Spring Boot Gradle Plugin Reference
Guide

Andy Wilkinson, Scott Frederick, Moritz Halbritter

3.2.10-SNAPSHOT

Table of Contents

1. Introduction
2. Getting Started
3. Managing Dependencies
3.1. Managing Dependencies with the Dependency Management Plugin
3.1.1. Customizing Managed Versions
3.1.2. Using Spring Boot’s Dependency Management in Isolation
3.1.3. Learning More
3.2. Managing Dependencies with Gradle’s Bom Support
3.2.1. Customizing Managed Versions
4. Packaging Executable Archives
4.1. Packaging Executable Jars
4.2. Packaging Executable Wars
4.2.1. Packaging Executable and Deployable Wars
4.3. Packaging Executable and Plain Archives
4.4. Configuring Executable Archive Packaging
4.4.1. Configuring the Main Class
4.4.2. Including Development-only Dependencies
4.4.3. Configuring Libraries that Require Unpacking
4.4.4. Making an Archive Fully Executable
4.4.5. Using the PropertiesLauncher
4.4.6. Packaging Layered Jar or War
Custom Layers Configuration
5. Packaging OCI Images
5.1. Docker Daemon
5.2. Docker Registry
5.3. Image Customizations
5.3.1. Tags format
5.4. Examples
5.4.1. Custom Image Builder and Run Image
5.4.2. Builder Configuration
5.4.3. Runtime JVM Configuration
5.4.4. Custom Image Name
5.4.5. Buildpacks
5.4.6. Image Publishing
5.4.7. Builder Cache and Workspace Configuration
5.4.8. Docker Configuration
Docker Configuration for minikube

Docker Configuration for podman

© © © © I 09 O U b= b= b= N =

W W W W W DN DN NN DN DN DN DN DN DNDN PR =R R ===
=W W N R, OO 00NN NN NN, O 0O U W W N e e, o

Docker Configuration for Colima
Docker Configuration for Authentication
6. Publishing your Application
6.1. Publishing with the Maven-publish Plugin
6.2. Distributing with the Application Plugin
7. Running your Application with Gradle
7.1. Passing Arguments to your Application
7.2. Passing System properties to your application
7.3. Reloading Resources
7.4. Using a Test Main Class
8. Ahead-of-Time Processing
8.1. Processing Applications
8.2. Processing Tests
9. Integrating with Actuator
9.1. Generating Build Information
10. Reacting to Other Plugins
10.1. Reacting to the Java Plugin
10.2. Reacting to the Kotlin Plugin
10.3. Reacting to the War Plugin
10.4. Reacting to the Dependency Management Plugin
10.5. Reacting to the Application Plugin
10.6. Reacting to the GraalVM Native Image Plugin

35
35
37
37
37
38
39
39
40
41
42
42
42
44
44
47
47
47
48
48
48
48

Chapter 1. Introduction

The Spring Boot Gradle Plugin provides Spring Boot support in Gradle. It allows you to package
executable jar or war archives, run Spring Boot applications, and use the dependency management
provided by spring-boot-dependencies. Spring Boot’s Gradle plugin requires Gradle 7.x (7.5 or later)
or 8.x and can be used with Gradle’s configuration cache.

In addition to this user guide, API documentation is also available.

https://gradle.org
https://docs.gradle.org/current/userguide/configuration_cache.html
https://docs.spring.io/spring-boot/docs/3.2.10-SNAPSHOT/gradle-plugin/api

Chapter 2. Getting Started

To get started with the plugin it needs to be applied to your project.

The plugin is published to the Spring snapshots repository. Gradle can be configured to use the
snapshots repository and the plugin can then be applied using the plugins block. To configure
Gradle to use the snapshots repository, add the following to your settings.gradle (Groovy) or
settings.gradle.kts (Kotlin):

Groovy

pluginManagement {
repositories {
maven { url 'https://repo.spring.io/milestone’ }
maven { url 'https://repo.spring.io/snapshot’ }
gradlePluginPortal()

Kotlin

pluginManagement {
repositories {
maven { url = uri("https://repo.spring.io/milestone") }
maven { url = uri("https://repo.spring.io/snapshot") }
gradlePluginPortal()

The plugin can then be applied using the plugins block:

Groovy

plugins {
id 'org.springframework.boot' version '3.2.10-SNAPSHOT'
¥

Kotlin

plugins {
id("org.springframework.boot") version "3.2.10-SNAPSHOT"
}

Applied in isolation the plugin makes few changes to a project. Instead, the plugin detects when
certain other plugins are applied and reacts accordingly. For example, when the java plugin is
applied a task for building an executable jar is automatically configured. A typical Spring Boot
project will apply the groovy, java, or org.jetbrains.kotlin.jvm plugin as a minimum and also use
the io.spring.dependency-management plugin or Gradle’s native bom support for dependency

https://docs.gradle.org/current/userguide/groovy_plugin.html
https://docs.gradle.org/current/userguide/java_plugin.html
https://kotlinlang.org/docs/reference/using-gradle.html
https://github.com/spring-gradle-plugins/dependency-management-plugin

management. For example:

Groovy
plugins {
id "java'
id 'org.springframework.boot' version '3.2.10-SNAPSHOT'
}

apply plugin: 'io.spring.dependency-management’

Kotlin

plugins {

java

id("org.springframework.boot") version "3.2.10-SNAPSHOT"
}

apply(plugin = "io.spring.dependency-management")

To learn more about how the Spring Boot plugin behaves when other plugins are applied please see
the section on reacting to other plugins.

Chapter 3. Managing Dependencies

To manage dependencies in your Spring Boot application, you can either apply the
io.spring.dependency-management plugin or use Gradle’s native bom support. The primary benefit of
the former is that it offers property-based customization of managed versions, while using the
latter will likely result in faster builds.

3.1. Managing Dependencies with the Dependency
Management Plugin

When you apply the io.spring.dependency-management plugin, Spring Boot’s plugin will
automatically import the spring-boot-dependencies bom from the version of Spring Boot that you
are using. This provides a similar dependency management experience to the one that’s enjoyed by
Maven users. For example, it allows you to omit version numbers when declaring dependencies
that are managed in the bom. To make use of this functionality, declare dependencies in the usual
way but omit the version number:

Groovy

dependencies {
implementation('org.springframework.boot:spring-boot-starter-web")
implementation('org.springframework.boot:spring-boot-starter-data-jpa")

Kotlin

dependencies {
implementation("org.springframework.boot:spring-boot-starter-web")
implementation("org.springframework.boot:spring-boot-starter-data-jpa")

3.1.1. Customizing Managed Versions

The spring-boot-dependencies bom that is automatically imported when the dependency
management plugin is applied uses properties to control the versions of the dependencies that it
manages. Browse the Dependency versions Appendix in the Spring Boot reference for a complete list
of these properties.

To customize a managed version you set its corresponding property. For example, to customize the
version of SLF4] which is controlled by the s1f4j.version property:

Groovy

ext['s1f4j.version'] = '1.7.20'

https://github.com/spring-gradle-plugins/dependency-management-plugin
https://github.com/spring-gradle-plugins/dependency-management-plugin
https://docs.spring.io/spring-boot/docs/3.2.10-SNAPSHOT/reference/htmlsingle/#dependency-versions-properties

Kotlin

extra["s1f4j.version"] = "1.7.20"

Each Spring Boot release is designed and tested against a specific set of third-party
A dependencies. Overriding versions may cause compatibility issues and should be
done with care.

3.1.2. Using Spring Boot’s Dependency Management in Isolation

Spring Boot’s dependency management can be used in a project without applying Spring Boot’s
plugin to that project. The SpringBootPlugin class provides a BOM_COORDINATES constant that can be
used to import the bom without having to know its group ID, artifact ID, or version.

First, configure the project to depend on the Spring Boot plugin but do not apply it:

Groovy

buildscript {
repositories {
maven { url 'https://repo.spring.io/libs-snapshot’ }
}

dependencies {
classpath 'org.springframework.boot:spring-boot-gradle-plugin:3.2.10-SNAPSHOT'
}

Kotlin

plugins {
id("org.springframework.boot") version "3.2.10-SNAPSHOT" apply false
}

The Spring Boot plugin’s dependency on the dependency management plugin means that you can
use the dependency management plugin without having to declare a dependency on it. This also
means that you will automatically use the same version of the dependency management plugin as
Spring Boot uses.

