
Spring Cloud Data Flow Server for Cloud Foundry
Table of Contents
	I. Spring Cloud Data Flow for Cloud Foundry	1. Spring Cloud Data Flow
	2. Spring Cloud Stream


	II. Architecture	3. Introduction
	4. Microservice Architectural Style	Comparison to other Platform architectures


	5. Streaming Applications	Imperative Programming Model
	Functional Programming Model


	6. Streams	Topologies
	Concurrency
	Partitioning
	Message Delivery Guarantees


	7. Analytics
	8. Data Flow Server	Endpoints
	Customization
	Security


	9. Runtime	Fault Tolerance
	Resource Management
	Scaling at runtime
	Application Versioning




	III. Getting started	10. Deploying on Cloud Foundry	Provision a Redis service instance on Cloud Foundry.
	Provision a Rabbit service instance on Cloud Foundry.
	Download the Spring Cloud Data Flow Server and Shell apps:
	Deploying the Server app on Cloud Foundry
	Running the Server app locally
	Running Spring Cloud Data Flow Shell locally


	11. Security
	12. Security
	13. Application Names and Prefixes
	14. Authentication and Cloud Foundry
	15. Configuration Reference


	IV. Streams	16. Introduction
	17. Stream DSL
	18. Register a Stream App	Whitelisting application properties


	19. Creating a Stream	Application properties	Passing application properties when creating a stream
	Passing application properties when deploying a stream
	Passing stream partition properties during stream deployment
	Overriding application properties during stream deployment


	Deployment properties	Passing instance count as deployment property
	Inline vs file reference properties




	20. Destroying a Stream
	21. Deploying and Undeploying Streams
	22. Other Source and Sink Application Types
	23. Simple Stream Processing
	24. Stateful Stream Processing
	25. Tap a Stream
	26. Using Labels in a Stream
	27. Explicit Broker Destinations in a Stream
	28. Directed Graphs in a Stream	Common application properties




	V. Dashboard	29. Introduction
	30. Apps
	31. Runtime
	32. Streams
	33. Create Stream
	34. Analytics


	VI. ‘How-to’ guides	35. Configure Maven Properties


	VII. Appendices	A. Migrating from Spring XD to Spring Cloud Data Flow	Terminology Changes
	Modules to Applications	Custom Applications
	Application Registration
	Application Properties


	Message Bus to Binders	Message Bus
	Binders
	Named Channels
	Directed Graphs


	Batch to Tasks
	Shell/DSL Commands
	REST-API
	UI / Flo
	Architecture Components	ZooKeeper
	RDBMS
	Redis
	Cluster Topology


	Central Configuration
	Distribution
	Hadoop Distribution Compatibility
	YARN Deployment
	Use Case Comparison	Use Case #1
	Use Case #2
	Use Case #3




	B. Building	Basic Compile and Test
	Documentation
	Working with the code	Importing into eclipse with m2eclipse
	Importing into eclipse without m2eclipse








List of Figures
	3.1. The Spring Cloud Data High Level Architecure
	6.1. Spring Cloud Stream Partitioning
	8.1. The Spring Cloud Data Flow Server
	29.1. The Spring Cloud Data Flow Dashboard
	30.1. List of Available Applications
	31.1. List of Running Applications
	32.1. List of Stream Definitions
	33.1. Flo for Spring Cloud Data Flow


Spring Cloud Data Flow Server for Cloud Foundry

Sabby Anandan

Eric Bottard

Mark Fisher

Ilayaperumal Gopinathan

Gunnar Hillert

Mark Pollack

Thomas Risberg

Marius Bogoevici

Josh Long



1.0.0.M4

Copyright © 2013-2016 Pivotal Software, Inc.


		Copies of this document may be made for your own use and for distribution to
		others, provided that you do not charge any fee for such copies and further
		provided that each copy contains this Copyright Notice, whether distributed in
		print or electronically.
	






Part I. Spring Cloud Data Flow for Cloud Foundry




This project provides support for orchestrating the deployment of Spring Cloud Stream applications to Cloud Foundry.


Chapter 1. Spring Cloud Data Flow



Spring Cloud Data Flow is a cloud-native programming and operating model for composable data microservices on a structured platform. With Spring Cloud Data Flow, developers can create and orchestrate data pipelines for common use cases such as data ingest, real-time analytics, and data import/export.
The Spring Cloud Data Flow architecture consists of a server that deploys Streams.  A future release will also support deploying Tasks.  Streams are defined using a DSL or visually through the browser based designer UI.  Streams are based on the Spring Cloud Stream programming model.  The sections below describe more information about creating your own custom Streams.
For more details about the core architecture components and the supported features, please review Spring Cloud Data Flow’s core reference guide. There’re several samples available for reference.
Chapter 2. Spring Cloud Stream



Spring Cloud Stream is a framework for building message-driven microservice applications. Spring Cloud Stream builds upon Spring Boot to create standalone, production-grade Spring applications, and uses Spring Integration to provide connectivity to message brokers. It provides opinionated configuration of middleware from several vendors, introducing the concepts of persistent publish-subscribe semantics, consumer groups, and partitions.
For more details about the core framework components and the supported features, please review Spring Cloud Stream’s reference guide.
There’s a rich ecosystem of Spring Cloud Stream Application-Starters that can be used either as standalone data microservice applications or in Spring Cloud Data Flow. For convenience, we have generated RabbitMQ and Apache Kafka variants of these application-starters that are available for use from Maven Repo and Docker Hub as maven artifacts and docker images, respectively.
Do you have a requirement to develop custom applications? No problem. Refer to this guide to create custom stream applications. There’re several samples available for reference.
Part II. Architecture




Chapter 3. Introduction



Spring Cloud Data Flow simplifies the development and deployment of applications focused on data processing use-cases.  The major concepts of the architecture are Applications, the Data Flow Server, and the target runtime.
Applications are Long lived Stream applications where an unbounded amount of data is consumed or produced via messaging middleware.
Depending on the runtime, applications can be packaged in two ways
	Spring Boot uber-jar that is hosted in a maven repository, file, http or any other Spring resource implementation.
	Docker


The runtime is the place where applications execute.  The target runtimes for applications are platforms that you may already be using for other application deployments.
The supported runtimes are
	Cloud Foundry
	Apache YARN
	Kubernetes
	Apache Mesos
	Local Server for development


There is a deployer Service Provider Interface (SPI) that enables you to extend Data Flow to deploy onto other runtimes, for example to support Hashicorp’s Nomad or Docker Swarm. Contributions are welcome!
The component that is responsible for deploying applications to a runtime is the Data Flow Server.  There is a Data Flow Server executable jar provided for each of the target runtimes.  The Data Flow server is responsible for interpreting
	A stream DSL that describes the logical flow of data through multiple applications.
	A deployment manifest that describes the mapping of applications onto the runtime. For example, to set the initial number of instances, memory requirements, and data partitioning.


As an example, the DSL to describe the flow of data from an http source to an Apache Cassandra sink would be written as “http | cassandra”.  These names in the DSL are registered with the Data Flow Server and map onto application artifacts that can be hosted in Maven or Docker repositories.  Many source, processor, and sink applications for common use-cases (e.g. jdbc, hdfs, http, router) are provided by the Spring Cloud Data Flow team.  The pipe symbol represents the communication between the two applications via messaging middleware. The two messaging middleware brokers that are supported are
	Apache Kafka
	RabbitMQ


In the case of Kafka, when deploying the stream, the Data Flow server is responsible to create the topics that correspond to each pipe symbol and configure each application to produce or consume from the topics so the desired flow of data is achieved.
The interaction of the main components is shown below
Figure 3.1. The Spring Cloud Data High Level Architecure
	[image: The Spring Cloud Data Flow High Level Architecture]




In this diagram a DSL description of a stream is POSTed to the Data Flow Server.  Based on the mapping of DSL application names to Maven and Docker artifacts, the http source and cassandra sink application are deployed on the target runtime.
Chapter 4. Microservice Architectural Style



The Data Flow Server deploys applications onto the target runtime that conform to the microservice architectural style.  For example, a stream represents a high level application that consists of multiple small microservice applications each running in their own process.  Each microservice application can be scaled up or down independent of the other and each has their own versioning lifecycle.
Both Streaming based microservice applications build upon Spring Boot as the foundational library.
This gives all microservice applications functionality such as health checks, security, configurable logging, monitoring and management functionality, as well as executable JAR packaging.
It is important to emphasise that these microservice applications are ‘just apps’ that you can run by yourself using ‘java -jar’ and passing in appropriate configuration properties.  We provide many common microservice applications for common operations so you don’t have to start from scratch when addressing common use-cases which build upon the rich ecosystem of Spring Projects, e.g Spring Integration, Spring Data, Spring Hadoop and Spring Batch.  Creating your own microservice application is similar to creating other Spring Boot applications, you can start using the Spring Initialzr web site or the UI to create the basic scaffolding of either a Stream or Task based microservice.
In addition to passing in the appropriate configuration to the applications, the Data Flow server is responsible for preparing the target platform’s infrastructure so that the application can be deployed.  For example, in Cloud Foundry it would be binding specified services to the applications and executing the ‘cf push’ command for each application.  For Kubernetes it would be creating the replication controller, service, and load balancer.
The Data Flow Server helps simplify the deployment of multiple applications onto a target runtime, but one could also opt to deploy each of the microservice applications manually and not use Data Flow at all. This approach might be more appropriate to start out with for small scale deployments, gradually adopting the convenience and consistency of Data Flow as you develop more applications.
Manual deployment of Stream based microservices is also a useful educational exercise that will help you better understand some of the automatic applications configuration and platform targeting steps that the Data Flow Server provides.
Comparison to other Platform architectures



