1. Spring Boot Application
This section includes topics relating directly to Spring Boot applications.
1.1. Create Your Own FailureAnalyzer
FailureAnalyzer
is a great way
to intercept an exception on startup and turn it into a human-readable message, wrapped
in a FailureAnalysis
. Spring
Boot provides such an analyzer for application-context-related exceptions, JSR-303
validations, and more. You can also create your own.
AbstractFailureAnalyzer
is a convenient extension of FailureAnalyzer
that checks the
presence of a specified exception type in the exception to handle. You can extend from
that so that your implementation gets a chance to handle the exception only when it is
actually present. If, for whatever reason, you cannot handle the exception, return null
to give another implementation a chance to handle the exception.
FailureAnalyzer
implementations must be registered in META-INF/spring.factories
.
The following example registers ProjectConstraintViolationFailureAnalyzer
:
org.springframework.boot.diagnostics.FailureAnalyzer=\
com.example.ProjectConstraintViolationFailureAnalyzer
If you need access to the BeanFactory or the Environment , your FailureAnalyzer
can simply implement BeanFactoryAware or EnvironmentAware respectively.
|
1.2. Troubleshoot Auto-configuration
The Spring Boot auto-configuration tries its best to “do the right thing”, but sometimes things fail, and it can be hard to tell why.
There is a really useful ConditionEvaluationReport
available in any Spring Boot
ApplicationContext
. You can see it if you enable DEBUG
logging output. If you use
the spring-boot-actuator
(see the Actuator chapter),
there is also a conditions
endpoint that renders the report in JSON. Use that endpoint
to debug the application and see what features have been added (and which have not been
added) by Spring Boot at runtime.
Many more questions can be answered by looking at the source code and the Javadoc. When reading the code, remember the following rules of thumb:
-
Look for classes called
*AutoConfiguration
and read their sources. Pay special attention to the@Conditional*
annotations to find out what features they enable and when. Add--debug
to the command line or a System property-Ddebug
to get a log on the console of all the auto-configuration decisions that were made in your app. In a running Actuator app, look at theconditions
endpoint (/actuator/conditions
or the JMX equivalent) for the same information. -
Look for classes that are
@ConfigurationProperties
(such asServerProperties
) and read from there the available external configuration options. The@ConfigurationProperties
annotation has aname
attribute that acts as a prefix to external properties. Thus,ServerProperties
hasprefix="server"
and its configuration properties areserver.port
,server.address
, and others. In a running Actuator app, look at theconfigprops
endpoint. -
Look for uses of the
bind
method on theBinder
to pull configuration values explicitly out of theEnvironment
in a relaxed manner. It is often used with a prefix. -
Look for
@Value
annotations that bind directly to theEnvironment
. -
Look for
@ConditionalOnExpression
annotations that switch features on and off in response to SpEL expressions, normally evaluated with placeholders resolved from theEnvironment
.
1.3. Customize the Environment or ApplicationContext Before It Starts
A SpringApplication
has ApplicationListeners
and ApplicationContextInitializers
that
are used to apply customizations to the context or environment. Spring Boot loads a number
of such customizations for use internally from META-INF/spring.factories
. There is more
than one way to register additional customizations:
-
Programmatically, per application, by calling the
addListeners
andaddInitializers
methods onSpringApplication
before you run it. -
Declaratively, per application, by setting the
context.initializer.classes
orcontext.listener.classes
properties. -
Declaratively, for all applications, by adding a
META-INF/spring.factories
and packaging a jar file that the applications all use as a library.
The SpringApplication
sends some special ApplicationEvents
to the listeners (some
even before the context is created) and then registers the listeners for events published
by the ApplicationContext
as well. See
“spring-boot-features.html” in the
‘Spring Boot features’ section for a complete list.
It is also possible to customize the Environment
before the application context is
refreshed by using EnvironmentPostProcessor
. Each implementation should be registered in
META-INF/spring.factories
, as shown in the following example:
org.springframework.boot.env.EnvironmentPostProcessor=com.example.YourEnvironmentPostProcessor
The implementation can load arbitrary files and add them to the Environment
. For
instance, the following example loads a YAML configuration file from the classpath:
public class EnvironmentPostProcessorExample implements EnvironmentPostProcessor {
private final YamlPropertySourceLoader loader = new YamlPropertySourceLoader();
@Override
public void postProcessEnvironment(ConfigurableEnvironment environment,
SpringApplication application) {
Resource path = new ClassPathResource("com/example/myapp/config.yml");
PropertySource<?> propertySource = loadYaml(path);
environment.getPropertySources().addLast(propertySource);
}
private PropertySource<?> loadYaml(Resource path) {
if (!path.exists()) {
throw new IllegalArgumentException("Resource " + path + " does not exist");
}
try {
return this.loader.load("custom-resource", path).get(0);
}
catch (IOException ex) {
throw new IllegalStateException(
"Failed to load yaml configuration from " + path, ex);
}
}
}
The Environment has already been prepared with all the usual property sources
that Spring Boot loads by default. It is therefore possible to get the location of the
file from the environment. The preceding example adds the custom-resource property
source at the end of the list so that a key defined in any of the usual other locations
takes precedence. A custom implementation may define another order.
|
While using @PropertySource on your @SpringBootApplication may seem to be a
convenient and easy way to load a custom resource in the Environment , we do not
recommend it, because Spring Boot prepares the Environment before the
ApplicationContext is refreshed. Any key defined with @PropertySource is loaded too
late to have any effect on auto-configuration.
|
1.4. Build an ApplicationContext Hierarchy (Adding a Parent or Root Context)
You can use the ApplicationBuilder
class to create parent/child ApplicationContext
hierarchies. See “spring-boot-features.html”
in the ‘Spring Boot features’ section for more information.
1.5. Create a Non-web Application
Not all Spring applications have to be web applications (or web services). If you want to
execute some code in a main
method but also bootstrap a Spring application to set up
the infrastructure to use, you can use the SpringApplication
features of Spring
Boot. A SpringApplication
changes its ApplicationContext
class, depending on whether
it thinks it needs a web application or not. The first thing you can do to help it is to
leave server-related dependencies (e.g. servlet API) off the classpath. If you cannot do
that (for example, you run two applications from the same code base) then you can
explicitly call setWebApplicationType(WebApplicationType.NONE)
on your
SpringApplication
instance or set the applicationContextClass
property (through the
Java API or with external properties). Application code that you want to run as your
business logic can be implemented as a CommandLineRunner
and dropped into the context as
a @Bean
definition.
2. Properties and Configuration
This section includes topics about setting and reading properties and configuration settings and their interaction with Spring Boot applications.
2.1. Automatically Expand Properties at Build Time
Rather than hardcoding some properties that are also specified in your project’s build configuration, you can automatically expand them by instead using the existing build configuration. This is possible in both Maven and Gradle.
2.1.1. Automatic Property Expansion Using Maven
You can automatically expand properties from the Maven project by using resource
filtering. If you use the spring-boot-starter-parent
, you can then refer to your
Maven ‘project properties’ with @..@
placeholders, as shown in the following example:
Only production configuration is filtered that way (in other words, no filtering is
applied on src/test/resources ).
|
If you enable the addResources flag, the spring-boot:run goal can add
src/main/resources directly to the classpath (for hot reloading purposes). Doing so
circumvents the resource filtering and this feature. Instead, you can use the exec:java
goal or customize the plugin’s configuration. See the
plugin usage page for more details.
|
If you do not use the starter parent, you need to include the following element inside
the <build/>
element of your pom.xml
:
<resources>
<resource>
<directory>src/main/resources</directory>
<filtering>true</filtering>
</resource>
</resources>
You also need to include the following element inside <plugins/>
:
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-resources-plugin</artifactId>
<version>2.7</version>
<configuration>
<delimiters>
<delimiter>@</delimiter>
</delimiters>
<useDefaultDelimiters>false</useDefaultDelimiters>
</configuration>
</plugin>
The useDefaultDelimiters property is important if you use standard Spring
placeholders (such as ${placeholder} ) in your configuration. If that property is not
set to false , these may be expanded by the build.
|
2.1.2. Automatic Property Expansion Using Gradle
You can automatically expand properties from the Gradle project by configuring the
Java plugin’s processResources
task to do so, as shown in the following example:
processResources {
expand(project.properties)
}
You can then refer to your Gradle project’s properties by using placeholders, as shown in the following example:
app.name=${name}
app.description=${description}
Gradle’s expand method uses Groovy’s SimpleTemplateEngine , which transforms
${..} tokens. The ${..} style conflicts with Spring’s own property placeholder
mechanism. To use Spring property placeholders together with automatic expansion, escape
the Spring property placeholders as follows: \${..} .
|
2.2. Externalize the Configuration of SpringApplication
A SpringApplication
has bean properties (mainly setters), so you can use its Java API as
you create the application to modify its behavior. Alternatively, you can externalize the
configuration by setting properties in spring.main.*
. For example, in
application.properties
, you might have the following settings:
spring.main.web-application-type=none
spring.main.banner-mode=off
Then the Spring Boot banner is not printed on startup, and the application is not starting an embedded web server.
Properties defined in external configuration override the values specified with the Java
API, with the notable exception of the sources used to create the ApplicationContext
.
Consider the following application:
new SpringApplicationBuilder()
.bannerMode(Banner.Mode.OFF)
.sources(demo.MyApp.class)
.run(args);
Now consider the following configuration:
spring.main.sources=com.acme.Config,com.acme.ExtraConfig
spring.main.banner-mode=console
The actual application now shows the banner (as overridden by configuration) and uses
three sources for the ApplicationContext
(in the following order): demo.MyApp
,
com.acme.Config
, and com.acme.ExtraConfig
.
2.3. Change the Location of External Properties of an Application
By default, properties from different sources are added to the Spring Environment
in a
defined order (see “spring-boot-features.html” in
the ‘Spring Boot features’ section for the exact order).
A nice way to augment and modify this ordering is to add @PropertySource
annotations to your
application sources. Classes passed to the SpringApplication
static convenience
methods and those added using setSources()
are inspected to see if they have
@PropertySources
. If they do, those properties are added to the Environment
early
enough to be used in all phases of the ApplicationContext
lifecycle. Properties added
in this way have lower priority than any added by using the default locations (such as
application.properties
), system properties, environment variables, or the command line.
You can also provide the following System properties (or environment variables) to change the behavior:
-
spring.config.name
(SPRING_CONFIG_NAME
): Defaults toapplication
as the root of the file name. -
spring.config.location
(SPRING_CONFIG_LOCATION
): The file to load (such as a classpath resource or a URL). A separateEnvironment
property source is set up for this document and it can be overridden by system properties, environment variables, or the command line.
No matter what you set in the environment, Spring Boot always loads
application.properties
as described above. By default, if YAML is used, then files with
the ‘.yml’ extension are also added to the list.
Spring Boot logs the configuration files that are loaded at the DEBUG
level and the
candidates it has not found at TRACE
level.
See ConfigFileApplicationListener
for more detail.
2.4. Use ‘Short’ Command Line Arguments
Some people like to use (for example) --port=9000
instead of --server.port=9000
to
set configuration properties on the command line. You can enable this behavior by using
placeholders in application.properties
, as shown in the following example:
server.port=${port:8080}
If you inherit from the spring-boot-starter-parent POM, the default filter
token of the maven-resources-plugins has been changed from ${*} to @ (that is,
@maven.token@ instead of ${maven.token} ) to prevent conflicts with Spring-style
placeholders. If you have enabled Maven filtering for the application.properties
directly, you may want to also change the default filter token to use
other
delimiters.
|
In this specific case, the port binding works in a PaaS environment such as Heroku
or Cloud Foundry. In those two platforms, the PORT environment variable is set
automatically and Spring can bind to capitalized synonyms for Environment properties.
|
2.5. Use YAML for External Properties
YAML is a superset of JSON and, as such, is a convenient syntax for storing external properties in a hierarchical format, as shown in the following example:
spring:
application:
name: cruncher
datasource:
driverClassName: com.mysql.jdbc.Driver
url: jdbc:mysql://localhost/test
server:
port: 9000
Create a file called application.yml
and put it in the root of your classpath.
Then add snakeyaml
to your dependencies (Maven coordinates org.yaml:snakeyaml
, already
included if you use the spring-boot-starter
). A YAML file is parsed to a Java
Map<String,Object>
(like a JSON object), and Spring Boot flattens the map so that it
is one level deep and has period-separated keys, as many people are used to with
Properties
files in Java.