Apply the dependency management plugin and then configure it to import Spring Boot’s bom:

Groovy
apply plugin: 'io.spring.dependency-management'

dependencyManagement {
imports {
mavenBom
org.springframework.boot.gradle.plugin.SpringBootPlugin.BOM_COORDINATES
}
}

Kotlin
apply(plugin = "io.spring.dependency-management")

the<DependencyManagementExtension>().apply {
imports {

mavenBom(org.springframework.boot.gradle.plugin.SpringBootPlugin.BOM_COORDINATES)
}
}

The Kotlin code above is a bit awkward. That’s because we’re using the imperative way of applying
the dependency management plugin.

We can make the code less awkward by applying the plugin from the root parent project, or by
using the plugins block as we’re doing for the Spring Boot plugin. A downside of this method is that
it forces us to specify the version of the dependency management plugin:

plugins {
java
id("org.springframework.boot") version "3.2.10-SNAPSHOT" apply false
id("i0.spring.dependency-management") version "1.1.6"

}

dependencyManagement {
imports {

mavenBom(org.springframework.boot.gradle.plugin.SpringBootPlugin.BOM_COORDINATES)
}
}

3.1.3. Learning More

To learn more about the capabilities of the dependency management plugin, please refer to its
documentation.

https://docs.spring.io/dependency-management-plugin/docs/current/reference/html/

3.2. Managing Dependencies with Gradle’s Bom
Support

Gradle allows a bom to be used to manage a project’s versions by declaring it as a platform or
enforcedPlatform dependency. A platform dependency treats the versions in the bom as
recommendations and other versions and constraints in the dependency graph may cause a version
of a dependency other than that declared in the bom to be used. An enforcedPlatform dependency
treats the versions in the bom as requirements and they will override any other version found in
the dependency graph.

The SpringBootPlugin class provides a BOM_COORDINATES constant that can be used to declare a
dependency upon Spring Boot’s bom without having to know its group ID, artifact ID, or version, as
shown in the following example:

Groovy

dependencies {
implementation
platform(org.springframework.boot.gradle.plugin.SpringBootPlugin.BOM_COORDINATES)

}

Kotlin

dependencies {

implementation(platform(org.springframework.boot.gradle.plugin.SpringBootPlugin.BOM_CO
ORDINATES))
}

A platform or enforced platform will only constrain the versions of the configuration in which it
has been declared or that extend from the configuration in which it has been declared. As a result,
in may be necessary to declare the same dependency in more than one configuration.

3.2.1. Customizing Managed Versions

When using Gradle’s bom support, you cannot use the properties from spring-boot-dependencies to
control the versions of the dependencies that it manages. Instead, you must use one of the
mechanisms that Gradle provides. One such mechanism is a resolution strategy. SLF4J’s modules
are all in the org.s1f4j group so their version can be controlled by configuring every dependency in
that group to use a particular version, as shown in the following example:

Groovy

configurations.all {
resolutionStrategy.eachDependency { DependencyResolveDetails details ->
if (details.requested.group == 'org.slf4j") {
details.useVersion '1.7.20'

}

Kotlin

configurations.all {
resolutionStrategy.eachDependency {
if (requested.group == "org.s1f4j") {
useVersion("1.7.20")

}

Each Spring Boot release is designed and tested against a specific set of third-party
A dependencies. Overriding versions may cause compatibility issues and should be
done with care.

Chapter 4. Packaging Executable Archives

The plugin can create executable archives (jar files and war files) that contain all of an application’s
dependencies and can then be run with java -jar.

4.1. Packaging Executable Jars

Executable jars can be built using the bootJar task. The task is automatically created when the java
plugin is applied and is an instance of BootJar. The assemble task is automatically configured to
depend upon the bootJar task so running assemble (or build) will also run the bootJar task.

4.2. Packaging Executable Wars

Executable wars can be built using the bootWar task. The task is automatically created when the war
plugin is applied and is an instance of BootWar. The assemble task is automatically configured to
depend upon the bootlWar task so running assemble (or build) will also run the bootWar task.

4.2.1. Packaging Executable and Deployable Wars

A war file can be packaged such that it can be executed using java -jar and deployed to an external
container. To do so, the embedded servlet container dependencies should be added to the
providedRuntime configuration, for example:

Groovy

dependencies {
implementation('org.springframework.boot:spring-boot-starter-web")
providedRuntime('org.springframework.boot:spring-boot-starter-tomcat')

Kotlin

dependencies {
implementation("org.springframework.boot:spring-boot-starter-web")
providedRuntime("org.springframework.boot:spring-boot-starter-tomcat")

This ensures that they are package in the war file’s WEB-INF/1ib-provided directory from where they
will not conflict with the external container’s own classes.

providedRuntime is preferred to Gradle’s compileOnly configuration as, among other
o limitations, compileOnly dependencies are not on the test classpath so any web-
based integration tests will fail.

https://docs.spring.io/spring-boot/docs/3.2.10-SNAPSHOT/gradle-plugin/api/org/springframework/boot/gradle/tasks/bundling/BootJar.html
https://docs.spring.io/spring-boot/docs/3.2.10-SNAPSHOT/gradle-plugin/api/org/springframework/boot/gradle/tasks/bundling/BootWar.html

4.3. Packaging Executable and Plain Archives

By default, when the bootJar or bootWar tasks are configured, the jar or war tasks are configured to
use plain as the convention for their archive classifier. This ensures that bootJar and jar or bootWar
and war have different output locations, allowing both the executable archive and the plain archive
to be built at the same time.

If you prefer that the executable archive, rather than the plain archive, uses a classifier, configure
the classifiers as shown in the following example for the jar and bootJar tasks:

Groovy

tasks.named("bootJar") {
archiveClassifier = 'boot'

}

tasks.named("jar") {
archiveClassifier =

}

Kotlin

tasks.named<BootJar>("bootJar") {
archiveClassifier.set("boot")

}

tasks.named<Jar>("jar") {
archiveClassifier.set("")

}

Alternatively, if you prefer that the plain archive isn’t built at all, disable its task as shown in the
following example for the jar task:

Groovy

tasks.named("jar") {
enabled = false

}

Kotlin

tasks.named<Jar>("jar") {
enabled = false

}

A Do not disable the jar task when creating native images. See #33238 for details.

10

https://github.com/spring-projects/spring-boot/issues/33238

4.4. Configuring Executable Archive Packaging

The BootJar and BootlWar tasks are subclasses of Gradle’s Jar and War tasks respectively. As a result,
all of the standard configuration options that are available when packaging a jar or war are also
available when packaging an executable jar or war. A number of configuration options that are
specific to executable jars and wars are also provided.

4.4.1. Configuring the Main Class

By default, the executable archive’s main class will be configured automatically by looking for a
class with a public static void main(String[]) method in the main source set’s output.

The main class can also be configured explicitly using the task’s mainClass property:

Groovy

tasks.named("bootJar") {
mainClass = 'com.example.ExampleApplication'

}

Kotlin

tasks.named<BootJar>("bootJar") {
mainClass.set("com.example.ExampleApplication")

}

Alternatively, the main class name can be configured project-wide using the mainClass property of
the Spring Boot DSL:

Groovy
springBoot {

mainClass = 'com.example.ExampleApplication'

}

Kotlin
springBoot {

mainClass.set("com.example.ExampleApplication")

}

If the application plugin has been applied its mainClass property must be configured and can be
used for the same purpose:

11

https://docs.spring.io/spring-boot/docs/3.2.10-SNAPSHOT/gradle-plugin/api/org/springframework/boot/gradle/tasks/bundling/BootJar.html
https://docs.spring.io/spring-boot/docs/3.2.10-SNAPSHOT/gradle-plugin/api/org/springframework/boot/gradle/tasks/bundling/BootWar.html
https://docs.gradle.org/current/userguide/application_plugin.html
https://docs.gradle.org/current/userguide/application_plugin.html

Groovy

application {
mainClass = 'com.example.ExampleApplication'

}

Kotlin

application {
mainClass.set("com.example.ExampleApplication")

}

Lastly, the Start-Class attribute can be configured on the task’s manifest:

Groovy

tasks.named("bootJar") {
manifest {
attributes 'Start-Class': 'com.example.ExampleApplication'

}

Kotlin

tasks.named<BootJar>("bootJar") {
manifest {
attributes("Start-Class" to "com.example.ExampleApplication")

}

If the main class is written in Kotlin, the name of the generated Java class should

o be used. By default, this is the name of the Kotlin class with the Kt suffix added. For
example, ExampleApplication becomes ExampleApplicationKt. If another name is
defined using @JvmName then that name should be used.

