttpPutFormContentFilter.

spring.mvc.ignore-default-model-on-redirect=true # Whether the content of the "default" model should be

 ignored during redirect scenarios.

spring.mvc.locale= # Locale to use. By default, this locale is overridden by the "Accept-Language"

 header.

spring.mvc.locale-resolver=accept-header # Define how the locale should be resolved.

spring.mvc.log-resolved-exception=false # Whether to enable warn logging of exceptions resolved by a

 "HandlerExceptionResolver".

spring.mvc.message-codes-resolver-format= # Formatting strategy for message codes. For instance,

 `PREFIX_ERROR_CODE`.

spring.mvc.path-match.use-registered-suffix-pattern=false # Whether suffix pattern matching should work

 only against extensions registered with "spring.mvc.content-negotiation.media-types.*".

spring.mvc.path-match.use-suffix-pattern=false # Whether to use suffix pattern match (".*") when

 matching patterns to requests.

spring.mvc.servlet.load-on-startup=-1 # Load on startup priority of the Spring Web Services servlet.

spring.mvc.static-path-pattern=/** # Path pattern used for static resources.

spring.mvc.throw-exception-if-no-handler-found=false # Whether a "NoHandlerFoundException" should be

 thrown if no Handler was found to process a request.

spring.mvc.view.prefix= # Spring MVC view prefix.

spring.mvc.view.suffix= # Spring MVC view suffix.

SPRING RESOURCES HANDLING (ResourceProperties)

spring.resources.add-mappings=true # Whether to enable default resource handling.

spring.resources.cache.cachecontrol.cache-private= # Indicate that the response message is intended for

 a single user and must not be stored by a shared cache.

spring.resources.cache.cachecontrol.cache-public= # Indicate that any cache may store the response.

spring.resources.cache.cachecontrol.max-age= # Maximum time the response should be cached, in seconds if

 no duration suffix is not specified.

spring.resources.cache.cachecontrol.must-revalidate= # Indicate that once it has become stale, a cache

 must not use the response without re-validating it with the server.

spring.resources.cache.cachecontrol.no-cache= # Indicate that the cached response can be reused only if

 re-validated with the server.

spring.resources.cache.cachecontrol.no-store= # Indicate to not cache the response in any case.

spring.resources.cache.cachecontrol.no-transform= # Indicate intermediaries (caches and others) that

 they should not transform the response content.

spring.resources.cache.cachecontrol.proxy-revalidate= # Same meaning as the "must-revalidate" directive,

 except that it does not apply to private caches.

spring.resources.cache.cachecontrol.s-max-age= # Maximum time the response should be cached by shared

 caches, in seconds if no duration suffix is not specified.

spring.resources.cache.cachecontrol.stale-if-error= # Maximum time the response may be used when errors

 are encountered, in seconds if no duration suffix is not specified.

spring.resources.cache.cachecontrol.stale-while-revalidate= # Maximum time the response can be served

 after it becomes stale, in seconds if no duration suffix is not specified.

spring.resources.cache.period= # Cache period for the resources served by the resource handler. If a

 duration suffix is not specified, seconds will be used.

spring.resources.chain.cache=true # Whether to enable caching in the Resource chain.

spring.resources.chain.enabled= # Whether to enable the Spring Resource Handling chain. By default,

 disabled unless at least one strategy has been enabled.

spring.resources.chain.gzipped=false # Whether to enable resolution of already gzipped resources.

spring.resources.chain.html-application-cache=false # Whether to enable HTML5 application cache manifest

 rewriting.

spring.resources.chain.strategy.content.enabled=false # Whether to enable the content Version Strategy.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/servlet/WebMvcProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ResourceProperties.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 304

spring.resources.chain.strategy.content.paths=/** # Comma-separated list of patterns to apply to the

 content Version Strategy.

spring.resources.chain.strategy.fixed.enabled=false # Whether to enable the fixed Version Strategy.

spring.resources.chain.strategy.fixed.paths=/** # Comma-separated list of patterns to apply to the fixed

 Version Strategy.

spring.resources.chain.strategy.fixed.version= # Version string to use for the fixed Version Strategy.

spring.resources.static-locations=classpath:/META-INF/resources/,classpath:/resources/,classpath:/

static/,classpath:/public/ # Locations of static resources.

SPRING SESSION (SessionProperties)

spring.session.store-type= # Session store type.

spring.session.servlet.filter-order=-2147483598 # Session repository filter order.

spring.session.servlet.filter-dispatcher-types=ASYNC,ERROR,REQUEST # Session repository filter

 dispatcher types.

SPRING SESSION HAZELCAST (HazelcastSessionProperties)

spring.session.hazelcast.flush-mode=on-save # Sessions flush mode.

spring.session.hazelcast.map-name=spring:session:sessions # Name of the map used to store sessions.

SPRING SESSION JDBC (JdbcSessionProperties)

spring.session.jdbc.cleanup-cron=0 * * * * * # Cron expression for expired session cleanup job.

spring.session.jdbc.initialize-schema=embedded # Database schema initialization mode.

spring.session.jdbc.schema=classpath:org/springframework/session/jdbc/schema-@@platform@@.sql # Path to

 the SQL file to use to initialize the database schema.

spring.session.jdbc.table-name=SPRING_SESSION # Name of the database table used to store sessions.

SPRING SESSION MONGODB (MongoSessionProperties)

spring.session.mongodb.collection-name=sessions # Collection name used to store sessions.

SPRING SESSION REDIS (RedisSessionProperties)

spring.session.redis.cleanup-cron=0 * * * * * # Cron expression for expired session cleanup job.

spring.session.redis.flush-mode=on-save # Sessions flush mode.

spring.session.redis.namespace=spring:session # Namespace for keys used to store sessions.

THYMELEAF (ThymeleafAutoConfiguration)

spring.thymeleaf.cache=true # Whether to enable template caching.

spring.thymeleaf.check-template=true # Whether to check that the template exists before rendering it.

spring.thymeleaf.check-template-location=true # Whether to check that the templates location exists.

spring.thymeleaf.enabled=true # Whether to enable Thymeleaf view resolution for Web frameworks.

spring.thymeleaf.enable-spring-el-compiler=false # Enable the SpringEL compiler in SpringEL expressions.

spring.thymeleaf.encoding=UTF-8 # Template files encoding.

spring.thymeleaf.excluded-view-names= # Comma-separated list of view names that should be excluded from

 resolution.

spring.thymeleaf.mode=HTML5 # Template mode to be applied to templates. See also Thymeleaf's

 TemplateMode enum.

spring.thymeleaf.prefix=classpath:/templates/ # Prefix that gets prepended to view names when building a

 URL.

spring.thymeleaf.reactive.chunked-mode-view-names= # Comma-separated list of view names (patterns

 allowed) that should be the only ones executed in CHUNKED mode when a max chunk size is set.

spring.thymeleaf.reactive.full-mode-view-names= # Comma-separated list of view names (patterns allowed)

 that should be executed in FULL mode even if a max chunk size is set.

spring.thymeleaf.reactive.max-chunk-size= # Maximum size of data buffers used for writing to the

 response, in bytes.

spring.thymeleaf.reactive.media-types= # Media types supported by the view technology.

spring.thymeleaf.servlet.content-type=text/html # Content-Type value written to HTTP responses.

spring.thymeleaf.suffix=.html # Suffix that gets appended to view names when building a URL.

spring.thymeleaf.template-resolver-order= # Order of the template resolver in the chain.

spring.thymeleaf.view-names= # Comma-separated list of view names that can be resolved.

SPRING WEBFLUX (WebFluxProperties)

spring.webflux.date-format= # Date format to use. For instance, `dd/MM/yyyy`.

spring.webflux.static-path-pattern=/** # Path pattern used for static resources.

SPRING WEB SERVICES (WebServicesProperties)

spring.webservices.path=/services # Path that serves as the base URI for the services.

spring.webservices.servlet.init= # Servlet init parameters to pass to Spring Web Services.

spring.webservices.servlet.load-on-startup=-1 # Load on startup priority of the Spring Web Services

 servlet.

spring.webservices.wsdl-locations= # Comma-separated list of locations of WSDLs and accompanying XSDs to

 be exposed as beans.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/session/SessionProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/session/HazelcastSessionProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/session/JdbcSessionProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/session/MongoSessionProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/session/RedisSessionProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/thymeleaf/ThymeleafAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/reactive/WebFluxProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/webservices/WebServicesProperties.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 305

--

SECURITY PROPERTIES

--

SECURITY (SecurityProperties)

spring.security.filter.order=0 # Security filter chain order.

spring.security.filter.dispatcher-types=ASYNC,ERROR,REQUEST # Security filter chain dispatcher types.

spring.security.user.name=user # Default user name.

spring.security.user.password= # Password for the default user name.

spring.security.user.roles= # Granted roles for the default user name.

SECURITY OAUTH2 CLIENT (OAuth2ClientProperties)

spring.security.oauth2.client.provider.*= # OAuth provider details.

spring.security.oauth2.client.registration.*= # OAuth client registrations.

--

DATA PROPERTIES

--

FLYWAY (FlywayProperties)

spring.flyway.baseline-description= #

spring.flyway.baseline-on-migrate= #

spring.flyway.baseline-version=1 # Version to start migration

spring.flyway.check-location=true # Whether to check that migration scripts location exists.

spring.flyway.clean-disabled= #

spring.flyway.clean-on-validation-error= #

spring.flyway.dry-run-output= #

spring.flyway.enabled=true # Whether to enable flyway.

spring.flyway.encoding= #

spring.flyway.error-handlers= #

spring.flyway.group= #

spring.flyway.ignore-future-migrations= #

spring.flyway.ignore-missing-migrations= #

spring.flyway.init-sqls= # SQL statements to execute to initialize a connection immediately after

 obtaining it.

spring.flyway.installed-by= #

spring.flyway.locations=classpath:db/migration # The locations of migrations scripts.

spring.flyway.mixed= #

spring.flyway.out-of-order= #

spring.flyway.password= # JDBC password to use if you want Flyway to create its own DataSource.

spring.flyway.placeholder-prefix= #

spring.flyway.placeholder-replacement= #

spring.flyway.placeholder-suffix= #

spring.flyway.placeholders.*= #

spring.flyway.repeatable-sql-migration-prefix= #

spring.flyway.schemas= # schemas to update

spring.flyway.skip-default-callbacks= #

spring.flyway.skip-default-resolvers= #

spring.flyway.sql-migration-prefix=V #

spring.flyway.sql-migration-separator= #

spring.flyway.sql-migration-suffix=.sql #

spring.flyway.sql-migration-suffixes= #

spring.flyway.table= #

spring.flyway.target= #

spring.flyway.undo-sql-migration-prefix= #

spring.flyway.url= # JDBC url of the database to migrate. If not set, the primary configured data source

 is used.

spring.flyway.user= # Login user of the database to migrate.

spring.flyway.validate-on-migrate= #

LIQUIBASE (LiquibaseProperties)

spring.liquibase.change-log=classpath:/db/changelog/db.changelog-master.yaml # Change log configuration

 path.

spring.liquibase.check-change-log-location=true # Whether to check that the change log location exists.

spring.liquibase.contexts= # Comma-separated list of runtime contexts to use.

spring.liquibase.default-schema= # Default database schema.

spring.liquibase.drop-first=false # Whether to first drop the database schema.

spring.liquibase.enabled=true # Whether to enable Liquibase support.

spring.liquibase.labels= # Comma-separated list of runtime labels to use.

spring.liquibase.parameters.*= # Change log parameters.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/security/SecurityProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/security/oauth2/client/OAuth2ClientProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/flyway/FlywayProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/liquibase/LiquibaseProperties.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 306

spring.liquibase.password= # Login password of the database to migrate.

spring.liquibase.rollback-file= # File to which rollback SQL is written when an update is performed.

spring.liquibase.url= # JDBC URL of the database to migrate. If not set, the primary configured data

 source is used.

spring.liquibase.user= # Login user of the database to migrate.

COUCHBASE (CouchbaseProperties)

spring.couchbase.bootstrap-hosts= # Couchbase nodes (host or IP address) to bootstrap from.

spring.couchbase.bucket.name=default # Name of the bucket to connect to.

spring.couchbase.bucket.password= # Password of the bucket.

spring.couchbase.env.endpoints.key-value=1 # Number of sockets per node against the Key/value service.

spring.couchbase.env.endpoints.query=1 # Number of sockets per node against the Query (N1QL) service.

spring.couchbase.env.endpoints.view=1 # Number of sockets per node against the view service.

spring.couchbase.env.ssl.enabled= # Whether to enable SSL support. Enabled automatically if a "keyStore"

 is provided, unless specified otherwise.

spring.couchbase.env.ssl.key-store= # Path to the JVM key store that holds the certificates.

spring.couchbase.env.ssl.key-store-password= # Password used to access the key store.

spring.couchbase.env.timeouts.connect=5000ms # Bucket connections timeouts.

spring.couchbase.env.timeouts.key-value=2500ms # Blocking operations performed on a specific key

 timeout.

spring.couchbase.env.timeouts.query=7500ms # N1QL query operations timeout.

spring.couchbase.env.timeouts.socket-connect=1000ms # Socket connect connections timeout.

spring.couchbase.env.timeouts.view=7500ms # Regular and geospatial view operations timeout.

DAO (PersistenceExceptionTranslationAutoConfiguration)

spring.dao.exceptiontranslation.enabled=true # Whether to enable the

 PersistenceExceptionTranslationPostProcessor.

CASSANDRA (CassandraProperties)

spring.data.cassandra.cluster-name= # Name of the Cassandra cluster.

spring.data.cassandra.compression=none # Compression supported by the Cassandra binary protocol.

spring.data.cassandra.connect-timeout= # Socket option: connection time out.

spring.data.cassandra.consistency-level= # Queries consistency level.

spring.data.cassandra.contact-points=localhost # Comma-separated list of cluster node addresses.

spring.data.cassandra.fetch-size= # Queries default fetch size.

spring.data.cassandra.keyspace-name= # Keyspace name to use.

spring.data.cassandra.load-balancing-policy= # Class name of the load balancing policy.

spring.data.cassandra.port= # Port of the Cassandra server.

spring.data.cassandra.password= # Login password of the server.

spring.data.cassandra.pool.heartbeat-interval=30 # Heartbeat interval after which a message is sent on

 an idle connection to make sure it's still alive. If a duration suffix is not specified, seconds will

 be used.

spring.data.cassandra.pool.idle-timeout=120 # Idle timeout before an idle connection is removed. If a

 duration suffix is not specified, seconds will be used.

spring.data.cassandra.pool.max-queue-size=256 # Maximum number of requests that get queued if no

 connection is available.

spring.data.cassandra.pool.pool-timeout=5000ms # Pool timeout when trying to acquire a connection from a

 host's pool.

spring.data.cassandra.read-timeout= # Socket option: read time out.

spring.data.cassandra.reconnection-policy= # Reconnection policy class.

spring.data.cassandra.repositories.type=auto # Type of Cassandra repositories to enable.

spring.data.cassandra.retry-policy= # Class name of the retry policy.

spring.data.cassandra.serial-consistency-level= # Queries serial consistency level.

spring.data.cassandra.schema-action=none # Schema action to take at startup.

spring.data.cassandra.ssl=false # Enable SSL support.

spring.data.cassandra.username= # Login user of the server.

DATA COUCHBASE (CouchbaseDataProperties)

spring.data.couchbase.auto-index=false # Automatically create views and indexes.

spring.data.couchbase.consistency=read-your-own-writes # Consistency to apply by default on generated

 queries.

spring.data.couchbase.repositories.type=auto # Type of Couchbase repositories to enable.

ELASTICSEARCH (ElasticsearchProperties)

spring.data.elasticsearch.cluster-name=elasticsearch # Elasticsearch cluster name.

spring.data.elasticsearch.cluster-nodes= # Comma-separated list of cluster node addresses.

spring.data.elasticsearch.properties.*= # Additional properties used to configure the client.

spring.data.elasticsearch.repositories.enabled=true # Whether to enable Elasticsearch repositories.

DATA LDAP

spring.data.ldap.repositories.enabled=true # Enable LDAP repositories.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/couchbase/CouchbaseProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/dao/PersistenceExceptionTranslationAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/cassandra/CassandraProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/couchbase/CouchbaseDataProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/elasticsearch/ElasticsearchProperties.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 307

MONGODB (MongoProperties)

spring.data.mongodb.authentication-database= # Authentication database name.

spring.data.mongodb.database=test # Database name.

spring.data.mongodb.field-naming-strategy= # Fully qualified name of the FieldNamingStrategy to use.

spring.data.mongodb.grid-fs-database= # GridFS database name.

spring.data.mongodb.host=localhost # Mongo server host. Cannot be set with URI.

spring.data.mongodb.password= # Login password of the mongo server. Cannot be set with URI.

spring.data.mongodb.port=27017 # Mongo server port. Cannot be set with URI.

spring.data.mongodb.repositories.type=true # Type of Mongo repositories to enable.

spring.data.mongodb.uri=mongodb://localhost/test # Mongo database URI. Cannot be set with host, port and

 credentials.

spring.data.mongodb.username= # Login user of the mongo server. Cannot be set with URI.

DATA REDIS

spring.data.redis.repositories.enabled=true # Whether to enable Redis repositories.

NEO4J (Neo4jProperties)

spring.data.neo4j.auto-index=none # Auto index mode.

spring.data.neo4j.embedded.enabled=true # Whether to enable embedded mode if the embedded driver is

 available.

spring.data.neo4j.open-in-view=true # Register OpenSessionInViewInterceptor. Binds a Neo4j Session to

 the thread for the entire processing of the request.

spring.data.neo4j.password= # Login password of the server.

spring.data.neo4j.repositories.enabled=true # Whether to enable Neo4j repositories.

spring.data.neo4j.uri= # URI used by the driver. Auto-detected by default.

spring.data.neo4j.username= # Login user of the server.

DATA REST (RepositoryRestProperties)

spring.data.rest.base-path= # Base path to be used by Spring Data REST to expose repository resources.

spring.data.rest.default-media-type= # Content type to use as a default when none is specified.

spring.data.rest.default-page-size= # Default size of pages.

spring.data.rest.detection-strategy=default # Strategy to use to determine which repositories get

 exposed.

spring.data.rest.enable-enum-translation= # Whether to enable enum value translation through the Spring

 Data REST default resource bundle.

spring.data.rest.limit-param-name= # Name of the URL query string parameter that indicates how many

 results to return at once.

spring.data.rest.max-page-size= # Maximum size of pages.

spring.data.rest.page-param-name= # Name of the URL query string parameter that indicates what page to

 return.

spring.data.rest.return-body-on-create= # Whether to return a response body after creating an entity.

spring.data.rest.return-body-on-update= # Whether to return a response body after updating an entity.

spring.data.rest.sort-param-name= # Name of the URL query string parameter that indicates what direction

 to sort results.

SOLR (SolrProperties)

spring.data.solr.host=http://127.0.0.1:8983/solr # Solr host. Ignored if "zk-host" is set.

spring.data.solr.repositories.enabled=true # Whether to enable Solr repositories.

spring.data.solr.zk-host= # ZooKeeper host address in the form HOST:PORT.

DATA WEB (SpringDataWebProperties)

spring.data.web.pageable.default-page-size=20 # Default page size.

spring.data.web.pageable.max-page-size=2000 # Maximum page size to be accepted.

spring.data.web.pageable.one-indexed-parameters=false # Whether to expose and assume 1-based page number

 indexes.

spring.data.web.pageable.page-parameter=page # Page index parameter name.

spring.data.web.pageable.prefix= # General prefix to be prepended to the page number and page size

 parameters.

spring.data.web.pageable.qualifier-delimiter=_ # Delimiter to be used between the qualifier and the

 actual page number and size properties.

spring.data.web.pageable.size-parameter=size # Page size parameter name.

spring.data.web.sort.sort-parameter=sort # Sort parameter name.

DATASOURCE (DataSourceAutoConfiguration & DataSourceProperties)

spring.datasource.continue-on-error=false # Whether to stop if an error occurs while initializing the

 database.

spring.datasource.data= # Data (DML) script resource references.

spring.datasource.data-username= # Username of the database to execute DML scripts (if different).

spring.datasource.data-password= # Password of the database to execute DML scripts (if different).

spring.datasource.dbcp2.*= # Commons DBCP2 specific settings

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mongo/MongoProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/neo4j/Neo4jProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/rest/RepositoryRestProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/solr/SolrProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/web/SpringDataWebProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/DataSourceAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/DataSourceProperties.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 308

spring.datasource.driver-class-name= # Fully qualified name of the JDBC driver. Auto-detected based on

 the URL by default.

spring.datasource.generate-unique-name=false # Whether to generate a random datasource name.

spring.datasource.hikari.*= # Hikari specific settings

spring.datasource.initialization-mode=embedded # Initialize the datasource with available DDL and DML

 scripts.

spring.datasource.jmx-enabled=false # Whether to enable JMX support (if provided by the underlying

 pool).

spring.datasource.jndi-name= # JNDI location of the datasource. Class, url, username & password are

 ignored when set.

spring.datasource.name= # Name of the datasource. Default to "testdb" when using an embedded database.

spring.datasource.password= # Login password of the database.

spring.datasource.platform=all # Platform to use in the DDL or DML scripts (such as schema-

${platform}.sql or data-${platform}.sql).

spring.datasource.schema= # Schema (DDL) script resource references.

spring.datasource.schema-username= # Username of the database to execute DDL scripts (if different).

spring.datasource.schema-password= # Password of the database to execute DDL scripts (if different).

spring.datasource.separator=; # Statement separator in SQL initialization scripts.

spring.datasource.sql-script-encoding= # SQL scripts encoding.

spring.datasource.tomcat.*= # Tomcat datasource specific settings

spring.datasource.type= # Fully qualified name of the connection pool implementation to use. By default,

 it is auto-detected from the classpath.

spring.datasource.url= # JDBC URL of the database.

spring.datasource.username= # Login username of the database.

spring.datasource.xa.data-source-class-name= # XA datasource fully qualified name.

spring.datasource.xa.properties= # Properties to pass to the XA data source.

JEST (Elasticsearch HTTP client) (JestProperties)

spring.elasticsearch.jest.connection-timeout=3s # Connection timeout.

spring.elasticsearch.jest.multi-threaded=true # Whether to enable connection requests from multiple

 execution threads.

spring.elasticsearch.jest.password= # Login password.

spring.elasticsearch.jest.proxy.host= # Proxy host the HTTP client should use.

spring.elasticsearch.jest.proxy.port= # Proxy port the HTTP client should use.

spring.elasticsearch.jest.read-timeout=3s # Read timeout.

spring.elasticsearch.jest.uris=http://localhost:9200 # Comma-separated list of the Elasticsearch

 instances to use.

spring.elasticsearch.jest.username= # Login username.

H2 Web Console (H2ConsoleProperties)

spring.h2.console.enabled=false # Whether to enable the console.

spring.h2.console.path=/h2-console # Path at which the console is available.

spring.h2.console.settings.trace=false # Whether to enable trace output.

spring.h2.console.settings.web-allow-others=false # Whether to enable remote access.

InfluxDB (InfluxDbProperties)

spring.influx.password= # Login password.

spring.influx.url= # URL of the InfluxDB instance to which to connect.

spring.influx.user= # Login user.

JOOQ (JooqProperties)

spring.jooq.sql-dialect= # SQL dialect to use. Auto-detected by default.

JDBC (JdbcProperties)

spring.jdbc.template.fetch-size=-1 # Number of rows that should be fetched from the database when more

 rows are needed.

spring.jdbc.template.max-rows=-1 # Maximum number of rows.

spring.jdbc.template.query-timeout= # Query timeout. If a duration suffix is not specified, seconds will

 be used.

JPA (JpaBaseConfiguration, HibernateJpaAutoConfiguration)

spring.data.jpa.repositories.enabled=true # Whether to enable JPA repositories.

spring.jpa.database= # Target database to operate on, auto-detected by default. Can be alternatively set

 using the "databasePlatform" property.

spring.jpa.database-platform= # Name of the target database to operate on, auto-detected by default. Can

 be alternatively set using the "Database" enum.

spring.jpa.generate-ddl=false # Whether to initialize the schema on startup.

spring.jpa.hibernate.ddl-auto= # DDL mode. This is actually a shortcut for the "hibernate.hbm2ddl.auto"

 property. Defaults to "create-drop" when using an embedded database and no schema manager was detected.

 Otherwise, defaults to "none".

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/elasticsearch/jest/JestProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/h2/H2ConsoleProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/influx/InfluxDbProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jooq/JooqProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/JdbcProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/JpaBaseConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/HibernateJpaAutoConfiguration.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 309

spring.jpa.hibernate.naming.implicit-strategy= # Hibernate 5 implicit naming strategy fully qualified

 name.

spring.jpa.hibernate.naming.physical-strategy= # Hibernate 5 physical naming strategy fully qualified

 name.

spring.jpa.hibernate.use-new-id-generator-mappings= # Whether to use Hibernate's newer

 IdentifierGenerator for AUTO, TABLE and SEQUENCE.

spring.jpa.mapping-resources= # Mapping resources (equivalent to "mapping-file" entries in

 persistence.xml).

spring.jpa.open-in-view=true # Register OpenEntityManagerInViewInterceptor. Binds a JPA EntityManager to

 the thread for the entire processing of the request.

spring.jpa.properties.*= # Additional native properties to set on the JPA provider.

spring.jpa.show-sql=false # Whether to enable logging of SQL statements.

JTA (JtaAutoConfiguration)

spring.jta.enabled=true # Whether to enable JTA support.

spring.jta.log-dir= # Transaction logs directory.

spring.jta.transaction-manager-id= # Transaction manager unique identifier.

