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This document is also available as multiple HTML pages and as a single HTML
page.
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Chapter 2. Getting Help

If you have trouble with Spring Boot, we would like to help.

¥ Try the How-to documents . They provide solutions to the most common questions.

¥ Learn the Spring basics. Spring Boot builds on many other Spring projects. Check the spring.io
web-site for a wealth of reference documentation. If you are starting out with Spring, try one of
the guides.

¥ Ask a question. We monitor  stackoverflow.com for questions tagged with  spring-boot .

¥ Report bugs with Spring Boot at  github.com/spring-projects/spring-boot/issues

All of Spring Boot is open source, including the documentation. If you find problems

NOTE
with the docs or if you want to improve them, please get involved .


https://spring.io
https://spring.io/guides
https://stackoverflow.com
https://stackoverflow.com/tags/spring-boot
https://github.com/spring-projects/spring-boot/issues
https://github.com/spring-projects/spring-boot/tree/2.7.x

Chapter 3. Documentation Overview

This section provides a brief overview of Spring Boot reference documentation. It serves as a map

for the rest of the document.

The latest copy of this document is available at ~ docs.spring.io/spring-boot/docs/current/reference/

3.1. First Steps

If you are getting started with Spring Boot or 'Spring' in general, start with the following topics

¥ From scratch: Overview | Requirements | Installation
¥ Tutorial: Part1 | Part 2

¥ Running your example: Part1l | Part 2

3.2. Upgrading From an Earlier Version

You should always ensure that you are running a supported version of Spring Boot.

Depending on the version that you are upgrading to, you can find some additional tips here:

¥ From 1.x: Upgrading from 1.x
¥ To a new feature release:  Upgrading to New Feature Release

¥ Spring Boot CLI:  Upgrading the Spring Boot CLI

3.3. Developing With Spring Boot
Ready to actually start using Spring Boot?  We have you covered :

¥ Build systems: Maven | Gradle | Ant | Starters

¥ Best practices: Code Structure | @Configuration | @EnableAutoConfiguration
Dependency Injection

¥ Running your code: IDE | Packaged | Maven | Gradle
¥ Packaging your app:  Production jars

¥ Spring Boot CLI:  Using the CLI

3.4. Learning About Spring Boot Features
Need more details about Spring BootOs core features? The following content is for you

¥ Spring Application:  SpringApplication
¥ External Configuration: External Configuration

¥ Profiles: Profiles

Beans and


https://docs.spring.io/spring-boot/docs/current/reference/
https://github.com/spring-projects/spring-boot/wiki/Supported-Versions

¥ Logging: Logging

3.5. Web

If you develop Spring Boot web applications, take a look at the following content:

¥ Servlet Web Applications: Spring MVC, Jersey, Embedded Servlet Containers

¥ Reactive Web Applications: Spring Webflux, Embedded Servlet Containers

¥ Graceful Shutdown:  Graceful Shutdown

¥ Spring Security:  Default Security Configuration, Auto-configuration for OAuth2, SAML
¥ Spring Session: Auto-configuration for Spring Session

¥ Spring HATEOAS: Auto-configuration for Spring HATEOAS

3.6. Data

If your application deals with a datastore, you can see how to configure that here:

¥ SQL: Configuring a SQL Datastore, Embedded Database support, Connection pools, and more.

¥ NOSQL: Auto-configuration for NOSQL stores such as Redis, MongoDB, Neo4j, and others.

3.7. Messaging

If your application uses any messaging protocol, see one or more of the following sections:
¥ JMS: Auto-configuration for ActiveMQ and Artemis, Sending and Receiving messages through
JMS
¥ AMQP: Auto-configuration for RabbitMQ
¥ Kafka: Auto-configuration for Spring Kafka
¥ RSocket: Auto-configuration for Spring FrameworkOs RSocket Support

¥ Spring Integration:  Auto-configuration for Spring Integration

3.8.10

If your application needs IO capabilities, see one or more of the following sections:

¥ Caching: Caching support EhCache, Hazelcast, Infinispan and more

¥ Quartz: Quartz Scheduling

¥ Mail: Sending Email

¥ Validation: JSR-303 Validation

¥ REST Clients: Calling REST Services with RestTemplate and WebClient

¥ Webservices: Auto-configuration for Spring Web Services



¥ JTA: Distributed Transactions with JTA

3.9. Container Images

Spring Boot provides first-class support for building efficient container images. You can read more
about it here:

¥ Efficient Container Images: Tips to optimize container images such as Docker images

¥ Dockerfiles:  Building container images using dockerfiles

¥ Cloud Native Buildpacks: Support for Cloud Native Buildpacks with Maven and Gradle

3.10. Advanced Topics

Finally, we have a few topics for more advanced users:

¥ Spring Boot Applications Deployment: Cloud Deployment | OS Service
¥ Build tool plugins:  Maven | Gradle

¥ Appendix: Application Properties | Configuration Metadata | Auto-configuration Classes | Test
Auto-configuration Annotations | Executable Jars | Dependency Versions



Chapter 4. Getting Started

If you are getting started with Spring Boot, or OSpringO in general, start by reading this section. It
answers the basic Owhat?0, Ohow?0 and Owhy?0O questions. It includes an introduction to Spring
Boot, along with installation instructions. We then walk you through building your first Spring Boot
application, discussing some core principles as we go.

4.1. Introducing Spring Boot

Spring Boot helps you to create stand-alone, production-grade Spring-based applications that you
can run. We take an opinionated view of the Spring platform and third-party libraries, so that you
can get started with minimum fuss. Most Spring Boot applications need very little Spring
configuration.

You can use Spring Boot to create Java applications that can be started by using java -jar  or more
traditional war deployments. We also provide a command line tool that runs Ospring scriptsO.

Our primary goals are:
¥ Provide a radically faster and widely accessible getting-started experience for all Spring

development.

¥ Be opinionated out of the box but get out of the way quickly as requirements start to diverge
from the defaults.

¥ Provide a range of non-functional features that are common to large classes of projects (such as
embedded servers, security, metrics, health checks, and externalized configuration).

¥ Absolutely no code generation and no requirement for XML configuration.

4.2. System Requirements

Spring Boot 2.7.5-SNAPSHOT requires Java 8 and is compatible up to and including Java 19.  Spring
Framework 5.3.23 or above is also required.