4.4.2. Including Development-only Dependencies

By default all dependencies declared in the developmentOnly configuration will be excluded from an
executable jar or war.

If you want to include dependencies declared in the developmentOnly configuration in your archive,
configure the classpath of its task to include the configuration, as shown in the following example
for the bootWar task:

12

Groovy

tasks.named("bootWar") {
classpath configurations.developmentOnly

}

Kotlin

tasks.named<BootWar>("bootWar") {
classpath(configurations["developmentOnly"])

}

4.4.3. Configuring Libraries that Require Unpacking

Most libraries can be used directly when nested in an executable archive, however certain libraries
can have problems. For example, JRuby includes its own nested jar support which assumes that
jruby-complete.jar is always directly available on the file system.

To deal with any problematic libraries, an executable archive can be configured to unpack specific
nested jars to a temporary directory when the executable archive is run. Libraries can be identified
as requiring unpacking using Ant-style patterns that match against the absolute path of the source
jar file:

Groovy

tasks.named("bootJar") {
requiresUnpack '**/jruby-complete-*.jar

}

Kotlin

tasks.named<BootJar>("bootJar") {
requiresUnpack("**/jruby-complete-*.jar")

}

For more control a closure can also be used. The closure is passed a FileTreeElement and should
return a boolean indicating whether or not unpacking is required.

4.4.4. Making an Archive Fully Executable

Spring Boot provides support for fully executable archives. An archive is made fully executable by
prepending a shell script that knows how to launch the application. On Unix-like platforms, this
launch script allows the archive to be run directly like any other executable or to be installed as a
service.

13

Currently, some tools do not accept this format so you may not always be able to
use this technique. For example, jar -xf may silently fail to extract a jar or war

o that has been made fully-executable. It is recommended that you only enable this
option if you intend to execute it directly, rather than running it with java -jar or
deploying it to a servlet container.

To use this feature, the inclusion of the launch script must be enabled:

Groovy

tasks.named("bootJar") {
launchScript()
+

Kotlin

tasks.named<BootJar>("bootJar") {
launchScript()
+

This will add Spring Boot’s default launch script to the archive. The default launch script includes
several properties with sensible default values. The values can be customized using the properties

property:

Groovy

tasks.named("bootJar") {
launchScript {
properties 'logFilename': 'example-app.log'

}

Kotlin

tasks.named<BootJar>("bootJar") {
launchScript {
properties(map0f("logFilename" to "example-app.log"))
}

If the default launch script does not meet your needs, the script property can be used to provide a
custom launch script:

14

Groovy

tasks.named("bootJar") {
launchScript {
script = file('src/custom.script')

}

Kotlin

tasks.named<BootJar>("bootJar") {
launchScript {
script = file("src/custom.script")

}

4.4.5. Using the PropertiesLauncher

To use the PropertiesLauncher to launch an executable jar or war, configure the task’s manifest to
set the Main-Class attribute:

Groovy

tasks.named("bootWar") {
manifest {
attributes 'Main-Class':
'org.springframework.boot.loader.launch.PropertiesLauncher’

}
}

Kotlin

tasks.named<BootWar>("bootWar") {
manifest {
attributes("Main-Class" to
"org.springframework.boot.loader.launch.PropertiesLauncher")

}
}

4.4.6. Packaging Layered Jar or War

By default, the bootJar task builds an archive that contains the application’s classes and
dependencies in BOOT-INF/classes and BOOT-INF/lib respectively. Similarly, bootWar builds an
archive that contains the application’s classes in WEB-INF/classes and dependencies in WEB-INF/1ib
and WEB-INF/1lib-provided. For cases where a docker image needs to be built from the contents of
the jar, it’s useful to be able to separate these directories further so that they can be written into
distinct layers.

15

Layered jars use the same layout as regular boot packaged jars, but include an additional meta-data
file that describes each layer.

By default, the following layers are defined:

 dependencies for any non-project dependency whose version does not contain SNAPSHOT.

* spring-boot-loader for the jar loader classes.

snapshot-dependencies for any non-project dependency whose version contains SNAPSHOT.

 application for project dependencies, application classes, and resources.

The layers order is important as it determines how likely previous layers can be cached when part
of the application changes. The default order is dependencies, spring-boot-loader, snapshot-
dependencies, application. Content that is least likely to change should be added first, followed by
layers that are more likely to change.

To disable this feature, you can do so in the following manner:

Groovy

tasks.named("bootJar") {
layered {
enabled = false

}

Kotlin

tasks.named<BootJar>("bootJar") {
layered {
enabled.set(false)
}

When a layered jar or war is created, the spring-boot-jarmode-layertools jar will be added as a
dependency to your archive. With this jar on the classpath, you can launch your application in a
special mode which allows the bootstrap code to run something entirely different from your
application, for example, something that extracts the layers. If you wish to exclude this dependency,
you can do so in the following manner:

Groovy

tasks.named("bootJar") {
layered {
includelayerTools = false

}

16

Kotlin

tasks.named<BootJar>("bootJar") {
layered {
includelayerTools.set(false)

}

Custom Layers Configuration

Depending on your application, you may want to tune how layers are created and add new ones.

This can be done using configuration that describes how the jar or war can be separated into layers,
and the order of those layers. The following example shows how the default ordering described
above can be defined explicitly:

Groovy

tasks.named("bootJar") {
layered {
application {
intoLayer("spring-boot-loader") {
include "org/springframework/boot/loader/**"
}
intoLayer("application")
}
dependencies {
intoLayer("application") {
includeProjectDependencies()
}
intoLayer("snapshot-dependencies") {
include "*:*:*SNAPSHOT"
}
intoLayer("dependencies")
}
layerOrder = ["dependencies", "spring-boot-loader", "snapshot-dependencies",
"application"]
}
+

17

Kotlin

tasks.named<BootJar>("bootJar") {
layered {
application {
intoLayer("spring-boot-loader") {
include("org/springframework/boot/loader/**")

}
intoLayer("application")
}
dependencies {
intoLayer("application") {
includeProjectDependencies()

}

intolLayer("snapshot-dependencies") {
include("*:*:*SNAPSHOT")
+

intoLayer("dependencies")

}
layerOrder.set(1istOf("dependencies", "spring-boot-loader", "snapshot-
dependencies", "application"))

}
}

The layered DSL is defined using three parts:

» The application closure defines how the application classes and resources should be layered.
* The dependencies closure defines how dependencies should be layered.

* The layerOrder method defines the order that the layers should be written.

Nested intolayer closures are used within application and dependencies sections to claim content
for a layer. These closures are evaluated in the order that they are defined, from top to bottom. Any
content not claimed by an earlier intolLayer closure remains available for subsequent ones to
consider.

The intolLayer closure claims content using nested include and exclude calls. The application closure
uses Ant-style path matching for include/exclude parameters. The dependencies section uses
group:artifact[:version] patterns. It also provides includeProjectDependencies() and
excludeProjectDependencies() methods that can be used to include or exclude project dependencies.

If no include call is made, then all content (not claimed by an earlier closure) is considered.
If no exclude call is made, then no exclusions are applied.

Looking at the dependencies closure in the example above, we can see that the first intoLayer will
claim all project dependencies for the application layer. The next intolLayer will claim all
SNAPSHOT dependencies for the snapshot-dependencies layer. The third and final intolLayer will
claim anything left (in this case, any dependency that is not a project dependency or a SNAPSHOT)
for the dependencies layer.

18

The application closure has similar rules. First claiming org/springframework/boot/loader/**
content for the spring-boot-loader layer. Then claiming any remaining classes and resources for the
application layer.