Spring Cloud Data Flow’s architectural style is different than other Stream and Batch processing platforms.  For example in Apache Spark, Apache Flink, and Google Cloud Dataflow applications run on a dedicated compute engine cluster.  The nature of the compute engine gives these platforms a richer environment for performing complex calculations on the data as compared to Spring Cloud Data Flow, but it introduces complexity of another execution environment that is often not needed when creating data centric applications.  That doesn’t mean you cannot do real time data computations when using Spring Cloud Data Flow.  Refer to the analytics section which describes the integration of Redis to handle common counting based use-cases as well as the RxJava integration for functional API driven analytics use-cases, such as time-sliding-window and moving-average among others.
Similarly, Apache Storm, Hortonworks DataFlow and Spring Cloud Data Flow’s predecessor, Spring XD, use a dedicated application execution cluster, unique to each product, that determines where your code should execute on the cluster and perform health checks to ensure that long lived applications are restarted if they fail.  Often, framework specific interfaces are required to be used in order to correctly “plug in” to the cluster’s execution framework.
As we discovered during the evolution of Spring XD, the rise of multiple container frameworks in 2015 made creating our own runtime a duplication of efforts.  There is no reason to build your own resource management mechanics, when there’s multiple runtime platforms that offer this functionality already.  Taking these considerations into account is what made us shift to the current architecture where we delegate the execution to popular runtimes, runtimes that you may already be using for other purposes.  This is an advantage in that it reduces the cognitive distance for creating and managing data centric applications as many of the same skills used for deploying other end-user/web applications are applicable.
Chapter 5. Streaming Applications



While Spring Boot provides the foundation for creating DevOps friendly microservice applications, other libraries in the Spring ecosystem help create Stream based microservice applications.  The most important of these is Spring Cloud Stream.
The essence of the Spring Cloud Stream programming model is to provide an easy way to describe multiple inputs and outputs of an application that communicate over messaging middleware.  These input and outputs map onto Kafka topics or Rabbit exchanges and queues.  Common application configuration for a Source that generates data, a Process that consumes and produces data and a Sink that consumes data is provided as part of the library.
Imperative Programming Model



Spring Cloud Stream is most closely integrated with Spring Integration’s imperative "event at a time" programming model.  This means you write code that handles a single event callback.  For example,
@EnableBinding(Sink.class)
public class LoggingSink {

    @StreamListener(Sink.INPUT)
    public void log(String message) {
        System.out.println(message);
    }
}
In this case the String payload of a message coming on the input channel, is handed to the log method.  The @EnableBinding annotation is what is used to tie together the input channel to the external middleware.
Functional Programming Model



However, Spring Cloud Stream can support other programming styles.  There is initial support for functional style programming via RxJava Observable APIs and upcoming versions will support callback methods with Project Reactor’s Flux API and Apache Kafka’s KStream API.
Chapter 6. Streams



Topologies



The Stream DSL describes linear sequences of data flowing through the system.  For example, in the stream definition http | transformer | cassandra, each pipe symbol connects the application on the left to the one on the right.  Named channels can be used for routing and to fan out data to multiple messaging destinations.
Taps can be used to ‘listen in’ to the data that if flowing across any of the pipe symbols.  Taps can be used as sources for new streams with an in independent life cycle.
Concurrency



For an application that will consume events, Spring Cloud stream exposes a concurrency setting that controls the size of a thread pool used for dispatching incoming messages.  See the Consumer properties documentation for more information.
Partitioning



A common pattern in stream processing is to partition the data as it moves from one application to the next.  Partitioning is a critical concept in stateful processing, for either performance or consistency reasons, to ensure that all related data is processed together. For example, in a time-windowed average calculation example, it is important that all measurements from any given sensor are processed by the same application instance.  Alternatively, you may want to cache some data related to the incoming events so that it can be enriched without making a remote procedure call to retrieve the related data.
Spring Cloud Data Flow supports partitioning by configuring Spring Cloud Stream’s output and input bindings.  Spring Cloud Stream provides a common abstraction for implementing partitioned processing use cases in a uniform fashion across different types of middleware.  Partitioning can thus be used whether the broker itself is naturally partitioned (e.g., Kafka topics) or not (e.g., RabbitMQ).  The following image shows how data could be partitioned into two buckets, such that each instance of the average processor application consumes a unique set of data.
Figure 6.1. Spring Cloud Stream Partitioning
	[image: Stream Partitioning Architecture]




To use a simple partitioning strategy in Spring Cloud Data Flow, you only need set the instance count for each application in the stream and a partitionKeyExpression producer property when deploying the stream.  The partitionKeyExpression identifies what part of the message will be used as the key to partition data in the underlying middleware.  An ingest stream can be defined as http | averageprocessor | cassandra  (Note that the Cassandra sink isn’t shown in the diagram above).  Suppose the payload being sent to the http source was in JSON format and had a field called sensorId.  Deploying the stream with the shell command stream deploy ingest --propertiesFile ingestStream.properties where the contents of the file ingestStream.properties are
app.http.count=3
app.averageprocessor.count=2
app.http.producer.partitionKeyExpression=payload.sensorId
will deploy the stream such that all the input and output destinations are configured for data to flow through the applications but also ensure that a unique set of data is always delivered to each averageprocessor instance.  In this case the default algorithm is to evaluate payload.sensorId % partitionCount where the partitionCount is the application count in the case of RabbitMQ and the partition count of the topic in the case of Kafka.
Please refer to the section called “Passing stream partition properties during stream deployment” for additional strategies to partition streams during deployment and how they map onto the underlying Spring Cloud Stream Partitioning properties.
Also note, that you can’t currently scale partitioned streams.  Read the section the section called “Scaling at runtime” for more information.
Message Delivery Guarantees



For consumer applications, there is a retry policy for exceptions generated during message handling.  The default is to retry the callback method invocation 3 times and wait one second for the first retry.  A backoff multiplier of 2 is used for the second and third attempts.  All of these retry properties are configurable.
If there is still an exception on the last retry attempt, and dead letter queues are enabled, the message and exception message are published to the dead letter queue.  The dead letter queue is a destination and its nature depends on the messaging middleware (e.g in the case of Kafka it is a dedicated topic).  If dead letter functionality is not enabled, the message and exception is sent to the error channel, which by default logs the message and exception.
Additional messaging delivery guarantees are those provided by the underlying messaging middleware that is chosen for the application for both producing and consuming applications.  Refer to the Kafka Consumer and Producer and Rabbit Consumer and Producer documentation for more details.  You will find there to be extensive declarative support for all the native QOS options.
Chapter 7. Analytics



Spring Cloud Data Flow is aware of certain Sink applications that will write counter data to Redis and provides an REST endpoint to read counter data.  The types of counters supported are
	Counter - Counts the number of messages it receives, optionally storing counts in a separate store such as redis.
	Field Value Counter - Counts occurrences of unique values for a named field in a message payload
	Aggregate Counter - Stores total counts but also retains the total count values for each minute, hour day and month.


It is important to note that the timestamp that is used in the aggregate counter can come from a field in the message itself so that out of order messages are properly accounted.
Chapter 8. Data Flow Server



Endpoints



The Data Flow Server uses an embedded servlet container and exposes REST endpoints for creating, deploying, undeploying, and destroying streams and tasks, querying runtime state, analytics, and the like. The Data Flow Server is implemented using Spring’s MVC framework and the Spring HATEOAS library to create REST representations that follow the HATEOAS principle.
Figure 8.1. The Spring Cloud Data Flow Server
	[image: The Spring Cloud Data Flow Server Architecture]




Customization



Each Data Flow Server executable jar targets a single runtime by delegating to the implementation of the deployer Service Provider Interface found on the classpath.
We provide a Data Flow Server executable jar that targets a single runtime.  The Data Flow server delegates to the implementation of the deployer Service Provider Interface found on the classpath.  In the current version, there are no endpoints specific to a target runtime, but may be available in future releases as a convenience to access runtime specific features
While we provide a server executable for each of the target runtimes you can also create your own customized server application using Spring Initialzr.   This let’s you add or remove functionality relative to the executable jar we provide.  For example, adding additional security implementations, custom endpoints, or removing Task or Analytics REST endpoints.  You can also enable or disable some features through the use of feature toggles.
Security



The Data Flow Server executable jars support basic http and OAuth 2.0 authentication to access it endpoints.  Refer to the security section for more information.
Authorization via groups is planned for a future release.
Chapter 9. Runtime



Fault Tolerance



The target runtimes supported by Data Flow all have the ability to restart a long lived application should it fail.  Spring Cloud Data Flow sets up whatever health probe is required by the runtime environment when deploying the application.
The collective state of all applications that comprise the stream is used to determine the state of the stream.  If an application fails, the state of the stream will change from ‘deployed’ to ‘partial’.
Resource Management



Each target runtime lets you control the amount of memory, disk and CPU that is allocated to each application.  These are passed as properties in the deployment manifest using key names that are unique to each runtime.  Refer to the each platforms server documentation for more information.
Scaling at runtime



When deploying a stream, you can set the instance count for each individual application that comprises the stream.
Once the stream is deployed, each target runtime lets you control the target number of instances for each individual application.
Using the APIs, UIs, or command line tools for each runtime, you can scale up or down the number of instances as required.
Future work will provide a portable command in the Data Flow Server to perform this operation.
Currently, this is not supported with the Kafka binder (based on the 0.8 simple consumer at the time of the release), as well as partitioned streams, for which the suggested workaround is redeploying the stream with an updated number of instances.
Both cases require a static consumer set up based on information about the total instance count and current instance index, a limitation intended to be addressed in future releases.
For example, Kafka 0.9 and higher provides good infrastructure for scaling applications dynamically and will be available as an alternative to the current Kafka 0.8 based binder in the near future.
One specific concern regarding scaling partitioned streams is the handling of local state, which is typically reshuffled as the number of instances is changed.
This is also intended to be addressed in the future versions, by providing first class support for local state management.
Application Versioning



Application versioning, that is upgrading or downgrading an application from one version to another, is not directly supported by Spring Cloud Data Flow.  You must rely on specific target runtime features to perform these operational tasks.
The roadmap for Spring Cloud Data Flow will deploy applications that are compatible with Spinnaker to manage the complete application lifecycle.  This also includes automated canary analysis backed by  application metrics.  Portable commands in the Data Flow server to trigger pipelines in Spinnaker are also planned.
Part III. Getting started




Chapter 10. Deploying on Cloud Foundry



Spring Cloud Data Flow can be used to deploy modules in a Cloud Foundry environment. When doing so, the
server application can either run itself on Cloud Foundry, or on another installation (e.g. a simple laptop).
The required configuration amounts to the same in either case, and is merely related to providing credentials to the
Cloud Foundry instance so that the server can spawn applications itself. Any Spring Boot compatible configuration
mechanism can be used (passing program arguments, editing configuration files before building the application, using
Spring Cloud Config, using environment variables, etc.),
although some may prove more practicable than others when running on Cloud Foundry.
	[image: [Note]]	Note
	By default, the application registry in Spring Cloud Data Flow’s Cloud Foundry server is empty. It is intentionally designed to allow users to have the flexibility of choosing and registering applications, as they find appropriate for the given use-case requirement. Depending on the message-binder of choice, users can register between RabbitMQ or Apache Kafka based maven artifacts.