Explicit build support is provided for the following build tools:

Build Tool Version
Maven 3.5+
Gradle 6.8.x, 6.9.x, and 7.x

4.2.1. Servlet Containers

Spring Boot supports the following embedded servlet containers:

Name Servlet Version

Tomcat 9.0 4.0


https://www.java.com
https://docs.spring.io/spring-framework/docs/5.3.23/reference/html/
https://docs.spring.io/spring-framework/docs/5.3.23/reference/html/

Name Servlet Version

Jetty 9.4 3.1
Jetty 10.0 4.0
Undertow 2.0 4.0

You can also deploy Spring Boot applications to any servlet 3.1+ compatible container.

4.3. Installing Spring Boot

Spring Boot can be used with OclassicO Java development tools or installed as a command line tool.
Either way, you need Java SDK v1.8or higher. Before you begin, you should check your current Java
installation by using the following command:

$ java -version

If you are new to Java development or if you want to experiment with Spring Boot, you might want
to try the Spring Boot CLI (Command Line Interface) first. Otherwise, read on for OclassicO
installation instructions.

4.3.1. Installation Instructions for the Java Developer

You can use Spring Boot in the same way as any standard Java library. To do so, include the
appropriate  spring-boot-*.jar files on your classpath. Spring Boot does not require any special
tools integration, so you can use any IDE or text editor. Also, there is nothing special about a Spring
Boot application, so you can run and debug a Spring Boot application as you would any other Java
program.

Although you could copy Spring Boot jars, we generally recommend that you use a build tool that
supports dependency management (such as Maven or Gradle).

Maven Installation

Spring Boot is compatible with Apache Maven 3.3 or above. If you do not already have Maven
installed, you can follow the instructions at maven.apache.org .

On many operating systems, Maven can be installed with a package manager. If you

use OSX Homebrew, try brew install maven . Ubuntu users can run sudo apt-get
install maven . Windows users with  Chocolatey can run choco install maven from an
elevated (administrator) prompt.

TIP

Spring Boot dependencies use the org.springframework.boot groupld. Typically, your Maven POM file
inherits from the spring-boot-starter-parent project and declares dependencies to one or more
OstartersO Spring Boot also provides an optional ~ Maven plugin to create executable jars.

More details on getting started with Spring Boot and Maven can be found in the Getting Started
section of the Maven pluginOs reference guide.


https://www.java.com
https://maven.apache.org
https://chocolatey.org/
https://docs.spring.io/spring-boot/docs/2.7.5-SNAPSHOT/maven-plugin/reference/htmlsingle/#getting-started
https://docs.spring.io/spring-boot/docs/2.7.5-SNAPSHOT/maven-plugin/reference/htmlsingle/#getting-started

Gradle Installation

Spring Boot is compatible with Gradle 6.8, 6.9, and 7.x. If you do not already have Gradle installed,
you can follow the instructions at  gradle.org .

Spring Boot dependencies can be declared by using the  org.springframework.boot group. Typically,
your project declares dependencies to one or more OStartersO Spring Boot provides a useful Gradle
plugin that can be used to simplify dependency declarations and to create executable jars.

Gradle Wrapper

The Gradle Wrapper provides a nice way of Oobtainingd Gradle when you need to build a
project. It is a small script and library that you commit alongside your code to bootstrap the
build process. See docs.gradle.org/current/userguide/gradle_wrapper.html for details.

More details on getting started with Spring Boot and Gradle can be found in the Getting Started
section of the Gradle pluginOs reference guide.

4.3.2. Installing the Spring Boot CLI

The Spring Boot CLI (Command Line Interface) is a command line tool that you can use to quickly
prototype with Spring. It lets you run Groovy scripts, which means that you have a familiar Java-
like syntax without so much boilerplate code.

You do not need to use the CLI to work with Spring Boot, but it is a quick way to get a Spring
application off the ground without an IDE.

Manual Installation
You can download the Spring CLI distribution from the Spring software repository:

¥ spring-boot-cli-2.7.5-SNAPSHOT-bin.zip

¥ spring-boot-cli-2.7.5-SNAPSHOT-bin.tar.gz
Cutting edge snapshot distributions  are also available.

Once downloaded, follow the INSTALL.txt instructions from the unpacked archive. In summary,
there is a spring script ( spring.bat for Windows) in a bin/ directory in the .zip file. Alternatively,
you can use java -jar with the .jar file (the script helps you to be sure that the classpath is set
correctly).

Installation with SDKMAN!

SDKMAN! (The Software Development Kit Manager) can be used for managing multiple versions of
various bhinary SDKs, including Groovy and the Spring Boot CLI. Get SDKMAN! from sdkman.io and
install Spring Boot by using the following commands:


https://gradle.org
https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://docs.spring.io/spring-boot/docs/2.7.5-SNAPSHOT/gradle-plugin/reference/htmlsingle/#getting-started
https://docs.spring.io/spring-boot/docs/2.7.5-SNAPSHOT/gradle-plugin/reference/htmlsingle/#getting-started
https://groovy-lang.org/
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.7.5-SNAPSHOT/spring-boot-cli-2.7.5-SNAPSHOT-bin.zip
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/2.7.5-SNAPSHOT/spring-boot-cli-2.7.5-SNAPSHOT-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/
https://raw.githubusercontent.com/spring-projects/spring-boot/2.7.x/spring-boot-project/spring-boot-cli/src/main/content/INSTALL.txt
https://sdkman.io

$ sdk install springboot
$ spring --version
Spring CLI v2.7.5-SNAPSHOT

If you develop features for the CLI and want access to the version you built, use the following
commands:

$ sdk install springboot dev /path/to/spring-boot/spring-boot-cli/target/spring-boot-
cli-2.7.5-SNAPSHOT-bin/spring-2.7.5-SNAPSHOT/

$ sdk default springboot dev

$ spring --version

Spring CLI v2.7.5-SNAPSHOT

The preceding instructions install a local instance of spring called the devinstance. It points at your
target build location, so every time you rebuild Spring Boot, spring is up-to-date.

You can see it by running the following command:

$ sdk Is springboot

Available Springboot Versions

> + dev
* 2.7.5-SNAPSHOT

+ - local version
* - installed
> - currently in use

OSX Homebrew Installation

If you are on a Mac and use Homebrew , you can install the Spring Boot CLI by using the following
commands:

$ brew tap spring-io/tap
$ brew install spring-boot

Homebrew installs spring to /usr/local/bin

If you do not see the formula, your installation of brew might be out-of-date. In that
case, run brew update and try again.

