Spring Boot Reference Guide

2.0.0.RC1

Phillip Webb , Dave Syer , Josh Long , Stéphane Nicoll , Rob Winch , Andy Wilkinson , Marcel
Overdijk , Christian Dupuis , Sébastien Deleuze , Michael Simons , Vedran Pavi# , Jay Bryant

Copyright © 2012-2018

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Boot Reference Guide

Table of Contents

[. Spring BOOt DOCUMENTALIONieeiit et et e e et e e et e et e e et e e eaeeeanns 1
1. About the DOCUMENTALIONcceuiiiiei et e e e e e e e e et e e e e eanas 2
2 1= 111 o T 1= o TS 3
T | £ B (=7 o PP PTRUPRT 4
4. Working With SPring BOOUcoouuuiiiiiii e 5
5. Learning about Spring BOOt FEALUIESiiiiiieii e ee e e e e e e e e eaaeees 6
6. MOVING 10 PrOTUCLIONceuiiiiiiee e et e e e et e e e e eees 7
FA Yo A= TaTod=To [o] o[ST UPPPTTR 8

LR =Y 1] T S = 5 (T 9
8. INtroducing SPriNG BOOTt et 10
9. SYStEM REQUIFEIMENTS ... iiiiiieeeiii ettt et e ettt e e ettt e e e e et e e e eat e et eatreeeentnaeeeee 11

9.1, SerVIEt CONLAINEISuiiiiii et et e e et e e et e e e eaa e e eenanns 11

10. Installing SPring BOOLuiiiiii e 12
10.1. Installation Instructions for the Java Developercooveviinieiiiiieei e 12
Maven INSLAlALION oo e e 12

Gradle INSTAIALIONe e 13

10.2. Installing the SPring BOOt CLIcoouuiiiiiiiieii e 14
Manual INSTAlIAtIoNooiii e 14
Installation with SDKMANT! ... e 14

OSX Homebrew INStallationo.uiiiiiiiiiii e 15

MaCPOIS INSTAIALIONoovniiiiii e e 15
Command-line COoMPIELIONcouuiiii e e 15
Quick-start Spring CLI EXAMPIEuiiiiiiiiiiiiii e 16

10.3. Upgrading from an Earlier Version of Spring BOOtc.ccoovvviiiviiieviiiiciiieeeieees 16

11. Developing Your First Spring Boot APPlICAtIONoeieuiiiiiiiiiiiei e 17
11.1. Creating the POM ... e 17
11.2. Adding Classpath DEPENAENCIESuevvuniiiiiieiiiiee e eaes 18
11.3. WIEING the COOE ...uniiiiiii et 19

The @RestController and @RequestMapping Annotationscccccevveveiinneees 19

The @EnableAutoConfiguration ANNOtationccovevvieiiiiiiei e 19

The “main” Method ... e 20

11.4. RUNNING the EXAMPIE ...t 20
11.5. Creating an EXECULAbIe JArccuuiiiiiiiii e e e e e 20

12. What 10 REAA NEXL ...t et et e e e e e e e eaa s 22

1. USING SPHING BOOL ...ttt ettt ettt e et b e e e e e e aa e 23

R = T 1] o IS V21 1= 1 24
13.1. Dependency ManAgQEMENtcceuu et e e e e e e e eaaas 24

R T |V = Y= o TP 24
Inheriting the Starter Parentoiiiii i 25

Using Spring Boot without the Parent POMcocoiiiiiiiiiiii e 25

Using the Spring Boot Maven PIUGINo..iiiiiiii e 26

R TR T €17 To | [SO 26
LBL. ANt e et e e e e 26
T T] 1= U 1= £SO UPPTUPTPRN 27

S {0 od (W T o 4o 10 T o o = 33
14.1. Using the “default” PACKageccuuiiiiiiiiiiiii e 33
14.2. Locating the Main Application CIassSccouuiiiiiiiiiieiii e 33

2.0.0.RC1 Spring Boot ii

Spring Boot Reference Guide

15. CoNfIQUIALION ClASSESiiiiiiieeiii ettt e et eeae s 35
15.1. Importing Additional Configuration ClIasSEscoveeiiiiiiiiiiiiiiieii e 35
15.2. Importing XML Configurationcccouieiiiiiiiiiie e e e e e e 35

16. AULO-CONTIGUIATION ...oeveeiiitt et et et e et e et e e e e et e e e enta e eeenes 36
16.1. Gradually Replacing Auto-configurationcoeuiiiiiiiiiniiiii e 36
16.2. Disabling Specific Auto-configuration Classesccoeevviiiiiiiciiin i, 36

17. Spring Beans and Dependency INJECLIONcoouuuiiiiiiiiiieiiii e 37

18. Using the @SpringBootApplication ANNOLAtioNccoiuviiiiiiiiiieii e 38

19. RUNNING Your APPLICALIONciie i e e e e e e e e e e e 39
19.1. RUNNINg from N IDEcoouuiiiiiiiie e 39
19.2. Running as a Packaged Applicationcoooiiiiiiiiiiiii e 39
19.3. Using the Maven PIUGINcooiiiiiiii e e e e e e e e e 39
19.4. Using the Gradle PIUGINcoouuiiiii e 40
19.5. HOt SWAPPING e eetiiiiiii et e e 40

b4 T B 1oAY =1 Fo] o =Y o o] £ 41
20.1. Property DefaUILS oo 41
20.2. AULOMALIC RESIAI ...ieeniiii e e e e e e e e e e e e e e e een s 42

Logging changes in condition evaluationcccoiieiiii i 43

EXCIUAING RESOUICES ..ottt et e e e neans 43

Watching Additional Pathsoiiiiiiiiii e 43

Disabling RESIAIccuuiiii i e 43

USING @ THOGEr File .oooeei e 44
Customizing the Restart Classloaderooviiuiiieiiiiiiieeeii e 44

KNOWN LIMITALIONS ...t e e e 45

b0 IR T YT L= (o = Lo [45
20.4. GlODAI SELNGS ...ttt ettt 45
20.5. Remote APPIICALIONSt e 45
Running the Remote Client APPlICAtoNcoovuuniiiiiiiieiii e 46

REMOLE UPALEeuiiiiiii e 47

21. Packaging Your Application for Productioncoeviiiiiiiiiiii e 48
22. What 10 REAM NEXLoeeiiiiiieiii ettt e e et e e e e e e et neeanaaee 49
V. SPriNg BOOt FEATUIES ...ttt ettt e e e et e e e eaa s 50

2GRS Y o1 g 1Y o] o] oz 11 o] o NEU PN 51
23.1. StArtuP FAIIUME ...t 51
23.2. Customizing the BANNEoouuiiiiiiii e 52
23.3. Customizing SpringAPPlICAtIONoiiiiiiii e 53
23.4. Fluent BUIlder AP et 53
23.5. Application Events and LISTENEISviiiiiiiiiiiiiiie e 54
23.6. WED ENVIFONMENTcoiiiiiiiiii ettt e e e e 55
23.7. Accessing Application ArQUMENTScoouuuiiiiiiieieii e 55
23.8. Using the ApplicationRunner or CommandLin€RUNNEYccoevvvieviiniiiineninns 55
2GS I Y o] o] Tor= 1o o N =0 (| 56
23.10. AMIN FEALUIESuiiiiiii ettt ettt e e e et e et e et e e et e e eaeeenns 56

24, Externalized COoNnfiQUIratioNcoouuuiiiiiiiiieii et e 58
24.1. Configuring RaNdOm ValUEBSc..iiiiiiiiii e 59
24.2. Accessing Command Line Propertiesooeciiiiiiiiiiiiieei e 59
24.3. Application Property FileS ..o 60
24.4. Profile-SPeCific PrOPEITIESccvuiii i e 61
24.5. Placeholders in PrOPEertiesiiiiiiiiiieiiiiie et et 62
24.6. Using YAML Instead of Propertiesccoouiiiiiiiiiieiiiii e 62

2.0.0.RC1 Spring Boot iii

Spring Boot Reference Guide

LOBAING YAML ..o ettt ettt e e 62
Exposing YAML as Properties in the Spring Environmentc.oooviinieiinnnnnn.. 63
Multi-profile YAML DOCUMENTSuuiiiiiiiiieiii e ee e e e e e e e e e e e e et e e eanaeees 63
YAML SHOMCOMINGS ... eiiiiieeiiit ettt ettt e ettt e e e et e e e ee e e e erba e eees 64
MeErging YAML LIStSuiiiiiiiiiiiiii et e et e e et e eeeaa e 64
24.7. Type-safe Configuration Propertiesccooiiiiiiiiiiiiii e e 65
Third-party CoNfiQUIatioNcoouuuiiiiiie e 68
(24T F= D= To B =1 o 1 o PSPPI 68
PropertiesS CONVEISIONiiuuiiii i e e e e e e e e e e e e e e e e et e e et e e eanaeeees 70
@ConfigurationProperties Validation ..o 70
@ConfigurationProperties VS. @ValUEovveuiiiiiiiiieii e e e e 71

P T o (o) 111 SO PP PTT TR PPRPPPPPTTIN 72
25.1. Adding ACtiVe Profilesiiiiiiie e 72
25.2. Programmatically Setting Profilescooiiiiiiiii e 73
25.3. Profile-specific Configuration FileSccuiiiiiiiiiiii e 73
PG T Moo o1 o E PSP PPPPTTRSPPIN 74
26.1. LOG FOMMAL ..ottt e 74
26.2. CONSO0IE OULPUL .uutiii et e e e e e e e et e e et e e et e e et s e ean e eanes 74
1670] (o] cedo e [=To @11 01U | ANUT PSPPSRI 75
26.3. File OULPUL ...t e et e et e e e 76
26.4. LOQ LEBVEIS . .oeeiiii e 76
26.5. Custom Log CONfIQUIALIONcoeuuiiiiiiiieee et 77
26.6. LOGDACK EXIENSIONSciiiiiiieeiiiiie ettt et e et e e et eeeena e eees 79
Profile-specific Configurationcocoiiiiiiiiii e 79
ENVIroNmMeNt PrOPEITIESoovuiiiiiiiiie et 79

27. Developing Web APPIICALIONSuiiiiiiie e 81
27.1. The “Spring Web MVC FrameworK”cc.oiiiiiiiiiiiieiie e e e e e e 81
Spring MVC AULO-CONFIQUIALIONc.uuiiiiiiiiieiiii e e 81
HIPMESSAGECONVEITELS .. eeiiiiiiet ettt e r e e 82
Custom JSON Serializers and Deserializerscccoovvieiiiiiiiiiiiiiieeenec e 82
MESSAGECOUESRESOIVET ... ittt et e eeees 83

S = L[O 1 1= o | 83

RVAY =Y (oo g L= = Vo P 85
G101 (o] o I == 1Y/ oo] o [PP 85
Path Matching and Content Negotiationcc.ovviiiiiiieiiiie e 85
ConfigurableWebBindingINitializerc.coooviiiiiii e 85
Template ENQINES ... 86
=T (o g = F= T o |11 oo [PSP 86
CUSIOM EITOr Pages ..o 87

Mapping Error Pages outside of Spring MVCccooiiiiiiiiiiiiiiieciieees 88

SPING HATEOAS ..ottt e e et e e et e e e eaa e eeees 88
(00] 3 S TS TH] o] o 1] ¢ ST 89
27.2. The “Spring WebFIux Framework”coooiiiiiiiiiieie e 89
Spring WebFlux Auto-configurationcoouuiiiiiiiinni e 90
HTTP Codecs with HttpMessageReaders and HttpMessageWriters 91

S = L (o3 O] 1 1= o | P 91
Template ENQINES ... 92

L o] gl o = o [T Vo 92
CUSLOM EFTOr PAgesoiieiiiiiiiiii et 93

R LYY & T 1 =T 93

2.0.0.RC1

Spring Boot iv

Spring Boot Reference Guide

27.3. JAX-RS AN JEISY ...ouiiiiiiii e 93
27.4. Embedded Serviet Container SUPPOIccuuuiiiiiiiieeiiie e 95
Servlets, Filters, and lISTENEISccooviiiiiiiiii e 95
Registering Servlets, Filters, and Listeners as Spring Beans 95

Servlet Context INItIAlIZAIONccouiiii e 96
Scanning for Servlets, Filters, and listenerscccccoevviiiiiii i, 96

The ServietWebServerApplicationCoONtEXtuvveiiiiiiiii e 96
Customizing Embedded Serviet CONtaINErSovveiiiiinieiiiiiieecei e 96
Programmatic CUStOMIZAtioONc.iiiiiiiiiiiicii e e 97
Customizing ConfigurableServietWebServerFactory Directlyc.c...cce.. 97

I8 S I o 71 7= 11T £ 98

P TS Y=o U |] Y 99
28.1. MVEC SECUIMY ettt e et e e et e e e et eeeeba s 99
28.2. WEDFIUX SECUILY ..eevviieeiii ettt 100
28.3. QAULNZ ... 100
L4 1= o | PP 100
28.4. ACLUBLOT SECUILY ..eeeieiieeiii ettt e et e et e eeeaa s 101
29. Working with SQL Databasescciuiiiiiiiieiiiieiii e e e e e e e e e e 102
29.1. Configure @ DataSOUICEccoeuuiiiiiiii et 102
Embedded Database SUPPOItcoouuiiiiiii e 102
Connection to a Production Databaseoiiiieeiiiiiiiiiii e 103
Connection to @ JNDI DataSOUICEcc.ueiiuniiiieiei e eei e et e e e eeneees 104
29.2. USING JADCTEMPIALE ...vuiieeiii e e 104
29.3. JPA and “SPring Data”coiiiiiiiii e 105
ENLLY ClASSES ...oiiiiiiiii et 105
Spring Data JPA REPOSITOMNESc.uuuiiiiiiiiieiiiii e 106
Creating and Dropping JPA Databasescccocvviiiiiiiiiiiiiccie e 107
Open EntityManager iN VIEWoiiiiiiieiiiie et 107
29.4. Using H2'S WED CONSOIEcouuiiiiiiiiieei e 107
Changing the H2 Console’s Pathcccooiiiiiiiii e 108
29.5. USING JOOQ ...ttt ettt ettt e ettt e et e e et e e e e eeaanaa 108
(700 (ST © =T o T=T - 4o] o 108
USING DSLCONTEXE ..vvtiieiiieii et e e e e e e e e e e e e et e e et e e e eanaeeeen 108
JOOQ SQL DIIECT ..vvtiieeeeee ettt e e e e e et e e e e e aeenaees 109
CUStOMIZING JOOQ ..cetniieiii et 109

30. Working with NOSQL TeCHhNOIOGIESuuiiiieiii e e e 110
30,1 REAIS .. ittt e et et b aaaaeeaaa 110
CoNNECHING 10 REAISuuiiiiiiiiee et 110
30.2. MONQGODB ...t 111
Connecting to @ MongoDB Databasec..ovveiiiiiiiiiiiiieii e 111

T] o To) =T 4 0] o] = L= PP 112
Spring Data MoNgODB REPOSITONEScccuuiiiiiiiiiieiiiieiie e e e e e e 112
EMbedded MONQO ... 113
0.3, N ittt 113
Connecting to a Neo4j Databasec..oocviiiiiiiiiiiii i e e 113
Using the Embedded MOOEccoouiiiiiiii e 114
NEOAJSESSION ..ottt ettt 114
Spring Data Neo4j REPOSIHONIEScivviiiiiiii e 114
REPOSItOrY EXAMPIE ..o 114
L0 8 S 1= 3 o) = 115

2.0.0.RC1

Spring Boot \

Spring Boot Reference Guide

10T S o | TSP SUPPPPPRTTIN 115
CONNECHING 10 SOIM .eetiiie e 115
Spring Data Solr REPOSITOMNEScvuuiiiiieiiii e e 115

30.6. EIASHCSEAICRiieiiiii e e 116
Connecting to Elasticsearch by USiNg JEStccoiviiiiiiiiiiiiiiiici e, 116
Connecting to Elasticsearch by Using Spring Datacccooevvviiiiiiiiiiiieeineennn, 116
Spring Data Elasticsearch RepOSItOriescoouviiiiiiiiiiiiiiiie e 117

10 A @ 1T Vg T [= 117
(07e] g g T=Tox 1] o I (o @F= 11 T o Vo [r- PN 117
Spring Data Cassandra REPOSITONESveiiiiiiieiiiiieeeiee e 117

G0 S T @ 10 o o] oY= 1S = 118
Connecting to COUCHDASEccovuiiiiiiii e e 118
Spring Data Couchbase RePOSItONEScceeuuiiiiiiiiieiiii e 118

0.0, LD AP e e 119
Connecting t0 an LDAP SEIVETccuuiiiiiiii e e e 119
Spring Data LDAP REPOSITONESc.uuuiiiiiiiieeiiiiie ettt 120
Embedded IN-memory LDAP SEIVEToiveuiiiiiiiiiie et 120

30.20. INFIUXDB ...ttt et e 120
Connecting to INFIUXDB ... 120

K3 I O Tl o | o PRSPPI 122

31.1. Supported Cache ProVIAEISocviuiiiiiiiii e e e 123
T2 =T 4 o PP 124
JCACNE (JSR-107) oottt e e et 124
ERCACNE 2.X 1ttt 125
HAZEICAST ... e 125
1111 TS o= 1 [PP 125
COUCKHDASE ... e 125
=0 1 PP 126
L T T 126
RS 1141 0] P 127
N O e e aa e 127

I Y 12T To [o [PPSR 128

2.0, VIS et 128
ACHVEMQ SUPPOIT ...ttt ettt e ettt e e e et e e een e eeees 128
AEMIS SUPPOIT L.ttt e et e e et e e e b 129
Using a JNDI ConNeCtiONFACIONYccvuiiiiiieiiie e e e e e e e e 129
SeNAING 8 MESSAGEciiiiiieiiii e 129
RECEIVING @ MESSAGE .. .ciiiiii ettt 130

32,2, AMQIP e e e aeene 131
RabbitMQ SUPPOIT ... 131
SENAING 8 MESSAGE ...ueiiiiiii e e 131
RECEIVING @ MESSATEvuiiiiiiii et e e e e e e et e e e e e e aan s 132

32.3. Apache Kafka SUPPOITcooouiiiiii e e 133
SENAING 8 MESSAGE ...u it 134
RECEIVING @ MESSATEvuiiiiiiii et e e e e e e et e e e e e e aan s 134
Additional Kafka Propertiesoooiieuiiiiiiie e 134

33. Calling REST Services with Rest Tenpl @t € ...cooouiiiiiiii e 136

33.1. RestTemplate CUSIOMIZAtIONuiiiiieiii e e e 136

34. Calling REST Services With VDTl i €NT ...ouniiiiii e 138
34.1. WebClient CUSTOMIZALIONccvuiiiii e e e e e e e ean s 138

2.0.0.RC1 Spring Boot Vi

Spring Boot Reference Guide

BT Y =T £ o o PRSP 139
36. SeNdiNg EMAILoiiii e s 140
37. Distributed Transactions With JTA ... e 141
37.1. Using an Atomikos Transaction Managercceuuuuieiiiiiieeeiiiieeeeiieeeeeiieeeeens 141
37.2. Using a Bitronix Transaction Manageruiveiieuiieiiiiiiieeeiiie e e e 141
37.3. Using a Narayana Transaction Managerc.ccuvveiuiiiiiiieeiiiieciieeeiieeeineeeneeeens 142
37.4. Using a Java EE Managed Transaction Managerccoeuurrererinneieninneenennnnns 142
37.5. Mixing XA and Non-XA JMS CONNECLIONSocieuuiiiiiiiiieeiiiiee et 142
37.6. Supporting an Alternative Embedded Transaction Managerccccoccvvneenen. 143

38, HAZEICAST ... et a e ae 144
39. QUAIZ SCREUUIET ... e e e e e e e e e e ean s 145
o S o) T o B g (=Y [= L4 o I 146
AL, SPIING SESSION ..ovtiiiiiii ettt ettt et e et e et e e et e et e e e 147
42. Monitoring and Management OVEr JMXiiiiiiiiiiiii e e 148
G J =Y 11 o S 149
43.1. Test SCOPE DEPENUENCIES ... coeuriieiiiii ettt ettt 149
43.2. Testing Spring APPLICALIONScooouuiiiiii e 149
43.3. Testing Spring Boot APPlICAtIONSciviiiiiiiiciie e e 149
Detecting Test Configurationoiiiiiiiiiiiii e 150

Excluding Test Configurationoviiiuiiiiiiii e 151

Working with Random POISccuiiiiiiiiii e e 151

Mocking and SpYiNg BEANSccouuuuiiiiiiiieiiii e 152
AULO-CONFIGUIEH TESES ..ttt 153
Auto-configured JSON TESES ...iiiiiiiii e e 154
Auto-configured SPring MVC TESESuiiiiiiiiiiii e 155
Auto-configured Spring WebFIUX TESIS ...ocuuuiiiiiiiieici e 157
Auto-configured Data JPA TESES ...iivviiiiii i e e e 158
Auto-configured JDBC TESEScccuuiiiiiiiiiieeeii et 159
Auto-configured JOOQ TESIS ..oiuuuiiiiiiie e 159
Auto-configured Data MoNgODB TESESccccviiiiiieiiiccie e 160
Auto-configured Data NEO4] TESESuuuiiiiiiiiieeiiii e 160
Auto-configured Data RediS TESESccceuuiiiiiiiiieiii e 161
Auto-configured Data LDAP TESES ...ccuuiiiiiiiiii e e e e e e 162
Auto-configured REST CHENSccoouiiiiiiiiiieee e 162
Auto-configured Spring REST DOCS TESES ...ciiiviiiiiiiiiiieiiii e 163
Auto-configured Spring REST Docs Tests with Mock MVC 163
Auto-configured Spring REST Docs Tests with REST Assured 164

User Configuration and SHCINGc..uviiiiiiiiiiii e 165

Using Spock to Test Spring Boot Applicationscccoeeviiiiiiiiiinecie e, 166

A3.4. TESE ULIIIES .ouieii et e e e e e e eanas 166
ConfigFileApplicationConteXtINitialiZercoovviiiiiiiiii e 166
ENvIronmMeNntTEStULIIScooiiiiiiiii e 166
OULPULCAPTUIE ..ottt ettt et e e e e e e e e e ene e 166
TESIRESITEMPIALE ... e e eeees 167

A4, WEDSOCKELS ...t ettt ennne 169
A5, WED SEIVICES ..uniiiiiiiti ettt et et e e et e et e e et e e e e e aaas 170
46. Creating Your Own Auto-CONfIgUrationcouuiiiiiiiiiieiin e 171
46.1. Understanding Auto-configured BEANSceevviiiiiiiiiiiieiii e 171
46.2. Locating Auto-configuration Candidatescovviieiiiiiiiiiiiieeiii e 171

A SIRC T @] oo 11 o] a2 o g To] = L1 o] o ISP 171
2.0.0.RC1 Spring Boot vii

Spring Boot Reference Guide

(01 F= TS @0 [0 1170 o < PSPPI 172

[T C T I @ o 1170 o 1S 172

e (0] 0 1=T 1 3 YA O] oo 11 o] o 1= 173

RESOUICe CONAILIONSiieiieiiie e e 173

Web Application CONILIONSoooviiiiiiiii e 173

SPEL EXPression CONAIitiONSoeiiieiiiiiiii e e e 173

46.4. Testing your AUtO-CONFIQUIALIONuieiiiiiieiiiiie et 173
Simulating @ Web CoNntext ... 174
Overriding the ClassSpathcc.iiiiiiii e 174

46.5. Creating Your OWN SEAITETuuiiiiiiiieeeii e 174

N F= 10011 T PSP 175

aut 0conf i gure Modulecoouiiiiii e 175

Starter MOAUIEo e e e 175

YL - (o T L= = Vo B N = 177
V. Spring Boot Actuator: Production-ready fEaturesccovveiiiiiiiiiiiii e 178
48. Enabling Production-ready FEaUIeScc.uiiiiiiiiiiiiii e 179
R T 0o [o To] | £ TSP UOPPRTRN 180
Ko T I =Y =1 o] T g To T =t o o To | €= 181
49.2. EXPOSING ENAPOINTSciiiiiiiiiiiie et 182
49.3. Securing HTTP ENAPOINESccouuiiiiiiiiie e 183
49.4. Configuring ENAPOINTSiiiiiiiii e 184
49.5. Hypermedia for Actuator Web Endpointscooeviiiiiiiiiiinieiiece e 184
49.6. Actuator Web Endpoint Pathsoiiiiiiiiii e 184
49.7. CORS SUPPOIT «.ceeeeitiiie e e ettt e e ettt e e e e e e e e e bb e e e e e e e eeabranasaeeeeeennnnes 185
49.8. Adding CUuStom ENAPOINTScouuuiiiiiiieeiiii e 185
49.9. Health INfOrmationcoouiiiiiii e e e e e ans 185
Auto-configured HealthINdiCatorscooovuiiiiiiiiiii e, 186

Writing Custom HealthINdiCAtOrScoouviiiiiiiiiieec e 186

Reactive Health INICAtOrScovvuiiiiiii e 187
Auto-configured ReactiveHealthIndicatorsccoooeviiiiiii i 188

49.10. Application INFOrMALIONccouiiiiiiii e 188
Auto-configured INfOCONLHBULOISoooiiiiii e 188

Custom Application INnformationooeiiiiiiiiiii e 189

Git Commit INFOrMAatioNooueiii e e 189

(= TUT]To I T {0 3 =1 (o o N 189

Writing Custom INfOCONTHDBULOIScoviiiiiiie e e 189

50. Monitoring and Management over HTTPoooiiiiiii e 191
50.1. Customizing the Management Endpoint Pathsc.oooiiiiiiiiiinen. 191
50.2. Customizing the Management SErver POtccccooviiiieiiiieiiieee e 191
50.3. Configuring Management-Specific SSLccouuiiiiiiiiiiieii e 191
50.4. Customizing the Management Server AAAreSscocuuoiieiiiiinieiiiiineece e 192
50.5. Disabling HTTP ENAPOINESuuiiiiiieiiieiiii e e e e e et e e eaans 192

51. Monitoring and Management OVer JMXiii i 193
51.1. Customizing MBean NAIMESccoiiuiiiiiiiiie e 193
51.2. Disabling JMX ENAPOINESiiuiiiiiiieeii e e e e e e e e e eaans 193
51.3. Using Jolokia for IMX over HTTPuiiiiiii e 193
CUSLOMIZING JOIOKIA ..eevveeeeii e e e e enaes 193

Disabling JOIOKIAccuuiiiiiiiii e 193

Y 0T [0 [T £ PP 195
52.1. CONFIQUIE 8 LOGUE ..uniiiiiiieeeiii ettt ettt e e et e e et e e e et e e e entn e eees 195

2.0.0.RC1 Spring Boot viii

Spring Boot Reference Guide

oI T |V 1= 4T PP 196
53.1. SPrNG MVC MELIIICS . .eevtiiieiiiie ettt e et e e et e e e e e e eees 196
SPriNGg MVC MEHC TAGS +vvueerneiiiieiiie et i et e e e e e e et e e e e e e e e et e e st e e e eeaneees 196

53.2. WEDFIUX MEIIICS .eiiiiieie et e e e e 196
WEDFIUX MELIICS TAUS «.vneiiiiiieeiiiti ettt e e e eaeans 197

53.3. RestTempPlate MEIIICScovuiiiicii e e e e 197
RestTemplate MetriC TAGSuuueiiiiiieieiiiii ettt eeeeas 197

L3 O Tod o1 41 1 o 197
53.5. DAtSOUICE MELIICS ...evvuiiiieeeieieiiiitie ettt ettt e e e e e e e e e e e eeenees 198
53.6. RAbDItMQ MELICS ..euiiiitiei e e e 198
53.7. Spring INtegration MELICSui it e 198

B4, AUAITING ettt e e ettt er e e 200
B55. HTTP TIACIHNG - eeeetneeieit ettt et ettt ettt ettt e et e e e e e e e naanns 201
55.1. CUSIOM HTTP trACING «..uuiieiitiieiiiii ettt et e e e e e e e e eeaens 201

YT o (o Tt YR 1Y o 71 (o) 1 o PP 202
56.1. Extending ConfIQUIAtioONviiiiiiieiiii e 202
56.2. ProgrammatiCallycoouuuiiiiiiiieiiii e 202

57. Cloud FOUNAIY SUPPOITiiiieii e e e e e e e e e e e e e e et e e et e e et e e eanaeeees 203
57.1. Disabling Extended Cloud Foundry Actuator SUPPOItc.euuvevieiiniereiiiieeennnn, 203
57.2. Cloud Foundry Self-signed Certificatescooveiiiiiiiiiiiiiiei e 203
57.3. Custom Security Configurationcccuiiiiiiieiiiieiii e e 203

58. What t0 REAM NEXLottt e e e et e e e e eens 205
VI. Deploying Spring Boot APPlICALIONSuiiiiiiiiie e 206
59. Deploying t0 the CloUdoiiiiiiii e e e 207
59.1. ClOUd FOUNAIY ...ttt ettt ettt e ettt e e e ettt e e e et e e e eenaaeeees 207
BiNdiNg t0 SEIVICES ...uuiiiiiiiii e 208

59,2, HEIOKU ... e 209
59.3. OPENSIITL ettt aaaaeaa 210
59.4. AMAazon Web ServiCesS (AWS) ..o 210
AWS EIastiCc BEANSIAIKoiiiiiiiiiiiiii e 210

Using the Tomceat PIAtfOrmiiiiiiiiiii e 210

Using the Java SE PIatformcccooiiiiiiiiiiiii e 210

SUMIMAIY ettt e et e e e e e e et e e e e et e e e et e e et aans 211

59.5. Boxfuse and Amazon Web ServiCescoiiiiiiiiiiiiiiiece e 211
59.6. GOOGIE ClOUMuiiiiiiiiee et et e 212

60. Installing Spring Boot APPlCALIONScouuiiiiiiiii e e 214
60.1. Supported Operating SYSIEIMScouuuiiiiiiiie i 214
60.2. UNIX/LINUX SEIVICES ...uiiiiiieiieiiieeei e et ee e e e e s e e e e e e e aet s e e e e et s eraneeeaneeeens 214
Installation as an i ni t. d Service (SYStEM V) ...cooiiiiiiiiiiiiiiicieeee e, 214

Securing an i Nit. d SEIVICEcoouuiiiiiiii e 215

Installation as a SYSt €N SEIVICEuiiiiiiiiiiii e 216
Customizing the Startup SCrPLiiii e 217
Customizing the Start Script when It Is Written ..., 217

Customizing a Script When It RUNSoiiiiiiiii e 218

60.3. MiICrosoft WINAOWS SEIVICESc.civviiiiiiiiieeiiiieiiie et 219

B1. What t0 REAM NEXL ...t e e et e e e e e e eens 220
AV o g To T =Te o A O B PP 221
(72 14153 = T o ¢ L= o 222
B3, USING the CLI ..oeeiiiiiii ettt 223
63.1. Running Applications with the CLIciiiiiiiii e 223

2.0.0.RC1 Spring Boot ix

Spring Boot Reference Guide

Deduced “grab” DEPeNndENCIESuiiiiiiiiieeiiiie ettt 224

Deduced “grab” COOIAINALEScccuvuiiiiiiieee e 225

Default Import STAtEMENTSoiiii e e 225
Automatic Main Method ... e 225

Custom Dependency Managementccouuuieiiiiiieieiiiee e e e e e eeenens 225

63.2. Applications with Multiple Source Filesccooiiiiiiiiiii e, 226
63.3. Packaging Your ApPlCAtionoieiiiiiiiiiiii e 226
63.4. Initialize @ NEW ProOjeCtcoouiiiiii e e 226
63.5. Using the Embedded Shell ..o, 227
63.6. Adding EXtensions t0 the CLIcoiiiiiiiiiii e 227

64. Developing Applications with the Groovy Beans DSLccoveiiiiiiiiiiiiineeiieecie 229
65. Configuring the CLI with settings. XM ... 230
66. What 10 REAM NEXL ...t et e e e e e e eens 231
VI BUIlD tOO] PIUGINS «.eeeeie e e e ettt e e ettt e e et e e e e et e e e eaba e eeeee 232
67. Spring Boot Maven PIUGINoiiiiieii e e e e e e e e e e e et e eaan e eeas 233
67.1. INCIUAING the PIUGIN ...uuiiiii e 233
67.2. Packaging Executable Jar and War FileSccoooiiiiiiiiiiiiiiii e 234

68. Spring Boot Gradle PIUGINoiiiiiiiii e e e e e e e e aaa 235
69. Spring Boot ANtLID MOGUIEcoouiiii e 236
69.1. SPring BOOt ANt TASKS ...cceuuiiiiiiiiiie it 236
SPriNG-D00t: BXEJ A& .oniiiiiiiii e 236

EXAMIPIES . 237

69.2. spring-boot: findmai NCl aSSoviiiiiiii e 237
= 1] o] 1= PN 237

70. Supporting Other BUild SYSIEMSccouuiiiiiiiiiei e 238
70.1. Repackaging ArCRIVES ... e 238
70.2. Nested LIDrariesuuuiiiiii et e e 238
70.3. FINdING @ MAIN CIASSccouiiiiiiiii et 238
70.4. Example Repackage Implementationcccuuoiieiiiiiiieiiiiineeec e 238

71, What 10 REAU NEXE ...ttt e ettt e e e e e e rn b e e e e e eeennnes 239
IX. THOW-TO" QUILES ...ttt et et e et e et et e e e et e e e eba s 240
72. Spring Boot APPIICALIONuuiiiiiie e 241
72.1. Create Your Own Failur€ANAIYZENoovuieiiii e, 241
72.2. Troubleshoot AUutO-CONTIGQUIALIONcccuuuiiiiii e e e 241
72.3. Customize the Environment or ApplicationContext Before It Starts 242
72.4. Build an ApplicationContext Hierarchy (Adding a Parent or Root Context) 243
72.5. Create a NoN-web APPLICALIONiiiiieiiiiii e 243

73. Properties and Configurationcouuii oo 244
73.1. Automatically Expand Properties at Build Timeccccoviiiiiiiiieciiece e, 244
Automatic Property Expansion USing Mavencccoveeviiiiieiiiiineeicieeecie 244
Automatic Property Expansion Using Gradlec.coooovviiiiiiiiiniiiiicci, 245

73.2. Externalize the Configuration of Spri ngApplicationccoociiiiiiiiiiniinnn 245
73.3. Change the Location of External Properties of an Applicationcccco.oee. 246
73.4. Use ‘Short’ Command Line ArgUMENTSc.uuiiiiiiiiiiiiiiieeeeiine e e eeeens 246
73.5. Use YAML for External Propertiescocouieiiiiiiiii i e 247
73.6. Set the Active Spring Profiles ..o 247
73.7. Change Configuration Depending on the Environmentccccoeveeviiiinneecinnnnn. 248
73.8. Discover Built-in Options for External Propertiescccooociiiiiiiciiiiccin e, 248

74. EmMbedded WED SEIVEISiiiiii et 249
74.1. Use ANOther WED SEIVETuiiiiiiiii e 249

2.0.0.RC1 Spring Boot X

Spring Boot Reference Guide

TA4.2. CONFIQUIE JEELY ...ttt et e e e e e b 250
74.3. Add a Servlet, Filter, or Listener to an Applicationcccoveviiieiiiiviineeinen, 250
Add a Servlet, Filter, or Listener by Using a Spring Beanccoooevveevinnn. 250
Disable Registration of a Servlet or Filterccccooviiiiiiiiii e, 250

Add Servlets, Filters, and Listeners by Using Classpath Scanning 251
74.4. Change the HTTP POt ... e e 251
74.5. Use a Random Unassigned HTTP POtoooiiiiiiiiiiii e 251
74.6. Discover the HTTP Port at RUNLIMEoooviiiiiiiii e 251
TA.7. CONFIQUIE SSL .uuiiiiiiiii i e e e e e e e e et e e et e e et e e aaaaees 252
T4.8. ConfIguIe HTTP/2 .o 252
HTTP/2 With UNAErtOWeeiciieci e e e e e e e e 252
HTTP/2 WIth JEIY ..o 252
HTTP/2 With TOMCAL ...t e e ees 252
74.9. Configure ACCESS LOGGINGcveruniieiiiiiee ittt e e e 253
74.10. Running Behind a Front-end ProXy SEIVENcoiiiiiieiiiieiiiieeieeeiieieeeeeaieens 253
Customize Tomcat's Proxy Configurationc.oceeueiiieiiiiinniiiiiineeeieeeeeeiine 254
74.11. CONfIGUIE TOMCAL ...eevuiiiiiii et e e et e e e e eaeans 254
74.12. Enable Multiple Connectors with TOMCAtcoevviiiiiiiiiiiiicie e, 254
74.13. Use Tomcat's LegacyCOOKIEPTOCESSOTc..uuiiiiiiiiieiiii e ee e 255
T4.14. CoNfigUIe UNUEIOWcceuuniiiiiii et e e e e s 255
74.15. Enable Multiple Listeners with Undertowccocoiiiiiiiiiiiiiiinee e, 255
74.16. Create WebSocket Endpoints Using @ServerEndpointccoeeviieviiiinnennnn. 256
74.17. Enable HTTP ResSponse COMPIESSIONcceuuuieiiiiiieieiiineeeeeiineeeeeiin e eeeiineeeens 256
TS o118 1o T Y/ Y SN 257
75.1. Write @ JSON REST SEIVICEciiiiiieiiiii et 257
75.2. Write an XML REST SEIVICE ...cvuuiiiiiieiieieie i eeie et et e e e e e e e eanneaennneeanneees 257
75.3. Customize the Jackson ODbJECIMAPPENccevniiiiiiiiiii e 258
75.4. Customize the @ResponseBody ReNeringcooveveuviiiiiiiiinniiiiineeeeii e 259
75.5. Handling Multipart File Uploadsoiiiiiiiiiiiiii e 259
75.6. Switch Off the Spring MVC DispatcherServietccccooviiiiiiiii i, 260
75.7. Switch off the Default MVC Configurationccccuiieiiiiiinieiiiieecei e 260
75.8. CuStOMIzZe VIEWRESOIVEISuiiiiiiiii e 260
T6. HTTP ClENS ..ottt e e ettt a e s e e et e e er e b r e s e e e e eeennnaes 262
76.1. Configure RestTemplate t0 USE & ProXYccouuuiiiiiiiiiiiiiiiiieeiie e 262
A7 o o T 11 o RSP UUPPTRR 263
77.1. Configure Logback for LOGQINGccvvuiiiiiiieiieiii e e e e 263
Configure Logback for File-only OUEPULcoouuiiiiiiiciii e 264
77.2. Configure LOg4j fOr LOGQING ...ueeeeitieieiiiiee e e ettt e e e eeees 264
Use YAML or JSON to Configure LOG4A] 2ccuuviiiniiiiiieiii e 265

T8. DALA ACCESS ...ttt ettt e ettt e e et et aans 266
78.1. Configure a CUuStOmM DataSOUICEccveuuniiiiiiiiieeieiie e 266
78.2. Configure TWO DataSOUICESccuueiiieiiiieiiiieeiee e e e e e e e e e e aanas 268
78.3. Use Spring Data REPOSITONESuiiiiiiiiiiiiiieeeei e 269
78.4. Separate @Entity Definitions from Spring Configurationccccoovvviiiiiieennnnn. 269
78.5. Configure JPA PrOPEITIESuuiiiiieiiii et e e e e e e e e eens 269
78.6. Configure Hibernate Naming Strate€gyccoevviieiiiiiiieiiiieeee e 270
78.7. Use a Custom EntityManagerFactorycccuiieiiiiinieiiiiii e e 271
78.8. Use TWO ENtityMaNAGEISuiiiiieiiii e et e e e e e e e e e eeaen 271
78.9. Use a Traditional per si stence. xm File ..., 272
78.10. Use Spring Data JPA and Mongo RepoSItOriesocoeuviveiiiiiiieiiiiiieeeeiineeees 272

2.0.0.RC1

Spring Boot Xi

Spring Boot Reference Guide

78.11. Expose Spring Data Repositories as REST Endpointcccooveveiviiieiiiinneeenns 272
78.12. Configure a Component that is Used by JPAcooiiiiiiiii e, 272
78.13. Configure jOOQ with TWO DataSOUICESceevvvieiiiieiiiieiiii e e e 273

79. Database INtAlIZAtIONiiiiie e e 274
79.1. Initialize a Database USING JPA ... 274
79.2. Initialize a Database Using HIibernatec.cccoviiiiiiiiiii i, 274
79.3. Initialize @ Dat@baSecccuiiiiiiiii e 274
79.4. Initialize a Spring Batch Databaseocoviiiiiiiiiiie e 275
79.5. Use a Higher-level Database Migration TOOIcccoveiiiiiiiiiiiiiiecie e 275
Execute Flyway Database Migrations on Startupcccooeeveviiieiiiiiineeeininneeenn. 275

Execute Liquibase Database Migrations on Startupccccovvvveiiineiiiiinneecinnnnnn. 276

SO T 1Y oY Y=Y To 1o S 277
80.1. Disable Transacted JMS SESSIONcccuuiiiiiiiiiiiaiiie e 277

81. BatCh APPICALIONS ...t e 278
81.1. Execute Spring Batch JObs 0N Startupccoooviiiiiiiiiiici e 278

S Y X o! (U= 1o] PP OPTUPTR 279
82.1. Change the HTTP Port or Address of the Actuator Endpointscccceeeeeeee. 279
82.2. Customize the ‘whitelabel’ Error Pageccoocoiiiiiiiiiiicin e 279

B 3. SBCUIMLY ...eiiit ettt ettt ettt ettt et et a e et eaans 280
83.1. Switch off the Spring Boot Security Configurationc.oooeeiiieiiiiinieniiiinnenes 280
83.2. Change the AuthenticationManager and Add User ACCOUNEScceevvvneennnnnns 280
83.3. Enable HTTPS When Running behind a Proxy Serverccccooovvviiiiiiiiiiinneees 280

S o (o) A3V I= Vo] o1 T PP 281
84.1. Reload StatiC CONENTcciveiiiiiii ettt e e e e 281
84.2. Reload Templates without Restarting the Containercooivieiiiineeiiinnnnnn. 281
Thymeleaf TEMPIALESccooiiii e 281
FreeMarker TEMPIALEScivviiiiiii e e e e 281

GrOOVY TEMPIALES ...ttt ettt e e et e e e et e e e era e eeees 281

84.3. Fast Application RESIAISoiiiiiiiiiiiiii e 281
84.4. Reload Java Classes without Restarting the Containerccooeeeveviiieennnnn, 282

ST ST = 1011 [o ST RSUPPPPRPIN 283
85.1. Generate Build INfOrmationcooeeeiiiiiiiiic e 283
85.2. Generate Git INFOrMALIONoooviiiiiiiieiii e 283
85.3. Customize Dependency VEISIONSiiiieuuuieiiiiiieiiiii et e et e e e eeenanns 284
85.4. Create an Executable JAR With Mavenccoiiiiiiiiiiii e 284
85.5. Use a Spring Boot Application as a Dependencyccoeevviveiiiieiiiieciineeiieeenn, 285
85.6. Extract Specific Libraries When an Executable Jar Runsccooooiiiiinnnnn. 286
85.7. Create a Non-executable JAR with EXCIUSIONSc.oiviiiiiiiiiiiiiinecci e, 286
85.8. Remote Debug a Spring Boot Application Started with Mavenc.cc.u.... 287
85.9. Build an Executable Archive from Ant without Using spri ng- boot -antlib 287

86. Traditional DEePIOYMENTc.uuniiiii e 289
86.1. Create a Deployable War Filecc.oiiiiiiiiii e 289
86.2. Create a Deployable War File for Older Servlet Containersc...ccceeeeeueeennn. 290
86.3. Convert an Existing Application to Spring BOOtcoooviiiiiiiiiiiniiii e, 290
86.4. Deploying a WAR t0 WEDLOGICcovuiiiiiiii e 292
86.5. Deploying a WAR in an Old (Servlet 2.5) Containercccoveveviiieeieriinneeininnnn. 292
86.6. Use Jedis Instead Of LEttUCEoooiiiiiiiiiiii e 293

DO Y o o 1= o [T P 295
A. Common application PrOPEITIEScccuuuuieiiiiii et e e et e e e et e e eene e eees 296
B. Configuration MetadAtaccuuuiiiiiiiiei e 322

2.0.0.RC1 Spring Boot Xii

Spring Boot Reference Guide

B.1. Metadata FOMMALoiiiniiiiiiei et e e e e e e e e eees 322
Group ALIIDULESeieiei et e e 323

Property AtHDULEScooviii e 324

HINE ALHDULES <. oe e 326

Repeated Metadata ItemSiiiiiiiiiie e 327

B.2. Providing Manual HINEScooiiiiiiii e e s 327
VAU HINE ..o e e et e e e et ean s 327

RV 118 Lo = 01V o = S 328

Y ST 328

Class REFEIENCEcceuiiieiie e 329

[= 10 L 329

LOgGEr NAIME L. 330

Spring Bean REfErenCeii i 331

Spring Profile Name ... 332

B.3. Generating Your Own Metadata by Using the Annotation Processor 332
NESIEA PrOPEITIES ... ittt et e et e e e eeens 333

Adding Additional Metadatac..viiiiiiiiiii e 334

C. AULO-CONFIQUIALION CIASSES .. cvuiiiiiiiiii et e e et e e et e e e e eeees 335
C.1. From the “spring-boot-autoconfigure” module ..., 335

C.2. From the “spring-boot-actuator-autoconfigure” modulecccooevieiiiiinneiinnnnnn. 338

D. Test auto-configuration anNOtAtiONScccuuiiiiiiiiiii e e e e e e e e e 341
E. The Executable Jar FOMMALcoouuiiiiiiiiie e e e 344
E. L NESIEA JARS ..ottt et e e e e e 344

The Executable Jar File SrUCIUIEiiiiiiiiieiiii e 344

The Executable War File StruCIUreooiiuiiiiiiiii e 344

E.2. Spring Boot’s “JArFile” CIassSooiiiiiiiiiiiiiee e 345
Compatibility with the Standard Java “JarFile”cccooeviiiiiiiiii e, 345

E.3. Launching EXecUutable JArsoiiiiiiiiiiiiii e 345
Launcher Manifestcoouiii e e 346

EXPIOAed AIChIVESoviiiii e 346

E.4. PropertiesLauncher FEAtUIeSccooiiiiiiiiiiiiiiiieiiei e 346

E.5. Executable Jar RESIHCHONSiiiieiiei e 348

E.6. Alternative Single Jar SOIULIONSccovuiiiiiiiiiie e e 348

F. DEPENAENCY VEISIONSiiiiii ittt ettt e e ettt e e et e e e e e bt e e e et e e eenenaeaees 349

2.0.0.RC1

Spring Boot Xiii

Part |. Spring Boot Documentation

This section provides a brief overview of Spring Boot reference documentation. It serves as a map for
the rest of the document.

Spring Boot Reference Guide

1. About the Documentation

The Spring Boot reference guide is available as

* HTML

o
U

=

m

PUB

The latest copy is available at docs.spring.io/spring-boot/docs/current/reference.

Copies of this document may be made for your own use and for distribution to others, provided that
you do not charge any fee for such copies and further provided that each copy contains this Copyright
Notice, whether distributed in print or electronically.

2.0.0.RC1 Spring Boot 2

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/reference/html
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/reference/pdf/spring-boot-reference.pdf
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/reference/epub/spring-boot-reference.epub
http://docs.spring.io/spring-boot/docs/current/reference

Spring Boot Reference Guide

2. Getting Help

If you have trouble with Spring Boot, we would like to help.

e Try the How-to documents. They provide solutions to the most common questions.

Learn the Spring basics. Spring Boot builds on many other Spring projects. Check the spring.io web-
site for a wealth of reference documentation. If you are starting out with Spring, try one of the guides.

» Ask a question. We monitor stackoverflow.com for questions tagged with spri ng- boot .

Report bugs with Spring Boot at github.com/spring-projects/spring-boot/issues.

Note

All of Spring Boot is open source, including the documentation. If you find problems with the docs
or if you want to improve them, please get involved.

2.0.0.RC1 Spring Boot 3

http://spring.io
http://spring.io/guides
http://stackoverflow.com
http://stackoverflow.com/tags/spring-boot
https://github.com/spring-projects/spring-boot/issues
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1

Spring Boot Reference Guide

3. First Steps

If you are getting started with Spring Boot or 'Spring' in general, start with the following topics:

» From scratch: Overview | Requirements | Installation

e Tutorial: Part1 | Part 2

* Running your example: Part 1 | Part 2

2.0.0.RC1 Spring Boot

Spring Boot Reference Guide

4. Working with Spring Boot

Ready to actually start using Spring Boot? We have you covered:

» Build systems: Maven | Gradle | Ant | Starters

» Best practices: Code Structure | @Configuration | @EnableAutoConfiguration | Beans and
Dependency Injection

* Running your code IDE | Packaged | Maven | Gradle

» Packaging your app: Production jars

» Spring Boot CLI: Using the CLI

2.0.0.RC1 Spring Boot 5

Spring Boot Reference Guide

5. Learning about Spring Boot Features

Need more details about Spring Boot's core features? The following content is for you:

Core Features: SpringApplication | External Configuration | Profiles | Logging

Web Applications: MVC | Embedded Containers

Working with data: SQL | NO-SQL

Messaging: Overview | IMS

Testing: Overview | Boot Applications | Utils

Extending: Auto-configuration | @Conditions

2.0.0.RC1 Spring Boot

Spring Boot Reference Guide

6. Moving to Production

When you are ready to push your Spring Boot application to production, we have some tricks that you
might like:

* Management endpoints: Overview | Customization

» Connection options: HTTP | JMX

* Monitoring: Metrics | Auditing | Tracing | Process

2.0.0.RC1 Spring Boot 7

Spring Boot Reference Guide

7. Advanced Topics

Finally, we have a few topics for more advanced users:

» Spring Boot Applications Deployment: Cloud Deployment | OS Service

» Build tool plugins: Maven | Gradle

» Appendix: Application Properties | Auto-configuration classes | Executable Jars

2.0.0.RC1 Spring Boot

Part Il. Getting Started

If you are getting started with Spring Boot, or “Spring” in general, start by reading this section. It answers
the basic “what?”, “how?” and “why?” questions. It includes an introduction to Spring Boot, along with
installation instructions. We then walk you through building your first Spring Boot application, discussing
some core principles as we go.

Spring Boot Reference Guide

8. Introducing Spring Boot

Spring Boot makes it easy to create stand-alone, production-grade Spring-based Applications that you
can run. We take an opinionated view of the Spring platform and third-party libraries, so that you can
get started with minimum fuss. Most Spring Boot applications need very little Spring configuration.

You can use Spring Boot to create Java applications that can be started by using j ava -j ar or more
traditional war deployments. We also provide a command line tool that runs “spring scripts”.

Our primary goals are:
» Provide a radically faster and widely accessible getting-started experience for all Spring development.

» Be opinionated out of the box but get out of the way quickly as requirements start to diverge from
the defaults.

» Provide a range of non-functional features that are common to large classes of projects (such as
embedded servers, security, metrics, health checks, and externalized configuration).

» Absolutely no code generation and no requirement for XML configuration.

2.0.0.RC1 Spring Boot 10

Spring Boot Reference Guide

9. System Requirements

Spring Boot 2.0.0.RC1 requires Java 8 and Spring Framework 5.0.3.RELEASE or above. Explicit build
support is provided for Maven 3.2+ and Gradle 4.

9.1 Servlet Containers

Spring Boot supports the following embedded servlet containers:

Name Servlet Version
Tomcat 8.5 3.1
Jetty 9.4 3.1
Undertow 1.3 3.1

You can also deploy Spring Boot applications to any Servlet 3.0+ compatible container.

2.0.0.RC1 Spring Boot 11

http://www.java.com
http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/

Spring Boot Reference Guide

10. Installing Spring Boot

Spring Boot can be used with “classic” Java development tools or installed as a command line tool.
Either way, you need Java SDK v1.8 or higher. Before you begin, you should check your current Java
installation by using the following command:

$ java -version

If you are new to Java development or if you want to experiment with Spring Boot, you might want
to try the Spring Boot CLI (Command Line Interface) first. Otherwise, read on for “classic” installation
instructions.

10.1 Installation Instructions for the Java Developer

You can use Spring Boot in the same way as any standard Java library. To do so, include the
appropriate spri ng- boot - *. j ar files on your classpath. Spring Boot does not require any special
tools integration, so you can use any IDE or text editor. Also, there is nothing special about a Spring Boot
application, so you can run and debug a Spring Boot application as you would any other Java program.

Although you could copy Spring Boot jars, we generally recommend that you use a build tool that
supports dependency management (such as Maven or Gradle).

Maven Installation

Spring Boot is compatible with Apache Maven 3.2 or above. If you do not already have Maven installed,
you can follow the instructions at maven.apache.org.

Tip

On many operating systems, Maven can be installed with a package manager. If you use OSX
Homebrew, try brew install maven. Ubuntu users can run sudo apt-get install
maven. Windows users with Chocolatey can run choco install naven from an elevated
(administrator) prompt.

Spring Boot dependencies use the or g. spri ngf r amewor k. boot groupl d. Typically, your Maven
POM file inherits from the spri ng- boot - st art er - par ent project and declares dependencies to
one or more “Starters”. Spring Boot also provides an optional Maven plugin to create executable jars.

The following listing shows a typical pom xmni file:

<?xm version="1.0" encodi ng="UTF-8"?>

<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xml ns: xsi ="htt p: // www. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://maven. apache. org/ POM 4. 0.0 http:// maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<gr oupl d>com exanpl e</ gr oupl d>
<artifactld>myproject</artifactld>
<ver si on>0. 0. 1- SNAPSHOT</ ver si on>

<l-- Inherit defaults from Spring Boot -->

<par ent >
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-parent</artifactld>
<ver si on>2. 0. 0. RC1</ ver si on>

</ par ent >

<l-- Add typical dependencies for a web application -->

2.0.0.RC1 Spring Boot 12

http://www.java.com
http://maven.apache.org
https://chocolatey.org/

Spring Boot Reference Guide

<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-web</artifactld>
</ dependency>
</ dependenci es>

<l -- Package as an executable jar -->
<bui | d>
<pl ugi ns>
<pl ugi n>
<groupl d>or g. spri ngf ramewor k. boot </ gr oup! d>
<artifactld>spring-boot-mven-plugin</artifactld>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

<!-- Add Spring repositories -->
<I-- (you don't need this if you are using a .RELEASE version) -->
<reposi tories>
<repository>
<i d>spring- snapshot s</i d>
<url >http://repo.spring.iol/snapshot </ url >
<snapshot s><enabl ed>t r ue</ enabl ed></ snapshot s>
</repository>
<reposi tory>
<i d>spring-mlestones</id>
<url >http://repo.spring.io/mlestone</url>
</repository>
</repositories>
<pl ugi nReposi tori es>
<pl ugi nReposi tory>
<i d>spri ng- snapshot s</i d>
<url >http://repo.spring.iolsnapshot </ url >
</ pl ugi nReposi t ory>
<pl ugi nReposi tory>
<i d>spring-mlestones</id>
<url>http://repo.spring.io/mnlestone</url>
</ pl ugi nReposi t ory>
</ pl ugi nReposi tories>
</ proj ect >

Tip
The spri ng-boot -starter-parent is a great way to use Spring Boot, but it might not be
suitable all of the time. Sometimes you may need to inherit from a different parent POM, or you

might not like our default settings. In those cases, see the section called “Using Spring Boot
without the Parent POM” for an alternative solution that uses an i nport scope.

Gradle Installation

Spring Boot is compatible with Gradle 4. If you do not already have Gradle installed, you can follow the
instructions at www.gradle.org/.

Spring Boot dependencies can be declared by using the or g. spri ngf ramewor k. boot gr oup.
Typically, your project declares dependencies to one or more “Starters”. Spring Boot provides a useful
Gradle plugin that can be used to simplify dependency declarations and to create executable jars.

Gradle Wrapper

The Gradle Wrapper provides a nice way of “obtaining” Gradle when you need to build a project.
It is a small script and library that you commit alongside your code to bootstrap the build process.
See docs.gradle.org/4.2.1/userguide/gradle_wrapper.html for details.

2.0.0.RC1 Spring Boot 13

http://www.gradle.org/
https://docs.gradle.org/4.2.1/userguide/gradle_wrapper.html

Spring Boot Reference Guide

The following example shows a typical bui | d. gr adl e file:

buil dscript {
repositories {
jcenter()
maven { url 'http://repo.spring.iol/snapshot' }
maven { url 'http://repo.spring.io/mlestone" }
}
dependenci es {
cl asspath 'org. springframework. boot: spring-boot - gradl e-pl ugi n: 2. 0. 0. RC1'
}
}

apply plugin: '"java'
apply plugin: 'org.springframework. boot'

apply plugin: 'io.spring.dependency-managenent'’
jar {

baseNane = 'nyproject’

version = '0.0. 1- SNAPSHOT'

}

repositories {
jcenter()
maven { url "http://repo.spring.iol/snapshot" }
maven { url "http://repo.spring.io/mlestone" }

}

dependenci es {
conpi | e("org. springfranmework. boot : spri ng-boot -starter-web")
test Conpi | e("org. spri ngframewor k. boot : spri ng-boot-starter-test")

}

10.2 Installing the Spring Boot CLI

The Spring Boot CLI (Command Line Interface) is a command line tool that you can use to quickly
prototype with Spring. It lets you run Groovy scripts, which means that you have a familiar Java-like
syntax without so much boilerplate code.

You do not need to use the CLI to work with Spring Boot, but it is definitely the quickest way to get a
Spring application off the ground.

Manual Installation
You can download the Spring CLI distribution from the Spring software repository:

* spring-boot-cli-2.0.0.RC1-bin.zip

e spring-boot-cli-2.0.0.RC1-bin.tar.gz

Cutting edge snapshot distributions are also available.

Once downloaded, follow the INSTALL.txt instructions from the unpacked archive. In summary, there is
aspri ng script (spri ng. bat for Windows) in a bi n/ directory in the . zi p file. Alternatively, you can
usej ava -j ar withthe.j ar file (the script helps you to be sure that the classpath is set correctly).

Installation with SDKMAN!

SDKMAN! (The Software Development Kit Manager) can be used for managing multiple versions of
various binary SDKs, including Groovy and the Spring Boot CLI. Get SDKMAN! from sdkman.io and
install Spring Boot by using the following commands:

2.0.0.RC1 Spring Boot 14

http://groovy-lang.org/
http://repo.spring.io/milestone/org/springframework/boot/spring-boot-cli/2.0.0.RC1/spring-boot-cli-2.0.0.RC1-bin.zip
http://repo.spring.io/milestone/org/springframework/boot/spring-boot-cli/2.0.0.RC1/spring-boot-cli-2.0.0.RC1-bin.tar.gz
http://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/
https://raw.github.com/spring-projects/spring-boot/v2.0.0.RC1/spring-boot-project/spring-boot-cli/src/main/content/INSTALL.txt
http://sdkman.io

Spring Boot Reference Guide

$ sdk install springboot
$ spring --version
Spring Boot v2.0.0.RCl

If you develop features for the CLI and want easy access to the version you built, use the following
commands:

$ sdk install springboot dev /path/to/spring-boot/spring-boot-cli/target/spring-boot-cli-2.0.0.RCl-bin/
spring-2.0.0. RC1l/

$ sdk default springboot dev

$ spring --version

Spring CLI v2.0.0.RClL

The preceding instructions install a local instance of spri ng called the dev instance. It points at your
target build location, so every time you rebuild Spring Boot, spri ng is up-to-date.

You can see it by running the following command:

$ sdk |'s springboot

Avai | abl e Springboot Versions

> + dev
* 2.0.0.RC1

+ - local version
* - installed
> - currently in use

OSX Homebrew Installation

If you are on a Mac and use Homebrew, you can install the Spring Boot CLI by using the following
commands:

$ brew tap pivotal /tap
$ brew install springboot

Homebrew installs spri ng to/ usr/ | ocal / bi n.

Note

If you do not see the formula, your installation of brew might be out-of-date. In that case, run br ew
updat e and try again.

MacPorts Installation

If you are on a Mac and use MacPorts, you can install the Spring Boot CLI by using the following
command:

$ sudo port install spring-boot-cli

Command-line Completion

The Spring Boot CLI includes scripts that provide command completion for the BASH and zsh shells. You
can sour ce the script (also named spr i ng) in any shell or put it in your personal or system-wide bash
completion initialization. On a Debian system, the system-wide scripts are in / shel | - conpl et i on/

2.0.0.RC1 Spring Boot 15

http://brew.sh/
http://www.macports.org/
http://en.wikipedia.org/wiki/Bash_%28Unix_shell%29
http://en.wikipedia.org/wiki/Zsh

Spring Boot Reference Guide

bash and all scripts in that directory are executed when a new shell starts. For example, to run the script
manually if you have installed by using SDKMAN!, use the following commands:

$. ~/.sdknman/ candi dat es/ spri ngboot/current/shel | -conpl eti on/ bash/ spring
$ spring <H T TAB HERE>
grab help jar run test version

Note

If you install the Spring Boot CLI by using Homebrew or MacPorts, the command-line completion
scripts are automatically registered with your shell.

Quick-start Spring CLI Example

You can use the following web application to test your installation. To start, create a file called
app. gr oovy, as follows:

@rest Control | er
class ThisWI | Actual | yRun {

@Request Mappi ng("/")
String hore() {
"Hello World!"

}

Then run it from a shell, as follows:

$ spring run app. groovy

Note

The first run of your application is slow, as dependencies are downloaded. Subsequent runs are
much quicker.

Open | ocal host : 8080 in your favorite web browser. You should see the following output:

‘Hello Wor | d!

10.3 Upgrading from an Earlier Version of Spring Boot

If you are upgrading from an earlier release of Spring Boot, check the “migration guide” on the project
wiki that provides detailed upgrade instructions. Check also the “release notes” for a list of “new and
noteworthy” features for each release.

To upgrade an existing CLI installation, use the appropriate package manager command (for example,
br ew upgr ade) or, if you manually installed the CLI, follow the standard instructions, remembering to
update your PATH environment variable to remove any older references.

2.0.0.RC1 Spring Boot 16

http://localhost:8080
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki

Spring Boot Reference Guide

11. Developing Your First Spring Boot Application

This section describes how to develop a simple “Hello World!” web application that highlights some of
Spring Boot's key features. We use Maven to build this project, since most IDEs support it.

Tip

The spring.io web site contains many “Getting Started” guides that use Spring Boot. If you need
to solve a specific problem, check there first.

You can shortcut the steps below by going to start.spring.io and choosing the "Web" starter from
the dependencies searcher. Doing so generates a new project structure so that you can start
coding right away. Check the Spring Initializr documentation for more details.

Before we begin, open a terminal and run the following commands to ensure that you have valid versions
of Java and Maven installed:

$ java -version

java version "1.8.0_102"

Java(TM SE Runtine Environnent (build 1.8.0_102-b14)

Java Hot Spot (TM) 64-Bit Server VM (build 25.102-b14, nixed node)

$ m/n -v

Apache Maven 3.3.9 (bb52d8502b132ec0a5a3f 4c09453c07478323dc5; 2015-11-10T16: 41: 47+00: 00)
Maven hone: /usr/local/Cellar/ maven/3.3.9/1ibexec

Java version: 1.8.0_102, vendor: Oracle Corporation

Note

This sample needs to be created in its own folder. Subsequent instructions assume that you have
created a suitable folder and that it is your current directory.

11.1 Creating the POM

We need to start by creating a Maven pom xm file. The pom xni is the recipe that is used to build
your project. Open your favorite text editor and add the following:

<?xm version="1.0" encodi ng="UTF-8"?>

<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xml ns: xsi ="http: //wwmv w3. or g/ 2001/ XM_Schen®- i nst ance"
xsi : schemalLocation="http://maven. apache. org/ POM 4. 0.0 http:// maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >
<nmodel Ver si on>4. 0. 0</ nodel Ver si on>

<gr oupl d>com exanpl e</ gr oupl d>
<artifactld>nyproject</artifactld>
<versi on>0. 0. 1- SNAPSHOT</ ver si on>

<par ent >
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-parent</artifactld>
<ver si on>2. 0. 0. RC1</ ver si on>

</ par ent >
<l-- Additional lines to be added here... -->
<!-- (you don't need this if you are using a .RELEASE version) -->

<reposi tories>
<repository>
<i d>spri ng- snapshot s</i d>
<url >http://repo.spring.iolsnapshot</url>

2.0.0.RC1 Spring Boot 17

http://spring.io
http://spring.io/guides
https://start.spring.io
https://github.com/spring-io/initializr

Spring Boot Reference Guide

<snapshot s><enabl ed>t r ue</ enabl ed></ snapshot s>
</repository>
<repository>
<i d>spring-nmnilestones</id>
<url >http://repo.spring.io/mlestone</url>
</repository>
</repositories>
<pl ugi nReposi tori es>
<pl ugi nReposi tory>
<i d>spring- snapshot s</ i d>
<url >http://repo.spring.iolsnapshot </ url >
</ pl ugi nReposi t ory>
<pl ugi nReposi tory>
<i d>spring-mlestones</id>
<url>http://repo.spring.io/mlestone</url>
</ pl ugi nReposi t ory>
</ pl ugi nReposi tories>
</ proj ect >

The preceding listing should give you a working build. You can test it by running nvn package (for
now, you can ignore the “jar will be empty - no content was marked for inclusion!” warning).

Note

At this point, you could import the project into an IDE (most modern Java IDEs include built-in
support for Maven). For simplicity, we continue to use a plain text editor for this example.

11.2 Adding Classpath Dependencies

Spring Boot provides a number of “Starters” that let you add jars to your classpath. Our sample
application has already used spri ng- boot - st art er - par ent in the par ent section of the POM.
The spring-boot -starter-parent is a special starter that provides useful Maven defaults. It
also provides a dependency- nanagenent section so that you can omit ver si on tags for “blessed”
dependencies.

Other “Starters” provide dependencies that you are likely to need when developing a specific type
of application. Since we are developing a web application, we add a spri ng- boot - starter-web
dependency. Before that, we can look at what we currently have by running the following command:

$ nvn dependency:tree

[INFO com exanpl e: nyproj ect:jar:0.0.1- SNAPSHOT

The nvn dependency: tree command prints a tree representation of your project dependencies.
You can see that spri ng- boot - st art er - par ent provides no dependencies by itself. To add the
necessary dependencies, edit your pom xm and add the spri ng- boot - st art er - web dependency
immediately below the par ent section:

<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-web</artifactld>
</ dependency>
</ dependenci es>

If you run nvn dependency:tree again, you see that there are now a number of additional
dependencies, including the Tomcat web server and Spring Boot itself.

2.0.0.RC1 Spring Boot 18

Spring Boot Reference Guide

11.3 Writing the Code

To finish our application, we need to create a single Java file. By default, Maven compiles sources from
src/ mai n/j ava, so you need to create that folder structure and then add a file named sr ¢/ mai n/
j aval Exanpl e. j ava to contain the following code:

i nport org.springfranework. boot . *;
i nport org.springfranework. boot. aut oconfi gure. *;
i nport org.springfranework. web. bi nd. annot ati on. *;

@Rest Control | er
@nabl eAut oConfi guration
public class Exanple {

@Request Mappi ng("/")
String home() {

return "Hello World!'";
}

public static void main(String[] args) throws Exception {
SpringApplication. run(Exanpl e. cl ass, args);
}

}

Although there is not much code here, quite a lot is going on. We step through the important parts in
the next few sections.

The @RestController and @RequestMapping Annotations

The first annotation on our Exanpl e class is @Rest Control | er. This is known as a stereotype
annotation. It provides hints for people reading the code and for Spring that the class plays a specific
role. In this case, our class is a web @ont rol | er, so Spring considers it when handling incoming
web requests.

The @Request Mappi ng annotation provides “routing” information. It tells Spring that any HTTP request
with the / path should be mapped to the hone method. The @Rest Cont r ol | er annotation tells Spring
to render the resulting string directly back to the caller.

Tip

The @Rest Control |l er and @Request Mappi ng annotations are Spring MVC annotations.
(They are not specific to Spring Boot.) See the MVC section in the Spring Reference
Documentation for more details.

The @EnableAutoConfiguration Annotation

The second class-level annotation is @nabl eAut oConf i gur at i on. This annotation tells Spring Boot
to “guess” how you want to configure Spring, based on the jar dependencies that you have added. Since
spring-boot - st art er-web added Tomcat and Spring MVC, the auto-configuration assumes that
you are developing a web application and sets up Spring accordingly.

Starters and Auto-Configuration

Auto-configuration is designed to work well with “Starters”, but the two concepts are not directly
tied. You are free to pick and choose jar dependencies outside of the starters. Spring Boot still
does its best to auto-configure your application.

2.0.0.RC1 Spring Boot 19

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web.html#mvc

Spring Boot Reference Guide

The “main” Method

The final part of our application is the mai n method. This is just a standard method that follows
the Java convention for an application entry point. Our main method delegates to Spring Boot’'s
Spri ngAppl i cati on class by callingr un. Spri ngAppl i cat i on bootstraps our application, starting
Spring, which, in turn, starts the auto-configured Tomcat web server. We need to pass Exanpl e. cl ass
as an argument to the r un method to tell Spri ngAppl i cat i on which is the primary Spring component.
The ar gs array is also passed through to expose any command-line arguments.

11.4 Running the Example

At this point, your application should work. Since you used the spr i ng- boot - st art er - par ent POM,
you have a useful r un goal that you can use to start the application. Type nvn spri ng- boot: run
from the root project directory to start the application. You should see output similar to the following:

$ nvn spring-boot:run

SRV A I U U U

-))))
|
=11
:: Spring Boot :: (v2.0.0.RCl)

. (1 og output here)

........ Started Exanple in 2.222 seconds (JVMrunning for 6.514)

If you open a web browser to | ocal host : 8080, you should see the following output:

‘Hello Wor | d!

To gracefully exit the application, pressctrl -c.

11.5 Creating an Executable Jar

We finish our example by creating a completely self-contained executable jar file that we could run in
production. Executable jars (sometimes called “fat jars”) are archives containing your compiled classes
along with all of the jar dependencies that your code needs to run.

Executable jars and Java

Java does not provide a standard way to load nested jar files (jar files that are themselves contained
within a jar). This can be problematic if you are looking to distribute a self-contained application.

To solve this problem, many developers use “uber” jars. An uber jar packages all the classes from
all the application’s dependencies into a single archive. The problem with this approach is that it
becomes hard to see which libraries are in your application. It can also be problematic if the same
filename is used (but with different content) in multiple jars.

Spring Boot takes a different approach and lets you actually nest jars directly.

To create an executable jar, we need to add the spri ng- boot - maven- pl ugi n to our pom xm . To
do so, insert the following lines just below the dependenci es section:

2.0.0.RC1 Spring Boot 20

http://localhost:8080

Spring Boot Reference Guide

<bui | d>

<pl ugi ns>
<pl ugi n>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifact!|d>spring-boot-maven-plugin</artifactld>
</ pl ugi n>

</ pl ugi ns>

</ bui | d>

Note

The spri ng- boot - start er-parent POM includes <execut i ons> configuration to bind the
r epackage goal. If you do not use the parent POM, you need to declare this configuration
yourself. See the plugin documentation for details.

Save your pom xnl and run nvn package from the command line, as follows:

$ nvn package

[INFQ Scanning for projects...

[I NFO

[INRG] ==ccssccssccsscosscossconscanscanscanscansconscanscansconoconoconoca09e0s
[INFQ Building nyproject 0.0.1- SNAPSHOT

I 3 I
[INFO

[INFO --- maven-jar-plugin:2.4:jar (default-jar) @nyproject ---

[INFOQ Building jar: /Users/devel oper/exanpl e/ spring-boot - exanpl e/t ar get/ nypr oj ect - 0. 0. 1- SNAPSHOT. j ar
[INFO

[INFQ --- spring-boot-nmaven-pl ugin: 2.0.0. RCL: repackage (default) @nyproject ---
[INFQ - mmmmm e e e e e e m e e e e e e e e e e e
[INFO BU LD SUCCESS

Y = R T

If you look in the t ar get directory, you should see mypr oj ect-0. 0. 1- SNAPSHOT. j ar . The file
should be around 10 MB in size. If you want to peek inside, you can use j ar t vf, as follows:

$ jar tvf target/nyproject-0.0.1- SNAPSHOT. j ar

You should also see a much smaller file named nmypr oj ect - 0. 0. 1- SNAPSHOT. j ar. ori gi nal in
the t ar get directory. This is the original jar file that Maven created before it was repackaged by Spring
Boot.

To run that application, use the j ava -j ar command, as follows:

$ java -jar target/myproject-0.0.1- SNAPSHOT. j ar

M (O VL

CON_ N vy vy
W e ro)y)))
S S [) O W B A O
| _l | __/1=_1_1_1

Spring Boot :: (v2.0.0.RCl)

....... . . . (log output here)

........ Started Exanple in 2.536 seconds (JVMrunning for 2.864)

As before, to exit the application, pressctrl -c.

2.0.0.RC1 Spring Boot 21

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/maven-plugin/usage.html

Spring Boot Reference Guide

12. What to Read Next

Hopefully, this section provided some of the Spring Boot basics and got you on your way to writing your
own applications. If you are a task-oriented type of developer, you might want to jump over to spring.io
and check out some of the getting started guides that solve specific “How do | do that with Spring?”
problems. We also have Spring Boot-specific “How-to” reference documentation.

The Spring Boot repository also has a bunch of samples you can run. The samples are independent of
the rest of the code (that is, you do not need to build the rest to run or use the samples).

Otherwise, the next logical step is to read Part lll, “Using Spring Boot”. If you are really impatient, you
could also jump ahead and read about Spring Boot features.

2.0.0.RC1 Spring Boot 22

http://spring.io
http://spring.io/guides/
http://github.com/spring-projects/spring-boot
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-samples

Part lll. Using Spring Boot

This section goes into more detail about how you should use Spring Boot. It covers topics such as build
systems, auto-configuration, and how to run your applications. We also cover some Spring Boot best
practices. Although there is nothing particularly special about Spring Boot (it is just another library that

you can consume), there are a few recommendations that, when followed, make your development
process a little easier.

If you are starting out with Spring Boot, you should probably read the Getting Started guide before diving
into this section.

Spring Boot Reference Guide

13. Build Systems

Itis strongly recommended that you choose a build system that supports dependency management and
that can consume artifacts published to the “Maven Central” repository. We would recommend that you
choose Maven or Gradle. It is possible to get Spring Boot to work with other build systems (Ant, for
example), but they are not particularly well supported.

13.1 Dependency Management

Each release of Spring Boot provides a curated list of dependencies that it supports. In practice, you
do not need to provide a version for any of these dependencies in your build configuration, as Spring
Boot manages that for you. When you upgrade Spring Boot itself, these dependencies are upgraded
as well in a consistent way.

Note

You can still specify a version and override Spring Boot’'s recommendations if you need to do so.

The curated list contains all the spring modules that you can use with Spring Boot as well as a
refined list of third party libraries. The list is available as a standard Bills of Materials (spri ng- boot -
dependenci es) that can be used with both Maven and Gradle.

Warning

Each release of Spring Boot is associated with a base version of the Spring Framework. We
highly recommend that you not specify its version.

13.2 Maven

Maven users can inherit from the spri ng- boot - st art er - par ent project to obtain sensible defaults.
The parent project provides the following features:

» Java 1.8 as the default compiler level.
» UTF-8 source encoding.

» A Dependency Management section, inherited from the spring-boot-dependencies pom, that
manages the versions of common dependencies. This dependency management lets you omit
<version> tags for those dependencies when used in your own pom.

» Sensible resource filtering.

» Sensible plugin configuration (exec plugin, Git commit ID, and shade).

» Sensible resource filtering for application. properties and application.ym including
profile-specific files (for example, appl i cati on- dev. properti es andappli cati on-dev.ym)

Note that, since the appl i cati on. properti es and application.ymn files accept Spring style
placeholders (${ ..}), the Maven filtering is changed to use @ . @placeholders. (You can override that
by setting a Maven property called r esour ce. del i ni ter.)

2.0.0.RC1 Spring Boot 24

https://maven.apache.org/plugins/maven-resources-plugin/examples/filter.html
http://www.mojohaus.org/exec-maven-plugin/
https://github.com/ktoso/maven-git-commit-id-plugin
http://maven.apache.org/plugins/maven-shade-plugin/

Spring Boot Reference Guide

Inheriting the Starter Parent

To configure your project to inherit from the spri ng- boot - st art er - par ent, set the parent as
follows:

<l-- Inherit defaults from Spring Boot -->

<parent >

<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-parent</artifactld>
<version>2. 0. 0. RC1</ ver si on>

</ par ent >

Note

You should need to specify only the Spring Boot version number on this dependency. If you import
additional starters, you can safely omit the version number.

With that setup, you can also override individual dependencies by overriding a property in your own
project. For instance, to upgrade to another Spring Data release train, you would add the following to
your pom xm :

<properties>
<spring-dat a-rel easetrain. versi on>Fow er - SR2</ spri ng- dat a- r el easetrai n. ver si on>
</ properties>

Tip

Check the spri ng- boot - dependenci es pom for a list of supported properties.

Using Spring Boot without the Parent POM

Not everyone likes inheriting from the spri ng- boot - st art er - parent POM. You may have your
own corporate standard parent that you need to use or you may prefer to explicitly declare all your
Maven configuration.

If you do not want to use the spri ng- boot - st art er - par ent, you can still keep the benefit of the
dependency management (but not the plugin management) by using a scope=i nport dependency,
as follows:

<dependencyManagenent >
<dependenci es>
<dependency>
<l-- Inport dependency managenent from Spring Boot -->
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-dependenci es</artifactld>
<version>2.0.0. RC1</ versi on>
<t ype>ponx/type>
<scope>i nport </ scope>
</ dependency>
</ dependenci es>
</ dependencyManagenent >

The preceding sample setup does not let you override individual dependencies by using a property, as
explained above. To achieve the same result, you need to add an entry in the dependencyManagenent
of your project before the spri ng- boot - dependenci es entry. For instance, to upgrade to another
Spring Data release train, you could add the following element to your pom xm :

<dependencyManagenent >

2.0.0.RC1 Spring Boot 25

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-dependencies/pom.xml

Spring Boot Reference Guide

<dependenci es>
<l-- Override Spring Data release train provided by Spring Boot -->
<dependency>
<groupl d>or g. spri ngf ramewor k. dat a</ gr oupl d>
<artifactld>spring-data-rel easetrain</artifactld>
<versi on>Fow er- SR2</ ver si on>
<scope>i nport </ scope>
<t ype>ponx/ t ype>
</ dependency>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifact!|d>spring-boot-dependenci es</artifactld>
<ver si on>2. 0. 0. RC1</ ver si on>
<t ype>ponx/ t ype>
<scope>i nport </ scope>
</ dependency>
</ dependenci es>
</ dependencyManagenent >

Note

In the preceding example, we specify a BOM, but any dependency type can be overridden in the
same way.

Using the Spring Boot Maven Plugin

Spring Boot includes a Maven plugin that can package the project as an executable jar. Add the plugin
to your <pl ugi ns> section if you want to use it, as shown in the following example:

<bui | d>

<pl ugi ns>
<pl ugi n>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-maven-plugin</artifactld>
</ pl ugi n>

</ pl ugi ns>

</ bui | d>

Note

If you use the Spring Boot starter parent pom, you need to add only the plugin. There is no need
to configure it unless you want to change the settings defined in the parent.

13.3 Gradle

To learn about using Spring Boot with Gradle, please refer to the documentation for Spring Boot's Gradle
plugin:

» Reference (HTML and PDF)

. API

13.4 Ant

Itis possible to build a Spring Boot project using Apache Ant+lvy. The spri ng- boot - ant | i b “AntLib”
module is also available to help Ant create executable jars.

To declare dependencies, a typical i vy. xm file looks something like the following example:

2.0.0.RC1 Spring Boot 26

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/gradle-plugin/reference/html
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/gradle-plugin/reference/pdf/spring-boot-gradle-plugin-reference.pdf
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/gradle-plugin/api

Spring Boot Reference Guide

<i vy-nodul e version="2.0">
<info organi sation="org. springframework. boot" nodul e="spring-boot -sanpl e-ant" />
<configurations>
<conf nanme="conpile" description="everything needed to conpile this nodule" />
<conf name="runtinme" extends="conpile" description="everything needed to run this nodule" />
</ configurations>
<dependenci es>
<dependency org="org. springframework. boot" nanme="spring-boot-starter"
rev="${spring-boot.version}" conf="conpile" />
</ dependenci es>
</ivy-nodul e>

A typical bui | d. xm looks like the following example:

<pr oj ect
xm ns:ivy="antlib:org.apache.ivy.ant"
xm ns: spring-boot="antlib: org. springfranework. boot . ant"
name="nyapp" defaul t="build">

<property name="spring-boot.version" value="2.0.0. RC1" />

<target nane="resolve" description="--> retrieve dependencies with ivy">
<ivy:retrieve pattern="lib/[conf]/[artifact]-[type]-[revision].[ext]" />
</target>

<target name="cl asspat hs" depends="resol ve">
<path id="conpile.classpath">
<fileset dir="lib/conpile" includes="*.jar" />
</ pat h>
</target>

<target name="init" depends="cl asspat hs">
<nkdir dir="build/classes" />
</target>

<target nanme="conpile" depends="init" description="conpile">
<javac srcdir="src/main/java" destdir="buil d/classes" classpathref="conpile.classpath" />
</target>

<target name="build" depends="conpile">
<spring-boot:exejar destfile="build/ myapp.jar" classes="buil d/cl asses">
<spring-boot:|ib>
<fileset dir="lib/runtime" />
</ spring-boot:|ib>
</ spring-boot : exej ar >
</target>
</ proj ect >

Tip

If you do not want to use the spri ng- boot - ant | i b module, see the Section 85.9, “Build an
Executable Archive from Ant without Using spri ng- boot - ant | i b” “How-to” .

13.5 Starters

Starters are a set of convenient dependency descriptors that you can include in your application. You
get a one-stop shop for all the Spring and related technologies that you need without having to hunt
through sample code and copy-paste loads of dependency descriptors. For example, if you want to get
started using Spring and JPA for database access, include the spri ng- boot -starter-data-j pa
dependency in your project.

The starters contain a lot of the dependencies that you need to get a project up and running quickly and
with a consistent, supported set of managed transitive dependencies.

2.0.0.RC1 Spring Boot 27

Spring Boot Reference Guide

What’s in a name

All official starters follow a similar naming pattern; spri ng- boot -starter-*, where * is a
particular type of application. This haming structure is intended to help when you need to find a
starter. The Maven integration in many IDEs lets you search dependencies by name. For example,
with the appropriate Eclipse or STS plugin installed, you can press ct r | - space in the POM editor
and type “spring-boot-starter” for a complete list.

As explained in the “Creating Your Own Starter” section, third party starters should not start
with spri ng-boot, as it is reserved for official Spring Boot artifacts. Rather, a third-party
starter typically starts with the name of the project. For example, a third-party starter project

called t hi rdpart ypr oj ect would typically be named t hi r dpart ypr oj ect - spri ng- boot -

starter.
The following application starters are provided by Spring Boot under the
org. spri ngfranmewor k. boot group:
Table 13.1. Spring Boot application starters
Name Description Pom
spring-boot-starter Core starter, including auto- Pom
configuration support, logging
and YAML
spring-boot-starter- Starter for IMS messaging Pom
activeng using Apache ActiveMQ
spring-boot-starter- Starter for using Spring AMQP Pom
anmgp and Rabbit MQ
spring-boot-starter-aop | Starter for aspect-oriented Pom
programming with Spring AOP
and AspectJ
spring-boot-starter- Starter for IMS messaging Pom
artems using Apache Artemis
spring-boot-starter- Starter for using Spring Batch Pom
bat ch
spring-boot-starter- Starter for using Spring Pom
cache Framework’s caching support
spring-boot-starter- Starter for using Spring Cloud Pom
cl oud- connectors Connectors which simplifies
connecting to services in cloud
platforms like Cloud Foundry
and Heroku
spring-boot-starter- Starter for using Cassandra Pom
dat a- cassandr a distributed database and Spring
Data Cassandra
2.0.0.RC1 Spring Boot 28

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-activemq/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-amqp/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-aop/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-artemis/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-batch/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-cache/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-cloud-connectors/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-data-cassandra/pom.xml

Spring Boot Reference Guide

Name Description Pom
spring-boot-starter- Starter for using Cassandra Pom
dat a- cassandr a-reacti ve | distributed database and Spring

Data Cassandra Reactive
spring-boot-starter- Starter for using Couchbase Pom
dat a- couchbase document-oriented database

and Spring Data Couchbase
spring-boot-starter- Starter for using Couchbase Pom
dat a- couchbase-reacti ve | document-oriented database

and Spring Data Couchbase

Reactive
spring-boot-starter- Starter for using Elasticsearch ~ Pom
dat a- el asti csearch search and analytics engine

and Spring Data Elasticsearch
spring-boot-starter- Starter for using Spring Data Pom
dat a-j pa JPA with Hibernate
spring-boot-starter- Starter for using Spring Data Pom
dat a- | dap LDAP
spring-boot-starter- Starter for using MongoDB Pom
dat a- nrongodb document-oriented database

and Spring Data MongoDB
spring-boot-starter- Starter for using MongoDB Pom
dat a- nrongodb-r eacti ve document-oriented database

and Spring Data MongoDB

Reactive
spring-boot-starter- Starter for using Neo4j graph Pom
dat a- neo4j database and Spring Data

Neodj
spring-boot-starter- Starter for using Redis key- Pom
data-redis value data store with Spring

Data Redis and the Lettuce

client
spring-boot-starter- Starter for using Redis key- Pom
dat a-redi s-reactive value data store with Spring

Data Redis reactive and the

Lettuce client
spring-boot-starter- Starter for exposing Spring Pom

dat a-r est

Data repositories over REST
using Spring Data REST

2.0.0.RC1

Spring Boot

29

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-data-cassandra-reactive/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-data-couchbase/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-data-couchbase-reactive/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-data-elasticsearch/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-data-jpa/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-data-ldap/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-data-mongodb/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-data-mongodb-reactive/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-data-neo4j/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-data-redis/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-data-redis-reactive/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-data-rest/pom.xml

Spring Boot Reference Guide

Name Description Pom
spring-boot-starter- Starter for using the Apache Pom
dat a- sol r Solr search platform with Spring
Data Solr
spring-boot-starter- Starter for building MVC web Pom
freemar ker applications using FreeMarker
views
spring-boot-starter- Starter for building MVC web Pom
groovy-tenpl at es applications using Groovy
Templates views
spring-boot-starter- Starter for building hypermedia- Pom
hat eoas based RESTful web application
with Spring MVC and Spring
HATEOAS
spring-boot-starter- Starter for using Spring Pom
i ntegration Integration
spring-boot-starter- Starter for using JDBC with the Pom
j dbc Tomcat JDBC connection pool
spring-boot-starter- Starter for building RESTful Pom
j ersey web applications using JAX-RS
and Jersey. An alternative to
spring-boot-starter-web
spring-boot-starter- Starter for using jOOQ to Pom
j 0oq access SQL databases. An
alternative to spri ng- boot -
starter-data-jpaor
spring-boot-starter-
j dbc
spring-boot-starter- Starter for reading and writing Pom
json json
spring-boot-starter- Starter for JTA transactions Pom
jta-atom kos using Atomikos
spring-boot-starter- Starter for JTA transactions Pom
jta-bitronix using Bitronix
spring-boot-starter- Spring Boot Narayana JTA Pom
j ta-narayana Starter
spring-boot-starter- Starter for using Java Mail Pom
mai | and Spring Framework’s email
sending support

2.0.0.RC1 Spring Boot

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-data-solr/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-freemarker/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-groovy-templates/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-hateoas/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-integration/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-jdbc/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-jersey/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-jooq/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-json/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-jta-atomikos/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-jta-bitronix/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-jta-narayana/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-mail/pom.xml

Spring Boot Reference Guide

Name Description Pom
spring-boot-starter- Starter for building web Pom
nust ache applications using Mustache

views
spring-boot-starter- Spring Boot Quartz Starter Pom
quartz
spring-boot-starter- Starter for using Spring Security Pom
security
spring-boot-starter- Starter for testing Spring Boot Pom
t est applications with libraries

including JUnit, Hamcrest and

Mockito
spring-boot-starter- Starter for building MVC web Pom
t hynel eaf applications using Thymeleaf

views
spring-boot-starter- Starter for using Java Bean Pom
val i dation Validation with Hibernate

Validator
spring-boot - starter-web | Starter for building web, Pom

including RESTful, applications

using Spring MVC. Uses

Tomcat as the default

embedded container
spring-boot-starter- Starter for using Spring Web Pom
web- servi ces Services
spring-boot-starter- Starter for building WebFlux Pom
webf | ux applications using Spring

Framework’s Reactive Web

support
spring-boot-starter- Starter for building WebSocket Pom
websocket applications using Spring

Framework’s WebSocket

support

In addition to the application starters, the following starters can be used to add production ready features:

Table 13.2. Spring Boot production starters

Name Description Pom
spring-boot-starter- Starter for using Spring Boot's Po
act uat or Actuator which provides

production ready features to
help you monitor and manage
your application

2.0.0.RC1 Spring Boot 31

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-mustache/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-quartz/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-security/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-test/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-thymeleaf/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-validation/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-web/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-web-services/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-webflux/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-websocket/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-actuator/pom.xml

Spring Boot Reference Guide

Finally, Spring Boot also includes the following starters that can be used if you want to exclude or swap

specific technical facets:

Table 13.3. Spring Boot technical starters

Name Description Pom
spring-boot-starter- Starter for using Jetty as the Pom
jetty embedded servlet container. An

alternative to spri ng- boot -

starter-tontat
spring-boot-starter- Starter for using Log4j2 for Pom
| 0g4j 2 logging. An alternative to

spring-boot-starter-

| oggi ng
spring-boot-starter- Starter for logging using Pom
| oggi ng Logback. Default logging starter
spring-boot-starter- Starter for using Reactor Netty Pom
reactor-netty as the embedded reactive

HTTP server.
spring-boot-starter- Starter for using Tomcat as the Pom
t ontat embedded servlet container.

Default servlet container starter

used by spri ng- boot -

starter-web
spring-boot-starter- Starter for using Undertow Pom

undert ow

Tip

For a list of additional community contributed starters, see the README file in the spri ng- boot -

st art er s module on GitHub.

as the embedded servlet
container. An alternative to
spring-boot-starter-
t ontat

2.0.0.RC1

Spring Boot

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-jetty/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-log4j2/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-logging/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-reactor-netty/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-tomcat/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-starters/spring-boot-starter-undertow/pom.xml
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/README.adoc

Spring Boot Reference Guide

14. Structuring Your Code

Spring Boot does not require any specific code layout to work. However, there are some best practices
that help.

14.1 Using the “default” Package

When a class does not include a package declaration, it is considered to be in the “default package”.
The use of the “default package” is generally discouraged and should be avoided. It can cause
particular problems for Spring Boot applications that use the @onponent Scan, @ntityScan, or
@pr i ngBoot Appl i cat i on annotations, since every class from every jar is read.

Tip

We recommend that you follow Java’s recommended package naming conventions and use a
reversed domain name (for example, com exanpl e. pr oj ect).

14.2 Locating the Main Application Class

We generally recommend that you locate your main application class in a root package above other
classes. The @nabl eAut oConfi gur ati on annotation is often placed on your main class, and it
implicitly defines a base “search package” for certain items. For example, if you are writing a JPA
application, the package of the @nabl eAut oConfi gur ati on annotated class is used to search for
@ntity items.

Using a root package also lets the @onponent Scan annotation be used without needing to specify
a basePackage attribute. You can also use the @pr i ngBoot Appl i cat i on annotation if your main
class is in the root package.

The following listing shows a typical layout:

com
+- exanpl e
+- nyapplication

+- Application.java

I

+- cust onmer

| +- Customer.java
| +- CustonerController.java
| +- Cust oner Service.java
| +- Custoner Repository.java
I
+-

or der
+ Order.java
+- OrderController.java
+- Order Service.java
+- OrderRepository.java

The Appl i cat i on. j ava file would declare the nai n method, along with the basic @onf i gur ati on,
as follows:

package com exanpl e. nyappl i cati on;

i mport org.springframework. boot. SpringApplication;

i nport org.springfranework. boot . aut oconfi gur e. Enabl eAut oConfi gurati on;
i nport org.springframework. cont ext. annot ati on. Conponent Scan;

i nport org.springfranework. cont ext. annot ati on. Confi gurati on;

2.0.0.RC1 Spring Boot 33

Spring Boot Reference Guide

@confi guration

@Enabl eAut oConfi gurati on
@Conponent Scan

public class Application {

public static void main(String[] args) {
Spri ngApplication. run(Application.class, args);
}

2.0.0.RC1 Spring Boot

34

Spring Boot Reference Guide

15. Configuration Classes

Spring Boot favors Java-based configuration. Although it is possible to use Spri ngAppl i cati on with
XML sources, we generally recommend that your primary source be a single @onf i gur at i on class.
Usually the class that defines the mai n method is a good candidate as the primary @onf i gur ati on.

Tip

Many Spring configuration examples have been published on the Internet that use XML
configuration. If possible, always try to use the equivalent Java-based configuration. Searching
for Enabl e* annotations can be a good starting point.

15.1 Importing Additional Configuration Classes

You need not put all your @onf i gur at i on into a single class. The @ nport annotation can be used
to import additional configuration classes. Alternatively, you can use @onponent Scan to automatically
pick up all Spring components, including @onf i gur at i on classes.

15.2 Importing XML Configuration

If you absolutely must use XML based configuration, we recommend that you still start with
a @onfiguration class. You can then use an @ nport Resource annotation to load XML
configuration files.

2.0.0.RC1 Spring Boot 35

Spring Boot Reference Guide

16. Auto-configuration

Spring Boot auto-configuration attempts to automatically configure your Spring application based on the
jar dependencies that you have added. For example, if HSQLDB is on your classpath, and you have not
manually configured any database connection beans, then Spring Boot auto-configures an in-memory
database.

You need to opt-in to auto-configuration by adding the @enabl eAut oConfi guration or
@pr i ngBoot Appl i cat i on annotations to one of your @onf i gur at i on classes.

Tip

You should only ever add one @tnabl eAut oConfi gurati on annotation. We generally
recommend that you add it to your primary @onf i gur ati on class.

16.1 Gradually Replacing Auto-configuration

Auto-configuration is non-invasive. At any point, you can start to define your own configuration to replace
specific parts of the auto-configuration. For example, if you add your own Dat aSour ce bean, the default
embedded database support backs away.

If you need to find out what auto-configuration is currently being applied, and why, start your application
with the - - debug switch. Doing so enables debug logs for a selection of core loggers and logs a
conditions report to the console.

16.2 Disabling Specific Auto-configuration Classes

If you find that specific auto-configuration classes that you do not want are being applied, you can
use the exclude attribute of @nabl eAut oConf i gur at i on to disable them, as shown in the following
example:

i nport org.springframework. boot . aut oconfigure.*;
i nport org.springfranework. boot . aut oconfi gure. jdbc. *;
i nport org.springfranework. cont ext.annotation. *;

@onfiguration

@nabl eAut oConf i gur ati on(excl ude={ Dat aSour ceAut oConfi gur ati on. cl ass})
public class MConfiguration {

}

If the class is not on the classpath, you can use the excl udeNane attribute of the annotation and specify
the fully qualified name instead. Finally, you can also control the list of auto-configuration classes to
exclude by using the spri ng. aut oconfi gur e. excl ude property.

Tip

You can define exclusions both at the annotation level and by using the property.

2.0.0.RC1 Spring Boot 36

Spring Boot Reference Guide

17. Spring Beans and Dependency Injection

You are free to use any of the standard Spring Framework techniques to define your beans and their
injected dependencies. For simplicity, we often find that using @onponent Scan (to find your beans)
and using @\ut owi r ed (to do constructor injection) works well.

If you structure your code as suggested above (locating your application class in a root package), you
can add @onponent Scan without any arguments. All of your application components (@onponent ,
@ber vi ce, @Reposi tory, @ontroll er etc.) are automatically registered as Spring Beans.

The following example shows a @ber vi ce Bean that uses constructor injection to obtain a required
Ri skAssessor bean:

package com exanpl e. service;

i nport org.springfranework. beans. factory. annot ati on. Aut ow r ed;
i nport org.springfranework. stereotype. Servi ce;

@ber vi ce
public class DatabaseAccount Service inpl enents Account Service {

private final Ri skAssessor riskAssessor;
@\ut owi r ed
publ i ¢ Dat abaseAccount Servi ce(Ri skAssessor riskAssessor) {

this.riskAssessor = riskAssessor;

}

Il

If a bean has one constructor, you can omit the @\ut owi r ed, as shown in the following example:

@ber vi ce
public class DatabaseAccount Service inpl enents Account Service {

private final Ri skAssessor riskAssessor;

publ i ¢ Dat abaseAccount Servi ce(Ri skAssessor riskAssessor) {
this.riskAssessor = riskAssessor;

}

Il

Tip

Notice how using constructor injection lets the ri skAssessor field be marked as fi nal ,
indicating that it cannot be subsequently changed.

2.0.0.RC1 Spring Boot 37

Spring Boot Reference Guide

18. Using the @SpringBootApplication Annotation

Many Spring Boot developers always have their main class annotated with @Confi gurati on,
@nabl eAut oConfi gur ati on, and @onponent Scan. Since these annotations are so frequently
used together (especially if you follow the best practices above), Spring Boot provides a convenient
@Bpr i ngBoot Appl i cat i on alternative.

The @ppringBoot Application annotation is equivalent to wusing @onfiguration,
@nabl eAut oConfi gur ati on, and @onponent Scan with their default attributes, as shown in the

following example:

package com exanpl e. myappli cation;

i nport org.springfranework. boot. Spri ngApplication;
i nport org.springfranework. boot . aut oconfi gure. Spri ngBoot Appl i cati on;

@pri ngBoot Appl i cation // sane as @onfiguration @nabl eAut oConfi guration @onponent Scan
public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

Note

@bpri ngBoot Appl i cation also provides aliases to customize the attributes of
@nabl eAut oConfi gur ati on and @onponent Scan.

2.0.0.RC1 Spring Boot 38

Spring Boot Reference Guide

19. Running Your Application

One of the biggest advantages of packaging your application as a jar and using an embedded HTTP
server is that you can run your application as you would any other. Debugging Spring Boot applications
is also easy. You do not need any special IDE plugins or extensions.

Note

This section only covers jar based packaging. If you choose to package your application as a war
file, you should refer to your server and IDE documentation.

19.1 Running from an IDE

You can run a Spring Boot application from your IDE as a simple Java application. However, you first
need to import your project. Import steps vary depending on your IDE and build system. Most IDEs can
import Maven projects directly. For example, Eclipse users can select | nport ..._, Exi sting Maven
Proj ect s from the Fi | e menu.

If you cannot directly import your project into your IDE, you may be able to generate IDE metadata by
using a build plugin. Maven includes plugins for Eclipse and IDEA. Gradle offers plugins for various IDESs.

Tip

If you accidentally run a web application twice, you see a “Port already in use” error. STS users
can use the Rel aunch button rather than the Run button to ensure that any existing instance
is closed.

19.2 Running as a Packaged Application

If you use the Spring Boot Maven or Gradle plugins to create an executable jar, you can run your
application using j ava -j ar, as shown in the following example:

‘ $ java -jar target/ nyapplication-0.0.1- SNAPSHOT. j ar

Itis also possible to run a packaged application with remote debugging support enabled. Doing so lets
you attach a debugger to your packaged application, as shown in the following example:

$ java - Xdebug - Xrunj dwp: server =y, transport=dt _socket, addr ess=8000, suspend=n \
-jar target/nyapplication-0.0.1- SNAPSHOT. j ar

19.3 Using the Maven Plugin

The Spring Boot Maven plugin includes a r un goal that can be used to quickly compile and run your
application. Applications run in an exploded form, as they do in your IDE. The following example shows
a typical Maven command to run a Spring Boot application:

‘ $ nmvn spring-boot:run

You might also want to use the MAVEN OPTS operating system environment variable, as shown in the
following example:

‘ $ export MAVEN OPTS=- Xnx1024m

2.0.0.RC1 Spring Boot 39

http://maven.apache.org/plugins/maven-eclipse-plugin/
http://maven.apache.org/plugins/maven-idea-plugin/
https://docs.gradle.org/4.2.1/userguide/userguide.html

Spring Boot Reference Guide

19.4 Using the Gradle Plugin

The Spring Boot Gradle plugin also includes a boot Run task that can be used to run your application in
an exploded form. The boot Run task is added whenever you apply the or g. spri ngf r amewor k. boot
and j ava plugins and is shown in the following example:

‘ $ gradl e boot Run

You might also want to use the JAVA_OPTS operating system environment variable, as shown in the
following example:

‘ $ export JAVA OPTS=- Xmx1024m

19.5 Hot Swapping

Since Spring Boot applications are just plain Java applications, JVM hot-swapping should work out of the
box. JVM hot swapping is somewhat limited with the bytecode that it can replace. For a more complete
solution, JRebel can be used.

The spri ng- boot - devt ool s module also includes support for quick application restarts. See the
Chapter 20, Developer Tools section later in this chapter and the Hot swapping “How-to” for details.

2.0.0.RC1 Spring Boot 40

http://zeroturnaround.com/software/jrebel/

Spring Boot Reference Guide

20. Developer Tools

Spring Boot includes an additional set of tools that can make the application development experience a
little more pleasant. The spri ng- boot - devt ool s module can be included in any project to provide
additional development-time features. To include devtools support, add the module dependency to your
build, as shown in the following listings for Maven and Gradle:

Maven.

<dependenci es>

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-devtool s</artifactld>

<opti onal >t rue</ opti onal >
</ dependency>
</ dependenci es>

Gradle.

dependenci es {
conpi | e("org. springfranmework. boot : spri ng- boot - devt ool s")

}

Note

Developer tools are automatically disabled when running a fully packaged application. If your
application is launched from j ava -j ar or if it is started from a special classloader, then it is
considered a “production application”. Flagging the dependency as optional is a best practice that
prevents devtools from being transitively applied to other modules that use your project. Gradle
does not support opt i onal dependencies out-of-the-box, so you may want to have a look at the
propdeps- pl ugi n.

Tip

Repackaged archives do not contain devtools by default. If you want to use a certain remote
devtools feature, you need to disable the excl udeDevt ool s build property to include it. The
property is supported with both the Maven and Gradle plugins.

20.1 Property Defaults

Several of the libraries supported by Spring Boot use caches to improve performance. For example,
template engines cache compiled templates to avoid repeatedly parsing template files. Also, Spring
MVC can add HTTP caching headers to responses when serving static resources.

While caching is very beneficial in production, it can be counter-productive during development,
preventing you from seeing the changes you just made in your application. For this reason, spring-boot-
devtools disables the caching options by default.

Cache options are usually configured by settings in your application. properties file. For
example, Thymeleaf offers the spri ng. t hynel eaf . cache property. Rather than needing to set
these properties manually, the spri ng-boot - devt ool s module automatically applies sensible
development-time configuration.

2.0.0.RC1 Spring Boot 41

https://github.com/spring-projects/gradle-plugins/tree/master/propdeps-plugin

Spring Boot Reference Guide

Tip

For a complete list of the properties that are applied by the devtools, see
DevToolsPropertyDefaultsPostProcessor.

20.2 Automatic Restart

Applications that use spri ng- boot - devt ool s automatically restart whenever files on the classpath
change. This can be a useful feature when working in an IDE, as it gives a very fast feedback loop for
code changes. By default, any entry on the classpath that points to a folder is monitored for changes.
Note that certain resources, such as static assets and view templates, do not need to restart the

application.

Triggering a restart

As DevTools monitors classpath resources, the only way to trigger a restart is to update the
classpath. The way in which you cause the classpath to be updated depends on the IDE that you
are using. In Eclipse, saving a modified file causes the classpath to be updated and triggers a
restart. In Intellid IDEA, building the project (Bui | d -> Make Proj ect) has the same effect.