Provision a Redis service instance on Cloud Foundry.



Use cf marketplace to discover which plans are available to you, depending on the details of your Cloud Foundry setup.
For example when using Pivotal Web Services:
cf create-service rediscloud 30mb redis
Provision a Rabbit service instance on Cloud Foundry.



Use cf marketplace to discover which plans are available to you, depending on the details of your Cloud Foundry setup.
For example when using Pivotal Web Services:
cf create-service cloudamqp lemur rabbit
Download the Spring Cloud Data Flow Server and Shell apps:



wget http://repo.spring.io/milestone/org/springframework/cloud/spring-cloud-dataflow-server-cloudfoundry/1.0.0.M4/spring-cloud-dataflow-server-cloudfoundry-1.0.0.M4.jar
wget http://repo.spring.io/release/org/springframework/cloud/spring-cloud-dataflow-shell/1.0.0.RELEASE/spring-cloud-dataflow-shell-1.0.0.RELEASE.jar
You can either deploy the server application on Cloud Foundry itself or on your local machine.
The following two sections explain each way of running the server.
Deploying the Server app on Cloud Foundry



Push the server application on Cloud Foundry, configure it (see below) and start it.
	[image: [Note]]	Note
	You must use a unique name for your app; an app with the same name in the same organization will cause your
deployment to fail



cf push dataflow-server --no-start -p spring-cloud-dataflow-server-cloudfoundry-1.0.0.M4.jar
cf bind-service dataflow-server redis
cf bind-service dataflow-server rabbit
	[image: [Note]]	Note
	If you are pushing to a space with multiple users, for example on PWS, there may already be a route taken for the
applicaiton name you have chosen. You can use the options --random-route to avoid this when pushing the app.



Now we can configure the app. The following configuration is for Pivotal Web Services. You need to fill in {org}, {space},
{email} and {password} before running these commands.
	[image: [Note]]	Note
	Only set 'Skip SSL Validation' to true if you’re running on a Cloud Foundry instance using self-signed
certs (e.g. in development). Do not use for production.



	[image: [Note]]	Note
	If you are deploying in an environment that requires you to sign on using the Pivotal Single Sign-On Service, refer to the section Chapter 14, Authentication and Cloud Foundry for information on how to configure the server.



cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_URL https://api.run.pivotal.io
cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_ORG {org}
cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_SPACE {space}
cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_DOMAIN cfapps.io
cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_SERVICES redis,rabbit
cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_USERNAME {email}
cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_PASSWORD {password}
cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_SKIP_SSL_VALIDATION false
Spring Cloud Data Flow server implementations (cf, mesos, yarn, or kubernetes) do not have
'any' default remote maven repository configured. This is intentionally designed to provide the flexibility for
the users, so they can override and point to a remote repository of their choice. The out-of-the-box
applications that are supported by Spring Cloud Data Flow are available in Spring’s repository,
so if you want to use them, you 'must' set it as the remote repository as listed below.
cf set-env dataflow-server MAVEN_REMOTE_REPOSITORIES_REPO1_URL https://repo.spring.io/libs-snapshot
where repo1 is the alias name for the remote repository.
You can also set other optional properties for deployment to Cloud Foundry.
	You can set the buildpack that will be used to deploy the application.  For example, to use the Java offline buildback, set the following environment variable


cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_BUILDPACK java_buildpack_offline
	If you’d like to use config-server to manage centralized configurations for all the applications orchestrated by
Spring Cloud Data Flow, you can set it up like the following.


cf set-env dataflow-server SPRING_APPLICATION_JSON '{"spring.cloud.dataflow.applicationProperties.stream.spring.cloud.config.uri": "http://<CONFIG_SERVER_URI>"}'
	The default memory and disk sizes for a deployed application can also be configured. By default they are 1024 MB memory
and 1024 MB disk.  Thse are controlled by setting an integer value, representing the number of MB, to the following
properties, spring.cloud.deployer.cloudfoundry.memory and spring.cloud.deployer.cloudfoundry.disk.
The default number of instances to deploy is set to 1, but can be overridden using with the
spring.cloud.deployer.cloudfoundry.instances property.  All these properties are @ConfigurationProperties of the
Cloud Foundry deployer. See CloudFoundryDeployerProperties.java for more information.


We are now ready to start the app.
cf start dataflow-server
Alternatively, you can run the Admin application locally on your machine which is described in the next section.
Running the Server app locally



To run the server application locally, targeting your Cloud Foundry installation, you you need to configure the
application either by passing in command line arguments (see below) or setting a number of environment variables.
To use environment variables set the following:
export SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_URL=https://api.run.pivotal.io
export SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_ORG={org}
export SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_SPACE={space}
export SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_DOMAIN=cfapps.io
export SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_SERVICES=redis,rabbit
export SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_USERNAME={email}
export SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_PASSWORD={password}
export SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_SKIP_SSL_VALIDATION=false
You need to fill in {org}, {space}, {email} and {password} before running these commands.
	[image: [Note]]	Note
	Only set 'Skip SSL Validation' to true if you’re running on a Cloud Foundry instance using self-signed
certs (e.g. in development). Do not use for production.



Now we are ready to start the server application:
java -jar spring-cloud-dataflow-server-cloudfoundry-1.0.0.M4.jar [--option1=value1] [--option2=value2] [etc.]
Running Spring Cloud Data Flow Shell locally



Run the shell and optionally target the Admin application if not running on the same host (will typically be the case if
deployed on Cloud Foundry as explained here)
$ java -jar spring-cloud-dataflow-shell-1.0.0.RELEASE.jar
server-unknown:>dataflow config server http://dataflow-server.cfapps.io
Successfully targeted http://dataflow-server.cfapps.io
dataflow:>
By default, the application registry will be empty. If you would like to register all out-of-the-box stream applications built with the RabbitMQ binder in bulk, you can with the following command. For more details, review how to register applications.
dataflow:>app import --uri http://bit.ly/stream-applications-rabbit-maven
You can now use the shell commands to list available applications (source/processors/sink) and create streams. For example:
dataflow:> stream create --name httptest --definition "http | log" --deploy
	[image: [Note]]	Note
	You will need to wait a little while until the apps are actually deployed successfully
before posting data.  Tail the log file for each application to verify
the application has started.



Now post some data. The URL will be unique to your deployment, the following is just an example
dataflow:> http post --target http://dataflow-nonconcentrative-knar-httptest-http.cfapps.io --data "hello world"
Look to see if hello world ended up in log files for the log application.
Chapter 11. Security



By default, the Data Flow server is unsecured and runs on an unencrypted HTTP connection. You can secure your REST endpoints,
as well as the Data Flow Dashboard by enabling HTTPS and requiring clients to authenticate. More details about securing the
REST endpoints and configuring to authenticate against an OAUTH backend (i.e: UAA/SSO running on Cloud Foundry), please
review the security section from the core reference guide. The security configurations can be configured in dataflow-server.yml or passed as environment variables through cf set-env commands.
Chapter 12. Security



By default, the Data Flow server is unsecured and runs on an unencrypted HTTP connection. You can secure your REST endpoints,
as well as the Data Flow Dashboard by enabling HTTPS and requiring clients to authenticate. More details about securing the
REST endpoints and configuring to authenticate against an OAUTH backend (i.e: UAA/SSO running on Cloud Foundry), please
review the security section from the core reference guide. The security configurations can be configured in dataflow-server.yml or passed as environment variables through cf set-env commands.
Chapter 13. Application Names and Prefixes



To help avoid clashes with routes across spaces in Cloud Foundry, a naming strategy to provide a random prefix to a
deployed application is available and is enabled by default. The default configurations
are overridable and the respective properties can be set via cf set-env commands.
For instance, if you’d like to disable the randmoization, you can override it through:
cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_ENABLE_RANDOM_APP_NAME_PREFIX false
Chapter 14. Authentication and Cloud Foundry



When deploying Spring Cloud Data Flow to Cloud Foundry, you can take advantage of the
 Spring Cloud Single Sign-On Connector,
 which provides Cloud Foundry specific auto-configuration support for OAuth 2.0,
 when used in conjunction with the Pivotal Single Sign-On Service.
Simply set security.basic.enabled to true and in Cloud Foundry bind the SSO
service to your Data Flow Server app and SSO will be enabled.
Chapter 15. Configuration Reference



The following pieces of configuration must be provided.  These are Spring Boot @ConfigurationProperties so you can set
them as environment variables or by any other means that Spring Boot supports.  Here is a listing in environment
variable format as that is an easy way to get started configuring Boot applications in Cloud Foundry.
# Default values cited after the equal sign.
# Example values, typical for Pivotal Web Services, cited as a comment

# url of the CF API (used when using cf login -a for example), e.g. https://api.run.pivotal.io
# (for setting env var use SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_URL)
spring.cloud.deployer.cloudfoundry.url=

# name of the organization that owns the space above, e.g. youruser-org
# (For Setting Env var use SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_ORG)
spring.cloud.deployer.cloudfoundry.org=

# name of the space into which modules will be deployed
# (for setting env var use SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_SPACE)
spring.cloud.deployer.cloudfoundry.space=<same space as server when running on CF, or 'development'>

# the root domain to use when mapping routes, e.g. cfapps.io
# (for setting env var use SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_DOMAIN)
spring.cloud.deployer.cloudfoundry.domain=

# Comma separated set of service instance names to bind to the module.
# Amongst other things, this should include a service that will be used
# for Spring Cloud Stream binding
# (for setting env var use SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_SERVICES)
spring.cloud.deployer.cloudfoundry.services=redis,rabbit

# username and password of the user to use to create apps (modules)
# (for setting env var use SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_USERNAME and SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_PASSWORD)
spring.cloud.deployer.cloudfoundry.username=
spring.cloud.deployer.cloudfoundry.password=

# Whether to allow self-signed certificates during SSL validation
# (for setting env var use SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_SKIP_SSL_VALIDATION)
spring.cloud.deployer.cloudfoundry.skipSslValidation=false
Note that you can set the following properties SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_SERVICES,
spring.cloud.deployer.cloudfoundry.memory, and spring.cloud.deployer.cloudfoundry.disk as part of an individual deployment request prefixed by the app.<name of application>.  For example
>stream create --name ticktock --definition "time | log"
>stream deploy --name ticktock --properties "app.time.spring.cloud.deployer.cloudfoundry.memory=2048"
will deploy the time source with 2048MB of memory, while the log sink will use the default 1024MB.
Part IV. Streams




In this section you will learn all about Streams and how to use them with Spring Cloud Data Flow.