NOTE
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MacPorts Installation

If you are on a Mac and use MacPorts, you can install the Spring Boot CLI by using the following
command:

$ sudo port install spring-boot-cli

Command-line Completion

The Spring Boot CLI includes scripts that provide command completion for the BASH and zsh shells.
You can source the script (also named spring ) in any shell or put it in your personal or system-wide
bash completion initialization. On a Debian system, the system-wide scripts are in /shell-
completion/bash and all scripts in that directory are executed when a new shell starts. For example,

to run the script manually if you have installed by using SDKMAN!, use the following commands:

$ . ~/.sdkman/candidates/springboot/current/shell-completion/bash/spring
$ spring <HIT TAB HERE>
E grab help jar run test version

If you install the Spring Boot CLI by using Homebrew or MacPorts, the command-
line completion scripts are automatically registered with your shell.

NOTE

Windows Scoop Installation

If you are on a Windows and use  Scoop, you can install the Spring Boot CLI by using the following
commands:

> scoop bucket add extras
> scoop install springboot

Scoop installs spring to ~/scoop/apps/springboot/current/bin

If you do not see the app manifest, your installation of scoop might be out-of-date.
In that case, run scoop update and try again.

NOTE

Quick-start Spring CLI Example

You can use the following web application to test your installation. To start, create a file called
app.groovy, as follows:

11
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@RestController
class ThisWillActuallyRun {

E @RequestMapping("/")
E String home() {

E  "Hello World!"

E }

}

Then run it from a shell, as follows:

$ spring run app.groovy

NOTE The first run of your application is slow, as dependencies are downloaded.
Subsequent runs are much quicker.

Open localhost:8080 in your favorite web browser. You should see the following output:

Hello World!

4.4. Developing Your First Spring Boot Application

This section describes how to develop a small OHello World!O web application that highlights some
of Spring BootOs key features. We use Maven to build this project, since most IDEs support it.

The spring.io web site contains many OGetting StartedO guides that use Spring Boot. If
you need to solve a specific problem, check there first.

TIP You can shortcut the steps below by going to  start.spring.io and choosing the "Web"
starter from the dependencies searcher. Doing so generates a new project structure so

that you can start coding right away . Check the start.spring.io user guide for more
details.

Before we begin, open a terminal and run the following commands to ensure that you have valid
versions of Java and Maven installed:

$ java -version

java version "1.8.0_102"

Java(TM) SE Runtime Environment (build 1.8.0_102-b14)

Java HotSpot(TM) 64-Bit Server VM (build 25.102-b14, mixed mode)

12


http://localhost:8080
https://spring.io
https://spring.io/guides
https://start.spring.io
https://github.com/spring-io/start.spring.io/blob/main/USING.adoc

$ mvn -v

Apache Maven 3.5.4 (1edded0938998edf8bf061flceb3cfdeccf443fe; 2018-06-17T14:33:14-
04:00)

Maven home: /usr/local/Cellar/maven/3.3.9/libexec
Java version: 1.8.0 102, vendor: Oracle Corporation

This sample needs to be created in its own directory. Subsequent instructions
NOTE assume that you have created a suitable directory and that it is your current
directory.

4.4.1. Creating the POM

We need to start by creating a Maven  pom.xmlfile. The pom.xmlis the recipe that is used to build your
project. Open your favorite text editor and add the following:

13



<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

E xsi:schemalocation="http://maven.apache.org/POM/4.0.0
https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

T

<groupld>com.example</groupld>
<artifactld>myproject</artifactld>
<version>0.0.1-SNAPSHOT</version>

m [T [T

<parent>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-starter-parent</artifactld>
<version>2.7.5-SNAPSHOT</version>

</parent>

[T T [T [T [T

T

<l-- Additional lines to be added here... -->

<l-- (you do not need this if you are using a .RELEASE version) -->
<repositories>
<repository>
<id>spring-snapshots</id>
<url>https://repo.spring.io/snapshot</url>
<snapshots><enabled>true</enabled></snapshots>
</repository>
<repository>
<id>spring-milestones</id>
<url>https://repo.spring.io/milestone</url>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>spring-snapshots</id>
<url>https://repo.spring.io/snapshot</url>
</pluginRepository>
<pluginRepository>
<id>spring-milestones</id>
<url>https://repo.spring.io/milestone</url>
</pluginRepository>
</pluginRepositories>
</project>

T > [T M [T M M T T T T T T T T T T T T T T e

The preceding listing should give you a working build. You can test it by running mvn package(for
now, you can ignore the Ojar will be empty - no content was marked for inclusion!O warning).

At this point, you could import the project into an IDE (most modern Java IDEs

NOTE include built-in support for Maven). For simplicity, we continue to use a plain text
editor for this example.
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4.4.2. Adding Classpath Dependencies

Spring Boot provides a number of OStartersO that let you add jars to your classpath. Our
applications for smoke tests use the spring-boot-starter-parent in the parent section of the POM.
The spring-boot-starter-parent is a special starter that provides useful Maven defaults. It also
provides a dependency-managemensection so that you can omit version tags for OblessedO
dependencies.

Other OStartersO provide dependencies that you are likely to need when developing a specific type

of application. Since we are developing a web application, we add a spring-boot-starter-web
dependency. Before that, we can look at what we currently have by running the following
command:

$ mvn dependency:tree

[INFO] com.example:myproject:jar:0.0.1-SNAPSHOT

The mvn dependency:tree command prints a tree representation of your project dependencies. You
can see that spring-boot-starter-parent provides no dependencies by itself. To add the necessary
dependencies, edit your pom.xmland add the spring-boot-starter-web  dependency immediately
below the parent section:

<dependencies>

<dependency>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-starter-web</artifactld>

</dependency>

</dependencies>

T T T [Th

If you run mvn dependency:tree again, you see that there are now a number of additional
dependencies, including the Tomcat web server and Spring Boot itself.

