Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M4

Sabby Anandan, Eric Bottard, Mark Fisher, llayaperumal Gopinathan,
Gunnar Hillert, Mark Pollack, Thomas Risberg, Marius Bogoevici, Josh Long



Copyright © 2013-2016 Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.




Spring Cloud Data Flow Server for Cloud Foundry

Table of Contents

I. Spring Cloud Data Flow for Cloud FOUNAIY .........co.uiiiiiiiiii e 1
1. SPring Cloud Data FIOW ......c..uuiiiiiiiieiiii et ettt e e et e eeeaa e eeees 2
S o 1T @ 1o T IS == o P 3

1Y ol 011 (=Tt LU PP UPTPPT 4
K T 111 Yo [1 o 1 o] o P 5
4. Microservice ArChiteCtural STYIE ........iiiiiiii e e e aen 7

4.1. Comparison to other Platform architeCtures ..............cooviiiiiiiiiiii e 7
5. Streaming APPLICALIONS ... iiiiiieeiii e e e 9
5.1. Imperative Programming MOAEl ........cc.oviiiiiiiiiiiii e e e 9
5.2. Functional Programming MOl ...........couiiiiiiiiii e 9
OIS (=T 1 01 PP 10
00 A 1o o To [T | = 10
I ©fo] o (o1 U ] ¢ (=T o [0 Y TP P PP 10
6.3, PArTItIONING ...oeeeiiiiiiii e e ettt et e eae 10
6.4. Message DeliVery GUAIraNTEES ........cvveuuiiiiieiiiee et e e e e e e e e et e e e eanaeees 11
A A\ 1 1= 11V (o PP UPPT PPN 12
T = = B [0 1A= =T PP 13
S0 I g o [ o011 ) N 13
8.2, CUSIOMUZALION ....eutiiitee ittt e e e e e et e e et e e et e e eneeenaaes 13
SR B ST o U | 1Y PP UPPPPT 14
LS 1 ] 1] = PP 15
9.1, FAUIL TOIEIANCE ....niitiei e ettt e et e e e ea e 15
9.2. ReSOUICE MaNAGEMENT .....ceuuiiiiiiti ettt ettt e e e e e e e eaa e ees 15
9.3. Scaling At FUNLIME ....ciieii e e e e e e e eanas 15
9.4, APPlICAtION VEISIONING ....uieeiiiii ettt et e e e e e e et e e b e eanaees 15

1 P 1= x T o 1 =T (=0 E PSP UPPPRTRN 16

10. Deploying on Cloud FOUNAIY .....iiiiiiii e e e e e e et e e e e eanees 17
10.1. Provision a Redis service instance on Cloud Foundry. ...........cccooviiiiiiiiiiiiiineeennnn. 17
10.2. Provision a Rabbit service instance on Cloud Foundry. ........cc.ccoooveiiiiiiiiinneennnnn. 17
10.3. Download the Spring Cloud Data Flow Server and Shell apps: ........cccoovvvviveiinnns 17
10.4. Deploying the Server app on Cloud FOUNAIY ..........cooiiiiiiiiiiiiiieeee e 17
10.5. Running the Server app 10CallY ..........oiiiiiiiiii e 19
10.6. Running Spring Cloud Data Flow Shell locally ...........cccoovviiiiiiiiiiiieee e 19

Y=Y ol U 1Y PP 21

ST ol U | 1P P PP UPPPTI 22

13. Application Names and PrefiXeSs ......ooeuiiiiiiiii e e 23

14. Authentication and Cloud FOUNAIY .......coouuiiiii e 24

15. Configuration REFEIENCE ... e et 25

S (1= 10 £ PP PPPTRPPP 26
G [ o] 1o To [U Tt 1 o] o PP PTRPPT 27
17, SEEAIM DS ..ot ees 28
S = To 1S =T = WS 1 (=T U g 2 o 29

18.1. Whitelisting application Properti€s ..........ceeuiiiuiiiiiieii e 30

19. Creating @ SEIIEAIM .....uu ittt ettt ettt ettt e e e et e e e et e e enaa e eennes 32
S Y o o] o= 11T g I 0 (0] o =1 1= 32

Passing application properties when creating a stream ..............ccoevveiiiiineennnen. 32
Passing application properties when deploying a stream ............ccooeveiiiiiiveennnn, 34

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry iii



Spring Cloud Data Flow Server for Cloud Foundry

Passing stream partition properties during stream deployment ...............ccccoceunnee. 34

Overriding application properties during stream deployment ...............cccovvvvnerennn. 35

19.2. DeployMENTt PrOPEITIES ....civuciii i ee e e et e e et e e e e e e e e et e et e aanaees 35

Passing instance count as deployment Property .........c.eeveveeviieiiiiiineeeiineeeeninnen 35

Inline vs file reference Properties ... 35

20. DESIIOYING @ SITEAIM ...uuiiii it e e e e e e e e e e e e e e et e e et e e et e e st s e et e eaneeeen 37

21. Deploying and UNdeploying SIrEAMIS .......c.uuuiiiiiiiieiiiii ettt e 38

22. Other Source and Sink Application TYPES ...coovuiiiiiiiiee e 39

23. SIMPIE Stream PrOCESSING ...uuciitiiii e iiiee et e e e e e e e e e e e e e e et e e et e eanans 40

24, Stateful Stream PrOCESSING ......ccoutui ittt e e e e 41

25, TAP 8 SIMAIM oottt ettt et et et 42

26. Using Labels iN @ Stream .......ooiiiiii e e 43

27. Explicit Broker Destinations iN @ StrEAIM ...........iviiiiiiiieiiiii e 44

28. Directed Graphs iN @ SIIEAIM ......uu it et et e e e eees 45

28.1. Common application ProPEItIES ........veeuiiiii i e e e aens 45

LY B = ] o] oo T= 1 o PR 46

P2 TR 1o To 18 o3 1T o I 47

10 TR Y o] o 1 PP 48

I {0 [ 01 112 1 PPN 49

G S 1 1= 01 S 50

33, Create SIIEAIM ....ieuiiiiiiiiii et r e e e 51

A, ANAIYEICS ...ttt et e et 52

AV T o (o1 o e 1T [ PSP 53

35. Configure Maven PrOPertiES ......c.uuiiiiiiiiii et e e e e e e e e eaaeees 54

AV LI o] o 1= s [0 o7 == TP PPPUPTPRPPPI 56

A. Migrating from Spring XD to Spring Cloud Data FIOW ............ccoiviiiiiiiiiiiiiiiiccieees 57

A.L. Terminology ChanQES .......ociuiiiiiiiii e e s 57

A.2. Modules t0 APPIICALIONS ....couuiieiiiiie et 57

CUSIOM APPLICALIONS ..oeenieiii e e 57

Application REGISITAtioN .........ccuiiiiiiiiiiii e e e e e e 57

APPIICALION PrOPEITIES ...oeviiieiiii ettt e eeaes 58

A.3. Message BUS 10 BINUEIS ....ciieiiiiiiiiiie et 58

MESSAGE BUS .ouiiiiiiiiii i 58

2 1] o = S PTPP 58

NamMed CRANNEIS .....c.eii e e e e e e 59

[T = Tox (= To €] = 1] 0 1= PN 59

YN 2 - (o g o N = 1] & T PP 59

A.5. Shell/DSL COMMANGAS .....iiiiiieiiiieii et e e e e e e e e e e et e e e e an s e aeenaeeanaeees 60

ALB. REST AP it 60

N A 1 A T TP 60

A.8. Architecture COMPONENTS ......iiiiiii et e e et e e et e e e eatn e eees 61

b4 oo ] (=T=T 01T PP PRP 61

[ 2 Y P 61

=0 1P 61

(O 111 1= S o] o To] [0 o 2N 61

A.9. Central ConfIQUIAION ...........uiiiiiiiie e 61

N 0 TR 1= 100 o o 61

A.11. Hadoop Distribution Compatibility ............cciiiiiiiiiiiiii e, 62

A.12. YARN DEPIOYMENT ...euiiiiiii ettt 62

A.13. USE CaSE COMPATISON .uuuiiiiiiieeiitii ettt e et e e et e et e et e e e eaa e e eeaia e eeennns 62
Spring Cloud Data Flow

1.0.0.M4 Server for Cloud Foundry iv



Spring Cloud Data Flow Server for Cloud Foundry

USE CaSE L ittt e 62
L LT = 1S < =2 63
USE CaSE 3 ittt e 63
B. BUIIJING et 65
B.1. Basic CoMPIle @nd TESL .....uuniiiiiiiiee e 65
B.2. DOCUMENTALION ...uiiiiiiieeiiis et e et e et e e et e e e e et e e e e et e e e eete e e e eett e eeeetnnaeeeees 65
B.3. Working with the COOE ..........iiiiiiiii e 65
Importing into eclipse With M2eCliPSe .......oovviiiiiiii e 65
Importing into eclipse Without M2€ClPSE .....ccvvviiiiiiiii e 66
Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry \



Part |. Spring Cloud Data
Flow for Cloud Foundry

This project provides support for orchestrating the deployment of Spring Cloud Stream applications to
Cloud Foundry.




Spring Cloud Data Flow Server for Cloud Foundry

1. Spring Cloud Data Flow

Spring Cloud Data Flow is a cloud-native programming and operating model for composable data
microservices on a structured platform. With Spring Cloud Data Flow, developers can create and
orchestrate data pipelines for common use cases such as data ingest, real-time analytics, and data
import/export.

The Spring Cloud Data Flow architecture consists of a server that deploys Streams. A future release will
also support deploying Tasks. Streams are defined using a DSL or visually through the browser based
designer Ul. Streams are based on the Spring Cloud Stream programming model. The sections below
describe more information about creating your own custom Streams.

For more details about the core architecture components and the supported features, please review
Spring Cloud Data Flow’s core reference guide. There're several samples available for reference.

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 2


http://docs.spring.io/spring-cloud-dataflow/docs/current-SNAPSHOT/reference/htmlsingle/#streams
http://docs.spring.io/spring-cloud-dataflow/docs/current-SNAPSHOT/reference/htmlsingle/#spring-cloud-task-overview
http://docs.spring.io/spring-cloud-dataflow/docs/current-SNAPSHOT/reference/html/_dsl_syntax.html
http://cloud.spring.io/spring-cloud-stream/
http://docs.spring.io/spring-cloud-dataflow/docs/current-SNAPSHOT/reference/htmlsingle/
https://github.com/spring-cloud/spring-cloud-dataflow-samples

Spring Cloud Data Flow Server for Cloud Foundry

2. Spring Cloud Stream

Spring Cloud Stream is a framework for building message-driven microservice applications. Spring
Cloud Stream builds upon Spring Boot to create standalone, production-grade Spring applications, and
uses Spring Integration to provide connectivity to message brokers. It provides opinionated configuration
of middleware from several vendors, introducing the concepts of persistent publish-subscribe semantics,
consumer groups, and partitions.

For more details about the core framework components and the supported features, please review
Spring Cloud Stream'’s reference guide.

There's a rich ecosystem of Spring Cloud Stream Application-Starters that can be used either as
standalone data microservice applications or in Spring Cloud Data Flow. For convenience, we have
generated RabbitMQ and Apache Kafka variants of these application-starters that are available for use
from Maven Repo and Docker Hub as maven artifacts and docker images, respectively.

Do you have a requirement to develop custom applications? No problem. Refer to this guide to create
custom stream applications. There’re several samples available for reference.

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 3


http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/
http://docs.spring.io/spring-cloud-stream-app-starters/docs/current-SNAPSHOT/reference/htmlsingle
http://repo.spring.io/libs-snapshot/org/springframework/cloud/stream/app/
https://hub.docker.com/r/springcloudstream/
http://docs.spring.io/spring-cloud-stream-app-starters/docs/current-SNAPSHOT/reference/htmlsingle/#_creating_custom_artifacts
https://github.com/spring-cloud/spring-cloud-stream-samples

Part Il. Architecture




Spring Cloud Data Flow Server for Cloud Foundry

3. Introduction

Spring Cloud Data Flow simplifies the development and deployment of applications focused on data
processing use-cases. The major concepts of the architecture are Applications, the Data Flow Server,
and the target runtime.

Applications are Long lived Stream applications where an unbounded amount of data is consumed or
produced via messaging middleware.

Depending on the runtime, applications can be packaged in two ways

e Spring Boot uber-jar that is hosted in a maven repository, file, http or any other Spring resource
implementation.

» Docker

The runtime is the place where applications execute. The target runtimes for applications are platforms
that you may already be using for other application deployments.

The supported runtimes are

» Cloud Foundry

Apache YARN

Kubernetes
» Apache Mesos
* Local Server for development

There is a deployer Service Provider Interface (SPI) that enables you to extend Data Flow to deploy
onto other runtimes, for example to support Hashicorp’s Nomad or Docker Swarm. Contributions are
welcome!

The component that is responsible for deploying applications to a runtime is the Data Flow Server. There
is a Data Flow Server executable jar provided for each of the target runtimes. The Data Flow server
is responsible for interpreting

» A stream DSL that describes the logical flow of data through multiple applications.

» A deployment manifest that describes the mapping of applications onto the runtime. For example, to
set the initial number of instances, memory requirements, and data partitioning.

As an example, the DSL to describe the flow of data from an http source to an Apache Cassandra sink
would be written as “http | cassandra”. These names in the DSL are registered with the Data Flow Server
and map onto application artifacts that can be hosted in Maven or Docker repositories. Many source,
processor, and sink applications for common use-cases (e.g. jdbc, hdfs, http, router) are provided by
the Spring Cloud Data Flow team. The pipe symbol represents the communication between the two
applications via messaging middleware. The two messaging middleware brokers that are supported are

» Apache Kafka

. RabbitMQ

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 5



Spring Cloud Data Flow Server for Cloud Foundry

In the case of Kafka, when deploying the stream, the Data Flow server is responsible to create the topics
that correspond to each pipe symbol and configure each application to produce or consume from the
topics so the desired flow of data is achieved.