Chapter 16. Introduction



In Spring Cloud Data Flow, a basic stream defines the ingestion of event driven data from a source to a sink that passes through any number of processors. Streams are composed of spring-cloud-stream applications and the deployment of stream definitions is done via the Data Flow Server (REST API). The Getting Started section shows you how to start these servers and how to start and use the Spring Cloud Data Flow shell.
A high level DSL is used to create stream definitions. The DSL to define a stream that has an http source and a file sink (with no processors) is shown below
http | file
The DSL mimics a UNIX pipes and filters syntax. Default values for ports and filenames are used in this example but can be overridden using -- options, such as
http --server.port=8091 | file --directory=/tmp/httpdata/
To create these stream definitions you use the shell or make an HTTP POST request to the Spring Cloud Data Flow Server. More details can be found in the sections below.
Chapter 17. Stream DSL



In the examples above, we connected a source to a sink using the pipe symbol |. You can also pass properties to the source and sink configurations. The property names will depend on the individual app implementations, but as an example, the http source app exposes a server.port setting which allows you to change the data ingestion port from the default value. To create the stream using port 8000, we would use
dataflow:> stream create --definition "http --server.port=8000 | log" --name myhttpstream
The shell provides tab completion for application properties and also the shell command app info provides some additional documentation.
Chapter 18. Register a Stream App



Register a Stream App with the App Registry using the Spring Cloud Data Flow Shell
app register command. You must provide a unique name, application type, and a URI that can be
resolved to the app artifact. For the type, specify "source", "processor", or "sink".
Here are a few examples:
dataflow:>app register --name mysource --type source --uri maven://com.example:mysource:0.0.1-SNAPSHOT

dataflow:>app register --name myprocessor --type processor --uri file:///Users/example/myprocessor-1.2.3.jar

dataflow:>app register --name mysink --type sink --uri http://example.com/mysink-2.0.1.jar
When providing a URI with the maven scheme, the format should conform to the following:
maven://<groupId>:<artifactId>[:<extension>[:<classifier>]]:<version>
For example, if you would like to register the snapshot versions of the http and log
applications built with the RabbitMQ binder, you could do the following:
dataflow:>app register --name http --type source --uri maven://org.springframework.cloud.stream.app:http-source-rabbit:1.0.0.BUILD-SNAPSHOT
dataflow:>app register --name log --type sink --uri maven://org.springframework.cloud.stream.app:log-sink-rabbit:1.0.0.BUILD-SNAPSHOT
If you would like to register multiple apps at one time, you can store them in a properties file
where the keys are formatted as <type>.<name> and the values are the URIs.
For example, if you would like to register the snapshot versions of the http and log
applications built with the RabbitMQ binder, you could have the following in a properties file [eg: stream-apps.properties]:
source.http=maven://org.springframework.cloud.stream.app:http-source-rabbit:1.0.0.BUILD-SNAPSHOT
sink.log=maven://org.springframework.cloud.stream.app:log-sink-rabbit:1.0.0.BUILD-SNAPSHOT
Then to import the apps in bulk, use the app import command and provide the location of the properties file via --uri:
dataflow:>app import --uri file:///<YOUR_FILE_LOCATION>/stream-apps.properties
For convenience, we have the static files with application-URIs (for both maven and docker) available for all the out-of-the-box
Stream app-starters. You can point to this file and import all the application-URIs in bulk. Otherwise, as explained in
previous paragraphs, you can register them individually or have your own custom property file with only the required application-URIs
in it. It is recommended, however, to have a "focused" list of desired application-URIs in a custom property file.
List of available static property files:
	Maven based Stream Applications with RabbitMQ Binder: bit.ly/stream-applications-rabbit-maven
	Maven based Stream Applications with Kafka Binder: bit.ly/stream-applications-kafka-maven
	Docker based Stream Applications with RabbitMQ Binder: bit.ly/stream-applications-rabbit-docker
	Docker based Stream Applications with Kafka Binder: bit.ly/stream-applications-kafka-docker


For example, if you would like to register all out-of-the-box stream applications built with the RabbitMQ binder in bulk, you can with
the following command.
dataflow:>app import --uri http://bit.ly/stream-applications-rabbit-maven
You can also pass the --local option (which is TRUE by default) to indicate whether the
properties file location should be resolved within the shell process itself. If the location should
be resolved from the Data Flow Server process, specify --local false.
When using either app register or app import, if a stream app is already registered with
the provided name and type, it will not be overridden by default. If you would like to override the
pre-existing stream app, then include the --force option.
	[image: [Note]]	Note
	In some cases the Resource is resolved on the server side, whereas in others the
URI will be passed to a runtime container instance where it is resolved. Consult
the specific documentation of each Data Flow Server for more detail.



Whitelisting application properties



Stream applications are Spring Boot applications which are aware of many common application properties, e.g. server.port but also families of properties such as those with the prefix spring.jmx and logging.  When creating your own application it is desirable to whitelist properties so that the shell and the UI can display them first as primary properties when presenting options via TAB completion or in drop-down boxes.
To whitelist application properties create a file named spring-configuration-metadata-whitelist.properties in the META-INF resource directory.  There are two property keys that can be used inside this file. The first key is named configuration-properties.classes.  The value is a comma separated list of fully qualified @ConfigurationProperty class names.  The second key is configuration-properties.names whose value is a comma separated list of property names.  This can contain the full name of property, such as server.port or a partial name to whitelist a category of property names, e.g. spring.jmx.
The Spring Cloud Stream application starters are a good place to look for examples of usage.  Here is a simple example of the file source’s spring-configuration-metadata-whitelist.properties file
configuration.classes=org.springframework.cloud.stream.app.file.sink.FileSinkProperties
If for some reason we also wanted to add file.prefix to this file, it would look like
configuration.classes=org.springframework.cloud.stream.app.file.sink.FileSinkProperties
configuration-properties.names=server.port
	[image: [Important]]	Important
	As of Spring Cloud Data Flow 1.0.0.RELEASE the whitelisting of application properties
is only explicitly supported for Spring Boot 1.3.x based application. Milestone releases
of the upcoming Spring Boot 1.4.0 release are not explicitly supported, yet.
The spring-boot-maven-plugin used in 1.4.x has a different approach in handling
the nested archives inside the jar. As a result you will notice that the application properties
are not listed using app info command at all. As a temporary workaround, you can override the managed
version of your app’s spring-boot-maven-plugin
explicitly and revert to a version of the latest 1.3.x release:
For example, if your app’s pom.xml specifies to use Spring Boot 1.4.0.M3:
<parent>
  <artifactId>spring-boot-starter-parent</artifactId>
  <groupId>org.springframework.boot</groupId>
  <version>1.4.0.M3</version>
  <relativePath></relativePath>
</parent>
Then you can override the managed version of the spring-boot-maven-plugin with:
<plugin>
  <groupId>org.springframework.boot</groupId>
  <artifactId>spring-boot-maven-plugin</artifactId>
  <version>1.3.5.RELEASE</version>  [image: 1]
</plugin>
	[image: 1] 
	Overriding the managed version 1.4.0.M3.



Also, if you have your own dataflow server built using @EnableDataflowServer and using Spring Boot 1.4.x in that,
you would need to explicitly override the spring-boot-maven-plugin with any of 1.3.x releases.



Chapter 19. Creating a Stream



The Spring Cloud Data Flow Server exposes a full RESTful API for managing the lifecycle of stream definitions, but the easiest way to use is it is via the Spring Cloud Data Flow shell. Start the shell as described in the Getting Started section.
New streams are created by posting stream definitions. The definitions are built from a simple DSL. For example, let’s walk through what happens if we execute the following shell command:
dataflow:> stream create --definition "time | log" --name ticktock
This defines a stream named ticktock based off the DSL expression time | log.  The DSL uses the "pipe" symbol |, to connect a source to a sink.
Then to deploy the stream execute the following shell command (or alternatively add the --deploy flag when creating the stream so that this step is not needed):
dataflow:> stream deploy --name ticktock
The Data Flow Server resolves time and log to maven coordinates and uses those to launch the time and log applications of the stream.
2016-06-01 09:41:21.728  INFO 79016 --- [nio-9393-exec-6] o.s.c.d.spi.local.LocalAppDeployer       : deploying app ticktock.log instance 0
   Logs will be in /var/folders/wn/8jxm_tbd1vj28c8vj37n900m0000gn/T/spring-cloud-dataflow-912434582726479179/ticktock-1464788481708/ticktock.log
2016-06-01 09:41:21.914  INFO 79016 --- [nio-9393-exec-6] o.s.c.d.spi.local.LocalAppDeployer       : deploying app ticktock.time instance 0
   Logs will be in /var/folders/wn/8jxm_tbd1vj28c8vj37n900m0000gn/T/spring-cloud-dataflow-912434582726479179/ticktock-1464788481910/ticktock.time
In this example, the time source simply sends the current time as a message each second, and the log sink outputs it using the logging framework.
You can tail the stdout log (which has an "_<instance>" suffix). The log files are located within the directory displayed in the Data Flow Server’s log output, as shown above.
$ tail -f /var/folders/wn/8jxm_tbd1vj28c8vj37n900m0000gn/T/spring-cloud-dataflow-912434582726479179/ticktock-1464788481708/ticktock.log/stdout_0.log
2016-06-01 09:45:11.250  INFO 79194 --- [  kafka-binder-] log.sink    : 06/01/16 09:45:11
2016-06-01 09:45:12.250  INFO 79194 --- [  kafka-binder-] log.sink    : 06/01/16 09:45:12
2016-06-01 09:45:13.251  INFO 79194 --- [  kafka-binder-] log.sink    : 06/01/16 09:45:13
Application properties