The preceding example YAML corresponds to the following application.properties
file:
spring.application.name=cruncher
spring.datasource.driverClassName=com.mysql.jdbc.Driver
spring.datasource.url=jdbc:mysql://localhost/test
server.port=9000
See “spring-boot-features.html” in the ‘Spring Boot features’ section for more information about YAML.
2.6. Set the Active Spring Profiles
The Spring Environment
has an API for this, but you would normally set a System property
(spring.profiles.active
) or an OS environment variable (SPRING_PROFILES_ACTIVE
).
Also, you can launch your application with a -D
argument (remember to put it before the
main class or jar archive), as follows:
$ java -jar -Dspring.profiles.active=production demo-0.0.1-SNAPSHOT.jar
In Spring Boot, you can also set the active profile in application.properties
, as shown
in the following example:
spring.profiles.active=production
A value set this way is replaced by the System property or environment variable setting
but not by the SpringApplicationBuilder.profiles()
method. Thus, the latter Java API can
be used to augment the profiles without changing the defaults.
See “spring-boot-features.html” in the “Spring Boot features” section for more information.
2.7. Change Configuration Depending on the Environment
A YAML file is actually a sequence of documents separated by ---
lines, and each
document is parsed separately to a flattened map.
If a YAML document contains a spring.profiles
key, then the profiles value
(a comma-separated list of profiles) is fed into the Spring
Environment.acceptsProfiles()
method. If any of those profiles is active, that document
is included in the final merge (otherwise, it is not), as shown in the following example:
server:
port: 9000
---
spring:
profiles: development
server:
port: 9001
---
spring:
profiles: production
server:
port: 0
In the preceding example, the default port is 9000. However, if the Spring profile called ‘development’ is active, then the port is 9001. If ‘production’ is active, then the port is 0.
The YAML documents are merged in the order in which they are encountered. Later values override earlier values. |
To do the same thing with properties files, you can use
application-${profile}.properties
to specify profile-specific values.
2.8. Discover Built-in Options for External Properties
Spring Boot binds external properties from application.properties
(or .yml
files and
other places) into an application at runtime. There is not (and technically cannot be) an
exhaustive list of all supported properties in a single location, because contributions
can come from additional jar files on your classpath.
A running application with the Actuator features has a configprops
endpoint that shows
all the bound and bindable properties available through @ConfigurationProperties
.
The appendix includes an application.properties
example with a list of the most common properties supported by
Spring Boot. The definitive list comes from searching the source code for
@ConfigurationProperties
and @Value
annotations as well as the occasional use of
Binder
. For more about the exact ordering of loading properties, see
"spring-boot-features.html".
3. Embedded Web Servers
Each Spring Boot web application includes an embedded web server. This feature leads to a number of how-to questions, including how to change the embedded server and how to configure the embedded server. This section answers those questions.
3.1. Use Another Web Server
Many Spring Boot starters include default embedded containers.
-
For servlet stack applications, the
spring-boot-starter-web
includes Tomcat by includingspring-boot-starter-tomcat
, but you can usespring-boot-starter-jetty
orspring-boot-starter-undertow
instead. -
For reactive stack applications, the
spring-boot-starter-webflux
includes Reactor Netty by includingspring-boot-starter-reactor-netty
, but you can usespring-boot-starter-tomcat
,spring-boot-starter-jetty
, orspring-boot-starter-undertow
instead.
When switching to a different HTTP server, you need to exclude the default dependencies in addition to including the one you need. Spring Boot provides separate starters for HTTP servers to help make this process as easy as possible.
The following Maven example shows how to exclude Tomcat and include Jetty for Spring MVC:
<properties>
<servlet-api.version>3.1.0</servlet-api.version>
</properties>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
<exclusions>
<!-- Exclude the Tomcat dependency -->
<exclusion>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-tomcat</artifactId>
</exclusion>
</exclusions>
</dependency>
<!-- Use Jetty instead -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-jetty</artifactId>
</dependency>
The version of the Servlet API has been overridden as, unlike Tomcat 9 and Undertow 2.0, Jetty 9.4 does not support Servlet 4.0. |
The following Gradle example shows how to exclude Netty and include Undertow for Spring WebFlux:
configurations {
// exclude Reactor Netty
compile.exclude module: 'spring-boot-starter-reactor-netty'
}
dependencies {
compile 'org.springframework.boot:spring-boot-starter-webflux'
// Use Undertow instead
compile 'org.springframework.boot:spring-boot-starter-undertow'
// ...
}
spring-boot-starter-reactor-netty is required to use the WebClient class, so
you may need to keep a dependency on Netty even when you need to include a different HTTP
server.
|
3.2. Disabling the Web Server
If your classpath contains the necessary bits to start a web server, Spring Boot will
automatically start it. To disable this behaviour configure the WebApplicationType
in
your application.properties
, as shown in the following example:
spring.main.web-application-type=none
3.3. Change the HTTP Port
In a standalone application, the main HTTP port defaults to 8080
but can be set with
server.port
(for example, in application.properties
or as a System property). Thanks
to relaxed binding of Environment
values, you can also use SERVER_PORT
(for example,
as an OS environment variable).
To switch off the HTTP endpoints completely but still create a WebApplicationContext
,
use server.port=-1
. (Doing so is sometimes useful for testing.)
For more details, see
“spring-boot-features.html”
in the ‘Spring Boot features’ section, or the
ServerProperties
source
code.
3.4. Use a Random Unassigned HTTP Port
To scan for a free port (using OS natives to prevent clashes) use server.port=0
.
3.5. Discover the HTTP Port at Runtime
You can access the port the server is running on from log output or from the
ServletWebServerApplicationContext
through its WebServer
. The best way to get that and
be sure that it has been initialized is to add a @Bean
of type
ApplicationListener<ServletWebServerInitializedEvent>
and pull the container
out of the event when it is published.
Tests that use @SpringBootTest(webEnvironment=WebEnvironment.RANDOM_PORT)
can
also inject the actual port into a field by using the @LocalServerPort
annotation, as
shown in the following example:
@SpringBootTest(webEnvironment=WebEnvironment.RANDOM_PORT)
public class MyWebIntegrationTests {
@Autowired
ServletWebServerApplicationContext server;
@LocalServerPort
int port;
// ...
}
|
3.6. Enable HTTP Response Compression
HTTP response compression is supported by Jetty, Tomcat, and Undertow. It can be enabled
in application.properties
, as follows:
server.compression.enabled=true
By default, responses must be at least 2048 bytes in length for compression to be
performed. You can configure this behavior by setting the
server.compression.min-response-size
property.
By default, responses are compressed only if their content type is one of the following:
-
text/html
-
text/xml
-
text/plain
-
text/css
-
text/javascript
-
application/javascript
-
application/json
-
application/xml
You can configure this behavior by setting the server.compression.mime-types
property.
3.7. Configure SSL
SSL can be configured declaratively by setting the various server.ssl.*
properties,
typically in application.properties
or application.yml
. The following example shows
setting SSL properties in application.properties
:
server.port=8443
server.ssl.key-store=classpath:keystore.jks
server.ssl.key-store-password=secret
server.ssl.key-password=another-secret
See Ssl
for details of all of the
supported properties.
Using configuration such as the preceding example means the application no longer supports
a plain HTTP connector at port 8080. Spring Boot does not support the configuration of
both an HTTP connector and an HTTPS connector through application.properties
. If you
want to have both, you need to configure one of them programmatically. We recommend using
application.properties
to configure HTTPS, as the HTTP connector is the easier of the
two to configure programmatically. See the
spring-boot-sample-tomcat-multi-connectors
sample project for an example.
3.8. Configure HTTP/2
You can enable HTTP/2 support in your Spring Boot application with the
server.http2.enabled
configuration property. This support depends on the chosen web
server and the application environment, since that protocol is not supported
out-of-the-box by JDK8.
Spring Boot does not support |
3.8.1. HTTP/2 with Undertow
As of Undertow 1.4.0+, HTTP/2 is supported without any additional requirement on JDK8.
3.8.2. HTTP/2 with Jetty
As of Jetty 9.4.8, HTTP/2 is also supported with the
Conscrypt library.
To enable that support, your application needs to have two additional dependencies:
org.eclipse.jetty:jetty-alpn-conscrypt-server
and org.eclipse.jetty.http2:http2-server
.
3.8.3. HTTP/2 with Tomcat
Spring Boot ships by default with Tomcat 9.0.x which supports HTTP/2 out of the box when
using JDK 9 or later. Alternatively, HTTP/2 can be used on JDK 8 if the libtcnative
library and its dependencies are installed on the host operating system.
The library folder must be made available, if not already, to the JVM library path. You
can do so with a JVM argument such as
-Djava.library.path=/usr/local/opt/tomcat-native/lib
. More on this in the
official Tomcat documentation.
Starting Tomcat 9.0.x on JDK 8 without that native support logs the following error:
ERROR 8787 --- [ main] o.a.coyote.http11.Http11NioProtocol : The upgrade handler [org.apache.coyote.http2.Http2Protocol] for [h2] only supports upgrade via ALPN but has been configured for the ["https-jsse-nio-8443"] connector that does not support ALPN.
This error is not fatal, and the application still starts with HTTP/1.1 SSL support.
3.8.4. HTTP/2 with Reactor Netty
The spring-boot-webflux-starter
is using by default Reactor Netty as a server.
Reactor Netty can be configured for HTTP/2 using the JDK support with JDK 9 or later.
For JDK 8 environments, or for optimal runtime performance, this server also supports
HTTP/2 with native libraries. To enable that, your application needs to have an
additional dependency.
Spring Boot manages the version for the
io.netty:netty-tcnative-boringssl-static
"uber jar", containing native libraries for
all platforms. Developers can choose to import only the required dependencies using
a classifier (see the Netty official
documentation).
3.9. Configure the Web Server
Generally, you should first consider using one of the many available configuration keys
and customize your web server by adding new entries in your application.properties
(or
application.yml
, or environment, etc. see
“Discover Built-in Options for External Properties”). The server.*
namespace is quite useful here, and it includes namespaces like server.tomcat.*
,
server.jetty.*
and others, for server-specific features.
See the list of [common-application-properties].
The previous sections covered already many common use cases, such as compression, SSL
or HTTP/2. However, if a configuration key doesn’t exist for your use case, you should
then look at
WebServerFactoryCustomizer
.
You can declare such a component and get access to the server factory relevant to your
choice: you should select the variant for the chosen Server (Tomcat, Jetty, Reactor Netty,
Undertow) and the chosen web stack (Servlet or Reactive).
The example below is for Tomcat with the spring-boot-starter-web
(Servlet stack):
@Component
public class MyTomcatWebServerCustomizer
implements WebServerFactoryCustomizer<TomcatServletWebServerFactory> {
@Override
public void customize(TomcatServletWebServerFactory factory) {
// customize the factory here
}
}
In addition Spring Boot provides:
Server | Servlet stack | Reactive stack |
---|---|---|
Tomcat |
|
|
Jetty |
|
|
Undertow |
|
|
Reactor |
N/A |
|
Once you’ve got access to a WebServerFactory
, you can often add customizers to it to
configure specific parts, like connectors, server resources, or the server itself - all
using server-specific APIs.
As a last resort, you can also declare your own WebServerFactory
component, which will
override the one provided by Spring Boot. In this case, you can’t rely on configuration
properties in the server
namespace anymore.
3.10. Add a Servlet, Filter, or Listener to an Application
In a servlet stack application, i.e. with the spring-boot-starter-web
, there are two
ways to add Servlet
, Filter
, ServletContextListener
, and the other listeners
supported by the Servlet API to your application:
3.10.1. Add a Servlet, Filter, or Listener by Using a Spring Bean
To add a Servlet
, Filter
, or Servlet *Listener
by using a Spring bean, you must
provide a @Bean
definition for it. Doing so can be very useful when you want to inject
configuration or dependencies. However, you must be very careful that they do not cause
eager initialization of too many other beans, because they have to be installed in the
container very early in the application lifecycle. (For example, it is not a good idea to
have them depend on your DataSource
or JPA configuration.) You can work around such
restrictions by initializing the beans lazily when first used instead of on
initialization.