Note

As long as forking is enabled, you can also start your application by using the supported build
plugins (Maven and Gradle), since DevTools needs an isolated application classloader to operate
properly. By default, Gradle and Maven do that when they detect DevTools on the classpath.

Tip

Automatic restart works very well when used with LiveReload. See the LiveReload section for
details. If you use JRebel, automatic restarts are disabled in favor of dynamic class reloading.
Other devtools features (such as LiveReload and property overrides) can still be used.

Note

DevTools relies on the application context's shutdown hook to close it during
a restart. It does not work correctly if you have disabled the shutdown hook
(Spri ngAppl ication. set Regi st er Shut downHook(f al se)).

Note

When deciding if an entry on the classpath should trigger a restart when it changes, DevTools
automatically ignores projects named spri ng- boot, spring-boot -devtool s, spring-
boot - aut oconfi gur e, spri ng- boot - act uat or, and spri ng- boot -starter.

Note

DevTools needs to customize the Resour ceLoader used by the Appl i cati onCont ext . If your
application provides one already, it is going to be wrapped. Direct override of the get Resour ce
method on the Appl i cat i onCont ext is not supported.

2.0.0.RC1 Spring Boot 42

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-devtools/src/main/java/org/springframework/boot/devtools/env/DevToolsPropertyDefaultsPostProcessor.java

Spring Boot Reference Guide

Restart vs Reload

The restart technology provided by Spring Boot works by using two classloaders. Classes that do
not change (for example, those from third-party jars) are loaded into a base classloader. Classes
that you are actively developing are loaded into a restart classloader. When the application is
restarted, the restart classloader is thrown away and a new one is created. This approach means
that application restarts are typically much faster than “cold starts”, since the base classloader is
already available and populated.

If you find that restarts are not quick enough for your applications or you encounter classloading
issues, you could consider reloading technologies such as JRebel from ZeroTurnaround. These
work by rewriting classes as they are loaded to make them more amenable to reloading.

Logging changes in condition evaluation

By default, each time your application restarts, a report showing the condition evaluation delta is logged.
The report shows the changes to your application’s auto-configuration as you make changes such as
adding or removing beans and setting configuration properties.

To disable the logging of the report, set the following property:

spring. devtool s.restart.| og-condition-eval uati on-del t a=f al se

Excluding Resources

Certain resources do not necessarily need to trigger a restart when they are changed. For example,
Thymeleaf templates can be edited in-place. By default, changing resources in / META- | NF/ maven,
/ META- | NF/ resour ces, /resources, /static, /public, or /tenpl at es does not trigger a
restart but does trigger a live reload. If you want to customize these exclusions, you can use the
spring. devt ool s.restart. excl ude property. For example, to exclude only /static and /
publ i ¢ you would set the following property:

spring. devtool s.restart. exclude=static/**, public/**

Tip
If you want to keep those defaults and add additional exclusions, use the
spring. devtool s.restart. addi ti onal - excl ude property instead.

Watching Additional Paths

You may want your application to be restarted or reloaded when you make changes to files
that are not on the classpath. To do so, use the spring. devtool s.restart. additional -
pat hs property to configure additional paths to watch for changes. You can use the
spring. devt ool s.restart. excl ude property described earlier to control whether changes
beneath the additional paths trigger a full restart or a live reload.

Disabling Restart

If you do not want to use the restart feature, you can disable it by using the
spring. devt ool s. restart. enabl ed property. In most cases, you can set this property in your
appl i cation. properti es (doing so still initializes the restart classloader, but it does not watch for
file changes).

2.0.0.RC1 Spring Boot 43

http://zeroturnaround.com/software/jrebel/

Spring Boot Reference Guide

If you need to completely disable restart support (for example, because it does not work with a specific
library), you need to set the spring. devtool s. restart. enabl ed Syst em property to fal se
before calling Spri ngAppl i cati on. run(..), as shown in the following example:

public static void main(String[] args) {
System set Property("spring.devtool s.restart.enabl ed", "false");
Spri ngAppl i cation. run(MyApp. cl ass, args);

}

Using a Trigger File

If you work with an IDE that continuously compiles changed files, you might prefer to trigger restarts only
at specific times. To do so, you can use a “trigger file”, which is a special file that must be modified when
you want to actually trigger a restart check. Changing the file only triggers the check and the restart
only occurs if Devtools has detected it has to do something. The trigger file can be updated manually
or with an IDE plugin.

To use a trigger file, set the spring. devtool s.restart.trigger-fil e property to the path of
your trigger file.

Tip

You might want to set spring. devtool s.restart.trigger-file as a global setting, so
that all your projects behave in the same way.

Customizing the Restart Classloader

As described earlier in the Restart vs Reload section, restart functionality is implemented by using
two classloaders. For most applications, this approach works well. However, it can sometimes cause
classloading issues.

By default, any open project in your IDE is loaded with the “restart” classloader, and any regular . j ar
file is loaded with the “base” classloader. If you work on a multi-module project, and not every module
is imported into your IDE, you may need to customize things. To do so, you can create a META- | NF/
spri ng-devt ool s. properti es file.

The spri ng- devt ool s. properti es file can contain properties prefixed with rest art . excl ude
and restart.include. Thei ncl ude elements are items that should be pulled up into the “restart”
classloader, and the excl ude elements are items that should be pushed down into the “base”
classloader. The value of the property is a regex pattern that is applied to the classpath, as shown in
the following example:

restart.exclude. conpanycommonl i bs=/ mycor p-comon-[\\w]+\.jar
restart.include. projectconmon=/ nycor p-nyproj -[\\w]+\.jar

Note

All property keys must be unique. As long as a property starts with restart.i ncl ude. or
restart.excl ude. itis considered.

Tip

All META- I NF/ spri ng-devt ool s. properties from the classpath are loaded. You can
package files inside your project, or in the libraries that the project consumes.

2.0.0.RC1 Spring Boot 44

Spring Boot Reference Guide

Known Limitations

Restart functionality does not work well with objects that are deserialized by
using a standard ObjectlnputStream |If you need to deserialize data, you
may need to wuse Spring’s Configurabl eCbjectlnputStream in combination with
Thr ead. current Thread() . get Cont ext Cl assLoader ().

Unfortunately, several third-party libraries deserialize without considering the context classloader. If you
find such a problem, you need to request a fix with the original authors.

20.3 LiveReload

The spri ng- boot - devt ool s module includes an embedded LiveReload server that can be used
to trigger a browser refresh when a resource is changed. LiveReload browser extensions are freely
available for Chrome, Firefox and Safari from livereload.com.

If you do not want to start the LiveReload server when your application runs, you can set the
spring. devt ool s. | i verel oad. enabl ed property to f al se.
Note

You can only run one LiveReload server at a time. Before starting your application, ensure that
no other LiveReload servers are running. If you start multiple applications from your IDE, only the
first has LiveReload support.

20.4 Global Settings

You can configure global devtools settings by adding a file named . spring-boot-
devt ool s. properti es to your $HOVE folder (note that the filename starts with “.”). Any properties
added to this file apply to all Spring Boot applications on your machine that use devtools. For example,

to configure restart to always use a trigger file, you would add the following property:
~/.spring-boot-devtools.properties.

spring. devtool s.reload.trigger-file=.rel oadtrigger

20.5 Remote Applications

The Spring Boot developer tools are not limited to local development. You can also use several features
when running applications remotely. Remote support is opt-in. To enable it, you need to make sure that
devt ool s is included in the repackaged archive, as shown in the following listing:

<bui | d>
<pl ugi ns>
<pl ugi n>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifact!|d>spring-boot-maven-plugin</artifactld>

<configuration>
<excl udeDevt ool s>f al se</ excl udeDevt ool s>
</ configuration>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

Then you need to set a spri ng. devt ool s. renpt e. secr et property, as shown in the following
example:

2.0.0.RC1 Spring Boot 45

http://livereload.com/extensions/

Spring Boot Reference Guide

spring. devt ool s. renpt e. secr et =nysecr et

Warning

Enabling spri ng- boot - devt ool s on a remote application is a security risk. You should never
enable support on a production deployment.

Remote devtools support is provided in two parts: a server-side endpoint that accepts connections and
a client application that you run in your IDE. The server component is automatically enabled when
the spring. devt ool s. renot e. secret property is set. The client component must be launched
manually.

Running the Remote Client Application

The remote client application is designed to be run from within your IDE. You need to run
org. spri ngfranmewor k. boot . devt ool s. Renot eSpri ngAppl i cat i on with the same classpath
as the remote project that you connect to. The application’s single required argument is the remote URL
to which it connects.

For example, if you are using Eclipse or STS and you have a project named ny- app that you have
deployed to Cloud Foundry, you would do the following:

Select Run Confi gurati ons...from the Run menu.
» Create anew Java Appl i cati on “launch configuration”.
» Browse for the my- app project.

* Useorg. springfranmework. boot . devt ool s. Renot eSpri ngAppl i cati on asthe main class.

Add htt ps:// nmyapp. cfapps. i otothe Program ar gunent s (or whatever your remote URL is).

A running remote client might resemble the following listing:

NN (D) . _ Vv
CON— N N W) D U S
W D0 e e e (1 - NN =))))
[[P Y Y I S|] | o | Y W S A By B
| | |/ I 111

Spring Boot Renpte :: 2.0.0.RC1

2015- 06- 10 18:25:06.632 | NFO 14938 --- | mai n] o.s.b.devtools. Renot eSpri ngAppl i cation
Starting RenoteSpringApplication on pwrbp with PI D 14938 (/Users/ pwebb/ proj ects/spring-boot/code/

spring- boot - devt ool s/target/cl asses started by pwebb in /Users/pwebb/projects/spring-boot/code/spring-

boot - sanpl es/ spri ng- boot - sanpl e- devt ool s)

2015- 06- 10 18: 25: 06. 671 | NFO 14938 --- [mai n] s.c.a.Annot ati onConfi gAppl i cati onCont ext
Refreshi ng org. springfranewor k. cont ext. annot ati on. Annot at i onConfi gAppl i cati onCont ext @al7b7b6: startup
date [Wed Jun 10 18:25:06 PDT 2015]; root of context hierarchy

2015- 06- 10 18:25:07.043 WARN 14938 --- | main] o.s.b.d.r.c.RenpteC ientConfiguration . The
connection to http://local host:8080 is insecure. You should use a URL starting with "https://".

2015- 06- 10 18: 25: 07. 074 | NFO 14938 --- [mai n] o.s.b.d.a. Optional Li veRel oadSer ver
Li veRel oad server is running on port 35729

2015- 06- 10 18:25:07.130 | NFO 14938 --- | mai n] o.s.b.devtool s. Renpt eSpri ngApplication

Started RenoteSpringApplication in 0.74 seconds (JVM running for 1.105)

2.0.0.RC1 Spring Boot 46

Spring Boot Reference Guide

Note

Because the remote client is using the same classpath as the real application it can directly read
application properties. This is how the spri ng. devt ool s. renpt e. secr et property is read
and passed to the server for authentication.

Tip

It is always advisable to use htt ps:// as the connection protocol, so that traffic is encrypted
and passwords cannot be intercepted.

Tip

If you need to use a proxy to access the remote application, configure the
spring. devt ool s. renot e. proxy. host and spring. devt ool s. renot e. proxy. port
properties.

Remote Update

The remote client monitors your application classpath for changes in the same way as the local restart.
Any updated resource is pushed to the remote application and (if required) triggers a restart. This can
be helpful if you iterate on a feature that uses a cloud service that you do not have locally. Generally,

remote updates and restarts are much quicker than a full rebuild and deploy cycle.

Note

Files are only monitored when the remote client is running. If you change a file before starting the

remote client, it is not pushed to the remote server.

2.0.0.RC1 Spring Boot

a7

Spring Boot Reference Guide

21. Packaging Your Application for Production

Executable jars can be used for production deployment. As they are self-contained, they are also ideally
suited for cloud-based deployment.

For additional “production ready” features, such as health, auditing, and metric REST or JMX end-
points, consider adding spri ng- boot - act uat or. See Part V, “Spring Boot Actuator: Production-

ready features” for detalils.

2.0.0.RC1 Spring Boot 48

Spring Boot Reference Guide

22. What to Read Next

You should now understand how you can use Spring Boot and some best practices that you should
follow. You can now go on to learn about specific Spring Boot features in depth, or you could skip ahead
and read about the “production ready” aspects of Spring Boot.

2.0.0.RC1 Spring Boot 49

Part IV. Spring Boot features

This section dives into the details of Spring Boot. Here you can learn about the key features that you may
want to use and customize. If you have not already done so, you might want to read the "Part Il, “Getting
Started™ and "Part IIl, “Using Spring Boot™ sections, so that you have a good grounding of the basics.

Spring Boot Reference Guide

23. SpringApplication

The SpringApplication class provides a convenient way to bootstrap a Spring application
that is started from a nain() method. In many situations, you can delegate to the static
Spri ngAppl i cati on. run method, as shown in the following example:

public static void main(String[] args) {
Spri ngAppl i cation. run(M/SpringConfiguration.class, args);
}

When your application starts, you should see something similar to the following output:

NN () v v
CON— Ny vy

L5 WA B 1 I Y A GO I D B IO B

S [) I Y I [SR B

| | | 1=_1_1_1
Spring Boot :: v2.0.0. RC1

2013-07-31 00:08:16.117 | NFO 56603 --- [mai n] o.s.b.s.app. Sanpl eApplication

Starting Sanpl eApplication v0.1.0 on nyconputer with PI D 56603 (/apps/nyapp.jar started by pwebb)
2013-07-31 00: 08: 16. 166 | NFO 56603 --- [mai n]

ati onConfi gServl et WebSer ver Appl i cati onContext : Refreshing
org. spri ngframewor k. boot . web. servl et. cont ext. Annot ati onConfi gSer vl et WebSer ver Appl i cati onCont ext @e5a8246:
startup date [Wed Jul 31 00:08:16 PDT 2013]; root of context hierarchy

2014- 03-04 13:09:54.912 |NFO 41370 --- | mai n] .t.Toncat Servl et WebSer ver Factory : Server
initialized with port: 8080
2014-03-04 13: 09:56.501 |NFO 41370 --- [mai n] o.s.b.s.app. Sanpl eAppl i cation

Started Sanpl eApplication in 2.992 seconds (JVM running for 3.658)

By default, | NFO logging messages are shown, including some relevant startup details, such as the
user that launched the application. If you need a log level other than | NFQ, you can set it, as described
in Section 26.4, “Log Levels”,

23.1 Startup Failure

If your application fails to start, registered Fai | ur eAnal yzer s get a chance to provide a dedicated
error message and a concrete action to fix the problem. For instance, if you start a web application on
port 8080 and that port is already in use, you should see something similar to the following message:

B R R Y

APPLI CATI ON FAI LED TO START

kkkkkkkkkkkkkkkkkkkkkkkkkk*

Descri ption:
Enbedded servlet container failed to start. Port 8080 was already in use.
Action:

Identify and stop the process that's |listening on port 8080 or configure this application to listen on
anot her port.

Note

Spring Boot provides numerous Fai | ur eAnal yzer implementations, and you can add your own.

If no failure analyzers are able to handle the exception, you can still
display the full conditions report to better understand what went wrong. To do

2.0.0.RC1 Spring Boot 51

Spring Boot Reference Guide

so, you need to enable the debug property or enable DEBUG logging for
org. spri ngframewor k. boot . aut oconfi gur e. | oggi ng. Condi ti onEval uati onReport Loggi ngLi st ener

For instance, if you are running your application by using j ava -j ar, you can enable the debug
property as follows:

‘ $ java -jar nyproject-0.0.1-SNAPSHOT. j ar --debug

23.2 Customizing the Banner

The banner that is printed on start up can be changed by adding a banner . t xt file to your classpath
or by setting the spri ng. banner .| ocati on property to the location of such a file. If the file has
an encoding other than UTF-8, you can set spri ng. banner. char set . In addition to a text file, you
can also add a banner. gi f, banner. j pg, or banner. png image file to your classpath or set the
spring. banner. i mage. | ocati on property. Images are converted into an ASCII art representation
and printed above any text banner.

Inside your banner . t xt file, you can use any of the following placeholders:

Table 23.1. Banner variables

Variable Description

${application. version} The version number of your application, as
declared in MANI FEST. MF. For example,
| npl enent ati on-Version: 1.0 is printed
as1.0.

${application.formatted-version} The version number of your application, as
declared in MANI FEST. MF and formatted for
display (surrounded with brackets and prefixed
with v). For example (v1. 0) .

${spring-boot . versi on} The Spring Boot version that you are using. For
example 2. 0. 0. RC1.

${spring-boot.formatted-version} The Spring Boot version that you are using,
formatted for display (surrounded with
brackets and prefixed with v). For example

(v2.0.0.RC1).
${ Ansi . NAVE} (or ${ Ansi Col or . NAVE}, Where NAME is the name of an ANSI escape
${ Ansi Backgr ound. NAVE}, code. See Ansi Pr opert ySour ce for details.
${ Ansi Styl e. NAME})
${application.title} The title of your application, as declared

in MANI FEST. MF. For example
I mpl ementation-Title: MyApp is printed

as MyApp.

Tip

The SpringApplication. set Banner(..) method can be used if you want to generate
a banner programmatically. Use the or g. spri ngf ramewor k. boot . Banner interface and
implement your own pri nt Banner () method.

2.0.0.RC1 Spring Boot 52

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/ansi/AnsiPropertySource.java

Spring Boot Reference Guide

You can also use the spri ng. mai n. banner - mode property to determine if the banner has to be
printed on Syst em out (consol e), sent to the configured logger (I 0g), or not produced at all (of f).

The printed banner is registered as a singleton bean under the following name: spr i ngBoot Banner .

Note

YAML maps of f to f al se, so be sure to add quotes if you want to disable the banner in your
application, as shown in the following example:

spring:
mai n:
banner - node: "off"

23.3 Customizing SpringApplication

If the Spri ngAppl i cat i on defaults are not to your taste, you can instead create a local instance and
customize it. For example, to turn off the banner, you could write:

public static void main(String[] args) {
SpringApplication app = new SpringApplication(MSpringConfiguration.class);
app. set Banner Mode(Banner . Mode. OFF) ;
app.run(args);

}

Note

The constructor arguments passed to Spr i ngAppl i cat i on are configuration sources for Spring
beans. In most cases, these are references to @onf i gur at i on classes, but they could also be
references to XML configuration or to packages that should be scanned.

It is also possible to configure the Spri ngAppl i cati on by using an appl i cation. properties
file. See Chapter 24, Externalized Configuration for details.

For a complete list of the configuration options, see the Spri ngAppl i cati on Javadoc.

23.4 Fluent Builder API

If you need to build an Applicati onContext hierarchy (multiple contexts with a parent/
child relationship) or if you prefer using a “fluent” builder API, you can use the
Spri ngAppl i cati onBui | der.

The Spri ngAppl i cati onBui | der lets you chain together multiple method calls and includes par ent
and chi | d methods that let you create a hierarchy, as shown in the following example:

new Spri ngAppl i cati onBui | der ()
. sources(Parent. cl ass)
.chil d(Application.class)
. banner Mode(Banner . Mode. OFF)
.run(args);

Note

There are some restrictions when creating an Appl i cat i onCont ext hierarchy. For example,
Web components must be contained within the child context, and the same Envi r onnment is

2.0.0.RC1 Spring Boot 53

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/SpringApplication.html

Spring Boot Reference Guide

used for both parent and child contexts. See the Spri ngAppl i cati onBui | der Javadoc for
full details.

23.5 Application Events and Listeners

In addition to the usual Spring Framework events, such as Cont ext RefreshedEvent, a
Spri ngAppl i cati on sends some additional application events.

Note

Some events are actually triggered before the ApplicationContext is created,
SO you cannot register a listener on those as a @ean. You can
register them with the SpringApplication.addListeners(.) method or the
SpringApplicationBuilder.listeners(.) method.

If you want those listeners to be registered automatically, regardless of the way the application is
created, you can add a META- | NF/ spri ng. fact ori es file to your project and reference your
listener(s) by using the or g. spri ngf ranmewor k. cont ext . Appl i cati onLi st ener key, as
shown in the following example:

org. spri ngframewor k. cont ext . Appl i cati onLi st ener =com exanpl e. proj ect. M/Li st ener

Application events are sent in the following order, as your application runs:

1. An ApplicationStarti ngEvent is sent at the start of a run but before any processing, except
for the registration of listeners and initializers.

2. An Appl i cati onEnvi r onment Pr epar edEvent is sentwhen the Envi r onnment to be used in the
context is known but before the context is created.

3. An Appl i cat i onPr epar edEvent is sent just before the refresh is started but after bean definitions
have been loaded.

4. An ApplicationStartedEvent is sent after the context has been refreshed but before any
application and command-line runners have been called.

5. An Appl i cat i onReadyEvent is sent after any application and command-line runners have been
called. It indicates that the application is ready to service requests.

6. An Appl i cati onFai | edEvent is sent if there is an exception on startup.
Tip

You often need not use application events, but it can be handy to know that they exist. Internally,
Spring Boot uses events to handle a variety of tasks.

Application events are sent by using Spring Framework’s event publishing mechanism. Part of this
mechanism ensures that an event published to the listeners in a child context is also published
to the listeners in any ancestor contexts. As a result of this, if your application uses a hierarchy
of Spri ngAppl i cati on instances, a listener may receive multiple instances of the same type of
application event.

To allow your listener to distinguish between an event for its context and an event for a
descendant context, it should request that its application context is injected and then compare

2.0.0.RC1 Spring Boot 54

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/builder/SpringApplicationBuilder.html
http://docs.spring.io/spring/docs/5.0.3.RELEASE/javadoc-api/org/springframework/context/event/ContextRefreshedEvent.html

Spring Boot Reference Guide

the injected context with the context of the event. The context can be injected by implementing
Appl i cati onCont ext Awar e or, if the listener is a bean, by using @\ut owi r ed.

23.6 Web Environment

A SpringApplication attempts to create the right type of ApplicationContext
on your behalf. By default, an AnnotationConfi gApplicationContext or
Annot at i onConf i gSer vl et WebSer ver Appl i cati onCont ext is used, depending on whether
you are developing a web application or not.

The algorithm used to determine a “web environment” is fairly simplistic (it is based on the presence
of a few classes). If you need to override the default, you can use set WebEnvi r onnent (bool ean
webEnvi ronment) .

It is also possible to take complete control of the Appl i cat i onCont ext type that is used by calling
set Appl i cati onCont ext C ass(..).

Tip

It is often desirable to call set WebEnvi r onnment (f al se) when using Spri ngAppl i cati on
within a JUnit test.

23.7 Accessing Application Arguments

If you need to access the application arguments that were passed to Spri ngAppli cati on. run(...
), you can inject a org.springframework.boot. Applicati onArgunents bean. The
Appl i cati onAr gurent s interface provides access to both the raw St ri ng[] arguments as well as
parsed opti on and non- opt i on arguments, as shown in the following example:

i nport org.springframework. boot . *
i nport org.springframework. beans. factory. annotati on. *
i nport org.springframework. stereotype. *

@onponent
public class MyBean {

@\ut owi r ed
public MyBean(ApplicationArgunments args) {
bool ean debug = args. contai nsOpti on("debug");
List<String> files = args. get NonOpti onArgs();
/1 if run with "--debug logfile.txt" debug=true, files=["logfile.txt"]

}
}

Tip

Spring Boot also registers a ConmandLi nePr opert ySour ce with the Spring Envi r onment .
This lets you also inject single application arguments by using the @/al ue annotation.

23.8 Using the ApplicationRunner or CommandLineRunner

If you need to run some specific code once the Spri ngAppl i cati on has started, you can implement
the Appl i cati onRunner or CommandLi neRunner interfaces. Both interfaces work in the same way
and offer a single r un method, which is called just before Spri ngAppl i cati on. run(..) completes.

2.0.0.RC1 Spring Boot 55

Spring Boot Reference Guide

The CommandLi neRunner interfaces provides access to application arguments as a simple string
array, whereas the Appl i cati onRunner uses the Appli cati onArgunents interface discussed
earlier. The following example shows a ConmandLi neRunner with a r un method:

i nport org.springfranework. boot . *
i mport org.springframework. stereotype. *

@onponent
public class MyBean inpl enents ComandLi neRunner {

public void run(String... args) {
/1 Do sonething...

}

If several CormandLi neRunner or Appl i cati onRunner beans are defined that must be called in a
specific order, you can additionally implement the or g. spri ngf r amewor k. cor e. Or der ed interface
or use the or g. spri ngf ramewor k. cor e. annot ati on. Or der annotation.

23.9 Application Exit

Each SpringApplication registers a shutdown hook with the JVM to ensure that the
Appl i cati onCont ext closes gracefully on exit. All the standard Spring lifecycle callbacks (such as
the Di sposabl eBean interface or the @'r eDest r oy annotation) can be used.

In addition, beans may implement the org. springfranework. boot . Exi t CodeCGener at or
interface if they wish to return a specific exit code when Spri ngAppl i cati on. exit () is called. This
exit code can then be passed to Syst em exi t () toreturnitas a status code, as shown in the following
example:

@spr i ngBoot Appl i cati on
public class ExitCodeApplication {

@Bean
publ i c ExitCodeGenerator exitCodeGenerator() {
return () -> 42;

}

public static void main(String[] args) {
System exit (SpringApplication
.exi t(SpringApplication.run(ExitCodeApplication.class, args)));

Also, the Exi t CodeGener at or interface may be implemented by exceptions. When such an exception
is encountered, Spring Boot returns the exit code provided by the implemented get Exi t Code()
method.

23.10 Admin Features

It is possible to enable admin-related features for the application by
specifying the spring.application.adm n.enabl ed property. This exposes the
Spri ngAppl i cati onAdm nMXBean on the platform MBeanSer ver. You could use this feature to
administer your Spring Boot application remotely. This feature could also be useful for any service
wrapper implementation.

2.0.0.RC1 Spring Boot 56

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/admin/SpringApplicationAdminMXBean.java

Spring Boot Reference Guide

Tip

If you want to know on which HTTP port the application is running, get the property with a key
of | ocal . server. port.

Caution

Take care when enabling this feature, as the MBean exposes a method to shutdown the
application.

2.0.0.RC1 Spring Boot

57

Spring Boot Reference Guide

24. Externalized Configuration

Spring Boot lets you externalize your configuration so that you can work with the same application
code in different environments. You can use properties files, YAML files, environment variables, and
command-line arguments to externalize configuration. Property values can be injected directly into your
beans by using the @/al ue annotation, accessed through Spring’s Envi r onrent abstraction, or be
bound to structured objects through @onf i gur ati onProperti es.

Spring Boot uses a very particular Pr oper t ySour ce order that is designed to allow sensible overriding
of values. Properties are considered in the following order:

1. Devtools global settings properties on your home directory (~/.spring-boot-
devt ool s. properti es when devtools is active).

2. @est PropertySour ce annotations on your tests.

3. @pri ngBoot Test #pr oper ti es annotation attribute on your tests.
4. Command line arguments.

5. Properties from SPRI NG_APPLI CATI ON_JSON (inline JISON embedded in an environment variable
or system property).

6. Ser vl et Conf i g init parameters.

7. Ser vl et Cont ext init parameters.

8. JNDI attributes from j ava: conp/ env.

9. Java System properties (Syst em get Properti es()).

100S environment variables.

11A RandonVal uePr opert ySour ce that has properties only in r andom *.

12Profile-specific _application properties outside of your packaged jar (application-
{profile}.properties and YAML variants).

13Profile-specific _ application properties packaged inside your jar (application-
{profile}.properties and YAML variants).

14 Application properties outside of your packaged jar (appli cation. properties and YAML
variants).

15Application properties packaged inside your jar (appl i cati on. properti es and YAML variants).
16@Pr oper t ySour ce annotations on your @onf i gur at i on classes.
17Default properties (specified by setting Spri ngAppl i cati on. set Def aul t Properti es).

To provide a concrete example, suppose you develop a @onponent that uses a name property, as
shown in the following example:

i nport org.springfranework. stereotype. *
i nport org.springfranework. beans. factory. annot ati on. *

2.0.0.RC1 Spring Boot 58

http://docs.spring.io/spring/docs/5.0.3.RELEASE/javadoc-api/org/springframework/test/context/TestPropertySource.html
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/test/context/SpringBootTest.html
http://docs.spring.io/spring/docs/5.0.3.RELEASE/javadoc-api/org/springframework/context/annotation/PropertySource.html

Spring Boot Reference Guide

@onponent
public class M/Bean {

@al ue(" ${ nane}")
private String nane;

...

On vyour application classpath (for example, inside your jar) you can have an
application. properties file that provides a sensible default property value for name. When
running in a new environment, an appl i cati on. properti es file can be provided outside of your jar
that overrides the name. For one-off testing, you can launch with a specific command line switch (for
example, java -jar app.jar --nane="Spring").

Tip

The SPRI NG_APPLI CATI ON_JSON properties can be supplied on the command line with an
environment variable. For example, you could use the following line in a UN*X shell:

$ SPRI NG_APPLI CATI ON_JSON=' {"acne": {"nane":"test"}}' java -jar nyapp.jar

In the preceding example, you end up with acne. nanme=t est in the Spring Envi r onnent . You
can also supply the JSON as spri ng. appl i cati on. j son in a System property, as shown in
the following example:

‘ $ java -Dspring. application.json="{"name":"test"}' -jar nyapp.jar

You can also supply the JSON by using a command line argument, as shown in the following
example:

‘ $ java -jar nyapp.jar --spring.application.json="{"name":"test"}"

You can also supply the JSON as a JNDI variable, as follows: java: conp/env/
spring. application.json.

24.1 Configuring Random Values

The RandonVal uePr oper t ySour ce is useful for injecting random values (for example, into secrets
or test cases). It can produce integers, longs, uuids, or strings, as shown in the following example:

.secret =${random val ue}

. nunber =${random i nt }

. bi gnunber =${ r andom | ong}

. uui d=${random uui d}

.nunber . | ess. t han. t en=${random i nt (10) }
nunber . i n. range=${random i nt [1024, 65536] }

233333

Therandom i nt * syntax is OPEN val ue (, max) CLOSE where the OPEN, CLOSE are any character
and val ue, max are integers. If max is provided, then val ue is the minimum value and mex is the
maximum value (exclusive).

24.2 Accessing Command Line Properties

By default, Spri ngAppl i cat i on converts any command line option arguments (that is, arguments
starting with - -, such as --server. port=9000) to a property and adds them to the Spring

2.0.0.RC1 Spring Boot 59

Spring Boot Reference Guide

Envi r onnent . As mentioned previously, command line properties always take precedence over other
property sources.

If you do not want command line properties to be added to the Envi r onnent , you can disable them
by using Spri ngAppl i cati on. set AddCommandLi neProperti es(fal se).

24.3 Application Property Files

SpringAppl i cation loads properties from appli cation. properties files in the following
locations and adds them to the Spring Envi r onnent :

1. A/ confi g subdirectory of the current directory
2. The current directory

3. Aclasspath / conf i g package

4. The classpath root

The listis ordered by precedence (properties defined in locations higher in the list override those defined
in lower locations).

Note

You can also use YAML (.yml') files as an alternative to ".properties’.

If you do not like appl i cati on. properti es as the configuration file name, you can switch to another
file name by specifyingaspri ng. conf i g. nane environment property. You can also refer to an explicit
location by using the spri ng. confi g. | ocat i on environment property (which is a comma-separated
list of directory locations or file paths). The following example shows how to specify a different file name:

‘ $ java -jar myproject.jar --spring.config.name=nyproj ect

The following example shows how to specify two locations:

$ java -jar myproject.jar --spring.config.location=classpath:/default.properties,classpath:/
override. properties

Warning

spring.config.nanme and spring.config.location are used very early to determine
which files have to be loaded, so they must be defined as an environment property (typically an
OS environment variable, a system property, or a command-line argument).

If spring.config.location contains directories (as opposed to files), they should end in / (and,
at runtime, be appended with the names generated from spri ng. conf i g. nanme before being loaded,
including profile-specific file names). Files specified in spri ng. confi g. | ocati on are used as-is,
with no support for profile-specific variants, and are overridden by any profile-specific properties.

Config locations are searched in reverse order. By default, the configured locations are
cl asspat h:/,classpath:/config/,file:./,file:./config/.The resulting search order is
the following:

1.file:./config/

2.0.0.RC1 Spring Boot 60

Spring Boot Reference Guide

2. file:./
3. classpath:/config/
4. cl asspat h:/

When custom config locations are configured by using spring.config.location, they
replace the default locations. For example, if spring. confi g.l ocati on is configured with the
value cl asspat h: / custom config/,file:./customconfig/, the search order becomes the
following:

1.file:./customconfig/
2. cl asspat h: cust om confi g/

Alternatively, when custom config locations are configured by using spri ng. confi g. addi ti onal -
| ocati on, they are used in addition to the default locations. Additional locations are searched
before the default locations. For example, if additional locations of cl asspath:/custom
config/,file:./customconfig/ are configured, the search order becomes the following:

1.file:./customconfig/

2. cl asspat h: cust om confi g/
3.file:./config/

4.file:./

5. cl asspat h: /confi g/

6. cl asspat h:/

This search ordering lets you specify default values in one configuration file and then selectively
override those values in another. You can provide default values for your application in
appl i cation. properti es (or whatever other basename you choose with spri ng. confi g. nane)
in one of the default locations. These default values can then be overridden at runtime with a different
file located in one of the custom locations.

Note

If you use environment variables rather than system properties, most operating systems
disallow period-separated key names, but you can use underscores instead (for example,
SPRI NG_CONFI G_NAME instead of spri ng. confi g. nane).

Note

If your application runs in a container, then JNDI properties (in j ava: conp/ env) or servlet
context initialization parameters can be used instead of, or as well as, environment variables or
system properties.

24.4 Profile-specific Properties

In additionto appl i cati on. properti es files, profile-specific properties can also be defined by using
the following naming convention: appl i cati on-{profil e}. properties. The Envi ronnent has

2.0.0.RC1 Spring Boot 61

Spring Boot Reference Guide

a set of default profiles (by default, [def aul t]) that are used if no active profiles are set. In other words,
if no profiles are explicitly activated, then properties from appl i cati on- def aul t. properti es are
loaded.

Profile-specific ~ properties are loaded from the same Ilocations as standard
application. properties, with profile-specific files always overriding the non-specific ones,
whether or not the profile-specific files are inside or outside your packaged jar.

If several profiles are specified, a last-wins strategy applies. For example, profiles specified
by the spring.profiles.active property are added after those configured through the
Spri ngAppl i cati on APl and therefore take precedence.

Note

If you have specified any files in spri ng. confi g. | ocat i on, profile-specific variants of those
files are not considered. Use directories in spri ng. confi g. | ocati on if you want to also use
profile-specific properties.

24.5 Placeholders in Properties

The values in appl i cati on. properti es are filtered through the existing Envi r onment when they
are used, so you can refer back to previously defined values (for example, from System properties).

app. name=MyApp
app. descri ption=${app. nane} is a Spring Boot application

Tip

You can also use this technique to create “short” variants of existing Spring Boot properties. See
the Section 73.4, “Use ‘Short’ Command Line Arguments” how-to for details.

24.6 Using YAML Instead of Properties

YAML is a superset of JSON and, as such, is a convenient format for specifying hierarchical configuration
data. The Spri ngAppl i cati on class automatically supports YAML as an alternative to properties
whenever you have the SnakeYAML library on your classpath.

Note

If you use “Starters”, SnakeYAML is automatically provided by spri ng- boot - starter.

Loading YAML

Spring Framework provides two convenient classes that can be used to load YAML documents. The
Yam Properti esFact or yBean loads YAML as Pr oper ti es and the Yam MapFact or yBean loads
YAML as a Map.

For example, consider the following YAML document:

envi ronment s:
dev:
url: http://dev. exanpl e.com
nane: Devel oper Setup

2.0.0.RC1 Spring Boot 62

http://yaml.org
http://www.snakeyaml.org/

Spring Boot Reference Guide

prod:
url: http://another. exanpl e.com
nane: My Cool App

The preceding example would be transformed into the following properties:

envi ronnent s. dev. url =http:// dev. exanpl e. com

envi ronnment s. dev. nanme=Devel oper Setup

envi ronnment s. prod. url =http://anot her. exanpl e. com
envi ronnents. prod. nane=My Cool App

YAML lists are represented as property keys with [i ndex] dereferencers. For example, consider the
following YAML.:

ny:
servers:

- dev. exanpl e. com

- anot her. exanpl e. com

The preceding example would be transformed into these properties:

ny. server s[0] =dev. exanpl e. com
ny. server s[1] =anot her . exanpl e. com

To bind to properties like that by using the Spring Dat aBi nder utilities (which is what
@confi gurati onProperties does), you need to have a property in the target bean of type
java.util.List (or Set) and you either need to provide a setter or initialize it with a mutable value.
For example, the following example binds to the properties shown previously:

@confi gurationProperties(prefix="ny")
public class Config {

private List<String> servers = new ArrayList<String>();

public List<String> getServers() {
return this.servers;

}

}

Note

When lists are configured in more than one place, overriding works by replacing the entire list.
In the preceding example, when y. server s is defined in several places, the entire list from
the Pr oper t ySour ce with higher precedence overrides any other configuration for that list. Both
comma-separated lists and YAML lists can be used for completely overriding the contents of the
list.

Exposing YAML as Properties in the Spring Environment

The Yam Pr opert ySour ceLoader class can be used to expose YAML as a PropertySour ce in
the Spring Envi r onnent . Doing so lets you use the @/al ue annotation with placeholders syntax to
access YAML properties.

Multi-profile YAML Documents

You can specify multiple profile-specific YAML documents in a single file by usingaspri ng. profil es
key to indicate when the document applies, as shown in the following example:

2.0.0.RC1 Spring Boot 63

Spring Boot Reference Guide

server:
address: 192.168.1.100

spring:

profiles: devel opnent
server:

address: 127.0.0.1

spring:

profiles: production
server:

address: 192.168.1.120

In the preceding example, if the devel opnent profile is active, the server. addr ess property
is 127. 0. 0. 1. Similarly, if the producti on profile is active, the server. addr ess property is
192. 168. 1. 120. If the devel opnent and pr oduct i on profiles are not enabled, then the value for
the property is 192. 168. 1. 100.

If none are explicitly active when the application context starts, the default profiles are activated. So,
in the following YAML, we set a value for spri ng. security. user. passwor d that is available only
in the "default” profile:

server:
port: 8000

spring:
profiles: default
security:
user:
password: weak

Whereas, in the following example, the password is always set because it is not attached to any profile,
and it would have to be explicitly reset in all other profiles as necessary:

server:
port: 8000
spring:
security:
user:
password: weak

Spring profiles designated by using the spri ng. profil es element may optionally be negated by
using the ! character. If both negated and non-negated profiles are specified for a single document, at
least one non-negated profile must match, and no negated profiles may match.

YAML Shortcomings

YAML files cannot be loaded by using the @r oper t ySour ce annotation. So, in the case that you need
to load values that way, you need to use a properties file.

Merging YAML Lists

As we showed earlier, any YAML content is ultimately transformed to properties. That process may be
counter-intuitive when overriding “list” properties through a profile.

For example, assume a MyPoj o object with nane anddescr i pt i on attributes thatare nul | by default.
The following example exposes a list of MyPoj o objects from AcrrePr operti es:

@onfi gurationProperties("acne")
public class AcneProperties {

2.0.0.RC1 Spring Boot 64

Spring Boot Reference Guide

private final List<M/Pojo> list = new ArrayList<>();

public List<M/Pojo> getList() {
return this.list;

}

Consider the following configuration:

acne:
list:
- nane: my nane
description: ny description

spring:
profiles: dev
acne:
list:
- nane: ny another name

If the dev profile is not active, AcneProperti es. | i st contains one MyPoj o entry, as previously
defined. If the dev profile is enabled, however, the | i st still contains only one entry (with a name of
nmy anot her nane and a description of nul |). This configuration does not add a second MyPoj o
instance to the list, and it does not merge the items.

When a collection is specified in multiple profiles, the one with the highest priority (and only that one)
is used. Consider the following example:

acme:
list:
- nane: ny name
description: nmy description
- nane: another name
description: another description

spring:
profiles: dev
acne:
list:
- nane: ny another name

In the preceding example, if the dev profile is active, AcnePr operti es. | i st contains one MyPoj o
entry (with a name of my anot her namne and a description of nul |).

24.7 Type-safe Configuration Properties

Using the @/al ue(" ${ property}") annotation to inject configuration properties can sometimes be
cumbersome, especially if you are working with multiple properties or your data is hierarchical in nature.
Spring Boot provides an alternative method of working with properties that lets strongly typed beans
govern and validate the configuration of your application, as shown in the following example:

package com exanpl e;

i nport java.net.|net Address;
inport java.util.ArraylList;

i nport java.util.Collections;
inmport java.util.List;

i nport org.springframework. boot. context. properties. ConfigurationProperties;

@Confi gurationProperties("acne")

2.0.0.RC1 Spring Boot 65

Spring Boot Reference Guide

public class AcneProperties {
private bool ean enabl ed;
private |net Address renot eAddress;

private final Security security = new Security();

public bool ean isEnabled() { ... }

public void set Enabl ed(bool ean enabled) { ... }

public I net Address get RenpteAddress() { ... }

public void set Renbt eAddr ess(| net Address renpteAddress) { ... }
public Security getSecurity() { ... }

public static class Security {
private String usernane;
private String password;

private List<String> roles = new ArrayLi st<>(Coll ections.singleton("USER"));

public String getUsernane() { ... }

public void setUsernane(String usernane) { ... }
public String getPassword() { ... }

public void setPassword(String password) { ... }
public List<String> getRoles() { ... }

public void setRoles(List<String> roles) { ... }

The preceding POJO defines the following properties:
acne. enabl ed, with a value of f al se by default.
acne. r enot e- addr ess, with a type that can be coerced from St ri ng.

acne. security. user name, with a nested "security" object whose name is determined by the
name of the property. In particular, the return type is not used at all there and could have been
SecurityProperti es.

acne. security. password.

acne. security. rol es, with a collection of Stri ng.

Note

Getters and setters are usually mandatory, since binding is through standard Java Beans property
descriptors, just like in Spring MVC. A setter may be omitted in the following cases:

» Maps, as long as they are initialized, need a getter but not necessarily a setter, since they can
be mutated by the binder.

« Collections and arrays can be accessed either through an index (typically with YAML) or by
using a single comma-separated value (properties). In the latter case, a setter is mandatory.

2.0.0.RC1 Spring Boot 66

Spring Boot Reference Guide

We recommend to always add a setter for such types. If you initialize a collection, make sure
it is not immutable (as in the preceding example).

« If nested POJO properties are initialized (like the Secur i t y field in the preceding example), a
setter is not required. If you want the binder to create the instance on the fly by using its default
constructor, you need a setter.

Some people use Project Lombok to add getters and setters automatically. Make sure that Lombok
does not generate any particular constructor for such a type, as it is used automatically by the
container to instantiate the object.

Tip

See also the differences between @/al ue and @onf i gur ati onProperti es.

You also need to list the properties classes to register in the @nabl eConfi gurati onProperties
annotation, as shown in the following example:

@onfiguration
@Enabl eConfi gurati onProperties(AcneProperties. cl ass)
public class MyConfiguration {

}

Note

When the @Confi gurationProperties bean is registered that way, the bean has a
conventional name: <pr ef i x>- <f gn>, where <pr ef i x> is the environment key prefix specified
in the @onfi gurati onProperties annotation and <f gn> is the fully qualified name of the
bean. If the annotation does not provide any prefix, only the fully qualified name of the bean is
used.

The bean name in the example above is acrre- com exanpl e. AcnePr operti es.

Even if the preceding configuration creates a regular bean for AcnePr operti es, we recommend
that @onfi gurati onProperties only deal with the environment and, in particular, does not
inject other beans from the context. Having said that, the @nabl eConfi gurati onProperties
annotation is also automatically applied to your project so that any existing bean annotated
with @Confi gurati onProperties is configured from the Environment. You could shortcut
MyConf i gur ati on by making sure AcnePr operti es is already a bean, as shown in the following
example:

@onponent
@onfi gurationProperties(prefix="acne")
public class AcneProperties {

/Il ... see the preceding exanple

This style of configuration works particularly well with the Spri ngAppl i cati on external YAML
configuration, as shown in the following example:

application.ymn

acne:
renot e- address: 192.168.1.1

2.0.0.RC1 Spring Boot 67

Spring Boot Reference Guide

security:
usernane: admn
rol es:
- USER
- ADM N

additional configuration as required

To work with @onf i gur ati onPr operti es beans, you can inject them in the same way as any other
bean, as shown in the following example:

@ervi ce
public class MyService {

private final AcnmeProperties properties;

@\ut owi r ed
public MyService(AcneProperties properties) {
this.properties = properties;

}

/...

@Post Const ruct

public void openConnection() {
Server server = new Server(this.properties.getRenoteAddress());
I

}

Tip

Using @onfi gur ati onProperti es also lets you generate metadata files that can be used by
IDEs to offer auto-completion for your own keys. See the Appendix B, Configuration Metadata
appendix for details.

Third-party Configuration

As well as using @onfi gurati onProperti es to annotate a class, you can also use it on public
@ean methods. Doing so can be particularly useful when you want to bind properties to third-party
components that are outside of your control.

To configure a bean from the Envi r onnent properties, add @onfi gurati onProperties to its
bean registration, as shown in the following example:

@onfigurationProperties(prefix = "another")
@Bean
publ i ¢ Anot her Conponent anot her Conponent () {

}

Any property defined with the anot her prefix is mapped onto that Anot her Conponent bean in manner
similar to the preceding AcnePr operti es example.

Relaxed Binding

Spring Boot uses some relaxed rules for binding Environnment properties to
@confi gurati onProperties beans, so there does not need to be an exact match between the
Envi ronnment property name and the bean property name. Common examples where this is useful

2.0.0.RC1 Spring Boot 68

Spring Boot Reference Guide

include dash-separated environment properties (for example, cont ext - pat h binds to cont ext Pat h),
and capitalized environment properties (for example, PORT binds to port).

For example, consider the following @onf i gur ati onProperti es class:

@onfi gurationProperties(prefix="acne. ny-project.person")
public class OmnerProperties {

private String firstNane;

public String getFirstName() {
return this.firstNane;

}

public void setFirstName(String firstName) {
this.firstName = firstNane;
}

In the preceding example, the following properties names can all be used:

Table 24.1. relaxed binding

Property Note

acne. ny- Standard camel case syntax.
proj ect. person. firstName

acne. ny- Kebab case, which is recommended for use in . properties and . yml files.
proj ect.person.first-

name

acne. ny- Underscore notation, which is an alternative format for use in . properti es

pr oj ect . per son. fihd sty nhafites.

ACVE_MYPRQIECT _PpReObhase Rmsf\Ezhich is recommended when using system environment
variables.

Note

The pr ef i x value for the annotation must be in kebab case (lowercase and separated by -, such
as acne. my- proj ect. person).

Table 24.2. relaxed binding rules per property source

Property Source Simple List

Properties Files Camel case, kebab case, or Standard list syntax using[] or
underscore notation comma-separated values

YAML Files Camel case, kebab case, or Standard YAML list syntax or comma-
underscore notation separated values

Environment Upper case format with underscore Numeric values surrounded

Variables as the delimiter. _ should not be used by underscores, such as
within a property name MY_ACME 1 OTHER =

ny. acne[1] . ot her

2.0.0.RC1 Spring Boot 69

Spring Boot Reference Guide

Property Source Simple List

System properties Camel case, kebab case, or Standard list syntax using [] or
underscore notation comma-separated values

Tip

We recommend that, when possible, properties are stored in lower-case kebab format, such as
ny. property- name=acne.

Properties Conversion

Spring attempts to coerce the external application properties to the right type when it binds to
the @onfi gurati onProperties beans. If you need custom type conversion, you can provide
a ConversionServi ce bean (with a bean named conversi onServi ce) or custom property
editors (through a Cust onEdi t or Conf i gur er bean) or custom Convert ers (with bean definitions
annotated as @onfi gur ati onProperti esBi ndi ng).

Note

As this bean is requested very early during the application lifecycle, make sure to limit the
dependencies that your Conver si onSer vi ce is using. Typically, any dependency that you
require may not be fully initialized at creation time. You may want to rename your custom
Conver si onSer vi ce if it is not required for configuration keys coercion and only rely on custom
converters qualified with @onf i gur ati onPr operti esBi ndi ng.

@ConfigurationProperties Validation

Spring Boot attempts to validate @onf i gur at i onPr operti es classes whenever they are annotated
with Spring’s @/al i dat ed annotation. You can use JSR-303 j avax. val i dation constraint
annotations directly on your configuration class. To do so, ensure that a compliant JSR-303
implementation is on your classpath and then add constraint annotations to your fields, as shown in
the following example:

@onfi gurationProperties(prefix="acne")
@/al i dat ed
public class AcneProperties {

@\ot Nul |
private |net Address renot eAddress;

/Il ... getters and setters

In order to validate the values of nested properties, you must annotate the associated field as @/al i d
to trigger its validation. The following example builds on the preceding AcnmePr operti es example:

@onfi gurationProperties(prefix="acne")
@val i dat ed
public class AcneProperties {

@\ot Nul |
private |net Address renoteAddress;

@alid

2.0.0.RC1 Spring Boot 70

Spring Boot Reference Guide

private final Security security = new Security();
/1 ... getters and setters
public static class Security {

@Not Enpt y
public String usernane;

/1 ... getters and setters

You can also add a custom Spring Validator by creating a bean definition called
configurationPropertiesValidator. The @ean method should be declared static. The
configuration properties validator is created very early in the application’s lifecycle, and declaring the
@Bean method as static lets the bean be created without having to instantiate the @onf i gurati on
class. Doing so avoids any problems that may be caused by early instantiation. There is a property
validation sample that shows how to set things up.

Tip

The spring-boot-actuator module includes an endpoint that exposes all
@confi gurati onProperti es beans. Point your web browser to / act uat or/ conf i gpr ops
or use the equivalent JMX endpoint. See the "Production ready features" section for details.

@ConfigurationProperties vs. @Value

The @/al ue annotation is a core container feature, and it does not provide the same features as
type-safe configuration properties. The following table summarizes the features that are supported by
@confi gurati onProperties and @al ue:

Feature @confi gur ati onPr ope@alese
Relaxed binding Yes No
Meta-data support Yes No
SpEL evaluation No Yes

If you define a set of configuration keys for your own components, we recommend you group them in a
POJO annotated with @onf i gur ati onProperti es. You should also be aware that, since @/al ue
does not support relaxed binding, it is not a good candidate if you need to provide the value by using
environment variables.

Finally, while you can write a SpEL expression in @/al ue, such expressions are not processed from
application property files.

2.0.0.RC1 Spring Boot 71

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-samples/spring-boot-sample-property-validation
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-samples/spring-boot-sample-property-validation

Spring Boot Reference Guide

25. Profiles

Spring Profiles provide a way to segregate parts of your application configuration and make it be
available only in certain environments. Any @onponent or @onf i gurati on can be marked with
@r of i | e to limit when it is loaded, as shown in the following example:

@onfiguration
@rofile("production")
public class ProductionConfiguration {

...

You can use a spring. profiles.active Environnent property to specify which profiles are
active. You can specify the property in any of the ways described earlier in this chapter. For example,
you could include it in your appl i cati on. pr operti es, as shown in the following example:

spring. profiles.active=dev, hsql db

You could also specify it on the command line by using the following switch: --
spring. profiles.active=dev, hsql db.

25.1 Adding Active Profiles

The spring. profiles.active property follows the same ordering rules as other properties:
The highest PropertySource wins. This means that you can specify active profiles in
appl i cation. properties and then replace them by using the command line switch.

Sometimes, it is useful to have profile-specific properties that add to the active profiles rather
than replace them. The spring. profil es.incl ude property can be used to unconditionally add
active profiles. The Spri ngAppl i cati on entry point also has a Java API for setting additional
profiles (that is, on top of those activated by the spring. profil es. acti ve property). See the
set Addi ti onal Profil es() method in SpringApplication.

For example, when an application with the following properties is run by using the switch, - -
spring. profiles.active=prod,the proddb and pr odny profiles are also activated:

ny.property: fronyamfile

spring.profiles: prod
spring. profiles.include
- proddb
- prodng

Note

Remember that the spring. profil es property can be defined in a YAML document to
determine when this particular document is included in the configuration. See Section 73.7
“Change Configuration Depending on the Environment” for more details.

2.0.0.RC1 Spring Boot 72

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/SpringApplication.html

Spring Boot Reference Guide

25.2 Programmatically Setting Profiles

You can programmatically set active profiles by calling
SpringApplication.set Additi onal Profil es(.) before your application runs. It is also
possible to activate profiles by using Spring’s Conf i gur abl eEnvi r onnent interface.

25.3 Profile-specific Configuration Files

Profile-specific variants of both application. properties (or application.ynl) and files
referenced through @Confi gurati onProperties are considered as files and loaded. See
"Section 24.4, “Profile-specific Properties™ for details.

2.0.0.RC1 Spring Boot 73

Spring Boot Reference Guide

26. Logging

Spring Boot uses Commons Logging for all internal logging but leaves the underlying log implementation
open. Default configurations are provided for Java Util Logging, Log4J2, and Logback. In each case,
loggers are pre-configured to use console output with optional file output also available.

By default, if you use the “Starters”, Logback is used for logging. Appropriate Logback routing is also
included to ensure that dependent libraries that use Java Util Logging, Commons Logging, Log4J, or
SLF4J all work correctly.

Tip

There are a lot of logging frameworks available for Java. Do not worry if the above list seems
confusing. Generally, you do not need to change your logging dependencies and the Spring Boot
defaults work just fine.

26.1 Log Format

The default log output from Spring Boot resembles the following example:

2014-03-05 10:57:51. 112 | NFO 45469 --- [nmai n] org. apache. catal i na. cor e. St andar dEngi ne
Starting Servlet Engine: Apache Tontat/7.0.52

2014-03-05 10:57:51.253 | NFO 45469 --- [ost-startStop-1] o.a.c.c.C.[Tontat].[local host].[/]
Initializing Spring enbedded WebAppl i cati onCont ext

2014-03-05 10:57:51. 253 | NFO 45469 --- [ost-startStop-1] o.s.web. context. ContextLoader
Root WebApplicationContext: initialization conpleted in 1358 ns

2014-03-05 10:57:51.698 | NFO 45469 --- [ost-startStop-1] o.s.b.c.e. ServletRegistrati onBean
Mappi ng servlet: 'dispatcherServliet' to [/]

2014-03-05 10:57:51.702 |NFO 45469 --- [ost-startStop-1] o.s.b.c.enbedded. FilterRegi strati onBean
Mapping filter: 'hiddenHttpMethodFilter' to: [/*]

The following items are output:
» Date and Time: Millisecond precision and easily sortable.

» Log Level: ERROR, WARN, | NFO, DEBUG, or TRACE.

Process ID.

» A--- separator to distinguish the start of actual log messages.

» Thread name: Enclosed in square brackets (may be truncated for console output).
» Logger name: This is usually the source class name (often abbreviated).

e The log message.

Note

Logback does not have a FATAL level. It is mapped to ERROR.

26.2 Console Output

The default log configuration echoes messages to the console as they are written. By default, ERROR-
level, WARN-level, and | NFO-level messages are logged. You can also enable a “debug” mode by starting
your application with a - - debug flag.

2.0.0.RC1 Spring Boot 74

http://commons.apache.org/logging
http://docs.oracle.com/javase/8/docs/api/java/util/logging/package-summary.html
http://logging.apache.org/log4j/2.x/
http://logback.qos.ch/

Spring Boot Reference Guide

$ java -jar nyapp.jar --debug

Note

You can also specify debug=t r ue in your appl i cati on. properties.

When the debug mode is enabled, a selection of core loggers (embedded container, Hibernate, and
Spring Boot) are configured to output more information. Enabling the debug mode does not configure
your application to log all messages with DEBUG level.

Alternatively, you can enable a “trace” mode by starting your application with a --trace flag (or
trace=true inyour appli cation. properti es). Doing so enables trace logging for a selection of
core loggers (embedded container, Hibernate schema generation, and the whole Spring portfolio).

Color-coded Output

If your terminal supports ANSI, color output is used to aid readability. You can set
spring. out put. ansi . enabl ed to a supported value to override the auto detection.

Color coding is configured by using the %! r conversion word. In its simplest form, the converter colors
the output according to the log level, as shown in the following example:

% r (%Bp)

The following table describes the mapping of log levels to colors:

Level Color
FATAL Red
ERROR Red
WARN Yellow
I NFO Green
DEBUG Green
TRACE Green

Alternatively, you can specify the color or style that should be used by providing it as an option to the
conversion. For example, to make the text yellow, use the following setting:

%! r (%{yyyy- MI dd HH nm ss. SSS}) {yel | ow}

The following colors and styles are supported:
* bl ue
e cyan
o faint

» green

2.0.0.RC1 Spring Boot 75

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/ansi/AnsiOutput.Enabled.html

Spring Boot Reference Guide

e magent a
 red

* yell ow

26.3 File Output

By default, Spring Boot logs only to the console and does not write log files. If you want to write log files
in addition to the console output, you need to set a | oggi ng. fil e or | oggi ng. pat h property (for
example, in your appl i cati on. properti es).

The following table shows how the | oggi ng. * properties can be used together:
Table 26.1. Logging properties
| oggi ng. fi|leoggi ng. pat Bxample Description

(none) (none) Console only logging.

Specific file | (none) ny. | og Writes to the specified log file. Names can be an exact
location or relative to the current directory.

(none) Specific /var/log | Writes spring. | og to the specified directory. Names
directory can be an exact location or relative to the current
directory.

Log files rotate when they reach 10 MB and, as with console output, ERROR-level, WARN-level, and | NFO-
level messages are logged by default. Size limits can be changed using the | oggi ng. fi |l e. max- si ze
property. Previously rotated files are archived indefinitely unless the | oggi ng. fi |l e. max- hi story
property has been set.

Note

The logging system is initialized early in the application lifecycle. Consequently, logging properties
are not found in property files loaded through @°r oper t ySour ce annotations.

Tip

Logging properties are independent of the actual logging infrastructure. As a result, specific
configuration keys (such as | ogback. confi gur at i onFi | e for Logback) are not managed by
spring Boot.

26.4 Log Levels

All the supported logging systems can have the logger levels set in the Spring Envi r onnent
(for example, in appl i cation. properties) by using | oggi ng. | evel . *=LEVEL where LEVEL
is one of TRACE, DEBUG, INFO, WARN, ERROR, FATAL, or OFF. The root logger can be
configured by using | oggi ng. | evel . r oot . The following example shows potential logging settings
inapplication. properties:

| oggi ng. | evel . r oot =WARN
| oggi ng. | evel . org. spri ngf ramewor k. web=DEBUG
| oggi ng. | evel . or g. hi ber nat e=ERROR

2.0.0.RC1 Spring Boot 76

Spring Boot Reference Guide

26.5 Custom Log Configuration

The various logging systems can be activated by including the appropriate libraries on the classpath
and can be further customized by providing a suitable configuration file in the root of the classpath or in
a location specified by the following Spring Envi r onnment property: | oggi ng. confi g.

You can force Spring Boot to use a particular logging system by using the
or g. spri ngframewor k. boot . | oggi ng. Loggi ngSyst emsystem property. The value should be
the fully qualified class name of a Loggi ngSyst emimplementation. You can also disable Spring Boot's
logging configuration entirely by using a value of none.

Note

Since logging is initialized before the Appl i cati onCont ext is created, it is not possible to
control logging from @r opert ySour ces in Spring @onf i gur at i on files. System properties
and the conventional Spring Boot external configuration files work fine.)

Depending on your logging system, the following files are loaded:

Logging System Customization

Logback | ogback-spring. xm , | ogback-
spring. groovy, | ogback. xn , or
| ogback. gr oovy

Log4j2 | 0g4j 2-spring. xm orl og4j 2. xm
JDK (Java Util Logging) | oggi ng. properties
Note

When possible, we recommend that you use the - spri ng variants for your logging configuration
(for example, | ogback-spring.xm rather than | ogback.xm). If you use standard
configuration locations, Spring cannot completely control log initialization.

Warning

There are known classloading issues with Java Util Logging that cause problems when running
from an 'executable jar'. We recommend that you avoid it when running from an 'executable jar'
if at all possible.

To help with the customization, some other properties are transferred from the Spring Envi r onnent
to System properties, as described in the following table:

Spring Environment System Property Comments

| oggi ng. exception- LOG_EXCEPTI ON_CONVERSI ON_VWBRRonversion word used

conver si on-wor d when logging exceptions.

l ogging.file LOG FI LE If defined, it is used in the
default log configuration.

2.0.0.RC1 Spring Boot 77

Spring Boot Reference Guide

Spring Environment

| oggi ng. fil e. max-si ze

[oggi ng. file. max-
hi story

| oggi ng. pat h

System Property

LOG_FI LE_MAX_SI ZE

LOG_FI LE_MAX_HI STORY

LOG_PATH

Comments

Maximum log file size (if
LOG_FILE enabled). (Only
supported with the default
Logback setup.)

Maximum number of archive
log files to keep (if LOG_FILE
enabled). (Only supported with
the default Logback setup.)

If defined, it is used in the
default log configuration.

| oggi ng. pattern. consol e

| oggi ng. pattern. dat ef or m

CONSOLE_LOG_PATTERN

1t OG_DATEFORMAT_PATTERN

The log pattern to use on
the console (stdout). (Only
supported with the default
Logback setup.)

Appender pattern for log date
format. (Only supported with the
default Logback setup.)

| oggi ng. pattern.file

FI LE_LOG_PATTERN

The log pattern to use in a

file (if LOG_FI LE is enabled).
(Only supported with the default
Logback setup.)

| oggi ng. pattern.|evel

LOG_LEVEL_PATTERN

The format to use when
rendering the log level (default
%5p). (Only supported with the
default Logback setup.)

PI D

Pl D

The current process ID
(discovered if possible and
when not already defined as an
OS environment variable).

All the supported logging systems can consult System properties when parsing their configuration files.

See the default configurations in spri ng- boot . j ar for examples:

» Logback
* Log4j2

» Java Util logging

Tip

If you want to use a placeholder in a logging property, you should use Spring Boot's syntax and
not the syntax of the underlying framework. Notably, if you use Logback, you should use : as the
delimiter between a property name and its default value and not use : - .

2.0.0.RC1

Spring Boot

78

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/resources/org/springframework/boot/logging/logback/defaults.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/resources/org/springframework/boot/logging/log4j2/log4j2.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/resources/org/springframework/boot/logging/java/logging-file.properties

Spring Boot Reference Guide

Tip

You can add MDC and other ad-hoc content to log lines by overriding only the
LOG LEVEL_PATTERN (or | oggi ng. pattern. | evel with Logback). For example, if you use
| oggi ng. pattern.|evel =user: %{user} %bp, then the default log format contains an
MDC entry for "user", if it exists, as shown in the following example.

2015- 09- 30 12: 30: 04. 031 user:soneone | NFO 22174 --- [ni 0-8080-exec-0] deno. Controller
Handl i ng aut henti cated request

26.6 Logback Extensions

Spring Boot includes a number of extensions to Logback that can help with advanced configuration.
You can use these extensions in your | ogback- spri ng. xm configuration file.

Note

Because the standard | ogback. xm configuration file is loaded too early, you cannot use
extensions in it. You need to either use | ogback- spri ng. xm or define al oggi ng. confi g

property.

Warning

The extensions cannot be used with Logback’s configuration scanning. If you attempt to do so,
making changes to the configuration file results in an error similar to one of the following being
logged:

ERRCR i n ch. qos. | ogback. core.joran.spi.Interpreter@:71 - no applicable action for [springProperty],
current ElementPath is [[configuration][springProperty]]

ERROR i n ch. qos. | ogback. core.joran.spi.Interpreter@: 71 - no applicable action for [springProfile],
current ElementPath is [[configuration][springProfile]]

Profile-specific Configuration

The <springProfil e> tag lets you optionally include or exclude sections of configuration based
on the active Spring profiles. Profile sections are supported anywhere within the <confi gur ati on>
element. Use the nane attribute to specify which profile accepts the configuration. Multiple profiles can
be specified with a comma-separated list. The following listing shows three sample profiles:

<springProfile name="stagi ng">
<!-- configuration to be enabl ed when the "staging" profile is active -->
</ springProfile>

<springProfile name="dev, staging">
<l-- configuration to be enabl ed when the "dev" or "staging" profiles are active -->
</springProfile>

<springProfile name="!production">
<l-- configuration to be enabl ed when the "production" profile is not active -->
</springProfile>

Environment Properties

The <spri ngPropert y> tag lets you expose properties from the Spring Envi r onnment for use within
Logback. Doing so can be useful if you want to access values from your appl i cati on. properties
file in your Logback configuration. The tag works in a similar way to Logback’s standard <pr operty>

2.0.0.RC1 Spring Boot 79

http://logback.qos.ch/manual/configuration.html#autoScan

Spring Boot Reference Guide

tag. However, rather than specifying a direct val ue, you specify the sour ce of the property (from the
Envi ronnent). If you need to store the property somewhere other than in | ocal scope, you can use
the scope attribute. If you need a fallback value (in case the property is not set in the Envi r onrment),
you can use the def aul t Val ue attribute. The following example shows how to expose properties for
use within Logback:

<springProperty scope="context" name="fluentHost" source="nyapp.fluentd. host"
def aul t Val ue="1 ocal host"/ >
<appender nanme="FLUENT" cl ass="ch. gos. | ogback. nor e. appenders. Dat aFl uent Appender " >
<r enot eHost >${ f | uent Host } </ r enot eHost >

</ appender >

Note

The source must be specified in kebab case (such as ny. property-nane). However,
properties can be added to the Envi r onnent by using the relaxed rules.

2.0.0.RC1 Spring Boot 80

Spring Boot Reference Guide

27. Developing Web Applications

Spring Boot is well suited for web application development. You can create a self-contained HTTP
server by using embedded Tomcat, Jetty, Undertow, or Netty. Most web applications use the spri ng-
boot - st art er - web module to get up and running quickly. You can also choose to build reactive web
applications by using the spri ng- boot - st art er - webf | ux module.

If you have not yet developed a Spring Boot web application, you can follow the "Hello World!" example
in the Getting started section.

27.1 The “Spring Web MVC Framework”

The Spring Web MVC framework (often referred to as simply “Spring MVC”) is a rich “model view
controller” web framework. Spring MVC lets you create special @ont rol | er or @Rest Control | er
beans to handle incoming HTTP requests. Methods in your controller are mapped to HTTP by using
@Request Mappi ng annotations.

The following code shows a typical @est Cont r ol | er that serves JSON data:

@Rest Control | er
@Request Mappi ng(val ue="/users")
public class MyRestController {

@Request Mappi ng(val ue="/{user}", nethod=Request Met hod. GET)
public User getUser(@athVariable Long user) {

1o
}

@Request Mappi ng(val ue="/{user}/custoners", nethod=Request Met hod. GET)
Li st <Cust omer > get User Cust oner s(@at hVari abl e Long user) {
...

}

@Request Mappi ng(val ue="/{user}", net hod=Request Met hod. DELETE)
public User del eteUser(@athVariable Long user) {
...

}
}

Spring MVC is part of the core Spring Framework, and detailed information is available in the reference
documentation. There are also several guides that cover Spring MVC available at spring.io/guides.

Spring MVC Auto-configuration

Spring Boot provides auto-configuration for Spring MVC that works well with most applications.

The auto-configuration adds the following features on top of Spring’s defaults:

Inclusion of Cont ent Negot i at i ngVi ewResol ver and BeanNaneVi ewResol ver beans.

Support for serving static resources, including support for WebJars (covered later in this document)).

» Automatic registration of Convert er, Generi cConverter, and For matt er beans.

Support for Ht t pMessageConvert er s (covered later in this document).

» Automatic registration of MessageCodesResol ver (covered later in this document).

2.0.0.RC1 Spring Boot 81

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web.html#mvc
http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web.html#mvc
http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web.html#mvc
http://spring.io/guides

Spring Boot Reference Guide

» Statici ndex. ht m support.

» Custom Favi con support (covered later in this document).

* Automatic use of a Confi gurabl eWebBi ndi nglnitializer bean (covered later in this
document).

If you want to keep Spring Boot MVC features and you want to add additional MVC configuration
(interceptors, formatters, view controllers, and other features), you can add your own @onf i gur ati on
class of type WebMvcConfi gurer but without @Enabl eWwebMic. If you wish to provide
custom instances of Request Mappi ngHandl er Mappi ng, Request Mappi ngHandl er Adapt er, or
Except i onHandl er Except i onResol ver, you can declare a WebM/cRegi st rati onsAdapt er
instance to provide such components.

If you want to take complete control of Spring MVC, you can add your own @Conf i gur at i on annotated
with @nabl eWebMrc.

HttpMessageConverters

Spring MVC uses the Ht t pMessageConvert er interface to convert HTTP requests and responses.
Sensible defaults are included out of the box. For example, objects can be automatically converted to
JSON (by using the Jackson library) or XML (by using the Jackson XML extension, if available, or by
using JAXB if the Jackson XML extension is not available). By default, strings are encoded in UTF- 8.

If you need to add or customize converters, you can use Spring Boot's Ht t pMessageConverters
class, as shown in the following listing:

i mport org.springframework. boot . aut oconfi gure. web. H t pMessageConverters;
i nport org.springframework. context.annotation.*;
i nport org.springframework. http.converter.*;

@configuration
public class MyConfiguration {

@Bean
public HttpMessageConverters custonConverters() {
Ht t pMessageConverter<?> additional = ...
Ht t pMessageConverter<?> another = ...
return new Htt pMessageConverters(additional, another);

}

}

Any Ht t pMessageConvert er bean that is present in the context is added to the list of converters.
You can also override default converters in the same way.

Custom JSON Serializers and Deserializers

If you use Jackson to serialize and deserialize JSON data, you might want to write your own
JsonSeri al i zer and JsonDeseri al i zer classes. Custom serializers are usually registered with
Jackson through a module, but Spring Boot provides an alternative @ sonConponent annotation that
makes it easier to directly register Spring Beans.

You can use the @sonConponent annotation directly on JsonSeri al i zer orJsonDeseri al i zer
implementations. You can also use it on classes that contain serializers/deserializers as inner classes,
as shown in the following example:

2.0.0.RC1 Spring Boot 82

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web.html#mvc
http://wiki.fasterxml.com/JacksonHowToCustomDeserializers
http://wiki.fasterxml.com/JacksonHowToCustomDeserializers

Spring Boot Reference Guide

inport java.io.*;

i nport com fasterxnl.jackson.core.*;

i nport com fasterxnl.jackson. databi nd. *;

i nport org.springfranework. boot . jackson. *;

@sonConponent
public class Exanple {

public static class Serializer extends JsonSerializer<SoneObject> {
/...

}

public static class Deserializer extends JsonDeserializer<SoneCbject> {
1.

}

All @sonConponent beans in the Appl i cat i onCont ext are automatically registered with Jackson.
Because @sonComnponent is meta-annotated with @Conponent , the usual component-scanning rules

apply.

Spring Boot also provides JsonObj ect Seri al i zer and JsonQbj ect Deseri al i zer base classes
that provide useful alternatives to the standard Jackson versions when serializing objects. See
JsonOhj ect Seri alizer and JsonObj ect Deseri al i zer in the Javadoc for details.

MessageCodesResolver

Spring MVC has a strategy for generating error codes for rendering error messages from binding errors:
MessageCodesResol ver. If you set the spring. mvc. nessage- codes-resol ver. f or nat
property PREFI X _ERROR_CODE or POSTFI X_ERROR_CODE, Spring Boot creates one for you (see the
enumeration in Def aul t MessageCodesResol ver. For nat).

Static Content

By default, Spring Boot serves static content from a directory called / static (or / public or/
resour ces or / META- | NF/ r esour ces) in the classpath or from the root of the Ser vl et Cont ext .
It uses the Resour ceHt t pRequest Handl er from Spring MVC so that you can modify that behavior
by adding your own WebMvcConf i gur er and overriding the addResour ceHandl er s method.

In a stand-alone web application, the default servlet from the container is also enabled and acts as a
fallback, serving content from the root of the Ser vl et Cont ext if Spring decides not to handle it. Most
of the time, this does not happen (unless you modify the default MVC configuration), because Spring
can always handle requests through the Di spat cher Ser vl et .

By default, resources are mapped on / **, but you can tune that with the spri ng. nvc. stati c-
pat h- pat t er n property. For instance, relocating all resources to / r esour ces/ ** can be achieved
as follows:

spring. mvc. static-path-pattern=/resources/**

You can also customize the static resource locations by using the spring. resources. stati c-
| ocat i ons property (replacing the default values with a list of directory locations). The root Servlet
context path, "/ ", is automatically added as a location as well.

In addition to the “standard” static resource locations mentioned earlier, a special case is made for
Webjars content. Any resources with a path in / webj ar s/ ** are served from jar files if they are
packaged in the Webjars format.

2.0.0.RC1 Spring Boot 83

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/jackson/JsonObjectSerializer.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/jackson/JsonObjectDeserializer.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/jackson/JsonObjectSerializer.html
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/jackson/JsonObjectDeserializer.html
http://docs.spring.io/spring/docs/5.0.3.RELEASE/javadoc-api/org/springframework/validation/DefaultMessageCodesResolver.Format.html
http://www.webjars.org/

Spring Boot Reference Guide

Tip

Do not use the sr ¢/ mai n/ webapp directory if your application is packaged as a jar. Although
this directory is a common standard, it works only with war packaging, and it is silently ignored
by most build tools if you generate a jar.

Spring Boot also supports the advanced resource handling features provided by Spring MVC, allowing
use cases such as cache-busting static resources or using version agnostic URLs for Webjars.

To use version agnostic URLs for Webjars, add the webj ar s- | ocat or dependency. Then declare your
Webjar. Using jQuery as an example, adding "/ webj ar s/ j query/di st/jquery. mn.js" results
in"/webjars/jquery/x.y.z/dist/jquery.mn.js".wherex.y. z isthe Webjar version.

Note

If you use JBoss, you need to declare the webj ar s- | ocat or - j boss- vf s dependency instead
of the webj ar s-1 ocat or . Otherwise, all Webjars resolve as a 404.

To use cache busting, the following configuration configures a cache busting solution for
all static resources, effectively adding a content hash, such as <link href="/css/
spri ng- 2a2d595e6ed9a0b24f 027f 2b63b134d6. css"/ >, in URLs:

spring. resources. chain. strategy. content. enabl ed=true
spring. resources. chain. strategy. content. pat hs=/**

Note

Links to resources are rewritten in templates at runtime, thanks to a
Resour ceUr | Encodi ngFi | t er that is auto-configured for Thymeleaf and FreeMarker. You
should manually declare this filter when using JSPs. Other template engines are currently not
automatically supported but can be with custom template macros/helpers and the use of the
Resour ceUr | Provi der .

When loading resources dynamically with, for example, a JavaScript module loader, renaming files is not
an option. That is why other strategies are also supported and can be combined. A "fixed" strategy adds
a static version string in the URL without changing the file name, as shown in the following example:

spring. resources. chai n. strategy. cont ent. enabl ed=t rue
spring. resources. chain. strategy. content. pat hs=/**
spring. resources. chai n. strategy. fixed. enabl ed=true
spring. resources. chain.strategy.fixed. paths=/js/lib/
spring. resources. chain. strategy. fixed. versi on=v12

With this configuration, JavaScript modules located under "/ j s/ | i b/ " use a fixed versioning strategy
("/v12/js/lib/mynodul e.js"), while other resources still use the content one (<l i nk href ="/
css/ spring-2a2d595e6ed9a0b24f 027f 2b63b134d6. css"/ >).

See Resour ceProperti es for more supported options.

Tip

This feature has been thoroughly described in a dedicated blog post and in Spring Framework’s
reference documentation.

2.0.0.RC1 Spring Boot 84

http://docs.spring.io/spring/docs/5.0.3.RELEASE/javadoc-api/org/springframework/web/servlet/resource/ResourceUrlProvider.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ResourceProperties.java
https://spring.io/blog/2014/07/24/spring-framework-4-1-handling-static-web-resources
http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web.html#mvc-config-static-resources

Spring Boot Reference Guide

Welcome Page

Spring Boot supports both static and templated welcome pages. It first looks for an i ndex. ht mi file in
the configured static content locations. If one is not found, it then looks for an i ndex template. If either
is found, it is automatically used as the welcome page of the application.

Custom Favicon

Spring Boot looks for a f avi con. i co in the configured static content locations and the root of the
classpath (in that order). If such afile is present, it is automatically used as the favicon of the application.

Path Matching and Content Negotiation

Spring MVC can map incoming HTTP requests to handlers by looking at the request path and matching
it to the mappings defined in your application (for example, @3t Mappi ng annotations on Controller
methods).

Spring Boot chooses to disable suffix pattern matching by default, which means that requests
like " GET /projects/spring-boot.json" won't be matched to @set Mappi ng("/ proj ects/
spring-boot") mappings. This is considered as a best practice for Spring MVC applications. This
feature was mainly useful in the past for HTTP clients which did not send proper "Accept" request
headers; we needed to make sure to send the correct Content Type to the client. Nowadays, Content
Negotiation is much more reliable.

There are other ways to deal with HTTP clients that don’t consistently send proper "Accept" request
headers. Instead of using suffix matching, we can use a query parameter to ensure that requests like
"GET / proj ect s/ spring-boot ?f or mat =j son" will be mapped to @zet Mappi ng("/ proj ect s/
spring-boot"):

spring. nvc. cont ent - negoti ati on. favor - paranet er =true

We can change the paraneter nane, which is "format" by defaul t:
spring. nvc. cont ent - negoti ati on. par anet er - nane=nypar am

We can also register additional file extensions/media types wth:
spring. nvc. cont ent - negoti ati on. nedi a-t ypes. mar kdown=t ext / mar kdown

If you understand the caveats and would still like your application to use suffix pattern matching, the
following configuration is required:

spring. nvc. content -negoti ati on. f avor - pat h- ext ensi on=t rue

You can also restrict that feature to known extensions only
spring. nvc. pat h-mat ch. use-regi stered-suffi x-pattern=true

We can al so register additional file extensions/nedia types wth:
spring. nvc. cont ent - negoti ati on. nedi a-t ypes. adoc=t ext/ asci i doc

ConfigurableWebBindinglnitializer

Spring MVC uses a WebBi ndi ngl ni ti al i zer toinitialize a WebDat aBi nder for a particular request.
If you create your own Conf i gur abl eWebBi ndi ngl niti ali zer @ean, Spring Boot automatically
configures Spring MVC to use it.

2.0.0.RC1 Spring Boot 85

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web.html#mvc-ann-requestmapping-suffix-pattern-match

Spring Boot Reference Guide

Template Engines

As well as REST web services, you can also use Spring MVC to serve dynamic HTML content. Spring
MVC supports a variety of templating technologies, including Thymeleaf, FreeMarker, and JSPs. Also,
many other templating engines include their own Spring MVC integrations.

Spring Boot includes auto-configuration support for the following templating engines:
» FreeMarker

 Groovy

* Thymeleaf

* Mustache

Tip

If possible, JSPs should be avoided. There are several known limitations when using them with
embedded servlet containers.

When you use one of these templating engines with the default configuration, your templates are picked
up automatically from sr c/ mai n/ r esour ces/t enpl at es.

Tip

Depending on how you run your application, IntelliJ IDEA orders the classpath differently. Running
your application in the IDE from its main method results in a different ordering than when you
run your application by using Maven or Gradle or from its packaged jar. This can cause Spring
Boot to fail to find the templates on the classpath. If you have this problem, you can reorder the
classpath in the IDE to place the module’s classes and resources first. Alternatively, you can
configure the template prefix to search every t enpl at es directory on the classpath, as follows:
cl asspat h*:/tenpl ates/.

Error Handling

By default, Spring Boot provides an / err or mapping that handles all errors in a sensible way, and
it is registered as a “global” error page in the servlet container. For machine clients, it produces a
JSON response with details of the error, the HTTP status, and the exception message. For browser
clients, there is a “whitelabel” error view that renders the same data in HTML format (to customize it,
add a Vi ew that resolves to error). To replace the default behavior completely, you can implement
Error Cont r ol | er and register a bean definition of that type or add abean oftype Err or At t ri but es
to use the existing mechanism but replace the contents.

Tip

The Basi cError Control | er can be used as a base class for a custom Error Control | er.
This is particularly useful if you want to add a handler for a new content type (the default
is to handle text/ htm specifically and provide a fallback for everything else). To do so,
extend Basi cError Control | er, add a public method with a @Request Mappi ng that has a
pr oduces attribute, and create a bean of your new type.

2.0.0.RC1 Spring Boot 86

http://freemarker.org/docs/
http://docs.groovy-lang.org/docs/next/html/documentation/template-engines.html#_the_markuptemplateengine
http://www.thymeleaf.org
http://mustache.github.io/

Spring Boot Reference Guide

You can also define a class annotated with @ont r ol | er Advi ce to customize the JISON document
to return for a particular controller and/or exception type, as shown in the following example:

@ontrol | er Advi ce(basePackageCl asses = AcneControl |l er.cl ass)
public class AcneControl | er Advi ce extends ResponseEntityExcepti onHandl er {

@xcept i onHandl er (Your Excepti on. cl ass)
@ResponseBody
ResponseEnt i ty<?> handl eControl | er Excepti on(Ht t pServl et Request request, Throwabl e ex) {
Htt pStatus status = get Status(request);
return new ResponseEntity<>(new CustonError Type(status.value(), ex.getMssage()), status);

}

private HttpStatus get Status(HttpServletRequest request) {
I nteger statusCode = (Integer) request.getAttribute("javax.servlet.error.status_code");
if (statusCode == null) {
return HttpStatus. | NTERNAL_SERVER ERROR;

}
return HttpStatus. val ueOr (st at usCode) ;

}

In the preceding example, if Your Except i on is thrown by a controller defined in the same package
as AcneCont r ol | er, a JSON representation of the Cust onEr r or Type POJO is used instead of the
ErrorAttri but es representation.

Custom Error Pages

If you want to display a custom HTML error page for a given status code, you can add afiletoan/ error
folder. Error pages can either be static HTML (that is, added under any of the static resource folders)
or be built by using templates. The name of the file should be the exact status code or a series mask.

For example, to map 404 to a static HTML file, your folder structure would be as follows:

src/

+- main/
+- javal
| + <source code>
+- resources/

+- public/
+- error/
|+ 404.htn

+- <other public assets>

To map all 5xx errors by using a FreeMarker template, your folder structure would be as follows:

src/
+- main/
+- javal
| + <source code>
+- resources/
+- tenplates/
+- error/
| +- 5xx.ftl
+- <other tenplates>

For more complex mappings, you can also add beans that implement the Err or Vi ewResol ver
interface, as shown in the following example:

public class MErrorVi ewResol ver inplenents ErrorVi ewResol ver {

@verride
publ i ¢ Model AndVi ew resol veError Vi ewm Ht t pSer vl et Request request,

Htt pStat us status, Map<String, Object> npdel) {

2.0.0.RC1 Spring Boot 87

Spring Boot Reference Guide

/'l Use the request or status to optionally return a Mdel AndVi ew
return ...

}

You can also use regular Spring MVC features such as @xcepti onHandl er methods and
@control | er Advi ce. The Error Control | er then picks up any unhandled exceptions.

Mapping Error Pages outside of Spring MVC

For applications that do not use Spring MVC, you can use the Err or PageRegi strar interface to
directly register Er r or Pages. This abstraction works directly with the underlying embedded servlet
container and works even if you do not have a Spring MVC Di spat cher Ser vl et .

@Bean
public ErrorPageRegi strar errorPageRegistrar(){
return new MyErrorPageRegistrar();

}

...
private static class MyErrorPageRegi strar inplenents ErrorPageRegistrar {

@verride
public void registerErrorPages(ErrorPageRegi stry registry) {

regi stry. addErr or Pages(new Error Page(Htt pSt at us. BAD_REQUEST, "/400"));
}

Note

If you register an Er r or Page with a path that ends up being handled by a Fi | t er (asis common
with some non-Spring web frameworks, like Jersey and Wicket), then the Fi | t er has to be
explicitly registered as an ERROR dispatcher, as shown in the following example:

@Bean

public FilterRegistrationBean nyFilter() {

FilterRegi strationBean registration = new FilterRegistrationBean();
registration.setFilter(new MWFilter());

regi stration. set Di spat cher Types(Enuntet . al | Of (Di spat cher Type. cl ass));
return registration;

}

Note that the default Fi | t er Regi st r at i onBean does not include the ERROR dispatcher type.

CAUTION:When deployed to a servlet container, Spring Boot uses its error page filter to
forward a request with an error status to the appropriate error page. The request can only
be forwarded to the correct error page if the response has not already been committed. By
default, WebSphere Application Server 8.0 and later commits the response upon successful
completion of a servlet's service method. You should disable this behavior by setting
com i bm ws. webcont ai ner. i nvokeFl ushAfter Servi ce tofal se.

Spring HATEOAS

If you develop a RESTful API that makes use of hypermedia, Spring Boot provides auto-configuration
for Spring HATEOAS that works well with most applications. The auto-configuration replaces the
need to use @nabl eHyper nedi aSupport and registers a number of beans to ease building

2.0.0.RC1 Spring Boot 88

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web.html#mvc-exceptionhandlers
http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web.html#mvc-ann-controller-advice

Spring Boot Reference Guide

hypermedia-based applications, including a Li nkDi scoverers (for client side support) and an
oj ect Mapper configured to correctly marshal responses into the desired representation. The
hj ect Mapper is customized by setting the various spri ng. j ackson. * properties or, if one exists,
by a Jackson2(hj ect Mapper Bui | der bean.

You can take control of Spring HATEOAS's configuration by using @nabl eHyper nedi aSupport.
Note that doing so disables the Obj ect Mapper customization described earlier.

CORS Support

Cross-origin resource sharing (CORS) is a W3C specification implemented by most browsers that lets
you specify in a flexible way what kind of cross-domain requests are authorized, instead of using some
less secure and less powerful approaches such as IFRAME or JSONP.

As of version 4.2, Spring MVC supports CORS. Using controller method CORS configuration with
@Cr 0ssOri gi n annotations in your Spring Boot application does not require any specific configuration.
Global CORS configuration can be defined by registering a WebM/cConfi gurer bean with a
customized addCor sMappi ngs(Cor sRegi st ry) method, as shown in the following example:

@onfiguration
public class MyConfiguration {

@Bean
publ i c WebM/cConfigurer corsConfigurer() {
return new WebMvcConfigurer() {
@verride
public voi d addCor sMappi ngs(CorsRegi stry registry) {
regi stry. addMappi ng("/api/**");
}
ba
}

}

27.2 The “Spring WebFlux Framework”

Spring WebFlux is the new reactive web framework introduced in Spring Framework 5.0. Unlike Spring
MVC, it does not require the Servlet API, is fully asynchronous and non-blocking, and implements the
Reactive Streams specification through the Reactor project.

Spring WebFlux comes in two flavors: functional and annotation-based. The annotation-based one is
quite close to the Spring MVC model, as shown in the following example:

@rest Control | er
@Request Mappi ng("/ users")
public class MyRestController {

@zet Mappi ng("/ {user}")
public Mono<User> get User (@at hVari abl e Long user) {
...

}

@zet Mappi ng("/{user}/custoners")

publ i c Fl ux<Custonmer> get User Cust omer s(@at hVari abl e Long user) {
...

}

@el et eMappi ng("/ {user}")
publ i c Mono<User > del et eUser (@at hVari abl e Long user) {
...

}
}

2.0.0.RC1 Spring Boot 89

http://en.wikipedia.org/wiki/Cross-origin_resource_sharing
http://www.w3.org/TR/cors/
http://caniuse.com/#feat=cors
http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web.html#cors
http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web.html#controller-method-cors-configuration
http://docs.spring.io/spring/docs/5.0.3.RELEASE/javadoc-api/org/springframework/web/bind/annotation/CrossOrigin.html
http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web.html#global-cors-configuration
http://www.reactive-streams.org/
http://projectreactor.io/

Spring Boot Reference Guide

“WebFlux.fn”, the functional variant, separates the routing configuration from the actual handling of the
requests, as shown in the following example:

@onfiguration
public class RoutingConfiguration {

@Bean
publ i ¢ Rout er Functi on<Ser ver Response> nonoRout er Functi on(User Handl er user Handl er) {
return route(CGET("/{user}").and(accept (APPLI CATI ON_JSON)), userHandl er:: get User)
. andRout e(GET("/{user}/custonmers").and(accept (APPLI CATI ON_JSON)), userHandl er: : get User Cust oner s)
. andRout e(DELETE("/ {user}"). and(accept (APPLI CATI ON_JSON)), userHandl er:: del et eUser);

}

@onponent
public class UserHandl er {

publ i ¢ Mono<Ser ver Response> get User (Ser ver Request request) {
...

}

publ i ¢ Mono<Server Response> get User Cust oner s(Ser ver Request request) {
/...

}

publ i c Mbono<Server Response> del et eUser (Server Request request) {
1.

}

}

WebFlux is part of the Spring Framework and detailed information is available in its reference
documentation.

Tip

You can define as many Rout er Funct i on beans as you like to modularize the definition of the
router. Beans can be ordered if you need to apply a precedence.

To get started, add the spri ng- boot - st art er - webf | ux module to your application.

Note

Adding both spri ng-boot - starter-web and spri ng-boot - st art er - webf | ux modules
in your application results in Spring Boot auto-configuring Spring MVC, not WebFlux.
This behavior has been chosen because many Spring developers add spri ng-boot -
starter-webfl ux to their Spring MVC application to use the reactive Webd ient.
You can still enforce your choice by setting the chosen application type to
SpringAppl i cation. set WebAppl i cati onType(WebAppl i cati onType. REACTI VE) .

Spring WebFlux Auto-configuration
Spring Boot provides auto-configuration for Spring WebFlux that works well with most applications.
The auto-configuration adds the following features on top of Spring’s defaults:

» Configuring codecs for Ht t pMessageReader and Ht t pMessageW i t er instances (described later
in this document).

» Support for serving static resources, including support for WebJars (described later in this document).

2.0.0.RC1 Spring Boot 20

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web-reactive.html#webflux-fn
http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web-reactive.html#webflux-fn

Spring Boot Reference Guide

If you want to keep Spring Boot WebFlux features and you want to add additional WebFlux
configuration, you can add your own @onfi gurati on class of type WebFl uxConfi gur er but
without @nabl eWebFl ux.

If you want to take complete control of Spring WebFlux, you can add your own @onfi gur ati on
annotated with @nabl eWebFl ux.

HTTP Codecs with HttpMessageReaders and HttpMessageWriters

Spring WebFlux uses the Htt pMessageReader and Htt pMessageW it er interfaces to convert
HTTP requests and responses. They are configured with CodecConf i gur er to have sensible defaults
by looking at the libraries available in your classpath.

Spring Boot applies further customization by using CodecCust om zer instances. For example,
spring.jackson. * configuration keys are applied to the Jackson codec.

If you need to add or customize codecs, you can create a custom CodecCust oni zer component, as
shown in the following example:

i nport org.springfranmework. boot. web. codec. CodecCust oni zer;

@onfiguration
public class MyConfiguration {

@Bean
publ i ¢ CodecCustomni zer mnyCodecCustom zer () {
return codecConfigurer -> {
...
}
}

You can also leverage Boot’s custom JSON serializers and deserializers.

Static Content

By default, Spring Boot serves static content from a directory called /static (or /public or/
resour ces or / META- | NF/ r esour ces) in the classpath. It uses the Resour ceV\ebHandl er from
Spring WebFlux so that you can modify that behavior by adding your own WebFIl uxConf i gur er and
overriding the addResour ceHandl| er s method.

By default, resources are mapped on /**, but you can tune that by setting the
spring. webf | ux. stati c- pat h-pattern property. For instance, relocating all resources to /
resour ces/ ** can be achieved as follows:

spring. webf | ux. stati c- pat h-pattern=/resources/**

You can also customize the static resource locations by using spring.resources.static-
| ocat i ons. Doing so replaces the default values with a list of directory locations. If you do so, the
default welcome page detection switches to your custom locations. So, if there is an i ndex. ht m in
any of your locations on startup, it is the home page of the application.

In addition to the “standard” static resource locations listed earlier, a special case is made for Webjars
content. Any resources with a path in / webj ar s/ ** are served from jar files if they are packaged in
the Webjars format.

2.0.0.RC1 Spring Boot 91

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web.html#web-reactive
http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web.html#web-reactive
http://www.webjars.org/
http://www.webjars.org/

Spring Boot Reference Guide

Tip

Spring WebFlux applications do not strictly depend on the Servlet API, so they cannot be deployed
as war files and do not use the sr ¢/ mai n/ webapp directory.

Template Engines

As well as REST web services, you can also use Spring WebFlux to serve dynamic HTML content.
Spring WebFlux supports a variety of templating technologies, including Thymeleaf, FreeMarker, and
Mustache.

Spring Boot includes auto-configuration support for the following templating engines:

* FreeMarker

» Thymeleaf

* Mustache

When you use one of these templating engines with the default configuration, your templates are picked
up automatically from sr c/ mai n/ resour ces/ t enpl at es.

Error Handling

Spring Boot provides a WebExcept i onHandl er that handles all errors in a sensible way. Its position
in the processing order is immediately before the handlers provided by WebFlux, which are considered
last. For machine clients, it produces a JSON response with details of the error, the HTTP status, and the
exception message. For browser clients, there is a “whitelabel” error handler that renders the same data
in HTML format. You can also provide your own HTML templates to display errors (see the next section).

The first step to customizing this feature often involves using the existing mechanism but replacing or
augmenting the error contents. For that, you can add a bean of type Error Attri but es.

To change the error handling behavior, you can implement Er r or WebExcept i onHandl er and register
a bean definition of that type. Because a WebExcept i onHandl er is quite low-level, Spring Boot also
provides a convenient Abst r act Er r or WebExcept i onHandl er to let you handle errors in a WebFlux
functional way, as shown in the following example:

public class Custontrror WbExcepti onHandl er extends Abstract Error WebExcept i onHandl er {
/| Define constructor here

@verride
prot ect ed Router Functi on<Server Response> get Routi ngFuncti on(ErrorAttributes errorAttributes) {

return RouterFunctions
.route(aPredicate, aHandler)
. andRout e(anot her Predi cat e, anot her Handl er);

For a more complete picture, you can also subclass Def aul t Err or WebExcept i onHandl er directly
and override specific methods.

2.0.0.RC1 Spring Boot 92

http://freemarker.org/docs/
http://www.thymeleaf.org
http://mustache.github.io/

Spring Boot Reference Guide

Custom Error Pages

If you want to display a custom HTML error page for a given status code, you can add a file to an /
error folder. Error pages can either be static HTML (that is, added under any of the static resource
folders) or built with templates. The name of the file should be the exact status code or a series mask.

For example, to map 404 to a static HTML file, your folder structure would be as follows:

src/
+- main/
+- javal
| + <source code>
+- resources/
+- public/
+- error/
| +- 404. htmn
+- <other public assets>

To map all 5xx errors by using a Mustache template, your folder structure would be as follows:

src/
+- main/
+- javal
| + <source code>
+- resources/
+- tenpl ates/
+- error/
| +- 5xx. nust ache
+- <other tenplates>

Web Filters

Spring WebFlux provides a WebFi | t er interface that can be implemented to filter HTTP request-
response exchanges. WebFi | t er beans found in the application context will be automatically used to
filter each exchange.

Where the order of the filters is important they can implemented Or der ed or be annotated with @ der .
Spring Boot auto-configuration may configure web filters for you. When it does so, the orders shown
in the following table will be used:

Web Filter Order
MetricsWebFilter Or der ed. H GHEST_PRECEDENCE + 1
WebFi | t er Chai nPr oxy (Spring Security) -100
Htt pTraceWebFi |l ter Or der ed. LONEST_PRECEDENCE - 10

27.3 JAX-RS and Jersey

If you prefer the JAX-RS programming model for REST endpoints, you can use one of the available
implementations instead of Spring MVC. Jersey 1.x and Apache CXF work quite well out of the box if
you register their Servl et or Fi |l t er as a @ean in your application context. Jersey 2.x has some
native Spring support, so we also provide auto-configuration support for it in Spring Boot, together with
a starter.

To get started with Jersey 2.x, include the spri ng- boot-starter-jersey as a dependency and
then you need one @ean of type Resour ceConf i g in which you register all the endpoints, as shown
in the following example:

2.0.0.RC1 Spring Boot 93

https://jersey.github.io/
http://cxf.apache.org/

Spring Boot Reference Guide

@onponent
public class JerseyConfig extends ResourceConfig {

public JerseyConfig() {
regi st er (Endpoi nt. cl ass) ;

}
}

Warning

Jersey’s support for scanning executable archives is rather limited. For example, it cannot scan
for endpoints in a package found in WEB- | NF/ ¢l asses when running an executable war file.
To avoid this limitation, the packages method should not be used, and endpoints should be
registered individually by using the r egi st er method, as shown in the preceding example.

For more advanced customizations, you can also register an arbitrary number of beans that implement
Resour ceConfi gCust om zer.

All the registered endpoints should be @onponents with HTTP resource annotations (@ET and
others), as shown in the following example:

@onponent
@ath("/hello")
public class Endpoint {

@ET
public String nessage() {
return "Hello";

}

Since the Endpoi nt is a Spring @onponent , its lifecycle is managed by Spring and you can use
the @Aut owi r ed annotation to inject dependencies and use the @/al ue annotation to inject external
configuration. By default, the Jersey servlet is registered and mapped to / *. You can change the
mapping by adding @\ppl i cat i onPat h to your Resour ceConfi g.

By default, Jersey is set up as a Servlet in a @ean of type Ser vl et Regi strati onBean named
j erseyServl et Regi stration. By default, the servlet is initialized lazily, but you can customize
that behavior by setting spri ng. j er sey. servl et . | oad- on- st art up. You can disable or override
that bean by creating one of your own with the same name. You can also use a filter instead
of a servlet by setting spring.jersey.type=filter (in which case, the @ean to replace or
override is jerseyFilterRegi stration). The filter has an @ der, which you can set with
spring.jersey.filter.order. Both the servlet and the filter registrations can be given init
parameters by using spri ng. j ersey.init.* to specify a map of properties.

There is a Jersey sample so that you can see how to set things up. There is also a Jersey 1.x sample.
Note that, in the Jersey 1.x sample, the spring-boot maven plugin has been configured to unpack some
Jersey jars so that they can be scanned by the JAX-RS implementation (because the sample asks for
them to be scannedinits Fi | t er registration). If any of your JAX-RS resources are packaged as nested
jars, you may need to do the same.

2.0.0.RC1 Spring Boot 94

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-samples/spring-boot-sample-jersey
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-samples/spring-boot-sample-jersey1

Spring Boot Reference Guide

27.4 Embedded Servilet Container Support

Spring Boot includes support for embedded Tomcat, Jetty, and Undertow servers. Most developers use
the appropriate “Starter” to obtain a fully configured instance. By default, the embedded server listens
for HTTP requests on port 8080.

Warning

If you choose to use Tomcat on CentOS, be aware that, by default, a temporary directory is used
to store compiled JSPs, file uploads, and so on. This directory may be deleted by t npwat ch
while your application is running, leading to failures. To avoid this behavior, you may want
to customize your t npwat ch configuration such that t ontat . * directories are not deleted or
configure server . t ontat . basedi r such that embedded Tomcat uses a different location.

Servlets, Filters, and listeners

When using an embedded servlet container, you can register servlets, filters, and all the listeners (such
as Ht t pSessi onLi st ener) from the Servlet spec, either by using Spring beans or by scanning for
Servlet components.

Registering Servlets, Filters, and Listeners as Spring Beans

Any Servl et, Filter, or servilet *Li st ener instance that is a Spring bean is registered with the
embedded container. This can be particularly convenient if you want to refer to a value from your
appl i cation. properti es during configuration.

By default, if the context contains only a single Servlet, it is mapped to / . In the case of multiple servlet
beans, the bean name is used as a path prefix. Filters map to/ *.

If convention-based mapping is not flexible enough, you can use the Ser vl et Regi st rati onBean,
FilterRegi strati onBean, and Servl et Li st ener Regi strati onBean classes for complete
control.

Spring Boot ships with many auto-configurations that may define Filter beans. Here are a few examples
of Filters and their respective order (lower order value means higher precedence):

Servlet Filter Order

Or der edChar act er Encodi ngFi | t er O der ed. H GHEST_PRECEDENCE
WebM/cMetri csFil ter Or der ed. H GHEST_PRECEDENCE + 1
Error PageFil ter Or der ed. H GHEST_PRECEDENCE + 1
Htt pTraceFil ter O der ed. LONEST_PRECEDENCE - 10

It is usually safe to leave Filter beans unordered.

If a specific order is required, you should avoid configuring a Filter that reads the request body at
O der ed. H GHEST_PRECEDENCE, since it might go against the character encoding configuration of
your application. If a Servlet filter wraps the request, it should be configured with an order that is less
than or equal to Fi | t er Regi strati onBean. REQUEST_WRAPPER_FI LTER_MAX_ ORDER.

2.0.0.RC1 Spring Boot 95

http://tomcat.apache.org/
https://www.eclipse.org/jetty/
http://undertow.io/
https://www.centos.org/

Spring Boot Reference Guide

Servlet Context Initialization

Embedded servlet containers do not directly execute the Servlet
3.0+ javax. servl et. Servl et Containerlnitializer interface or Spring’s
org. springframewor k. web. WebAppl i cationlnitializer interface. This is an intentional
design decision intended to reduce the risk that third party libraries designed to run inside a war may
break Spring Boot applications.

If you need to perform servlet context initialization in a Spring
Boot application, you should register a bean that implements the
org. spri ngframewor k. boot . web. servl et. Servl et Contextlnitializer interface. The
single onSt ar t up method provides access to the Ser vl et Cont ext and, if necessary, can easily be
used as an adapter to an existing WebAppl i cationlnitializer.

Scanning for Servlets, Filters, and listeners

When using an embedded container, automatic registration of classes annotated with @\ébSer vl et ,
@\ebFi | ter, and @\¥bLi st ener can be enabled by using @er vl et Conponent Scan.

Tip

@er vl et Conponent Scan has no effect in a standalone container, where the container’s built-
in discovery mechanisms are used instead.

The ServletWebServerApplicationContext

Under the hood, Spring Boot uses a different type of ApplicationContext for
embedded servlet container support. The Servl et WebServer ApplicationContext is a
special type of WebApplicationContext that bootstraps itself by searching for a
single Servl et WebSer ver Factory bean. Usually a Tontat Servl et WebSer ver Fact ory,
JettyServl et WebSer ver Fact ory, or Undert owSer vl et WebSer ver Fact ory has been auto-
configured.

Note

You usually do not need to be aware of these implementation classes. Most applications are auto-
configured, and the appropriate Appl i cati onCont ext and Ser vl et WebSer ver Fact ory are
created on your behalf.

Customizing Embedded Servlet Containers

Common servlet container settings can be configured by using Spring Envi r onnent properties.
Usually, you would define the properties in your appl i cat i on. properti es file.

Common server settings include:

» Network settings: Listen port for incoming HTTP requests (ser ver . port), interface address to bind
to server. addr ess, and so on.

» Session settings: Whether the session is persistent (ser ver . ser vl et . sessi on. per si st ence),
session timeout (server.servl et.session.tineout), location of session

2.0.0.RC1 Spring Boot 96

Spring Boot Reference Guide

data (server.servl et.session.store-dir), and session-cookie configuration
(server.servl et.session. cookie.*).

» Error management: Location of the error page (server. error. pat h) and so on.
» SSL

e HTTP compression

Spring Boot tries as much as possible to expose common settings, but this is not always possible.
For those cases, dedicated namespaces offer server-specific customizations (see server. t ontat
and server. undert ow). For instance, access logs can be configured with specific features of the
embedded servlet container.

Tip
See the Ser ver Properti es class for a complete list.