4.4.3. Writing the Code

To finish our application, we need to create a single Java file. By default, Maven compiles sources
from src/main/java , so you need to create that directory structure and then add a file named
src/main/java/MyApplication.java  to contain the following code:
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Java

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.EnableAutoConfiguration;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController
@EnableAutoConfiguration
public class MyApplication {

@RequestMapping("/")
String home() {
return "Hello World!";

}

T [T [T [T

public static void main(String[] args) {
SpringApplication.run(MyApplication.class, args);
}

m [Ty [T

—

Kotlin

import org.springframework.boot.autoconfigure.EnableAutoConfiguration
import org.springframework.boot.runApplication

import org.springframework.web.bind.annotation.RequestMapping
import org.springframework.web.bind.annotation.RestController

@RestController
@EnableAutoConfiguration
class MyApplication {

@RequestMapping("/")
fun home() = "Hello World!"

T [T

}

fun main(args: Array<String>) {
E runApplication<MyApplication>(*args)
}

Although there is not much code here, quite a lot is going on. We step through the important parts
in the next few sections.

The @RestController and @RequestMapping Annotations

The first annotation on our  MyApplication class is @RestController. This is known as a stereotype
annotation. It provides hints for people reading the code and for Spring that the class plays a
specific role. In this case, our class is a web  @Controller, so Spring considers it when handling

16



incoming web requests.

The @RequestMappingnnotation provides OroutingO information. It tells Spring that any HTTP
request with the / path should be mapped to the homemethod. The @RestController annotation tells
Spring to render the resulting string directly back to the caller.

The @RestController and @RequestMappingnnotations are Spring MVC annotations
TIP (they are not specific to Spring Boot). See the MVC section in the Spring Reference
Documentation for more details.

The @EnableAutoConfiguration Annotation

The second class-level annotation is  @EnableAutoConfiguration. This annotation tells Spring Boot to
OguessO how you want to configure Spring, based on the jar dependencies that you have added.
Since spring-boot-starter-web  added Tomcat and Spring MVC, the auto-configuration assumes that
you are developing a web application and sets up Spring accordingly.

Starters and Auto-configuration

Auto-configuration is designed to work well with OStartersO, but the two concepts are not
directly tied. You are free to pick and choose jar dependencies outside of the starters. Spring
Boot still does its best to auto-configure your application.

The OmainO Method

The final part of our application is the main method. This is a standard method that follows the Java
convention for an application entry point. Our main method delegates to Spring BootOs
SpringApplication class by calling run. SpringApplication bootstraps our application, starting Spring,
which, in turn, starts the auto-configured Tomcat web server. We need to pass MyApplication.class
as an argument to the run method to tell SpringApplication which is the primary Spring component.
The args array is also passed through to expose any command-line arguments.

4.4.4. Running the Example

At this point, your application should work. Since you used the spring-boot-starter-parent POM,
you have a useful run goal that you can use to start the application. Type mvn spring-boot:run from
the root project directory to start the application. You should see output similar to the following:
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$ mvn spring-boot:run

E. B o

=\ VA G I A R
(A()\_|'_|'_| ['_V_ [\

EWV __DOUDITTTIC))))

|§'| [ N [

E =_|= = = /=11
E:: Spring Boot :: (v2.7.5-SNAPSHOT)

ceeeeer - . . (log output here)

........ Started MyApplication in 2.222 seconds (JVM running for 6.514)
If you open a web browser to  localhost:8080 , you should see the following output:

Hello World!

To gracefully exit the application, press  ctrl-c

4.4.5. Creating an Executable Jar

We finish our example by creating a completely self-contained executable jar file that we could run
in production. Executable jars (sometimes called Ofat jarsO) are archives containing your compiled
classes along with all of the jar dependencies that your code needs to run.

Executable jars and Java

Java does not provide a standard way to load nested jar files (jar files that are themselves
contained within a jar). This can be problematic if you are looking to distribute a self-
contained application.

To solve this problem, many developers use OuberO jars. An uber jar packages all the classes
from all the applicationOs dependencies into a single archive. The problem with this approach

is that it becomes hard to see which libraries are in your application. It can also be
problematic if the same filename is used (but with different content) in multiple jars.

Spring Boot takes a different approach and lets you actually nest jars directly.

To create an executable jar, we need to add the  spring-boot-maven-plugin to our pom.xml To do so,
insert the following lines just below the dependenciessection:
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<build>
<plugins>
<plugin>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-maven-plugin</artifactld>
</plugin>
</plugins>
</build>

m> T e e mp e

The spring-boot-starter-parent POM includes <executions> configuration to bind
NOTE the repackage goal. If you do not use the parent POM, you need to declare this

configuration yourself. See the  plugin documentation  for detalils.

Save your pom.xmland run mvn packagefrom the command line, as follows:

$ mvn package

[INFO] Scanning for projects...
[INFO]
[INFO]
[INFO] Building myproject 0.0.1-SNAPSHOT
[INFO]
[INFO] .... ..

[INFQO] --- maven-jar-plugin:2.4:jar (default-jar) @ myproject ---

[INFO] Building jar: /Users/developer/example/spring-boot-example/target/myproject-
0.0.1-SNAPSHOT .jar

[INFO]

[INFQ] --- spring-boot-maven-plugin:2.7.5-SNAPSHOT:repackage (default) @ myproject ---
[INFO]
[INFO] BUILD SUCCESS
[INFO]

If you look in the target directory, you should see myproject-0.0.1-SNAPSHOT jar. The file should be

around 10 MB in size. If you want to peek inside, you can use jartvf , as follows:

$ jar tvf target/myproject-0.0.1-SNAPSHOT .jar

You should also see a much smaller file named  myproject-0.0.1-SNAPSHOT .jar.original in the target

directory. This is the original jar file that Maven created before it was repackaged by Spring Boot.

To run that application, use the java -jar command, as follows:
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$ java -jar target/myproject-0.0.1-SNAPSHOT .jar

E. _ _

=\ VA G I A R
(A()\_|'_|'_| ['_V_ [\

EWV __DOUDITTTIC))))

|§'| [ N [

E =_|= = = /=11
E:: Spring Boot :: (v2.7.5-SNAPSHOT)

ceeeeer - . . (log output here)

........ Started MyApplication in 2.536 seconds (JVM running for 2.864)

As before, to exit the application, press  ctrl-c

4.5. What to Read Next

Hopefully, this section provided some of the Spring Boot basics and got you on your way to writing
your own applications. If you are a task-oriented type of developer, you might want to jump over to
spring.io and follow some of the getting started guides that solve specific OHow do | do that with
Spring?0 problems. We also have Spring Boot-specific O How-to O reference documentation.