In the case of Filters
and Servlets
, you can also add mappings and init parameters by
adding a FilterRegistrationBean
or a ServletRegistrationBean
instead of or in
addition to the underlying component.
If no |
Like any other Spring bean, you can define the order of Servlet filter beans; please make sure to check the “spring-boot-features.html” section.
Disable Registration of a Servlet or Filter
As described earlier, any
Servlet
or Filter
beans are registered with the servlet container automatically. To
disable registration of a particular Filter
or Servlet
bean, create a registration
bean for it and mark it as disabled, as shown in the following example:
@Bean
public FilterRegistrationBean registration(MyFilter filter) {
FilterRegistrationBean registration = new FilterRegistrationBean(filter);
registration.setEnabled(false);
return registration;
}
3.10.2. Add Servlets, Filters, and Listeners by Using Classpath Scanning
@WebServlet
, @WebFilter
, and @WebListener
annotated classes can be automatically
registered with an embedded servlet container by annotating a @Configuration
class
with @ServletComponentScan
and specifying the package(s) containing the components
that you want to register. By default, @ServletComponentScan
scans from the package
of the annotated class.
3.11. Configure Access Logging
Access logs can be configured for Tomcat, Undertow, and Jetty through their respective namespaces.
For instance, the following settings log access on Tomcat with a custom pattern.
server.tomcat.basedir=my-tomcat
server.tomcat.accesslog.enabled=true
server.tomcat.accesslog.pattern=%t %a "%r" %s (%D ms)
The default location for logs is a logs directory relative to the Tomcat base
directory. By default, the logs directory is a temporary directory, so you may want to
fix Tomcat’s base directory or use an absolute path for the logs. In the preceding
example, the logs are available in my-tomcat/logs relative to the working directory of
the application.
|
Access logging for Undertow can be configured in a similar fashion, as shown in the following example:
server.undertow.accesslog.enabled=true
server.undertow.accesslog.pattern=%t %a "%r" %s (%D ms)
Logs are stored in a logs
directory relative to the working directory of the
application. You can customize this location by setting the
server.undertow.accesslog.directory
property.
Finally, access logging for Jetty can also be configured as follows:
server.jetty.accesslog.enabled=true
server.jetty.accesslog.filename=/var/log/jetty-access.log
By default, logs are redirected to System.err
. For more details, see
the Jetty documentation.
3.12. Running Behind a Front-end Proxy Server
Your application might need to send 302
redirects or render content with absolute links
back to itself. When running behind a proxy, the caller wants a link to the proxy and not
to the physical address of the machine hosting your app. Typically, such situations are
handled through a contract with the proxy, which adds headers to tell the back end how to
construct links to itself.
If the proxy adds conventional X-Forwarded-For
and X-Forwarded-Proto
headers (most
proxy servers do so), the absolute links should be rendered correctly, provided
server.forward-headers-strategy
is set to NATIVE
or FRAMEWORK
in your application.properties
.
If your application runs in Cloud Foundry or Heroku, the
server.forward-headers-strategy property defaults to NATIVE . In all
other instances, it defaults to NONE .
|
3.12.1. Customize Tomcat’s Proxy Configuration
If you use Tomcat, you can additionally configure the names of the headers used to carry “forwarded” information, as shown in the following example:
server.tomcat.remote-ip-header=x-your-remote-ip-header server.tomcat.protocol-header=x-your-protocol-header
Tomcat is also configured with a default regular expression that matches internal
proxies that are to be trusted. By default, IP addresses in 10/8
, 192.168/16
,
169.254/16
and 127/8
are trusted. You can customize the valve’s configuration by
adding an entry to application.properties
, as shown in the following example:
server.tomcat.internal-proxies=192\\.168\\.\\d{1,3}\\.\\d{1,3}
The double backslashes are required only when you use a properties file for
configuration. If you use YAML, single backslashes are sufficient, and a value
equivalent to that shown in the preceding example would be 192\.168\.\d{1,3}\.\d{1,3} .
|
You can trust all proxies by setting the internal-proxies to empty (but do not do
so in production).
|
You can take complete control of the configuration of Tomcat’s RemoteIpValve
by
switching the automatic one off (to do so, set server.forward-headers-strategy=NONE
) and
adding a new valve instance in a TomcatServletWebServerFactory
bean.
3.13. Enable Multiple Connectors with Tomcat
You can add an org.apache.catalina.connector.Connector
to the
TomcatServletWebServerFactory
, which can allow multiple connectors, including HTTP and
HTTPS connectors, as shown in the following example:
@Bean
public ServletWebServerFactory servletContainer() {
TomcatServletWebServerFactory tomcat = new TomcatServletWebServerFactory();
tomcat.addAdditionalTomcatConnectors(createSslConnector());
return tomcat;
}
private Connector createSslConnector() {
Connector connector = new Connector("org.apache.coyote.http11.Http11NioProtocol");
Http11NioProtocol protocol = (Http11NioProtocol) connector.getProtocolHandler();
try {
File keystore = new ClassPathResource("keystore").getFile();
File truststore = new ClassPathResource("keystore").getFile();
connector.setScheme("https");
connector.setSecure(true);
connector.setPort(8443);
protocol.setSSLEnabled(true);
protocol.setKeystoreFile(keystore.getAbsolutePath());
protocol.setKeystorePass("changeit");
protocol.setTruststoreFile(truststore.getAbsolutePath());
protocol.setTruststorePass("changeit");
protocol.setKeyAlias("apitester");
return connector;
}
catch (IOException ex) {
throw new IllegalStateException("can't access keystore: [" + "keystore"
+ "] or truststore: [" + "keystore" + "]", ex);
}
}
3.14. Use Tomcat’s LegacyCookieProcessor
By default, the embedded Tomcat used by Spring Boot does not support "Version 0" of the Cookie format, so you may see the following error:
java.lang.IllegalArgumentException: An invalid character [32] was present in the Cookie value
If at all possible, you should consider updating your code to only store values
compliant with later Cookie specifications. If, however, you cannot change the
way that cookies are written, you can instead configure Tomcat to use a
LegacyCookieProcessor
. To switch to the LegacyCookieProcessor
, use an
WebServerFactoryCustomizer
bean that adds a TomcatContextCustomizer
, as shown
in the following example:
@Bean
public WebServerFactoryCustomizer<TomcatServletWebServerFactory> cookieProcessorCustomizer() {
return (factory) -> factory.addContextCustomizers(
(context) -> context.setCookieProcessor(new LegacyCookieProcessor()));
}
3.15. Enable Multiple Listeners with Undertow
Add an UndertowBuilderCustomizer
to the UndertowServletWebServerFactory
and
add a listener to the Builder
, as shown in the following example:
@Bean
public UndertowServletWebServerFactory servletWebServerFactory() {
UndertowServletWebServerFactory factory = new UndertowServletWebServerFactory();
factory.addBuilderCustomizers(new UndertowBuilderCustomizer() {
@Override
public void customize(Builder builder) {
builder.addHttpListener(8080, "0.0.0.0");
}
});
return factory;
}
3.16. Create WebSocket Endpoints Using @ServerEndpoint
If you want to use @ServerEndpoint
in a Spring Boot application that used an embedded
container, you must declare a single ServerEndpointExporter
@Bean
, as shown in the
following example:
@Bean
public ServerEndpointExporter serverEndpointExporter() {
return new ServerEndpointExporter();
}
The bean shown in the preceding example registers any @ServerEndpoint
annotated beans
with the underlying WebSocket container. When deployed to a standalone servlet container,
this role is performed by a servlet container initializer, and the
ServerEndpointExporter
bean is not required.
4. Spring MVC
Spring Boot has a number of starters that include Spring MVC. Note that some starters include a dependency on Spring MVC rather than include it directly. This section answers common questions about Spring MVC and Spring Boot.
4.1. Write a JSON REST Service
Any Spring @RestController
in a Spring Boot application should render JSON response by
default as long as Jackson2 is on the classpath, as shown in the following example:
@RestController
public class MyController {
@RequestMapping("/thing")
public MyThing thing() {
return new MyThing();
}
}
As long as MyThing
can be serialized by Jackson2 (true for a normal POJO or Groovy
object), then localhost:8080/thing
serves a JSON representation of it by
default. Note that, in a browser, you might sometimes see XML responses, because browsers
tend to send accept headers that prefer XML.
4.2. Write an XML REST Service
If you have the Jackson XML extension (jackson-dataformat-xml
) on the classpath, you
can use it to render XML responses. The previous example that we used for JSON would
work. To use the Jackson XML renderer, add the following dependency to your project:
<dependency>
<groupId>com.fasterxml.jackson.dataformat</groupId>
<artifactId>jackson-dataformat-xml</artifactId>
</dependency>
If Jackson’s XML extension is not available and JAXB is available, XML can be rendered
with the additional requirement of having MyThing
annotated as @XmlRootElement
, as
shown in the following example:
@XmlRootElement
public class MyThing {
private String name;
// .. getters and setters
}
JAXB is only available out of the box with Java 8. If you’re using a more recent Java generation, add the following dependency to your project:
<dependency>
<groupId>org.glassfish.jaxb</groupId>
<artifactId>jaxb-runtime</artifactId>
</dependency>
To get the server to render XML instead of JSON, you might have to send an
Accept: text/xml header (or use a browser).
|
4.3. Customize the Jackson ObjectMapper
Spring MVC (client and server side) uses HttpMessageConverters
to negotiate content
conversion in an HTTP exchange. If Jackson is on the classpath, you already get the
default converter(s) provided by Jackson2ObjectMapperBuilder
, an instance of which
is auto-configured for you.
The ObjectMapper
(or XmlMapper
for Jackson XML converter) instance (created by
default) has the following customized properties:
-
MapperFeature.DEFAULT_VIEW_INCLUSION
is disabled -
DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES
is disabled -
SerializationFeature.WRITE_DATES_AS_TIMESTAMPS
is disabled
Spring Boot also has some features to make it easier to customize this behavior.
You can configure the ObjectMapper
and XmlMapper
instances by using the environment.
Jackson provides an extensive suite of simple on/off features that can be used to
configure various aspects of its processing. These features are described in six enums (in
Jackson) that map onto properties in the environment:
Enum | Property | Values |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
For example, to enable pretty print, set spring.jackson.serialization.indent_output=true
.
Note that, thanks to the use of relaxed binding, the case of indent_output
does not have to match the case of the
corresponding enum constant, which is INDENT_OUTPUT
.
This environment-based configuration is applied to the auto-configured
Jackson2ObjectMapperBuilder
bean and applies to any mappers created by
using the builder, including the auto-configured ObjectMapper
bean.
The context’s Jackson2ObjectMapperBuilder
can be customized by one or more
Jackson2ObjectMapperBuilderCustomizer
beans. Such customizer beans can be ordered
(Boot’s own customizer has an order of 0), letting additional customization be applied
both before and after Boot’s customization.
Any beans of type com.fasterxml.jackson.databind.Module
are automatically registered
with the auto-configured Jackson2ObjectMapperBuilder
and are applied to any ObjectMapper
instances that it creates. This provides a global mechanism for contributing custom
modules when you add new features to your application.
If you want to replace the default ObjectMapper
completely, either define a @Bean
of
that type and mark it as @Primary
or, if you prefer the builder-based
approach, define a Jackson2ObjectMapperBuilder
@Bean
. Note that, in either case,
doing so disables all auto-configuration of the ObjectMapper
.
If you provide any @Beans
of type MappingJackson2HttpMessageConverter
,
they replace the default value in the MVC configuration. Also, a convenience bean of type
HttpMessageConverters
is provided (and is always available if you use the default MVC
configuration). It has some useful methods to access the default and user-enhanced
message converters.
See the “Customize the @ResponseBody Rendering” section and the
WebMvcAutoConfiguration
source code for more details.
4.4. Customize the @ResponseBody Rendering
Spring uses HttpMessageConverters
to render @ResponseBody
(or responses from
@RestController
). You can contribute additional converters by adding beans of the
appropriate type in a Spring Boot context. If a bean you add is of a type that would have
been included by default anyway (such as MappingJackson2HttpMessageConverter
for JSON
conversions), it replaces the default value. A convenience bean of type
HttpMessageConverters
is provided and is always available if you use the default MVC
configuration. It has some useful methods to access the default and user-enhanced message
converters (For example, it can be useful if you want to manually inject them into a
custom RestTemplate
).