Programmatic Customization

If you need to programmatically configure your embedded servlet
container, you can register a Spring bean that implements the
WebSer ver Fact or yCust om zer interface. WebSer ver Fact or yCust oni zer provides access to
the Confi gurabl eSer vl et WebSer ver Fact ory, which includes numerous customization setter
methods. Dedicated variants exist for Tomcat, Jetty, and Undertow. The following example shows
programmatically setting the port:

i nport org.springframework. boot. web. server. WbSer ver Fact or yCust oni zer;
i nport org.springfranework. boot. web. servl et. server. Confi gurabl eSer vl et WebSer ver Fact ory;
i nport org.springfranmework. stereotype. Conponent ;

@onponent
public class Custom zati onBean inplenents
WebSer ver Fact or yCust oni zer <Conf i gur abl eSer vl et WebSer ver Fact ory> {

@verride

public void customni ze(Confi gurabl eServl et WebServer Factory server) {
server. set Port (9000);

}

Customizing ConfigurableServletWebServerFactory Directly

If the preceding customization techniques are too limited, you can
register the Tontat ServletWhbServerFactory, JettyServletWbServerFactory, or
Under t owSer vl et WebSer ver Fact or y bean yourself.

@Bean
publ i c Configurabl eServl et WebSer ver Fact ory webServer Factory() {

Tontat Ser vl et WebServer Factory factory = new Tontat Servl et WebSer ver Factory();
factory. set Port (9000) ;

factory. set Sessi onTi neout (10, Ti neUnit.M NUTES);

factory. addErr or Pages(new Error Page(Htt pStat us. NOT_FOUND, "/notfound. htm "));
return factory;

Setters are provided for many configuration options. Several protected method “hooks” are also provided
should you need to do something more exotic. See the source code documentation for details.

2.0.0.RC1 Spring Boot 97

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ServerProperties.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/web/servlet/server/ConfigurableServletWebServerFactory.html

Spring Boot Reference Guide

JSP Limitations

When running a Spring Boot application that uses an embedded servlet container (and is packaged as
an executable archive), there are some limitations in the JSP support.

» With Tomcat, it should work if you use war packaging. That is, an executable war works and is also
deployable to a standard container (not limited to, but including Tomcat). An executable jar does not
work because of a hard-coded file pattern in Tomcat.

« With Jetty, it should work if you use war packaging. That is, an executable war works, and is also
deployable to any standard container.

» Undertow does not support JSPs.

» Creating a custom error. j sp page does not override the default view for error handling. Custom
error pages should be used instead.

There is a JSP sample so that you can see how to set things up.

2.0.0.RC1 Spring Boot 98

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-samples/spring-boot-sample-web-jsp

Spring Boot Reference Guide

28. Security

If Spring Security is on the classpath, then web applications are secure by default. Spring
Boot relies on Spring Security’'s content-negotiation strategy to determine whether to use
ht t pBasi ¢ or f or nLogi n. To add method-level security to a web application, you can also add
@nabl ed obal Met hodSecur i ty with your desired settings. Additional information can be found in
the Spring Security Reference Guide.

The default Aut hent i cat i onManager has a single user. The user name is user, and the password
is random and is printed at INFO level when the application starts, as shown in the following example:

Usi ng generated security password: 78fa095d- 3f4c-48bl-ad50-e24c31d5cf 35

Note

If you fine-tune your logging configuration, ensure that the
org. spri ngfranmewor k. boot . aut oconfi gure. securi ty category is setto log | NFO-level
messages. Otherwise, the default password is not printed.

You can change the username and password by providing a spri ng. security. user.nane and
spring.security. user. password.

The basic features you get by default in a web application are:

e A UserDetailsService (or ReactiveUserDetail sService in case of a WebFlux
application) bean with in-memory store and a single user with a generated password (see
SecurityProperties. User forthe properties of the user).

e Form-based login or HTTP Basic security (depending on Content-Type) for the entire application
(including actuator endpoints if actuator is on the classpath).

28.1 MVC Security

The default security configuration is implemented in SecurityAut oConfi gurati on and in the
classes imported from there (Spri ngBoot WebSecurityConfiguration for web security and
Aut hent i cat i onManager Confi gur ati on for authentication configuration, which is also relevant
in non-web applications). To switch off the default web application security configuration completely,
you can add a bean of type WebSecuri t yConfi gur er Adapt er (doing so does not disable the
authentication manager configuration or Actuator’s security).

To also switch off the authentication manager configuration, you can add a bean of type
User Det ai | sServi ce, Aut henti cati onProvi der, or Aut henti cati onManager. There are
several secure applications in the Spring Boot samples to get you started with common use cases.

Access rules can be overridden by adding a custom WebSecur i t yConf i gur er Adapt er . Spring Boot
provides convenience methods that can be used to override access rules for actuator endpoints and
static resources. Endpoi nt Request can be used to create a Request Mat cher that is based on
the managenent . endpoi nt s. web. base- pat h property. Pat hRequest can be used to create a
Request Mat cher for resources in commonly used locations.

2.0.0.RC1 Spring Boot 99

http://projects.spring.io/spring-security/
http://docs.spring.io/spring-security/site/docs/5.0.1.RELEASE/reference/htmlsingle#jc-method
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/security/SecurityProperties.User.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-samples/

Spring Boot Reference Guide

28.2 WebFlux Security

The default security configuration is implemented in Reacti veSecurityAut oConfi guration
and in the classes imported from there (WebFl uxSecurityConfi gurati on for web security and
React i veAut henti cat i onManager Confi gur at i on for authentication configuration, which is also
relevant in non-web applications). To switch off the default web application security configuration
completely, you can add a bean of type WebFi | t er Chai nProxy (doing so does not disable the
authentication manager configuration or Actuator’s security).

To also switch off the authentication manager configuration, you can add a bean of type
React i veUser Det ai | sServi ce or Reacti veAut hent i cat i onManager .

Access rules can be configured by adding a custom Secur i t yWebFi | t er Chai n. Spring Boot provides
convenience methods that can be used to override access rules for actuator endpoints and static
resources. Endpoi nt Request can be used to create a Ser ver WebExchangeMat cher that is based
on the managenent . endpoi nt s. web. base- pat h property.

Pat hRequest can be used to create a Ser ver WebExchangeMat cher for resources in commonly
used locations.

28.3 OAuth2
OAuth?2 is a widely used authorization framework that is supported by Spring.
Client

If you have spri ng- security-oaut h2-cli ent onyour classpath, you can take advantage of some
auto-configuration to make it easy to set up an OAuth2 Client. This configuration makes use of the
properties under QAut h2Cl i ent Properti es.

You can register multiple OAuth2 clients and providers under the

spring. security. oaut h2. client prefix, as shown in the following example:
spring.security.oauth2.client.registration.ny-client-1.client-id=abcd
spring.security.oauth2.client.registration.my-client-1.client-secret=password
spring.security.oauth2.client.registration. ny-client-1.client-name=Cient for user scope
spring.security.oauth2.client.registration.ny-client-1.provider=ny-oauth-provider
spring.security.oauth2.client.registration.ny-client-1.scope=user
spring.security.oauth2.client.registration.nmy-client-1.redirect-uri-tenplate=http://my-redirect-uri.com
spring.security.oauth2.client.registration.ny-client-1.client-authentication-nethod=basic
spring.security.oauth2.client.registration.ny-client-1.authorization-grant-type=authorization_code
spring.security.oauth2.client.registration.my-client-2.client-id=abcd
spring.security.oauth2.client.registration.my-client-2.client-secret=password
spring.security.oauth2.client.registration.nmy-client-2.client-name=Client for email scope
spring.security.oauth2.client.registration.ny-client-2.provider=ny-oauth-provider
spring.security.oauth2.client.registration.ny-client-2. scope=emai
spring.security.oauth2.client.registration. ny-client-2.redirect-uri-tenplate=http://ny-redirect-uri.com
spring.security.oauth2.client.registration.nmy-client-2.client-authenticati on-nmethod=basic
spring.security.oauth2.client.registration.ny-client-2. authorization-grant-type=authorization_code
spring. security.oauth2.client.provider.ny-oauth-provider.authorization-uri=http://my-auth-server/oauth/
aut hori ze
spring. security.oauth2.client.provider.ny-oauth-provider.token-uri=http://ny-auth-server/oauth/token
spring. security.oauth2.client.provider.ny-oauth-provider.user-info-uri=http://my-auth-server/userinfo
spring. security.oauth2.client.provider. nmy-oauth-provider.jwk-set-uri=http://my-auth-server/token_keys
spring. security.oauth2.client.provider. ny-oauth-provider.user-nanme-attribute=name

By default, Spring Security’s QAut h2Logi nAut hent i cati onFi | t er only processes URLs matching
/1 ogi n/ oaut h2/ code/ *. If you want to customize the r edi rect - uri -t enpl at e to use a different

2.0.0.RC1 Spring Boot 100

https://oauth.net/2/

Spring Boot Reference Guide

pattern, you need to provide configuration to process that custom pattern. For example, you can add
your own WebSecuri t yConfi gur er Adapt er that resembles the following:

public class QAuth2Logi nSecurityConfig extends WebSecurityConfigurerAdapter {

@verride
protected void configure(HttpSecurity http) throws Exception {
http
.aut hori zeRequest s()
.anyRequest (). aut henti cat ed()
.and()
. oaut h2Logi n()
.redirectionEndpoint ()
. baseUri ("/cust om cal | back")

For common OAuth2 and OpenlD providers, including Google, Github, Facebook, and Okta, we provide
a set of provider defaults (googl e, gi t hub, f acebook, and okt a, respectively).

If you do not need to customize these providers, you can set the pr ovi der attribute to the one for
which you need to infer defaults. Also, if the ID of your client matches the default supported provider,
Spring Boot infers that as well.

In other words, the two configurations in the following example use the Google provider:

spring.security.oauth2.client.registration.nmy-client.client-id=abcd
spring.security.oauth2.client.registration.ny-client.client-secret=password
spring.security.oauth2.client.registration.ny-client.provi der=googl e

spring.security.oauth2.client.registration.google.client-id=abcd
spring.security.oauth2.client.registration.google.client-secret=password

28.4 Actuator Security

For security purposes, all actuators other than / heal th and /i nf o are disabled by default. The
management . endpoi nt s. web. expose flag can be used to enable the actuators. If Spring Security
is on the classpath and no other WebSecurityConfigurerAdapter is present, the actuators are secured
by Spring Boot auto-config. If you define a custom WebSecur i t yConfi gur er Adapt er, Spring Boot
auto-config will back off and you will be in full control of actuator access rules.

Note

Before setting the managenent . endpoi nt s. web. expose, ensure that the exposed actuators
do not contain sensitive information and/or are secured by placing them behind a firewall or by
something like Spring Security.

2.0.0.RC1 Spring Boot 101

Spring Boot Reference Guide

29. Working with SQL Databases

The Spring Framework provides extensive support for working with SQL databases, from direct JDBC
access using JdbcTenpl at e to complete “object relational mapping” technologies such as Hibernate.
Spring Data provides an additional level of functionality: creating Reposi t or y implementations directly
from interfaces and using conventions to generate queries from your method names.

29.1 Configure a DataSource

Java’s j avax. sql . Dat aSour ce interface provides a standard method of working with database
connections. Traditionally, a 'DataSource' uses a URL along with some credentials to establish a
database connection.

Tip

See the “How-to” section for more advanced examples, typically to take full control over the
configuration of the DataSource.

Embedded Database Support

It is often convenient to develop applications by using an in-memory embedded database. Obviously,
in-memory databases do not provide persistent storage. You need to populate your database when your
application starts and be prepared to throw away data when your application ends.

Tip
The “How-to” section includes a section on how to initialize a database.

Spring Boot can auto-configure embedded H2, HSQL, and Derby databases. You need not provide any
connection URLs. You need only include a build dependency to the embedded database that you want
to use.

Note

If you are using this feature in your tests, you may notice that the same database is reused
by your whole test suite regardless of the number of application contexts that you use. If you
want to make sure that each context has a separate embedded database, you should set
spring. dat asour ce. gener at e- uni que- nane tot r ue.

For example, the typical POM dependencies would be as follows:

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-data-jpa</artifactld>
</ dependency>
<dependency>
<groupl d>or g. hsql db</ gr oupl d>
<artifactld>hsqgl db</artifactld>
<scope>runti me</ scope>
</ dependency>

2.0.0.RC1 Spring Boot 102

http://projects.spring.io/spring-framework/
http://projects.spring.io/spring-data/
http://www.h2database.com
http://hsqldb.org/
http://db.apache.org/derby/

Spring Boot Reference Guide

Note

You need a dependency on spri ng- j dbc for an embedded database to be auto-configured. In
this example, it is pulled in transitively through spri ng- boot - st art er - dat a- j pa.

Tip

If, for whatever reason, you do configure the connection URL for an embedded database,
take care to ensure that the database’s automatic shutdown is disabled. If you use H2, you
should use DB_CLOSE_ON_EXI T=FALSE to do so. If you use HSQLDB, you should ensure that
shut down=t r ue is not used. Disabling the database’s automatic shutdown lets Spring Boot
control when the database is closed, thereby ensuring that it happens once access to the database
is no longer needed.

Connection to a Production Database

Production database connections can also be auto-configured by using a pooling Dat aSour ce. Spring
Boot uses the following algorithm for choosing a specific implementation:

1. We prefer HikariCP for its performance and concurrency. If HikariCP is available, we always choose it.

2. Otherwise, if the Tomcat pooling Dat aSour ce is available, we use it.

3. If neither HikariCP nor the Tomcat pooling datasource are available and if Commons DBCP?2 is
available, we use it.

If you use the spri ng- boot -starter-jdbc orspring-boot-starter-data-jpa “starters”, you
automatically get a dependency to Hi kar i CP.

Note

You can bypass that algorithm completely and specify the connection pool to use by setting the
spring. dat asour ce. t ype property. This is especially important if you run your application in
a Tomcat container, as t ontat - j dbc is provided by default.

Tip

Additional connection pools can always be configured manually. If you define your own
Dat aSour ce bean, auto-configuration does not occur.

DataSource configuration is controlled by external configuration propertiesinspri ng. dat asour ce. *.
For example, you might declare the following section in appl i cati on. properti es:

spring. dat asour ce. url =j dbc: nysql : / /1 ocal host/test

spri ng. dat asour ce. user nanme=dbuser

spring. dat asour ce. passwor d=dbpass

spring. dat asour ce. dri ver - cl ass- nane=com nysql . j dbc. Dri ver

Note

You should at least specify the URL by setting the spri ng. dat asource. url property.
Otherwise, Spring Boot tries to auto-configure an embedded database.

2.0.0.RC1 Spring Boot 103

https://github.com/brettwooldridge/HikariCP
https://commons.apache.org/proper/commons-dbcp/

Spring Boot Reference Guide

Tip

You often do not need to specify the dri ver - cl ass- nane, since Spring Boot can deduce it for
most databases from the ur | .

Note

For a pooling Dat aSour ce to be created, we need to be able to verify that a valid Dri ver
class is available, so we check for that before doing anything. In other words, if you
setspri ng. dat asource. dri ver -cl ass- name=com nysql . j dbc. Dri ver,thenthatclass
has to be loadable.

See Dat aSour ceProperties for more of the supported options. These are the standard
options that work regardless of the actual implementation. It is also possible to fine-tune
implementation-specific settings by using their respective prefix (spri ng. dat asour ce. hi kari . *,
spring. datasource.tontat.*, and spring.datasource.dbcp2.*). Refer to the
documentation of the connection pool implementation you are using for more details.

For instance, if you use the Tomcat connection pool, you could customize many additional settings, as
shown in the following example:

Nunber of ns to wait before throwing an exception if no connection is avail able.
spring. dat asour ce. t ontat . max- wai t =10000

Maxi mum nunber of active connections that can be allocated fromthis pool at the sanme tine.
spring. dat asour ce. t ontat . max- acti ve=50

Validate the connection before borrowing it fromthe pool.
spring. dat asour ce. tontat .t est-on-borrow=true

Connection to a JNDI DataSource

If you deploy your Spring Boot application to an Application Server, you might want to configure and
manage your DataSource by using your Application Server's built-in features and access it by using
JNDI.

The spring. dat asour ce. j ndi - nane property can be used as an
alternative to the spring.datasource.url, spring.datasource.usernanme, and
spring. dat asour ce. passwor d properties to access the Dat aSour ce from a specific JNDI location.
For example, the following section in appl i cat i on. pr operti es shows how you can access a JBoss
AS defined Dat aSour ce:

spring. dat asour ce. j ndi - nane=j ava: j boss/ dat asour ces/ cust oner s

29.2 Using JdbcTemplate

Spring’'s JdbcTenpl at e and NamedPar anet er JdbcTenpl at e classes are auto-configured, and you
can @\ut owi r e them directly into your own beans, as shown in the following example:

i mport org. springframework. beans. factory. annot ati on. Aut owi r ed;
i nport org.springframework.jdbc. core.JdbcTenpl at e;
i nport org.springfranework. stereotype. Conponent ;

@onponent
public class MyBean {

private final JdbcTenpl ate jdbcTenpl ate;

2.0.0.RC1 Spring Boot 104

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/DataSourceProperties.java
http://tomcat.apache.org/tomcat-8.0-doc/jdbc-pool.html#Common_Attributes

Spring Boot Reference Guide

@\ut owi r ed

public MyBean(JdbcTenpl ate j dbcTenpl ate) {
this.jdbcTenpl ate = jdbcTenpl at e;

}

N/

}

You can customize some properties of the template by using the spring.jdbc.tenplate.*
properties, as shown in the following example:

spring.j dbc. tenpl at e. max-r ows=500

Note

The NanedPar anet er JdbcTenpl at e reuses the same JdbcTenpl at e instance behind the
scenes. If more than one JdbcTenpl at e is defined and no primary candidate exists, the
NarmedPar anet er JdbcTenpl at e is not auto-configured.

29.3 JPA and “ Spring Data”

The Java Persistence API is a standard technology that lets you “map” objects to relational databases.
The spri ng-boot - start er-dat a-j pa POM provides a quick way to get started. It provides the
following key dependencies:

» Hibernate: One of the most popular JPA implementations.
» Spring Data JPA: Makes it easy to implement JPA-based repositories.
» Spring ORMs: Core ORM support from the Spring Framework.

Tip

We do not go into too many details of JPA or Spring Data here. You can follow the “Accessing
Data with JPA” guide from spring.io and read the Spring Data JPA and Hibernate reference
documentation.

Entity Classes

Traditionally, JPA “Entity” classes are specified in a persistence. xm file. With Spring Boot,
this file is not necessary and “Entity Scanning” is used instead. By default, all packages
below your main configuration class (the one annotated with @nabl eAut oConfi gurati on or
@bpr i ngBoot Appl i cati on) are searched.

Any classes annotated with @ntity, @nbeddabl e, or @/appedSuper cl ass are considered. A
typical entity class resembles the following example:

package com exanpl e. myapp. domai n;

inport java.io.Serializable;
i nport javax. persi stence. *;
@ntity

public class Gty inplenents Serializable {

@d
@zener at edVal ue

2.0.0.RC1 Spring Boot 105

http://projects.spring.io/spring-data/
http://spring.io/guides/gs/accessing-data-jpa/
http://spring.io/guides/gs/accessing-data-jpa/
http://spring.io
http://projects.spring.io/spring-data-jpa/
http://hibernate.org/orm/documentation/

Spring Boot Reference Guide

private Long id;

@ol um(nul | abl e = fal se)
private String nane;

@Col um(nul | abl e = fal se)
private String state;

/1 ... additional nmenbers, often include @neToMany mappi ngs

protected City() {
/'l no-args constructor required by JPA spec
/1 this one is protected since it shouldn't be used directly

}

public City(String name, String state) {
t hi s. nane = nane;
this.country = country;

}

public String getNane() {
return this.naneg;

}

public String getState() {
return this.state;

}

/Il ... etc

Tip

You can customize entity scanning locations by using the @ntit yScan annotation. See the
“Section 78.4, “Separate @Entity Definitions from Spring Configuration”™ how-to.

Spring Data JPA Repositories

{http://projects.spring.io/spring-data-jpa/}[Spring Data JPA] repositories are interfaces that you can
define to access data. JPA queries are created automatically from your method names. For example,
a G tyReposi t ory interface might declare afi ndAl | BySt at e(Stri ng st at e) method to find all
the cities in a given state.

For more complex queries, you can annotate your method with Spring Data’s Quer y annotation.

Spring Data repositories usually extend from the Reposi t ory or Cr udReposi t ory interfaces. If you
use auto-configuration, repositories are searched from the package containing your main configuration
class (the one annotated with @nabl eAut oConf i gur at i on or @pr i ngBoot Appl i cat i on) down.

The following example shows a typical Spring Data repository interface definition:

package com exanpl e. nyapp. donai n;

i mport org.springframework. data. domai n. *;
i nport org.springframework. data.repository.*;

public interface CityRepository extends Repository<City, Long> {
Page<Ci ty> findAl | (Pageabl e pageabl e);

City findByNameAndCountryAl |l gnoringCase(String nane, String country);

2.0.0.RC1 Spring Boot 106

http://docs.spring.io/spring-data/jpa/docs/current/api/org/springframework/data/jpa/repository/Query.html
http://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/Repository.html
http://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/CrudRepository.html

Spring Boot Reference Guide

Tip

We have barely scratched the surface of Spring Data JPA. For complete details, see the Spring
Data JPA reference documentation.

Creating and Dropping JPA Databases

By default, JPA databases are automatically created only if you use an embedded database (H2, HSQL,
or Derby). You can explicitly configure JPA settings by using spri ng. j pa. * properties. For example,
to create and drop tables you can add the following line to your appl i cati on. properti es:

spring.j pa. hi bernate. ddl - aut o=cr eat e- dr op

Note

Hibernate’'s own internal property name for this (if you happen to remember it better) is
hi ber nat e. hbnRddl . aut 0. You can set it, along with other Hibernate native properties, by
using spring.j pa. properties.* (the prefix is stripped before adding them to the entity
manager). The following line shows an example of setting JPA properties for Hibernate:

spring.jpa.properties.hibernate.globally_quoted_identifiers=true

The line in the preceding example passes a value of true for the
hi ber nat e. gl obal | y_quot ed_i denti fi er s property to the Hibernate entity manager.

By default, the DDL execution (or validation) is deferred until the Appl i cat i onCont ext has started.
There is also a spri ng. j pa. gener at e- ddl flag, but it is not used if Hibernate auto-configuration is
active, because the ddl - aut o settings are more fine-grained.

Open EntityManager in View

If you are running a web application, Spring Boot by default registers
OpenEnti t yManager | nVi ewl nt er cept or to apply the “Open EntityManager in View” pattern, to
allow for lazy loading in web views. If you do not want this behavior, you should setspri ng. j pa. open-
i n-viewtofal seinyourapplication. properties.

29.4 Using H2's Web Console

The H2 database provides a browser-based console that Spring Boot can auto-configure for you. The
console is auto-configured when the following conditions are met:

» You are developing a web application.
* com h2dat abase: h2 is on the classpath.

* You are using Spring Boot's developer tools.

Tip

If you are not using Spring Boot's developer tools but would still like to make use of H2’s console,
you can configure the spri ng. h2. consol e. enabl ed property with a value of t r ue.

2.0.0.RC1 Spring Boot 107

https://docs.spring.io/spring-data/jpa/docs/current/reference/html/
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/
http://docs.spring.io/spring/docs/5.0.3.RELEASE/javadoc-api/org/springframework/orm/jpa/support/OpenEntityManagerInViewInterceptor.html
http://www.h2database.com
http://www.h2database.com/html/quickstart.html#h2_console

Spring Boot Reference Guide

Note

The H2 console is only intended for use during development, so you should take care to ensure
that spri ng. h2. consol e. enabl ed is not set to t r ue in production.

Changing the H2 Console’s Path

By default, the console is available at / h2- consol e. You can customize the console’s path by using
the spri ng. h2. consol e. pat h property.

29.5 Using jOOQ

Java Object Oriented Querying (JOOQ) is a popular product from Data Geekery which generates Java
code from your database and lets you build type-safe SQL queries through its fluent API. Both the
commercial and open source editions can be used with Spring Boot.

Code Generation

In order to use JOOQ type-safe queries, you need to generate Java classes from your database schema.
You can follow the instructions in the JOOQ user manual. If you use the j 00g- codegen- maven plugin
and you also use the spri ng- boot - st art er - par ent “parent POM”, you can safely omit the plugin’s
<ver si on> tag. You can also use Spring Boot-defined version variables (such as h2. ver si on) to
declare the plugin’s database dependency. The following listing shows an example:

<pl ugi n>

<groupl d>or g. j oog</ gr oupl d>
<artifact|d>j oog- codegen- maven</ artifact!d>
<executions>

</ execut i ons>
<dependenci es>
<dependency>
<gr oupl d>com h2dat abase</ gr oup! d>
<artifactld>h2</artifactld>
<ver si on>${ h2. ver si on} </ ver si on>
</ dependency>
</ dependenci es>
<confi guration>
<j dbc>
<driver>org. h2.Driver</driver>
<ur| >j dbc: h2: ~/ your dat abase</ ur | >
</ j dbc>
<gener at or >

</ gener at or >
</ configuration>
</ pl ugi n>

Using DSLContext

The fluent API offered by jOOQ is initiated through the or g. j ooq. DSLCont ext interface. Spring Boot
auto-configures a DSLCont ext as a Spring Bean and connects it to your application Dat aSour ce. To
use the DSLCont ext , you can @\ut owi r e it, as shown in the following example:

@onponent
public class JoogExanpl e i npl enents ConmandLi neRunner {

private final DSLContext create

@A\ut owi red

2.0.0.RC1 Spring Boot 108

http://www.jooq.org/
http://www.datageekery.com/
http://www.jooq.org/doc/3.6/manual-single-page/#jooq-in-7-steps-step3

Spring Boot Reference Guide

publ i ¢ JoogExanpl e(DSLCont ext dsl Context) {
this.create = dsl Context;

}

Tip
The jJOOQ manual tends to use a variable named cr eat e to hold the DSLCont ext .

You can then use the DSLCont ext to construct your queries, as shown in the following example:

public List<G egorianCal endar> aut hor sBor nAf t er 1980() {
return this.create.sel ect Fr om(AUTHOR)
. wher e(AUTHOR. DATE_OF_BI RTH. gr eat er Than(new Gregori anCal endar (1980, 0, 1)))
. f et ch(AUTHOR. DATE_OF_BI RTH) ;

}
JOOQ SQL Dialect

Unless the spri ng. j 00q. sql - di al ect property has been configured, Spring Boot determines the
SQL dialect to use for your datasource. If Spring Boot could not detect the dialect, it uses DEFAULT.

Note

Spring Boot can only auto-configure dialects supported by the open source version of jOOQ.

Customizing jOOQ

More advanced customizations can be achieved by defining your own @ean definitions, which is used
when the jOOQ Confi gur ati on is created. You can define beans for the following jOOQ Types:

e Connecti onProvi der

e Transacti onProvi der

» RecordMapper Provi der

» RecordLi st ener Provi der
* Execut elLi st ener Provi der
* VisitlListenerProvider

You can also create your own or g. j 00q. Conf i gur ati on @ean if you want to take complete control
of the jOOQ configuration.

2.0.0.RC1 Spring Boot 109

Spring Boot Reference Guide

30. Working with NoSQL Technologies

Spring Data provides additional projects that help you access a variety of NoSQL technologies,
including: MongoDB, Neo4J, Elasticsearch, Solr, Redis, Gemfire, Cassandra, Couchbase and LDAP.
Spring Boot provides auto-configuration for Redis, MongoDB, Neo4j, Elasticsearch, Solr Cassandra,
Couchbase, and LDAP. You can make use of the other projects, but you must configure them yourself.
Refer to the appropriate reference documentation at projects.spring.io/spring-data.

30.1 Redis

Redis is a cache, message broker, and richly-featured key-value store. Spring Boot offers basic auto-
configuration for the Lettuce and Jedis client libraries and the abstractions on top of them provided by
Spring Data Redis.

There is a spring-boot-starter-data-redis “Starter” for collecting the dependencies in a
convenient way. By default, it uses Lettuce. That starter handles both traditional and reactive
applications.

Tip

we also provide a spri ng- boot - st art er - dat a- r edi s-r eact i ve “Starter” for consistency
with the other stores with reactive support.

Connecting to Redis

You can inject an auto-configured Redi sConnecti onFact ory, Stri ngRedi sTenpl at e, or vanilla
Redi sTenpl at e instance as you would any other Spring Bean. By default, the instance tries to connect
to a Redis server at | ocal host : 6379. The following listing shows an example of such a bean:

@onponent
public class MyBean {

private StringRedi sTenplate tenpl ate;
@A\ut owi r ed
public MyBean(StringRedi sTenpl ate tenplate) {

this.tenplate = tenplate;
}

...

Tip

You can also register an arbitrary number of beans that implement
Lettuced i ent Confi gurati onBuil der Cust om zer for more advanced customizations. If
you use Jedis, Jedi sCl i ent Confi gurati onBui | der Cust oni zer is also available.

If you add your own @ean of any of the auto-configured types, it replaces the default (except in the
case of Redi sTenpl at e, when the exclusion is based on the bean name, r edi sTenpl at e, not its
type). By default, if cormons- pool 2 is on the classpath, you get a pooled connection factory.

2.0.0.RC1 Spring Boot 110

http://projects.spring.io/spring-data-mongodb/
http://projects.spring.io/spring-data-neo4j/
https://github.com/spring-projects/spring-data-elasticsearch/
http://projects.spring.io/spring-data-solr/
http://projects.spring.io/spring-data-redis/
http://projects.spring.io/spring-data-gemfire/
http://projects.spring.io/spring-data-cassandra/
http://projects.spring.io/spring-data-couchbase/
http://projects.spring.io/spring-data-ldap/
http://projects.spring.io/spring-data
http://redis.io/
https://github.com/lettuce-io/lettuce-core/
https://github.com/xetorthio/jedis/
https://github.com/spring-projects/spring-data-redis
https://github.com/lettuce-io/lettuce-core/

Spring Boot Reference Guide

30.2 MongoDB

MongoDB is an open-source NoSQL document database that uses a JSON-like schema instead
of traditional table-based relational data. Spring Boot offers several conveniences for working with
MongoDB, including the spri ng- boot - st art er - dat a- nongodb and spri ng- boot -starter-
dat a- nongodb- r eact i ve “Starters”.

Connecting to a MongoDB Database

To access Mongo databases, you can inject an auto-configured
or g. spri ngf ramewor k. dat a. nrongodb. MongoDbFact ory. By default, the instance tries to
connect to a MongoDB server at nongodb: / /| ocal host/t est The following example shows how
to connect to a MongoDB database:

i nport org.springfranework. dat a. nongodb. MongoDbFact ory;
i nport com nongodb. DB;

@onponent
public class MyBean {

private final MngoDbFactory nongo;

@\ut owi r ed
publ i ¢ MyBean(MongoDbFact ory nobngo) {
t hi s. nongo = nongo;

}

...

public void exanple() {
DB db = npbngo. get Db();
...

}

You can set the spri ng. dat a. nrongodb. uri property to change the URL and configure additional
settings such as the replica set, as shown in the following example:

spring. dat a. nongodb. uri =nmongodb: / / user: secr et @ongol. exanpl e. com 12345, nongo2. exanpl e. com 23456/ t est

Alternatively, as long as you use Mongo 2.x, you can specify a host /port . For example, you might
declare the following settings in your appl i cati on. properti es:

spring. dat a. nrongodb. host =nongoser ver
spring. dat a. nrongodb. port =27017

Note

If you use the Mongo 3.0 Java driver, spring.data. nongodb. host
and spri ng. dat a. nrongodb. port are not supported. In such cases,
spring. dat a. nongodb. uri should be used to provide all of the configuration.

Tip

If spri ng. dat a. nongodb. port is not specified, the default of 27017 is used. You could delete
this line from the example shown earlier.

2.0.0.RC1 Spring Boot 111

http://www.mongodb.com/

Spring Boot Reference Guide

Tip

If you do not use Spring Data Mongo, you can injectcom nongodb. Mongod i ent beans instead
of using MongoDbFact ory. If you want to take complete control of establishing the MongoDB
connection, you can also declare your own MongoDbFact ory or MongoCl i ent bean.

Note

If you are using the reactive driver, Netty is required for SSL. The auto-configuration configures this
factory automatically if Netty is available and the factory to use hasn’t been customized already.

MongoTemplate

Spring Data MongoDB provides a MongoTenpl at e class that is very similar in its design to Spring’s
JdbcTenpl at e. As with JdbcTenpl at e, Spring Boot auto-configures a bean for you to inject the
template, as follows:

i nport org.springfranmework. beans. factory. annot ati on. Aut ow r ed;
i nport org.springfranework. dat a. nongodb. cor e. MongoTenpl at e;
i mport org.springframework. stereotype. Conponent ;

@onponent
public class MyBean {

private final MngoTenpl ate nongoTenpl at e;
@\ut owi r ed
publ i ¢ MyBean(MongoTenpl at e nongoTenpl ate) {

t hi s. nongoTenpl at e = nongoTenpl at e;

}

...

See the MongoQOper at i ons Javadoc for complete details.
Spring Data MongoDB Repositories

Spring Data includes repository support for MongoDB. As with the JPA repositories discussed earlier,
the basic principle is that queries are constructed automatically, based on method names.

In fact, both Spring Data JPA and Spring Data MongoDB share the same common infrastructure. You
could take the JPA example from earlier and, assuming that Ci t y is now a Mongo data class rather
than a JPA @nti ty, it works in the same way, as shown in the following example:

package com exanpl e. nyapp. donai n;

i nport org.springfranework. dat a. donai n. *;
i nport org.springfranework. data.repository.*;

public interface G tyRepository extends Repository<Cty, Long> {
Page<Ci ty> findAl | (Pageabl e pageabl e);

City findByNameAndCountryAl | I gnoringCase(String name, String country);

2.0.0.RC1 Spring Boot 112

http://projects.spring.io/spring-data-mongodb/
http://docs.spring.io/spring-data/mongodb/docs/current/api/org/springframework/data/mongodb/core/MongoTemplate.html
https://docs.spring.io/spring-data/mongodb/docs/current/api/org/springframework/data/mongodb/core/MongoOperations.html

Spring Boot Reference Guide

Tip
You can customize document scanning locations by using the @nt i t yScan annotation.
Tip

For complete details of Spring Data MongoDB, including its rich object mapping technologies,
refer to its reference documentation.

Embedded Mongo

Spring Boot offers auto-configuration for Embedded Mongo. To use it in your Spring Boot application,
add a dependency on de. f | apdoodl| e. enbed: de. f| apdoodl e. enbed. nongo.

The port that Mongo listens on can be configured by setting the spri ng. dat a. nongodb. port
property. To use a randomly allocated free port, use a value of 0. The Mongod i ent created by
MongoAut oConf i gur at i on is automatically configured to use the randomly allocated port.

Note

If you do not configure a custom port, the embedded support uses a random port (rather than
27017) by default.

If you have SLF4J on the classpath, the output produced by Mongo is automatically routed to a logger
named or g. spri ngf ramewor k. boot . aut oconf i gur e. nongo. enbedded. EnbeddedMongo.

You can declare your own | MongodConfi g and | Runt i mreConf i g beans to take control of the Mongo
instance’s configuration and logging routing.

30.3 Neo4j

Neo4j is an open-source NoSQL graph database that uses a rich data model of nodes related
by first class relationships, which is better suited for connected big data than traditional rdbms
approaches. Spring Boot offers several conveniences for working with Neo4j, including the spri ng-
boot - st art er - dat a- neo4j “Starter”.

Connecting to a Neo4j Database

You can inject an auto-configured Neo4j Sessi on, Sessi on, or Neo4j Oper ati ons instance as
you would any other Spring Bean. By default, the instance tries to connect to a Neo4j server at
| ocal host : 7474. The following example shows how to inject a Neo4j bean:

@Conponent
public class MyBean {

private final Neo4jTenpl ate neo4j Tenpl ate;
@A\ut owi r ed
publ i ¢ MyBean(Neo4j Tenpl at e neo4j Tenpl ate) {

t hi s. neo4j Tenpl ate = neo4j Tenpl at e;
}

...

2.0.0.RC1 Spring Boot 113

http://projects.spring.io/spring-data-mongodb/
https://github.com/flapdoodle-oss/de.flapdoodle.embed.mongo
http://neo4j.com/

Spring Boot Reference Guide

You can take full control of the configuration by adding a or g. neo4j . ogm confi g. Confi gurati on
@ean of your own. Also, adding a @ean of type Neo4j Oper at i ons disables the auto-configuration.

You can configure the user and credentials to use by setting the spri ng. dat a. neo4j . * properties,
as shown in the following example:

spring. data.neodj.uri=http://ny-server: 7474
spring. dat a. neo4j . user nane=neo4j
spring. dat a. neo4j . passwor d=secr et

Using the Embedded Mode

If you add or g. neodj : neodj - ogm enbedded- dri ver to the dependencies of your application,
Spring Boot automatically configures an in-process embedded instance of Neo4j that does not
persist any data when your application shuts down. You can explicitly disable that mode by
setting spri ng. dat a. neo4j . enbedded. enabl ed=f al se. You can also enable persistence for the
embedded mode by providing a path to a database file, as shown in the following example:

spring. data. neo4j . uri=file://var/tnp/graph.db

Note

The Neo4j OGM embedded driver does not provide the Neo4j kernel. Users are expected to
provide this dependency manually. See the documentation for more details.

Neo4jSession

By default, if you are running a web application, the session is bound to the thread for the entire
processing of the request (that is, it uses the "Open Session in View" pattern). If you do not want this
behavior, add the following line to your appl i cati on. properti es file:

spring. dat a. neo4j . open-i n-vi ew=f al se

Spring Data Neo4j Repositories
Spring Data includes repository support for Neo4,.

In fact, both Spring Data JPA and Spring Data Neo4j share the same common infrastructure. You could
take the JPA example from earlier and, assuming that Gi t y is now a Neo4j OGM @\odeEnt i t y rather
than a JPA @nt i ty, it works in the same way.

Tip

You can customize entity scanning locations by using the @nt i t yScan annotation.

To enable repository support (and optionally support for @r ansacti onal), add the following two
annotations to your Spring configuration:

@nabl eNeo4j Reposi t ori es(basePackages = "com exanpl e. nyapp. reposi tory")
@Enabl eTr ansact i onManagenent

Repository Example

The following example shows an interface definition for a Neo4j repository:

2.0.0.RC1 Spring Boot 114

http://neo4j.com/docs/ogm-manual/current/reference/#reference:getting-started

Spring Boot Reference Guide

package com exanpl e. myapp. domai n;

i nport org.springfranework. dat a. donai n. *;
i nport org.springfranework. data.repository.*;

public interface G tyRepository extends G aphRepository<Gty> {
Page<Ci ty> findAl | (Pageabl e pageabl e);

Cty findByNameAndCountry(String name, String country);

Tip

For complete details of Spring Data Neo4j, including its rich object mapping technologies, refer
to the reference documentation.

30.4 Gemfire

Spring Data Gemfire provides convenient Spring-friendly tools for accessing the Pivotal Gemfire data
management platform. There isaspri ng- boot - st art er - dat a- genf i r e “Starter” for collecting the
dependencies in a convenient way. There is currently no auto-configuration support for Gemfire, but
you can enable Spring Data Repositories with a single annotation: @nabl eGenf i r eReposi tori es.

30.5 Solr

Apache Solr is a search engine. Spring Boot offers basic auto-configuration for the Solr 5 client library
and the abstractions on top of it provided by Spring Data Solr. There is a spri ng- boot -starter -
dat a- sol r “Starter” for collecting the dependencies in a convenient way.

Connecting to Solr

You can inject an auto-configured Sol r Cl i ent instance as you would any other Spring bean. By
default, the instance tries to connect to a server at | ocal host : 8983/ sol r. The following example
shows how to inject a Solr bean:

@onponent
public class MyBean {

private SolrCient solr;
@\ut owi r ed
public MyBean(SolrCient solr) {

this.solr = solr;

}

N/

If you add your own @ean of type Sol r i ent, it replaces the default.

Spring Data Solr Repositories

Spring Data includes repository support for Apache Solr. As with the JPA repositories discussed earlier,
the basic principle is that queries are automatically constructed for \ you based on method names.

2.0.0.RC1 Spring Boot 115

http://projects.spring.io/spring-data-neo4j/
https://github.com/spring-projects/spring-data-gemfire
http://pivotal.io/big-data/pivotal-gemfire#details
https://github.com/spring-projects/spring-data-gemfire/blob/master/src/main/java/org/springframework/data/gemfire/repository/config/EnableGemfireRepositories.java
http://lucene.apache.org/solr/
https://github.com/spring-projects/spring-data-solr
http://localhost:8983/solr

Spring Boot Reference Guide

In fact, both Spring Data JPA and Spring Data Solr share the same common infrastructure. You could
take the JPA example from earlier and, assuming that Ci t y is now a @ol r Docunent class rather
than a JPA @nt i ty, it works in the same way.

Tip

For complete details of Spring Data Solr, refer to the reference documentation.

30.6 Elasticsearch

Elasticsearch is an open source, distributed, real-time search and analytics engine. Spring Boot offers
basic auto-configuration for Elasticsearch and the abstractions on top of it provided by Spring Data
Elasticsearch. Thereisaspri ng- boot - st art er - dat a- el asti csear ch “Starter” for collecting the
dependencies in a convenient way. Spring Boot also supports Jest.

Connecting to Elasticsearch by Using Jest

If you have Jest on the classpath, you can inject an auto-configured Jest Cl i ent that by default
targets | ocal host : 9200. You can further tune how the client is configured, as shown in the following
example:

spring. el asticsearch.jest.uris=http://search. exanpl e. com 9200
spring. el asticsearch. jest.read-tinmeout=10000

spring. el asti csearch. j est. usernane=user

spring. el asticsearch. jest. password=secret

You can also register an arbitrary number of beans that implement
Ht t pC i ent Confi gBui | der Cust omi zer for more advanced customizations. The following
example tunes additional HTTP settings:

static class HtpSettingsCustoni zer inplenents HtpC ientConfigBuil der Customn zer {

@verride
public void customni ze(HttpC ientConfig.Builder builder) {
bui | der. maxTot al Connecti on(100) . def aul t MaxTot al Connect i onPer Rout e(5) ;

}

To take full control over the registration, define a Jest Cl i ent bean.

Connecting to Elasticsearch by Using Spring Data

To connect to Elasticsearch, you must provide the address of one or more cluster nodes. The address
can be specified by setting the spring. dat a. el asti csearch. cl ust er-nodes property to a
comma-separated host : port list. With this configuration in place, an El asti csear chTenpl at e or
Transport C i ent can be injected like any other Spring bean, as shown in the following example:

spring. data. el asti csearch. cl ust er-nodes=|l ocal host: 9300

@onponent
public class MyBean {

private final ElasticsearchTenplate tenplate;
public MyBean(El asticsearchTenpl ate tenplate) {

this.tenplate = tenplate;
}

2.0.0.RC1 Spring Boot 116

http://projects.spring.io/spring-data-solr/
http://www.elasticsearch.org/
https://github.com/spring-projects/spring-data-elasticsearch
https://github.com/spring-projects/spring-data-elasticsearch
https://github.com/searchbox-io/Jest
http://localhost:9200

Spring Boot Reference Guide

...

}
If you add your own El asti csear chTenpl at e or Transport Cl i ent @ean, it replaces the default.
Spring Data Elasticsearch Repositories

Spring Data includes repository support for Elasticsearch. As with the JPA repositories discussed earlier,
the basic principle is that queries are constructed for you automatically based on method names.

In fact, both Spring Data JPA and Spring Data Elasticsearch share the same common infrastructure. You
could take the JPA example from earlier and, assuming that Ci t y is now an Elasticsearch @ocunent
class rather than a JPA @nti ty, it works in the same way.

Tip

For complete details of Spring Data Elasticsearch, refer to the reference documentation.

30.7 Cassandra

Cassandra is an open source, distributed database management system designed to handle large
amounts of data across many commodity servers. Spring Boot offers auto-configuration for Cassandra
and the abstractions on top of it provided by Spring Data Cassandra. There is a spri ng- boot -
st art er - dat a- cassandr a “Starter” for collecting the dependencies in a convenient way.

Connecting to Cassandra

You can inject an auto-configured Cassandr aTenpl at e or a Cassandra Sessi on instance as you
would with any other Spring Bean. The spri ng. dat a. cassandr a. * properties can be used to
customize the connection. Generally, you provide keyspace- nane and cont act - poi nt s properties,
as shown in the following example:

spring. dat a. cassandr a. keyspace- nane=nykeyspace
spring. dat a. cassandr a. cont act - poi nt s=cassandr ahost 1, cassandr ahost 2

The following code listing shows how to inject a Cassandra bean:

@onponent
public class M/Bean {

private CassandraTenpl ate tenpl ate;
@\ut owi r ed
publi c MyBean(CassandraTenpl ate tenplate) {

this.tenplate = tenplate;
}

N/

}

If you add your own @ean of type Cassandr aTenpl at e, it replaces the default.

Spring Data Cassandra Repositories

Spring Data includes basic repository support for Cassandra. Currently, this is more limited than the
JPA repositories discussed earlier and needs to annotate finder methods with @uery.

2.0.0.RC1 Spring Boot 117

http://docs.spring.io/spring-data/elasticsearch/docs/
http://cassandra.apache.org/
https://github.com/spring-projects/spring-data-cassandra

Spring Boot Reference Guide

Tip

For complete details of Spring Data Cassandra, refer to the reference documentation.

30.8 Couchbase

Couchbase is an open-source, distributed, multi-model NoSQL document-oriented database that
is optimized for interactive applications. Spring Boot offers auto-configuration for Couchbase
and the abstractions on top of it provided by Spring Data Couchbase. There are spri ng-
boot - starter-data-couchbase and spring-boot-starter-data-couchbase-reactive
“Starters” for collecting the dependencies in a convenient way.

Connecting to Couchbase

You can get a Bucket and C ust er by adding the Couchbase SDK and some configuration. The
spring. couchbase. * properties can be used to customize the connection. Generally, you provide
the bootstrap hosts, bucket name, and password, as shown in the following example:

spring. couchbase. boot st rap- host s=ny- host - 1, 192. 168. 1. 123
spring. couchbase. bucket . name=ny- bucket
spring. couchbase. bucket . passwor d=secr et

Tip

You need to provide at least the bootstrap host(s), in which case the bucket name
is default and the password is an empty String. Alternatively, you can define your
own or g. spri ngfranmewor k. dat a. couchbase. confi g. CouchbaseConfi gurer @Bean
to take control over the whole configuration.

It is also possible to customize some of the CouchbaseEnvi r onnent settings. For instance, the
following configuration changes the timeout to use to open a new Bucket and enables SSL support:

spring. couchbase. env. ti meouts. connect =3000
spring. couchbase. env. ssl . key-store=/1ocati on/ of / keystore. j ks
spring. couchbase. env. ssl . key- st or e- passwor d=secr et

Check the spri ng. couchbase. env. * properties for more details.

Spring Data Couchbase Repositories

Spring Data includes repository support for Couchbase. For complete details of Spring Data Couchbase,
refer to the reference documentation.

You can inject an auto-configured CouchbaseTenpl at e instance as you would with any other Spring
Bean, provided a default CouchbaseConfi gurer is available (which happens when you enable
Couchbase support, as explained earlier).

The following examples shows how to inject a Couchbase bean:

@Conponent
public class MyBean {

private final CouchbaseTenpl ate tenplate;

@\ut owi r ed
publ i ¢ MyBean(CouchbaseTenpl ate tenpl ate) {

2.0.0.RC1 Spring Boot 118

http://docs.spring.io/spring-data/cassandra/docs/
http://www.couchbase.com/
https://github.com/spring-projects/spring-data-couchbase
http://docs.spring.io/spring-data/couchbase/docs/current/reference/html/

Spring Boot Reference Guide

this.tenplate = tenpl ate;
}

...

}

There are a few beans that you can define in your own configuration to override those provided by the
auto-configuration:

* A CouchbaseTenpl at e @ean with a name of couchbaseTenpl at e.
* Anl ndexManager @ean with a name of couchbasel ndexManager .
» A Cust onConver si ons @ean with a name of couchbaseCust ontConver si ons.

To avoid hard-coding those names in your own config, you can reuse BeanNamnes provided by Spring
Data Couchbase. For instance, you can customize the converters to use, as follows:

@onfiguration
public class SoneConfiguration {

@ean(BeanNames. COUCHBASE CUSTOM CONVERSI ONS)
publ i ¢ CustonConversi ons nyCustonConversions() {
return new CustonmConversions(...);

}

N/

Tip
If you want to fully bypass the auto-configuration for
Spring Data Couchbase, provide your own implementation of

org. spri ngfranmewor k. dat a. couchbase. confi g. Abstract CouchbaseDat aConfi gur ati on.

30.9 LDAP

LDAP (Lightweight Directory Access Protocol) is an open, vendor-neutral, industry standard application
protocol for accessing and maintaining distributed directory information services over an IP network.
Spring Boot offers auto-configuration for any compliant LDAP server as well as support for the
embedded in-memory LDAP server from UnboundID.

LDAP abstractions are provided by Spring Data LDAP. There is a spri ng- boot - st art er - dat a-
| dap “Starter” for collecting the dependencies in a convenient way.

Connecting to an LDAP Server

To connect to an LDAP server, make sure you declare a dependency on the spri ng- boot - st art er -
dat a- | dap “Starter” or spring-| dap-core and then declare the URLs of your server in your
application.properties, as shown in the following example:

spring. | dap.urls=ldap://nyserver: 1235
spring. | dap. user nane=adni n
spring. | dap. passwor d=secr et

If you need to customize connection settings, you can use the spring.| dap. base and
spring. | dap. base- envi ronnent properties.

2.0.0.RC1 Spring Boot 119

https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://www.ldap.com/unboundid-ldap-sdk-for-java
https://github.com/spring-projects/spring-data-ldap

Spring Boot Reference Guide

Spring Data LDAP Repositories

Spring Data includes repository support for LDAP. For complete details of Spring Data LDAP, refer to
the reference documentation.

You can also inject an auto-configured LdapTenpl at e instance as you would with any other Spring
Bean, as shown in the following example:

@onponent
public class MyBean {

private final LdapTenplate tenplate;
@A\ut owi r ed
publ i c MyBean(LdapTenpl ate tenplate) {

this.tenplate = tenpl ate;

}

...

Embedded In-memory LDAP Server

For testing purposes, Spring Boot supports auto-configuration of an in-memory LDAP server from
UnboundID. To configure the server, add a dependency to com unboundi d: unboundi d- | dapsdk
and declare a base- dn property, as follows:

spring. | dap. enbedded. base- dn=dc=spri ng, dc=i o

By default, the server starts on a random port and triggers the regular LDAP support. There is no need
to specify a spri ng. | dap. ur | s property.

If there is a schema. | di f file on your classpath, it is used to initialize the server. If you want to load
the initialization script from a different resource, you can also use the spri ng. | dap. enbedded. | di f

property.

By default, a standard schema is used to validate LDI F files. You can turn off validation altogether by
settingthe spri ng. | dap. enbedded. val i dat i on. enabl ed property. If you have custom attributes,
you can use spri ng. | dap. enbedded. val i dati on. schena to define your custom attribute types
or object classes.

30.10 InfluxDB

InfluxDB is an open-source time series database optimized for fast, high-availability storage and retrieval
of time series data in fields such as operations monitoring, application metrics, Internet-of-Things sensor
data, and real-time analytics.

Connecting to InfluxDB

Spring Boot auto-configures an | nf | uxDB instance, provided the i nf | uxdb-j ava client is on the
classpath and the URL of the database is set, as shown in the following example:

spring.influx.url=http://172.0.0.1: 8086

If the connection to InfluxDB requires a user and password, you can set the spri ng. i nfl ux. user
and spri ng. i nfl ux. passwor d properties accordingly.

2.0.0.RC1 Spring Boot 120

http://docs.spring.io/spring-data/ldap/docs/1.0.x/reference/html/
https://www.ldap.com/unboundid-ldap-sdk-for-java
https://www.influxdata.com/

Spring Boot Reference Guide

InfluxDB relies on OkHttp. If you need to tune the http client | nf | uxDB uses behind the scenes, you
can register an OkHt t pCl i ent . Bui | der bean.

2.0.0.RC1 Spring Boot 121

Spring Boot Reference Guide

31. Caching

The Spring Framework provides support for transparently adding caching to an application. At its core,
the abstraction applies caching to methods, thus reducing the number of executions based on the
information available in the cache. The caching logic is applied transparently, without any interference to
the invoker. Spring Boot auto-configures the cache infrastructure as long as caching support is enabled
via the @nabl eCachi ng annotation.

Note

Check the relevant section of the Spring Framework reference for more details.

In a nutshell, adding caching to an operation of your service is as easy as adding the relevant annotation
to its method, as shown in the following example:

i mport org.springframework. cache. annot ati on. Cacheabl e
i mport org.springframework. stereotype. Conponent ;

@onponent
public class MathService {

@Cacheabl e(" pi Deci mal s")

public int conputePiDecinmal (int i) {
I,

}

This example demonstrates the use of caching on a potentially costly operation. Before invoking
conput ePi Deci nal , the abstraction looks for an entry in the pi Deci mal s cache that matches the i
argument. If an entry is found, the content in the cache is immediately returned to the caller, and the
method is not invoked. Otherwise, the method is invoked, and the cache is updated before returning
the value.

Caution

You can also use the standard JSR-107 (JCache) annotations (such as @acheResul t)
transparently. However, we strongly advise you to not mix and match the Spring Cache and
JCache annotations.

If you do not add any specific cache library, Spring Boot auto-configures a simple provider that uses
concurrent maps in memory. When a cache is required (such as pi Deci nal s in the preceding
example), this provider creates it for you. The simple provider is not really recommended for production
usage, but it is great for getting started and making sure that you understand the features. When you
have made up your mind about the cache provider to use, please make sure to read its documentation
to figure out how to configure the caches that your application uses. Nearly all providers require you
to explicitly configure every cache that you use in the application. Some offer a way to customize the
default caches defined by the spri ng. cache. cache- nanes property.

Tip

It is also possible to transparently update or evict data from the cache.

2.0.0.RC1 Spring Boot 122

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/integration.html#cache
http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/integration.html#cache-annotations-put
http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/integration.html#cache-annotations-evict

Spring Boot Reference Guide

Note

If you use the cache infrastructure with beans that are not interface-based, make sure to enable
the pr oxyTar get C ass attribute of @nabl eCachi ng.

31.1 Supported Cache Providers

The cache abstraction does not provide an actual store and relies on abstraction materialized by
the or g. spri ngf ranmewor k. cache. Cache and or g. spri ngf r amewor k. cache. CacheManager
interfaces.

If you have not defined a bean of type CacheManager or a CacheResol ver named cacheResol ver
(see Cachi ngConf i gur er), Spring Boot tries to detect the following providers (in the indicated order):

1. Generic

2. JCache (JSR-107) (EhCache 3, Hazelcast, Infinispan, and others)

3. EhCache 2.x
4. Hazelcast

5. Infinispan

6. Couchbase
7. Redis

8. Caffeine

9. Simple

Tip

It is also possible to force a particular cache provider by setting the spri ng. cache. t ype
property. Use this property if you need to disable caching altogether in certain environment (such
as tests).

Tip

Use the spri ng- boot - st art er - cache “Starter” to quickly add basic caching dependencies.
The starter brings in spri ng- cont ext - suppor t . If you add dependencies manually, you must
include spri ng- cont ext - support inorder to use the JCache, EnCache 2.x, or Guava support.

If the CacheManager is auto-configured by Spring Boot, you can further tune its configuration before it
is fully initialized by exposing a bean that implements the CacheManager Cust omi zer interface. The
following example sets a flag to say that null values should be passed down to the underlying map:

@Bean
publ i ¢ CacheManager Cust omi zer <Concur r ent MapCacheManager > cacheManager Cust om zer () {
return new CacheManager Cust om zer <Concur r ent MapCacheManager >() {
@verride
public void custom ze(Concurrent MapCacheManager cacheManager) {
cacheManager . set Al | owNul | Val ues(fal se);
}
%
}

2.0.0.RC1 Spring Boot 123

http://docs.spring.io/spring/docs/5.0.3.RELEASE/javadoc-api/org/springframework/cache/annotation/CachingConfigurer.html

Spring Boot Reference Guide

Note

In the preceding example, an auto-configured Concur r ent MapCacheManager is expected. If
that is not the case (either you provided your own config or a different cache provider was auto-
configured), the customizer is not invoked at all. You can have as many customizers as you want,
and you can also order them by using @ der or O der ed.

Generic

Generic caching is used if the context defines at least one or g. spri ngf ranewor k. cache. Cache
bean. A CacheManager wrapping all beans of that type is created.

JCache (JSR-107)

JCache is bootstrapped through the presence of a j avax. cache. spi. Cachi ngProvi der on
the classpath (that is, a JSR-107 compliant caching library exists on the classpath), and the
JCacheCacheManager is provided by the spring-boot-starter-cache “Starter”. Various
compliant libraries are available, and Spring Boot provides dependency management for Ehcache 3,
Hazelcast, and Infinispan. Any other compliant library can be added as well.

It might happen that more than one provider is present, in which case the provider must be explicitly
specified. Even if the JSR-107 standard does not enforce a standardized way to define the location of
the configuration file, Spring Boot does its best to accommodate setting a cache with implementation
details, as shown in the following example:

Only necessary if nore than one provider is present
spring. cache. jcache. provi der =com acre. MyCachi ngPr ovi der
spring. cache. jcache. confi g=cl asspat h: acne. xm

Note

When a cache library offers both a native implementation and JSR-107 support, Spring Boot
prefers the JSR-107 support, so that the same features are available if you switch to a different
JSR-107 implementation.

Tip

Spring Boot has general support for Hazelcast. If a single Hazel castl nstance
is available, it is automatically reused for the CacheManager as well, unless the
spring. cache. j cache. confi g property is specified.

There are two ways to customize the underlying j avax. cache. cacheManager :

» Caches can be created on startup by setting the spri ng. cache. cache- nanes property. If a custom
j avax. cache. confi gurati on. Confi gurati on bean is defined, it is used to customize them.

e org.springfranework. boot . aut oconfi gure. cache. JCacheManager Cust om zer beans
are invoked with the reference of the CacheManager for full customization.

Tip

If a standard j avax. cache. CacheManager bean is defined, it is wrapped automatically in an
org. spri ngfranmewor k. cache. CacheManager implementation that the abstraction expects.
No further customization is applied to it.

2.0.0.RC1 Spring Boot 124

https://jcp.org/en/jsr/detail?id=107

Spring Boot Reference Guide

EhCache 2.x

EhCache 2.xis used if a file named ehcache. xm can be found at the root of the classpath. If EhCache
2.x is found, the EhCacheCacheManager provided by the spri ng- boot - st art er - cache “Starter”
is used to bootstrap the cache manager. An alternate configuration file can be provided as well, as
shown in the following example:

spring. cache. ehcache. confi g=cl asspat h: conf i g/ anot her - confi g. xm

Hazelcast

Spring Boot has general support for Hazelcast. If a Hazel cast | nst ance has been auto-configured,
it is automatically wrapped in a CacheManager .

Infinispan

Infinispan has no default configuration file location, so it must be specified explicitly. Otherwise, the
default bootstrap is used.

spring. cache.infinispan.config=infinispan.xm

Caches can be created on startup by setting the spri ng. cache. cache- nanes property. If a custom
Confi gurati onBui | der bean is defined, it is used to customize the caches.

Note

The support of Infinispan in Spring Boot is restricted to the embedded mode and is quite basic.
If you want more options, you should use the official Infinispan Spring Boot starter instead. See
Infinispan’s documentation for more details.

Couchbase

If the Couchbase Java client and the couchbase- spri ng- cache implementation are available and
Couchbase is configured, a CouchbaseCacheManager is auto-configured. It is also possible to create
additional caches on startup by setting the spri ng. cache. cache- nanes property. These caches
operate on the Bucket that was auto-configured. You can also create additional caches on another
Bucket by using the customizer. Assume you need two caches (cachel and cache2) on the "main”
Bucket and one (cache3) cache with a custom time to live of 2 seconds on the “another” Bucket .
You can create the first two caches through configuration, as follows:

spring. cache. cache- nanes=cachel, cache2

Then you can define a @onf i gur at i on class to configure the extra Bucket and the cache3 cache,
as follows:

@onfiguration
public class CouchbaseCacheConfiguration {

private final Cluster cluster;

publ i ¢ CouchbaseCacheConfi guration(Cl uster cluster) {
this.cluster = cluster;

}

@Bean
publ i ¢ Bucket anot herBucket () {

2.0.0.RC1 Spring Boot 125

http://www.ehcache.org/
http://infinispan.org/
https://github.com/infinispan/infinispan-spring-boot
https://www.couchbase.com/

Spring Boot Reference Guide

return this.cluster.openBucket ("another", "secret");

}

@Bean
publ i ¢ CacheManager Cust om zer <CouchbaseCacheManager > cacheManager Cust om zer () {
return c -> {
c. prepareCache("cache3", CacheBuil der.new nstance(anot her Bucket ())
.W thExpiration(2));

This sample configuration reuses the ust er that was created through auto-configuration.

Redis

If Redis is available and configured, a Redi sCacheManager is auto-configured. It is possible to
create additional caches on startup by setting the spri ng. cache. cache- nanmes property and cache
defaults can be configured by using spri ng. cache. redi s. * properties. For instance, the following
configuration creates cachel and cache2 caches with a time to live of 10 minutes:

spring. cache. cache- nanes=cachel, cache2
spring.cache.redis.tinme-to-1ive=600000

Note

By default, a key prefix is added so that, if two separate caches use the same key, Redis does
not have overlapping keys and cannot return invalid values. We strongly recommend keeping this
setting enabled if you create your own Redi sCacheManager .

Tip

You can take full control of the configuration by adding a Redi sCacheConfi gurati on @ean
of your own. This can be useful if you're looking for customizing the serialization strategy.

Caffeine

Caffeine is a Java 8 rewrite of Guava's cache that supersedes support for Guava. If Caffeine is
present, a Caf f ei neCacheManager (provided by the spri ng- boot - st art er - cache “Starter”) is
auto-configured. Caches can be created on startup by setting the spri ng. cache. cache- nanes
property and can be customized by one of the following (in the indicated order):

1. A cache spec defined by spri ng. cache. caf f ei ne. spec
2. Acom gi t hub. benmanes. caf f ei ne. cache. Caf f ei neSpec bean is defined
3. Acom gi t hub. benmanes. caf f ei ne. cache. Caf f ei ne bean is defined

For instance, the following configuration creates cachel and cache2 caches with a maximum size of
500 and a time to live of 10 minutes

spring. cache. cache- nanes=cachel, cache2
spring. cache. caf f ei ne. spec=maxi munsi ze=500, expi r eAf t er Access=600s

If a com gi t hub. bennanes. caf f ei ne. cache. CacheLoader bean is defined, it is automatically
associated to the Caf f ei neCacheManager . Since the CachelLoader is going to be associated with

2.0.0.RC1 Spring Boot 126

http://redis.io/
https://github.com/ben-manes/caffeine

Spring Boot Reference Guide

all caches managed by the cache manager, it must be defined as CacheLoader <hj ect, Obj ect >.
The auto-configuration ignores any other generic type.

Simple

If none of the other providers can be found, a simple implementation using a Concur r ent HashMap as
the cache store is configured. This is the default if no caching library is present in your application. By
default, caches are created as needed, but you can restrict the list of available caches by setting the
cache- names property. For instance, if you want only cachel and cache2 caches, set the cache-
nanes property as follows:

spring. cache. cache- nanes=cachel, cache2

If you do so and your application uses a cache not listed, then it fails at runtime when the cache is
needed, but not on startup. This is similar to the way the "real" cache providers behave if you use an
undeclared cache.

None

When @nabl eCachi ng is present in your configuration, a suitable cache configuration is expected as
well. If you need to disable caching altogether in certain environments, force the cache type to none to
use a no-op implementation, as shown in the following example:

spring. cache. t ype=none

2.0.0.RC1 Spring Boot 127

Spring Boot Reference Guide

32. Messaging

The Spring Framework provides extensive support for integrating with messaging systems, from
simplified use of the JMS API using Jnrs Tenpl at e to a complete infrastructure to receive messages
asynchronously. Spring AMQP provides a similar feature set for the Advanced Message Queuing
Protocol. Spring Boot also provides auto-configuration options for Rabbi t Tenpl at e and RabbitMQ.
Spring WebSocket natively includes support for STOMP messaging, and Spring Boot has support for
that through starters and a small amount of auto-configuration. Spring Boot also has support for Apache
Kafka.

32.1 JMS

The javax.jns. ConnectionFactory interface provides a standard method of -creating
a javax.]jns. Connection for interacting with a JMS broker. Although Spring needs a
Connecti onFact ory to work with JMS, you generally need not use it directly yourself and can
instead rely on higher level messaging abstractions. (See the relevant section of the Spring Framework
reference documentation for details.) Spring Boot also auto-configures the necessary infrastructure to
send and receive messages.

ActiveMQ Support

When ActiveMQ is available on the classpath, Spring Boot can also configure a Connect i onFact ory.
If the broker is present, an embedded broker is automatically started and configured (provided no broker
URL is specified through configuration).

Note

If you use spring-boot-starter-activeny, the necessary dependencies to connect or
embed an ActiveMQ instance are provided, as is the Spring infrastructure to integrate with JMS.

ActiveMQ configuration is controlled by external configuration properties in spri ng. acti veny. *. For
example, you might declare the following section in appl i cati on. properti es:

spring. activeny. broker-url=tcp://192.168. 1. 210: 9876
spring. activenyg. user =adm n
spring. activeny. passwor d=secr et

You can also pool JMS resources by adding a dependency to or g. apache. acti veny: acti veny-
pool and configuring the Pool edConnecti onFact ory accordingly, as shown in the following
example:

spring. activeny. pool . enabl ed=true
spring. activenyg. pool . max- connect i ons=50

Tip

See ActiveMProperties for more of the supported options. You can also register an
arbitrary number of beans that implement Acti veMQConnecti onFact or yCust om zer for
more advanced customizations.

By default, ActiveMQ creates a destination if it does not yet exist so that destinations are resolved
against their provided names.

2.0.0.RC1 Spring Boot 128

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/integration.html#jms
http://activemq.apache.org/
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/activemq/ActiveMQProperties.java

Spring Boot Reference Guide

Artemis Support

Spring Boot can auto-configure a Connect i onFact or y when it detects that Artemis is available on the
classpath. If the broker is present, an embedded broker is automatically started and configured (unless
the mode property has been explicitly set). The supported modes are enbedded (to make explicit that
an embedded broker is required and that an error should occur if the broker is not available on the
classpath) and nat i ve (to connect to a broker using the net t y transport protocol). When the latter is
configured, Spring Boot configures a Connect i onFact ory that connects to a broker running on the
local machine with the default settings.

Note

If you use spring-boot-starter-artem s, the necessary dependencies to connect to an
existing Artemis instance are provided, as well as the Spring infrastructure to integrate with
JMS. Adding or g. apache. acti venqg: art emni s-j nms-ser ver to your application lets you use
embedded mode.

Artemis configuration is controlled by external configuration properties in spring. artem s. *. For
example, you might declare the following section in appl i cati on. properti es:

spring.artem s. node=nati ve
spring.artem s. host =192. 168. 1. 210
spring.artem s. port=9876
spring.artem s. user=adm n

spring. artem s. passwor d=secr et

When embedding the broker, you can choose if you want to enable persistence and list
the destinations that should be made available. These can be specified as a comma-
separated list to create them with the default options, or you can define bean(s)
of type or g. apache. activeng. artem s.jns. server. confi g. IMSQueueConfi gurati on or
org. apache. acti veny. artem s. j nms. server. confi g. Topi cConfi gurati on, for advanced
gueue and topic configurations, respectively.

See Art em sProperti es for more supported options.

No JNDI lookup is involved, and destinations are resolved against their names, using either the name
attribute in the Artemis configuration or the names provided through configuration.

Using a JNDI ConnectionFactory

If you are running your application in an application server, Spring Boot tries to locate
a JMS ConnectionFactory by using JNDI. By default, the java:/JnsXA and java:/
XAConnect i onFact ory location are checked. You can use the spri ng. j ms. j ndi - name property
if you need to specify an alternative location, as shown in the following example:

spring.jns.jndi-nanme=j ava: / MyConnect i onFact ory

Sending a Message

Spring’s JnsTenpl at e is auto-configured, and you can autowire it directly into your own beans, as
shown in the following example:

i nport org.springfranework. beans. factory. annot ati on. Aut ow r ed;

2.0.0.RC1 Spring Boot 129

http://activemq.apache.org/artemis/
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/artemis/ArtemisProperties.java

Spring Boot Reference Guide

i mport org.springframework.jnms.core.JnsTenpl at e;
i mport org. springframework. st ereot ype. Conponent ;

@Conponent
public class MyBean {

private final JmsTenpl ate jnsTenpl at e;
@\ut owi r ed

public MyBean(JnmsTenpl ate jmsTenpl ate) {
this.jnmsTenpl ate = jnsTenpl at e;

}

...

Note

JnsMessagi ngTenpl at e can be injected in a similar manner. If a Desti nati onResol ver
or a MessageConvert er bean is defined, it is associated automatically to the auto-configured
JnsTenpl at e.

Receiving a Message

When the JMS infrastructure is present, any bean can be annotated with @nsLi st ener to create
a listener endpoint. If no JnsLi st ener Cont ai ner Fact ory has been defined, a default one is
configured automatically. If a Dest i nati onResol ver or a MessageConvert er beans is defined, it
is associated automatically to the default factory.

By default, the default factory is transactional. If you run in an infrastructure where a
Jt aTr ansact i onManager is present, it is associated to the listener container by default. If not, the
sessi onTransact ed flag is enabled. In that latter scenario, you can associate your local data store
transaction to the processing of an incoming message by adding @r ansact i onal on your listener
method (or a delegate thereof). This ensures that the incoming message is acknowledged, once the local
transaction has completed. This also includes sending response messages that have been performed
on the same JMS session.

The following component creates a listener endpoint on the soneQueue destination:

@Conponent
public class MyBean {

@nslLi stener (destination = "someQueue")
public void processMessage(String content) {
I,

}

Tip

See the Javadoc of @nabl eJns for more details.

If you need to create more JnsLi st ener Cont ai ner Fact or y instances or if you want to override the
default, Spring Boot provides a Def aul t JnsLi st ener Cont ai ner Fact or yConf i gur er that you
can use to initialize a Def aul t JnsLi st ener Cont ai ner Fact or y with the same settings as the one
that is auto-configured.

2.0.0.RC1 Spring Boot 130

http://docs.spring.io/spring/docs/5.0.3.RELEASE/javadoc-api/org/springframework/jms/core/JmsMessagingTemplate.html
http://docs.spring.io/spring/docs/5.0.3.RELEASE/javadoc-api/org/springframework/jms/annotation/EnableJms.html

Spring Boot Reference Guide

For instance, the following example exposes another factory that uses a specific MessageConvert er:

@onfi guration
static class JmsConfiguration {

@Bean
public Defaul tJnmsLi st ener Cont ai ner Factory nyFact ory(
Def aul t JnsLi st ener Cont ai ner Fact oryConfi gurer configurer) {
Def aul t InsLi st ener Cont ai ner Factory factory =
new Def aul t InsLi st ener Cont ai ner Factory() ;
configurer.configure(factory, connectionFactory());
factory. set MessageConvert er (nyMessageConverter());
return factory;

Then you can use the factory in any @nsLi st ener -annotated method as follows:

@Conponent
public class MyBean {

@nsLi stener (destination = "soneQueue", containerFactory="nyFactory")
public void processMessage(String content) {
1.

}

32.2 AMQP

The Advanced Message Queuing Protocol (AMQP) is a platform-neutral, wire-level protocol for
message-oriented middleware. The Spring AMQP project applies core Spring concepts to the
development of AMQP-based messaging solutions. Spring Boot offers several conveniences for working
with AMQP through RabbitMQ, including the spri ng- boot - st art er - angp “Starter”.

RabbitMQ support

RabbitMQ is a lightweight, reliable, scalable, and portable message broker based on the AMQP protocol.
Spring uses Rabbi t MQto communicate through the AMQP protocol.

RabbitMQ configuration is controlled by external configuration properties in spri ng. r abbi t mg. *. For
example, you might declare the following section in appl i cati on. properti es:

spring. rabbi t ng. host =l ocal host
spring. rabbi t ng. port =5672
spring. rabbi t ng. user nanme=adm n
spring. rabbi t ng. passwor d=secr et

See Rabbi t Pr oper ti es for more of the supported options.

Tip

See Understanding AMQP, the protocol used by RabbitMQ for more details.

Sending a Message

Spring’s AngpTenpl at e and AngpAdni n are auto-configured, and you can autowire them directly into
your own beans, as shown in the following example:

2.0.0.RC1 Spring Boot 131

https://www.rabbitmq.com/
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/amqp/RabbitProperties.java
http://spring.io/blog/2010/06/14/understanding-amqp-the-protocol-used-by-rabbitmq/

Spring Boot Reference Guide

i nport org.springframework. angp. cor e. AmgpAdmi n;

i nport org.springframework. angp. core. AmgpTenpl at e;

i nport org.springframework. beans. factory. annot ati on. Aut ow r ed;
i nport org.springfranework. stereotype. Conponent ;

@onponent
public class MyBean {

private final AmgpAdm n angpAdm n;
private final AmgpTenpl ate angpTenpl at e;

@\ut owi r ed

publ i c MyBean(AmgpAdmi n angpAdm n, AngpTenpl ate angpTenpl ate) {
this.amgpAdm n = angpAdmi n;
this.amgpTenpl ate = angpTenpl at e;

}

N/

Note

Rabbi t Messagi ngTenpl at e can be injected in a similar manner. If a MessageConvert er
bean is defined, it is associated automatically to the auto-configured AngpTenpl at e.

If necessary, any org.springframework. angp. core. Queue that is defined as a bean is
automatically used to declare a corresponding queue on the RabbitMQ instance.

To retry operations, you can enable retries on the AngpTenpl at e (for example, in the event that the
broker connection is lost). Retries are disabled by default.

Receiving a Message

When the Rabbit infrastructure is present, any bean can be annotated with @Rabbi t Li st ener to
create a listener endpoint. If no Rabbi t Li st ener Cont ai ner Fact ory has been defined, a default
Si npl eRabbi t Li st ener Cont ai ner Fact ory is automatically configured and you can switch to a
direct container using the spri ng. rabbi tng. | i st ener . t ype property. If a MessageConvert er
or a MessageRecover er bean is defined, it is automatically associated with the default factory.

The following sample component creates a listener endpoint on the soneQueue queue:

@onponent
public class MyBean {

@Rabbi t Li st ener (queues = "soneQueue")
public void processMessage(String content) {
...

}

Tip

See the Javadoc of @nabl eRabbi t for more details.

If you need to create more Rabbi t Li st ener Cont ai ner Fact or y instances or if you want to override
the default, Spring Boot provides a Si npl eRabbi t Li st ener Cont ai ner Fact or yConf i gurer
and a Di rect Rabbi t Li st ener Cont ai ner Fact or yConf i gurer that you can
use to initialize a Si npl eRabbi t Li st ener Cont ai ner Fact ory and a

2.0.0.RC1 Spring Boot 132

http://docs.spring.io/spring-amqp/docs/current/api/org/springframework/amqp/rabbit/core/RabbitMessagingTemplate.html
http://docs.spring.io/spring-amqp/docs/current/api/org/springframework/amqp/rabbit/annotation/EnableRabbit.html

Spring Boot Reference Guide

Di rect Rabbi t Li st ener Cont ai ner Fact ory with the same settings as the factories used by the
auto-configuration.

Tip

It does not matter which container type you chose. Those two beans are exposed by the auto-
configuration.

For instance, the following configuration class exposes another factory that uses a specific
MessageConverter:

@onfiguration
static class RabbitConfiguration {

@Bean
publ i c Si npl eRabbi tLi st ener Cont ai ner Fact ory nmyFact ory(
Si npl eRabbi t Li st ener Cont ai ner Fact or yConfi gurer configurer) {
Si npl eRabbi t Li st ener Cont ai ner Factory factory =
new Si npl eRabbi t Li st ener Cont ai ner Factory();
configurer.configure(factory, connectionFactory);
factory. set MessageConvert er (myMessageConverter());
return factory;

Then you can use the factory in any @Rabbi t Li st ener -annotated method, as follows:

@onponent
public class MyBean {

@Rabbi t Li st ener (queues = "sonmeQueue", contai nerFactory="nyFactory")
public void processMessage(String content) {
1.

}

You can enable retries to handle situations where your listener throws an exception. By default,
Rej ect AndDont RequeueRecover er is used, but you can define a MessageRecover er of your own.
When retries are exhausted, the message is rejected and either dropped or routed to a dead-letter
exchange if the broker is configured to do so. By default, retries are disabled.

Important

By default, if retries are disabled and the listener throws an exception, the
delivery is retried indefinitely. You can modify this behavior in two ways: Set the
def aul t RequeueRej ect ed property to f al se so that zero re-deliveries are attempted or throw
an AngpRej ect AndDont RequeueExcept i on to signal the message should be rejected. The
latter is the mechanism used when retries are enabled and the maximum number of delivery
attempts is reached.

32.3 Apache Kafka Support

Apache Kafka is supported by providing auto-configuration of the spri ng- kaf ka project.

Kafka configuration is controlled by external configuration properties in spri ng. kaf ka. *. For
example, you might declare the following section in appl i cati on. properti es:

2.0.0.RC1 Spring Boot 133

http://kafka.apache.org/

Spring Boot Reference Guide

spring. kaf ka. boot st rap- server s=|l ocal host : 9092
spri ng. kaf ka. consumner . gr oup-i d=nyG oup

Tip

To create a topic on startup, add a bean of type NewTopi c. If the topic already exists, the bean
is ignored.

See Kaf kaPr operti es for more supported options.

Sending a Message

Spring’s Kaf kaTenpl at e is auto-configured, and you can autowire it directly in your own beans, as
shown in the following example:

@onponent
public class MyBean {

private final KafkaTenplate kaf kaTenpl at e;
@\ut owi r ed
publi c MyBean(Kaf kaTenpl ate kaf kaTenpl ate) {

this. kaf kaTenpl ate = kaf kaTenpl at e;
}

N/

Note

If a RecordMessageConverter bean is defined, it is automatically associated to the auto-
configured Kaf kaTenpl at e.

Receiving a Message

When the Apache Kafka infrastructure is present, any bean can be annotated with @af kaLi st ener
to create a listener endpoint. If no Kaf kalLi st ener Cont ai ner Fact ory has been defined, a
default one is automatically configured with keys defined in spri ng. kaf ka. | i stener. *. Also, if a
Recor dMessageConvert er bean is defined, it is automatically associated to the default factory.

The following component creates a listener endpoint on the soneTopi ¢ topic:

@onponent
public class MyBean {

@KXaf kaLi st ener (topi cs = "soneTopi c")

public void processMessage(String content) {
/o

}

Additional Kafka Properties

The properties supported by auto configuration are shown in Appendix A, Common application
properties. Note that, for the most part, these properties (hyphenated or camelCase) map directly to the
Apache Kafka dotted properties. Refer to the Apache Kafka documentation for details.

2.0.0.RC1 Spring Boot 134

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/kafka/KafkaProperties.java

Spring Boot Reference Guide

The first few of these properties apply to both producers and consumers but can be specified at the
producer or consumer level if you wish to use different values for each. Apache Kafka designates
properties with an importance of HIGH, MEDIUM, or LOW. Spring Boot auto-configuration supports all
HIGH importance properties, some selected MEDIUM and LOW properties, and any properties that do
not have a default value.

Only a subset of the properties supported by Kafka are available through the Kaf kaProperti es
class. If you wish to configure the producer or consumer with additional properties that are not directly
supported, use the following properties:

spring. kaf ka. properties. prop. one=first

spring. kaf ka. adm n. properties. prop. t w=second
spring. kaf ka. consuner . properties. prop.three=third
spring, kaf ka. producer . properties. prop. four=fourth

This sets the common pr op. one Kafka property to first (applies to producers, consumers and
admins), the pr op. t wo admin property to second, the pr op. t hr ee consumer property tot hi rd and
the prop. f our producer property to f ourt h.

You can also configure the Spring Kafka JsonDeseri al i zer as follows:

spring. kaf ka. consuner . val ue- deseri al i zer =or g. spri ngf ramewor k. kaf ka. support. serializer.JsonDeserializer
spring. kaf ka. consuner . properties. spring.json.val ue. defaul t.type=org.foo.|nvoice
spring. kaf ka. consuner . properties. spring.json.trusted. packages=org. f 00, or g. bar

Similarly, you can disable the JsonSeri al i zer default behavior of sending type information in
headers:

spring. kaf ka. producer . val ue-seri al i zer =or g. spri ngf ramewor k. kaf ka. support. serializer.JsonSerializer
spring. kaf ka. producer. properties. spring.json. add. type. header s=f al se

Important

Properties set in this way override any configuration item that Spring Boot explicitly supports.

2.0.0.RC1 Spring Boot 135

Spring Boot Reference Guide

33. Calling REST Services with Rest Tenpl at e

If you need to call remote REST services from your application, you can use the Spring Framework’s
Rest Tenpl at e class. Since Rest Tenpl at e instances often need to be customized before being
used, Spring Boot does not provide any single auto-configured Rest Tenpl at e bean. It does,
however, auto-configure a Rest Tenpl at eBui | der, which can be used to create Rest Tenpl ate
instances when needed. The auto-configured Rest Tenpl at eBui | der ensures that sensible
Ht t pMessageConvert er s are applied to Rest Tenpl at e instances.

The following code shows a typical example:

@er vi ce
public class MyService {

private final RestTenplate restTenplate;

public MyBean(Rest Tenpl at eBui | der rest Tenpl at eBui | der) {
this.restTenpl ate = rest Tenpl at eBui | der. bui I d();
}

public Details someRestCall (String name) {
return this.restTenpl ate. get For Obj ect ("/{nane}/details", Details.class, nane);

}

Tip

Rest Tenpl at eBui | der includes a number of useful methods that can be used to quickly
configure a Rest Tenpl ate. For example, to add BASIC auth support, you can use
bui | der. basi cAut hori zati on("user", "password").build().

33.1 RestTemplate Customization

There are three main approaches to Rest Tenpl at e customization, depending on how broadly you
want the customizations to apply.

To make the scope of any customizations as narrow as possible, inject the auto-configured
Rest Tenpl at eBui | der and then call its methods as required. Each method call returns a new
Rest Tenpl at eBui | der instance, so the customizations only affect this use of the builder.

To make an application-wide, additive customization, use a Rest Tenpl at eCust omi zer bean. All
such beans are automatically registered with the auto-configured Rest Tenpl at eBui | der and are
applied to any templates that are built with it.

The following example shows a customizer that configures the use of a proxy for all hosts except
192.168. 0. 5:

static class ProxyCustom zer inplenments RestTenpl at eCustom zer {

@verride
public void custoni ze(Rest Tenpl ate rest Tenpl ate) {
Ht t pHost proxy = new HttpHost ("proxy. exanpl e. coni);
HtpCient httpCient = HtpCientBuilder.create()
. set Rout ePl anner (new Def aul t ProxyRout ePl anner (proxy) {

@verride
public HttpHost deterni neProxy(HttpHost target,

2.0.0.RC1 Spring Boot 136

http://docs.spring.io/spring/docs/5.0.3.RELEASE/javadoc-api/org/springframework/web/client/RestTemplate.html

Spring Boot Reference Guide

Ht t pRequest request, HttpContext context)
throws HttpException {
if (target.getHost Nane().equal s("192.168.0.5")) {
return null;
}
return super.determ neProxy(target, request, context);

}

}) . build();
rest Tenpl at e. set Request Fact or y(
new Htt pConponent sCl i ent Ht t pRequest Factory(httpCient));

Finally, the most extreme (and rarely used) option is to create your own Rest Tenpl at eBui | der
bean. Doing so switches off the auto-configuration of a Rest Tenpl at eBui | der and prevents any

Rest Tenpl at eCust o zer beans from being used.

2.0.0.RC1 Spring Boot

137

Spring Boot Reference Guide

34. Calling REST Services with WebCl i ent

If you have Spring WebFlux on your classpath, you can also choose to use Webd i ent to call remote
REST services. Compared to Rest Tenpl at e, this client has a more functional feel and is fully reactive.
You can create your own client instance with the builder, WebCl i ent . cr eat e() . See the relevant
section on WebClient.

Spring Boot creates and pre-configures such a builder for you. For example, client HTTP codecs are
configured in the same fashion as the server ones (see WebFlux HTTP codecs auto-configuration).

The following code shows a typical example:

@ervi ce
public class MyService {

private final WbCient webdient;

public MyBean(WebC ient.Buil der webC ientBuilder) {
this.webd ient = webd i entBuil der.baseUrl ("http://exanple.org").build();

}

public Mono<Detail s> someRest Cal | (String nane) {
return this.webCient.get().url("/{nane}/details", nane)
.retrieve().bodyToMono(Details.class);

34.1 WebClient Customization

There are three main approaches to WebCl i ent customization, depending on how broadly you want
the customizations to apply.

To make the scope of any customizations as narrow as possible, inject the auto-configured
WebC i ent . Bui | der and then call its methods as required. WebCl i ent . Bui | der instances are
stateful: Any change on the builder is reflected in all clients subsequently created with it. If you
want to create several clients with the same builder, you can also consider cloning the builder with
WebCl i ent. Buil der other = builder.clone();.

To make an application-wide, additive customization to all WebCl i ent . Bui | der instances, you can
declare Webd i ent Cust om zer beans and change the Webd i ent . Bui | der locally at the point of
injection.

Finally, you can fall back to the original APl and use WebCl i ent . creat e() . In that case, no auto-
configuration or WebC i ent Cust oni zer is applied.

2.0.0.RC1 Spring Boot 138

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web.html#web-reactive-client
http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web.html#web-reactive-client

Spring Boot Reference Guide

35. Validation

The method validation feature supported by Bean Validation 1.1 is automatically enabled as long as
a JSR-303 implementation (such as Hibernate validator) is on the classpath. This lets bean methods
be annotated with j avax. val i dat i on constraints on their parameters and/or on their return value.
Target classes with such annotated methods need to be annotated with the @/al i dat ed annotation at
the type level for their methods to be searched for inline constraint annotations.

For instance, the following service triggers the validation of the first argument, making sure its size is
between 8 and 10:

@er vi ce
@/al i dat ed
public class MyBean {

public Archive findByCodeAndAut hor (@i ze(mn = 8, nmax = 10) String code,
Aut hor aut hor) {

2.0.0.RC1 Spring Boot 139

Spring Boot Reference Guide

36. Sending Email

The Spring Framework provides an easy abstraction for sending email by using the JavaMai | Sender
interface, and Spring Boot provides auto-configuration for it as well as a starter module.

Tip

See the reference documentation for a detailed explanation of how you can use
JavaMai | Sender .

If spring. mail . host and the relevant libraries (as defined by spri ng- boot -starter-nmnail) are
available, a default JavaMai | Sender is created if none exists. The sender can be further customized
by configuration items from the spri ng. mai | namespace. See Mai | Pr operti es for more details.

In particular, certain default timeout values are infinite, and you may want to change that to avoid having
a thread blocked by an unresponsive mail server, as shown in the following example:

spring. mail.properties.mail.sntp.connectiontimeout=5000
spring. mail.properties.mil.sntp.timeout=3000
spring. mail.properties.mail.sntp.witetimeout=5000

2.0.0.RC1 Spring Boot 140

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/integration.html#mail
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mail/MailProperties.java

Spring Boot Reference Guide

37. Distributed Transactions with JTA

Spring Boot supports distributed JTA transactions across multiple XA resources by using either an
Atomikos or Bitronix embedded transaction manager. JTA transactions are also supported when
deploying to a suitable Java EE Application Server.

When a JTA environment is detected, Spring’s Jt aTr ansacti onManager is used to manage
transactions. Auto-configured JMS, DataSource, and JPA beans are upgraded to support XA
transactions. You can use standard Spring idioms, such as @r ansacti onal , to participate in a
distributed transaction. If you are within a JTA environment and still want to use local transactions, you
can setthe spring. jta. enabl ed property to f al se to disable the JTA auto-configuration.

37.1 Using an Atomikos Transaction Manager

Atomikos is a popular open source transaction manager which can be embedded into your Spring
Boot application. You can use the spri ng-boot-starter-jta-atomn kos Starter to pull in the
appropriate Atomikos libraries. Spring Boot auto-configures Atomikos and ensures that appropriate
depends- on settings are applied to your Spring beans for correct startup and shutdown ordering.

By default, Atomikos transaction logs are written to a transacti on-|ogs directory in your
application’s home directory (the directory in which your application jar file resides). You can
customize the location of this directory by setting a spring.jta.log-dir property in your
application. properties file. Properties starting with spring.jta.atom kos. properties
can also be used to customize the Atomikos User Transacti onServicel np. See the
At omi kosPr opert i es Javadoc for complete details.

Note

To ensure that multiple transaction managers can safely coordinate the same resource managers,
each Atomikos instance must be configured with a unique ID. By default, this ID is the IP address
of the machine on which Atomikos is running. To ensure uniqueness in production, you should
configurethe spri ng. jta.transacti on- nanager - i d property with a different value for each
instance of your application.

37.2 Using a Bitronix Transaction Manager

Bitronix is a popular open-source JTA transaction manager implementation. You can use the spri ng-
boot -starter-jta-bitronix starter to add the appropriate Bitronix dependencies to your project.
As with Atomikos, Spring Boot automatically configures Bitronix and post-processes your beans to
ensure that startup and shutdown ordering is correct.

By default, Bitronix transaction log files (partl.btm and part2.btn) are written to a
transaction-1 ogs directory in your application home directory. You can customize the
location of this directory by setting the spring.jta.l og-dir property. Properties starting with
spring.jta.bitronix. properti es arealsoboundtothebitroni x.tm Confi gurationbean,
allowing for complete customization. See the Bitronix documentation for details.

Note

To ensure that multiple transaction managers can safely coordinate the same resource managers,
each Bitronix instance must be configured with a unique ID. By default, this ID is the IP address

2.0.0.RC1 Spring Boot 141

http://www.atomikos.com/
https://github.com/bitronix/btm
https://www.atomikos.com/
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/jta/atomikos/AtomikosProperties.html
https://github.com/bitronix/btm
https://github.com/bitronix/btm/wiki/Transaction-manager-configuration

Spring Boot Reference Guide

of the machine on which Bitronix is running. To ensure uniqueness in production, you should
configurethe spri ng. j ta. transacti on- manager - i d property with a different value for each
instance of your application.

37.3 Using a Narayana Transaction Manager

Narayana is a popular open source JTA transaction manager implementation supported by JBoss.
You can use the spri ng-boot -starter-jta-narayana starter to add the appropriate Narayana
dependencies to your project. As with Atomikos and Bitronix, Spring Boot automatically configures
Narayana and post-processes your beans to ensure that startup and shutdown ordering is correct.

By default, Narayana transaction logs are writtento at r ansact i on- | ogs directory in your application
home directory (the directory in which your application jar file resides). You can customize the location
of this directory by setting a spring.jta.l og-dir property in your application. properties
file. Properties starting with spri ng. j t a. nar ayana. pr operti es can also be used to customize the
Narayana configuration. See the Nar ayanaPr opert i es Javadoc for complete details.

Note

To ensure that multiple transaction managers can safely coordinate the same resource managers,
each Narayana instance must be configured with a unique ID. By default, this ID is set to 1.
To ensure uniqueness in production, you should configure the spring.jta.transaction-
manager - i d property with a different value for each instance of your application.

37.4 Using a Java EE Managed Transaction Manager

If you package your Spring Boot application as a war or ear file and deploy it to a Java EE
application server, you can use your application server’s built-in transaction manager. Spring Boot
tries to auto-configure a transaction manager by looking at common JNDI locations (j ava: conp/
User Transacti on,j ava: conp/ Tr ansact i onManager , and so on). If you use a transaction service
provided by your application server, you generally also want to ensure that all resources are managed
by the server and exposed over JNDI. Spring Boot tries to auto-configure JMS by looking for a
Connect i onFact ory atthe JNDI path (j ava: / JnsXAorj ava: / XAConnect i onFact ory), and you
can use the spri ng. dat asour ce. j ndi - nane_property to configure your Dat aSour ce.

37.5 Mixing XA and Non-XA JMS Connections

When using JTA, the primary JMS Connecti onFact ory bean is XA-aware and participates in
distributed transactions. In some situations, you might want to process certain JMS messages by using
a non-XA Connect i onFact ory. For example, your JMS processing logic might take longer than the
XA timeout.

If you want to wuse a non-XA ConnectionFactory, you can inject the
nonXaJnsConnect i onFact ory bean rather than the @°ri nary j nsConnecti onFact ory bean.
For consistency, the j msConnecti onFactory bean is also provided by using the bean alias
xaJmsConnecti onFactory.

The following example shows how to inject Connect i onFact or y instances:

/1 Inject the prinmary (XA aware) ConnectionFactory
@\ut owi r ed
private ConnectionFactory defaul t Connecti onFactory;

2.0.0.RC1 Spring Boot 142

http://narayana.io/
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/jta/narayana/NarayanaProperties.html

Spring Boot Reference Guide

/1 Inject the XA aware ConnectionFactory (uses the alias and injects the sane as above)
@\ut owi r ed

@ualifier("xaJnmsConnecti onFactory")

private ConnectionFactory xaConnecti onFactory;

/1 1 nject the non-XA aware Connecti onFactory

@\ut owi r ed

@ual i fier("nonXaJnsConnecti onFact ory")

private ConnectionFactory nonXaConnecti onFactory;

37.6 Supporting an Alternative Embedded Transaction
Manager

The XAConnecti onFact oryW apper and XADat aSour ceW apper interfaces can be used
to support alternative embedded transaction managers. The interfaces are responsible for
wrapping XAConnecti onFactory and XADat aSource beans and exposing them as regular
ConnectionFactory and Dat aSource beans, which transparently enroll in the distributed
transaction. DataSource and JMS auto-configuration use JTA variants, provided you have a
JtaTransacti onManager bean and appropriate XA wrapper beans registered within your
Appl i cati onCont ext.

The BitronixXAConnectionFactoryWrapper and BitronixXADataSourceWrapper provide good examples
of how to write XA wrappers.

2.0.0.RC1 Spring Boot 143

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/jta/XAConnectionFactoryWrapper.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/jta/XADataSourceWrapper.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/jta/bitronix/BitronixXAConnectionFactoryWrapper.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/jta/bitronix/BitronixXADataSourceWrapper.java

Spring Boot Reference Guide

38. Hazelcast

If Hazelcast is on the classpath and a suitable configuration is found, Spring Boot auto-configures a
Hazel cast | nst ance that you can inject in your application.

If you define a com hazel cast. confi g. Confi g bean, Spring Boot uses that. If your configuration
defines an instance name, Spring Boot tries to locate an existing instance rather than creating a new one.

You could also specify the hazel cast . xnm configuration file to use through configuration, as shown
in the following example:

spring. hazel cast. confi g=cl asspat h: confi g/ my- hazel cast . xm

Otherwise, Spring Boot tries to find the Hazelcast configuration from the default locations:
hazel cast. xm in the working directory or at the root of the classpath. We also check if the
hazel cast. confi g system property is set. See the Hazelcast documentation for more details.

If hazel cast-client is present on the classpath, Spring Boot first attempts to create a client by
checking the following configuration options:

e The presence of acom hazel cast.client.config.dientConfig bean.
A configuration file defined by the spri ng. hazel cast . confi g property.
e The presence of the hazel cast . cl i ent. confi g system property.

e« Ahazel cast-client.xnl inthe working directory or at the root of the classpath.

Note

Spring Boot also has explicit caching support for Hazelcast. If caching is enabled, the
Hazel cast | nst ance is automatically wrapped in a CacheManager implementation.

2.0.0.RC1 Spring Boot 144

https://hazelcast.com/
http://docs.hazelcast.org/docs/latest/manual/html-single/

Spring Boot Reference Guide

39. Quartz Scheduler

Spring Boot offers several conveniences for working with the Quartz scheduler, including the spri ng-
boot - start er-quart z “Starter”. If Quartz is available, a Schedul er is auto-configured (through the
Schedul er Fact or yBean abstraction).

Beans of the following types are automatically picked up and associated with the Schedul er :

» JobDet ai | : defines a particular Job. JobDet ai | instances can be built with the JobBui | der API.
» Cal endar.

e Tri gger: defines when a particular job is triggered.

By default, an in-memory JobSt or e is used. However, it is possible to configure a JDBC-based store
if a Dat aSour ce bean is available in your application and if the spri ng. quart z. j ob-store-type
property is configured accordingly, as shown in the following example:

spring. quartz.job-store-type=j dbc

When the JDBC store is used, the schema can be initialized on startup, as shown in the following
example:

spring.quartz.jdbc.initialize-schema=al ways

Note

By default, the database is detected and initialized by using the standard scripts provided
with the Quartz library. It is also possible to provide a custom script by setting the
spring. quartz.jdbc. schema property.

Quartz Scheduler configuration can be customized by using Quartz configuration properties
(Ospring. quartz. properties. *)and Schedul er Fact or yBeanCust oni zer beans, which allow
programmatic Schedul er Fact or yBean customization.

Jobs can define setters to inject data map properties. Regular beans can also be injected in a similar
manner, as shown in the following example:

public class Sanpl eJob extends QuartzJobBean {

private MyService nyService;
private String nane;

/1 1nject "MService" bean
public void set MService(MService nyService) { ... }

/1l Inject the "name" job data property
public void setName(String name) { ... }

@verride
protected voi d executel nternal (JobExecuti onCont ext context)
t hrows JobExecuti onException {

2.0.0.RC1 Spring Boot 145

http://www.quartz-scheduler.org/

Spring Boot Reference Guide

40. Spring Integration

Spring Boot offers several conveniences for working with Spring Integration, including the spri ng-
boot -starter-integrati on“Starter”. Spring Integration provides abstractions over messaging and
also other transports such as HTTP, TCP, and others. If Spring Integration is available on your classpath,
it is initialized through the @nabl el nt egr at i on annotation.

Spring Boot also configures some features that are triggered by the presence of additional Spring
Integration modules. If spring-i ntegrati on-jnx is also on the classpath, message processing
statistics are published over JMX . If spri ng-i nt egrati on-j dbc is available, the default database
schema can be created on startup, as shown in the following line:

spring.integration.jdbc.initialize-schema=al ways

See the I ntegrationAutoConfiguration and | ntegrationProperties classes for more
details.

2.0.0.RC1 Spring Boot 146

http://projects.spring.io/spring-integration/
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/integration/IntegrationAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/integration/IntegrationProperties.java

Spring Boot Reference Guide

41. Spring Session

Spring Boot provides Spring Session auto-configuration for a wide range of data stores. When building
a Servlet web application, the following stores can be auto-configured:

JDBC

* Redis

* Hazelcast

* MongoDB

When building a reactive web application, the following stores can be auto-configured:
* Redis

* MongoDB

If Spring Session is available, you must choose the St or eType that you wish to use to store the
sessions. For instance, to use JDBC as the back-end store, you can configure your application as
follows:

spring. sessi on. store-type=j dbc
Tip
You can disable Spring Session by setting the st or e-t ype to none.

Each store has specific additional settings. For instance, it is possible to customize the name of the
table for the JDBC store, as shown in the following example:

spring. sessi on. j dbc. t abl e- name=SESSI ONS

2.0.0.RC1 Spring Boot 147

https://projects.spring.io/spring-session/
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/session/StoreType.java

Spring Boot Reference Guide

42. Monitoring and Management over JMX

Java Management Extensions (JMX) provide a standard mechanism to monitor and manage
applications. By default, Spring Boot creates an MBeanSer ver bean with an ID of nbeanSer ver and
exposes any of your beans that are annotated with Spring JMX annotations (@hnagedResour ce,
@managedAt tri but e, or @vanagedQper at i on).

See the JnxAut oConf i gur at i on class for more details.

2.0.0.RC1 Spring Boot 148

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jmx/JmxAutoConfiguration.java

Spring Boot Reference Guide

43. Testing

Spring Boot provides a number of utilities and annotations to help when testing your application. Test
support is provided by two modules: spri ng- boot - t est contains core items, and spri ng- boot -
t est - aut oconf i gur e supports auto-configuration for tests.

Most developers use the spri ng- boot - st art er -t est “Starter”, which imports both Spring Boot test
modules as well as JUnit, AssertJ, Hamcrest, and a number of other useful libraries.

43.1 Test Scope Dependencies

The spring-boot-starter-test “Starter” (in the t est scope)contains the following provided
libraries:

 JUnit: The de-facto standard for unit testing Java applications.

» Spring Test & Spring Boot Test: Utilities and integration test support for Spring Boot applications.
» AssertJ: A fluent assertion library.

» Hamcrest: A library of matcher objects (also known as constraints or predicates).

e Mockito: A Java mocking framework.

» JSONassert: An assertion library for JSON.

+ JsonPath: XPath for JSON.

We generally find these common libraries to be useful when writing tests. If these libraries do not suit
your needs, you can add additional test dependencies of your own.

43.2 Testing Spring Applications

One of the major advantages of dependency injection is that it should make your code easier to unit
test. You can instantiate objects by using the new operator without even involving Spring. You can also
use mock objects instead of real dependencies.

Often, you need to move beyond unit testing and start integration testing (with a Spring
Appl i cati onCont ext). It is useful to be able to perform integration testing without requiring
deployment of your application or needing to connect to other infrastructure.

The Spring Framework includes a dedicated test module for such integration testing. You can
declare a dependency directly to or g. spri ngf ramewor k: spri ng-t est oruse the spri ng- boot -
starter-test “Starter” to pull it in transitively.

If you have not used the spri ng-t est module before, you should start by reading the relevant section
of the Spring Framework reference documentation.

43.3 Testing Spring Boot Applications

A Spring Boot application is a Spring Appl i cat i onCont ext , so nothing very special has to be done
to test it beyond what you would normally do with a vanilla Spring context.

2.0.0.RC1 Spring Boot 149

http://junit.org
http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/testing.html#integration-testing
http://joel-costigliola.github.io/assertj/
http://hamcrest.org/JavaHamcrest/
http://mockito.org/
https://github.com/skyscreamer/JSONassert
https://github.com/jayway/JsonPath
http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/testing.html#testing

Spring Boot Reference Guide

Note

External properties, logging, and other features of Spring Boot are installed in the context by
default only if you use Spri ngAppl i cati on to create it.

Spring Boot provides a @bpri ngBoot Test annotation, which can be used as an alternative to
the standard spri ng-test @Cont ext Configurati on annotation when you need Spring Boot
features. The annotation works by creating the Appl i cati onCont ext used in your tests through

Spri ngAppl i cation.

You can use the webEnvi r onnent attribute of @pr i ngBoot Test to further refine how your tests run:

* MOCK: Loads a WebAppl i cati onCont ext and provides a mock servlet environment. Embedded
servlet containers are not started when using this annotation. If servlet APIs are not on your classpath,
this mode transparently falls back to creating a regular non-web Appl i cati onCont ext . It can be
used in conjunction with @\ut oConf i gur eMockMsc for MockMrc-based testing of your application.

 RANDOM PORT: Loads an Ser vl et WebSer ver Appl i cati onCont ext and provides a real servlet

environment. Embedded servlet containers are started and listen on a random port.

» DEFI NED PORT: Loads a Ser vl et WebSer ver Appl i cat i onCont ext and provides a real servlet
environment. Embedded servlet containers are started and listen on a defined port (from your

appl i cation. properti es oron the default port of 8080).

* NONE: Loads an Appl i cati onCont ext by using Spri ngAppl i cati on but does not provide any

servlet environment (mock or otherwise).

Note

If your test is @r ansacti onal, it rolls back the transaction at the end of each test method
by default. However, as using this arrangement with either RANDOM _PORT or DEFI NED_PORT
implicitly provides a real servlet environment, the HTTP client and server run in separate threads
and, thus, in separate transactions. Any transaction initiated on the server does not roll back in
this case.

Note

In addition to @pri ngBoot Test, a number of other annotations are also provided for testing
more specific slices of an application. You can find more detail throughout this chapter.