Otherwise, the next logical step is to read  Developing with Spring Boot . If you are really impatient,
you could also jump ahead and read about  Spring Boot features .
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Chapter 5. Upgrading Spring Boot

Instructions for how to upgrade from earlier versions of Spring Boot are provided on the project
wiki . Follow the links in the release notes section to find the version that you want to upgrade to.

Upgrading instructions are always the first item in the release notes. If you are more than one
release behind, please make sure that you also review the release notes of the versions that you
jumped.

5.1. Upgrading From 1.x

If you are upgrading from the  1.x release of Spring Boot, check the Omigration guideO on the project
wiki that provides detailed upgrade instructions. Check also the Orelease notesOfor a list of Onew
and noteworthyO features for each release.

5.2. Upgrading to a New Feature Release

When upgrading to a new feature release, some properties may have been renamed or removed.
Spring Boot provides a way to analyze your applicationOs environment and print diagnostics at
startup, but also temporarily migrate properties at runtime for you. To enable that feature, add the
following dependency to your project:

<dependency>

E <groupld>org.springframework.boot</groupld>

E <artifactld>spring-boot-properties-migrator</artifactld>
E <scope>runtime</scope>

</dependency>

Properties that are added late to the environment, such as when using

WARNING _ _
@PropertySourcewill not be taken into account.

NOTE Once you finish the migration, please make sure to remove this module from your
projectOs dependencies.

5.3. Upgrading the Spring Boot CLI

To upgrade an existing CLI installation, use the appropriate package manager command (for
example, brew upgrade). If you manually installed the CLI, follow the standard instructions
remembering to update your ~ PATHenvironment variable to remove any older references.

5.4. What to Read Next

Once youOve decided to upgrade your application, you can find detailed information regarding
specific features in the rest of the document.
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Spring BootOs documentation is specific to that version, so any information that you find in here
will contain the most up-to-date changes that are in that version.
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Chapter 6. Developing with Spring Boot

This section goes into more detail about how you should use Spring Boot. It covers topics such as
build systems, auto-configuration, and how to run your applications. We also cover some Spring
Boot best practices. Although there is nothing particularly special about Spring Boot (it is just
another library that you can consume), there are a few recommendations that, when followed,
make your development process a little easier.

If you are starting out with Spring Boot, you should probably read the Getting Started guide before
diving into this section.

6.1. Build Systems

It is strongly recommended that you choose a build system that supports dependency management
and that can consume artifacts published to the OMaven CentralO repository. We would recommend

that you choose Maven or Gradle. It is possible to get Spring Boot to work with other build systems

(Ant, for example), but they are not particularly well supported.

6.1.1. Dependency Management

Each release of Spring Boot provides a curated list of dependencies that it supports. In practice, you
do not need to provide a version for any of these dependencies in your build configuration, as
Spring Boot manages that for you. When you upgrade Spring Boot itself, these dependencies are
upgraded as well in a consistent way.

You can still specify a version and override Spring BootOs recommendations if you

NOTE
need to do so.

The curated list contains all the Spring modules that you can use with Spring Boot as well as a
refined list of third party libraries. The list is available as a standard Bills of Materials ( spring-boot-
dependencieg that can be used with both Maven and Gradle .

Each release of Spring Boot is associated with a base version of the Spring

WARNING . I .
Framework. We highly recommend that you not specify its version.

6.1.2. Maven

To learn about using Spring Boot with Maven, see the documentation for Spring BootOs Maven
plugin:

¥ Reference (HTML and PDF)

¥ API

6.1.3. Gradle

To learn about using Spring Boot with Gradle, see the documentation for Spring BootOs Gradle
plugin:
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¥ Reference (HTML and PDF)

¥ API

6.1.4. Ant

It is possible to build a Spring Boot project using Apache Ant+lvy. The spring-boot-antlib ~ OAntLibO
module is also available to help Ant create executable jars.

To declare dependencies, a typical ivy.xml file looks something like the following example:

<ivy-module version="2.0">
<info organisation="org.springframework.boot" module="spring-boot-sample-ant" />
<configurations>
<conf name="compile" description="everything needed to compile this module" />
<conf name="runtime" extends="compile" description="everything needed to run
this module” />
</configurations>
<dependencies>
<dependency org="org.springframework.boot" name="spring-boot-starter"
rev="${spring-boot.version}" conf="compile" />
</dependencies>
</ivy-module>

[T [T T> [Th

™ > [mp My me

A typical build.xml looks like the following example:
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<project

xmins:ivy="antlib:org.apache.ivy.ant"
xmins:spring-boot="antlib:org.springframework.boot.ant"
name="myapp" default="build">

T [T TP

T

<property name="spring-boot.version" value="2.7.5-SNAPSHOT" />

<target name="resolve" description="--> retrieve dependencies with ivy">
<ivy:retrieve pattern="lib/[conf]/[artifact]-[type]-[revision].[ext]" />
</target>

m [T [T

<target name="classpaths" depends="resolve">
<path id="compile.classpath">
<fileset dir="lib/compile" includes="*.jar" />
</path>
</target>

[T T [T [T [T

<target name="init" depends="classpaths">
<mkdir dir="build/classes" />
</target>

m [Ty [T

<target name="compile" depends="init" description="compile">
<javac srcdir="src/main/java" destdir="build/classes"
asspathref="compile.classpath" />
</target>

m Q m m

<target name="build" depends="compile">
<spring-boot:exejar destfile="build/myapp.jar" classes="build/classes">
<spring-boot:lib>
<fileset dir="lib/runtime" />
</spring-boot:lib>
</spring-boot:exejar>
</target>
</project>

[T T [T [T [T TP [T

If you do not want to use the spring-boot-antlib  module, see the Build an Executable

TIP . B
Archive From Ant without Using spring-boot-antlib OHow-t00 .

6.1.5. Starters

Starters are a set of convenient dependency descriptors that you can include in your application.
You get a one-stop shop for all the Spring and related technologies that you need without having to
hunt through sample code and copy-paste loads of dependency descriptors. For example, if you
want to get started using Spring and JPA for database access, include the spring-boot-starter-data-
jpa dependency in your project.