ATOMIKOS (AtomikosProperties)

spring.jta.atomikos.connectionfactory.borrow-connection-timeout=30 # Timeout, in seconds, for borrowing

 connections from the pool.

spring.jta.atomikos.connectionfactory.ignore-session-transacted-flag=true # Whether to ignore the

 transacted flag when creating session.

spring.jta.atomikos.connectionfactory.local-transaction-mode=false # Whether local transactions are

 desired.

spring.jta.atomikos.connectionfactory.maintenance-interval=60 # The time, in seconds, between runs of

 the pool's maintenance thread.

spring.jta.atomikos.connectionfactory.max-idle-time=60 # The time, in seconds, after which connections

 are cleaned up from the pool.

spring.jta.atomikos.connectionfactory.max-lifetime=0 # The time, in seconds, that a connection can be

 pooled for before being destroyed. 0 denotes no limit.

spring.jta.atomikos.connectionfactory.max-pool-size=1 # The maximum size of the pool.

spring.jta.atomikos.connectionfactory.min-pool-size=1 # The minimum size of the pool.

spring.jta.atomikos.connectionfactory.reap-timeout=0 # The reap timeout, in seconds, for borrowed

 connections. 0 denotes no limit.

spring.jta.atomikos.connectionfactory.unique-resource-name=jmsConnectionFactory # The unique name used

 to identify the resource during recovery.

spring.jta.atomikos.connectionfactory.xa-connection-factory-class-name= # Vendor-specific implementation

 of XAConnectionFactory.

spring.jta.atomikos.connectionfactory.xa-properties= # Vendor-specific XA properties.

spring.jta.atomikos.datasource.borrow-connection-timeout=30 # Timeout, in seconds, for borrowing

 connections from the pool.

spring.jta.atomikos.datasource.concurrent-connection-validation= # Whether to use concurrent connection

 validation.

spring.jta.atomikos.datasource.default-isolation-level= # Default isolation level of connections

 provided by the pool.

spring.jta.atomikos.datasource.login-timeout= # Timeout, in seconds, for establishing a database

 connection.

spring.jta.atomikos.datasource.maintenance-interval=60 # The time, in seconds, between runs of the

 pool's maintenance thread.

spring.jta.atomikos.datasource.max-idle-time=60 # The time, in seconds, after which connections are

 cleaned up from the pool.

spring.jta.atomikos.datasource.max-lifetime=0 # The time, in seconds, that a connection can be pooled

 for before being destroyed. 0 denotes no limit.

spring.jta.atomikos.datasource.max-pool-size=1 # The maximum size of the pool.

spring.jta.atomikos.datasource.min-pool-size=1 # The minimum size of the pool.

spring.jta.atomikos.datasource.reap-timeout=0 # The reap timeout, in seconds, for borrowed connections.

 0 denotes no limit.

spring.jta.atomikos.datasource.test-query= # SQL query or statement used to validate a connection before

 returning it.

spring.jta.atomikos.datasource.unique-resource-name=dataSource # The unique name used to identify the

 resource during recovery.

spring.jta.atomikos.datasource.xa-data-source-class-name= # Vendor-specific implementation of

 XAConnectionFactory.

spring.jta.atomikos.datasource.xa-properties= # Vendor-specific XA properties.

spring.jta.atomikos.properties.allow-sub-transactions=true # Specify whether sub-transactions are

 allowed.

spring.jta.atomikos.properties.checkpoint-interval=500 # Interval between checkpoints, in milliseconds.

spring.jta.atomikos.properties.default-jta-timeout=10000 # Default timeout for JTA transactions, in

 milliseconds.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/transaction/jta/JtaAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/jta/atomikos/AtomikosProperties.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 310

spring.jta.atomikos.properties.default-max-wait-time-on-shutdown=9223372036854775807 # How long should

 normal shutdown (no-force) wait for transactions to complete.

spring.jta.atomikos.properties.enable-logging=true # Whether to enable disk logging.

spring.jta.atomikos.properties.force-shutdown-on-vm-exit=false # Whether a VM shutdown should trigger

 forced shutdown of the transaction core.

spring.jta.atomikos.properties.log-base-dir= # Directory in which the log files should be stored.

spring.jta.atomikos.properties.log-base-name=tmlog # Transactions log file base name.

spring.jta.atomikos.properties.max-actives=50 # Maximum number of active transactions.

spring.jta.atomikos.properties.max-timeout=30m # Maximum timeout that can be allowed for transactions.

spring.jta.atomikos.properties.recovery.delay=10000ms # Delay between two recovery scans.

spring.jta.atomikos.properties.recovery.forget-orphaned-log-entries-delay=86400000 # Delay after which

 recovery can cleanup pending ('orphaned') log entries.

spring.jta.atomikos.properties.recovery.max-retries=5 # Number of retry attempts to commit the

 transaction before throwing an exception.

spring.jta.atomikos.properties.recovery.retry-interval=10000ms # Delay between retry attempts.

spring.jta.atomikos.properties.serial-jta-transactions=true # Whether sub-transactions should be joined

 when possible.

spring.jta.atomikos.properties.service= # Transaction manager implementation that should be started.

spring.jta.atomikos.properties.threaded-two-phase-commit=false # Whether to use different (and

 concurrent) threads for two-phase commit on the participating resources.

spring.jta.atomikos.properties.transaction-manager-unique-name= # The transaction manager's unique name.

BITRONIX

spring.jta.bitronix.connectionfactory.acquire-increment=1 # Number of connections to create when growing

 the pool.

spring.jta.bitronix.connectionfactory.acquisition-interval=1 # Time, in seconds, to wait before trying

 to acquire a connection again after an invalid connection was acquired.

spring.jta.bitronix.connectionfactory.acquisition-timeout=30 # Timeout, in seconds, for acquiring

 connections from the pool.

spring.jta.bitronix.connectionfactory.allow-local-transactions=true # Whether the transaction manager

 should allow mixing XA and non-XA transactions.

spring.jta.bitronix.connectionfactory.apply-transaction-timeout=false # Whether the transaction timeout

 should be set on the XAResource when it is enlisted.

spring.jta.bitronix.connectionfactory.automatic-enlisting-enabled=true # Whether resources should be

 enlisted and delisted automatically.

spring.jta.bitronix.connectionfactory.cache-producers-consumers=true # Whether producers and consumers

 should be cached.

spring.jta.bitronix.connectionfactory.class-name= # Underlying implementation class name of the XA

 resource.

spring.jta.bitronix.connectionfactory.defer-connection-release=true # Whether the provider can run many

 transactions on the same connection and supports transaction interleaving.

spring.jta.bitronix.connectionfactory.disabled= # Whether this resource is disabled, meaning it's

 temporarily forbidden to acquire a connection from its pool.

spring.jta.bitronix.connectionfactory.driver-properties= # Properties that should be set on the

 underlying implementation.

spring.jta.bitronix.connectionfactory.failed= # Mark this resource producer as failed.

spring.jta.bitronix.connectionfactory.ignore-recovery-failures=false # Whether recovery failures should

 be ignored.

spring.jta.bitronix.connectionfactory.max-idle-time=60 # The time, in seconds, after which connections

 are cleaned up from the pool.

spring.jta.bitronix.connectionfactory.max-pool-size=10 # The maximum size of the pool. 0 denotes no

 limit.

spring.jta.bitronix.connectionfactory.min-pool-size=0 # The minimum size of the pool.

spring.jta.bitronix.connectionfactory.password= # The password to use to connect to the JMS provider.

spring.jta.bitronix.connectionfactory.share-transaction-connections=false # Whether connections in the

 ACCESSIBLE state can be shared within the context of a transaction.

spring.jta.bitronix.connectionfactory.test-connections=true # Whether connections should be tested when

 acquired from the pool.

spring.jta.bitronix.connectionfactory.two-pc-ordering-position=1 # The position that this

 resource should take during two-phase commit (always first is Integer.MIN_VALUE, always last is

 Integer.MAX_VALUE).

spring.jta.bitronix.connectionfactory.unique-name=jmsConnectionFactory # The unique name used to

 identify the resource during recovery.

spring.jta.bitronix.connectionfactory.use-tm-join=true Whether TMJOIN should be used when starting

 XAResources.

spring.jta.bitronix.connectionfactory.user= # The user to use to connect to the JMS provider.

spring.jta.bitronix.datasource.acquire-increment=1 # Number of connections to create when growing the

 pool.

spring.jta.bitronix.datasource.acquisition-interval=1 # Time, in seconds, to wait before trying to

 acquire a connection again after an invalid connection was acquired.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 311

spring.jta.bitronix.datasource.acquisition-timeout=30 # Timeout, in seconds, for acquiring connections

 from the pool.

spring.jta.bitronix.datasource.allow-local-transactions=true # Whether the transaction manager should

 allow mixing XA and non-XA transactions.

spring.jta.bitronix.datasource.apply-transaction-timeout=false # Whether the transaction timeout should

 be set on the XAResource when it is enlisted.

spring.jta.bitronix.datasource.automatic-enlisting-enabled=true # Whether resources should be enlisted

 and delisted automatically.

spring.jta.bitronix.datasource.class-name= # Underlying implementation class name of the XA resource.

spring.jta.bitronix.datasource.cursor-holdability= # The default cursor holdability for connections.

spring.jta.bitronix.datasource.defer-connection-release=true # Whether the database can run many

 transactions on the same connection and supports transaction interleaving.

spring.jta.bitronix.datasource.disabled= # Whether this resource is disabled, meaning it's temporarily

 forbidden to acquire a connection from its pool.

spring.jta.bitronix.datasource.driver-properties= # Properties that should be set on the underlying

 implementation.

spring.jta.bitronix.datasource.enable-jdbc4-connection-test= # Whether Connection.isValid() is called

 when acquiring a connection from the pool.

spring.jta.bitronix.datasource.failed= # Mark this resource producer as failed.

spring.jta.bitronix.datasource.ignore-recovery-failures=false # Whether recovery failures should be

 ignored.

spring.jta.bitronix.datasource.isolation-level= # The default isolation level for connections.

spring.jta.bitronix.datasource.local-auto-commit= # The default auto-commit mode for local transactions.

spring.jta.bitronix.datasource.login-timeout= # Timeout, in seconds, for establishing a database

 connection.

spring.jta.bitronix.datasource.max-idle-time=60 # The time, in seconds, after which connections are

 cleaned up from the pool.

spring.jta.bitronix.datasource.max-pool-size=10 # The maximum size of the pool. 0 denotes no limit.

spring.jta.bitronix.datasource.min-pool-size=0 # The minimum size of the pool.

spring.jta.bitronix.datasource.prepared-statement-cache-size=0 # The target size of the prepared

 statement cache. 0 disables the cache.

spring.jta.bitronix.datasource.share-transaction-connections=false # Whether connections in the

 ACCESSIBLE state can be shared within the context of a transaction.

spring.jta.bitronix.datasource.test-query= # SQL query or statement used to validate a connection before

 returning it.

spring.jta.bitronix.datasource.two-pc-ordering-position=1 # The position that this resource should take

 during two-phase commit (always first is Integer.MIN_VALUE, and always last is Integer.MAX_VALUE).

spring.jta.bitronix.datasource.unique-name=dataSource # The unique name used to identify the resource

 during recovery.

spring.jta.bitronix.datasource.use-tm-join=true Whether TMJOIN should be used when starting XAResources.

spring.jta.bitronix.properties.allow-multiple-lrc=false # Whether to allow multiple LRC resources to be

 enlisted into the same transaction.

spring.jta.bitronix.properties.asynchronous2-pc=false # Enable asynchronously execution of two phase

 commit.

spring.jta.bitronix.properties.background-recovery-interval-seconds=60 # Interval in seconds at which to

 run the recovery process in the background.

spring.jta.bitronix.properties.current-node-only-recovery=true # Whether to recover only the current

 node.

spring.jta.bitronix.properties.debug-zero-resource-transaction=false # Whether to log the creation and

 commit call stacks of transactions executed without a single enlisted resource.

spring.jta.bitronix.properties.default-transaction-timeout=60 # Default transaction timeout, in seconds.

spring.jta.bitronix.properties.disable-jmx=false # Whether to enable JMX support.

spring.jta.bitronix.properties.exception-analyzer= # Set the fully qualified name of the exception

 analyzer implementation to use.

spring.jta.bitronix.properties.filter-log-status=false # Whether to enable filtering of logs so that

 only mandatory logs are written.

spring.jta.bitronix.properties.force-batching-enabled=true # Whether disk forces are batched.

spring.jta.bitronix.properties.forced-write-enabled=true # Whether logs are forced to disk.

spring.jta.bitronix.properties.graceful-shutdown-interval=60 # Maximum amount of seconds the TM waits

 for transactions to get done before aborting them at shutdown time.

spring.jta.bitronix.properties.jndi-transaction-synchronization-registry-name= # JNDI name of the

 TransactionSynchronizationRegistry.

spring.jta.bitronix.properties.jndi-user-transaction-name= # JNDI name of the UserTransaction.

spring.jta.bitronix.properties.journal=disk # Name of the journal. Can be 'disk', 'null', or a class

 name.

spring.jta.bitronix.properties.log-part1-filename=btm1.tlog # Name of the first fragment of the journal.

spring.jta.bitronix.properties.log-part2-filename=btm2.tlog # Name of the second fragment of the

 journal.

spring.jta.bitronix.properties.max-log-size-in-mb=2 # Maximum size in megabytes of the journal

 fragments.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 312

spring.jta.bitronix.properties.resource-configuration-filename= # ResourceLoader configuration file

 name.

spring.jta.bitronix.properties.server-id= # ASCII ID that must uniquely identify this TM instance.

 Defaults to the machine's IP address.

spring.jta.bitronix.properties.skip-corrupted-logs=false # Skip corrupted transactions log entries.

spring.jta.bitronix.properties.warn-about-zero-resource-transaction=true # Whether to log a warning for

 transactions executed without a single enlisted resource.

NARAYANA (NarayanaProperties)

spring.jta.narayana.default-timeout=60s # Transaction timeout. If a duration suffix is not specified,

 seconds will be used.

spring.jta.narayana.expiry-

scanners=com.arjuna.ats.internal.arjuna.recovery.ExpiredTransactionStatusManagerScanner # Comma-

separated list of expiry scanners.

spring.jta.narayana.log-dir= # Transaction object store directory.

spring.jta.narayana.one-phase-commit=true # Whether to enable one phase commit optimization.

spring.jta.narayana.periodic-recovery-period=120s # Interval in which periodic recovery scans are

 performed. If a duration suffix is not specified, seconds will be used.

spring.jta.narayana.recovery-backoff-period=10s # Back off period between first and second phases of the

 recovery scan. If a duration suffix is not specified, seconds will be used.

spring.jta.narayana.recovery-db-pass= # Database password to be used by the recovery manager.

spring.jta.narayana.recovery-db-user= # Database username to be used by the recovery manager.

spring.jta.narayana.recovery-jms-pass= # JMS password to be used by the recovery manager.

spring.jta.narayana.recovery-jms-user= # JMS username to be used by the recovery manager.

spring.jta.narayana.recovery-modules= # Comma-separated list of recovery modules.

spring.jta.narayana.transaction-manager-id=1 # Unique transaction manager id.

spring.jta.narayana.xa-resource-orphan-filters= # Comma-separated list of orphan filters.

EMBEDDED MONGODB (EmbeddedMongoProperties)

spring.mongodb.embedded.features=SYNC_DELAY # Comma-separated list of features to enable.

spring.mongodb.embedded.storage.database-dir= # Directory used for data storage.

spring.mongodb.embedded.storage.oplog-size= # Maximum size of the oplog, in megabytes.

spring.mongodb.embedded.storage.repl-set-name= # Name of the replica set.

spring.mongodb.embedded.version=2.6.10 # Version of Mongo to use.

REDIS (RedisProperties)

spring.redis.cluster.max-redirects= # Maximum number of redirects to follow when executing commands

 across the cluster.

spring.redis.cluster.nodes= # Comma-separated list of "host:port" pairs to bootstrap from.

spring.redis.database=0 # Database index used by the connection factory.

spring.redis.url= # Connection URL. Overrides host, port, and password. User is ignored. Example:

 redis://user:password@example.com:6379

spring.redis.host=localhost # Redis server host.

spring.redis.jedis.pool.max-active=8 # Max number of connections that can be allocated by the pool at a

 given time. Use a negative value for no limit.

spring.redis.jedis.pool.max-idle=8 # Max number of "idle" connections in the pool. Use a negative value

 to indicate an unlimited number of idle connections.

spring.redis.jedis.pool.max-wait=-1ms # Maximum amount of time a connection allocation should block

 before throwing an exception when the pool is exhausted. Use a negative value to block indefinitely.

spring.redis.jedis.pool.min-idle=0 # Target for the minimum number of idle connections to maintain in

 the pool. This setting only has an effect if it is positive.

spring.redis.lettuce.pool.max-active=8 # Maximum number of connections that can be allocated by the pool

 at a given time. Use a negative value for no limit.

spring.redis.lettuce.pool.max-idle=8 # Maximum number of "idle" connections in the pool. Use a negative

 value to indicate an unlimited number of idle connections.

spring.redis.lettuce.pool.max-wait=-1ms # Maximum amount of time a connection allocation should block

 before throwing an exception when the pool is exhausted. Use a negative value to block indefinitely.

spring.redis.lettuce.pool.min-idle=0 # Target for the minimum number of idle connections to maintain in

 the pool. This setting only has an effect if it is positive.

spring.redis.lettuce.shutdown-timeout=100ms # Shutdown timeout.

spring.redis.password= # Login password of the redis server.

spring.redis.port=6379 # Redis server port.

spring.redis.sentinel.master= # Name of the Redis server.

spring.redis.sentinel.nodes= # Comma-separated list of "host:port" pairs.

spring.redis.ssl=false # Whether to enable SSL support.

spring.redis.timeout=0 # Connection timeout.

TRANSACTION (TransactionProperties)

spring.transaction.default-timeout= # Default transaction timeout. If a duration suffix is not

 specified, seconds will be used.

spring.transaction.rollback-on-commit-failure= # Whether to roll back on commit failures.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/jta/narayana/NarayanaProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mongo/embedded/EmbeddedMongoProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/redis/RedisProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/transaction/TransactionProperties.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 313

--

INTEGRATION PROPERTIES

--

ACTIVEMQ (ActiveMQProperties)

spring.activemq.broker-url= # URL of the ActiveMQ broker. Auto-generated by default.

spring.activemq.close-timeout=15s # Time to wait before considering a close complete.

spring.activemq.in-memory=true # Whether the default broker URL should be in memory. Ignored if an

 explicit broker has been specified.

spring.activemq.non-blocking-redelivery=false # Whether to stop message delivery before re-delivering

 messages from a rolled back transaction. This implies that message order is not preserved when this is

 enabled.

spring.activemq.password= # Login password of the broker.

spring.activemq.send-timeout=0 # Time to wait on message sends for a response. Set it to 0 to wait

 forever.

spring.activemq.user= # Login user of the broker.

spring.activemq.packages.trust-all= # Whether to trust all packages.

spring.activemq.packages.trusted= # Comma-separated list of specific packages to trust (when not

 trusting all packages).

spring.activemq.pool.block-if-full=true # Whether to block when a connection is requested and the pool

 is full. Set it to false to throw a "JMSException" instead.

spring.activemq.pool.block-if-full-timeout=-1ms # Blocking period before throwing an exception if the

 pool is still full.

spring.activemq.pool.create-connection-on-startup=true # Whether to create a connection on startup. Can

 be used to warm up the pool on startup.

spring.activemq.pool.enabled=false # Whether a PooledConnectionFactory should be created, instead of a

 regular ConnectionFactory.

spring.activemq.pool.expiry-timeout=0ms # Connection expiration timeout.

spring.activemq.pool.idle-timeout=30s # Connection idle timeout.

spring.activemq.pool.max-connections=1 # Maximum number of pooled connections.

spring.activemq.pool.maximum-active-session-per-connection=500 # Maximum number of active sessions per

 connection.

spring.activemq.pool.reconnect-on-exception=true # Reset the connection when a "JMSException" occurs.

spring.activemq.pool.time-between-expiration-check=-1ms # Time to sleep between runs of the idle

 connection eviction thread. When negative, no idle connection eviction thread runs.

spring.activemq.pool.use-anonymous-producers=true # Whether to use only one anonymous "MessageProducer"

 instance. Set it to false to create one "MessageProducer" every time one is required.

ARTEMIS (ArtemisProperties)

spring.artemis.embedded.cluster-password= # Cluster password. Randomly generated on startup by default.

spring.artemis.embedded.data-directory= # Journal file directory. Not necessary if persistence is turned

 off.

spring.artemis.embedded.enabled=true # Whether to enable embedded mode if the Artemis server APIs are

 available.

spring.artemis.embedded.persistent=false # Whether to enable persistent store.

spring.artemis.embedded.queues= # Comma-separated list of queues to create on startup.

spring.artemis.embedded.server-id= # Server ID. By default, an auto-incremented counter is used.

spring.artemis.embedded.topics= # Comma-separated list of topics to create on startup.

spring.artemis.host=localhost # Artemis broker host.

spring.artemis.mode= # Artemis deployment mode, auto-detected by default.

spring.artemis.password= # Login password of the broker.

spring.artemis.port=61616 # Artemis broker port.

spring.artemis.user= # Login user of the broker.

SPRING BATCH (BatchProperties)

spring.batch.initialize-schema=embedded # Database schema initialization mode.

spring.batch.job.enabled=true # Execute all Spring Batch jobs in the context on startup.

spring.batch.job.names= # Comma-separated list of job names to execute on startup (for instance,

 `job1,job2`). By default, all Jobs found in the context are executed.

spring.batch.schema=classpath:org/springframework/batch/core/schema-@@platform@@.sql # Path to the SQL

 file to use to initialize the database schema.

spring.batch.table-prefix= # Table prefix for all the batch meta-data tables.

SPRING INTEGRATION (IntegrationProperties)

spring.integration.jdbc.initialize-schema=embedded # Database schema initialization mode.

spring.integration.jdbc.schema=classpath:org/springframework/integration/jdbc/schema-@@platform@@.sql #

 Path to the SQL file to use to initialize the database schema.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/activemq/ActiveMQProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/artemis/ArtemisProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/batch/BatchProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/integration/IntegrationProperties.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 314

JMS (JmsProperties)

spring.jms.jndi-name= # Connection factory JNDI name. When set, takes precedence to others connection

 factory auto-configurations.

spring.jms.listener.acknowledge-mode= # Acknowledge mode of the container. By default, the listener is

 transacted with automatic acknowledgment.

spring.jms.listener.auto-startup=true # Start the container automatically on startup.

spring.jms.listener.concurrency= # Minimum number of concurrent consumers.

spring.jms.listener.max-concurrency= # Maximum number of concurrent consumers.

spring.jms.pub-sub-domain=false # Whether the default destination type is topic.

spring.jms.template.default-destination= # Default destination to use on send and receive operations

 that do not have a destination parameter.

spring.jms.template.delivery-delay= # Delivery delay to use for send calls.

spring.jms.template.delivery-mode= # Delivery mode. Enables QoS (Quality of Service) when set.

spring.jms.template.priority= # Priority of a message when sending. Enables QoS (Quality of Service)

 when set.

spring.jms.template.qos-enabled= # Whether to enable explicit QoS (Quality of Service) when sending a

 message.

spring.jms.template.receive-timeout= # Timeout to use for receive calls.

spring.jms.template.time-to-live= # Time-to-live of a message when sending. Enable QoS (Quality of

 Service) when set.

APACHE KAFKA (KafkaProperties)

spring.kafka.admin.client-id= # ID to pass to the server when making requests. Used for server-side

 logging.

spring.kafka.admin.fail-fast=false # Whether to fail fast if the broker is not available on startup.

spring.kafka.admin.properties.*= # Additional admin-specific properties used to configure the client.

spring.kafka.admin.ssl.key-password= # Password of the private key in the key store file.

spring.kafka.admin.ssl.keystore-location= # Location of the key store file.

spring.kafka.admin.ssl.keystore-password= # Password of the key store file.

spring.kafka.admin.ssl.truststore-location= # Location of the trust store file.

spring.kafka.admin.ssl.truststore-password= # Store password for the trust store file.

spring.kafka.bootstrap-servers= # Comma-delimited list of host:port pairs to use for establishing the

 initial connection to the Kafka cluster.

spring.kafka.client-id= # ID to pass to the server when making requests. Used for server-side logging.

spring.kafka.consumer.auto-commit-interval= # Frequency with which the consumer offsets are auto-

committed to Kafka if 'enable.auto.commit' is set to true.

spring.kafka.consumer.auto-offset-reset= # What to do when there is no initial offset in Kafka or if the

 current offset no longer exists on the server.

spring.kafka.consumer.bootstrap-servers= # Comma-delimited list of host:port pairs to use for

 establishing the initial connection to the Kafka cluster.

spring.kafka.consumer.client-id= # ID to pass to the server when making requests. Used for server-side

 logging.

spring.kafka.consumer.enable-auto-commit= # Whether the consumer's offset is periodically committed in

 the background.

spring.kafka.consumer.fetch-max-wait= # Maximum amount of time the server blocks before answering

 the fetch request if there isn't sufficient data to immediately satisfy the requirement given by

 "fetch.min.bytes".

spring.kafka.consumer.fetch-min-size= # Minimum amount of data, in bytes, the server should return for a

 fetch request.

spring.kafka.consumer.group-id= # Unique string that identifies the consumer group to which this

 consumer belongs.

spring.kafka.consumer.heartbeat-interval= # Expected time between heartbeats to the consumer

 coordinator.

spring.kafka.consumer.key-deserializer= # Deserializer class for keys.

spring.kafka.consumer.max-poll-records= # Maximum number of records returned in a single call to poll().

spring.kafka.consumer.properties.*= # Additional consumer-specific properties used to configure the

 client.

spring.kafka.consumer.ssl.key-password= # Password of the private key in the key store file.

spring.kafka.consumer.ssl.keystore-location= # Location of the key store file.

spring.kafka.consumer.ssl.keystore-password= # Store password for the key store file.

spring.kafka.consumer.ssl.truststore-location= # Location of the trust store file.

spring.kafka.consumer.ssl.truststore-password= # Store password for the trust store file.

spring.kafka.consumer.value-deserializer= # Deserializer class for values.

spring.kafka.jaas.control-flag=required # Control flag for login configuration.

spring.kafka.jaas.enabled= # Whether to enable JAAS configuration.

spring.kafka.jaas.login-module=com.sun.security.auth.module.Krb5LoginModule # Login module.

spring.kafka.jaas.options= # Additional JAAS options.

spring.kafka.listener.ack-count= # Number of records between offset commits when ackMode is "COUNT" or

 "COUNT_TIME".

spring.kafka.listener.ack-mode= # Listener AckMode. See the spring-kafka documentation.

spring.kafka.listener.ack-time= # Time between offset commits when ackMode is "TIME" or "COUNT_TIME".