The order that intolLayer closures are added is often different from the order that

the layers are written. For this reason the layerOrder method must always be
called and must cover all layers referenced by the intolLayer calls.

19

Chapter 5. Packaging OCI Images

The plugin can create an OCI image from a jar or war file using Cloud Native Buildpacks (CNB).
Images can be built using the bootBuildImage task.

o For security reasons, images build and run as non-root users. See the CNB
specification for more details.

The task is automatically created when the java or war plugin is applied and is an instance of
BootBuildImage.

5.1. Docker Daemon

The bootBuildImage task requires access to a Docker daemon. The task will inspect local Docker CLI
configuration files to determine the current context and use the context connection information to
communicate with a Docker daemon. If the current context can not be determined or the context
does not have connection information, then the task will use a default local connection. This works
with Docker Engine on all supported platforms without configuration.

Environment variables can be set to configure the bootBuildImage task to use an alternative local or
remote connection. The following table shows the environment variables and their values:

Environment variable Description

DOCKER_CONFIG Location of Docker CLI configuration files used
to determine the current context (defaults to
$HOME/ . docker)

DOCKER_CONTEXT Name of a context that should be used to
retrieve host information from Docker CLI
configuration files (overrides DOCKER_HOST)

DOCKER_HOST URL containing the host and port for the Docker
daemon - for example tcp://192.168.99.100:2376

DOCKER_TLS_VERIFY Enable secure HTTPS protocol when set to 1
(optional)

DOCKER_CERT_PATH Path to certificate and key files for HTTPS
(required if DOCKER_TLS_VERIFY=1, ignored
otherwise)

Docker daemon connection information can also be provided using docker properties in the plugin
configuration. The following table summarizes the available properties:

Property Description

context Name of a context that should be used to
retrieve host information from Docker CLI
configuration files

20

https://github.com/opencontainers/image-spec
https://buildpacks.io
https://buildpacks.io/docs/reference/spec/platform-api/#users
https://buildpacks.io/docs/reference/spec/platform-api/#users
https://docs.spring.io/spring-boot/docs/3.2.10-SNAPSHOT/gradle-plugin/api/org/springframework/boot/gradle/tasks/bundling/BootBuildImage.html
https://docs.docker.com/engine/reference/commandline/cli/#configuration-files
https://docs.docker.com/engine/context/working-with-contexts/
https://docs.docker.com/install/
https://docs.docker.com/engine/reference/commandline/cli/#configuration-files
https://docs.docker.com/engine/context/working-with-contexts/
https://docs.docker.com/engine/context/working-with-contexts/
https://docs.docker.com/engine/reference/commandline/cli/#configuration-files

Property Description

host URL containing the host and port for the Docker
daemon - for example tcp://192.168.99.100:2376

tlsVerify Enable secure HTTPS protocol when set to true
(optional)

certPath Path to certificate and key files for HTTPS
(required if t1sVerify is true, ignored otherwise)

bindHostToBuilder When true, the value of the host property will be
provided to the container that is created for the
CNB builder (optional)

For more details, see also examples.

5.2. Docker Registry

If the Docker images specified by the builder or runImage properties are stored in a private Docker
image registry that requires authentication, the authentication credentials can be provided using
docker.builderRegistry properties.

If the generated Docker image is to be published to a Docker image registry, the authentication
credentials can be provided using docker.publishRegistry properties.

Properties are provided for user authentication or identity token authentication. Consult the
documentation for the Docker registry being used to store images for further information on
supported authentication methods.

The following table summarizes the available properties for docker.builderRegistry and
docker.publishRegistry:

Property Description

username Username for the Docker image registry user.
Required for user authentication.

password Password for the Docker image registry user.
Required for user authentication.

url Address of the Docker image registry. Optional
for user authentication.

email E-mail address for the Docker image registry
user. Optional for user authentication.

token Identity token for the Docker image registry
user. Required for token authentication.

For more details, see also examples.

21

5.3. Image Customizations

The plugin invokes a huilder to orchestrate the generation of an image. The builder includes
multiple buildpacks that can inspect the application to influence the generated image. By default,
the plugin chooses a builder image. The name of the generated image is deduced from project
properties.

Task properties can be used to configure how the builder should operate on the project. The
following table summarizes the available properties and their default values:

Property Command-line option Description Default value
builder --builder Name of the Builder paketobuildpacks/build
image to use. er-jammy-base:latest or

paketobuildpacks/build
er-jammy-tiny:latest
when GraalVM Native

Image plugin is applied.
runImage --runImage Name of the run image No default value,
to use. indicating the run

image specified in
Builder metadata

should be used.
imageName --imageName Image name for the docker.io/library/${pr
generated image. ojec’F.name}:${project.
version}
pullPolicy --pullPolicy Policy used to ALWAYS
determine when to pull
the builder and run
images from the
registry. Acceptable
values are ALWAYS,
NEVER, and
IF_NOT_PRESENT.
environment Environment variables Empty or
that should be passed ['BP_NATIVE_IMAGE":
to the builder. "true'] when GraalVM
Native Image plugin is
applied.

22

https://buildpacks.io/docs/concepts/components/builder/
https://buildpacks.io/docs/concepts/components/buildpack
https://graalvm.github.io/native-build-tools/0.9.28/gradle-plugin.html
https://graalvm.github.io/native-build-tools/0.9.28/gradle-plugin.html
https://docs.spring.io/spring-boot/docs/3.2.10-SNAPSHOT/api/org/springframework/boot/buildpack/platform/docker/type/ImageReference.html#of-java.lang.String-
https://docs.spring.io/spring-boot/docs/3.2.10-SNAPSHOT/api/org/springframework/boot/buildpack/platform/build/PullPolicy.html
https://graalvm.github.io/native-build-tools/0.9.28/gradle-plugin.html
https://graalvm.github.io/native-build-tools/0.9.28/gradle-plugin.html

Property
buildpacks

Command-line option Description Default value

Buildpacks that the None, indicating the

builder should wuse builder should use the
when building the buildpacks included in

image. Only the it.
specified buildpacks
will be used, overriding
the default buildpacks
included in the builder.
Buildpack references
must be in one of the
following forms:

* Buildpack in the

builder -
[urn:cnb:builder:]<
buildpack
ID>[@<version>]

e Buildpack in a
directory on the file
system -
[file://]<path>

* Buildpack in a
gzipped tar (.tgz)
file on the file

system -
[file://]<path>/<fi
le name>

* Buildpack in an OCI
image -
[docker://]<host>/<
repo>[:<tag>][@<dig
est>]

23

Property
bindings

24

Command-line option Description

Volume bind mounts
that should be
mounted to the builder
container when
building the image. The
bindings will be passed
unparsed and
unvalidated to Docker
when creating the
builder container.
Bindings must be in
one of the following
forms:

e <host source
path>:<container
destination

path>[:<options>]

e <host volume
name>:<container
destination

path>[:<options>]

Where <options> can
contain:

°* ro to mount the
volume as read-
only in the
container

e rw to mount the
volume as readable
and writable in the
container

* volume-
opt=key=value to
specify key-value
pairs consisting of
an option name and
its value

Default value

https://docs.docker.com/storage/bind-mounts/

Property Command-line option Description

network --network

cleanCache --cleanCache

verboselogging

publish --publishImage

tags

buildWorkspace

buildCache

The network driver the
builder container will
be configured to use.
The value supplied will
be passed unvalidated
to Docker when
creating the builder
container.

Whether to clean the
cache before building.

Enables verbose
logging of builder
operations.

Whether to publish the
generated image to a
Docker registry.

A list of one or more
additional tags to apply
to the generated image.
The values provided to
the tags option should
be full image
references. See the tags
section for more
details.

A temporary
workspace that will be
used by the builder and
buildpacks to store files
during image building.
The value can be a
named volume or a
bind mount location.

A cache containing
layers created by
buildpacks and used by
the image building
process. The value can
be a named volume or
a bind mount location.

Default value

false

false

false

A named volume in the
Docker daemon, with a
name derived from the
image name.

A named volume in the
Docker daemon, with a
name derived from the
image name.