The interaction of the main components is shown below

| Stream DSL | Data Flow
| http | cassandra I——)

Server

l

Target Runtime

Spring Boot

cassandra

Applications \ /

Figure 3.1. The Spring Cloud Data High Level Architecure

In this diagram a DSL description of a stream is POSTed to the Data Flow Server. Based on the mapping
of DSL application names to Maven and Docker artifacts, the http source and cassandra sink application

are deployed on the target runtime.

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry



Spring Cloud Data Flow Server for Cloud Foundry

4. Microservice Architectural Style

The Data Flow Server deploys applications onto the target runtime that conform to the microservice
architectural style. For example, a stream represents a high level application that consists of multiple
small microservice applications each running in their own process. Each microservice application can
be scaled up or down independent of the other and each has their own versioning lifecycle.

Both Streaming based microservice applications build upon Spring Boot as the foundational library. This
gives all microservice applications functionality such as health checks, security, configurable logging,
monitoring and management functionality, as well as executable JAR packaging.

It is important to emphasise that these microservice applications are ‘just apps’ that you can run
by yourself using ‘java -jar'’ and passing in appropriate configuration properties. We provide many
common microservice applications for common operations so you don’t have to start from scratch when
addressing common use-cases which build upon the rich ecosystem of Spring Projects, e.g Spring
Integration, Spring Data, Spring Hadoop and Spring Batch. Creating your own microservice application
is similar to creating other Spring Boot applications, you can start using the Spring Initialzr web site or
the Ul to create the basic scaffolding of either a Stream or Task based microservice.

In addition to passing in the appropriate configuration to the applications, the Data Flow server is
responsible for preparing the target platform’s infrastructure so that the application can be deployed. For
example, in Cloud Foundry it would be binding specified services to the applications and executing the
‘cf push’ command for each application. For Kubernetes it would be creating the replication controller,
service, and load balancer.

The Data Flow Server helps simplify the deployment of multiple applications onto a target runtime, but
one could also opt to deploy each of the microservice applications manually and not use Data Flow at
all. This approach might be more appropriate to start out with for small scale deployments, gradually
adopting the convenience and consistency of Data Flow as you develop more applications. Manual
deployment of Stream based microservices is also a useful educational exercise that will help you better
understand some of the automatic applications configuration and platform targeting steps that the Data
Flow Server provides.

4.1 Comparison to other Platform architectures

Spring Cloud Data Flow's architectural style is different than other Stream and Batch processing
platforms. For example in Apache Spark, Apache Flink, and Google Cloud Dataflow applications run on
a dedicated compute engine cluster. The nature of the compute engine gives these platforms a richer
environment for performing complex calculations on the data as compared to Spring Cloud Data Flow,
but it introduces complexity of another execution environment that is often not needed when creating
data centric applications. That doesn’t mean you cannot do real time data computations when using
Spring Cloud Data Flow. Refer to the analytics section which describes the integration of Redis to handle
common counting based use-cases as well as the RxJava integration for functional API driven analytics
use-cases, such as time-sliding-window and moving-average among others.

Similarly, Apache Storm, Hortonworks DataFlow and Spring Cloud Data Flow’'s predecessor, Spring
XD, use a dedicated application execution cluster, unique to each product, that determines where your
code should execute on the cluster and perform health checks to ensure that long lived applications are
restarted if they fail. Often, framework specific interfaces are required to be used in order to correctly
“plug in” to the cluster’s execution framework.

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 7



Spring Cloud Data Flow Server for Cloud Foundry

As we discovered during the evolution of Spring XD, the rise of multiple container frameworks in
2015 made creating our own runtime a duplication of efforts. There is no reason to build your own
resource management mechanics, when there’s multiple runtime platforms that offer this functionality
already. Taking these considerations into account is what made us shift to the current architecture
where we delegate the execution to popular runtimes, runtimes that you may already be using for other
purposes. This is an advantage in that it reduces the cognitive distance for creating and managing data
centric applications as many of the same skills used for deploying other end-user/web applications are
applicable.

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 8



Spring Cloud Data Flow Server for Cloud Foundry

5. Streaming Applications

While Spring Boot provides the foundation for creating DevOps friendly microservice applications,
other libraries in the Spring ecosystem help create Stream based microservice applications. The most
important of these is Spring Cloud Stream.

The essence of the Spring Cloud Stream programming model is to provide an easy way to describe
multiple inputs and outputs of an application that communicate over messaging middleware. These input
and outputs map onto Kafka topics or Rabbit exchanges and queues. Common application configuration
for a Source that generates data, a Process that consumes and produces data and a Sink that consumes
data is provided as part of the library.

5.1 Imperative Programming Model

Spring Cloud Stream is most closely integrated with Spring Integration’s imperative "event at a time"
programming model. This means you write code that handles a single event callback. For example,

@nabl eBi ndi ng( Si nk. cl ass)
public class Loggi ngSi nk {

@5t r eanli st ener ( Si nk. | NPUT)
public void log(String nessage) {
System out. printl n(nessage);

}

In this case the String payload of a message coming on the input channel, is handed to the log method.
The @nabl eBi ndi ng annotation is what is used to tie together the input channel to the external
middleware.

5.2 Functional Programming Model

However, Spring Cloud Stream can support other programming styles. There is initial support for
functional style programming via RxJava Observable APIs and upcoming versions will support callback
methods with Project Reactor’s Flux API and Apache Kafka's KStream API.

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 9


http://docs.spring.io/spring-cloud-stream/docs/1.0.2.RELEASE/reference/htmlsingle/index.html#_rxjava_support

Spring Cloud Data Flow Server for Cloud Foundry

6. Streams

6.1 Topologies

The Stream DSL describes linear sequences of data flowing through the system. For example, in the
stream definition http | transformer | cassandr a, each pipe symbol connects the application
on the left to the one on the right. Named channels can be used for routing and to fan out data to multiple
messaging destinations.

Taps can be used to ‘listen in’ to the data that if flowing across any of the pipe symbols. Taps can be
used as sources for new streams with an in independent life cycle.

6.2 Concurrency

For an application that will consume events, Spring Cloud stream exposes a concurrency setting that
controls the size of a thread pool used for dispatching incoming messages. See the Consumer properties
documentation for more information.

6.3 Partitioning

A common pattern in stream processing is to partition the data as it moves from one application to
the next. Partitioning is a critical concept in stateful processing, for either performance or consistency
reasons, to ensure that all related data is processed together. For example, in a time-windowed average
calculation example, it is important that all measurements from any given sensor are processed by the
same application instance. Alternatively, you may want to cache some data related to the incoming
events so that it can be enriched without making a remote procedure call to retrieve the related data.

Spring Cloud Data Flow supports partitioning by configuring Spring Cloud Stream’s output and input
bindings. Spring Cloud Stream provides a common abstraction for implementing partitioned processing
use cases in a uniform fashion across different types of middleware. Partitioning can thus be used
whether the broker itself is naturally partitioned (e.g., Kafka topics) or not (e.g., RabbitMQ). The following
image shows how data could be partitioned into two buckets, such that each instance of the average
processor application consumes a unique set of data.

HTTP —_——
e : N Average
Partition 1 *‘ Processor ‘
N S 4 (.
HTTP
J - = ( Average |
HTTP \ ’

Topic
Figure 6.1. Spring Cloud Stream Partitioning

To use a simple partitioning strategy in Spring Cloud Data Flow, you only need set the instance count for
each application in the stream and a parti ti onKeyExpr essi on producer property when deploying
the stream. The parti ti onKeyExpr essi on identifies what part of the message will be used as the
key to partition data in the underlying middleware. An i ngest stream can be defined as http |
aver ageprocessor | cassandr a (Note that the Cassandra sink isn’t shown in the diagram above).

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 10


http://docs.spring.io/spring-cloud-stream/docs/1.0.2.RELEASE/reference/htmlsingle/index.html#_consumer_properties

Spring Cloud Data Flow Server for Cloud Foundry

Suppose the payload being sent to the http source was in JSON format and had a field called sensor | d.
Deploying the stream with the shell command stream deploy ingest --propertiesFile
i ngest Stream properti es where the contents of the file i ngest Stream properti es are

app. http. count =3
app. aver agepr ocessor . count =2
app. htt p. producer. partiti onKeyExpr essi on=payl oad. sensor | d

will deploy the stream such that all the input and output destinations are configured for data to
flow through the applications but also ensure that a unique set of data is always delivered to each
averageprocessor instance. In this case the default algorithm is to evaluate payl oad. sensorld %
partitionCount where the partiti onCount isthe application count in the case of RabbitMQ and
the partition count of the topic in the case of Kafka.

Please refer to the section called “Passing stream partition properties during stream deployment” for
additional strategies to partition streams during deployment and how they map onto the underlying
Spring Cloud Stream Partitioning properties.

Also note, that you can’t currently scale partitioned streams. Read the section Section 9.3, “Scaling at
runtime” for more information.

6.4 Message Delivery Guarantees

For consumer applications, there is a retry policy for exceptions generated during message handling.
The default is to retry the callback method invocation 3 times and wait one second for the first retry.
A backoff multiplier of 2 is used for the second and third attempts. All of these retry properties are
configurable.

If there is still an exception on the last retry attempt, and dead letter queues are enabled, the message
and exception message are published to the dead letter queue. The dead letter queue is a destination
and its nature depends on the messaging middleware (e.g in the case of Kafka it is a dedicated topic).
If dead letter functionality is not enabled, the message and exception is sent to the error channel, which
by default logs the message and exception.

Additional messaging delivery guarantees are those provided by the underlying messaging middleware
that is chosen for the application for both producing and consuming applications. Refer to the Kafka
Consumer and Producer and Rabbit Consumer and Producer documentation for more details. You will
find there to be extensive declarative support for all the native QOS options.

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 11


http://docs.spring.io/spring-cloud-stream/docs/1.0.2.RELEASE/reference/htmlsingle/index.html#_partitioning
http://docs.spring.io/spring-cloud-stream/docs/1.0.2.RELEASE/reference/htmlsingle/index.html#_kafka_consumer_properties
http://docs.spring.io/spring-cloud-stream/docs/1.0.2.RELEASE/reference/htmlsingle/index.html#_kafka_producer_properties
http://docs.spring.io/spring-cloud-stream/docs/1.0.3.BUILD-SNAPSHOT/reference/htmlsingle/index.html#_rabbitmq_consumer_properties
http://docs.spring.io/spring-cloud-stream/docs/1.0.3.BUILD-SNAPSHOT/reference/htmlsingle/index.html#_rabbit_producer_properties

Spring Cloud Data Flow Server for Cloud Foundry

7. Analytics

Spring Cloud Data Flow is aware of certain Sink applications that will write counter data to Redis and
provides an REST endpoint to read counter data. The types of counters supported are

» Counter - Counts the number of messages it receives, optionally storing counts in a separate store
such as redis.

 Field Value Counter - Counts occurrences of unique values for a named field in a message payload

» Aggregate Counter - Stores total counts but also retains the total count values for each minute, hour
day and month.

It is important to note that the timestamp that is used in the aggregate counter can come from a field in
the message itself so that out of order messages are properly accounted.

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 12


https://github.com/spring-cloud/spring-cloud-stream-app-starters/tree/master/metrics/spring-cloud-starter-stream-sink-counter
https://github.com/spring-cloud/spring-cloud-stream-app-starters/tree/master/metrics/spring-cloud-starter-stream-sink-field-value-counter
https://github.com/spring-cloud/spring-cloud-stream-app-starters/tree/master/metrics/spring-cloud-starter-stream-sink-aggregate-counter

Spring Cloud Data Flow Server for Cloud Foundry

8. Data Flow Server

8.1 Endpoints

The Data Flow Server uses an embedded servlet container and exposes REST endpoints for creating,
deploying, undeploying, and destroying streams and tasks, querying runtime state, analytics, and the
like. The Data Flow Server is implemented using Spring’s MVC framework and the Spring HATEOAS
library to create REST representations that follow the HATEOAS principle.

Dataflow REST-API
Server Deployer SPI

Admin / Flo Ul

AN Nos

CURL nof@EV
Cloud @undry @ X

Figure 8.1. The Spring Cloud Data Flow Server

8.2 Customization

Each Data Flow Server executable jar targets a single runtime by delegating to the implementation of
the deployer Service Provider Interface found on the classpath.

We provide a Data Flow Server executable jar that targets a single runtime. The Data Flow server
delegates to the implementation of the deployer Service Provider Interface found on the classpath. In
the current version, there are no endpoints specific to a target runtime, but may be available in future
releases as a convenience to access runtime specific features

While we provide a server executable for each of the target runtimes you can also create your own
customized server application using Spring Initialzr. This let's you add or remove functionality relative
to the executable jar we provide. For example, adding additional security implementations, custom

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 13


https://github.com/SpringSource/spring-hateoas

Spring Cloud Data Flow Server for Cloud Foundry

endpoints, or removing Task or Analytics REST endpoints. You can also enable or disable some features
through the use of feature toggles.

8.3 Security

The Data Flow Server executable jars support basic http and OAuth 2.0 authentication to access it
endpoints. Refer to the security section for more information.

Authorization via groups is planned for a future release.