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/JmsProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/kafka/KafkaProperties.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 315

spring.kafka.listener.client-id= # Prefix for the listener's consumer client.id property.

spring.kafka.listener.concurrency= # Number of threads to run in the listener containers.

spring.kafka.listener.idle-event-interval= # Time between publishing idle consumer events (no data

 received).

spring.kafka.listener.log-container-config= # Whether to log the container configuration during

 initialization (INFO level).

spring.kafka.listener.monitor-interval= # Time between checks for non-responsive consumers. If a

 duration suffix is not specified, seconds will be used.

spring.kafka.listener.no-poll-threshold= # Multiplier applied to "pollTimeout" to determine if a

 consumer is non-responsive.

spring.kafka.listener.poll-timeout= # Timeout to use when polling the consumer.

spring.kafka.listener.type=single # Listener type.

spring.kafka.producer.acks= # Number of acknowledgments the producer requires the leader to have

 received before considering a request complete.

spring.kafka.producer.batch-size= # Number of records to batch before sending.

spring.kafka.producer.bootstrap-servers= # Comma-delimited list of host:port pairs to use for

 establishing the initial connection to the Kafka cluster.

spring.kafka.producer.buffer-memory= # Total bytes of memory the producer can use to buffer records

 waiting to be sent to the server.

spring.kafka.producer.client-id= # ID to pass to the server when making requests. Used for server-side

 logging.

spring.kafka.producer.compression-type= # Compression type for all data generated by the producer.

spring.kafka.producer.key-serializer= # Serializer class for keys.

spring.kafka.producer.properties.*= # Additional producer-specific properties used to configure the

 client.

spring.kafka.producer.retries= # When greater than zero, enables retrying of failed sends.

spring.kafka.producer.ssl.key-password= # Password of the private key in the key store file.

spring.kafka.producer.ssl.keystore-location= # Location of the key store file.

spring.kafka.producer.ssl.keystore-password= # Store password for the key store file.

spring.kafka.producer.ssl.truststore-location= # Location of the trust store file.

spring.kafka.producer.ssl.truststore-password= # Store password for the trust store file.

spring.kafka.producer.transaction-id-prefix= # When non empty, enables transaction support for producer.

spring.kafka.producer.value-serializer= # Serializer class for values.

spring.kafka.properties.*= # Additional properties, common to producers and consumers, used to configure

 the client.

spring.kafka.ssl.key-password= # Password of the private key in the key store file.

spring.kafka.ssl.keystore-location= # Location of the key store file.

spring.kafka.ssl.keystore-password= # Store password for the key store file.

spring.kafka.ssl.truststore-location= # Location of the trust store file.

spring.kafka.ssl.truststore-password= # Store password for the trust store file.

spring.kafka.template.default-topic= # Default topic to which messages are sent.

RABBIT (RabbitProperties)

spring.rabbitmq.addresses= # Comma-separated list of addresses to which the client should connect.

spring.rabbitmq.cache.channel.checkout-timeout= # Duration to wait to obtain a channel if the cache size

 has been reached.

spring.rabbitmq.cache.channel.size= # Number of channels to retain in the cache.

spring.rabbitmq.cache.connection.mode=channel # Connection factory cache mode.

spring.rabbitmq.cache.connection.size= # Number of connections to cache.

spring.rabbitmq.connection-timeout= # Connection timeout. Set it to zero to wait forever.

spring.rabbitmq.dynamic=true # Whether to create an AmqpAdmin bean.

spring.rabbitmq.host=localhost # RabbitMQ host.

spring.rabbitmq.listener.direct.acknowledge-mode= # Acknowledge mode of container.

spring.rabbitmq.listener.direct.auto-startup=true # Whether to start the container automatically on

 startup.

spring.rabbitmq.listener.direct.consumers-per-queue= # Number of consumers per queue.

spring.rabbitmq.listener.direct.default-requeue-rejected= # Whether rejected deliveries are re-queued by

 default. Defaults to true.

spring.rabbitmq.listener.direct.idle-event-interval= # How often idle container events should be

 published.

spring.rabbitmq.listener.direct.prefetch= # Number of messages to be handled in a single request. It

 should be greater than or equal to the transaction size (if used).

spring.rabbitmq.listener.direct.retry.enabled=false # Whether publishing retries are enabled.

spring.rabbitmq.listener.direct.retry.initial-interval=1000ms # Interval between the first and second

 attempt to publish or deliver a message.

spring.rabbitmq.listener.direct.retry.max-attempts=3 # Maximum number of attempts to publish or deliver

 a message.

spring.rabbitmq.listener.direct.retry.max-interval=10000ms # Maximum interval between attempts.

spring.rabbitmq.listener.direct.retry.multiplier=1 # Multiplier to apply to the previous retry interval.

spring.rabbitmq.listener.direct.retry.stateless=true # Whether retries are stateless or stateful.

spring.rabbitmq.listener.simple.acknowledge-mode= # Acknowledge mode of container.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/amqp/RabbitProperties.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 316

spring.rabbitmq.listener.simple.auto-startup=true # Whether to start the container automatically on

 startup.

spring.rabbitmq.listener.simple.concurrency= # Minimum number of listener invoker threads.

spring.rabbitmq.listener.simple.default-requeue-rejected= # Whether to re-queue delivery failures.

spring.rabbitmq.listener.simple.idle-event-interval= # How often idle container events should be

 published.

spring.rabbitmq.listener.simple.max-concurrency= # Maximum number of listener invoker.

spring.rabbitmq.listener.simple.prefetch= # Number of messages to be handled in a single request. It

 should be greater than or equal to the transaction size (if used).

spring.rabbitmq.listener.simple.retry.enabled=false # Whether publishing retries are enabled.

spring.rabbitmq.listener.simple.retry.initial-interval=1000 # Interval, in milliseconds, between the

 first and second attempt to deliver a message.

spring.rabbitmq.listener.simple.retry.max-attempts=3 # Maximum number of attempts to deliver a message.

spring.rabbitmq.listener.simple.retry.max-interval=10000 # Maximum interval, in milliseconds, between

 attempts.

spring.rabbitmq.listener.simple.retry.multiplier=1.0 # Multiplier to apply to the previous delivery

 retry interval.

spring.rabbitmq.listener.simple.retry.stateless=true # Whether or not retry is stateless or stateful.

spring.rabbitmq.listener.simple.transaction-size= # Number of messages to be processed in a transaction.

 That is, the number of messages between acks. For best results, it should be less than or equal to the

 prefetch count.

spring.rabbitmq.listener.type=simple # Listener container type.

spring.rabbitmq.password=guest # Login to authenticate against the broker.

spring.rabbitmq.port=5672 # RabbitMQ port.

spring.rabbitmq.publisher-confirms=false # Whether to enable publisher confirms.

spring.rabbitmq.publisher-returns=false # Whether to enable publisher returns.

spring.rabbitmq.requested-heartbeat= # Requested heartbeat timeout; zero for none. If a duration suffix

 is not specified, seconds will be used.

spring.rabbitmq.ssl.enabled=false # Whether to enable SSL support.

spring.rabbitmq.ssl.key-store= # Path to the key store that holds the SSL certificate.

spring.rabbitmq.ssl.key-store-password= # Password used to access the key store.

spring.rabbitmq.ssl.key-store-type=PKCS12 # Key store type.

spring.rabbitmq.ssl.trust-store= # Trust store that holds SSL certificates.

spring.rabbitmq.ssl.trust-store-password= # Password used to access the trust store.

spring.rabbitmq.ssl.trust-store-type=JKS # Trust store type.

spring.rabbitmq.ssl.algorithm= # SSL algorithm to use. By default, configured by the Rabbit client

 library.

spring.rabbitmq.template.exchange= # Name of the default exchange to use for send operations.

spring.rabbitmq.template.mandatory=false # Whether to enable mandatory messages.

spring.rabbitmq.template.receive-timeout=0 # Timeout for `receive()` methods.

spring.rabbitmq.template.reply-timeout=5000 # Timeout for `sendAndReceive()` methods.

spring.rabbitmq.template.retry.enabled=false # Whether to enable retries in the `RabbitTemplate`.

spring.rabbitmq.template.retry.initial-interval=1000 # Interval, in milliseconds, between the first and

 second attempt to publish a message.

spring.rabbitmq.template.retry.max-attempts=3 # Maximum number of attempts to publish a message.

spring.rabbitmq.template.retry.max-interval=10000 # Maximum number of attempts to publish a message.

spring.rabbitmq.template.retry.multiplier=1.0 # Multiplier to apply to the previous publishing retry

 interval.

spring.rabbitmq.template.routing-key= # Value of a default routing key to use for send operations.

spring.rabbitmq.username=guest # Login user to authenticate to the broker.

spring.rabbitmq.virtual-host= # Virtual host to use when connecting to the broker.

--

ACTUATOR PROPERTIES

--

MANAGEMENT HTTP SERVER (ManagementServerProperties)

management.server.add-application-context-header=false # Add the "X-Application-Context" HTTP header in

 each response. Requires a custom management.server.port.

management.server.address= # Network address that to which the management endpoints should bind.

 Requires a custom management.server.port.

management.server.port= # Management endpoint HTTP port. Uses the same port as the application by

 default. Configure a different port to use management-specific SSL.

management.server.servlet.context-path= # Management endpoint context-path. For instance, `/management`.

 Requires a custom management.server.port.

management.server.ssl.ciphers= # Supported SSL ciphers. Requires a custom management.port.

management.server.ssl.client-auth= # Whether client authentication is wanted ("want") or needed

 ("need"). Requires a trust store. Requires a custom management.server.port.

management.server.ssl.enabled= # Whether to enable SSL support. Requires a custom

 management.server.port.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/web/server/ManagementServerProperties.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 317

management.server.ssl.enabled-protocols= # Enabled SSL protocols. Requires a custom

 management.server.port.

management.server.ssl.key-alias= # Alias that identifies the key in the key store. Requires a custom

 management.server.port.

management.server.ssl.key-password= # Password used to access the key in the key store. Requires a

 custom management.server.port.

management.server.ssl.key-store= # Path to the key store that holds the SSL certificate (typically a jks

 file). Requires a custom management.server.port.

management.server.ssl.key-store-password= # Password used to access the key store. Requires a custom

 management.server.port.

management.server.ssl.key-store-provider= # Provider for the key store. Requires a custom

 management.server.port.

management.server.ssl.key-store-type= # Type of the key store. Requires a custom management.server.port.

management.server.ssl.protocol=TLS # SSL protocol to use. Requires a custom management.server.port.

management.server.ssl.trust-store= # Trust store that holds SSL certificates. Requires a custom

 management.server.port.

management.server.ssl.trust-store-password= # Password used to access the trust store. Requires a custom

 management.server.port.

management.server.ssl.trust-store-provider= # Provider for the trust store. Requires a custom

 management.server.port.

management.server.ssl.trust-store-type= # Type of the trust store. Requires a custom

 management.server.port.

CLOUDFOUNDRY

management.cloudfoundry.enabled=true # Whether to enable extended Cloud Foundry actuator endpoints.

management.cloudfoundry.skip-ssl-validation=false # Whether to skip SSL verification for Cloud Foundry

 actuator endpoint security calls.

ENDPOINTS GENERAL CONFIGURATION

management.endpoints.enabled-by-default= # Enable or disable all endpoints by default.

ENDPOINTS JMX CONFIGURATION (JmxEndpointProperties)

management.endpoints.jmx.expose=* # Endpoint IDs that should be exposed or '*' for all.

management.endpoints.jmx.exclude= # Endpoint IDs that should be excluded.

management.endpoints.jmx.domain=org.springframework.boot # Endpoints JMX domain name. Fallback to

 'spring.jmx.default-domain' if set.

management.endpoints.jmx.static-names=false # Additional static properties to append to all ObjectNames

 of MBeans representing Endpoints.

management.endpoints.jmx.unique-names=false # Whether to ensure that ObjectNames are modified in case of

 conflict.

ENDPOINTS WEB CONFIGURATION (WebEndpointProperties)

management.endpoints.web.expose=info,health # Endpoint IDs that should be exposed or '*' for all.

management.endpoints.web.exclude= # Endpoint IDs that should be excluded.

management.endpoints.web.base-path=/actuator # Base path for Web endpoints. Relative to

 server.servlet.context-path or management.server.servlet.context-path if management.server.port is

 configured.

management.endpoints.web.path-mapping= # Mapping between endpoint IDs and the path that should expose

 them.

ENDPOINTS CORS CONFIGURATION (CorsEndpointProperties)

management.endpoints.web.cors.allow-credentials= # Whether credentials are supported. When not set,

 credentials are not supported.

management.endpoints.web.cors.allowed-headers= # Comma-separated list of headers to allow in a request.

 '*' allows all headers.

management.endpoints.web.cors.allowed-methods= # Comma-separated list of methods to allow. '*' allows

 all methods. When not set, defaults to GET.

management.endpoints.web.cors.allowed-origins= # Comma-separated list of origins to allow. '*' allows

 all origins. When not set, CORS support is disabled.

management.endpoints.web.cors.exposed-headers= # Comma-separated list of headers to include in a

 response.

management.endpoints.web.cors.max-age=1800 # How long the response from a pre-flight request can be

 cached by clients. If a duration suffix is not specified, seconds will be used.

AUDIT EVENTS ENDPOINT (AuditEventsEndpoint)

management.endpoint.auditevents.cache.time-to-live=0ms # Maximum time that a response can be cached.

management.endpoint.auditevents.enabled= # Whether to enable the auditevents endpoint.

BEANS ENDPOINT (BeansEndpoint)

management.endpoint.beans.cache.time-to-live=0ms # Maximum time that a response can be cached.

management.endpoint.beans.enabled= # Whether to enable the beans endpoint.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/endpoint/jmx/JmxEndpointProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/endpoint/web/WebEndpointProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/endpoint/web/CorsEndpointProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/audit/AuditEventsEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/beans/BeansEndpoint.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 318

CONDITIONS REPORT ENDPOINT (ConditionsReportEndpoint)

management.endpoint.conditions.cache.time-to-live=0ms # Maximum time that a response can be cached.

management.endpoint.conditions.enabled= # Whether to enable the conditions endpoint.

CONFIGURATION PROPERTIES REPORT ENDPOINT

 (ConfigurationPropertiesReportEndpoint, ConfigurationPropertiesReportEndpointProperties)

management.endpoint.configprops.cache.time-to-live=0ms # Maximum time that a response can be cached.

management.endpoint.configprops.enabled= # Whether to enable the configprops endpoint.

management.endpoint.configprops.keys-to-

sanitize=password,secret,key,token,.*credentials.*,vcap_services # Keys that should be sanitized. Keys

 can be simple strings that the property ends with or regular expressions.

ENVIRONMENT ENDPOINT (EnvironmentEndpoint, EnvironmentEndpointProperties)

management.endpoint.env.cache.time-to-live=0ms # Maximum time that a response can be cached.

management.endpoint.env.enabled= # Whether to enable the env endpoint.

management.endpoint.env.keys-to-sanitize=password,secret,key,token,.*credentials.*,vcap_services #

 Keys that should be sanitized. Keys can be simple strings that the property ends with or regular

 expressions.

FLYWAY ENDPOINT (FlywayEndpoint)

management.endpoint.flyway.cache.time-to-live=0ms # Maximum time that a response can be cached.

management.endpoint.flyway.enabled= # Whether to enable the flyway endpoint.

HEALTH ENDPOINT (HealthEndpoint, HealthEndpointProperties)

management.endpoint.health.cache.time-to-live=0ms # Maximum time that a response can be cached.

management.endpoint.health.enabled= # Whether to enable the health endpoint.

management.endpoint.health.show-details=false # Whether to show full health details instead of just the

 status when exposed over a potentially insecure connection.

HEAP DUMP ENDPOINT (HeapDumpWebEndpoint)

management.endpoint.heapdump.cache.time-to-live=0ms # Maximum time that a response can be cached.

management.endpoint.heapdump.enabled= # Whether to enable the heapdump endpoint.

HTTP TRACE ENDPOINT (HttpTraceEndpoint)

management.endpoint.httptrace.cache.time-to-live=0ms # Maximum time that a response can be cached.

management.endpoint.httptrace.enabled= # Whether to enable the HTTP trace endpoint.

INFO ENDPOINT (InfoEndpoint)

info= # Arbitrary properties to add to the info endpoint.

management.endpoint.info.cache.time-to-live=0ms # Maximum time that a response can be cached.

management.endpoint.info.enabled=true # Whether to enable the info endpoint.

JOLOKIA ENDPOINT (JolokiaProperties)

management.endpoint.jolokia.config.*= # Jolokia settings. See the Jolokia manual for details.

management.endpoint.jolokia.enabled=true # Whether to enable Jolokia.

LIQUIBASE ENDPOINT (LiquibaseEndpoint)

management.endpoint.liquibase.cache.time-to-live=0ms # Maximum time that a response can be cached.

management.endpoint.liquibase.enabled= # Whether to enable the liquibase endpoint.

LOG FILE ENDPOINT (LogFileWebEndpoint, LogFileWebEndpointProperties)

management.endpoint.logfile.cache.time-to-live=0ms # Maximum time that a response can be cached.

management.endpoint.logfile.enabled= # Whether to enable the logfile endpoint.

management.endpoint.logfile.external-file= # External Logfile to be accessed. Can be used if the logfile

 is written by output redirect and not by the logging system itself.

LOGGERS ENDPOINT (LoggersEndpoint)

management.endpoint.loggers.cache.time-to-live=0ms # Maximum time that a response can be cached.

management.endpoint.loggers.enabled= # Whether to enable the loggers endpoint.

REQUEST MAPPING ENDPOINT (MappingsEndpoint)

management.endpoint.mappings.cache.time-to-live=0ms # Maximum time that a response can be cached.

management.endpoint.mappings.enabled= # Whether to enable the mappings endpoint.

METRICS ENDPOINT (MetricsEndpoint)

management.endpoint.metrics.cache.time-to-live=0ms # Maximum time that a response can be cached.

management.endpoint.metrics.enabled= # Whether to enable the metrics endpoint.

PROMETHEUS ENDPOINT (PrometheusScrapeEndpoint)

management.endpoint.prometheus.cache.time-to-live=0ms # Maximum time that a response can be cached.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/condition/ConditionsReportEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/context/properties/ConfigurationPropertiesReportEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/context/properties/ConfigurationPropertiesReportEndpointProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/env/EnvironmentEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/env/EnvironmentEndpointProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/flyway/FlywayEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/HealthEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/health/HealthEndpointProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/management/HeapDumpWebEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/web/trace/HttpTraceEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/info/InfoEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/jolokia/JolokiaProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/liquibase/LiquibaseEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/logging/LogFileWebEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/logging/LogFileWebEndpointProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/logging/LoggersEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/web/mappings/MappingsEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/metrics/MetricsEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/metrics/export/prometheus/PrometheusScrapeEndpoint.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 319

management.endpoint.prometheus.enabled= # Whether to enable the metrics endpoint.

SCHEDULED TASKS ENDPOINT (ScheduledTasksEndpoint)

management.endpoint.scheduledtasks.cache.time-to-live=0ms # Maximum time that a response can be cached.

management.endpoint.scheduledtasks.enabled= # Whether to enable the scheduled tasks endpoint.

SESSIONS ENDPOINT (SessionsEndpoint)

management.endpoint.sessions.enabled= # Whether to enable the sessions endpoint.

SHUTDOWN ENDPOINT (ShutdownEndpoint)

management.endpoint.shutdown.enabled=false # Whether to enable the shutdown endpoint.

THREAD DUMP ENDPOINT (ThreadDumpEndpoint)

management.endpoint.threaddump.cache.time-to-live=0ms # Maximum time that a response can be cached.

management.endpoint.threaddump.enabled= # Whether to enable the threaddump endpoint.

HEALTH INDICATORS

management.health.db.enabled=true # Whether to enable database health check.

management.health.cassandra.enabled=true # Whether to enable Cassandra health check.

management.health.couchbase.enabled=true # Whether to enable Couchbase health check.

management.health.defaults.enabled=true # Whether to enable default health indicators.

management.health.diskspace.enabled=true # Whether to enable disk space health check.

management.health.diskspace.path= # Path used to compute the available disk space.

management.health.diskspace.threshold=0 # Minimum disk space, in bytes, that should be available.

management.health.elasticsearch.enabled=true # Whether to enable Elasticsearch health check.

management.health.elasticsearch.indices= # Comma-separated index names.

management.health.elasticsearch.response-timeout=100ms # The time to wait for a response from the

 cluster.

management.health.influxdb.enabled=true # Whether to enable InfluxDB health check.

management.health.jms.enabled=true # Whether to enable JMS health check.

management.health.ldap.enabled=true # Whether to enable LDAP health check.

management.health.mail.enabled=true # Whether to enable Mail health check.

management.health.mongo.enabled=true # Whether to enable MongoDB health check.

management.health.neo4j.enabled=true # Whether to enable Neo4j health check.

management.health.rabbit.enabled=true # Whether to enable RabbitMQ health check.

management.health.redis.enabled=true # Whether to enable Redis health check.

management.health.solr.enabled=true # Whether to enable Solr health check.

management.health.status.http-mapping= # Mapping of health statuses to HTTP status codes. By default,

 registered health statuses map to sensible defaults (for example, UP maps to 200).

management.health.status.order=DOWN, OUT_OF_SERVICE, UP, UNKNOWN # Comma-separated list of health

 statuses in order of severity.

HTTP TRACING (HttpTraceProperties)

management.httptrace.enabled=true # Whether to enable HTTP request-response tracing.

management.httptrace.include=request-headers,response-headers,cookies,errors # Items to be included in

 the trace.

INFO CONTRIBUTORS (InfoContributorProperties)

management.info.build.enabled=true # Whether to enable build info.

management.info.defaults.enabled=true # Whether to enable default info contributors.

management.info.env.enabled=true # Whether to enable environment info.

management.info.git.enabled=true # Whether to enable git info.

management.info.git.mode=simple # Mode to use to expose git information.

METRICS

management.metrics.binders.jvm.enabled=true # Whether to enable JVM metrics.

management.metrics.binders.logback.enabled=true # Whether to enable Logback metrics.

management.metrics.binders.processor.enabled=true # Whether to enable processor metrics.

management.metrics.binders.uptime.enabled=true # Whether to enable uptime metrics.

management.metrics.cache.metric-name=cache # Name of the metric for cache usage.

management.metrics.cache.instrument=true # Instrument all available caches.

management.metrics.export.atlas.batch-size= # Number of measurements per request to use for the backend.

 If more measurements are found, then multiple requests will be made.

management.metrics.export.atlas.config-refresh-frequency= # Frequency for refreshing config settings

 from the LWC service.

management.metrics.export.atlas.config-time-to-live= # Time to live for subscriptions from the LWC

 service.

management.metrics.export.atlas.config-uri= # URI for the Atlas LWC endpoint to retrieve current

 subscriptions.

management.metrics.export.atlas.connect-timeout= # Connection timeout for requests to the backend.

management.metrics.export.atlas.enabled=true # Whether exporting of metrics to this backend is enabled.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/scheduling/ScheduledTasksEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/session/SessionsEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/context/ShutdownEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/management/ThreadDumpEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/web/trace/HttpTraceProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/info/InfoContributorProperties.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 320

management.metrics.export.atlas.eval-uri= # URI for the Atlas LWC endpoint to evaluate the data for a

 subscription.

management.metrics.export.atlas.lwc-enabled= # Enable streaming to Atlas LWC.

management.metrics.export.atlas.meter-time-to-live= # Time to live for meters that do not have any

 activity. After this period the meter will be considered expired and will not get reported.

management.metrics.export.atlas.num-threads= # Number of threads to use with the metrics publishing

 scheduler.

management.metrics.export.atlas.read-timeout= # Read timeout for requests to the backend.

management.metrics.export.atlas.step=1m # Step size (i.e. reporting frequency) to use.

management.metrics.export.atlas.uri= # URI of the Atlas server.

management.metrics.export.datadog.api-key= # Datadog API key.

management.metrics.export.datadog.application-key= # Datadog application key.

management.metrics.export.datadog.batch-size= # Number of measurements per request to use for the

 backend. If more measurements are found, then multiple requests will be made.

management.metrics.export.datadog.connect-timeout= # Connection timeout for requests to the backend.

management.metrics.export.datadog.descriptions= # Whether to publish descriptions metadata to Datadog.