25

https://docs.docker.com/network/#network-drivers

Property Command-line option Description Default value

launchCache A cache containing A named volume in the
layers created by Docker daemon, with a
buildpacks and used by name derived from the
the image launching image name.
process. The value can
be a named volume or
a bind mount location.

createdDate --createdDate A date that will be used A fixed date that
to set the Created field enables build
in the generated reproducibility.

image’s metadata. The
value must be a string
in the ISO 8601 instant
format, or now to use
the current date and
time.

applicationDirectory --applicationDirectory The path to a directory /Wworkspace

that application
contents will be
uploaded to in the
builder image.
Application contents
will also be in this
location in the
generated image.

securityOptions --securityOptions Security options that ~ ["label=disable"] on
will be applied to the Linux and macOS, []
builder container, on Windows
provided as an array of
string values

The plugin detects the target Java compatibility of the project using the
JavaPlugin’s targetCompatibility property. When using the default Paketo builder

o and buildpacks, the plugin instructs the buildpacks to install the same Java
version. You can override this behaviour as shown in the builder configuration
examples.

5.3.1. Tags format

The values provided to the tags option should be full image references. The accepted format is
[domainHost:port/][path/Iname[:tag][@digest].

If the domain is missing, it defaults to docker.io. If the path is missing, it defaults to library. If the
tag is missing, it defaults to latest.

26

https://buildpacks.io/docs/features/reproducibility/
https://buildpacks.io/docs/features/reproducibility/
https://docs.docker.com/engine/reference/run/#security-configuration

Some examples:

* my-image leads to the image reference docker.io/library/my-image:latest
* my-repository/my-image leads to docker.io/my-repository/my-image:latest

* example.com/my-repository/my-image:1.0.0 will be used as is

5.4. Examples

5.4.1. Custom Image Builder and Run Image

If you need to customize the builder used to create the image or the run image used to launch the
built image, configure the task as shown in the following example:

Groovy

tasks.named("bootBuildImage") {
builder = "mine/java-cnb-builder"
runImage = "mine/java-cnb-run"

Kotlin

tasks.named<BootBuildImage>("bootBuildImage") {
builder.set("mine/java-cnb-builder")
runImage.set("mine/java-cnb-run")

This configuration will use a builder image with the name mine/java-cnb-builder and the tag latest,
and the run image named mine/java-cnb-run and the tag latest.

The builder and run image can be specified on the command line as well, as shown in this example:

$ gradle bootBuildImage --builder=mine/java-cnb-builder --runImage=mine/java-cnb-run

5.4.2. Builder Configuration

If the builder exposes configuration options, those can be set using the environment property.

The following is an example of configuring the JVM version used by the Paketo Java buildpacks at
build time:

Groovy
tasks.named("bootBuildImage") {

environment["BP_JVM VERSION"] = "17"
}

27

https://paketo.io/docs/buildpacks/language-family-buildpacks/java/#configuring-the-jvm-version

Kotlin

tasks.named<BootBuildImage>("bootBuildImage") {
environment.put("BP_JVM_VERSION", "17")
}

If there is a network proxy between the Docker daemon the builder runs in and network locations
that buildpacks download artifacts from, you will need to configure the builder to use the proxy.
When using the Paketo builder, this can be accomplished by setting the HTTPS_PROXY and/or
HTTP_PROXY environment variables as show in the following example:

Groovy

tasks.named("bootBuildImage") {
environment["HTTP_PROXY"] = "http://proxy.example.com”
environment["HTTPS_PROXY"] = "https://proxy.example.com"

Kotlin

tasks.named<BootBuildImage>("bootBuildImage") {
environment.putAl1l(mapOf("HTTP_PROXY" to "http://proxy.example.com”,
"HTTPS_PROXY" to "https://proxy.example.com"))

5.4.3. Runtime JVM Configuration

Paketo Java buildpacks configure the JVM runtime environment by setting the JAVA_TOOL_OPTIONS
environment variable. The buildpack-provided JAVA_TOOL_OPTIONS value can be modified to
customize JVM runtime behavior when the application image is launched in a container.

Environment variable modifications that should be stored in the image and applied to every
deployment can be set as described in the Paketo documentation and shown in the following
example:

Groovy
tasks.named("bootBuildImage") {

environment["BPE_DELIM_JAVA_TOOL OPTIONS"] = " "
environment["BPE_APPEND_JAVA_TOOL_OPTIONS"] = "-XX:+HeapDumpOnOutOfMemoryError"

28

https://paketo.io/docs/buildpacks/language-family-buildpacks/java/#runtime-jvm-configuration
https://paketo.io/docs/buildpacks/configuration/#environment-variables

Kotlin

tasks.named<BootBuildImage>("bootBuildImage") {
environment.putAll(mapOf(
"BPE_DELIM_JAVA_TOOL_OPTIONS" to " ",
"BPE_APPEND_JAVA_TOOL_OPTIONS" to "-XX:+HeapDumpOnOutOfMemoryError"

)

5.4.4. Custom Image Name

By default, the image name is inferred from the name and the version of the project, something like
docker.io/library/${project.name}:${project.version}. You can take control over the name by
setting task properties, as shown in the following example:

Groovy

tasks.named("bootBuildImage") {
imageName = "example.com/library/${project.name}"

}

Kotlin

tasks.named<BootBuildImage>("bootBuildImage") {
imageName.set("example.com/1library/${project.name}")

}

Note that this configuration does not provide an explicit tag so latest is used. It is possible to
specify a tag as well, either using ${project.version}, any property available in the build or a
hardcoded version.

The image name can be specified on the command line as well, as shown in this example:

$ gradle bootBuildImage --imageName=example.com/library/my-app:v1

5.4.5. Buildpacks

By default, the builder will use buildpacks included in the builder image and apply them in a pre-
defined order. An alternative set of buildpacks can be provided to apply buildpacks that are not
included in the builder, or to change the order of included buildpacks. When one or more
buildpacks are provided, only the specified buildpacks will be applied.

The following example instructs the builder to use a custom buildpack packaged in a .tgz file,
followed by a buildpack included in the builder.

29

Groovy

tasks.named("bootBuildImage") {

buildpacks = ["file:///path/to/example-buildpack.tgz", "urn:cnb:builder:paketo-
buildpacks/java"]
}

Kotlin

tasks.named<BootBuildImage>("bootBuildImage") {
buildpacks.set(1istOf("file:///path/to/example-buildpack.tgz",

"urn:cnb:builder:paketo-buildpacks/java"))

}

Buildpacks can be specified in any of the forms shown below.

A buildpack located in a CNB Builder (version may be omitted if there is only one buildpack in the
builder matching the buildpack-id):

e urn:cnb:builder:buildpack-id
e urn:cnb:builder:buildpack-1d@0.0.1

buildpack-id

buildpack-1d@e2.0.1
A path to a directory containing buildpack content (not supported on Windows):

» file:///path/to/buildpack/
» /path/to/buildpack/

A path to a gzipped tar file containing buildpack content:

o file:///path/to/buildpack.tgz
» /path/to/buildpack.tgz

An OCI image containing a packaged buildpack:

* docker://example/buildpack

* docker:///example/buildpack:latest

* docker:///example/buildpack@sha256:45b23dee08---
» example/buildpack

» example/buildpack:latest

» example/buildpack@sha256:45b23dee08: -

30

https://buildpacks.io/docs/buildpack-author-guide/package-a-buildpack/

5.4.6. Image Publishing
The generated image can be published to a Docker registry by enabling a publish option.

If the Docker registry requires authentication, the credentials can be configured using
docker.publishRegistry properties. If the Docker registry does not require authentication, the
docker.publishRegistry configuration can be omitted.

The registry that the image will be published to is determined by the registry part
of the image name (docker.example.com in these examples). If

o docker.publishRegistry credentials are configured and include a url property, this
value is passed to the registry but is not used to determine the publishing registry
location.