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 14



Spring Cloud Data Flow Server for Cloud Foundry

9. Runtime

9.1 Fault Tolerance

The target runtimes supported by Data Flow all have the ability to restart a long lived application should
it fail. Spring Cloud Data Flow sets up whatever health probe is required by the runtime environment
when deploying the application.

The collective state of all applications that comprise the stream is used to determine the state of the
stream. If an application fails, the state of the stream will change from ‘deployed’ to ‘partial’.

9.2 Resource Management

Each target runtime lets you control the amount of memory, disk and CPU that is allocated to each
application. These are passed as properties in the deployment manifest using key names that are unique
to each runtime. Refer to the each platforms server documentation for more information.

9.3 Scaling at runtime

When deploying a stream, you can set the instance count for each individual application that comprises
the stream. Once the stream is deployed, each target runtime lets you control the target number of
instances for each individual application. Using the APIs, Uls, or command line tools for each runtime,
you can scale up or down the number of instances as required. Future work will provide a portable
command in the Data Flow Server to perform this operation.

Currently, this is not supported with the Kafka binder (based on the 0.8 simple consumer at the time
of the release), as well as partitioned streams, for which the suggested workaround is redeploying
the stream with an updated number of instances. Both cases require a static consumer set up based
on information about the total instance count and current instance index, a limitation intended to be
addressed in future releases. For example, Kafka 0.9 and higher provides good infrastructure for scaling
applications dynamically and will be available as an alternative to the current Kafka 0.8 based binder
in the near future. One specific concern regarding scaling partitioned streams is the handling of local
state, which is typically reshuffled as the number of instances is changed. This is also intended to be
addressed in the future versions, by providing first class support for local state management.

9.4 Application Versioning

Application versioning, that is upgrading or downgrading an application from one version to another, is
not directly supported by Spring Cloud Data Flow. You must rely on specific target runtime features to
perform these operational tasks.

The roadmap for Spring Cloud Data Flow will deploy applications that are compatible with Spinnaker
to manage the complete application lifecycle. This also includes automated canary analysis backed by
application metrics. Portable commands in the Data Flow server to trigger pipelines in Spinnaker are
also planned.

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 15



Part lll. Getting started




Spring Cloud Data Flow Server for Cloud Foundry

10. Deploying on Cloud Foundry

Spring Cloud Data Flow can be used to deploy modules in a Cloud Foundry environment. When doing
so, the server application can either run itself on Cloud Foundry, or on another installation (e.g. a simple

laptop).

The required configuration amounts to the same in either case, and is merely related to providing
credentials to the Cloud Foundry instance so that the server can spawn applications itself. Any
Spring Boot compatible configuration mechanism can be used (passing program arguments, editing
configuration files before building the application, using Spring Cloud Config, using environment
variables, etc.), although some may prove more practicable than others when running on Cloud Foundry.

@ Note

By default, the application registry in Spring Cloud Data Flow’s Cloud Foundry server is empty.
It is intentionally designed to allow users to have the flexibility of choosing and registering
applications, as they find appropriate for the given use-case requirement. Depending on the
message-binder of choice, users can register between RabbitMQ or Apache Kafka based
maven artifacts.

10.1 Provision a Redis service instance on Cloud Foundry.

Use cf mar ket pl ace to discover which plans are available to you, depending on the details of your
Cloud Foundry setup. For example when using Pivotal Web Services:

cf create-service rediscloud 30nmb redis

10.2 Provision a Rabbit service instance on Cloud Foundry.

Use cf nar ket pl ace to discover which plans are available to you, depending on the details of your
Cloud Foundry setup. For example when using Pivotal Web Services:

cf create-service cloudamyp | emur rabbit

10.3 Download the Spring Cloud Data Flow Server and Shell
apps:

wget http://repo.spring.io/ mlestone/org/springframework/cloud/spring-cloud-datafl ow server-

cl oudf oundry/ 1. 0. 0. M4/ spri ng- cl oud- dat af | ow server - cl oudf oundry-1. 0. 0. M4. j ar

wget http://repo.spring.iolreleasel/org/springframework/cloud/spring-cloud-datafl owshell/1.0.0. RELEASE/
spring-cl oud- dat af | ow shel | -1. 0. 0. RELEASE. j ar

You can either deploy the server application on Cloud Foundry itself or on your local machine. The
following two sections explain each way of running the server.

10.4 Deploying the Server app on Cloud Foundry

Push the server application on Cloud Foundry, configure it (see below) and start it.

@ Note

You must use a unique name for your app; an app with the same name in the same organization
will cause your deployment to fail

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 17


https://github.com/spring-cloud/spring-cloud-config
https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-registry
http://docs.spring.io/spring-cloud-dataflow/docs/current-SNAPSHOT/reference/html/_dsl_syntax.html#_register_a_stream_app
http://repo.spring.io/libs-snapshot/org/springframework/cloud/stream/app/
https://run.pivotal.io/
https://run.pivotal.io/

Spring Cloud Data Flow Server for Cloud Foundry

cf push dataflow server --no-start -p spring-cloud-dataflow server-cloudfoundry-1.0.0. M4.jar
cf bind-service datafl owserver redis
cf bind-service datafl ow server rabbit

@ Note

If you are pushing to a space with multiple users, for example on PWS, there may already be
a route taken for the applicaiton name you have chosen. You can use the options - - random
r out e to avoid this when pushing the app.

Now we can configure the app. The following configuration is for Pivotal Web Services. You need to fill
in {org}, {space}, {email} and {password} before running these commands.

@ Note

Only set 'Skip SSL Validation' to true if you're running on a Cloud Foundry instance using self-
signed certs (e.g. in development). Do not use for production.

@ Note

If you are deploying in an environment that requires you to sign on using the Pivotal Single Sign-
On Service, refer to the section Chapter 14, Authentication and Cloud Foundry for information
on how to configure the server.

cf set-env datafl owserver SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_URL https://api.run.pivotal.io
cf set-env datafl ow server SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_ORG {or g}

cf set-env datafl ow server SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_SPACE {space}

cf set-env datafl ow server SPRI NG CLOUD_DEPLOYER CLOUDFOUNDRY_DOVAI N cf apps.io

cf set-env datafl ow server SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_SERVI CES redi s, rabbit

cf set-env datafl owserver SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_USERNAME {enmi |}

cf set-env datafl owserver SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_PASSWORD { passwor d}

cf set-env datafl ow server SPRI NG CLOUD_DEPLOYER_CLOUDFOUNDRY_SKI P_SSL_VALI DATI ON f al se

Spring Cloud Data Flow server implementations (cf, mesos, yarn, or kubernetes) do not have 'any'
default remote maven repository configured. This is intentionally designed to provide the flexibility for
the users, so they can override and point to a remote repository of their choice. The out-of-the-box
applications that are supported by Spring Cloud Data Flow are available in Spring’s repository, so if you
want to use them, you 'must’ set it as the remote repository as listed below.

cf set-env datafl ow server MAVEN REMOTE REPCSI TORI ES REPOL_URL https://repo.spring.iol/libs-snapshot

where r epol is the alias name for the remote repository.
You can also set other optional properties for deployment to Cloud Foundry.

* You can set the buildpack that will be used to deploy the application. For example, to use the Java
offline buildback, set the following environment variable

cf set-env datafl ow server SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_BUI LDPACK j ava_bui | dpack_of fline

 If you'd like to use confi g- server to manage centralized configurations for all the applications
orchestrated by Spring Cloud Data Flow, you can set it up like the following.

cf set-env datafl ow server SPRI NG APPL| CATI ON_JSON
"{"spring.cloud. dat af | ow. appl i cati onProperties.stream spring.cloud.config.uri": "http://
<CONFI G_SERVER_URI >"}'

e The default memory and disk sizes for a deployed application can also
be configured. By default they are 1024 MB memory and 1024 MB disk.

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 18



Spring Cloud Data Flow Server for Cloud Foundry

Thse are controlled by setting an integer value, representing the number of
MB, to the following properties, spring.cloud. depl oyer. cl oudfoundry. menory
and spring. cl oud. depl oyer. cl oudf oundry. di sk. The default number of instances
to deploy is set to 1, but can be overridden using with the
spring. cl oud. depl oyer. cl oudf oundry. i nstances property. All these properties
are @Confi gurati onProperties of the Cloud Foundry deployer. See
CloudFoundryDeployerProperties.java for more information.

We are now ready to start the app.

cf start datafl ow server

Alternatively, you can run the Admin application locally on your machine which is described in the next
section.

10.5 Running the Server app locally

To run the server application locally, targeting your Cloud Foundry installation, you you need to configure
the application either by passing in command line arguments (see below) or setting a number of
environment variables.

To use environment variables set the following:

export SPRI NG CLOUD DEPLOYER_CLOUDFOUNDRY_URL=htt ps://api.run.pivotal.io
export SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_ORGH or g}

export SPRI NG CLOUD_DEPLOYER_CLOUDFOUNDRY_SPACE={ space}

export SPRI NG CLOUD_DEPLOYER_CLOUDFOUNDRY_DOVAI N=cf apps. i 0

export SPRI NG CLOUD_DEPLOYER CLOUDFOUNDRY_SERVI CES=r edi s, r abbi t

export SPRI NG CLOUD_ DEPLOYER_CLOUDFOUNDRY_USERNAVE={ enai | }

export SPRI NG CLOUD_DEPLOYER_CLOUDFOUNDRY_PASSWORD={ passwor d}

export SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_SKI P_SSL_VALI DATI ON=f al se

You need to fill in {org}, {space}, {email} and {password} before running these commands.

@ Note

Only set 'Skip SSL Validation' to true if you're running on a Cloud Foundry instance using self-
signed certs (e.g. in development). Do not use for production.

Now we are ready to start the server application:

java -jar spring-cloud-datafl ow server-cloudfoundry-1.0.0. M4.jar [--optionl=valuel] [--option2=val ue2]
[etc.]

10.6 Running Spring Cloud Data Flow Shell locally

Run the shell and optionally target the Admin application if not running on the same host (will typically
be the case if deployed on Cloud Foundry as explained here)

‘ $ java -jar spring-cloud-dataflowshell-1.0.0. RELEASE. j ar

server - unknown: >dat af | ow confi g server http://datafl ow server.cfapps.io
Successfully targeted http://datafl owserver.cfapps.io
dat af | ow: >

By default, the application registry will be empty. If you would like to register all out-of-the-box stream
applications built with the RabbitMQ binder in bulk, you can with the following command. For more
details, review how to register applications.

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 19


https://github.com/spring-cloud/spring-cloud-deployer-cloudfoundry/blob/master/src/main/java/org/springframework/cloud/deployer/spi/cloudfoundry/CloudFoundryDeployerProperties.java
http://docs.spring.io/spring-cloud-dataflow/docs/current-SNAPSHOT/reference/html/spring-cloud-dataflow-register-apps.html

Spring Cloud Data Flow Server for Cloud Foundry

‘dataflow>app inport --uri http://bit.ly/stream applications-rabbit-mven

You can now use the shell commands to list available applications (source/processors/sink) and create
streams. For example:

‘dataflow> streamcreate --nanme httptest --definition "http | log" --deploy

@ Note

You will need to wait a little while until the apps are actually deployed successfully before posting
data. Tail the log file for each application to verify the application has started.

Now post some data. The URL will be unique to your deployment, the following is just an example

datafl ow. > http post --target http://datafl ownonconcentrative-knar-httptest-http.cfapps.io --
data "hell o world"

Look to see if hel | o wor | d ended up in log files for the | og application.

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 20



Spring Cloud Data Flow Server for Cloud Foundry

11. Security

By default, the Data Flow server is unsecured and runs on an unencrypted HTTP connection. You can
secure your REST endpoints, as well as the Data Flow Dashboard by enabling HTTPS and requiring
clients to authenticate. More details about securing the REST endpoints and configuring to authenticate
against an OAUTH backend (i.e: UAA/SSO running on Cloud Foundry), please review the security
section from the core reference guide. The security configurations can be configured in dat af | ow
server.ym or passed as environment variables through cf set - env commands.

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 21


http://docs.spring.io/spring-cloud-dataflow/docs/current-SNAPSHOT/reference/html/getting-started-security.html

Spring Cloud Data Flow Server for Cloud Foundry

12. Security

By default, the Data Flow server is unsecured and runs on an unencrypted HTTP connection. You can
secure your REST endpoints, as well as the Data Flow Dashboard by enabling HTTPS and requiring
clients to authenticate. More details about securing the REST endpoints and configuring to authenticate
against an OAUTH backend (i.e: UAA/SSO running on Cloud Foundry), please review the security
section from the core reference guide. The security configurations can be configured in dat af | ow
server.ym or passed as environment variables through cf set - env commands.

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 22


http://docs.spring.io/spring-cloud-dataflow/docs/current-SNAPSHOT/reference/html/getting-started-security.html

Spring Cloud Data Flow Server for Cloud Foundry

13. Application Names and Prefixes

To help avoid clashes with routes across spaces in Cloud Foundry, a naming strategy to provide a
random prefix to a deployed application is available and is enabled by default. The default configurations
are overridable and the respective properties can be set via cf set - env commands.

For instance, if you'd like to disable the randmoization, you can override it through:

cf set-env datafl ow server SPRI NG CLOUD_DEPLOYER_ CLOUDFOUNDRY_ENABLE RANDOM APP_NAME PREFI X f al se

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 23


https://github.com/spring-cloud/spring-cloud-deployer-cloudfoundry#application-name-settings-and-deployments

Spring Cloud Data Flow Server for Cloud Foundry

14. Authentication and Cloud Foundry

When deploying Spring Cloud Data Flow to Cloud Foundry, you can take advantage of the Spring Cloud
Single Sign-On Connector, which provides Cloud Foundry specific auto-configuration support for OAuth
2.0, when used in conjunction with the Pivotal Single Sign-On Service.