Tip

Do not forget to add @unWth(SpringRunner.cl ass) to your test. Otherwise, the
annotations are ignored.

Detecting Test Configuration

If you are familiar with the Spring Test Framework, you may be used to using
@cont ext Confi gurati on(cl asses=..) in order to specify which Spring @onf i gur at i on to load.

Alternatively, you might have often used nested @onf i gur at i on classes within your test.

When testing Spring Boot applications, this is often not required. Spring Boot's @ Test annotations

search for your primary configuration automatically whenever you do not explicitly define one.

2.0.0.RC1 Spring Boot

150

Spring Boot Reference Guide

The search algorithm works up from the package that contains the test until it finds a class annotated
with @pr i ngBoot Appl i cati on or @pri ngBoot Confi gur ati on. As long as you structured your
code in a sensible way, your main configuration is usually found.

Note

If you use a test annotation to test a more specific slice of your application, you should avoid adding
configuration settings that are specific to a particular area on the main method’s application class.

If you want to customize the primary configuration, you can use a nested @est Conf i gur at i on class.
Unlike a nested @onf i gur ati on class, which would be used instead of your application’s primary
configuration, a nested @est Confi gur ati on class is used in addition to your application’s primary
configuration.

Note

Spring’s test framework caches application contexts between tests. Therefore, as long as your
tests share the same configuration (no matter how it is discovered), the potentially time-consuming
process of loading the context happens only once.

Excluding Test Configuration

If your application uses component scanning (for example, if you use @pr i ngBoot Appl i cati on or
@omponent Scan), you may find top-level configuration classes that you created only for specific tests
accidentally get picked up everywhere.

As we have seen earlier, @est Conf i gur at i on can be used on an inner class of a test to customize
the primary configuration. When placed on a top-level class, @est Confi gur ati on indicates that
classes in src/test/java should not be picked up by scanning. You can then import that class
explicitly where it is required, as shown in the following example:

@unW t h(SpringRunner. cl ass)

@Bpr i ngBoot Test

@ nport (MyTest sConfi guration. cl ass)
public class MyTests {

@est
public void exanpl eTest () {

}

Note

If you directly use @onponent Scan (that is, not through @pri ngBoot Appl i cati on) you
need to register the TypeExcl udeFi | t er with it. See the Javadoc for details.

Working with Random Ports

If you need to start a full running server for tests, we recommend that you use random ports. If you
use @pri ngBoot Test (webEnvi r onment =WWebEnvi r onnment . RANDOM PORT) , an available port
is picked at random each time your test runs.

2.0.0.RC1 Spring Boot 151

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/context/TypeExcludeFilter.html

Spring Boot Reference Guide

The @uocal Server Port annotation can be used to inject the actual port used into your test. For
convenience, tests that need to make REST calls to the started server can additionally @\ut owi r e
a Test Rest Tenpl at e, which resolves relative links to the running server, as shown in the following
example:

import org.junit. Test;
import org.junit.runner. RunWth;

i nport org.springframework. beans. factory. annot ati on. Aut ow r ed;

i mport org.springframework. boot . t est. context. Spri ngBoot Test ;

i nport org.springframework. boot . test.context. SpringBoot Test. WbEnvironnent;
i nport org.springfranework. boot.test.web. client. Test Rest Tenpl at e;

i nport org.springfranework.test.context.junit4. SpringRunner;

inport static org.assertj.core.api.Assertions.assertThat;

@RunW t h(Spri ngRunner . cl ass)
@pr i ngBoot Test (webEnvi ronnent = WebEnvi r onnent . RANDOM_PORT)
public class RandonPort Test Rest Tenpl at eExanpl eTests {

@\ut owi red
private TestRest Tenpl ate rest Tenpl at e;

@rest

public void exanpl eTest () {
String body = this.restTenpl ate. get ForGoject("/", String.class);
assert That (body) . i sEqual To("Hel | o World");

}

If you prefer to use a WebTest Cl i ent , you can use that as well:

inport org.junit. Test;
import org.junit.runner. RunWth;

i nport org.springfranmework. beans. factory. annot ati on. Aut ow r ed;

i nport org.springfranmework. boot . test.context. SpringBoot Test ;

i mport org.springframework. boot. test.context. SpringBoot Test. WbEnvironnent;
i nport org.springframework.test.context.junit4.SpringRunner;

i nport org.springframework.test.web.reactive.server. WbTestd ient;

@RunW t h(Spri ngRunner . cl ass)
@pr i ngBoot Test (webEnvi ronment = WebEnvi r onment . RANDOM_PORT)
public class RandonPortWbTest d i ent Exanpl eTests {

@\ut owi red
private WebTestClient webCient;

@est
public void exanpl eTest () {
this.webCient.get().uri("/").exchange().expectStatus().isCk()
. expect Body(String.class).isEqual To("Hello Wrld");

Mocking and Spying Beans

When running tests, it is sometimes necessary to mock certain components within your application
context. For example, you may have a facade over some remote service that is unavailable during
development. Mocking can also be useful when you want to simulate failures that might be hard to
trigger in a real environment.

2.0.0.RC1 Spring Boot 152

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/testing.html#webtestclient

Spring Boot Reference Guide

Spring Boot includes a @vwckBean annotation that can be used to define a Mockito mock for a bean
inside your Appl i cat i onCont ext . You can use the annotation to add new beans or replace a single
existing bean definition. The annotation can be used directly on test classes, on fields within your test,
or on @onf i gur ati on classes and fields. When used on a field, the instance of the created mock is
also injected. Mock beans are automatically reset after each test method.

Note

If your test uses one of Spring Boot's test annotations (such as @pr i ngBoot Test), this feature
is automatically enabled. To use this feature with a different arrangement, a listener must be
explicitly added, as shown in the following example:

@est Execut i onLi st ener s(Mbcki t oTest Execut i onLi st ener. cl ass)

The following example replaces an existing Renot eSer vi ce bean with a mock implementation:

import org.junit.*;

import org.junit.runner.*;

i nport org.springfranmework. beans. factory. annotati on. *;
i nport org.springframework. boot . test.context.*;

i nport org.springframework. boot . test. nock. nockito.*;

i nport org.springframework.test.context.junit4.*;

inport static org.assertj.core.api.Assertions.*;
inport static org.nockito. BDDVbckito. *;

@unW t h(SpringRunner. cl ass)
@pr i ngBoot Test
public class MyTests {

@/mbckBean
private RenoteService renpteService;

@\ut owi r ed
private Reverser reverser;

@est

public void exanpl eTest () {
/1 RenoteService has been injected into the reverser bean
gi ven(this.renpteService.soneCall()).wllReturn("nock");
String reverse = reverser.reverseSoneCall ();
assert That (reverse).i sEqual To("kcont');

}

Additionally, you can use @pyBean to wrap any existing bean with a Mockito spy. See the Javadoc
for full details.

Auto-configured Tests

Spring Boot’s auto-configuration system works well for applications but can sometimes be a little too
much for tests. It often helps to load only the parts of the configuration that are required to test a “slice”
of your application. For example, you might want to test that Spring MVC controllers are mapping URLS
correctly, and you do not want to involve database calls in those tests, or you might want to test JPA
entities, and you are not interested in the web layer when those tests run.

The spri ng- boot -t est - aut oconf i gur e module includes a number of annotations that can be
used to automatically configure such “slices”. Each of them works in a similar way, providing a @.Test

2.0.0.RC1 Spring Boot 153

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/test/mock/mockito/SpyBean.html

Spring Boot Reference Guide

annotation that loads the Appl i cat i onCont ext and one or more @\wut oConf i gur e...annotations
that can be used to customize auto-configuration settings.

Note

Each slice loads a very restricted set of auto-configuration classes. If you need to exclude
one of them, most @.Test annotations provide an excl udeAut oConfi gur ati on attribute.
Alternatively, you can use @ nport Aut oConfi gur at i on#excl ude.

Tip

It is also possible to use the @AutoConfi gure... annotations with the standard
@Bpr i ngBoot Test annotation. You can use this combination if you are not interested in “slicing”
your application but you want some of the auto-configured test beans.

Auto-configured JSON Tests

To test that object JSON serialization and deserialization is working as expected, you can use the
@sonTest annotation. @sonTest auto-configures the available supported JISON mapper, which can
be one of the following libraries:

» Jackson Qbj ect Mapper, any @sonConponent beans and any Jackson Modul es
* Gson
» Jsonb

If you need to configure elements of the auto-configuration, you can use the
@\ut oConfi gureJsonTest er s annotation.

Spring Boot includes AssertJ-based helpers that work with the JSONassert and JsonPath libraries
to check that JISON appears as expected. The JacksonTest er, GsonTest er, JsonbTest er, and
Basi cJsonTest er classes can be used for Jackson, Gson, Jsonb, and Strings respectively. Any
helper fields on the test class can be @\wut owi r ed when using @sonTest . The following example
shows a test class for Jackson:

inport org.junit.*;

import org.junit.runner.*;

i nport org.springframework. beans. factory. annotation. *;

i nport org.springfranework. boot . test.autoconfigure.json.*;
i nport org.springfranework. boot .t est. context. *;

i nport org.springfranework. boot.test.json.*;

i nport org.springfranework.test.context.junit4.*;

inport static org.assertj.core.api.Assertions.*;

@RunW t h(Spri ngRunner . cl ass)
@sonTest
public class MyJsonTests {

@\ut owi r ed
private JacksonTest er <Vehi cl eDetai | s> json;

@rest

public void testSerialize() throws Exception {

Vehicl eDetails details = new VehicleDetails("Honda", "Cvic");

// Assert against a ~.json file in the same package as the test
assertThat (this.json.wite(details)).isEqual ToJson("expected.json");
/1l O use JSON path based assertions

2.0.0.RC1 Spring Boot 154

Spring Boot Reference Guide

assertThat (this.json.wite(details)).hasJsonPathStringVal ue(" @ nmaeke");
assert That (this.json.wite(details)).extractinglsonPathStringVal ue(" @ make")
. i sEqual To(" Honda");
}

@est
public void testDeserialize() throws Exception {
String content = "{\"nmake\":\"Ford\",\"nodel\":\"Focus\"}";
assert That (thi s.json. parse(content))
. i sEqual To(new Vehi cl eDet ai | s("Ford", "Focus"));
assert That (thi s.j son. parseObj ect (content). get Make()).i sEqual To("Ford");
}

Note

JSON helper classes can also be used directly in standard unit tests. To do so, call the
i nitFi el ds method of the helper in your @ef or e method if you do not use @sonTest .

A list of the auto-configuration that is enabled by @sonTest can be found in the appendix.

Auto-configured Spring MVC Tests

To test whether Spring MVC controllers are working as expected, use the @webM/cTest
annotation. @ébM/cTest auto-configures the Spring MVC infrastructure and limits scanned beans
to @ontroller, @ontroll erAdvi ce, @sonConponent, Converter, CGenericConverter,
Filter, WebM/cConfigurer, and Handl er Met hodAr gunent Resol ver. Regular @onponent
beans are not scanned when using this annotation.

Tip

If you need to register extra components, such as the Jackson Mbdul e, you can import additional
configuration classes by using @ nport on your test.

Often, @¢&bM/cTest is limited to a single controller and is used in combination with @/bckBean to
provide mock implementations for required collaborators.

@\ebM/cTest also auto-configures MockMsc. Mock MVC offers a powerful way to quickly test MVC
controllers without needing to start a full HTTP server.

Tip

You can also auto-configure MockMrc in a non-@¥bM/cTest (such as @pr i ngBoot Test) by
annotating it with @wut oConf i gur eMbckMrc. The following example uses MockM/c:

inport org.junit.*;

import org.junit.runner.*;

i mport org.springframework. beans. factory. annotation. *;

i nport org.springframework. boot . test.autoconfigure.web. servlet.*;
i nport org.springframework. boot . test. nock. nockito.*;

inport static org.assertj.core.api.Assertions.*;

inport static org.nockito. BDDVbckito. *;

inport static org.springframework.test.web.servlet.request. MockM/cRequest Bui | ders. *;
inport static org.springframework.test.web.servlet.result.MckMcResul t Matchers. *;

@RunW t h(Spri ngRunner . cl ass)

2.0.0.RC1 Spring Boot 155

Spring Boot Reference Guide

@\ebM/cTest (User Vehi cl eControl | er. cl ass)
public class MyControllerTests {

@A\ut owi red
private MockM/c mvc;

@mbckBean
private User Vehicl eService userVehicl eServi ce;

@rest
public void testExanple() throws Exception {
gi ven(this. userVehicl eService. get Vehi cl eDetai | s("shoot"))
.wi | | Return(new Vehicl eDetail s("Honda", "Cvic"));
this.nvc. perforn(get("/sboot/vehicle").accept(MediaType. TEXT_PLAI N))
. andExpect (status().isCk()).andExpect (content().string("Honda Givic"));

Tip

If you need to configure elements of the auto-configuration (for example, when servlet filters should
be applied) you can use attributes in the @\ut oConf i gur eMockM/c annotation.

If you use HtmlUnit or Selenium, auto-configuration also provides an HTMLUnit Webd i ent bean and/
or aWebDri ver bean. The following example uses HtmlUnit:

i nport com gar goyl esoftware. ht mM uni t.*;

inmport org.junit.*;

inport org.junit.runner.*;

i nport org.springframework. beans. factory. annotation. *;

i nport org.springfranework. boot . t est. aut oconfi gure. web. servl et.*;
i nport org.springfranework. boot . test. nock. nockito. *;

inport static org.assertj.core.api.Assertions.*;
inport static org.nockito. BDDVbckito. *;

@RunW t h(Spri ngRunner . cl ass)
@\ebM/cTest (User Vehi cl eControl | er. cl ass)
public class MyH m UnitTests {

@\ut owi r ed
private WebCient webdient;

@/bckBean
private UserVehicl eService userVehi cl eServi ce;

@est
public void testExanple() throws Exception {
gi ven(this. userVehicl eService. get Vehi cl eDetai | s("sboot"))
.Wi || Return(new Vehicl eDetail s("Honda", "Civic"));
Ht M Page page = this.webd ient.getPage("/sboot/vehicle. htm");
assert That (page. get Body() . get Text Content ()).i sEqual To("Honda Civic");

}

Note

By default, Spring Boot puts WebDr i ver beans in a special “scope” to ensure that the driver exits
after each test and that a new instance is injected. If you do not want this behavior, you can add
@cope("singl eton") toyour WebDri ver @ean definition.

A list of the auto-configuration settings that are enabled by @é&bMscTest can be found in the appendix.

2.0.0.RC1 Spring Boot 156

Spring Boot Reference Guide

Auto-configured Spring WebFlux Tests

To test that Spring WebFlux controllers are working as expected, you can use the
@\ebFl uxTest annotation. @\ebFl uxTest auto-configures the Spring WebFlux infrastructure and
limits scanned beans to @ontroller, @ontrollerAdvice, @sonConponent, Converter,
CGeneri cConvert er,and WebFl uxConf i gur er . Regular @onponent beans are not scanned when
the @\ebFl uxTest annotation is used.

Tip

If you need to register extra components, such as Jackson Modul e, you can import additional
configuration classes using @ nport on your test.

Often, @\ebFI uxTest is limited to a single controller and used in combination with the @wbckBean
annotation to provide mock implementations for required collaborators.

@\ebFl uxTest also auto-configures WebTest Cl i ent , which offers a powerful way to quickly test
WebFlux controllers without needing to start a full HTTP server.

Tip

You can also auto-configure WebTestCient in a non-@¥bFl uxTest (such as
@spri ngBoot Test) by annotating it with @\ut oConf i gur eWebTest O i ent. The following
example shows a class that uses both @¥bFl uxTest and a WbTest d i ent :

import org.junit. Test;
import org.junit.runner.RunWth;

i nport org.springframework. beans. factory. annot ati on. Aut ow r ed;

i nport org.springfranework. boot . test. autoconfigure.web. reactive. WbFl uxTest ;
i mport org.springfranework. http. Medi aType;

i mport org.springfranework.test.context.junit4. SpringRunner;

i mport org.springframework.test.web.reactive.server. WbTestd ient;

@unW t h(Spri ngRunner. cl ass)
@\ebFl uxTest (User Vehi cl eControl | er. cl ass)
public class MyControllerTests {

@\ut owi r ed
private WebTestdient webdient;

@/bckBean
private UserVehi cl eService userVehi cl eServi ce;

@est
public void testExanple() throws Exception {
gi ven(this. userVehicl eService. get Vehi cl eDetai | s("sboot"))
.Wi |l Return(new Vehicl eDetail s("Honda", "Civic"));
this.webdient.get().uri("/sboot/vehicle").accept(MdiaType. TEXT_PLAI N)
. exchange()
.expect Status().isOk()
. expect Body(String.class).isEqual To("Honda G vic");

A list of the auto-configuration that is enabled by @\ébFl uxTest can be found in the appendix.

2.0.0.RC1 Spring Boot 157

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference//web-reactive.html
http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/testing.html#webtestclient

Spring Boot Reference Guide

Auto-configured Data JPA Tests

You can use the @at aJpaTest annotation to test JPA applications. By default, it configures an in-
memory embedded database, scans for @nt i t y classes, and configures Spring Data JPA repositories.
Regular @onponent beans are not loaded into the Appl i cat i onCont ext .

By default, data JPA tests are transactional and roll back at the end of each test. See the relevant section
in the Spring Framework Reference Documentation for more details. If that is not what you want, you
can disable transaction management for a test or for the whole class as follows:

import org.junit. Test;

import org.junit.runner.RunWth;

i nport org.springframework. boot . test.autoconfigure.orm jpa. DataJpaTest;
i nport org.springframework.test.context.junit4.SpringRunner;

i nport org.springfranework.transaction. annot ati on. Propagati on;

i nport org.springfranework.transaction. annotati on. Transacti onal ;

@RunW t h(SpringRunner. cl ass)

@pat aJpaTest

@r ansacti onal (propagati on = Propagati on. NOT_SUPPORTED)
public class Exanpl eNonTr ansacti onal Tests {

}

Data JPA tests may also inject a Test EntityManager bean, which provides an alternative
to the standard JPA EntityManager that is specifically designed for tests. If you want
to use TestEntityManager outside of @ataJdpaTest instances, you can also use the
@\t oConfi gureTest Enti t yManager annotation. A JdbcTenpl at e is also available if you need
that. The following example shows the @at aJpaTest annotation in use:

inport org.junit.*;
import org.junit.runner.*;
i mport org.springframework. boot . test.autoconfigure.ormjpa.*;

i nport static org.assertj.core.api.Assertions.*;

@RunW t h(Spri ngRunner . cl ass)
@pat aJpaTest
public class Exanpl eRepositoryTests {

@\ut owi r ed
private TestEntityManager entityManager;

@A\ut owi r ed
private UserRepository repository;

@est

public void testExanple() throws Exception {
this. entityManager. persi st (new User("sboot", "1234"));
User user = this.repository.findByUsernane("sbhoot");
assert That (user. get User nane()) . i sEqual To("sboot");
assert That (user.getVin()).isEqual To("1234");

}

In-memory embedded databases generally work well for tests, since they are fast and do not require
any installation. If, however, you prefer to run tests against a real database you can use the
@\t oConfi gur eTest Dat abase annotation, as shown in the following example:

@unW t h(SpringRunner. cl ass)

@at aJpaTest

@\ut oConf i gur eTest Dat abase(r epl ace=Repl ace. NONE)
public class Exanpl eRepositoryTests {

2.0.0.RC1 Spring Boot 158

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/testing.html#testcontext-tx-enabling-transactions
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-test-autoconfigure/src/main/java/org/springframework/boot/test/autoconfigure/orm/jpa/TestEntityManager.java

Spring Boot Reference Guide

A list of the auto-configuration settings that are enabled by @at aJpaTest can be found in the
appendix.

Auto-configured JDBC Tests

@dbcTest is similarto @at aJpaTest butis for pure JDBC-related tests. By default, it also configures
an in-memory embedded database and a JdbcTenpl at e. Regular @onponent beans are not loaded
into the Appl i cati onCont ext .

By default, JDBC tests are transactional and roll back at the end of each test. See the relevant section
in the Spring Framework Reference Documentation for more details. If that is not what you want, you
can disable transaction management for a test or for the whole class, as follows:

import org.junit. Test;

import org.junit.runner. RunWth;

i nport org.springfranmework. boot .t est. aut oconfi gure. jdbc. JdbcTest;
i mport org.springframework.test.context.junit4.SpringRunner;

i nport org.springframework. transaction. annotation. Propagation;

i nport org.springfranework.transaction. annotati on. Transacti onal ;

@unW t h(Spri ngRunner . cl ass)

@dbcTest

@ransacti onal (propagati on = Propagati on. NOT_SUPPORTED)
public class Exanpl eNonTransactional Tests {

}

If you prefer your test to run against a real database, you can use the @\wut oConf i gur eTest Dat abase
annotation in the same way as for Dat aJpaTest . (See "the section called “Auto-configured Data JPA
Tests™.)

A list of the auto-configuration that is enabled by @ dbcTest can be found in the appendix.

Auto-configured jJOOQ Tests

You can use @ooqTest in a similar fashion as @dbcTest but for jOOQ-related tests. As
jOOQ relies heavily on a Java-based schema that corresponds with the database schema, the
existing Dat aSour ce is used. If you want to replace it with an in-memory database, you can use
@\ut oconf i gur eTest Dat abase to override those settings. (For more about using jJOOQ with Spring
Boot, see "Section 29.5, “Using JOOQ™, earlier in this chapter.)

@ooqTest configures a DSLCont ext. Regular @onponent beans are not loaded into the
Appl i cati onCont ext . The following example shows the @ooqTest annotation in use:

i nport org.jooq. DSLCont ext ;

import org.junit. Test;

i nmport org.junit.runner. RunWth;

i nport org.springfranework. boot . t est. aut oconfi gure. j ooq. JooqTest ;
i nport org.springfranework.test.context.junit4. SpringRunner;

@RunW t h(Spri ngRunner. cl ass)
@ooqTest
public class Exanpl eJooqTests {

@A\ut owi red

2.0.0.RC1 Spring Boot 159

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/testing.html#testcontext-tx-enabling-transactions

Spring Boot Reference Guide

private DSLContext dsl Context;
}

JOOQ tests are transactional and roll back at the end of each test by default. If that is not what you
want, you can disable transaction management for a test or for the whole test class as shown in the

JDBC example.

A list of the auto-configuration that is enabled by @ ooqgTest can be found in the appendix.

Auto-configured Data MongoDB Tests

You can use @at aMongoTest to test MongoDB applications. By default, it configures an in-memory
embedded MongoDB (if available), configures a MongoTenpl at e, scans for @ocumnent classes,
and configures Spring Data MongoDB repositories. Regular @onponent beans are not loaded into
the Appl i cati onCont ext . (For more about using MongoDB with Spring Boot, see "Section 30.2
“MongoDB™, earlier in this chapter.)

The following class shows the @at aMongoTest annotation in use:

import org.junit.runner. RunWth;

i nport org.springfranmework. beans. factory. annot ati on. Aut ow r ed;

i nport org.springfranmework. boot . test. aut oconfi gure. dat a. nongo. Dat aMongoTest ;
i mport org.springframework. dat a. nrongodb. cor e. MongoTenpl at e;

i nport org.springfranework.test.context.junit4. SpringRunner;

@RunW t h(Spri ngRunner . cl ass)
@at aMbngoTest
public class Exanpl eDat aMongoTests {

@\ut owi r ed
private MongoTenpl ate nongoTenpl at e;

Il

}

In-memory embedded MongoDB generally works well for tests, since it is fast and does not require any
developer installation. If, however, you prefer to run tests against a real MongoDB server, you should
exclude the embedded MongoDB auto-configuration, as shown in the following example:

inport org.junit.runner. RunWth;

i mport org.springframework. boot. aut oconfi gur e. nongo. enbedded. EnbeddedMongoAut oConfi gur ati on;
i nport org.springfranmework. boot . test. aut oconfi gure. dat a. nongo. Dat aMongoTest ;
i mport org.springframework.test.context.junit4.SpringRunner;

@unW t h(SpringRunner. cl ass)
@at aMbngoTest (excl udeAut oConfi gurati on = EnbeddedMbngoAut oConfi gur ati on. cl ass)
public class Exanpl eDat aMbngoNonEnbeddedTests {

}

A list of the auto-configuration settings that are enabled by @at aMongoTest can be found in the
appendix.

Auto-configured Data Neo4j Tests

You can use @at aNeo4j Test to test Neo4j applications. By default, it uses an in-memory embedded
Neo4j (if the embedded driver is available), scans for @NodeEnt i ty classes, and configures Spring
Data Neo4j repositories. Regular @onponent beans are not loaded into the Appl i cat i onCont ext .
(For more about using Neo4J with Spring Boot, see "Section 30.3, “Neo4j™, earlier in this chapter.)

2.0.0.RC1 Spring Boot 160

Spring Boot Reference Guide

The following example shows a typical setup for using Neo4J tests in Spring Boot:

import org.junit.runner. RunWth;

i nport org.springfranmework. beans. factory. annot ati on. Aut ow r ed;

i nport org.springfranmework. boot . test. autoconfi gure. dat a. neo4j . Dat aNeo4j Test ;
i mport org.springframework.test.context.junit4.SpringRunner;

@RunW t h(Spri ngRunner . cl ass)
@at aNeo4j Test
public class Exanpl eDat aNeo4j Tests {

@\ut owi red
private YourRepository repository;

Il

}

By default, Data Neo4j tests are transactional and roll back at the end of each test. See the relevant
section in the Spring Framework Reference Documentation for more details. If that is not what you want,
you can disable transaction management for a test or for the whole class, as follows:

import org.junit. Test;

import org.junit.runner. RunWth;

i mport org.springframework. boot . test.autoconfigure. data. neo4j . Dat aNeo4j Test ;
i mport org.springframework.test.context.junit4.SpringRunner;

i nport org.springfranework.transaction. annotati on. Propagati on;

i nport org.springfranework.transaction. annotati on. Transacti onal ;

@unW t h(Spri ngRunner . cl ass)

@pat aNeo4j Test

@ransacti onal (propagati on = Propagati on. NOT_SUPPORTED)
public class Exanpl eNonTr ansacti onal Tests {

}

A list of the auto-configuration settings that are enabled by @at aNeo4j Test can be found in the
appendix.

Auto-configured Data Redis Tests

You can use @at aRedi sTest to test Redis applications. By default, it scans for @Redi sHash classes
and configures Spring Data Redis repositories. Regular @onponent beans are not loaded into the
Appl i cati onCont ext . (For more about using Redis with Spring Boot, see "Section 30.1, “Redis™,
earlier in this chapter.)

The following example shows the @at aRedi sTest annotation in use:

import org.junit.runner.RunWth;

i nport org.springframework. beans. factory. annot ati on. Aut ow r ed;

i nport org.springfranework. boot . test. autoconfigure. data.redis. Dat aRedi sTest ;
i nport org.springfranework.test.context.junit4. SpringRunner;

@unW t h(Spri ngRunner . cl ass)
@at aRedi sTest
public class Exanpl eDat aRedi sTests {

@A\ut owi red
private YourRepository repository;

I
}

A list of the auto-configuration settings that are enabled by @Dat aRedi sTest can be found in the
appendix.

2.0.0.RC1 Spring Boot 161

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/testing.html#testcontext-tx-enabling-transactions
http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/testing.html#testcontext-tx-enabling-transactions

Spring Boot Reference Guide

Auto-configured Data LDAP Tests

You can use @at aLdapTest to test LDAP applications. By default, it configures an in-memory
embedded LDAP (if available), configures an LdapTenpl ate, scans for @ntry classes, and
configures Spring Data LDAP repositories. Regular @onponent beans are not loaded into the
Appl i cati onCont ext . (For more about using LDAP with Spring Boot, see "Section 30.9, “LDAP™",
earlier in this chapter.)

The following example shows the @at aLdapTest annotation in use:

import org.junit.runner.RunWth;

i nport org.springframework. beans. factory. annot ati on. Aut ow r ed;

i nport org.springframework. boot . test.autoconfigure. data. | dap. Dat aLdapTest;
i nport org.springfranework. | dap. core. LdapTenpl at e;

i nport org.springfranework.test.context.junit4. SpringRunner;

@unW t h(SpringRunner. cl ass)
@pat aLdapTest
public class Exanpl eDat aLdapTests {

@\ut owi red
private LdapTenpl ate | dapTenpl at e;

Il

}

In-memory embedded LDAP generally works well for tests, since it is fast and does not require any
developer installation. If, however, you prefer to run tests against a real LDAP server, you should exclude
the embedded LDAP auto-configuration, as shown in the following example:

import org.junit.runner.RunWth;

i nport org.springfranework. boot . aut oconfi gure. | dap. enbedded. EnbeddedLdapAut oConfi gurati on;
i mport org.springfranework. boot . test. autoconfi gure. data. | dap. Dat aLdapTest ;

i nport org.springfranework.test.context.junit4. SpringRunner;

@unW t h(SpringRunner. cl ass)

@pat aLdapTest (excl udeAut oConfi gurati on = EnbeddedLdapAut oConfi gurati on. cl ass)
public class Exanpl eDat aLdapNonEnbeddedTests {

}

A list of the auto-configuration settings that are enabled by @at aLdapTest can be found in the
appendix.

Auto-configured REST Clients

You can use the @Rest C i ent Test annotation to test REST clients. By default, it auto-configures
Jackson, GSON, and Jsonb support, configures a Rest Tenpl at eBui | der, and adds support for
MockRest Ser vi ceSer ver . The specific beans that you want to test should be specified by using the
val ue or conponent s attribute of @Rest Cl i ent Test, as shown in the following example:

@RunW t h(Spri ngRunner. cl ass)
@Rest A i ent Test (Renot eVehi cl eDet ai | sServi ce. cl ass)
public class Exanpl eRestC i ent Test {

@A\ut owi red
private RenoteVehicleDetail sService service;

@\ut owi r ed
private MdckRest ServiceServer server;

@rest

2.0.0.RC1 Spring Boot 162

Spring Boot Reference Guide

public voi d getVehicl eDet ai | sWhenResul t | sSuccessShoul dRet ur nDet ai | s()
throws Exception {
this.server. expect(request To("/greet/details"))
. andRespond(wi t hSuccess("hel | 0", Medi aType. TEXT_PLAIN));
String greeting = this.service.callRestService();
assert That (greeting).isEqual To("hello0");

}

A list of the auto-configuration settings that are enabled by @Rest Cl i ent Test can be found in the
appendix.

Auto-configured Spring REST Docs Tests

You can use the @\ut oConf i gur eRest Docs annotation to use Spring REST Docs in your tests with
Mock MVC or REST Assured. It removes the need for the JUnit rule in Spring REST Docs.

@\ut oConfi gureRest Docs can be used to override the default output directory (target/
gener at ed- sni ppet s if you are using Maven or bui | d/ gener at ed- sni ppet s if you are using
Gradle). It can also be used to configure the host, scheme, and port that appears in any documented
URIs.

Auto-configured Spring REST Docs Tests with Mock MVC

@\ut oConf i gur eRest Docs customizes the MockMvc bean to use Spring REST Docs. You can inject
it by using @A\ut owi r ed and use it in your tests as you normally would when using Mock MVC and
Spring REST Daocs, as shown in the following example:

import org.junit. Test;
import org.junit.runner.RunWth;

i nport org.springfranework. beans. factory. annot ati on. Aut ow r ed;

i nport org.springfranework. boot . test. autoconfi gure. web. servl et. WebM/cTest ;
i nport org.springfranmework. http. Medi aType;

i mport org.springframework.test.context.junit4.SpringRunner;

i nport org.springframework.test.web. servlet. MockMc;

inmport static org.springfranework.restdocs. nockm/c. MockM/cRest Docunent at i on. docunent ;
inmport static org.springfranmework.test.web.servlet.request. MockM/cRequest Bui | ders. get;
inport static org.springfranmework.test.web.servlet.result. MckMcResultMatchers. *;

@unW t h(SpringRunner. cl ass)
@ebM/cTest (User Control | er. cl ass)

@\ut oConf i gur eRest Docs

public class UserDocunentationTests {

@\ut owi r ed
private MdckMic nvc;

@rest
public void listUsers() throws Exception {
this.nvc. perforn(get("/users").accept(MediaType. TEXT_PLAI N))
. andExpect (status().isCk())
.andDo(docunent ("list-users"));

If you require more control over Spring REST Docs configuration than offered by the attributes
of @\ut oConfi gur eRest Docs, you can use a Rest DocsMbckMrcConfi gur ati onCust oni zer
bean, as shown in the following example:

2.0.0.RC1 Spring Boot 163

http://projects.spring.io/spring-restdocs/

Spring Boot Reference Guide

@est Configuration
static class Custoni zationConfiguration
i npl enents Rest DocsMbckM/cConfi gur ati onCust om zer {

@verride
public void customn ze(MockM/cRest Docunent ati onConfi gurer configurer) {
configurer.snippets().w thTenpl at eFor mat (Tenpl at eFor mat s. mar kdown()) ;

}

If you want to make use of Spring REST Docs support for a parameterized output directory, you can
create a Rest Docunent at i onResul t Handl er bean. The auto-configuration calls al waysDo with
this result handler, thereby causing each MockMvc call to automatically generate the default snippets.
The following example shows a Rest Docunent at i onResul t Handl er being defined:

@est Configuration
static class Resul t Handl er Configuration {

@Bean
publ i ¢ Rest Docunent ati onResul t Handl er rest Docunentation() {
return MockM/cRest Docunent ati on. docunent (" { net hod- nane}");

}

Auto-configured Spring REST Docs Tests with REST Assured

@\t oConfi gur eRest Docs makes a Request Speci fi cati on bean, preconfigured to use Spring
REST Docs, available to your tests. You can inject it by using @\ut owi r ed and use it in your tests
as you normally would when using REST Assured and Spring REST Docs, as shown in the following
example:

inport io.restassured. specification. Request Specification;
inport org.junit. Test;
import org.junit.runner. RunWth;

i mport org.springfranmework. beans. factory. annot ati on. Aut ow r ed;

i mport org.springframework. boot . test.autoconfigure.restdocs. Aut oConfi gur eRest Docs;
i mport org.springframework. boot . t est. cont ext. Spri ngBoot Test ;

i nport org.springframework. boot . test.context. SpringBoot Test. WbEnvironnent;

i nport org.springfranework. boot . web. server. Local Server Port;

i nport org.springfranework.test.context.junit4. SpringRunner;

inport static io.restassured. Rest Assured. gi ven;
inport static org.hantrest. CoreMatchers.is;
inport static org.springframework.restdocs.restassured3. Rest AssuredRest Docunent ati on. docunent ;

@RunW t h(Spri ngRunner . cl ass)

@pr i ngBoot Test (webEnvi ronnent = WebEnvi r onment . RANDOM_PORT)
@\ut oConf i gur eRest Docs

public class UserDocunmentati onTests {

@.ocal Server Port
private int port;

@\ut owi r ed
private Request Specification docunentati onSpec;

@rest
public void listUsers() {
gi ven(this.docunmentationSpec).filter(document("list-users")).wen()
.port(this.port).get("/").then().assertThat().statusCode(is(200));

2.0.0.RC1 Spring Boot 164

Spring Boot Reference Guide

If you require more control over Spring REST Docs configuration than offered by the attributes of
@\t oConfi gur eRest Docs, a Rest DocsRest Assur edConf i gur ati onCust omi zer beancan be
used, as shown in the following example:

@est Configuration
public static class Custom zationConfiguration
i npl enents Rest DocsRest Assur edConf i gurati onCust om zer {

@verride
public void customn ze(Rest AssuredRest Docunent ati onConfi gurer configurer) {
configurer.snippets().w thTenpl at eFor mat (Tenpl at eFor mat s. mar kdown()) ;

}

User Configuration and Slicing

If you structure your code in a sensible way, your @spr i ngBoot Appl i cat i on class is used by default
as the configuration of your tests.

It then becomes important not to litter the application’s main class with configuration settings that are
specific to a particular area of its functionality.

Assume that you are using Spring Batch and you rely on the auto-configuration for it. You could define
your @pr i ngBoot Appl i cati on as follows:

@pr i ngBoot Appl i cati on
@nabl eBat chProcessi ng
public class SanpleApplication { ... }

Because this class is the source configuration for the test, any slice test actually tries to start Spring
Batch, which is definitely not what you want to do. A recommended approach is to move that area-
specific configuration to a separate @onf i gur at i on class at the same level as your application, as
shown in the following example:

@onfiguration
@Enabl eBat chProcessi ng
public class BatchConfiguration { ... }

Note

Depending on the complexity of your application, you may either have a single @onf i gur ati on
class for your customizations or one class per domain area. The latter approach lets you enable
it in one of your tests, if necessary, with the @ npor t annotation.

Another source of confusion is classpath scanning. Assume that, while you structured your code in a
sensible way, you need to scan an additional package. Your application may resemble the following
code:

@pr i ngBoot Appl i cati on
@onponent Scan({ "com exanpl e. app”, "org.acne.another" })
public class Sanpl eApplication { ... }

Doing so effectively overrides the default component scan directive with the side effect of scanning those
two packages regardless of the slice that you chose. For instance, a @at aJpaTest seems to suddenly
scan components and user configurations of your application. Again, moving the custom directive to a
separate class is a good way to fix this issue.

2.0.0.RC1 Spring Boot 165

Spring Boot Reference Guide

Tip

If this is not an option for you, you can create a @pr i ngBoot Conf i gur at i on somewhere in
the hierarchy of your test so that it is used instead. Alternatively, you can specify a source for your
test, which disables the behavior of finding a default one.

Using Spock to Test Spring Boot Applications

If you wish to use Spock to test a Spring Boot application, you should add a dependency on Spock’s
spock- spri ng module to your application’s build. spock- spri ng integrates Spring’s test framework
into Spock. It is recommended that you use Spock 1.1 or later to benefit from a number of improvements
to Spock’s Spring Framework and Spring Boot integration. See the documentation for Spock’s Spring
module for further details.

43.4 Test Utilities

A few test utility classes that are generally useful when testing your application are packaged as part
of spri ng- boot .

ConfigFileApplicationContextlinitializer

ConfigFil eApplicationContextlnitializerisanApplicationContextlnitializer that
you can apply to your tests to load Spring Boot appl i cati on. properti es files. You can use it when
you do not need the full set of features provided by @pri ngBoot Test, as shown in the following
example:

@ront ext Confi guration(classes = Config.class,
initializers = ConfigFileApplicationContextlnitializer.class)

Note

Using Confi gFi | eAppl i cati onContextlnitializer alone does not provide support for
@/al ue("${.}") injection. Its only job is to ensure that appl i cati on. properti es files
are loaded into Spring’s Envi ronnent . For @/al ue support, you need to either additionally
configure a Pr oper t ySour cesPl acehol der Conf i gur er or use @pr i ngBoot Test , which
auto-configures one for you.

EnvironmentTestUtils

Envi ronnment Test Uti | s lets you quickly add properties to a Confi gur abl eEnvi ronnment or
Confi gur abl eAppl i cati onCont ext . You can call it with key=val ue strings, as follows:

Envi ronnent Test Uti | s. addEnvi ronnent (env, "org=Spring", "name=Boot");

OutputCapture

Qut put Capt ur e is a JUnit Rul e that you can use to capture Syst em out and Syst em er r output.
You can declare the capture as a @Rul e and then uset oSt ri ng() for assertions, as follows:

import org.junit.Rule;
import org.junit. Test;
i mport org. springframework. boot . test. rul e. Qut put Capt ure;

i nport static org.hancrest. Matchers. *;

2.0.0.RC1 Spring Boot 166

http://spockframework.org/spock/docs/1.1/modules.html
http://spockframework.org/spock/docs/1.1/modules.html

Spring Boot Reference Guide

inport static org.junit.Assert.*;
public class MyTest {

@rul e
public QutputCapture capture = new Qutput Capture();

@est

public void testNanme() throws Exception {
Systemout.printin("Hello Wrld!");

assert That (capture.toString(), containsString("Wrld"));
}

TestRestTemplate

Test Rest Tenpl at e is a convenience alternative to Spring’s Rest Tenpl at e that is useful in
integration tests. You can get a vanilla template or one that sends Basic HTTP authentication (with a
username and password). In either case, the template behaves in a test-friendly way by not throwing
exceptions on server-side errors. It is recommended, but not mandatory, to use the Apache HTTP Client
(version 4.3.2 or better). If you have that on your classpath, the Test Rest Tenpl at e responds by
configuring the client appropriately. If you do use Apache’s HTTP client, some additional test-friendly
features are enabled:

» Redirects are not followed (so you can assert the response location).
» Cookies are ignored (so the template is stateless).

Test Rest Tenpl at e can be instantiated directly in your integration tests, as shown in the following
example:

public class MyTest {
private TestRest Tenpl ate tenplate = new Test Rest Tenpl ate();

@est

public void testRequest() throws Exception {
Ht t pHeader s headers = tenpl ate. get ForEntity("http://nyhost.conl exanple", String.class).getHeaders();
assert That (headers. get Location().toString(), containsString("nmyotherhost"));

}

Alternatively, if you use the @pr i ngBoot Test annotation with WebEnvi r onnment . RANDOM _PORT or
WebEnvi r onment . DEFI NED_PORT, you can inject a fully configured Test Rest Tenpl at e and start
using it. If necessary, additional customizations can be applied through the Rest Tenpl at eBui | der
bean. Any URLSs that do not specify a host and port automatically connect to the embedded server, as
shown in the following example:

@RunW t h(Spri ngRunner . cl ass)
@pr i ngBoot Test
public class MyTest {

@\ut owi r ed
private TestRest Tenpl ate tenpl ate;

@rest

public void testRequest() throws Exception {
Ht t pHeaders headers = tenpl ate. get ForEntity("/exanple", String.class).getHeaders();
assert That (headers. get Location().toString(), containsString("nyotherhost"));

}

2.0.0.RC1 Spring Boot 167

Spring Boot Reference Guide

@est Configuration
static class Config {

@Bean
publ i c Rest Tenpl at eBui | der rest Tenpl at eBui | der () {
return new Rest Tenpl at eBui | der ()
.addi ti onal MessageConverters(...)
.custom zers(...);

}

2.0.0.RC1 Spring Boot 168

Spring Boot Reference Guide

44. \WebSockets

Spring Boot provides WebSockets auto-configuration for embedded Tomcat 8.5, Jetty 9, and Undertow.
If you deploy a war file to a standalone container, Spring Boot assumes that the container is responsible
for the configuration of its WebSocket support.

Spring Framework provides rich WebSocket support that can be easily accessed through the spri ng-
boot - st art er - websocket module.

2.0.0.RC1 Spring Boot 169

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/web.html#websocket

Spring Boot Reference Guide

45. Web Services

Spring Boot provides Web Services auto-configuration so that all you must do is define your Endpoi nt s.

The Spring Web Services features can be easily accessed with the spri ng-boot-starter-
webser vi ces module.

Si npl eWsdl 11Def i ni ti on and Si npl eXsdSchema beans can be automatically created for your
WSDLs and XSDs respectively. To do so, configure their location, as shown in the following example:

spring. webservi ces. wsdl -1 ocati ons=cl asspat h: / wsdl

2.0.0.RC1 Spring Boot 170

http://docs.spring.io/spring-ws/docs/3.0.0.RELEASE/reference/

Spring Boot Reference Guide

46. Creating Your Own Auto-configuration

If you work in a company that develops shared libraries, or if you work on an open-source or commercial
library, you might want to develop your own auto-configuration. Auto-configuration classes can be
bundled in external jars and still be picked-up by Spring Boot.

Auto-configuration can be associated to a “starter” that provides the auto-configuration code as well as
the typical libraries that you would use with it. We first cover what you need to know to build your own
auto-configuration and then we move on to the typical steps required to create a custom starter.

Tip

A demo project is available to showcase how you can create a starter step-by-step.

46.1 Understanding Auto-configured Beans

Under the hood, auto-configuration is implemented with standard @onf i gur at i on classes. Additional
@condi ti onal annotations are used to constrain when the auto-configuration should apply. Usually,
auto-configuration classes use @Conditional OnC ass and @Conditi onal OnM ssi ngBean
annotations. This ensures that auto-configuration applies only when relevant classes are found and
when you have not declared your own @onf i gur ati on.

You can browse the source code of spri ng- boot - aut oconf i gur e to see the @onfi gurati on
classes that Spring provides (see the META- | NF/ spri ng. f act ori es file).

46.2 Locating Auto-configuration Candidates

Spring Boot checks for the presence of a META- | NF/ spri ng. f act ori es file within your published jar.
The file should list your configuration classes under the Enabl eAut oConfi gur at i on key, as shown
in the following example:

or g. spri ngf ramewor k. boot . aut oconf i gur e. Enabl eAut oConfi gur ati on=\
com nycorp. | i bx. aut oconfi gure. Li bXAut oConfi gurati on, \
com mycor p. | i bx. aut oconfi gur e. Li bXWWebAut oConfi gurati on

You can use the @AutoConfigureAfter or @\t oConfigureBefore annotations if your
configuration needs to be applied in a specific order. For example, if you provide web-specific
configuration, your class may need to be applied after WebMscAut oConf i gur at i on.

If you want to order certain auto-configurations that should not have any direct knowledge of each other,
you can also use @\ut oConfi gur eOr der. That annotation has the same semantic as the regular
@ der annotation but provides a dedicated order for auto-configuration classes.

Note

Auto-configurations must be loaded that way only. Make sure that they are defined in a specific
package space and that, in particular, they are never the target of component scanning.

46.3 Condition Annotations

You almost always want to include one or more @ondi t i onal annotations on your auto-configuration
class. The @ondi ti onal OnM ssi ngBean annotation is one common example that is used to allow
developers to override auto-configuration if they are not happy with your defaults.

2.0.0.RC1 Spring Boot 171

https://github.com/snicoll-demos/spring-boot-master-auto-configuration
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/resources/META-INF/spring.factories
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/AutoConfigureAfter.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/AutoConfigureBefore.java

Spring Boot Reference Guide

Spring Boot includes a number of @ondi t i onal annotations that you can reuse in your own code by
annotating @onf i gur at i on classes or individual @ean methods. These annotations include:

» the section called “Class Conditions”

» the section called “Bean Conditions”

» the section called “Property Conditions”

 the section called “Resource Conditions”

» the section called “Web Application Conditions”

» the section called “SpEL Expression Conditions”

Class Conditions

The @ondi ti onal OnCl ass and @ondi ti onal OnM ssi ngd ass annotations let configuration be
included based on the presence or absence of specific classes. Due to the fact that annotation metadata
is parsed by using ASM, you can use the val ue attribute to refer to the real class, even though that class
might not actually appear on the running application classpath. You can also use the nane attribute if
you prefer to specify the class name by using a St ri ng value.

Tip

If you use @ondi ti onal OnC ass or @ondi ti onal OnM ssi ngCl ass as a part of a meta-
annotation to compose your own composed annotations, you must use nane as referring to the
class in such a case is not handled.

Bean Conditions

The @ondi ti onal OnBean and @ondi ti onal OnM ssi ngBean annotations let a bean be included
based on the presence or absence of specific beans. You can use the val ue attribute to specify
beans by type or name to specify beans by name. The search attribute lets you limit the
Appl i cati onCont ext hierarchy that should be considered when searching for beans.

When placed on a @ean method, the target type defaults to the return type of the method, as shown
in the following example:

@configuration
public class MyAutoConfiguration {

@Bean
@ondi t i onal OnM ssi ngBean
public MyService nyService() { ... }

In the preceding example, the nySer vi ce bean is going to be created if no bean of type MySer vi ce
is already contained in the Appl i cati onCont ext .

Tip

You need to be very careful about the order in which bean definitions are added, as
these conditions are evaluated based on what has been processed so far. For this reason,
we recommend using only @onditi onal OnBean and @Conditi onal OnM ssi ngBean

2.0.0.RC1 Spring Boot 172

http://asm.ow2.org/

Spring Boot Reference Guide

annotations on auto-configuration classes (since these are guaranteed to load after any user-
defined bean definitions have been added).

Note

@Condi ti onal OnBean and @condi ti onal OnM ssi ngBean do not prevent
@confi guration classes from being created. Using these conditions at the class level is
equivalent to marking each contained @ean method with the annotation.

Property Conditions

The @conditi onal OnProperty annotation lets configuration be included based on a Spring
Environment property. Use the prefi x and nane attributes to specify the property that should be
checked. By default, any property that exists and is not equal to f al se is matched. You can also create
more advanced checks by using the havi ngVal ue and mat chl f M ssi ng attributes.

Resource Conditions

The @condi ti onal OnResour ce annotation lets configuration be included only when a specific
resource is present. Resources can be specified by using the usual Spring conventions, as shown in
the following example: fi | e: / home/ user/test. dat.

Web Application Conditions

The @ondi t i onal OnWebAppl i cati on and @ondi ti onal OnNot WebAppl i cat i on annotations
let configuration be included depending on whether the application is a “web application”. A web
application is any application that uses a Spring WebAppl i cati onCont ext, defines a sessi on
scope, or has a St andar dSer vl et Envi ronnent .

SpEL Expression Conditions

The @ondi ti onal OnExpr essi on annotation lets configuration be included based on the result of
a SpEL expression.

46.4 Testing your Auto-configuration

An auto-configuration can be affected by many factors: user configuration (@ean definition and
Envi ronnent customization), condition evaluation (presence of a particular library), and others.
Concretely, each test should create a well defined Appli cati onContext that represents a
combination of those customizations. Appl i cat i onCont ext Runner provides a great way to achieve
that.

Appl i cati onCont ext Runner is usually defined as a field of the test class to gather the base,
common configuration. The following example makes sure that User Ser vi ceAut oConf i gur ati on
is always invoked:

private final ApplicationContextRunner contextRunner = new Appli cationContext Runner ()
.wi t hConfi gurati on(Aut oConfi gurations. of (User Servi ceAut oConfi guration. class));

Tip

If multiple auto-configurations have to be defined, there is no need to order their declarations as
they are invoked in the exact same order as when running the application.

2.0.0.RC1 Spring Boot 173

http://docs.spring.io/spring/docs/5.0.3.RELEASE/spring-framework-reference/core.html#expressions

Spring Boot Reference Guide

Each test can use the runner to represent a particular use case. For instance, the sample below invokes
a user configuration (User Conf i gur at i on) and checks that the auto-configuration backs off properly.
Invoking r un provides a callback context that can be used with Assert 4J.

@est
public void defaul t ServiceBacksOf f () {
thi s. cont ext Runner. w t hUser Confi gurati on(User Confi guration. cl ass)
.run((context) -> {
assert That (cont ext). hasSi ngl eBean(User Servi ce. cl ass) ;
assert That (cont ext. get Bean(User Ser vi ce. cl ass)). i sSameAs(
cont ext . get Bean(User Confi gurati on. cl ass). nmyUser Servi ce());
b
}

@onfi guration
static class UserConfiguration {

@Bean
public UserService nyUserService() {
return new User Service("mne");

}

It is also possible to easily customize the Envi r onnent , as shown in the following example:

@est
public void servi ceNameCanBeConfi gured() {
t hi s. cont ext Runner. w t hPropertyVal ues("user. nane=t est 123").run((context) -> {
assert That (cont ext). hasSi ngl eBean(User Servi ce. cl ass);
assert That (cont ext . get Bean(User Ser vi ce. cl ass) . get Nane()) . i sEqual To("test 123");
1)
}

Simulating a Web Context

If you need to test an auto-configuration that only operates in a Servlet
or Reactive web application context, use the WebApplicationContextRunner or
React i veWebAppl i cat i onCont ext Runner respectively.

Overriding the Classpath

Itis also possible to test what happens when a particular class and/or package is not present at runtime.
Spring Boot shipswitha Fi | t er edC assLoader that can easily be used by the runner. In the following
example, we assert that if User Ser vi ce is not present, the auto-configuration is properly disabled:

@est
public void servicelslgnoredlfLibraryl sNot Present () {
t hi s. cont ext Runner.w t hCl assLoader (new Fi | t eredd assLoader (User Servi ce. cl ass))
.run((context) -> assertThat (context).doesNot HaveBean("user Service"));

46.5 Creating Your Own Starter

A full Spring Boot starter for a library may contain the following components:
e The aut oconf i gur e module that contains the auto-configuration code.

e The starter module that provides a dependency to the aut oconf i gur e module as well as the
library and any additional dependencies that are typically useful. In a nutshell, adding the starter
should provide everything needed to start using that library.

2.0.0.RC1 Spring Boot 174

Spring Boot Reference Guide

Tip

You may combine the auto-configuration code and the dependency management in a single
module if you do not need to separate those two concerns.

Naming

You should make sure to provide a proper namespace for your starter. Do not start your module names
with spri ng- boot , even if you use a different Maven gr oupl d. We may offer official support for the
thing you auto-configure in the future.

As a rule of thumb, you should name a combined module after the starter. For example, assume that
you are creating a starter for "acme" and that you name the auto-configure module acne- spri ng-
boot - aut oconf i gur e and the starter acrre- spri ng- boot - st art er . If you only have one module
that combines the two, name it acrre- spri ng- boot -starter.

Also, if your starter provides configuration keys, use a unique namespace for them. In particular, do not
include your keys in the namespaces that Spring Boot uses (such as ser ver, managenent, spri ng,
and so on). If you use the same namespace, we may modify these namespaces in the future in ways
that break your modules.

Make sure to trigger meta-data generation so that IDE assistance is available for your keys as
well. You may want to review the generated meta-data (META-1 NF/ spri ng-confi gurati on-
net adat a. j son) to make sure your keys are properly documented.

aut oconfi gur e Module

The aut oconf i gur e module contains everything that is necessary to get started with the library. It may
also contain configuration key definitions (such as @onf i gur ati onProperti es) and any callback
interface that can be used to further customize how the components are initialized.

Tip

You should mark the dependencies to the library as optional so that you can include the
aut oconfi gur e module in your projects more easily. If you do it that way, the library is not
provided and, by default, Spring Boot backs off.

Starter Module

The starter is really an empty jar. Its only purpose is to provide the necessary dependencies to work
with the library. You can think of it as an opinionated view of what is required to get started.

Do not make assumptions about the project in which your starter is added. If the library you are auto-
configuring typically requires other starters, mention them as well. Providing a proper set of default
dependencies may be hard if the number of optional dependencies is high, as you should avoid including
dependencies that are unnecessary for a typical usage of the library. In other words, you should not
include optional dependencies.

Note

Either way, your starter must reference the core Spring Boot starter (spri ng- boot -starter)
directly or indirectly (i.e. no need to add it if your starter relies on another starter). If a project

2.0.0.RC1 Spring Boot 175

Spring Boot Reference Guide

is created with only your custom starter, Spring Boot's core features will be honoured by the
presence of the core starter.

2.0.0.RC1 Spring Boot 176

Spring Boot Reference Guide

47. What to Read Next

If you want to learn more about any of the classes discussed in this section, you can check out the Spring
Boot API documentation or you can browse the source code directly. If you have specific questions,
take a look at the how-to section.

If you are comfortable with Spring Boot's core features, you can continue on and read about production-
ready features.

2.0.0.RC1 Spring Boot 177

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1

Part V. Spring Boot Actuator:
Production-ready features

Spring Boot includes a number of additional features to help you monitor and manage your application
when you push it to production. You can choose to manage and monitor your application by using HTTP
endpoints or with IMX. Auditing, health, and metrics gathering can also be automatically applied to your
application.

Spring Boot Reference Guide

48. Enabling Production-ready Features

The spri ng-boot - act uat or module provides all of Spring Boot’s production-ready features. The
simplest way to enable the features is to add a dependency to the spri ng- boot - st art er - act uat or
‘Starter’.

Definition of Actuator

An actuator is a manufacturing term that refers to a mechanical device for moving or controlling
something. Actuators can generate a large amount of motion from a small change.

To add the actuator to a Maven based project, add the following ‘Starter’ dependency:

<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-actuator</artifactld>
</ dependency>
</ dependenci es>

For Gradle, use the following declaration:

dependenci es {
conpi | e("org. springfranmework. boot : spring-boot-starter-actuator")

}

2.0.0.RC1 Spring Boot 179

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator

Spring Boot Reference Guide

49. Endpoints

Actuator endpoints let you monitor and interact with your application. Spring Boot includes a humber
of built-in endpoints and lets you add your own. For example, the heal t h endpoint provides basic
application health information.

Each individual endpoint can be enabled or disabled. This controls whether or not the endpoint is created
and its bean exists in the application context. To be remotely accessible an endpoint also has to be

exposed via JMX or HTTP. Most applications choose HTTP, where the ID of the endpoint along with
a prefix of / act uat or is mapped to a URL. For example, by default, the heal t h endpoint is mapped
to/actuator/ heal t h.

The following technology-agnostic endpoints are available:

ID Description Enabled by default
audi tevents Exposes audit events information for the current Yes
application.
beans Displays a complete list of all the Spring beans in your Yes
application.
condi tions Shows the conditions that were evaluated on Yes
configuration and auto-configuration classes and the
reasons why they did or did not match.
confi gprops Displays a collated list of all Yes
@Confi gurati onProperti es.
env Exposes properties from Spring’s Yes
Conf i gur abl eEnvi r onnent .
fl yway Shows any Flyway database migrations that have Yes
been applied.
heal th Shows application health information. Yes
httptrace Displays HTTP trace information (by default, the last Yes
100 HTTP request-response exchanges).
info Displays arbitrary application info. Yes
| oggers Shows and modifies the configuration of loggers in the Yes
application.
i qui base Shows any Liquibase database migrations that have Yes
been applied.
nmetrics Shows ‘metrics’ information for the current application. Yes
mappi ngs Displays a collated list of all @Request Mappi ng Yes
paths.
schedul edt asks | Displays the scheduled tasks in your application. Yes
sessi ons Allows retrieval and deletion of user sessions from a Yes
Spring Session-backed session store. Not available
2.0.0.RC1 Spring Boot 180

Spring Boot Reference Guide

ID Description Enabled by default
when using Spring Session’s support for reactive web
applications.

shut down Lets the application be gracefully shutdown. No

t hr eaddunp Performs a thread dump. Yes

If your application is a web application (Spring MVC, Spring WebFlux, or Jersey), you can use the
following additional endpoints:

ID Description Enabled by default
heapdunp Returns a GZip compressed hpr of heap dump file. Yes
j ol oki a Exposes JMX beans over HTTP (when Jolokia is on Yes

the classpath, not available for WebFlux).

logfile Returns the contents of the logdfile (if | oggi ng.file Yes
or | oggi ng. pat h properties have been set).

Supports the use of the HTTP Range header to

retrieve part of the log file's content.

pr onet heus Exposes metrics in a format that can be scraped by a Yes
Prometheus server.

To learn more about the Actuator’s endpoints and their request and response formats, please refer to
the separate API documentation (HTML or PDF).

49.1 Enabling Endpoints

By default, all endpoints except for shut down are enabled. To configure the enablement of an
endpoint, use its managenent . endpoi nt s. <i d>. enabl ed property. The following example enables
the shut down endpoint:

managenent . endpoi nt . shut down. enabl ed=t r ue

If you prefer endpoint enablement to be optin rather than opt-out, set the
managenent . endpoi nt s. enabl ed- by-def aul t property to f al se and use individual endpoint
enabl ed properties to opt back in. The following example enables the i nf o endpoint and disables all
other endpoints:

managenent . endpoi nt s. enabl ed- by- def aul t =f al se
managenent . endpoi nt . i nf 0. enabl ed=t rue

Note

Disabled endpoints are removed entirely from the application context. If you want to change only
the technologies over which an endpoint is exposed, use the expose and excl ude properties
instead.

2.0.0.RC1 Spring Boot 181

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/actuator-api//html
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/actuator-api//pdf/spring-boot-actuator-web-api.pdf

Spring Boot Reference Guide

49.2 Exposing Endpoints

Since Endpoints may contain sensitive information, careful consideration should be given about when
to expose them. The following table shows the default exposure for the built-in endpoints:

ID JMX Web
audi tevents Yes No
beans Yes No
condi tions Yes No
confi gprops Yes No
env Yes No
fl yway Yes No
heal t h Yes Yes
heapdunp N/A No
httptrace Yes No
info Yes Yes
j ol oki a N/A No
logfile N/A No
| oggers Yes No
['i qui base Yes No
nmetrics Yes No
meppi ngs Yes No
pr onet heus N/A No
schedul edt asks Yes No
sessi ons Yes No
shut down Yes No
t hr eaddunp Yes No

To change which endpoints are exposed, use the following technology-specific expose and excl ude
properties:

Property Default
management . endpoi nt s. j nx. excl ude

managemnent . endpoi nt s. j nx. expose *
managenent . endpoi nt s. web. excl ude

managemnent . endpoi nt s. web. expose info, health

2.0.0.RC1 Spring Boot 182

Spring Boot Reference Guide

The expose property lists the IDs of the endpoints that are exposed. The excl ude property lists the
IDs of the endpoints that should not be exposed. The excl ude property takes precedence over the
expose property.

For example, to stop exposing all endpoints over JMX and only expose the heal t h endpoint, use the
following property:

‘ managenent . endpoi nt s. j nx. expose=heal t h

* can be used to select all endpoints. For example, to expose everything over HTTP except the env
endpoint, use the following properties:

managenent . endpoi nt s. web. expose=*
managenent . endpoi nt s. web. excl ude=env

Note

If your application is exposed publicly, we strongly recommend that you also secure your
endpoints.

Tip

If you want to implement your own strategy for when endpoints are exposed, you can register an
Endpoi nt Fi | t er bean.

49.3 Securing HTTP Endpoints

You should take care to secure HTTP endpoints in the same way that you would any other sensitive
URL. If Spring Security is present, endpoints are secured by default using Spring Security’s content-
negotiation strategy. If you wish to configure custom security for HTTP endpoints, for example, only allow
users with a certain role to access them, Spring Boot provides some convenient Request Mat cher
objects that can be used in combination with Spring Security.

A typical Spring Security configuration might look something like the following example:

@onfiguration
public class ActuatorSecurity extends WebSecurityConfigurerAdapter {

@verride
protected void configure(HttpSecurity http) throws Exception {
ht t p. request Mat cher (Endpoi nt Request . t oAnyEndpoi nt ()) . aut hori zeRequest s()
. anyRequest () . hasRol e(" ENDPO NT_ADM N*)
.and()
. htt pBasic();
}

}

The preceding example uses Endpoi nt Request .t oAnyEndpoi nt () to match a request to any
endpoint and then ensures that all have the ENDPO NT_ADM N role. Several other matcher methods
are also available on Endpoi nt Request . See the APl documentation (HTML or PDF) for details.

If you deploy applications behind a firewall, you may prefer that all your actuator
endpoints can be accessed without requiring authentication. You can do so by changing the
managenent . endpoi nt s. web. expose property, as follows:

application.properties.

2.0.0.RC1 Spring Boot 183

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/actuator-api//html
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/actuator-api//pdf/spring-boot-actuator-web-api.pdf

Spring Boot Reference Guide

managenent . endpoi nts. web. expose=*

Additionally, if Spring Security is present, you would need to add custom security configuration that
allows unauthenticated access to the endpoints as shown in the following example:

@onfiguration
public class ActuatorSecurity extends WebSecurityConfigurerAdapter {

@verride
protected void configure(HttpSecurity http) throws Exception {
htt p. request Mat cher (Endpoi nt Request . t oAnyEndpoi nt ()) . aut hori zeRequest s()
.anyRequest (). perm t Al l ()
}

}

49.4 Configuring Endpoints

Endpoints automatically cache responses to read operations that do not take any parameters. To
configure the amount of time for which an endpoint will cache a response, use its cache. ti me-t o-
| i ve property. The following example sets the time-to-live of the beans endpoint’s cache to 10 seconds:

application.properties.

managenent . endpoi nt . beans. cache. ti me-to-1ive=10s

Note

The prefix managenent . endpoi nt. <nane> is used to uniquely identify the endpoint that is
being configured.

49.5 Hypermedia for Actuator Web Endpoints

A “discovery page” is added with links to all the endpoints. The “discovery page” is available on /
act uat or by default.

When a custom management context path is configured, the “discovery page” automatically moves from
[act uat or to the root of the management context. For example, if the management context path is /
management , then the discovery page is available from / managenent . When the management context
path is setto/, the discovery page is disabled to prevent the possibility of a clash with other mappings.

49.6 Actuator Web Endpoint Paths

By default, endpoints are exposed over HTTP under the / act uat or path by using the ID of the
endpoint. For example, the beans endpoint is exposed under / act uat or/ beans. If you want to
map endpoints to a different path, you can use the managenent . endpoi nt s. web. pat h- mappi ng
property. Also, if you want change the base path, you can use managenent . endpoi nt s. web. base-
pat h.

The following example remaps / act uat or/ heal t h to/ heal t hcheck:

application.properties.

managenent . endpoi nt s. web. base- pat h=/
managenent . endpoi nt s. web. pat h- mappi ng. heal t h=heal t hcheck

2.0.0.RC1 Spring Boot 184

Spring Boot Reference Guide

49.7 CORS Support

Cross-origin resource sharing (CORS) is a W3C specification that lets you specify in a flexible way what
kind of cross-domain requests are authorized. If you use Spring MVC or Spring WebFlux, Actuator’'s
web endpoints can be configured to support such scenarios.

CORS support is disabled by default and is only enabled once the
managenent . endpoi nts. web. cors. al | owed- ori gi ns property has been set. The following
configuration permits GET and PGST calls from the exanpl e. comdomain:

managenent . endpoi nts. web. cors. al | owed- ori gi ns=http://exanpl e.com
managenent . endpoi nts. web. cor s. al | owed- met hods=GET, POST

Tip

See CorsEndpointProperties for a complete list of options.

49.8 Adding Custom Endpoints

If you add a @ean annotated with @ndpoi nt, any methods annotated with @eadQper ati on,
@ViteQperation, or @el et eCper ati on are automatically exposed over JMX and, in a web
application, over HTTP as well.

You can also write technology-specific endpoints by using @nmxEndpoi nt or @¥bEndpoi nt . These
endpoints are filtered to their respective technologies. For example, @\&ébEndpoi nt is exposed only
over HTTP and not over JMX.

Finally, you can write technology-specific extensions by using @ndpoi nt WebExt ensi on and
@ndpoi nt InkExt ensi on. These annotations let you provide technology-specific operations to
augment an existing endpoint.

Tip

If you add endpoints as a library feature, consider adding a configuration class annotated

with @vanagenent Cont ext Confi gurati on to/ META- I NF/ spri ng. fact ori es under the

following key:

org. springframewor k. boot . act uat e. aut oconfi gur e. web. Managenent Cont ext Confi gur ati on.
If you do so and if your users ask for a separate management port or address, the endpoint moves

to a child context with all the other web endpoints.

49.9 Health Information

You can use health information to check the status of your running application. It is often used by
monitoring software to alert someone when a production system goes down. The information exposed
by the heal t h endpoint depends on the managenent . endpoi nt . heal t h. show- det ai | s property.
By default, the property’s value is f al se and a simple “status” message is returned. When the property’s
value is set to t r ue, additional details from the individual health indicators are also displayed.

Health information is collected from all Heal thlndicator beans defined in your
Appl i cati onCont ext . Spring Boot includes a number of auto-configured Heal t hl ndi cat or s, and
you can also write your own. By default, the final system state is derived by the Heal t hAggr egat or,

2.0.0.RC1 Spring Boot 185

http://en.wikipedia.org/wiki/Cross-origin_resource_sharing
http://www.w3.org/TR/cors/
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/endpoint/web/CorsEndpointProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/HealthIndicator.java

Spring Boot Reference Guide

which sorts the statuses from each Heal t hl ndi cat or based on an ordered list of statuses. The first
status in the sorted list is used as the overall health status. If no Heal t hl ndi cat or returns a status
that is known to the Heal t hAggr egat or, an UNKNOWN status is used.

Auto-configured HealthIindicators

The following Heal t hl ndi cat or s are auto-configured by Spring Boot when appropriate:

Name Description

Cassandr aHeal t hl ndi cat or Checks that a Cassandra database is up.

Di skSpaceHeal t hl ndi cat or Checks for low disk space.

Dat aSour ceHeal t hl ndi cat or Checks that a connection to Dat aSour ce can be
obtained.

El asti csearchHeal t hl ndi cat or Checks that an Elasticsearch cluster is up.

I nf | uxDbHeal t hl ndi cat or Checks that an InfluxDB server is up.
JnsHeal t hl ndi cat or Checks that a JIMS broker is up.

Mai | Heal t hl ndi cat or Checks that a mail server is up.
MongoHeal t hl ndi cat or Checks that a Mongo database is up.
Neo4j Heal t hl ndi cat or Checks that a Neo4j server is up.
Rabbi t Heal t hl ndi cat or Checks that a Rabbit server is up.
Redi sHeal t hl ndi cat or Checks that a Redis server is up.

Sol r Heal t hl ndi cat or Checks that a Solr server is up.

Tip

You can disable them all by setting the nanagenent . heal t h. def aul t s. enabl ed property.

Writing Custom HealthIndicators

To provide custom health information, you can register Spring beans that implement the
Heal t hl ndi cat or interface. You need to provide an implementation of the heal t h() method
and return a Heal t h response. The Heal t h response should include a status and can optionally
include additional details to be displayed. The following code shows a sample Heal t hl ndi cat or
implementation:

i nport org.springfranework. boot. act uat e. heal t h. Heal t h;
i nport org.springfranework. boot . act uat e. heal t h. Heal t hl ndi cat or;
i mport org.springframework. stereotype. Conponent ;

@Conponent
public class MyHeal t hl ndi cator inplenents Heal t hl ndi cator {

@verride
public Health health() {
int errorCode = check(); // performsonme specific health check
if (errorCode !'= 0) {
return Heal th.down().w thDetail ("Error Code", errorCode).build();

2.0.0.RC1 Spring Boot 186

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/cassandra/CassandraHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/system/DiskSpaceHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/jdbc/DataSourceHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/elasticsearch/ElasticsearchHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/influx/InfluxDbHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/jms/JmsHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/mail/MailHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/mongo/MongoHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/neo4j/Neo4jHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/amqp/RabbitHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/redis/RedisHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/solr/SolrHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/HealthIndicator.java

Spring Boot Reference Guide

}
return Heal th.up().build();

}
}

Note

The identifier for a given Heal t hl ndi cator is the name of the bean without the
Heal t hl ndi cat or suffix, if it exists. In the preceding example, the health information is available
in an entry named ry.

In addition to Spring Boot's predefined St at us types, it is also possible for Heal t h to return a
custom St at us that represents a new system state. In such cases, a custom implementation of the
Heal t hAggr egat or interface also needs to be provided, or the default implementation has to be
configured by using the managenent . heal t h. st at us. or der configuration property.

For example, assume a new St at us with code FATAL is being used in one of your Heal t hl ndi cat or
implementations. To configure the severity order, add the following property to your application
properties:

managenent . heal t h. st at us. or der =FATAL, DOWN, OUT_OF_SERVI CE, UNKNOWN, UP

The HTTP status code in the response reflects the overall health status (for example, UP maps to
200, while OQUT_OF_SERVI CE and DOAN map to 503). You might also want to register custom status
mappings if you access the health endpoint over HTTP. For example, the following property maps FATAL
to 503 (service unavailable):

managenent . heal t h. st at us. htt p- mappi ng. FATAL=503

Tip

If you need more control, you can define your own Heal t hSt at usH t pMapper bean.

The following table shows the default status mappings for the built-in statuses:

Status Mapping

DOWN SERVICE_UNAVAILABLE (503)

OUT_OF_SERVICE SERVICE_UNAVAILABLE (503)

UpP No mapping by default, so http status is 200

UNKNOWN No mapping by default, so http status is 200

Reactive Health Indicators

For reactive applications, such as those using Spring WebFlux, React i veHeal t hl ndi cat or provides
a non-blocking contract for getting application health. Similar to a traditional Heal t hl ndi cat or,
health information is collected from all ReactiveHeal t hl ndi cat or beans defined in your
Appl i cati onCont ext . Regular Heal t hl ndi cat or beans that do not check against a reactive API
are included and executed on the elastic scheduler.

2.0.0.RC1 Spring Boot 187

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/Status.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/HealthAggregator.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/ReactiveHealthIndicator.java

Spring Boot Reference Guide

To provide custom health information from a reactive API, you can register Spring beans
that implement the Reacti veHeal t hl ndi cat or interface. The following code shows a sample
React i veHeal t hl ndi cat or implementation:

@onponent
public class MyReactiveHeal thlndicator inplenments ReactiveHeal thlndicator {

@verride
publ i c Mono<Heal t h> heal th() {
return doHeal t hCheck() //perform sone specific health check that returns a Mno<Heal t h>
. OnError Resune(ex -> Mono. just (new Heal t h. Bui | der () .down(ex).build())));

}
}

Tip

To handle the error automatically, consider extending from
Abstract Reacti veHeal t hl ndi cat or.

Auto-configured ReactiveHealthIindicators
The following React i veHeal t hl ndi cat or s are auto-configured by Spring Boot when appropriate:

Name Description

Redi sReact i veHe@hebksthat @t Redis server is up.

Tip
If necessary, reactive indicators replace the regular ones. Also, any Heal t hl ndi cat or that is

not handled explicitly is wrapped automatically.

49.10 Application Information

Application information exposes various information collected from all | nf oCont ri but or beans
defined in your ApplicationContext. Spring Boot includes a number of auto-configured
I nf oCont ri but or beans, and you can write your own.

Auto-configured InfoContributors

The following | nf oCont ri but or beans are auto-configured by Spring Boot, when appropriate:

Name Description
Envi r onnent | nf oExposédhanpkey from the Envi r onnent under the i nf o key.
G t |1 nf oCont ri buEsposes git informationifa gi t. properti es file is available.

Bui | dI nf oCont r i Exposes build information if a META- | NF/ bui | d-i nf o. properti es file is
available.

Tip
It is possible to disable them all by setting the managenent.i nfo. defaul ts. enabl ed
property.

2.0.0.RC1 Spring Boot 188

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/ReactiveHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/redis/RedisReactiveHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/info/InfoContributor.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/info/EnvironmentInfoContributor.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/info/GitInfoContributor.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/info/BuildInfoContributor.java

Spring Boot Reference Guide

Custom Application Information

You can customize the data exposed by the i nf o endpoint by setting i nf 0. * Spring properties. All
Envi ronnent properties under the i nf o key are automatically exposed. For example, you could add
the following settings to your appl i cati on. properti es file:

i nfo. app. encodi ng=UTF- 8
i nf 0. app. j ava. source=1. 8
i nfo.app.java.target=1.8

Tip

Rather than hardcoding those values, you could also expand info properties at build time.

Assuming you use Maven, you could rewrite the preceding example as follows:

i nf 0. app. encodi ng=@r oj ect . bui | d. sour ceEncodi ng@
i nfo.app.java. source=@ ava. ver si on@
i nfo.app.]java.target =@ ava. ver si on@

Git Commit Information

Another useful feature of the i nf o endpoint is its ability to publish information about the state of your
gi t source code repository when the project was built. If a G t Properti es bean is available, the
git.branch,git.commit.id,andgit.conmit.tinme properties are exposed.

Tip

A G t Properti es beanis auto-configured ifa gi t . properti es file is available at the root of
the classpath. See "Generate git information” for more details.

If you want to display the full git information (that is, the full content of gi t. properti es), use the
managenent . i nf 0. gi t. node property, as follows:

managenent . i nfo. gi t. node=ful |
Build Information

If a Bui | dProperti es bean is available, the i nf o endpoint can also publish information about your
build. This happens if a META- | NF/ bui | d-i nf o. properti es file is available in the classpath.

Tip

The Maven and Gradle plugins can both generate that file. See "Generate build information" for
more details.

Writing Custom InfoContributors

To provide custom application information, you can register Spring beans that implement the
I nf oCont ri but or interface.

The following example contributes an exanpl e entry with a single value:

i mport java.util.Collections;

2.0.0.RC1 Spring Boot 189

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/info/InfoContributor.java

Spring Boot Reference Guide

i mport org. springframework. boot . actuate.info.|nfo;
i nport org.springfranework. boot . actuate. i nfo. | nfoContri butor;
i nport org.springfranework. stereotype. Conponent ;

@onponent
public class Exanpl el nfoContributor inplenents InfoContributor {

@verride
public void contribute(lnfo.Builder builder) {
bui |l der.w thDet ai | ("exanpl e",
Col | ecti ons. si ngl et onMap("key", "value"));

If you reach the i nf 0 endpoint, you should see a response that contains the following additional entry:

{
"exanpl e": {
"key" : "val ue"
}
}

2.0.0.RC1 Spring Boot 190

Spring Boot Reference Guide

50. Monitoring and Management over HTTP

If you are developing a web application, Spring Boot Actuator auto-configures all enabled endpoints
to be exposed over HTTP. The default convention is to use the i d of the endpoint with a prefix of /
act uat or as the URL path. For example, heal t h is exposed as / act uat or/ heal t h.

Tip
Actuator is supported natively with Spring MVC, Spring WebFlux, and Jersey.

50.1 Customizing the Management Endpoint Paths

Sometimes, it is useful to customize the prefix for the management endpoints. For example,
your application might already use /actuator for another purpose. You can use the
nmanagemnent . endpoi nt s. web. base- pat h property to change the prefix for your management
endpoint, as shown in the following example:

managenent . endpoi nt s. web. base- pat h=/ manage

The preceding appl i cati on. properti es example changes the endpoint from / act uat or/ {i d}
to / manage/ {i d} (for example, / manage/ i nf 0).

Note

Unless the management port has been configured to expose endpoints by using a different HTTP
port, managemnent . endpoi nt s. web. base- pat h is relative to ser ver. servl et . cont ext -
pat h. If managenent . server. port is configured, managemnent . endpoi nt s. web. base-
pat h is relative to managenent . server. servl et. cont ext - pat h.

50.2 Customizing the Management Server Port

Exposing management endpoints by using the default HTTP port is a sensible choice for cloud-based
deployments. If, however, your application runs inside your own data center, you may prefer to expose
endpoints by using a different HTTP port.

You can set the managenent . server. port property to change the HTTP port, as shown in the
following example:

‘nanagenent.server.port:8081

50.3 Configuring Management-specific SSL

When configured to use a custom port, the management server can also be configured with its own
SSL by using the various managenent . server. ssl . * properties. For example, doing so lets a
management server be available over HTTP while the main application uses HTTPS, as shown in the
following property settings:

server. port =8443
server. ssl . enabl ed=true

server. ssl. key-store=cl asspath: store. jks
server. ssl . key- passwor d=secr et
managenent . server. port =8080
managenent . server. ssl . enabl ed=f al se

2.0.0.RC1 Spring Boot 191

Spring Boot Reference Guide

Alternatively, both the main server and the management server can use SSL but with different key
stores, as follows:

server. port=8443

server. ssl . enabl ed=true

server. ssl . key-store=cl asspat h: mai n. j ks

server. ssl . key- passwor d=secr et
managenent . server . port=8080
managenent . server. ssl . enabl ed=true

managenent . server. ssl . key- st or e=cl asspat h: nanagenent . j ks
managenent . server. ssl . key- passwor d=secr et

50.4 Customizing the Management Server Address
You can customize the address that the management endpoints are available on by setting the

managenent . server . addr ess property. Doing so can be useful if you want to listen only on an
internal or ops-facing network or to listen only for connections from | ocal host .

Note

You can listen on a different address only when the port differs from the main server port.

The following example appl i cati on. properti es does not allow remote management connections:

managenent . server. port=8081
managenent . server. addr ess=127.0. 0. 1

50.5 Disabling HTTP Endpoints

If you do not want to expose endpoints over HTTP, you can set the management port to - 1, as shown
in the following example:

managenent . server. port=-1

2.0.0.RC1 Spring Boot 192

Spring Boot Reference Guide

51. Monitoring and Management over JMX

Java Management Extensions (JMX) provide a standard mechanism to monitor and manage
applications. By default, Spring Boot exposes management endpoints as JMX MBeans under the
or g. spri ngframewor k. boot domain.

51.1 Customizing MBean Names

The name of the MBean is usually generated from the i d of the endpoint. For example, the heal t h
endpoint is exposed as or g. spri ngf r amewor k. boot : t ype=Endpoi nt, nane=Heal t h.

If your application contains more than one Spring Appl i cat i onCont ext, you may find that names
clash. To solve this problem, you can set the managenent . endpoi nts.j nx. uni que- nanmes
property to t r ue so that MBean names are always unique.

You can also customize the JMX domain under which endpoints are exposed. The following settings
show an example of doing so in appl i cati on. properties:

managenent . endpoi nt s. j nx. domai n=com exanpl e. nyapp
managenent . endpoi nt s. j nx. uni que- nanes=t r ue

51.2 Disabling JMX Endpoints

If you do not want to expose endpoints over JMX, you can set the
managenent . endpoi nts. j nx. excl ude property to *, as shown in the following example:

‘nanagenent.endpoints.jnx.exclude:*

51.3 Using Jolokia for IMX over HTTP

Jolokia is a JMX-HTTP bridge that provides an alternative method of accessing JMX beans. To use
Jolokia, include a dependencytoor g. j ol oki a: j ol oki a- cor e. For example, with Maven, you would
add the following dependency:

<dependency>
<gr oupl d>or g. j ol oki a</ gr oupl d>
<artifactld>jol okia-core</artifactld>

</ dependency>

The Jolokia endpoint can then be exposed by adding jolokia or * to the
managenent . endpoi nt s. web. expose property. You can then access it by using / act uat or/
j ol oki a on your management HTTP server.

Customizing Jolokia

Jolokia has a number of settings that you would traditionally configure by setting servlet parameters.
With Spring Boot, you can use your appl i cati on. properti es file. To do so, prefix the parameter
with management . endpoi nt . j ol oki a. confi g., as shown in the following example:

managenent . endpoi nt . j ol oki a. confi g. debug=true

Disabling Jolokia

If you wuse Jolokia but do not want Spring Boot to configure it, set the
managenent . endpoi nt. j ol oki a. enabl ed property to f al se, as follows:

2.0.0.RC1 Spring Boot 193

Spring Boot Reference Guide

managenent . j ol oki a. enabl ed=f al se

2.0.0.RC1 Spring Boot 194

Spring Boot Reference Guide

52. Loggers

Spring Boot Actuator includes the ability to view and configure the log levels of your application at
runtime. You can view either the entire list or an individual logger’s configuration, which is made up of
both the explicitly configured logging level as well as the effective logging level given to it by the logging
framework. These levels can be one of:

* TRACE
» DEBUG
* | NFO
* VWARN
* ERROR
* FATAL
. OFF

e nul |

nul | indicates that there is no explicit configuration.

52.1 Configure a Logger

To configure a given logger, POST a partial entity to the resource’s URI, as shown in the following
example:

{
"configuredLevel ": "DEBUG'

}
Tip

To “reset” the specific level of the logger (and use the default configuration instead), you can pass
avalue of nul | as the confi gur edLevel .

2.0.0.RC1 Spring Boot 195

Spring Boot Reference Guide

53. Metrics

Spring Boot Actuator provides dependency management and auto-configuration for Micrometer, an
application metrics facade that supports numerous monitoring systems, including:

» Atlas
» Datadog
» Ganglia

» Graphite

e [nflux

* Prometheus

Note

At the time of this writing, the number of monitoring systems supported by Micrometer is growing
rapidly. See the Micrometer project for more information.

Micrometer provides a separate module for each supported monitoring system. Depending on one (or
more) of these modules is sufficient to get started with Micrometer in your Spring Boot application. To
learn more about Micrometer’s capabilities, please refer to its reference documentation.

53.1 Spring MVC Metrics

Auto-configuration enables the instrumentation of requests handled by Spring MVC. When
managenent . netri cs. web. server. auto-ti me-requests istrue, this instrumentation occurs
for all requests. Alternatively, when set to f al se, you can enable instrumentation by adding @i ned
to a request-handling method.

By default, metrics are generated with the name, http. server.requests. The name can
be customized by setting the nmanagenent. nmetrics.web. server.requests-netric-nane

property.

Spring MVC Metric Tags

By default, Spring MVC-related metrics are tagged with the following information:

e The request’'s method.

» The request’s URI (templated if possible).

» The simple class name of any exception that was thrown while handling the request.
» The response’s status.

To customize the tags, provide a @ean that implements WebM/c TagsPr ovi der .

53.2 WebFlux Metrics

Auto-configuration enables the instrumentation of all requests handled by WebFlux controllers. You can
also use a helper class, Rout er Functi onMet ri cs, to instrument applications that use WebFlux’s
functional programming model.

2.0.0.RC1 Spring Boot 196

https://micrometer.io
https://github.com/Netflix/atlas
https://www.datadoghq.com
http://ganglia.sourceforge.net
https://graphiteapp.org
https://www.influxdata.com
https://prometheus.io
https://micrometer.io
https://micrometer.io/docs

Spring Boot Reference Guide

By default, metrics are generated with the name htt p. server. requests. You can customize the
name by setting the managenent . netri cs. web. server. request s- netri c- name property.

WebFlux Metrics Tags

By default, WebFlux-related metrics for the annotation-based programming model are tagged with the
following information:

e The request’s method.

» The request’s URI (templated if possible).

The simple class name of any exception that was thrown while handling the request.

* The response’s status.

To customize the tags, provide a @ean that implements WebFl uxTagsPr ovi der .

By default, metrics for the functional programming model are tagged with the following information:
e The request’s method

e The request’s URI (templated if possible).

» The response’s status.

To customize the tags, use the def aul t Tags method on your Rout er Functi onMet ri cs instance.

53.3 RestTemplate Metrics

The instrumentation of any RestTenplate <created using the auto-configured
Rest Tenpl at eBui | der is enabled. Itis also possible to apply Met ri csRest Tenpl at eCust oni zer
manually.

By default, metrics are generated with the name, http.client.requests. The name can
be customized by setting the nanagenent. netrics.web.client.requests-netric-nane

property.
RestTemplate Metric Tags

By default, metrics generated by an instrumented Rest Tenpl at e are tagged with the following
information:

» The request’s method.
» The request’s URI (templated if possible).
e The response’s status.

e The request URI's host.

53.4 Cache metrics

Auto-configuration will enable the instrumentation of all available Caches on startup with a metric named
cache. The prefix can be customized by using the managenent . netri cs. cache. netri c- name
property. Cache instrumentation is specific to each cache library, refer to the micrometer documentation
for more details.

2.0.0.RC1 Spring Boot 197

https://micrometer.io/docs

Spring Boot Reference Guide

The following cache libraries are supported:

» Caffeine

EhCache 2
» Hazelcast
» Any compliant JCache (JSR-107) implementation

Metrics will also be tagged by the name of the CacheManager computed based on the bean name.

Note

Only caches that are available on startup are bound to the registry. For caches created
on-the-fly or programmatically after the startup phase, an explicit registration is required. A
CacheMet ri csRegi st rar bean is made available to make that process easier.

53.5 DataSource Metrics

Auto-configuration enables the instrumentation of all available Dat aSour ce objects with a metric
named dat a. sour ce. Data source instrumentation results in gauges representing the currently active,
maximum allowed, and minimum allowed connections in the pool. Each of these gauges has a
name that is prefixed by dat a. sour ce by default. The prefix can be customized by setting the
managenent . netri cs. j dbc. netri c- name property.

Metrics are also tagged by the name of the Dat aSour ce computed based on the bean name.

53.6 RabbitMQ metrics

Auto-configuration will enable the instrumentation of all available RabbitMQ connection
factories with a metric named rabbitnyg. The prefix can be customized by using the
managenent . netri cs. rabbi t ng. netri c- name property.

53.7 Spring Integration Metrics

Auto-configuration enables binding of a number of Spring Integration-related metrics:

Table 53.1. General metrics

Metric Description

spring.integration. channel Names Number of Spring Integration channels
spring.integration. handl er Names Number of Spring Integration handlers
spring.integration. sourceNanes Number of Spring Integration sources

Table 53.2. Channel metrics

Metric Description

spring.integration.channel.receives Number of receives

spring.integration. channel . sendErrors Number of failed sends

2.0.0.RC1 Spring Boot 198

Spring Boot Reference Guide

Metric

spring.integration

. channel

Table 53.3. Handler metrics

Metric

spring.integration

. handl er.

Description

. sends Number of successful sends

Description

dur at i on. nEMaximum handler duration in milliseconds

spring.integration

. handl er.

dur at i on. mMinimum handler duration in milliseconds

spring.integration

. handl er.

dur at i on. nedaan handler duration in milliseconds

spring.integration

. handl er.

act i veCountNumber of active handlers

Table 53.4. Source metrics

Metric Description
spring.integration. source. messages Number of successful source calls
2.0.0.RC1 Spring Boot 199

Spring Boot Reference Guide

54. Auditing

Once Spring Security is in play, Spring Boot Actuator has a flexible audit framework that publishes
events (by default, “authentication success”, “failure” and “access denied” exceptions). This feature
can be very useful for reporting and for implementing a lock-out policy based on authentication
failures. To customize published security events, you can provide your own implementations of
Abst ract Aut henti cati onAudi t Li st ener and Abst r act Aut hori zat i onAudi t Li st ener.

You can also use the audit services for your own business events. To do so, either inject the
existing Audi t Event Reposi tory into your own components and use that directly or publish
an Audi t Appl i cati onEvent with the Spring Appl i cati onEvent Publ i sher (by implementing
Appl i cati onEvent Publ i sher Awar e).

2.0.0.RC1 Spring Boot 200

Spring Boot Reference Guide

55. HTTP Tracing

Tracing is automatically enabled for all HTTP requests. You can view the htt ptrace endpoint and
obtain basic information about the last 100 request-response exchanges.

55.1 Custom HTTP tracing

To customize the items that are included in each trace, use the nanagenent . htt pt race. i ncl ude
configuration property.

By default, an | nMenoryHtt pTraceReposi tory that stores traces for the last 100 request-
response exchanges is used. If you need to expand the capacity, you can define your own
instance of the | nMenoryHt t pTr aceReposi t ory bean. You can also create your own alternative
Ht t pTraceReposi t or y implementation.

2.0.0.RC1 Spring Boot 201

Spring Boot Reference Guide

56. Process Monitoring

In the spri ng- boot module, you can find two classes to create files that are often useful for process
monitoring:

* ApplicationPidFil eWiter creates a file containing the application PID (by default, in the
application directory with a file name of appl i cat i on. pi d).

» EnbeddedServerPortFil eWiter creates a file (or files) containing the ports of the embedded
server (by default, in the application directory with a file name of appl i cati on. port).

By default, these writers are not activated, but you can enable:

» By Extending Configuration

» Section 56.2, “Programmatically”

56.1 Extending Configuration

In the META- | NF/ spri ng. fact ori es file, you can activate the listener(s) that writes a PID file, as
shown in the following example:

org. springfranmewor k. cont ext . Appl i cati onLi st ener =\
or g. spri ngf ramewor k. boot . system Appl i cati onPi dFil eWiter,\
or g. spri ngf ramewor k. boot . syst em EnbeddedServerPortFil eWiter

56.2 Programmatically

You can also activate a listener by invoking the Spri ngAppl i cati on. addLi st ener s(..) method
and passing the appropriate Wi t er object. This method also lets you customize the file name and
path in the Wi t er constructor.

2.0.0.RC1 Spring Boot 202

Spring Boot Reference Guide

57. Cloud Foundry Support

Spring Boot's actuator module includes additional support that is activated when you deploy to a
compatible Cloud Foundry instance. The / cl oudf oundr yappl i cat i on path provides an alternative
secured route to all @ndpoi nt beans.

The extended support lets Cloud Foundry management Uls (such as the web application that you can
use to view deployed applications) be augmented with Spring Boot actuator information. For example,
an application status page may include full health information instead of the typical “running” or “stopped”
status.

Note

The / cl oudf oundr yappl i cat i on path is not directly accessible to regular users. In order to
use the endpoint, a valid UAA token must be passed with the request.

57.1 Disabling Extended Cloud Foundry Actuator Support

If you want to fully disable the / cl oudf oundr yappl i cat i on endpoints, you can add the following
setting to your appl i cati on. properti es file:

application.properties.

‘ managenent . cl oudf oundry. enabl ed=f al se

57.2 Cloud Foundry Self-signed Certificates

By default, the security verification for / cl oudf oundr yappl i cat i on endpoints makes SSL calls to
various Cloud Foundry services. If your Cloud Foundry UAA or Cloud Controller services use self-signed
certificates, you need to set the following property:

application.properties.

‘ managenent . ¢l oudf oundry. ski p- ssl -val i dati on=true

57.3 Custom Security Configuration

If you define custom security configuration and you want extended Cloud Foundry actuator support, you
should ensure that / cl oudf oundr yappl i cati on/ ** paths are open. Without a direct open route,
your Cloud Foundry application manager is not able to obtain endpoint data.

For Spring Security, you typically include something like mvcMatchers("/
cl oudf oundryapplication/**").perm t Al () inyour configuration, as shown in the following
example:

@verride
protected void configure(HttpSecurity http) throws Exception {
http
. aut hori zeRequest s()
. mvcMat cher s("/ cl oudf oundr yappl i cation/**")
.permtAll()
. mvcMat chers("/ nmypath")
. hasAnyRol e(" SUPERUSER")
. anyRequest ()

2.0.0.RC1 Spring Boot 203

Spring Boot Reference Guide

.authenticated().and()
.httpBasic();
}

2.0.0.RC1 Spring Boot 204

Spring Boot Reference Guide

58. What to Read Next

If you want to explore some of the concepts discussed in this chapter, you can take a look at the actuator
sample applications. You also might want to read about graphing tools such as Graphite.

Otherwise, you can continue on, to read about ‘deployment options’ or jump ahead for some in-depth
information about Spring Boot's build tool plugins.

2.0.0.RC1 Spring Boot 205

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-samples
http://graphite.wikidot.com/

Part VI. Deploying
Spring Boot Applications

Spring Boot’s flexible packaging options provide a great deal of choice when it comes to deploying your
application. You can deploy Spring Boot applications to a variety of cloud platforms, to container images
(such as Docker), or to virtual/real machines.

This section covers some of the more common deployment scenarios.

Spring Boot Reference Guide

59. Deploying to the Cloud

Spring Boot’'s executable jars are ready-made for most popular cloud PaaS (Platform-as-a-Service)
providers. These providers tend to require that you “bring your own container”. They manage application
processes (not Java applications specifically), so they need an intermediary layer that adapts your
application to the cloud’s notion of a running process.

Two popular cloud providers, Heroku and Cloud Foundry, employ a “buildpack” approach. The buildpack
wraps your deployed code in whatever is needed to start your application. It might be a JDK and a
call to j ava, an embedded web server, or a full-fledged application server. A buildpack is pluggable,
but ideally you should be able to get by with as few customizations to it as possible. This reduces the
footprint of functionality that is not under your control. It minimizes divergence between development
and production environments.

Ideally, your application, like a Spring Boot executable jar, has everything that it needs to run packaged
within it.

In this section, we look at what it takes to get the simple application that we developed in the “Getting
Started” section up and running in the Cloud.

59.1 Cloud Foundry

Cloud Foundry provides default buildpacks that come into play if no other buildpack is specified. The
Cloud Foundry Java buildpack has excellent support for Spring applications, including Spring Boot. You
can deploy stand-alone executable jar applications as well as traditional . war packaged applications.

Once you have built your application (by using, for example, nvn cl ean package) and have installed
the cf _command line tool, deploy your application by using the cf push command, substituting the
path to your compiled . j ar . Be sure to have logged in with your cf command line client before pushing
an application. The following line shows using the cf push command to deploy an application:

$ cf push acl oudyspringtine -p target/denp-0.0.1- SNAPSHOT. j ar

Note

In the preceding example, we substitute acl oudyspri ngti me for whatever value you give cf
as the name of your application.

See the cf push documentation for more options. If there is a Cloud Foundry mani f est . yni file
present in the same directory, it is considered.

At this point, cf starts uploading your application, producing output similar to the following example:

Upl oadi ng acl oudyspringtine... OK
Preparing to start acloudyspringtine... OK
————— > Downl oaded app package (8.9M
————— > Java Bui |l dpack Version: v3.12 (offline) | https://github.conl cloudfoundry/java-
bui | dpack. gi t #6f 25b7e
----- > Downl oadi ng Open Jdk JRE 1.8.0_121 from https://java-buil dpack. cl oudf oundry. or g/ openj dk/ trusty/
x86_64/ openj dk-1.8.0_121.tar.gz (found in cache)
Expandi ng Open Jdk JRE to .java-buil dpack/open_jdk_jre (1.6s)
————— > Downl oadi ng Open JDK Li ke Menory Cal cul ator 2.0.2_RELEASE from https://java-
bui | dpack. cl oudf oundry. or g/ menory-cal cul at or/trusty/x86_64/ menory-cal cul ator-2.0.2_RELEASE. tar.gz (found
in cache)
Menory Settings: -Xss349K - Xmk681574K - XX: MaxMet aspaceSi ze=104857K - Xms681574K -
XX: Met aspaceSi ze=104857K

2.0.0.RC1 Spring Boot 207

https://github.com/cloudfoundry/java-buildpack
http://docs.cloudfoundry.org/devguide/installcf/install-go-cli.html
http://docs.cloudfoundry.org/devguide/installcf/install-go-cli.html
http://docs.cloudfoundry.org/devguide/installcf/whats-new-v6.html#login
http://docs.cloudfoundry.org/devguide/installcf/whats-new-v6.html#push
http://docs.cloudfoundry.org/devguide/deploy-apps/manifest.html

Spring Boot Reference Guide

————— > Downl oadi ng Container Certificate Trust Store 1.0.0_RELEASE from https://java-
bui | dpack. cl oudf oundry. org/ contai ner-certificate-trust-store/container-certificate-trust-
store-1.0.0_RELEASE. jar (found in cache)
Adding certificates to .java-buil dpack/container_certificate_trust_store/truststore.jks (0.6s)

————— > Downl oadi ng Spring Auto Reconfiguration 1.10.0_RELEASE from https://java-
bui | dpack. cl oudf oundry. or g/ aut o-reconfi gurati on/ auto-reconfigurati on-1.10. 0_RELEASE.jar (found in cache)
Checki ng status of app 'acloudyspringtine' ...

0 of 1 instances running (1 starting)

0 of 1 instances running (1 starting)
0 of 1 instances running (1 starting)
1 of 1 instances running (1 running)

App started

Congratulations! The application is now live!

Once your application is live, you can verify the status of the deployed application by using the cf apps
command, as shown in the following example:

$ cf apps

Getting applications in ...

(0.

name requested state i nstances nenory di sk urls

acl oudyspringtine started 1/1 512M 1G acl oudyspringtine. cfapps.io

Once Cloud Foundry acknowledges that your application has been deployed, you should be able
to find the application at the URI given. In the preceding example, you could find it at http://
acl oudyspringti ne. cfapps.io/.

Binding to Services

By default, metadata about the running application as well as service connection information is exposed
to the application as environment variables (for example: $VCAP_SERVI CES). This architecture decision
is due to Cloud Foundry’s polyglot (any language and platform can be supported as a buildpack) nature.
Process-scoped environment variables are language agnostic.

Environment variables do not always make for the easiest API, so Spring Boot automatically extracts
them and flattens the data into properties that can be accessed through Spring’'s Envi r onnent
abstraction, as shown in the following example:

@onponent
cl ass MyBean i npl ements Environnment Anare {

private String instanceld;
@verride
public void setEnvironment (Environment environnent) {

this.instanceld = environnent. getProperty("vcap. application.instance_id");

}

Il

All Cloud Foundry properties are prefixed with vcap. You can use vcap properties to access application
information (such as the public URL of the application) and service information (such as database
credentials). See the ‘CloudFoundryVcapEnvironmentPostProcessor’ Javadoc for complete details.

2.0.0.RC1 Spring Boot 208

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/cloud/CloudFoundryVcapEnvironmentPostProcessor.html

Spring Boot Reference Guide

Tip

The Spring Cloud Connectors project is a better fit for tasks such as configuring a DataSource.
Spring Boot includes auto-configuration support and a spring-boot-starter-cl oud-
connect or s starter.

59.2 Heroku

Heroku is another popular PaaS platform. To customize Heroku builds, you provide a Procfil e,
which provides the incantation required to deploy an application. Heroku assigns a port for the Java
application to use and then ensures that routing to the external URI works.

You must configure your application to listen on the correct port. The following example shows the
Procfi | e for our starter REST application:

web: java -Dserver.port=$PORT -jar target/denp-0.0.1- SNAPSHOT. j ar

Spring Boot makes - D arguments available as properties accessible from a Spring Envi r onnent
instance. The server. port configuration property is fed to the embedded Tomcat, Jetty, or Undertow
instance, which then uses the port when it starts up. The $PORT environment variable is assigned to
us by the Heroku PaaS.

This should be everything you need. The most common deployment workflow for Heroku deployments
istogit push the code to production, as shown in the following example:

$ git push heroku master

Initializing repository, done.

Counting objects: 95, done.

Del ta conpression using up to 8 threads.

Conpr essi ng obj ects: 100% (78/78), done.

Witing objects: 100% (95/95), 8.66 MB | 606.00 KiB/s, done.
Total 95 (delta 31), reused O (delta 0)

----- > Java app detected

----- > Installing OpenJDK 1.8... done

----- > Installing Maven 3.3.1... done

----- > Installing settings.xm ... done

----- > Executing: m/n -B -DskipTests=true clean install

[INFOQ Scanning for projects...
Downl oadi ng: http://repo.spring.iol...
Downl oaded: http://repo.spring.io/... (818 B at 1.8 KB/ sec)

Downl oaded: http://s3pository. heroku.conljvni... (152 KB at 595.3 KB/ sec)
[INFQ Installing /tnp/build_0c35a5d2-a067-4abc-a232-14b1f b7a8229/target/. ..
[INFO Installing /tnp/build_0c35a5d2-a067-4abc-a232-14b1f b7a8229/ pom xm ...

L RO I e LT T LT T
[INFO BU LD SUCCESS

I RO e
[INFO Total time: 59.358s

[INFO Finished at: Fri Mar 07 07:28:25 UTC 2014

[INFO Final Menory: 20M 493M

L RO I e LT T LT T

----- > Di scovering process types
Procfile declares types -> web

————— > Conpressing... done, 70.4MB
————— > Launching... done, v6
http://agil e-sierra-1405. her okuapp. com depl oyed to Heroku

To git @eroku.com agil e-sierra-1405.git

2.0.0.RC1 Spring Boot 209

http://cloud.spring.io/spring-cloud-connectors/

Spring Boot Reference Guide

* [new branch] master -> master

Your application should now be up and running on Heroku.

59.3 OpenShift

OpenShift is the Red Hat public (and enterprise) extension of the Kubernetes container orchestration
platform. Similarly to Kubernetes, OpenShift has many options for installing Spring Boot based
applications.

OpenShift has many resources describing how to deploy Spring Boot applications, including:

Using the S2I builder

Architecture guide

* Running as a traditional web application on Wildfly

OpenShift Commons Briefing

59.4 Amazon Web Services (AWS)

Amazon Web Services offers multiple ways to install Spring Boot-based applications, either as traditional
web applications (war) or as executable jar files with an embedded web server. The options include:

AWS Elastic Beanstalk

AWS Code Deploy

AWS OPS Works

AWS Cloud Formation

AWS Container Registry

Each has different features and pricing models. In this document, we describe only the simplest option:
AWS Elastic Beanstalk.

AWS Elastic Beanstalk

As described in the official Elastic Beanstalk Java guide, there are two main options to deploy a Java
application. You can either use the “Tomcat Platform” or the “Java SE platform”.

Using the Tomcat Platform

This option applies to Spring Boot projects that produce a war file. No special configuration is required.
You need only follow the official guide.