As in normal MVC usage, any WebMvcConfigurer
beans that you provide can also
contribute converters by overriding the configureMessageConverters
method. However, unlike
with normal MVC, you can supply only additional converters that you need (because Spring
Boot uses the same mechanism to contribute its defaults). Finally, if you opt out of the
Spring Boot default MVC configuration by providing your own @EnableWebMvc
configuration,
you can take control completely and do everything manually by using
getMessageConverters
from WebMvcConfigurationSupport
.
See the
WebMvcAutoConfiguration
source code for more details.
4.5. Handling Multipart File Uploads
Spring Boot embraces the Servlet 3 javax.servlet.http.Part
API to support uploading
files. By default, Spring Boot configures Spring MVC with a maximum size of 1MB per
file and a maximum of 10MB of file data in a single request. You may override these
values, the location to which intermediate data is stored (for example, to the /tmp
directory), and the threshold past which data is flushed to disk by using the properties
exposed in the MultipartProperties
class. For example, if you want to specify that
files be unlimited, set the spring.servlet.multipart.max-file-size
property to -1
.
The multipart support is helpful when you want to receive multipart encoded file data as
a @RequestParam
-annotated parameter of type MultipartFile
in a Spring MVC controller
handler method.
See the
MultipartAutoConfiguration
source for more details.
It is recommended to use the container’s built-in support for multipart uploads rather than introducing an additional dependency such as Apache Commons File Upload. |
4.6. Switch Off the Spring MVC DispatcherServlet
By default, all content is served from the root of your application (/
). If you
would rather map to a different path, you can configure one as follows:
spring.mvc.servlet.path=/acme
If you have additional servlets you can declare a @Bean
of type Servlet
or
ServletRegistrationBean
for each and Spring Boot will register them transparently to the
container. Because servlets are registered that way, they can be mapped to a sub-context
of the DispatcherServlet
without invoking it.
Configuring the DispatcherServlet
yourself is unusual but if you really need to do it, a
@Bean
of type DispatcherServletPath
must be provided as well to provide the path of
your custom DispatcherServlet
.
4.7. Switch off the Default MVC Configuration
The easiest way to take complete control over MVC configuration is to provide your own
@Configuration
with the @EnableWebMvc
annotation. Doing so leaves all MVC
configuration in your hands.
4.8. Customize ViewResolvers
A ViewResolver
is a core component of Spring MVC, translating view names in
@Controller
to actual View
implementations. Note that ViewResolvers
are mainly
used in UI applications, rather than REST-style services (a View
is not used to render
a @ResponseBody
). There are many implementations of ViewResolver
to choose from, and
Spring on its own is not opinionated about which ones you should use. Spring Boot, on the
other hand, installs one or two for you, depending on what it finds on the classpath and
in the application context. The DispatcherServlet
uses all the resolvers it finds in
the application context, trying each one in turn until it gets a result, so, if you
add your own, you have to be aware of the order and in which position your resolver is
added.
WebMvcAutoConfiguration
adds the following ViewResolvers
to your context:
-
An
InternalResourceViewResolver
named ‘defaultViewResolver’. This one locates physical resources that can be rendered by using theDefaultServlet
(including static resources and JSP pages, if you use those). It applies a prefix and a suffix to the view name and then looks for a physical resource with that path in the servlet context (the defaults are both empty but are accessible for external configuration throughspring.mvc.view.prefix
andspring.mvc.view.suffix
). You can override it by providing a bean of the same type. -
A
BeanNameViewResolver
named ‘beanNameViewResolver’. This is a useful member of the view resolver chain and picks up any beans with the same name as theView
being resolved. It should not be necessary to override or replace it. -
A
ContentNegotiatingViewResolver
named ‘viewResolver’ is added only if there are actually beans of typeView
present. This is a ‘master’ resolver, delegating to all the others and attempting to find a match to the ‘Accept’ HTTP header sent by the client. There is a useful blog aboutContentNegotiatingViewResolver
that you might like to study to learn more, and you might also look at the source code for detail. You can switch off the auto-configuredContentNegotiatingViewResolver
by defining a bean named ‘viewResolver’. -
If you use Thymeleaf, you also have a
ThymeleafViewResolver
named ‘thymeleafViewResolver’. It looks for resources by surrounding the view name with a prefix and suffix. The prefix isspring.thymeleaf.prefix
, and the suffix isspring.thymeleaf.suffix
. The values of the prefix and suffix default to ‘classpath:/templates/’ and ‘.html’, respectively. You can overrideThymeleafViewResolver
by providing a bean of the same name. -
If you use FreeMarker, you also have a
FreeMarkerViewResolver
named ‘freeMarkerViewResolver’. It looks for resources in a loader path (which is externalized tospring.freemarker.templateLoaderPath
and has a default value of ‘classpath:/templates/’) by surrounding the view name with a prefix and a suffix. The prefix is externalized tospring.freemarker.prefix
, and the suffix is externalized tospring.freemarker.suffix
. The default values of the prefix and suffix are empty and ‘.ftl’, respectively. You can overrideFreeMarkerViewResolver
by providing a bean of the same name. -
If you use Groovy templates (actually, if
groovy-templates
is on your classpath), you also have aGroovyMarkupViewResolver
named ‘groovyMarkupViewResolver’. It looks for resources in a loader path by surrounding the view name with a prefix and suffix (externalized tospring.groovy.template.prefix
andspring.groovy.template.suffix
). The prefix and suffix have default values of ‘classpath:/templates/’ and ‘.tpl’, respectively. You can overrideGroovyMarkupViewResolver
by providing a bean of the same name.
For more detail, see the following sections:
5. Testing With Spring Security
Spring Security provides support for running tests as a specific user.
For example, the test in the snippet below will run with an authenticated user
that has the ADMIN
role.
@Test
@WithMockUser(roles="ADMIN")
public void requestProtectedUrlWithUser() throws Exception {
mvc
.perform(get("/"))
...
}
Spring Security provides comprehensive integration with Spring MVC Test and
this can also be used when testing controllers using the @WebMvcTest
slice and MockMvc
.
For additional details on Spring Security’s testing support, refer to Spring Security’s reference documentation).
6. Jersey
6.1. Secure Jersey endpoints with Spring Security
Spring Security can be used to secure a Jersey-based web application in much the same
way as it can be used to secure a Spring MVC-based web application. However, if you want
to use Spring Security’s method-level security with Jersey, you must configure Jersey to
use setStatus(int)
rather sendError(int)
. This prevents Jersey from committing the
response before Spring Security has had an opportunity to report an authentication or
authorization failure to the client.
The jersey.config.server.response.setStatusOverSendError
property must be set to true
on the application’s ResourceConfig
bean, as shown in the following example:
@Component
public class JerseyConfig extends ResourceConfig {
public JerseyConfig() {
register(Endpoint.class);
setProperties(Collections.singletonMap(
"jersey.config.server.response.setStatusOverSendError", true));
}
}
7. HTTP Clients
Spring Boot offers a number of starters that work with HTTP clients. This section answers questions related to using them.
7.1. Configure RestTemplate to Use a Proxy
As described in spring-boot-features.html,
you can use a RestTemplateCustomizer
with RestTemplateBuilder
to build a customized
RestTemplate
. This is the recommended approach for creating a RestTemplate
configured
to use a proxy.
The exact details of the proxy configuration depend on the underlying client request
factory that is being used. The following example configures
HttpComponentsClientRequestFactory
with an HttpClient
that uses a proxy for all hosts
except 192.168.0.5
:
static class ProxyCustomizer implements RestTemplateCustomizer {
@Override
public void customize(RestTemplate restTemplate) {
HttpHost proxy = new HttpHost("proxy.example.com");
HttpClient httpClient = HttpClientBuilder.create()
.setRoutePlanner(new DefaultProxyRoutePlanner(proxy) {
@Override
public HttpHost determineProxy(HttpHost target,
HttpRequest request, HttpContext context)
throws HttpException {
if (target.getHostName().equals("192.168.0.5")) {
return null;
}
return super.determineProxy(target, request, context);
}
}).build();
restTemplate.setRequestFactory(
new HttpComponentsClientHttpRequestFactory(httpClient));
}
}
8. Logging
Spring Boot has no mandatory logging dependency, except for the Commons Logging API, which
is typically provided by Spring Framework’s spring-jcl
module. To use
Logback, you need to include it and spring-jcl
on the classpath.
The simplest way to do that is through the starters, which all depend on
spring-boot-starter-logging
. For a web application, you need only
spring-boot-starter-web
, since it depends transitively on the logging starter. If you
use Maven, the following dependency adds logging for you:
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
Spring Boot has a LoggingSystem
abstraction that attempts to configure logging based on
the content of the classpath. If Logback is available, it is the first choice.
If the only change you need to make to logging is to set the levels of various loggers,
you can do so in application.properties
by using the "logging.level" prefix, as shown
in the following example:
logging.level.org.springframework.web=DEBUG
logging.level.org.hibernate=ERROR
You can also set the location of a file to which to write the log (in addition to the console) by using "logging.file.name".
To configure the more fine-grained settings of a logging system, you need to use the native
configuration format supported by the LoggingSystem
in question. By default, Spring Boot
picks up the native configuration from its default location for the system (such as
classpath:logback.xml
for Logback), but you can set the location of the config file by
using the "logging.config" property.
8.1. Configure Logback for Logging
If you put a logback.xml
in the root of your classpath, it is picked up from there (or
from logback-spring.xml
, to take advantage of the templating features provided by
Boot). Spring Boot provides a default base configuration that you can include if you
want to set levels, as shown in the following example:
<?xml version="1.0" encoding="UTF-8"?>
<configuration>
<include resource="org/springframework/boot/logging/logback/base.xml"/>
<logger name="org.springframework.web" level="DEBUG"/>
</configuration>
If you look at base.xml
in the spring-boot jar, you can see that it uses
some useful System properties that the LoggingSystem
takes care of creating for you:
-
${PID}
: The current process ID. -
${LOG_FILE}
: Whetherlogging.file.name
was set in Boot’s external configuration. -
${LOG_PATH}
: Whetherlogging.file.path
(representing a directory for log files to live in) was set in Boot’s external configuration. -
${LOG_EXCEPTION_CONVERSION_WORD}
: Whetherlogging.exception-conversion-word
was set in Boot’s external configuration.
Spring Boot also provides some nice ANSI color terminal output on a console (but not in
a log file) by using a custom Logback converter. See the default base.xml
configuration
for details.
If Groovy is on the classpath, you should be able to configure Logback with
logback.groovy
as well. If present, this setting is given preference.
8.1.1. Configure Logback for File-only Output
If you want to disable console logging and write output only to a file, you need a custom
logback-spring.xml
that imports file-appender.xml
but not console-appender.xml
, as
shown in the following example:
<?xml version="1.0" encoding="UTF-8"?>
<configuration>
<include resource="org/springframework/boot/logging/logback/defaults.xml" />
<property name="LOG_FILE" value="${LOG_FILE:-${LOG_PATH:-${LOG_TEMP:-${java.io.tmpdir:-/tmp}}/}spring.log}"/>
<include resource="org/springframework/boot/logging/logback/file-appender.xml" />
<root level="INFO">
<appender-ref ref="FILE" />
</root>
</configuration>
You also need to add logging.file.name
to your application.properties
, as shown in the
following example:
logging.file.name=myapplication.log
8.2. Configure Log4j for Logging
Spring Boot supports Log4j 2 for logging
configuration if it is on the classpath. If you use the starters for
assembling dependencies, you have to exclude Logback and then include log4j 2
instead. If you do not use the starters, you need to provide (at least) spring-jcl
in
addition to Log4j 2.