Simply set security. basi c. enabl ed to t rue and in Cloud Foundry bind the SSO service to your
Data Flow Server app and SSO will be enabled.

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 24


https://github.com/pivotal-cf/spring-cloud-sso-connector
https://github.com/pivotal-cf/spring-cloud-sso-connector

Spring Cloud Data Flow Server for Cloud Foundry

15. Configuration Reference

The following pieces of configuration must be provided. These are Spring Boot
@ConfigurationProperties so you can set them as environment variables or by any other means that
Spring Boot supports. Here is a listing in environment variable format as that is an easy way to get
started configuring Boot applications in Cloud Foundry.

# Default values cited after the equal sign.
# Exanpl e val ues, typical for Pivotal Wb Services, cited as a comrent

# url of the CF APl (used when using cf login -a for exanple), e.g. https://api.run.pivotal.io
# (for setting env var use SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_URL)
spring. cl oud. depl oyer. cl oudf oundry. url =

# nane of the organization that owns the space above, e.g. youruser-org
# (For Setting Env var use SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_ORG
spring. cl oud. depl oyer. cl oudf oundry. or g=

# nanme of the space into which nodules will be depl oyed
# (for setting env var use SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_SPACE)
spring. cl oud. depl oyer. cl oudf oundry. space=<sane space as server when running on CF, or 'devel opnent'>

# the root donmin to use when nmapping routes, e.g. cfapps.io
# (for setting env var use SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_DOVAI N)
spring. cl oud. depl oyer. cl oudf oundry. domai n=

# Conme separated set of service instance names to bind to the nodul e.
# Amongst other things, this should include a service that will be used
# for Spring doud Stream bi ndi ng

# (for setting env var use SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_SERVI CES)
spring. cl oud. depl oyer. cl oudf oundry. servi ces=redi s, rabbi t

# username and password of the user to use to create apps (nodules)

# (for setting env var use SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_USERNAME and
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_PASSWORD)

spring. cl oud. depl oyer. cl oudf oundry. user nane=

spring. cl oud. depl oyer. cl oudf oundry. passwor d=

# Whether to allow self-signed certificates during SSL validation
# (for setting env var use SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_SKI P_SSL_VALI DATI ON)
spring. cl oud. depl oyer. cl oudf oundry. ski pSsl Val i dati on=f al se

Note that you can set the following properties
SPRI NG_CLOUD_DEPLOYER_CLOUDFCQUNDRY_SERVI CES,
spring. cl oud. depl oyer. cl oudf oundry. nenory, and

spring. cl oud. depl oyer. cl oudf oundry. di sk as part of an individual deployment request
prefixed by the app. <nanme of appli cati on>. For example

>streamcreate --nane ticktock --definition "time | |og"
>stream depl oy --nane ticktock --properties "app.tine.spring.cloud. depl oyer. cl oudf oundry. menor y=2048"

will deploy the time source with 2048MB of memory, while the log sink will use the default 1024MB.

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 25



Part IV. Streams

In this section you will learn all about Streams and how to use them with Spring Cloud Data Flow.




Spring Cloud Data Flow Server for Cloud Foundry

16. Introduction

In Spring Cloud Data Flow, a basic stream defines the ingestion of event driven data from a source to
a sink that passes through any number of processors. Streams are composed of spring-cloud-stream
applications and the deployment of stream definitions is done via the Data Flow Server (REST API).
The Getting Started section shows you how to start these servers and how to start and use the Spring
Cloud Data Flow shell.

A high level DSL is used to create stream definitions. The DSL to define a stream that has an http source
and a file sink (with no processors) is shown below

‘http | file

The DSL mimics a UNIX pipes and filters syntax. Default values for ports and filenames are used in this
example but can be overridden using - - options, such as

‘http --server.port=8091 | file --directory=/tnp/httpdata/

To create these stream definitions you use the shell or make an HTTP POST request to the Spring
Cloud Data Flow Server. More details can be found in the sections below.

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 27



Spring Cloud Data Flow Server for Cloud Foundry

17. Stream DSL

In the examples above, we connected a source to a sink using the pipe symbol | . You can also pass
properties to the source and sink configurations. The property names will depend on the individual app
implementations, but as an example, the htt p source app exposes a server. port setting which
allows you to change the data ingestion port from the default value. To create the stream using port
8000, we would use

datafl ow. > stream create --definition "http --server.port=8000 | |0g" --nanme nyhttpstream

The shell provides tab completion for application properties and also the shell command app i nfo
provides some additional documentation.

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 28



Spring Cloud Data Flow Server for Cloud Foundry

18. Register a Stream App

Register a Stream App with the App Registry using the Spring Cloud Data Flow Shell app regi ster
command. You must provide a unique name, application type, and a URI that can be resolved to the

app artifact. For the type, specify "source", "processor", or "sink". Here are a few examples:

dat af | ow: >app regi ster --nanme nysource --type source --uri maven://com exanpl e: nysource: 0. 0. 1- SNAPSHOT

dat af | ow. >app regi ster --name nyprocessor --type processor --uri file:///Users/exanple/
nmyprocessor-1.2.3.jar

dat af | ow. >app regi ster --nanme nysink --type sink --uri http://exanple.conm nysink-2.0.1.jar

When providing a URI with the maven scheme, the format should conform to the following:

maven: // <groupl d>: <artifactl d>[: <extensi on>[:<cl assifier>]]:<version>

For example, if you would like to register the snapshot versions of the ht t p and | og applications built
with the RabbitMQ binder, you could do the following:

dat af | ow: >app regi ster --nane http --type source --uri maven://

org. springfranmewor k. cl oud. stream app: htt p- source-rabbi t: 1. 0. 0. BUl LD- SNAPSHOT

dat af | ow. >app register --name log --type sink --uri maven://org.springframework. cl oud. stream app: | 0og-
si nk-rabbit:1.0.0. BU LD- SNAPSHOT

If you would like to register multiple apps at one time, you can store them in a properties file where the
keys are formatted as <t ype>. <nanme> and the values are the URIs.

For example, if you would like to register the snapshot versions of the ht t p and | og applications built
with the RabbitMQ binder, you could have the following in a properties file [eg: stream-apps.properties]:

sour ce. htt p=maven: // or g. spri ngf ramewor k. cl oud. st ream app: htt p-source-rabbit: 1. 0. 0. BUl LD- SNAPSHOT
si nk. | og=maven:// org. springframework. cl oud. stream app: | 0g- si nk-rabbi t: 1. 0. 0. BUl LD- SNAPSHOT

Then to import the apps in bulk, use the app i nmport command and provide the location of the
properties file via - - uri :

dat af | ow: >app inport --uri file:///<YOUR_FILE_LOCATI ON>/ stream apps. properties

For convenience, we have the static files with application-URIs (for both maven and docker) available
for all the out-of-the-box Stream app-starters. You can point to this file and import all the application-
URIs in bulk. Otherwise, as explained in previous paragraphs, you can register them individually or have
your own custom property file with only the required application-URIs in it. It is recommended, however,
to have a "focused" list of desired application-URIs in a custom property file.

List of available static property files:

* Maven based Stream Applications with RabbitMQ Binder: bit.ly/stream-applications-rabbit-maven

» Maven based Stream Applications with Kafka Binder: bit.ly/stream-applications-kafka-maven

» Docker based Stream Applications with RabbitMQ Binder: bit.ly/stream-applications-rabbit-docker

» Docker based Stream Applications with Kafka Binder: bit.ly/stream-applications-kafka-docker

For example, if you would like to register all out-of-the-box stream applications built with the RabbitMQ
binder in bulk, you can with the following command.

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 29


http://bit.ly/stream-applications-rabbit-maven
http://bit.ly/stream-applications-kafka-maven
http://bit.ly/stream-applications-rabbit-docker
http://bit.ly/stream-applications-kafka-docker

Spring Cloud Data Flow Server for Cloud Foundry

dat af | ow: >app inport --uri http://bit.ly/stream applications-rabbit-nmaven

You can also pass the - - | ocal option (which is TRUE by default) to indicate whether the properties
file location should be resolved within the shell process itself. If the location should be resolved from the
Data Flow Server process, specify - -1 ocal fal se.

When using either app regi ster or app inport, if a stream app is already registered with the
provided name and type, it will not be overridden by default. If you would like to override the pre-existing
stream app, then include the - - f or ce option.

@ Note

In some cases the Resource is resolved on the server side, whereas in others the URI will be
passed to a runtime container instance where it is resolved. Consult the specific documentation
of each Data Flow Server for more detail.

18.1 Whitelisting application properties

Stream applications are Spring Boot applications which are aware of many common application
properties, e.g. server . port butalso families of properties such as those with the prefix spri ng. j mx
and | oggi ng. When creating your own application it is desirable to whitelist properties so that the shell
and the Ul can display them first as primary properties when presenting options via TAB completion
or in drop-down boxes.

To whitelist application properties create a file named spri ng-confi guration-netadat a-
whitelist.properties inthe META- | NF resource directory. There are two property keys that can
be used inside this file. The first key is named confi gur ati on- properti es. cl asses. The value
is a comma separated list of fully qualified @Conf i gur at i onPr oper ty class names. The second key
is confi guration-properties. nanmes whose value is a comma separated list of property names.
This can contain the full name of property, such as server. port or a partial name to whitelist a
category of property names, e.g. spri ng. j nx.

The Spring Cloud Stream application starters are a good place to look for examples of usage. Here is a
simple example of the file source’s spri ng- confi gur ati on- net adat a-whiteli st. properties
file

configuration. cl asses=org. spri ngframework. cl oud. stream app. fil e. sink. Fil eSi nkProperties

If for some reason we also wanted to add fi | e. prefi x to this file, it would look like

configuration. cl asses=org. spri ngframewor k. cl oud. stream app. fil e. sink. Fil eSi nkProperties
configuration-properties. nanes=server. port

@ Important

As of Spring Cloud Data Flow 1. 0. 0. RELEASE the whitelisting of application properties is
only explicitly supported for Spring Boot 1. 3. x based application. Milestone releases of the
upcoming Spring Boot 1. 4. 0 release are not explicitly supported, yet.

The spri ng- boot - maven- pl ugi n used in 1. 4. x has a different approach in handling the
nested archives inside the j ar. As a result you will notice that the application properties are
not listed using app i nfo command at all. As a temporary workaround, you can override
the managed version of your app’s spri ng- boot - maven- pl ugi n explicitly and revert to a
version of the latest 1.3.x release:

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 30


http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#common-application-properties
http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#common-application-properties
https://github.com/spring-cloud/spring-cloud-stream-app-starters

Spring Cloud Data Flow Server for Cloud Foundry

For example, if your app’s pom xm specifies to use Spring Boot 1. 4. 0. M3:

<par ent >
<artifactld>spring-boot-starter-parent</artifactld>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<ver si on>1. 4. 0. M3</ ver si on>
<rel ati vePat h></rel ati vePat h>

</ par ent >

Then you can override the managed version of the spri ng- boot - maven- pl ugi n with:

<pl ugi n>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-maven-plugin</artifactld>
<versi on>1. 3. 5. RELEASE</ versi on> 0O

</ pl ugi n>

O Overriding the managed version 1. 4. 0. M3.

Also, if you have your own dat af | owserver built using @nabl eDat af | owSer ver and using
Spring Boot 1. 4. x in that, you would need to explicitly override the spri ng- boot - maven-
pl ugi n with any of 1. 3. x releases.

1.0.0.M4

Spring Cloud Data Flow
Server for Cloud Foundry 31



Spring Cloud Data Flow Server for Cloud Foundry

19. Creating a Stream

The Spring Cloud Data Flow Server exposes a full RESTful API for managing the lifecycle of stream
definitions, but the easiest way to use is it is via the Spring Cloud Data Flow shell. Start the shell as
described in the Getting Started section.

New streams are created by posting stream definitions. The definitions are built from a simple DSL. For
example, let’'s walk through what happens if we execute the following shell command:

datafl ow. > stream create --definition "time | log" --name ticktock

This defines a stream named t i ckt ock based off the DSL expressiontine | | og. The DSL uses
the "pipe" symbol | , to connect a source to a sink.

Then to deploy the stream execute the following shell command (or alternatively add the - - depl oy
flag when creating the stream so that this step is not needed):

dat af | ow. > stream depl oy --nane ticktock

The Data Flow Server resolves t i me and | og to maven coordinates and uses those to launch theti ne
and | og applications of the stream.

2016- 06- 01 09: 41:21.728 |NFO 79016 --- [ni0-9393-exec-6] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app ticktock.log instance 0
Logs will be in /var/folders/wn/8jxmtbhdlvj28c8vj37n900nD000gn/ T/ spri ng-cl oud-
dat af | ow 912434582726479179/ ti ckt ock- 1464788481708/ ti ckt ock. | og
2016- 06-01 09:41:21.914 | NFO 79016 --- [nio-9393-exec-6] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app ticktock.time instance 0
Logs will be in /var/folders/wn/8jxmtbdlvj28c8vj37n900nD000gn/ T/ spri ng-cl oud-
dat af | ow- 912434582726479179/ ti ckt ock- 1464788481910/ ti cktock. tine

In this example, the time source simply sends the current time as a message each second, and the log
sink outputs it using the logging framework. You can tail the st dout log (which has an "_<instance>"
suffix). The log files are located within the directory displayed in the Data Flow Server’s log output, as
shown above.