The starters contain a lot of the dependencies that you need to get a project up and running quickly
and with a consistent, supported set of managed transitive dependencies.
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What is in a name

All official starters follow a similar naming pattern;

spring-boot-starter-* |, where * is a

particular type of application. This naming structure is intended to help when you need to
find a starter. The Maven integration in many IDEs lets you search dependencies by name.
For example, with the appropriate Eclipse or Spring Tools plugin installed, you can press
ctrl-space in the POM editor and type Ospring-boot-starterO for a complete list.

As explained in the O Creating Your Own Starter O section, third party starters should not start
with spring-boot , as it is reserved for official Spring Boot artifacts. Rather, a third-party
starter typically starts with the name of the project. For example, a third-party starter project
called thirdpartyproject  would typically be named thirdpartyproject-spring-boot-starter

The following application starters are provided by Spring Boot under the

group:
Table 1. Spring Boot application starters

Name

spring-boot-starter

spring-boot-starter-activemq

spring-boot-starter-amaqp

spring-boot-starter-aop

spring-boot-starter-artemis
spring-boot-starter-batch

spring-boot-starter-cache

spring-boot-starter-data-cassandra

spring-boot-starter-data-cassandra-reactive

spring-boot-starter-data-couchbase

spring-boot-starter-data-couchbase-reactive

spring-boot-starter-data-elasticsearch

spring-boot-starter-data-jdbc

spring-boot-starter-data-jpa
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Description

Core starter, including auto-configuration
support, logging and YAML

Starter for IMS messaging using Apache
ActiveMQ

Starter for using Spring AMQP and Rabbit MQ

Starter for aspect-oriented programming with
Spring AOP and AspectJ

Starter for IMS messaging using Apache Artemis
Starter for using Spring Batch

Starter for using Spring FrameworkOs caching
support

Starter for using Cassandra distributed database
and Spring Data Cassandra

Starter for using Cassandra distributed database
and Spring Data Cassandra Reactive

Starter for using Couchbase document-oriented
database and Spring Data Couchbase

Starter for using Couchbase document-oriented
database and Spring Data Couchbase Reactive

Starter for using Elasticsearch search and
analytics engine and Spring Data Elasticsearch

Starter for using Spring Data JDBC

Starter for using Spring Data JPA with Hibernate



Name
spring-boot-starter-data-ldap

spring-boot-starter-data-mongodb

spring-boot-starter-data-mongodb-reactive

spring-boot-starter-data-neo4j

spring-boot-starter-data-r2dbc

spring-boot-starter-data-redis

spring-boot-starter-data-redis-reactive

spring-boot-starter-data-rest

spring-boot-starter-freemarker

spring-boot-starter-graphq|

spring-boot-starter-groovy-templates

spring-boot-starter-hateoas

spring-boot-starter-integration

spring-boot-starter-jdbc

spring-boot-starter-jersey

spring-boot-starter-jooq

spring-boot-starter-json
spring-boot-starter-jta-atomikos

spring-boot-starter-mail

spring-boot-starter-mustache

Description
Starter for using Spring Data LDAP

Starter for using MongoDB document-oriented
database and Spring Data MongoDB

Starter for using MongoDB document-oriented
database and Spring Data MongoDB Reactive

Starter for using Neo4j graph database and
Spring Data Neo4j

Starter for using Spring Data R2DBC

Starter for using Redis key-value data store with
Spring Data Redis and the Lettuce client

Starter for using Redis key-value data store with

Spring Data Redis reactive and the Lettuce client

Starter for exposing Spring Data repositories
over REST using Spring Data REST

Starter for building MVC web applications using
FreeMarker views

Starter for building GraphQL applications with
Spring GraphQL
Starter for building MVC web applications using

Groovy Templates views

Starter for building hypermedia-based RESTful
web application with Spring MVC and Spring
HATEOAS

Starter for using Spring Integration

Starter for using JDBC with the HikariCP
connection pool

Starter for building RESTful web applications

using JAX-RS and Jersey. An alternative to
spring-boot-starter-web

Starter for using jOOQ to access SQL databases

with JDBC. An alternative to  spring-boot-
starter-data-jpa  or spring-boot-starter-jdbc

Starter for reading and writing json
Starter for JTA transactions using Atomikos

Starter for using Java Mail and Spring
FrameworkOs email sending support

Starter for building web applications using
Mustache views
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Name

spring-boot-starter-oauth2-client

spring-boot-starter-oauth2-resource-server

spring-boot-starter-quartz

spring-boot-starter-rsocket

spring-boot-starter-security

spring-boot-starter-test

spring-boot-starter-thymeleaf

spring-boot-starter-validation

spring-boot-starter-web

spring-boot-starter-web-services

spring-boot-starter-webflux

spring-boot-starter-websocket

Description

Starter for using Spring SecurityOs
OAuth2/0OpenID Connect client features

Starter for using Spring SecurityOs OAuth2
resource server features

Starter for using the Quartz scheduler
Starter for building RSocket clients and servers
Starter for using Spring Security

Starter for testing Spring Boot applications with
libraries including JUnit Jupiter, Hamcrest and
Mockito

Starter for building MVC web applications using
Thymeleaf views

Starter for using Java Bean Validation with
Hibernate Validator

Starter for building web, including RESTful,
applications using Spring MVC. Uses Tomcat as
the default embedded container

Starter for using Spring Web Services

Starter for building WebFlux applications using
Spring FrameworkOs Reactive Web support

Starter for building WebSocket applications
using Spring FrameworkOs WebSocket support

In addition to the application starters, the following starters can be used to add production ready

features:

Table 2. Spring Boot production starters
Name

spring-boot-starter-actuator

Description

Starter for using Spring BootOs Actuator which
provides production ready features to help you
monitor and manage your application

Finally, Spring Boot also includes the following starters that can be used if you want to exclude or

swap specific technical facets:

Table 3. Spring Boot technical starters
Name

spring-boot-starter-jetty
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Starter for using Jetty as the embedded servlet

container. An alternative to  spring-boot-
starter-tomcat



Name Description

spring-boot-starter-log4j2 Starter for using Log4j2 for logging. An
alternative to spring-boot-starter-logging

spring-boot-starter-logging Starter for logging using Logback. Default
logging starter

spring-boot-starter-reactor-netty Starter for using Reactor Netty as the embedded
reactive HTTP server.

spring-boot-starter-tomcat Starter for using Tomcat as the embedded
servlet container. Default servlet container
starter used by spring-boot-starter-web

spring-boot-starter-undertow Starter for using Undertow as the embedded

servlet container. An alternative to  spring-boot-
starter-tomcat

To learn how to swap technical facets, please see the how-to documentation for swapping web
server and logging system .