The simplest path is probably through the starters, even though it requires some jiggling with excludes. The following example shows how to set up the starters in Maven:
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter</artifactId>
<exclusions>
<exclusion>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-logging</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-log4j2</artifactId>
</dependency>
And the following example shows one way to set up the starters in Gradle:
dependencies {
compile 'org.springframework.boot:spring-boot-starter-web'
compile 'org.springframework.boot:spring-boot-starter-log4j2'
}
configurations {
all {
exclude group: 'org.springframework.boot', module: 'spring-boot-starter-logging'
}
}
The Log4j starters gather together the dependencies for common logging
requirements (such as having Tomcat use java.util.logging but configuring the
output using Log4j 2). See the
Actuator Log4j 2
samples for more detail and to see it in action.
|
To ensure that debug logging performed using java.util.logging is routed into
Log4j 2, configure its JDK
logging adapter by setting the java.util.logging.manager system property to
org.apache.logging.log4j.jul.LogManager .
|
8.2.1. Use YAML or JSON to Configure Log4j 2
In addition to its default XML configuration format, Log4j 2 also supports YAML and JSON configuration files. To configure Log4j 2 to use an alternative configuration file format, add the appropriate dependencies to the classpath and name your configuration files to match your chosen file format, as shown in the following example:
Format | Dependencies | File names |
---|---|---|
YAML |
|
|
JSON |
|
|
9. Data Access
Spring Boot includes a number of starters for working with data sources. This section answers questions related to doing so.
9.1. Configure a Custom DataSource
To configure your own DataSource
, define a @Bean
of that type in your configuration.
Spring Boot reuses your DataSource
anywhere one is required, including database
initialization. If you need to externalize some settings, you can bind your
DataSource
to the environment (see
“spring-boot-features.html”).
The following example shows how to define a data source in a bean:
@Bean
@ConfigurationProperties(prefix="app.datasource")
public DataSource dataSource() {
return new FancyDataSource();
}
The following example shows how to define a data source by setting properties:
app.datasource.url=jdbc:h2:mem:mydb
app.datasource.username=sa
app.datasource.pool-size=30
Assuming that your FancyDataSource
has regular JavaBean properties for the URL, the
username, and the pool size, these settings are bound automatically before the
DataSource
is made available to other components. The regular
database initialization also happens
(so the relevant sub-set of spring.datasource.*
can still be used with your custom
configuration).
Spring Boot also provides a utility builder class, called DataSourceBuilder
, that can
be used to create one of the standard data sources (if it is on the classpath). The
builder can detect the one to use based on what’s available on the classpath. It also
auto-detects the driver based on the JDBC URL.
The following example shows how to create a data source by using a DataSourceBuilder
:
@Bean
@ConfigurationProperties("app.datasource")
public DataSource dataSource() {
return DataSourceBuilder.create().build();
}
To run an app with that DataSource
, all you need is the connection
information. Pool-specific settings can also be provided. Check the implementation that
is going to be used at runtime for more details.
The following example shows how to define a JDBC data source by setting properties:
app.datasource.url=jdbc:mysql://localhost/test
app.datasource.username=dbuser
app.datasource.password=dbpass
app.datasource.pool-size=30
However, there is a catch. Because the actual type of the connection pool is not exposed,
no keys are generated in the metadata for your custom DataSource
and no completion is
available in your IDE (because the DataSource
interface exposes no properties). Also, if
you happen to have Hikari on the classpath, this basic setup does not work, because Hikari
has no url
property (but does have a jdbcUrl
property). In that case, you must rewrite
your configuration as follows:
app.datasource.jdbc-url=jdbc:mysql://localhost/test
app.datasource.username=dbuser
app.datasource.password=dbpass
app.datasource.maximum-pool-size=30
You can fix that by forcing the connection pool to use and return a dedicated
implementation rather than DataSource
. You cannot change the implementation
at runtime, but the list of options will be explicit.
The following example shows how create a HikariDataSource
with DataSourceBuilder
:
@Bean
@ConfigurationProperties("app.datasource")
public HikariDataSource dataSource() {
return DataSourceBuilder.create().type(HikariDataSource.class).build();
}
You can even go further by leveraging what DataSourceProperties
does for you — that is,
by providing a default embedded database with a sensible username and password if no URL
is provided. You can easily initialize a DataSourceBuilder
from the state of any
DataSourceProperties
object, so you could also inject the DataSource that Spring Boot
creates automatically. However, that would split your configuration into two namespaces:
url
, username
, password
, type
, and driver
on spring.datasource
and the rest on
your custom namespace (app.datasource
). To avoid that, you can redefine a custom
DataSourceProperties
on your custom namespace, as shown in the following example:
@Bean
@Primary
@ConfigurationProperties("app.datasource")
public DataSourceProperties dataSourceProperties() {
return new DataSourceProperties();
}
@Bean
@ConfigurationProperties("app.datasource.configuration")
public HikariDataSource dataSource(DataSourceProperties properties) {
return properties.initializeDataSourceBuilder().type(HikariDataSource.class)
.build();
}
This setup puts you in sync with what Spring Boot does for you by default, except that
a dedicated connection pool is chosen (in code) and its settings are exposed in the
app.datasource.configuration
sub namespace. Because DataSourceProperties
is taking
care of the url
/jdbcUrl
translation for you, you can configure it as follows:
app.datasource.url=jdbc:mysql://localhost/test
app.datasource.username=dbuser
app.datasource.password=dbpass
app.datasource.configuration.maximum-pool-size=30
Spring Boot will expose Hikari-specific settings to spring.datasource.hikari . This
example uses a more generic configuration sub namespace as the example does not support
multiple datasource implementations.
|
Because your custom configuration chooses to go with Hikari, app.datasource.type
has no effect. In practice, the builder is initialized with whatever value you
might set there and then overridden by the call to .type() .
|
See “spring-boot-features.html” in the
“Spring Boot features” section and the
DataSourceAutoConfiguration
class for more details.
9.2. Configure Two DataSources
If you need to configure multiple data sources, you can apply the same tricks that are
described in the previous section. You must, however, mark one of the DataSource
instances as @Primary
, because various auto-configurations down the road expect to be
able to get one by type.
If you create your own DataSource
, the auto-configuration backs off. In the following
example, we provide the exact same feature set as the auto-configuration provides
on the primary data source:
@Bean
@Primary
@ConfigurationProperties("app.datasource.first")
public DataSourceProperties firstDataSourceProperties() {
return new DataSourceProperties();
}
@Bean
@Primary
@ConfigurationProperties("app.datasource.first.configuration")
public HikariDataSource firstDataSource() {
return firstDataSourceProperties().initializeDataSourceBuilder()
.type(HikariDataSource.class).build();
}
@Bean
@ConfigurationProperties("app.datasource.second")
public BasicDataSource secondDataSource() {
return DataSourceBuilder.create().type(BasicDataSource.class).build();
}
firstDataSourceProperties has to be flagged as @Primary so that the database
initializer feature uses your copy (if you use the initializer).
|
Both data sources are also bound for advanced customizations. For instance, you could configure them as follows:
app.datasource.first.url=jdbc:mysql://localhost/first
app.datasource.first.username=dbuser
app.datasource.first.password=dbpass
app.datasource.first.configuration.maximum-pool-size=30
app.datasource.second.url=jdbc:mysql://localhost/second
app.datasource.second.username=dbuser
app.datasource.second.password=dbpass
app.datasource.second.max-total=30
You can apply the same concept to the secondary DataSource
as well, as shown in the
following example:
@Bean
@Primary
@ConfigurationProperties("app.datasource.first")
public DataSourceProperties firstDataSourceProperties() {
return new DataSourceProperties();
}
@Bean
@Primary
@ConfigurationProperties("app.datasource.first.configuration")
public HikariDataSource firstDataSource() {
return firstDataSourceProperties().initializeDataSourceBuilder()
.type(HikariDataSource.class).build();
}
@Bean
@ConfigurationProperties("app.datasource.second")
public DataSourceProperties secondDataSourceProperties() {
return new DataSourceProperties();
}
@Bean
@ConfigurationProperties("app.datasource.second.configuration")
public BasicDataSource secondDataSource() {
return secondDataSourceProperties().initializeDataSourceBuilder()
.type(BasicDataSource.class).build();
}
The preceding example configures two data sources on custom namespaces with the same
logic as Spring Boot would use in auto-configuration. Note that each configuration
sub
namespace provides advanced settings based on the chosen implementation.
9.3. Use Spring Data Repositories
Spring Data can create implementations of @Repository
interfaces of various flavors.
Spring Boot handles all of that for you, as long as those @Repositories
are included in
the same package (or a sub-package) of your @EnableAutoConfiguration
class.
For many applications, all you need is to put the right Spring Data dependencies on
your classpath (there is a spring-boot-starter-data-jpa
for JPA and a
spring-boot-starter-data-mongodb
for Mongodb) and create some repository interfaces to
handle your @Entity
objects. Examples are in the
JPA sample and the
Mongodb sample.
Spring Boot tries to guess the location of your @Repository
definitions, based on the
@EnableAutoConfiguration
it finds. To get more control, use the @EnableJpaRepositories
annotation (from Spring Data JPA).
For more about Spring Data, see the Spring Data project page.
9.4. Separate @Entity Definitions from Spring Configuration
Spring Boot tries to guess the location of your @Entity
definitions, based on the
@EnableAutoConfiguration
it finds. To get more control, you can use the @EntityScan
annotation, as shown in the following example:
@Configuration(proxyBeanMethods = false)
@EnableAutoConfiguration
@EntityScan(basePackageClasses=City.class)
public class Application {
//...
}
9.5. Configure JPA Properties
Spring Data JPA already provides some vendor-independent configuration options (such as those for SQL logging), and Spring Boot exposes those options and a few more for Hibernate as external configuration properties. Some of them are automatically detected according to the context so you should not have to set them.
The spring.jpa.hibernate.ddl-auto
is a special case, because, depending on runtime
conditions, it has different defaults. If an embedded database is used and no schema
manager (such as Liquibase or Flyway) is handling the DataSource
, it defaults to
create-drop
. In all other cases, it defaults to none
.
The dialect to use is detected by the JPA provider. If you prefer to set the dialect
yourself, set the spring.jpa.database-platform
property.
The most common options to set are shown in the following example:
spring.jpa.hibernate.naming.physical-strategy=com.example.MyPhysicalNamingStrategy spring.jpa.show-sql=true
In addition, all properties in spring.jpa.properties.*
are passed through as normal
JPA properties (with the prefix stripped) when the local EntityManagerFactory
is
created.
If you need to apply advanced customization to Hibernate properties, consider
registering a HibernatePropertiesCustomizer bean that will be invoked prior to creating
the EntityManagerFactory . This takes precedence to anything that is applied by the
auto-configuration.
|
9.6. Configure Hibernate Naming Strategy
Hibernate uses two different naming strategies to map
names from the object model to the corresponding database names. The fully qualified
class name of the physical and the implicit strategy implementations can be configured by
setting the spring.jpa.hibernate.naming.physical-strategy
and
spring.jpa.hibernate.naming.implicit-strategy
properties, respectively. Alternatively,
if ImplicitNamingStrategy
or PhysicalNamingStrategy
beans are available in the
application context, Hibernate will be automatically configured to use them.
By default, Spring Boot configures the physical naming strategy with
SpringPhysicalNamingStrategy
. This implementation provides the same table structure as
Hibernate 4: all dots are replaced by underscores and camel casing is replaced by
underscores as well. By default, all table names are generated in lower case, but it is
possible to override that flag if your schema requires it.
For example, a TelephoneNumber
entity is mapped to the telephone_number
table.
If you prefer to use Hibernate 5’s default instead, set the following property:
spring.jpa.hibernate.naming.physical-strategy=org.hibernate.boot.model.naming.PhysicalNamingStrategyStandardImpl
Alternatively, you can configure the following bean:
@Bean
public PhysicalNamingStrategy physicalNamingStrategy() {
return new PhysicalNamingStrategyStandardImpl();
}
See HibernateJpaAutoConfiguration
and JpaBaseConfiguration
for more details.
9.7. Configure Hibernate Second-Level Caching
Hibernate second-level cache can be configured for a range of cache providers. Rather than configuring Hibernate to lookup the cache provider again, it is better to provide the one that is available in the context whenever possible.
If you’re using JCache, this is pretty easy. First, make sure that
org.hibernate:hibernate-jcache
is available on the classpath. Then, add a
HibernatePropertiesCustomizer
bean as shown in the following example:
@Configuration(proxyBeanMethods = false)
public class HibernateSecondLevelCacheExample {
@Bean
public HibernatePropertiesCustomizer hibernateSecondLevelCacheCustomizer(
JCacheCacheManager cacheManager) {
return (properties) -> properties.put(ConfigSettings.CACHE_MANAGER,
cacheManager.getCacheManager());
}
}
This customizer will configure Hibernate to use the same CacheManager
as the one that
the application uses. It is also possible to use separate CacheManager
instances. For
details, refer to the Hibernate user
guide.