$ tail -f /var/folders/wn/8jxmtbdlvj28c8vj37n900nmD000gn/ T/ spri ng- cl oud- dat af | ow 912434582726479179/
ticktock-1464788481708/ti cktock. | og/ stdout_0O. | og

2016- 06-01 09:45:11.250 |INFO 79194 --- [ kafka-binder-] |og.sink : 06/01/16 09:45:11
2016- 06- 01 09:45:12.250 |NFO 79194 --- [ kafka-bi nder-] | og. sink : 06/01/16 09:45:12
2016- 06-01 09:45:13.251 |INFO 79194 --- [ kafka-binder-] |og.sink : 06/01/16 09:45:13

19.1 Application properties

Application properties are the properties associated with each application in the stream. When the
application is deployed, the application properties are applied to the application via command line
arguments or environment variables based on the underlying deployment implementation.

Passing application properties when creating a stream

The following stream

datafl ow. > stream create --definition "tinme | log" --name ticktock

can have application properties defined at the time of stream creation.

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 32


Getting-Started.xml#getting-started

Spring Cloud Data Flow Server for Cloud Foundry

The shell command app i nf o displays the white-listed application properties for the application. For
more info on the property white listing refer to Section 18.1, “Whitelisting application properties”

Below are the white listed properties for the app t i ne:

dat af | ow. > app info source:tinme
# Option Nane # Descri ption # Def aul t #
Type #
#trigger.tine-unit #The TineUnit to apply to del ay#<none>
#j ava. util.concurrent. Ti neUnit #
# #val ues. # #
#
#trigger.fixed-del ay #Fi xed delay for periodic #1
#] ava. | ang. | nt eger #
# #triggers. # #
#
#trigger.cron #Cron expression value for the #<none>
#j ava. |l ang. String #
# #Cron Trigger. # #
#
#trigger.initial-delay #lnitial delay for periodic #0
#] ava. | ang. | nt eger #
# #triggers. # #
#
#trigger. max- nessages #Maxi mum nessages per poll, -1 #1
#j ava. | ang. Long #
# #means infinity. # #
#
#trigger. date-fornmat #Format for the date val ue. #<none>
#j ava. |l ang. String #

Below are the white listed properties for the app | og:

dat af | ow. > app info sink:log

# Opti on Nane # Description # Def aul t #
Type #
#l og. nane #The nane of the |ogger to use.#<none>
#j ava.lang. String #
#l 0g. | evel #The | evel at which to |og #<none>
#or g. spri ngframework. i ntegrati o#
# #messages. #
#n. handl er. Loggi ngHandl er $Level #
#l 0g. expr essi on #A SpEL expression (against the#payl oad
#j ava.lang. String #
# #i ncom ng nessage) to evaluate # #
#
# #as the | ogged nessage. # #

The application properties for the t i me and | og apps can be specified at the time of st r eamcreation
as follows:

datafl ow. > stream create --definition "tinme --fixed-delay=5 | log --level =WARN"' --nanme ticktock

Note that the properties fi xed- del ay and | evel defined above for the appsti ne and | og are the
'short-form' property names provided by the shell completion. These 'short-form' property names are
applicable only for the white-listed properties and in all other cases, only fully qualified property names
should be used.

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 33



Spring Cloud Data Flow Server for Cloud Foundry

Passing application properties when deploying a stream

The application properties can also be specified when deploying a stream. When specified during
deployment, these application properties can either be specified as 'short-form' property names
(applicable for white-listed properties) or fully qualified property names. The application properties
should have the prefix "app.<appName/label>".

For example, the stream

datafl ow. > stream create --definition "tinme | log" --name ticktock

can be deployed with application properties using the 'short-form' property names:

dat af | ow. >stream depl oy ticktock --properties "app.tine.fixed-del ay=5, app.| og.| evel =ERROR'

When using the app label,

streamcreate ticktock --definition "a: time | b: |og"

the application properties can be defined as:

stream depl oy ticktock --properties "app.a.fixed-del ay=4, app. b. | evel =ERROR"

Passing stream partition properties during stream deployment

A common pattern in stream processing is to partition the data as it is streamed. This entails deploying
multiple instances of a message consuming app and using content-based routing so that messages with
a given key (as determined at runtime) are always routed to the same app instance. You can pass the
partition properties during stream deployment to declaratively configure a partitioning strategy to route
each message to a specific consumer instance.

See below for examples of deploying partitioned streams:

app.[app/label name].producer.partitionKeyExtractorClass
The class name of a PartitionKeyExtractorStrategy (default nul 1)

app.[app/label name].producer.partitionKeyExpression
A SpEL expression, evaluated against the message, to determine the partition key; only applies if
partitionKeyExtractord ass is null. If both are null, the app is not partitioned (default nul | )

app.[app/label name].producer.partitionSelectorClass
The class name of a PartitionSelectorStrategy (default nul 1)

app.[app/label name].producer.partitionSelectorExpression
A SpEL expression, evaluated against the partition key, to determine the partition index to which
the message will be routed. The final partition index will be the return value (an integer) modulo
[ next Modul e] . count . If both the class and expression are null, the underlying binder’s default
PartitionSelectorStrategy will be applied to the key (default nul I )

In summary, an app is partitioned if its count is > 1 and the previous app has a
partiti onKeyExtractorClass or partitionKeyExpression (class takes precedence).
When a partition key is extracted, the partitioned app instance is determined by invoking
the partitionSel ectorC ass, if present, or the partitionSel ector Expression %
partitionCount, where partitionCount is application count in the case of RabbitMQ, and the
underlying partition count of the topic in the case of Kafka.

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 34



Spring Cloud Data Flow Server for Cloud Foundry

If neither a partitionSel ectorC ass nor a partitionSel ect or Expressi on is present the
result is key. hashCode() % partiti onCount.

Overriding application properties during stream deployment

Application properties that are defined during deployment override the same properties defined during
the stream creation.

For example, the following stream has application properties defined during stream creation:

datafl ow. > streamcreate --definition "tinme --fixed-delay=5 | log --level =WARN' --nane ticktock

To override these application properties, one can specify the new property values during deployment:

dat af | ow. >stream depl oy ticktock --properties "app.tine.fixed-del ay=4, app.| og.| evel =ERROR"

19.2 Deployment properties

When deploying the stream, properties that control the deployment of the apps into the target platform
are known as depl oynment properties. For instance, one can specify how many instances need to be
deployed for the specific application defined in the stream using the deployment property called count .

Passing instance count as deployment property

If you would like to have multiple instances of an application in the stream, you can include a property
with the deploy command:

dat af | ow. > stream depl oy --nane ticktock --properties "app.tine.count=3"

Note that count is the reserved property name used by the underlying deployer. Hence, if the
application also has a custom property hamed count, it is not supported when specified in 'short-
form' form during stream deployment as it could conflict with the instance count deployer property.
Instead, the count as a custom application property can be specified in its fully qualified form (example:
app. f oo. bar. count) during stream deployment or it can be specified using 'short-form" or fully
qualified form during the stream creation where it will be considered as an app property.

@ Important

See Chapter 26, Using Labels in a Stream.

Inline vs file reference properties

When using the Spring Cloud Dataflow Shell, there are two ways to provide deployment properties:
either inline or via a file reference. Those two ways are exclusive and documented below:

Inline properties
use the - - properti es shell option and list properties as a comma separated list of key=value
pairs, like so:

stream depl oy foo
--properties "app.transform count=2, app.transform producer. partiti onKeyExpressi on=payl oad"

Using afile reference
use the - - properti esFi | e option and point it to a local Java . pr operti es file (i.e. that lives in
the filesystem of the machine running the shell). Being read as a . pr operti es file, normal rules

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 35



Spring Cloud Data Flow Server for Cloud Foundry

apply (ISO 8859-1 encoding, =, <space> or : delimiter, etc.) although we recommend using = as
a key-value pair delimiter for consistency:

stream depl oy foo --propertiesFile nyprops. properties

where nypr ops. properti es contains:

app. t ransf orm count =2
app. transform producer. partiti onKeyExpr essi on=payl oad

Both the above properties will be passed as deployment properties for the stream f 0o above.

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 36



Spring Cloud Data Flow Server for Cloud Foundry

20. Destroying a Stream

You can delete a stream by issuing the st r eam dest r oy command from the shell:

‘dataflow> stream destroy --name ticktock

If the stream was deployed, it will be undeployed before the stream definition is deleted.

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry

37



Spring Cloud Data Flow Server for Cloud Foundry

21. Deploying and Undeploying Streams

Often you will want to stop a stream, but retain the name and definition for future use. In that case you
can undepl oy the stream by hame and issue the depl oy command at a later time to restart it.

dat af | ow: > stream undepl oy --nane ticktock
dat af | ow. > stream depl oy --nane ticktock

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 38



Spring Cloud Data Flow Server for Cloud Foundry

22. Other Source and Sink Application Types

Let’s try something a bit more complicated and swap out the t i e source for something else. Another
supported source type is ht t p, which accepts data for ingestion over HTTP POSTSs. Note thatthe ht t p
source accepts data on a different port from the Data Flow Server (default 8080). By default the port
is randomly assigned.

To create a stream using an htt p source, but still using the same | og sink, we would change the
original command above to

datafl ow. > streamcreate --definition "http | 10g" --nanme nyhttpstream --depl oy

which will produce the following output from the server

2016- 06- 01 09: 47:58.920 |NFO 79016 --- [i0-9393-exec-10] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app nyhttpstream | og instance 0
Logs will be in /var/folders/wn/8jxmtbhdlvj28c8vj37n900nD000gn/ T/ spri ng-cl oud-
dat af | ow 912434582726479179/ nyht t pst ream 1464788878747/ nyhtt pstream | og
2016- 06-01 09:48:06.396 | NFO 79016 --- [io0-9393-exec-10] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app nyhttpstreamhttp i nstance 0
Logs will be in /var/folders/wn/8jxmtbdlvj28c8vj37n900nD000gn/ T/ spri ng-cl oud-
dat af | ow 912434582726479179/ nyht t pst ream 1464788886383/ nyhtt pstream http

Note that we don't see any other output this time until we actually post some data (using a shell
command). In order to see the randomly assigned port on which the http source is listening, execute:

‘dataflow> runti me apps

You should see that the corresponding http source has a ur| property containing the host and port
information on which it is listening. You are now ready to post to that url, e.g.:

datafl ow. > http post --target http://local host: 1234 --data "hello"
datafl ow. > http post --target http://local host: 1234 --data "goodbye"

and the stream will then funnel the data from the http source to the output log implemented by the log sink

2016- 06-01 09: 50: 22. 121 |INFO 79654 --- [ kafka-binder-] |og.sink : hello
2016-06-01 09:50: 26. 810 | NFO 79654 --- [ kafka-binder-] |og.sink . goodbye

Of course, we could also change the sink implementation. You could pipe the output to a file (fi | ), to
hadoop (hdf s) or to any of the other sink apps which are available. You can also define your own apps.

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 39



Spring Cloud Data Flow Server for Cloud Foundry

23. Simple Stream Processing

As an example of a simple processing step, we can transform the payload of the HTTP posted data to
upper case using the stream definitions

‘ http | transform --expressi on=payl oad. t oUpper Case() | |og

To create this stream enter the following command in the shell

datafl ow. > stream create --definition "http | transform --expressi on=payl oad. t oUpper Case() | |0g" --nane
nmyst ream - - depl oy

Posting some data (using a shell command)

‘dataflow> http post --target http://local host: 1234 --data "hell 0"

Will result in an uppercased 'HELLO' in the log

‘ 2016- 06- 01 09: 54: 37. 749 | NFO 80083 --- [ kafka-binder-] |og.sink : HELLO

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 40



Spring Cloud Data Flow Server for Cloud Foundry

24. Stateful Stream Processing

To demonstrate the data partitioning functionality, let's deploy the following stream with Kafka as the
binder.

dat af | ow. >stream create --name words --definition "http --server.port=9900 | splitter --
expressi on=payl oad.split(' ') | |og"
Created new stream ' words

dat af | ow: >stream depl oy words --properties
"app. splitter.producer. partitionKeyExpressi on=payl oad, app. | og. count =2"
Depl oyed stream ' words

dat af | ow. >http post --target http://local host: 9900 --data "How nuch wood woul d a woodchuck chuck if a
woodchuck coul d chuck wood"

> POST (text/plain;Charset=UTF-8) http://|ocal host: 9900 How much wood woul d a woodchuck chuck if a
woodchuck coul d chuck wood

> 202 ACCEPTED

You'll see the following in the server logs.

2016- 06- 05 18: 33:24.982 | NFO 58039 --- [nio0-9393-exec-9] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app words. | og instance 0

Logs will be in /var/folders/c3/ctx7_rns6x30tq7rb76wzqw 0000gp/ T/ spri ng- cl oud-
dat af | ow- 694182453710731989/ wor ds- 1465176804970/ wor ds. | og
2016- 06- 05 18:33:24.988 | NFO 58039 --- [nio-9393-exec-9] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app words. | og instance 1

Logs will be in /var/folders/c3/ctx7_rns6x30tq7rb76wzqw 0000gp/ T/ spri ng- cl oud-
dat af | ow 694182453710731989/ wor ds- 1465176804970/ wor ds. | og

Review the wor ds. | og i nstance O logs:

2016- 06- 05 18: 35:47.047 |NFO 58638 --- [ kafka-binder-] |og.sink : How
2016- 06- 05 18: 35:47.066 |NFO 58638 --- [ kafka-binder-] |og.sink

chuck

2016- 06- 05 18:35:47.066 | NFO 58638 --- [ kafka-binder-] |og.sink

chuck

Review the wor ds. | og i nstance 1 logs:

2016- 06- 05 18:35:47.047 |NFO 58639 --- [ kafka-binder-] |og.sink

much

2016- 06- 05 18: 35:47.066 |NFO 58639 --- [ kafka-binder-] |og.sink

wood

2016- 06-05 18:35:47.066 | NFO 58639 --- [ kafka-binder-] |og.sink

woul d

2016- 06- 05 18:35:47.066 | NFO 58639 --- [ kafka-binder-] |og.sink ©a
2016- 06- 05 18: 35:47.066 |NFO 58639 --- [ kafka-binder-] |og.sink

woodchuck

2016- 06- 05 18: 35:47.067 |NFO 58639 --- [ kafka-binder-] |og.sink if
2016- 06- 05 18:35:47.067 | NFO 58639 --- [ kafka-binder-] |og.sink ©a
2016- 06- 05 18:35:47.067 | NFO 58639 --- [ kafka-binder-] |og.sink

woodchuck

2016- 06- 05 18: 35:47.067 |NFO 58639 --- [ kafka-binder-] |og.sink

coul d

2016- 06- 05 18: 35:47.067 |NFO 58639 --- [ kafka-binder-] |og.sink

wood

This shows that payload splits that contain the same word are routed to the same application instance.