Application properties are the properties associated with each application in the stream. When the application is deployed, the application properties are applied to the application via
command line arguments or environment variables based on the underlying deployment implementation.
Passing application properties when creating a stream



The following stream
dataflow:> stream create --definition "time | log" --name ticktock
can have application properties defined at the time of stream creation.
The shell command app info displays the white-listed application properties for the application.
For more info on the property white listing refer to the section called “Whitelisting application properties”
Below are the white listed properties for the app time:
dataflow:> app info source:time
╔══════════════════════════════╤══════════════════════════════╤══════════════════════════════╤══════════════════════════════╗
║         Option Name          │         Description          │           Default            │             Type             ║
╠══════════════════════════════╪══════════════════════════════╪══════════════════════════════╪══════════════════════════════╣
║trigger.time-unit             │The TimeUnit to apply to delay│<none>                        │java.util.concurrent.TimeUnit ║
║                              │values.                       │                              │                              ║
║trigger.fixed-delay           │Fixed delay for periodic      │1                             │java.lang.Integer             ║
║                              │triggers.                     │                              │                              ║
║trigger.cron                  │Cron expression value for the │<none>                        │java.lang.String              ║
║                              │Cron Trigger.                 │                              │                              ║
║trigger.initial-delay         │Initial delay for periodic    │0                             │java.lang.Integer             ║
║                              │triggers.                     │                              │                              ║
║trigger.max-messages          │Maximum messages per poll, -1 │1                             │java.lang.Long                ║
║                              │means infinity.               │                              │                              ║
║trigger.date-format           │Format for the date value.    │<none>                        │java.lang.String              ║
╚══════════════════════════════╧══════════════════════════════╧══════════════════════════════╧══════════════════════════════╝
Below are the white listed properties for the app log:
dataflow:> app info sink:log
╔══════════════════════════════╤══════════════════════════════╤══════════════════════════════╤══════════════════════════════╗
║         Option Name          │         Description          │           Default            │             Type             ║
╠══════════════════════════════╪══════════════════════════════╪══════════════════════════════╪══════════════════════════════╣
║log.name                      │The name of the logger to use.│<none>                        │java.lang.String              ║
║log.level                     │The level at which to log     │<none>                        │org.springframework.integratio║
║                              │messages.                     │                              │n.handler.LoggingHandler$Level║
║log.expression                │A SpEL expression (against the│payload                       │java.lang.String              ║
║                              │incoming message) to evaluate │                              │                              ║
║                              │as the logged message.        │                              │                              ║
╚══════════════════════════════╧══════════════════════════════╧══════════════════════════════╧══════════════════════════════╝
The application properties for the time and log apps can be specified at the time of stream creation as follows:
dataflow:> stream create --definition "time --fixed-delay=5 | log --level=WARN" --name ticktock
Note that the properties fixed-delay and level defined above for the apps time and log are the 'short-form' property names provided by the shell completion.
These 'short-form' property names are applicable only for the white-listed properties and in all other cases, only fully qualified property names should be used.
Passing application properties when deploying a stream



The application properties can also be specified when deploying a stream. When specified during deployment, these application properties can either be specified as
 'short-form' property names (applicable for white-listed properties) or fully qualified property names. The application properties should have the prefix "app.<appName/label>".
For example, the stream
dataflow:> stream create --definition "time | log" --name ticktock
can be deployed with application properties using the 'short-form' property names:
dataflow:>stream deploy ticktock --properties "app.time.fixed-delay=5,app.log.level=ERROR"
When using the app label,
stream create ticktock --definition "a: time | b: log"
the application properties can be defined as:
stream deploy ticktock --properties "app.a.fixed-delay=4,app.b.level=ERROR"
Passing stream partition properties during stream deployment



A common pattern in stream processing is to partition the data as it is streamed.
This entails deploying multiple instances of a message consuming app and using
content-based routing so that messages with a given key (as determined at runtime)
are always routed to the same app instance. You can pass the partition properties during
stream deployment to declaratively configure a partitioning strategy to route each
message to a specific consumer instance.
See below for examples of deploying partitioned streams:
	app.[app/label name].producer.partitionKeyExtractorClass
	The class name of a PartitionKeyExtractorStrategy (default null)
	app.[app/label name].producer.partitionKeyExpression
	A SpEL expression, evaluated against the message, to determine the partition key;
only applies if partitionKeyExtractorClass is null. If both are null, the app
is not partitioned (default null)
	app.[app/label name].producer.partitionSelectorClass
	The class name of a PartitionSelectorStrategy (default null)
	app.[app/label name].producer.partitionSelectorExpression
	A SpEL expression, evaluated against the partition key, to determine the partition
index to which the message will be routed. The final partition index will be the
return value (an integer) modulo [nextModule].count. If both the class and
expression are null, the underlying binder’s default PartitionSelectorStrategy
will be applied to the key (default null)


In summary, an app is partitioned if its count is > 1 and the previous app has a
partitionKeyExtractorClass or partitionKeyExpression (class takes precedence).
When a partition key is extracted, the partitioned app instance is determined by
invoking the partitionSelectorClass, if present, or the partitionSelectorExpression % partitionCount,
where partitionCount is application count in the case of RabbitMQ, and the underlying
partition count of the topic in the case of Kafka.
If neither a partitionSelectorClass nor a partitionSelectorExpression is
present the result is key.hashCode() % partitionCount.
Overriding application properties during stream deployment



Application properties that are defined during deployment override the same properties defined during the stream creation.
For example, the following stream has application properties defined during stream creation:
dataflow:> stream create --definition "time --fixed-delay=5 | log --level=WARN" --name ticktock
To override these application properties, one can specify the new property values during deployment:
dataflow:>stream deploy ticktock --properties "app.time.fixed-delay=4,app.log.level=ERROR"
Deployment properties



When deploying the stream, properties that control the deployment of the apps into the target platform are known as deployment properties.
For instance, one can specify how many instances need to be deployed for the specific application defined in the stream using the deployment property called count.
Passing instance count as deployment property



If you would like to have multiple instances of an application in the stream, you
can include a property with the deploy command:
dataflow:> stream deploy --name ticktock --properties "app.time.count=3"
Note that count is the reserved property name used by the underlying deployer. Hence, if the application also has a custom property named count, it is not supported
 when specified in 'short-form' form during stream deployment as it could conflict with the instance count deployer property. Instead, the count as a custom application property can be
 specified in its fully qualified form (example: app.foo.bar.count) during stream deployment or it can be specified using 'short-form' or fully qualified form during the stream creation
 where it will be considered as an app property.
	[image: [Important]]	Important
	See Chapter 26, Using Labels in a Stream.



Inline vs file reference properties



When using the Spring Cloud Dataflow Shell, there are two ways to provide deployment
properties: either inline or via a file reference. Those two ways are exclusive
and documented below:
	Inline properties
	use the --properties shell option and list properties as a comma separated
list of key=value pairs, like so:


stream deploy foo
    --properties "app.transform.count=2,app.transform.producer.partitionKeyExpression=payload"
	Using a file reference
	use the --propertiesFile option and point it to a local Java .properties file
(i.e. that lives in the filesystem of the machine running the shell). Being read
as a .properties file, normal rules apply (ISO 8859-1 encoding, =, <space> or
: delimiter, etc.) although we recommend using = as a key-value pair delimiter
for consistency:


stream deploy foo --propertiesFile myprops.properties
where myprops.properties contains:
app.transform.count=2
app.transform.producer.partitionKeyExpression=payload
Both the above properties will be passed as deployment properties for the stream foo above.
Chapter 20. Destroying a Stream



You can delete a stream by issuing the stream destroy command from the shell:
dataflow:> stream destroy --name ticktock
If the stream was deployed, it will be undeployed before the stream definition is deleted.
Chapter 21. Deploying and Undeploying Streams



Often you will want to stop a stream, but retain the name and definition for future use. In that case you can undeploy the stream by name and issue the deploy command at a later time to restart it.
dataflow:> stream undeploy --name ticktock
dataflow:> stream deploy --name ticktock
Chapter 22. Other Source and Sink Application Types



Let’s try something a bit more complicated and swap out the time source for something else. Another supported source type is http, which accepts data for ingestion over HTTP POSTs. Note that the http source accepts data on a different port from the Data Flow Server (default 8080). By default the port is randomly assigned.
To create a stream using an http source, but still using the same log sink, we would change the original command above to
dataflow:> stream create --definition "http | log" --name myhttpstream --deploy
which will produce the following output from the server
2016-06-01 09:47:58.920  INFO 79016 --- [io-9393-exec-10] o.s.c.d.spi.local.LocalAppDeployer       : deploying app myhttpstream.log instance 0
   Logs will be in /var/folders/wn/8jxm_tbd1vj28c8vj37n900m0000gn/T/spring-cloud-dataflow-912434582726479179/myhttpstream-1464788878747/myhttpstream.log
2016-06-01 09:48:06.396  INFO 79016 --- [io-9393-exec-10] o.s.c.d.spi.local.LocalAppDeployer       : deploying app myhttpstream.http instance 0
   Logs will be in /var/folders/wn/8jxm_tbd1vj28c8vj37n900m0000gn/T/spring-cloud-dataflow-912434582726479179/myhttpstream-1464788886383/myhttpstream.http
Note that we don’t see any other output this time until we actually post some data (using a shell command). In order to see the randomly assigned port on which the http source is listening, execute:
dataflow:> runtime apps
You should see that the corresponding http source has a url property containing the host and port information on which it is listening. You are now ready to post to that url, e.g.:
dataflow:> http post --target http://localhost:1234 --data "hello"
dataflow:> http post --target http://localhost:1234 --data "goodbye"
and the stream will then funnel the data from the http source to the output log implemented by the log sink
2016-06-01 09:50:22.121  INFO 79654 --- [  kafka-binder-] log.sink    : hello
2016-06-01 09:50:26.810  INFO 79654 --- [  kafka-binder-] log.sink    : goodbye
Of course, we could also change the sink implementation. You could pipe the output to a file (file), to hadoop (hdfs) or to any of the other sink apps which are available. You can also define your own apps.
Chapter 23. Simple Stream Processing