Using the Java SE Platform

This option applies to Spring Boot projects that produce a jar file and run an embedded web container.
Elastic Beanstalk environments run an nginx instance on port 80 to proxy the actual application, running
on port 5000. To configure it, add the following line to your appl i cati on. properti es file:

2.0.0.RC1 Spring Boot 210

https://www.openshift.com/
https://blog.openshift.com/using-openshift-enterprise-grade-spring-boot-deployments/
https://access.redhat.com/documentation/en-us/reference_architectures/2017/html-single/spring_boot_microservices_on_red_hat_openshift_container_platform_3/
https://blog.openshift.com/using-spring-boot-on-openshift/
https://blog.openshift.com/openshift-commons-briefing-96-cloud-native-applications-spring-rhoar/
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_Java.html

Spring Boot Reference Guide

server. port=5000

Upload binaries instead of sources

By default, Elastic Beanstalk uploads sources and compiles them in AWS. However, it is
best to upload the binaries instead. To do so, add lines similar to the following to your
. el asti cbeanstal k/ config.ym file:

depl oy:
artifact: target/denp-0.0.1- SNAPSHOT. j ar

Reduce costs by setting the environment type

By default an Elastic Beanstalk environment is load balanced. The load balancer has a significant
cost. To avoid that cost, set the environment type to “Single instance”, as described in the Amazon
documentation. You can also create single instance environments by using the CLI and the
following command:

eb create -s

Summary

This is one of the easiest ways to get to AWS, but there are more things to cover, such as how to integrate
Elastic Beanstalk into any CI / CD tool, use the Elastic Beanstalk Maven plugin instead of the CLI,
and others. There is a exampledriven.wordpress.com/2017/01/09/spring-boot-aws-elastic-beanstalk-
example/ [blog post] covering these topics more in detail.

59.5 Boxfuse and Amazon Web Services

Boxfuse works by turning your Spring Boot executable jar or war into a minimal VM image that can be
deployed unchanged either on VirtualBox or on AWS. Boxfuse comes with deep integration for Spring
Boot and uses the information from your Spring Boot configuration file to automatically configure ports
and health check URLs. Boxfuse leverages this information both for the images it produces as well as
for all the resources it provisions (instances, security groups, elastic load balancers, and so on).

Once you have created a Boxfuse account, connected it to your AWS account, installed the latest version
of the Boxfuse Client, and ensured that the application has been built by Maven or Gradle (by using, for
example, mvn cl ean package), you can deploy your Spring Boot application to AWS with a command
similar to the following:

$ boxfuse run nyapp-1.0.jar -env=prod

See the boxf use run documentation for more options. If there is a boxfuse.com/docs/commandline/
#configuration [boxf use. conf] file present in the current directory, it is considered.

Tip

By default, Boxfuse activates a Spring profile named boxf use on startup. If your executable jar
or war contains an boxfuse.com/docs/payloads/springboot.html#configuration [appl i cati on-
boxf use. properti es] file, Boxfuse bases its configuration on the properties it contains.

At this point, boxf use creates an image for your application, uploads it, and configures and starts the
necessary resources on AWS, resulting in output similar to the following example:

2.0.0.RC1 Spring Boot 211

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-create-wizard.html#environments-create-wizard-capacity
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-create-wizard.html#environments-create-wizard-capacity
https://exampledriven.wordpress.com/2017/01/09/spring-boot-aws-elastic-beanstalk-example/
https://exampledriven.wordpress.com/2017/01/09/spring-boot-aws-elastic-beanstalk-example/
https://boxfuse.com/
https://console.boxfuse.com
https://boxfuse.com/docs/commandline/run.html
https://boxfuse.com/docs/commandline/#configuration
https://boxfuse.com/docs/commandline/#configuration
https://boxfuse.com/docs/payloads/springboot.html#configuration

Spring Boot Reference Guide

Fusing I mage for nyapp-1.0.jar ...

I mage fused in 00:06.838s (53937 K) -> axel fontaine/nyapp: 1.0

Creating axel fontaine/ nyapp ...

Pushi ng axel font ai ne/ nyapp: 1.0 ...

Veri fying axel fontai ne/ nyapp: 1.0 ...

Creating Elastic IP ...

Mappi ng nmyapp- axel f ont ai ne. boxfuse.io to 52.28.233.167 ...

Waiting for AWs to create an AM for axel fontaine/nyapp:1.0 in eu-central-1 (this nay take up to 50
seconds) ...

AM created in 00:23.557s -> am -d23f 38cf

Creating security group boxfuse-sg_axel fontaine/ nyapp:1.0 ...

Launching t2. mcro instance of axel fontaine/nyapp:1.0 (am -d23f38cf) in eu-central-1 ...

I nstance | aunched in 00: 30.306s -> i-92ef9f53

Waiting for ANS to boot Instance i-92ef9f53 and Payload to start at http://52.28.235.61/
Payl oad started in 00:29.266s -> http://52.28.235.61/

Remappi ng El astic | P 52.28.233.167 to i-92ef9f53 ...

Waiting 15s for AWS to conplete Elastic IP Zero Downtinme transition ...

Depl oynent conpl et ed successful ly. axel fontaine/nyapp:1.0 is up and running at http://nyapp-

axel f ont ai ne. boxf use. i o/

Your application should now be up and running on AWS.

See the blog post on deploying Spring Boot apps on EC2 as well as the documentation for the Boxfuse
Spring Boot integration to get started with a Maven build to run the app.

59.6 Google Cloud

Google Cloud has several options that can be used to launch Spring Boot applications. The easiest to
get started with is probably App Engine, but you could also find ways to run Spring Boot in a container
with Container Engine or on a virtual machine with Compute Engine.

To run in App Engine, you can create a project in the Ul first, which sets up a unique identifier for you
and also sets up HTTP routes. Add a Java app to the project and leave it empty and then use the Google
Cloud SDK to push your Spring Boot app into that slot from the command line or CI build.

App Engine needs you to create an app. yani file to describe the resources your app requires. Normally,
you put this file in sr ¢/ mai n/ appengi ne, and it should resemble the following file:

service: default

runtine: java
env: flex

runtine_config:
j dk: openj dk8

handl ers:
-ourl: /0%
script: this field is required, but ignored

manual _scal i ng:
i nstances: 1

heal t h_check:
enabl e_heal t h_check: Fal se

env_vari abl es:
ENCRYPT_KEY: your _encryption_key_here

You can deploy the app (for example, with a Maven plugin) by adding the project ID to the build
configuration, as shown in the following example:

<pl ugi n>

2.0.0.RC1 Spring Boot 212

https://boxfuse.com/blog/spring-boot-ec2.html
https://boxfuse.com/docs/payloads/springboot.html
https://boxfuse.com/docs/payloads/springboot.html
https://cloud.google.com/sdk/downloads
https://cloud.google.com/sdk/downloads

Spring Boot Reference Guide

<gr oupl d>com googl e. cl oud. t ool s</ gr oupl d>
<artifact|d>appengi ne- maven- pl ugi n</artifact!|d>
<versi on>1. 3. 0</ ver si on>
<configuration>
<pr oj ect >mypr oj ect </ pr oj ect >
</ configuration>
</ pl ugi n>

Then deploy with nvn appengi ne: depl oy (if you need to authenticate first, the build fails).

Note

Google App Engine Classic is tied to the Servlet 2.5 API, so you cannot deploy a Spring Application
there without some modifications. See the Servlet 2.5 section of this guide.

2.0.0.RC1 Spring Boot 213

Spring Boot Reference Guide

60. Installing Spring Boot Applications

In additional to running Spring Boot applications by using j ava -j ar, it is also possible to make
fully executable applications for Unix systems. A fully executable jar can be executed like any other
executable binary or it can be registered with i ni t. d or syst end. This makes it very easy to install
and manage Spring Boot applications in common production environments.

Caution

Fully executable jars work by embedding an extra script at the front of the file. Currently, some tools
do not accept this format, so you may not always be able to use this technique. For example, j ar
- xf may silently fail to extract a jar or war that has been made fully executable. It is recommended
that you make your jar or war fully executable only if you intend to execute it directly, rather than
running it with j ava -j ar or deploying it to a servlet container.

To create a ‘fully executable’ jar with Maven, use the following plugin configuration:

<pl ugi n>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifact!|d>spring-boot-maven-plugin</artifactld>

<configuration>
<execut abl e>t rue</ execut abl e>
</ confi guration>

</ pl ugi n>

The following example shows the equivalent Gradle configuration:

boot Jar {
I aunchScri pt ()
}

You can then run your application by typing . / my- appl i cati on.jar (where my-applicationis
the name of your artifact). The directory containing the jar is used as your application’s working directory.

60.1 Supported Operating Systems

The default script supports most Linux distributions and is tested on CentOS and Ubuntu. Other
platforms, such as OS X and FreeBSD, require the use of a custom enbeddedLaunchScri pt .

60.2 Unix/Linux Services

Spring Boot application can be easily started as Unix/Linux services by using either init.d or
syst end.

Installation as ani ni t. d Service (System V)

If you configured Spring Boot's Maven or Gradle plugin to generate a fully executable jar, and you do not
use a custom enbeddedLaunchScri pt, your application can be used as ani ni t. d service. To do
so, symlinkthejartoi ni t . d to support the standard st art, st op,rest art,and st at us commands.

The script supports the following features:
 Starts the services as the user that owns the jar file

» Tracks the application’s PID by using / var / r un/ <appname>/ <appnane>. pi d

2.0.0.RC1 Spring Boot 214

Spring Boot Reference Guide

» Writes console logs to / var / | og/ <appnanme>. | og

Assuming that you have a Spring Boot application installed in / var / myapp, to install a Spring Boot
application as an i ni t . d service, create a symlink, as follows:

‘$ sudo I n -s /var/nyapp/ nyapp.jar /etc/init.d/ nyapp

Once installed, you can start and stop the service in the usual way. For example, on a Debian-based
system, you could start it with the following command:

‘SB service nyapp start
Tip
If your application fails to start, check the log file writtento / var / | og/ <appnane>. | og for errors.

You can also flag the application to start automatically by using your standard operating system tools.
For example, on Debian, you could use the following command:

$ update-rc.d nyapp defaults <priority>

Securing aninit.d Service

Note

The following is a set of guidelines on how to secure a Spring Boot application that runs as an
init.d service. It is not intended to be an exhaustive list of everything that should be done to harden
an application and the environment in which it runs.

When executed as root, as is the case when root is being used to start an init.d service, the default
executable script runs the application as the user who owns the jar file. You should never run a Spring
Boot application as r oot , so your application’s jar file should never be owned by root. Instead, create
a specific user to run your application and use chown to make it the owner of the jar file, as shown in
the following example:

$ chown boot app: boot app your-app.j ar

In this case, the default executable script runs the application as the boot app user.

Tip

To reduce the chances of the application’s user account being compromised, you should consider
preventing it from using a login shell. For example, you can set the account’s shell to / usr/
sbi n/ nol ogi n.

You should also take steps to prevent the modification of your application’s jar file. Firstly, configure
its permissions so that it cannot be written and can only be read or executed by its owner, as shown
in the following example:

$ chnod 500 your-app. j ar

Second, you should also take steps to limit the damage if your application or the account that's running
it is compromised. If an attacker does gain access, they could make the jar file writable and change its

2.0.0.RC1 Spring Boot 215

Spring Boot Reference Guide

contents. One way to protect against this is to make it immutable by using chat t r, as shown in the
following example:

$ sudo chattr +i your-app.jar

This will prevent any user, including root, from modifying the jar.

If root is used to control the application’s service and you use a . conf file to customize its startup,
the . conf file is read and evaluated by the root user. It should be secured accordingly. Use chnod
so that the file can only be read by the owner and use chown to make root the owner, as shown in
the following example:

$ chnod 400 your - app. conf
$ sudo chown root:root your-app. conf

Installation as a syst end Service

syst end is the successor of the System V init system and is now being used by many modern Linux
distributions. Although you can continue to use i ni t. d scripts with syst end, it is also possible to
launch Spring Boot applications by using syst end ‘service’ scripts.

Assuming that you have a Spring Boot application installed in / var / myapp, to install a Spring Boot
application as a syst end service, create a script named myapp. servi ce and place it in / etc/
syst end/ syst emdirectory. The following script offers an example:

[Unit]
Descri pti on=nyapp
Af ter =sysl og. t ar get

[Servi ce]

User =nyapp

ExecSt art =/ var / myapp/ nyapp. j ar
SuccessExi t St at us=143

[Install]
Want edBy=nul ti - user. t ar get

Important

Remember to change the Descri pti on, User, and ExecSt art fields for your application.

Note

The ExecSt art field does not declare the script action command, which means that the r un
command is used by default.

Note that, unlike when running as an i ni t. d service, the user that runs the application, the PID file,
and the console log file are managed by syst end itself and therefore must be configured by using
appropriate fields in the ‘service’ script. Consult the service unit configuration man page for more details.

To flag the application to start automatically on system boot, use the following command:

$ systenct!| enabl e nyapp.service

Refer to man systenct!| for more details.

2.0.0.RC1 Spring Boot 216

http://www.freedesktop.org/software/systemd/man/systemd.service.html

Spring Boot Reference Guide

Customizing the Startup Script

The default embedded startup script written by the Maven or Gradle plugin can be customized
in a number of ways. For most people, using the default script along with a few customizations
is usually enough. If you find you cannot customize something that you need to, use the
enbeddedLaunchScri pt option to write your own file entirely.

Customizing the Start Script when It Is Written

It often makes sense to customize elements of the start script as it is written into the jar file. For example,
init.d scripts can provide a “description”. Since you know the description up front (and it need not
change), you may as well provide it when the jar is generated.

To customize written elements, use the enbeddedLaunchScri pt Properti es option of the Spring
Boot Maven or Gradle plugins.

The following property substitutions are supported with the default script:

Name
node

i nitlnfoPr

Description

The script mode. Defaults to aut o.

Gradle and to ${ proj ect . arti fact | d} for Maven.

oVihel®s ovi des section of “INIT INFO”. Defaults to spri ng- boot - appl i cati on for

ni t1 nf oRe

ni tl nfoRe

qUhe Bd§uar ed- St art section of “INIT INFO”. Defaults to $r et e_fs $sysl og
$net wor k.

gUihe 8d§uoped- St op section of “INIT INFO”. Defaults to $renpte_fs $sysl og
$net wor k.

ni tl nfobDe

fAlod O8f aut t - St art section of “INIT INFO”. Defaultsto2 3 4 5.

ni t 1 nfoDe

f Blue DBf apl t - St op section of “INIT INFO”. Defaultsto 0 1 6.

ni t I nf oSh

ni t I nfoDe

initlnfoCh
conf Fol der

i nl i nedCon

ofthéSkort pDesari pti on section of “INIT INFO”. Defaults to Spri ng Boot
Appl i cati on for Gradle and to ${ pr oj ect . nane} for Maven.

Sstihe pesoni pti on section of “INIT INFO”. Defaults to Spri ng Boot
Appl i cati on for Gradle and to ${ pr oj ect . descri pti on} (falling back to
${ proj ect. nane}) for Maven.

Ktlomthgconfi g section of “INIT INFO”. Defaults to 2345 99 01.
The default value for CONF_FOLDER. Defaults to the folder containing the jar.

f Befar@nce to a file script that should be inlined in the default launch script. This can
be used to set environmental variables such as JAVA_OPTS before any external
config files are loaded.

| ogFol der

The default value for LOG_FOLDER. Only valid for ani ni t . d service.

| ogFi | enaneThe default value for LOG_FI LENAME. Only valid forani ni t . d service.

pi dFol der

pi dFi | enam

The default value for PI D_FCOLDER. Only valid for ani ni t . d service.

eThe default value for the name of the PID file in PI D_FOLDER. Only valid for an
i nit.d service.

2.0.0.RC1

Spring Boot

217

Spring Boot Reference Guide

Name

useStart St

Description

oybe#morihe st ar t - st op- daenon command, when it's available, should be used to
control the process. Defaults to t r ue.

st opWi t Ti

nEhe default value for STOP_WAI T_TI ME. Only valid for ani ni t . d service. Defaults
to 60 seconds.

Customizing a Script When It Runs

For items of the script that need to be customized after the jar has been written, you can use environment
variables or a config file.

The following environment properties are supported with the default script:

Variable Description
MODE The “mode” of operation. The default depends on the way the jar was built but
is usually aut o (meaning it tries to guess if it is an init script by checking if it is a
symlink in a directory called i ni t . d). You can explicitly set it to ser vi ce so that the
stop| start|status|restart commands work or to r un if you want to run the
script in the foreground.
USE_START_ShORtHEMONT ar t - st op- daenon command, when it's available, should be used to
control the process. Defaults to t r ue.
Pl D_FOLDER The root name of the pid folder (/ var / r un by default).
LOG _FOLDER The name of the folder in which to put log files (/ var / | og by default).
CONF_FOLDERThe name of the folder from which to read .conf files (same folder as jar-file by
default).
LOG_FI LENANVEhe name of the log file in the LOG_FCOLDER (<appnane>. | og by default).
APP_NAME | The name of the app. If the jar is run from a symlink, the script guesses the app
name. If it is not a symlink or you want to explicitly set the app name, this can be
useful.
RUN_ARGS | The arguments to pass to the program (the Spring Boot app).
JAVA HOME | The location of the j ava executable is discovered by using the PATH by default, but
you can set it explicitly if there is an executable file at $JAVA HOVE/ bi n/ j ava.
JAVA_OPTS | Options that are passed to the JVM when it is launched.
JARFI LE The explicit location of the jar file, in case the script is being used to launch a jar that
it is not actually embedded.
DEBUG If not empty, sets the - x flag on the shell process, making it easy to see the logic in
the script.
STOP_WAI T_[TThEtime in seconds to wait when stopping the application before forcing a shutdown
(60 by default).
2.0.0.RC1 Spring Boot 218

Spring Boot Reference Guide

Note

The PI D_FOLDER, LOG_FOLDER, and LOG_FI LENANME variables are only valid foraninit.d
service. For syst end, the equivalent customizations are made by using the ‘service’ script. See
the service unit configuration man page for more details.

With the exception of JARFI LE and APP_NANME, the settings listed in the preceding section can be
configured by using a . conf file. The file is expected to be next to the jar file and have the same name
but suffixed with . conf rather than . j ar. For example, a jar named / var / nyapp/ nyapp. j ar uses
the configuration file named / var / myapp/ nyapp. conf , as shown in the following example:

myapp.conf.

JAVA_OPTS=- Xmk1024M
LOG_FOLDER=/ cust oni | og/ f ol der

Tip

If you do not like having the config file next to the jar file, you can set a CONF_FOLDER environment
variable to customize the location of the config file.

To learn about securing this file appropriately, see the guidelines for securing an init.d service.

60.3 Microsoft Windows Services

A Spring Boot application can be started as a Windows service by using wi nsw.

A (separately maintained sample) describes step-by-step how you can create a Windows service for
your Spring Boot application.

2.0.0.RC1 Spring Boot 219

http://www.freedesktop.org/software/systemd/man/systemd.service.html
https://github.com/kohsuke/winsw
https://github.com/snicoll-scratches/spring-boot-daemon

Spring Boot Reference Guide

61. What to Read Next

Check out the Cloud Foundry, Heroku, OpenShift, and Boxfuse web sites for more information about
the kinds of features that a PaaS can offer. These are just four of the most popular Java PaaS providers.
Since Spring Boot is so amenable to cloud-based deployment, you can freely consider other providers
as well.

The next section goes on to cover the Spring Boot CLI, or you can jump ahead to read about build
tool plugins.

2.0.0.RC1 Spring Boot 220

http://www.cloudfoundry.com/
https://www.heroku.com/
https://www.openshift.com
https://boxfuse.com

Part VII. Spring Boot CLI

The Spring Boot CLI is a command line tool that you can use if you want to quickly develop a Spring
application. It lets you run Groovy scripts, which means that you have a familiar Java-like syntax without
so much boilerplate code. You can also bootstrap a new project or write your own command for it.

Spring Boot Reference Guide

62. Installing the CLI

The Spring Boot CLI (Command-Line Interface) can be installed manually by using SDKMAN! (the SDK
Manager) or by using Homebrew or MacPorts if you are an OSX user. See Section 10.2, “Installing the
Spring Boot CLI" in the “Getting started” section for comprehensive installation instructions.

2.0.0.RC1 Spring Boot 222

Spring Boot Reference Guide

63. Using the CLI

Once you have installed the CLI, you can run it by typing spri ng and pressing Enter at the command
line. If you run spri ng without any arguments, a simple help screen is displayed, as follows:

$ spring
usage: spring [--help] [--version]
<conmand> [<ar gs>]

Avai | abl e commands are:

run [options] <files> [--] [args]
Run a spring groovy script

nore command hel p is shown here

You can type spri ng hel p to get more details about any of the supported commands, as shown in
the following example:

$ spring help run
spring run - Run a spring groovy script

usage:
--aut oconfi gure [Bool ean]

--cl asspat h,
-e, --edit

-cp

--no- guess- dependenci es
--no- guess-inports

-g, --quiet
-v, --verbose
--wat ch

spring run [options] <files> [--]

[args]

Description

Add aut oconfigure conpiler
transformations (default:

Addi tional classpath entries

QOpen the file with the default system
editor

Do not attenpt to guess dependencies

Do not attenpt to guess inports

Qui et | oggi ng

Ver bose | oggi ng of dependency
resol ution

Watch the specified file for changes

true)

The ver si on command provides a quick way to check which version of Spring Boot you are using,

as follows:

$ spring version
Spring CLI v2.0.0.RC1

63.1 Running Applications with the CLI

You can compile and run Groovy source code by using the r un command. The Spring Boot CLI is
completely self-contained, so you do not need any external Groovy installation.

The following example shows a “hello world” web application written in Groovy:

hello.groovy.

@Rest Control | er
cl ass WebApplication {

@Request Mappi ng("/")
String home() {
"Hello World!"

}

2.0.0.RC1

Spring Boot 223

Spring Boot Reference Guide

To compile and run the application, type the following command:

‘SB spring run hello.groovy

To pass command-line arguments to the application, use - - to separate the commands from the “spring”
command arguments, as shown in the following example:

‘$ spring run hello.groovy -- --server.port=9000

To set JVM command line arguments, you can use the JAVA OPTS environment variable, as shown
in the following example:

‘ $ JAVA_OPTS=- Xnx1024m spring run hel |l o. groovy

Note

When setting JAVA_OPTS on Microsoft Windows, make sure to quote the entire instruction, such
as set "JAVA OPTS=- Xns256m - Xnmx2048n1. Doing so ensures the values are properly
passed to the process.

Deduced “grab” Dependencies

Standard Groovy includes a @x ab annotation, which lets you declare dependencies on third-party
libraries. This useful technique lets Groovy download jars in the same way as Maven or Gradle would
but without requiring you to use a build tool.

Spring Boot extends this technique further and tries to deduce which libraries to “grab” based on your
code. For example, since the WebAppl i cati on code shown previously uses @Rest Control | er
annotations, Spring Boot grabs "Tomcat" and "Spring MVC".

The following items are used as “grab hints”:

Items Grabs
JdbcTenpl at e, JDBC Application.
NamedPar anet er JdbcTenpl at e,

Dat aSour ce

@knabl eJns JMS Application.
@knabl eCachi ng Caching abstraction.
@est JUnit.

@nabl eRabbi t RabbitMQ.
@nabl eReact or Project Reactor.
extends Speci fication Spock test.
@nabl eBat chProcessi ng Spring Batch.

@/kssageEndpoi nt @nabl el ntegration Spring Integration.

@ontrol | er @RestControll er Spring MVC + Embedded Tomcat.
@nabl eWebM/c

2.0.0.RC1 Spring Boot 224

Spring Boot Reference Guide

ltems Grabs

@nabl eWebSecurity Spring Security.

@knabl eTr ansact i onManagenent Spring Transaction Management.
Tip

See subclasses of Conpi | er Aut oConfi gurati on in the Spring Boot CLI source code to
understand exactly how customizations are applied.

Deduced “grab” Coordinates

Spring Boot extends Groovy's standard @ ab support by letting you specify a dependency without
a group or version (for example, @x ab(' f r eemar ker')). Doing so consults Spring Boot's default
dependency metadata to deduce the artifact's group and version.

Note

The default metadata is tied to the version of the CLI that you use. it changes only when you move
to a new version of the CLI, putting you in control of when the versions of your dependencies
may change. A table showing the dependencies and their versions that are included in the default
metadata can be found in the appendix.

Default Import Statements

To help reduce the size of your Groovy code, several i nmport statements are automatically
included. Notice how the preceding example refers to @onponent, @est Controller, and
@Request Mappi ng without needing to use fully-qualified names or i nport statements.

Tip
Many Spring annotations work without using i nport statements. Try running your application to

see what fails before adding imports.

Automatic Main Method

Unlike the equivalent Java application, you do not need to include a public static void
mai n(String[] args) method with your Gr oovy scripts. A Spri ngAppl i cat i on is automatically
created, with your compiled code acting as the sour ce.

Custom Dependency Management

By default, the CLI uses the dependency management declared in spri ng- boot - dependenci es
when resolving @ ab dependencies. Additional dependency management, which overrides the default
dependency management, can be configured by using the @ependencyManagenment Bomannotation.
The annotation’s value should specify the coordinates (gr oupl d: arti fact | d: ver si on) of one or
more Maven BOMs.

For example, consider the following declaration:

@ependencyManagenent Bon{ " com exanpl e. cust om bom 1. 0. 0")

2.0.0.RC1 Spring Boot 225

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-cli/src/main/java/org/springframework/boot/cli/compiler/CompilerAutoConfiguration.java

Spring Boot Reference Guide

The preceding declaration picks up cust om bom 1. 0. 0. pomin a Maven repository under conf
exanpl e/ cust om versions/1.0.0/.

When you specify multiple BOMs, they are applied in the order in which you declare them, as shown
in the following example:

@ependencyManagenent Bon(["com exanpl e. cust om bom 1. 0. 0",
"com exanpl e. anot her-bom 1. 0. 0"])

The preceding example indicates that the dependency management in anot her - bomoverrides the
dependency management in cust om bom

You can use @ependencyManagemnment Bomanywhere that you can use @ ab. However, to ensure
consistent ordering of the dependency management, you can use @ependencyManagenent Bomat
most once in your application. A useful source of dependency management (which is a superset of
Spring Boot’s dependency management) is the Spring 10 Platform, which you might include with the
following line:

‘ @ependencyManagenent Bon(' i 0. spri ng. pl at form pl at f orm bom 1. 1. 2. RELEASE')

63.2 Applications with Multiple Source Files

You can use “shell globbing” with all commands that accept file input. Doing so lets you use multiple
files from a single directory, as shown in the following example:

‘$ spring run *.groovy

63.3 Packaging Your Application

You can use the j ar command to package your application into a self-contained executable jar file, as
shown in the following example:

‘$ spring jar ny-app.jar *.groovy

The resulting jar contains the classes produced by compiling the application and all of the application’s
dependencies so that it can then be run by using j ava -j ar. The jar file also contains entries from
the application’s classpath. You can add and remove explicit paths to the jar by using - - i ncl ude and
- - excl ude. Both are comma-separated, and both accept prefixes, in the form of “+” and “-", to signify
that they should be removed from the defaults. The default includes are as follows:

public/**, resources/**, static/**, tenplates/**, META-INF/ **, *

The default excludes are as follows:

.*, repository/**, build/**, target/**, **/*_ jar, **/*. groovy
Type spring hel p jar onthe command line for more information.

63.4 Initialize a New Project

The i ni t command lets you create a new project by using start.spring.io without leaving the shell, as
shown in the following example:

$ spring init --dependenci es=web, data-j pa my- proj ect
Using service at https://start.spring.io
Project extracted to '/Users/devel oper/exanpl e/ ny-project’

2.0.0.RC1 Spring Boot 226

http://platform.spring.io/
https://start.spring.io

Spring Boot Reference Guide

The preceding example creates a my- proj ect directory with a Maven-based project that uses
spring-boot -starter-webandspring-boot-starter-data-jpa. You can list the capabilities
of the service by using the - - | i st flag, as shown in the following example:

$ spring init --1ist

Capabilities of https://start.spring.io

Avai | abl e dependenci es:

actuator - Actuator: Production ready features to help you nonitor and manage your application

web - Web: Support for full-stack web devel opnent, including Tontat and spring-webmvc
websocket - Websocket: Support for WebSocket devel opnent
ws - WS: Support for Spring Wb Services

Avai |l abl e project types:

gradle-build - Gadle Config [format:build, build:gradle]

gradle-project - Gadle Project [format: project, build:gradle]
maven-build - Maven POM [format: build, build: maven]
maven- project - Maven Project [format:project, build: maven] (default)

The i ni t command supports many options. See the hel p output for more details. For instance, the
following command creates a Gradle project that uses Java 8 and war packaging:

$ spring init --build=gradle --java-version=1.8 --dependenci es=websocket --packagi ng=war sanpl e-app. zi p
Using service at https://start.spring.io
Content saved to 'sanpl e-app. zi p'

63.5 Using the Embedded Shell

Spring Boot includes command-line completion scripts for the BASH and zsh shells. If you do not use
either of these shells (perhaps you are a Windows user), you can use the shel | command to launch
an integrated shell, as shown in the following example:

$ spring shell
Spring Boot (v2.0.0.RCl)
Ht TAB to conplete. Type \'help' and hit RETURN for help, and \'exit' to quit.

From inside the embedded shell, you can run other commands directly:

$ version
Spring CLI v2.0.0.RC1

The embedded shell supports ANSI color output as well as t ab completion. If you need to run a native
command, you can use the ! prefix. To exit the embedded shell, pressctrl - c.

63.6 Adding Extensions to the CLI

You can add extensions to the CLI by using the i nstal | command. The command takes one or
more sets of artifact coordinates in the format gr oup: arti f act : ver si on, as shown in the following
example:

$ spring install com exanpl e: spring-boot-cli-extension: 1. 0.0. RELEASE

In addition to installing the artifacts identified by the coordinates you supply, all of the artifacts'
dependencies are also installed.

2.0.0.RC1 Spring Boot 227

Spring Boot Reference Guide

To uninstall a dependency, use the uni nst al I command. As with the i nst al | command, it takes
one or more sets of artifact coordinates in the format of gr oup: arti f act : ver si on, as shown in the
following example:

$ spring uninstall com exanpl e:spring-boot-cli-extension:1.0.0. RELEASE

It uninstalls the artifacts identified by the coordinates you supply and their dependencies.

To uninstall all additional dependencies, you can use the --al | option, as shown in the following
example:

$ spring uninstall --all

2.0.0.RC1 Spring Boot 228

Spring Boot Reference Guide

64. Developing Applications with the Groovy Beans
DSL

Spring Framework 4.0 has native support for a beans{} “DSL” (borrowed from Grails), and you can
embed bean definitions in your Groovy application scripts by using the same format. This is sometimes a
good way to include external features like middleware declarations, as shown in the following example:

@onfiguration
class Application inplenments CommandLi neRunner {

@\ut owi r ed
Shar edSer vi ce service

@verride
void run(String... args) {
println service. message

}
}
i nport ny.conpany. SharedServi ce
beans {

servi ce(SharedServi ce) {
nmessage = "Hello World"

}

}

You can mix class declarations with beans{} in the same file as long as they stay at the top level, or,
if you prefer, you can put the beans DSL in a separate file.

2.0.0.RC1 Spring Boot 229

http://grails.org/

Spring Boot Reference Guide

65. Configuring the CLI with setti ngs. xm

The Spring Boot CLI uses Aether, Maven’s dependency resolution engine, to resolve dependencies.
The CLI makes use of the Maven configuration found in ~/ . n2/ set ti ngs. xm to configure Aether.
The following configuration settings are honored by the CLI:

» Offline

» Mirrors

» Servers

» Proxies

» Profiles
 Activation

* Repositories

Active profiles

See Maven'’s settings documentation for further information.

2.0.0.RC1 Spring Boot 230

https://maven.apache.org/settings.html

Spring Boot Reference Guide

66. What to Read Next

There are some sample groovy scripts available from the GitHub repository that you can use to try out
the Spring Boot CLI. There is also extensive Javadoc throughout the source code.

If you find that you reach the limit of the CLI tool, you probably want to look at converting your application
to a full Gradle or Maven built “Groovy project”. The next section covers Spring Boot's "Build tool plugins",
which you can use with Gradle or Maven.

2.0.0.RC1 Spring Boot 231

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-cli/samples
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-cli/src/main/java/org/springframework/boot/cli

Part VIII. Build tool plugins

Spring Boot provides build tool plugins for Maven and Gradle. The plugins offer a variety of features,
including the packaging of executable jars. This section provides more details on both plugins as well
as some help should you need to extend an unsupported build system. If you are just getting started,
you might want to read “Chapter 13, Build Systems” from the “Part Ill, “Using Spring Boot™ section first.

Spring Boot Reference Guide

67. Spring Boot Maven Plugin

The Spring Boot Maven Plugin provides Spring Boot support in Maven, letting you package executable
jar or war archives and run an application “in-place”. To use it, you must use Maven 3.2 (or later).

Note

See the Spring Boot Maven Plugin Site for complete plugin documentation.

67.1 Including the Plugin

To use the Spring Boot Maven Plugin, include the appropriate XML in the pl ugi ns section of your
pom xnl , as shown in the following example:

<?xm version="1.0" encodi ng="UTF-8"?>
<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xml ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocati on="http://maven. apache. org/ POM 4. 0.0 http:// maven. apache. or g/ xsd/ maven-4. 0. 0. xsd" >
<nmodel Ver si on>4. 0. 0</ nodel Ver si on>
<l-- ... -->
<bui | d>
<pl ugi ns>
<pl ugi n>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifact|d>spring-boot-mven-plugin</artifactld>
<versi on>2. 0. 0. RC1</ ver si on>
<executions>
<execution>
<goal s>
<goal >r epackage</ goal >
</ goal s>
</ executi on>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ proj ect >

The preceding configuration repackages a jar or war that is built during the package phase of the
Maven lifecycle. The following example shows both the repackaged jar as well as the original jar in the
t ar get directory:

$ nvn package
$ |Is target/*.jar
target/nyproject-1.0.0.jar target/nyproject-1.0.0.jar.origina

If you do not include the <execut i on/ > configuration, as shown in the prior example, you can run the
plugin on its own (but only if the package goal is used as well), as shown in the following example:

$ nvn package spring-boot:repackage
$ |s target/*.jar
target/ myproject-1.0.0.jar target/nyproject-1.0.0.jar.original

If you use a milestone or snapshot release, you also need to add the appropriate pl ugi nReposi tory
elements, as shown in the following listing:

<pl ugi nReposi tori es>
<pl ugi nReposi t ory>
<i d>spring- snapshot s</i d>
<url >http://repo.spring.iol/snapshot</url >
</ pl ugi nReposi tory>
<pl ugi nReposi t ory>

2.0.0.RC1 Spring Boot 233

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/maven-plugin
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/maven-plugin

Spring Boot Reference Guide

<i d>spring-m|estones</id>
<url>http://repo.spring.io/mlestone</url>
</ pl ugi nReposi tory>
</ pl ugi nReposi tori es>

67.2 Packaging Executable Jar and War Files

Once spri ng- boot - maven- pl ugi n has been included in your pom xmi , it automatically tries to
rewrite archives to make them executable by using the spri ng- boot : r epackage goal. You should
configure your project to build a jar or war (as appropriate) by using the usual packagi ng element, as
shown in the following example:

<?xm version="1.0" encodi ng="UTF-8"?>
<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xml ns: xsi ="htt p: // ww. w3. or g/ 2001/ XM_Schenma- i nst ance"
xsi : schemaLocati on="http://maven. apache. org/ POM 4. 0. 0 http:// maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >

<l-- .0 -->
<packagi ng>j ar </ packagi ng>
<l-- ... -->

</ proj ect >

Your existing archive is enhanced by Spring Boot during the package phase. The main class that you
want to launch can be specified either by using a configuration option or by adding a Mai n- Cl ass
attribute to the manifest in the usual way. If you do not specify a main class, the plugin searches for a
classwithapublic static void main(String[] args) method.

To build and run a project artifact, you can type the following:

$ nmvn package
$ java -jar target/ nynodul e-0. 0. 1- SNAPSHOT. j ar

To build a war file that is both executable and deployable into an external container, you need to mark
the embedded container dependencies as “provided”, as shown in the following example:

<?xm version="1.0" encodi ng="UTF-8"?>
<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xml ns: xsi ="htt p: // wwv w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://maven. apache. org/ POM 4. 0. 0 http:// maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >

<l-- ... -->
<packagi ng>war </ packagi ng>
<l-- ... -->

<dependenci es>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-web</artifactld>
</ dependency>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-toncat</artifactld>
<scope>provi ded</ scope>
</ dependency>
<l-- ... -->
</ dependenci es>
</ proj ect >

Tip

"

See the “Section 86.1, “Create a Deployable War File™ section for more details on how to create

a deployable war file.

Advanced configuration options and examples are available in the plugin info page.

2.0.0.RC1 Spring Boot 234

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/maven-plugin

Spring Boot Reference Guide

68. Spring Boot Gradle Plugin

The Spring Boot Gradle Plugin provides Spring Boot support in Gradle, letting you package executable
jar or war archives, run Spring Boot applications, and use the dependency management provided
by spri ng- boot - dependenci es. It requires Gradle 4.0 or later. Please refer to the plugin’'s
documentation to learn more:

» Reference (HTML and PDF)

* API

2.0.0.RC1 Spring Boot 235

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/gradle-plugin/reference/html
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/gradle-plugin/reference/pdf/spring-boot-gradle-plugin-reference.pdf
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/gradle-plugin/api

Spring Boot Reference Guide

69. Spring Boot AntLib Module

The Spring Boot AntLib module provides basic Spring Boot support for Apache Ant. You can use the
module to create executable jars. To use the module, you need to declare an additional spri ng- boot
namespace in your bui | d. xni , as shown in the following example:

<proj ect xmns:ivy="antlib: org.apache.ivy.ant"
xm ns: spring-boot="antlib: org. springframework. boot. ant"
name="nyapp" defaul t="build">

</ proj ect >

You need to remember to start Ant using the -1 i b option, as shown in the following example:

$ ant -lib <folder containing spring-boot-antlib-2.0.0.RCL.jar>

Tip

The “Using Spring Boot” section includes a more complete example of using Apache Ant with
spring-boot-antlib.

69.1 Spring Boot Ant Tasks

Once the spri ng-boot - ant | i b namespace has been declared, the following additional tasks are
available:

» the section called “spri ng- boot : exej ar”

e Section 69.2, “spri ng- boot : fi ndmai ncl ass”

spri ng- boot : exej ar

You can use the exej ar task to create a Spring Boot executable jar. The following attributes are
supported by the task:

Attribute Description Required

destfile The destination jar file to create Yes

cl asses The root directory of Java class files Yes

start-cl ass The main application class to run No (the default is the first class found

that declares a mai n method)

The following nested elements can be used with the task:

Element Description

resour ces One or more Resource Collections describing a set of Resources that should
be added to the content of the created jar file.

lib One or more Resource Collections that should be added to the set of jar
libraries that make up the runtime dependency classpath of the application.

2.0.0.RC1 Spring Boot 236

http://ant.apache.org/manual/Types/resources.html#collection
http://ant.apache.org/manual/Types/resources.html
http://ant.apache.org/manual/Types/resources.html#collection

Spring Boot Reference Guide

Examples
This section shows two examples of Ant tasks.

Specify start-class.

<spring-boot:exejar destfile="target/ny-application.jar"
cl asses="target/cl asses" start-class="com exanpl e. M/Appl i cation">
<r esour ces>
<fileset dir="src/ min/resources" />
</ resour ces>
<l'i b>
<fileset dir="lib" />
</lib>
</ spring-boot : exej ar >

Detect start-class.

<exej ar destfile="target/ ny-application.jar" classes="target/cl asses">
<lib>

<fileset dir="lib" />

</lib>
</ exej ar >

69.2 spri ng- boot : fi ndmai ncl ass

The fi ndmai ncl ass taskis used internally by exej ar to locate a class declaring a mai n. If necessary,
you can also use this task directly in your build. The following attributes are supported:

Attribute Description Required
cl assesr oot The root directory of Java class files Yes (unless mai ncl ass is specified)
mai ncl ass Can be used to short-circuit the mai n~ No

class search

property The Ant property that should be set No (result will be logged if unspecified)
with the result

Examples
This section contains three examples of using f i ndnai ncl ass.

Find and log.

<findmai ncl ass cl assesroot="target/cl asses" />

Find and set.

<findmai ncl ass cl assesroot="target/cl asses" property="main-class" />

Override and set.

<findmai ncl ass nai ncl ass="com exanpl e. Mai nCl ass" property="mai n-cl ass" />

2.0.0.RC1 Spring Boot 237

Spring Boot Reference Guide

70. Supporting Other Build Systems

If you want to use a build tool other than Maven, Gradle, or Ant, you likely need to develop your own
plugin. Executable jars need to follow a specific format and certain entries need to be written in an
uncompressed form (see the “executable jar format” section in the appendix for details).

The Spring Boot Maven and Gradle plugins both make use of spri ng-boot -1 oader-tool s to
actually generate jars. If you need to, you may use this library directly.

70.1 Repackaging Archives

To repackage an existing archive so that it becomes a self-contained executable archive, use
org. spri ngframewor k. boot . | oader . t ool s. Repackager. The Repackager class takes a
single constructor argument that refers to an existing jar or war archive. Use one of the two available
repackage() methods to either replace the original file or write to a new destination. Various settings
can also be configured on the repackager before it is run.

70.2 Nested Libraries

When repackaging an archive, you can include references to dependency files by using the
org. springframework. boot . | oader.tool s. Li brari es interface. We do not provide any
concrete implementations of Li br ari es here as they are usually build-system-specific.

If your archive already includes libraries, you can use Li br ari es. NONE.

70.3 Finding a Main Class

If you do not use Repackager . set Mai nCl ass() to specify a main class, the repackager uses ASM
to read class files and tries to find a suitable class with a public static void main(String[]
ar gs) method. An exception is thrown if more than one candidate is found.

70.4 Example Repackage Implementation

The following example shows a typical repackage implementation:

Repackager repackager = new Repackager (sourcedarFile);
repackager . set BackupSour ce(f al se);
repackager . repackage(new Libraries() {
@verride
public void doWthLibraries(LibraryCal |l back cal |l back) throws | CException {
/] Build system specific inplenentation, callback for each dependency
/'l call back.library(new Library(nestedFile, LibraryScope. COWILE));

}
1)

2.0.0.RC1 Spring Boot 238

http://asm.ow2.org/

Spring Boot Reference Guide

71. What to Read Next

If you are interested in how the build tool plugins work, you can look at the spri ng- boot -t ool s
module on GitHub. More technical details of the executable jar format are covered in the appendix.

If you have specific build-related questions, you can check out the “how-to” guides.

2.0.0.RC1 Spring Boot 239

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-tools

Part IX. ‘How-to’ guides

This section provides answers to some common ‘how do | do that...” questions that often arise when
using Spring Boot. Its coverage is not exhaustive, but it does cover quite a lot.

If you have a specific problem that we do not cover here, you might want to check out stackoverflow.com
to see if someone has already provided an answer. This is also a great place to ask new questions
(please use the spri ng- boot tag).

We are also more than happy to extend this section. If you want to add a *how-to’, send us a pull request.

http://stackoverflow.com/tags/spring-boot
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1

Spring Boot Reference Guide

72. Spring Boot Application

This section includes topics relating directly to Spring Boot applications.

72.1 Create Your Own FailureAnalyzer

Fai | ur eAnal yzer is agreatway to intercept an exception on startup and turn it into a human-readable
message, wrapped in a Fai | ur eAnal ysi s. Spring Boot provides such an analyzer for application-
context-related exceptions, JSR-303 validations, and more. You can also create your own.

Abstract Fai | ureAnal yzer is a convenient extension of Fai | ureAnal yzer that checks the
presence of a specified exception type in the exception to handle. You can extend from that so that your
implementation gets a chance to handle the exception only when it is actually present. If, for whatever
reason, you cannot handle the exception, return nul I to give another implementation a chance to
handle the exception.

Fai | ur eAnal yzer implementations must be registered in META- | NF/ spring. factories. The
following example registers Pr oj ect Const r ai nt Vi ol ati onFai | ureAnal yzer:

or g. spri ngframewor k. boot . di agnosti cs. Fai | ur eAnal yzer =\
com exanpl e. Proj ect Const rai nt Vi ol ati onFai | ur eAnal yzer

Note

If you need access to the BeanFact ory or the Envi ronnent, your Fai | ureAnal yzer can
simply implement BeanFact or yAwar e or Envi r onment Awar e respectively.

72.2 Troubleshoot Auto-configuration

The Spring Boot auto-configuration tries its best to “do the right thing”, but sometimes things fail, and
it can be hard to tell why.

There is a really useful ConditionEval uati onReport available in any Spring Boot
Appl i cati onCont ext . You can see it if you enable DEBUG logging output. If you use the spri ng-
boot - act uat or (see the Actuator chapter), there is also a condi t i ons endpoint that renders the
report in JSON. Use that endpoint to debug the application and see what features have been added
(and which have not been added) by Spring Boot at runtime.

Many more questions can be answered by looking at the source code and the Javadoc. When reading
the code, remember the following rules of thumb:

» Look for classes called * Aut oConf i gur ati on and read their sources. Pay special attention to the
@Condi ti onal * annotations to find out what features they enable and when. Add - - debug to the
command line or a System property - Ddebug to get a log on the console of all the auto-configuration
decisions that were made in your app. In a running Actuator app, look at the condi t i ons endpoint
(/act uat or/ condi ti ons or the JMX equivalent) for the same information.

» Look for classes that are @Confi gurati onProperties (such as ServerProperties) and
read from there the available external configuration options. The @onf i gur ati onProperti es
annotation has a nane attribute that acts as a prefix to external properties. Thus,
Server Properties has prefi x="server" and its configuration properties are server. port,
server. addr ess, and others. In a running Actuator app, look at the conf i gpr ops endpoint.

2.0.0.RC1 Spring Boot 241

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/diagnostics/FailureAnalyzer.html
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/diagnostics/FailureAnalysis.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ServerProperties.java

Spring Boot Reference Guide

» Look for uses of the bi nd method on the Bi nder to pull configuration values explicitly out of the
Envi ronment in a relaxed manner. It is often used with a prefix.

» Look for @/al ue annotations that bind directly to the Envi r onnent .

» Look for @ondi t i onal OnExpr essi on annotations that switch features on and off in response to
SpEL expressions, normally evaluated with placeholders resolved from the Envi r onnment .

72.3 Customize the Environment or ApplicationContext Before
It Starts

A SpringApplicationhasApplicationLi stenersandApplicationContextlnitializers
that are used to apply customizations to the context or environment. Spring Boot loads a number of
such customizations for use internally from META- | NF/ spri ng. f act ori es. There is more than one
way to register additional customizations:

» Programmatically, per application, by calling the addLi st ener s and addl niti al i zer s methods
on Spri ngAppl i cati on before you run it.

* Declaratively, per application, by setting the context.initializer.classes or
context.!listener.cl asses properties.

» Declaratively, for all applications, by adding a META- | NF/ spri ng. f act ori es and packaging a jar
file that the applications all use as a library.

The SpringApplication sends some special Applicati onEvents to the listeners (some
even before the context is created) and then registers the listeners for events published by the
Appl i cati onCont ext as well. See “Section 23.5, “Application Events and Listeners™ in the ‘Spring
Boot features’ section for a complete list.

It is also possible to customize the Envi r onnment before the application context is refreshed by
using Envi r onnent Post Processor. Each implementation should be registered in META- | NF/
spring. factories, as shown in the following example:

or g. spri ngf ramewor k. boot . env. Envi r onment Post Pr ocessor =com exanpl e. Your Envi r onnment Post Pr ocessor

The implementation can load arbitrary files and add them to the Envi r onnent . For instance, the
following example loads a YAML configuration file from the classpath:

public class Environnent Post Processor Exanpl e i npl enents Envi r onnent Post Processor {
private final Yam PropertySourcelLoader | oader = new Yan PropertySourceLoader();

@verride
public voi d postProcessEnvironnent (Confi gurabl eEnvironnment environnent,
SpringApplication application) {
Resource path = new C assPat hResour ce("conl exanpl e/ nyapp/ config.ym");
PropertySource<?> propertySource = | oadYan (path);
envi ronnent . get PropertySources().addLast (propertySource);

}

private PropertySource<?> | oadYam (Resource path) {
if (!path.exists()) {
throw new ||| egal Argunent Exception("Resource " + path + " does not exist");
}
try {
return this.loader.|oad("customresource", path, null);

}

2.0.0.RC1 Spring Boot 242

Spring Boot Reference Guide

catch (1 OException ex) {
throw new ||| egal St at eExcepti on(
"Failed to |l oad yaml configuration from" + path, ex);
}
}

}

Tip

The Envi ronnment has already been prepared with all the usual property sources that Spring
Boot loads by default. It is therefore possible to get the location of the file from the environment.
The preceding example adds the cust om r esour ce property source at the end of the list so
that a key defined in any of the usual other locations takes precedence. A custom implementation
may define another order.

Caution

While using @°r opertySource on your @spri ngBoot Application may seem to be a
convenient and easy way to load a custom resource in the Envi r onnent , we do not recommend
it, because Spring Boot prepares the Envi r onnment before the Appli cati onCont ext is
refreshed. Any key defined with @°r oper t ySour ce is loaded too late to have any effect on auto-
configuration.

72.4 Build an ApplicationContext Hierarchy (Adding a Parent or
Root Context)
You can use the ApplicationBuil der class to create parent/child Appli cati onCont ext

hierarchies. See “Section 23.4, “Fluent Builder API™ in the ‘Spring Boot features’ section for more
information.

72.5 Create a Non-web Application

Not all Spring applications have to be web applications (or web services). If you want to execute
some code in a mai n method but also bootstrap a Spring application to set up the infrastructure
to use, you can use the Spri ngApplicati on features of Spring Boot. A Spri ngApplication
changes its Appl i cat i onCont ext class, depending on whether it thinks it needs a web application
or not. The first thing you can do to help it is to leave the servlet APl dependencies off the classpath.
If you cannot do that (for example, you run two applications from the same code base) then you
can explicitly call set WebEnvi ronnent (f al se) on your Spri ngAppl i cati on instance or set the
appl i cat i onCont ext Cl ass property (through the Java API or with external properties). Application
code that you want to run as your business logic can be implemented as a ConmmandLi neRunner and
dropped into the context as a @ean definition.

2.0.0.RC1 Spring Boot 243

Spring Boot Reference Guide

73. Properties and Configuration

This section includes topics about setting and reading properties and configuration settings and their
interaction with Spring Boot applications.

73.1 Automatically Expand Properties at Build Time

Rather than hardcoding some properties that are also specified in your project’s build configuration,
you can automatically expand them by instead using the existing build configuration. This is possible
in both Maven and Gradle.

Automatic Property Expansion Using Maven
You can automatically expand properties from the Maven project by using resource filtering. If you use

the spri ng- boot - st art er - par ent, you can then refer to your Maven ‘project properties’ with @ . @
placeholders, as shown in the following example:

app. encodi ng=@r oj ect . bui | d. sour ceEncodi ng@
app. j ava. ver si on=@ ava. ver si on@

Note

Only production configuration is filtered that way (in other words, no filtering is applied on sr c/
t est/ resources).

Tip

If you enable the addResour ces flag, the spri ng-boot:run goal can add src/ mai n/
resour ces directly to the classpath (for hot reloading purposes). Doing so circumvents the
resource filtering and this feature. Instead, you can use the exec: j ava goal or customize the
plugin’s configuration. See the plugin usage page for more details.

If you do not use the starter parent, you need to include the following element inside the <bui I d/ >
element of your pom xmi :

<resour ces>

<resource>
<directory>src/ mai n/resources</directory>
<filtering>true</filtering>

</ resource>

</ resour ces>

You also need to include the following element inside <pl ugi ns/ >:

<pl ugi n>
<groupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifact|d>maven-resources-plugin</artifactld>
<ver si on>2. 7</ ver si on>
<configuration>

<delimters>

<delimter>@/delimter>

</delimters>

<useDef aul t Del i mi t er s>f al se</ useDef aul t Del i m ters>
</ configuration>
</ pl ugi n>

2.0.0.RC1 Spring Boot 244

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/maven-plugin/usage.html

Spring Boot Reference Guide

Note

The useDef aul t Del i mi t er s property is important if you use standard Spring placeholders
(such as ${ pl acehol der }) in your configuration. If that property is not set to f al se, these may
be expanded by the build.

Automatic Property Expansion Using Gradle

You can automatically expand properties from the Gradle project by configuring the Java plugin’s
processResour ces task to do so, as shown in the following example:

processResources {
expand(proj ect. properties)

}

You can then refer to your Gradle project’s properties by using placeholders, as shown in the following
example:

app. nane=${ nane}
app. descri ption=${descri pti on}

Note

Gradle’'s expand method uses Groovy's Si npl eTenpl at eEngi ne, which transforms ${. .}
tokens. The ${..} style conflicts with Spring’s own property placeholder mechanism. To use
Spring property placeholders together with automatic expansion, escape the Spring property
placeholders as follows: \ ${. . }.

73.2 Externalize the Configuration of Spri ngAppl i cati on

A SpringAppl i cation has bean properties (mainly setters), so you can use its Java AP| as you
create the application to modify its behavior. Alternatively, you can externalize the configuration by
setting properties in spri ng. mai n. *. For example, in appl i cati on. properti es, you might have
the following settings:

spri ng. mai n. web- envi ronnent =f al se
spri ng. mai n. banner - nnde=of f

Then the Spring Boot banner is not printed on startup, and the application is not a web application.

Note

The preceding example also demonstrates how flexible binding allows the use of underscores ()
as well as dashes (-) in property names.

Properties defined in external configuration override the values specified with the Java API, with the
notable exception of the sources used to create the Appl i cati onCont ext . Consider the following
application:

new Spri ngAppl i cati onBui | der ()
. banner Mode(Banner . Mode. OFF)
. sour ces(denp. MyApp. cl ass)
.run(args);

Now consider the following configuration:

2.0.0.RC1 Spring Boot 245

Spring Boot Reference Guide

spring. nmai n. sour ces=com acne. Confi g, com acne. ExtraConfig
spring. mai n. banner - nnde=consol e

The actual application now shows the banner (as overridden by configuration) and uses three
sources for the Appl i cati onCont ext (in the following order): denb. MyApp, com acne. Confi g,
and com acme. Ext raConfi g.

73.3 Change the Location of External Properties of an
Application

By default, properties from different sources are added to the Spring Envi r onnent in a defined order
(see “Chapter 24, Externalized Configuration” in the ‘Spring Boot features’ section for the exact order).

A nice way to augment and modify this ordering is to add @Pr opert ySour ce annotations to your
application sources. Classes passed to the Spri ngAppl i cati on static convenience methods and
those added using set Sour ces() are inspected to see if they have @°r opert ySour ces. If they
do, those properties are added to the Envi r onnment early enough to be used in all phases of the
Appl i cati onCont ext lifecycle. Properties added in this way have lower priority than any added by
using the default locations (such as appl i cati on. properti es), system properties, environment
variables, or the command line.

You can also provide the following System properties (or environment variables) to change the behavior:

* spring. config. nanme (SPRI NG_CONFI G_NAME): Defaults to appl i cati on as the root of the file
name.

e spring.config.location (SPRI NG CONFI G_LOCATI ON): The file to load (such as a classpath
resource or a URL). A separate Envi r onnent property source is set up for this document and it can
be overridden by system properties, environment variables, or the command line.

No matter what you set in the environment, Spring Boot always loads appl i cati on. properti es as
described above. By default, if YAML is used, then files with the ‘.ymI’ extension are also added to the list.

Spring Boot logs the configuration files that are loaded at the DEBUG level and the candidates it has
not found at TRACE level.

See Confi gFi | eAppli cati onLi st ener for more detail.

73.4 Use ‘Short’ Command Line Arguments

Some people like to use (for example) - - port =9000 instead of - - server. port=9000 to set
configuration properties on the command line. You can enable this behavior by using placeholders in
application. properti es, as shown in the following example:

server. port =${port: 8080}

Tip

If you inherit from the spri ng- boot - st art er - parent POM, the default filter token of the
maven-r esour ces- pl ugi ns has been changed from ${*} to @(that is, @mven. t oken@
instead of ${ maven. t oken}) to prevent conflicts with Spring-style placeholders. If you have
enabled Maven filtering for the appl i cati on. properti es directly, you may want to also
change the default filter token to use other delimiters.

2.0.0.RC1 Spring Boot 246

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/context/config/ConfigFileApplicationListener.java
http://maven.apache.org/plugins/maven-resources-plugin/resources-mojo.html#delimiters

Spring Boot Reference Guide

Note

In this specific case, the port binding works in a PaaS environment such as Heroku or Cloud
Foundry. In those two platforms, the PORT environment variable is set automatically and Spring
can bind to capitalized synonyms for Envi r onnment properties.

73.5 Use YAML for External Properties

YAML is a superset of JSON and, as such, is a convenient syntax for storing external properties in a
hierarchical format, as shown in the following example:

spring:
application:
nane: cruncher
dat asour ce:
driverCl assNane: com nysql .jdbc. Driver
url: jdbc:nysql://1ocal host/test
server:
port: 9000

Create a file called appl i cati on. ym and put it in the root of your classpath. Then add snakeyamni
to your dependencies (Maven coordinates or g. yam : snakeyani , already included if you use the
spring-boot-starter). A YAML file is parsed to a Java Map<Stri ng, Qoj ect > (like a JSON
object), and Spring Boot flattens the map so that it is one level deep and has period-separated keys, as
many people are used to with Pr operti es files in Java.

The preceding example YAML corresponds to the following appl i cati on. properti es file:

spring. appl i cati on. nanme=cr uncher

spring. dat asour ce. dri ver Cl assNane=com nysql . j dbc. Dri ver
spring. dat asour ce. url =j dbc: mysql : / /1 ocal host/t est
server. port=9000

See “Section 24.6, “Using YAML Instead of Properties™ in the ‘Spring Boot features’ section for more
information about YAML.

73.6 Set the Active Spring Profiles

The Spring Envi ronnent has an API for this, but you would normally set a System property
(spring.profil es.active)or an OS environment variable (SPRI NG_PROFI LES_ACTI VE). Also,
you can launch your application with a - D argument (remember to put it before the main class or jar
archive), as follows:

‘ $ java -jar -Dspring.profiles.active=production denp-0.0.1- SNAPSHOT. j ar

In Spring Boot, you can also set the active profile in appl i cati on. properti es, as shown in the
following example:

spring. profiles.active=production

A value set this way is replaced by the System property or environment variable setting but not by
the Spri ngAppl i cati onBuil der. profil es() method. Thus, the latter Java API can be used to
augment the profiles without changing the defaults.

See “Chapter 25, Profiles” in the “Spring Boot features” section for more information.

2.0.0.RC1 Spring Boot 247

Spring Boot Reference Guide

73.7 Change Configuration Depending on the Environment

A YAML file is actually a sequence of documents separated by - - - lines, and each document is parsed
separately to a flattened map.

If a YAML document contains a spri ng. pr of i | es key, then the profiles value (a comma-separated
list of profiles) is fed into the Spring Envi r onment . accept sProfil es() method. If any of those
profiles is active, that document is included in the final merge (otherwise, it is not), as shown in the
following example:

server:
port: 9000

spring:

profiles: devel opnment
server:

port: 9001

spring:

profiles: production
server:

port: O

In the preceding example, the default port is 9000. However, if the Spring profile called ‘development’
is active, then the port is 9001. If ‘production’ is active, then the port is 0.

Note

The YAML documents are merged in the order in which they are encountered. Later values
override earlier values.

To do the same thing with properties files, you can use appl i cati on-${profil e}. propertiesto
specify profile-specific values.

73.8 Discover Built-in Options for External Properties

Spring Boot binds external properties from appl i cati on. properties (or .ym files and other
places) into an application at runtime. There is not (and technically cannot be) an exhaustive list of all
supported properties in a single location, because contributions can come from additional jar files on
your classpath.

A running application with the Actuator features has a conf i gpr ops endpoint that shows all the bound
and bindable properties available through @onf i gur ati onProperti es.

The appendix includes an application. properties example with a list of the most common
properties supported by Spring Boot. The definitive list comes from searching the source code for
@Confi gurationProperties and @al ue annotations as well as the occasional use of Bi nder.
For more about the exact ordering of loading properties, see "Chapter 24, Externalized Configuration".

2.0.0.RC1 Spring Boot 248

Spring Boot Reference Guide

74. Embedded Webh Servers

Each Spring Boot web application includes an embedded web server. This feature leads to a number of
how-to questions, including how to change the embedded server and how to configure the embedded
server. This section answers those questions.

74.1 Use Another Web Server

Many Spring Boot starters include default embedded containers. spri ng- boot -starter-web
includes Tomcat by including spring-boot-starter-toncat, but you can use spring-
boot-starter-jetty orspring-boot-starter-undertowinstead. spri ng-boot-starter-
webf | ux includes Reactor Netty by including spri ng- boot-starter-reactor-netty, but you
can use spring-boot-starter-tonctat, spring-boot-starter-jetty, or spring-boot -
starter-undertowinstead.

Note

Many starters support only Spring MVC, so they transitively bring spri ng- boot - st art er - web
into your application classpath.

If you need to use a different HTTP server, you need to exclude the default dependencies and include
the one you need. Spring Boot provides separate starters for HTTP servers to help make this process
as easy as possible.

The following Maven example shows how to exclude Tomcat and include Jetty for Spring MVC:

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-web</artifactld>
<excl usi ons>
<l-- Exclude the Tontat dependency -->
<excl usi on>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifact!|d>spring-boot-starter-tontat</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>
<l-- Use Jetty instead -->
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-jetty</artifactld>
</ dependency>

The following Gradle example shows how to exclude Netty and include Undertow for Spring WebFlux:

configurations {
/] exclude Reactor Netty
conpi | e. excl ude nodul e: 'spring-boot-starter-reactor-netty’

}

dependenci es {
conpi l e "org. springfranmework. boot : spri ng-boot -starter-webfl ux'
/1 Use Undertow instead
conpi l e 'org. springframewor k. boot : spri ng-boot -starter-undertow
11

}

2.0.0.RC1 Spring Boot 249

Spring Boot Reference Guide

Note

spring-boot-starter-reactor-netty isrequiredtousethe Wbd i ent class, so you may
need to keep a dependency on Netty even when you need to include a different HTTP server.

74.2 Configure Jetty

Generally, you can follow the advice from “Section 73.8, “Discover Built-in Options for External
Properties™ about @onfi gurati onProperties (ServerProperties is the main one here).
However, you should also look at WebSer ver Fact or yCust oni zer . The Jetty APIs are quite rich,
so, once you have access to the JettyServl et WbSer ver Fact ory, you can modify it in a
number of ways. Alternatively, if you need more control and customization, you can add your own
JettyServl et WebSer ver Fact ory.

74.3 Add a Servlet, Filter, or Listener to an Application

There are two ways to add Ser vl et, Fil t er, Servl et Cont ext Li st ener, and the other listeners
supported by the Servlet spec to your application:

» the section called “Add a Servlet, Filter, or Listener by Using a Spring Bean”

» the section called “Add Servlets, Filters, and Listeners by Using Classpath Scanning”

Add a Servlet, Filter, or Listener by Using a Spring Bean

ToaddaServl et,Filter,orServlet*Li st ener by using a Spring bean, you must provide a @ean
definition for it. Doing so can be very useful when you want to inject configuration or dependencies.
However, you must be very careful that they do not cause eager initialization of too many other beans,
because they have to be installed in the container very early in the application lifecycle. (For example,
it is not a good idea to have them depend on your Dat aSour ce or JPA configuration.) You can work
around such restrictions by initializing the beans lazily when first used instead of on initialization.

In the case of Fil ters and Servl et s, you can also add mappings and init parameters by adding
a FilterRegistrati onBean or a Servl et Regi strati onBean instead of or in addition to the
underlying component.

Note

If no di spat cher Type is specified on a filter registration, REQUEST is used. This aligns with the
Servlet Specification’s default dispatcher type.

Like any other Spring bean, you can define the order of Servlet filter beans; please make sure to check
the “the section called “Registering Servlets, Filters, and Listeners as Spring Beans™ section.

Disable Registration of a Servlet or Filter

As described earlier, any Servl et or Filter beans are registered with the servlet container
automatically. To disable registration of a particular Fi | t er or Servl et bean, create a registration
bean for it and mark it as disabled, as shown in the following example:

@Bean
public FilterRegistrationBean registration(MFilter filter) {
FilterRegi strati onBean registration = new FilterRegistrationBean(filter);

2.0.0.RC1 Spring Boot 250

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/web/server/WebServerFactoryCustomizer.html

Spring Boot Reference Guide

regi stration. set Enabl ed(fal se);
return registration;

}

Add Servlets, Filters, and Listeners by Using Classpath Scanning

@¢bServliet, @ebFilter, and @\ebLi stener annotated classes can be automatically
registered with an embedded servlet container by annotating a @Confi gurati on class with
@er vl et Conponent Scan and specifying the package(s) containing the components that you want
to register. By default, @er vl et Conponent Scan scans from the package of the annotated class.

74.4 Change the HTTP Port

In a standalone application, the main HTTP port defaults to 8080 but can be set with server. port
(for example, in appl i cati on. properti es or as a System property). Thanks to relaxed binding of
Envi ronnent values, you can also use SERVER PORT (for example, as an OS environment variable).

To switch off the HTTP endpoints completely but still create a WebAppl i cati onCont ext, use
server. port=-1. (Doing so is sometimes useful for testing.)

For more details, see “the section called “Customizing Embedded Servlet Containers™ in the ‘Spring
Boot features’ section, or the Ser ver Pr operti es source code.

74.5 Use a Random Unassigned HTTP Port

To scan for a free port (using OS natives to prevent clashes) use server . port =0.

74.6 Discover the HTTP Port at Runtime

You can access the port the server is running on from log output or from
the Servl et WebServer Appl i cati onCont ext through its WebServer. The best way to
get that and be sure that it has been initialized is to add a @Bean of type
Appl i cati onLi st ener <Servl et WebSer ver | nitializedEvent> and pull the container out of
the event when it is published.

Tests that use @pr i ngBoot Test (webEnvi r onnent =\WbEnvi r onnment . RANDOM _PORT) can also
inject the actual port into a field by using the @.ocal Ser ver Port annotation, as shown in the following
example:

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)
@pr i ngBoot Test (webEnvi ronnent =WebEnvi r onnent . RANDOM_PORT)
public class MyWebl ntegrationTests {

@\ut owi r ed
Ser vl et WebSer ver Appl i cati onCont ext server;

@.ocal Server Port
int port;

...

Note

@.ocal Server Port is a meta-annotation for @al ue(" ${I ocal . server.port}"). Do not
try to inject the portin a regular application. As we just saw, the value is set only after the container

2.0.0.RC1 Spring Boot 251

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ServerProperties.java

Spring Boot Reference Guide

has been initialized. Contrary to a test, application code callbacks are processed early (before
the value is actually available).

74.7 Configure SSL

SSL can be configured declaratively by setting the various server. ssl.* properties, typically
in appl i cation. properties or application.yn . The following example shows setting SSL
properties in appl i cati on. properties:

server. port=8443

server. ssl . key-store=cl asspat h: keystore. j ks
server. ssl . key- st or e- passwor d=secr et

server. ssl . key- passwor d=anot her - secr et

See Ssl for details of all of the supported properties.

Using configuration such as the preceding example means the application no longer supports a plain
HTTP connector at port 8080. Spring Boot does not support the configuration of both an HTTP connector
and an HTTPS connector through appl i cati on. properti es. If you want to have both, you need
to configure one of them programmatically. We recommend using appl i cati on. properties to
configure HTTPS, as the HTTP connector is the easier of the two to configure programmatically. See
the spri ng- boot - sanpl e-t ontat - nul ti - connect or s sample project for an example.

74.8 Configure HTTP/2

You can enable HTTP/2 support in your Spring Boot application with the server. htt p2. enabl ed
configuration property. This support depends on the chosen web server and the application environment,
since that protocol is not supported out-of-the-box by JDK8.

Note

Spring Boot does not support h2c, the cleartext version of the HTTP/2 protocol. So you must
configure SSL first.

HTTP/2 with Undertow
As of Undertow 1.4.0+, HTTP/2 is supported without any additional requirement on JDKS8.
HTTP/2 with Jetty

As of Jetty 9.4.8, HTTP/2 is also supported with the Conscrypt library. To enable that support,
your application needs to have two additional dependencies: org. ecl i pse.jetty:jetty-al pn-
conscrypt-server andorg. eclipse.jetty. http2: http2-server.

HTTP/2 with Tomcat

Spring Boot ships by default with Tomcat 8.5.x. With that version, HTTP/2 is only supported if the
[i bt cnati ve library and its dependencies are installed on the host operating system.

The library folder must be made available, if not already, to the JVM library path. You can do so with
aJVM argumentsuchas-Dj ava. | i brary. path=/usr/ | ocal / opt/tontat-native/lib.More
on this in the official Tomcat documentation.

Starting Tomcat 8.5.x without that native support logs the following error:

2.0.0.RC1 Spring Boot 252

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/web/server/Ssl.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-samples/spring-boot-sample-tomcat-multi-connectors
https://www.conscrypt.org/
http://tomcat.apache.org/tomcat-8.5-doc/apr.html

Spring Boot Reference Guide

ERROR 8787 --- [mai n] o.a.coyote. httpll. Ht pl11N oPr ot ocol : The upgrade handl er
[org. apache. coyote. htt p2. H t p2Protocol] for [h2] only supports upgrade via ALPN but has been configured
for the ["https-jsse-nio-8443"] connector that does not support ALPN.

This error is not fatal, and the application still starts with HTTP/1.1 SSL support.

Running your application with Tomcat 9.0.x and JDK9 does not require any native library to be installed.
To use Tomcat 9, you can override the t ontat . ver si on build property with the version of your choice.

74.9 Configure Access Logging

Access logs can be configured for Tomcat, Undertow, and Jetty through their respective namespaces.

For instance, the following settings log access on Tomcat with a custom pattern.

server.tontat. basedi r=ny-tontat
server.toncat.accessl og. enabl ed=t rue
server.toncat.accessl og. pattern=% % "%" % (%O ns)

Note

The default location for logs is a | ogs directory relative to the Tomcat base directory. By default,
the | ogs directory is a temporary directory, so you may want to fix Tomcat's base directory or use
an absolute path for the logs. In the preceding example, the logs are available in my-t ontat/
| ogs relative to the working directory of the application.

Access logging for Undertow can be configured in a similar fashion, as shown in the following example:

server. undert ow. accessl og. enabl ed=t rue
server.undertow accessl og. pattern=% % "%" % (%O ns)

Logs are storedinal ogs directory relative to the working directory of the application. You can customize
this location by setting the ser ver . undert ow. accessl og. di r ect ory property.

Finally, access logging for Jetty can also be configured as follows:

server.jetty.accessl og. enabl ed=true
server.jetty.accesslog.filename=/var/log/jetty-access.!|og

By default, logs are redirected to Syst em er r . For more details, see the Jetty documentation.

74.10 Running Behind a Front-end Proxy Server

Your application might need to send 302 redirects or render content with absolute links back to itself.
When running behind a proxy, the caller wants a link to the proxy and not to the physical address of
the machine hosting your app. Typically, such situations are handled through a contract with the proxy,
which adds headers to tell the back end how to construct links to itself.

If the proxy adds conventional X- For war ded- For and X- For war ded- Pr ot o headers (most proxy
servers do so), the absolute links should be rendered correctly, provided server. use-f or war d-
header s issettotrueinyourapplication. properties.

Note

If your application runs in Cloud Foundry or Heroku, the server. use-forward- headers
property defaults to t r ue. In all other instances, it defaults to f al se.

2.0.0.RC1 Spring Boot 253

https://tomcat.apache.org/tomcat-8.5-doc/config/valve.html#Access_Logging
https://www.eclipse.org/jetty/documentation/9.4.x/configuring-jetty-request-logs.html

Spring Boot Reference Guide

Customize Tomcat’s Proxy Configuration

If you use Tomcat, you can additionally configure the names of the headers used to carry “forwarded”
information, as shown in the following example:

server.tontat.renote-ip-header=x-your-renpote-ip-header
server.tontat. prot ocol - header =x- your - pr ot ocol - header

Tomcat is also configured with a default regular expression that matches internal proxies that are to
be trusted. By default, IP addresses in 10/ 8, 192. 168/ 16, 169. 254/ 16 and 127/ 8 are trusted. You
can customize the valve’s configuration by adding an entry to appl i cati on. properti es, as shown
in the following example:

server.toncat.internal - proxi es=192\\.168\\.\\d{1, 3}\\.\\d{1, 3}

Note

The double backslashes are required only when you use a properties file for configuration. If you
use YAML, single backslashes are sufficient, and a value equivalent to that shown in the preceding
example would be 192\ . 168\ .\ d{1, 3}\.\d{1, 3}.

Note

You can trust all proxies by setting the i nt er nal - pr oxi es to empty (but do not do so in
production).

You can take complete control of the configuration of Tomcat's Renot el pVal ve by switching the
automatic one off (to do so, set server. use-forward- header s=f al se) and adding a new valve
instance in a Tontat Ser vl et WebSer ver Fact ory bean.

74.11 Configure Tomcat

Generally, you can follow the advice from “Section 73.8, “Discover Built-in Options for External
Properties™ about @Confi gurati onProperties (ServerProperties is the main one here).
However, you should also look at WebSer ver Fact or yCust oni zer and various Tomcat-specific
*Cust om zer s that you can add. The Tomcat APIs are quite rich. Consequently, once you have access
tothe Tontat Ser vl et WebSer ver Fact or y, you can modify itin a number of ways. Alternatively, if you

need more control and customization, you can add your own Tontat Ser vl et WebSer ver Fact ory.

74.12 Enable Multiple Connectors with Tomcat

You can add an or g. apache. cat al i na. connect or. Connect or to the
Tontat Ser vl et WebSer ver Fact ory, which can allow multiple connectors, including HTTP and
HTTPS connectors, as shown in the following example:

@Bean

public Servl et WebServer Factory servl et Container() {
Tontat Ser vl et WebServer Factory tontat = new Tontat Servl et WebSer ver Factory();
t ontat . addAddi t i onal Tontat Connect or s(cr eat eSsl Connector ());
return tontat;

}

private Connector createSsl Connector() {
Connector connector = new Connector ("org.apache. coyote. httpll. Htt p11N oProtocol ");
Ht t p11Ni oProt ocol protocol = (HtpllN oProtocol) connector. getProtocol Handl er();

2.0.0.RC1 Spring Boot 254

Spring Boot Reference Guide

try {
Fil e keystore = new C assPat hResource("keystore").getFile();
File truststore = new C assPat hResource("keystore").getFile();
connect or. set Scheme("https");
connect or. set Secure(true);
connect or. set Port (8443);
protocol . set SSLEnabl ed(true);
protocol . set Keyst or eFi | e(keyst ore. get Absol utePath());
protocol . set Keyst orePass("changeit");
protocol . set TruststoreFi |l e(truststore. get Absol utePath());
prot ocol . set Trust st orePass("changeit");
protocol . set KeyAl i as("apitester");
return connector;

}
catch (1 OException ex) {
throw new I || egal St at eException("can't access keystore: [" + "keystore"
+ "] or truststore: [" + "keystore" + "]", ex);

74.13 Use Tomcat’'s LegacyCookieProcessor

By default, the embedded Tomcat used by Spring Boot does not support "Version 0" of the Cookie
format, so you may see the following error:

java.l ang. |11 egal Argunent Exception: An invalid character [32] was present in the Cookie val ue

If at all possible, you should consider updating your code to only store values compliant with later
Cookie specifications. If, however, you cannot change the way that cookies are written, you can instead
configure Tomcat to use a LegacyCooki ePr ocessor . To switch to the LegacyCooki ePr ocessor,
use an WebSer ver Fact or yCust omi zer bean that adds a Tontat Cont ext Cust oni zer, as shown
in the following example:

@Bean
publ i ¢ WebSer ver Fact or yCust oni zer <Tontat Ser vl et WebSer ver Fact or y> cooki eProcessor Cust om zer () {
return (factory) -> factory. addCont ext Cust oni zers(
(context) -> context.set Cooki eProcessor (new LegacyCooki eProcessor()));

74.14 Configure Undertow

Generally you can follow the advice from “Section 73.8, “Discover Built-in Options
for External Properties™ about @Confi gurationProperties (ServerProperties and
ServerProperties. Undertow are the main ones here). However, you should
also look at WebServerFactoryCustomi zer. Once you have access to the
Undert owSer vl et WebSer ver Fact or y, you can use an Under t owBui | der Cust om zer to modify
Undertow’s configuration to meet your needs. Alternatively, if you need more control and customization,
you can add your own Under t owSer vl et WebSer ver Fact ory.

74.15 Enable Multiple Listeners with Undertow

Add an Under t owBui | der Cust om zer to the Undert owSer vl et WebSer ver Fact ory and add a
listener to the Bui | der, as shown in the following example:

@ean

publ i c UndertowServl et WebSer ver Factory servl et WebSer ver Factory() {
Under t owSer vl et WebSer ver Factory factory = new UndertowSer vl et WebSer ver Factory();
factory. addBui | der Cust oni zer s(new Undert owBui | der Cust omi zer () {

@verride

2.0.0.RC1 Spring Boot 255

Spring Boot Reference Guide

public void custom ze(Buil der builder) {
bui | der. addHt t pLi st ener (8080, "0.0.0.0");
}

1)

return factory;

}

74.16 Create WebSocket Endpoints Using @ServerEndpoint

If you want to use @er ver Endpoi nt in a Spring Boot application that used an embedded container,
you must declare a single Ser ver Endpoi nt Expor t er @ean, as shown in the following example:

@Bean
publ i ¢ Server Endpoi nt Exporter server Endpoi nt Exporter () {
return new Server Endpoi nt Exporter();

}

The bean shown in the preceding example registers any @er ver Endpoi nt annotated beans with
the underlying WebSocket container. When deployed to a standalone servlet container, this role is
performed by a servlet container initializer, and the Ser ver Endpoi nt Expor t er bean is not required.

74.17 Enable HTTP Response Compression

HTTP response compression is supported by Jetty, Tomcat, and Undertow. It can be enabled in
appl i cation. properties, as follows:

server. conpr essi on. enabl ed=true

By default, responses must be at least 2048 bytes in length for compression to be performed. You can
configure this behavior by setting the ser ver. conpr essi on. mi n-r esponse- si ze property.

By default, responses are compressed only if their content type is one of the following:
e text/htm

o text/xm

o text/plain

* text/css

You can configure this behavior by setting the ser ver . conpr essi on. m nme-t ypes property.

2.0.0.RC1 Spring Boot 256

Spring Boot Reference Guide

75. Spring MVC

Spring Boot has a number of starters that include Spring MVC. Note that some starters include a
dependency on Spring MVC rather than include it directly. This section answers common questions
about Spring MVC and Spring Boot.

75.1 Write a JSON REST Service

Any Spring @Rest Cont r ol | er in a Spring Boot application should render JISON response by default
as long as Jackson2 is on the classpath, as shown in the following example:

@Rest Control | er
public class MyController {

@Request Mappi ng("/t hi ng")
public MyThing thing() {
return new MyThing();

}

As long as MyThi ng can be serialized by Jackson2 (true for a normal POJO or Groovy object), then
| ocal host : 8080/ t hi ng serves a JSON representation of it by default. Note that, in a browser, you
might sometimes see XML responses, because browsers tend to send accept headers that prefer XML.

75.2 Write an XML REST Service

If you have the Jackson XML extension (j ackson- dat af or mat - xm) on the classpath, you can use
it to render XML responses. The previous example that we used for JSON would work. To use the
Jackson XML renderer, add the following dependency to your project:

<dependency>
<groupl d>com f ast erxni . j ackson. dat af or mat </ gr oup! d>
<artifactld>j ackson-dataformat-xm </artifactld>

</ dependency>

You may also want to add a dependency on Woodstox. It is faster than the default StAX implementation
provided by the JDK and also adds pretty-print support and improved namespace handling. The
following listing shows how to include a dependency on Woodstox:

<dependency>
<gr oupl d>or g. codehaus. woodst ox</ gr oupl d>
<artifact|d>woodstox-core-asl </artifactld>

</ dependency>

If Jackson’s XML extension is not available, JAXB (provided by default in the JDK) is used, with the
additional requirement of having My Thi ng annotated as @Xm Root El enent , as shown in the following
example:

@m Root El enent

public class MyThing {
private String nane;

/Il .. getters and setters

}

To get the server to render XML instead of JSON, you might have to send an Accept: text/xnl
header (or use a browser).

2.0.0.RC1 Spring Boot 257

http://localhost:8080/thing
https://github.com/FasterXML/woodstox

Spring Boot Reference Guide

75.3 Customize the Jackson ObjectMapper

Spring MVC (client and server side) uses Ht t pMessageConvert er s to negotiate content conversion
in an HTTP exchange. If Jackson is on the classpath, you already get the default converter(s) provided
by Jackson2hj ect Mapper Bui | der, an instance of which is auto-configured for you.

The Obj ect Mapper (or Xm Mapper for Jackson XML converter) instance (created by default) has the
following customized properties:

» Mapper Feat ur e. DEFAULT_VI EW | NCLUSI ONis disabled
e DeserializationFeature. FAl L_ON_UNKNOAN_ PROPERTI ES is disabled
Spring Boot also has some features to make it easier to customize this behavior.

You can configure the Obj ect Mapper and Xnl Mapper instances by using the environment. Jackson
provides an extensive suite of simple on/off features that can be used to configure various aspects of
its processing. These features are described in six enums (in Jackson) that map onto properties in the
environment:

Jackson enum Environment property

com fasterxm . j ackson. dat abi nd. Deser i dpraatg.grdedetanm.edeseri al i zat i on. <f eat ure_name>=tru
fal se

com f ast erxm . j ackson. core. JsonGener atspr.iFeatjuaekson. gener at or . <f eat ur e_name>=t r ue|
fal se

com fasterxm . jackson. dat abi nd. Mapper Fgatiurg j ackson. mapper . <f eat ur e_nanme>=t r ue|
fal se

com fast erxm . j ackson. core. JsonPar ser .dqmdatng.g ackson. par ser. <f eat ure_nane>=t r ue|
fal se

com fast erxm . j ackson. dat abi nd. Seri al igatiirnnHResatks@n. seri al i zati on. <f eat ure_nanme>=t r ue|
fal se

com fasterxm . jackson. annot ati on. Jsonlsyiute. jlacksme def aul t - property-
i ncl usi on=al ways| non_nul I |
non_absent | non_def aul t | non_enpty

For example, to enable pretty print, set
spring.jackson. serialization.indent_output=true.Note that, thanks to the use of relaxed
binding, the case of i ndent _out put does not have to match the case of the corresponding enum
constant, which is | NDENT _QUTPUT.

This environment-based configuration is applied to the auto-configured
Jackson2Cbj ect Mapper Bui | der bean and applies to any mappers created by using the builder,
including the auto-configured Cbj ect Mapper bean.

The context's Jackson2Cbj ect MapperBuil der can be customized by one or more
Jackson2Cbj ect Mapper Bui | der Cust omi zer beans. Such customizer beans can be ordered
(Boot’s own customizer has an order of 0), letting additional customization be applied both before and
after Boot’s customization.

2.0.0.RC1 Spring Boot 258

Spring Boot Reference Guide

Any beans of type com fasterxmn .jackson. dat abi nd. Modul e are automatically registered
with the auto-configured Jackson2Cbj ect Mapper Bui | der and are applied to any Cbj ect Mapper
instances that it creates. This provides a global mechanism for contributing custom modules when you
add new features to your application.

If you want to replace the default Obj ect Mapper completely, either define a @Bean of
that type and mark it as @°rimary or, if you prefer the builder-based approach, define a
Jackson2Cbj ect Mapper Bui | der @ean. Note that, in either case, doing so disables all auto-
configuration of the Cbj ect Mapper .

If you provide any @eans of type Mappi nglackson2Ht t pMessageConvert er, they replace the
default value in the MVC configuration. Also, a convenience bean of type Ht t pMessageConvertersis
provided (and is always available if you use the default MVC configuration). It has some useful methods
to access the default and user-enhanced message converters.

See the “Section 75.4, “Customize the @ResponseBody Rendering™ section and the
WebMvcAut oConf i gur at i on source code for more details.

75.4 Customize the @ResponseBody Rendering

Spring uses Ht pMessageConverters to render @ResponseBody (or responses from
@rest Cont r ol | er). You can contribute additional converters by adding beans of the appropriate type
in a Spring Boot context. If a bean you add is of a type that would have been included by default anyway
(such as Mappi ngdackson2Ht t pMessageConvert er for JSON conversions), it replaces the default
value. A convenience bean of type Ht t pMessageConvert er s is provided and is always available if
you use the default MVC configuration. It has some useful methods to access the default and user-
enhanced message converters (For example, it can be useful if you want to manually inject them into
a custom Rest Tenpl at e).

As in normal MVC usage, any WebMscConfi gur er beans that you provide can also contribute
converters by overriding the conf i gur eMessageConvert er s method. However, unlike with normal
MVC, you can supply only additional converters that you need (because Spring Boot uses the same
mechanism to contribute its defaults). Finally, if you opt out of the Spring Boot default MVC configuration
by providing your own @Enabl eWwebM/c configuration, you can take control completely and do
everything manually by using get MessageConvert er s from WebMscConf i gur at i onSupport .

See the WebMrcAut oConf i gur at i on source code for more details.

75.5 Handling Multipart File Uploads

Spring Boot embraces the Servlet 3 j avax. servl et. htt p. Part API to support uploading files. By
default, Spring Boot configures Spring MVC with a maximum size of 1MB per file and a maximum of
10MB of file data in a single request. You may override these values, the location to which intermediate
data is stored (for example, to the / t np directory), and the threshold past which data is flushed to disk by
using the properties exposed inthe Mul t i part Properti es class. For example, if you want to specify
that files be unlimited, set the spri ng. servlet. mul ti part. max-fil e-si ze property to - 1.

The multipart support is helpful when you want to receive multipart encoded file data as a
@Request Par amannotated parameter of type Mul ti part Fi | e in a Spring MVC controller handler
method.

See the Mul ti part Aut oConf i gur at i on source for more details.

2.0.0.RC1 Spring Boot 259

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/servlet/WebMvcAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/servlet/WebMvcAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/servlet/MultipartAutoConfiguration.java

Spring Boot Reference Guide

75.6 Switch Off the Spring MVC DispatcherServlet

Spring Boot wants to serve all content from the root of your application (/) down. If you would rather
map your own servlet to that URL, you can do it. However, you may lose some of the other Boot MVC
features. To add your own servlet and map it to the root resource, declare a @ean of type Ser vl et
and give it the special bean name, di spat cher Ser vl et . (You can also create a bean of a different
type with that name if you want to switch it off and not replace it.)

75.7 Switch off the Default MVC Configuration

The easiest way to take complete control over MVC configuration is to provide your own
@confi gur at i on with the @nabl eWebM/ ¢ annotation. Doing so leaves all MVC configuration in your
hands.

75.8 Customize ViewResolvers

A Vi ewResol ver is a core component of Spring MVC, translating view names in @ontrol | er
to actual Vi ew implementations. Note that Vi ewResol vers are mainly used in Ul applications,
rather than REST-style services (a Vi ew is not used to render a @ResponseBody). There are many
implementations of Vi ewResol ver to choose from, and Spring on its own is not opinionated about
which ones you should use. Spring Boot, on the other hand, installs one or two for you, depending on
what it finds on the classpath and in the application context. The Di spat cher Ser vl et uses all the
resolvers it finds in the application context, trying each one in turn until it gets a result, so, if you add
your own, you have to be aware of the order and in which position your resolver is added.

WebMvcAut oConf i gur ati on adds the following Vi ewResol ver s to your context:

* An | nt er nal Resour ceVi ewResol ver named ‘defaultViewResolver’. This one locates physical
resources that can be rendered by using the Def aul t Ser vl et (including static resources and JSP
pages, if you use those). It applies a prefix and a suffix to the view name and then looks for a
physical resource with that path in the servlet context (the defaults are both empty but are accessible
for external configuration through spri ng. mvc. vi ew. prefi x and spri ng. mvc. vi ew. suf fi x).
You can override it by providing a bean of the same type.

* A BeanNaneVi ewResol ver named ‘beanNameViewResolver'. This is a useful member of the view
resolver chain and picks up any beans with the same name as the Vi ew being resolved. It should
not be necessary to override or replace it.

* A Cont ent Negoti ati ngVi ewResol ver named ‘viewResolver’ is added only if there are actually
beans of type Vi ew present. This is a ‘master’ resolver, delegating to all the others and
attempting to find a match to the ‘Accept’ HTTP header sent by the client. There is a useful
blog about Cont ent Negoti ati ngVi ewResol ver that you might like to study to learn more,
and you might also look at the source code for detail. You can switch off the auto-configured
Cont ent Negoti ati ngVi ewResol ver by defining a bean named ‘viewResolver'.

« If you use Thymeleaf, you also have a Thynel eaf Vi ewResol ver named ‘thymeleafViewResolver'.
It looks for resources by surrounding the view name with a prefix and suffix. The prefix is
spring.thymnel eaf . prefix, and the suffix is spring.thynel eaf.suffix. The values of
the prefix and suffix default to ‘classpath:/templates/’ and ‘.html’, respectively. You can override
Thynel eaf Vi ewResol ver by providing a bean of the same name.

« If you use FreeMarker, you also have a FreeMarkerVi ewResolver named
‘freeMarkerViewResolver'. It looks for resources in a loader path (which is externalized to

2.0.0.RC1 Spring Boot 260

https://spring.io/blog/2013/06/03/content-negotiation-using-views

Spring Boot Reference Guide

spring. freemarker. tenpl at eLoader Pat h and has a default value of ‘classpath:/templates/’)
by surrounding the view name with a prefix and a suffix. The prefix is externalized to
spring. freemarker. prefi x, and the suffix is externalized to spri ng. freemar ker. suf fi x.
The default values of the prefix and suffix are empty and “.ftI', respectively. You can override
Fr eeMar ker Vi ewResol ver by providing a bean of the same name.

« If you use Groovy templates (actually, if gr oovy-tenpl at es is on your classpath), you also
have a Gr oovyMar kupVi ewResol ver named ‘groovyMarkupViewResolver'. It looks for resources
in a loader path by surrounding the view name with a prefix and suffix (externalized to
spring. groovy. tenpl ate. prefixandspring. groovy.tenpl ate. suffi x). The prefix and
suffix have default values of ‘classpath:/templates/’ and ‘.tpl’, respectively. You can override
GroovyMar kupVi ewResol ver by providing a bean of the same name.

For more detail, see the following sections:

« WebM/cAut oConfi gurati on

 Thynel eaf Aut oConfi gurati on

» FreeMar ker Aut oConfi gurati on

e GroovyTenpl at eAut oConfi gurati on

2.0.0.RC1 Spring Boot 261

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/servlet/WebMvcAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/thymeleaf/ThymeleafAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/freemarker/FreeMarkerAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/groovy/template/GroovyTemplateAutoConfiguration.java

Spring Boot Reference Guide

76. HTTP Clients

Spring Boot offers a number of starters that work with HTTP clients. This section answers questions
related to using them.

76.1 Configure RestTemplate to Use a Proxy

As described in Section 33.1, “RestTemplate Customization”, you can use a
Rest Tenpl at eCust om zer with Rest Tenpl at eBui | der to build a customized Rest Tenpl at e.
This is the recommended approach for creating a Rest Tenpl at e configured to use a proxy.

The exact details of the proxy configuration depend on the underlying client request factory that is
being used. The following example configures Ht t pConponent s i ent Request Fact ory with an
Ht t pCl i ent that uses a proxy for all hosts except 192. 168. 0. 5:

static class ProxyCustom zer inplenments RestTenpl at eCustom zer {

@verride
public void customn ze(Rest Tenpl ate rest Tenpl ate) {
Ht t pHost proxy = new HttpHost (" proxy. exanpl e. coni);
HtpCient httpCient = HtpCientBuilder.create()
. set Rout ePl anner (new Def aul t ProxyRout ePl anner (proxy) {

@verride
public HttpHost determni neProxy(HttpHost target,
Ht t pRequest request, HttpContext context)
throws HttpException {
if (target.getHostName().equal s("192.168.0.5")) {
return null;
}

return super.determ neProxy(target, request, context);

}

}).build();
rest Tenpl at e. set Request Fact ory(
new Htt pConponent sC i ent Ht t pRequest Factory(httpCient));

2.0.0.RC1 Spring Boot 262

Spring Boot Reference Guide

77.Logging

Spring Boot has no mandatory logging dependency, except for the Commons Logging API, of which
there are many implementations to choose from. To use Logback, you need to include it and j cl -
over - sl f 4j (which implements the Commons Logging API) on the classpath. The simplest way to
do that is through the starters, which all depend on spri ng- boot - st art er-1 o0ggi ng. For a web
application, you need only spri ng- boot - st art er - web, since it depends transitively on the logging
starter. If you use Maven, the following dependency adds logging for you:

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-web</artifactld>

</ dependency>

Spring Boot has a Loggi ngSyst emabstraction that attempts to configure logging based on the content
of the classpath. If Logback is available, it is the first choice.

If the only change you need to make to logging is to set the levels of various loggers, you can do so in
appl i cation. properti es by using the "logging.level" prefix, as shown in the following example:

| oggi ng. | evel . org. spri ngf ramewor k. web=DEBUG
| oggi ng. | evel . or g. hi ber nat e=ERROR

You can also set the location of a file to which to write the log (in addition to the console) by using
"logging.file".

To configure the more fine-grained settings of a logging system, you need to use the native configuration
format supported by the Loggi ngSyst emin question. By default, Spring Boot picks up the native
configuration from its default location for the system (such as cl asspat h: | ogback. xm for Logback),
but you can set the location of the config file by using the "logging.config" property.

77.1 Configure Logback for Logging

If you put a | ogback. xm in the root of your classpath, it is picked up from there (or from | ogback-
spring. xm , to take advantage of the templating features provided by Boot). Spring Boot provides
a default base configuration that you can include if you want to set levels, as shown in the following
example:

<?xm version="1.0" encodi ng="UTF-8"?>

<confi guration>
<i ncl ude resource="org/ springfranmework/ boot /| oggi ng/ | ogback/ base. xm "/ >
<l ogger name="org. spri ngframewor k. web" | evel =" DEBUG'/ >

</ configuration>

If you look at base. xm in the spring-boot jar, you can see that it uses some useful System properties
that the Loggi ngSyst emtakes care of creating for you:

« ${ PI D} : The current process ID.
» ${LOG_FI LE}: Whether | oggi ng. fi | e was set in Boot's external configuration.

» ${LOG_PATH} : Whether | oggi ng. pat h (representing a directory for log files to live in) was set in
Boot’s external configuration.

* ${LOG_EXCEPTI ON_CONVERSI ON_WORD} : Whether | oggi ng. excepti on- conver si on-word
was set in Boot’s external configuration.

2.0.0.RC1 Spring Boot 263

http://logback.qos.ch

Spring Boot Reference Guide

Spring Boot also provides some nice ANSI color terminal output on a console (but not in a log file) by
using a custom Logback converter. See the default base. xm configuration for details.

If Groovy is on the classpath, you should be able to configure Logback with | ogback. gr oovy as well.
If present, this setting is given preference.

Configure Logback for File-only Output

If you want to disable console logging and write output only to a file, you need a custom | ogback-
spring. xm thatimports fi | e- appender. xm but not consol e- appender. xnl , as shown in the
following example:

<?xm version="1.0" encodi ng="UTF-8"?>
<confi gurati on>
<i ncl ude resource="org/ springframework/ boot/| oggi ng/ | ogback/ defaul ts. xm" />
<property nanme="LOG FI LE" val ue="${LOG FI LE: - ${LOG _PATH: - ${LOG TEMP: - ${j ava.io.tnpdir:-/
tnp}}/}spring.log}"/ >
<i ncl ude resource="or g/ springfranmework/boot/I oggi ng/| ogback/fil e-appender.xm " />
<root |evel ="1 NFQO'>
<appender-ref ref="FILE" />
</ root >
</ confi guration>

You also need to add | oggi ng. fi | e to your appl i cati on. properti es, as shown in the following
example:

‘Iogging.fiIe=nyapp|ication.|og

77.2 Configure Log4j for Logging

Spring Boot supports Log4j 2 for logging configuration if it is on the classpath. If you use the starters for
assembling dependencies, you have to exclude Logback and then include log4j 2 instead. If you do not
use the starters, you need to provide (at least) j cl - over - sl f 4] in addition to Log4j 2.

The simplest path is probably through the starters, even though it requires some jiggling with excludes.
The following example shows how to set up the starters in Maven:

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifact!|d>spring-boot-starter-web</artifactl|d>
</ dependency>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter</artifactld>
<excl usi ons>
<excl usi on>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-logging</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-1og4j2</artifactld>
</ dependency>

Note

The Log4j starters gather together the dependencies for common logging requirements (such
as having Tomcat use j ava. uti | .| oggi ng but configuring the output using Log4j 2). See the
Actuator Log4j 2 samples for more detail and to see it in action.

2.0.0.RC1 Spring Boot 264

http://logging.apache.org/log4j/2.x
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-samples/spring-boot-sample-actuator-log4j2

Spring Boot Reference Guide

Note
To ensure that debug logging performed using j ava. util .| oggi ng is routed into Log4j
2, configure its JDK logging adapter by setting the j ava. util .| oggi ng. manager system

property to or g. apache. | oggi ng. | og4j . j ul . LogManager.

Use YAML or JSON to Configure Log4j 2

In addition to its default XML configuration format, Log4j 2 also supports YAML and JSON configuration
files. To configure Log4j 2 to use an alternative configuration file format, add the appropriate
dependencies to the classpath and name your configuration files to match your chosen file format, as
shown in the following example:

Format Dependencies File names
YAML com fasterxm .jackson. core:jackson-dat abi nd | og4j 2. yam
com fasterxm . jackson. dat af or mat : j ackson- dat af or mat - | og4j 2. ym
yam
JSON com fasterxm . jackson. core: j ackson- dat abi nd | og4j 2.j son
l 0og4j 2.jsn

2.0.0.RC1 Spring Boot 265

https://logging.apache.org/log4j/2.0/log4j-jul/index.html

Spring Boot Reference Guide

/8. Data Access

Spring Boot includes a number of starters for working with data sources. This section answers questions
related to doing so.

78.1 Configure a Custom DataSource

To configure your own Dat aSour ce, define a @ean of that type in your configuration. Spring Boot
reuses your Dat aSour ce anywhere one is required, including database initialization. If you need to
externalize some settings, you can bind your Dat aSour ce to the environment (see “the section called
“Third-party Configuration™).

The following example shows how to define a data source in a bean:

@ean
@onfi gurationProperties(prefix="app.datasource")
publ i ¢ DataSource dataSource() {

return new FancyDat aSource();

}

The following example shows how to define a data source by setting properties:

app. dat asour ce. url =j dbc: h2: mem nmydb
app. dat asour ce. user nanme=sa
app. dat asour ce. pool - si ze=30

Assuming that your FancyDat aSour ce has regular JavaBean properties for the URL, the username,
and the pool size, these settings are bound automatically before the Dat aSour ce is made available
to other components. The regular database initialization also happens (so the relevant sub-set of
spring. dat asour ce. * can still be used with your custom configuration).

You can apply the same principle if you configure a custom JNDI Dat aSour ce, as shown in the following
example:

@Bean(dest r oyMet hod="")

@onf i gurationProperties(prefix="app. datasource")

publ i c DataSource dataSource() throws Exception {
Jndi Dat aSour ceLookup dat aSour ceLookup = new Jndi Dat aSour ceLookup() ;
return dat aSour ceLookup. get Dat aSour ce("j ava: conp/ env/ j dbc/ Your DS") ;

}

Spring Boot also provides a utility builder class, called Dat aSour ceBui | der , that can be used to create
one of the standard data sources (if it is on the classpath). The builder can detect the one to use based
on what's available on the classpath. It also auto-detects the driver based on the JDBC URL.

The following example shows how to create a data source by using a Dat aSour ceBui | der :

@Bean
@onfi gurationProperties("app.datasource")
publ i c Dat aSour ce dataSource() {

return DataSourceBuil der.create().build();

}

To run an app with that Dat aSour ce, all you need is the connection information. Pool-specific settings
can also be provided. Check the implementation that is going to be used at runtime for more details.

The following example shows how to define a JDBC data source by setting properties:

2.0.0.RC1 Spring Boot 266

Spring Boot Reference Guide

app. dat asour ce. url =j dbc: nysql : / /1 ocal host/t est
app. dat asour ce. user nane=dbuser

app. dat asour ce. passwor d=dbpass

app. dat asour ce. pool - si ze=30

However, there is a catch. Because the actual type of the connection pool is not exposed, no keys
are generated in the metadata for your custom Dat aSour ce and no completion is available in your
IDE (because the Dat aSour ce interface exposes no properties). Also, if you happen to have Hikari on
the classpath, this basic setup does not work, because Hikari has no ur| property (but does have a
j dbcUr | property). In that case, you must rewrite your configuration as follows:

app. dat asour ce. j dbc-ur | =j dbc: mysql : / /1 ocal host/t est
app. dat asour ce. user nane=dbuser

app. dat asour ce. passwor d=dbpass

app. dat asour ce. maxi mum pool - si ze=30

You can fix that by forcing the connection pool to use and return a dedicated implementation rather than
Dat aSour ce. You cannot change the implementation at runtime, but the list of options will be explicit.

The following example shows how create a H kar i Dat aSour ce with Dat aSour ceBui | der:

@ean
@onfi gurationProperties("app.datasource")
publ i c Hi kari Dat aSour ce dat aSource() {
return DataSourceBuil der.create().type(H kari DataSource. cl ass). build();
}

You can even go further by leveraging what Dat aSour cePr operti es does for you—that is, by
providing a default embedded database with a sensible username and password if no URL is provided.
You can easily initialize a Dat aSour ceBui | der from the state of any Dat aSour cePr operti es
object, so you could also inject the DataSource that Spring Boot creates automatically. However, that
would split your configuration into two namespaces: ur | , user name, password, t ype, and dri ver
onspring. dat asour ce and the rest on your custom namespace (app. dat asour ce). To avoid that,
you can redefine a custom Dat aSour cePr operti es on your custom namespace, as shown in the
following example:

@Bean

@i mary

@onfi gurationProperties("app.datasource")

publ i c Dat aSour ceProperties dataSourceProperties() {
return new Dat aSourceProperties();

}

@Bean
@onfi gurationProperties("app.datasource")
publ i c Hi kari Dat aSour ce dat aSour ce(Dat aSour ceProperties properties) {
return properties.initializeDataSourceBuilder().type(H kari DataSource. cl ass)
Lbuild();

This setup puts you in sync with what Spring Boot does for you by default, except that a dedicated
connection pool is chosen (in code) and its settings are exposed in the same namespace. Because
Dat aSour ceProperti es is taking care of the url /j dbcUr| translation for you, you can configure
it as follows:

app. dat asour ce. url =j dbc: nysql : / /1 ocal host/t est
app. dat asour ce. user nane=dbuser

app. dat asour ce. passwor d=dbpass

app. dat asour ce. maxi mum pool - si ze=30

2.0.0.RC1 Spring Boot 267

Spring Boot Reference Guide

Note

Because your custom configuration chooses to go with Hikari, app. dat asour ce. t ype has no
effect. In practice, the builder is initialized with whatever value you might set there and then
overridden by the call to . t ype() .

See “Section 29.1, “Configure a DataSource™ in the “Spring Boot features” section and the
Dat aSour ceAut oConf i gur at i on class for more details.

78.2 Configure Two DataSources

If you need to configure multiple data sources, you can apply the same tricks that are described in the
previous section. You must, however, mark one of the Dat aSour ce instances as @r i mary, because
various auto-configurations down the road expect to be able to get one by type.

If you create your own Dat aSour ce, the auto-configuration backs off. In the following example, we
provide the exact same feature set as the auto-configuration provides on the primary data source:

@Bean

@ri mary

@onfi gurationProperties("app. datasource.first")

publ i c DataSourceProperties firstDataSourceProperties() {
return new Dat aSour ceProperties();

}

@Bean
@rimary
@onfi gurationProperties("app. datasource.first")
publ i c Dat aSource firstDataSource() {
return firstDataSourceProperties().initializeDataSourceBuilder().build();

}

@ean
@onfi gurationProperties("app. datasource. second")
publ i ¢ Basi cDat aSour ce secondDat aSource() {
return DataSourceBuil der.create().type(Basi cDataSource. cl ass). build();

}

Tip

firstDataSourceProperties hastobe flagged as @r i mar y so that the database initializer
feature uses your copy (if you use the initializer).