TP For a list of additional community contributed starters, see the README file in the
spring-boot-starters ~ module on GitHub.

6.2. Structuring Your Code

Spring Boot does not require any specific code layout to work. However, there are some best
practices that help.

6.2.1. Using the OdefaultO Package

When a class does not include a packagedeclaration, it is considered to be in the Odefault packageO.

The use of the Odefault packageO is generally discouraged and should be avoided. It can cause
particular problems for Spring Boot applications that wuse the @ComponentSg¢an
@ConfigurationPropertiesScan , @EntityScan or @SpringBootApplication annotations, since every class
from every jar is read.

We recommend that you follow JavaOs recommended package naming conventions

TIP _ ,
and use a reversed domain name (for example, = com.example.project ).

6.2.2. Locating the Main Application Class

We generally recommend that you locate your main application class in a root package above other
classes. The @SpringBootApplication annotation is often placed on your main class, and it implicitly
defines a base Osearch packageO for certain items. For example, if you are writing a JPA application,

the package of the @SpringBootApplication annotated class is used to search for @Entity items. Using
a root package also allows component scan to apply only on your project.
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If you do not want to use @SpringBootApplication, the @EnableAutoConfiguration and
TIP @ComponentScannotations that it imports defines that behavior so you can also use
those instead.

The following listing shows a typical layout:

com
E+- example
+- myapplication
+- MyApplication.java
I
+- customer
| +- Customer.java
| +- CustomerController.java
| +- CustomerService.java
| +- CustomerRepository.java
I
+- order
+- Order.java
+- OrderController.java
+- OrderService.java
+- OrderRepository.java

™ > [T e e e M e T T e e e mp

The MyApplication.java  file would declare the main method, along with the basic
@SpringBootApplication, as follows:

Java

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class MyApplication {

public static void main(String[] args) {
SpringApplication.run(MyApplication.class, args);

™ [T [T

}

—
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Kotlin

import org.springframework.boot.autoconfigure.SpringBootApplication
import org.springframework.boot.runApplication

@SpringBootApplication
class MyApplication

fun main(args: Array<String>) {
E runApplication<MyApplication>(*args)
}

6.3. Configuration Classes

Spring Boot favors Java-based configuration. Although it is possible to use SpringApplication  with
XML sources, we generally recommend that your primary source be a single @Configuration class.
Usually the class that defines the mainmethod is a good candidate as the primary ~ @Configuration.

Many Spring configuration examples have been published on the Internet that use
TIP XML configuration. If possible, always try to use the equivalent Java-based
configuration. Searching for  Enable* annotations can be a good starting point.

6.3.1. Importing Additional Configuration Classes

You need not put all your @Configuration into a single class. The @Importannotation can be used to
import additional configuration classes. Alternatively, you can use @ComponentScemautomatically
pick up all Spring components, including @Configuration classes.

6.3.2. Importing XML Configuration

If you absolutely must use XML based configuration, we recommend that you still start with a
@Configuration class. You can then use an @ImportResourceannotation to load XML configuration
files.

6.4. Auto-configuration

Spring Boot auto-configuration attempts to automatically configure your Spring application based

on the jar dependencies that you have added. For example, if HSQLDIB on your classpath, and you
have not manually configured any database connection beans, then Spring Boot auto-configures an
in-memory database.

You need to optin to auto-configuration by adding the @EnableAutoConfiguration or
@SpringBootApplication annotations to one of your ~@Configuration classes.

You should only ever add one @SpringBootApplication or @EnableAutoConfiguration

TIP annotation. We generally recommend that you add one or the other to your primary
@Configuration class only.
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6.4.1. Gradually Replacing Auto-configuration

Auto-configuration is non-invasive. At any point, you can start to define your own configuration to
replace specific parts of the auto-configuration. For example, if you add your own DataSourcebean,
the default embedded database support backs away.

If you need to find out what auto-configuration is currently being applied, and why, start your
application with the  --debug switch. Doing so enables debug logs for a selection of core loggers and
logs a conditions report to the console.

6.4.2. Disabling Specific Auto-configuration Classes

If you find that specific auto-configuration classes that you do not want are being applied, you can
use the exclude attribute of @SpringBootApplication to disable them, as shown in the following
example:

Java

import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.boot.autoconfigure.jdbc.DataSourceAutoConfiguration;

@SpringBootApplication(exclude = { DataSourceAutoConfiguration.class })
public class MyApplication {

Kotlin

import org.springframework.boot.autoconfigure.SpringBootApplication
import org.springframework.boot.autoconfigure.jdbc.DataSourceAutoConfiguration

@SpringBootApplication(exclude = [DataSourceAutoConfiguration::class])
class MyApplication

If the class is not on the classpath, you can use the excludeNameattribute of the annotation and
specify the fully qualified name instead. If you prefer to use @EnableAutoConfiguration rather than
@SpringBootApplication, exclude and excludeNameare also available. Finally, you can also control the
list of auto-configuration classes to exclude by using the spring.autoconfigure.exclude  property.

TIP You can define exclusions both at the annotation level and by using the property.

Even though auto-configuration classes are  public , the only aspect of the class that
is considered public API is the name of the class which can be used for disabling the

NOTE auto-configuration. The actual contents of those classes, such as nested
configuration classes or bean methods are for internal use only and we do not
recommend using those directly.
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6.5. Spring Beans and Dependency Injection

You are free to use any of the standard Spring Framework techniques to define your beans and
their injected dependencies. We generally recommend using constructor injection to wire up
dependencies and @ComponentSctnfind beans.

If you structure your code as suggested above (locating your application class in a top package), you

can add @ComponentScaithout any arguments or use the ~ @SpringBootApplication annotation which
implicitly includes it. All of your application components ( @Component@Service @Repository
@Controller, and others) are automatically registered as Spring Beans.

The following example shows a ~ @ServiceBean that uses constructor injection to obtain a required
RiskAssessor bean:

Java
import org.springframework.stereotype.Service;

@Service
public class MyAccountService implements AccountService {

T

private final RiskAssessor riskAssessor;

public MyAccountService(RiskAssessor riskAssessor) {
this.riskAssessor = riskAssessor;

m [T [T

m

...