 Turn this off to minimize the amount of metadata sent.

management.metrics.export.datadog.enabled=true # Whether exporting of metrics to this backend is

 enabled.

management.metrics.export.datadog.host-tag= # Tag that will be mapped to "host" when shipping metrics to

 Datadog. Can be omitted if host should be omitted on publishing.

management.metrics.export.datadog.num-threads= # Number of threads to use with the metrics publishing

 scheduler.

management.metrics.export.datadog.read-timeout= # Read timeout for requests to the backend.

management.metrics.export.datadog.step=1m # Step size (i.e. reporting frequency) to use.

management.metrics.export.datadog.uri= # URI to ship metrics to. If you need to publish metrics to an

 internal proxy en-route to Datadog, you can define the location of the proxy with this.

management.metrics.export.ganglia.addressing-mode= # UDP addressing mode, either unicast or multicast.

management.metrics.export.ganglia.duration-units= # Base time unit used to report durations.

management.metrics.export.ganglia.enabled=true # Whether exporting of metrics to Ganglia is enabled.

management.metrics.export.ganglia.host= # Host of the Ganglia server to receive exported metrics.

management.metrics.export.ganglia.port= # Port of the Ganglia server to receive exported metrics.

management.metrics.export.ganglia.protocol-version= # Ganglia protocol version. Must be either 3.1 or

 3.0.

management.metrics.export.ganglia.rate-units= # Base time unit used to report rates.

management.metrics.export.ganglia.step= # Step size (i.e. reporting frequency) to use.

management.metrics.export.ganglia.time-to-live= # Time to live for metrics on Ganglia.

management.metrics.export.graphite.duration-units= # Base time unit used to report durations.

management.metrics.export.graphite.enabled=true # Whether exporting of metrics to Graphite is enabled.

management.metrics.export.graphite.host= # Host of the Graphite server to receive exported metrics.

management.metrics.export.graphite.port= # Port of the Graphite server to receive exported metrics.

management.metrics.export.graphite.protocol= # Protocol to use while shipping data to Graphite.

management.metrics.export.graphite.rate-units= # Base time unit used to report rates.

management.metrics.export.graphite.step= # Step size (i.e. reporting frequency) to use.

management.metrics.export.graphite.tags-as-prefix= # For the default naming convention, turn the

 specified tag keys into part of the metric prefix.

management.metrics.export.influx.batch-size= # Number of measurements per request to use for the

 backend. If more measurements are found, then multiple requests will be made.

management.metrics.export.influx.compressed= # Enable GZIP compression of metrics batches published to

 Influx.

management.metrics.export.influx.connect-timeout= # Connection timeout for requests to the backend.

management.metrics.export.influx.consistency= # Write consistency for each point.

management.metrics.export.influx.db= # Tag that will be mapped to "host" when shipping metrics to

 Influx. Can be omitted if host should be omitted on publishing.

management.metrics.export.influx.enabled=true # Whether exporting of metrics to this backend is enabled.

management.metrics.export.influx.num-threads= # Number of threads to use with the metrics publishing

 scheduler.

management.metrics.export.influx.password= # Login password of the Influx server.

management.metrics.export.influx.read-timeout= # Read timeout for requests to the backend.

management.metrics.export.influx.retention-policy= # Retention policy to use (Influx writes to the

 DEFAULT retention policy if one is not specified).

management.metrics.export.influx.step=1m # Step size (i.e. reporting frequency) to use.

management.metrics.export.influx.uri= # URI of the Influx server.

management.metrics.export.influx.user-name= # Login user of the Influx server.

management.metrics.export.jmx.enabled=true # Whether exporting of metrics to JMX is enabled.

management.metrics.export.jmx.step= # Step size (i.e. reporting frequency) to use.

management.metrics.export.prometheus.descriptions= # Enable publishing descriptions as part of the

 scrape payload to Prometheus. Turn this off to minimize the amount of data sent on each scrape.

management.metrics.export.prometheus.enabled=true # Whether exporting of metrics to Prometheus is

 enabled.

management.metrics.export.prometheus.step= # Step size (i.e. reporting frequency) to use.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 321

management.metrics.export.simple.enabled=true # Whether exporting of metrics to a simple in-memory store

 is enabled.

management.metrics.export.simple.mode=cumulative # Counting mode.

management.metrics.export.simple.step=10s # Step size (i.e. reporting frequency) to use.

management.metrics.export.statsd.enabled=true # Export metrics to StatsD.

management.metrics.export.statsd.flavor=datadog # StatsD line protocol to use.

management.metrics.export.statsd.host=localhost # Host of the StatsD server to receive exported metrics.

management.metrics.export.statsd.max-packet-length=1400 # Total length of a single payload should be

 kept within your network's MTU.

management.metrics.export.statsd.polling-frequency=10s # How often gauges will be polled. When a gauge

 is polled, its value is recalculated and if the value has changed, it is sent to the StatsD server.

management.metrics.export.statsd.port=8125 # Port of the StatsD server to receive exported metrics.

management.metrics.export.statsd.queue-size=2147483647 # Maximum size of the queue of items waiting to

 be sent to the StatsD server.

management.metrics.jdbc.instrument=true # Instrument all available data sources.

management.metrics.jdbc.metric-name=data.source # Name of the metric for data source usage.

management.metrics.rabbitmq.instrument=true # Instrument all available connection factories.

management.metrics.rabbitmq.metric-name=rabbitmq # Name of the metric for RabbitMQ usage.

management.metrics.use-global-registry=true # Whether auto-configured MeterRegistry implementations

 should be bound to the global static registry on Metrics.

management.metrics.web.client.record-request-percentiles=false # Whether instrumented requests record

 percentiles histogram buckets by default.

management.metrics.web.client.requests-metric-name=http.client.requests # Name of the metric for sent

 requests.

management.metrics.web.server.auto-time-requests=true # Whether requests handled by Spring MVC or

 WebFlux should be automatically timed.

management.metrics.web.server.record-request-percentiles=false # Whether instrumented requests record

 percentiles histogram buckets by default.

management.metrics.web.server.requests-metric-name=http.server.requests # Name of the metric for

 received requests.

--

DEVTOOLS PROPERTIES

--

DEVTOOLS (DevToolsProperties)

spring.devtools.livereload.enabled=true # Whether to enable a livereload.com-compatible server.

spring.devtools.livereload.port=35729 # Server port.

spring.devtools.restart.additional-exclude= # Additional patterns that should be excluded from

 triggering a full restart.

spring.devtools.restart.additional-paths= # Additional paths to watch for changes.

spring.devtools.restart.enabled=true # Enable automatic restart.

spring.devtools.restart.exclude=META-INF/maven/**,META-INF/resources/**,resources/**,static/**,public/

,templates/,**/*Test.class,**/*Tests.class,git.properties # Patterns that should be excluded from

 triggering a full restart.

spring.devtools.restart.log-condition-evaluation-delta=true # Whether to log the condition evaluation

 delta upon restart.

spring.devtools.restart.poll-interval=1s # Amount of time to wait between polling for classpath changes.

spring.devtools.restart.quiet-period=400ms # Amount of quiet time required without any classpath changes

 before a restart is triggered.

spring.devtools.restart.trigger-file= # Name of a specific file that, when changed, triggers the restart

 check. If not specified, any classpath file change triggers the restart.

REMOTE DEVTOOLS (RemoteDevToolsProperties)

spring.devtools.remote.context-path=/.~~spring-boot!~ # Context path used to handle the remote

 connection.

spring.devtools.remote.proxy.host= # The host of the proxy to use to connect to the remote application.

spring.devtools.remote.proxy.port= # The port of the proxy to use to connect to the remote application.

spring.devtools.remote.restart.enabled=true # Whether to enable remote restart.

spring.devtools.remote.secret= # A shared secret required to establish a connection (required to enable

 remote support).

spring.devtools.remote.secret-header-name=X-AUTH-TOKEN # HTTP header used to transfer the shared secret.

--

TESTING PROPERTIES

--

spring.test.database.replace=any # Type of existing DataSource to replace.

spring.test.mockmvc.print=default # MVC Print option.

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-devtools/src/main/java/org/springframework/boot/devtools/autoconfigure/DevToolsProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-devtools/src/main/java/org/springframework/boot/devtools/autoconfigure/RemoteDevToolsProperties.java

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 322

Appendix B. Configuration Metadata
Spring Boot jars include metadata files that provide details of all supported configuration properties.
The files are designed to let IDE developers offer contextual help and “code completion” as users are
working with application.properties or application.yml files.

The majority of the metadata file is generated automatically at compile time by processing all items
annotated with @ConfigurationProperties. However, it is possible to write part of the metadata
manually for corner cases or more advanced use cases.

B.1 Metadata Format

Configuration metadata files are located inside jars under META-INF/spring-configuration-
metadata.json They use a simple JSON format with items categorized under either “groups” or
“properties” and additional values hints categorized under "hints", as shown in the following example:

{"groups": [

 {

 "name": "server",

 "type": "org.springframework.boot.autoconfigure.web.ServerProperties",

 "sourceType": "org.springframework.boot.autoconfigure.web.ServerProperties"

 },

 {

 "name": "spring.jpa.hibernate",

 "type": "org.springframework.boot.autoconfigure.orm.jpa.JpaProperties$Hibernate",

 "sourceType": "org.springframework.boot.autoconfigure.orm.jpa.JpaProperties",

 "sourceMethod": "getHibernate()"

 }

 ...

],"properties": [

 {

 "name": "server.port",

 "type": "java.lang.Integer",

 "sourceType": "org.springframework.boot.autoconfigure.web.ServerProperties"

 },

 {

 "name": "server.servlet.path",

 "type": "java.lang.String",

 "sourceType": "org.springframework.boot.autoconfigure.web.ServerProperties",

 "defaultValue": "/"

 },

 {

 "name": "spring.jpa.hibernate.ddl-auto",

 "type": "java.lang.String",

 "description": "DDL mode. This is actually a shortcut for the \"hibernate.hbm2ddl.auto\" property.",

 "sourceType": "org.springframework.boot.autoconfigure.orm.jpa.JpaProperties$Hibernate"

 }

 ...

],"hints": [

 {

 "name": "spring.jpa.hibernate.ddl-auto",

 "values": [

 {

 "value": "none",

 "description": "Disable DDL handling."

 },

 {

 "value": "validate",

 "description": "Validate the schema, make no changes to the database."

 },

 {

 "value": "update",

 "description": "Update the schema if necessary."

 },

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 323

 {

 "value": "create",

 "description": "Create the schema and destroy previous data."

 },

 {

 "value": "create-drop",

 "description": "Create and then destroy the schema at the end of the session."

 }

]

 }

]}

Each “property” is a configuration item that the user specifies with a given value. For example,
server.port and server.servlet.path might be specified in application.properties, as
follows:

server.port=9090

server.servlet.path=/home

The “groups” are higher level items that do not themselves specify a value but instead provide a
contextual grouping for properties. For example, the server.port and server.servlet.path
properties are part of the server group.

Note

It is not required that every “property” has a “group”. Some properties might exist in their own right.

Finally, “hints” are additional information used to assist the user in configuring a given property. For
example, when a developer is configuring the spring.jpa.hibernate.ddl-auto property, a tool
can use the hints to offer some auto-completion help for the none, validate, update, create, and
create-drop values.

Group Attributes

The JSON object contained in the groups array can contain the attributes shown in the following table:

Name Type Purpose

name String The full name of the group. This attribute is mandatory.

type String The class name of the data type of the group. For example,
if the group were based on a class annotated with
@ConfigurationProperties, the attribute would contain the
fully qualified name of that class. If it were based on a @Bean
method, it would be the return type of that method. If the type is
not known, the attribute may be omitted.

description String A short description of the group that can be displayed to users. If
not description is available, it may be omitted. It is recommended
that descriptions be short paragraphs, with the first line providing
a concise summary. The last line in the description should end
with a period (.).

sourceType String The class name of the source that contributed this group. For
example, if the group were based on a @Bean method annotated

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 324

Name Type Purpose

with @ConfigurationProperties, this attribute would contain
the fully qualified name of the @Configuration class that
contains the method. If the source type is not known, the attribute
may be omitted.

sourceMethod String The full name of the method (include parenthesis and argument
types) that contributed this group (for example, the name of a
@ConfigurationProperties annotated @Bean method). If the
source method is not known, it may be omitted.

Property Attributes

The JSON object contained in the properties array can contain the attributes described in the
following table:

Name Type Purpose

name String The full name of the property. Names are in lower-case period-
separated form (for example, server.servlet.path). This
attribute is mandatory.

type String The full signature of the data type of the property (for example,
java.lang.String) but also a full generic type (such as
java.util.Map<java.util.String,acme.MyEnum>). You
can use this attribute to guide the user as to the types of values
that they can enter. For consistency, the type of a primitive is
specified by using its wrapper counterpart (for example, boolean
becomes java.lang.Boolean). Note that this class may be a
complex type that gets converted from a String as values are
bound. If the type is not known, it may be omitted.

description String A short description of the group that can be displayed to users. If
no description is available, it may be omitted. It is recommended
that descriptions be short paragraphs, with the first line providing
a concise summary. The last line in the description should end
with a period (.).

sourceType String The class name of the source that contributed this property.
For example, if the property were from a class annotated with
@ConfigurationProperties, this attribute would contain the
fully qualified name of that class. If the source type is unknown, it
may be omitted.

defaultValue Object The default value, which is used if the property is not specified. If
the type of the property is an array, it can be an array of value(s).
If the default value is unknown, it may be omitted.

deprecation Deprecation Specify whether the property is deprecated. If the field is not
deprecated or if that information is not known, it may be omitted.
The next table offers more detail about the deprecation
attribute.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 325

The JSON object contained in the deprecation attribute of each properties element can contain
the following attributes:

Name Type Purpose

level String The level of deprecation, which can be either warning (the
default) or error. When a property has a warning deprecation
level, it should still be bound in the environment. However, when
it has an error deprecation level, the property is no longer
managed and is not bound.

reason String A short description of the reason why the property was
deprecated. If no reason is available, it may be omitted. It is
recommended that descriptions be short paragraphs, with the first
line providing a concise summary. The last line in the description
should end with a period (.).

replacement String The full name of the property that replaces this deprecated
property. If there is no replacement for this property, it may be
omitted.

Note

Prior to Spring Boot 1.3, a single deprecated boolean attribute can be used instead of the
deprecation element. This is still supported in a deprecated fashion and should no longer be
used. If no reason and replacement are available, an empty deprecation object should be set.

Deprecation can also be specified declaratively in code by adding the
@DeprecatedConfigurationProperty annotation to the getter exposing the deprecated property.
For instance, assume that the app.acme.target property was confusing and was renamed to
app.acme.name. The following example shows how to handle that situation:

@ConfigurationProperties("app.acme")

public class AcmeProperties {

 private String name;

 public String getName() { ... }

 public void setName(String name) { ... }

 @DeprecatedConfigurationProperty(replacement = "app.acme.name")

 @Deprecated

 public String getTarget() {

 return getName();

 }

 @Deprecated

 public void setTarget(String target) {

 setName(target);

 }

}

Note

There is no way to set a level. warning is always assumed, since code is still handling the
property.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 326

The preceding code makes sure that the deprecated property still works (delegating to the name property
behind the scenes). Once the getTarget and setTarget methods can be removed from your public
API, the automatic deprecation hint in the metadata goes away as well. If you want to keep a hint,
adding manual metadata with an error deprecation level ensures that users are still informed about
that property. Doing so is particularly useful when a replacement is provided.

Hint Attributes

The JSON object contained in the hints array can contain the attributes shown in the following table:

Name Type Purpose

name String The full name of the property to which this hint refers.
Names are in lower-case period-separated form (such as
server.servlet.path). If the property refers to a map
(such as system.contexts), the hint either applies to the
keys of the map (system.context.keys) or the values
(system.context.values) of the map. This attribute is
mandatory.

values ValueHint[] A list of valid values as defined by the ValueHint object
(described in the next table). Each entry defines the value and
may have a description.

providers ValueProvider[] A list of providers as defined by the ValueProvider object
(described later in this document). Each entry defines the name of
the provider and its parameters, if any.

The JSON object contained in the values attribute of each hint element can contain the attributes
described in the following table:

Name Type Purpose

value Object A valid value for the element to which the hint refers. If the type of
the property is an array, it can also be an array of value(s). This
attribute is mandatory.

description String A short description of the value that can be displayed to users. If
no description is available, it may be omitted . It is recommended
that descriptions be short paragraphs, with the first line providing
a concise summary. The last line in the description should end
with a period (.).

The JSON object contained in the providers attribute of each hint element can contain the attributes
described in the following table:

Name Type Purpose

name String The name of the provider to use to offer additional content
assistance for the element to which the hint refers.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 327

Name Type Purpose

parameters JSON object Any additional parameter that the provider supports (check the
documentation of the provider for more details).

Repeated Metadata Items

Objects with the same “property” and “group” name can appear multiple times within a metadata file.
For example, you could bind two separate classes to the same prefix, with each having potentially
overlapping property names. While the same names appearing in the metadata multiple times should
not be common, consumers of metadata should take care to ensure that they support it.

B.2 Providing Manual Hints

To improve the user experience and further assist the user in configuring a given property, you can
provide additional metadata that:

• Describes the list of potential values for a property.

• Associates a provider, to attach a well defined semantic to a property, so that a tool can discover the
list of potential values based on the project’s context.

Value Hint

The name attribute of each hint refers to the name of a property. In the initial example shown earlier, we
provide five values for the spring.jpa.hibernate.ddl-auto property: none, validate, update,
create, and create-drop. Each value may have a description as well.

If your property is of type Map, you can provide hints for both the keys and the values (but not for the map
itself). The special .keys and .values suffixes must refer to the keys and the values, respectively.

Assume a sample.contexts maps magic String values to an integer, as shown in the following
example:

@ConfigurationProperties("sample")

public class SampleProperties {

 private Map<String,Integer> contexts;

 // getters and setters

}

The magic values are (in this example) are sample1 and sample2. In order to offer additional content
assistance for the keys, you could add the following JSON to the manual metadata of the module:

{"hints": [

 {

 "name": "sample.contexts.keys",

 "values": [

 {

 "value": "sample1"

 },

 {

 "value": "sample2"

 }

]

 }

]}

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 328

Tip

We recommend that you use an Enum for those two values instead. If your IDE supports it, this
is by far the most effective approach to auto-completion.

Value Providers

Providers are a powerful way to attach semantics to a property. In this section, we define the official
providers that you can use for your own hints. However, your favorite IDE may implement some of these
or none of them. Also, it could eventually provide its own.

Note

As this is a new feature, IDE vendors must catch up with how it works. Adoption times naturally
vary.

The following table summarizes the list of supported providers:

Name Description

any Permits any additional value to be provided.

class-reference Auto-completes the classes available in the project. Usually
constrained by a base class that is specified by the target
parameter.

handle-as Handles the property as if it were defined by the type defined by
the mandatory target parameter.

logger-name Auto-completes valid logger names. Typically, package and class
names available in the current project can be auto-completed.

spring-bean-reference Auto-completes the available bean names in the current project.
Usually constrained by a base class that is specified by the
target parameter.

spring-profile-name Auto-completes the available Spring profile names in the project.

Tip

Only one provider can be active for a given property, but you can specify several providers if they
can all manage the property in some way. Make sure to place the most powerful provider first, as
the IDE must use the first one in the JSON section that it can handle. If no provider for a given
property is supported, no special content assistance is provided, either.

Any

The special any provider value permits any additional values to be provided. Regular value validation
based on the property type should be applied if this is supported.

This provider is typically used if you have a list of values and any extra values should still be considered
as valid.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 329

The following example offers on and off as auto-completion values for system.state:

{"hints": [

 {

 "name": "system.state",

 "values": [

 {

 "value": "on"

 },

 {

 "value": "off"

 }

],

 "providers": [

 {

 "name": "any"

 }

]

 }

]}

Note that, in the preceding example, any other value is also allowed.

Class Reference

The class-reference provider auto-completes classes available in the project. This provider supports
the following parameters:

Parameter Type Default value Description

target String

(Class)
none The fully qualified name of the class that should

be assignable to the chosen value. Typically
used to filter out-non candidate classes. Note
that this information can be provided by the type
itself by exposing a class with the appropriate
upper bound.

concrete boolean true Specify whether only concrete classes are to be
considered as valid candidates.

The following metadata snippet corresponds to the standard server.servlet.jsp.class-name
property that defines the JspServlet class name to use:

{"hints": [

 {

 "name": "server.servlet.jsp.class-name",

 "providers": [

 {

 "name": "class-reference",

 "parameters": {

 "target": "javax.servlet.http.HttpServlet"

 }

 }

]

 }

]}

Handle As

The handle-as provider lets you substitute the type of the property to a more high-level type. This
typically happens when the property has a java.lang.String type, because you do not want your

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 330

configuration classes to rely on classes that may not be on the classpath. This provider supports the
following parameters:

Parameter Type Default value Description

target String

(Class)
none The fully qualified name of the type to consider

for the property. This parameter is mandatory.

The following types can be used:

• Any java.lang.Enum: Lists the possible values for the property. (We recommend defining the
property with the Enum type, as no further hint should be required for the IDE to auto-complete the
values.)

• java.nio.charset.Charset: Supports auto-completion of charset/encoding values (such as
UTF-8)

• java.util.Locale: auto-completion of locales (such as en_US)

• org.springframework.util.MimeType: Supports auto-completion of content type values (such
as text/plain)

• org.springframework.core.io.Resource: Supports auto-completion of Spring’s Resource
abstraction to refer to a file on the filesystem or on the classpath. (such as classpath:/
sample.properties)

Tip

If multiple values can be provided, use a Collection or Array type to teach the IDE about it.

The following metadata snippet corresponds to the standard spring.liquibase.change-log
property that defines the path to the changelog to use. It is actually used internally as a
org.springframework.core.io.Resource but cannot be exposed as such, because we need to
keep the original String value to pass it to the Liquibase API.

{"hints": [

 {

 "name": "spring.liquibase.change-log",

 "providers": [

 {

 "name": "handle-as",

 "parameters": {

 "target": "org.springframework.core.io.Resource"

 }

 }

]

 }

]}

Logger Name

The logger-name provider auto-completes valid logger names. Typically, package and class names
available in the current project can be auto-completed. Specific frameworks may have extra magic
logger names that can be supported as well.

Since a logger name can be any arbitrary name, this provider should allow any value but could highlight
valid package and class names that are not available in the project’s classpath.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 331

The following metadata snippet corresponds to the standard logging.level property. Keys are logger
names, and values correspond to the standard log levels or any custom level.

{"hints": [

 {

 "name": "logging.level.keys",

 "values": [

 {

 "value": "root",

 "description": "Root logger used to assign the default logging level."

 }

],

 "providers": [

 {

 "name": "logger-name"

 }

]

 },

 {

 "name": "logging.level.values",

 "values": [

 {

 "value": "trace"

 },

 {

 "value": "debug"

 },

 {

 "value": "info"

 },

 {

 "value": "warn"

 },

 {

 "value": "error"

 },

 {

 "value": "fatal"

 },

 {

 "value": "off"

 }

],

 "providers": [

 {

 "name": "any"

 }

]

 }

]}

Spring Bean Reference

The spring-bean-reference provider auto-completes the beans that are defined in the configuration of
the current project. This provider supports the following parameters:

Parameter Type Default value Description

target String

(Class)
none The fully qualified name of the bean class that

should be assignable to the candidate. Typically
used to filter out non-candidate beans.

The following metadata snippet corresponds to the standard spring.jmx.server property that
defines the name of the MBeanServer bean to use:

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 332

{"hints": [

 {

 "name": "spring.jmx.server",

 "providers": [

 {

 "name": "spring-bean-reference",

 "parameters": {

 "target": "javax.management.MBeanServer"

 }

 }

]

 }

]}

Note

The binder is not aware of the metadata. If you provide that hint, you still need to transform the
bean name into an actual Bean reference using by the ApplicationContext.

Spring Profile Name

The spring-profile-name provider auto-completes the Spring profiles that are defined in the
configuration of the current project.

The following metadata snippet corresponds to the standard spring.profiles.active property that
defines the name of the Spring profile(s) to enable:

{"hints": [

 {

 "name": "spring.profiles.active",

 "providers": [

 {

 "name": "spring-profile-name"

 }

]

 }

]}

B.3 Generating Your Own Metadata by Using the Annotation
Processor

You can easily generate your own configuration metadata file from items annotated with
@ConfigurationProperties by using the spring-boot-configuration-processor jar. The
jar includes a Java annotation processor which is invoked as your project is compiled. To use the
processor, include spring-boot-configuration-processor as an optional dependency. For
example, with Maven, you can add:

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-configuration-processor</artifactId>

 <optional>true</optional>

</dependency>

With Gradle, you can use the propdeps-plugin and specify the following dependency:

dependencies {

 optional "org.springframework.boot:spring-boot-configuration-processor"

}

compileJava.dependsOn(processResources)

https://github.com/spring-gradle-plugins/propdeps-plugin

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 333

Note

You need to add compileJava.dependsOn(processResources) to your build to ensure
that resources are processed before code is compiled. Without this directive, any additional-
spring-configuration-metadata.json files are not processed.

The processor picks up both classes and methods that are annotated with
@ConfigurationProperties. The Javadoc for field values within configuration classes is used to
populate the description attribute.

Note

You should only use simple text with @ConfigurationProperties field Javadoc, since they
are not processed before being added to the JSON.

Properties are discovered through the presence of standard getters and setters with special handling
for collection types (that is detected even if only a getter is present). The annotation processor also
supports the use of the @Data, @Getter, and @Setter lombok annotations.