As an example of a simple processing step, we can transform the payload of the HTTP posted data to upper case using the stream definitions
http | transform --expression=payload.toUpperCase() | log
To create this stream enter the following command in the shell
dataflow:> stream create --definition "http | transform --expression=payload.toUpperCase() | log" --name mystream --deploy
Posting some data (using a shell command)
dataflow:> http post --target http://localhost:1234 --data "hello"
Will result in an uppercased 'HELLO' in the log
2016-06-01 09:54:37.749  INFO 80083 --- [  kafka-binder-] log.sink    : HELLO
Chapter 24. Stateful Stream Processing



To demonstrate the data partitioning functionality, let’s deploy the following stream with Kafka as the binder.
dataflow:>stream create --name words --definition "http --server.port=9900 | splitter --expression=payload.split(' ') | log"
Created new stream 'words'

dataflow:>stream deploy words --properties "app.splitter.producer.partitionKeyExpression=payload,app.log.count=2"
Deployed stream 'words'

dataflow:>http post --target http://localhost:9900 --data "How much wood would a woodchuck chuck if a woodchuck could chuck wood"
> POST (text/plain;Charset=UTF-8) http://localhost:9900 How much wood would a woodchuck chuck if a woodchuck could chuck wood
> 202 ACCEPTED
You’ll see the following in the server logs.
2016-06-05 18:33:24.982  INFO 58039 --- [nio-9393-exec-9] o.s.c.d.spi.local.LocalAppDeployer       : deploying app words.log instance 0
   Logs will be in /var/folders/c3/ctx7_rns6x30tq7rb76wzqwr0000gp/T/spring-cloud-dataflow-694182453710731989/words-1465176804970/words.log
2016-06-05 18:33:24.988  INFO 58039 --- [nio-9393-exec-9] o.s.c.d.spi.local.LocalAppDeployer       : deploying app words.log instance 1
   Logs will be in /var/folders/c3/ctx7_rns6x30tq7rb76wzqwr0000gp/T/spring-cloud-dataflow-694182453710731989/words-1465176804970/words.log
Review the words.log instance 0 logs:
2016-06-05 18:35:47.047  INFO 58638 --- [  kafka-binder-] log.sink                                 : How
2016-06-05 18:35:47.066  INFO 58638 --- [  kafka-binder-] log.sink                                 : chuck
2016-06-05 18:35:47.066  INFO 58638 --- [  kafka-binder-] log.sink                                 : chuck
Review the words.log instance 1 logs:
2016-06-05 18:35:47.047  INFO 58639 --- [  kafka-binder-] log.sink                                 : much
2016-06-05 18:35:47.066  INFO 58639 --- [  kafka-binder-] log.sink                                 : wood
2016-06-05 18:35:47.066  INFO 58639 --- [  kafka-binder-] log.sink                                 : would
2016-06-05 18:35:47.066  INFO 58639 --- [  kafka-binder-] log.sink                                 : a
2016-06-05 18:35:47.066  INFO 58639 --- [  kafka-binder-] log.sink                                 : woodchuck
2016-06-05 18:35:47.067  INFO 58639 --- [  kafka-binder-] log.sink                                 : if
2016-06-05 18:35:47.067  INFO 58639 --- [  kafka-binder-] log.sink                                 : a
2016-06-05 18:35:47.067  INFO 58639 --- [  kafka-binder-] log.sink                                 : woodchuck
2016-06-05 18:35:47.067  INFO 58639 --- [  kafka-binder-] log.sink                                 : could
2016-06-05 18:35:47.067  INFO 58639 --- [  kafka-binder-] log.sink                                 : wood
This shows that payload splits that contain the same word are routed to the same application instance.
Chapter 25. Tap a Stream



Taps can be created at various producer endpoints in a stream. For a stream like this:
stream create --definition "http | step1: transform --expression=payload.toUpperCase() | step2: transform --expression=payload+'!' | log" --name mainstream --deploy
taps can be created at the output of http, step1 and step2.
To create a stream that acts as a 'tap' on another stream requires to specify the source destination name for the tap stream. The syntax for source destination name is:
`:<stream-name>.<label/app-name>`
To create a tap at the output of http in the stream above, the source destination name is mainstream.http
To create a tap at the output of the first transform app in the stream above, the source destination name is mainstream.step1
The tap stream DSL looks like this:
stream create --definition ":mainstream.http > counter" --name tap_at_http --deploy

stream create --definition ":mainstream.step1 > jdbc" --name tap_at_step1_transformer --deploy
Note the colon (:) prefix before the destination names. The colon allows the parser to recognize this as a destination name instead of an app name.
Chapter 26. Using Labels in a Stream



When a stream is comprised of multiple apps with the same name, they must be qualified with labels:
stream create --definition "http | firstLabel: transform --expression=payload.toUpperCase() | secondLabel: transform --expression=payload+'!' | log" --name myStreamWithLabels --deploy
Chapter 27. Explicit Broker Destinations in a Stream



One can connect to a specific destination name located in the broker (Rabbit, Kafka etc.,) either at the source or at the sink position.
The following stream has the destination name at the source position:
stream create --definition ":myDestination > log" --name ingest_from_broker --deploy
This stream receives messages from the destination myDestination located at the broker and connects it to the log app.
The following stream has the destination name at the sink position:
stream create --definition "http > :myDestination" --name ingest_to_broker --deploy
This stream sends the messages from the http app to the destination myDestination located at the broker.
From the above streams, notice that the http and log apps are interacting with each other via the broker (through the destination myDestination) rather than having a pipe directly between http and log within a single stream.
It is also possible to connect two different destinations (source and sink positions) at the broker in a stream.
stream create --definition ":destination1 > :destination2" --name bridge_destinations --deploy
In the above stream, both the destinations (destination1 and destination2) are located in the broker. The messages flow from the source destination to the sink destination via a bridge app that connects them.
Chapter 28. Directed Graphs in a Stream



If directed graphs are needed instead of the simple linear streams described above, two features are relevant.
First, named destinations may be used as a way to combine the output from multiple streams or for multiple consumers to share the output from a single stream.
This can be done using the DSL syntax http > :mydestination or :mydestination > log.
Second, you may need to determine the output channel of a stream based on some information that is only known at runtime.
In that case, a router may be used in the sink position of a stream definition. For more information, refer to the Router Sink starter’s
README.
Common application properties



In addition to configuration via DSL, Spring Cloud Data Flow provides a mechanism for setting common properties to all the streaming applications that are launched by it.
This can be done by adding properties prefixed with spring.cloud.dataflow.applicationProperties.stream when starting the server.
When doing so, the server will pass all the properties, without the prefix, to the instances it launches.
For example, all the launched applications can be configured to use a specific Kafka broker by launching the configuration server with the following options:
--spring.cloud.dataflow.applicationProperties.stream.spring.cloud.stream.kafka.binder.brokers=192.168.1.100:9092
--spring.cloud.dataflow.applicationProperties.stream.spring.cloud.stream.kafka.binder.zkNodes=192.168.1.100:2181
This will cause the properties spring.cloud.stream.kafka.binder.brokers and spring.cloud.stream.kafka.binder.zkNodes to be passed to all the launched applications.
	[image: [Note]]	Note
	Properties configured using this mechanism have lower precedence than stream deployment properties.
They will be overridden if a property with the same key is specified at stream deployment time (e.g. app.http.spring.cloud.stream.kafka.binder.brokers will override the common property).



Part V. Dashboard




This section describe how to use the Dashboard of Spring Cloud Data Flow.


Chapter 29. Introduction



Spring Cloud Data Flow provides a browser-based GUI which currently has 6 sections:
	Apps Lists all available applications and provides the control to register/unregister them
	Runtime Provides the Data Flow cluster view with the list of all running applications
	Streams Deploy/undeploy Stream Definitions
	Jobs Perform Batch Job related functions
	Analytics Create data visualizations for the various analytics applications


Upon starting Spring Cloud Data Flow, the Dashboard is available at:
http://<host>:<port>/dashboard
For example: http://localhost:9393/dashboard
If you have enabled https, then it will be located at https://localhost:9393/dashboard.
If you have enabled security, a login form is available at http://localhost:9393/dashboard/#/login.
Note: The default Dashboard server port is 9393
Figure 29.1. The Spring Cloud Data Flow Dashboard
	[image: The Spring Cloud Data Flow Dashboard]




Chapter 30. Apps



The Apps section of the Dashboard lists all the available applications and
provides the control to register/unregister them (if applicable). By clicking on
the magnifying glass, you will get a listing of available definition properties.
Figure 30.1. List of Available Applications
	[image: List of available applications]




Chapter 31. Runtime



The Runtime section of the Dashboard application shows the Spring Cloud Data Flow
cluster view with the list of all running applications. For each runtime app the
state of the deployment and the number of deployed instances is shown.
A list of the used deployment properties is available by clicking on the
app id.
Figure 31.1. List of Running Applications
	[image: List of running applications]




Chapter 32. Streams



The Streams section of the Dashboard provides the Definitions tab that provides
a listing of Stream definitions. There you have the option to deploy or undeploy
those stream definitions. Additionally you can remove the definition by clicking on destroy.
Figure 32.1. List of Stream Definitions
	[image: List of Stream Definitions]