Both data sources are also bound for advanced customizations. For instance, you could configure them
as follows:

app. dat asource. first.type=com zaxxer. hi kari. H kari Dat aSour ce
app. dat asour ce. first. maxi mum pool - si ze=30

app. dat asour ce. second. ur | =j dbc: nysql : / /| ocal host/test
app. dat asour ce. second. user nane=dbuser

app. dat asour ce. second. passwor d=dbpass

app. dat asour ce. second. max-t ot al =30

You can apply the same concept to the secondary Dat aSour ce as well, as shown in the following
example:

@ean

@rimry

@Confi gurationProperties("app.datasource.first")

publ i c Dat aSour ceProperties firstDataSourceProperties() {

2.0.0.RC1 Spring Boot 268

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/DataSourceAutoConfiguration.java

Spring Boot Reference Guide

return new Dat aSour ceProperties();

}

@Bean
@ri mary
@onfi gurationProperties("app. datasource.first")
publ ic DataSource firstDataSource() {
return firstDataSourceProperties().initializeDataSourceBuilder().build();
}

@Bean

@onfi gurationProperties("app. datasource. second")

publ i ¢ Dat aSour ceProperties secondDat aSourceProperties() {
return new Dat aSour ceProperties();

}

@ean
@onfi gurationProperties("app. datasource. second")
publ i ¢ DataSource secondDat aSource() {
return secondDat aSour ceProperties().initializeDataSourceBuilder().build();

}

The preceding example configures two data sources on custom namespaces with the same logic as
Spring Boot would use in auto-configuration.

78.3 Use Spring Data Repositories

Spring Data can create implementations of @Reposi t ory interfaces of various flavors. Spring Boot
handles all of that for you, as long as those @reposi t ori es are included in the same package (or a
sub-package) of your @nabl eAut oConf i gur ati on class.

For many applications, all you need is to put the right Spring Data dependencies on your classpath (there
is a spring-boot -starter-data-j pa for JPA and a spri ng- boot - st art er - dat a- nrongodb
for Mongodb) and create some repository interfaces to handle your @nt i t y objects. Examples are in
the JPA sample and the Mongodb sample.

Spring Boot tries to guess the location of your @Repository definitions, based on the
@nabl eAut oConfi gurati on it finds. To get more control, use the @nabl eJpaReposi tories
annotation (from Spring Data JPA).

For more about Spring Data, see the Spring Data project page.

78.4 Separate @Entity Definitions from Spring Configuration

Spring Boot tries to guess the location of your @Entity definitions, based on the
@nabl eAut oConfi guration it finds. To get more control, you can use the @ntityScan
annotation, as shown in the following example:

@onfi guration

@nabl eAut oConf i guration
@ntityScan(basePackageC asses=City. cl ass)
public class Application {

/...

78.5 Configure JPA Properties

Spring Data JPA already provides some vendor-independent configuration options (such as those
for SQL logging), and Spring Boot exposes those options and a few more for Hibernate as external

2.0.0.RC1 Spring Boot 269

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-samples/spring-boot-sample-data-jpa
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-samples/spring-boot-sample-data-mongodb
http://projects.spring.io/spring-data/

Spring Boot Reference Guide

configuration properties. Some of them are automatically detected according to the context so you
should not have to set them.

The spring.jpa.hibernate.ddl -auto is a special case, because, depending on runtime
conditions, it has different defaults. If an embedded database is used and no schema manager (such
as Liquibase or Flyway) is handling the Dat aSour ce, it defaults to cr eat e- dr op. In all other cases,
it defaults to none.

The dialect to use is also automatically detected based on the current Dat aSour ce, but you can set
spring. j pa. dat abase yourself if you want to be explicit and bypass that check on startup.

Note

Specifying a dat abase leads to the configuration of a well-defined Hibernate dialect. Several
databases have more than one Di al ect, and this may not suit your needs. In that case, you
can either set spri ng. j pa. dat abase to def aul t to let Hibernate figure things out or set the
dialect by setting the spri ng. j pa. dat abase- pl at f or mproperty.

The most common options to set are shown in the following example:

spring.j pa. hi bernat e. nam ng. physi cal - st rat egy=com exanpl e. MyPhysi cal Nani ngSt r at egy
spring. j pa. showsql =true

In addition, all properties in spring.jpa.properties.* are passed through as normal JPA
properties (with the prefix stripped) when the local Ent i t yManager Fact or y is created.

Tip
If you need to apply advanced customization to Hibernate properties, consider registering
a Hi bernat eProperti esCustom zer bean that will be invoked prior to creating the

Enti t yManager Fact ory. This takes precedence to anything that is applied by the auto-
configuration.

78.6 Configure Hibernate Naming Strategy

Hibernate uses two different naming strategies to map names from the object model to the
corresponding database names. The fully qualified class name of the physical and the implicit strategy
implementations can be configured by setting the spri ng. j pa. hi ber nat e. nam ng. physi cal -
strat egy and spring. j pa. hi bernate. nam ng. i nplicit-strategy properties, respectively.
Alternatively, if | npl i ci t Nam ngSt r at egy or Physi cal Nani ngSt r at egy beans are available in
the application context, Hibernate will be automatically configured to use them.

By default, Spring Boot configures the physical naming strategy with
Spri ngPhysi cal Nam ngStrat egy. This implementation provides the same table structure as
Hibernate 4: all dots are replaced by underscores and camel casing is replaced by underscores as well.
By default, all table names are generated in lower case, but it is possible to override that flag if your
schema requires it.

For example, a Tel ephoneNunber entity is mapped to the t el ephone_nunber table.
If you prefer to use Hibernate 5’'s default instead, set the following property:

spring. j pa. hi ber nat e. nam ng. physi cal -
strat egy=or g. hi ber nat e. boot . nodel . nam ng. Physi cal Nam ngSt r at egy St andar dl npl

2.0.0.RC1 Spring Boot 270

http://docs.jboss.org/hibernate/orm/5.2/userguide/html_single/Hibernate_User_Guide.html#naming

Spring Boot Reference Guide

Alternatively, you can configure the following bean:

@Bean
publ i ¢ Physi cal Nam ngStrat egy physi cal Nami ngStrategy() {
return new Physi cal Nam ngSt rat egySt andar dl npl () ;

}

See Hi ber nat eJpaAut oConfi gur ati on and JpaBaseConf i gur at i on for more details.

78.7 Use a Custom EntityManagerFactory

To take full control of the configuration of the Ent i t yManager Fact ory, you need to add a @ean
named ‘entityManagerFactory’. Spring Boot auto-configuration switches off its entity manager in the
presence of a bean of that type.

78.8 Use Two EntityManagers

Even if the default Enti t yManager Fact ory works fine, you need to define a new one. Otherwise,
the presence of the second bean of that type switches off the default. To make it easy to do, you
can use the convenient Enti t yManager Bui | der provided by Spring Boot. Alternatively, you can
just the Local Cont ai ner Ent i t yManager Fact or yBean directly from Spring ORM, as shown in the
following example:

/1 add two data sources configured as above

@Bean
publ i c Local Cont ai ner Enti t yManager Fact or yBean cust oner Ent i t yManager Fact or y(
Enti t yManager Fact or yBui | der bui |l der) {
return buil der

. dat aSour ce(cust oner Dat aSour ce())
. packages(Cust oner. cl ass)
. persi st enceUni t ("cust oners")
.build();

}

@ean
publ i c Local Cont ai ner EntityManager Fact or yBean order EntityManager Fact ory(
Enti t yManager Fact or yBui | der bui |l der) {
return buil der

. dat aSour ce(or der Dat aSour ce())
. packages(Order. cl ass)
. persi stenceUnit("orders")
.build();

The configuration above almost works on its own. To complete the picture, you need to configure
Transact i onManager s forthe two Ent i t yManager s as well. If you mark one of them as @r i mary,
it could be picked up by the default JpaTr ansact i onManager in Spring Boot. The other would have
to be explicitly injected into a new instance. Alternatively, you might be able to use a JTA transaction
manager that spans both.

If you use Spring Data, you need to configure @nabl eJpaReposi t ori es accordingly, as shown in
the following example:

@confi guration

@nabl eJpaReposi tori es(basePackageC asses = Custoner. cl ass,
enti tyManager Fact oryRef = "custoner EntityManager Fact ory")

public class CustonerConfiguration {

}

2.0.0.RC1 Spring Boot 271

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/HibernateJpaAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/JpaBaseConfiguration.java

Spring Boot Reference Guide

@onfiguration

@nabl eJpaReposi t ori es(basePackageCl asses = Order. cl ass,
entityManager Fact oryRef = "order EntityManager Factory")

public class OderConfiguration {

}

78.9 Use a Traditional per si st ence. xml File

Spring does not require the use of XML to configure the JPA provider, and Spring Boot assumes you
want to take advantage of that feature. If you prefer to use per si st ence. xm , you need to define your
own @ean of type Local Ent i t yManager Fact or yBean (with an ID of ‘entityManagerFactory’) and
set the persistence unit name there.

See JpaBaseConf i gur ati on for the default settings.

78.10 Use Spring Data JPA and Mongo Repositories

Spring Data JPA and Spring Data Mongo can both automatically create Reposi t or y implementations
for you. If they are both present on the classpath, you might have to do some extra configuration to tell
Spring Boot which repositories to create. The most explicit way to do that is to use the standard Spring
Data @nabl eJpaReposi t ori es and @nabl eMongoReposi t ori es annotations and provide the
location of your Reposi t ory interfaces.

There are also flags (spring.data.*.repositories. enabl ed and
spring.data. *.repositories.type)that you can use to switch the auto-configured repositories
on and off in external configuration. Doing so is useful, for instance, in case you want to switch off the
Mongo repositories and still use the auto-configured MongoTenpl at e.

The same obstacle and the same features exist for other auto-configured Spring Data repository types
(Elasticsearch, Solr, and others). To work with them, change the names of the annotations and flags
accordingly.

78.11 Expose Spring Data Repositories as REST Endpoint

Spring Data REST can expose the Reposi t or y implementations as REST endpoints for you, provided
Spring MVC has been enabled for the application.

Spring Boot exposes a set of useful properties (from the spri ng. data. rest namespace) that
customize the Reposi t or yRest Confi gurati on. If you need to provide additional customization,
you should use a Reposi t or yRest Conf i gur er bean.

Note

If you do not specify any order on your custom Reposi t or yRest Conf i gur er, it runs after the
one Spring Boot uses internally. If you need to specify an order, make sure it is higher than 0.

78.12 Configure a Component that is Used by JPA

If you want to configure a component that JPA uses, then you need to ensure that the component is
initialized before JPA. When the component is auto-configured, Spring Boot takes care of this for you.
For example, when Flyway is auto-configured, Hibernate is configured to depend upon Flyway so that
Flyway has a chance to initialize the database before Hibernate tries to use it.

2.0.0.RC1 Spring Boot 272

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/JpaBaseConfiguration.java
http://docs.spring.io/spring-data/rest/docs/current/api/org/springframework/data/rest/core/config/RepositoryRestConfiguration.html
http://docs.spring.io/spring-data/rest/docs/current/api/org/springframework/data/rest/webmvc/config/RepositoryRestConfigurer.html

Spring Boot Reference Guide

If you are configuring a component yourself, you can use an
Enti t yManager Fact or yDependsOnPost Processor subclass as a convenient way of setting
up the necessary dependencies. For example, if you use Hibernate Search with Elasticsearch as
its index manager, any Entit yManager Fact ory beans must be configured to depend on the
el asti csearchd i ent bean, as shown in the following example:

/**
* {@ink EntityManager Fact or yDependsOnPost Processor} that ensures that
* {@ink EntityManagerFactory} beans depend on the {@ode el asticsearchdient} bean.
*/
@onfiguration
static class ElasticsearchJpaDependencyConfi guration
extends EntityManager Fact or yDependsOnPost Processor {

El asti csear chJpaDependencyConfi guration() {
super ("el asticsearchCient");

}

78.13 Configure jOOQ with Two DataSources

If you need to use jOOQ with multiple data sources, you should create your own DSLCont ext for each
one. Refer to JoogAutoConfiguration for more details.

Tip

In particular, JoogExceptionTransl ator and SpringTransacti onProvi der can be
reused to provide similar features to what the auto-configuration does with a single Dat aSour ce.

2.0.0.RC1 Spring Boot 273

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jooq/JooqAutoConfiguration.java

Spring Boot Reference Guide

79. Database Initialization

An SQL database can be initialized in different ways depending on what your stack is. Of course, you
can also do it manually, provided the database is a separate process.

79.1 Initialize a Database Using JPA

JPA has features for DDL generation, and these can be set up to run on startup against the database.
This is controlled through two external properties:

* spring.jpa. generate-ddl (boolean) switches the feature on and off and is vendor independent.

* spring.jpa. hi bernate. ddl - aut o (enum) is a Hibernate feature that controls the behavior in a
more fine-grained way. This feature is described in more detail later in this guide.

79.2 Initialize a Database Using Hibernate

You can set spring.j pa. hi bernate. ddl - aut o explicitly and the standard Hibernate property
values are none, val i dat e, updat e, creat e, and cr eat e- dr op. Spring Boot chooses a default
value for you based on whether it thinks your database is embedded. It defaults to cr eat e- dr op if no
schema manager has been detected or none in all other cases. An embedded database is detected
by looking at the Connect i on type. hsqgl db, h2, and der by are embedded, and others are not. Be
careful when switching from in-memory to a ‘real’ database that you do not make assumptions about
the existence of the tables and data in the new platform. You either have to set ddI - aut o explicitly or
use one of the other mechanisms to initialize the database.

Note

You can output the schema creation by enabling the or g. hi ber nat e. SQL logger. This is done
for you automatically if you enable the debug mode.

In addition, a file named i nport . sql in the root of the classpath is executed on startup if Hibernate
creates the schema from scratch (that is, if the ddl - aut o property is setto cr eat e or cr eat e- dr op).
This can be useful for demos and for testing if you are careful but is probably not something you want
to be on the classpath in production. It is a Hibernate feature (and has nothing to do with Spring).

79.3 Initialize a Database

Spring Boot can automatically create the schema (DDL scripts) of your DataSource
and initialize it (DML scripts). It loads SQL from the standard root classpath locations:
schema. sql and dat a. sql, respectively. In addition, Spring Boot processes the schena-
${platform.sql anddata-${pl atform}. sql files (if present), where pl at f or mis the value of
spring. dat asour ce. pl at f or m This allows you to switch to database-specific scripts if necessary.
For example, you might choose to set it to the vendor name of the database (hsql db, h2, or acl e,
nysql , post gr esql , and so on).

Spring Boot automatically creates the schema of an embedded Dat aSour ce. This behavior can be
customized by using the spri ng. dat asource. i niti ali zati on- node property (and it can also be
al ways or never).

2.0.0.RC1 Spring Boot 274

Spring Boot Reference Guide

By default, Spring Boot enables the fail-fast feature of the Spring JDBC initializer. This means that,
if the scripts cause exceptions, the application fails to start. You can tune that behavior by setting
spring. dat asour ce. conti nue-on-error.

Note

In a JPA-based app, you can choose to let Hibernate create the schema or use schena. sql ,
but you cannot do both. Make sure to disable spri ng. j pa. hi ber nat e. ddl - aut o if you use
schena. sql .

79.4 Initialize a Spring Batch Database

If you use Spring Batch, it comes pre-packaged with SQL initialization scripts for most popular database
platforms. Spring Boot can detect your database type and execute those scripts on startup. If you use an
embedded database, this happens by default. You can also enable it for any database type, as shown
in the following example:

‘ spring. batch.initialize-schema=al ways

You can also switch off the initialization explicitly by setting spring. batch.initialize-
schenma=never.

79.5 Use a Higher-level Database Migration Tool

Spring Boot supports two higher-level migration tools: Flyway and Liguibase.

Execute Flyway Database Migrations on Startup

To automatically run Flyway database migrations on startup, add the or g. f | ywaydb: f| yway- core
to your classpath.

The migrations are scripts in the form V<VERSI ON>__ <NAME>. sql (with <VERSI ON> an underscore-
separated version, such as ‘1’ or ‘2_1'). By default, they are in a folder called cl asspat h: db/
nmi gr at i on, but you can modify that location by setting spri ng. f| yway. | ocati ons. You can also
add a special { vendor } placeholder to use vendor-specific scripts. Assume the following:

spring. flyway. | ocati ons=db/ m gration/{vendor}

Rather than using db/ mi gr at i on, the preceding configuration sets the folder to use according to the
type of the database (such as db/ mi grati on/ mysqgl for MySQL). The list of supported databases is
available in Dat abaseDri ver.

See the Flyway class from flyway-core for details of available settings such as schemas and others.
In addition, Spring Boot provides a small set of properties (in Fl ywayPr operti es) that can be used
to disable the migrations or switch off the location checking. Spring Boot calls Fl yway. mi gr at e()
to perform the database migration. If you would like more control, provide a @ean that implements
Fl ywayM grati onStrat egy.

Flyway supports SQL and Java callbacks. To use SQL-based callbacks, place the callback scripts
in the cl asspat h: db/ mi gr ati on folder. To use Java-based callbacks, create one or more beans
that implement Fl ywayCal | back or, preferably, extend BaseFl ywayCal | back. Any such beans
are automatically registered with FI yway. They can be ordered by using @ der or by implementing
O der ed.

2.0.0.RC1 Spring Boot 275

http://flywaydb.org/
http://www.liquibase.org/
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/jdbc/DatabaseDriver.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/flyway/FlywayProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/flyway/FlywayMigrationStrategy.java
http://flywaydb.org/documentation/callbacks.html

Spring Boot Reference Guide

By default, Flyway autowires the (@i mary) DataSource in your context and uses that
for migrations. If you like to use a different Dat aSource, you can create one and mark
its @ean as @l ywayDat aSource. If you do so and want two data sources, remember
to create another one and mark it as @ri mary. Alternatively, you can use Flyway's native
Dat aSour ce by setting spring. fl yway. [url, user, password] in external properties. Setting
either spring. flyway.url or spring.flyway. user is sufficient to cause Flyway to use its
own Dat aSour ce. If any of the three properties has not be set, the value of its equivalent
spri ng. dat asour ce property will be used.

There is a Flyway sample so that you can see how to set things up.

You can also use Flyway to provide data for specific scenarios. For example, you can place test-
specific migrations in src/test/resour ces and they are run only when your application starts for
testing. Also, you can use profile-specific configuration to customize spri ng. fl yway. | ocati ons
so that certain migrations run only when a particular profile is active. For example, in appl i cati on-
dev. pr operti es, you might specify the following setting:

spring. flyway. | ocati ons=cl asspath:/db/ m gration, cl asspath:/dev/db/ m gration
With that setup, migrations in dev/ db/ m gr at i on run only when the dev profile is active.
Execute Liquibase Database Migrations on Startup

To automatically run Liguibase database migrations on startup, add the
org. |l i qui base: | i qui base- cor e to your classpath.

By default, the master change log is read from db/ changel og/ db. changel og- nast er. yani , but
you can change the location by setting spri ng. | i qui base. change- | og. In addition to YAML,
Liguibase also supports JSON, XML, and SQL change log formats.

By default, Liquibase autowires the (@Pri mary) Dat aSource in your context and uses that
for migrations. If you need to use a different Dat aSour ce, you can create one and mark its
@ean as @.i qui baseDat aSour ce. If you do so and you want two data sources, remember
to create another one and mark it as @ri mary. Alternatively, you can use Liquibase’s native
Dat aSour ce by settingspri ng. | i qui base. [url, user, passwor d] in external properties. Setting
either spring. | i qui base. url or spring.!liquibase.user is sufficient to cause Liquibase to
use its own Dat aSour ce. If any of the three properties has not be set, the value of its equivalent
spri ng. dat asour ce property will be used.

See Li qui basePr operti es for details about available settings such as contexts, the default schema,
and others.

There is a Liguibase sample so that you can see how to set things up.

2.0.0.RC1 Spring Boot 276

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-samples/spring-boot-sample-flyway
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/liquibase/LiquibaseProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-samples/spring-boot-sample-liquibase

Spring Boot Reference Guide

80. Messaging

Spring Boot offers a number of starters that include messaging. This section answers questions that
arise from using messaging with Spring Boot.

80.1 Disable Transacted JMS Session

If your JMS broker does not support transacted sessions, you have to disable the support
of transactions altogether. If you create your own JnsLi st ener Cont ai ner Factory, there
is nothing to do, since, by default it cannot be transacted. If you want to use the
Def aul t JnsLi st ener Cont ai ner Fact or yConfi gurer to reuse Spring Boot's default, you can
disable transacted sessions, as follows:

@Bean
publ i c Defaul tJnsLi st ener Cont ai ner Factory j nsLi st ener Cont ai ner Fact or y(
Connecti onFactory connectionFactory,
Def aul t InsLi st ener Cont ai ner Fact or yConfi gurer configurer) {
Def aul t JmsLi st ener Cont ai ner Factory |istenerFactory =
new Def aul t JmsLi st ener Cont ai ner Factory();
configurer.configure(listenerFactory, connectionFactory);
|'i stener Factory. set Transacti onManager (nul |);
i stenerFactory. set Sessi onTransact ed(fal se);
return |istenerFactory;

The preceding example overrides the default factory, and it should be applied to any other factory that
your application defines, if any.

2.0.0.RC1 Spring Boot 277

Spring Boot Reference Guide

81. Batch Applications

This section answers questions that arise from using Spring Batch with Spring Boot.

Note

By default, batch applications require a Dat aSource to store job details. If you want
to deviate from that, you need to implement Bat chConfi gurer. See The Javadoc of
@nabl eBat chPr ocessi ng for more details.

For more about Spring Batch, see the Spring Batch project page.

81.1 Execute Spring Batch Jobs on Startup

Spring Batch auto-configuration is enabled by adding @nabl eBat chPr ocessi ng (from Spring Batch)
somewhere in your context.

By default, it executes all Jobs in the application context on startup (see
JobLauncherCommandLineRunner for details). You can narrow down to a specific job or jobs by
specifying spri ng. bat ch. j ob. nanmes (which takes a comma-separated list of job hame patterns).

If the application context includes a JobRegi st ry, the jobsinspri ng. bat ch. j ob. nanes are looked
up in the registry instead of being autowired from the context. This is a common pattern with more
complex systems, where multiple jobs are defined in child contexts and registered centrally.

See BatchAutoConfiguration and @EnableBatchProcessing for more details.

2.0.0.RC1 Spring Boot 278

http://docs.spring.io/spring-batch/apidocs/org/springframework/batch/core/configuration/annotation/EnableBatchProcessing.html
http://docs.spring.io/spring-batch/apidocs/org/springframework/batch/core/configuration/annotation/EnableBatchProcessing.html
https://projects.spring.io/spring-batch/
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/batch/JobLauncherCommandLineRunner.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/batch/BatchAutoConfiguration.java
https://github.com/spring-projects/spring-batch/blob/master/spring-batch-core/src/main/java/org/springframework/batch/core/configuration/annotation/EnableBatchProcessing.java

Spring Boot Reference Guide

82. Actuator

Spring Boot includes the Spring Boot Actuator. This section answers questions that often arise from
its use.

82.1 Change the HTTP Port or Address of the Actuator
Endpoints

In a standalone application, the Actuator HTTP port defaults to the same as the main
HTTP port. To make the application listen on a different port, set the external property:
managenent . server. port. To listen on a completely different network address (such as when you
have an internal network for management and an external one for user applications), you can also set
management . server. addr ess to a valid IP address to which the server is able to bind.

For more detail, see the Managenent Server Properties source code and “Section 50.2
“Customizing the Management Server Port™ in the “Production-ready features” section.

82.2 Customize the ‘whitelabel’ Error Page

Spring Boot installs a ‘whitelabel’ error page that you see in a browser client if you encounter a server
error (machine clients consuming JSON and other media types should see a sensible response with
the right error code).

Note

Setserver. error. whitel abel . enabl ed=f al se to switch the default error page off. Doing
so restores the default of the servlet container that you are using. Note that Spring Boot still tries
to resolve the error view, so you should probably add your own error page rather than disabling
it completely.

Overriding the error page with your own depends on the templating technology that you use. For
example, if you use Thymeleaf, you can add an er r or . ht nl template. If you use FreeMarker, you can
add an error. ftl template. In general, you need a Vi ew that resolves with a name of error or a
@control | er that handles the / er r or path. Unless you replaced some of the default configuration,
you should find a BeanNaneVi ewResol ver in your Appl i cati onCont ext, so a @ean named
err or would be a simple way of doing that. See Er r or MrcAut oConf i gur at i on for more options.

See also the section on “Error Handling” for details of how to register handlers in the servlet container.

2.0.0.RC1 Spring Boot 279

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/web/server/ManagementServerProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/servlet/error/ErrorMvcAutoConfiguration.java

Spring Boot Reference Guide

83. Security

This section addresses questions about security when working with Spring Boot, including questions
that arise from using Spring Security with Spring Boot.

For more about Spring Security, see the Spring Security project page.

83.1 Switch off the Spring Boot Security Configuration

If you define a @onfi gurati on with a WebSecuri t yConfi gur er Adapt er in your application, it
switches off the default webapp security settings in Spring Boot.

83.2 Change the AuthenticationManager and Add User
Accounts

If you provide a @ean of type Authenti cati onManager, AuthenticationProvider, or

User Det ai | sSer vi ce, the default @Bean for | nMenor yUser Det ai | sManager is not created, so
you have the full feature set of Spring Security available (such as various authentication options).

The easiest way to add user accounts is to provide your own User Det ai | sSer vi ce bean.

83.3 Enable HTTPS When Running behind a Proxy Server

Ensuring that all your main endpoints are only available over HTTPS is an important chore for
any application. If you use Tomcat as a servlet container, then Spring Boot adds Tomcat's own
Renot el pVal ve automatically if it detects some environment settings, and you should be able to
rely on the Ht t pSer vl et Request to report whether it is secure or not (even downstream of a proxy
server that handles the real SSL termination). The standard behavior is determined by the presence or
absence of certain request headers (x- f or war ded- f or and x- f or war ded- pr ot 0), whose names
are conventional, so it should work with most front-end proxies. You can switch on the valve by adding
some entries to appl i cati on. properti es, as shown in the following example:

server.toncat.renote-ip-header =x-f orwarded-f or
server.tontat. protocol - header =x- f or war ded- pr ot o

(The presence of either of those properties switches on the valve. Alternatively, you can add the
Renot el pVal ve by adding a Tontat Ser vl et WebSer ver Fact or y bean.)

To configure Spring Security to require a secure channel for all (or some) requests, consider adding
your own WebSecur i t yConfi gur er Adapt er that adds the following Ht t pSecuri t y configuration:

@onfi guration
public class Ssl WebSecurityConfi gurerAdapt er extends WebSecurityConfi gurer Adapter {

@verride

protected void configure(HttpSecurity http) throws Exception {
/] Customi ze the application security
htt p. requi resChannel (). anyRequest (). requiresSecure();

}
}

2.0.0.RC1 Spring Boot 280

http://projects.spring.io/spring-security/
http://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#jc-authentication

Spring Boot Reference Guide

84. Hot Swapping
Spring Boot supports hot swapping. This section answers questions about how it works.

84.1 Reload Static Content

There are several options for hot reloading. The recommended approach is to use spri ng- boot -
devt ool s, as it provides additional development-time features, such as support for fast application
restarts and LiveReload as well as sensible development-time configuration (such as template caching).
Devtools works by monitoring the classpath for changes. This means that static resource changes must
be "built" for the change to take affect. By default, this happens automatically in Eclipse when you save
your changes. In IntelliJ IDEA, the Make Project command triggers the necessary build. Due to the
default restart exclusions, changes to static resources do not trigger a restart of your application. They
do, however, trigger a live reload.

Alternatively, running in an IDE (especially with debugging on) is a good way to do development (all
modern IDEs allow reloading of static resources and usually also allow hot-swapping of Java class
changes).

Finally, the Maven and Gradle plugins can be configured (see the addResour ces property) to support
running from the command line with reloading of static files directly from source. You can use that with
an external css/js compiler process if you are writing that code with higher-level tools.

84.2 Reload Templates without Restarting the Container

Most of the templating technologies supported by Spring Boot include a configuration option to disable
caching (described later in this document). If you use the spri ng- boot - devt ool s module, these
properties are automatically configured for you at development time.

Thymeleaf Templates

If you use Thymeleaf, set spring.thynel eaf. cache to fal se. See
Thynel eaf Aut oConfi gur at i on for other Thymeleaf customization options.

FreeMarker Templates

If you use FreeMarker, set spring. freemarker. cache to fal se. See
Fr eeMar ker Aut oConf i gur at i on for other FreeMarker customization options.

Groovy Templates

If you use Groovy templates, set spring.groovy.tenplate.cache to false. See
GroovyTenpl at eAut oConfi gur at i on for other Groovy customization options.

84.3 Fast Application Restarts

The spri ng- boot - devt ool s module includes support for automatic application restarts. While not
as fast as technologies such as JRebel it is usually significantly faster than a “cold start”. You should
probably give it a try before investigating some of the more complex reload options discussed later in
this document.

For more details, see the Chapter 20, Developer Tools section.

2.0.0.RC1 Spring Boot 281

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/thymeleaf/ThymeleafAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/freemarker/FreeMarkerAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/groovy/template/GroovyTemplateAutoConfiguration.java
http://zeroturnaround.com/software/jrebel/

Spring Boot Reference Guide

84.4 Reload Java Classes without Restarting the Container

Many modern IDEs (Eclipse, IDEA, and others) support hot swapping of bytecode. Consequently, if
you make a change that does not affect class or method signatures, it should reload cleanly with no

side effects.

2.0.0.RC1 Spring Boot 282

Spring Boot Reference Guide

85. Build

Spring Boot includes build plugins for Maven and Gradle. This section answers common questions
about these plugins.

85.1 Generate Build Information

Both the Maven plugin and the Gradle plugin allow generating build information containing the
coordinates, name, and version of the project. The plugins can also be configured to add additional
properties through configuration. When such a file is present, Spring Boot auto-configures a
Bui | dPr operti es bean.

To generate build information with Maven, add an execution for the bui | d-i nf o goal, as shown in
the following example:

<bui | d>
<pl ugi ns>
<pl ugi n>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-maven-plugin</artifactld>
<ver si on>2. 0. 0. RC1</ ver si on>
<executions>
<executi on>
<goal s>
<goal >bui | d-i nf o</ goal >
</ goal s>
</ executi on>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

Tip

See the Spring Boot Maven Plugin documentation for more details.

The following example does the same with Gradle:

spri ngBoot {
bui I dI nfo()
}

Additional properties can be added by using the DSL, as shown in the following example:

springBoot {
bui l dl nfo {
addi ti onal Properties = [
‘acme': 'test
|
}
}

85.2 Generate Git Information

Both Maven and Gradle allow generatingagi t . properti es file containing information about the state
of your gi t source code repository when the project was built.

For Maven users, the spri ng-boot-starter-parent POM includes a pre-configured plugin to
generate agit. properti es file. To use it, add the following declaration to your POM:

2.0.0.RC1 Spring Boot 283

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/maven-plugin

Spring Boot Reference Guide

<bui | d>
<pl ugi ns>
<pl ugi n>
<gr oupl d>pl . proj ect 13. maven</ gr oupl d>
<artifactld>git-commt-id-plugin</artifactld>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

Gradle users can achieve the same result by using the gr adl e- gi t - proper ti es plugin, as shown
in the following example:

plugins {
id "com goryl enko. gradl e-git-properties" version "1.4.17"

}
Tip

The commit time in git. properties is expected to match the following format: yyyy- MM
dd’ T' HH: mm ssZ. This is the default format for both plugins listed above. Using this format lets
the time be parsed into a Dat e and its format, when serialized to JSON, to be controlled by
Jackson'’s date serialization configuration settings.

85.3 Customize Dependency Versions

If you use a Maven build that inherits directly or indirectly from spri ng- boot - dependenci es
(for instance, spring-boot-starter-parent) but you want to override a specific third-party
dependency, you can add appropriate <properti es> elements. Browse the spri ng-boot -
dependenci es POM for a complete list of properties. For example, to pick a different sl f 4] version,
you would add the following property:

<properties>
<sl f4j.version>1. 7. 5<sl f4j.version>
</ properties>

Note

Doing so only works if your Maven project inherits (directly or indirectly) from spri ng-
boot - dependenci es. If you have added spring-boot-dependenci es in your own
dependencyManagenent section with <scope>i nport </ scope>, you have to redefine the
artifact yourself instead of overriding the property.

Warning

Each Spring Boot release is designed and tested against this specific set of third-party
dependencies. Overriding versions may cause compatibility issues.

85.4 Create an Executable JAR with Maven

The spri ng- boot - maven- pl ugi n can be used to create an executable “fat” JAR. If you use the
spring-boot - st art er-parent POM, you can declare the plugin and your jars are repackaged as
follows:

<bui | d>

2.0.0.RC1 Spring Boot 284

https://plugins.gradle.org/plugin/com.gorylenko.gradle-git-properties
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-dependencies/pom.xml
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-dependencies/pom.xml

Spring Boot Reference Guide

<pl ugi ns>
<pl ugi n>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-maven-plugin</artifactld>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

If you do not use the parent POM, you can still use the plugin. However, you must additionally add an
<execut i ons> section, as follows:

<bui | d>
<pl ugi ns>
<pl ugi n>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-maven-plugin</artifactld>
<version>2.0.0. RC1</versi on>
<executi ons>
<executi on>
<goal s>
<goal >r epackage</ goal >
</ goal s>
</ executi on>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

See the plugin documentation for full usage details.

85.5 Use a Spring Boot Application as a Dependency

Like a war file, a Spring Boot application is not intended to be used as a dependency. If your application
contains classes that you want to share with other projects, the recommended approach is to move that
code into a separate module. The separate module can then be depended upon by your application
and other projects.

If you cannot rearrange your code as recommended above, Spring Boot's Maven and Gradle plugins
must be configured to produce a separate artifact that is suitable for use as a dependency. The
executable archive cannot be used as a dependency as the executable jar format packages application
classes in BOOT- | NF/ cl asses. This means that they cannot be found when the executable jar is used
as a dependency.

To produce the two artifacts, one that can be used as a dependency and one that is executable, a
classifier must be specified. This classifier is applied to the name of the executable archive, leaving the
default archive for use as a dependency.

To configure a classifier of exec in Maven, you can use the following configuration:

<bui | d>
<pl ugi ns>
<pl ugi n>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-maven-plugin</artifactld>
<configuration>
<cl assi fi er>exec</cl assifier>
</ configuration>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

2.0.0.RC1 Spring Boot 285

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/maven-plugin/usage.html

Spring Boot Reference Guide

85.6 Extract Specific Libraries When an Executable Jar Runs

Most nested libraries in an executable jar do not need to be unpacked in order to run. However, certain
libraries can have problems. For example, JRuby includes its own nested jar support, which assumes
that the j r uby- conpl et e. j ar is always directly available as a file in its own right.

To deal with any problematic libraries, you can flag that specific nested jars should be automatically
unpacked to the “temp folder” when the executable jar first runs.

For example, to indicate that JRuby should be flagged for unpacking by using the Maven Plugin, you
would add the following configuration:

<bui | d>
<pl ugi ns>
<pl ugi n>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifact!|d>spring-boot-mven-plugin</artifactld>
<configuration>
<r equi r esUnpack>
<dependency>
<gr oupl d>or g. j ruby</ gr oupl d>
<artifactld>jruby-conplete</artifactld>
</ dependency>
</ requi resUnpack>
</ configuration>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

85.7 Create a Non-executable JAR with Exclusions

Often, if you have an executable and a non-executable jar as two separate build products, the
executable version has additional configuration files that are not needed in a library jar. For example,
the appl i cati on. ym configuration file might by excluded from the non-executable JAR.

In Maven, the executable jar must be the main artifact and you can add a classified jar for the library,
as follows:

<bui | d>
<pl ugi ns>
<pl ugi n>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-maven-plugin</artifactld>
</ pl ugi n>
<pl ugi n>
<artifactld>maven-j ar-plugin</artifactld>
<executions>
<execution>
<id>lib</id>
<phase>package</ phase>
<goal s>
<goal >j ar </ goal >
</ goal s>
<configuration>
<classifier>lib</classifier>
<excl udes>
<excl ude>appl i cation.ym </ excl ude>
</ excl udes>
</ configuration>
</ executi on>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

2.0.0.RC1 Spring Boot 286

Spring Boot Reference Guide

85.8 Remote Debug a Spring Boot Application Started with
Maven

To attach a remote debugger to a Spring Boot application that was started with Maven, you can use the
j vmAr gunent s property of the maven plugin.

See this example for more details.

85.9 Build an Executable Archive from Ant without Using
spring-boot-antlib

To build with Ant, you need to grab dependencies, compile, and then create a jar or war archive. To
make it executable, you can either use the spri ng- boot - ant| i b module or you can follow these
instructions:

1. If you are building a jar, package the application’s classes and resources in a nested BOOT- | NF/
cl asses directory. If you are building a war, package the application’s classes in a nested V\EB-
I NF/ cl asses directory as usual.

2. Add the runtime dependencies in a nested BOOT- | NF/ | i b directory for a jar or WEB- | NF/ | i b for
a war. Remember not to compress the entries in the archive.

3. Add the pr ovi ded (embedded container) dependencies in a nested BOOT- | NF/ | i b directory for a
jar or VEB- | NF/ 1'i b- pr ovi ded for a war. Remember not to compress the entries in the archive.

4. Add the spri ng- boot - | oader classes at the root of the archive (so that the Mai n- C ass is
available).

5. Use the appropriate launcher (such as Jar Launcher for a jar file) as a Mai n- Cl ass attribute in
the manifest and specify the other properties it needs as manifest entries — principally, by setting a
Start-C ass property.

The following example shows how to build an executable archive with Ant:

<target name="buil d" depends="conpile">
<jar destfile="target/${ant.project.nane}-${spring-boot.version}.jar" conpress="fal se">

<mappedr esour ces>
<fileset dir="target/classes" />
<gl obmapper frome"*" to="BOOT-|NF/ cl asses/*"/>

</ mappedr esour ces>

<mappedr esour ces>
<fileset dir="src/ main/resources" erroronm ssingdir="fal se"/>
<gl obmapper from="*" to="BOOT-| NF/cl asses/*"/>

</ mappedr esour ces>

<mappedr esour ces>
<fileset dir="${lib.dir}/runtinme" />
<gl obmapper from="*" to="BOOT-INF/lib/*"/>

</ mappedr esour ces>

<zipfileset src="${lib.dir}/| oader/spring-boot-| oader-jar-${spring-boot.version}.jar" />

<mani f est >
<attribute name="Min-C ass" val ue="org. spri ngfranewor k. boot . | oader. Jar Launcher" />
<attribute name="Start-C ass" val ue="${start-class}" />

</ mani f est >

</jar>
</target>

The Ant Sample hasabui | d. xm file with amanual task that should work if you run it with the following
command:

2.0.0.RC1 Spring Boot 287

http://docs.spring.io/spring-boot/docs/2.0.0.RC1/maven-plugin
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/maven-plugin/examples/run-debug.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-samples/spring-boot-sample-ant

Spring Boot Reference Guide

‘ $ ant -lib <folder containing ivy-2.2.jar> clean manual

Then you can run the application with the following command:

‘$ java -jar target/*.jar

2.0.0.RC1 Spring Boot 288

Spring Boot Reference Guide

86. Traditional Deployment

Spring Boot supports traditional deployment as well as more modern forms of deployment. This section
answers common questions about traditional deployment.

86.1 Create a Deployable War File

The first step in producing a deployable war file is to provide a Spri ngBoot Servl etlnitializer
subclass and override its conf i gur e method. Doing so makes use of Spring Framework’s Servlet 3.0
support and lets you configure your application when it is launched by the servlet container. Typically,
you should update your application’s main class to extend Spri ngBoot Servl etlnitializer, as
shown in the following example:

@pr i ngBoot Appl i cati on
public class Application extends SpringBootServletlnitializer {

@verride
protected SpringApplicationBuilder configure(SpringApplicationBuilder application) {
return application. sources(Application.class);

}

public static void main(String[] args) throws Exception {
SpringApplication.run(Application.class, args);
}

The next step is to update your build configuration such that your project produces a war file rather
than a jar file. If you use Maven and spri ng- boot - st art er - par ent (which configures Maven’s war
plugin for you), all you need to do is to modify pom xnl to change the packaging to war, as follows:

<packagi ng>war </ packagi ng>

If you use Gradle, you need to modify bui | d. gr adl e to apply the war plugin to the project, as follows:

apply plugin: 'war'

The final step in the process is to ensure that the embedded servlet container does not interfere with the
servlet container to which the war file is deployed. To do so, you need to mark the embedded servlet
container dependency as being provided.

If you use Maven, the following example marks the servlet container (Tomcat, in this case) as being
provided:

<dependenci es>

<l-- ...-->

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-toncat</artifactld>
<scope>pr ovi ded</ scope>

</ dependency>

<l-- ...-->

</ dependenci es>

If you use Gradle, the following example marks the servlet container (Tomcat, in this case) as being
provided:

dependenci es {
...
provi dedRunti me ' org. springfranmewor k. boot : spri ng-boot -starter-toncat

2.0.0.RC1 Spring Boot 289

Spring Boot Reference Guide

...

Tip

provi dedRunti me is preferred to Gradle’s conpil eOnly configuration. Among other
limitations, conpi | eOnl y dependencies are not on the test classpath, so any web-based
integration tests fail.

If you use the Spring Boot build tools, marking the embedded servlet container dependency as provided
produces an executable war file with the provided dependencies packaged in a | i b-provi ded
directory. This means that, in addition to being deployable to a servlet container, you can also run your
application by using j ava -j ar on the command line.

Tip

Take a look at Spring Boot’s sample applications for a Maven-based example of the previously
described configuration.

86.2 Create a Deployable War File for Older Servlet Containers

Older Servlet containers do not have support for the Servl et Contextlnitializer bootstrap
process used in Servlet 3.0. You can still use Spring and Spring Boot in these containers, but you are
going to need to add a web. xm to your application and configure it to load an Appl i cat i onCont ext
via a Di spat cher Servl et .

86.3 Convert an Existing Application to Spring Boot

For a non-web application, it should be easy to convert an existing Spring application to a Spring Boot
application. To do so, throw away the code that creates your Appl i cat i onCont ext and replace it
with calls to Spri ngAppl i cati on or Spri ngAppl i cati onBui | der. Spring MVC web applications
are generally amenable to first creating a deployable war application and then migrating it later to an
executable war or jar. See the Getting Started Guide on Converting a jar to a war.

To create a deployable war by extending Spri ngBoot Servl et nitiali zer (forexample, in a class
called Appl i cat i on) and adding the Spring Boot @pr i ngBoot Appl i cat i on annotation, use code
similar to that shown in the following example:

@pr i ngBoot Appl i cati on
public class Application extends SpringBootServletlnitializer {

@verride
protected SpringApplicationBuilder configure(SpringApplicationBuilder application) {
/| Customi ze the application or call application.sources(...) to add sources

/1 Since our exanple is itself a @onfiguration class (via @pringBoot Appli cation)
/1l we actually don't need to override this nethod.
return application;

}

Remember that, whatever you put in the sources is merely a Spring Appli cati onCont ext.
Normally, anything that already works should work here. There might be some beans you can remove
later and let Spring Boot provide its own defaults for them, but it should be possible to get something
working before you need to do that.

2.0.0.RC1 Spring Boot 290

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-samples/spring-boot-sample-traditional/pom.xml
http://spring.io/guides/gs/convert-jar-to-war/

Spring Boot Reference Guide

Static resources can be movedto/ publi c (or/staticor/resourcesor/ META-|I NF/ resour ces)
in the classpath root. The same applies to nessages. properti es (which Spring Boot automatically
detects in the root of the classpath).

Vanilla usage of Spring Di spat cher Ser vl et and Spring Security should require no further changes.
If you have other features in your application (for instance, using other servlets or filters), you may
need to add some configuration to your Appl i cat i on context, by replacing those elements from the
web. xm , as follows:

* A @ean of type Ser vl et or Ser vl et Regi st rati onBean installs that bean in the container as if
it were a <servl et/ >and <servl et - mappi ng/ > inweb. xm .

* A @Bean oftype Fi l ter orFil terRegi strati onBean behaves similarly (asa <filter/>and
<filter-mappi ng/>).

* An Appl i cati onCont ext in an XML file can be added through an @ nport Resour ce in your
Appl i cati on. Alternatively, simple cases where annotation configuration is heavily used already
can be recreated in a few lines as @ean definitions.

Once the war file is working, you can make it executable by adding a nmai n method to your
Appl i cati on, as shown in the following example:

public static void main(String[] args) {
SpringApplication. run(Application.class, args);
}

Note

If you intend to start your application as a war or as an executable application, you
need to share the customizations of the builder in a method that is both available to the
SpringBoot Servl etlnitializer callback and in the mai n method in a class similar to the
following:

@pr i ngBoot Appl i cati on
public class Application extends SpringBootServletlnitializer {

@verride
protected SpringApplicationBuilder configure(SpringApplicationBuilder builder) {
return configureApplication(builder);

}

public static void main(String[] args) {
confi gureApplication(new SpringApplicationBuilder()).run(args);
}

private static SpringApplicationBuilder configureApplication(SpringApplicationBuilder builder) {
return buil der.sources(Application.class).banner Mode(Banner. Mbde. OFF) ;

}

Applications can fall into more than one category:
» Servlet 3.0+ applications with no web. xm .
» Applications with a web. xm .

» Applications with a context hierarchy.

2.0.0.RC1 Spring Boot 291

Spring Boot Reference Guide

» Applications without a context hierarchy.
All of these should be amenable to translation, but each might require slightly different techniques.

Servlet 3.0+ applications might translate pretty easily if they already use the Spring Servlet 3.0+
initializer support classes. Normally, all the code from an existing WebAppl i cationlnitializer
can be moved into a Spri ngBoot Servl et nitializer. If your existing application has more than
one Appl i cati onCont ext (for example, if it uses Abst ract Di spat cherServletlnitializer)
then you might be able to combine all your context sources into a single Spri ngAppl i cati on. The
main complication you might encounter is if combining does not work and you need to maintain the
context hierarchy. See the entry on building a hierarchy for examples. An existing parent context that
contains web-specific features usually needs to be broken up so that all the Ser vl et Cont ext Awar e
components are in the child context.

Applications that are not already Spring applications might be convertible to Spring Boot applications,
and the previously mentioned guidance may help. However, you may yet encounter problems. In that
case, we suggest asking questions on Stack Overflow with a tag of spri ng- boot .

86.4 Deploying a WAR to WebLogic

To deploy a Spring Boot application to WebLogic, you must ensure that your servlet initializer directly
implements WebAppl i cationlnitializer (even if you extend from a base class that already
implements it).

A typical initializer for WebLogic should resemble the following example:

i nport org.springfranework. boot. aut oconfi gure. Spri ngBoot Appl i cati on;
i nport org.springframework. boot. web. servl et. support. SpringBootServletlnitializer;
i nport org.springfranework. web. WebAppl i cationlnitializer;

@pr i ngBoot Appl i cati on
public class MyApplication extends SpringBootServletlnitializer inplenments WebApplicationlnitializer {

}

If you use Logback, you also need to tell WebLogic to prefer the packaged version rather than the
version that was pre-installed with the server. You can do so by adding a V\EEB- | NF/ webl ogi ¢. xm
file with the following contents:

<?xm version="1.0" encodi ng="UTF-8"?>
<w s: webl ogi c- web- app
xm ns:w s="http://xm ns. oracl e. coml webl ogi ¢/ webl ogi c- web- app”
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://java.sun. conm xnl / ns/j avaee
http://java. sun. com xm / ns/j avaee/ ej b-j ar _3_0. xsd
http://xm ns. oracl e. conl webl ogi ¢/ webl ogi c- web- app
http://xm ns. oracl e. conl webl ogi c/ webl ogi c- web- app/ 1. 4/ webl ogi c- web- app. xsd" >
<w s: cont ai ner - descri pt or >
<wW s: prefer-application-packages>
<W s: package- nane>or g. sl f 4j </ W s: package- nane>
</w s: prefer-application-packages>
</w s: cont ai ner - descri pt or >
</ W s: webl ogi c- web- app>

86.5 Deploying a WAR in an Old (Servlet 2.5) Container

Spring Boot uses Servlet 3.0 APIs to initialize the Ser vl et Cont ext (register Servl ets and so
on), so you cannot use the same application in a Servlet 2.5 container. It is, however, possible
to run a Spring Boot application on an older container with some special tools. If you include

2.0.0.RC1 Spring Boot 292

https://stackoverflow.com/questions/tagged/spring-boot

Spring Boot Reference Guide

or g. spri ngframewor k. boot : spri ng- boot -1 egacy as a dependency (maintained separately to
the core of Spring Boot and currently available at 1.1.0.RELEASE), all you need to do is create a
web. xm and declare a context listener to create the application context and your filters and servlets.
The context listener is a special purpose one for Spring Boot, but the rest of it is normal for a Spring
application in Servlet 2.5. The following Maven example shows how to set up a Spring Boot project to
run in a Servlet 2.5 container:

<?xm version="1.0" encodi ng="UTF-8"?>
<web-app version="2.5" xm ns="http://java.sun.conl xnl/ns/javaee"

xm ns: xsi ="http://ww. wa. or g/ 2001/ XM_Schen®- i nst ance"

xsi : schemaLocati on="http://java. sun.com xm / ns/javaee http://java.sun.com xm / ns/j avaee/ web-
app_2_5. xsd" >

<cont ext - par an»
<par am nane>cont ext Conf i gLocat i on</ par am nane>
<par am val ue>deno. Appl i cati on</ par am val ue>

</ cont ext - par an>

<li stener>
<l i stener-cl ass>org. spri ngframewor k. boot . | egacy. cont ext. web. Spri ngBoot Cont ext Loader Li st ener </ | i stener -
cl ass>
</listener>

<filter>

<filter-name>metricsFilter</filter-nanme>
<filter-class>org.springframework.web.filter.Del egatingFilterProxy</filter-class>
</[filter>

<filter-mppi ng>
<filter-name>nmetricsFilter</filter-nane>
<url -pattern>/*</url-pattern>
</filter-mappi ng>

<servl et >
<servl et - name>appSer vl et </ ser vl et - name>
<servl et -cl ass>org. spri ngframewor k. web. servl et. Di spat cher Servl et </ servl et -cl ass>
<init-paranp
<par am nanme>cont ext Att ri but e</ par am nanme>
<param val ue>or g. spri ngf ramewor k. web. cont ext . WebAppl i cat i onCont ext. ROOT</ par am val ue>
</init-param
<l oad- on- st art up>1</| oad- on- st art up>
</ servl et>

<servl et - mappi ng>
<servl et - nanme>appSer vl et </ ser vl et - name>
<url-pattern>/</url-pattern>

</ servl et - mappi ng>

</ web- app>

In the preceding example, we use a single application context (the one created by the context listener)
and attach it to the Di spat cher Ser vl et by using ani ni t parameter. This is normal in a Spring Boot
application (you normally only have one application context).

86.6 Use Jedis Instead of Lettuce

By default, the Spring Boot starter (spri ng- boot - st art er - dat a- r edi s) uses Lettuce. You need to
exclude that dependency and include the Jedis one instead. Spring Boot manages these dependencies
to help make this process as easy as possible.

The following example shows how to do so in Maven:

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>

2.0.0.RC1 Spring Boot 293

https://github.com/scratches/spring-boot-legacy
https://github.com/lettuce-io/lettuce-core/
https://github.com/xetorthio/jedis/

Spring Boot Reference Guide

<artifactld>spring-boot-starter-data-redis</artifactld>
<excl usi ons>
<excl usi on>
<groupl d>i o. | ettuce</ groupl d>
<artifactld>lettuce-core</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>
<dependency>
<groupl d>redis.clients</groupld>
<artifactld>jedis</artifactld>
</ dependency>

The following example shows how to do so in Gradle:

configurations {
conpi | e. excl ude nodul e: "lettuce"

}

dependenci es {
conpile("redis.clients:jedis")
11

}

2.0.0.RC1 Spring Boot

294

Part X. Appendices

Spring Boot Reference Guide

Appendix A. Common application
properties

Various properties can be specified inside your application. properties file, inside your
application.ym file, oras command line switches. This appendix provides a list of common Spring
Boot properties and references to the underlying classes that consume them.

Note

Property contributions can come from additional jar files on your classpath, so you should not
consider this an exhaustive list. Also, you can define your own properties.

Warning

This sample file is meant as a guide only. Do not copy and paste the entire content into your
application. Rather, pick only the properties that you need.

#

COWON SPRI NG BOOT PROPERTI ES

#

This sanple file is provided as a guideline. Do NOT copy it inits
entirety to your own application. ANN

#

B e e

CORE PROPERTI ES

< NS

debug=f al se # Enabl e debug | ogs.
trace=fal se # Enable trace |ogs.

LOGE NG

| oggi ng. config= # Location of the |ogging configuration file. For instance, classpath:|ogback.xm " for
Logback

| oggi ng. excepti on-conver si on-wor d=%wEx # Conversion word used when | oggi ng exceptions.

logging.file= # Log file name. For instance, “nyapp.|og

| oggi ng. fil e. max- hi story= # Maxi num of archive log files to keep. Only supported with the default
| ogback set up.

| oggi ng. file. max-size= # Maximumlog file size. Only supported with the default |ogback setup.

| ogging.l evel .*= # Log | evel s severity mapping. For instance, °|ogging.level.org.springfranewrk=DEBUG

| oggi ng. path= # Location of the log file. For instance, “/var/log .

| oggi ng. pattern. consol e= # Appender pattern for output to the console. Supported only with the default
Logback set up.

| oggi ng. pattern. dat ef or mat =yyyy- Mk dd HH: nm ss. SSS # Appender pattern for |og date format. Supported
only with the default Logback setup.

| oggi ng. pattern.file= # Appender pattern for output to a file. Supported only with the default Logback
set up.

| oggi ng. pattern. |l evel = # Appender pattern for log | evel (default: %p). Supported only with the default
Logback set up.

| 0oggi ng. r egi st er - shut down- hook=f al se # Regi ster a shutdown hook for the |ogging systemwhen it is
initialized.

ACP

spring. aop. auto=true # Add @Enabl eAspect JAut oPr oxy.

sSpring. aop. proxy-target-class=true # Wether subclass-based (CG.IB) proxies are to be created (true), as
opposed to standard Java interface-based proxies (false).

| DENTI TY (Context!|dApplicationContextlnitializer)
spring. application. nane= # Application nane.

ADM N (SpringAppli cationAdm nJnmxAut oConfi gurati on)

2.0.0.RC1 Spring Boot 296

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/context/ContextIdApplicationContextInitializer.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/admin/SpringApplicationAdminJmxAutoConfiguration.java

Spring Boot Reference Guide

spring. application.adm n. enabl ed=fal se # Wiether to enable adm n features for the application.
spring. application. adm n.jnx- nane=or g. spri ngf r amewor k. boot : t ype=Adni n, name=Spri ngAppl i cati on # JMX nane
of the application adm n MBean.

AUTO- CONFI GURATI ON
spring. aut oconfi gure. excl ude= # Auto-configuration classes to exclude.

BANNER

spring. banner. charset =UTF-8 # Banner file encoding.

spring. banner. | ocation=cl asspat h: banner. txt # Banner file |ocation.

spring. banner. i nage. | ocati on=cl asspat h: banner. gi f # Banner inmage file location (jpg or png can al so be
used) .

spring. banner.image. wi dth= # Wdth of the banner image in chars (default 76)

spring. banner. i mage. hei ght= # Hei ght of the banner image in chars (default based on inmage height)

spring. banner.inmage. margin= # Left hand image margin in chars (default 2)

spring. banner.image.invert= # Wether inmages should be inverted for dark term nal thenes (default false)

SPRI NG CORE
spring. beani nfo.ignore=true # Wiether to skip search of Beanlnfo classes.

SPRI NG CACHE (CacheProperti es)

spring. cache. cache- names= # Comma-separated |ist of cache names to create if supported by the underlying
cache manager.

spring. cache. caf f ei ne. spec= # The spec to use to create caches. See CaffeineSpec for nore details on the
spec format.

spring. cache. couchbase. expirati on=0ns # Entry expiration in mlliseconds. By default, the entries never
expire.

spring. cache. ehcache. config= # The | ocation of the configuration file to use to initialize EhCache.

spring. cache. i nfini span. config= # The | ocation of the configuration file to use to initialize
I nfi ni span.

spring. cache.j cache. config= # The | ocation of the configuration file to use to initialize the cache
naenager .

spring. cache.jcache.provider= # Fully qualified nane of the CachingProvider inplenentation to use to
retrieve the JSR-107 conpliant cache manager. Needed only if nore than one JSR-107 inplenentation is
avai |l abl e on the cl asspath.

spring. cache. redis. cache-nul | -val ues=true # All ow caching null val ues.

spring. cache. redis. key-prefix= # Key prefix.

spring.cache.redis.tine-to-live=0ns # Entry expiration. By default the entries never expire.

spring. cache. redi s. use-key-prefi x=true # Whether to use the key prefix when witing to Redis.

spring. cache.type= # Cache type. By default, auto-detected according to the environnent.

SPRI NG CONFI G - using environment property only (ConfigFileApplicationListener)
spring.config.additional-location= # Config file |ocations used in addition to the defaults.
spring.config.location= # Config file |ocations.

spring. config. name=application # Config file nane.

HAZELCAST (Hazel cast Properti es)
spring. hazel cast. config= # The | ocation of the configuration file to use to initialize Hazel cast.

PROJECT | NFORVATI ON (Proj ect|nfoProperties)

spring.info.build.location=classpath: META-|I NF/ bui | d-info.properties # Location of the generated build-
info.properties file.

spring.info.git.location=classpath:git.properties # Location of the generated git.properties file.

JMX

spring. j nx. defaul t -domai n= # JMX donai n nane.

spring.jnx.enabl ed=true # Expose nanagenent beans to the JMX donai n.
spring.jnx.server =nbeanServer # MBeanServer bean nane.

Emai | (Muil Properties)

spring. mail . defaul t-encodi ng=UTF-8 # Default M neMessage encodi ng.

spring. mail.host= # SMIP server host. For instance, "sntp.exanple.com

spring. mail.jndi-name= # Session JNDI narme. Wen set, takes precedence over other mail settings.
spring. mail.password= # Login password of the SMIP server.

spring. mail.port= # SMIP server port.

spring. nail.properties.*= # Additional JavaMail|l session properties.

spring. mail.protocol =sntp # Protocol used by the SMIP server.

spring. mail.test-connection=fal se # Wether to test that the mail server is available on startup.
spring. mail.username= # Login user of the SMIP server.

APPLI CATI ON SETTI NGS (SpringApplication)

2.0.0.RC1 Spring Boot 297

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/cache/CacheProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/context/config/ConfigFileApplicationListener.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/hazelcast/HazelcastProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/info/ProjectInfoProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mail/MailProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/SpringApplication.java

Spring Boot Reference Guide

spring. mai n. banner - nrode=consol e # Mbde used to display the banner when the application runs.

spring. mai n. sources= # Sources (class nanmes, package nanes, or XM resource |ocations) to include in the
Appl i cati onCont ext .

spring. mai n. web-application-type= # Flag to explicitly request a specific type of web application. If
not set, auto-detected based on the classpath.

FI LE ENCODI NG (Fil eEncodi ngAppl i cati onLi st ener)
spring. mandatory-fil e-encodi ng= # Expected character encoding the application nust use.

| NTERNATI ONALI ZATI ON (MessageSour ceProperti es)

spring. nessages. al ways- use- nessage-f ormat =f al se # Whether to always apply the MessageFornat rul es,
parsi ng even nessages W thout argunents.

spring. messages. basenane=nessages # Conmm-separated |ist of basenanmes (essentially a fully-qualified
classpath | ocation), each follow ng the ResourceBundl e convention with relaxed support for slash based
| ocations.

spring. messages. cache-durati on=-1 # Loaded resource bundle files cache duration. Wen not set, bundles
are cached forever.

spring. nessages. encodi ng=UTF-8 # Message bundl es encodi ng.

spring. messages. fal | back-to-system | ocal e=strue # \Wether to fall back to the systemLocale if no files
for a specific Local e have been found.

spring. nessages. use- code- as- def aul t - mressage=f al se # Whether to use the nessage code as the default
nmessage i nstead of throwi ng a "NoSuchMessageException". Reconmended during devel opnent only.

OUTPUT
spring. out put. ansi.enabl ed=detect # Configures the ANSI output.

PID FILE (ApplicationPidFileWiter)

spring.pid.fail-on-wite-error=# Fails if ApplicationPidFileWiter is used but it cannot wite the PID
file.

spring.pid.file= # Location of the PIDfile to wite (if ApplicationPidFileWiter is used).

PROFI LES

spring.profiles.active= # Comma-separated |list (or list if using YAML) of active profiles.
spring.profiles.include= # Unconditionally activate the specified comm-separated |list of profiles (or
list of profiles if using YAM).

QUARTZ SCHEDULER (QuartzProperties)

spring.quartz.jdbc.initialize-schena=enbedded # Dat abase schema initialization node.

spring. quartz.jdbc. schema=cl asspat h: org/ quartz/inpl/jdbcjobstore/tabl es_@®l atforma@asql # Path to the
SQ file to use to initialize the database schema.

spring.quartz.job-store-type=nenory # Quartz job store type.

spring.quartz.properties.*= # Additional Quartz Schedul er properties.

REACTOR (React or Cor eProperti es)
spring. reactor. stacktrace-node. enabl ed=f al se # \Whet her Reactor should collect stacktrace information at
runtinme.

SENDGRI D (SendGri dAut oConfi gurati on)

spring. sendgri d. api - key= # SendGid APl key.
spring. sendgrid. proxy. host= # SendGid proxy host.
spring. sendgrid. proxy.port= # SendGid proxy port.

EMBEDDED SERVER CONFI GURATI ON (Server Properti es)

server. address= # Network address to which the server should bind.

server. conpressi on. enabl ed=f al se # Wiet her response conpression is enabl ed.

server. conpressi on. excl uded- user - agent s= # List of user-agents to exclude from conpression.

server.conpression. mne-types=text/htm ,h text/xm , text/plain,text/css,text/javascript,application/

javascript # Commma-separated |ist of MME types that should be conpressed.

server. conpressi on. m n-response-si ze=2048 # M ni mum response size that is required for conpression to be
per f or med.

server.connection-tinmeout= # Tine that connectors wait for another HTTP request before closing the
connection. Wen not set, the connector's container-specific default is used. Use a value of -1 to
indicate no (that is, an infinite) tineout.

server. di spl ay- name=appl i cati on # D splay nane of the application.

server.error.include-exception=false # Include the "exception" attribute.

server.error.include-stacktrace=never # Wien to include a "stacktrace" attribute.

2.0.0.RC1 Spring Boot 298

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/context/FileEncodingApplicationListener.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/context/MessageSourceProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/system/ApplicationPidFileWriter.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/quartz/QuartzProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/reactor/core/ReactorCoreProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/sendgrid/SendGridAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ServerProperties.java

Spring Boot Reference Guide

server
server.
server.
server.
server.
server.
server.
server.
server.
server.
server.
server.
server.
server.
server.
server.
server.
server.
server.
server.
server
server.
server.
server.
server.
server.
server.
server.
server.
server.
server.

speci f
server.
server.
server.
server.
server.
server.

be use
server.

“url™,

server.
server.
server
server.
server.
server.
server.
server
server.
server.
server.
server.
server
server.
reques

peri od

server.
server.
server.
server.
server.

error.

server.error.path=/error # Path of the error controller.
server. error. whitel abel . enabl ed=true # Enable the default error page displayed in browsers in case of a

htt p2. enabl ed=fal se # \Wether to enable HTTP/ 2 support, if
jetty.acceptors= # Nunber of acceptor threads to use.

jetty.accessl og
jetty. accessl og
jetty.accessl og
jetty.accessl og
jetty.accessl og
jetty.accessl og
jetty.accessl og
jetty. accessl og
jetty.accessl og
jetty.accessl og
jetty.accessl og
jetty.accessl og

.append=fal se # Append to | og.
. date-format=dd/ MM yyyy: HH. nm ss Z # Ti nestanp format of the request |og.
. enabl ed=f al se # Enabl e access | og.
. ext ended-f or mat =f al se # Enabl e extended NCSA fornat.
.file-date-format= # Date format to place in log file nane.
.filename= # Log filenane. |If not specified,
.locale= # Local e of the request |o
.| og- cooki es=fal se # Enabl e | ogging of the request cookies.
.l og-1atency=fal se # Enabl e | ogging of
.1 og-server=fal se # Enabl e | oggi ng of the request hostnane.
.retention-period=31 # Nunber of days before rotated log files are del eted.
.time-zone=GMI' # Ti nezone of the request

jetty. max- http-post-size=0 # Maxi mum si ze, in byte
jetty.selectors= # Nunmber
max- htt p- header - si ze=0 # Maxi mum si ze, in bytes, of the HITP nessage header.

port=8080 # Server

of selector threads to u

HTTP port.

g.

the current environnent supports it.

logs redirect to "Systemerr".

request processing tine.

| 0g.

s, of the HITP post or put content.

se.

server-header= # Value to use for the Server response header (if enpty, no header is sent)

servl et.
servlet.
servl et.
servl et.

servl et

servl et.
servl et.
servlet.
servl et.
servl et.

sessi on.
sessi on.
sessi on.
sessi on.

ied, seconds w |

servl et.
servl et.
servlet.
servl et.
servl et.
servl et.

d.

servl et.

sessi on.
sessi on.
sessi on.
sessi on.
sessi on.
sessi on.

"ssl").

jsp.init-paraneters.*= # Init
.jsp.registered=true # Wether the JSP servlet
path=/ # Path of the main di spatcher servlet.
cooki e. comment = # Comment for
cooki e. donmai n= # Domain for

context-path= # Context path of the applic
j sp. cl ass- nane=or g. apache. j asper. servl et.JspServl et # The class nane of the JSP servlet.
paraneters used to configure the JSP servlet.

. use-forward- header s= # \Wet her X- Forwarded-* headers should be applied to the HttpRequest.
context-paranmeters.*= # Servlet context in

it paraneters

ation.

is registered.

the session cooki e.
the session cookie.

cookie.http-only= # "HitpOnly" flag for the session cookie.
cooki e. max- age= # Maxi mum age of the session cookie. If a duration suffix is not

| be used.

cooki e. nane= # Session cooki e nane.

cooki e. path= # Path of the session cookie.
cooki e. secure= # "Secure" flag for the session cookie.

persi stent=fal se # Wiether to persist session data between restarts.
store-dir= # Directory used to store session data.

tinmeout= # Session tineout.

server. ssl.ciphers= # Supported SSL ciphers.
server.ssl.client-auth= # Whether client authentication is wanted ("want") or needed ("need"). Requires
a trust store.

ssl . enabl ed= # Enabl e SSL support.

ssl . enabl ed- prot ocol s= # Enabl ed SSL protocol s.
identifies the key in the key store.

ssl . key- password= # Password used to access the key in the key store.

ssl.key-store= # Path to the key store that

.ssl.key-alias= # Alias that

If a duration suffix is not specified, seconds will

sessi on. tracki ng- nodes= # Sessi on tracking nodes (one or nore of the follow ng: "cookie"

hol ds the SSL certificate (typically a jks file).

ssl . key- st ore- password= # Password used to access the key store.
ssl . key-store-provider= # Provider for the key store.

.ssl. key-store-type= # Type of the key store.

ssl . protocol =TLS # SSL protocol to use.

ssl.trust-store= # Trust store that

hol ds SSL certificates.

ssl.trust-store-password= # Password used to access the trust store.
ssl.trust-store-provider= # Provider for the trust

.ssl.trust-store-type= # Type of the trust store.
tontat . accept - count = # Maxi num queue | ength for

t processing threads are in use.
.buffered=true # Whether to buffer output such that it is flushed only

ically.

toncat.
t oncat
toncat .
toncat .
toncat.

server.tontat . accessl og

server.tonctat. accessl og.

relative to the Tonctat
accessl og.
.accessl og.
accessl og.
accessl og.
accessl og.
file nane until rotate

base dir.

tinme.

store.

enabl ed=fal se # Enabl e access | og.
file-date-format=.yyyy-Mitdd # Date format to place in the log file nane.
pattern=common # Format pattern for access |ogs.

prefix=access_log # Log file nanme prefix.
rename- on-r ot at e=f al se # Wet her

to defer

i ncom ng connection requests when all possible

directory=logs # Directory in which log files are created. Can be absolute or

i nclusion of the date stanp in the

’

2.0.0.RC1

Spring Boot

299

Spring Boot Reference Guide

server.tontat.accessl og. request-attributes-enabl ed=fal se # Set request attributes for the | P address,
Host nane, protocol, and port used for the request.
server.tontat. accessl og.rotate=true # Wiether to enabl e access log rotation.
server.tontat. accessl og. suffix=.log # Log file name suffix.
server.tontat. additional -tl d-ski p-patterns= # Comma-separated |ist of additional patterns that natch
jars to ignore for TLD scanning.
server. tontat. backgr ound- processor-del ay=30s # Del ay between the invocation of backgroundProcess
nethods. If a duration suffix is not specified, seconds will be used.
server.tontat. basedir= # Tontat base directory. If not specified, a tenporary directory is used.
server.toncat.internal -proxi es=10\\.\\d{1, 3}\\.\\d{1, 3}\\.\\d{1, 3}|\\
192\\. 168\\.\\d{1, 3}\\.\\d{1, 3}|\\
169\\. 254\ \ . \\d{1, 3}\\.\\d{1,3}|\\
127\\ AN\ d{ 2, 3P\ AV d{ 1, 3RV AN d{ L, 3\
1720\ 10 6-9] {2}\\ o\ d{ 1, 33\ V. W\ d{ 1, 3}|\\
1720\ . 2[0-9] {23\ VoAV d{ 1, 33\ V. W\ d{ 1, 3}]\\
172\\ . 3[0-1] {13\ \ .\ d{ 1, 3}\\.\\d{1,3} # regular expression matching trusted |P addresses.
server.tontat. max- connecti ons= # Maxi num nunber of connections that the server accepts and processes at
any given tine.
server.tontat. max- http- header-si ze=0 # Maxi mum size, in bytes, of the HITP nessage header.
server.tontat. max- http-post-size=0 # Maxi mum si ze, in bytes, of the HITP post content.
server.toncat. max-threads=0 # Maxi num nunber of worker threads.
server.tontat. m n-spare-threads=0 # M ni mum nunber of worker threads.
server.tontat. port - header =X- For war ded- Port # Nane of the HTTP header used to override the original port
val ue.
server.tontat. protocol - header= # Header that holds the incom ng protocol, usually named "X- Forwar ded-
Prot o".
server.toncat. protocol -header-https-val ue=https # Val ue of the protocol header indicating whether the
incom ng request uses SSL.
server.tontat.redirect-context-root= # Wiether requests to the context root should be redirected by
appending a / to the path.
server.tontat.renote-ip-header= # Name of the HITP header from which the renpte |P is extracted. For
i nstance, * X- FORWARDED- FOR' .
server.tonctat.resource.cache-ttl= # Tine-to-live of the static resource cache.
server.tontat. uri-encodi ng=UTF-8 # Character encoding to use to decode the URI.
server.tontat.use-rel ative-redirects= # Wiether HTTP 1.1 and | ater |ocation headers generated by a call
to sendRedirect will use relative or absolute redirects.
server. undertow. accessl og. dir= # Undertow access | og directory.
server. undertow. accessl og. enabl ed=f al se # \Wether to enable the access | og.
server. undertow. accessl og. pattern=common # Format pattern for access |ogs.
server. undertow. accessl og. prefi x=access_log. # Log file name prefix.
server. undertow. accessl og.rotate=true # Wiether to enable access log rotation.
server. undertow. accessl og. suffix=log # Log file name suffix.
server. undertow. buffer-size= # Size of each buffer, in bytes.
server.undertow. di rect-buffers= # Wiether to allocate buffers outside the Java heap.
server.undertow. i o-threads= # Nunber of |/O threads to create for the worker.
server.undertow. eager-filter-init=true # Wether servliet filters should be initialized on startup.
server. undert ow. max- htt p- post - si ze=0 # Maxi num si ze, in bytes, of the HITP post content.
server. undertow worker-threads= # Number of worker threads.

FREEMARKER (Fr eeMar ker Properti es)

spring. freemarker. al |l owrequest-override=fal se # Wether HttpServletRequest attributes are allowed to
override (hide) controller generated nodel attributes of the same nane.

spring. freemarker. al | ow sessi on-override=fal se # Wiether HttpSession attributes are allowed to override
(hide) controller generated nodel attributes of the same nane.

spring. freemarker. cache=fal se # \Whether to enable tenplate caching.

spring. freemarker. charset =UTF-8 # Tenpl ate encodi ng.

spring. freemarker. check-tenpl ate-location=true # Wether to check that the tenplates |ocation exists.

spring. freemarker.content-type=text/htm # Content-Type val ue.

spring. freemarker. enabl ed=true # Whether to enable MVC view resolution for this technol ogy.

spring. freemarker. expose-request-attributes=fal se # Wiether all request attributes should be added to
the nodel prior to merging with the tenplate.

spring. freemarker. expose-sessi on-attributes=fal se # Whether all HttpSession attributes shoul d be added
to the nodel prior to nerging with the tenplate.

spring. freemar ker. expose- spri ng- macr o- hel pers=true # \Wether to expose a RequestContext for use by
Spring's macro |library, under the name "springMacr oRequest Cont ext".

spring. freemarker.prefer-file-systemaccess=true # Wiether to prefer file system access for tenplate
| oading. File system access enabl es hot detection of tenplate changes.

spring. freemarker.prefix= # Prefix that gets prepended to view nanes when building a URL.

spring. freemarker.request-context-attribute= # Nane of the RequestContext attribute for all views.

spring. freemarker.settings.*= # Wl | -known FreeMarker keys which are passed to FreeMarker's
Confi guration.

2.0.0.RC1 Spring Boot 300

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/freemarker/FreeMarkerProperties.java

Spring Boot Reference Guide

spring. freemarker.suffix=.ftl # Suffix that gets appended to view nanmes when building a URL.
spring. freenmarker . t enpl at e- | oader - pat h=cl asspat h: / tenpl ates/ # Comma-separated |ist of tenplate paths.
spring. freemarker.vi ew nanes= # Wiite |ist of view names that can be resol ved.

GROOVY TEMPLATES (G oovyTenpl at eProperties)

spring. groovy. tenpl ate. al | owrequest-override=fal se # Wiether HttpServl et Request attributes are allowed
to override (hide) controller generated nodel attributes of the same nare.

spring. groovy. tenpl ate. al | owsessi on-overri de=fal se # Wiether HitpSession attributes are allowed to
override (hide) controller generated nodel attributes of the sane nane.

spring. groovy. tenpl ate. cache= # Wiether to enable tenplate caching.

spring. groovy. tenpl ate. charset =UTF-8 # Tenpl ate encodi ng.

spring. groovy. tenpl ate. check-tenpl ate-1ocati on=true # Check that the tenplates |ocation exists.

spring. groovy. tenpl ate. configuration.*= # See G oovyMr kupConfi gurer

spring. groovy. tenpl ate.content-type=test/htm # Content-Type val ue.

spring. groovy. tenpl at e. enabl ed=true # Whether to enable MC view resolution for this technol ogy.

spring. groovy. tenpl at e. expose-request-attributes=false # Wiether all request attributes should be added
to the nodel prior to nmerging with the tenplate.

spring. groovy. tenpl at e. expose-session-attributes=fal se # Wether all HtpSession attributes should be
added to the nodel prior to nerging with the tenplate.

spring. groovy. tenpl at e. expose-spri ng- macro- hel pers=true # \Wether to expose a RequestContext for use by
Spring's macro library, under the nanme "springMacroRequest Context".

spring.groovy.tenplate. prefix= # Prefix that gets prepended to view names when building a URL.

spring. groovy. tenpl ate. request-context-attribute= # Nane of the RequestContext attribute for all views.

spring. groovy. tenpl ate. resource-| oader - pat h=cl asspath: /tenpl ates/ # Tenpl ate path.

spring. groovy.tenplate.suffix=.tpl # Suffix that gets appended to view names when building a URL.

spring. groovy. tenpl ate.vi ewnanmes= # Wite |ist of view nanes that can be resol ved.

SPRI NG HATEQAS (Hat eoasProperti es)
spring. hat eoas. use- hal - as-def aul t -j son- nedi a-type=true # Whet her application/hal +j son responses shoul d
be sent to requests that accept application/json.

HTTP nessage conversion
spring. http.converters. preferred-json-napper= # Preferred JSON napper to use for HITP nessage
conversion. By default, auto-detected according to the environnent.

HTTP encodi ng (HttpEncodi ngProperti es)

spring. http. encodi ng. charset =UTF-8 # Charset of HITP requests and responses. Added to the "Content-Type"
header if not set explicitly.

spring. http. encodi ng. enabl ed=true # \WWether to enable http encoding support.

spring. http.encodi ng. force= # Wether to force the encoding to the configured charset on HTTP requests
and responses.

spring. http. encodi ng. force-request= # \Wether to force the encoding to the configured charset on HTTP
requests. Defaults to true when "force" has not been specified.

spring. http. encodi ng. force-response= # Wether to force the encoding to the configured charset on HITP
responses.

spring. http. encodi ng. mappi ng= # Local e in which to encode mapping.

MULTI PART (Ml tipartProperties)

spring.servlet.nultipart.enabl ed=true # Wiether to enabl e support of multipart uploads.

spring.servlet.multipart.file-size-threshold=0 # Threshold after which files are witten to disk. Values
can use the suffixes "MB" or "KB" to indicate negabytes or kilobytes, respectively.

spring.servlet.nultipart.location= # Internmediate |ocation of uploaded files.

spring.servliet.nultipart.nmax-file-size=1MB # Max file size. Values can use the suffixes "MB" or "KB" to
i ndi cate nmegabytes or kil obytes, respectively.

spring.servlet.multipart.max-request-size=10MB # Max request size. Values can use the suffixes "MB" or
"KB" to indicate nmegabytes or kilobytes, respectively.

spring.servlet.multipart.resolve-lazily=false # Whether to resolve the nultipart request lazily at the
time of file or paraneter access.

JACKSON (JacksonProperti es)

spring.jackson.date-format= # Date format string or a fully-qualified date format class name. For
i nstance, "yyyy-MVdd HH nmmss’ .

spring.jackson. defaul t - property-inclusion= # Controls the inclusion of properties during serialization.
Configured with one of the values in Jackson's Jsonlnclude. | nclude enuneration.

spring. j ackson. deseri al i zation. *= # Jackson on/off features that affect the way Java objects are
deserial i zed.

spring.jackson.generator.*= # Jackson on/off features for generators.

spring.jackson.joda-date-tine-format= # Joda date tine format string. |If not configured, "date-format"
is used as a fallback if it is configured with a format string.

spring.jackson.local e= # Local e used for fornmatting.

spring. j ackson. mapper. *= # Jackson general purpose on/off features.

2.0.0.RC1 Spring Boot 301

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/groovy/template/GroovyTemplateProperties.java
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/servlet/view/groovy/GroovyMarkupConfigurer.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/hateoas/HateoasProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/http/HttpEncodingProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/servlet/MultipartProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jackson/JacksonProperties.java

Spring Boot Reference Guide

spring.jackson. parser.*= # Jackson on/off features for parsers.

spring.jackson. property-nani ng-strategy= # One of the constants on Jackson's PropertyNam ngStrategy. Can
also be a fully-qualified class nane of a PropertyNam ngStrategy subcl ass.

spring.jackson.serialization.*= # Jackson on/off features that affect the way Java objects are
serialized.

spring.jackson.tinme-zone= # Tinme zone used when formatting dates. For instance, "Anerical/lLos_Angel es”
or "GMr+10".

GSON (GsonProperti es)

spring.gson.date-format= # Format to use when serializing Date objects.

spring. gson. di sabl e- ht nl - escapi ng= # Wiether to disable the escaping of HTM. characters such as '<',
"> etc.

spring. gson. di sabl e-i nner-cl ass-serialization= # \Wether to exclude inner classes during serialization.

spring. gson. enabl e- conpl ex- map- key-serial i zati on= # Wiether to enable serialization of conplex map keys
(i.e. non-primtives).

spring. gson. excl ude-fi el ds-wi t hout - expose-annot ati on= # Wiether to exclude all fields from consideration
for serialization or deserialization that do not have the "Expose" annotation.

spring. gson. fi el d-nami ng-policy= # Nam ng policy that should be applied to an object's field during
serialization and deserialization.

spring. gson. gener at e- non- execut abl e-j son= # \WWether to generate non executable JSON by prefixing the
output with sonme special text.

spring.gson.lenient= # Wether to be |enient about parsing JSON that doesn't conformto RFC 4627.

spring. gson. | ong-serialization-policy= # Serialization policy for Long and | ong types.

spring.gson.pretty-printing= # Wether to output serialized JSON that fits in a page for pretty
printing.

spring. gson.serialize-nulls= # Wether to serialize null fields.

JERSEY (JerseyProperties)

spring.jersey.application-path= # Path that serves as the base URI for the application. If specified,
overrides the value of "@\pplicationPath".

spring.jersey.filter.order=0 # Jersey filter chain order.

spring.jersey.init.*= # Init paraneters to pass to Jersey through the servlet or filter.

spring.jersey.servlet.load-on-startup=-1 # Load on startup priority of the Jersey servlet.

spring.jersey.type=servlet # Jersey integration type.

SPRI NG LDAP (LdapProperti es)

spring. | dap. anonynous-read- onl y=fal se # Wether read-only operations shoul d use an anonynous
envi ronment .

spring. | dap. base= # Base suffix fromwhich all operations should originate.

spring. | dap. base-environment.*= # LDAP specification settings.

spring. | dap. password= # Logi n password of the server.

spring.|dap.urls= # LDAP URLs of the server.

spring. | dap. username= # Logi n usernanme of the server.

EMBEDDED LDAP (EmbeddedLdapProperti es)

spring. | dap. enbedded. base-dn= # The base DN

spring. | dap. enbedded. credenti al . user nanme= # Enbedded LDAP user nane.

spring. | dap. enbedded. credenti al . password= # Enbedded LDAP password.

spring. | dap. enbedded. | di f =cl asspat h: schena. | dif # Schema (LDIF) script resource reference.
spring. | dap. enbedded. port= # Enbedded LDAP port.

spring. | dap. enbedded. val i dati on. enabl ed=true # Whether to enabl e LDAP schenma validati on.
spring. | dap. enbedded. val i dati on. schema= # Path to the custom schema.

MUSTACHE TEMPLATES (Must acheAut oConfi gurati on)

spring. mustache. al | owrequest-override= # Wiether HttpServl et Request attributes are allowed to override
(hide) controller generated nodel attributes of the same nane.

spring. nust ache. al | ow sessi on-overri de= # \Wether H tpSession attributes are allowed to override (hide)
control l er generated nodel attributes of the same nane.

spring. nust ache. cache= # Wether to enabl e tenpl ate caching.

spring. mustache. charset= # Tenpl ate encodi ng.

spring. mustache. check-tenpl ate-1 ocation= # Wether to check that the tenplates | ocation exists.

spring. mustache. content-type= # Content-Type val ue.

spring. nust ache. enabl ed= # Wiether to enable MVC view resolution for this technol ogy.

spring. nust ache. expose-request-attri butes= # Wiether all request attributes should be added to the nodel
prior to merging with the tenplate.

spring. must ache. expose-session-attri butes= # \Wether all HtpSession attributes should be added to the
nodel prior to merging with the tenplate.

spring. must ache. expose-spri ng- macro- hel pers= # Wether to expose a RequestContext for use by Spring's
macro library under the nane "springMacr oRequest Cont ext".

spring. nustache. prefix=cl asspath:/tenplates/ # Prefix to apply to tenplate nanmes.

spring. nust ache. request-context-attri bute= # Nane of the RequestContext attribute for all views.

2.0.0.RC1 Spring Boot 302

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/gson/GsonProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jersey/JerseyProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/ldap/LdapProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/ldap/embedded/EmbeddedLdapProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mustache/MustacheAutoConfiguration.java

Spring Boot Reference Guide

spring. mustache. suf fi x=. mustache # Suffix to apply to tenplate nanes.
spring. mustache. vi ew nanes= # Wiite |ist of view nanes that can be resol ved.

SPRI NG WC (WebM/cProperti es)

spring. nvc. async. request -ti neout= # Anount of tine before asynchronous request handling tines out.

spring. m/c. content-negotiation.favor-paraneter=fal se # Wether a request paraneter ("format" by default)
shoul d be used to determine the requested nedia type.

spring. m/c. content-negotiation.favor-path-extension=fal se # Wiether the path extension in the URL path
shoul d be used to determ ne the requested nedia type.

spring. m/c. content-negotiation. nedia-types.*= # Maps file extensions to nedia types for content
negoti ati on.

spring. m/c. content-negotiation. paraneter-name= # Query paraneter nane to use when "favor-paraneter" is
enabl ed.

spring.mvc.date-format= # Date fornmat to use. For instance, ~dd/ MMyyyy .

spring. mvc. di spatch-trace-request=fal se # Wether to dispatch TRACE requests to the FranmeworkServl et
doServi ce net hod.

spring. nvc. di spat ch-opti ons-request=true # Whether to dispatch OPTIONS requests to the FrameworkServl et
doServi ce net hod.

spring. mvc. favi con. enabl ed=true # Wether to enable resolution of favicon.ico.

spring. mvc. forncontent. putfilter.enabl ed=true # Whether to enable Spring's HttpPutFornContentFilter.

spring. mvc.ignore-defaul t-nodel -on-redirect=true # Wiether the content of the "default" nodel should be
ignored during redirect scenarios.

spring.nvc. |l ocal e= # Locale to use. By default, this locale is overridden by the "Accept-Language"
header .

spring. mvc. | ocal e-resol ver =accept - header # Define how the | ocal e should be resol ved.

spring. mvc. | og-resol ved- exception=fal se # Wiether to enable warn | ogging of exceptions resolved by a
"Handl er Excepti onResol ver".

spring. m/c. message- codes-resol ver-format= # Formatting strategy for nessage codes. For instance,
* PREFI X_ERROR_CODE' .

spring. mvc. pat h- mat ch. use-regi stered-suffix-pattern=fal se # Wiether suffix pattern matching shoul d work
only agai nst extensions registered with "spring.nmc.content-negotiation. nedia-types.*".

spring. mvc. pat h-mat ch. use-suffi x-pattern=fal se # \Wether to use suffix pattern match (".*") when
mat ching patterns to requests.

spring. mvc. servlet.load-on-startup=-1 # Load on startup priority of the Spring Wb Services servlet.

spring.nvc. static-path-pattern=/** # Path pattern used for static resources.

spring. mvc. t hrow exception-if-no-handl er-found=fal se # Wether a "NoHandl er FoundException" shoul d be
thrown if no Handl er was found to process a request.

spring. mvc.view prefix= # Spring M/C view prefix.

spring. mvc.view suffix= # Spring WC view suffix.

SPRI NG RESOURCES HANDLI NG (Resour ceProperti es)

spring. resour ces. add- mappi ngs=true # \Wether to enable default resource handling.

spring. resources. cache. cachecontrol . cache-private= # Indicate that the response nessage is intended for
a single user and nust not be stored by a shared cache.

spring. resour ces. cache. cachecontrol . cache-public= # Indicate that any cache may store the response.

spring. resour ces. cache. cachecontrol . max-age= # Maxi numtine the response shoul d be cached, in seconds if
no duration suffix is not specified.

spring. resources. cache. cachecontrol . must-reval i date= # Indicate that once it has becone stale, a cache
must not use the response without re-validating it with the server.

spring. resources. cache. cachecontrol . no-cache= # Indicate that the cached response can be reused only if
re-validated with the server.

spring. resour ces. cache. cachecontrol . no-store= # Indicate to not cache the response in any case.

spring. resour ces. cache. cachecontrol . no-transfornr # Indicate internediaries (caches and others) that
they shoul d not transformthe response content.

spring. resources. cache. cachecontrol . proxy-reval i date= # Sane neaning as the "nust-revalidate" directive,
except that it does not apply to private caches.

spring. resources. cache. cachecontrol . s-max-age= # Maximumtinme the response shoul d be cached by shared
caches, in seconds if no duration suffix is not specified.

spring. resources. cache. cachecontrol .stale-if-error= # Maxinumtine the response nay be used when errors
are encountered, in seconds if no duration suffix is not specified.

spring. resources. cache. cachecontrol . stal e-while-revalidate= # Maximumtinme the response can be served
after it becones stale, in seconds if no duration suffix is not specified.

spring. resources. cache. peri od= # Cache period for the resources served by the resource handler. If a
duration suffix is not specified, seconds will be used.

spring. resources. chai n. cache=true # Wiether to enable caching in the Resource chain.

spring. resources. chai n. enabl ed= # Wether to enable the Spring Resource Handling chain. By default,
di sabl ed unl ess at |east one strategy has been enabl ed.

spring. resources. chain. gzi pped=fal se # Wether to enable resolution of already gzi pped resources.

spring. resources. chai n. htm -application-cache=fal se # Wether to enable HTM.5 application cache manifest
rewiting.

spring. resources. chai n. strategy. content. enabl ed=fal se # Wiether to enable the content Version Strategy.

2.0.0.RC1 Spring Boot 303

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/servlet/WebMvcProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ResourceProperties.java

Spring Boot Reference Guide

spring.resources. chain.strategy.content.paths=/** # Comma-separated |ist of patterns to apply to the
content Version Strategy.

spring. resources. chain. strategy. fi xed. enabl ed=fal se # Whether to enable the fixed Version Strategy.

spring. resources. chain. strategy. fixed. paths=/** # Comma-separated |ist of patterns to apply to the fixed
Version Strategy.

spring. resources. chain. strategy. fixed.version= # Version string to use for the fixed Version Strategy.

spring.resources.static-locations=classpath:/META-| NF/ resources/, cl asspath:/resources/, classpath:/

static/,classpath:/public/ # Locations of static resources.

SPRI NG SESSI ON (Sessi onProperti es)

spring. session. store-type= # Session store type.

spring.session.servlet.filter-order=-2147483598 # Session repository filter order.

spring.session.servlet.filter-dispatcher-types=ASYNC, ERROR, REQUEST # Session repository filter
di spat cher types.

SPRI NG SESSI ON HAZELCAST (Hazel cast Sessi onProperti es)
spring. sessi on. hazel cast . f| ush- node=on-save # Sessions flush node.
spring. sessi on. hazel cast. map- nanme=spri ng: sessi on: sessi ons # Nane of the map used to store sessions.

SPRI NG SESSI ON JDBC (JdbcSessi onProperties)

spring. session. jdbc. cl eanup-cron=0 * * * * * # Cron expression for expired session cleanup job.

spring.session.jdbc.initialize-schema=enbedded # Dat abase schena initialization node.

spring. session. jdbc. schema=cl asspat h: or g/ spri ngf ramewor k/ sessi on/ j dbc/ schena- @@l at f orm@@ sql # Path to
the SQL file to use to initialize the database schena.

spring. session. jdbc.tabl e-nane=SPRI NG_SESSI ON # Nane of the database table used to store sessions.

SPRI NG SESSI ON MONGODB (MbngoSessi onProperti es)
spring. sessi on. nongodb. col | ecti on- name=sessions # Col | ection nane used to store sessions.

SPRI NG SESSI ON REDI S (Redi sSessi onProperti es)

spring. session. redis.cleanup-cron=0 * * * * * # Cron expression for expired session cleanup job.
spring. session. redis. fl ush-node=on-save # Sessions flush node.

spring. sessi on. redi s. nanespace=spri ng: sessi on # Nanespace for keys used to store sessions.

THYMELEAF (Thynel eaf Aut oConfi gur ati on)

spring. t hynel eaf . cache=true # Wether to enable tenplate caching.

spring. thynel eaf . check-tenpl ate=true # \Wether to check that the tenplate exists before rendering it.

spring. t hynel eaf . check-tenpl ate-| ocation=true # Wether to check that the tenplates |ocation exists.

spring. thynel eaf . enabl ed=true # Wether to enabl e Thynel eaf view resolution for Wb franeworks.

spring. thynel eaf . enabl e-spring-el -conpil er=fal se # Enable the SpringEL conpiler in SpringEL expressions.

spring. t hynel eaf . encodi ng=UTF-8 # Tenpl ate files encodi ng.

spring. t hynel eaf . excl uded- vi ew- nanes= # Comma- separated |ist of view nanes that should be excluded from
resol ution.

spring. t hynel eaf . rode=HTML5 # Tenpl ate node to be applied to tenplates. See al so Thynel eaf's
Tenpl at eMbde enum

spring. thynel eaf . prefix=cl asspath:/tenplates/ # Prefix that gets prepended to view nanes when building a
URL.

spring. t hynel eaf . reacti ve. chunked- node- vi ew- nanes= # Comnma-separated |ist of view nanes (patterns
al | oned) that should be the only ones executed in CHUNKED node when a max chunk size is set.

spring.thynel eaf . reactive. full -nbde-vi ew nanes= # Conmma-separated |ist of view nanes (patterns allowed)
that should be executed in FULL nbde even if a max chunk size is set.

spring. thynel eaf . reacti ve. max- chunk-si ze= # Maxi mum si ze of data buffers used for witing to the
response, in bytes.

spring. t hynel eaf . reacti ve. nedi a-types= # Medi a types supported by the view technol ogy.

spring. thynel eaf . servl et.content-type=text/htm # Content-Type value witten to HITP responses.

spring.thynel eaf . suffix=.html # Suffix that gets appended to view nanes when building a URL.

spring. thynel eaf.tenpl ate-resol ver-order= # Order of the tenplate resolver in the chain.

spring. thynel eaf . vi ew names= # Comma-separated |ist of view nanes that can be resol ved.

SPRI NG WEBFLUX (WebFl uxProperti es)
spring. webflux.date-format= # Date format to use. For instance, "dd/ MMyyyy" .
spring. webfl ux. static-path-pattern=/** # Path pattern used for static resources.

SPRI NG WEB SERVI CES (WebServi cesProperties)

spring. webservi ces. pat h=/services # Path that serves as the base URI for the services.

spring. webservices.servlet.init=# Servlet init paraneters to pass to Spring Wb Services.

spring. webservices. servlet.|oad-on-startup=-1 # Load on startup priority of the Spring Wb Services
servlet.

spring. webservi ces. wsdl -1 ocati ons= # Comma-separated |ist of |ocations of WBDLs and acconpanyi ng XSDs to
be exposed as beans.

2.0.0.RC1 Spring Boot 304

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/session/SessionProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/session/HazelcastSessionProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/session/JdbcSessionProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/session/MongoSessionProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/session/RedisSessionProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/thymeleaf/ThymeleafAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/reactive/WebFluxProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/webservices/WebServicesProperties.java

Spring Boot Reference Guide

SECURI TY (SecurityProperties)

spring.security.filter.order=0 # Security filter chain order.
spring.security.filter.dispatcher-types=ASYNC, ERROR, REQUEST # Security filter chain dispatcher types.
spring.security.user.name=user # Default user nane.

spring. security.user.password= # Password for the default user nane.

spring.security.user.roles= # Ganted roles for the default user nane.

SECURI TY QAUTH2 CLI ENT (QAut h2C i ent Properti es)
spring.security.oauth2.client.provider.*= # OQAuth provider details.
spring.security.oauth2.client.registration.*= # OQAuth client registrations.

FLYWAY (FlLywayProperties)

spring. fl yway. basel i ne-descripti on= #

spring. fl yway. basel i ne-on-m grate= #

spring. fl yway. basel i ne-version=1 # Version to start migration

spring. flyway. check-1ocati on=true # Whether to check that migration scripts |ocation exists.

spring. fl yway. cl ean-di sabl ed= #

spring. flyway. cl ean-on-validation-error= #

spring. flyway. dry-run-out put= #

spring. fl yway. enabl ed=true # \Whether to enable flyway.

spring. fl yway. encodi ng= #

spring. flyway. error-handl ers= #

spring. flyway. group= #

spring. flyway.ignore-future-mgrations= #

spring. flyway.ignore-m ssing-mgrations= #

spring.flyway.init-sqgls= # SQL statenents to execute to initialize a connection inmediately after
obtaining it.

spring. flyway.installed-by= #

spring. flyway. | ocations=cl asspath: db/ m gration # The |ocations of migrations scripts.

spring. flyway. m xed= #

spring. fl yway. out - of - order= #

spring. fl yway. password= # JDBC password to use if you want Flyway to create its own DataSource.

spring. fl yway. pl acehol der - prefix= #

spring. flyway. pl acehol der-repl acenent = #

spring. fl yway. pl acehol der - suf fi x= #

spring. fl yway. pl acehol ders. *= #

spring. flyway. repeat abl e-sqgl -m grati on-prefix= #

spring. fl yway. schemas= # schemas to update

spring. fl yway. ski p-defaul t-cal | backs= #

spring. flyway. ski p-defaul t-resol vers= #

spring. flyway. sql -migration-prefix=V #

spring. flyway. sql -migration-separator= #

spring. flyway. sql -mgration-suffix=.sql #

spring. flyway. sql -m gration-suffixes= #

spring. flyway.table= #

spring. flyway.target= #

spring. fl yway. undo-sql -m grati on-prefix= #

spring.flyway.url = # JDBC url of the database to migrate. If not set, the primary configured data source
is used.

spring. flyway. user= # Login user of the database to migrate.

spring. flyway. val i dat e-on-ni grate= #

LI QUI BASE (Liqui baseProperties)

spring.|iqui base. change-| og=cl asspat h: / db/ changel og/ db. changel og- master.yaml # Change | og configuration
pat h.

spring. | iqui base. check-change-1o0g-1ocation=true # \Wether to check that the change | og | ocation exists.

spring. | i qui base. contexts= # Comme-separated |ist of runtinme contexts to use.

spring.|iquibase. defaul t-schema= # Default database schena.

spring.liquibase.drop-first=false # \Wether to first drop the database schena.

spring.liqui base. enabl ed=true # Wiether to enabl e Liquibase support.

spring.|liquibase.|abel s= # Comma-separated |list of runtinme |abels to use.

spring.|iquibase. paraneters.*= # Change | og paraneters.

2.0.0.RC1 Spring Boot 305

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/security/SecurityProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/security/oauth2/client/OAuth2ClientProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/flyway/FlywayProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/liquibase/LiquibaseProperties.java

Spring Boot Reference Guide

spri
spri
spri
spri
spri
spri
spri
spri
spri
spri
spri

an

be
spri

spri
spri
spri
spri
spri
spri
spri
spri

spring.|iquibase. password= # Logi n password of the database to mgrate.

spring.liquibase.rollback-file= # File to which rollback SQL is witten when an update is perforned.

spring.liquibase.url=# JDBC URL of the database to migrate. If not set, the primary configured data
source is used.

spring. | iquibase.user= # Login user of the database to migrate.

COUCHBASE (CouchbaseProperti es)

spring. couchbase. env. ti meouts. quer y=7500ms # N1QL query operations tineout.
spring. couchbase. env. ti meout s. socket - connect =1000ns # Socket connect connections timeout.
spring. couchbase. env. ti neout s. vi ew=7500ns # Regul ar and geospatial view operations tineout.

DAO (Persi st enceExceptionTransl ati onAut oConfi gurati on)
spring. dao. exceptiontransl ation. enabl ed=true # Wiether to enable the
Per si st enceExcepti onTr ansl ati onPost Processor .

CASSANDRA (CassandraProperti es)
ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.

dat a. cassandr a. cl uster-name= # Nane of the Cassandra cluster.

dat a. cassandr a. conpr essi on=none # Conpressi on supported by the Cassandra binary protocol.
dat a. cassandr a. connect -ti meout = # Socket option: connection tine out.

dat a. cassandr a. consi stency-| evel = # Queries consistency |evel.

dat a. cassandr a. cont act - poi nt s=| ocal host # Comma-separated |ist of cluster node addresses.
dat a. cassandra. fetch-si ze= # Queries default fetch size.

dat a. cassandr a. keyspace- name= # Keyspace nanme to use.

dat a. cassandr a. | oad- bal anci ng- pol i cy= # C ass nanme of the |oad bal anci ng policy.

ng. dat a. cassandra. port= # Port of the Cassandra server.

ng. dat a. cassandr a. password= # Logi n password of the server.

ng. dat a. cassandr a. pool . heart beat-interval =30 # Heartbeat interval after which a nessage is sent on
idle connection to make sure it's still alive. If a duration suffix is not specified, seconds will
used.

ng. dat a. cassandr a. pool . i dl e-ti meout =120 # |dle tineout before an idle connection is renoved. If a

duration suffix is not specified, seconds will be used.
spring. dat a. cassandr a. pool . max- queue- si ze=256 # Maxi mum nunber of requests that get queued if no
connection is avail able.
spring. dat a. cassandr a. pool . pool - ti meout =5000nms # Pool
host' s pool .
ng.
ng.
ng.
ng.
ng.
ng.
ng.
ng.

dat a. cassandra. read-ti nmeout= # Socket option: read tinme out.

dat a. cassandr a. reconnecti on-pol i cy= # Reconnection policy class.

dat a. cassandra.repositories.type=auto # Type of Cassandra repositories to enable.
dat a. cassandra.retry-policy= # Cass name of the retry policy.

dat a. cassandr a. seri al - consi stency-1 evel = # Queries serial consistency |evel.

dat a. cassandr a. schema- acti on=none # Schema action to take at startup.

dat a. cassandr a. ssl =fal se # Enabl e SSL support.

dat a. cassandr a. username= # Login user of the server.

DATA COUCHBASE (CouchbaseDat aProperti es)

spring. dat a. couchbase. aut o-i ndex=fal se # Autonatically create views and indexes.
spring. dat a. couchbase. consi st ency=r ead- your-own-wites # Consistency to apply by default on generated
queri es.

spring. dat a. couchbase. reposi tories.type=auto # Type of Couchbase repositories to enable.

ELASTI CSEARCH (El asti csearchProperties)

spring. data. el asti csearch. cl ust er-nane=el asti csearch # El asticsearch cluster nane.

spring. dat a. el asti csearch. cl ust er-nodes= # Conma-separated |ist of cluster node addresses.

spring. data. el asticsearch. properties.*= # Additional properties used to configure the client.
spring. dat a. el asti csearch.repositories.enabl ed=true # Wether to enable El asticsearch repositories.

DATA LDAP
spring. data. | dap. repositories. enabl ed=true # Enabl e LDAP repositories.

spring. couchbase. boot st rap- hosts= # Couchbase nodes (host or |P address) to bootstrap from

spri ng. couchbase. bucket . nane=def ault # Nane of the bucket to connect to.

spring. couchbase. bucket . password= # Password of the bucket.

spring. couchbase. env. endpoi nts. key-val ue=1 # Nunber of sockets per node against the Key/val ue service.

spring. couchbase. env. endpoi nts. query=1 # Nunber of sockets per node against the Query (NLQL) service.

spring. couchbase. env. endpoi nts. view=1 # Nunber of sockets per node against the view service.

spring. couchbase. env. ssl . enabl ed= # Wether to enable SSL support. Enabled automatically if a "keyStore"
is provided, unless specified otherw se.

spring. couchbase. env. ssl . key-store= # Path to the JVM key store that holds the certificates.

spring. couchbase. env. ssl . key- st or e- passwor d= # Password used to access the key store.

spring. couchbase. env. ti meouts. connect =5000ms # Bucket connections tinmeouts.

spring. couchbase. env. ti neout s. key- val ue=2500ns # Bl ocki ng operations perforned on a specific key
ti meout .

timeout when trying to acquire a connection froma

2.0.0.RC1 Spring Boot

306

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/couchbase/CouchbaseProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/dao/PersistenceExceptionTranslationAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/cassandra/CassandraProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/couchbase/CouchbaseDataProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/elasticsearch/ElasticsearchProperties.java

Spring Boot Reference Guide

MONGODB (MbngoProperti es)

spring. dat a. nongodb. aut henti cati on- dat abase= # Aut henticati on database nane.

spring. dat a. nongodb. dat abase=t est # Dat abase nane.

spring. dat a. nongodb. fi el d- nam ng-strategy= # Fully qualified nane of the Fiel dNam ngStrategy to use.

spring. dat a. nongodb. gri d- f s- dat abase= # G'i dFS dat abase nane.

spring. dat a. nrongodb. host =l ocal host # Mongo server host. Cannot be set with URI.

spring. dat a. nongodb. password= # Logi n password of the nongo server. Cannot be set with URI.

spri ng. dat a. nongodb. port =27017 # Mongo server port. Cannot be set with URI.

spring. dat a. nongodb. repositori es.type=true # Type of Mdngo repositories to enable.

spring. dat a. nongodb. uri =nongodb: / /| ocal host/test # Mongo database URI. Cannot be set with host, port and
credentials.

spring. dat a. nrongodb. user name= # Login user of the nobngo server. Cannot be set with URI.