Note

If you are using AspectJ in your project, you need to make sure that the annotation processor runs
only once. There are several ways to do this. With Maven, you can configure the maven-apt-
plugin explicitly and add the dependency to the annotation processor only there. You could also
let the AspectJ plugin run all the processing and disable annotation processing in the maven-
compiler-plugin configuration, as follows:

<plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-compiler-plugin</artifactId>

 <configuration>

 <proc>none</proc>

 </configuration>

</plugin>

Nested Properties

The annotation processor automatically considers inner classes as nested properties. Consider the
following class:

@ConfigurationProperties(prefix="server")

public class ServerProperties {

 private String name;

 private Host host;

 // ... getter and setters

 private static class Host {

 private String ip;

 private int port;

 // ... getter and setters

 }

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 334

}

The preceding example produces metadata information for server.name, server.host.ip, and
server.host.port properties. You can use the @NestedConfigurationProperty annotation on
a field to indicate that a regular (non-inner) class should be treated as if it were nested.

Tip

This has no effect on collections and maps, as those types are automatically identified, and a
single metadata property is generated for each of them.

Adding Additional Metadata

Spring Boot’s configuration file handling is quite flexible, and it is often the case that properties may
exist that are not bound to a @ConfigurationProperties bean. You may also need to tune some
attributes of an existing key. To support such cases and let you provide custom "hints", the annotation
processor automatically merges items from META-INF/additional-spring-configuration-
metadata.json into the main metadata file.

If you refer to a property that has been detected automatically, the description, default value, and
deprecation information are overridden, if specified. If the manual property declaration is not identified
in the current module, it is added as a new property.

The format of the additional-spring-configuration-metadata.json file is exactly the same
as the regular spring-configuration-metadata.json. The additional properties file is optional.
If you do not have any additional properties, do not add the file.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 335

Appendix C. Auto-configuration
classes
Here is a list of all auto-configuration classes provided by Spring Boot, with links to documentation and
source code. Remember to also look at the conditions report in your application for more details of
which features are switched on. (To do so, start the app with --debug or -Ddebug or, in an Actuator
application, use the conditions endpoint).

C.1 From the “spring-boot-autoconfigure” module

The following auto-configuration classes are from the spring-boot-autoconfigure module:

Configuration Class Links

ActiveMQAutoConfiguration javadoc

AopAutoConfiguration javadoc

ArtemisAutoConfiguration javadoc

BatchAutoConfiguration javadoc

CacheAutoConfiguration javadoc

CassandraAutoConfiguration javadoc

CassandraDataAutoConfiguration javadoc

CassandraReactiveDataAutoConfiguration javadoc

CassandraReactiveRepositoriesAutoConfiguration javadoc

CassandraRepositoriesAutoConfiguration javadoc

CloudAutoConfiguration javadoc

CodecsAutoConfiguration javadoc

ConfigurationPropertiesAutoConfiguration javadoc

CouchbaseAutoConfiguration javadoc

CouchbaseDataAutoConfiguration javadoc

CouchbaseReactiveDataAutoConfiguration javadoc

CouchbaseReactiveRepositoriesAutoConfiguration javadoc

CouchbaseRepositoriesAutoConfiguration javadoc

DataSourceAutoConfiguration javadoc

DataSourceTransactionManagerAutoConfiguration javadoc

DispatcherServletAutoConfiguration javadoc

ElasticsearchAutoConfiguration javadoc

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/activemq/ActiveMQAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/jms/activemq/ActiveMQAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/aop/AopAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/aop/AopAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/artemis/ArtemisAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/jms/artemis/ArtemisAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/batch/BatchAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/batch/BatchAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/cache/CacheAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/cache/CacheAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/cassandra/CassandraAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/cassandra/CassandraAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/cassandra/CassandraDataAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/cassandra/CassandraDataAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/cassandra/CassandraReactiveDataAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/cassandra/CassandraReactiveDataAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/cassandra/CassandraReactiveRepositoriesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/cassandra/CassandraReactiveRepositoriesAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/cassandra/CassandraRepositoriesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/cassandra/CassandraRepositoriesAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/cloud/CloudAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/cloud/CloudAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/http/codec/CodecsAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/http/codec/CodecsAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/context/ConfigurationPropertiesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/context/ConfigurationPropertiesAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/couchbase/CouchbaseAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/couchbase/CouchbaseAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/couchbase/CouchbaseDataAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/couchbase/CouchbaseDataAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/couchbase/CouchbaseReactiveDataAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/couchbase/CouchbaseReactiveDataAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/couchbase/CouchbaseReactiveRepositoriesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/couchbase/CouchbaseReactiveRepositoriesAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/couchbase/CouchbaseRepositoriesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/couchbase/CouchbaseRepositoriesAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/DataSourceAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/jdbc/DataSourceAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/DataSourceTransactionManagerAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/jdbc/DataSourceTransactionManagerAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/servlet/DispatcherServletAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/web/servlet/DispatcherServletAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/elasticsearch/ElasticsearchAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/elasticsearch/ElasticsearchAutoConfiguration.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 336

Configuration Class Links

ElasticsearchDataAutoConfiguration javadoc

ElasticsearchRepositoriesAutoConfiguration javadoc

EmbeddedLdapAutoConfiguration javadoc

EmbeddedMongoAutoConfiguration javadoc

ErrorMvcAutoConfiguration javadoc

ErrorWebFluxAutoConfiguration javadoc

FlywayAutoConfiguration javadoc

FreeMarkerAutoConfiguration javadoc

GroovyTemplateAutoConfiguration javadoc

GsonAutoConfiguration javadoc

H2ConsoleAutoConfiguration javadoc

HazelcastAutoConfiguration javadoc

HazelcastJpaDependencyAutoConfiguration javadoc

HibernateJpaAutoConfiguration javadoc

HttpEncodingAutoConfiguration javadoc

HttpHandlerAutoConfiguration javadoc

HttpMessageConvertersAutoConfiguration javadoc

HypermediaAutoConfiguration javadoc

InfluxDbAutoConfiguration javadoc

IntegrationAutoConfiguration javadoc

JacksonAutoConfiguration javadoc

JdbcTemplateAutoConfiguration javadoc

JerseyAutoConfiguration javadoc

JestAutoConfiguration javadoc

JmsAutoConfiguration javadoc

JmxAutoConfiguration javadoc

JndiConnectionFactoryAutoConfiguration javadoc

JndiDataSourceAutoConfiguration javadoc

JooqAutoConfiguration javadoc

JpaRepositoriesAutoConfiguration javadoc

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/elasticsearch/ElasticsearchDataAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/elasticsearch/ElasticsearchDataAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/elasticsearch/ElasticsearchRepositoriesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/elasticsearch/ElasticsearchRepositoriesAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/ldap/embedded/EmbeddedLdapAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/ldap/embedded/EmbeddedLdapAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mongo/embedded/EmbeddedMongoAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/mongo/embedded/EmbeddedMongoAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/servlet/error/ErrorMvcAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/web/servlet/error/ErrorMvcAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/reactive/error/ErrorWebFluxAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/web/reactive/error/ErrorWebFluxAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/flyway/FlywayAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/flyway/FlywayAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/freemarker/FreeMarkerAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/freemarker/FreeMarkerAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/groovy/template/GroovyTemplateAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/groovy/template/GroovyTemplateAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/gson/GsonAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/gson/GsonAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/h2/H2ConsoleAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/h2/H2ConsoleAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/hazelcast/HazelcastAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/hazelcast/HazelcastAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/hazelcast/HazelcastJpaDependencyAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/hazelcast/HazelcastJpaDependencyAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/HibernateJpaAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/orm/jpa/HibernateJpaAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/servlet/HttpEncodingAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/web/servlet/HttpEncodingAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/reactive/HttpHandlerAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/web/reactive/HttpHandlerAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/http/HttpMessageConvertersAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/http/HttpMessageConvertersAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/hateoas/HypermediaAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/hateoas/HypermediaAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/influx/InfluxDbAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/influx/InfluxDbAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/integration/IntegrationAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/integration/IntegrationAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jackson/JacksonAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/jackson/JacksonAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/JdbcTemplateAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/jdbc/JdbcTemplateAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jersey/JerseyAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/jersey/JerseyAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/elasticsearch/jest/JestAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/elasticsearch/jest/JestAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/JmsAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/jms/JmsAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jmx/JmxAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/jmx/JmxAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/JndiConnectionFactoryAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/jms/JndiConnectionFactoryAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/JndiDataSourceAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/jdbc/JndiDataSourceAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jooq/JooqAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/jooq/JooqAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/jpa/JpaRepositoriesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/jpa/JpaRepositoriesAutoConfiguration.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 337

Configuration Class Links

JsonbAutoConfiguration javadoc

JtaAutoConfiguration javadoc

KafkaAutoConfiguration javadoc

LdapAutoConfiguration javadoc

LdapDataAutoConfiguration javadoc

LdapRepositoriesAutoConfiguration javadoc

LiquibaseAutoConfiguration javadoc

MailSenderAutoConfiguration javadoc

MailSenderValidatorAutoConfiguration javadoc

MessageSourceAutoConfiguration javadoc

MongoAutoConfiguration javadoc

MongoDataAutoConfiguration javadoc

MongoReactiveAutoConfiguration javadoc

MongoReactiveDataAutoConfiguration javadoc

MongoReactiveRepositoriesAutoConfiguration javadoc

MongoRepositoriesAutoConfiguration javadoc

MultipartAutoConfiguration javadoc

MustacheAutoConfiguration javadoc

Neo4jDataAutoConfiguration javadoc

Neo4jRepositoriesAutoConfiguration javadoc

OAuth2ClientAutoConfiguration javadoc

PersistenceExceptionTranslationAutoConfiguration javadoc

ProjectInfoAutoConfiguration javadoc

PropertyPlaceholderAutoConfiguration javadoc

QuartzAutoConfiguration javadoc

RabbitAutoConfiguration javadoc

ReactiveSecurityAutoConfiguration javadoc

ReactiveWebServerAutoConfiguration javadoc

ReactorCoreAutoConfiguration javadoc

RedisAutoConfiguration javadoc

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jsonb/JsonbAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/jsonb/JsonbAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/transaction/jta/JtaAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/transaction/jta/JtaAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/kafka/KafkaAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/kafka/KafkaAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/ldap/LdapAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/ldap/LdapAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/ldap/LdapDataAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/ldap/LdapDataAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/ldap/LdapRepositoriesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/ldap/LdapRepositoriesAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/liquibase/LiquibaseAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/liquibase/LiquibaseAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mail/MailSenderAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/mail/MailSenderAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mail/MailSenderValidatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/mail/MailSenderValidatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/context/MessageSourceAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/context/MessageSourceAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mongo/MongoAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/mongo/MongoAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/mongo/MongoDataAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/mongo/MongoDataAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mongo/MongoReactiveAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/mongo/MongoReactiveAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/mongo/MongoReactiveDataAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/mongo/MongoReactiveDataAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/mongo/MongoReactiveRepositoriesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/mongo/MongoReactiveRepositoriesAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/mongo/MongoRepositoriesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/mongo/MongoRepositoriesAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/servlet/MultipartAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/web/servlet/MultipartAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mustache/MustacheAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/mustache/MustacheAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/neo4j/Neo4jDataAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/neo4j/Neo4jDataAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/neo4j/Neo4jRepositoriesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/neo4j/Neo4jRepositoriesAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/security/oauth2/client/OAuth2ClientAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/security/oauth2/client/OAuth2ClientAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/dao/PersistenceExceptionTranslationAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/dao/PersistenceExceptionTranslationAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/info/ProjectInfoAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/info/ProjectInfoAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/context/PropertyPlaceholderAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/context/PropertyPlaceholderAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/quartz/QuartzAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/quartz/QuartzAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/amqp/RabbitAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/amqp/RabbitAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/security/reactive/ReactiveSecurityAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/security/reactive/ReactiveSecurityAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/reactive/ReactiveWebServerAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/web/reactive/ReactiveWebServerAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/reactor/core/ReactorCoreAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/reactor/core/ReactorCoreAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/redis/RedisAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/redis/RedisAutoConfiguration.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 338

Configuration Class Links

RedisReactiveAutoConfiguration javadoc

RedisRepositoriesAutoConfiguration javadoc

RepositoryRestMvcAutoConfiguration javadoc

RestTemplateAutoConfiguration javadoc

SecurityAutoConfiguration javadoc

SecurityFilterAutoConfiguration javadoc

SendGridAutoConfiguration javadoc

ServletWebServerFactoryAutoConfiguration javadoc

SessionAutoConfiguration javadoc

SolrAutoConfiguration javadoc

SolrRepositoriesAutoConfiguration javadoc

SpringApplicationAdminJmxAutoConfiguration javadoc

SpringDataWebAutoConfiguration javadoc

ThymeleafAutoConfiguration javadoc

TransactionAutoConfiguration javadoc

ValidationAutoConfiguration javadoc

WebClientAutoConfiguration javadoc

WebFluxAutoConfiguration javadoc

WebMvcAutoConfiguration javadoc

WebServicesAutoConfiguration javadoc

WebSocketMessagingAutoConfiguration javadoc

WebSocketReactiveAutoConfiguration javadoc

WebSocketServletAutoConfiguration javadoc

XADataSourceAutoConfiguration javadoc

C.2 From the “spring-boot-actuator-autoconfigure” module

The following auto-configuration classes are from the spring-boot-actuator-autoconfigure
module:

Configuration Class Links

AuditAutoConfiguration javadoc

AuditEventsEndpointAutoConfiguration javadoc

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/redis/RedisReactiveAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/redis/RedisReactiveAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/redis/RedisRepositoriesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/redis/RedisRepositoriesAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/rest/RepositoryRestMvcAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/rest/RepositoryRestMvcAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/client/RestTemplateAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/web/client/RestTemplateAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/security/servlet/SecurityAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/security/servlet/SecurityAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/security/servlet/SecurityFilterAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/security/servlet/SecurityFilterAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/sendgrid/SendGridAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/sendgrid/SendGridAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/servlet/ServletWebServerFactoryAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/web/servlet/ServletWebServerFactoryAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/session/SessionAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/session/SessionAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/solr/SolrAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/solr/SolrAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/solr/SolrRepositoriesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/solr/SolrRepositoriesAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/admin/SpringApplicationAdminJmxAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/admin/SpringApplicationAdminJmxAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/web/SpringDataWebAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/web/SpringDataWebAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/thymeleaf/ThymeleafAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/thymeleaf/ThymeleafAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/transaction/TransactionAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/transaction/TransactionAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/validation/ValidationAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/validation/ValidationAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/reactive/function/client/WebClientAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/web/reactive/function/client/WebClientAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/reactive/WebFluxAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/web/reactive/WebFluxAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/servlet/WebMvcAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/web/servlet/WebMvcAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/webservices/WebServicesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/webservices/WebServicesAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/websocket/servlet/WebSocketMessagingAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/websocket/servlet/WebSocketMessagingAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/websocket/reactive/WebSocketReactiveAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/websocket/reactive/WebSocketReactiveAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/websocket/servlet/WebSocketServletAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/websocket/servlet/WebSocketServletAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/XADataSourceAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/jdbc/XADataSourceAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/audit/AuditAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/audit/AuditAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/audit/AuditEventsEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/audit/AuditEventsEndpointAutoConfiguration.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 339

Configuration Class Links

BeansEndpointAutoConfiguration javadoc

CassandraHealthIndicatorAutoConfiguration javadoc

CloudFoundryActuatorAutoConfiguration javadoc

ConditionsReportEndpointAutoConfiguration javadoc

ConfigurationPropertiesReportEndpointAutoConfiguration javadoc

CouchbaseHealthIndicatorAutoConfiguration javadoc

DataSourceHealthIndicatorAutoConfiguration javadoc

DiskSpaceHealthIndicatorAutoConfiguration javadoc

ElasticsearchHealthIndicatorAutoConfiguration javadoc

EndpointAutoConfiguration javadoc

EnvironmentEndpointAutoConfiguration javadoc

FlywayEndpointAutoConfiguration javadoc

HealthEndpointAutoConfiguration javadoc

HealthIndicatorAutoConfiguration javadoc

HeapDumpWebEndpointAutoConfiguration javadoc

HttpTraceAutoConfiguration javadoc

HttpTraceEndpointAutoConfiguration javadoc

InfluxDbHealthIndicatorAutoConfiguration javadoc

InfoContributorAutoConfiguration javadoc

InfoEndpointAutoConfiguration javadoc

JmsHealthIndicatorAutoConfiguration javadoc

JmxEndpointAutoConfiguration javadoc

JolokiaEndpointAutoConfiguration javadoc

LdapHealthIndicatorAutoConfiguration javadoc

LiquibaseEndpointAutoConfiguration javadoc

LogFileWebEndpointAutoConfiguration javadoc

LoggersEndpointAutoConfiguration javadoc

MailHealthIndicatorAutoConfiguration javadoc

ManagementContextAutoConfiguration javadoc

MappingsEndpointAutoConfiguration javadoc

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/beans/BeansEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/beans/BeansEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/cassandra/CassandraHealthIndicatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/cassandra/CassandraHealthIndicatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/cloudfoundry/servlet/CloudFoundryActuatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/cloudfoundry/servlet/CloudFoundryActuatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/condition/ConditionsReportEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/condition/ConditionsReportEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/context/properties/ConfigurationPropertiesReportEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/context/properties/ConfigurationPropertiesReportEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/couchbase/CouchbaseHealthIndicatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/couchbase/CouchbaseHealthIndicatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/jdbc/DataSourceHealthIndicatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/jdbc/DataSourceHealthIndicatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/system/DiskSpaceHealthIndicatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/system/DiskSpaceHealthIndicatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/elasticsearch/ElasticsearchHealthIndicatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/elasticsearch/ElasticsearchHealthIndicatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/endpoint/EndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/endpoint/EndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/env/EnvironmentEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/env/EnvironmentEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/flyway/FlywayEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/flyway/FlywayEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/health/HealthEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/health/HealthEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/health/HealthIndicatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/health/HealthIndicatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/management/HeapDumpWebEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/management/HeapDumpWebEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/web/trace/HttpTraceAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/web/trace/HttpTraceAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/web/trace/HttpTraceEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/web/trace/HttpTraceEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/influx/InfluxDbHealthIndicatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/influx/InfluxDbHealthIndicatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/info/InfoContributorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/info/InfoContributorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/info/InfoEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/info/InfoEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/jms/JmsHealthIndicatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/jms/JmsHealthIndicatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/endpoint/jmx/JmxEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/endpoint/jmx/JmxEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/jolokia/JolokiaEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/jolokia/JolokiaEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/ldap/LdapHealthIndicatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/ldap/LdapHealthIndicatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/liquibase/LiquibaseEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/liquibase/LiquibaseEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/logging/LogFileWebEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/logging/LogFileWebEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/logging/LoggersEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/logging/LoggersEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/mail/MailHealthIndicatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/mail/MailHealthIndicatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/web/server/ManagementContextAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/web/server/ManagementContextAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/web/mappings/MappingsEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/web/mappings/MappingsEndpointAutoConfiguration.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 340

Configuration Class Links

MetricsAutoConfiguration javadoc

MongoHealthIndicatorAutoConfiguration javadoc

Neo4jHealthIndicatorAutoConfiguration javadoc

RabbitHealthIndicatorAutoConfiguration javadoc

ReactiveCloudFoundryActuatorAutoConfiguration javadoc

ReactiveManagementContextAutoConfiguration javadoc

RedisHealthIndicatorAutoConfiguration javadoc

ScheduledTasksEndpointAutoConfiguration javadoc

ServletManagementContextAutoConfiguration javadoc

SessionsEndpointAutoConfiguration javadoc

ShutdownEndpointAutoConfiguration javadoc

SolrHealthIndicatorAutoConfiguration javadoc

ThreadDumpEndpointAutoConfiguration javadoc

WebEndpointAutoConfiguration javadoc

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/metrics/MetricsAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/metrics/MetricsAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/mongo/MongoHealthIndicatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/mongo/MongoHealthIndicatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/neo4j/Neo4jHealthIndicatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/neo4j/Neo4jHealthIndicatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/amqp/RabbitHealthIndicatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/amqp/RabbitHealthIndicatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/cloudfoundry/reactive/ReactiveCloudFoundryActuatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/cloudfoundry/reactive/ReactiveCloudFoundryActuatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/web/reactive/ReactiveManagementContextAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/web/reactive/ReactiveManagementContextAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/redis/RedisHealthIndicatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/redis/RedisHealthIndicatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/scheduling/ScheduledTasksEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/scheduling/ScheduledTasksEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/web/servlet/ServletManagementContextAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/web/servlet/ServletManagementContextAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/session/SessionsEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/session/SessionsEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/context/ShutdownEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/context/ShutdownEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/solr/SolrHealthIndicatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/solr/SolrHealthIndicatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/management/ThreadDumpEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/management/ThreadDumpEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/endpoint/web/WebEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/endpoint/web/WebEndpointAutoConfiguration.html

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 341

Appendix D. Test auto-configuration
annotations
The following table lists the various @…Test annotations that can be used to test slices of your application
and the auto-configuration that they import by default:

Test slice Imported auto-configuration

@DataJpaTest org.springframework.boot.autoconfigure.cache.CacheAutoConfiguration

org.springframework.boot.autoconfigure.data.jpa.JpaRepositoriesAutoConfiguration

org.springframework.boot.autoconfigure.flyway.FlywayAutoConfiguration

org.springframework.boot.autoconfigure.jdbc.DataSourceAutoConfiguration

org.springframework.boot.autoconfigure.jdbc.DataSourceTransactionManagerAutoConfiguration

org.springframework.boot.autoconfigure.jdbc.JdbcTemplateAutoConfiguration

org.springframework.boot.autoconfigure.liquibase.LiquibaseAutoConfiguration

org.springframework.boot.autoconfigure.orm.jpa.HibernateJpaAutoConfiguration

org.springframework.boot.autoconfigure.transaction.TransactionAutoConfiguration

org.springframework.boot.test.autoconfigure.jdbc.TestDatabaseAutoConfiguration

org.springframework.boot.test.autoconfigure.orm.jpa.TestEntityManagerAutoConfiguration

@DataLdapTest org.springframework.boot.autoconfigure.cache.CacheAutoConfiguration

org.springframework.boot.autoconfigure.data.ldap.LdapDataAutoConfiguration

org.springframework.boot.autoconfigure.data.ldap.LdapRepositoriesAutoConfiguration

org.springframework.boot.autoconfigure.ldap.LdapAutoConfiguration

org.springframework.boot.autoconfigure.ldap.embedded.EmbeddedLdapAutoConfiguration

@DataMongoTest org.springframework.boot.autoconfigure.cache.CacheAutoConfiguration

org.springframework.boot.autoconfigure.data.mongo.MongoDataAutoConfiguration

org.springframework.boot.autoconfigure.data.mongo.MongoReactiveDataAutoConfiguration

org.springframework.boot.autoconfigure.data.mongo.MongoReactiveRepositoriesAutoConfiguration

org.springframework.boot.autoconfigure.data.mongo.MongoRepositoriesAutoConfiguration

org.springframework.boot.autoconfigure.mongo.MongoAutoConfiguration

org.springframework.boot.autoconfigure.mongo.MongoReactiveAutoConfiguration

org.springframework.boot.autoconfigure.mongo.embedded.EmbeddedMongoAutoConfiguration

@DataNeo4jTest org.springframework.boot.autoconfigure.cache.CacheAutoConfiguration

org.springframework.boot.autoconfigure.data.neo4j.Neo4jDataAutoConfiguration

org.springframework.boot.autoconfigure.data.neo4j.Neo4jRepositoriesAutoConfiguration

org.springframework.boot.autoconfigure.transaction.TransactionAutoConfiguration

@DataRedisTest org.springframework.boot.autoconfigure.cache.CacheAutoConfiguration

org.springframework.boot.autoconfigure.data.redis.RedisAutoConfiguration

org.springframework.boot.autoconfigure.data.redis.RedisRepositoriesAutoConfiguration

@JdbcTest org.springframework.boot.autoconfigure.cache.CacheAutoConfiguration

org.springframework.boot.autoconfigure.flyway.FlywayAutoConfiguration

org.springframework.boot.autoconfigure.jdbc.DataSourceAutoConfiguration

org.springframework.boot.autoconfigure.jdbc.DataSourceTransactionManagerAutoConfiguration

org.springframework.boot.autoconfigure.jdbc.JdbcTemplateAutoConfiguration

org.springframework.boot.autoconfigure.liquibase.LiquibaseAutoConfiguration

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 342

Test slice Imported auto-configuration

org.springframework.boot.autoconfigure.transaction.TransactionAutoConfiguration

org.springframework.boot.test.autoconfigure.jdbc.TestDatabaseAutoConfiguration

@JooqTest org.springframework.boot.autoconfigure.flyway.FlywayAutoConfiguration

org.springframework.boot.autoconfigure.jdbc.DataSourceAutoConfiguration

org.springframework.boot.autoconfigure.jdbc.DataSourceTransactionManagerAutoConfiguration

org.springframework.boot.autoconfigure.jooq.JooqAutoConfiguration

org.springframework.boot.autoconfigure.liquibase.LiquibaseAutoConfiguration

org.springframework.boot.autoconfigure.transaction.TransactionAutoConfiguration

@JsonTest org.springframework.boot.autoconfigure.cache.CacheAutoConfiguration

org.springframework.boot.autoconfigure.gson.GsonAutoConfiguration

org.springframework.boot.autoconfigure.jackson.JacksonAutoConfiguration

org.springframework.boot.autoconfigure.jsonb.JsonbAutoConfiguration

org.springframework.boot.test.autoconfigure.json.JsonTestersAutoConfiguration

@RestClientTest org.springframework.boot.autoconfigure.cache.CacheAutoConfiguration

org.springframework.boot.autoconfigure.gson.GsonAutoConfiguration

org.springframework.boot.autoconfigure.http.HttpMessageConvertersAutoConfiguration

org.springframework.boot.autoconfigure.http.codec.CodecsAutoConfiguration

org.springframework.boot.autoconfigure.jackson.JacksonAutoConfiguration

org.springframework.boot.autoconfigure.jsonb.JsonbAutoConfiguration

org.springframework.boot.autoconfigure.web.client.RestTemplateAutoConfiguration

org.springframework.boot.autoconfigure.web.reactive.function.client.WebClientAutoConfiguration

org.springframework.boot.test.autoconfigure.web.client.MockRestServiceServerAutoConfiguration

org.springframework.boot.test.autoconfigure.web.client.WebClientRestTemplateAutoConfiguration

@WebFluxTest org.springframework.boot.autoconfigure.cache.CacheAutoConfiguration

org.springframework.boot.autoconfigure.context.MessageSourceAutoConfiguration

org.springframework.boot.autoconfigure.validation.ValidationAutoConfiguration

org.springframework.boot.autoconfigure.web.reactive.WebFluxAutoConfiguration

org.springframework.boot.test.autoconfigure.web.reactive.WebTestClientAutoConfiguration

@WebMvcTest org.springframework.boot.autoconfigure.cache.CacheAutoConfiguration

org.springframework.boot.autoconfigure.context.MessageSourceAutoConfiguration

org.springframework.boot.autoconfigure.freemarker.FreeMarkerAutoConfiguration

org.springframework.boot.autoconfigure.groovy.template.GroovyTemplateAutoConfiguration

org.springframework.boot.autoconfigure.gson.GsonAutoConfiguration

org.springframework.boot.autoconfigure.hateoas.HypermediaAutoConfiguration

org.springframework.boot.autoconfigure.http.HttpMessageConvertersAutoConfiguration

org.springframework.boot.autoconfigure.jackson.JacksonAutoConfiguration

org.springframework.boot.autoconfigure.jsonb.JsonbAutoConfiguration

org.springframework.boot.autoconfigure.mustache.MustacheAutoConfiguration

org.springframework.boot.autoconfigure.thymeleaf.ThymeleafAutoConfiguration

org.springframework.boot.autoconfigure.validation.ValidationAutoConfiguration

org.springframework.boot.autoconfigure.web.servlet.WebMvcAutoConfiguration

org.springframework.boot.autoconfigure.web.servlet.error.ErrorMvcAutoConfiguration

org.springframework.boot.test.autoconfigure.web.servlet.MockMvcAutoConfiguration

org.springframework.boot.test.autoconfigure.web.servlet.MockMvcSecurityAutoConfiguration

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 343

Test slice Imported auto-configuration

org.springframework.boot.test.autoconfigure.web.servlet.MockMvcWebClientAutoConfiguration

org.springframework.boot.test.autoconfigure.web.servlet.MockMvcWebDriverAutoConfiguration

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 344

Appendix E. The Executable Jar
Format
The spring-boot-loader modules lets Spring Boot support executable jar and war files. If you use
the Maven plugin or the Gradle plugin, executable jars are automatically generated, and you generally
do not need to know the details of how they work.