Groovy

tasks.named("bootBuildImage") {
imageName.set("docker.example.com/library/${project.name}")
publish = true
docker {
publishRegistry {
username = "user"
password = "secret"

Kotlin

tasks.named<BootBuildImage>("bootBuildImage") {
imageName.set("docker.example.com/library/${project.name}")
publish.set(true)
docker {
publishRegistry {
username.set("user")
password.set("secret")

The publish option can be specified on the command line as well, as shown in this example:

$ gradle bootBuildImage --imageName=docker.example.com/library/my-app:v1
--publishImage

31

5.4.7. Builder Cache and Workspace Configuration

The CNB builder caches layers that are used when building and launching an image. By default,
these caches are stored as named volumes in the Docker daemon with names that are derived from
the full name of the target image. If the image name changes frequently, for example when the
project version is used as a tag in the image name, then the caches can be invalidated frequently.

The cache volumes can be configured to use alternative names to give more control over cache
lifecycle as shown in the following example:

Groovy

tasks.named("bootBuildImage") {
buildCache {
volume {
name = "cache-${rootProject.name}.build"

}

}

launchCache {
volume {

name = "cache-${rootProject.name}.launch"

}

}

+
Kotlin

tasks.named<BootBuildImage>("bootBuildImage") {
buildCache {
volume {
name.set("cache-${rootProject.name}.build")

}
}
launchCache {
volume {
name.set("cache-${rootProject.name}.launch")
}
}

Builders and buildpacks need a location to store temporary files during image building. By default,
this temporary build workspace is stored in a named volume.

The caches and the build workspace can be configured to use bind mounts instead of named
volumes, as shown in the following example:

32

Groovy

tasks.named("bootBuildImage") {
buildWorkspace {

bind {
source = "/tmp/cache-${rootProject.name}.work"
}
}
buildCache {
bind {
source = "/tmp/cache-${rootProject.name}.build"
}
}
launchCache {
bind {
source = "/tmp/cache-${rootProject.name}.launch"
}
}
+
Kotlin

tasks.named<BootBuildImage>("bootBuildImage") {
buildWorkspace {
bind {
source.set("/tmp/cache-${rootProject.name}.work")

}
}
buildCache {
bind {
source.set("/tmp/cache-${rootProject.name}.build")
}
}
launchCache {
bind {
source.set("/tmp/cache-${rootProject.name}.launch")
}
}

5.4.8. Docker Configuration

Docker Configuration for minikube

The plugin can communicate with the Docker daemon provided by minikube instead of the default
local connection.

On Linux and macOS, environment variables can be set using the command eval $(minikube
docker-env) after minikube has been started.

33

https://minikube.sigs.k8s.io/docs/tasks/docker_daemon/

The plugin can also be configured to use the minikube daemon by providing connection details
similar to those shown in the following example:

Groovy

tasks.named("bootBuildImage") {
docker {
host = "tcp://192.168.99.100:2376"
tlsVerify = true
certPath = "/home/user/.minikube/certs"

Kotlin

tasks.named<BootBuildImage>("bootBuildImage") {
docker {
host.set("tcp://192.168.99.100:2376")
tlsVerify.set(true)
certPath.set("/home/user/.minikube/certs")

Docker Configuration for podman

The plugin can communicate with a podman container engine.

The plugin can be configured to use podman local connection by providing connection details
similar to those shown in the following example:

Groovy

tasks.named("bootBuildImage") {
docker {
host = "unix:///run/user/1000/podman/podman.sock"
bindHostToBuilder = true

Kotlin

tasks.named<BootBuildImage>("bootBuildImage") {
docker {
host.set("unix:///run/user/1000/podman/podman.sock")
bindHostToBuilder.set(true)

34

https://podman.io/

With the podman CLI installed, the command podman info
(;) --format="{{.Host.RemoteSocket.Path}}"' can be used to get the value for the
v docker.host configuration property shown in this example.

Docker Configuration for Colima

The plugin can communicate with the Docker daemon provided by Colima. The DOCKER_HOST

environment variable can be set by using the command export DOCKER_HOST=$(docker context
inspect colima -f '{{.Endpoints.docker.Host}}").

The plugin can also be configured to use Colima daemon by providing connection details similar to
those shown in the following example:

Groovy

tasks.named("bootBuildImage") {
docker {
host = "unix://${System.properties['user.home']}/.colima/docker.sock"

}

Kotlin

tasks.named<BootBuildImage>("bootBuildImage") {
docker {
host.set("unix://${System.getProperty("user.home")}/.colima/docker.sock")
}

Docker Configuration for Authentication

If the builder or run image are stored in a private Docker registry that supports user
authentication, authentication details can be provided using docker.builderRegistry properties as
shown in the following example:

Groovy

tasks.named("bootBuildImage") {
docker {
builderRegistry {
username = "user"
password = "secret"
url = "https://docker.example.com/v1/"
email = "user@example.com"

35

https://github.com/abiosoft/colima

Kotlin

tasks.named<BootBuildImage>("bootBuildImage") {
docker {
builderRegistry {
username.set("user")
password.set("secret")
url.set("https://docker.example.com/v1/")
email.set("user@example.com")

If the builder or run image is stored in a private Docker registry that supports token authentication,
the token value can be provided using docker.builderRegistry as shown in the following example:

Groovy

tasks.named("bootBuildImage") {
docker {
builderRegistry {
token = "9cbaf023786cd7..."

}

Kotlin

tasks.named<BootBuildImage>("bootBuildImage") {
docker {
builderRegistry {
token.set("9cbaf023786¢cd7...")
}

36

Chapter 6. Publishing your Application

6.1. Publishing with the Maven-publish Plugin

To publish your Spring Boot jar or war, add it to the publication using the artifact method on
MavenPublication. Pass the task that produces that artifact that you wish to publish to the artifact
method. For example, to publish the artifact produced by the default bootJar task:

Groovy

publishing {
publications {
bootJava(MavenPublication) {
artifact tasks.named("bootJar")

}

}

repositories {
maven {

url "https://repo.example.com’

}

}

}
Kotlin

publishing {
publications {
create<MavenPublication>("bootJava") {
artifact(tasks.named("bootJar"))

}
¥
repositories {
maven {
url = uri("https://repo.example.com")
}
}

6.2. Distributing with the Application Plugin

When the application plugin is applied a distribution named boot is created. This distribution
contains the archive produced by the bootJar or bootWar task and scripts to launch it on Unix-like
platforms and Windows. Zip and tar distributions can be built by the bootDistZip and bootDistTar
tasks respectively. To use the application plugin, its mainClassName property must be configured with
the name of your application’s main class.

37

https://docs.gradle.org/current/userguide/application_plugin.html
https://docs.gradle.org/current/userguide/application_plugin.html

Chapter 7. Running your Application with
Gradle

To run your application without first building an archive use the bootRun task:

$./gradlew bootRun

The bootRun task is an instance of BootRun which is a JavaExec subclass. As such, all of the usual
configuration options for executing a Java process in Gradle are available to you. The task is
automatically configured to use the runtime classpath of the main source set.

By default, the main class will be configured automatically by looking for a class with a public
static void main(String[]) method in the main source set’s output.

The main class can also be configured explicitly using the task’s main property:

Groovy

tasks.named("bootRun") {
mainClass = 'com.example.ExampleApplication'

}

Kotlin

tasks.named<BootRun>("bootRun") {
mainClass.set("com.example.ExampleApplication")

}

Alternatively, the main class name can be configured project-wide using the mainClass property of
the Spring Boot DSL:

Groovy

springBoot {
mainClass = 'com.example.ExampleApplication'

}

Kotlin

springBoot {
mainClass.set("com.example.ExampleApplication")

}

By default, bootRun will configure the JVM to optimize its launch for faster startup during
development. This behavior can be disabled by using the optimizedLaunch property, as shown in the
following example:

38

https://docs.spring.io/spring-boot/docs/3.2.10-SNAPSHOT/gradle-plugin/api/org/springframework/boot/gradle/tasks/run/BootRun.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html

Groovy

tasks.named("bootRun") {
optimizedLaunch = false

}

Kotlin

tasks.named<BootRun>("bootRun") {
optimizedLaunch.set(false)

}

If the application plugin has been applied, its mainClass property must be configured and can be
used for the same purpose:

Groovy

application {
mainClass = 'com.example.ExampleApplication'

}

Kotlin

application {
mainClass.set("com.example.ExampleApplication")

}

7.1. Passing Arguments to your Application

Like all JavaExec tasks, arguments can be passed into bootRun from the command line using
--args="'<arguments>"' when using Gradle 4.9 or later. For example, to run your application with a
profile named dev active the following command can be used:

$./gradlew bootRun --args='--spring.profiles.active=dev'

See the javadoc for JavaExec.setArgsString for further details.