DATA REDI S
spring. data.redis.repositories. enabl ed=true # Wiether to enable Redis repositories.

NEO4J (Neod4j Properties)

spring. dat a. neo4j . aut o-i ndex=none # Auto index node.

spring. dat a. neo4j . enbedded. enabl ed=true # Wether to enabl e enbedded node if the enbedded driver is
avai | abl e.

spring. dat a. neo4j . open-in-vi ewstrue # Regi ster OpenSessionlnView nterceptor. Binds a Neo4] Session to
the thread for the entire processing of the request.

spring. dat a. neo4j . password= # Login password of the server.

spring. data. neo4j . repositories. enabl ed=true # Wiether to enabl e Neo4j repositories.

spring.data.neodj.uri= # URl used by the driver. Auto-detected by default.

spring. dat a. neo4j . usernanme= # Login user of the server.

DATA REST (RepositoryRestProperties)

spring. dat a. rest. base-path= # Base path to be used by Spring Data REST to expose repository resources.

spring. data.rest.defaul t-nmedi a-type= # Content type to use as a default when none is specified.

spring. data. rest. defaul t-page-size= # Default size of pages.

spring.data.rest.detection-strategy=default # Strategy to use to determni ne which repositories get
exposed.

spring. dat a. rest. enabl e-enumtransl ati on= # Wiether to enable enum val ue translation through the Spring
Dat a REST default resource bundle.

spring.data.rest.limt-paramname= # Nane of the URL query string paraneter that indicates how many
results to return at once.

spring. dat a. rest. max- page-si ze= # Maxi num si ze of pages.

spring. dat a. rest. page- param nane= # Nanme of the URL query string paraneter that indicates what page to
return.

spring.data.rest.return-body-on-create= # Wiether to return a response body after creating an entity.

spring. data.rest.return-body-on-update= # Wiether to return a response body after updating an entity.

spring. data.rest.sort-param name= # Nane of the URL query string paraneter that indicates what direction
to sort results.

SOLR (SolrProperties)
spring. data.sol r.host=http://127.0.0.1:8983/solr # Solr host. lgnored if "zk-host" is set.

spring. data.solr.repositories. enabl ed=true # \Wether to enable Solr repositories.
spring. dat a. sol r. zk- host = # ZooKeeper host address in the form HOST: PORT.

DATA VEB (SpringDat aWebPr operti es)

spring. dat a. web. pageabl e. def aul t - page- si ze=20 # Default page size.

spring. dat a. web. pageabl e. max- page- si ze=2000 # Maxi num page size to be accepted.

spring. dat a. web. pageabl e. one-i ndexed- par anet ers=f al se # \Wether to expose and assune 1-based page nunber
i ndexes.

spring. dat a. web. pageabl e. page- par anet er =page # Page i ndex paraneter nane.

spring. dat a. web. pageabl e. prefi x= # General prefix to be prepended to the page nunber and page size
par anet er s.

spring. dat a. web. pageabl e. qualifier-delimter=_ # Delinter to be used between the qualifier and the
actual page nunber and size properties.

spring. dat a. web. pageabl e. si ze- par anet er =si ze # Page size paranmeter nane.

spring. data.web. sort.sort-paranmeter=sort # Sort paraneter nane.

DATASOURCE (Dat aSour ceAut oConfi guration & Dat aSour ceProperti es)

spring. dat asour ce. conti nue-on-error=fal se # \Wether to stop if an error occurs while initializing the
dat abase.

spring. datasource. data= # Data (DM.) script resource references.

spring. dat asour ce. dat a- user name= # Username of the database to execute DML scripts (if different).
spring. dat asour ce. dat a- passwor d= # Password of the database to execute DML scripts (if different).
spring. dat asour ce. dbcp2. *= # Conmons DBCP2 specific settings

2.0.0.RC1 Spring Boot 307

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mongo/MongoProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/neo4j/Neo4jProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/rest/RepositoryRestProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/solr/SolrProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/web/SpringDataWebProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/DataSourceAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/DataSourceProperties.java

Spring Boot Reference Guide

the URL by defaul t.
spring. datasource. hikari.*= # H kari specific settings
scripts.
pool).
i gnored when set.
spring. dat asour ce. password= # Logi n password of the database.

${platforn}.sqgl or data-${platforn}.sql).
spring. dat asour ce. schema= # Schema (DDL) script resource references.

spring. datasource. separator=; # Statenent separator in SQ. initialization scripts.
spring. dat asour ce. sql -scri pt-encodi ng= # SQL scripts encoding.
spring. datasource. tontat.*= # Tontat datasource specific settings

it is auto-detected fromthe classpath.
spring. datasource. url = # JDBC URL of the database.
spring. dat asour ce. username= # Logi n usernanme of the database.
spring. dat asour ce. xa. dat a- sour ce- cl ass- nane= # XA datasource fully qualified nane.
spring. dat asource. xa. properties= # Properties to pass to the XA data source.

JEST (El asticsearch HTTP client) (JestProperties)
spring. el asticsearch. jest.connection-tinmeout=3s # Connection tinmeout.

execution threads.
spring. el asticsearch.jest.password= # Login password.
spring. el asticsearch. jest.proxy. host= # Proxy host the HITP client shoul d use.
spring. el asticsearch.jest.proxy.port= # Proxy port the HITP client shoul d use.
spring. el asticsearch.jest.read-tinmeout=3s # Read tineout.

instances to use.
spring. el asticsearch.jest.username= # Login usernane.

H2 Wb Consol e (H2Consol eProperti es)

spring. h2. consol e. enabl ed=f al se # Whether to enable the console.

spring. h2. consol e. pat h=/ h2-consol e # Path at which the console is available.

spring. h2. consol e. settings.trace=fal se # Wiether to enable trace output.

spring. h2. consol e. settings. web-al | ow ot hers=fal se # Wiether to enable renpte access.

1 nfl uxDB (InfluxDbProperties)

spring.influx. password= # Logi n password.

spring.influx.url=# URL of the InfluxDB instance to which to connect.
spring.influx.user=# Login user.

JOOQ (JoogProperties)
spring.jooq.sql-dialect=# SQL dialect to use. Auto-detected by default.

JDBC (JdbcProperti es)

rows are needed.
spring.jdbc.tenpl ate. max-rows=-1 # Maxi num nunber of rows.

be used.

JPA (JpaBaseConfi guration, HibernateJpaAutoConfi guration)
spring.data.jpa.repositories.enabl ed=true # \Whether to enable JPA repositories.

usi ng the "dat abasePl atforn' property.

be alternatively set using the "Database" enum
spring.jpa.generate-ddl =fal se # \Wether to initialize the schema on startup.

Ot herwi se, defaults to "none".

spring. dat asour ce. gener at e- uni que- nanme=f al se # \Wether to generate a random datasource namne.

spring. datasource.platformral |l # Platformto use in the DDL or DML scripts (such as schena-

spring. dat asource.type= # Fully qualified name of the connection pool inplenentation to use.

spring.jdbc.tenplate. query-tinmeout= # Query timeout. If a duration suffix is not specified,

spring. datasource. driver-class-nane= # Fully qualified nane of the JDBC driver. Auto-detected based on

spring. datasource.initialization-node=enbedded # Initialize the datasource with available DDL and DWVL
spring. dat asour ce. j nx- enabl ed=f al se # \Whet her to enable JMX support (if provided by the underlying
spring. dat asource. jndi-nanme= # JNDI |ocation of the datasource. Cass, url, username & password are

spring. dat asour ce. nane= # Nane of the datasource. Default to "testdb"” when using an enbedded database.

spring. dat asour ce. schema- user nane= # Usernane of the database to execute DDL scripts (if different).
spring. dat asour ce. schenma- passwor d= # Password of the database to execute DDL scripts (if different).

By default,

spring. el asticsearch.jest.mlti-threaded=true # Wether to enable connection requests frommultiple

spring. el asticsearch.jest.uris=http://local host:9200 # Comma-separated |ist of the El asticsearch

spring.jdbc.tenplate.fetch-size=-1 # Nunber of rows that should be fetched fromthe database when nore

seconds w ||

spring.j pa. dat abase= # Target database to operate on, auto-detected by default. Can be alternatively set

spring. j pa. dat abase-pl atfornr # Nane of the target database to operate on, auto-detected by default. Can

spring.jpa. hibernate.ddl -auto= # DDL node. This is actually a shortcut for the "hibernate. hbn2ddl . aut 0"
property. Defaults to "create-drop" when using an enbedded dat abase and no schema nanager was detect ed.

2.0.0.RC1 Spring Boot

308

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/elasticsearch/jest/JestProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/h2/H2ConsoleProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/influx/InfluxDbProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jooq/JooqProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/JdbcProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/JpaBaseConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/HibernateJpaAutoConfiguration.java

Spring Boot Reference Guide

spring.jpa. hibernate.namng.inplicit-strategy= # H bernate 5 inplicit nam ng strategy fully qualified
nane.

spring. j pa. hi bernat e. nam ng. physi cal -strategy= # H bernate 5 physical namng strategy fully qualified
namne.

spring. j pa. hi ber nat e. use- new-i d- gener at or - mappi ngs= # Wiether to use Hi bernate's newer
I dentifierCGenerator for AUTO, TABLE and SEQUENCE.

spring.j pa. mappi ng-resources= # Mappi ng resources (equivalent to "mapping-file" entries in
persi stence. xm).

spring.jpa.open-in-viewtrue # Register QpenEntityManager|nView nterceptor. Binds a JPA EntityManager to
the thread for the entire processing of the request.

spring.jpa.properties.*= # Additional native properties to set on the JPA provider.

spring.jpa.showsql =fal se # Wiether to enable | ogging of SQL statenents.

JTA (JtaAut oConfi guration)

spring.jta.enabl ed=true # Whether to enabl e JTA support.
spring.jta.log-dir= # Transaction |ogs directory.
spring.jta.transaction-nmanager-id= # Transaction manager unique identifier.

ATOM KOS (At om kosProperti es)

spring.jta.atom kos. connecti onfactory. borrow connection-tinmeout=30 # Tinmeout, in seconds, for borrow ng
connections fromthe pool .

spring.jta.atoni kos. connectionfactory.ignore-session-transacted-flag=true # Wiether to ignore the
transacted flag when creating session.

spring.jta.atom kos. connectionfactory.|ocal -transaction-node=fal se # Wether |ocal transactions are
desi red.

spring.jta.atom kos. connecti onfact ory. mai nt enance-interval =60 # The time, in seconds, between runs of
the pool's maintenance thread.

spring.jta.atom kos. connectionfactory. max-idle-time=60 # The tine, in seconds, after which connections
are cl eaned up fromthe pool.

spring.jta.atom kos. connectionfactory. max-lifetine=0 # The tine, in seconds, that a connection can be
pool ed for before being destroyed. O denotes no limt.

spring.jta.atom kos. connecti onfact ory. max- pool -si ze=1 # The maxi mum si ze of the pool .

spring.jta.atom kos. connectionfactory. m n-pool -size=1 # The mni ni nrum si ze of the pool.

spring.jta.atom kos. connectionfactory.reap-tineout=0 # The reap tinmeout, in seconds, for borrowed
connections. O denotes no linmit.

spring.jta.atomn kos. connectionfactory. uni que-resour ce- nane=j msConnecti onFactory # The uni que nane used
to identify the resource during recovery.

spring.jta.atom kos. connecti onfact ory. xa-connecti on-factory-cl ass-nane= # Vendor -specific inplenmentation
of XAConnecti onFactory.

spring.jta.atom kos. connectionfactory. xa-properti es= # Vendor-specific XA properties.

spring.jta.atomnm kos. dat asour ce. borr ow connecti on-ti meout =30 # Ti neout, in seconds, for borrow ng
connections fromthe pool.

spring.jta.atomn kos. dat asource. concurrent-connecti on-val i dati on= # \Wether to use concurrent connection
val i dati on.

spring.jta.atom kos. dat asource. defaul t-isolation-1evel = # Default isolation |evel of connections
provi ded by the pool .

spring.jta.atom kos. dat asource. | ogi n-ti nmeout= # Tineout, in seconds, for establishing a database
connection.

spring.jta.atomn kos. dat asour ce. mai nt enance-interval =60 # The tine, in seconds, between runs of the
pool ' s nmi ntenance thread.

spring.jta.atom kos. dat asource. max-i dl e-ti me=60 # The tine, in seconds, after which connections are
cl eaned up fromthe pool.

spring.jta.atom kos. dat asource. nax-lifetine=0 # The tine, in seconds, that a connection can be pool ed
for before being destroyed. O denotes no limt.

spring.jta.atomni kos. dat asour ce. max- pool -si ze=1 # The maxi num si ze of the pool.

spring.jta.atom kos. dat asour ce. m n- pool -si ze=1 # The mi ni mum si ze of the pool .

spring.jta.atom kos. dat asource. reap-ti meout=0 # The reap tinmeout, in seconds, for borrowed connections.
0 denotes no limt.

spring.jta.atom kos. dat asource. test-query= # SQL query or statenent used to validate a connection before
returning it.

spring.jta.atomn kos. dat asour ce. uni que- r esour ce- nane=dat aSour ce # The uni que name used to identify the
resource during recovery.

spring.jta.atom kos. dat asour ce. xa- dat a- sour ce- cl ass- nanme= # Vendor -specific inplenentati on of
XAConnect i onFact ory.

spring.jta.atom kos. dat asour ce. xa- properti es= # Vendor-specific XA properties.

spring.jta.atom kos. properties. all ow sub-transacti ons=true # Specify whet her sub-transactions are
al | oned.

spring.jta.atom kos. properties. checkpoint-interval =500 # Interval between checkpoints, in mlliseconds.

spring.jta.atom kos. properties.default-jta-ti meout=10000 # Default tinmeout for JTA transactions, in
m | liseconds.

2.0.0.RC1 Spring Boot 309

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/transaction/jta/JtaAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/jta/atomikos/AtomikosProperties.java

Spring Boot Reference Guide

spring.jta.atomn kos. properties. defaul t-nmax-wait-tinme-on-shutdown=9223372036854775807 # How | ong shoul d
normal shutdown (no-force) wait for transactions to conplete.

spring.jta.atom kos. properties. enabl e-1 0oggi ng=true # \Whether to enabl e di sk | ogging.

spring.jta.atomi kos. properties.force-shutdown-on-vmexit=fal se # Wether a VM shutdown should trigger
forced shutdown of the transaction core.

spring.jta.atom kos. properties.|og-base-dir= # Directory in which the log files should be stored.

spring.jta.atom kos. properties.| og-base-name=tnml og # Transactions log file base nane.

spring.jta.atom kos. properties. max-actives=50 # Maxi num nunber of active transactions.

spring.jta.atom kos. properties. max-ti meout =30m # Maxi nrum ti neout that can be allowed for transactions.

spring.jta.atom kos. properties.recovery. del ay=10000ns # Del ay between two recovery scans.

spring.jta.atom kos. properties.recovery.forget-orphaned-|og-entries-del ay=86400000 # Del ay after which
recovery can cleanup pending ('orphaned') |og entries.

spring.jta.atom kos. properties.recovery. max-retries=5 # Nunber of retry attenpts to commt the
transaction before throwi ng an exception.

spring.jta.atom kos. properties.recovery.retry-interval =10000nms # Del ay between retry attenpts.

spring.jta.atom kos. properties.serial-jta-transactions=true # Wether sub-transactions should be joined
when possi bl e.

spring.jta.atom kos. properties.service= # Transaction manager inplenentation that should be started.

spring.jta.atomn kos. properties.threaded-two-phase-conmit=false # Wiether to use different (and
concurrent) threads for two-phase commit on the participating resources.

spring.jta.atom kos. properties.transaction- manager - uni que- name= # The transaction manager's uni que name.

Bl TRONI X

spring.jta. bitronix. connectionfactory. acquire-increnent=1 # Nunber of connections to create when grow ng
the pool .

spring.jta.bitroni x.connectionfactory.acquisition-interval=1 # Tinme, in seconds, to wait before trying
to acquire a connection again after an invalid connection was acquired.

spring.jta.bitronix.connectionfactory. acquisition-tinmeout=30 # Tinmeout, in seconds, for acquiring
connections fromthe pool.

spring.jta.bitronix.connectionfactory.allow|ocal -transacti ons=true # Wether the transacti on manager
shoul d al |l ow mi xi ng XA and non- XA transacti ons.

spring.jta.bitronix.connectionfactory. apply-transaction-tinmeout=false # Wether the transaction tineout
shoul d be set on the XAResource when it is enlisted.

spring.jta.bitronix.connectionfactory. automatic-enlisting-enabl ed=true # Wether resources shoul d be
enlisted and delisted automatically.

spring.jta. bitronix. connectionfactory. cache-producers-consuners=true # Wether producers and consuners
shoul d be cached.

spring.jta.bitronix.connectionfactory.class-nanme= # Underlying inplenentation class nane of the XA
resource.

spring.jta.bitronix.connectionfactory. defer-connection-rel ease=true # Wether the provider can run nany
transacti ons on the same connection and supports transaction interleaving.

spring.jta. bitronix. connectionfactory. di sabl ed= # Wiether this resource is disabled, neaning it's
tenporarily forbidden to acquire a connection fromits pool.

spring.jta.bitronix.connectionfactory.driver-properties= # Properties that should be set on the
underlying inplenentation.

spring.jta.bitronix.connectionfactory.failed= # Mark this resource producer as failed.

spring.jta. bitronix. connectionfactory.ignore-recovery-failures=false # Wether recovery failures should
be i gnored.

spring.jta. bitronix.connectionfactory. max-idle-tinme=60 # The tine, in seconds, after which connections
are cleaned up fromthe pool .

spring.jta.bitroni x. connectionfactory. max- pool -si ze=10 # The maxi mum si ze of the pool. 0 denotes no
limt.

spring.jta. bitronix. connectionfactory. m n-pool -size=0 # The ni ni nrum si ze of the pool.

spring.jta. bitronix. connectionfactory. password= # The password to use to connect to the JMS provider.

spring.jta. bitronix.connectionfactory. share-transaction-connections=false # Wether connections in the
ACCESSI BLE state can be shared within the context of a transaction.

spring.jta.bitroni x.connectionfactory.test-connections=true # Wether connections should be tested when
acquired fromthe pool.

spring.jta. bitronix. connectionfactory.two-pc-ordering-position=1 # The position that this
resource shoul d take during two-phase commt (always first is Integer. M N VALUE, always |last is
I nt eger . MAX_VALUE) .

spring.jta.bitroni x. connectionfactory. uni que- name=j nsConnecti onFactory # The uni que nane used to
identify the resource during recovery.

spring.jta.bitronix.connectionfactory.use-tmjoin=true Wiether TMIO N shoul d be used when starting
XAResour ces.

spring.jta. bitronix.connectionfactory.user= # The user to use to connect to the JMS provider.

spring.jta. bitronix. datasource. acquire-increment=1 # Nunmber of connections to create when grow ng the
pool .

spring.jta.bitroni x. datasource. acquisition-interval=1 # Tinme, in seconds, to wait before trying to
acquire a connection again after an invalid connection was acquired.

2.0.0.RC1 Spring Boot 310

Spring Boot Reference Guide

spring.jta. bitronix. datasource. acqui si tion-tinmeout=30 # Tineout, in seconds, for acquiring connections
fromthe pool.

spring.jta.bitroni x. datasource. al | ow | ocal -transactions=true # Wether the transacti on nmanager shoul d
al |l ow m xi ng XA and non- XA transacti ons.

spring.jta. bitronix. dat asource. appl y-transacti on-ti neout =fal se # Wiether the transaction tineout should
be set on the XAResource when it is enlisted.

spring.jta. bitronix. datasource. autonati c-enlisting-enabl ed=true # Whether resources should be enlisted
and del i sted automatically.

spring.jta.bitronix. datasource. cl ass-nane= # Underlying inplenentation class nane of the XA resource.

spring.jta.bitronix. datasource. cursor-hol dability= # The default cursor holdability for connections.

spring.jta. bitronix. dat asource. def er-connecti on-rel ease=true # Wether the database can run nmany
transactions on the same connection and supports transaction interleaving.

spring.jta. bitronix. datasource. di sabl ed= # Whether this resource is disabled, nmeaning it's tenporarily
forbidden to acquire a connection fromits pool.

spring.jta.bitroni x.datasource.driver-properties= # Properties that should be set on the underlying
i mpl ement ati on.

spring.jta. bitronix. dat asour ce. enabl e-j dbc4- connecti on-test= # Wet her Connection.isValid() is called
when acquiring a connection fromthe pool .

spring.jta. bitronix. datasource.failed= # Mark this resource producer as failed.

spring.jta.bitronix.datasource.ignore-recovery-failures=fal se # Wether recovery failures should be
i gnor ed.

spring.jta.bitroni x. datasource.isolation-level = # The default isolation |evel for connections.

spring.jta. bitronix. datasource. | ocal -auto-commit= # The default auto-commit node for |ocal transactions.

spring.jta. bitronix. datasource. | ogin-timeout= # Tinmeout, in seconds, for establishing a database
connecti on.

spring.jta.bitronix.datasource. max-idle-time=60 # The tine, in seconds, after which connections are
cl eaned up fromthe pool.

spring.jta.bitronix. datasource. max- pool -si ze=10 # The maxi mum size of the pool. 0 denotes no limt.

spring.jta. bitronix. dat asource. m n-pool -si ze=0 # The ni ni num si ze of the pool .

spring.jta. bitronix. dat asour ce. prepar ed- st at enent - cache-si ze=0 # The target size of the prepared
statenment cache. 0 disables the cache.

spring.jta.bitronix. datasource. share-transacti on-connections=fal se # Wether connections in the
ACCESSI BLE state can be shared within the context of a transaction.

spring.jta.bitroni x. datasource.test-query= # SQL query or statenment used to validate a connection before
returning it.

spring.jta. bitronix. dat asour ce. t wo- pc-ordering-position=1 # The position that this resource should take
during two-phase commt (always first is Integer.M N _VALUE, and always |ast is |nteger. MVAX_VALUE).

spring.jta.bitronix.datasource. uni que- nane=dat aSource # The uni que nane used to identify the resource
during recovery.

spring.jta.bitronix.datasource. use-tmjoin=true Whether TMJO N shoul d be used when starting XAResources.

spring.jta.bitronix.properties.allownultiple-lIrc=false # Wiether to allow nultiple LRC resources to be
enlisted into the sane transaction.

spring.jta. bitronix. properties.asynchronous2-pc=fal se # Enabl e asynchronously execution of tw phase
conmi t.

spring.jta.bitronix. properties. background-recovery-interval -seconds=60 # Interval in seconds at which to
run the recovery process in the background.

spring.jta.bitronix. properties.current-node-only-recovery=true # Wether to recover only the current
node.

spring.jta. bitronix. properties. debug-zero-resource-transaction=fal se # Wiether to |og the creation and
commit call stacks of transactions executed wi thout a single enlisted resource.

spring.jta.bitroni x.properties.default-transacti on-timeout=60 # Default transaction tineout, in seconds.

spring.jta.bitronix.properties.disable-jnmk=false # Wiether to enable JMX support.

spring.jta.bitronix. properties.exception-analyzer= # Set the fully qualified nane of the exception
anal yzer inplenmentation to use.

spring.jta. bitronix.properties.filter-1og-status=false # \Wether to enable filtering of |ogs so that
only mandatory |logs are witten.

spring.jta.bitroni x. properties.force-batching-enabl ed=true # Wether disk forces are batched.

spring.jta.bitronix.properties.forced-wite-enabled=true # \Wether |ogs are forced to disk.

spring.jta. bitronix. properties. graceful - shutdown-i nterval =60 # Maxi num anount of seconds the TMwaits
for transactions to get done before aborting them at shutdown tine.

spring.jta. bitronix.properties.jndi-transaction-synchronization-registry-nane= # JNDI nane of the
Transacti onSynchroni zati onRegi stry.

spring.jta.bitroni x.properties.jndi-user-transacti on-nanme= # JNDI nanme of the UserTransacti on.

spring.jta.bitronix. properties.journal =di sk # Name of the journal. Can be "disk', 'null', or a class
namne.

spring.jta. bitronix.properties.|log-partl-filename=btnml.tlog # Nane of the first fragment of the journal.

spring.jta.bitronix.properties.|log-part2-fil enane=btnR.tlog # Nane of the second fragnment of the
journal .

spring.jta.bitronix. properties. max-1o0g-size-in-nmb=2 # Maxi mum si ze in nmegabytes of the journal
fragnents.

2.0.0.RC1 Spring Boot 311

Spring Boot Reference Guide

spring.jta. bitronix. properties.resource-configuration-filename= # ResourceLoader configuration file
nane.

spring.jta.bitroni x.properties.server-id= # ASCI| ID that nust uniquely identify this TMinstance.
Defaults to the machine's I P address.

spring.jta.bitronix. properties. skip-corrupted-|ogs=false # Skip corrupted transactions |log entries.

spring.jta.bitronix. properties.warn-about-zero-resource-transacti on=true # Wiether to | og a warning for
transactions executed without a single enlisted resource.

NARAYANA (Nar ayanaPr operti es)

spring.jta.narayana. defaul t-ti meout=60s # Transaction tineout. If a duration suffix is not specified,
seconds will be used.

spring.jta.narayana. expiry-

scanner s=com arj una. ats.internal . arjuna.recovery. Expi redTransacti onSt at usManager Scanner # Conma-
separated |ist of expiry scanners.

spring.jta.narayana.l og-dir= # Transacti on object store directory.

spring.jta.narayana. one- phase-commit=true # Wiether to enabl e one phase commit optim zation.

spring.jta. narayana. peri odi c-recovery-period=120s # Interval in which periodic recovery scans are
performed. |If a duration suffix is not specified, seconds will be used.

spring.jta.narayana.recovery-backoff-peri od=10s # Back off period between first and second phases of the
recovery scan. If a duration suffix is not specified, seconds will be used.
spring.jta.narayana.recovery-db-pass= # Database password to be used by the recovery nmanager.
spring.jta.narayana. recovery-db-user= # Database usernane to be used by the recovery manager.

spring.jta.narayana.recovery-j nms-pass= # JM5 password to be used by the recovery nmanager.

spring.jta.narayana.recovery-jms-user= # JMS usernane to be used by the recovery manager.

spring.jta. narayana.recovery-nodul es= # Comma-separated |ist of recovery nodul es.
spring.jta.narayana.transaction-nmanager-id=1 # Uni que transaction nmanager id.

spring.jta.narayana. xa-resour ce-orphan-filters= # Comma-separated |ist of orphan filters.

EMBEDDED MONGODB (EmbeddedMbngoPr operti es)

spring. nongodb. enbedded. f eat ur es=SYNC_DELAY # Comme-separated |ist of features to enable.
spring. nongodb. enbedded. st or age. dat abase-dir= # Directory used for data storage.

spring. nongodb. enbedded. st or age. opl og-si ze= # Maxi num si ze of the oplog, in nmegabytes.
spring. nongodb. enbedded. st or age. repl - set-nane= # Nane of the replica set.

spring. nongodb. enbedded. ver si on=2. 6. 10 # Version of Mngo to use.

REDI S (Redi sProperties)
spring.redis.cluster.max-redirects= # Maxi mum nunber of redirects to follow when executing commands
across the cluster.
spring.redis.cluster.nodes= # Conmma-separated |list of "host:port" pairs to bootstrap from
spring. redis. dat abase=0 # Database index used by the connection factory.
spring.redis.url= # Connection URL. Overrides host, port, and password. User is ignored. Exanple:
redi s:// user: passwor d@xanpl e. com 6379
spring.redis. host=l ocal host # Redis server host.
spring.redis.jedis.pool.mx-active=8 # Max number of connections that can be allocated by the pool at a
given tinme. Use a negative value for no limt.
spring.redis.jedis.pool.mx-idl e=8 # Max nunber of "idle" connections in the pool. Use a negative val ue
to indicate an unlimted nunber of idle connections.
spring.redis.jedis.pool.nmx-wait=-1ns # Maxi num anount of tine a connection allocation should bl ock
before throwi ng an exception when the pool is exhausted. Use a negative value to block indefinitely.
spring.redis.jedis.pool.nn-idl e=0 # Target for the m ninum nunber of idle connections to maintain in
the pool. This setting only has an effect if it is positive.
spring.redis.|ettuce. pool.nax-active=8 # Maxi num nunber of connections that can be allocated by the pool
at a given tinme. Use a negative value for no limt.
spring.redis.|ettuce. pool . max-idl e=8 # Maxi num nunber of "idle" connections in the pool. Use a negative
value to indicate an unlinmted nunber of idle connections.
spring.redis.|ettuce. pool . max-wait=-1ns # Maxi rum amount of tine a connection allocation should bl ock
before throwi ng an excepti on when the pool is exhausted. Use a negative value to block indefinitely.
spring.redis.lettuce.pool.nmin-idle=0 # Target for the mnimum nunber of idle connections to naintain in
the pool. This setting only has an effect if it is positive.
spring.redis.|ettuce.shutdown-tinmeout=100ms # Shutdown ti nmeout.
spring.redis.password= # Login password of the redis server.
spring.redis. port=6379 # Redis server port.
spring.redis.sentinel.master= # Name of the Redis server.
S.
S.
S.

spring.redis.sentinel.nodes= # Comma-separated |ist of "host:port" pairs.
spring.redis.ssl=fal se # Wiether to enabl e SSL support.
spring.redis.tinmeout=0 # Connection tineout.

TRANSACTI ON (TransactionProperti es)

spring.transaction.default-timeout= # Default transaction tinmeout. If a duration suffix is not
speci fied, seconds will be used.

spring.transaction.rol | back-on-commit-failure= # Wiether to roll back on commit failures.

2.0.0.RC1 Spring Boot 312

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/jta/narayana/NarayanaProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mongo/embedded/EmbeddedMongoProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/redis/RedisProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/transaction/TransactionProperties.java

Spring Boot Reference Guide

ACTI VEMQ (ActiveM®Properties)

spring. activenqy. broker-url= # URL of the ActiveM) broker. Auto-generated by default.

spring. activenq.cl ose-timeout=15s # Tine to wait before considering a close conplete.

spring.activeng.in-nenory=true # Wiether the default broker URL should be in nenory. Ignored if an
explicit broker has been specified.

spring. activeng. non- bl ocki ng-redel i very=fal se # Wether to stop nessage delivery before re-delivering
nessages froma rolled back transaction. This inplies that message order is not preserved when this is
enabl ed.

spring. activeng. password= # Logi n password of the broker.

spring.activeny.send-tineout=0 # Tine to wait on nessage sends for a response. Set it to O to wait
forever.

spring.activeng.user= # Login user of the broker.

spring. acti veny. packages.trust-all= # Wiether to trust all packages.

spring. activeny. packages. trusted= # Comma-separated |ist of specific packages to trust (when not
trusting all packages).

spring. activeny. pool . bl ock-if-full=true # Wiether to bl ock when a connection is requested and the pool
is full. Set it to false to throw a "JMSException" instead.

spring. activenyg. pool . bl ock-if-full-tinmeout=-1nms # Bl ocki ng period before throwi ng an exception if the
pool is still full.

spring. activeng. pool . creat e-connecti on-on-startup=true # Wiether to create a connection on startup. Can
be used to warm up the pool on startup.

spring. acti veny. pool . enabl ed=f al se # Whet her a Pool edConnecti onFactory should be created, instead of a
regul ar ConnectionFactory.

spring. activenyg. pool . expi ry-timeout=0ms # Connection expiration tinmeout.

spring. acti veny. pool . idl e-ti neout =30s # Connection idle timeout.

spring. activeng. pool . max- connecti ons=1 # Maxi nrum nunber of pool ed connecti ons.

spring. activeny. pool . maxi mum acti ve- sessi on- per - connecti on=500 # Maxi num nunber of active sessions per
connection.

spring. acti veny. pool . reconnect - on- excepti on=true # Reset the connection when a "JMSException" occurs.

spring.activenyg. pool . ti me-between-expiration-check=-1ns # Tinme to sleep between runs of the idle
connection eviction thread. When negative, no idle connection eviction thread runs.

spring. activeny. pool . use- anonynous- producers=true # \Wether to use only one anonynous "MessageProducer"
instance. Set it to false to create one "MessageProducer" every tinme one is required.

ARTEM S (Artem sProperties)

spring.artem s. enbedded. cl uster-password= # Cl uster password. Randomy generated on startup by default.
spring. artem s. enbedded. data-directory= # Journal file directory. Not necessary if persistence is turned
of f.

spring. artem s. enbedded. enabl ed=true # Wether to enabl e enbedded node if the Artem s server APls are
avai | abl e.
spring. artem
spring.artem
spring. artem
spring.artem
spring.artem
spring. artemn
spring. artem
spring.artem
spring. artem

. enbedded. persi stent=fal se # \Wether to enable persistent store.

. enbedded. queues= # Commm-separated |ist of queues to create on startup.

. enbedded. server-id= # Server |ID. By default, an auto-increnented counter is used.
. enbedded. t opi cs= # Commm-separated |ist of topics to create on startup.

.host=l ocal host # Artem s broker host.

.nmode= # Artem s depl oynent node, auto-detected by default.

. password= # Logi n password of the broker.

. port=61616 # Artenmis broker port.

.user= # Login user of the broker.

nw u nu n nuo n nonn

SPRI NG BATCH (Bat chProperti es)

spring. batch.initialize-schema=enbedded # Dat abase schenm initialization node.

spring. batch. j ob. enabl ed=true # Execute all Spring Batch jobs in the context on startup.

spring. batch. job. names= # Conme- separated |ist of job names to execute on startup (for instance,
“jobl,job2"). By default, all Jobs found in the context are executed.

spring. bat ch. schema=cl asspat h: or g/ spri ngf r amewor k/ bat ch/ cor e/ schema- @®I| at f orm@ sql # Path to the SQL
file to use to initialize the database schema.

spring. batch.tabl e-prefix= # Table prefix for all the batch neta-data tables.

SPRI NG | NTEGRATI ON (I ntegrationProperties)

spring.integration.jdbc.initialize-schema=enbedded # Database schema initialization node.

spring.integration.jdbc.schema=cl asspath: org/ springframework/integration/jdbc/schema- @@l at f orm@ sql #
Path to the SQL file to use to initialize the database schema.

2.0.0.RC1 Spring Boot 313

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/activemq/ActiveMQProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/artemis/ArtemisProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/batch/BatchProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/integration/IntegrationProperties.java

Spring Boot Reference Guide

JM5 (JnmsProperties)

spring.jns.jndi-name= # Connection factory JNDI name. When set, takes precedence to others connection
factory auto-configurations.

spring.jns.listener.acknow edge- node= # Acknow edge node of the container. By default, the listener is
transacted with automatic acknow edgnent .

spring.jms.listener.auto-startup=true # Start the container autonmatically on startup.

spring.jms.listener.concurrency= # M ni num nunber of concurrent consuners.

spring.jmns.listener.max-concurrency= # Maxi mum nunber of concurrent consumers.

spring.j ms. pub- sub- donai n=fal se # Whether the default destination type is topic.

spring.jns.tenpl ate. defaul t-destination= # Default destination to use on send and receive operations
that do not have a destination paraneter.

spring.jns.tenpl ate.delivery-delay= # Delivery delay to use for send calls.

spring.jms.tenpl ate.delivery-node= # Delivery node. Enables QoS (Quality of Service) when set.

spring.jms.tenplate.priority= # Priority of a nessage when sending. Enables QS (Quality of Service)
when set.

spring.jns.tenpl ate. qos-enabl ed= # Wether to enable explicit QS (Quality of Service) when sending a
nessage.

spring.jnms.tenplate.receive-tinmeout= # Tineout to use for receive calls.

spring.jms.tenplate.tine-to-live= # Tinme-to-live of a nessage when sending. Enable QS (Quality of
Servi ce) when set.

APACHE KAFKA (Kaf kaProperti es)

spring. kafka. adnmin.client-id= # ID to pass to the server when neking requests. Used for server-side
| 0oggi ng.

spring. kaf ka. adm

spring. kaf ka. adm

spring. kaf ka. admi

spri ng. kaf ka. admi

.fail-fast=false # Whether to fail fast if the broker is not available on startup.

.properties.*= # Additional admi n-specific properties used to configure the client.

.ssl. key-password= # Password of the private key in the key store file.

.ssl. keystore-location= # Location of the key store file.

spring. kaf ka. admi n. ssl . keyst or e- passwor d= # Password of the key store file.

spring. kaf ka. adm n. ssl . truststore-location= # Location of the trust store file.

spring. kaf ka. adm n. ssl . truststore-password= # Store password for the trust store file.

spring. kaf ka. boot strap-servers= # Comma-delimted |ist of host:port pairs to use for establishing the
initial connection to the Kafka cluster.

spring. kafka.client-id= # ID to pass to the server when neking requests. Used for server-side | ogging.

spring. kaf ka. consuner . aut o-commi t-i nterval = # Frequency with which the consuner offsets are auto-

committed to Kafka if 'enable.auto.commit' is set to true.

n
n
n
n
n
n

current offset no | onger exists on the server.

spri ng. kaf ka. consuner . boot strap-servers= # Comma-delimted |ist of host:port pairs to use for
establishing the initial connection to the Kafka cluster.

spring. kaf ka. consuner.client-id= # ID to pass to the server when neking requests. Used for server-side
| 0oggi ng.

spring. kaf ka. consuner . enabl e- aut o-comm t = # \Whet her the consunmer’'s offset is periodically commtted in
t he background.

spring. kaf ka. consuner . f et ch-max-wai t = # Maxi mum anount of time the server bl ocks before answering

the fetch request if there isn't sufficient data to i medi ately satisfy the requirenment given by
"fetch. mn. bytes".

spring. kaf ka. consurner. fet ch-m n-si ze= # M ni rum anount of data, in bytes, the server should return for
fetch request.

spring. kaf ka. consumer. group-id= # Unique string that identifies the consumer group to which this
consurer bel ongs.

spring. kaf ka. consuner . heartbeat-interval = # Expected tinme between heartbeats to the consumer

coordi nator.

spring. kaf ka. consurner . key- deseri al i zer= # Deserializer class for keys.

spring. kaf ka. consurer. properties.*= # Additional consumer-specific properties used to configure the
client.

spring. kaf ka. consuner . ssl . key- password= # Password of the private key in the key store file.

spring. kaf ka. consuner . ssl . keystore-|ocati on= # Location of the key store file.

spring. kaf ka. consuner . ssl . keyst ore- password= # Store password for the key store file.

spring. kaf ka. consurner. ssl . truststore-|ocation= # Location of the trust store file.

spring. kaf ka. consurner. ssl . truststore-password= # Store password for the trust store file.

spring. kaf ka. consuner . val ue-deserial i zer= # Deserializer class for val ues.

spring. kaf ka. j aas. control -flag=required # Control flag for |ogin configuration.

spring. kaf ka. j aas. enabl ed= # Wether to enabl e JAAS confi gurati on.

spring. kaf ka. j aas. | ogi n- nodul e=com sun. security. aut h. nodul e. Krb5Logi nMbdul e # Logi n nodul e.

spring. kaf ka. j aas. opti ons= # Addi ti onal JAAS opti ons.

spring. kaf ka. | i stener. ack-count= # Nunmber of records between offset commits when ackMode is "COUNT" or
" COUNT_TI ME" .

spring. kaf ka. |i stener. ack-node= # Li stener AckMbde. See the spring-kafka docunmentation.

spring. kaf ka. | i stener. ack-time= # Tine between of fset commits when ackMbde is "TIME" or "COUNT_TI ME".

spring. kaf ka. consuner. aut o-of f set-reset= # \Wat to do when there is no initial offset in Kafka or if the

a

spring. kaf ka. consuner. max- pol | -records= # Maxi num nunber of records returned in a single call to poll().

2.0.0.RC1 Spring Boot

314

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/JmsProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/kafka/KafkaProperties.java

Spring Boot Reference Guide

spring. kaf ka
spring. kaf ka
spring. kaf ka
recei ved).

spring. kaf ka
initializat
spring. kaf ka

spring. kaf ka
consumer is
spring. kaf ka
spring. kaf ka
spring. kaf ka

spring. kaf ka
spring. kaf ka
establishin
spring. kaf ka
waiting to

| oggi ng.
spri
spri
spri
cli
spri
spri
spri
spri
spri
spri
spri
spring.
spring.
the cl
spring.
spring.
spring.
spring.
spring.
spring.

ent.
ng.
ng.
ng.
ng.
ng.
ng.
ng.

ient.

kaf ka

RABBI T (Ra

has been re
spring.
spring.
spring.
spring.
spring.
spring.
spring.
spring.
startup.

defaul t.
publ i shed.

shoul d be g

attenpt to

a nessage.

duration suffix is not specified,

spring. kaf ka.

ng. kaf ka.
ng. kaf ka.
ng. kaf ka.

kaf ka.
kaf ka.
kaf ka.
kaf ka.
kaf ka.
kaf ka.
kaf ka.
kaf ka.
kaf ka.

kaf ka.
kaf ka.
kaf ka.
kaf ka.
kaf ka.

rabbi t ng.
rabbi t ng.
r abbi t ng.
r abbi t ng.
rabbi t ng.
rabbi t ng.
rabbi t ng.
rabbi t ng.

spring. rabbi t ng.
spring. rabbi t ng.
Defaults to true.
spring.rabbitng.|istener.di

spring.rabbitng.listener.di

spring. rabbitng.listener.di
spring.rabbitng.|istener.di

spring.rabbitng.|istener.

spring.rabbitng.listener.
spring.rabbitng.|istener.
spring.rabbitng.|istener.
spring.rabbitng.|istener.

.listener.client-id= # Prefix for the listener's consuner client.id property.
.listener.concurrency= # Nunber of threads to run in the |istener containers.
.listener.idle-event-interval = # Ti ne between publishing idle consuner events (no data
.listener.|og-container-config= # Wether to |og the contai ner configuration during

ion (INFO | evel).

.listener.monitor-interval = # Tinme between checks for non-responsive consumers.

seconds will be used.

.listener.no-poll-threshold= # Multiplier applied to "poll Tineout" to determne if a
non- r esponsi ve.

.listener.poll-tinmeout= # Tineout to use when polling the consuner.

.listener.type=single # Listener type.

. producer. acks= # Nunmber of acknow edgrments the producer requires the |eader to have

If a

recei ved before considering a request conplete.

. producer . bat ch-si ze= # Nunber of records to batch before sending.
. producer . boot strap-servers= # Comma-delimted |ist of host:port pairs to use for
g the initial connection to the Kafka cluster.

. producer . buffer-nmenory= # Total bytes of nenory the producer can use to buffer
be sent to the server.

producer.client-id= # ID to pass to the server when neking requests.

records

Used for server-side
producer .
producer .
producer .

conpressi on-type= # Conpression type for all
key-serializer= # Serializer class for keys.
properties.*= # Additional producer-specific properties used to configure the

data generated by the producer.

producer .
producer .
producer .
producer .
producer .
producer .

retries= # \When greater than zero, enables retrying of failed sends.
ssl . key-password= # Password of the private key in the key store file.
ssl . keystore-locati on= # Location of the key store file.

ssl . keyst ore- password= # Store password for the key store file.
ssl.truststore-location= # Location of the trust store file.
ssl.truststore-password= # Store password for the trust store file.
producer. transaction-id-prefix= # \Wen non enpty,
producer. val ue-serializer= # Serializer class for values.

properties.*= # Additional properties, common to producers and consuners,

ssl . key- password= # Password of the private key in the key store file.
ssl . keystore-location= # Locati on of the key store file.

ssl . keystore-password= # Store password for the key store file.
ssl.truststore-location= # Location of the trust store file.
ssl.truststore-password= # Store password for the trust store file.
.tenpl ate. defaul t-topic= # Default topic to which nessages are sent.

bbi t Properti es)

spring. rabbi t ng. addresses= # Comma-separated |ist of addresses to which the client should connect.
spring. rabbi t ng. cache. channel . checkout-timeout= # Duration to wait to obtain a channel

ached.

cache. channel . si ze= # Nunber of channels to retain in the cache.

cache. connecti on. nrode=channel # Connection factory cache node.

cache. connection. si ze= # Nunber of connections to cache.

connection-tinmeout= # Connection tinmeout. Set it to zero to wait forever.

dynam c=true # Whether to create an AngpAdmi n bean.

host =l ocal host # Rabbi t MQ host .

l'istener.direct.acknow edge- nrode= # Acknow edge node of contai ner.
listener.direct.auto-startup=true # Whether to start the container automatically on

listener.di
listener.di

rect.consuner s- per- queue= # Nunber of consuners per queue.
rect. defaul t-requeue-rejected= # Wet her

rect.idle-event-interval = # How often idle container events shoul d be

rect.prefetch= # Nunber of nmessages to be handled in a single request. It
equal to the transaction size (if used).

rect.retry. enabl ed=fal se # Whet her publishing retries are enabl ed.
rect.retry.initial-interval =1000ns # Interval between the first and second
ver a nessage.

reater than or

publish or deli

enabl es transaction support for producer.

used to configure

if the cache size

rejected deliveries are re-queued by

direct.retry. max-attenpts=3 # Maxi mum nunber of attenpts to publish or deliver
direct.retry. max-interval =10000nms # Maxi mum i nterval between attenpts.
direct.retry.multiplier=1 # Multiplier to apply to the previous retry interval.
direct.retry.statel ess=true # \Wether retries are stateless or stateful.

si npl e. acknow edge- mrode= # Acknow edge node of contai ner.

2.0.0.RC1

Spring Boot

315

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/amqp/RabbitProperties.java

Spring Boot Reference Guide

spring.rabbitng.listener.sinple.auto-startup=true # Wiether to start the container automatically on
startup.

spring. rabbitng.listener.sinple.concurrency= # M ni num nunber of |istener invoker threads.

spring.rabbitng.|listener.sinple.default-requeue-rejected= # Whether to re-queue delivery failures.

spring.rabbitng.listener.sinple.idle-event-interval= # How often idle container events should be
publ i shed.

spring. rabbitng.listener.sinple. max-concurrency= # Maxi mum nunber of |istener invoker.

spring. rabbitng.|istener.sinple. prefetch= # Nunber of nessages to be handled in a single request. It
shoul d be greater than or equal to the transaction size (if used).

spring.rabbitng.listener.sinple.retry. enabl ed=fal se # \Wether publishing retries are enabl ed.

spring.rabbitng.listener.sinple.retry.initial-interval =1000 # Interval, in nilliseconds, between the
first and second attenpt to deliver a nessage.

spring.rabbitng.listener.sinple.retry. max-attenpts=3 # Maxi num nunber of attenpts to deliver a nessage.

spring. rabbitng.listener.sinple.retry. max-interval =10000 # Maxi muminterval, in mlliseconds, between
attenpts.

spring.rabbitng.listener.sinple.retry.nultiplier=1.0 # Miltiplier to apply to the previous delivery
retry interval .

spring.rabbitng.listener.sinple.retry.statel ess=true # Whether or not retry is stateless or stateful.

spring.rabbitng.listener.sinple.transaction-size= # Nunber of nmessages to be processed in a transaction.
That is, the nunber of nessages between acks. For best results, it should be | ess than or equal to the
prefetch count.

spring.rabbitng.listener.type=sinple # Listener container type.

spring. rabbi t ng. passwor d=guest # Login to authenticate agai nst the broker.

spring. rabbitng. port=5672 # Rabbit M) port.

spring. rabbi tng. publ i sher-confirms=fal se # Wether to enabl e publisher confirns.

spring. rabbi t ng. publ i sher-returns=fal se # Wether to enable publisher returns.

spring. rabbi t ng. request ed- heart beat = # Requested heartbeat tinmeout; zero for none. If a duration suffix
is not specified, seconds will be used.

spring. rabbi t ng. ssl . enabl ed=f al se # Whether to enable SSL support.

spring. rabbitng. ssl . key-store= # Path to the key store that holds the SSL certificate.

spring. rabbitng. ssl . key-store-password= # Password used to access the key store.

spring. rabbi t ng. ssl . key-store-type=PKCS12 # Key store type.

spring. rabbitng.ssl.trust-store= # Trust store that holds SSL certificates.

spring. rabbitng. ssl.trust-store-password= # Password used to access the trust store.

spring. rabbitng. ssl.trust-store-type=JKS # Trust store type.

spring. rabbitng.ssl.algorithnme # SSL algorithmto use. By default, configured by the Rabbit client
library.

spring. rabbitng. tenpl at e. exchange= # Name of the default exchange to use for send operations.

spring. rabbi t ng. t enpl at e. mandat ory=f al se # Wether to enabl e nmandatory messages.

spring. rabbitng. tenpl ate. recei ve-timeout=0 # Tinmeout for "receive() nethods.

spring. rabbitng.tenplate.reply-timeout=5000 # Tinmeout for "sendAndReceive() nethods.

spring.rabbitng.tenplate.retry. enabl ed=fal se # Wiether to enable retries in the "RabbitTenplate .

spring.rabbitng.tenplate.retry.initial-interval =1000 # Interval, in mlliseconds, between the first and
second attenpt to publish a nessage.

spring.rabbitng. tenpl ate. retry. max-attenpt s=3 # Maxi mum nunber of attenpts to publish a nmessage.

spring. rabbitng. tenpl ate.retry. max-interval =10000 # Maxi num nunber of attenpts to publish a nessage.

spring.rabbitng.tenplate.retry.nultiplier=1.0 # Multiplier to apply to the previous publishing retry
interval.

spring. rabbitng. tenpl ate.routing-key= # Value of a default routing key to use for send operations.

spring. rabbi t ng. user nane=guest # Login user to authenticate to the broker.

spring. rabbitng.virtual -host= # Virtual host to use when connecting to the broker.

MANAGEMENT HTTP SERVER (Managenent Server Properti es)

managenent . server. add- appl i cati on- cont ext - header =fal se # Add the "X-Application-Context" HTTP header in
each response. Requires a custom managenment.server.port.

managenent . server. address= # Network address that to which the nmanagenent endpoints shoul d bind.
Requires a cust om managenent. server. port.

managenent . server. port= # Managenent endpoint HTTP port. Uses the sane port as the application by
default. Configure a different port to use managenent-specific SSL.

managenent . server. servl et. cont ext - pat h= # Managenent endpoi nt context-path. For instance, '/nanagenent .
Requi res a cust om managenent. server. port.

managenent . server. ssl . ci phers= # Supported SSL ci phers. Requires a custom nanagenent. port.

managenent . server.ssl.client-auth= # Wether client authentication is wanted ("want") or needed
("need"). Requires a trust store. Requires a custom nanagenent.server.port.

managenent . server. ssl . enabl ed= # Whether to enable SSL support. Requires a custom
menagenent . server. port.

2.0.0.RC1 Spring Boot 316

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/web/server/ManagementServerProperties.java

Spring Boot Reference Guide

managenent . server. ssl . enabl ed- prot ocol s= # Enabl ed SSL protocols. Requires a custom
managenent . server. port.

managenent . server.ssl.key-alias= # Alias that identifies the key in the key store. Requires a custom
menagenent . server. port.

managenent . server. ssl . key- password= # Password used to access the key in the key store. Requires a
cust om nenagenent . server. port.

managenent . server. ssl . key-store= # Path to the key store that holds the SSL certificate (typically a jks
file). Requires a custom managenent.server.port.

managenent . server. ssl . key- st ore- password= # Password used to access the key store. Requires a custom
menagenent . server. port.

managenent . server. ssl . key-store-provider= # Provider for the key store. Requires a custom
nmenagenent . server. port.

managenent . server. ssl . key-store-type= # Type of the key store. Requires a custom nmanagenent.server.port.

managenent . server. ssl . protocol =TLS # SSL protocol to use. Requires a custom management.server.port.

managenent . server.ssl.trust-store= # Trust store that holds SSL certificates. Requires a custom
menagenent . server. port.

managenent . server. ssl . trust-store-password= # Password used to access the trust store. Requires a custom
menagenent . server. port.

managenent . server. ssl.trust-store-provider= # Provider for the trust store. Requires a custom
managenent . server. port.

managenent . server.ssl.trust-store-type= # Type of the trust store. Requires a custom
menagenent . server. port.

CLOUDFOUNDRY

managenent . cl oudf oundry. enabl ed=true # Whether to enabl e extended Cl oud Foundry actuator endpoints.

managenent . cl oudf oundry. ski p-ssl -val i dati on=fal se # Whether to skip SSL verification for C oud Foundry
actuat or endpoint security calls.

ENDPO NTS GENERAL CONFI GURATI ON
managenent . endpoi nt s. enabl ed- by-def aul t= # Enabl e or disable all endpoints by defaul t.

ENDPOI NTS JMX CONFI GURATI ON (JmxEndpoi nt Pr operti es)

managenent . endpoi nts. j nk. expose=* # Endpoint |Ds that should be exposed or '*' for all.

managenent . endpoi nts. j mx. excl ude= # Endpoint | Ds that shoul d be excluded.

managenent . endpoi nts. j mx. domai n=or g. spri ngf ramewor k. boot # Endpoi nts JMX domai n nanme. Fall back to
"spring.jnx.default-domain' if set.

managenent . endpoi nts. j nx. stati c-names=fal se # Additional static properties to append to all CbjectNanes
of MBeans representing Endpoints.

managenent . endpoi nts. j nx. uni que- nanes=f al se # Whether to ensure that ObjectNanes are nodified in case of
conflict.

ENDPO NTS WEB CONFI GURATI ON (WebEndpoi nt Pr operti es)

managenent . endpoi nt s. web. expose=i nf o, heal th # Endpoint |Ds that should be exposed or '*' for all.

managenent . endpoi nts. web. excl ude= # Endpoi nt | Ds that shoul d be excluded.

managenent . endpoi nt s. web. base- pat h=/ actuator # Base path for Wb endpoints. Relative to
server.servl et.context-path or managenent.server.servlet.context-path if nmanagenent.server.port is
confi gured.

managenent . endpoi nt s. web. pat h- mappi ng= # Mappi ng bet ween endpoint | Ds and the path that shoul d expose
t hem

ENDPO NTS CORS CONFI GURATI ON (Cor sEndpoi nt Properti es)

managenent . endpoi nts. web. cors. al | owcredenti al s= # Wiether credentials are supported. Wen not set,
credentials are not supported.

managenent . endpoi nts. web. cors. al | owed- header s= # Comma- separated |ist of headers to allow in a request.
"*' allows all headers.

managenent . endpoi nts. web. cors. al | owed- net hods= # Comma-separated |ist of nethods to allow. '*' allows
al | nethods. When not set, defaults to CET.

managenent . endpoi nts. web. cors. al | owed-ori gi ns= # Comma-separated |ist of origins to allow '*' allows
all origins. Wen not set, CORS support is disabled.

managenent . endpoi nt s. web. cor s. exposed- header s= # Comma- separated |ist of headers to include in a
response.

managenent . endpoi nt s. web. cor s. max- age=1800 # How | ong the response froma pre-flight request can be
cached by clients. If a duration suffix is not specified, seconds will be used.

AUDI T EVENTS ENDPO NT (Audi t Event sEndpoi nt)
managenent . endpoi nt . audi t events. cache.tinme-to-live=0ms # Maxi numtine that a response can be cached.
managenent . endpoi nt . audi t event s. enabl ed= # \Wether to enable the auditevents endpoint.

BEANS ENDPOI NT (BeansEndpoi nt)
managenent . endpoi nt . beans. cache. time-to-live=0ms # Maxi numtinme that a response can be cached.
managenent . endpoi nt . beans. enabl ed= # \Whether to enabl e the beans endpoint.

2.0.0.RC1 Spring Boot 317

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/endpoint/jmx/JmxEndpointProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/endpoint/web/WebEndpointProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/endpoint/web/CorsEndpointProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/audit/AuditEventsEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/beans/BeansEndpoint.java

Spring Boot Reference Guide

CONDI TI ONS REPORT ENDPOI NT (Condi ti onsReport Endpoi nt)
managenent . endpoi nt. condi ti ons. cache.tine-to-live=0ns # Maxi rumtinme that a response can be cached.
managenent . endpoi nt. condi ti ons. enabl ed= # Whether to enabl e the conditions endpoint.

CONFI GURATI ON PROPERTI ES REPORT ENDPO NT
(ConfigurationPropertiesReportEndpoi nt, ConfigurationPropertiesReportEndpointProperties)
managenent . endpoi nt. confi gprops. cache. tine-to-1ive=0ms # Maximumtinme that a response can be cached.
managenent . endpoi nt. confi gprops. enabl ed= # Whether to enabl e the confi gprops endpoint.
managenent . endpoi nt. confi gprops. keys-t o-
sani ti ze=password, secret, key, token, . *credenti al s. *, vcap_servi ces # Keys that should be sanitized. Keys
can be sinple strings that the property ends with or regul ar expressions.

ENVI RONVENT ENDPOI NT (Envi ronment Endpoi nt, Environment Endpoi nt Properti es)

managenent . endpoi nt. env. cache. tine-to-1ive=0ns # Maxi mumtinme that a response can be cached.

managenent . endpoi nt . env. enabl ed= # Whether to enabl e the env endpoint.

managenent . endpoi nt . env. keys-t o-sani ti ze=passwor d, secr et, key, t oken, . *credenti al s. *, vcap_servi ces #
Keys that should be sanitized. Keys can be sinple strings that the property ends with or regular
expressi ons.

FLYWAY ENDPO NT (Fl ywayEndpoi nt)
managenent . endpoi nt. fl yway. cache.tinme-to-1ive=0ms # Maxi numtine that a response can be cached.
managenent . endpoi nt. fl yway. enabl ed= # Whether to enabl e the flyway endpoint.

HEALTH ENDPO NT (Heal t hEndpoi nt, Heal t hEndpoi nt Properti es)

managenent . endpoi nt. heal t h. cache.tine-to-live=0nms # Maxi numtine that a response can be cached.

managenent . endpoi nt . heal t h. enabl ed= # Whet her to enabl e the heal th endpoint.

managenent . endpoi nt . heal t h. showdet ai | s=fal se # Wether to show full health details instead of just the
status when exposed over a potentially insecure connection.

HEAP DUMP ENDPO NT (HeapDunpWebEndpoi nt)
nmanagenent . endpoi nt . heapdunp. cache. tine-to-1ive=0nms # Maximumtime that a response can be cached.
managenent . endpoi nt . heapdunp. enabl ed= # Whet her to enabl e the heapdunp endpoint.

HTTP TRACE ENDPO NT (HttpTraceEndpoint)
managenent . endpoi nt. httptrace. cache.tinme-to-1ive=0ms # Maximumtinme that a response can be cached.
managenent . endpoi nt. htt ptrace. enabl ed= # \Wether to enable the HTTP trace endpoint.

| NFO ENDPO NT (I nf oEndpoi nt)

info= # Arbitrary properties to add to the info endpoint.

managenent . endpoi nt. i nfo. cache.tinme-to-1ive=0ms # Maxi mumtinme that a response can be cached.
managenent . endpoi nt. i nf 0. enabl ed=true # Whether to enable the info endpoint.

JOLOKI A ENDPO NT (Jol oki aProperti es)
managenent . endpoi nt . j ol oki a. config.*= # Jol oki a settings. See the Jol okia manual for details.
managenent . endpoi nt . j ol oki a. enabl ed=true # Wether to enabl e Jol oki a.

LI QUI BASE ENDPO NT (Li qui baseEndpoi nt)
managenent . endpoi nt. | i qui base. cache. tine-to-1ive=0ns # Maxi mumtine that a response can be cached.
managenent . endpoi nt. | i qui base. enabl ed= # Whether to enable the |iqui base endpoint.

LOG FI LE ENDPO NT (LogFi | eWebEndpoi nt, LogFi | eWebEndpoi nt Properti es)

managenent . endpoi nt. | ogfil e.cache.time-to-1ive=0ms # Maxi mumtine that a response can be cached.

managenent . endpoi nt. | ogfil e. enabl ed= # \Whether to enable the | ogfile endpoint.

managenent . endpoi nt. |l ogfile.external -file= # External Logfile to be accessed. Can be used if the logfile
is witten by output redirect and not by the |ogging systemitself.

LOGGERS ENDPO NT (Logger sEndpoi nt)
managenent . endpoi nt. | oggers. cache.tinme-to-1ive=0ms # Maxi mumtinme that a response can be cached.
managenent . endpoi nt . | oggers. enabl ed= # \Whether to enabl e the | oggers endpoint.

REQUEST MAPPI NG ENDPO NT (Mappi ngsEndpoi nt)
managenent . endpoi nt. mappi ngs. cache. tine-to-1ive=0nms # Maximumtinme that a response can be cached.
managenent . endpoi nt. mappi ngs. enabl ed= # Whet her to enabl e the mappi ngs endpoint.

METRI CS ENDPO NT (Metri csEndpoi nt)
managenent . endpoi nt. netrics. cache.time-to-1ive=0ms # Maxinumtine that a response can be cached.
managenent . endpoi nt. netrics. enabl ed= # Wiether to enable the netrics endpoint.

PROVETHEUS ENDPO NT (Pronet heusScr apeEndpoi nt)
managenent . endpoi nt. pronmet heus. cache. tinme-to-1ive=0ms # Maxi rumtinme that a response can be cached.

2.0.0.RC1 Spring Boot 318

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/condition/ConditionsReportEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/context/properties/ConfigurationPropertiesReportEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/context/properties/ConfigurationPropertiesReportEndpointProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/env/EnvironmentEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/env/EnvironmentEndpointProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/flyway/FlywayEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/HealthEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/health/HealthEndpointProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/management/HeapDumpWebEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/web/trace/HttpTraceEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/info/InfoEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/jolokia/JolokiaProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/liquibase/LiquibaseEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/logging/LogFileWebEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/logging/LogFileWebEndpointProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/logging/LoggersEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/web/mappings/MappingsEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/metrics/MetricsEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/metrics/export/prometheus/PrometheusScrapeEndpoint.java

Spring Boot Reference Guide

managenent . endpoi nt . pr onet heus. enabl ed= # \Wether to enable the nmetrics endpoint.

SCHEDULED TASKS ENDPO NT (Schedul edTasksEndpoi nt)
managenent . endpoi nt. schedul edt asks. cache. tinme-to-1ive=0nms # Maximumtinme that a response can be cached.
managenent . endpoi nt. schedul edt asks. enabl ed= # \Whether to enabl e the schedul ed tasks endpoint.

SESSI ONS ENDPO NT (Sessi onsEndpoi nt)
managenent . endpoi nt . sessi ons. enabl ed= # Whether to enabl e the sessions endpoint.

SHUTDOWN ENDPO NT (Shut downEndpoi nt)
managenent . endpoi nt. shut down. enabl ed=f al se # Whether to enabl e the shutdown endpoint.

THREAD DUMP ENDPOI NT (Thr eadDunpEndpoi nt)
managenent . endpoi nt. t hr eaddunp. cache. ti me-to-live=0ms # Maxi mumtinme that a response can be cached.
managenent . endpoi nt . t hr eaddunp. enabl ed= # Whet her to enabl e the threaddunp endpoint.

HEALTH | NDI CATORS

managenent . heal t h. db. enabl ed=true # Whether to enabl e dat abase heal th check.

managenent . heal t h. cassandr a. enabl ed=true # \WWether to enabl e Cassandra heal th check.

managenent . heal t h. couchbase. enabl ed=t rue # Wether to enabl e Couchbase heal th check.

managenent . heal t h. def aul t s. enabl ed=true # Whether to enabl e default health indicators.

managenent . heal t h. di skspace. enabl ed=true # Wether to enabl e di sk space heal th check.

managenent . heal t h. di skspace. path= # Path used to conpute the avail abl e di sk space.

managenent . heal t h. di skspace. t hreshol d=0 # M ni rum di sk space, in bytes, that shoul d be avail abl e.

managenent . heal t h. el asti csearch. enabl ed=true # \Wether to enabl e El asticsearch health check.

managenent . heal t h. el asti csearch. i ndi ces= # Comma- separ at ed i ndex names.

managenent . heal t h. el asti csearch. response-ti meout =100ms # The tinme to wait for a response fromthe
cluster.

managenent . heal t h. i nfl uxdb. enabl ed=true # Whether to enabl e |InfluxDB health check.

managenent . heal t h. j ms. enabl ed=true # \Whether to enable JMS heal th check.

managenent . heal t h. | dap. enabl ed=true # Wether to enabl e LDAP heal th check.

managenent . heal th. mai | . enabl ed=true # Wiether to enable Ml health check.

managenent . heal t h. nongo. enabl ed=true # \Whether to enabl e MongoDB heal t h check.

managenent . heal t h. neo4j . enabl ed=true # Wether to enable Neo4j health check.

managenent . heal t h. rabbi t. enabl ed=true # Whether to enabl e RabbitMQ heal th check.

managenent . heal t h. redi s. enabl ed=true # \Whether to enable Redis health check.

managenent . heal t h. sol r. enabl ed=true # Wether to enable Solr health check.

managenent . heal t h. st at us. htt p- mappi ng= # Mappi ng of health statuses to HITP status codes. By default,
registered health statuses map to sensible defaults (for exanple, UP maps to 200).

managenent . heal t h. st at us. order =DOWN, OUT_OF_SERVI CE, UP, UNKNOWN # Comma-separated |ist of health
statuses in order of severity.

HTTP TRACI NG (HttpTraceProperties)

managenent . htt ptrace. enabl ed=true # \Whet her to enabl e HTTP request-response tracing.

managenent . htt ptrace. i ncl ude=r equest - header s, r esponse- headers, cooki es,errors # Itens to be included in
the trace.

| NFO CONTRI BUTORS (I nfoContri butorProperties)

managenent . i nfo. bui | d. enabl ed=true # \Wether to enable build info.

managenent . i nf o. def aul ts. enabl ed=true # Wether to enable default info contributors.
managenent . i nf 0. env. enabl ed=true # \Whether to enabl e environnent info.

managenent . i nfo. gi t. enabl ed=true # \Wether to enable git info.

managenent . i nfo. git. node=sinpl e # Mode to use to expose git information.

METRI CS

managenent . metrics. bi nders. j vm enabl ed=true # Whether to enable JVM netrics.

managenent . metri cs. bi nders. | ogback. enabl ed=true # Whether to enabl e Logback netrics.

managenent . metri cs. bi nders. processor. enabl ed=true # Whether to enable processor netrics.

managenent . metri cs. bi nders. upti me. enabl ed=true # \Whether to enable uptinme nmetrics.

managenent . metrics. cache. netri c- name=cache # Nanme of the netric for cache usage.

managenent . metrics. cache.instrunent=true # Instrunent all availabl e caches.

managenent . metrics. export. atl as. batch-si ze= # Nunber of neasurenents per request to use for the backend.
If nmore nmeasurenments are found, then nultiple requests will be made.

managenent . metrics. export. atlas. config-refresh-frequency= # Frequency for refreshing config settings
fromthe LWC service.

managenent . metrics. export.atlas.config-time-to-live=# Tinme to live for subscriptions fromthe LWC
service.

managenent . metrics. export.atlas.config-uri=# URl for the Atlas LWC endpoint to retrieve current
subscri ptions.

managenent . metri cs. export. atl as. connect-ti meout= # Connection tinmeout for requests to the backend.

managenent . metrics. export. atl as. enabl ed=true # \Whether exporting of nmetrics to this backend is enabl ed.

2.0.0.RC1 Spring Boot 319

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/scheduling/ScheduledTasksEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/session/SessionsEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/context/ShutdownEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/management/ThreadDumpEndpoint.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/web/trace/HttpTraceProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/info/InfoContributorProperties.java

Spring Boot Reference Guide

managenent . metrics.
subscri ption.

managenent .. metrics.

managenent . metrics.

managenent .. metrics.
schedul er.
managenent . metrics.
managenent . metrics.
managenent . metrics.
managenent . metrics.
managenent .. metrics.
managenent . metrics.

enabl ed.

managenent . metrics.
schedul er.
managenent .. metrics.
managenent . metrics.
managenent . metrics.
internal proxy en-
managenent .. netrics.
managenent . metrics.
managenent .. metrics.
managenent . metrics.
managenent . metrics.
managenent .. metrics.
3.0.
managenent . metrics.
managenent .. metrics.
managenent . metrics.
managenent . metrics.
managenent .. metrics.
managenent . metrics.
managenent . metrics.
managenent .. metrics.
managenent . metrics.
managenent . metrics.
managenent .. metrics.

I nfl ux.
managenent .. metrics.
managenent . netrics.
managenent . metrics.
Influx. Can be om
managenent . metrics.
managenent . metrics.
schedul er.
managenent . metrics.
managenent . metrics.
managenent .. metrics.
DEFAULT retention
managenent . metrics.
managenent .. metrics.
managenent . metrics.
managenent . metrics.
managenent .. metrics.
managenent . metrics.
scrape payload to
managenent .. metrics.
enabl ed.
managenent . metrics.

export.

export.
export .

activity. After this peri

export.

export.
export.
export.
export.
export.
export.

export.

export.
export.
export.

export.
export.
export.
export.
export.
export.

export.
export.
export.
export.
export.
export.
export.
export.
export.
export.
export.

specified tag keys into part
managenent . metri cs. export.influx. batch-size= # Nunber of neasurenents per request to use for the
backend. |f nore measurenments are found, then nultiple requests will be made.

managenent . metrics. export.infl ux. conpressed= # Enable GZI P conpression of netrics batches published to

atlas.eval-uri= # URI for the Atlas LWC endpoint to evaluate the data for a

atl as. | wc-enabl ed= # Enable streaming to Atlas LWC
atlas.meter-time-to-live= # Time to live for neters that do not have any
od the neter will be considered expired and will not get reported.

atl as. numthreads= # Nunmber of threads to use with the metrics publishing

atlas.read-tinmeout= # Read tinmeout for requests to the backend.

atl as.step=1m# Step size (i.e. reporting frequency) to use.

atlas.uri= # UR of the Atlas server.

dat adog. api - key= # Dat adog APl key.

dat adog. appl i cati on- key= # Dat adog application key.

dat adog. bat ch-si ze= # Nunber of neasurenents per request to use for the

backend. If nore neasurenents are found, then nultiple requests will be nade.
managenent .. metri cs. export. dat adog. connect-ti meout= # Connection tinmeout for requests to the backend.
managenent . metri cs. export. dat adog. descri pti ons= # Whether to publish descriptions netadata to Datadog.
Turn this off to mninmze the ambunt of netadata sent.
managenent . metri cs. export. dat adog. enabl ed=true # \Whether exporting of metrics to this backend is

managenent . metrics. export. dat adog. host-tag= # Tag that will be napped to "host" when shipping nmetrics
Dat adog. Can be onmitted if host should be onmitted on publishing.

dat adog. num t hreads= # Nunber of threads to use with the metrics publishing

dat adog. read-ti meout = # Read tinmeout for requests to the backend.

dat adog. step=1lm # Step size (i.e. reporting frequency) to use.
datadog.uri=# URl to ship netrics to. If you need to publish netrics to an
route to Datadog, you can define the |ocation of the proxy with this.

gangl i
gangl i
gangl i
gangl i
gangl i
gangl i

gangl i
gangl i
gangl i

a

a
a
a.
a
a

a.

a

a.

. addr essi ng- node= # UDP addressi ng node, either unicast or nulticast.

.duration-units= # Base tine unit used to report durations.

.enabl ed=true # Wet her exporting of netrics to Ganglia is enabl ed.
host= # Host of the Ganglia server to receive exported netrics.
.port= # Port of the Ganglia server to receive exported nmetrics.
.protocol -version= # Ganglia protocol version. Mist be either 3.1 or

rate-units= # Base tinme unit used to report rates.
.step= # Step size (i.e. reporting frequency) to use.
time-to-live= # Tinme to live for netrics on Ganglia.

graphi te. duration-units= # Base tine unit used to report durations.

graphi te. enabl ed=true # \WWether exporting of netrics to Graphite is enabl ed.

graphite. host= # Host of the Graphite server to receive exported netrics.
graphite.port= # Port of the Graphite server to receive exported netrics.
graphite. protocol = # Protocol to use while shipping data to G aphite.
graphite.rate-units= # Base tinme unit used to report rates.
graphite.step= # Step size (i.e. reporting frequency) to use.
graphite.tags-as-prefix= # For the default nam ng convention, turn the

of the metric prefix.

export.influx.connect-timeout= # Connection tineout for requests to the backend.
export.influx.consistency= # Wite consistency for each point.
export.influx.db= # Tag that will be mapped to "host" when shipping nmetrics to

S

houl d be om tted on publishing.

—

(0]

.enabl ed=true # \WWether exporting of netrics to this backend is enabl ed.

numt hreads= # Nunmber of threads to use with the netrics publishing

password= # Logi n password of the Influx server.

read-ti meout= # Read tinmeout for requests to the backend.
retention-policy= # Retention policy to use (Influx wites to the
is not specified).

step=1lm # Step size (i.e. reporting frequency) to use.

uri=# URl of the Influx server.

user-nanme= # Login user of the Influx server.

j mx. enabl ed=true # \Wether exporting of netrics to JMX i s enabl ed.

tted if host
export.influx
export.influx
export.influx
export.influx
export.influx
policy if one
export.influx
export.influx
export.influx
export.
export.

Pr onet heus.

jmx.step= # Step size (i.e. reporting frequency) to use.
export. pronet heus. descri pti ons= # Enabl e publishing descriptions as part of the

Turn this off to minimze the anbunt of data sent on each scrape.

export. pronet heus. enabl ed=true # Wether exporting of metrics to Pronetheus is

export. promet heus. step= # Step size (i.e. reporting frequency) to use.

2.0.0.RC1

Spring Boot

320

Spring Boot Reference Guide

managenent . metrics. export. sinpl e. enabl ed=true # \Wether exporting of netrics to a sinple in-nenory store
i s enabl ed.

managenent .. metri cs. export. si npl e. node=cunul ative # Counting node.

managenent . metrics. export. sinple.step=10s # Step size (i.e. reporting frequency) to use.

managenent . metri cs. export. statsd. enabl ed=true # Export netrics to StatsD.

managenent . metrics. export.statsd. fl avor=datadog # StatsD |ine protocol to use.

managenent . metrics. export. statsd. host =l ocal host # Host of the StatsD server to receive exported netrics.

managenent . metrics. export. st at sd. max- packet -1 engt h=1400 # Total |ength of a single payload should be
kept wi thin your network's Mru.

managenent . metrics. export. statsd. pol ling-frequency=10s # How often gauges will be polled. Wen a gauge
is polled, its value is recalculated and if the value has changed, it is sent to the StatsD server.

managemnent . metrics. export. statsd. port=8125 # Port of the StatsD server to receive exported netrics.

managenent . metrics. export. statsd. queue-si ze=2147483647 # Maxi num si ze of the queue of itens waiting to
be sent to the StatsD server.

managenent . metrics.jdbc.instrument=true # Instrument all available data sources.

managenent . metrics. jdbc. metric- nane=dat a. source # Name of the netric for data source usage.

managenent .. metrics.rabbitng.instrument=true # Instrument all avail abl e connection factories.

managenent . metrics. rabbi t ng. metri c- nane=rabbitrmg # Nanme of the netric for RabbitM) usage.

managenent .. metrics. use- gl obal -regi stry=true # \Wether auto-configured MeterRegistry inplenmentations
shoul d be bound to the gl obal static registry on Metrics.

managenent . metrics. web. client.record-request-percentil es=fal se # Wether instrunented requests record
percentiles histogram buckets by default.

managenent . metri cs. web. client.requests-netric-nanme=http.client.requests # Nane of the netric for sent
requests.

managenent . metrics. web. server. auto-ti ne-requests=true # \Wether requests handl ed by Spring M/C or
WebFl ux shoul d be autonatically tined.

managenent . metrics. web. server.record-request-percentil es=fal se # Wether instrunented requests record
percentiles histogram buckets by default.

managenent . metri cs. web. server. requests-netri c-name=http. server.requests # Nanme of the netric for
recei ved requests.

DEVTOOLS (DevTool sProperties)

spring. devtool s. | iverel oad. enabl ed=true # \Wether to enable a |iverel oad. com conpati bl e server.

spring. devtool s. |iverel oad. port=35729 # Server port.

spring. devtool s.restart. addi ti onal -excl ude= # Addi ti onal patterns that shoul d be excluded from
triggering a full restart.

spring. devtool s.restart. additional - paths= # Additional paths to watch for changes.

spring. devtool s.restart. enabl ed=true # Enabl e automatic restart.

spring. devtool s.restart.excl ude=META- | NF/ maven/ **, META- | NF/ r esour ces/ **, resour ces/ **, stati c/ **, public/

** tenplates/**, **/*Test.class, **/*Tests.class, git.properties # Patterns that should be excluded from
triggering a full restart.

spring. devtool s.restart.| og-condition-eval uation-delta=true # Wiether to | og the condition eval uation
del ta upon restart.

spring.devtool s.restart.poll-interval =1s # Amunt of tinme to wait between polling for classpath changes.

spring. devtool s.restart. qui et-peri od=400ms # Ampunt of quiet tine required without any classpath changes
before a restart is triggered.

spring.devtools.restart.trigger-file= # Name of a specific file that, when changed, triggers the restart
check. If not specified, any classpath file change triggers the restart.

REMOTE DEVTOOLS (Renpt eDevTool sProperti es)

spring. devt ool s. renpt e. cont ext - pat h=/. ~~spri ng-boot! ~ # Context path used to handle the renote
connection.

spring. devt ool s. renot e. proxy. host= # The host of the proxy to use to connect to the renote application.
spring. devtool s. renote. proxy. port= # The port of the proxy to use to connect to the renote application.

spring.devtool s.renpte.restart. enabl ed=true # Wiether to enable renote restart.

spring. devtool s.renmpte. secret= # A shared secret required to establish a connection (required to enable
renote support).

spring. devt ool s. renpt e. secr et - header - nane=X- AUTH TOKEN # HTTP header used to transfer the shared secret.

spring. test. dat abase. repl ace=any # Type of existing DataSource to replace.
spring.test.nocknvc. print=default # M/C Print option.

2.0.0.RC1 Spring Boot 321

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-devtools/src/main/java/org/springframework/boot/devtools/autoconfigure/DevToolsProperties.java
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-devtools/src/main/java/org/springframework/boot/devtools/autoconfigure/RemoteDevToolsProperties.java

Spring Boot Reference Guide

Appendix B. Configuration Metadata

Spring Boot jars include metadata files that provide details of all supported configuration properties.
The files are designed to let IDE developers offer contextual help and “code completion” as users are
working with appl i cati on. properti es orapplication.ym files.

The majority of the metadata file is generated automatically at compile time by processing all items
annotated with @onfi gur ati onProperti es. However, it is possible to write part of the metadata
manually for corner cases or more advanced use cases.

B.1 Metadata Format

Configuration metadata files are located inside jars under META- 1 NF/ spri ng- confi gurati on-
net adat a. j son They use a simple JSON format with items categorized under either “groups” or
“properties” and additional values hints categorized under "hints", as shown in the following example:

{"groups": [
{
"nanme": "server",
"type": "org.springframework. boot. aut oconfigure.web. Server Properties",
"sourceType": "org.springframework. boot. aut oconfi gure. web. Server Properties"
b
{
“nanme": "spring.jpa.hibernate",
"type": "org.springframework. boot. autoconfigure.ormjpa.JpaProperties$H bernate",
"sourceType": "org.springframework. boot. aut oconfigure. ormj pa.JpaProperties",
"sourceMet hod": "get Hi bernate()"
}
],"properties": [
{
"nanme": "server.port",
"type": "java.lang.|nteger",
"sourceType": "org.springframework. boot. aut oconfi gure. web. Server Properties"
¥
{
"nane": "server.servlet.path",
"type": "java.lang. String",
"sourceType": "org.springframework. boot. aut oconfi gure.web. Server Properties",
"defaul tVvalue": "/"
¥
{
"nane": "spring.jpa.hibernate.ddl -auto",
"type": "java.lang. String",
"description": "DDL node. This is actually a shortcut for the \"hibernate. hbn2ddl . auto\" property.",
"sourceType": "org.springframework. boot . aut oconfi gure. orm j pa. JpaProperties$H bernate"
}
], "hints": [
{
"nane": "spring.jpa.hibernate.ddl -auto",
"val ues": [
{
"val ue": "none",
"description": "Disable DDL handling."
b
{
"val ue": "validate",
"description": "Validate the schema, make no changes to the database."
¥
{
"val ue": "update",
"description": "Update the schema if necessary."
Iz

2.0.0.RC1 Spring Boot 322

Spring Boot Reference Guide

"value": "create",

"description": "Create the schema and destroy previous data."

b

{

"val ue": "create-drop",

"description": "Create and then destroy the schema at the end of the session."

1}

Each “property” is a configuration item that the user specifies with a given value. For example,
server.port and server. servl et. pat h might be specified in appl i cati on. properties, as
follows:

server. port=9090
server. servl et. pat h=/ hore

The “groups” are higher level items that do not themselves specify a value but instead provide a
contextual grouping for properties. For example, the server.port and server.servlet. path
properties are part of the ser ver group.

Note

Itis not required that every “property” has a “group”. Some properties might exist in their own right.

Finally, “hints” are additional information used to assist the user in configuring a given property. For
example, when a developer is configuring the spri ng. j pa. hi ber nat e. ddl - aut o property, a tool
can use the hints to offer some auto-completion help for the none, val i dat e, updat e, cr eat e, and
creat e- dr op values.

Group Attributes

The JSON object contained in the gr oups array can contain the attributes shown in the following table:

Name Type Purpose
nane String The full name of the group. This attribute is mandatory.
type String The class name of the data type of the group. For example,

if the group were based on a class annotated with

@conf i gurati onProperti es, the attribute would contain the
fully qualified name of that class. If it were based on a @ean
method, it would be the return type of that method. If the type is
not known, the attribute may be omitted.

description String A short description of the group that can be displayed to users. If
not description is available, it may be omitted. It is recommended
that descriptions be short paragraphs, with the first line providing
a concise summary. The last line in the description should end
with a period (.).

sourceType String The class name of the source that contributed this group. For
example, if the group were based on a @ean method annotated

2.0.0.RC1 Spring Boot 323

Spring Boot Reference Guide

Name Type

Purpose

with @onf i gurati onProperti es, this attribute would contain
the fully qualified name of the @onf i gur at i on class that
contains the method. If the source type is not known, the attribute
may be omitted.

sour ceMet hod String

The full name of the method (include parenthesis and argument
types) that contributed this group (for example, the name of a
@Conf i gurati onProperti es annotated @ean method). If the
source method is not known, it may be omitted.

Property Attributes

The JSON object contained in the properties array can contain the attributes described in the

following table:

Name Type
name String
type String

Purpose

The full name of the property. Names are in lower-case period-
separated form (for example, server. servl et . pat h). This
attribute is mandatory.

The full signature of the data type of the property (for example,

j ava. |l ang. Stri ng) but also a full generic type (such as
java.util.Mp<java.util.String,acne. MyEnun®). You
can use this attribute to guide the user as to the types of values
that they can enter. For consistency, the type of a primitive is
specified by using its wrapper counterpart (for example, bool ean
becomes j ava. | ang. Bool ean). Note that this class may be a
complex type that gets converted from a St ri ng as values are
bound. If the type is not known, it may be omitted.

descri ption String

sourceType String

A short description of the group that can be displayed to users. If
no description is available, it may be omitted. It is recommended
that descriptions be short paragraphs, with the first line providing
a concise summary. The last line in the description should end
with a period (.).

The class name of the source that contributed this property.

For example, if the property were from a class annotated with
@confi gurati onProperti es, this attribute would contain the
fully qualified name of that class. If the source type is unknown, it
may be omitted.

def aul t Val ue Object

deprecati on Deprecation

The default value, which is used if the property is not specified. If
the type of the property is an array, it can be an array of value(s).
If the default value is unknown, it may be omitted.

Specify whether the property is deprecated. If the field is not
deprecated or if that information is not known, it may be omitted.
The next table offers more detail about the depr ecati on
attribute.

2.0.0.RC1

Spring Boot 324

Spring Boot Reference Guide

The JSON object contained in the depr ecat i on attribute of each pr operti es element can contain
the following attributes:

Name Type Purpose

| evel String The level of deprecation, which can be either war ni ng (the
default) or er r or . When a property has a war ni ng deprecation
level, it should still be bound in the environment. However, when
it has an err or deprecation level, the property is no longer
managed and is not bound.

reason String A short description of the reason why the property was
deprecated. If no reason is available, it may be omitted. It is
recommended that descriptions be short paragraphs, with the first
line providing a concise summary. The last line in the description
should end with a period (.).

repl acenent String The full name of the property that replaces this deprecated
property. If there is no replacement for this property, it may be
omitted.

Note

Prior to Spring Boot 1.3, a single depr ecat ed boolean attribute can be used instead of the
depr ecat i on element. This is still supported in a deprecated fashion and should no longer be
used. If no reason and replacement are available, an empty depr ecat i on object should be set.

Deprecation can also be specified declaratively in code by adding the
@epr ecat edConfi gur ati onProperty annotation to the getter exposing the deprecated property.
For instance, assume that the app. acne. t ar get property was confusing and was renamed to
app. acre. namre. The following example shows how to handle that situation:

@onfigurationProperties("app.acne")
public class AcneProperties {

private String nane;

public String getName() { ... }

public void setName(String name) { ... }

@epr ecat edConfi gur ati onProperty(repl acement = "app.acne. nane")
@epr ecat ed

public String getTarget() {
return get Nane();
}

@epr ecat ed
public void setTarget(String target) {
set Nanme(target);
}
}

Note

There is no way to set a | evel . war ni ng is always assumed, since code is still handling the
property.

2.0.0.RC1 Spring Boot 325

Spring Boot Reference Guide

The preceding code makes sure that the deprecated property still works (delegating to the nane property
behind the scenes). Once the get Tar get and set Tar get methods can be removed from your public
API, the automatic deprecation hint in the metadata goes away as well. If you want to keep a hint,
adding manual metadata with an er r or deprecation level ensures that users are still informed about
that property. Doing so is particularly useful when ar epl acenent is provided.

Hint Attributes

The JSON object contained in the hi nt s array can contain the attributes shown in the following table:

Name Type Purpose

name String The full name of the property to which this hint refers.
Names are in lower-case period-separated form (such as
server. servl et. pat h). If the property refers to a map
(such as syst em cont ext s), the hint either applies to the
keys of the map (syst em cont ext . keys) or the values
(syst em cont ext . val ues) of the map. This attribute is
mandatory.

val ues ValueHint[] A list of valid values as defined by the Val ueHi nt object
(described in the next table). Each entry defines the value and
may have a description.

provi ders ValueProvider[] | A list of providers as defined by the Val uePr ovi der object
(described later in this document). Each entry defines the name of
the provider and its parameters, if any.

The JSON object contained in the val ues attribute of each hi nt element can contain the attributes
described in the following table:

Name Type Purpose

val ue Object A valid value for the element to which the hint refers. If the type of
the property is an array, it can also be an array of value(s). This
attribute is mandatory.

description String A short description of the value that can be displayed to users. If
no description is available, it may be omitted . It is recommended
that descriptions be short paragraphs, with the first line providing
a concise summary. The last line in the description should end
with a period (.).

The JSON object contained in the pr ovi der s attribute of each hi nt element can contain the attributes
described in the following table:

Name Type Purpose

name String The name of the provider to use to offer additional content
assistance for the element to which the hint refers.

2.0.0.RC1 Spring Boot 326

Spring Boot Reference Guide

Name Type Purpose

parameters JSON object Any additional parameter that the provider supports (check the
documentation of the provider for more details).

Repeated Metadata Items

Objects with the same “property” and “group” name can appear multiple times within a metadata file.
For example, you could bind two separate classes to the same prefix, with each having potentially
overlapping property names. While the same names appearing in the metadata multiple times should
not be common, consumers of metadata should take care to ensure that they support it.

B.2 Providing Manual Hints

To improve the user experience and further assist the user in configuring a given property, you can
provide additional metadata that:

» Describes the list of potential values for a property.

» Associates a provider, to attach a well defined semantic to a property, so that a tool can discover the
list of potential values based on the project’s context.

Value Hint

The nane attribute of each hint refers to the nane of a property. In the initial example shown earlier, we
provide five values for the spri ng. j pa. hi ber nat e. ddl - aut o property: none, val i dat e, updat e,
creat e, and cr eat e- dr op. Each value may have a description as well.

If your property is of type Map, you can provide hints for both the keys and the values (but not for the map
itself). The special . keys and . val ues suffixes must refer to the keys and the values, respectively.

Assume a sanpl e. cont ext s maps magic St ri ng values to an integer, as shown in the following
example:

@onfi gurationProperties("sanple")
public class Sanpl eProperties {

private Map<String, | nteger> contexts;
/] getters and setters

}

The magic values are (in this example) are sanpl el and sanpl e2. In order to offer additional content
assistance for the keys, you could add the following JSON to the manual metadata of the module:

{"hints": [
{
"nanme": "sanpl e. cont exts. keys",
"val ues": [
{
"val ue": "sanpl el"
h
{
"val ue": "sanpl e2"
}
|
}
1}

2.0.0.RC1 Spring Boot 327

Spring Boot Reference Guide

Tip

We recommend that you use an Enumfor those two values instead. If your IDE supports it, this
is by far the most effective approach to auto-completion.

Value Providers
Providers are a powerful way to attach semantics to a property. In this section, we define the official

providers that you can use for your own hints. However, your favorite IDE may implement some of these
or none of them. Also, it could eventually provide its own.

Note

As this is a new feature, IDE vendors must catch up with how it works. Adoption times naturally
vary.

The following table summarizes the list of supported providers:

Name Description

any Permits any additional value to be provided.

cl ass-reference Auto-completes the classes available in the project. Usually
constrained by a base class that is specified by the t ar get
parameter.

handl e- as Handles the property as if it were defined by the type defined by

the mandatory t ar get parameter.

| ogger - name Auto-completes valid logger names. Typically, package and class
names available in the current project can be auto-completed.

spri ng- bean-reference Auto-completes the available bean names in the current project.
Usually constrained by a base class that is specified by the
t ar get parameter.

spring-profile-nane Auto-completes the available Spring profile names in the project.

Tip

Only one provider can be active for a given property, but you can specify several providers if they
can all manage the property in some way. Make sure to place the most powerful provider first, as
the IDE must use the first one in the JSON section that it can handle. If no provider for a given
property is supported, no special content assistance is provided, either.

Any

The special any provider value permits any additional values to be provided. Regular value validation
based on the property type should be applied if this is supported.

This provider is typically used if you have a list of values and any extra values should still be considered
as valid.

2.0.0.RC1 Spring Boot 328

Spring Boot Reference Guide

The following example offers on and of f as auto-completion values for syst em st at e:

{

"name":

{

"val ue'
Iz
{

}
1

{

1}

"val ues":

"val ue'

"name":

{"hints": [

'system state",

[

e ovon”

': "of f"

"providers": [

"any"

Note that, in the preceding example, any other value is also allowed.

Class Reference

The class-reference provider auto-completes classes available in the project. This provider supports
the following parameters:

Parameter Type

t ar get

String none

(d ass)

Default value

Description

The fully qualified name of the class that should
be assignable to the chosen value. Typically
used to filter out-non candidate classes. Note
that this information can be provided by the type
itself by exposing a class with the appropriate
upper bound.

concrete bool ean true

Specify whether only concrete classes are to be
considered as valid candidates.

The following metadata snippet corresponds to the standard server. servl et.j sp. cl ass- nane
property that defines the JspSer vl et class name to use:

{"hints":
{
"nane":
"provi de

{

"targ

Handle As

"nane":
"paraneters": {

[

"server.servlet.jsp.class-nanme",

rs": [

"cl ass-reference",

et": "javax.servlet.http. HtpServlet"

The handle-as provider lets you substitute the type of the property to a more high-level type. This
typically happens when the property has a j ava. | ang. St ri ng type, because you do not want your

2.0.0.RC1

Spring Boot 329

Spring Boot Reference Guide

configuration classes to rely on classes that may not be on the classpath. This provider supports the
following parameters:

Parameter Type Default value Description
tar get String none The fully qualified name of the type to consider
(d ass) for the property. This parameter is mandatory.

The following types can be used:

* Any j ava. |l ang. Enum Lists the possible values for the property. (We recommend defining the
property with the Enumtype, as no further hint should be required for the IDE to auto-complete the
values.)

e java. ni 0. charset. Charset: Supports auto-completion of charset/encoding values (such as
UTF- 8)

e java. util. Local e: auto-completion of locales (such as en_US)

e org.springfranmework. util.M nmeType: Supports auto-completion of content type values (such
astext/plain)

e org.springfranework. core.io. Resource: Supports auto-completion of Spring’s Resource
abstraction to refer to a file on the filesystem or on the classpath. (such as cl asspat h:/
sanpl e. properties)

Tip
If multiple values can be provided, use a Col | ect i on or Array type to teach the IDE about it.

The following metadata snippet corresponds to the standard spring. | i qui base. change-1 og
property that defines the path to the changelog to use. It is actually used internally as a
org. springframewor k. core. i 0. Resour ce but cannot be exposed as such, because we need to
keep the original String value to pass it to the Liquibase API.

{"hints": [
{
"nanme": "spring.!liquibase.change-Iog",
"providers": [
{
"nane": "handl e-as",
"paraneters": {
"target": "org.springframework. core.io.Resource"

Logger Name

The logger-name provider auto-completes valid logger names. Typically, package and class nhames
available in the current project can be auto-completed. Specific frameworks may have extra magic
logger names that can be supported as well.

Since a logger name can be any arbitrary name, this provider should allow any value but could highlight
valid package and class names that are not available in the project’s classpath.

2.0.0.RC1 Spring Boot 330

Spring Boot Reference Guide

The following metadata snippet corresponds to the standard | oggi ng. | evel property. Keys are logger
names, and values correspond to the standard log levels or any custom level.

{"hints": [
{
"name": "l ogging. | evel . keys",
"val ues": [
{
"value": "root",
"description": "Root |ogger used to assign the default |ogging |evel."

}
4
"providers": [

{

"nane": "Il ogger-nanme"
}
|
b
{
“nanme": "l ogging. | evel.val ues",
"val ues": [
{
"val ue": "trace"
b
{
"val ue": "debug"
B
{
"val ue": "info"
b
{
"val ue": "warn"
B
{
"val ue": "error"
b
{
"val ue": "fatal"
B
{
"val ue": "off"

Ia
"providers": [
{

"nang": " any..

1}

Spring Bean Reference

The spring-bean-reference provider auto-completes the beans that are defined in the configuration of
the current project. This provider supports the following parameters:

Parameter Type Default value Description
tar get String none The fully qualified name of the bean class that
(d ass) should be assignable to the candidate. Typically

used to filter out non-candidate beans.

The following metadata snippet corresponds to the standard spri ng. j nx. server property that
defines the name of the MBeanSer ver bean to use:

2.0.0.RC1 Spring Boot 331

Spring Boot Reference Guide

{"hints": [
{
"nane": "spring.jnx.server"
"providers": [
{
"nanme": "spring-bean-reference"
"paraneters": {
"target": "javax.nmanagenent.MBeanServer"
}
}
|
}
1}
Note

The binder is not aware of the metadata. If you provide that hint, you still need to transform the
bean name into an actual Bean reference using by the Appl i cati onCont ext .

Spring Profile Name

The spring-profile-name provider auto-completes the Spring profiles that are defined in the
configuration of the current project.

The following metadata snippet corresponds to the standard spri ng. prof i | es. act i ve property that
defines the name of the Spring profile(s) to enable:

{"hints": [
{
"nanme": "spring.profiles.active"
"providers": [
{

"nane": "spring-profile-nane"

1}

B.3 Generating Your Own Metadata by Using the Annotation
Processor

You can easily generate your own configuration metadata file from items annotated with
@confi gurati onProperties by using the spri ng- boot - confi gurati on-processor jar. The
jar includes a Java annotation processor which is invoked as your project is compiled. To use the
processor, include spri ng-boot -confi gurati on-processor as an optional dependency. For
example, with Maven, you can add:

<dependency>

<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifact!|d>spring-boot-configuration-processor</artifactld>
<opti onal >t rue</ opti onal >

</ dependency>

With Gradle, you can use the propdeps-plugin and specify the following dependency:

dependenci es {
optional "org.springframework. boot: spring-boot-configuration-processor"

}

conpi | eJava. dependsOn(pr ocessResour ces)

2.0.0.RC1 Spring Boot 332

https://github.com/spring-gradle-plugins/propdeps-plugin

Spring Boot Reference Guide

Note

You need to add conpi | eJava. dependsOn(pr ocessResour ces) to your build to ensure
that resources are processed before code is compiled. Without this directive, any addi ti onal -
spring-configuration-met adat a. j son files are not processed.

The processor picks up both classes and methods that are annotated with
@confi gurati onProperties. The Javadoc for field values within configuration classes is used to
populate the descri pti on attribute.

Note

You should only use simple text with @onf i gur ati onProperti es field Javadoc, since they
are not processed before being added to the JSON.

Properties are discovered through the presence of standard getters and setters with special handling
for collection types (that is detected even if only a getter is present). The annotation processor also
supports the use of the @at a, @ett er, and @et t er lombok annotations.

Note

If you are using AspectJ in your project, you need to make sure that the annotation processor runs
only once. There are several ways to do this. With Maven, you can configure the maven- apt -
pl ugi n explicitly and add the dependency to the annotation processor only there. You could also
let the AspectJ plugin run all the processing and disable annotation processing in the maven-
conpi | er - pl ugi n configuration, as follows:

<pl ugi n>

<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifact!|d>maven-conpil er-plugin</artifactld>
<confi gurati on>

<pr oc>none</ pr oc>

</ configuration>
</ pl ugi n>

Nested Properties

The annotation processor automatically considers inner classes as nested properties. Consider the
following class:

@configurationProperties(prefix="server")
public class ServerProperties {

private String name
private Host host;
/1l ... getter and setters
private static class Host {
private String ip
private int port;

/1 ... getter and setters

2.0.0.RC1 Spring Boot 333

Spring Boot Reference Guide

The preceding example produces metadata information for ser ver. nane, server. host. i p, and
server. host. port properties. You can use the @Nest edConfi gur at i onPr opert y annotation on
a field to indicate that a regular (non-inner) class should be treated as if it were nested.

Tip

This has no effect on collections and maps, as those types are automatically identified, and a
single metadata property is generated for each of them.

Adding Additional Metadata

Spring Boot's configuration file handling is quite flexible, and it is often the case that properties may
exist that are not bound to a @onf i gur ati onProperti es bean. You may also need to tune some
attributes of an existing key. To support such cases and let you provide custom "hints", the annotation
processor automatically merges items from META-| NF/ addi ti onal - spri ng-confi gurati on-
nmet adat a. j son into the main metadata file.

If you refer to a property that has been detected automatically, the description, default value, and
deprecation information are overridden, if specified. If the manual property declaration is not identified
in the current module, it is added as a new property.

The format of the addi ti onal - spri ng-confi gurati on-net adat a. j son file is exactly the same
as the regular spri ng- confi gur at i on- net adat a. j son. The additional properties file is optional.
If you do not have any additional properties, do not add the file.

2.0.0.RC1 Spring Boot 334

Spring Boot Reference Guide

Appendix C. Auto-configuration
classes

Here is a list of all auto-configuration classes provided by Spring Boot, with links to documentation and
source code. Remember to also look at the conditions report in your application for more details of
which features are switched on. (To do so, start the app with - - debug or - Ddebug or, in an Actuator
application, use the condi t i ons endpoint).