If you need to create executable jars from a different build system or if you are just curious about the
underlying technology, this section provides some background.

E.1 Nested JARs

Java does not provide any standard way to load nested jar files (that is, jar files that are themselves
contained within a jar). This can be problematic if you need to distribute a self-contained application that
can be run from the command line without unpacking.

To solve this problem, many developers use “shaded” jars. A shaded jar packages all classes, from all
jars, into a single “uber jar”. The problem with shaded jars is that it becomes hard to see which libraries
are actually in your application. It can also be problematic if the same filename is used (but with different
content) in multiple jars. Spring Boot takes a different approach and lets you actually nest jars directly.

The Executable Jar File Structure

Spring Boot Loader-compatible jar files should be structured in the following way:

example.jar

 |

 +-META-INF

 | +-MANIFEST.MF

 +-org

 | +-springframework

 | +-boot

 | +-loader

 | +-<spring boot loader classes>

 +-BOOT-INF

 +-classes

 | +-mycompany

 | +-project

 | +-YourClasses.class

 +-lib

 +-dependency1.jar

 +-dependency2.jar

Application classes should be placed in a nested BOOT-INF/classes directory. Dependencies should
be placed in a nested BOOT-INF/lib directory.

The Executable War File Structure

Spring Boot Loader-compatible war files should be structured in the following way:

example.war

 |

 +-META-INF

 | +-MANIFEST.MF

 +-org

 | +-springframework

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 345

 | +-boot

 | +-loader

 | +-<spring boot loader classes>

 +-WEB-INF

 +-classes

 | +-com

 | +-mycompany

 | +-project

 | +-YourClasses.class

 +-lib

 | +-dependency1.jar

 | +-dependency2.jar

 +-lib-provided

 +-servlet-api.jar

 +-dependency3.jar

Dependencies should be placed in a nested WEB-INF/lib directory. Any dependencies that are
required when running embedded but are not required when deploying to a traditional web container
should be placed in WEB-INF/lib-provided.

E.2 Spring Boot’s “JarFile” Class

The core class used to support loading nested jars is
org.springframework.boot.loader.jar.JarFile. It lets you load jar content from a standard
jar file or from nested child jar data. When first loaded, the location of each JarEntry is mapped to a
physical file offset of the outer jar, as shown in the following example:

myapp.jar

+-------------------+-------------------------+

| /BOOT-INF/classes | /BOOT-INF/lib/mylib.jar |

|+-----------------+||+-----------+----------+|

|| A.class ||| B.class | C.class ||

|+-----------------+||+-----------+----------+|

+-------------------+-------------------------+

 ^ ^ ^

 0063 3452 3980

The preceding example shows how A.class can be found in /BOOT-INF/classes in myapp.jar
at position 0063. B.class from the nested jar can actually be found in myapp.jar at position 3452,
and C.class is at position 3980.

Armed with this information, we can load specific nested entries by seeking to the appropriate part of the
outer jar. We do not need to unpack the archive, and we do not need to read all entry data into memory.

Compatibility with the Standard Java “JarFile”

Spring Boot Loader strives to remain compatible with existing code and libraries.
org.springframework.boot.loader.jar.JarFile extends from java.util.jar.JarFile
and should work as a drop-in replacement. The getURL() method returns a URL that opens
a connection compatible with java.net.JarURLConnection and can be used with Java’s
URLClassLoader.

E.3 Launching Executable Jars

The org.springframework.boot.loader.Launcher class is a special bootstrap class that is
used as an executable jar’s main entry point. It is the actual Main-Class in your jar file, and it is used
to setup an appropriate URLClassLoader and ultimately call your main() method.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 346

There are three launcher subclasses (JarLauncher, WarLauncher, and PropertiesLauncher).
Their purpose is to load resources (.class files and so on.) from nested jar files or war files in directories
(as opposed to those explicitly on the classpath). In the case of JarLauncher and WarLauncher, the
nested paths are fixed. JarLauncher looks in BOOT-INF/lib/, and WarLauncher looks in WEB-
INF/lib/ and WEB-INF/lib-provided/. You can add extra jars in those locations if you want more.
The PropertiesLauncher looks in BOOT-INF/lib/ in your application archive by default, but you
can add additional locations by setting an environment variable called LOADER_PATH or loader.path
in loader.properties (which is a comma-separated list of directories, archives, or directories within
archives).

Launcher Manifest

You need to specify an appropriate Launcher as the Main-Class attribute of META-INF/
MANIFEST.MF. The actual class that you want to launch (that is, the class that contains a main method)
should be specified in the Start-Class attribute.

The following example shows a typical MANIFEST.MF for an executable jar file:

Main-Class: org.springframework.boot.loader.JarLauncher

Start-Class: com.mycompany.project.MyApplication

For a war file, it would be as follows:

Main-Class: org.springframework.boot.loader.WarLauncher

Start-Class: com.mycompany.project.MyApplication

Note

You need not specify Class-Path entries in your manifest file. The classpath is deduced from
the nested jars.

Exploded Archives

Certain PaaS implementations may choose to unpack archives before they run. For example, Cloud
Foundry operates this way. You can run an unpacked archive by starting the appropriate launcher, as
follows:

$ unzip -q myapp.jar

$ java org.springframework.boot.loader.JarLauncher

E.4 PropertiesLauncher Features

PropertiesLauncher has a few special features that can be enabled with external properties (System
properties, environment variables, manifest entries, or loader.properties). The following table
describes these properties:

Key Purpose

loader.path Comma-separated Classpath, such as lib,
${HOME}/app/lib. Earlier entries take
precedence, like a regular -classpath on the
javac command line.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 347

Key Purpose

loader.home Used to resolve relative paths in loader.path.
For example, given loader.path=lib,
then ${loader.home}/lib is a classpath
location (along with all jar files in that directory).
This property is also used to locate a
loader.properties file, as in the following
example /opt/app It defaults to ${user.dir}.

loader.args Default arguments for the main method (space
separated).

loader.main Name of main class to launch (for example,
com.app.Application).

loader.config.name Name of properties file (for example, launcher)
It defaults to loader.

loader.config.location Path to properties file (for example,
classpath:loader.properties). It defaults
to loader.properties.

loader.system Boolean flag to indicate that all properties should
be added to System properties It defaults to
false.

When specified as environment variables or manifest entries, the following names should be used:

Key Manifest entry Environment variable

loader.path Loader-Path LOADER_PATH

loader.home Loader-Home LOADER_HOME

loader.args Loader-Args LOADER_ARGS

loader.main Start-Class LOADER_MAIN

loader.config.location Loader-Config-Location LOADER_CONFIG_LOCATION

loader.system Loader-System LOADER_SYSTEM

Tip

Build plugins automatically move the Main-Class attribute to Start-Class when the fat jar is
built. If you use that, specify the name of the class to launch by using the Main-Class attribute
and leaving out Start-Class.

The following rules apply to working with PropertiesLauncher:

• loader.properties is searched for in loader.home, then in the root of the classpath, and then
in classpath:/BOOT-INF/classes. The first location where a file with that name exists is used.

• loader.home is the directory location of an additional properties file (overriding the default) only
when loader.config.location is not specified.

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 348

• loader.path can contain directories (which are scanned recursively for jar and zip files), archive
paths, a directory within an archive that is scanned for jar files (for example, dependencies.jar!/
lib), or wildcard patterns (for the default JVM behavior). Archive paths can be relative to
loader.home or anywhere in the file system with a jar:file: prefix.

• loader.path (if empty) defaults to BOOT-INF/lib (meaning a local directory or a nested
one if running from an archive). Because of this, PropertiesLauncher behaves the same as
JarLauncher when no additional configuration is provided.

• loader.path can not be used to configure the location of loader.properties (the classpath
used to search for the latter is the JVM classpath when PropertiesLauncher is launched).

• Placeholder replacement is done from System and environment variables plus the properties file itself
on all values before use.

• The search order for properties (where it makes sense to look in more than one place) is environment
variables, system properties, loader.properties, the exploded archive manifest, and the archive
manifest.

E.5 Executable Jar Restrictions

You need to consider the following restrictions when working with a Spring Boot Loader packaged
application:

• Zip entry compression: The ZipEntry for a nested jar must be saved by using the
ZipEntry.STORED method. This is required so that we can seek directly to individual content within
the nested jar. The content of the nested jar file itself can still be compressed, as can any other entries
in the outer jar.

• System classLoader: Launched applications should use Thread.getContextClassLoader()
when loading classes (most libraries and frameworks do so by default). Trying to load nested jar
classes with ClassLoader.getSystemClassLoader() fails. java.util.Logging always uses
the system classloader. For this reason, you should consider a different logging implementation.

E.6 Alternative Single Jar Solutions

If the preceding restrictions mean that you cannot use Spring Boot Loader, consider the following
alternatives:

• Maven Shade Plugin

• JarClassLoader

• OneJar

http://maven.apache.org/plugins/maven-shade-plugin/
http://www.jdotsoft.com/JarClassLoader.php
http://one-jar.sourceforge.net

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 349

Appendix F. Dependency versions
The following table provides details of all of the dependency versions that are provided by Spring Boot
in its CLI (Command Line Interface), Maven dependency management, and Gradle plugin. When you
declare a dependency on one of these artifacts without declaring a version, the version listed in the
table is used.