9.8. Use Dependency Injection in Hibernate Components
By default, Spring Boot registers a BeanContainer
implementation that uses the
BeanFactory
so that converters and entity listeners can use regular dependency
injection.
You can disable or tune this behaviour by registering a HibernatePropertiesCustomizer
that removes or changes the hibernate.resource.beans.container
property.
9.9. Use a Custom EntityManagerFactory
To take full control of the configuration of the EntityManagerFactory
, you need to add
a @Bean
named ‘entityManagerFactory’. Spring Boot auto-configuration switches off its
entity manager in the presence of a bean of that type.
9.10. Use Two EntityManagers
Even if the default EntityManagerFactory
works fine, you need to define a new one.
Otherwise, the presence of the second bean of that type switches off the
default. To make it easy to do, you can use the convenient EntityManagerBuilder
provided by Spring Boot. Alternatively, you can just the
LocalContainerEntityManagerFactoryBean
directly from Spring ORM, as shown in the
following example:
// add two data sources configured as above
@Bean
public LocalContainerEntityManagerFactoryBean customerEntityManagerFactory(
EntityManagerFactoryBuilder builder) {
return builder
.dataSource(customerDataSource())
.packages(Customer.class)
.persistenceUnit("customers")
.build();
}
@Bean
public LocalContainerEntityManagerFactoryBean orderEntityManagerFactory(
EntityManagerFactoryBuilder builder) {
return builder
.dataSource(orderDataSource())
.packages(Order.class)
.persistenceUnit("orders")
.build();
}
The configuration above almost works on its own. To complete the picture, you need to
configure TransactionManagers
for the two EntityManagers
as well. If you mark one of
them as @Primary
, it could be picked up by the default JpaTransactionManager
in Spring
Boot. The other would have to be explicitly injected into a new instance. Alternatively,
you might be able to use a JTA transaction manager that spans both.
If you use Spring Data, you need to configure @EnableJpaRepositories
accordingly,
as shown in the following example:
@Configuration(proxyBeanMethods = false)
@EnableJpaRepositories(basePackageClasses = Customer.class,
entityManagerFactoryRef = "customerEntityManagerFactory")
public class CustomerConfiguration {
...
}
@Configuration(proxyBeanMethods = false)
@EnableJpaRepositories(basePackageClasses = Order.class,
entityManagerFactoryRef = "orderEntityManagerFactory")
public class OrderConfiguration {
...
}
9.11. Use a Traditional persistence.xml
File
Spring Boot will not search for or use a META-INF/persistence.xml
by default. If you
prefer to use a traditional persistence.xml
, you need to define your own @Bean
of
type LocalEntityManagerFactoryBean
(with an ID of ‘entityManagerFactory’) and set the
persistence unit name there.
See
JpaBaseConfiguration
for the default settings.
9.12. Use Spring Data JPA and Mongo Repositories
Spring Data JPA and Spring Data Mongo can both automatically create Repository
implementations for you. If they are both present on the classpath, you might have to do
some extra configuration to tell Spring Boot which repositories to create. The most
explicit way to do that is to use the standard Spring Data @EnableJpaRepositories
and
@EnableMongoRepositories
annotations and provide the location of your Repository
interfaces.
There are also flags (spring.data.*.repositories.enabled
and
spring.data.*.repositories.type
) that you can use to switch the auto-configured
repositories on and off in external configuration. Doing so is useful, for instance, in
case you want to switch off the Mongo repositories and still use the auto-configured
MongoTemplate
.
The same obstacle and the same features exist for other auto-configured Spring Data repository types (Elasticsearch, Solr, and others). To work with them, change the names of the annotations and flags accordingly.
9.13. Customize Spring Data’s Web Support
Spring Data provides web support that simplifies the use of Spring Data repositories in a
web application. Spring Boot provides properties in the spring.data.web
namespace
for customizing its configuration. Note that if you are using Spring Data REST, you must
use the properties in the spring.data.rest
namespace instead.
9.14. Expose Spring Data Repositories as REST Endpoint
Spring Data REST can expose the Repository
implementations as REST endpoints for you,
provided Spring MVC has been enabled for the application.
Spring Boot exposes a set of useful properties (from the spring.data.rest
namespace)
that customize the
RepositoryRestConfiguration
.
If you need to provide additional customization, you should use a
RepositoryRestConfigurer
bean.
If you do not specify any order on your custom RepositoryRestConfigurer , it runs
after the one Spring Boot uses internally. If you need to specify an order, make sure it
is higher than 0.
|
9.15. Configure a Component that is Used by JPA
If you want to configure a component that JPA uses, then you need to ensure that the component is initialized before JPA. When the component is auto-configured, Spring Boot takes care of this for you. For example, when Flyway is auto-configured, Hibernate is configured to depend upon Flyway so that Flyway has a chance to initialize the database before Hibernate tries to use it.
If you are configuring a component yourself, you can use an
EntityManagerFactoryDependsOnPostProcessor
subclass as a convenient way of setting up
the necessary dependencies. For example, if you use Hibernate Search with
Elasticsearch as its index manager, any EntityManagerFactory
beans must be
configured to depend on the elasticsearchClient
bean, as shown in the following example:
/**
* {@link EntityManagerFactoryDependsOnPostProcessor} that ensures that
* {@link EntityManagerFactory} beans depend on the {@code elasticsearchClient} bean.
*/
@Configuration(proxyBeanMethods = false)
static class ElasticsearchJpaDependencyConfiguration
extends EntityManagerFactoryDependsOnPostProcessor {
ElasticsearchJpaDependencyConfiguration() {
super("elasticsearchClient");
}
}
9.16. Configure jOOQ with Two DataSources
If you need to use jOOQ with multiple data sources, you should create your own
DSLContext
for each one. Refer to
JooqAutoConfiguration
for more details.
In particular, JooqExceptionTranslator and SpringTransactionProvider can be
reused to provide similar features to what the auto-configuration does with a single
DataSource .
|
10. Database Initialization
An SQL database can be initialized in different ways depending on what your stack is. Of course, you can also do it manually, provided the database is a separate process. It is recommended to use a single mechanism for schema generation.
10.1. Initialize a Database Using JPA
JPA has features for DDL generation, and these can be set up to run on startup against the database. This is controlled through two external properties:
-
spring.jpa.generate-ddl
(boolean) switches the feature on and off and is vendor independent. -
spring.jpa.hibernate.ddl-auto
(enum) is a Hibernate feature that controls the behavior in a more fine-grained way. This feature is described in more detail later in this guide.
10.2. Initialize a Database Using Hibernate
You can set spring.jpa.hibernate.ddl-auto
explicitly and the standard Hibernate property
values are none
, validate
, update
, create
, and create-drop
. Spring Boot chooses
a default value for you based on whether it thinks your database is embedded. It defaults
to create-drop
if no schema manager has been detected or none
in all other cases. An
embedded database is detected by looking at the Connection
type. hsqldb
, h2
, and
derby
are embedded, and others are not. Be careful when switching from in-memory to a
‘real’ database that you do not make assumptions about the existence of the tables and
data in the new platform. You either have to set ddl-auto
explicitly or use one of the
other mechanisms to initialize the database.
You can output the schema creation by enabling the org.hibernate.SQL logger. This
is done for you automatically if you enable the
debug mode.
|
In addition, a file named import.sql
in the root of the classpath is executed on
startup if Hibernate creates the schema from scratch (that is, if the ddl-auto
property
is set to create
or create-drop
). This can be useful for demos and for testing if you
are careful but is probably not something you want to be on the classpath in production.
It is a Hibernate feature (and has nothing to do with Spring).
10.3. Initialize a Database
Spring Boot can automatically create the schema (DDL scripts) of your DataSource
and
initialize it (DML scripts). It loads SQL from the standard root classpath locations:
schema.sql
and data.sql
, respectively. In addition, Spring Boot processes the
schema-${platform}.sql
and data-${platform}.sql
files (if present), where platform
is the value of spring.datasource.platform
. This allows you to switch to
database-specific scripts if necessary. For example, you might choose to set it to the
vendor name of the database (hsqldb
, h2
, oracle
, mysql
, postgresql
, and so on).
Spring Boot automatically creates the schema of an embedded spring.datasource.initialization-mode=always |
By default, Spring Boot enables the fail-fast feature of the Spring JDBC initializer. This
means that, if the scripts cause exceptions, the application fails to start. You can tune
that behavior by setting spring.datasource.continue-on-error
.
In a JPA-based app, you can choose to let Hibernate create the schema or use
schema.sql , but you cannot do both. Make sure to disable
spring.jpa.hibernate.ddl-auto if you use schema.sql .
|
10.4. Initialize a Spring Batch Database
If you use Spring Batch, it comes pre-packaged with SQL initialization scripts for most popular database platforms. Spring Boot can detect your database type and execute those scripts on startup. If you use an embedded database, this happens by default. You can also enable it for any database type, as shown in the following example:
spring.batch.initialize-schema=always
You can also switch off the initialization explicitly by setting
spring.batch.initialize-schema=never
.
10.5. Use a Higher-level Database Migration Tool
10.5.1. Execute Flyway Database Migrations on Startup
To automatically run Flyway database migrations on startup, add the
org.flywaydb:flyway-core
to your classpath.
The migrations are scripts in the form V<VERSION>__<NAME>.sql
(with <VERSION>
an
underscore-separated version, such as ‘1’ or ‘2_1’). By default, they are in a folder
called classpath:db/migration
, but you can modify that location by setting
spring.flyway.locations
. This is a comma-separated list of one or more classpath:
or filesystem:
locations. For example, the following configuration would search for
scripts in both the default classpath location and the /opt/migration
directory:
spring.flyway.locations=classpath:db/migration,filesystem:/opt/migration
You can also add a special {vendor}
placeholder to use vendor-specific scripts. Assume
the following:
spring.flyway.locations=classpath:db/migration/{vendor}
Rather than using db/migration
, the preceding configuration sets the folder to use
according to the type of the database (such as db/migration/mysql
for MySQL). The list
of supported databases is available in
DatabaseDriver
.
FlywayProperties
provides most of Flyway’s settings and a small set of additional properties that can be
used to disable the migrations or switch off the location checking. If you need more
control over the configuration, consider registering a FlywayConfigurationCustomizer
bean.
Spring Boot calls Flyway.migrate()
to perform the database migration. If you would like
more control, provide a @Bean
that implements
FlywayMigrationStrategy
.
Flyway supports SQL and Java callbacks.
To use SQL-based callbacks, place the callback scripts in the classpath:db/migration
folder. To use Java-based callbacks, create one or more beans that implement
Callback
. Any such beans are automatically registered with Flyway
. They can be
ordered by using @Order
or by implementing Ordered
. Beans that implement the
deprecated FlywayCallback
interface can also be detected, however they cannot be used
alongside Callback
beans.
By default, Flyway autowires the (@Primary
) DataSource
in your context and
uses that for migrations. If you like to use a different DataSource
, you can create
one and mark its @Bean
as @FlywayDataSource
. If you do so and want two data sources,
remember to create another one and mark it as @Primary
. Alternatively, you can use
Flyway’s native DataSource
by setting spring.flyway.[url,user,password]
in external properties. Setting either spring.flyway.url
or spring.flyway.user
is sufficient to cause Flyway to use its own DataSource
. If any of the three
properties has not be set, the value of its equivalent spring.datasource
property will
be used.
There is a Flyway sample so that you can see how to set things up.
You can also use Flyway to provide data for specific scenarios. For example, you can
place test-specific migrations in src/test/resources
and they are run only when your
application starts for testing. Also, you can use profile-specific configuration to
customize spring.flyway.locations
so that certain migrations run only when a particular
profile is active. For example, in application-dev.properties
, you might specify the
following setting:
spring.flyway.locations=classpath:/db/migration,classpath:/dev/db/migration
With that setup, migrations in dev/db/migration
run only when the dev
profile is
active.
10.5.2. Execute Liquibase Database Migrations on Startup
To automatically run Liquibase database migrations on startup, add the
org.liquibase:liquibase-core
to your classpath.
By default, the master change log is read from db/changelog/db.changelog-master.yaml
,
but you can change the location by setting spring.liquibase.change-log
. In addition to
YAML, Liquibase also supports JSON, XML, and SQL change log formats.