C.1 From the “spring-boot-autoconfigure” module

The following auto-configuration classes are from the spri ng- boot - aut oconf i gur e module:

Configuration Class Links

Act i veMQAut oConfi gurati on javadoc
AopAut oConfi guration javadoc
Artem sAut oConfi guration javadoc
Bat chAut oConfi gurati on javadoc
CacheAut oConfi gurati on javadoc
Cassandr aAut oConfi gurati on javadoc
Cassandr aDat aAut oConfi gurati on javadoc
Cassandr aReact i veDat aAut oConfi gurati on javadoc
Cassandr aReact i veReposi t ori esAut oConfi gurati on javadoc
Cassandr aReposi t ori esAut oConfi gurati on javadoc
Cl oudAut oConfi guration javadoc
CodecsAut oConfi gurati on javadoc
Confi gurationProperti esAut oConfiguration javadoc
CouchbaseAut oConfi gurati on javadoc
CouchbaseDat aAut oConf i gurati on javadoc
CouchbaseReact i veDat aAut oConf i gurati on javadoc
CouchbaseReact i veReposi t ori esAut oConfi guration javadoc
CouchbaseReposi t ori esAut oConfi gurati on javadoc
Dat aSour ceAut oConfi gurati on javadoc
Dat aSour ceTr ansact i onManager Aut oConfi gurati on javadoc
Di spat cher Ser vl et Aut oConfi gurati on javadoc
El asti csear chAut oConfi gurati on javadoc

2.0.0.RC1 Spring Boot 335

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/activemq/ActiveMQAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/jms/activemq/ActiveMQAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/aop/AopAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/aop/AopAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/artemis/ArtemisAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/jms/artemis/ArtemisAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/batch/BatchAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/batch/BatchAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/cache/CacheAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/cache/CacheAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/cassandra/CassandraAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/cassandra/CassandraAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/cassandra/CassandraDataAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/cassandra/CassandraDataAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/cassandra/CassandraReactiveDataAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/cassandra/CassandraReactiveDataAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/cassandra/CassandraReactiveRepositoriesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/cassandra/CassandraReactiveRepositoriesAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/cassandra/CassandraRepositoriesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/cassandra/CassandraRepositoriesAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/cloud/CloudAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/cloud/CloudAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/http/codec/CodecsAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/http/codec/CodecsAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/context/ConfigurationPropertiesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/context/ConfigurationPropertiesAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/couchbase/CouchbaseAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/couchbase/CouchbaseAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/couchbase/CouchbaseDataAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/couchbase/CouchbaseDataAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/couchbase/CouchbaseReactiveDataAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/couchbase/CouchbaseReactiveDataAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/couchbase/CouchbaseReactiveRepositoriesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/couchbase/CouchbaseReactiveRepositoriesAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/couchbase/CouchbaseRepositoriesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/couchbase/CouchbaseRepositoriesAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/DataSourceAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/jdbc/DataSourceAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/DataSourceTransactionManagerAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/jdbc/DataSourceTransactionManagerAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/servlet/DispatcherServletAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/web/servlet/DispatcherServletAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/elasticsearch/ElasticsearchAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/elasticsearch/ElasticsearchAutoConfiguration.html

Spring Boot Reference Guide

Configuration Class Links

El asti csear chDat aAut oConfi gurati on javadoc
El asti csear chReposi t ori esAut oConfi gurati on javadoc
EnmbeddedlLdapAut oConfi gurati on javadoc
EnmbeddedMongoAut oConfi gurati on javadoc
Err or MrcAut oConfi gurati on javadoc
Er r or WebFI uxAut oConfi gurati on javadoc
Fl ywayAut oConfi gurati on javadoc
Fr eeMar ker Aut oConfi gurati on javadoc
GroovyTenpl at eAut oConfi gurati on javadoc
GsonAut oConfi gurati on javadoc
H2Consol eAut oConfi gurati on javadoc
Hazel cast Aut oConfi gurati on javadoc
Hazel cast JpaDependencyAut oConfi gurati on javadoc
Hi ber nat eJpaAut oConfi gurati on javadoc
Ht t pEncodi ngAut oConfi gurati on javadoc
Ht t pHandl er Aut oConf i gur ati on javadoc
Ht t pMessageConvert er sAut oConfi gurati on javadoc
Hyper medi aAut oConfi gurati on javadoc
I nf 1 uxDbAut oConfi gurati on javadoc
I nt egr ati onAut oConfi guration javadoc
JacksonAut oConfi gurati on javadoc
JdbcTenpl at eAut oConfi gurati on javadoc
Jer seyAut oConfi guration javadoc
Jest Aut oConfi guration javadoc
JsAut oConf i gurati on javadoc
JnxAut oConfi gurati on javadoc
Jndi Connecti onFact or yAut oConfi gurati on javadoc
Jndi Dat aSour ceAut oConfi gurati on javadoc
JoogAut oConfi guration javadoc
JpaReposi t ori esAut oConfi guration javadoc

2.0.0.RC1 Spring Boot

336

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/elasticsearch/ElasticsearchDataAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/elasticsearch/ElasticsearchDataAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/elasticsearch/ElasticsearchRepositoriesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/elasticsearch/ElasticsearchRepositoriesAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/ldap/embedded/EmbeddedLdapAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/ldap/embedded/EmbeddedLdapAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mongo/embedded/EmbeddedMongoAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/mongo/embedded/EmbeddedMongoAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/servlet/error/ErrorMvcAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/web/servlet/error/ErrorMvcAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/reactive/error/ErrorWebFluxAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/web/reactive/error/ErrorWebFluxAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/flyway/FlywayAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/flyway/FlywayAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/freemarker/FreeMarkerAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/freemarker/FreeMarkerAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/groovy/template/GroovyTemplateAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/groovy/template/GroovyTemplateAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/gson/GsonAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/gson/GsonAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/h2/H2ConsoleAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/h2/H2ConsoleAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/hazelcast/HazelcastAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/hazelcast/HazelcastAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/hazelcast/HazelcastJpaDependencyAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/hazelcast/HazelcastJpaDependencyAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/orm/jpa/HibernateJpaAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/orm/jpa/HibernateJpaAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/servlet/HttpEncodingAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/web/servlet/HttpEncodingAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/reactive/HttpHandlerAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/web/reactive/HttpHandlerAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/http/HttpMessageConvertersAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/http/HttpMessageConvertersAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/hateoas/HypermediaAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/hateoas/HypermediaAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/influx/InfluxDbAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/influx/InfluxDbAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/integration/IntegrationAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/integration/IntegrationAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jackson/JacksonAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/jackson/JacksonAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/JdbcTemplateAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/jdbc/JdbcTemplateAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jersey/JerseyAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/jersey/JerseyAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/elasticsearch/jest/JestAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/elasticsearch/jest/JestAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/JmsAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/jms/JmsAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jmx/JmxAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/jmx/JmxAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/JndiConnectionFactoryAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/jms/JndiConnectionFactoryAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/JndiDataSourceAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/jdbc/JndiDataSourceAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jooq/JooqAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/jooq/JooqAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/jpa/JpaRepositoriesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/jpa/JpaRepositoriesAutoConfiguration.html

Spring Boot Reference Guide

Configuration Class Links

JsonbAut oConfi guration javadoc
Jt aAut oConfi gurati on javadoc
Kaf kaAut oConf i gurati on javadoc
LdapAut oConfi gurati on javadoc
LdapDat aAut oConf i gurati on javadoc
LdapReposi tori esAut oConfi guration javadoc
Li qui baseAut oConfi gurati on javadoc
Mai | Sender Aut oConfi gurati on javadoc
Mai | Sender Val i dat or Aut oConf i gurati on javadoc
MessageSour ceAut oConfi gurati on javadoc
MongoAut oConfi gurati on javadoc
MongoDat aAut oConfi gurati on javadoc
MongoReact i veAut oConfi gurati on javadoc
MongoReact i veDat aAut oConfi gurati on javadoc
MongoReact i veReposi t ori esAut oConfi gurati on javadoc
MongoReposi t ori esAut oConfi gurati on javadoc
Mul ti part Aut oConfi gurati on javadoc
Must acheAut oConf i gurati on javadoc
Neo4j Dat aAut oConfi gurati on javadoc
Neo4j Reposi t ori esAut oConfi gurati on javadoc
QAut h2d i ent Aut oConfi gurati on javadoc
Per si st enceExcepti onTransl ati onAut oConfi gurati on javadoc
Pr oj ect I nf oAut oConfi gurati on javadoc
Pr opert yPl acehol der Aut oConfi gurati on javadoc
Quar t zAut oConfi gurati on javadoc
Rabbi t Aut oConfi gurati on javadoc
React i veSecurityAut oConfi guration javadoc
React i veWebSer ver Aut oConfi gurati on javadoc
React or Cor eAut oConfi gurati on javadoc
Redi sAut oConfi guration javadoc

2.0.0.RC1 Spring Boot

337

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jsonb/JsonbAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/jsonb/JsonbAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/transaction/jta/JtaAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/transaction/jta/JtaAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/kafka/KafkaAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/kafka/KafkaAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/ldap/LdapAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/ldap/LdapAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/ldap/LdapDataAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/ldap/LdapDataAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/ldap/LdapRepositoriesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/ldap/LdapRepositoriesAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/liquibase/LiquibaseAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/liquibase/LiquibaseAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mail/MailSenderAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/mail/MailSenderAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mail/MailSenderValidatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/mail/MailSenderValidatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/context/MessageSourceAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/context/MessageSourceAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mongo/MongoAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/mongo/MongoAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/mongo/MongoDataAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/mongo/MongoDataAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mongo/MongoReactiveAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/mongo/MongoReactiveAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/mongo/MongoReactiveDataAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/mongo/MongoReactiveDataAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/mongo/MongoReactiveRepositoriesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/mongo/MongoReactiveRepositoriesAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/mongo/MongoRepositoriesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/mongo/MongoRepositoriesAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/servlet/MultipartAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/web/servlet/MultipartAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mustache/MustacheAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/mustache/MustacheAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/neo4j/Neo4jDataAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/neo4j/Neo4jDataAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/neo4j/Neo4jRepositoriesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/neo4j/Neo4jRepositoriesAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/security/oauth2/client/OAuth2ClientAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/security/oauth2/client/OAuth2ClientAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/dao/PersistenceExceptionTranslationAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/dao/PersistenceExceptionTranslationAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/info/ProjectInfoAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/info/ProjectInfoAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/context/PropertyPlaceholderAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/context/PropertyPlaceholderAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/quartz/QuartzAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/quartz/QuartzAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/amqp/RabbitAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/amqp/RabbitAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/security/reactive/ReactiveSecurityAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/security/reactive/ReactiveSecurityAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/reactive/ReactiveWebServerAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/web/reactive/ReactiveWebServerAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/reactor/core/ReactorCoreAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/reactor/core/ReactorCoreAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/redis/RedisAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/redis/RedisAutoConfiguration.html

Spring Boot Reference Guide

Configuration Class Links

Redi sReact i veAut oConfi gurati on javadoc
Redi sReposi t ori esAut oConfi gurati on javadoc
Reposi t or yRest MrcAut oConfi gurati on javadoc
Rest Tenpl at eAut oConfi guration javadoc
Securi t yAut oConfi gurati on javadoc
SecurityFilterAutoConfiguration javadoc
SendGr i dAut oConfi gurati on javadoc
Ser vl et WebSer ver Fact or yAut oConf i gurati on javadoc
Sessi onAut oConfi gurati on javadoc
Sol r Aut oConfi gurati on javadoc
Sol r Reposi t ori esAut oConfi gurati on javadoc
Spri ngAppl i cati onAdm nJnxAut oConfi gurati on javadoc
Spr i ngDat aWebAut oConfi gurati on javadoc
Thynel eaf Aut oConfi gurati on javadoc
Transacti onAut oConfi gurati on javadoc
Val i dat i onAut oConfi gurati on javadoc
Webd i ent Aut oConfi gurati on javadoc
WebFl uxAut oConfi gurati on javadoc
WebMvcAut oConfi gurati on javadoc
WebSer vi cesAut oConfi gurati on javadoc
WebSocket Messagi ngAut oConfi gurati on javadoc
WebSocket React i veAut oConfi gurati on javadoc
WebSocket Ser vl et Aut oConfi gurati on javadoc
XADat aSour ceAut oConfi gurati on javadoc

C.2 From the “spring-boot-actuator-autoconfigure” module

The following auto-configuration classes are from the spri ng- boot - act uat or - aut oconfi gure

module:

Configuration Class

Audi t Aut oConf i gur ati on

Audi t Event sEndpoi nt Aut oConfi gurati on

Links

javadoc
javadoc

2.0.0.RC1 Spring Boot

338

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/redis/RedisReactiveAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/redis/RedisReactiveAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/redis/RedisRepositoriesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/redis/RedisRepositoriesAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/rest/RepositoryRestMvcAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/rest/RepositoryRestMvcAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/client/RestTemplateAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/web/client/RestTemplateAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/security/servlet/SecurityAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/security/servlet/SecurityAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/security/servlet/SecurityFilterAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/security/servlet/SecurityFilterAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/sendgrid/SendGridAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/sendgrid/SendGridAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/servlet/ServletWebServerFactoryAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/web/servlet/ServletWebServerFactoryAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/session/SessionAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/session/SessionAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/solr/SolrAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/solr/SolrAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/solr/SolrRepositoriesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/solr/SolrRepositoriesAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/admin/SpringApplicationAdminJmxAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/admin/SpringApplicationAdminJmxAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/data/web/SpringDataWebAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/data/web/SpringDataWebAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/thymeleaf/ThymeleafAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/thymeleaf/ThymeleafAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/transaction/TransactionAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/transaction/TransactionAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/validation/ValidationAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/validation/ValidationAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/reactive/function/client/WebClientAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/web/reactive/function/client/WebClientAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/reactive/WebFluxAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/web/reactive/WebFluxAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/servlet/WebMvcAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/web/servlet/WebMvcAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/webservices/WebServicesAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/webservices/WebServicesAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/websocket/servlet/WebSocketMessagingAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/websocket/servlet/WebSocketMessagingAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/websocket/reactive/WebSocketReactiveAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/websocket/reactive/WebSocketReactiveAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/websocket/servlet/WebSocketServletAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/websocket/servlet/WebSocketServletAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/XADataSourceAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/autoconfigure/jdbc/XADataSourceAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/audit/AuditAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/audit/AuditAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/audit/AuditEventsEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/audit/AuditEventsEndpointAutoConfiguration.html

Spring Boot Reference Guide

Configuration Class Links

BeansEndpoi nt Aut oConfi gurati on javadoc
Cassandr aHeal t hl ndi cat or Aut oConfi gurati on javadoc
Gl oudFoundr yAct uat or Aut oConfi gurati on javadoc
Condi ti onsReport Endpoi nt Aut oConfi gurati on javadoc
Confi gurati onPropertiesReport Endpoi nt Aut oConfi gurati on javadoc
CouchbaseHeal t hl ndi cat or Aut oConfi gurati on javadoc
Dat aSour ceHeal t hl ndi cat or Aut oConfi gurati on javadoc
Di skSpaceHeal t hl ndi cat or Aut oConf i gurati on javadoc
El asti csear chHeal t hl ndi cat or Aut oConfi gurati on javadoc
Endpoi nt Aut oConf i gurati on javadoc
Envi r onnment Endpoi nt Aut oConfi gur ati on javadoc
FI ywayEndpoi nt Aut oConfi gurati on javadoc
Heal t hEndpoi nt Aut oConfi gurati on javadoc
Heal t hl ndi cat or Aut oConfi gurati on javadoc
HeapDunmpWebEndpoi nt Aut oConf i gurati on javadoc
Ht t pTraceAut oConfi gurati on javadoc
Ht t pTr aceEndpoi nt Aut oConfi gurati on javadoc
| nf 1 uxDbHeal t hl ndi cat or Aut oConfi gurati on javadoc
I nf oCont ri but or Aut oConfi guration javadoc
| nf oEndpoi nt Aut oConfi gurati on javadoc
JnsHeal t hl ndi cat or Aut oConfi gurati on javadoc
JnxEndpoi nt Aut oConfi gurati on javadoc
Jol oki aEndpoi nt Aut oConfi gurati on javadoc
LdapHeal t hl ndi cat or Aut oConfi gur ati on javadoc
Li qui baseEndpoi nt Aut oConfi gurati on javadoc
LogFi | eWebEndpoi nt Aut oConfi gurati on javadoc
Logger sEndpoi nt Aut oConfi gurati on javadoc
Mai | Heal t hl ndi cat or Aut oConf i gurati on javadoc
Managenent Cont ext Aut oConfi gurati on javadoc
Mappi ngsEndpoi nt Aut oConf i gurati on javadoc

2.0.0.RC1 Spring Boot

339

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/beans/BeansEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/beans/BeansEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/cassandra/CassandraHealthIndicatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/cassandra/CassandraHealthIndicatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/cloudfoundry/servlet/CloudFoundryActuatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/cloudfoundry/servlet/CloudFoundryActuatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/condition/ConditionsReportEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/condition/ConditionsReportEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/context/properties/ConfigurationPropertiesReportEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/context/properties/ConfigurationPropertiesReportEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/couchbase/CouchbaseHealthIndicatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/couchbase/CouchbaseHealthIndicatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/jdbc/DataSourceHealthIndicatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/jdbc/DataSourceHealthIndicatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/system/DiskSpaceHealthIndicatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/system/DiskSpaceHealthIndicatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/elasticsearch/ElasticsearchHealthIndicatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/elasticsearch/ElasticsearchHealthIndicatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/endpoint/EndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/endpoint/EndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/env/EnvironmentEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/env/EnvironmentEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/flyway/FlywayEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/flyway/FlywayEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/health/HealthEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/health/HealthEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/health/HealthIndicatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/health/HealthIndicatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/management/HeapDumpWebEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/management/HeapDumpWebEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/web/trace/HttpTraceAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/web/trace/HttpTraceAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/web/trace/HttpTraceEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/web/trace/HttpTraceEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/influx/InfluxDbHealthIndicatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/influx/InfluxDbHealthIndicatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/info/InfoContributorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/info/InfoContributorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/info/InfoEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/info/InfoEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/jms/JmsHealthIndicatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/jms/JmsHealthIndicatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/endpoint/jmx/JmxEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/endpoint/jmx/JmxEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/jolokia/JolokiaEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/jolokia/JolokiaEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/ldap/LdapHealthIndicatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/ldap/LdapHealthIndicatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/liquibase/LiquibaseEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/liquibase/LiquibaseEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/logging/LogFileWebEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/logging/LogFileWebEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/logging/LoggersEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/logging/LoggersEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/mail/MailHealthIndicatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/mail/MailHealthIndicatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/web/server/ManagementContextAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/web/server/ManagementContextAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/web/mappings/MappingsEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/web/mappings/MappingsEndpointAutoConfiguration.html

Spring Boot Reference Guide

Configuration Class Links

Met ri csAut oConfi gurati on javadoc
MongoHeal t hl ndi cat or Aut oConfi gurati on javadoc
Neo4j Heal t hl ndi cat or Aut oConfi gurati on javadoc
Rabbi t Heal t hl ndi cat or Aut oConf i gurati on javadoc
React i veCl oudFoundr yAct uat or Aut oConfi gurati on javadoc
React i veManagenent Cont ext Aut oConfi gurati on javadoc
Redi sHeal t hl ndi cat or Aut oConf i gurati on javadoc
Schedul edTasksEndpoi nt Aut oConfi gurati on javadoc
Ser vl et Managenent Cont ext Aut oConfi gurati on javadoc
Sessi onsEndpoi nt Aut oConfi gurati on javadoc
Shut downEndpoi nt Aut oConfi gurati on javadoc
Sol r Heal t hl ndi cat or Aut oConfi gurati on javadoc
Thr eadDunpEndpoi nt Aut oConf i gurati on javadoc
WebEndpoi nt Aut oConfi gurati on javadoc

2.0.0.RC1 Spring Boot

340

https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/metrics/MetricsAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/metrics/MetricsAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/mongo/MongoHealthIndicatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/mongo/MongoHealthIndicatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/neo4j/Neo4jHealthIndicatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/neo4j/Neo4jHealthIndicatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/amqp/RabbitHealthIndicatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/amqp/RabbitHealthIndicatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/cloudfoundry/reactive/ReactiveCloudFoundryActuatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/cloudfoundry/reactive/ReactiveCloudFoundryActuatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/web/reactive/ReactiveManagementContextAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/web/reactive/ReactiveManagementContextAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/redis/RedisHealthIndicatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/redis/RedisHealthIndicatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/scheduling/ScheduledTasksEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/scheduling/ScheduledTasksEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/web/servlet/ServletManagementContextAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/web/servlet/ServletManagementContextAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/session/SessionsEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/session/SessionsEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/context/ShutdownEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/context/ShutdownEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/solr/SolrHealthIndicatorAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/solr/SolrHealthIndicatorAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/management/ThreadDumpEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/management/ThreadDumpEndpointAutoConfiguration.html
https://github.com/spring-projects/spring-boot/tree/v2.0.0.RC1/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/endpoint/web/WebEndpointAutoConfiguration.java
http://docs.spring.io/spring-boot/docs/2.0.0.RC1/api/org/springframework/boot/actuate/autoconfigure/endpoint/web/WebEndpointAutoConfiguration.html

Spring Boot Reference Guide

Appendix D. Test auto-configuration
annotations

The following table lists the various @.Test annotations that can be used to test slices of your application
and the auto-configuration that they import by default:

Test slice Imported auto-configuration

@at aJpaTest org. spri ngframewor k. boot . aut oconfi gure. cache. Cach
org. spri ngfranmewor k. boot . aut oconfi gure. data.jpa.J
or g. spri ngframewor k. boot . aut oconfi gure. fl yway. Fly
or g. spri ngf ramewor k. boot . aut oconfi gure. j dbc. Dat aS
org. spri ngframewor k. boot . aut oconfi gure. j dbc. Dat aS
or g. spri ngframewor k. boot . aut oconfi gure. jdbc. JdbcT
org. springframewor k. boot . aut oconfi gure. |iqui base.
org. spri ngframewor k. boot . aut oconfi gure. ormj pa. H
or g. spri ngframewor k. boot . aut oconfi gure.transactio
org. springframewor k. boot . t est. aut oconfi gure.jdbc.
org. springframework. boot . test. aut oconfigure.orm|j

@pat aLdapTest org. spri ngframewor k. boot . aut oconfi gure. cache. Cach
or g. springframewor k. boot . aut oconfi gure. data. | dap
or g. spri ngframewor k. boot . aut oconfi gure. data. | dap
org. spri ngframewor k. boot . aut oconfi gure. | dap. LdapA
or g. springfranmewor k. boot . aut oconfi gure. | dap. enbed

@pat aMbngoTest or g. spri ngframewor k. boot . aut oconfi gur e. cache. Cach
org. spri ngframewor k. boot . aut oconfi gur e. dat a. nongo
or g. spri ngframewor k. boot . aut oconfi gur e. dat a. nongo
or g. springframewor k. boot . aut oconfi gur e. dat a. nrongo
org. spri ngframewor k. boot . aut oconfi gur e. dat a. nongo
or g. spri ngframewor k. boot . aut oconfi gur e. nongo. Mong
or g. spri ngframewor k. boot . aut oconfi gur e. nongo. Mong
org. spri ngframewor k. boot . aut oconfi gur e. nongo. enbe

@pat aNeo4j Test org. spri ngframewor k. boot . aut oconfi gure. cache. Cach
or g. spri ngframewor k. boot . aut oconfi gur e. dat a. neo4;
or g. spri ngframewor k. boot . aut oconfi gur e. dat a. neo4;
org. spri ngframewor k. boot . aut oconfi gure.transactio

@pat aRedi sTest org. spri ngframewor k. boot . aut oconfi gure. cache. Cach
or g. spri ngframewor k. boot . aut oconfi gure. data.redis
org. spri ngframewor k. boot . aut oconfi gure. data.redis

@dbcTest org. spri ngframewor k. boot . aut oconfi gure. cache. Cach
org. springframewor k. boot . aut oconfi gure. fl yway. Fly
or g. spri ngframewor k. boot . aut oconfi gure. jdbc. Dat aS
or g. spri ngf ramewor k. boot . aut oconfi gure. j dbc. Dat aS
org. springframewor k. boot . aut oconfi gure. jdbc. JdbcT
or g. springfranmewor k. boot . aut oconfi gure.|iqui base.

2.0.0.RC1 Spring Boot 341

Spring Boot Reference Guide

Test slice

@ooqTest

Imported auto-configuration

org.
org.

org.
org.
org.
org.
org.
org.

spri
spri

spri
spri
spri
spri
spri
spri

ngf r amewor k.
ngf r amewor k.

ngf r amewor k.
ngf r amewor k.
ngf r amewor k.
ngf r amewor k.
ngf r amewor k.
ngf r amewor k.

boot .
.test.autoconfigure.jdbc.

boot

boot .
boot .
boot .

boot

boot .

boot

aut oconfigure.transactio

aut oconfi gure.
aut oconfi gure.
aut oconfi gure.
.aut oconfigure.
aut oconfi gure.
.aut oconfi gure.

@sonTest

@Rest Cl i ent Test

@\ebFl uxTest

org.
org.
org.
org.
org.

org.
org.
org.
org.
org.
org.
org.
org.
org.
org.

org.
org.
org.
org.
org.

spri
spri
spri
spri
spri

spri
spri
spri
spri
spri
spri
spri
spri
spri
spri

spri
spri
spri
spri
spri

ngf r anewor k.
ngf r amewor k.
ngf r amewor k.
ngf r anewor k.
ngf r amewor k.

ngf r amewor k.
ngf r amewor k.
ngf r amewor k.
ngf r amewor k.
ngf r amewor k.
ngf r amewor k.
ngf r amewor k.
ngf r amewor k.
ngf r amewor k.
ngf r amewor k.

ngf r amewor k.
ngf r amewor k.
ngf r amewor k.
ngf r amewor k.
ngf r amewor k.

boot .

boot

boot .

boot

boot .

boot

boot .

boot

boot .
boot .
boot .
boot .
boot .
boot .
boot .

boot .
boot .
boot .

boot

boot .

aut oconfi gure.
.aut oconfi gure.
aut oconfi gure.
.aut oconfi gure.
test. aut oconfi

.aut oconfi gure.
aut oconfi gure.
.aut oconfi gure.
aut oconfi gure.
aut oconfi gure.
aut oconfi gure.
aut oconfi gure.
aut oconfi gure.
test. aut oconfi
test. aut oconfi

aut oconfi gure.
aut oconfi gure.
aut oconfi gure.
.aut oconfi gure.
test. aut oconfi

@¥bM/cTest

org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.

spri
spri
spri
spri
spri
spri
spri
spri
spri
spri
spri
spri
spri
spri
spri
spri

ngf r anewor k.
ngf r amewor k.
ngf r amewor k.
ngf r anewor k.
ngf r amewor k.
ngf r amewor k.
ngf r anewor k.
ngf r amewor k.
ngf r amewor k.
ngf r amewor k.
ngf r amewor k.
ngf r amewor k.
ngf r anewor k.
ngf r amewor k.
ngf r amewor k.
ngf r anewor k.

boot .
boot .
boot .
boot .

boot

boot .

boot

boot .
boot .
boot .
boot .
boot .
boot .

boot

boot

aut oconfi gure.
aut oconfi gure.
aut oconfi gure.
aut oconfi gure.
.aut oconfigure.
aut oconfi gure.
.aut oconfi gure.
aut oconfi gure.
aut oconfi gure.
aut oconfi gure.
aut oconfi gure.
aut oconfi gure.
aut oconfi gure.
.aut oconfigure.
boot .

flyway. Fly
j dbc. Dat aS
j dbc. Dat aS
j 00Q. JoogA
['i qui base.
transactio

cache. Cach
gson. GsonA
j ackson. Ja
j sonb. Json
gure.json.

cache. Cach
gson. GsonA
http. H t ph
htt p. codec
j ackson. Ja
j sonb. Json
web. cl i ent
web. react i
gure. web. c
gure.web. c

cache. Cach
context. Me
val i dation
web. reacti
gure.web.r

cache. Cach
context. Me
freenmar ker
groovy. ten
gson. GsonA
hat eoas. Hy
http. H t ph
j ackson. Ja
j sonb. Json
nmust ache. N
t hyrel eaf .
val i dati on
web. servl e
web. servl e

test. autoconfigure.web. s

2.0.0.RC1

Spring Boot

342

.test.autoconfigure.web.s

Spring Boot Reference Guide

Test slice Imported auto-configuration

org. springframewor k. boot . t est. aut oconfi gure. web. s
org. springframework. boot . t est. aut oconfi gure. web. s

2.0.0.RC1 Spring Boot 343

Spring Boot Reference Guide

Appendix E. The Executable Jar
Format

The spri ng- boot - | oader modules lets Spring Boot support executable jar and war files. If you use
the Maven plugin or the Gradle plugin, executable jars are automatically generated, and you generally
do not need to know the details of how they work.

If you need to create executable jars from a different build system or if you are just curious about the
underlying technology, this section provides some background.

E.1 Nested JARS

Java does not provide any standard way to load nested jar files (that is, jar files that are themselves
contained within a jar). This can be problematic if you need to distribute a self-contained application that
can be run from the command line without unpacking.

To solve this problem, many developers use “shaded” jars. A shaded jar packages all classes, from all
jars, into a single “uber jar”. The problem with shaded jars is that it becomes hard to see which libraries
are actually in your application. It can also be problematic if the same filename is used (but with different
content) in multiple jars. Spring Boot takes a different approach and lets you actually nest jars directly.

The Executable Jar File Structure

Spring Boot Loader-compatible jar files should be structured in the following way:

exanpl e. j ar
|
+- META- | NF
| +- MANI FEST. MF
+-org
| +-springfranework
| +- boot
| +- | oader
| +-<spring boot |oader classes>
+- BOOT- | NF
+-cl asses
| +-nyconpany
| +- proj ect
| +- Your C asses. cl ass
+lib
+- dependencyl. j ar
+- dependency?2. j ar

Application classes should be placed in a nested BOOT- | NF/ cl asses directory. Dependencies should
be placed in a nested BOOT- | NF/ | i b directory.

The Executable War File Structure

Spring Boot Loader-compatible war files should be structured in the following way:

exanpl e. war

+- META- | NF
|+ MANI FEST. MF
+org

| +-springfranework

2.0.0.RC1 Spring Boot 344

Spring Boot Reference Guide

| +- boot
| +- | oader
| +-<spring boot |oader classes>
+- VEEB- | NF
+- cl asses
| +-com
+- myconpany

+- proj ect

+- Your Cl asses. cl ass

+- dependencyl. j ar
+- dependency?2. j ar
|'i b-provided
+-servlet-api.jar
+- dependency3. j ar

|

|

[
+-lib
I

I

+-

Dependencies should be placed in a nested VEB- | NF/ | i b directory. Any dependencies that are
required when running embedded but are not required when deploying to a traditional web container
should be placed in VEB- | NF/ | i b- pr ovi ded.

E.2 Spring Boot’s “JarFile” Class

The core class used to support loading nested jars is
org. spri ngframewor k. boot . | oader . jar. JarFil e. It lets you load jar content from a standard
jar file or from nested child jar data. When first loaded, the location of each Jar Ent ry is mapped to a
physical file offset of the outer jar, as shown in the following example:

nyapp. j ar
Fom e eeaaaa- Fom e +
/BOOT-INF/classes	/BOOT-INF/lib/nylib.jar				
4mmmmm e - H	+ Fommmmeea o +				
A. cl ass			B.class	C.class	
4----mmm e - - H	+ S +				
Fmm e oo m e +
N N N
0063 3452 3980

The preceding example shows how A. cl ass can be found in / BOOT- | NF/ cl asses in myapp. j ar
at position 0063. B. cl ass from the nested jar can actually be found in myapp. j ar at position 3452,
and C. cl ass is at position 3980.

Armed with this information, we can load specific nested entries by seeking to the appropriate part of the
outer jar. We do not need to unpack the archive, and we do not need to read all entry data into memory.

Compatibility with the Standard Java “JarFile”

Spring Boot Loader strives to remain compatible with existing code and libraries.
or g. spri ngframewor k. boot . | oader . jar. JarFil e extends from java. util.jar.JarFile
and should work as a drop-in replacement. The get URL() method returns a URL that opens
a connection compatible with java. net.Jar URLConnecti on and can be used with Java's
URLCl assLoader.

E.3 Launching Executable Jars

The or g. spri ngf ramewor k. boot . | oader . Launcher class is a special bootstrap class that is
used as an executable jar's main entry point. It is the actual Mai n- Cl ass in your jar file, and it is used
to setup an appropriate URLCl assLoader and ultimately call your mai n() method.

2.0.0.RC1 Spring Boot 345

Spring Boot Reference Guide

There are three launcher subclasses (Jar Launcher, War Launcher, and Properti esLauncher).
Their purpose is to load resources (. ¢l ass files and so on.) from nested jar files or war files in directories
(as opposed to those explicitly on the classpath). In the case of Jar Launcher and War Launcher , the
nested paths are fixed. Jar Launcher looks in BOOT- | NF/ I i b/, and War Launcher looks in V\EB-
I NF/1ib/ andWEB- | NF/ | i b- provi ded/ . You can add extra jars in those locations if you want more.
The Properti esLauncher looks in BOOT- I NF/ | i b/ in your application archive by default, but you
can add additional locations by setting an environment variable called LOADER_PATHor | oader . pat h
in| oader . properti es (which is a comma-separated list of directories, archives, or directories within
archives).

Launcher Manifest

You need to specify an appropriate Launcher as the Mai n-C ass attribute of META-1 NF/
MANI FEST. MF. The actual class that you want to launch (that is, the class that contains a mai n method)
should be specified in the St art - C ass attribute.

The following example shows a typical MANI FEST. MF for an executable jar file:

Mai n- Cl ass: org. springfranework. boot . | oader . Jar Launcher
Start-Cl ass: com nyconpany. proj ect. MyApplication

For a war file, it would be as follows:

Mai n- O ass: org. springfranmework. boot . | oader. War Launcher
Start-Cl ass: com nmyconpany. proj ect. MyApplication

Note

You need not specify Cl ass- Pat h entries in your manifest file. The classpath is deduced from
the nested jars.

Exploded Archives

Certain PaaS implementations may choose to unpack archives before they run. For example, Cloud
Foundry operates this way. You can run an unpacked archive by starting the appropriate launcher, as
follows:

$ unzip -q nyapp.jar
$ java org. springfranmework. boot . | oader. Jar Launcher

E.4 Properti esLauncher Features

Properti esLauncher has afew special features that can be enabled with external properties (System
properties, environment variables, manifest entries, or | oader . properti es). The following table
describes these properties:

Key Purpose

| oader. path Comma-separated Classpath, such as | i b,
${ HOVE} / app/ | i b. Earlier entries take
precedence, like a regular - cl asspat h on the
j avac command line.

2.0.0.RC1 Spring Boot 346

Spring Boot Reference Guide

Key Purpose

| oader . home Used to resolve relative paths in | oader . pat h.
For example, given | oader . pat h=l i b,
then ${ | oader. hone}/ | i b is a classpath
location (along with all jar files in that directory).
This property is also used to locate a
| oader . properti es file, as in the following
example / opt / app It defaults to ${user . dir}.

| oader. args Default arguments for the main method (space
separated).
| oader. main Name of main class to launch (for example,

com app. Appl i cati on).

| oader. confi g. nane Name of properties file (for example, | auncher)
It defaults to | oader .

| oader. config.l ocation Path to properties file (for example,
cl asspat h: | oader. properti es). It defaults
tol oader. properties.

| oader. system Boolean flag to indicate that all properties should
be added to System properties It defaults to
fal se.

When specified as environment variables or manifest entries, the following names should be used:

Key Manifest entry Environment variable

| oader. path Loader - Pat h LOADER PATH

| oader . hone Loader - Hone LOADER HOMVE

| oader. args Loader - Args LOADER_ARGS

| oader. main Start-d ass LOADER MAI N

| oader. config.l ocation Loader - Confi g- Locati on LOADER _CONFI G_LOCATI ON
| oader. system Loader - System LOADER _SYSTEM

Tip

Build plugins automatically move the Mai n- Cl ass attribute to St art - Cl ass when the fat jar is
built. If you use that, specify the name of the class to launch by using the Mai n- Cl ass attribute
and leaving out St art - C ass.

The following rules apply to working with Pr operti esLauncher:

» | oader. properti es is searched for in | oader . hone, then in the root of the classpath, and then
in cl asspat h: / BOOT- | NF/ cl asses. The first location where a file with that name exists is used.

» | oader. hone is the directory location of an additional properties file (overriding the default) only
when | oader . confi g. | ocat i on is not specified.

2.0.0.RC1 Spring Boot 347

Spring Boot Reference Guide

| oader . pat h can contain directories (which are scanned recursively for jar and zip files), archive
paths, a directory within an archive that is scanned for jar files (for example, dependenci es.jar!/
|'i b), or wildcard patterns (for the default JVM behavior). Archive paths can be relative to
| oader . hore or anywhere in the file system with aj ar: fil e: prefix.

| oader. pat h (if empty) defaults to BOOT-1 NF/1ib (meaning a local directory or a nested
one if running from an archive). Because of this, Properti esLauncher behaves the same as
Jar Launcher when no additional configuration is provided.

| oader . pat h can not be used to configure the location of | oader . properti es (the classpath
used to search for the latter is the JVM classpath when Pr oper ti esLauncher is launched).

Placeholder replacement is done from System and environment variables plus the properties file itself
on all values before use.

The search order for properties (where it makes sense to look in more than one place) is environment
variables, system properties, | oader . pr operti es, the exploded archive manifest, and the archive
manifest.

E.5 Executable Jar Restrictions

You need to consider the following restrictions when working with a Spring Boot Loader packaged
application:

Zip entry compression: The ZipEntry for a nested jar must be saved by using the
Zi pEnt ry. STORED method. This is required so that we can seek directly to individual content within
the nested jar. The content of the nested jar file itself can still be compressed, as can any other entries
in the outer jar.

System classLoader: Launched applications should use Thr ead. get Cont ext Cl assLoader ()
when loading classes (most libraries and frameworks do so by default). Trying to load nested jar
classes with Cl assLoader . get Syst enCCl assLoader () fails.j ava. util . Loggi ng always uses
the system classloader. For this reason, you should consider a different logging implementation.

E.6 Alternative Single Jar Solutions

If the preceding restrictions mean that you cannot use Spring Boot Loader, consider the following
alternatives:

Maven Shade Plugin

JarClassLoader

OneJar

2.0.0.RC1 Spring Boot 348

http://maven.apache.org/plugins/maven-shade-plugin/
http://www.jdotsoft.com/JarClassLoader.php
http://one-jar.sourceforge.net

Spring Boot Reference Guide

Appendix F. Dependency versions

The following table provides details of all of the dependency versions that are provided by Spring Boot
in its CLI (Command Line Interface), Maven dependency management, and Gradle plugin. When you
declare a dependency on one of these artifacts without declaring a version, the version listed in the

table is used.
Group ID Artifact ID Version
antlr antlr 2.7.7
ch. gos. | ogback | ogback-access 1.2.3
ch. gos. | ogback | ogback-cl assi ¢ 1.2.3
ch. gos. | ogback | ogback-core 1.2.3
com at om kos transactions-j dbc 4.0.6
com at oni kos transactions-j ns 4.0.6
com at oni kos transactions-jta 4.0.6
com couchbase. cl i ent couchbase-spring-cache 2.1.0
com couchbase. cl i ent java-client 254
com dat ast ax. cassandr a cassandra-driver-core 3.4.0
com dat ast ax. cassandr a cassandra-driver- 3.4.0
mappi ng
com f ast er xm cl assmat e 134
com f ast erxm . j ackson. cor gackson-annot ati ons 29.0
com fast erxm . jackson. cor gackson-core 29.2
com fast erxm . j ackson. cor gackson- dat abi nd 29.2
com fasterxm . j ackson. dat phoksan- dat af ormat-avro 2.9.2
com fast erxm . j ackson. dat phoksan- dat af or mat - cbor 2.9.2
com fasterxni . jackson. dat phoksan- dat af or mat - csv 2.9.2
com f ast erxm . j ackson. dat phoksan- dat af or mat -i on 29.2
com fasterxm .jackson. dat phoksan- dat af or mat - 29.2
properties
com f ast erxm . j ackson. dat phoksan- dat af or mat - 29.2
pr ot obuf
com fasterxn . jackson. dat phoksan- dat af or mat - 2.9.2
smile
com f ast erxm . j ackson. dat phoksan- dat af or nat - xm 29.2

2.0.0.RC1

Spring Boot

349

Spring Boot Reference Guide

Group ID Artifact ID Version

com fasterxm .jackson. dat phoksan- dat af or mat - yam 2.9.2

com f ast erxm . j ackson. dat paggeon- dat at ype- guava 29.2

com f ast erxm . j ackson. dat pagkeon- dat at ype- 29.2
hi ber nat e3

com fasterxm . j ackson. dat pagkeon- dat at ype- 29.2
hi ber nat e4

com fasterxm .jackson. dat phgkseon- dat at ype- 29.2
hi ber nat e5

com fast erxm . j ackson. dat pagkeon- dat at ype- hppc 29.2

com fast erxm . j ackson. dat paggeson- dat at ype-j axrs 29.2

com fast erxm . j ackson. dat pagkseon- dat at ype-j dk8 29.2

com fasterxm . j ackson. dat pagkeon- dat at ype-j oda 29.2

com fasterxm . j ackson. dat pagkson- dat at ype-j son- 2.9.2
org

com f ast erxm . j ackson. dat pagkeon- dat at ype-j sr310 2.9.2

com fast erxm . j ackson. dat pagkeon- dat at ype-j sr353 2.9.2

com fast erxm . j ackson. dat pagkeon- dat at ype- 29.2
pcol | ecti ons

com fasterxni .jackson.jaxjackson-j axrs-base 2.9.2

com f ast erxm . j ackson. j axj ackson-j axrs- cbor - 29.2
provi der

com f ast erxm . j ackson. j axjackson-j axrs-j son- 29.2
provi der

com fasterxm . jackson. j axjackson-jaxrs-sm | e- 29.2
provi der

com fast erxm . jackson. j axjackson-j axrs-xm - 29.2
provi der

com fasterxm . jackson. j axjackson-j axrs-yan - 29.2
provi der

com fasterxm .jackson.jr |jackson-jr-all 29.2

com fasterxm .jackson.jr |jackson-jr-objects 29.2

com fasterxm .jackson.jr|jackson-jr-retrofit2 29.2

com fasterxm .jackson.jr |jackson-jr-stree 29.2

2.0.0.RC1

Spring Boot

350

Spring Boot Reference Guide

Group ID Artifact ID Version

com fasterxm .jackson. nodpbekson- nodul e- 29.2
af t er bur ner

com fasterxm . jackson. nodjibekson- nodul e- gui ce 29.2

com f ast erxm . j ackson. nodjubekson- nodul e-j axb- 29.2
annot ati ons

com fasterxm .jackson. nodpbekson- nodul e- 29.2
j sonSchena

com f ast erxm . j ackson. nodpubekson- nodul e-kotlin 29.2

com fast erxm . j ackson. nodpubekson- nodul e- nt bean 29.2

com fast erxm . jackson. nodpubekson- nodul e- osgi 29.2

com fasterxm . jackson. nodubekson- nodul e- 29.2
par anet er - nanes

com fasterxm .jackson. nodpbekson- nodul e- 29.2
par ananer

com fast erxm . jackson. nodpubekson- nodul e- 29.2
scala_2.10

com f ast erxm . j ackson. nodpbekson- nodul e- 29.2
scala_2.11

com f ast erxm . j ackson. nodpubekson- nodul e- 29.2
scala 2.12

com gi t hub. ben- caffeine 26.1

manes. caf f ei ne

com gi t hub. mxab. t hyrel eaf t Bytrebsaf - ext r as- dat a- 2.0.1
attribute

com googl e. appengi ne appengi ne- api - 1. 0- sdk 1.9.60

com googl e. code. gson gson 2.8.2

com googl ecode. j son- j son-sinple 1.1.1

simpl e

com h2dat abase h2 1.4.196

com hazel cast hazel cast 3.9.2

com hazel cast hazel cast-client 3.9.2

com hazel cast hazel cast - hi ber nat e52 1.2.2

com hazel cast hazel cast-spring 3.9.2

com j ayway. j sonpat h j son-path 2.4.0

2.0.0.RC1

Spring Boot

351

Spring Boot Reference Guide

Group ID Artifact ID Version
com j ayway. j sonpat h j son- pat h- assert 2.4.0
com m crosoft.sql server |mssql-jdbc 6.2.2.jre8
com quer ydsl quer ydsl - apt 41.4
com quer ydsl querydsl -col | ecti ons 41.4
com quer ydsl querydsl -core 4.1.4
com quer ydsl querydsl -j pa 4.1.4
com quer ydsl quer ydsl - nongodb 41.4
com r abbi t ng angp-client 5.1.2
com sanski vert j must ache 1.14
com sendgrid sendgrid-j ava 4.1.2
com sun. mai | j avax. mai | 1.6.0
com ti nmgroup j ava-statsd-client 3.1.0
com unboundi d unboundi d- | dapsdk 4.0.4
com zaxxer Hi kari CP 2.7.6
conmmons- codec comons- codec 1.11
comons- pool conmons- pool 1.6

de. f | apdoodl e. enbed de. f I apdoodl e. enbed. nongo2.0.1
dond] domdj 1.6.1
i 0.dropwi zard. netrics metri cs-annot ati on 3.2.6
i 0.dropwi zard. netrics metrics-core 3.2.6
i 0.dropwi zard. netrics met ri cs- ehcache 3.2.6
i 0.dropw zard. metrics metrics-ganglia 3.2.6
i 0.dropwi zard. metrics metrics-graphite 3.2.6
i 0.dropwi zard. metrics met ri cs- heal t hchecks 3.2.6
i 0.dropwi zard. metrics metrics-httpasyncclient 3.2.6
i 0.dropwi zard. nmetrics metrics-j dbi 3.2.6
i 0.dropwi zard. metrics metrics-jersey 3.2.6
i 0.dropwi zard. nmetrics metrics-jersey2 3.2.6
i 0.dropwi zard. netrics metrics-jetty8 3.2.6
i 0.dropwi zard. netrics metrics-jetty9 3.2.6
2.0.0.RC1 Spring Boot 352

Spring Boot Reference Guide

Group ID Artifact ID Version
i 0.dropwi zard. metrics metrics-jetty9-1egacy 3.2.6
i 0.dropwi zard. nmetrics metrics-json 3.2.6
i 0.dropwi zard. nmetrics metrics-jvm 3.2.6
i 0.dropwi zard. nmetrics met ri cs-1 0g4j 3.2.6
i 0.dropwi zard. netrics metrics-1o0g4j2 3.2.6
i 0.dropwi zard. netrics met ri cs-1 ogback 3.2.6
i 0.dropwi zard. netrics metrics-servl et 3.2.6
i 0.dropwi zard. netrics metrics-servlets 3.2.6

io.lettuce | ettuce-core 5.0.1.RELEASE

i 0. mcroneter m cromet er-core 1.0.0-rc.8

i 0. m croneter m croneter-regi stry- 1.0.0-rc.8
atl as

i 0. mcroneter m cronmeter-regi stry- 1.0.0-rc.8
dat adog

i 0. m crometer m croneter-regi stry- 1.0.0-rc.8
ganglia

i 0. mcrometer m croneter-regi stry- 1.0.0-rc.8
graphite

i 0. mcrometer m croneter-regi stry- 1.0.0-rc.8
i nfl ux

i 0. mcromneter m croneter-registry-jnm 1.0.0-rc.8

i 0. mcrometer nmcroneter-registry- 1.0.0-rc.8
newrelic

i 0. mcrometer m croneter-regi stry- 1.0.0-rc.8
pr omet heus

i 0. mcroneter m croneter-regi stry- 1.0.0-rc.8
st at sd

i0.netty netty-all 4.1.20.Final

i0.netty netty-buffer 4.1.20.Final

io.netty netty-codec 4.1.20.Final

i0.netty netty-codec-dns 4.1.20.Final

io.netty netty-codec- hapr oxy 4.1.20.Final

i0.netty netty-codec-http 4.1.20.Final

2.0.0.RC1 Spring Boot 353

Spring Boot Reference Guide

Group ID Artifact ID Version
io.netty netty-codec-http2 4.1.20.Final
i 0.netty netty- codec- mencache 4.1.20.Final
io.netty netty-codec- nmtt 4.1.20.Final
io.netty netty-codec-redis 4.1.20.Final
io.netty netty-codec-sntp 4.1.20.Final
io.netty netty-codec-socks 4.1.20.Final
i0.netty netty-codec- st onp 4.1.20.Final
io.netty netty-codec- xn 4.1.20.Final
i0.netty netty-common 4.1.20.Final
i 0.netty netty-dev-tool s 4.1.20.Final
io.netty netty-exanpl e 4.1.20.Final
io.netty netty-handl er 4.1.20.Final
io.netty netty-handl er - proxy 4.1.20.Final
i0.netty netty-resol ver 4.1.20.Final
i 0.netty netty-resol ver-dns 4.1.20.Final
io.netty netty-transport 4.1.20.Final
io.netty netty-transport-native- 4.1.20.Fina
epol |
i 0.netty netty-transport-native- 4.1.20.Fina
kqueue
io.netty netty-transport-native- 4.1.20.Final
uni x- conmon
i0.netty netty-transport-rxtx 4.1.20.Final
i0.netty netty-transport-sctp 4.1.20.Final
i 0.netty netty-transport-udt 4.1.20.Final

i 0. projectreactor

i 0. projectreactor

i 0. projectreactor.
i 0. projectreactor.

i 0. projectreactor.

addons
addons

addons

reactor-core
reactor-test
react or - adapt er
reactor-extra

react or -1 ogback

3.1.3.RELEASE

3.1.3.RELEASE

3.1.4.RELEASE

3.1.4.RELEASE

3.1.4.RELEASE

i 0. projectreactor.

i pc

reactor-netty

0.7.3.RELEASE

2.0.0.RC1

Spring Boot

354

Spring Boot Reference Guide

Group ID Artifact ID Version

i 0. projectreactor. kaf ka |reactor-kaf ka 1.0.0.RELEASE
i 0.reactivex rxjava 1.3.4

i 0.reactivex rxjava-reactive-streanms 1.2.1

i 0.reactivex.rxjava2 rxjava 218

i 0.rest-assured rest-assured 3.0.6

i 0. sear chbox j est 5.3.3

i 0. undertow undert ow- cor e 1.4.22.Final
i 0. undertow under t ow ser vl et 1.4.22.Final
i 0. undert ow undert ow websocket s-jsr 1.4.22.Final
j avax. annot ati on j avax. annot at i on- api 1.3.1

j avax. cache cache- api 1.1.0
javax.jns j avax. j ns- api 2.0.1

j avax.json j avax. j son- api 1.1.2

j avax.j son. bi nd j avax. j son. bi nd- api 1.0

j avax. mai | j avax. mai | - api 1.6.0

j avax. noney noney- api 1.0.1

j avax. servl et j avax. servl et - api 3.1.0

j avax. servl et jstl 1.2

j avax.transaction j avax. transacti on- api 1.2

j avax. val i dati on val i dat i on- api 2.0.1.Final
j axen j axen 1.1.6
joda-tine joda-tine 2.9.9
junit junit 412

nysql mysgl - connector-j ava 5.1.45

net . byt ebuddy byt e- buddy 1.7.9

net . byt ebuddy byt e- buddy- agent 1.7.9
net.java. dev.jna j na 451
net.java. dev.jna jna-platform 451

net . sf. ehcache ehcache 2.104
net.sourceforge. htmunit htmunit 2.29
2.0.0.RC1 Spring Boot 355

Spring Boot Reference Guide

Group ID Artifact ID Version
net. sourceforge.jtds jtds 13.1
net . sour cef or ge. nekoht m | nekoht m 1.9.22
nz.net.ultraq.thynmel eaf |thynel eaf-Iayout - 222
di al ect
org. apache. acti veny activeng- angp 5.15.2
org. apache. acti veny activeng- bl uepri nt 5.15.2
or g. apache. acti veny acti veng- br oker 5.15.2
or g. apache. acti veny acti venyg- canel 5.15.2
or g. apache. acti veny activenyg-client 5.15.2
or g. apache. acti veny acti venyg- consol e 5.15.2
or g. apache. acti veny activeng-http 5.15.2
or g. apache. acti veny activeny-j aas 5.15.2
or g. apache. acti veny activeny-jdbc-store 5.15.2
org. apache. acti veny activeng-j ns- pool 5.15.2
or g. apache. acti veny acti veng- kahadb-store 5.15.2
or g. apache. acti veny acti veny- kar af 5.15.2
org. apache. acti veny activeny-| evel db-store 5.15.2
org. apache. acti veny activeny-| og4j - appender 5.15.2
or g. apache. acti veng activeng-ngt t 5.15.2
or g. apache. acti veng activenyg- openw re- 5.15.2
gener at or
or g. apache. acti venyg activenyg- openwire- 5.15.2
| egacy
org. apache. acti veny acti veny- osgi 5.15.2
or g. apache. acti veny activeng-partition 5.15.2
or g. apache. acti veny acti venyg- pool 5.15.2
or g. apache. acti veny activeng-ra 5.15.2
or g. apache. acti veny activeng-run 5.15.2
or g. apache. acti veny activeng-runtine-config 5.15.2
or g. apache. acti veny activeng-shiro 5.15.2
or g. apache. acti veny activeny-spring 5.15.2

2.0.0.RC1 Spring Boot 356

Spring Boot Reference Guide

Group ID Artifact ID Version
or g. apache. acti veny activeng- st onp 5.15.2
or g. apache. acti veny acti veng- web 5.15.2
or g. apache. acti veny art eni s- angp- prot ocol 2.4.0
or g. apache. acti veny arteni s- conmons 2.4.0
org. apache. acti veny artenmi s-core-client 2.4.0
org. apache. acti veny artenis-jns-client 2.4.0
or g. apache. acti veny arteni s-jns-server 2.4.0
org. apache. acti veny arteni s-journal 2.4.0
org. apache. acti veny artem s-native 2.4.0
or g. apache. acti veny arteni s-sel ector 240
or g. apache. acti veny artem s-server 24.0
or g. apache. acti veny arteni s-service- 2.4.0
ext ensi ons
or g. apache. cormons comons- dbcp2 2.2.0
or g. apache. cormons conmmons- | ang3 3.7
or g. apache. conmons conmmons- pool 2 2.5.0
or g. apache. der by der by 10.14.1.0
or g. apache. htt pconponent shtt pasynccl i ent 4.1.3
or g. apache. htt pconponent shtt pcli ent 455
or g. apache. htt pconponent shtt pcore 449
or g. apache. htt pconponent shtt pcore-ni o 4.4.9
or g. apache. htt pconponent shtt pm e 455
or g. apache. j ohnzon j ohnzon-j sonb 1.1.5
or g. apache. | oggi ng. | 0g4j || 0og4j - 1. 2- api 2.10.0
or g. apache. | oggi ng. | og4j || og4j - api 2.10.0
or g. apache. | oggi ng. | og4j || og4j - cassandr a 2.10.0
or g. apache. | oggi ng. |1 og4j || og4j -core 2.10.0
or g. apache. | oggi ng. |1 og4j |1 og4j - couchdb 2.10.0
or g. apache. | oggi ng. | og4j || og4j - fl une-ng 2.10.0
org. apache. | oggi ng. | og4j || og4j -i ostreans 2.10.0
or g. apache. | oggi ng. | og4j |1 og4j -j cl 2.10.0

2.0.0.RC1

Spring Boot

357

Spring Boot Reference Guide

Group ID Artifact ID Version
or g. apache. | oggi ng. | og4j || og4j -j nx- gui 2.10.0
or g. apache. | oggi ng. | og4j || og4j -j ul 2.10.0
or g. apache. | oggi ng. 1 og4j |1 og4j -1i qui base 2.10.0
or g. apache. | oggi ng. |1 og4j |1 og4j - nongodb 2.10.0
or g. apache. | oggi ng. | og4j || og4j - sl f4j-i npl 2.10.0
org. apache. | oggi ng. 1 og4j |l ogdj-taglib 2.10.0
or g. apache. | oggi ng. | og4j || og4j -t o-sl f 4j 2.10.0
or g. apache. | oggi ng. | og4j || og4j - web 2.10.0
org. apache. solr sol r-anal ysi s-extras 6.6.2
org. apache. sol r solr-anal ytics 6.6.2
org. apache. sol r solr-cell 6.6.2
org. apache. sol r solr-clustering 6.6.2
org. apache. sol r solr-core 6.6.2
org. apache. sol r sol r - dat ai npor t handl er 6.6.2
org. apache. sol r sol r-dat ai nport handl er- 6.6.2
extras
org. apache. sol r solr-langid 6.6.2
org. apache. solr solr-solrj 6.6.2
or g. apache. sol r sol r-test-framework 6.6.2
org. apache. sol r sol r-ui ma 6.6.2
org. apache. sol r solr-velocity 6.6.2
or g. apache. t ontat t ontat - annot at i ons- api 8.5.27
or g. apache. t ontat tontat - cat al i na-j nmx- 8.5.27
renote

or g. apache. t ontat tontat -j dbc 8.5.27
or g. apache. t ontat tontat -j sp- api 8.5.27
org. apache. tontat. enbed |tontat-enbed-core 8.5.27
or g. apache. tontat . enbed |tontat-enbed- el 8.5.27
org. apache. tontat . enbed |tontat-enbed-j asper 8.5.27
org. apache. tontat . enbed |tontat - enbed- websocket 8.5.27
or g. aspect]j aspectjrt 1.8.13

2.0.0.RC1

Spring Boot

358

Spring Boot Reference Guide

Group ID Artifact ID Version

org. aspect]j aspectjtools 1.8.13

or g. aspectj aspect j weaver 1.8.13

org. assertj assertj-core 3.9.0

or g. codehaus. bt m bt m 214

or g. codehaus. gr oovy groovy 2.4.13

or g. codehaus. gr oovy groovy-al | 2.4.13

or g. codehaus. gr oovy groovy- ant 2.4.13

or g. codehaus. gr oovy groovy- bsf 2.4.13

or g. codehaus. gr oovy groovy-consol e 2.4.13

or g. codehaus. gr oovy gr oovy- docgener at or 2.4.13

or g. codehaus. gr oovy gr oovy- gr oovydoc 2.4.13

or g. codehaus. gr oovy gr oovy- groovysh 2.4.13

or g. codehaus. gr oovy groovy-j nx 2.4.13

or g. codehaus. gr oovy groovy-json 2.4.13

or g. codehaus. gr oovy groovy-j sr223 2.4.13

or g. codehaus. gr oovy groovy-nio 2.4.13

or g. codehaus. gr oovy groovy-servl et 2.4.13

or g. codehaus. gr oovy groovy- sql 2.4.13

or g. codehaus. gr oovy gr oovy- sw ng 2.4.13

or g. codehaus. gr oovy groovy-tenpl ates 2.4.13

or g. codehaus. gr oovy groovy-test 2.4.13

or g. codehaus. gr oovy groovy-testng 2.4.13

or g. codehaus. gr oovy groovy- xm 2.4.13

or g. codehaus. j ani no j ani no 3.0.8

org.eclipse.jetty apache-j sp 9.4.8.v20171121

org.eclipse.jetty apache-j stl 9.4.8.v20171121

org.eclipse.jetty jetty-al pn-client 9.4.8.v20171121

org.eclipse.jetty jetty-al pn-conscrypt - 9.4.8.v20171121
client

org.eclipse.jetty jetty-al pn-conscrypt - 9.4.8.v20171121
server

2.0.0.RC1 Spring Boot 359

Spring Boot Reference Guide

Group ID

Artifact ID

Version

org.eclipse.jetty jetty-al pn-java-client 9.4.8.v20171121
org.eclipse.jetty jetty-al pn-java-server 9.4.8.v20171121
org.eclipse.jetty j etty-al pn-openj dk8- 9.4.8.v20171121
client
org.eclipse.jetty j etty-al pn-openj dk8- 9.4.8.v20171121
server
org.eclipse.jetty jetty-al pn-server 9.4.8.v20171121
org.eclipse.jetty j etty-annotations 9.4.8.v20171121
org.eclipse.jetty jetty-ant 9.4.8.v20171121
org.eclipse.jetty jetty-client 9.4.8.v20171121
org.eclipse.jetty jetty-continuation 9.4.8.v20171121
org.eclipse.jetty j etty-depl oy 9.4.8.v20171121
org.eclipse.jetty jetty-distribution 9.4.8.v20171121
org.eclipse.jetty j etty-hazel cast 9.4.8.v20171121
org.eclipse.jetty j etty-hone 9.4.8.v20171121
org.eclipse.jetty jetty-http 9.4.8.v20171121
org.eclipse.jetty jetty-http-spi 9.4.8.v20171121
org.eclipse.jetty jetty-infinispan 9.4.8.v20171121
org.eclipse.jetty jetty-io 9.4.8.v20171121
org.eclipse.jetty jetty-jaas 9.4.8.v20171121
org.eclipse.jetty jetty-jaspi 9.4.8.v20171121
org.eclipse.jetty jetty-jnx 9.4.8.v20171121
org.eclipse.jetty jetty-jndi 9.4.8.v20171121
org.eclipse.jetty j etty-nosql 9.4.8.v20171121
org.eclipse.jetty jetty-plus 9.4.8.v20171121
org.eclipse.jetty j etty-proxy 9.4.8.v20171121
org.eclipse.jetty jetty-quickstart 9.4.8.v20171121
org.eclipse.jetty jetty-rewite 9.4.8.v20171121
org.eclipse.jetty jetty-security 9.4.8.v20171121
org.eclipse.jetty jetty-server 9.4.8.v20171121
org.eclipse.jetty jetty-servlet 9.4.8.v20171121

2.0.0.RC1

Spring Boot

360

Spring Boot Reference Guide

Group ID Artifact ID Version
org.eclipse.jetty jetty-servliets 9.4.8.v20171121
org.eclipse.jetty jetty-spring 9.4.8.v20171121
org.eclipse.jetty j etty-uni xsocket 9.4.8.v20171121
org.eclipse.jetty jetty-util 9.4.8.v20171121
org.eclipse.jetty jetty-util-ajax 9.4.8.v20171121
org.eclipse.jetty j etty-webapp 9.4.8.v20171121
org.eclipse.jetty jetty-xm 9.4.8.v20171121
org. eclipse.jetty. cdi cdi -core 9.4.8.v20171121
org. eclipse.jetty. cdi cdi-full-servlet 9.4.8.v20171121
org.eclipse.jetty. cdi cdi -servl et 9.4.8.v20171121
org.eclipse.jetty.fcgi fcgi-client 9.4.8.v20171121
org.eclipse.jetty.fcgi fcgi-server 9.4.8.v20171121
org.eclipse.jetty.gcloud|jetty-gcl oud-sessi on- 9.4.8.v20171121
manager
org.eclipse.jetty.http2 |http2-client 9.4.8.v20171121
org.eclipse.jetty. http2 |http2-comon 9.4.8.v20171121
org.eclipse.jetty. http2 |http2-hpack 9.4.8.v20171121
org.eclipse.jetty.http2 |http2-http-client- 9.4.8.v20171121
transport
org.eclipse.jetty.http2 |http2-server 9.4.8.v20171121
org.eclipse.jetty. mentachgdtty-nmencached- 9.4.8.v20171121
sessi ons
org.eclipse.jetty.orbit |javax.servlet.jsp 2.2.0.v201112011158
org.eclipse.jetty. osgi jetty-httpservice 9.4.8.v20171121
org.eclipse.jetty. osgi j etty-osgi-boot 9.4.8.v20171121
org.eclipse.jetty. osgi jetty-osgi-boot-jsp 9.4.8.v20171121
org.eclipse.jetty. osgi j etty-osgi-boot -war url 9.4.8.v20171121
org.eclipse.jetty. websockghvax- websocket-client- 9.4.8v20171121
i mpl
org. eclipse.jetty. websockgtvax-websocket-server- 9.4.8.v20171121
i mpl
org. eclipse.jetty. websockaebsocket - api 9.4.8.v20171121

2.0.0.RC1

Spring Boot

361

Spring Boot Reference Guide

Group ID

org.eclipse.jetty.websock

org.eclipse.jetty.websoch

org. eclipse.jetty.websock

Artifact ID
eebsocket -cl i ent
@ekebsocket - conmon

eebsocket - server

Version

9.4.8.v20171121

9.4.8.v20171121

9.4.8.v20171121

org. eclipse.jetty.websock

eebsocket - servl et

9.4.8.v20171121

org. ehcache ehcache 3.4.0
org. ehcache ehcache-cl ust ered 3.4.0
org. ehcache ehcache-transacti ons 3.4.0
org. el asti csearch el asti csearch 5.6.6
org. el asticsearch.client |[transport 5.6.6
org. el asticsearch. plugin|transport-netty4-client 5.6.6
org.firebirdsqgl.jdbc j aybird-jdk17 3.0.3
org.firebirdsqgl.jdbc j aybird-jdki8 3.0.3
org. fl ywaydb fl yway-core 5.0.6
org. freemarker freemar ker 2.3.27-incubating
org. gl assfi sh j avax. el 3.0.0
org. gl assfish.jersey. cont penseyg- cont ai ner - 2.26
servl et
org. gl assfish.jersey. cont penseyg- cont ai ner - 2.26
servlet-core
org. gl assfish.jersey.corejersey-client 2.26
org. gl assfish.jersey. corejersey-conmmon 2.26
org. gl assfish.jersey. corejersey-server 2.26
org. gl assfish.jersey. ext |jersey-bean-validation 2.26
org. gl assfish.jersey.ext |jersey-entity-filtering 2.26
org. gl assfish.jersey.ext|jersey-spring4 2.26
org. gl assfish.jersey. nedi persey-nedi a-j axb 2.26
org. gl assfish.jersey. nedi per sey- nedi a-j son- 2.26
j ackson
org. gl assfish.jersey. nedi persey-nedi a-nul ti part 2.26
or g. hantr est hantrest-core 1.3
or g. hantr est hancrest-1library 1.3

2.0.0.RC1

Spring Boot

362

Spring Boot Reference Guide

Group ID Artifact ID Version
org. hi bernate hi ber nat e- c3p0 5.2.12.Final
org. hi bernate hi ber nat e-core 5.2.12.Final
org. hi bernate hi ber nat e- ehcache 5.2.12.Final
org. hi bernate hi ber nat e-enti t ymanager 5.2.12.Final
org. hi bernate hi ber nat e- envers 5.2.12.Final
org. hi bernate hi ber nat e- hi kari cp 5.2.12.Final
org. hi bernate hi ber nat e-i nfi ni span 5.2.12.Final
org. hi bernate hi ber nat e-j ava8 5.2.12.Final
org. hi bernate hi ber nat e-j cache 5.2.12.Final
org. hi bernate hi ber nat e- j panodel gen 5.2.12.Final
org. hi bernate hi ber nat e- pr oxool 5.2.12.Final
org. hi bernate hi ber nat e- spati al 5.2.12.Final
org. hi bernate hi bernat e-testi ng 5.2.12.Final
org. hi bernate hi ber nat e- val i dat or - 6.0.7.Final
annot at i on- processor
org. hi bernate. validator |hibernate-validator 6.0.7.Final
org. hsqgl db hsql db 2.4.0
org. infinispan i nfini span-jcache 9.1.4.Final
org.infinispan i nfini span-spring4- 9.1.4.Final
conmon
org.infinispan i nfini span-spring4- 9.1.4.Final
enmbedded
org. i nfluxdb i nfl uxdb-java 2.8
org.j avassi st j avassi st 3.22.0-CR2
org.j boss j boss-transaction- spi 7.6.0.Final
org.j boss. | oggi ng j boss-1 0ggi ng 3.3.1.Final
org.j boss.narayana.jta |jdbc 5.7.2.Final
org.jboss.narayana.jta |jns 5.7.2.Final
org.jboss.narayana.jta |jta 5.7.2.Final
org.j boss.narayana.jts narayana-jts- 5.7.2.Final
i ntegration
org.jdom j don® 2.0.6
2.0.0.RC1 Spring Boot 363

Spring Boot Reference Guide

Group ID Artifact ID Version
org.jetbrains. kotli kotlin-reflect 1.2.20
org.jetbrains. kotli kotlin-runtine 1.2.20
org.jetbrains. kotli kotlin-stdlib 1.2.20
org.jetbrains. kotli kotlin-stdlib-jdk7 1.2.20
org.jetbrains. kotli kotlin-stdlib-jdk8 1.2.20
org.jetbrains. kotli kotlin-stdlib-jre7 1.2.20
org.jetbrains. kotli kotlin-stdlib-jre8 1.2.20
org.jol okia j ol oki a-core 1.4.0
org.jooq j 00q 3.10.4
org.j ooq j 00Qg- codegen 3.10.4
org.j ooq j 00Qg- net a 3.104
org.junit.jupiter junit-jupiter-api 5.0.3
org.junit.jupiter junit-jupiter-engine 5.0.3
org. liqui base I'i qui base-core 3.5.3
org. mari adb. j dbc mar i adb-j ava-client 221
org. nockito nmocki t o-core 2.13.0
org. nockito nmockito-inline 2.13.0
or g. nongodb bson 3.6.1
or g. nongodb nmongodb-dri ver 3.6.1
or g. nongodb nmongodb-dri ver - async 3.6.1
or g. nongodb nmongodb-dri ver-core 3.6.1
or g. nrongodb nmongodb-dri ver - 1.7.0
reactivestreans

or g. nongodb nmongo-j ava-dri ver 3.6.1
org. nort bay. j asper apache- el 8.5.24.1
or g. neo4j neo4j - ogm api 3.0.3
or g. neodj neo4j - ogm bol t -dri ver 3.0.3
or g. neodj neo4j - ogm cor e 3.0.3
or g. neodj neo4j - ogm htt p-dri ver 3.0.3
or g. post gresql post gr esql 4221
org. proj ect | ombok | ombok 1.16.20

2.0.0.RC1

Spring Boot

364

Spring Boot Reference Guide

Group ID Artifact ID Version
org. quart z- schedul er quartz 2.3.0
org.reactivestreans reactive-streans 1.0.2
org. sel eni umhg. sel enium |htm unit-driver 2.29.0
or g. sel eni umhg. sel eni um | sel eni un api 3.8.1
or g. sel eni umhg. sel eni um | sel eni um chrone-dri ver 3.8.1
or g. sel eni umhg. sel eni um | sel eni um edge-dri ver 3.8.1
org. sel eni umhg. sel eni um |sel eniumfirefox-driver 3.8.1
org. sel eni umhg. sel eni um | sel eniumie-driver 3.8.1
org. sel eni umhg. sel eni um | sel eni um j ava 3.8.1
or g. sel eni umhg. sel eni um | sel eni um oper a-dri ver 3.8.1
or g. sel eni umhg. sel eni um | sel eni um renot e-dri ver 3.8.1
or g. sel eni umhg. sel eni um | sel eni um safari-driver 3.8.1
or g. sel eni unhg. sel eni um | sel eni um support 3.8.1
or g. skyscr eaner j sonassert 1.5.0
org. sl f4j jcl-over-slf4j 1.7.25
org. sl f4j jul-to-slf4j 1.7.25
org. sl f4j | 0g4j - over - sl f 4] 1.7.25
org. sl f4j sl f4j - api 1.7.25
org. sl f4j sl f 4j - ext 1.7.25
org. sl f4j sl f4j-jcl 1.7.25
org. sl f4j sl f4j-jdkl4d 1.7.25
org. sl f4j sl f4j-1o0g4j12 1.7.25
org.slf4j sl f4j - nop 1.7.25
org.slf4j sl f4j-sinple 1.7.25

or g. spri ngframewor k
or g. spri ngframewor k

or g. spri ngframewor k

spring-aop
spring-aspects

spri ng- beans

5.0.3.RELEASE

5.0.3.RELEASE

5.0.3.RELEASE

or g. spri ngframewor k

spri ng- cont ext

5.0.3.RELEASE

org. spri ngframewor k

spring-cont ext -i ndexer

5.0.3.RELEASE

org. spri ngframewor k

spring- cont ext - support

5.0.3.RELEASE

2.0.0.RC1

Spring Boot

365

Spring Boot Reference Guide

Group ID Artifact ID Version
or g. spri ngframewor k spring-core 5.0.3.RELEASE
or g. spri ngframewor k spri ng- expr essi on 5.0.3.RELEASE
or g. spri ngframewor k spring-instrunent 5.0.3.RELEASE
or g. spri ngframewor k spring-jcl 5.0.3.RELEASE
org. spri ngframewor k spring-jdbc 5.0.3.RELEASE
org. spri ngframewor k spring-jns 5.0.3.RELEASE
or g. spri ngframewor k spring- messagi ng 5.0.3.RELEASE
org. spri ngframework spring-orm 5.0.3.RELEASE
org. spri ngframework sSpring- oxm 5.0.3.RELEASE
or g. spri ngframewor k spring-test 5.0.3.RELEASE
or g. spri ngframewor k spring-tx 5.0.3.RELEASE
or g. spri ngframewor k spri ng-web 5.0.3.RELEASE
or g. spri ngframewor k spri ng- webf | ux 5.0.3.RELEASE
or g. spri ngframewor k spri ng-webnvc 5.0.3.RELEASE
or g. spri ngframewor k spri ng- websocket 5.0.3.RELEASE
org. spri ngframewor k. angp | spri ng- angp 2.0.2.RELEASE
org. spri ngframewor k. angp | spri ng-rabbit 2.0.2.RELEASE
org. spri ngframewor k. bat chspri ng-batch-core 4.0.0.RELEASE
org. spri ngframewor k. bat chspri ng- bat ch- 4.0.0.RELEASE
infrastructure
or g. spri ngframewor k. bat chspri ng- bat ch- 4.0.0.RELEASE
i ntegration
org. spri ngframewor k. bat chspri ng- bat ch-test 4.0.0.RELEASE
or g. spri ngframewor k. boot | spri ng- boot 2.0.0.RC1
org. spri ngfranmewor k. boot | spri ng- boot - act uat or 2.0.0.RC1
org. spri ngframewor k. boot | spri ng- boot - act uat or - 2.0.0.RC1
aut oconfigure
org. spri ngframewor k. boot | spri ng- boot - 2.0.0.RC1
aut oconfi gure
org. spri ngframewor k. boot | spri ng- boot - 2.0.0.RC1
aut oconfi gur e- processor
2.0.0.RC1 Spring Boot 366

Spring Boot Reference Guide

Group ID Artifact ID Version

or g. spri ngframewor k. boot | spri ng- boot - 2.0.0.RC1
configuration-netadata

org. spri ngframewor k. boot | spri ng- boot - 2.0.0.RC1
confi guration-processor

or g. spri ngframewor k. boot | spri ng- boot - devt ool s 2.0.0.RC1

or g. spri ngframewor k. boot | spri ng- boot - | oader 2.0.0.RC1

or g. spri ngframewor k. boot | spri ng- boot - | oader - 2.0.0.RC1
tool s

org. spri ngframewor k. boot | spri ng-boot -properties- 2.0.0.RC1
m gr at or

or g. spri ngframewor k. boot | spri ng-boot-starter 2.0.0.RC1

org. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
activeny

org. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
act uat or

or g. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
amgp

org. spri ngframework. boot | spring-boot-starter-aop 2.0.0.RC1

org. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
artem s

org. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
bat ch

or g. spri ngframewor k. boot | spri ng- boot -starter- 2.0.0.RC1
cache

org. spri ngframework. boot | spring-boot-starter- 2.0.0.RC1
cl oud- connectors

org. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
dat a- cassandr a

org. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
dat a- cassandra-reactive

or g. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
dat a- couchbase

org. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
dat a- couchbase-reactive

org. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
dat a- el asti csearch

2.0.0.RC1 Spring Boot 367

Spring Boot Reference Guide

Group ID Artifact ID Version
or g. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
dat a-j pa
org. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
dat a- | dap

or g. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
dat a- nrongodb

org. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
dat a- nongodb-reacti ve

org. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
dat a- neo4j

or g. spri ngframewor k. boot | spri ng- boot -starter- 2.0.0.RC1
data-redis

org. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
dat a-redi s-reactive

org. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
dat a- r est

org. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
dat a-sol r

or g. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
freemar ker

org. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
groovy-tenpl ates

org. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
hat eoas

org. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
i ntegration

org. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
j dbc

or g. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
j ersey

org. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
jetty

org. spri ngframework. boot | spring-boot-starter- 2.0.0.RC1
j ooq

or g. spri ngframewor k. boot | spri ng- boot -starter- 2.0.0.RC1
j son

2.0.0.RC1 Spring Boot 368

Spring Boot Reference Guide

Group ID Artifact ID Version

or g. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
j ta-at om kos

org. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
jta-bitronix

or g. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
j ta- narayana

org. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
| og4j 2

org. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
| oggi ng

or g. spri ngframewor k. boot | spri ng- boot -starter- 2.0.0.RC1
mai |

org. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
must ache

org. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
quartz

org. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
reactor-netty

or g. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
security

org. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
t est

org. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
t hynel eaf

org. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
t ontat

org. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
undert ow

or g. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
val i dation

or g. spri ngframework. boot | spring-boot-starter-web 2.0.0.RC1

org. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
webf | ux

or g. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
web- servi ces

org. spri ngframewor k. boot | spring-boot-starter- 2.0.0.RC1
websocket

2.0.0.RC1 Spring Boot 369

Spring Boot Reference Guide

Group ID Artifact ID Version

or g. spri ngframewor k. boot | spri ng- boot -t est 2.0.0.RC1

or g. spri ngframewor k. boot | spri ng- boot -t est - 2.0.0.RC1
aut oconfigure

org. spri ngframework. cl oudspri ng-cl oud- 2.0.1.RELEASE
cl oudf oundry- connect or

or g. spri ngframewor k. cl oudspri ng- cl oud- 2.0.1.RELEASE
connect ors-core

org. spri ngframework. cl oudspri ng- cl oud- her oku- 2.0.1.RELEASE
connect or

or g. spri ngframewor k. cl oudspri ng-cl oud- 2.0.1.RELEASE
| ocal confi g- connect or

or g. spri ngframewor k. cl oudspri ng- cl oud-spring- 2.0.1.RELEASE
servi ce- connect or

org. springframework. data|spri ng-dat a- cassandra 2.0.3.RELEASE

org. springframework. dat a| spri ng- dat a- commons 2.0.3.RELEASE

org. springframewor k. dat a| spri ng- dat a- couchbase 3.0.3.RELEASE

org. spri ngframework. data| spri ng-dat a- 3.0.3.RELEASE
el asticsearch

org. spri ngframework. data| spri ng-dat a- envers 2.0.3.RELEASE

org. springframework. data|spring-data-genfire 2.0.3.RELEASE

org. springframewor k. data| spri ng- dat a- geode 2.0.3.RELEASE

org. springfranmework. data|spring-data-jpa 2.0.3.RELEASE

org. springfranmework. dat a| spri ng-dat a- keyval ue 2.0.3.RELEASE

org. springframework. data|spring-data-| dap 2.0.3.RELEASE

or g. springframework. dat a| spri ng- dat a- nongodb 2.0.3.RELEASE

or g. spri ngframewor k. dat a| spri ng- dat a- nongodb- 2.0.3.RELEASE
cross-store

org. spri ngframewor k. dat a| spri ng- dat a- neo4;j 5.0.3.RELEASE

org. springframework. data|spring-data-redis 2.0.3.RELEASE

org. springframework. data|spring-data-rest-core 3.0.3.RELEASE

org. springframework. data|spri ng-dat a-rest-hal - 3.0.3.RELEASE
br owser

org. springframework. data|spri ng-dat a-rest-webnvc 3.0.3.RELEASE

2.0.0.RC1 Spring Boot 370

Spring Boot Reference Guide

Group ID Artifact ID Version
org. springframework. data|spri ng-data-solr 3.0.3.RELEASE
or g. spri ngframewor k. hat epapri ng- hat eoas 0.24.0.RELEASE
org. springframework. i ntegsptiag-integration-angp 5.0.1.RELEASE
org. springframework. i ntegsptiag-integration-core 5.0.1.RELEASE
org. springframework. i ntegsatiag-integration- 5.0.1.RELEASE
event
org. springframework. i ntegsatiag-integration-feed 5.0.1.RELEASE
org.springframework.integsatiag-integration-file 5.0.1.RELEASE
org. springframework. integsptiag-integration-ftp 5.0.1.RELEASE
org. springframework. i ntegsptiag-integration- 5.0.1.RELEASE
genfire
org. springframework. i ntegsatiag-integration- 5.0.1.RELEASE
groovy
org.springframework.integsatiag-integration-http 5.0.1.RELEASE
org. springframework. i ntegsptiag-integration-ip 5.0.1.RELEASE
org. springframework. integsptiag-integration-jdbc 5.0.1.RELEASE
org. springframework. integsptiag-integration-jns 5.0.1.RELEASE
org. springframework. integsptiag-integration-jnx 5.0.1.RELEASE
org. springframework.integsptiag-integration-jpa 5.0.1.RELEASE
org. springframework. i ntegsptiag-integration-nmail 5.0.1.RELEASE
org. springframework. i ntegsatiag-integration- 5.0.1.RELEASE
nmongodb
org.springframework.integsatiag-integration-ngtt 5.0.1.RELEASE
org. springframework. i ntegsptiag-integration- 5.0.1.RELEASE
redis
org. springframework. i ntegsatiag-integration-rm 5.0.1.RELEASE
org. springframework. i ntegsatiag-integration- 5.0.1.RELEASE
scripting
org. springframework. i ntegsptiag-integration- 5.0.1.RELEASE
security
org. springframework. integsptiag-integration-sftp 5.0.1.RELEASE
org. springframework. i ntegsatiag-integration- 5.0.1.RELEASE
stonp
2.0.0.RC1 Spring Boot 371

Spring Boot Reference Guide

Group ID Artifact ID Version

org. springframework. i ntegsptiag-integration- 5.0.1.RELEASE
stream

org. springframework. i ntegsatiag-integration- 5.0.1.RELEASE
sysl og

org. springframework. i ntegsatiag-integration-test 5.0.1.RELEASE

org. springframework. i ntegsptiag-integration- 5.0.1.RELEASE
t est - support

org. springframework. i ntegsatiag-integration- 5.0.1.RELEASE
twitter

org. springframework. integsptiag-integration- 5.0.1.RELEASE
webf | ux

org. springframework. i ntegspatiag-integration- 5.0.1.RELEASE
websocket

org. springframework. i ntegsatiag-integration-ws 5.0.1.RELEASE

org. springframework. i ntegsatiag-integration-xm 5.0.1.RELEASE

org. springframework. i ntegsatiag-integration-xnpp 5.0.1.RELEASE

org. springframework. i ntegsptiag-integration- 5.0.1.RELEASE
zookeeper

org. spri ngframewor k. kaf kaspri ng- kaf ka 2.1.2.RELEASE

org. spri ngframewor k. kaf kaspri ng- kaf ka-t est 2.1.2.RELEASE

org. springframework. | dap|spring-|dap-core 2.3.2.RELEASE

org. springframework. | dap|spring-I|dap-core-tiger 2.3.2.RELEASE

org. springframework. | dap|spring-|dap-1dif-batch 2.3.2.RELEASE

org. springframework. | dap|spring-Idap-ldif-core 2.3.2.RELEASE

org. springframework. | dap|spring-| dap- odm 2.3.2.RELEASE

org. springframework. | dap|spring-I|dap-test 2.3.2.RELEASE

or g. spri ngframewor k. pl ugispri ng- pl ugi n-core 1.2.0.RELEASE

or g. spri ngframewor k. pl ugi spri ng- pl ugi n- net adat a 1.2.0.RELEASE

org. spri ngframework. rest depsi ng-rest docs- 2.0.0.RELEASE
asci i doct or

org. springframework. rest depsi ng-restdocs-core 2.0.0.RELEASE

org. springframework. rest depsi ng-rest docs-nocknmvc 2.0.0.RELEASE

2.0.0.RC1 Spring Boot 372

Spring Boot Reference Guide

Group ID Artifact ID Version

org. springframewor k. rest depsi ng-rest docs- 2.0.0.RELEASE
restassured

org. springframework. rest depsi ng-rest docs- 2.0.0.RELEASE
webt est cl i ent

org.springframework.retryspring-retry 1.2.2.RELEASE

org. spri ngframewor k. securBpyi ng- security-acl 5.0.1.RELEASE

org. springframewor k. securBpyi ng- security-aspects 5.0.1.RELEASE

org. spri ngframewor k. secur Bpyi ng- security-cas 5.0.1.RELEASE

org. spri ngframewor k. securBpyi ng-security-config 5.0.1.RELEASE

org. spri ngframewor k. securBpyi ng- security-core 5.0.1.RELEASE

org. spri ngframewor k. securBpyi ng- security-crypto 5.0.1.RELEASE

org. springframewor k. securbpyi ng- security-data 5.0.1.RELEASE

org. spri ngframewor k. securBpyi ng-security-I|dap 5.0.1.RELEASE

org. springframewor k. securspyi ng-security- 5.0.1.RELEASE
messagi ng

org. springframewor k. securBpyi ng- security-oauth2- 5.0.1.RELEASE
client

org. spri ngframewor k. securBpyi ng- security-oauth2- 5.0.1.RELEASE
core

org. springframewor k. securspyi ng-security-oauth2- 5.0.1.RELEASE
j ose

org. spri ngframewor k. securBpyi ng- security-openid 5.0.1.RELEASE

or g. springf ramewor k. secur spyi ng- security- 5.0.1.RELEASE
renoting

org. springframewor k. securspyi ng-security-taglibs 5.0.1.RELEASE

org. spri ngframewor k. securBpyi ng-security-test 5.0.1.RELEASE

or g. spri ngframewor k. secur Bpyi ng- security-web 5.0.1.RELEASE

or g. springfranmewor k. sessi epri ng- sessi on-cor e 2.0.1.RELEASE

or g. spri ngframewor k. sessi epri ng- sessi on- dat a- 2.0.0.RELEASE
nmongodb

org. spri ngfranmewor k. sessi epri ng- sessi on-dat a- 2.0.1.RELEASE
redis

or g. springfranmewor k. sessi epri ng- sessi on- 2.0.1.RELEASE
hazel cast

2.0.0.RC1 Spring Boot 373

Spring Boot Reference Guide

Group ID

or g. spri ngframewor k.

Sessi

Artifact ID

epri ng- sessi on-j dbc

Version

2.0.1.RELEASE

org. spri ngframewor k. ws Spring-ws-core 3.0.0.RELEASE
org. spri ngframewor k. ws sSpring-ws-security 3.0.0.RELEASE
org. spri ngframewor k. ws spring-ws-support 3.0.0.RELEASE
org. springframework. ws spring-ws-test 3.0.0.RELEASE
or g. synchronoss. cl oud ni o-nul ti part- parser 1.1.0

org. t hynel eaf

t hynel eaf

3.0.9.RELEASE

org. t hynel eaf

org. thynel eaf . extras

org.thynel eaf . extras

t hynel eaf - spri ng5

t hynel eaf - extras-
java8tine

t hynel eaf - extras-
springsecurity4

3.0.9.RELEASE

3.0.1.RELEASE

3.0.2.RELEASE

org. webj ars hal - br owser 3325375
org. webj ars webj ar s- | ocat or 0.32-1
org. xeri al sqlite-jdbc 3.21.0.1
org. xm uni t xm unit-core 251
org. xm unit xm unit -1 egacy 251
org. xm unit xm uni t - mat chers 251
org. yam snakeyamni 1.19
redis.clients jedis 29.0
wsdl 4] wsdl 4j 1.6.3
xm - api s xm - api s 1.4.01
2.0.0.RC1 Spring Boot 374

	Spring Boot Reference Guide
	Table of Contents
	Part I. Spring Boot Documentation
	1. About the Documentation
	2. Getting Help
	3. First Steps
	4. Working with Spring Boot
	5. Learning about Spring Boot Features
	6. Moving to Production
	7. Advanced Topics

	Part II. Getting Started
	8. Introducing Spring Boot
	9. System Requirements
	9.1 Servlet Containers

	10. Installing Spring Boot
	10.1 Installation Instructions for the Java Developer
	Maven Installation
	Gradle Installation

	10.2 Installing the Spring Boot CLI
	Manual Installation
	Installation with SDKMAN!
	OSX Homebrew Installation
	MacPorts Installation
	Command-line Completion
	Quick-start Spring CLI Example

	10.3 Upgrading from an Earlier Version of Spring Boot

	11. Developing Your First Spring Boot Application
	11.1 Creating the POM
	11.2 Adding Classpath Dependencies
	11.3 Writing the Code
	The @RestController and @RequestMapping Annotations
	The @EnableAutoConfiguration Annotation
	The “main” Method

	11.4 Running the Example
	11.5 Creating an Executable Jar

	12. What to Read Next

	Part III. Using Spring Boot
	13. Build Systems
	13.1 Dependency Management
	13.2 Maven
	Inheriting the Starter Parent
	Using Spring Boot without the Parent POM
	Using the Spring Boot Maven Plugin

	13.3 Gradle
	13.4 Ant
	13.5 Starters

	14. Structuring Your Code
	14.1 Using the “default” Package
	14.2 Locating the Main Application Class

	15. Configuration Classes
	15.1 Importing Additional Configuration Classes
	15.2 Importing XML Configuration

	16. Auto-configuration
	16.1 Gradually Replacing Auto-configuration
	16.2 Disabling Specific Auto-configuration Classes

	17. Spring Beans and Dependency Injection
	18. Using the @SpringBootApplication Annotation
	19. Running Your Application
	19.1 Running from an IDE
	19.2 Running as a Packaged Application
	19.3 Using the Maven Plugin
	19.4 Using the Gradle Plugin
	19.5 Hot Swapping

	20. Developer Tools
	20.1 Property Defaults
	20.2 Automatic Restart
	Logging changes in condition evaluation
	Excluding Resources
	Watching Additional Paths
	Disabling Restart
	Using a Trigger File
	Customizing the Restart Classloader
	Known Limitations

	20.3 LiveReload
	20.4 Global Settings
	20.5 Remote Applications
	Running the Remote Client Application
	Remote Update

	21. Packaging Your Application for Production
	22. What to Read Next

	Part IV. Spring Boot features
	23. SpringApplication
	23.1 Startup Failure
	23.2 Customizing the Banner
	23.3 Customizing SpringApplication
	23.4 Fluent Builder API
	23.5 Application Events and Listeners
	23.6 Web Environment
	23.7 Accessing Application Arguments
	23.8 Using the ApplicationRunner or CommandLineRunner
	23.9 Application Exit
	23.10 Admin Features

	24. Externalized Configuration
	24.1 Configuring Random Values
	24.2 Accessing Command Line Properties
	24.3 Application Property Files
	24.4 Profile-specific Properties
	24.5 Placeholders in Properties
	24.6 Using YAML Instead of Properties
	Loading YAML
	Exposing YAML as Properties in the Spring Environment
	Multi-profile YAML Documents
	YAML Shortcomings
	Merging YAML Lists

	24.7 Type-safe Configuration Properties
	Third-party Configuration
	Relaxed Binding
	Properties Conversion
	@ConfigurationProperties Validation
	@ConfigurationProperties vs. @Value

	25. Profiles
	25.1 Adding Active Profiles
	25.2 Programmatically Setting Profiles
	25.3 Profile-specific Configuration Files

	26. Logging
	26.1 Log Format
	26.2 Console Output
	Color-coded Output

	26.3 File Output
	26.4 Log Levels
	26.5 Custom Log Configuration
	26.6 Logback Extensions
	Profile-specific Configuration
	Environment Properties

	27. Developing Web Applications
	27.1 The “Spring Web MVC Framework”
	Spring MVC Auto-configuration
	HttpMessageConverters
	Custom JSON Serializers and Deserializers
	MessageCodesResolver
	Static Content
	Welcome Page
	Custom Favicon
	Path Matching and Content Negotiation
	ConfigurableWebBindingInitializer
	Template Engines
	Error Handling
	Custom Error Pages
	Mapping Error Pages outside of Spring MVC

	Spring HATEOAS
	CORS Support

	27.2 The “Spring WebFlux Framework”
	Spring WebFlux Auto-configuration
	HTTP Codecs with HttpMessageReaders and HttpMessageWriters
	Static Content
	Template Engines
	Error Handling
	Custom Error Pages

	Web Filters

	27.3 JAX-RS and Jersey
	27.4 Embedded Servlet Container Support
	Servlets, Filters, and listeners
	Registering Servlets, Filters, and Listeners as Spring Beans

	Servlet Context Initialization
	Scanning for Servlets, Filters, and listeners

	The ServletWebServerApplicationContext
	Customizing Embedded Servlet Containers
	Programmatic Customization
	Customizing ConfigurableServletWebServerFactory Directly

	JSP Limitations

	28. Security
	28.1 MVC Security
	28.2 WebFlux Security
	28.3 OAuth2
	Client

	28.4 Actuator Security

	29. Working with SQL Databases
	29.1 Configure a DataSource
	Embedded Database Support
	Connection to a Production Database
	Connection to a JNDI DataSource

	29.2 Using JdbcTemplate
	29.3 JPA and “Spring Data”
	Entity Classes
	Spring Data JPA Repositories
	Creating and Dropping JPA Databases
	Open EntityManager in View

	29.4 Using H2’s Web Console
	Changing the H2 Console’s Path

	29.5 Using jOOQ
	Code Generation
	Using DSLContext
	jOOQ SQL Dialect
	Customizing jOOQ

	30. Working with NoSQL Technologies
	30.1 Redis
	Connecting to Redis

	30.2 MongoDB
	Connecting to a MongoDB Database
	MongoTemplate
	Spring Data MongoDB Repositories
	Embedded Mongo

	30.3 Neo4j
	Connecting to a Neo4j Database
	Using the Embedded Mode
	Neo4jSession
	Spring Data Neo4j Repositories
	Repository Example

	30.4 Gemfire
	30.5 Solr
	Connecting to Solr
	Spring Data Solr Repositories

	30.6 Elasticsearch
	Connecting to Elasticsearch by Using Jest
	Connecting to Elasticsearch by Using Spring Data
	Spring Data Elasticsearch Repositories

	30.7 Cassandra
	Connecting to Cassandra
	Spring Data Cassandra Repositories

	30.8 Couchbase
	Connecting to Couchbase
	Spring Data Couchbase Repositories

	30.9 LDAP
	Connecting to an LDAP Server
	Spring Data LDAP Repositories
	Embedded In-memory LDAP Server

	30.10 InfluxDB
	Connecting to InfluxDB

	31. Caching
	31.1 Supported Cache Providers
	Generic
	JCache (JSR-107)
	EhCache 2.x
	Hazelcast
	Infinispan
	Couchbase
	Redis
	Caffeine
	Simple
	None

	32. Messaging
	32.1 JMS
	ActiveMQ Support
	Artemis Support
	Using a JNDI ConnectionFactory
	Sending a Message
	Receiving a Message

	32.2 AMQP
	RabbitMQ support
	Sending a Message
	Receiving a Message

	32.3 Apache Kafka Support
	Sending a Message
	Receiving a Message
	Additional Kafka Properties

	33. Calling REST Services with RestTemplate
	33.1 RestTemplate Customization

	34. Calling REST Services with WebClient
	34.1 WebClient Customization

	35. Validation
	36. Sending Email
	37. Distributed Transactions with JTA
	37.1 Using an Atomikos Transaction Manager
	37.2 Using a Bitronix Transaction Manager
	37.3 Using a Narayana Transaction Manager
	37.4 Using a Java EE Managed Transaction Manager
	37.5 Mixing XA and Non-XA JMS Connections
	37.6 Supporting an Alternative Embedded Transaction Manager

	38. Hazelcast
	39. Quartz Scheduler
	40. Spring Integration
	41. Spring Session
	42. Monitoring and Management over JMX
	43. Testing
	43.1 Test Scope Dependencies
	43.2 Testing Spring Applications
	43.3 Testing Spring Boot Applications
	Detecting Test Configuration
	Excluding Test Configuration
	Working with Random Ports
	Mocking and Spying Beans
	Auto-configured Tests
	Auto-configured JSON Tests
	Auto-configured Spring MVC Tests
	Auto-configured Spring WebFlux Tests
	Auto-configured Data JPA Tests
	Auto-configured JDBC Tests
	Auto-configured jOOQ Tests
	Auto-configured Data MongoDB Tests
	Auto-configured Data Neo4j Tests
	Auto-configured Data Redis Tests
	Auto-configured Data LDAP Tests
	Auto-configured REST Clients
	Auto-configured Spring REST Docs Tests
	Auto-configured Spring REST Docs Tests with Mock MVC
	Auto-configured Spring REST Docs Tests with REST Assured

	User Configuration and Slicing
	Using Spock to Test Spring Boot Applications

	43.4 Test Utilities
	ConfigFileApplicationContextInitializer
	EnvironmentTestUtils
	OutputCapture
	TestRestTemplate

	44. WebSockets
	45. Web Services
	46. Creating Your Own Auto-configuration
	46.1 Understanding Auto-configured Beans
	46.2 Locating Auto-configuration Candidates
	46.3 Condition Annotations
	Class Conditions
	Bean Conditions
	Property Conditions
	Resource Conditions
	Web Application Conditions
	SpEL Expression Conditions

	46.4 Testing your Auto-configuration
	Simulating a Web Context
	Overriding the Classpath

	46.5 Creating Your Own Starter
	Naming
	autoconfigure Module
	Starter Module

	47. What to Read Next

	Part V. Spring Boot Actuator: Production-ready features
	48. Enabling Production-ready Features
	49. Endpoints
	49.1 Enabling Endpoints
	49.2 Exposing Endpoints
	49.3 Securing HTTP Endpoints
	49.4 Configuring Endpoints
	49.5 Hypermedia for Actuator Web Endpoints
	49.6 Actuator Web Endpoint Paths
	49.7 CORS Support
	49.8 Adding Custom Endpoints
	49.9 Health Information
	Auto-configured HealthIndicators
	Writing Custom HealthIndicators
	Reactive Health Indicators
	Auto-configured ReactiveHealthIndicators

	49.10 Application Information
	Auto-configured InfoContributors
	Custom Application Information
	Git Commit Information
	Build Information
	Writing Custom InfoContributors

	50. Monitoring and Management over HTTP
	50.1 Customizing the Management Endpoint Paths
	50.2 Customizing the Management Server Port
	50.3 Configuring Management-specific SSL
	50.4 Customizing the Management Server Address
	50.5 Disabling HTTP Endpoints

	51. Monitoring and Management over JMX
	51.1 Customizing MBean Names
	51.2 Disabling JMX Endpoints
	51.3 Using Jolokia for JMX over HTTP
	Customizing Jolokia
	Disabling Jolokia

	52. Loggers
	52.1 Configure a Logger

	53. Metrics
	53.1 Spring MVC Metrics
	Spring MVC Metric Tags

	53.2 WebFlux Metrics
	WebFlux Metrics Tags

	53.3 RestTemplate Metrics
	RestTemplate Metric Tags

	53.4 Cache metrics
	53.5 DataSource Metrics
	53.6 RabbitMQ metrics
	53.7 Spring Integration Metrics

	54. Auditing
	55. HTTP Tracing
	55.1 Custom HTTP tracing

	56. Process Monitoring
	56.1 Extending Configuration
	56.2 Programmatically

	57. Cloud Foundry Support
	57.1 Disabling Extended Cloud Foundry Actuator Support
	57.2 Cloud Foundry Self-signed Certificates
	57.3 Custom Security Configuration

	58. What to Read Next

	Part VI. Deploying Spring Boot Applications
	59. Deploying to the Cloud
	59.1 Cloud Foundry
	Binding to Services

	59.2 Heroku
	59.3 OpenShift
	59.4 Amazon Web Services (AWS)
	AWS Elastic Beanstalk
	Using the Tomcat Platform
	Using the Java SE Platform

	Summary

	59.5 Boxfuse and Amazon Web Services
	59.6 Google Cloud

	60. Installing Spring Boot Applications
	60.1 Supported Operating Systems
	60.2 Unix/Linux Services
	Installation as an init.d Service (System V)
	Securing an init.d Service

	Installation as a systemd Service
	Customizing the Startup Script
	Customizing the Start Script when It Is Written
	Customizing a Script When It Runs

	60.3 Microsoft Windows Services

	61. What to Read Next

	Part VII. Spring Boot CLI
	62. Installing the CLI
	63. Using the CLI
	63.1 Running Applications with the CLI
	Deduced “grab” Dependencies
	Deduced “grab” Coordinates
	Default Import Statements
	Automatic Main Method
	Custom Dependency Management

	63.2 Applications with Multiple Source Files
	63.3 Packaging Your Application
	63.4 Initialize a New Project
	63.5 Using the Embedded Shell
	63.6 Adding Extensions to the CLI

	64. Developing Applications with the Groovy Beans DSL
	65. Configuring the CLI with settings.xml
	66. What to Read Next

	Part VIII. Build tool plugins
	67. Spring Boot Maven Plugin
	67.1 Including the Plugin
	67.2 Packaging Executable Jar and War Files

	68. Spring Boot Gradle Plugin
	69. Spring Boot AntLib Module
	69.1 Spring Boot Ant Tasks
	spring-boot:exejar
	Examples

	69.2 spring-boot:findmainclass
	Examples

	70. Supporting Other Build Systems
	70.1 Repackaging Archives
	70.2 Nested Libraries
	70.3 Finding a Main Class
	70.4 Example Repackage Implementation

	71. What to Read Next

	Part IX. ‘How-to’ guides
	72. Spring Boot Application
	72.1 Create Your Own FailureAnalyzer
	72.2 Troubleshoot Auto-configuration
	72.3 Customize the Environment or ApplicationContext Before It Starts
	72.4 Build an ApplicationContext Hierarchy (Adding a Parent or Root Context)
	72.5 Create a Non-web Application

	73. Properties and Configuration
	73.1 Automatically Expand Properties at Build Time
	Automatic Property Expansion Using Maven
	Automatic Property Expansion Using Gradle

	73.2 Externalize the Configuration of SpringApplication
	73.3 Change the Location of External Properties of an Application
	73.4 Use ‘Short’ Command Line Arguments
	73.5 Use YAML for External Properties
	73.6 Set the Active Spring Profiles
	73.7 Change Configuration Depending on the Environment
	73.8 Discover Built-in Options for External Properties

	74. Embedded Web Servers
	74.1 Use Another Web Server
	74.2 Configure Jetty
	74.3 Add a Servlet, Filter, or Listener to an Application
	Add a Servlet, Filter, or Listener by Using a Spring Bean
	Disable Registration of a Servlet or Filter

	Add Servlets, Filters, and Listeners by Using Classpath Scanning

	74.4 Change the HTTP Port
	74.5 Use a Random Unassigned HTTP Port
	74.6 Discover the HTTP Port at Runtime
	74.7 Configure SSL
	74.8 Configure HTTP/2
	HTTP/2 with Undertow
	HTTP/2 with Jetty
	HTTP/2 with Tomcat

	74.9 Configure Access Logging
	74.10 Running Behind a Front-end Proxy Server
	Customize Tomcat’s Proxy Configuration

	74.11 Configure Tomcat
	74.12 Enable Multiple Connectors with Tomcat
	74.13 Use Tomcat’s LegacyCookieProcessor
	74.14 Configure Undertow
	74.15 Enable Multiple Listeners with Undertow
	74.16 Create WebSocket Endpoints Using @ServerEndpoint
	74.17 Enable HTTP Response Compression

	75. Spring MVC
	75.1 Write a JSON REST Service
	75.2 Write an XML REST Service
	75.3 Customize the Jackson ObjectMapper
	75.4 Customize the @ResponseBody Rendering
	75.5 Handling Multipart File Uploads
	75.6 Switch Off the Spring MVC DispatcherServlet
	75.7 Switch off the Default MVC Configuration
	75.8 Customize ViewResolvers

	76. HTTP Clients
	76.1 Configure RestTemplate to Use a Proxy

	77. Logging
	77.1 Configure Logback for Logging
	Configure Logback for File-only Output

	77.2 Configure Log4j for Logging
	Use YAML or JSON to Configure Log4j 2

	78. Data Access
	78.1 Configure a Custom DataSource
	78.2 Configure Two DataSources
	78.3 Use Spring Data Repositories
	78.4 Separate @Entity Definitions from Spring Configuration
	78.5 Configure JPA Properties
	78.6 Configure Hibernate Naming Strategy
	78.7 Use a Custom EntityManagerFactory
	78.8 Use Two EntityManagers
	78.9 Use a Traditional persistence.xml File
	78.10 Use Spring Data JPA and Mongo Repositories
	78.11 Expose Spring Data Repositories as REST Endpoint
	78.12 Configure a Component that is Used by JPA
	78.13 Configure jOOQ with Two DataSources

	79. Database Initialization
	79.1 Initialize a Database Using JPA
	79.2 Initialize a Database Using Hibernate
	79.3 Initialize a Database
	79.4 Initialize a Spring Batch Database
	79.5 Use a Higher-level Database Migration Tool
	Execute Flyway Database Migrations on Startup
	Execute Liquibase Database Migrations on Startup

	80. Messaging
	80.1 Disable Transacted JMS Session

	81. Batch Applications
	81.1 Execute Spring Batch Jobs on Startup

	82. Actuator
	82.1 Change the HTTP Port or Address of the Actuator Endpoints
	82.2 Customize the ‘whitelabel’ Error Page

	83. Security
	83.1 Switch off the Spring Boot Security Configuration
	83.2 Change the AuthenticationManager and Add User Accounts
	83.3 Enable HTTPS When Running behind a Proxy Server

	84. Hot Swapping
	84.1 Reload Static Content
	84.2 Reload Templates without Restarting the Container
	Thymeleaf Templates
	FreeMarker Templates
	Groovy Templates

	84.3 Fast Application Restarts
	84.4 Reload Java Classes without Restarting the Container

	85. Build
	85.1 Generate Build Information
	85.2 Generate Git Information
	85.3 Customize Dependency Versions
	85.4 Create an Executable JAR with Maven
	85.5 Use a Spring Boot Application as a Dependency
	85.6 Extract Specific Libraries When an Executable Jar Runs
	85.7 Create a Non-executable JAR with Exclusions
	85.8 Remote Debug a Spring Boot Application Started with Maven
	85.9 Build an Executable Archive from Ant without Using spring-boot-antlib

	86. Traditional Deployment
	86.1 Create a Deployable War File
	86.2 Create a Deployable War File for Older Servlet Containers
	86.3 Convert an Existing Application to Spring Boot
	86.4 Deploying a WAR to WebLogic
	86.5 Deploying a WAR in an Old (Servlet 2.5) Container
	86.6 Use Jedis Instead of Lettuce

	Part X. Appendices
	Appendix A. Common application properties
	Appendix B. Configuration Metadata
	B.1 Metadata Format
	Group Attributes
	Property Attributes
	Hint Attributes
	Repeated Metadata Items

	B.2 Providing Manual Hints
	Value Hint
	Value Providers
	Any
	Class Reference
	Handle As
	Logger Name
	Spring Bean Reference
	Spring Profile Name

	B.3 Generating Your Own Metadata by Using the Annotation Processor
	Nested Properties
	Adding Additional Metadata

	Appendix C. Auto-configuration classes
	C.1 From the “spring-boot-autoconfigure” module
	C.2 From the “spring-boot-actuator-autoconfigure” module

	Appendix D. Test auto-configuration annotations
	Appendix E. The Executable Jar Format
	E.1 Nested JARs
	The Executable Jar File Structure
	The Executable War File Structure

	E.2 Spring Boot’s “JarFile” Class
	Compatibility with the Standard Java “JarFile”

	E.3 Launching Executable Jars
	Launcher Manifest
	Exploded Archives

	E.4 PropertiesLauncher Features
	E.5 Executable Jar Restrictions
	E.6 Alternative Single Jar Solutions

	Appendix F. Dependency versions