Group ID Artifact ID Version

antlr antlr 2.7.7

ch.qos.logback logback-access 1.2.3

ch.qos.logback logback-classic 1.2.3

ch.qos.logback logback-core 1.2.3

com.atomikos transactions-jdbc 4.0.6

com.atomikos transactions-jms 4.0.6

com.atomikos transactions-jta 4.0.6

com.couchbase.client couchbase-spring-cache 2.1.0

com.couchbase.client java-client 2.5.4

com.datastax.cassandra cassandra-driver-core 3.4.0

com.datastax.cassandra cassandra-driver-

mapping

3.4.0

com.fasterxml classmate 1.3.4

com.fasterxml.jackson.corejackson-annotations 2.9.0

com.fasterxml.jackson.corejackson-core 2.9.2

com.fasterxml.jackson.corejackson-databind 2.9.2

com.fasterxml.jackson.dataformatjackson-dataformat-avro 2.9.2

com.fasterxml.jackson.dataformatjackson-dataformat-cbor 2.9.2

com.fasterxml.jackson.dataformatjackson-dataformat-csv 2.9.2

com.fasterxml.jackson.dataformatjackson-dataformat-ion 2.9.2

com.fasterxml.jackson.dataformatjackson-dataformat-

properties

2.9.2

com.fasterxml.jackson.dataformatjackson-dataformat-

protobuf

2.9.2

com.fasterxml.jackson.dataformatjackson-dataformat-

smile

2.9.2

com.fasterxml.jackson.dataformatjackson-dataformat-xml 2.9.2

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 350

Group ID Artifact ID Version

com.fasterxml.jackson.dataformatjackson-dataformat-yaml 2.9.2

com.fasterxml.jackson.datatypejackson-datatype-guava 2.9.2

com.fasterxml.jackson.datatypejackson-datatype-

hibernate3

2.9.2

com.fasterxml.jackson.datatypejackson-datatype-

hibernate4

2.9.2

com.fasterxml.jackson.datatypejackson-datatype-

hibernate5

2.9.2

com.fasterxml.jackson.datatypejackson-datatype-hppc 2.9.2

com.fasterxml.jackson.datatypejackson-datatype-jaxrs 2.9.2

com.fasterxml.jackson.datatypejackson-datatype-jdk8 2.9.2

com.fasterxml.jackson.datatypejackson-datatype-joda 2.9.2

com.fasterxml.jackson.datatypejackson-datatype-json-

org

2.9.2

com.fasterxml.jackson.datatypejackson-datatype-jsr310 2.9.2

com.fasterxml.jackson.datatypejackson-datatype-jsr353 2.9.2

com.fasterxml.jackson.datatypejackson-datatype-

pcollections

2.9.2

com.fasterxml.jackson.jaxrsjackson-jaxrs-base 2.9.2

com.fasterxml.jackson.jaxrsjackson-jaxrs-cbor-

provider

2.9.2

com.fasterxml.jackson.jaxrsjackson-jaxrs-json-

provider

2.9.2

com.fasterxml.jackson.jaxrsjackson-jaxrs-smile-

provider

2.9.2

com.fasterxml.jackson.jaxrsjackson-jaxrs-xml-

provider

2.9.2

com.fasterxml.jackson.jaxrsjackson-jaxrs-yaml-

provider

2.9.2

com.fasterxml.jackson.jr jackson-jr-all 2.9.2

com.fasterxml.jackson.jr jackson-jr-objects 2.9.2

com.fasterxml.jackson.jr jackson-jr-retrofit2 2.9.2

com.fasterxml.jackson.jr jackson-jr-stree 2.9.2

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 351

Group ID Artifact ID Version

com.fasterxml.jackson.modulejackson-module-

afterburner

2.9.2

com.fasterxml.jackson.modulejackson-module-guice 2.9.2

com.fasterxml.jackson.modulejackson-module-jaxb-

annotations

2.9.2

com.fasterxml.jackson.modulejackson-module-

jsonSchema

2.9.2

com.fasterxml.jackson.modulejackson-module-kotlin 2.9.2

com.fasterxml.jackson.modulejackson-module-mrbean 2.9.2

com.fasterxml.jackson.modulejackson-module-osgi 2.9.2

com.fasterxml.jackson.modulejackson-module-

parameter-names

2.9.2

com.fasterxml.jackson.modulejackson-module-

paranamer

2.9.2

com.fasterxml.jackson.modulejackson-module-

scala_2.10

2.9.2

com.fasterxml.jackson.modulejackson-module-

scala_2.11

2.9.2

com.fasterxml.jackson.modulejackson-module-

scala_2.12

2.9.2

com.github.ben-

manes.caffeine

caffeine 2.6.1

com.github.mxab.thymeleaf.extrasthymeleaf-extras-data-

attribute

2.0.1

com.google.appengine appengine-api-1.0-sdk 1.9.60

com.google.code.gson gson 2.8.2

com.googlecode.json-

simple

json-simple 1.1.1

com.h2database h2 1.4.196

com.hazelcast hazelcast 3.9.2

com.hazelcast hazelcast-client 3.9.2

com.hazelcast hazelcast-hibernate52 1.2.2

com.hazelcast hazelcast-spring 3.9.2

com.jayway.jsonpath json-path 2.4.0

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 352

Group ID Artifact ID Version

com.jayway.jsonpath json-path-assert 2.4.0

com.microsoft.sqlserver mssql-jdbc 6.2.2.jre8

com.querydsl querydsl-apt 4.1.4

com.querydsl querydsl-collections 4.1.4

com.querydsl querydsl-core 4.1.4

com.querydsl querydsl-jpa 4.1.4

com.querydsl querydsl-mongodb 4.1.4

com.rabbitmq amqp-client 5.1.2

com.samskivert jmustache 1.14

com.sendgrid sendgrid-java 4.1.2

com.sun.mail javax.mail 1.6.0

com.timgroup java-statsd-client 3.1.0

com.unboundid unboundid-ldapsdk 4.0.4

com.zaxxer HikariCP 2.7.6

commons-codec commons-codec 1.11

commons-pool commons-pool 1.6

de.flapdoodle.embed de.flapdoodle.embed.mongo2.0.1

dom4j dom4j 1.6.1

io.dropwizard.metrics metrics-annotation 3.2.6

io.dropwizard.metrics metrics-core 3.2.6

io.dropwizard.metrics metrics-ehcache 3.2.6

io.dropwizard.metrics metrics-ganglia 3.2.6

io.dropwizard.metrics metrics-graphite 3.2.6

io.dropwizard.metrics metrics-healthchecks 3.2.6

io.dropwizard.metrics metrics-httpasyncclient 3.2.6

io.dropwizard.metrics metrics-jdbi 3.2.6

io.dropwizard.metrics metrics-jersey 3.2.6

io.dropwizard.metrics metrics-jersey2 3.2.6

io.dropwizard.metrics metrics-jetty8 3.2.6

io.dropwizard.metrics metrics-jetty9 3.2.6

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 353

Group ID Artifact ID Version

io.dropwizard.metrics metrics-jetty9-legacy 3.2.6

io.dropwizard.metrics metrics-json 3.2.6

io.dropwizard.metrics metrics-jvm 3.2.6

io.dropwizard.metrics metrics-log4j 3.2.6

io.dropwizard.metrics metrics-log4j2 3.2.6

io.dropwizard.metrics metrics-logback 3.2.6

io.dropwizard.metrics metrics-servlet 3.2.6

io.dropwizard.metrics metrics-servlets 3.2.6

io.lettuce lettuce-core 5.0.1.RELEASE

io.micrometer micrometer-core 1.0.0-rc.8

io.micrometer micrometer-registry-

atlas

1.0.0-rc.8

io.micrometer micrometer-registry-

datadog

1.0.0-rc.8

io.micrometer micrometer-registry-

ganglia

1.0.0-rc.8

io.micrometer micrometer-registry-

graphite

1.0.0-rc.8

io.micrometer micrometer-registry-

influx

1.0.0-rc.8

io.micrometer micrometer-registry-jmx 1.0.0-rc.8

io.micrometer micrometer-registry-

new-relic

1.0.0-rc.8

io.micrometer micrometer-registry-

prometheus

1.0.0-rc.8

io.micrometer micrometer-registry-

statsd

1.0.0-rc.8

io.netty netty-all 4.1.20.Final

io.netty netty-buffer 4.1.20.Final

io.netty netty-codec 4.1.20.Final

io.netty netty-codec-dns 4.1.20.Final

io.netty netty-codec-haproxy 4.1.20.Final

io.netty netty-codec-http 4.1.20.Final

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 354

Group ID Artifact ID Version

io.netty netty-codec-http2 4.1.20.Final

io.netty netty-codec-memcache 4.1.20.Final

io.netty netty-codec-mqtt 4.1.20.Final

io.netty netty-codec-redis 4.1.20.Final

io.netty netty-codec-smtp 4.1.20.Final

io.netty netty-codec-socks 4.1.20.Final

io.netty netty-codec-stomp 4.1.20.Final

io.netty netty-codec-xml 4.1.20.Final

io.netty netty-common 4.1.20.Final

io.netty netty-dev-tools 4.1.20.Final

io.netty netty-example 4.1.20.Final

io.netty netty-handler 4.1.20.Final

io.netty netty-handler-proxy 4.1.20.Final

io.netty netty-resolver 4.1.20.Final

io.netty netty-resolver-dns 4.1.20.Final

io.netty netty-transport 4.1.20.Final

io.netty netty-transport-native-

epoll

4.1.20.Final

io.netty netty-transport-native-

kqueue

4.1.20.Final

io.netty netty-transport-native-

unix-common

4.1.20.Final

io.netty netty-transport-rxtx 4.1.20.Final

io.netty netty-transport-sctp 4.1.20.Final

io.netty netty-transport-udt 4.1.20.Final

io.projectreactor reactor-core 3.1.3.RELEASE

io.projectreactor reactor-test 3.1.3.RELEASE

io.projectreactor.addons reactor-adapter 3.1.4.RELEASE

io.projectreactor.addons reactor-extra 3.1.4.RELEASE

io.projectreactor.addons reactor-logback 3.1.4.RELEASE

io.projectreactor.ipc reactor-netty 0.7.3.RELEASE

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 355

Group ID Artifact ID Version

io.projectreactor.kafka reactor-kafka 1.0.0.RELEASE

io.reactivex rxjava 1.3.4

io.reactivex rxjava-reactive-streams 1.2.1

io.reactivex.rxjava2 rxjava 2.1.8

io.rest-assured rest-assured 3.0.6

io.searchbox jest 5.3.3

io.undertow undertow-core 1.4.22.Final

io.undertow undertow-servlet 1.4.22.Final

io.undertow undertow-websockets-jsr 1.4.22.Final

javax.annotation javax.annotation-api 1.3.1

javax.cache cache-api 1.1.0

javax.jms javax.jms-api 2.0.1

javax.json javax.json-api 1.1.2

javax.json.bind javax.json.bind-api 1.0

javax.mail javax.mail-api 1.6.0

javax.money money-api 1.0.1

javax.servlet javax.servlet-api 3.1.0

javax.servlet jstl 1.2

javax.transaction javax.transaction-api 1.2

javax.validation validation-api 2.0.1.Final

jaxen jaxen 1.1.6

joda-time joda-time 2.9.9

junit junit 4.12

mysql mysql-connector-java 5.1.45

net.bytebuddy byte-buddy 1.7.9

net.bytebuddy byte-buddy-agent 1.7.9

net.java.dev.jna jna 4.5.1

net.java.dev.jna jna-platform 4.5.1

net.sf.ehcache ehcache 2.10.4

net.sourceforge.htmlunit htmlunit 2.29

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 356

Group ID Artifact ID Version

net.sourceforge.jtds jtds 1.3.1

net.sourceforge.nekohtml nekohtml 1.9.22

nz.net.ultraq.thymeleaf thymeleaf-layout-

dialect

2.2.2

org.apache.activemq activemq-amqp 5.15.2

org.apache.activemq activemq-blueprint 5.15.2

org.apache.activemq activemq-broker 5.15.2

org.apache.activemq activemq-camel 5.15.2

org.apache.activemq activemq-client 5.15.2

org.apache.activemq activemq-console 5.15.2

org.apache.activemq activemq-http 5.15.2

org.apache.activemq activemq-jaas 5.15.2

org.apache.activemq activemq-jdbc-store 5.15.2

org.apache.activemq activemq-jms-pool 5.15.2

org.apache.activemq activemq-kahadb-store 5.15.2

org.apache.activemq activemq-karaf 5.15.2

org.apache.activemq activemq-leveldb-store 5.15.2

org.apache.activemq activemq-log4j-appender 5.15.2

org.apache.activemq activemq-mqtt 5.15.2

org.apache.activemq activemq-openwire-

generator

5.15.2

org.apache.activemq activemq-openwire-

legacy

5.15.2

org.apache.activemq activemq-osgi 5.15.2

org.apache.activemq activemq-partition 5.15.2

org.apache.activemq activemq-pool 5.15.2

org.apache.activemq activemq-ra 5.15.2

org.apache.activemq activemq-run 5.15.2

org.apache.activemq activemq-runtime-config 5.15.2

org.apache.activemq activemq-shiro 5.15.2

org.apache.activemq activemq-spring 5.15.2

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 357

Group ID Artifact ID Version

org.apache.activemq activemq-stomp 5.15.2

org.apache.activemq activemq-web 5.15.2

org.apache.activemq artemis-amqp-protocol 2.4.0

org.apache.activemq artemis-commons 2.4.0

org.apache.activemq artemis-core-client 2.4.0

org.apache.activemq artemis-jms-client 2.4.0

org.apache.activemq artemis-jms-server 2.4.0

org.apache.activemq artemis-journal 2.4.0

org.apache.activemq artemis-native 2.4.0

org.apache.activemq artemis-selector 2.4.0

org.apache.activemq artemis-server 2.4.0

org.apache.activemq artemis-service-

extensions

2.4.0

org.apache.commons commons-dbcp2 2.2.0

org.apache.commons commons-lang3 3.7

org.apache.commons commons-pool2 2.5.0

org.apache.derby derby 10.14.1.0

org.apache.httpcomponentshttpasyncclient 4.1.3

org.apache.httpcomponentshttpclient 4.5.5

org.apache.httpcomponentshttpcore 4.4.9

org.apache.httpcomponentshttpcore-nio 4.4.9

org.apache.httpcomponentshttpmime 4.5.5

org.apache.johnzon johnzon-jsonb 1.1.5

org.apache.logging.log4j log4j-1.2-api 2.10.0

org.apache.logging.log4j log4j-api 2.10.0

org.apache.logging.log4j log4j-cassandra 2.10.0

org.apache.logging.log4j log4j-core 2.10.0

org.apache.logging.log4j log4j-couchdb 2.10.0

org.apache.logging.log4j log4j-flume-ng 2.10.0

org.apache.logging.log4j log4j-iostreams 2.10.0

org.apache.logging.log4j log4j-jcl 2.10.0

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 358

Group ID Artifact ID Version

org.apache.logging.log4j log4j-jmx-gui 2.10.0

org.apache.logging.log4j log4j-jul 2.10.0

org.apache.logging.log4j log4j-liquibase 2.10.0

org.apache.logging.log4j log4j-mongodb 2.10.0

org.apache.logging.log4j log4j-slf4j-impl 2.10.0

org.apache.logging.log4j log4j-taglib 2.10.0

org.apache.logging.log4j log4j-to-slf4j 2.10.0

org.apache.logging.log4j log4j-web 2.10.0

org.apache.solr solr-analysis-extras 6.6.2

org.apache.solr solr-analytics 6.6.2

org.apache.solr solr-cell 6.6.2

org.apache.solr solr-clustering 6.6.2

org.apache.solr solr-core 6.6.2

org.apache.solr solr-dataimporthandler 6.6.2

org.apache.solr solr-dataimporthandler-

extras

6.6.2

org.apache.solr solr-langid 6.6.2

org.apache.solr solr-solrj 6.6.2

org.apache.solr solr-test-framework 6.6.2

org.apache.solr solr-uima 6.6.2

org.apache.solr solr-velocity 6.6.2

org.apache.tomcat tomcat-annotations-api 8.5.27

org.apache.tomcat tomcat-catalina-jmx-

remote

8.5.27

org.apache.tomcat tomcat-jdbc 8.5.27

org.apache.tomcat tomcat-jsp-api 8.5.27

org.apache.tomcat.embed tomcat-embed-core 8.5.27

org.apache.tomcat.embed tomcat-embed-el 8.5.27

org.apache.tomcat.embed tomcat-embed-jasper 8.5.27

org.apache.tomcat.embed tomcat-embed-websocket 8.5.27

org.aspectj aspectjrt 1.8.13

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 359

Group ID Artifact ID Version

org.aspectj aspectjtools 1.8.13

org.aspectj aspectjweaver 1.8.13

org.assertj assertj-core 3.9.0

org.codehaus.btm btm 2.1.4

org.codehaus.groovy groovy 2.4.13

org.codehaus.groovy groovy-all 2.4.13

org.codehaus.groovy groovy-ant 2.4.13

org.codehaus.groovy groovy-bsf 2.4.13

org.codehaus.groovy groovy-console 2.4.13

org.codehaus.groovy groovy-docgenerator 2.4.13

org.codehaus.groovy groovy-groovydoc 2.4.13

org.codehaus.groovy groovy-groovysh 2.4.13

org.codehaus.groovy groovy-jmx 2.4.13

org.codehaus.groovy groovy-json 2.4.13

org.codehaus.groovy groovy-jsr223 2.4.13

org.codehaus.groovy groovy-nio 2.4.13

org.codehaus.groovy groovy-servlet 2.4.13

org.codehaus.groovy groovy-sql 2.4.13

org.codehaus.groovy groovy-swing 2.4.13

org.codehaus.groovy groovy-templates 2.4.13

org.codehaus.groovy groovy-test 2.4.13

org.codehaus.groovy groovy-testng 2.4.13

org.codehaus.groovy groovy-xml 2.4.13

org.codehaus.janino janino 3.0.8

org.eclipse.jetty apache-jsp 9.4.8.v20171121

org.eclipse.jetty apache-jstl 9.4.8.v20171121

org.eclipse.jetty jetty-alpn-client 9.4.8.v20171121

org.eclipse.jetty jetty-alpn-conscrypt-

client

9.4.8.v20171121

org.eclipse.jetty jetty-alpn-conscrypt-

server

9.4.8.v20171121

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 360

Group ID Artifact ID Version

org.eclipse.jetty jetty-alpn-java-client 9.4.8.v20171121

org.eclipse.jetty jetty-alpn-java-server 9.4.8.v20171121

org.eclipse.jetty jetty-alpn-openjdk8-

client

9.4.8.v20171121

org.eclipse.jetty jetty-alpn-openjdk8-

server

9.4.8.v20171121

org.eclipse.jetty jetty-alpn-server 9.4.8.v20171121

org.eclipse.jetty jetty-annotations 9.4.8.v20171121

org.eclipse.jetty jetty-ant 9.4.8.v20171121

org.eclipse.jetty jetty-client 9.4.8.v20171121

org.eclipse.jetty jetty-continuation 9.4.8.v20171121

org.eclipse.jetty jetty-deploy 9.4.8.v20171121

org.eclipse.jetty jetty-distribution 9.4.8.v20171121

org.eclipse.jetty jetty-hazelcast 9.4.8.v20171121

org.eclipse.jetty jetty-home 9.4.8.v20171121

org.eclipse.jetty jetty-http 9.4.8.v20171121

org.eclipse.jetty jetty-http-spi 9.4.8.v20171121

org.eclipse.jetty jetty-infinispan 9.4.8.v20171121

org.eclipse.jetty jetty-io 9.4.8.v20171121

org.eclipse.jetty jetty-jaas 9.4.8.v20171121

org.eclipse.jetty jetty-jaspi 9.4.8.v20171121

org.eclipse.jetty jetty-jmx 9.4.8.v20171121

org.eclipse.jetty jetty-jndi 9.4.8.v20171121

org.eclipse.jetty jetty-nosql 9.4.8.v20171121

org.eclipse.jetty jetty-plus 9.4.8.v20171121

org.eclipse.jetty jetty-proxy 9.4.8.v20171121

org.eclipse.jetty jetty-quickstart 9.4.8.v20171121

org.eclipse.jetty jetty-rewrite 9.4.8.v20171121

org.eclipse.jetty jetty-security 9.4.8.v20171121

org.eclipse.jetty jetty-server 9.4.8.v20171121

org.eclipse.jetty jetty-servlet 9.4.8.v20171121

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 361

Group ID Artifact ID Version

org.eclipse.jetty jetty-servlets 9.4.8.v20171121

org.eclipse.jetty jetty-spring 9.4.8.v20171121

org.eclipse.jetty jetty-unixsocket 9.4.8.v20171121

org.eclipse.jetty jetty-util 9.4.8.v20171121

org.eclipse.jetty jetty-util-ajax 9.4.8.v20171121

org.eclipse.jetty jetty-webapp 9.4.8.v20171121

org.eclipse.jetty jetty-xml 9.4.8.v20171121

org.eclipse.jetty.cdi cdi-core 9.4.8.v20171121

org.eclipse.jetty.cdi cdi-full-servlet 9.4.8.v20171121

org.eclipse.jetty.cdi cdi-servlet 9.4.8.v20171121

org.eclipse.jetty.fcgi fcgi-client 9.4.8.v20171121

org.eclipse.jetty.fcgi fcgi-server 9.4.8.v20171121

org.eclipse.jetty.gcloud jetty-gcloud-session-

manager

9.4.8.v20171121

org.eclipse.jetty.http2 http2-client 9.4.8.v20171121

org.eclipse.jetty.http2 http2-common 9.4.8.v20171121

org.eclipse.jetty.http2 http2-hpack 9.4.8.v20171121

org.eclipse.jetty.http2 http2-http-client-

transport

9.4.8.v20171121

org.eclipse.jetty.http2 http2-server 9.4.8.v20171121

org.eclipse.jetty.memcachedjetty-memcached-

sessions

9.4.8.v20171121

org.eclipse.jetty.orbit javax.servlet.jsp 2.2.0.v201112011158

org.eclipse.jetty.osgi jetty-httpservice 9.4.8.v20171121

org.eclipse.jetty.osgi jetty-osgi-boot 9.4.8.v20171121

org.eclipse.jetty.osgi jetty-osgi-boot-jsp 9.4.8.v20171121

org.eclipse.jetty.osgi jetty-osgi-boot-warurl 9.4.8.v20171121

org.eclipse.jetty.websocketjavax-websocket-client-

impl

9.4.8.v20171121

org.eclipse.jetty.websocketjavax-websocket-server-

impl

9.4.8.v20171121

org.eclipse.jetty.websocketwebsocket-api 9.4.8.v20171121

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 362

Group ID Artifact ID Version

org.eclipse.jetty.websocketwebsocket-client 9.4.8.v20171121

org.eclipse.jetty.websocketwebsocket-common 9.4.8.v20171121

org.eclipse.jetty.websocketwebsocket-server 9.4.8.v20171121

org.eclipse.jetty.websocketwebsocket-servlet 9.4.8.v20171121

org.ehcache ehcache 3.4.0

org.ehcache ehcache-clustered 3.4.0

org.ehcache ehcache-transactions 3.4.0

org.elasticsearch elasticsearch 5.6.6

org.elasticsearch.client transport 5.6.6

org.elasticsearch.plugin transport-netty4-client 5.6.6

org.firebirdsql.jdbc jaybird-jdk17 3.0.3

org.firebirdsql.jdbc jaybird-jdk18 3.0.3

org.flywaydb flyway-core 5.0.6

org.freemarker freemarker 2.3.27-incubating

org.glassfish javax.el 3.0.0

org.glassfish.jersey.containersjersey-container-

servlet

2.26

org.glassfish.jersey.containersjersey-container-

servlet-core

2.26

org.glassfish.jersey.corejersey-client 2.26

org.glassfish.jersey.corejersey-common 2.26

org.glassfish.jersey.corejersey-server 2.26

org.glassfish.jersey.ext jersey-bean-validation 2.26

org.glassfish.jersey.ext jersey-entity-filtering 2.26

org.glassfish.jersey.ext jersey-spring4 2.26

org.glassfish.jersey.mediajersey-media-jaxb 2.26

org.glassfish.jersey.mediajersey-media-json-

jackson

2.26

org.glassfish.jersey.mediajersey-media-multipart 2.26

org.hamcrest hamcrest-core 1.3

org.hamcrest hamcrest-library 1.3

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 363

Group ID Artifact ID Version

org.hibernate hibernate-c3p0 5.2.12.Final

org.hibernate hibernate-core 5.2.12.Final

org.hibernate hibernate-ehcache 5.2.12.Final

org.hibernate hibernate-entitymanager 5.2.12.Final

org.hibernate hibernate-envers 5.2.12.Final

org.hibernate hibernate-hikaricp 5.2.12.Final

org.hibernate hibernate-infinispan 5.2.12.Final

org.hibernate hibernate-java8 5.2.12.Final

org.hibernate hibernate-jcache 5.2.12.Final

org.hibernate hibernate-jpamodelgen 5.2.12.Final

org.hibernate hibernate-proxool 5.2.12.Final

org.hibernate hibernate-spatial 5.2.12.Final

org.hibernate hibernate-testing 5.2.12.Final

org.hibernate hibernate-validator-

annotation-processor

6.0.7.Final

org.hibernate.validator hibernate-validator 6.0.7.Final

org.hsqldb hsqldb 2.4.0

org.infinispan infinispan-jcache 9.1.4.Final

org.infinispan infinispan-spring4-

common

9.1.4.Final

org.infinispan infinispan-spring4-

embedded

9.1.4.Final

org.influxdb influxdb-java 2.8

org.javassist javassist 3.22.0-CR2

org.jboss jboss-transaction-spi 7.6.0.Final

org.jboss.logging jboss-logging 3.3.1.Final

org.jboss.narayana.jta jdbc 5.7.2.Final

org.jboss.narayana.jta jms 5.7.2.Final

org.jboss.narayana.jta jta 5.7.2.Final

org.jboss.narayana.jts narayana-jts-

integration

5.7.2.Final

org.jdom jdom2 2.0.6

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 364

Group ID Artifact ID Version

org.jetbrains.kotlin kotlin-reflect 1.2.20

org.jetbrains.kotlin kotlin-runtime 1.2.20

org.jetbrains.kotlin kotlin-stdlib 1.2.20

org.jetbrains.kotlin kotlin-stdlib-jdk7 1.2.20

org.jetbrains.kotlin kotlin-stdlib-jdk8 1.2.20

org.jetbrains.kotlin kotlin-stdlib-jre7 1.2.20

org.jetbrains.kotlin kotlin-stdlib-jre8 1.2.20

org.jolokia jolokia-core 1.4.0

org.jooq jooq 3.10.4

org.jooq jooq-codegen 3.10.4

org.jooq jooq-meta 3.10.4

org.junit.jupiter junit-jupiter-api 5.0.3

org.junit.jupiter junit-jupiter-engine 5.0.3

org.liquibase liquibase-core 3.5.3

org.mariadb.jdbc mariadb-java-client 2.2.1

org.mockito mockito-core 2.13.0

org.mockito mockito-inline 2.13.0

org.mongodb bson 3.6.1

org.mongodb mongodb-driver 3.6.1

org.mongodb mongodb-driver-async 3.6.1

org.mongodb mongodb-driver-core 3.6.1

org.mongodb mongodb-driver-

reactivestreams

1.7.0

org.mongodb mongo-java-driver 3.6.1

org.mortbay.jasper apache-el 8.5.24.1

org.neo4j neo4j-ogm-api 3.0.3

org.neo4j neo4j-ogm-bolt-driver 3.0.3

org.neo4j neo4j-ogm-core 3.0.3

org.neo4j neo4j-ogm-http-driver 3.0.3

org.postgresql postgresql 42.2.1

org.projectlombok lombok 1.16.20

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 365

Group ID Artifact ID Version

org.quartz-scheduler quartz 2.3.0

org.reactivestreams reactive-streams 1.0.2

org.seleniumhq.selenium htmlunit-driver 2.29.0

org.seleniumhq.selenium selenium-api 3.8.1

org.seleniumhq.selenium selenium-chrome-driver 3.8.1

org.seleniumhq.selenium selenium-edge-driver 3.8.1

org.seleniumhq.selenium selenium-firefox-driver 3.8.1

org.seleniumhq.selenium selenium-ie-driver 3.8.1

org.seleniumhq.selenium selenium-java 3.8.1

org.seleniumhq.selenium selenium-opera-driver 3.8.1

org.seleniumhq.selenium selenium-remote-driver 3.8.1

org.seleniumhq.selenium selenium-safari-driver 3.8.1

org.seleniumhq.selenium selenium-support 3.8.1

org.skyscreamer jsonassert 1.5.0

org.slf4j jcl-over-slf4j 1.7.25

org.slf4j jul-to-slf4j 1.7.25

org.slf4j log4j-over-slf4j 1.7.25

org.slf4j slf4j-api 1.7.25

org.slf4j slf4j-ext 1.7.25

org.slf4j slf4j-jcl 1.7.25

org.slf4j slf4j-jdk14 1.7.25

org.slf4j slf4j-log4j12 1.7.25

org.slf4j slf4j-nop 1.7.25

org.slf4j slf4j-simple 1.7.25

org.springframework spring-aop 5.0.3.RELEASE

org.springframework spring-aspects 5.0.3.RELEASE

org.springframework spring-beans 5.0.3.RELEASE

org.springframework spring-context 5.0.3.RELEASE

org.springframework spring-context-indexer 5.0.3.RELEASE

org.springframework spring-context-support 5.0.3.RELEASE

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 366

Group ID Artifact ID Version

org.springframework spring-core 5.0.3.RELEASE

org.springframework spring-expression 5.0.3.RELEASE

org.springframework spring-instrument 5.0.3.RELEASE

org.springframework spring-jcl 5.0.3.RELEASE

org.springframework spring-jdbc 5.0.3.RELEASE

org.springframework spring-jms 5.0.3.RELEASE

org.springframework spring-messaging 5.0.3.RELEASE

org.springframework spring-orm 5.0.3.RELEASE

org.springframework spring-oxm 5.0.3.RELEASE

org.springframework spring-test 5.0.3.RELEASE

org.springframework spring-tx 5.0.3.RELEASE

org.springframework spring-web 5.0.3.RELEASE

org.springframework spring-webflux 5.0.3.RELEASE

org.springframework spring-webmvc 5.0.3.RELEASE

org.springframework spring-websocket 5.0.3.RELEASE

org.springframework.amqp spring-amqp 2.0.2.RELEASE

org.springframework.amqp spring-rabbit 2.0.2.RELEASE

org.springframework.batchspring-batch-core 4.0.0.RELEASE

org.springframework.batchspring-batch-

infrastructure

4.0.0.RELEASE

org.springframework.batchspring-batch-

integration

4.0.0.RELEASE

org.springframework.batchspring-batch-test 4.0.0.RELEASE

org.springframework.boot spring-boot 2.0.0.RC1

org.springframework.boot spring-boot-actuator 2.0.0.RC1

org.springframework.boot spring-boot-actuator-

autoconfigure

2.0.0.RC1

org.springframework.boot spring-boot-

autoconfigure

2.0.0.RC1

org.springframework.boot spring-boot-

autoconfigure-processor

2.0.0.RC1

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 367

Group ID Artifact ID Version

org.springframework.boot spring-boot-

configuration-metadata

2.0.0.RC1

org.springframework.boot spring-boot-

configuration-processor

2.0.0.RC1

org.springframework.boot spring-boot-devtools 2.0.0.RC1

org.springframework.boot spring-boot-loader 2.0.0.RC1

org.springframework.boot spring-boot-loader-

tools

2.0.0.RC1

org.springframework.boot spring-boot-properties-

migrator

2.0.0.RC1

org.springframework.boot spring-boot-starter 2.0.0.RC1

org.springframework.boot spring-boot-starter-

activemq

2.0.0.RC1

org.springframework.boot spring-boot-starter-

actuator

2.0.0.RC1

org.springframework.boot spring-boot-starter-

amqp

2.0.0.RC1

org.springframework.boot spring-boot-starter-aop 2.0.0.RC1

org.springframework.boot spring-boot-starter-

artemis

2.0.0.RC1

org.springframework.boot spring-boot-starter-

batch

2.0.0.RC1

org.springframework.boot spring-boot-starter-

cache

2.0.0.RC1

org.springframework.boot spring-boot-starter-

cloud-connectors

2.0.0.RC1

org.springframework.boot spring-boot-starter-

data-cassandra

2.0.0.RC1

org.springframework.boot spring-boot-starter-

data-cassandra-reactive

2.0.0.RC1

org.springframework.boot spring-boot-starter-

data-couchbase

2.0.0.RC1

org.springframework.boot spring-boot-starter-

data-couchbase-reactive

2.0.0.RC1

org.springframework.boot spring-boot-starter-

data-elasticsearch

2.0.0.RC1

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 368

Group ID Artifact ID Version

org.springframework.boot spring-boot-starter-

data-jpa

2.0.0.RC1

org.springframework.boot spring-boot-starter-

data-ldap

2.0.0.RC1

org.springframework.boot spring-boot-starter-

data-mongodb

2.0.0.RC1

org.springframework.boot spring-boot-starter-

data-mongodb-reactive

2.0.0.RC1

org.springframework.boot spring-boot-starter-

data-neo4j

2.0.0.RC1

org.springframework.boot spring-boot-starter-

data-redis

2.0.0.RC1

org.springframework.boot spring-boot-starter-

data-redis-reactive

2.0.0.RC1

org.springframework.boot spring-boot-starter-

data-rest

2.0.0.RC1

org.springframework.boot spring-boot-starter-

data-solr

2.0.0.RC1

org.springframework.boot spring-boot-starter-

freemarker

2.0.0.RC1

org.springframework.boot spring-boot-starter-

groovy-templates

2.0.0.RC1

org.springframework.boot spring-boot-starter-

hateoas

2.0.0.RC1

org.springframework.boot spring-boot-starter-

integration

2.0.0.RC1

org.springframework.boot spring-boot-starter-

jdbc

2.0.0.RC1

org.springframework.boot spring-boot-starter-

jersey

2.0.0.RC1

org.springframework.boot spring-boot-starter-

jetty

2.0.0.RC1

org.springframework.boot spring-boot-starter-

jooq