7.2. Passing System properties to your application

Since bootRun is a standard JavaExec task, system properties can be passed to the application’s JVM
by specifying them in the build script. To make that value of a system property to be configurable
set its value using a project property. To allow a project property to be optional, reference it using
findProperty. Doing so also allows a default value to be provided using the ?: Elvis operator, as
shown in the following example:

39

https://docs.gradle.org/current/userguide/application_plugin.html
https://docs.gradle.org/current/userguide/application_plugin.html
https://docs.gradle.org/current/javadoc/org/gradle/api/tasks/JavaExec.html#setArgsString-java.lang.String-
https://docs.gradle.org/current/javadoc/org/gradle/api/tasks/JavaExec.html#setArgsString-java.lang.String-
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#N14FE1

Groovy

tasks.named("bootRun") {
systemProperty 'com.example.property', findProperty('example') ?: 'default'

}

Kotlin

tasks.named<BootRun>("bootRun") {
systemProperty("com.example.property"”, findProperty("example") ?: "default")
}

The preceding example sets that com.example.property system property to the value of the example
project property. If the example project property has not been set, the value of the system property
will be default.

Gradle allows project properties to be set in a variety of ways, including on the command line using
the -P flag, as shown in the following example:

$./gradlew bootRun -Pexample=custom

The preceding example sets the value of the example project property to custom. bootRun will then use
this as the value of the com.example.property system property.

7.3. Reloading Resources

If devtools has been added to your project it will automatically monitor your application’s classpath
for changes. Note that modified files need to be recompiled for the classpath to update in order to
trigger reloading with devtools. For more details on using devtools, refer to this section of the
reference documentation.

Alternatively, you can configure bootRun such that your application’s static resources are loaded
from their source location:

Groovy

tasks.named("bootRun") {
sourceResources sourceSets.main

}

Kotlin

tasks.named<BootRun>("bootRun") {
sourceResources(sourceSets["main"])

}

40

https://docs.spring.io/spring-boot/docs/3.2.10-SNAPSHOT/reference/htmlsingle#using.devtools.restart
https://docs.spring.io/spring-boot/docs/3.2.10-SNAPSHOT/reference/htmlsingle#using.devtools.restart

This makes them reloadable in the live application which can be helpful at development time.

7.4. Using a Test Main Class

In addition to bootRun a bootTestRun task is also registered. Like bootRun, bootTestRun is an instance
of BootRun but it’s configured to use a main class found in the output of the test source set rather
than the main source set. It also uses the test source set’s runtime classpath rather than the main
source set’s runtime classpath. As bootTestRun is an instance of BootRun, all of the configuration
options described above for bootRun can also be used with bootTestRun.

41

Chapter 8. Ahead-of-Time Processing

Spring AOT is a process that analyzes your code at build-time in order to generate an optimized
version of it. It is most often used to help generate GraalVM native images.

The Spring Boot Gradle plugin provides tasks that can be used to perform AOT processing on both
application and test code. The tasks are configured automatically when the GraalVM Native Image
plugin is applied:

Groovy

plugins {
id 'org.springframework.boot' version '3.2.10-SNAPSHOT'
id 'org.graalvm.buildtools.native' version '0.9.28'

id 'java'

}

Kotlin

plugins {
id("org.springframework.boot") version "3.2.10-SNAPSHOT"
id("org.graalvm.buildtools.native") version "0.9.28"
java

}

8.1. Processing Applications

Based on your @SpringBootApplication-annotated main class, the processAot task generates a
persistent view of the beans that are going to be contributed at runtime in a way that bean
instantiation is as straightforward as possible. Additional post-processing of the factory is possible
using callbacks. For instance, these are used to generate the necessary reflection configuration that
GraalVM needs to initialize the context in a native image.

As the BeanFactory is fully prepared at build-time, conditions are also evaluated. This has an
important difference compared to what a regular Spring Boot application does at runtime. For
instance, if you want to opt-in or opt-out for certain features, you need to configure the
environment used at build time to do so. To this end, the processAot task is a JavaExec task and can
be configured with environment variables, system properties, and arguments as needed.

The nativeCompile task of the GraalvVM Native Image plugin is automatically configured to use the
output of the processAot task.

8.2. Processing Tests

The AOT engine can be applied to JUnit 5 tests that use Spring’s Test Context Framework. Suitable
tests are processed by the processTestAot task to generate ApplicationContextInitialzer code. As
with application AOT processing, the BeanFactory is fully prepared at build-time. As with processAot,

42

https://graalvm.github.io/native-build-tools/0.9.28/gradle-plugin.html
https://graalvm.github.io/native-build-tools/0.9.28/gradle-plugin.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html

the processTestAot task is JavaExec subclass and can be configured as needed to influence this
processing.

The nativeTest task of the GraalVM Native Image plugin is automatically configured to use the
output of the processAot and processTestAot tasks.

43

Chapter 9. Integrating with Actuator

9.1. Generating Build Information

Spring Boot Actuator’s info endpoint automatically publishes information about your build in the
presence of a META-INF/build-info.properties file. A BuildInfo task is provided to generate this file.
The easiest way to use the task is through the plugin’s DSL:

Groovy

springBoot {
buildInfo()
}

Kotlin

springBoot {
buildInfo()
+

This will configure a BuildInfo task named bootBuildInfo and, if it exists, make the Java plugin’s
classes task depend upon it. The task’s destination directory will be META-INF in the output directory
of the main source set’s resources (typically build/resources/main).

By default, the generated build information is derived from the project:

Property Default value

build.artifact The base name of the bootJar or bootWar task
build.group The group of the project

build.name The name of the project

build.version The version of the project

build.time The time at which the project is being built

The properties can be customized using the DSL:

44

https://docs.spring.io/spring-boot/docs/3.2.10-SNAPSHOT/gradle-plugin/api/org/springframework/boot/gradle/tasks/buildinfo/BuildInfo.html
https://docs.spring.io/spring-boot/docs/3.2.10-SNAPSHOT/gradle-plugin/api/org/springframework/boot/gradle/tasks/buildinfo/BuildInfo.html

Groovy

springBoot {
buildInfo {
properties {
artifact = 'example-app'
version = '1.2.3'
group = 'com.example'
name = 'Example application

Kotlin

springBoot {
buildInfo {
properties {
artifact.set("example-app")
version.set("1.2.3")
group.set("com.example")
name.set("Example application")

To exclude any of the default properties from the generated build information, add its name to the
excludes. For example, the time property can be excluded as follows:

Groovy

springBoot {
buildInfo {
excludes = ['time']

}

Kotlin

springBoot {
buildInfo {
excludes.set(setOf("time"))

}

The default value for build. time is the instant at which the project is being built. A side-effect of this
is that the task will never be up-to-date. As a result, builds will take longer as more tasks, including
the project’s tests, will have to be executed. Another side-effect is that the task’s output will always

45

change and, therefore, the build will not be truly repeatable. If you value build performance or
repeatability more highly than the accuracy of the build.time property, exclude the time property as
shown in the preceding example.

Additional properties can also be added to the build information:

Groovy

springBoot {
buildInfo {
properties {
additional = [
'a': 'alpha',
'b': 'bravo'

Kotlin

springBoot {
buildInfo {
properties {
additional.set(mapOf(
"a" to "alpha",
"b" to "bravo"

))

An additional property’s value can be computed lazily by using a Provider.

46

Chapter 10. Reacting to Other Plugins

When another plugin is applied the Spring Boot plugin reacts by making various changes to the
project’s configuration. This section describes those changes.

10.1. Reacting to the Java Plugin

When Gradle’s java plugin is applied to a project, the Spring Boot plugin:

1.

10.

11.
12.

Creates a BootJar task named bootJar that will create an executable, uber jar for the project. The
jar will contain everything on the runtime classpath of the main source set; classes are
packaged in BOOT-INF/classes and jars are packaged in BOOT-INF/1ib

Configures the assemble task to depend on the bootJar task.
Configures the jar task to use plain as the convention for its archive classifier.