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 41



Spring Cloud Data Flow Server for Cloud Foundry

25. Tap a Stream

Taps can be created at various producer endpoints in a stream. For a stream like this:

streamcreate --definition "http | stepl: transform --expressi on=payl oad.toUpper Case() | step2:
transform --expressi on=payl oad+'!" | |og" --nane mainstream --depl oy

taps can be created at the output of ht t p, st epl and st ep2.

To create a stream that acts as a 'tap' on another stream requires to specify the sour ce desti nati on
nane for the tap stream. The syntax for source destination name is:

* i <stream nane>. <l abel / app- name>"

To create a tap at the output of http in the stream above, the source destination name is
mai nst ream htt p To create a tap at the output of the first transform app in the stream above, the
source destination name is nai nst r eam st epl

The tap stream DSL looks like this:

streamcreate --definition ":mainstreamhttp > counter” --name tap_at_http --depl oy

streamcreate --definition ":mainstreamstepl > jdbc" --nanme tap_at_stepl_transfornmer --deploy

Note the colon (:) prefix before the destination names. The colon allows the parser to recognize this as
a destination name instead of an app name.

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 42



Spring Cloud Data Flow Server for Cloud Foundry

26. Using Labels in a Stream

When a stream is comprised of multiple apps with the same name, they must be qualified with labels:

streamcreate --definition "http | firstLabel: transform --expressi on=payl oad.toUpper Case() |
secondLabel : transform --expressi on=payl oad+'!"' | log" --name nyStreamWthLabel s --depl oy

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 43



Spring Cloud Data Flow Server for Cloud Foundry

27. Explicit Broker Destinations in a Stream

One can connect to a specific destination name located in the broker (Rabbit, Kafka etc.,) either at the
sour ce or at the si nk position.

The following stream has the destination name at the sour ce position:

streamcreate --definition ":nyDestination > 10g" --nanme ingest_frombroker --deploy

This stream receives messages from the destination nyDesti nati on located at the broker and
connects it to the | og app.

The following stream has the destination name at the si nk position:

streamcreate --definition "http > :nyDestination" --nane ingest_to_broker --deploy

This stream sends the messages from the htt p app to the destination myDest i nat i on located at
the broker.

From the above streams, notice that the htt p and | og apps are interacting with each other via the
broker (through the destination myDest i nat i on) rather than having a pipe directly between ht t p and
| og within a single stream.

It is also possible to connect two different destinations (sour ce and si nk positions) at the broker in
a stream.

streamcreate --definition ":destinationl > :destination2" --nane bridge_destinations --depl oy

In the above stream, both the destinations (desti nati onl and desti nati on2) are located in the
broker. The messages flow from the source destination to the sink destination via a br i dge app that
connects them.

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 44



Spring Cloud Data Flow Server for Cloud Foundry

28. Directed Graphs in a Stream

If directed graphs are needed instead of the simple linear streams described above, two features are
relevant.

First, named destinations may be used as a way to combine the output from multiple streams or for
multiple consumers to share the output from a single stream. This can be done using the DSL syntax
http > :nydestinationor:nydestination > |og.

Second, you may need to determine the output channel of a stream based on some information that is
only known at runtime. In that case, a router may be used in the sink position of a stream definition. For
more information, refer to the Router Sink starter's README.

28.1 Common application properties

In addition to configuration via DSL, Spring Cloud Data Flow provides a mechanism for setting common
properties to all the streaming applications that are launched by it. This can be done by adding properties
prefixed with spring. cl oud. dat af | ow. appl i cati onProperti es. stream when starting the
server. When doing so, the server will pass all the properties, without the prefix, to the instances it
launches.

For example, all the launched applications can be configured to use a specific Kafka broker by launching
the configuration server with the following options:

spring. cl oud. dat af | ow. appl i cati onProperties. stream spring. cl oud. stream kaf ka. bi nder. br oker s=192. 168. 1. 100: 9092

spring. cl oud. dat af | ow. appl i cati onProperties. stream spring. cl oud. stream kaf ka. bi nder. zkNodes=192. 168. 1. 100: 2181

This will cause the properties spring.cloud. stream kaf ka. bi nder. brokers and
spring. cl oud. st ream kaf ka. bi nder . zkNodes to be passed to all the launched applications.

@ Note

Properties configured using this mechanism have lower precedence than stream deployment
properties. They will be overridden if a property with the same key is specified at stream
deployment time (e.g. app. http. spring. cl oud. st r eam kaf ka. bi nder. br oker s will
override the common property).

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 45


https://github.com/spring-cloud/spring-cloud-stream-app-starters/tree/master/router/spring-cloud-starter-stream-sink-router

Part V. Dashboard

This section describe how to use the Dashboard of Spring Cloud Data Flow.




Spring Cloud Data Flow Server for Cloud Foundry

29. Introduction

Spring Cloud Data Flow provides a browser-based GUI which currently has 6 sections:
» Apps Lists all available applications and provides the control to register/unregister them

* Runtime Provides the Data Flow cluster view with the list of all running applications

Streams Deploy/undeploy Stream Definitions

Jobs Perform Batch Job related functions

» Analytics Create data visualizations for the various analytics applications
Upon starting Spring Cloud Data Flow, the Dashboard is available at:

htt p: // <host >: <port >/ dashboard

For example: http://localhost:9393/dashboard

If you have enabled https, then it will be located at htt ps:// | ocal host : 9393/ dashboar d. If you
have enabled security, a login form is available atht t p: / / | ocal host : 9393/ dashboar d/ #/ | ogi n.

Note: The default Dashboard server port is 9393

‘ :’,I spr'ng RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

About

Spring Cloud Data Flow is a unified, distributed, and extensible system for data ingestion, real time analytics, batch processing, and data expert. The
project’s goal is to simplify the development of big data applications.

Dataflow Server Implementation

Name spring-cloud-dataflow-server-local
Version 1.0.0.BUILD-SNAPSHOT (7188a68)
Description Local Data Flow Server

Need Help or Found an Issue?

Project Page http:/fcloud.spring.io/spring-cloud-datafiow/

Sources https://github.com/spring-cloud/spring-cloud-dataflow

Documentation http://docs.spring.io/spring-cloud-dataflow/docs/current/reference/htmi/
APl Docs http://docs spring.io/spring-cloud-dataflow/docs/current/api/

Support Forum http://stackoverflow.com/questions/tagged/spring-cloud

Issue Tracker https://github.com/spring-cloud/spring-cloud-dataflow/issues

Figure 29.1. The Spring Cloud Data Flow Dashboard

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 47


http://localhost:9393/dashboard

Spring Cloud Data Flow Server for Cloud Foundry

30. Apps

The Apps section of the Dashboard lists all the available applications and provides the control to register/
unregister them (if applicable). By clicking on the magnifying glass, you will get a listing of available

definition properties.

Apps

APPS RUNTIME STREAMS TASKS JOBS ANALYTICS

This section lists all the available applications and provides the control to register/unregister them (if applicable).

All Applications

+ Register Application(s)

@ Name Type

(0] nregister Application(s)

URI

ABOUT

file source maven:/forg.springframework.cloud.stream.app:file-source-kafka:1.0.0.BUILD-SNAPSHOT n
ftp source maven:/forg.springframework.cloud stream.app:ftp-source-kafka:1.0.0.BUILD-SNAPSHOT n
http source maven:/{org.springframework.cloud.stream.app:http-source-kafka: 1.0.0.BUILD-SNAPSHOT n ﬂ
jdbe source maven:/forg.springframework.cloud.stream.app:jdbc-source-kafka:1.0.0.BUILD-SNAPSHOT n n
jms source maven:/forg.springframework.cloud.stream.app:jms-source-kafka:1.0.0.BUILD-SNAPSHOT B n
load-generator source maven:/forg.springframework.cloud stream.app:load-generator-source-kafka:1.0.0.BUILD-SNAPSHOT n
rabbit source maven://org.springframework.cloud.stream.app:rabbit-source-kafka:1.0.0.BUILD-SNAPSHOT n
sfip source maven:/forg.springframework.cloud stream.app:sftp-source-kafka:1.0.0.BUILD-SNAPSHOT .

Figure 30.1. List of Available Applications

1.0.0.M4

Spring Cloud Data Flow
Server for Cloud Foundry

48



Spring Cloud Data Flow Server for Cloud Foundry

31. Runtime

The Runtime section of the Dashboard application shows the Spring Cloud Data Flow cluster view with
the list of all running applications. For each runtime app the state of the deployment and the number
of deployed instances is shown. A list of the used deployment properties is available by clicking on the
app id.

A -
‘ ;J Sprlng APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

Cluster view

This section shows the Spring Cloud Data Flow cluster view with the list of all running apps.

Runtime Apps

foo.log deployed 1

foo.time deployed 1

Figure 31.1. List of Running Applications

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 49



Spring Cloud Data Flow Server for Cloud Foundry

32. Streams

The Streams section of the Dashboard provides the Definitions tab that provides a listing of Stream
definitions. There you have the option to deploy or undeploy those stream definitions. Additionally you
can remove the definition by clicking on destroy.

A -
‘ :J Sprlng APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

Streams

This section lists all the stream definitions and provides the ability to deploy/undeploy or destroy streams

Actions

foo time | log deployed M Undeploy » Deploy

Figure 32.1. List of Stream Definitions

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 50



Spring Cloud Data Flow Server for Cloud Foundry

33. Create Stream

The Create Stream section of the Dashboard includes the Spring Flo designer tab that provides the
canvas application, offering a interactive graphical interface for creating data pipelines.

In this tab, you can:
» Create, manage, and visualize stream pipelines using DSL, a graphical canvas, or both
» Write pipelines via DSL with content-assist and auto-complete

» Use auto-adjustment and grid-layout capabilities in the GUI for simpler and interactive organization
of pipelines

Watch this screencast that highlights some of the "Flo for Spring Cloud Data Flow" capabilities. Spring
Flo wiki includes more detailed content on core Flo capabilities.

< ; ) Spflng APPS  RUNTIME | STREAMS  TASKS  JOBS  ANALYTICS  ABOUT

Streams

Create a stream using text based input or the visual editor.

Create Stream

Create Stream Clear Layout Zoom: 161 % e e— W Auto Link W Grid

1 STREAM l=time | scriptable-transform --script="return ""#{payload.tr('"A-Za-z0-9', '')}""" --language=ruby | log
tSTREAM_l.time > scriptable-transform --script="function double(p) ‘n{\n return p + '==' % p;\n}\ndouble(payload);” ==
language=javascript log
:STREAM l.time > scriptable-transform --script="return payload + '::' + payload” --language=groovy | log

v source

- :

= file

‘ B time %:-—'{J}\scriptable-t.“

'%]}\Stzriptable-t... 0

'_[[l)\scriptable—t... =

[ = load-gener. £

Figure 33.1. Flo for Spring Cloud Data Flow

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 51


https://github.com/spring-projects/spring-flo
https://www.youtube.com/watch?v=78CgV46OstI
https://github.com/spring-projects/spring-flo/wiki

Spring Cloud Data Flow Server for Cloud Foundry

34. Analytics

The Analytics section of the Dashboard provided data visualization capabilities for the various analytics
applications available in Spring Cloud Data Flow:

e Counters
» Field-Value Counters

For example, if you have created the spri ngt weet s stream and the corresponding counter in the
Counter chapter, you can now easily create the corresponding graph from within the Dashboard tab:

1. Under Metri c Type, select Count er s from the select box
2. Under St r eam select t weet count
3. Under Vi sual i zat i on, select the desired chart option, Bar Chart

Using the icons to the right, you can add additional charts to the Dashboard, re-arange the order of
created dashboards or remove data visualizations.

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 52



Part VI. ‘How-to’ guides

This section provides answers to some common ‘how do | do that...” type of questions that often arise
when using Spring Cloud Data Flow.

If you are having a specific problem that we don’t cover here, you might want to check out
stackoverflow.com to see if someone has already provided an answer; this is also a great place to ask
new questions (please use the spri ng- cl oud- dat af | owtag).

We’'re also more than happy to extend this section; If you want to add a ‘how-to’ you can send us a
pull request.



http://stackoverflow.com/tags/spring-cloud-dataflow
http://github.com/spring-cloud/spring-cloud-dataflow-server-cloudfoundry

Spring Cloud Data Flow Server for Cloud Foundry

35. Configure Maven Properties

You can set the maven properties such as local maven repository location, remote maven repositories
and their authentication credentials including the proxy server properties via commandline properties
when starting the Dataflow server or using the SPRI NG_APPLI CATI ON_JSON environment property for
the Dataflow server.