Kotlin

import org.springframewaork.stereotype.Service

@Service
class MyAccountService(private val riskAssessor: RiskAssessor) : AccountService

If a bean has more than one constructor, you will need to mark the one you want Spring to use with
@Autowired
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Java

34

import java.io.PrintStream;

import org.springframework.beans.factory.annotation.Autowired,;
import org.springframework.stereotype.Service;

@Service
public class MyAccountService implements AccountService {

m

private final RiskAssessor riskAssessor;

T

private final PrintStream out;

@Autowired

public MyAccountService(RiskAssessor riskAssessor) {
this.riskAssessor = riskAssessor;
this.out = System.out;

}

T T [T [Ty [mp

public MyAccountService(RiskAssessor riskAssessor, PrintStream out) {
this.riskAssessor = riskAssessor;
this.out = out;

T [T [T [T

m

...



Kotlin
import org.springframework.beans.factory.annotation.Autowired
import org.springframewaork.stereotype.Service

import java.io.PrintStream

@Service
class MyAccountService : AccountService {

E private val riskAssessor: RiskAssessor

E private val out: PrintStream

E @Autowired

E constructor(riskAssessor: RiskAssessor) {

E this.riskAssessor = riskAssessor

E  out= System.out

E }

E constructor(riskAssessor: RiskAssessor, out: PrintStream) {
E this.riskAssessor = riskAssessor

E this.out = out

E }

E /..

}

TP Notice how using constructor injection lets the riskAssessor field be marked as final

indicating that it cannot be subsequently changed.

6.6. Using the @SpringBootApplication Annotation

Many Spring Boot developers like their apps to use auto-configuration, component scan and be able
to define extra configuration on their "application class". A single @SpringBootApplication
annotation can be used to enable those three features, that is:

¥ @EnableAutoConfiguration: enable Spring BootOs auto-configuration mechanism

¥ @ComponentScanable @Componestan on the package where the application is located (see  the
best practices )

¥ @SpringBootConfiguration: enable registration of extra beans in the context or the import of
additional configuration classes. An alternative to SpringOs standard @Configuration that aids
configuration detection in your integration tests.
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Java

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

/I Same as @SpringBootConfiguration @EnableAutoConfiguration @ComponentScan
@ SpringBootApplication

public class MyApplication {

m [Ty [T

}

—

Kotlin

public static void main(String[] args) {

SpringApplication.run(MyApplication.class, args);

import org.springframework.boot.autoconfigure.SpringBootApplication
import org.springframework.boot.runApplication

/I same as @SpringBootConfiguration @EnableAutoConfiguration @ComponentScan
@SpringBootApplication

class MyApplication

fun main(args: Array<String>) {
E runApplication<MyApplication>(*args)

}

NOTE

@SpringBootApplication also provides aliases to customize the attributes
@EnableAutoConfigurationand @ComponentScan

of



None of these features are mandatory and you may choose to replace this single
annotation by any of the features that it enables. For instance, you may not want to
use component scan or configuration properties scan in your application:

Java

import org.springframework.boot.SpringApplication;

import org.springframework.boot.SpringBootConfiguration;

import org.springframework.boot.autoconfigure.EnableAutoConfiguration;
import org.springframework.context.annotation.Import;

@SpringBootConfiguration(proxyBeanMethods = false)
@EnableAutoConfiguration

@Import({ SomeConfiguration.class, AnotherConfiguration.class })
public class MyApplication {

public static void main(String[] args) {
SpringApplication.run(MyApplication.class, args);

T > m»

}

—

NOTE Kotlin

import org.springframework.boot.SpringBootConfiguration

import org.springframework.boot.autoconfigure.EnableAutoConfiguration
import
org.springframework.boot.docs.using.structuringyourcode.locatingthemainc
lass.MyApplication

import org.springframework.boot.runApplication

import org.springframework.context.annotation.Import

@SpringBootConfiguration(proxyBeanMethods = false)
@EnableAutoConfiguration

@Import(SomeConfiguration::class, AnotherConfiguration::class)
class MyApplication

fun main(args: Array<String>) {
E runApplication<MyApplication>(*args)
}

In this example, MyApplication is just like any other Spring Boot application except
that @Componeannotated classes and @ConfigurationProperties -annotated classes
are not detected automatically and the user-defined beans are imported explicitly

(see @Impor].



6.7. Running Your Application

One of the biggest advantages of packaging your application as a jar and using an embedded HTTP
server is that you can run your application as you would any other. The sample applies to
debugging Spring Boot applications. You do not need any special IDE plugins or extensions.

This section only covers jar-based packaging. If you choose to package your

NOTE
application as a war file, see your server and IDE documentation.

6.7.1. Running From an IDE

You can run a Spring Boot application from your IDE as a Java application. However, you first need
to import your project. Import steps vary depending on your IDE and build system. Most IDEs can
import Maven projects directly. For example, Eclipse users can select ImportE "
Projects from the File menu.

Existing Maven

If you cannot directly import your project into your IDE, you may be able to generate IDE metadata
by using a build plugin. Maven includes plugins for Eclipse and IDEA. Gradle offers plugins for
various IDEs .

If you accidentally run a web application twice, you see a OPort already in useO error.
TIP Spring Tools users can use the Relaunch button rather than the  Runbutton to ensure
that any existing instance is closed.

6.7.2. Running as a Packaged Application

If you use the Spring Boot Maven or Gradle plugins to create an executable jar, you can run your
application using java -jar , as shown in the following example:

$ java -jar target/myapplication-0.0.1-SNAPSHOT .jar

It is also possible to run a packaged application with remote debugging support enabled. Doing so
lets you attach a debugger to your packaged application, as shown in the following example:

$ java -Xdebug -Xrunjdwp:server=y,transport=dt_socket,address=8000,suspend=n \
E  -jar target/myapplication-0.0.1-SNAPSHOT .jar

6.7.3. Using the Maven Plugin

The Spring Boot Maven plugin includes a  run goal that can be used to quickly compile and run your
application. Applications run in an exploded form, as they do in your IDE. The following example
shows a typical Maven command to run a Spring Boot application:

$ mvn spring-boot:run
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https://maven.apache.org/plugins/maven-eclipse-plugin/
https://maven.apache.org/plugins/maven-idea-plugin/
https://docs.gradle.org/current/userguide/userguide.html