Chapter 33. Create Stream



The Create Stream section of the Dashboard includes the Spring Flo designer tab that provides the canvas application, offering a interactive graphical interface for creating data pipelines.
In this tab, you can:
	Create, manage, and visualize stream pipelines using DSL, a graphical canvas, or both
	Write pipelines via DSL with content-assist and auto-complete
	Use auto-adjustment and grid-layout capabilities in the GUI for simpler and interactive organization of pipelines


Watch this screencast that highlights some of the "Flo for Spring Cloud Data Flow" capabilities. Spring Flo wiki includes more detailed content on core Flo capabilities.
Figure 33.1. Flo for Spring Cloud Data Flow
	[image: Flo for Spring Cloud Data Flo]




Chapter 34. Analytics



The Analytics section of the Dashboard provided data visualization capabilities
for the various analytics applications available in Spring Cloud Data Flow:
	Counters
	Field-Value Counters


For example, if you have created the springtweets stream and the corresponding
counter in the Counter chapter, you can now easily create the corresponding
graph from within the Dashboard tab:
	Under Metric Type, select Counters from the select box
	Under Stream, select tweetcount
	Under Visualization, select the desired chart option, Bar Chart


Using the icons to the right, you can add additional charts to the Dashboard,
re-arange the order of created dashboards or remove data visualizations.
Part VI. ‘How-to’ guides




This section provides answers to some common ‘how do I do that…​’ type of questions
that often arise when using Spring Cloud Data Flow.
If you are having a specific problem that we don’t cover here, you might want to check out
stackoverflow.com to see if someone has
already provided an answer; this is also a great place to ask new questions (please use
the spring-cloud-dataflow tag).
We’re also more than happy to extend this section; If you want to add a ‘how-to’ you
can send us a pull request.


Chapter 35. Configure Maven Properties



You can set the maven properties such as local maven repository location, remote maven repositories and their authentication credentials including
the proxy server properties via commandline properties when starting the Dataflow server or using the SPRING_APPLICATION_JSON environment property
for the Dataflow server.
The remote maven repositories need to be configured explicitly if the apps are resolved using maven repository as except local Data Flow server, other
 Data Flow server implementations (that use maven resources for app artifacts resolution) have no default value for remote repositories.
 The local server has repo.spring.io/libs-snapshot as the default remote repository.
To pass the properties as commandline options:
$ java -jar <dataflow-server>.jar --maven.localRepository=mylocal
--maven.remote-repositories.repo1.url=https://repo1
--maven.remote-repositories.repo1.auth.username=repo1user
--maven.remote-repositories.repo1.auth.password=repo1pass
--maven.remote-repositories.repo2.url=https://repo2 --maven.proxy.host=proxyhost
--maven.proxy.port=9018 --maven.proxy.auth.username=proxyuser
--maven.proxy.auth.password=proxypass
or, using the SPRING_APPLICATION_JSON environment property:
export SPRING_APPLICATION_JSON='{ "maven": { "local-repository": "local","remote-repositories": { "repo1": { "url": "https://repo1", "auth": { "username": "repo1user", "password": "repo1pass" } },
"repo2": { "url": "https://repo2" } }, "proxy": { "host": "proxyhost", "port": 9018, "auth": { "username": "proxyuser", "password": "proxypass" } } } }'
Formatted JSON:
SPRING_APPLICATION_JSON='{
  "maven": {
    "local-repository": "local",
    "remote-repositories": {
      "repo1": {
        "url": "https://repo1",
        "auth": {
          "username": "repo1user",
          "password": "repo1pass"
        }
      },
      "repo2": {
        "url": "https://repo2"
      }
    },
    "proxy": {
      "host": "proxyhost",
      "port": 9018,
      "auth": {
        "username": "proxyuser",
        "password": "proxypass"
      }
    }
  }
}'
	[image: [Note]]	Note
	Depending on Spring Cloud Data Flow server implementation, you may have to pass the
environment properties using the platform specific environment-setting capabilities. For instance,
in Cloud Foundry, you’d be passing them as cf set-env SPRING_APPLICATION_JSON.



Part VII. Appendices




Appendix A. Migrating from Spring XD to Spring Cloud Data Flow



Terminology Changes



	Old	New
	XD-Admin
	Server (implementations: local, cloud foundry, apache yarn, kubernetes, and apache mesos)

	XD-Container
	N/A

	Modules
	Applications

	Admin UI
	Dashboard

	Message Bus
	Binders

	Batch / Job
	Task



Modules to Applications



If you have custom Spring XD modules, you’d have to refactor them to use Spring Cloud
Stream and Spring Cloud Task annotations, with updated dependencies and built as normal
Spring Boot "applications".
Custom Applications



	Spring XD’s stream and batch modules are refactored into Spring Cloud Stream and Spring
Cloud Task application-starters, respectively. These applications can be used as the reference while refactoring Spring XD modules
	There are also some samples for Stream and Task applications for reference
	If you’d like to create a brand new custom application, use the getting started guide for Stream and Task applications and as well as  review the development guide
	Alternatively, if you’d like to patch any of the out-of-the-box stream applications, you can
follow the procedure here


Application Registration



	Custom Stream/Task application requires being installed to a maven repository for Local, YARN, and
CF implementations or as docker images, when deploying to Kubernetes and Mesos. Other than maven and
docker resolution, you can also resolve application artifacts from http, file, or as hdfs
coordinates
	Unlike Spring XD, you do not have to upload the application bits while registering custom applications anymore; instead, you’re expected to register the application coordinates that are hosted in the maven repository or by other means as discussed in the previous bullet
	By default, none of the out-of-the-box applications are preloaded already. It is intentionally designed to
provide the flexibility to register app(s), as you find appropriate for the given use-case requirement
	Depending on the binder choice, you can manually add the appropriate binder dependency to build
applications specific to that binder-type. Alternatively, you can follow the Spring Initialzr procedure
to create an application with binder embedded in it


Application Properties



	counter-sink:
	The peripheral redis is not required in Spring Cloud Data Flow. If you intend to use the counter-sink, then redis becomes required, and you’re expected to have your own running redis cluster



	field-value-counter-sink:
	The peripheral redis is not required in Spring Cloud Data Flow. If you intend to use the field-value-counter-sink, then redis becomes required, and you’re expected to have your own running redis cluster



	aggregate-counter-sink:
	The peripheral redis is not required in Spring Cloud Data Flow. If you intend to use the aggregate-counter-sink, then redis becomes required, and you’re expected to have your own running redis cluster





Message Bus to Binders



Terminology wise, in Spring Cloud Data Flow, the message bus implementation is commonly referred to
as binders.
Message Bus



Similar to Spring XD, there’s an abstraction available to extend the binder interface. By default,
we take the opinionated view of Apache Kafka and RabbitMQ as the
production-ready binders and are available as GA releases. We also have an experimental version of the Gemfire binder.
Binders



Selecting a binder is as simple as providing the right binder dependency in the classpath. If you’re
to choose Kafka as the binder, you’d register stream applications that are pre-built with Kafka binder
in it. If you were to create a custom application with Kafka binder, you’d add the following
dependency in the classpath.
<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-stream-binder-kafka</artifactId>
    <version>1.0.2.RELEASE</version>
</dependency>
	Spring Cloud Stream supports Apache Kafka, RabbitMQ and an experimental
Gemfire binder implementation. All binder implementations are maintained and managed in their individual repositories
	Every Stream/Task application can be built with a binder implementation of your choice.
All the out-of-the-box applications are pre-built for both Kafka and Rabbit and they’re
readily available for use as maven artifacts [stream / task] or docker images [stream / task]
Changing the binder requires selecting the right binder dependency. Alternatively, you can download the pre-built application from this version of Spring Initializr with the desired “binder-starter” dependency


Named Channels



Fundamentally, all the messaging channels are backed by pub/sub semantics. Unlike Spring XD, the
messaging channels are backed only by topics or topic-exchange and there’s no representation of
queues in the new architecture.
	${xd.module.index} is not supported anymore; instead, you can directly interact with named
destinations
	stream.index changes to :<stream-name>.<label/app-name>
	for instance: ticktock.0 changes to :ticktock.time



	“topic/queue” prefixes are not required to interact with named-channels
	for instance: topic:foo changes to :foo
	for instance: stream create stream1 --definition ":foo > log"





Directed Graphs



If you’re building non-linear streams, you could take advantage of named destinations to build
directed graphs.
for instance, in Spring XD:
stream create f --definition "queue:foo > transform --expression=payload+'-foo' | log" --deploy
stream create b --definition "queue:bar > transform --expression=payload+'-bar' | log" --deploy
stream create r --definition "http | router --expression=payload.contains('a')?'queue:foo':'queue:bar'" --deploy
for instance, in Spring Cloud Data Flow:
stream create f --definition ":foo > transform --expression=payload+'-foo' | log" --deploy
stream create b --definition ":bar > transform --expression=payload+'-bar' | log" --deploy
stream create r --definition "http | router --expression=payload.contains('a')?':foo':':bar'" --deploy
Batch to Tasks



A Task by definition, is any application that does not run forever, including Spring Batch jobs, and they
end/stop at some point. Task applications can be majorly used for on-demand use-cases such as database migration, machine learning, scheduled operations etc. Using Spring Cloud Task, users can build Spring Batch jobs as microservice applications.
	Spring Batch jobs
from Spring XD are being refactored to Spring Boot applications a.k.a link: Spring Cloud Task
applications
	Unlike Spring XD, these “Tasks” don’t require explicit deployment; instead, a task is ready to be
launched directly once the definition is declared