The remote maven repositories need to be configured explicitly if the apps are resolved using maven
repository as except| ocal Data Flow server, other Data Flow server implementations (that use maven
resources for app artifacts resolution) have no default value for remote repositories. The | ocal server
hasrepo. spring.io/libs-snapshot as the default remote repository.

To pass the properties as commandline options:

$ java -jar <datafl owserver>.jar --maven. | ocal Repository=nyl ocal

--maven. renote-repositories.repol.url =https://repol

--maven. renot e-reposi tori es. repol. aut h. user name=r epoluser

--maven. renot e-reposi tori es. repol. aut h. passwor d=r epolpass

--maven. renote-repositories.repo2.url =https://repo2 --maven. proxy. host =pr oxyhost
--maven. proxy. port =9018 - - maven. pr oxy. aut h. user name=pr oxyuser

- -maven. proxy. aut h. passwor d=pr oxypass

or, using the SPRI NG_APPLI CATI ON_J SON environment property:

export SPRI NG APPLI CATI ON_JSON="{ "maven": { "local -repository": "local","renote-repositories":

{ "repol": { "url": "https://repol”, "auth": { "usernane": "repoluser", "password": "repolpass" } },
"repo2": { "url": "https://repo2" } }, "proxy": { "host": "proxyhost", "port":

9018, "auth": { "username": "proxyuser", "password": "proxypass" } } } }'

Formatted JSON:

SPRI NG_APPLI CATI ON_JSON=' {
"maven": {
"local -repository": "local",
"renote-repositories": {
"repol": {
"url": "https://repol",
"auth": {
"usernane": "repoluser",
"password": "repolpass"”
}
ba
"repo2": {
“url": "https://repo2"
}
B
"proxy": {
"host": "proxyhost",
"port": 9018,
"auth": {
"usernane": "proxyuser",
"password": "proxypass"
}
}

@ Note

Depending on Spring Cloud Data Flow server implementation, you may have
to pass the environment properties using the platform specific environment-setting

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 54


https://repo.spring.io/libs-snapshot

Spring Cloud Data Flow Server for Cloud Foundry

capabilities. For instance, in Cloud Foundry, you'd be passing them as cf set-env
SPRI NG_APPLI CATI ON_JSON.
Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 55



Part VII. Appendices




Spring Cloud Data Flow Server for Cloud Foundry

Appendix A. Migrating from Spring
XD to Spring Cloud Data Flow
A.1 Terminology Changes

XD-Admin Server (implementations: local, cloud foundry,
apache yarn, kubernetes, and apache mesos)

XD-Container N/A
Modules Applications
Admin Ul Dashboard
Message Bus Binders
Batch / Job Task

A.2 Modules to Applications

If you have custom Spring XD modules, you'd have to refactor them to use Spring Cloud Stream
and Spring Cloud Task annotations, with updated dependencies and built as normal Spring Boot

"applications".

Custom Applications

» Spring XD’s stream and batch modules are refactored into Spring Cloud Stream and Spring Cloud

Task application-starters, respectively. These applications can be used as the reference while

refactoring Spring XD modules

» There are also some samples for Stream and Task applications for reference

 If you'd like to create a brand new custom application, use the getting started guide for Stream and

Task applications and as well as review the development guide

 Alternatively, if you'd like to patch any of the out-of-the-box stream applications, you can follow the

procedure here

Application Registration

» Custom Stream/Task application requires being installed to a maven repository for Local, YARN, and
CF implementations or as docker images, when deploying to Kubernetes and Mesos. Other than
maven and docker resolution, you can also resolve application artifacts fromhtt p,fil e, oras hdf s
coordinates

Unlike Spring XD, you do not have to upload the application bits while registering custom applications
anymore; instead, you're expected to register the application coordinates that are hosted in the maven
repository or by other means as discussed in the previous bullet

Spring Cloud Data Flow

1.0.0.M4 Server for Cloud Foundry 57


https://github.com/spring-cloud/spring-cloud-stream-app-starters
https://github.com/spring-cloud/spring-cloud-task-app-starters
https://github.com/spring-cloud/spring-cloud-task-app-starters
https://github.com/spring-cloud/spring-cloud-stream-samples
https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples
https://github.com/spring-cloud/spring-cloud-stream/blob/master/spring-cloud-stream-docs/src/main/asciidoc/spring-cloud-stream-overview.adoc#getting-started
https://github.com/spring-cloud/spring-cloud-task/blob/master/spring-cloud-task-docs/src/main/asciidoc/getting-started.adoc#developing-your-first-spring-cloud-task-application
https://github.com/spring-cloud/spring-cloud-stream-app-starters/blob/master/spring-cloud-stream-app-starters-docs/src/main/asciidoc/overview.adoc#creating-your-own-applications
https://github.com/spring-cloud/spring-cloud-stream-app-starters/blob/master/spring-cloud-stream-app-starters-docs/src/main/asciidoc/overview.adoc#patching-pre-built-applications
http://docs.spring.io/spring-cloud-dataflow/docs/current/reference/html/_dsl_syntax.html#_register_a_stream_app

Spring Cloud Data Flow Server for Cloud Foundry

» By default, none of the out-of-the-box applications are preloaded already. It is intentionally designed
to provide the flexibility to register app(s), as you find appropriate for the given use-case requirement

» Depending on the binder choice, you can manually add the appropriate binder dependency to build
applications specific to that binder-type. Alternatively, you can follow the Spring Initialzr procedure to
create an application with binder embedded in it

Application Properties
» counter-sink:

e The peripheral r edi s is not required in Spring Cloud Data Flow. If you intend to use the count er -
si nk, thenr edi s becomes required, and you're expected to have your own running r edi s cluster

« field-value-counter-sink:

e The peripheral r edi s is not required in Spring Cloud Data Flow. If you intend to use the fi el d-
val ue- count er - si nk, then r edi s becomes required, and you're expected to have your own
running r edi s cluster

* aggregate-counter-sink:

e The peripheral redi s is not required in Spring Cloud Data Flow. If you intend to use the
aggr egat e- count er - si nk, then r edi s becomes required, and you're expected to have your
own running r edi s cluster

A.3 Message Bus to Binders

Terminology wise, in Spring Cloud Data Flow, the message bus implementation is commonly referred
to as binders.

Message Bus

Similar to Spring XD, there’s an abstraction available to extend the binder interface. By default, we take
the opinionated view of Apache Kafka and RabbitMQ as the production-ready binders and are available
as GA releases. We also have an experimental version of the Gemfire binder.

Binders

Selecting a binder is as simple as providing the right binder dependency in the classpath. If you're to
choose Kafka as the binder, you'd register stream applications that are pre-built with Kafka binder in
it. If you were to create a custom application with Kafka binder, you'd add the following dependency
in the classpath.

<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cloud-stream bi nder-kaf ka</artifact|d>
<ver si on>1. 0. 2. RELEASE</ ver si on>

</ dependency>

e Spring Cloud Stream supports Apache Kafka, RabbitMQ and an experimental Gemfire binder
implementation. All binder implementations are maintained and managed in their individual
repositories

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 58


https://github.com/spring-cloud/spring-cloud-stream-app-starters/blob/master/spring-cloud-stream-app-starters-docs/src/main/asciidoc/overview.adoc#using-the-starters-to-create-custom-components
https://github.com/spring-cloud/spring-cloud-stream-binder-kafka
https://github.com/spring-cloud/spring-cloud-stream-binder-rabbit
https://github.com/spring-cloud/spring-cloud-stream-binder-gemfire
https://github.com/spring-cloud/spring-cloud-stream-binder-kafka
https://github.com/spring-cloud/spring-cloud-stream-binder-rabbit
https://github.com/spring-cloud/spring-cloud-stream-binder-gemfire

Spring Cloud Data Flow Server for Cloud Foundry

» Every Stream/Task application can be built with a binder implementation of your choice. All the out-
of-the-box applications are pre-built for both Kafka and Rabbit and they’re readily available for use
as maven artifacts [stream / task] or docker images [stream / task] Changing the binder requires
selecting the right binder dependency. Alternatively, you can download the pre-built application from
this version of Spring Initializr with the desired “binder-starter” dependency

Named Channels

Fundamentally, all the messaging channels are backed by pub/sub semantics. Unlike Spring XD, the
messaging channels are backed only by t opi ¢cs or t opi c- exchange and there’s no representation
of queues in the new architecture.

* ${xd. nodul e. i ndex} is not supported anymore; instead, you can directly interact with named
destinations

e stream i ndex changes to: <str eam nane>. <l abel / app- nane>
« forinstance: ti ckt ock. 0 changesto:ticktock.tine

 “topic/queue” prefixes are not required to interact with named-channels
« for instance: t opi c: f oo changesto: f oo

« forinstance: stream create streaml --definition ":foo > | og"
Directed Graphs

If you're building non-linear streams, you could take advantage of named destinations to build directed
graphs.

for instance, in Spring XD:

streamcreate f --definition "queue:foo > transform --expressi on=payl oad+' -foo' | |og" --deploy

streamcreate b --definition "queue:bar > transform --expressi on=payl oad+' -bar' | |o0g" --deploy

streamcreate r --definition "http | router --expression=payload.contains('a')? queue:foo':"'queue:bar"'"
- -depl oy

for instance, in Spring Cloud Data Flow:

streamcreate f --definition ":foo > transform --expressi on=payl oad+' -foo' | |og" --deploy
streamcreate b --definition ":bar > transform --expressi on=payl oad+' -bar' | |0g" --deploy
streamcreate r --definition "http | router --expression=payload.contains('a )? :foo' :':bar'" --deploy

A.4 Batch to Tasks

A Task by definition, is any application that does not run forever, including Spring Batch jobs, and
they end/stop at some point. Task applications can be majorly used for on-demand use-cases such as
database migration, machine learning, scheduled operations etc. Using Spring Cloud Task, users can
build Spring Batch jobs as microservice applications.

» Spring Batch jobs from Spring XD are being refactored to Spring Boot applications a.k.a link: Spring
Cloud Task applications

» Unlike Spring XD, these “Tasks” don’t require explicit deployment; instead, a task is ready to be
launched directly once the definition is declared

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 59


http://repo.spring.io/libs-milestone/org/springframework/cloud/stream/app/
http://repo.spring.io/libs-milestone/org/springframework/cloud/task/app/
https://hub.docker.com/r/springcloudstream/
https://hub.docker.com/r/springcloudtask/
https://github.com/spring-cloud/spring-cloud-stream/blob/master/spring-cloud-stream-docs%2Fsrc%2Fmain%2Fasciidoc%2Fspring-cloud-stream-overview.adoc#binder-selection
http://start-scs.cfapps.io/
http://cloud.spring.io/spring-cloud-task/
http://docs.spring.io/spring-xd/docs/current-SNAPSHOT/reference/html/#jobs
https://github.com/spring-cloud/spring-cloud-task-app-starters

Spring Cloud Data Flow Server for Cloud Foundry

A.5 Shell/DSL Commands

Old Command

New Command

module upload

app register / app import

module list

app list

module info

app info

admin config server

dataflow config server

job create

job launch

job list

job status

job display

job destroy

job execution list

runtime modules

task create

task launch

task list

task status

task display

task destroy

task execution list

runtime apps

A.6 REST-API
Old API New API
/modules lapps

/runtime/modules

/runtime/apps

/runtime/modules/(moduleld}

/runtime/apps/{appld}

/jobs/definitions

/task/definitions

/jobs/deployments

A.7Ul/Flo

The Admin-Ul is now renamed as Dashboard. The URI for accessing the Dashboard is changed from

/task/deployments

localhost:9393/admin-ui to localhost:9393/dashboard

» (New) Apps: Lists all the registered applications that are available for use. This view includes
informational details such as the URI and the properties supported by each application. You can also

register/unregister applications from this view

« Runtime: Container changes to Runtime. The notion of xd- cont ai ner is gone, replaced by out-
of-the-box applications running as autonomous Spring Boot applications. The Runtime tab displays
the applications running in the runtime platforms (implementations: cloud foundry, apache yarn,
apache mesos, or kubernetes). You can click on each application to review relevant details about the

application such as where it is running with, and what resources etc.

1.0.0.M4

Spring Cloud Data Flow
Server for Cloud Foundry


http://localhost:9393/admin-ui
http://localhost:9393/dashboard

Spring Cloud Data Flow Server for Cloud Foundry

» Spring Flo is now an OSS product. Flo for Spring Cloud Data Flow’s “Create Stream”, the designer-
tab comes pre-built in the Dashboard

* (New) Tasks:
¢ The sub-tab “Modules” is renamed to “Apps”

e The sub-tab “Definitions” lists all the Task definitions, including Spring Batch jobs that are
orchestrated as Tasks

« The sub-tab “Executions” lists all the Task execution details similar to Spring XD’s Job executions

A.8 Architecture Components

Spring Cloud Data Flow comes with a significantly simplified architecture. In fact, when compared with
Spring XD, there are less peripherals that are necessary to operationalize Spring Cloud Data Flow.

ZooKeeper
ZooKeeper is not used in the new architecture.
RDBMS

Spring Cloud Data Flow uses an RDBMS instead of Redis for stream/task definitions, application
registration, and for job repositories.The default configuration uses an embedded H2 instance, but
Oracle, SqglServer, MySQL/MariaDB, PostgreSQL, H2, and HSQLDB databases are supported. To use
Oracle and SqlServer you will need to create your own Data Flow Server using Spring Initializr and add
the appropriate JDBC driver dependency.

Redis

Running a Redis cluster is only required for analytics functionality. Specifically, when the count er -
si nk, fi el d-val ue-count er - si nk, or aggr egat e- count er - si nk applications are used, it is
expected to also have a running instance of Redis cluster.