By default, Liquibase autowires the (@Primary
) DataSource
in your context and uses
that for migrations. If you need to use a different DataSource
, you can create one and
mark its @Bean
as @LiquibaseDataSource
. If you do so and you want two data sources,
remember to create another one and mark it as @Primary
. Alternatively, you can use
Liquibase’s native DataSource
by setting spring.liquibase.[url,user,password]
in
external properties. Setting either spring.liquibase.url
or spring.liquibase.user
is sufficient to cause Liquibase to use its own DataSource
. If any of the three
properties has not be set, the value of its equivalent spring.datasource
property will
be used.
See
LiquibaseProperties
for details about available settings such as contexts, the default schema, and others.
There is a Liquibase sample so that you can see how to set things up.
11. Messaging
Spring Boot offers a number of starters that include messaging. This section answers questions that arise from using messaging with Spring Boot.
11.1. Disable Transacted JMS Session
If your JMS broker does not support transacted sessions, you have to disable the
support of transactions altogether. If you create your own JmsListenerContainerFactory
,
there is nothing to do, since, by default it cannot be transacted. If you want to use
the DefaultJmsListenerContainerFactoryConfigurer
to reuse Spring Boot’s default, you
can disable transacted sessions, as follows:
@Bean
public DefaultJmsListenerContainerFactory jmsListenerContainerFactory(
ConnectionFactory connectionFactory,
DefaultJmsListenerContainerFactoryConfigurer configurer) {
DefaultJmsListenerContainerFactory listenerFactory =
new DefaultJmsListenerContainerFactory();
configurer.configure(listenerFactory, connectionFactory);
listenerFactory.setTransactionManager(null);
listenerFactory.setSessionTransacted(false);
return listenerFactory;
}
The preceding example overrides the default factory, and it should be applied to any other factory that your application defines, if any.
12. Batch Applications
This section answers questions that arise from using Spring Batch with Spring Boot.
By default, batch applications require a DataSource to store job details. If you
want to deviate from that, you need to implement BatchConfigurer . See
The
Javadoc of @EnableBatchProcessing for more details.
|
For more about Spring Batch, see the Spring Batch project page.
12.1. Execute Spring Batch Jobs on Startup
Spring Batch auto-configuration is enabled by adding @EnableBatchProcessing
(from Spring Batch) somewhere in your context.
By default, it executes all Jobs
in the application context on startup (see
JobLauncherCommandLineRunner
for details). You can narrow down to a specific job or jobs by specifying
spring.batch.job.names
(which takes a comma-separated list of job name patterns).
Specifying job parameters on the command line
Unlike command line option arguments that
set properties
in the |
If the application context includes a JobRegistry
, the jobs in
spring.batch.job.names
are looked up in the registry instead of being autowired from the
context. This is a common pattern with more complex systems, where multiple jobs are
defined in child contexts and registered centrally.
See BatchAutoConfiguration and @EnableBatchProcessing for more details.
13. Actuator
Spring Boot includes the Spring Boot Actuator. This section answers questions that often arise from its use.
13.1. Change the HTTP Port or Address of the Actuator Endpoints
In a standalone application, the Actuator HTTP port defaults to the same as the main HTTP
port. To make the application listen on a different port, set the external property:
management.server.port
. To listen on a completely different network address (such as
when you have an internal network for management and an external one for user
applications), you can also set management.server.address
to a valid IP address to which
the server is able to bind.
For more detail, see the
ManagementServerProperties
source code and
“production-ready-features.html”
in the “Production-ready features” section.
13.2. Customize the ‘whitelabel’ Error Page
Spring Boot installs a ‘whitelabel’ error page that you see in a browser client if you encounter a server error (machine clients consuming JSON and other media types should see a sensible response with the right error code).
Set server.error.whitelabel.enabled=false to switch the default error page off.
Doing so restores the default of the servlet container that you are using. Note that
Spring Boot still tries to resolve the error view, so you should probably add your own
error page rather than disabling it completely.
|
Overriding the error page with your own depends on the templating technology that you
use. For example, if you use Thymeleaf, you can add an error.html
template.
If you use FreeMarker, you can add an error.ftl
template. In general, you
need a View
that resolves with a name of error
or a @Controller
that handles
the /error
path. Unless you replaced some of the default configuration, you should find
a BeanNameViewResolver
in your ApplicationContext
, so a @Bean
named error
would
be a simple way of doing that. See
ErrorMvcAutoConfiguration
for more options.
See also the section on “Error Handling” for details of how to register handlers in the servlet container.
13.3. Sanitize sensible values
Information returned by the env
and configprops
endpoints can be somewhat sensitive
so keys matching a certain pattern are sanitized by default (i.e. their values are
replaced by ******
).
Spring Boot uses sensible defaults for such keys: for instance, any key ending with the
word "password", "secret", "key" or "token" is sanitized. It is also possible to use a
regular expression instead, such as *credentials.*
to sanitize any key that holds the
word credentials
as part of the key.
The patterns to use can be customized using the management.endpoint.env.keys-to-sanitize
and management.endpoint.configprops.keys-to-sanitize
respectively.
14. Security
This section addresses questions about security when working with Spring Boot, including questions that arise from using Spring Security with Spring Boot.
For more about Spring Security, see the Spring Security project page.
14.1. Switch off the Spring Boot Security Configuration
If you define a @Configuration
with a WebSecurityConfigurerAdapter
in your application,
it switches off the default webapp security settings in Spring Boot.
14.2. Change the UserDetailsService and Add User Accounts
If you provide a @Bean
of type AuthenticationManager
, AuthenticationProvider
,
or UserDetailsService
, the default @Bean
for InMemoryUserDetailsManager
is not
created, so you have the full feature set of Spring Security available (such as
various
authentication options).
The easiest way to add user accounts is to provide your own UserDetailsService
bean.
14.3. Enable HTTPS When Running behind a Proxy Server
Ensuring that all your main endpoints are only available over HTTPS is an important
chore for any application. If you use Tomcat as a servlet container, then
Spring Boot adds Tomcat’s own RemoteIpValve
automatically if it detects some
environment settings, and you should be able to rely on the HttpServletRequest
to
report whether it is secure or not (even downstream of a proxy server that handles the
real SSL termination). The standard behavior is determined by the presence or absence of
certain request headers (x-forwarded-for
and x-forwarded-proto
), whose names are
conventional, so it should work with most front-end proxies. You can switch on the valve
by adding some entries to application.properties
, as shown in the following example:
server.tomcat.remote-ip-header=x-forwarded-for
server.tomcat.protocol-header=x-forwarded-proto
(The presence of either of those properties switches on the valve. Alternatively, you can
add the RemoteIpValve
by adding a TomcatServletWebServerFactory
bean.)
To configure Spring Security to require a secure channel for all (or some)
requests, consider adding your own WebSecurityConfigurerAdapter
that adds the following
HttpSecurity
configuration:
@Configuration(proxyBeanMethods = false)
public class SslWebSecurityConfigurerAdapter extends WebSecurityConfigurerAdapter {
@Override
protected void configure(HttpSecurity http) throws Exception {
// Customize the application security
http.requiresChannel().anyRequest().requiresSecure();
}
}
15. Hot Swapping
Spring Boot supports hot swapping. This section answers questions about how it works.
15.1. Reload Static Content
There are several options for hot reloading. The recommended approach is to use
spring-boot-devtools
, as it provides
additional development-time features, such as support for fast application restarts
and LiveReload as well as sensible development-time configuration (such as template
caching). Devtools works by monitoring the classpath for changes. This means that static
resource changes must be "built" for the change to take effect. By default, this happens
automatically in Eclipse when you save your changes. In IntelliJ IDEA, the Make Project
command triggers the necessary build. Due to the
default restart
exclusions, changes to static resources do not trigger a restart of your application.
They do, however, trigger a live reload.
Alternatively, running in an IDE (especially with debugging on) is a good way to do development (all modern IDEs allow reloading of static resources and usually also allow hot-swapping of Java class changes).
Finally, the Maven and Gradle plugins can
be configured (see the addResources
property) to support running from the command line
with reloading of static files directly from source. You can use that with an external
css/js compiler process if you are writing that code with higher-level tools.
15.2. Reload Templates without Restarting the Container
Most of the templating technologies supported by Spring Boot include a configuration
option to disable caching (described later in this document). If you use the
spring-boot-devtools
module, these properties are
automatically configured
for you at development time.
15.2.1. Thymeleaf Templates
If you use Thymeleaf, set spring.thymeleaf.cache
to false
. See
ThymeleafAutoConfiguration
for other Thymeleaf customization options.
15.2.2. FreeMarker Templates
If you use FreeMarker, set spring.freemarker.cache
to false
. See
FreeMarkerAutoConfiguration
for other FreeMarker customization options.
15.2.3. Groovy Templates
If you use Groovy templates, set spring.groovy.template.cache
to false
. See
GroovyTemplateAutoConfiguration
for other Groovy customization options.
15.3. Fast Application Restarts
The spring-boot-devtools
module includes support for automatic application restarts.
While not as fast as technologies such as
JRebel it is usually significantly faster than
a “cold start”. You should probably give it a try before investigating some of the more
complex reload options discussed later in this document.
For more details, see the using-spring-boot.html section.
16. Build
Spring Boot includes build plugins for Maven and Gradle. This section answers common questions about these plugins.
16.1. Generate Build Information
Both the Maven plugin and the Gradle plugin allow generating build information containing
the coordinates, name, and version of the project. The plugins can also be configured
to add additional properties through configuration. When such a file is present,
Spring Boot auto-configures a BuildProperties
bean.
To generate build information with Maven, add an execution for the build-info
goal, as
shown in the following example:
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<version>2.2.0.M3</version>
<executions>
<execution>
<goals>
<goal>build-info</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
See the Spring Boot Maven Plugin documentation for more details. |
The following example does the same with Gradle:
springBoot {
buildInfo()
}
See the Spring Boot Gradle Plugin documentation for more details. |
16.2. Generate Git Information
Both Maven and Gradle allow generating a git.properties
file containing information
about the state of your git
source code repository when the project was built.
For Maven users, the spring-boot-starter-parent
POM includes a pre-configured plugin to
generate a git.properties
file. To use it, add the following declaration to your POM:
<build>
<plugins>
<plugin>
<groupId>pl.project13.maven</groupId>
<artifactId>git-commit-id-plugin</artifactId>
</plugin>
</plugins>
</build>
Gradle users can achieve the same result by using the
gradle-git-properties
plugin, as shown in the following example:
plugins {
id "com.gorylenko.gradle-git-properties" version "1.5.1"
}
The commit time in git.properties is expected to match the following format:
yyyy-MM-dd’T’HH:mm:ssZ . This is the default format for both plugins listed above. Using
this format lets the time be parsed into a Date and its format, when serialized to JSON,
to be controlled by Jackson’s date serialization configuration settings.
|
16.3. Customize Dependency Versions
If you use a Maven build that inherits directly or indirectly from
spring-boot-dependencies
(for instance, spring-boot-starter-parent
) but you want to
override a specific third-party dependency, you can add appropriate <properties>
elements. Browse the
spring-boot-dependencies
POM for a complete list of properties. For example, to pick a different slf4j
version,
you would add the following property:
<properties>
<slf4j.version>1.7.5<slf4j.version>
</properties>
Doing so only works if your Maven project inherits (directly or indirectly) from
spring-boot-dependencies . If you have added spring-boot-dependencies in your
own dependencyManagement section with <scope>import</scope> , you have to redefine
the artifact yourself instead of overriding the property.
|
Each Spring Boot release is designed and tested against this specific set of third-party dependencies. Overriding versions may cause compatibility issues. |
To override dependency versions in Gradle, see this section of the Gradle plugin’s documentation.
16.4. Create an Executable JAR with Maven
The spring-boot-maven-plugin
can be used to create an executable “fat” JAR. If you
use the spring-boot-starter-parent
POM, you can declare the plugin and your jars are
repackaged as follows:
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>
If you do not use the parent POM, you can still use the plugin. However, you must
additionally add an <executions>
section, as follows:
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<version>2.2.0.M3</version>
<executions>
<execution>
<goals>
<goal>repackage</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
See the plugin documentation for full usage details.
16.5. Use a Spring Boot Application as a Dependency
Like a war file, a Spring Boot application is not intended to be used as a dependency. If your application contains classes that you want to share with other projects, the recommended approach is to move that code into a separate module. The separate module can then be depended upon by your application and other projects.