Shell/DSL Commands



	Old Command	New Command
	module upload
	app register / app import

	module list
	app list

	module info
	app info

	admin config server
	dataflow config server

	job create
	task create

	job launch
	task launch

	job list
	task list

	job status
	task status

	job display
	task display

	job destroy
	task destroy

	job execution list
	task execution list

	runtime modules
	runtime apps



REST-API



	Old API	New API
	/modules
	/apps

	/runtime/modules
	/runtime/apps

	/runtime/modules/(moduleId}
	/runtime/apps/{appId}

	/jobs/definitions
	/task/definitions

	/jobs/deployments
	/task/deployments



UI / Flo



The Admin-UI is now renamed as Dashboard. The URI for accessing the Dashboard is changed from
localhost:9393/admin-ui to localhost:9393/dashboard
	(New) Apps: Lists all the registered applications that are available for use. This view includes informational details such as the URI and the properties supported by each application. You can also register/unregister applications from this view
	Runtime: Container changes to Runtime. The notion of xd-container is gone, replaced by out-of-the-box applications running as autonomous Spring Boot applications. The Runtime tab displays the applications
running in the runtime platforms (implementations: cloud foundry, apache yarn, apache mesos, or
kubernetes). You can click on each application to review relevant details about the application such
as where it is running with, and what resources etc.
	Spring Flo is now an OSS product. Flo for
Spring Cloud Data Flow’s “Create Stream”, the designer-tab comes pre-built in the Dashboard
	(New) Tasks:
	The sub-tab “Modules” is renamed to “Apps”
	The sub-tab “Definitions” lists all the Task definitions, including Spring Batch jobs that are
orchestrated as Tasks
	The sub-tab “Executions” lists all the Task execution details similar to Spring XD’s Job executions





Architecture Components



Spring Cloud Data Flow comes with a significantly simplified architecture. In fact, when compared with
Spring XD, there are less peripherals that are necessary to operationalize Spring Cloud Data Flow.
ZooKeeper



ZooKeeper is not used in the new architecture.
RDBMS



Spring Cloud Data Flow uses an RDBMS instead of Redis for stream/task definitions, application
registration, and for job repositories.The default configuration uses an embedded H2 instance, but Oracle, SqlServer, MySQL/MariaDB, PostgreSQL, H2, and HSQLDB databases are supported. To use Oracle and
SqlServer you will need to create your own Data Flow Server using Spring Initializr and add the appropriate JDBC driver dependency.
Redis



Running a Redis cluster is only required for analytics functionality. Specifically, when the counter-sink,
field-value-counter-sink, or aggregate-counter-sink applications are used, it is expected to also
have a running instance of Redis cluster.
Cluster Topology



Spring XD’s xd-admin and xd-container server components are replaced by stream and task
applications themselves running as autonomous Spring Boot applications. The applications run natively
on various platforms including Cloud Foundry, Apache YARN, Apache Mesos, or Kubernetes. You can develop,
test, deploy, scale +/-, and interact with (Spring Boot) applications individually, and they can
evolve in isolation.
Central Configuration



To support centralized and consistent management of an application’s configuration properties,
Spring Cloud Config client libraries have been
included into the Spring Cloud Data Flow server as well as the Spring Cloud Stream applications provided
by the Spring Cloud Stream App Starters. You can also pass common application properties
to all streams when the Data Flow Server starts.
Distribution



Spring Cloud Data Flow is a Spring Boot application. Depending on the platform of your choice, you
can download the respective release uber-jar and deploy/push it to the runtime platform
(cloud foundry, apache yarn, kubernetes, or apache mesos). For example, if you’re running Spring
Cloud Data Flow on Cloud Foundry, you’d download the Cloud Foundry server implementation and do a
cf push as explained in the reference guide.
Hadoop Distribution Compatibility



The hdfs-sink application builds upon Spring Hadoop 2.4.0 release, so this application is compatible
with following Hadoop distributions.
	Cloudera - cdh5
	Pivotal Hadoop - phd30
	Hortonworks Hadoop - hdp24
	Hortonworks Hadoop - hdp23
	Vanilla Hadoop - hadoop26
	Vanilla Hadoop - 2.7.x (default)


YARN Deployment



Spring Cloud Data Flow can be deployed and used with Apche YARN in two different ways.
	Deploy the server directly in a YARN cluster
	Leverage Apache Ambari plugin to provision Spring Cloud Data Flow as
a service


Use Case Comparison



Let’s review some use-cases to compare and contrast the differences between Spring XD and Spring
Cloud Data Flow.
Use Case #1



(It is assumed both XD and SCDF distributions are already downloaded)
Description: Simple ticktock example using local/singlenode.
	Spring XD	Spring Cloud Data Flow
	Start xd-singlenode server from CLI

→ xd-singlenode
	Start a binder of your choice

Start local-server implementation of SCDF from the CLI

→ java -jar spring-cloud-dataflow-server-local-1.0.0.BUILD-SNAPSHOT.jar

	Start xd-shell server from the CLI

→ xd-shell
	Start dataflow-shell server from the CLI

→ java -jar spring-cloud-dataflow-shell-1.0.0.BUILD-SNAPSHOT.jar

	Create ticktock stream

xd:>stream create ticktock --definition “time | log” --deploy
	Create ticktock stream

dataflow:>stream create ticktock --definition “time | log” --deploy

	Review ticktock results in the xd-singlenode server console
	Review ticktock results by tailing the ticktock.log/stdout_log application logs



Use Case #2



(It is assumed both XD and SCDF distributions are already downloaded)
Description: Stream with custom module/application.
	Spring XD	Spring Cloud Data Flow
	Start xd-singlenode server from CLI

→ xd-singlenode
	Start a binder of your choice

Start local-server implementation of SCDF from the CLI

→ java -jar spring-cloud-dataflow-server-local-1.0.0.BUILD-SNAPSHOT.jar

	Start xd-shell server from the CLI

→ xd-shell
	Start dataflow-shell server from the CLI

→ java -jar spring-cloud-dataflow-shell-1.0.0.BUILD-SNAPSHOT.jar

	Register custom “processor” module to transform payload to a desired format

xd:>module upload --name toupper --type processor --file <CUSTOM_JAR_FILE_LOCATION>
	Register custom “processor” application to transform payload to a desired format

dataflow:>app register --name toupper --type processor --uri <MAVEN_URI_COORDINATES>

	Create a stream with custom module

xd:>stream create testupper --definition “http | toupper | log” --deploy
	Create a stream with custom application

dataflow:>stream create testupper --definition “http | toupper | log” --deploy

	Review results in the xd-singlenode server console
	Review results by tailing the testupper.log/stdout_log application logs



Use Case #3



(It is assumed both XD and SCDF distributions are already downloaded)
Description: Simple batch-job.
	Spring XD	Spring Cloud Data Flow
	Start xd-singlenode server from CLI

→ xd-singlenode
	Start local-server implementation of SCDF from the CLI

→ java -jar spring-cloud-dataflow-server-local-1.0.0.BUILD-SNAPSHOT.jar

	Start xd-shell server from the CLI

→ xd-shell
	Start dataflow-shell server from the CLI

→ java -jar spring-cloud-dataflow-shell-1.0.0.BUILD-SNAPSHOT.jar

	Register custom “batch-job” module

xd:>module upload --name simple-batch --type job --file <CUSTOM_JAR_FILE_LOCATION>
	Register
custom “batch-job” as task application

dataflow:>app register --name simple-batch --type task --uri <MAVEN_URI_COORDINATES>

	Create a job with custom batch-job module

xd:>job create batchtest --definition “simple-batch”
	Create a task with custom batch-job application

dataflow:>task create batchtest --definition “simple-batch”

	Deploy job

xd:>job deploy batchtest
	NA

	Launch job

xd:>job launch batchtest
	Launch task

dataflow:>task launch batchtest

	Review results in the xd-singlenode server console as well as Jobs tab in UI
(executions sub-tab should include all step details)
	Review results by tailing the batchtest/stdout_log application logs as well as Task tab in UI (executions sub-tab should include all step details)



Appendix B. Building



Basic Compile and Test



To build the source you will need to install JDK 1.8.
The build uses the Maven wrapper so you don’t have to install a specific
version of Maven.  To enable the tests for Redis you should run the server
before bulding.  See below for more information on how run Redis.
The main build command is
$ ./mvnw clean install
You can also add '-DskipTests' if you like, to avoid running the tests.
	[image: [Note]]	Note
	You can also install Maven (>=3.3.3) yourself and run the mvn command
in place of ./mvnw in the examples below. If you do that you also
might need to add -P spring if your local Maven settings do not
contain repository declarations for spring pre-release artifacts.



	[image: [Note]]	Note
	Be aware that you might need to increase the amount of memory
available to Maven by setting a MAVEN_OPTS environment variable with
a value like -Xmx512m -XX:MaxPermSize=128m. We try to cover this in
the .mvn configuration, so if you find you have to do it to make a
build succeed, please raise a ticket to get the settings added to
source control.



The projects that require middleware generally include a
docker-compose.yml, so consider using
Docker Compose to run the middeware servers
in Docker containers. See the README in the
scripts demo
repository for specific instructions about the common cases of mongo,
rabbit and redis.
Documentation



There is a "full" profile that will generate documentation. You can build just the documentation by executing
$ ./mvnw package -DskipTests=true -P full -pl spring-cloud-dataflow-server-cloudfoundry-docs -am
Working with the code



If you don’t have an IDE preference we would recommend that you use
Spring Tools Suite or
Eclipse when working with the code. We use the
m2eclipe eclipse plugin for maven support. Other IDEs and tools
should also work without issue.
Importing into eclipse with m2eclipse



We recommend the m2eclipe eclipse plugin when working with
eclipse. If you don’t already have m2eclipse installed it is available from the "eclipse
marketplace".
Unfortunately m2e does not yet support Maven 3.3, so once the projects
are imported into Eclipse you will also need to tell m2eclipse to use
the .settings.xml file for the projects.  If you do not do this you
may see many different errors related to the POMs in the
projects.  Open your Eclipse preferences, expand the Maven
preferences, and select User Settings.  In the User Settings field
click Browse and navigate to the Spring Cloud project you imported
selecting the .settings.xml file in that project.  Click Apply and
then OK to save the preference changes.
	[image: [Note]]	Note
	Alternatively you can copy the repository settings from .settings.xml into your own ~/.m2/settings.xml.



Importing into eclipse without m2eclipse



If you prefer not to use m2eclipse you can generate eclipse project metadata using the
following command:
$ ./mvnw eclipse:eclipse
The generated eclipse projects can be imported by selecting import existing projects
from the file menu.
images/note.png





images/cover.png
Spring Cloud Data Flow

Reference Guide

‘
' N I3 ] \

| D - ' N N
' N " ' N N
e . o
B Vo
! Y o N !
' \

| fo .
O |

' ' . ' -
(- ~ \ -






images/important.png