2.0.0.RC1

org.springframework.boot spring-boot-starter-

json

2.0.0.RC1

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 369

Group ID Artifact ID Version

org.springframework.boot spring-boot-starter-

jta-atomikos

2.0.0.RC1

org.springframework.boot spring-boot-starter-

jta-bitronix

2.0.0.RC1

org.springframework.boot spring-boot-starter-

jta-narayana

2.0.0.RC1

org.springframework.boot spring-boot-starter-

log4j2

2.0.0.RC1

org.springframework.boot spring-boot-starter-

logging

2.0.0.RC1

org.springframework.boot spring-boot-starter-

mail

2.0.0.RC1

org.springframework.boot spring-boot-starter-

mustache

2.0.0.RC1

org.springframework.boot spring-boot-starter-

quartz

2.0.0.RC1

org.springframework.boot spring-boot-starter-

reactor-netty

2.0.0.RC1

org.springframework.boot spring-boot-starter-

security

2.0.0.RC1

org.springframework.boot spring-boot-starter-

test

2.0.0.RC1

org.springframework.boot spring-boot-starter-

thymeleaf

2.0.0.RC1

org.springframework.boot spring-boot-starter-

tomcat

2.0.0.RC1

org.springframework.boot spring-boot-starter-

undertow

2.0.0.RC1

org.springframework.boot spring-boot-starter-

validation

2.0.0.RC1

org.springframework.boot spring-boot-starter-web 2.0.0.RC1

org.springframework.boot spring-boot-starter-

webflux

2.0.0.RC1

org.springframework.boot spring-boot-starter-

web-services

2.0.0.RC1

org.springframework.boot spring-boot-starter-

websocket

2.0.0.RC1

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 370

Group ID Artifact ID Version

org.springframework.boot spring-boot-test 2.0.0.RC1

org.springframework.boot spring-boot-test-

autoconfigure

2.0.0.RC1

org.springframework.cloudspring-cloud-

cloudfoundry-connector

2.0.1.RELEASE

org.springframework.cloudspring-cloud-

connectors-core

2.0.1.RELEASE

org.springframework.cloudspring-cloud-heroku-

connector

2.0.1.RELEASE

org.springframework.cloudspring-cloud-

localconfig-connector

2.0.1.RELEASE

org.springframework.cloudspring-cloud-spring-

service-connector

2.0.1.RELEASE

org.springframework.data spring-data-cassandra 2.0.3.RELEASE

org.springframework.data spring-data-commons 2.0.3.RELEASE

org.springframework.data spring-data-couchbase 3.0.3.RELEASE

org.springframework.data spring-data-

elasticsearch

3.0.3.RELEASE

org.springframework.data spring-data-envers 2.0.3.RELEASE

org.springframework.data spring-data-gemfire 2.0.3.RELEASE

org.springframework.data spring-data-geode 2.0.3.RELEASE

org.springframework.data spring-data-jpa 2.0.3.RELEASE

org.springframework.data spring-data-keyvalue 2.0.3.RELEASE

org.springframework.data spring-data-ldap 2.0.3.RELEASE

org.springframework.data spring-data-mongodb 2.0.3.RELEASE

org.springframework.data spring-data-mongodb-

cross-store

2.0.3.RELEASE

org.springframework.data spring-data-neo4j 5.0.3.RELEASE

org.springframework.data spring-data-redis 2.0.3.RELEASE

org.springframework.data spring-data-rest-core 3.0.3.RELEASE

org.springframework.data spring-data-rest-hal-

browser

3.0.3.RELEASE

org.springframework.data spring-data-rest-webmvc 3.0.3.RELEASE

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 371

Group ID Artifact ID Version

org.springframework.data spring-data-solr 3.0.3.RELEASE

org.springframework.hateoasspring-hateoas 0.24.0.RELEASE

org.springframework.integrationspring-integration-amqp 5.0.1.RELEASE

org.springframework.integrationspring-integration-core 5.0.1.RELEASE

org.springframework.integrationspring-integration-

event

5.0.1.RELEASE

org.springframework.integrationspring-integration-feed 5.0.1.RELEASE

org.springframework.integrationspring-integration-file 5.0.1.RELEASE

org.springframework.integrationspring-integration-ftp 5.0.1.RELEASE

org.springframework.integrationspring-integration-

gemfire

5.0.1.RELEASE

org.springframework.integrationspring-integration-

groovy

5.0.1.RELEASE

org.springframework.integrationspring-integration-http 5.0.1.RELEASE

org.springframework.integrationspring-integration-ip 5.0.1.RELEASE

org.springframework.integrationspring-integration-jdbc 5.0.1.RELEASE

org.springframework.integrationspring-integration-jms 5.0.1.RELEASE

org.springframework.integrationspring-integration-jmx 5.0.1.RELEASE

org.springframework.integrationspring-integration-jpa 5.0.1.RELEASE

org.springframework.integrationspring-integration-mail 5.0.1.RELEASE

org.springframework.integrationspring-integration-

mongodb

5.0.1.RELEASE

org.springframework.integrationspring-integration-mqtt 5.0.1.RELEASE

org.springframework.integrationspring-integration-

redis

5.0.1.RELEASE

org.springframework.integrationspring-integration-rmi 5.0.1.RELEASE

org.springframework.integrationspring-integration-

scripting

5.0.1.RELEASE

org.springframework.integrationspring-integration-

security

5.0.1.RELEASE

org.springframework.integrationspring-integration-sftp 5.0.1.RELEASE

org.springframework.integrationspring-integration-

stomp

5.0.1.RELEASE

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 372

Group ID Artifact ID Version

org.springframework.integrationspring-integration-

stream

5.0.1.RELEASE

org.springframework.integrationspring-integration-

syslog

5.0.1.RELEASE

org.springframework.integrationspring-integration-test 5.0.1.RELEASE

org.springframework.integrationspring-integration-

test-support

5.0.1.RELEASE

org.springframework.integrationspring-integration-

twitter

5.0.1.RELEASE

org.springframework.integrationspring-integration-

webflux

5.0.1.RELEASE

org.springframework.integrationspring-integration-

websocket

5.0.1.RELEASE

org.springframework.integrationspring-integration-ws 5.0.1.RELEASE

org.springframework.integrationspring-integration-xml 5.0.1.RELEASE

org.springframework.integrationspring-integration-xmpp 5.0.1.RELEASE

org.springframework.integrationspring-integration-

zookeeper

5.0.1.RELEASE

org.springframework.kafkaspring-kafka 2.1.2.RELEASE

org.springframework.kafkaspring-kafka-test 2.1.2.RELEASE

org.springframework.ldap spring-ldap-core 2.3.2.RELEASE

org.springframework.ldap spring-ldap-core-tiger 2.3.2.RELEASE

org.springframework.ldap spring-ldap-ldif-batch 2.3.2.RELEASE

org.springframework.ldap spring-ldap-ldif-core 2.3.2.RELEASE

org.springframework.ldap spring-ldap-odm 2.3.2.RELEASE

org.springframework.ldap spring-ldap-test 2.3.2.RELEASE

org.springframework.pluginspring-plugin-core 1.2.0.RELEASE

org.springframework.pluginspring-plugin-metadata 1.2.0.RELEASE

org.springframework.restdocsspring-restdocs-

asciidoctor

2.0.0.RELEASE

org.springframework.restdocsspring-restdocs-core 2.0.0.RELEASE

org.springframework.restdocsspring-restdocs-mockmvc 2.0.0.RELEASE

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 373

Group ID Artifact ID Version

org.springframework.restdocsspring-restdocs-

restassured

2.0.0.RELEASE

org.springframework.restdocsspring-restdocs-

webtestclient

2.0.0.RELEASE

org.springframework.retryspring-retry 1.2.2.RELEASE

org.springframework.securityspring-security-acl 5.0.1.RELEASE

org.springframework.securityspring-security-aspects 5.0.1.RELEASE

org.springframework.securityspring-security-cas 5.0.1.RELEASE

org.springframework.securityspring-security-config 5.0.1.RELEASE

org.springframework.securityspring-security-core 5.0.1.RELEASE

org.springframework.securityspring-security-crypto 5.0.1.RELEASE

org.springframework.securityspring-security-data 5.0.1.RELEASE

org.springframework.securityspring-security-ldap 5.0.1.RELEASE

org.springframework.securityspring-security-

messaging

5.0.1.RELEASE

org.springframework.securityspring-security-oauth2-

client

5.0.1.RELEASE

org.springframework.securityspring-security-oauth2-

core

5.0.1.RELEASE

org.springframework.securityspring-security-oauth2-

jose

5.0.1.RELEASE

org.springframework.securityspring-security-openid 5.0.1.RELEASE

org.springframework.securityspring-security-

remoting

5.0.1.RELEASE

org.springframework.securityspring-security-taglibs 5.0.1.RELEASE

org.springframework.securityspring-security-test 5.0.1.RELEASE

org.springframework.securityspring-security-web 5.0.1.RELEASE

org.springframework.sessionspring-session-core 2.0.1.RELEASE

org.springframework.sessionspring-session-data-

mongodb

2.0.0.RELEASE

org.springframework.sessionspring-session-data-

redis

2.0.1.RELEASE

org.springframework.sessionspring-session-

hazelcast

2.0.1.RELEASE

Spring Boot Reference Guide

2.0.0.RC1 Spring Boot 374

Group ID Artifact ID Version

org.springframework.sessionspring-session-jdbc 2.0.1.RELEASE

org.springframework.ws spring-ws-core 3.0.0.RELEASE

org.springframework.ws spring-ws-security 3.0.0.RELEASE

org.springframework.ws spring-ws-support 3.0.0.RELEASE

org.springframework.ws spring-ws-test 3.0.0.RELEASE

org.synchronoss.cloud nio-multipart-parser 1.1.0

org.thymeleaf thymeleaf 3.0.9.RELEASE

org.thymeleaf thymeleaf-spring5 3.0.9.RELEASE

org.thymeleaf.extras thymeleaf-extras-

java8time

3.0.1.RELEASE

org.thymeleaf.extras thymeleaf-extras-

springsecurity4

3.0.2.RELEASE

org.webjars hal-browser 3325375

org.webjars webjars-locator 0.32-1

org.xerial sqlite-jdbc 3.21.0.1

org.xmlunit xmlunit-core 2.5.1

org.xmlunit xmlunit-legacy 2.5.1

org.xmlunit xmlunit-matchers 2.5.1

org.yaml snakeyaml 1.19

redis.clients jedis 2.9.0

wsdl4j wsdl4j 1.6.3

xml-apis xml-apis 1.4.01

	Spring Boot Reference Guide
	Table of Contents
	Part I. Spring Boot Documentation
	1. About the Documentation
	2. Getting Help
	3. First Steps
	4. Working with Spring Boot
	5. Learning about Spring Boot Features
	6. Moving to Production
	7. Advanced Topics

	Part II. Getting Started
	8. Introducing Spring Boot
	9. System Requirements
	9.1 Servlet Containers

	10. Installing Spring Boot
	10.1 Installation Instructions for the Java Developer
	Maven Installation
	Gradle Installation

	10.2 Installing the Spring Boot CLI
	Manual Installation
	Installation with SDKMAN!
	OSX Homebrew Installation
	MacPorts Installation
	Command-line Completion
	Quick-start Spring CLI Example

	10.3 Upgrading from an Earlier Version of Spring Boot

	11. Developing Your First Spring Boot Application
	11.1 Creating the POM
	11.2 Adding Classpath Dependencies
	11.3 Writing the Code
	The @RestController and @RequestMapping Annotations
	The @EnableAutoConfiguration Annotation
	The “main” Method

	11.4 Running the Example
	11.5 Creating an Executable Jar

	12. What to Read Next

	Part III. Using Spring Boot
	13. Build Systems
	13.1 Dependency Management
	13.2 Maven
	Inheriting the Starter Parent
	Using Spring Boot without the Parent POM
	Using the Spring Boot Maven Plugin

	13.3 Gradle
	13.4 Ant
	13.5 Starters

	14. Structuring Your Code
	14.1 Using the “default” Package
	14.2 Locating the Main Application Class

	15. Configuration Classes
	15.1 Importing Additional Configuration Classes
	15.2 Importing XML Configuration

	16. Auto-configuration
	16.1 Gradually Replacing Auto-configuration
	16.2 Disabling Specific Auto-configuration Classes

	17. Spring Beans and Dependency Injection
	18. Using the @SpringBootApplication Annotation
	19. Running Your Application
	19.1 Running from an IDE
	19.2 Running as a Packaged Application
	19.3 Using the Maven Plugin
	19.4 Using the Gradle Plugin
	19.5 Hot Swapping

	20. Developer Tools
	20.1 Property Defaults
	20.2 Automatic Restart
	Logging changes in condition evaluation
	Excluding Resources
	Watching Additional Paths
	Disabling Restart
	Using a Trigger File
	Customizing the Restart Classloader
	Known Limitations

	20.3 LiveReload
	20.4 Global Settings
	20.5 Remote Applications
	Running the Remote Client Application
	Remote Update

	21. Packaging Your Application for Production
	22. What to Read Next

	Part IV. Spring Boot features
	23. SpringApplication
	23.1 Startup Failure
	23.2 Customizing the Banner
	23.3 Customizing SpringApplication
	23.4 Fluent Builder API
	23.5 Application Events and Listeners
	23.6 Web Environment
	23.7 Accessing Application Arguments
	23.8 Using the ApplicationRunner or CommandLineRunner
	23.9 Application Exit
	23.10 Admin Features

	24. Externalized Configuration
	24.1 Configuring Random Values
	24.2 Accessing Command Line Properties
	24.3 Application Property Files
	24.4 Profile-specific Properties
	24.5 Placeholders in Properties
	24.6 Using YAML Instead of Properties
	Loading YAML
	Exposing YAML as Properties in the Spring Environment
	Multi-profile YAML Documents
	YAML Shortcomings
	Merging YAML Lists

	24.7 Type-safe Configuration Properties
	Third-party Configuration
	Relaxed Binding
	Properties Conversion
	@ConfigurationProperties Validation
	@ConfigurationProperties vs. @Value

	25. Profiles
	25.1 Adding Active Profiles
	25.2 Programmatically Setting Profiles
	25.3 Profile-specific Configuration Files

	26. Logging
	26.1 Log Format
	26.2 Console Output
	Color-coded Output

	26.3 File Output
	26.4 Log Levels
	26.5 Custom Log Configuration
	26.6 Logback Extensions
	Profile-specific Configuration
	Environment Properties

	27. Developing Web Applications
	27.1 The “Spring Web MVC Framework”
	Spring MVC Auto-configuration
	HttpMessageConverters
	Custom JSON Serializers and Deserializers
	MessageCodesResolver
	Static Content
	Welcome Page
	Custom Favicon
	Path Matching and Content Negotiation
	ConfigurableWebBindingInitializer
	Template Engines
	Error Handling
	Custom Error Pages
	Mapping Error Pages outside of Spring MVC

	Spring HATEOAS
	CORS Support

	27.2 The “Spring WebFlux Framework”
	Spring WebFlux Auto-configuration
	HTTP Codecs with HttpMessageReaders and HttpMessageWriters
	Static Content
	Template Engines
	Error Handling
	Custom Error Pages

	Web Filters

	27.3 JAX-RS and Jersey
	27.4 Embedded Servlet Container Support
	Servlets, Filters, and listeners
	Registering Servlets, Filters, and Listeners as Spring Beans

	Servlet Context Initialization
	Scanning for Servlets, Filters, and listeners

	The ServletWebServerApplicationContext
	Customizing Embedded Servlet Containers
	Programmatic Customization
	Customizing ConfigurableServletWebServerFactory Directly

	JSP Limitations

	28. Security
	28.1 MVC Security
	28.2 WebFlux Security
	28.3 OAuth2
	Client

	28.4 Actuator Security

	29. Working with SQL Databases
	29.1 Configure a DataSource
	Embedded Database Support
	Connection to a Production Database
	Connection to a JNDI DataSource

	29.2 Using JdbcTemplate
	29.3 JPA and “Spring Data”
	Entity Classes
	Spring Data JPA Repositories
	Creating and Dropping JPA Databases
	Open EntityManager in View

	29.4 Using H2’s Web Console
	Changing the H2 Console’s Path

	29.5 Using jOOQ
	Code Generation
	Using DSLContext
	jOOQ SQL Dialect
	Customizing jOOQ

	30. Working with NoSQL Technologies
	30.1 Redis
	Connecting to Redis

	30.2 MongoDB
	Connecting to a MongoDB Database
	MongoTemplate
	Spring Data MongoDB Repositories
	Embedded Mongo

	30.3 Neo4j
	Connecting to a Neo4j Database
	Using the Embedded Mode
	Neo4jSession
	Spring Data Neo4j Repositories
	Repository Example

	30.4 Gemfire
	30.5 Solr
	Connecting to Solr
	Spring Data Solr Repositories

	30.6 Elasticsearch
	Connecting to Elasticsearch by Using Jest
	Connecting to Elasticsearch by Using Spring Data
	Spring Data Elasticsearch Repositories

	30.7 Cassandra
	Connecting to Cassandra
	Spring Data Cassandra Repositories

	30.8 Couchbase
	Connecting to Couchbase
	Spring Data Couchbase Repositories

	30.9 LDAP
	Connecting to an LDAP Server
	Spring Data LDAP Repositories
	Embedded In-memory LDAP Server

	30.10 InfluxDB
	Connecting to InfluxDB

	31. Caching
	31.1 Supported Cache Providers
	Generic
	JCache (JSR-107)
	EhCache 2.x
	Hazelcast
	Infinispan
	Couchbase
	Redis
	Caffeine
	Simple
	None

	32. Messaging
	32.1 JMS
	ActiveMQ Support
	Artemis Support
	Using a JNDI ConnectionFactory
	Sending a Message
	Receiving a Message

	32.2 AMQP
	RabbitMQ support
	Sending a Message
	Receiving a Message

	32.3 Apache Kafka Support
	Sending a Message
	Receiving a Message
	Additional Kafka Properties

	33. Calling REST Services with RestTemplate
	33.1 RestTemplate Customization

	34. Calling REST Services with WebClient
	34.1 WebClient Customization

	35. Validation
	36. Sending Email
	37. Distributed Transactions with JTA
	37.1 Using an Atomikos Transaction Manager
	37.2 Using a Bitronix Transaction Manager
	37.3 Using a Narayana Transaction Manager
	37.4 Using a Java EE Managed Transaction Manager
	37.5 Mixing XA and Non-XA JMS Connections
	37.6 Supporting an Alternative Embedded Transaction Manager

	38. Hazelcast
	39. Quartz Scheduler
	40. Spring Integration
	41. Spring Session
	42. Monitoring and Management over JMX
	43. Testing
	43.1 Test Scope Dependencies
	43.2 Testing Spring Applications
	43.3 Testing Spring Boot Applications
	Detecting Test Configuration
	Excluding Test Configuration
	Working with Random Ports
	Mocking and Spying Beans
	Auto-configured Tests
	Auto-configured JSON Tests
	Auto-configured Spring MVC Tests
	Auto-configured Spring WebFlux Tests
	Auto-configured Data JPA Tests
	Auto-configured JDBC Tests
	Auto-configured jOOQ Tests
	Auto-configured Data MongoDB Tests
	Auto-configured Data Neo4j Tests
	Auto-configured Data Redis Tests
	Auto-configured Data LDAP Tests
	Auto-configured REST Clients
	Auto-configured Spring REST Docs Tests
	Auto-configured Spring REST Docs Tests with Mock MVC
	Auto-configured Spring REST Docs Tests with REST Assured

	User Configuration and Slicing
	Using Spock to Test Spring Boot Applications

	43.4 Test Utilities
	ConfigFileApplicationContextInitializer
	EnvironmentTestUtils
	OutputCapture
	TestRestTemplate

	44. WebSockets
	45. Web Services
	46. Creating Your Own Auto-configuration
	46.1 Understanding Auto-configured Beans
	46.2 Locating Auto-configuration Candidates
	46.3 Condition Annotations
	Class Conditions
	Bean Conditions
	Property Conditions
	Resource Conditions
	Web Application Conditions
	SpEL Expression Conditions

	46.4 Testing your Auto-configuration
	Simulating a Web Context
	Overriding the Classpath

	46.5 Creating Your Own Starter
	Naming
	autoconfigure Module
	Starter Module

	47. What to Read Next

	Part V. Spring Boot Actuator: Production-ready features
	48. Enabling Production-ready Features
	49. Endpoints
	49.1 Enabling Endpoints
	49.2 Exposing Endpoints
	49.3 Securing HTTP Endpoints
	49.4 Configuring Endpoints
	49.5 Hypermedia for Actuator Web Endpoints
	49.6 Actuator Web Endpoint Paths
	49.7 CORS Support
	49.8 Adding Custom Endpoints
	49.9 Health Information
	Auto-configured HealthIndicators
	Writing Custom HealthIndicators
	Reactive Health Indicators
	Auto-configured ReactiveHealthIndicators

	49.10 Application Information
	Auto-configured InfoContributors
	Custom Application Information
	Git Commit Information
	Build Information
	Writing Custom InfoContributors

	50. Monitoring and Management over HTTP
	50.1 Customizing the Management Endpoint Paths
	50.2 Customizing the Management Server Port
	50.3 Configuring Management-specific SSL
	50.4 Customizing the Management Server Address
	50.5 Disabling HTTP Endpoints

	51. Monitoring and Management over JMX
	51.1 Customizing MBean Names
	51.2 Disabling JMX Endpoints
	51.3 Using Jolokia for JMX over HTTP
	Customizing Jolokia
	Disabling Jolokia

	52. Loggers
	52.1 Configure a Logger

	53. Metrics
	53.1 Spring MVC Metrics
	Spring MVC Metric Tags

	53.2 WebFlux Metrics
	WebFlux Metrics Tags

	53.3 RestTemplate Metrics
	RestTemplate Metric Tags

	53.4 Cache metrics
	53.5 DataSource Metrics
	53.6 RabbitMQ metrics
	53.7 Spring Integration Metrics

	54. Auditing
	55. HTTP Tracing
	55.1 Custom HTTP tracing

	56. Process Monitoring
	56.1 Extending Configuration
	56.2 Programmatically

	57. Cloud Foundry Support
	57.1 Disabling Extended Cloud Foundry Actuator Support
	57.2 Cloud Foundry Self-signed Certificates
	57.3 Custom Security Configuration

	58. What to Read Next

	Part VI. Deploying Spring Boot Applications
	59. Deploying to the Cloud
	59.1 Cloud Foundry
	Binding to Services

	59.2 Heroku
	59.3 OpenShift
	59.4 Amazon Web Services (AWS)
	AWS Elastic Beanstalk
	Using the Tomcat Platform
	Using the Java SE Platform

	Summary

	59.5 Boxfuse and Amazon Web Services
	59.6 Google Cloud

	60. Installing Spring Boot Applications
	60.1 Supported Operating Systems
	60.2 Unix/Linux Services
	Installation as an init.d Service (System V)
	Securing an init.d Service

	Installation as a systemd Service
	Customizing the Startup Script
	Customizing the Start Script when It Is Written
	Customizing a Script When It Runs

	60.3 Microsoft Windows Services

	61. What to Read Next

	Part VII. Spring Boot CLI
	62. Installing the CLI
	63. Using the CLI
	63.1 Running Applications with the CLI
	Deduced “grab” Dependencies
	Deduced “grab” Coordinates
	Default Import Statements
	Automatic Main Method
	Custom Dependency Management

	63.2 Applications with Multiple Source Files
	63.3 Packaging Your Application
	63.4 Initialize a New Project
	63.5 Using the Embedded Shell
	63.6 Adding Extensions to the CLI

	64. Developing Applications with the Groovy Beans DSL
	65. Configuring the CLI with settings.xml
	66. What to Read Next

	Part VIII. Build tool plugins
	67. Spring Boot Maven Plugin
	67.1 Including the Plugin
	67.2 Packaging Executable Jar and War Files

	68. Spring Boot Gradle Plugin
	69. Spring Boot AntLib Module
	69.1 Spring Boot Ant Tasks
	spring-boot:exejar
	Examples

	69.2 spring-boot:findmainclass
	Examples

	70. Supporting Other Build Systems
	70.1 Repackaging Archives
	70.2 Nested Libraries
	70.3 Finding a Main Class
	70.4 Example Repackage Implementation

	71. What to Read Next

	Part IX. ‘How-to’ guides
	72. Spring Boot Application
	72.1 Create Your Own FailureAnalyzer
	72.2 Troubleshoot Auto-configuration
	72.3 Customize the Environment or ApplicationContext Before It Starts
	72.4 Build an ApplicationContext Hierarchy (Adding a Parent or Root Context)
	72.5 Create a Non-web Application

	73. Properties and Configuration
	73.1 Automatically Expand Properties at Build Time
	Automatic Property Expansion Using Maven
	Automatic Property Expansion Using Gradle

	73.2 Externalize the Configuration of SpringApplication
	73.3 Change the Location of External Properties of an Application
	73.4 Use ‘Short’ Command Line Arguments
	73.5 Use YAML for External Properties
	73.6 Set the Active Spring Profiles
	73.7 Change Configuration Depending on the Environment
	73.8 Discover Built-in Options for External Properties

	74. Embedded Web Servers
	74.1 Use Another Web Server
	74.2 Configure Jetty
	74.3 Add a Servlet, Filter, or Listener to an Application
	Add a Servlet, Filter, or Listener by Using a Spring Bean
	Disable Registration of a Servlet or Filter

	Add Servlets, Filters, and Listeners by Using Classpath Scanning

	74.4 Change the HTTP Port
	74.5 Use a Random Unassigned HTTP Port
	74.6 Discover the HTTP Port at Runtime
	74.7 Configure SSL
	74.8 Configure HTTP/2
	HTTP/2 with Undertow
	HTTP/2 with Jetty
	HTTP/2 with Tomcat

	74.9 Configure Access Logging
	74.10 Running Behind a Front-end Proxy Server
	Customize Tomcat’s Proxy Configuration

	74.11 Configure Tomcat
	74.12 Enable Multiple Connectors with Tomcat
	74.13 Use Tomcat’s LegacyCookieProcessor
	74.14 Configure Undertow
	74.15 Enable Multiple Listeners with Undertow
	74.16 Create WebSocket Endpoints Using @ServerEndpoint
	74.17 Enable HTTP Response Compression

	75. Spring MVC
	75.1 Write a JSON REST Service
	75.2 Write an XML REST Service
	75.3 Customize the Jackson ObjectMapper
	75.4 Customize the @ResponseBody Rendering
	75.5 Handling Multipart File Uploads
	75.6 Switch Off the Spring MVC DispatcherServlet
	75.7 Switch off the Default MVC Configuration
	75.8 Customize ViewResolvers

	76. HTTP Clients
	76.1 Configure RestTemplate to Use a Proxy

	77. Logging
	77.1 Configure Logback for Logging
	Configure Logback for File-only Output

	77.2 Configure Log4j for Logging
	Use YAML or JSON to Configure Log4j 2

	78. Data Access
	78.1 Configure a Custom DataSource
	78.2 Configure Two DataSources
	78.3 Use Spring Data Repositories
	78.4 Separate @Entity Definitions from Spring Configuration
	78.5 Configure JPA Properties
	78.6 Configure Hibernate Naming Strategy
	78.7 Use a Custom EntityManagerFactory
	78.8 Use Two EntityManagers
	78.9 Use a Traditional persistence.xml File
	78.10 Use Spring Data JPA and Mongo Repositories
	78.11 Expose Spring Data Repositories as REST Endpoint
	78.12 Configure a Component that is Used by JPA
	78.13 Configure jOOQ with Two DataSources

	79. Database Initialization
	79.1 Initialize a Database Using JPA
	79.2 Initialize a Database Using Hibernate
	79.3 Initialize a Database
	79.4 Initialize a Spring Batch Database
	79.5 Use a Higher-level Database Migration Tool
	Execute Flyway Database Migrations on Startup
	Execute Liquibase Database Migrations on Startup

	80. Messaging
	80.1 Disable Transacted JMS Session

	81. Batch Applications
	81.1 Execute Spring Batch Jobs on Startup

	82. Actuator
	82.1 Change the HTTP Port or Address of the Actuator Endpoints
	82.2 Customize the ‘whitelabel’ Error Page

	83. Security
	83.1 Switch off the Spring Boot Security Configuration
	83.2 Change the AuthenticationManager and Add User Accounts
	83.3 Enable HTTPS When Running behind a Proxy Server

	84. Hot Swapping
	84.1 Reload Static Content
	84.2 Reload Templates without Restarting the Container
	Thymeleaf Templates
	FreeMarker Templates
	Groovy Templates

	84.3 Fast Application Restarts
	84.4 Reload Java Classes without Restarting the Container

	85. Build
	85.1 Generate Build Information
	85.2 Generate Git Information
	85.3 Customize Dependency Versions
	85.4 Create an Executable JAR with Maven
	85.5 Use a Spring Boot Application as a Dependency
	85.6 Extract Specific Libraries When an Executable Jar Runs
	85.7 Create a Non-executable JAR with Exclusions
	85.8 Remote Debug a Spring Boot Application Started with Maven
	85.9 Build an Executable Archive from Ant without Using spring-boot-antlib

	86. Traditional Deployment
	86.1 Create a Deployable War File
	86.2 Create a Deployable War File for Older Servlet Containers
	86.3 Convert an Existing Application to Spring Boot
	86.4 Deploying a WAR to WebLogic
	86.5 Deploying a WAR in an Old (Servlet 2.5) Container
	86.6 Use Jedis Instead of Lettuce

	Part X. Appendices
	Appendix A. Common application properties
	Appendix B. Configuration Metadata
	B.1 Metadata Format
	Group Attributes
	Property Attributes
	Hint Attributes
	Repeated Metadata Items

	B.2 Providing Manual Hints
	Value Hint
	Value Providers
	Any
	Class Reference
	Handle As
	Logger Name
	Spring Bean Reference
	Spring Profile Name

	B.3 Generating Your Own Metadata by Using the Annotation Processor
	Nested Properties
	Adding Additional Metadata

	Appendix C. Auto-configuration classes
	C.1 From the “spring-boot-autoconfigure” module
	C.2 From the “spring-boot-actuator-autoconfigure” module

	Appendix D. Test auto-configuration annotations
	Appendix E. The Executable Jar Format
	E.1 Nested JARs
	The Executable Jar File Structure
	The Executable War File Structure

	E.2 Spring Boot’s “JarFile” Class
	Compatibility with the Standard Java “JarFile”

	E.3 Launching Executable Jars
	Launcher Manifest
	Exploded Archives

	E.4 PropertiesLauncher Features
	E.5 Executable Jar Restrictions
	E.6 Alternative Single Jar Solutions

	Appendix F. Dependency versions