If you cannot rearrange your code as recommended above, Spring Boot’s Maven and Gradle
plugins must be configured to produce a separate artifact that is suitable for use as a
dependency. The executable archive cannot be used as a dependency as the
executable jar format packages
application classes in BOOT-INF/classes
. This means that they cannot be found when the
executable jar is used as a dependency.
To produce the two artifacts, one that can be used as a dependency and one that is executable, a classifier must be specified. This classifier is applied to the name of the executable archive, leaving the default archive for use as a dependency.
To configure a classifier of exec
in Maven, you can use the following configuration:
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<configuration>
<classifier>exec</classifier>
</configuration>
</plugin>
</plugins>
</build>
16.6. Extract Specific Libraries When an Executable Jar Runs
Most nested libraries in an executable jar do not need to be unpacked in order to run.
However, certain libraries can have problems. For example, JRuby includes its own nested
jar support, which assumes that the jruby-complete.jar
is always directly available as a
file in its own right.
To deal with any problematic libraries, you can flag that specific nested jars should be
automatically unpacked when the executable jar first runs. Such nested jars are written
beneath the temporary directory identified by the java.io.tmpdir
system property.
Care should be taken to ensure that your operating system is configured so that it will not delete the jars that have been unpacked to the temporary directory while the application is still running. |
For example, to indicate that JRuby should be flagged for unpacking by using the Maven Plugin, you would add the following configuration:
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<configuration>
<requiresUnpack>
<dependency>
<groupId>org.jruby</groupId>
<artifactId>jruby-complete</artifactId>
</dependency>
</requiresUnpack>
</configuration>
</plugin>
</plugins>
</build>
16.7. Create a Non-executable JAR with Exclusions
Often, if you have an executable and a non-executable jar as two separate build products,
the executable version has additional configuration files that are not needed in a library
jar. For example, the application.yml
configuration file might by excluded from the
non-executable JAR.
In Maven, the executable jar must be the main artifact and you can add a classified jar for the library, as follows:
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
<plugin>
<artifactId>maven-jar-plugin</artifactId>
<executions>
<execution>
<id>lib</id>
<phase>package</phase>
<goals>
<goal>jar</goal>
</goals>
<configuration>
<classifier>lib</classifier>
<excludes>
<exclude>application.yml</exclude>
</excludes>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
16.8. Remote Debug a Spring Boot Application Started with Maven
To attach a remote debugger to a Spring Boot application that was started with Maven, you
can use the jvmArguments
property of the maven plugin.
See this example for more details.
16.9. Build an Executable Archive from Ant without Using spring-boot-antlib
To build with Ant, you need to grab dependencies, compile, and then create a jar or war
archive. To make it executable, you can either use the spring-boot-antlib
module or you can follow these instructions:
-
If you are building a jar, package the application’s classes and resources in a nested
BOOT-INF/classes
directory. If you are building a war, package the application’s classes in a nestedWEB-INF/classes
directory as usual. -
Add the runtime dependencies in a nested
BOOT-INF/lib
directory for a jar orWEB-INF/lib
for a war. Remember not to compress the entries in the archive. -
Add the
provided
(embedded container) dependencies in a nestedBOOT-INF/lib
directory for a jar orWEB-INF/lib-provided
for a war. Remember not to compress the entries in the archive. -
Add the
spring-boot-loader
classes at the root of the archive (so that theMain-Class
is available). -
Use the appropriate launcher (such as
JarLauncher
for a jar file) as aMain-Class
attribute in the manifest and specify the other properties it needs as manifest entries — principally, by setting aStart-Class
property.
The following example shows how to build an executable archive with Ant:
<target name="build" depends="compile">
<jar destfile="target/${ant.project.name}-${spring-boot.version}.jar" compress="false">
<mappedresources>
<fileset dir="target/classes" />
<globmapper from="*" to="BOOT-INF/classes/*"/>
</mappedresources>
<mappedresources>
<fileset dir="src/main/resources" erroronmissingdir="false"/>
<globmapper from="*" to="BOOT-INF/classes/*"/>
</mappedresources>
<mappedresources>
<fileset dir="${lib.dir}/runtime" />
<globmapper from="*" to="BOOT-INF/lib/*"/>
</mappedresources>
<zipfileset src="${lib.dir}/loader/spring-boot-loader-jar-${spring-boot.version}.jar" />
<manifest>
<attribute name="Main-Class" value="org.springframework.boot.loader.JarLauncher" />
<attribute name="Start-Class" value="${start-class}" />
</manifest>
</jar>
</target>
The Ant Sample has a
build.xml
file with a manual
task that should work if you run it with the following
command:
$ ant -lib <folder containing ivy-2.2.jar> clean manual
Then you can run the application with the following command:
$ java -jar target/*.jar
17. Traditional Deployment
Spring Boot supports traditional deployment as well as more modern forms of deployment. This section answers common questions about traditional deployment.
17.1. Create a Deployable War File
Because Spring WebFlux does not strictly depend on the Servlet API and applications are deployed by default on an embedded Reactor Netty server, War deployment is not supported for WebFlux applications. |
The first step in producing a deployable war file is to provide a
SpringBootServletInitializer
subclass and override its configure
method. Doing so
makes use of Spring Framework’s Servlet 3.0 support and lets you configure your
application when it is launched by the servlet container. Typically, you should update
your application’s main class to extend SpringBootServletInitializer
, as shown in the
following example:
@SpringBootApplication
public class Application extends SpringBootServletInitializer {
@Override
protected SpringApplicationBuilder configure(SpringApplicationBuilder application) {
return application.sources(Application.class);
}
public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}
}
The next step is to update your build configuration such that your project produces a war
file rather than a jar file. If you use Maven and spring-boot-starter-parent
(which
configures Maven’s war plugin for you), all you need to do is to modify pom.xml
to
change the packaging to war, as follows:
<packaging>war</packaging>
If you use Gradle, you need to modify build.gradle
to apply the war plugin to the
project, as follows:
apply plugin: 'war'
The final step in the process is to ensure that the embedded servlet container does not interfere with the servlet container to which the war file is deployed. To do so, you need to mark the embedded servlet container dependency as being provided.
If you use Maven, the following example marks the servlet container (Tomcat, in this case) as being provided:
<dependencies>
<!-- … -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-tomcat</artifactId>
<scope>provided</scope>
</dependency>
<!-- … -->
</dependencies>
If you use Gradle, the following example marks the servlet container (Tomcat, in this case) as being provided:
dependencies {
// …
providedRuntime 'org.springframework.boot:spring-boot-starter-tomcat'
// …
}
providedRuntime is preferred to Gradle’s compileOnly configuration. Among other
limitations, compileOnly dependencies are not on the test classpath, so any web-based
integration tests fail.
|
If you use the Spring Boot build tools,
marking the embedded servlet container dependency as provided produces an executable war
file with the provided dependencies packaged in a lib-provided
directory. This means
that, in addition to being deployable to a servlet container, you can also run your
application by using java -jar
on the command line.
Take a look at Spring Boot’s sample applications for a Maven-based example of the previously described configuration. |
17.2. Convert an Existing Application to Spring Boot
For a non-web application, it should be easy to convert an existing Spring application to
a Spring Boot application. To do so, throw away the code that creates your
ApplicationContext
and replace it with calls to SpringApplication
or
SpringApplicationBuilder
. Spring MVC web applications are generally amenable to first
creating a deployable war application and then migrating it later to an executable war
or jar. See the Getting
Started Guide on Converting a jar to a war.
To create a deployable war by extending SpringBootServletInitializer
(for example, in a
class called Application
) and adding the Spring Boot @SpringBootApplication
annotation, use code similar to that shown in the following example:
@SpringBootApplication
public class Application extends SpringBootServletInitializer {
@Override
protected SpringApplicationBuilder configure(SpringApplicationBuilder application) {
// Customize the application or call application.sources(...) to add sources
// Since our example is itself a @Configuration class (via @SpringBootApplication)
// we actually don't need to override this method.
return application;
}
}
Remember that, whatever you put in the sources
is merely a Spring ApplicationContext
.
Normally, anything that already works should work here. There might be some beans you can
remove later and let Spring Boot provide its own defaults for them, but it should be
possible to get something working before you need to do that.
Static resources can be moved to /public
(or /static
or /resources
or
/META-INF/resources
) in the classpath root. The same applies to messages.properties
(which Spring Boot automatically detects in the root of the classpath).
Vanilla usage of Spring DispatcherServlet
and Spring Security should require no further
changes. If you have other features in your application (for instance, using other
servlets or filters), you may need to add some configuration to your Application
context, by replacing those elements from the web.xml
, as follows:
-
A
@Bean
of typeServlet
orServletRegistrationBean
installs that bean in the container as if it were a<servlet/>
and<servlet-mapping/>
inweb.xml
. -
A
@Bean
of typeFilter
orFilterRegistrationBean
behaves similarly (as a<filter/>
and<filter-mapping/>
). -
An
ApplicationContext
in an XML file can be added through an@ImportResource
in yourApplication
. Alternatively, simple cases where annotation configuration is heavily used already can be recreated in a few lines as@Bean
definitions.
Once the war file is working, you can make it executable by adding a main
method to
your Application
, as shown in the following example:
public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}
If you intend to start your application as a war or as an executable application, you
need to share the customizations of the builder in a method that is both available to the
|
Applications can fall into more than one category:
-
Servlet 3.0+ applications with no
web.xml
. -
Applications with a
web.xml
. -
Applications with a context hierarchy.
-
Applications without a context hierarchy.
All of these should be amenable to translation, but each might require slightly different techniques.
Servlet 3.0+ applications might translate pretty easily if they already use the Spring
Servlet 3.0+ initializer support classes. Normally, all the code from an existing
WebApplicationInitializer
can be moved into a SpringBootServletInitializer
. If your
existing application has more than one ApplicationContext
(for example, if it uses
AbstractDispatcherServletInitializer
) then you might be able to combine all your context
sources into a single SpringApplication
. The main complication you might encounter is if
combining does not work and you need to maintain the context hierarchy. See the
entry on building a hierarchy for
examples. An existing parent context that contains web-specific features usually
needs to be broken up so that all the ServletContextAware
components are in the child
context.
Applications that are not already Spring applications might be convertible to Spring
Boot applications, and the previously mentioned guidance may help. However, you may yet
encounter problems. In that case, we suggest
asking questions on Stack Overflow
with a tag of spring-boot
.
17.3. Deploying a WAR to WebLogic
To deploy a Spring Boot application to WebLogic, you must ensure that your servlet
initializer directly implements WebApplicationInitializer
(even if you extend from a
base class that already implements it).
A typical initializer for WebLogic should resemble the following example:
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.boot.web.servlet.support.SpringBootServletInitializer;
import org.springframework.web.WebApplicationInitializer;
@SpringBootApplication
public class MyApplication extends SpringBootServletInitializer implements WebApplicationInitializer {
}
If you use Logback, you also need to tell WebLogic to prefer the packaged version
rather than the version that was pre-installed with the server. You can do so by adding a
WEB-INF/weblogic.xml
file with the following contents:
<?xml version="1.0" encoding="UTF-8"?>
<wls:weblogic-web-app
xmlns:wls="http://xmlns.oracle.com/weblogic/weblogic-web-app"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
https://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd
http://xmlns.oracle.com/weblogic/weblogic-web-app
https://xmlns.oracle.com/weblogic/weblogic-web-app/1.4/weblogic-web-app.xsd">
<wls:container-descriptor>
<wls:prefer-application-packages>
<wls:package-name>org.slf4j</wls:package-name>
</wls:prefer-application-packages>
</wls:container-descriptor>
</wls:weblogic-web-app>
17.4. Use Jedis Instead of Lettuce
By default, the Spring Boot starter (spring-boot-starter-data-redis
) uses
Lettuce. You need to exclude that
dependency and include the Jedis one instead. Spring
Boot manages these dependencies to help make this process as easy as possible.
The following example shows how to do so in Maven:
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
<exclusions>
<exclusion>
<groupId>io.lettuce</groupId>
<artifactId>lettuce-core</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>redis.clients</groupId>
<artifactId>jedis</artifactId>
</dependency>
The following example shows how to do so in Gradle:
configurations {
compile.exclude module: "lettuce"
}
dependencies {
compile("redis.clients:jedis")
// ...
}