Creates a BootBuildImage task named bootBuildImage that will create a OCI image using a
buildpack.

Creates a BootRun task named bootRun that can be used to run your application using the main
source set to find its main method and provide its runtime classpath.

Creates a '‘BootRun " task named bootTestRun that can be used to run your application using the
test source set to find its main method and provide its runtime classpath.

Creates a configuration named bootArchives that contains the artifact produced by the bootJar
task.

Creates a configuration named developmentOnly for dependencies that are only required at
development time, such as Spring Boot’s Devtools, and should not be packaged in executable
jars and wars.

Creats a configuration named testAndDevelopmentOnly for dependencies that are only required
at development time and when writing and running tests and that should not be packaged in
executable jars and wars.

Creates a configuration named productionRuntimeClasspath. It is equivalent to runtimeClasspath
minus any dependencies that only appear in the developmentOnly or testDevelopmentOnly
configurations.

Configures any JavaCompile tasks with no configured encoding to use UTF-8.

Configures any JavaCompile tasks to use the -parameters compiler argument.

10.2. Reacting to the Kotlin Plugin

When Kotlin’s Gradle plugin is applied to a project, the Spring Boot plugin:

1.

2.

Aligns the Kotlin version used in Spring Boot’s dependency management with the version of the
plugin. This is achieved by setting the kotlin.version property with a value that matches the
version of the Kotlin plugin.

Configures any KotlinCompile tasks to use the -java-parameters compiler argument.

47

https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.spring.io/spring-boot/docs/3.2.10-SNAPSHOT/gradle-plugin/api/org/springframework/boot/gradle/tasks/bundling/BootJar.html
https://docs.spring.io/spring-boot/docs/3.2.10-SNAPSHOT/gradle-plugin/api/org/springframework/boot/gradle/tasks/bundling/BootBuildImage.html
https://buildpacks.io
https://docs.spring.io/spring-boot/docs/3.2.10-SNAPSHOT/gradle-plugin/api/org/springframework/boot/gradle/tasks/run/BootRun.html
https://docs.spring.io/spring-boot/docs/3.2.10-SNAPSHOT/gradle-plugin/api/org/springframework/boot/gradle/tasks/run/BootRun.html
https://kotlinlang.org/docs/reference/using-gradle.html

10.3. Reacting to the War Plugin

When Gradle’s war plugin is applied to a project, the Spring Boot plugin:

1.

Creates a BootWar task named bootWar that will create an executable, fat war for the project. In
addition to the standard packaging, everything in the providedRuntime configuration will be
packaged in WEB-INF/1ib-provided.

Configures the assemble task to depend on the bootWar task.
Configures the war task to use plain as the convention for its archive classifier.

Configures the bootArchives configuration to contain the artifact produced by the bootWar task.

10.4. Reacting to the Dependency Management Plugin

When the io.spring.dependency-management plugin is applied to a project, the Spring Boot plugin will
automatically import the spring-boot-dependencies bom.

10.5. Reacting to the Application Plugin

When Gradle’s application plugin is applied to a project, the Spring Boot plugin:

1.

Creates a CreateStartScripts task named bootStartScripts that will create scripts that launch
the artifact in the bootArchives configuration using java -jar. The task is configured to use the
applicationDefaultJvmArgs property as a convention for its defaultJvmOpts property.

Creates a new distribution named boot and configures it to contain the artifact in the
bootArchives configuration in its 1ib directory and the start scripts in its bin directory.
Configures the bootRun task to use the mainClassName property as a convention for its main
property.

Configures the bootRun and bootTestRun tasks to use the applicationDefaultJvmArgs property as a

convention for their jvmArgs property.

Configures the bootJar task to use the mainClassName property as a convention for the Start-
(lass entry in its manifest.

Configures the bootWar task to use the mainClassName property as a convention for the Start-
Class entry in its manifest.

10.6. Reacting to the GraalVM Native Image Plugin

When the GraalVM Native Image plugin is applied to a project, the Spring Boot plugin:

1.

48

Applies the org.springframework.boot.aot plugin that:
a. Registers aot and aotTest source sets.

b. Registers a ProcessAot task named processAot that will generate AOT-optimized source for
the application in the aot source set.

c. Configures the Java compilation and process resources tasks for the aot source set to depend

https://docs.gradle.org/current/userguide/war_plugin.html
https://docs.gradle.org/current/userguide/war_plugin.html
https://docs.spring.io/spring-boot/docs/3.2.10-SNAPSHOT/gradle-plugin/api/org/springframework/boot/gradle/tasks/bundling/BootWar.html
https://github.com/spring-gradle-plugins/dependency-management-plugin
https://github.com/spring-gradle-plugins/dependency-management-plugin
https://docs.gradle.org/current/userguide/application_plugin.html
https://docs.gradle.org/current/userguide/application_plugin.html
https://graalvm.github.io/native-build-tools/0.9.28/gradle-plugin.html

S T

upon processAot.

d. Registers a ProcessTestAot task named processTestAot that will generated AOT-optimized
source for the application’s tests in the aotTest source set.

e. Configures the Java compilation and process resources tasks for the aotTest source set to
depend upon processTestAot.

Adds the output of the aot source set to the classpath of the main GraalVM native binary.
Adds the output of the aotTest source set to the classpath of the test GraalVM native binary.
Configures the GraalVM extension to disable Toolchain detection.

Configures each GraalVM native binary to require GraalVM 22.3 or later.

Configures the bootJar task to include the reachability metadata produced by the
collectReachabilityMetadata task in its jar.

Configures the bootBuildImage task to use paketobuildpacks/builder-jammy-tiny:latest as its
builder and to set BP_NATIVE IMAGE to true in its environment.

49

	Spring Boot Gradle Plugin Reference Guide
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Getting Started
	Chapter 3. Managing Dependencies
	3.1. Managing Dependencies with the Dependency Management Plugin
	3.1.1. Customizing Managed Versions
	3.1.2. Using Spring Boot’s Dependency Management in Isolation
	3.1.3. Learning More

	3.2. Managing Dependencies with Gradle’s Bom Support
	3.2.1. Customizing Managed Versions

	Chapter 4. Packaging Executable Archives
	4.1. Packaging Executable Jars
	4.2. Packaging Executable Wars
	4.2.1. Packaging Executable and Deployable Wars

	4.3. Packaging Executable and Plain Archives
	4.4. Configuring Executable Archive Packaging
	4.4.1. Configuring the Main Class
	4.4.2. Including Development-only Dependencies
	4.4.3. Configuring Libraries that Require Unpacking
	4.4.4. Making an Archive Fully Executable
	4.4.5. Using the PropertiesLauncher
	4.4.6. Packaging Layered Jar or War
	Custom Layers Configuration

	Chapter 5. Packaging OCI Images
	5.1. Docker Daemon
	5.2. Docker Registry
	5.3. Image Customizations
	5.3.1. Tags format

	5.4. Examples
	5.4.1. Custom Image Builder and Run Image
	5.4.2. Builder Configuration
	5.4.3. Runtime JVM Configuration
	5.4.4. Custom Image Name
	5.4.5. Buildpacks
	5.4.6. Image Publishing
	5.4.7. Builder Cache and Workspace Configuration
	5.4.8. Docker Configuration
	Docker Configuration for minikube
	Docker Configuration for podman
	Docker Configuration for Colima
	Docker Configuration for Authentication

	Chapter 6. Publishing your Application
	6.1. Publishing with the Maven-publish Plugin
	6.2. Distributing with the Application Plugin

	Chapter 7. Running your Application with Gradle
	7.1. Passing Arguments to your Application
	7.2. Passing System properties to your application
	7.3. Reloading Resources
	7.4. Using a Test Main Class

	Chapter 8. Ahead-of-Time Processing
	8.1. Processing Applications
	8.2. Processing Tests

	Chapter 9. Integrating with Actuator
	9.1. Generating Build Information

	Chapter 10. Reacting to Other Plugins
	10.1. Reacting to the Java Plugin
	10.2. Reacting to the Kotlin Plugin
	10.3. Reacting to the War Plugin
	10.4. Reacting to the Dependency Management Plugin
	10.5. Reacting to the Application Plugin
	10.6. Reacting to the GraalVM Native Image Plugin