Cluster Topology

Spring XD’s xd- adnmi n and xd- cont ai ner server components are replaced by stream and task
applications themselves running as autonomous Spring Boot applications. The applications run natively
on various platforms including Cloud Foundry, Apache YARN, Apache Mesos, or Kubernetes. You can
develop, test, deploy, scale +/-, and interact with (Spring Boot) applications individually, and they can
evolve in isolation.

A.9 Central Configuration

To support centralized and consistent management of an application’s configuration properties, Spring
Cloud Config client libraries have been included into the Spring Cloud Data Flow server as well as the
Spring Cloud Stream applications provided by the Spring Cloud Stream App Starters. You can also pass
common application properties to all streams when the Data Flow Server starts.

A.10 Distribution

Spring Cloud Data Flow is a Spring Boot application. Depending on the platform of your choice, you
can download the respective release uber-jar and deploy/push it to the runtime platform (cloud foundry,

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 61


https://github.com/spring-projects/spring-flo
https://start.spring.io/
https://cloud.spring.io/spring-cloud-config/
https://cloud.spring.io/spring-cloud-config/
http://docs.spring.io/spring-cloud-dataflow/docs/1.0.0.RC1/reference/htmlsingle/#spring-cloud-dataflow-global-properties
http://docs.spring.io/spring-cloud-dataflow/docs/1.0.0.RC1/reference/htmlsingle/#spring-cloud-dataflow-global-properties

Spring Cloud Data Flow Server for Cloud Foundry

apache yarn, kubernetes, or apache mesos). For example, if you're running Spring Cloud Data Flow
on Cloud Foundry, you'd download the Cloud Foundry server implementation and do a cf push as
explained in the reference guide.

A.11 Hadoop Distribution Compatibility

The hdf s- si nk application builds upon Spring Hadoop 2.4.0 release, so this application is compatible
with following Hadoop distributions.

» Cloudera - cdh5

Pivotal Hadoop - phd30
» Hortonworks Hadoop - hdp24

» Hortonworks Hadoop - hdp23

Vanilla Hadoop - hadoop26

Vanilla Hadoop - 2.7.x (default)

A.12 YARN Deployment

Spring Cloud Data Flow can be deployed and used with Apche YARN in two different ways.
* Deploy the server directly in a YARN cluster

» Leverage Apache Ambari plugin to provision Spring Cloud Data Flow as a service

A.13 Use Case Comparison

Let's review some use-cases to compare and contrast the differences between Spring XD and Spring
Cloud Data Flow.

Use Case #1

(It is assumed both XD and SCDF distributions are already downloaded)

Description: Simple ti ckt ock example using local/singlenode.

Spring XD Spring Cloud Data Flow

Start xd- si ngl enode server from CLI Start a binder of your choice

# xd- si ngl enode Start | ocal - server implementation of SCDF
from the CLI

# java -jar spring-cloud-
dat af | ow-server-1|ocal -1.0. 0. BU LD
SNAPSHOT. j ar

Start xd- shel | server from the CLI Start dat af | ow shel | server from the CLI

# xd-shel |

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 62


http://docs.spring.io/spring-cloud-dataflow-server-cloudfoundry/docs/current-SNAPSHOT/reference/htmlsingle/#getting-started
http://docs.spring.io/spring-cloud-dataflow-server-yarn/docs/current-SNAPSHOT/reference/htmlsingle/#_deploying_on_yarn
http://docs.spring.io/spring-cloud-dataflow-server-yarn/docs/current-SNAPSHOT/reference/htmlsingle/#_deploying_on_ambari

Spring Cloud Data Flow Server for Cloud Foundry

Spring XD

Create t i ckt ock stream

xd: >stream create ticktock --
definition “tine | 10g” --deploy

Review t i ckt ock results in the xd-
si ngl enode server console

Spring Cloud Data Flow

# java -jar spring-cloud-datafl ow
shel | - 1. 0. 0. BUI LD- SNAPSHOT. j ar

Create t i ckt ock stream

dat af | ow. >stream create ticktock --
definition “tine | 10g” --deploy

Review t i ckt ock results by tailing the
ticktock. | og/ stdout | og application logs

Use Case #2

(It is assumed both XD and SCDF distributions are already downloaded)

Description: Stream with custom module/application.

Spring XD

Spring Cloud Data Flow

Start xd- si ngl enode server from CLI

# xd- si ngl enode

Start xd- shel | server from the CLI

# xd-shel |

Register custom “processor” module to transform
payload to a desired format

xd: >nodul e upl oad --nane
toupper --type processor --file
<CUSTOM JAR FI LE_LOCATI ON>

Create a stream with custom module

xd: >stream create testupper --
definition “http | toupper | |og
depl oy

Review results in the xd- si ngl enode server
console

Start a binder of your choice

Start | ocal - ser ver implementation of SCDF
from the CLI

# java -jar spring-cloud-
dat af | ow-server-1ocal -1.0.0. BU LD
SNAPSHOT. j ar

Start dat af | ow shel | server from the CLI

# java -jar spring-cloud-datafl ow
shel | - 1. 0. 0. BUI LD- SNAPSHOT. j ar

Register custom “processor” application to
transform payload to a desired format

dat af | ow. >app regi ster --nane
t oupper --type processor --uri
<MAVEN_URI _ COCORDI NATES>

Create a stream with custom application

dat af | ow. >stream create testupper --
definition “http | toupper | log" --
depl oy

Review results by tailing the t est upper. | og/
st dout _I| og application logs

Use Case #3

(It is assumed both XD and SCDF distributions are already downloaded)

Description: Simple batch-job.

Spring Cloud Data Flow

1.0.0.M4

Server for Cloud Foundry

63



Spring Cloud Data Flow Server for Cloud Foundry

Spring XD
Start xd- si ngl enode server from CLI

# xd- si ngl enode

Start xd- shel | server from the CLI

# xd-shel |

Spring Cloud Data Flow

Start | ocal - ser ver implementation of SCDF
from the CLI

# java -jar spring-cloud-
dat af | ow-server-1|ocal -1. 0. 0. BU LD
SNAPSHOT. j ar

Start dat af | ow shel | server from the CLI

# java -jar spring-cloud-datafl ow
shel | - 1. 0. 0. BUI LD- SNAPSHOT. | ar

Register custom “batch-job” module

xd: >nodul e upl oad --nane
simpl e-batch --type job --file
<CUSTOM JAR_FI LE_LOCATI ON>

Register custom “batch-job” as task application

dat af | ow. >app regi ster --nane
simpl e-batch --type task --uri
<MAVEN_URI _COORDI NATES>

Create a job with custom batch-job module

xd: >j ob create batchtest --
definition “sinple-batch”

Deploy job
xd: >j ob depl oy bat cht est
Launch job
xd: >j ob | aunch bat cht est

Review results in the xd- si ngl enode server
console as well as Jobs tab in Ul (executions
sub-tab should include all step details)

Create a task with custom batch-job application

dat af | ow. >t ask create batchtest --
definition “sinple-batch”

NA

Launch task

dat af | ow. >t ask | aunch bat cht est

Review results by tailing the bat cht est /

st dout _| og application logs as well as Task
tab in Ul (executions sub-tab should include all
step details)

Spring Cloud Data Flow

1.0.0.M4

Server for Cloud Foundry

64



Spring Cloud Data Flow Server for Cloud Foundry

Appendix B. Building

B.1 Basic Compile and Test

To build the source you will need to install JDK 1.8.

The build uses the Maven wrapper so you don't have to install a specific version of Maven. To enable
the tests for Redis you should run the server before bulding. See below for more information on how
run Redis.

The main build command is

‘$ ./ mvnw cl ean install

You can also add '-DskipTests' if you like, to avoid running the tests.

@ Note

You can also install Maven (>=3.3.3) yourself and run the nvn command in place of . / nvnwin
the examples below. If you do that you also might need to add - P spri ng if your local Maven
settings do not contain repository declarations for spring pre-release artifacts.

@ Note

Be aware that you might need to increase the amount of memory available to Maven by setting
a MAVEN_OPTS environment variable with a value like - Xnx512m - XX: MaxPer n5i ze=128m
We try to cover this in the . nvn configuration, so if you find you have to do it to make a build
succeed, please raise a ticket to get the settings added to source control.

The projects that require middleware generally include a docker - conpose. ym , so consider using
Docker Compose to run the middeware servers in Docker containers. See the README in the scripts
demo repository for specific instructions about the common cases of mongo, rabbit and redis.

B.2 Documentation

There is a "full" profile that will generate documentation. You can build just the documentation by
executing

‘ $ ./ nvnw package - DskipTests=true -P full -pl spring-cloud-datafl ow server-cl oudf oundry-docs -am

B.3 Working with the code

If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or Eclipse
when working with the code. We use the m2eclipe eclipse plugin for maven support. Other IDEs and
tools should also work without issue.

Importing into eclipse with m2eclipse

We recommend the m2eclipe eclipse plugin when working with eclipse. If you don't already have
m2eclipse installed it is available from the "eclipse marketplace".

Unfortunately m2e does not yet support Maven 3.3, so once the projects are imported into Eclipse you
will also need to tell m2eclipse to use the . setti ngs. xm file for the projects. If you do not do this

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 65


https://www.docker.com/products/docker-compose
https://github.com/spring-cloud-samples/scripts
https://github.com/spring-cloud-samples/scripts
http://www.springsource.com/developer/sts
http://eclipse.org
http://eclipse.org/m2e/
http://eclipse.org/m2e/

Spring Cloud Data Flow Server for Cloud Foundry

you may see many different errors related to the POMs in the projects. Open your Eclipse preferences,
expand the Maven preferences, and select User Settings. In the User Settings field click Browse and
navigate to the Spring Cloud project you imported selecting the . setti ngs. xm file in that project.
Click Apply and then OK to save the preference changes.

@ Note

Alternatively you can copy the repository settings from . setti ngs. xm into your own ~/ . n/
settings. xm.

Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following
command:

$ ./nvnw ecli pse: eclipse

The generated eclipse projects can be imported by selecting i nport exi sting proj ects from the
fil e menu.

Spring Cloud Data Flow
1.0.0.M4 Server for Cloud Foundry 66


https://github.com/spring-cloud/spring-cloud-build/blob/master/.settings.xml

	Spring Cloud Data Flow Server for Cloud Foundry
	Table of Contents
	Part I. Spring Cloud Data Flow for Cloud Foundry
	1. Spring Cloud Data Flow
	2. Spring Cloud Stream

	Part II. Architecture
	3. Introduction
	4. Microservice Architectural Style
	4.1 Comparison to other Platform architectures

	5. Streaming Applications
	5.1 Imperative Programming Model
	5.2 Functional Programming Model

	6. Streams
	6.1 Topologies
	6.2 Concurrency
	6.3 Partitioning
	6.4 Message Delivery Guarantees

	7. Analytics
	8. Data Flow Server
	8.1 Endpoints
	8.2 Customization
	8.3 Security

	9. Runtime
	9.1 Fault Tolerance
	9.2 Resource Management
	9.3 Scaling at runtime
	9.4 Application Versioning


	Part III. Getting started
	10. Deploying on Cloud Foundry
	10.1 Provision a Redis service instance on Cloud Foundry.
	10.2 Provision a Rabbit service instance on Cloud Foundry.
	10.3 Download the Spring Cloud Data Flow Server and Shell apps:
	10.4 Deploying the Server app on Cloud Foundry
	10.5 Running the Server app locally
	10.6 Running Spring Cloud Data Flow Shell locally

	11. Security
	12. Security
	13. Application Names and Prefixes
	14. Authentication and Cloud Foundry
	15. Configuration Reference

	Part IV. Streams
	16. Introduction
	17. Stream DSL
	18. Register a Stream App
	18.1 Whitelisting application properties

	19. Creating a Stream
	19.1 Application properties
	Passing application properties when creating a stream
	Passing application properties when deploying a stream
	Passing stream partition properties during stream deployment
	Overriding application properties during stream deployment

	19.2 Deployment properties
	Passing instance count as deployment property
	Inline vs file reference properties


	20. Destroying a Stream
	21. Deploying and Undeploying Streams
	22. Other Source and Sink Application Types
	23. Simple Stream Processing
	24. Stateful Stream Processing
	25. Tap a Stream
	26. Using Labels in a Stream
	27. Explicit Broker Destinations in a Stream
	28. Directed Graphs in a Stream
	28.1 Common application properties


	Part V. Dashboard
	29. Introduction
	30. Apps
	31. Runtime
	32. Streams
	33. Create Stream
	34. Analytics

	Part VI. ‘How-to’ guides
	35. Configure Maven Properties

	Part VII. Appendices
	Appendix A. Migrating from Spring XD to Spring Cloud Data Flow
	A.1 Terminology Changes
	A.2 Modules to Applications
	Custom Applications
	Application Registration
	Application Properties

	A.3 Message Bus to Binders
	Message Bus
	Binders
	Named Channels
	Directed Graphs

	A.4 Batch to Tasks
	A.5 Shell/DSL Commands
	A.6 REST-API
	A.7 UI / Flo
	A.8 Architecture Components
	ZooKeeper
	RDBMS
	Redis
	Cluster Topology

	A.9 Central Configuration
	A.10 Distribution
	A.11 Hadoop Distribution Compatibility
	A.12 YARN Deployment
	A.13 Use Case Comparison
	Use Case #1
	Use Case #2
	Use Case #3


	Appendix B. Building
	B.1 Basic Compile and Test
	B.2 Documentation
	B.3 Working with the code
	Importing into eclipse with m2eclipse
	Importing into eclipse without m2eclipse




