
Spring Cloud Data Flow Server for Cloud Foundry
Table of Contents
	I. Spring Cloud Data Flow for Cloud Foundry	1. Spring Cloud Data Flow
	2. Spring Cloud Stream
	3. Spring Cloud Task

	II. Getting started	4. Deploying on Cloud Foundry	Provision a Redis service instance on Cloud Foundry
	Provision a Rabbit service instance on Cloud Foundry
	Provision a MySQL service instance on Cloud Foundry
	Download the Spring Cloud Data Flow Server and Shell apps
	Running the Server	Deploying and Running the Server app on Cloud Foundry	Configuring Defaults for Deployed Apps

	Running the Server app locally

	Running Spring Cloud Data Flow Shell locally

	5. Security
	6. Application Names and Prefixes	Using Custom Routes

	7. Authentication and Cloud Foundry
	8. Configuration Reference	Using Spring Cloud Config Server

	9. Application Level Service Bindings
	10. A Note About User Provided Services
	11. Application Rolling Upgrades
	12. Maximum Disk Quota Configuration	PCF’s Operations Manager Configuration
	Scale Application
	Configuring target free disk percentage

	III. Tasks on Cloud Foundry	13. Version Compatibility
	14. Tooling
	15. Task Database Schema
	16. Running Task Applications	Create a Task
	Launch a Task
	View Task Logs
	List Tasks
	List Task Executions
	Destroy a Task
	Deleting Task From Cloud Foundry

	IV. Appendices

Spring Cloud Data Flow Server for Cloud Foundry

Sabby Anandan

Eric Bottard

Mark Fisher

Ilayaperumal Gopinathan

Gunnar Hillert

Mark Pollack

Thomas Risberg

Marius Bogoevici

Josh Long

Michael Minella

1.1.0.BUILD-SNAPSHOT

Copyright © 2013-2016 Pivotal Software, Inc.

		Copies of this document may be made for your own use and for distribution to
		others, provided that you do not charge any fee for such copies and further
		provided that each copy contains this Copyright Notice, whether distributed in
		print or electronically.
	

Part I. Spring Cloud Data Flow for Cloud Foundry

This project provides support for orchestrating the deployment of Spring Cloud Stream applications to Cloud Foundry.

Chapter 1. Spring Cloud Data Flow

Spring Cloud Data Flow is a cloud-native programming and operating model for composable data microservices on a structured platform. With Spring Cloud Data Flow, developers can create and orchestrate data pipelines for common use cases such as data ingest, real-time analytics, and data import/export.
The Spring Cloud Data Flow architecture consists of a server that deploys Streams. A future release will also support deploying Tasks. Streams are defined using a DSL or visually through the browser based designer UI. Streams are based on the Spring Cloud Stream programming model. The sections below describe more information about creating your own custom Streams.
For more details about the core architecture components and the supported features, please review Spring Cloud Data Flow’s core reference guide. There’re several samples available for reference.
Chapter 2. Spring Cloud Stream

Spring Cloud Stream is a framework for building message-driven microservice applications. Spring Cloud Stream builds upon Spring Boot to create standalone, production-grade Spring applications, and uses Spring Integration to provide connectivity to message brokers. It provides opinionated configuration of middleware from several vendors, introducing the concepts of persistent publish-subscribe semantics, consumer groups, and partitions.
For more details about the core framework components and the supported features, please review Spring Cloud Stream’s reference guide.
There’s a rich ecosystem of Spring Cloud Stream Application-Starters that can be used either as standalone data microservice applications or in Spring Cloud Data Flow. For convenience, we have generated RabbitMQ and Apache Kafka variants of these application-starters that are available for use from Maven Repo and Docker Hub as maven artifacts and docker images, respectively.
Do you have a requirement to develop custom applications? No problem. Refer to this guide to create custom stream applications. There’re several samples available for reference.
Chapter 3. Spring Cloud Task

Spring Cloud Task makes it easy to create short-lived microservices. We provide capabilities that allow short-lived JVM processes to be executed on demand in a production environment.
For more details about the core framework components and the supported features, please review Spring Cloud Task’s reference guide.
There’s a rich ecosystem of Spring Cloud Task Application-Starters that can be used either as standalone data microservice applications or in Spring Cloud Data Flow. For convenience, the generated application-starters are available for use from Maven Repo. There are several samples available for reference.
Unresolved directive in index.adoc - include::https://raw.githubusercontent.com/spring-cloud/spring-cloud-dataflow/v1.1.2.RELEASE/spring-cloud-dataflow-docs/src/main/asciidoc/architecture.adoc[]
Part II. Getting started

Chapter 4. Deploying on Cloud Foundry

Spring Cloud Data Flow can be used to deploy modules in a Cloud Foundry environment. When doing so, the
server application can either run itself on Cloud Foundry, or on another installation (e.g. a simple laptop).
The required configuration amounts to the same in either case, and is merely related to providing credentials to the
Cloud Foundry instance so that the server can spawn applications itself. Any Spring Boot compatible configuration
mechanism can be used (passing program arguments, editing configuration files before building the application, using
Spring Cloud Config, using environment variables, etc.),
although some may prove more practicable than others when running on Cloud Foundry.
	[image: [Note]]	Note
	By default, the application registry in Spring Cloud Data Flow’s Cloud Foundry server is empty. It is intentionally designed to allow users to have the flexibility of choosing and registering applications, as they find appropriate for the given use-case requirement. Depending on the message-binder of choice, users can register between RabbitMQ or Apache Kafka based maven artifacts.

Provision a Redis service instance on Cloud Foundry

Use cf marketplace to discover which plans are available to you, depending on the details of your Cloud Foundry setup.
For example when using Pivotal Web Services:
cf create-service rediscloud 30mb redis
A redis instance is required for analytics apps, and would typically be bound to such apps when you create an analytics
stream using the per-app-binding feature.
Provision a Rabbit service instance on Cloud Foundry

Use cf marketplace to discover which plans are available to you, depending on the details of your Cloud Foundry setup.
For example when using Pivotal Web Services:
cf create-service cloudamqp lemur rabbit
Rabbit is typically used as a messaging middleware between streaming apps and would be bound to each deployed app
thanks to the SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_STREAM_SERVICES setting (see below).
Provision a MySQL service instance on Cloud Foundry

Use cf marketplace to discover which plans are available to you, depending on the details of your Cloud Foundry setup.
For example when using Pivotal Web Services:
cf create-service cleardb spark my_mysql
An RDBMS is used to persist Data Flow state, such as stream definitions and deployment ids.
It can also be used for tasks to persist execution history.
Download the Spring Cloud Data Flow Server and Shell apps

wget http://repo.spring.io/snapshot/org/springframework/cloud/spring-cloud-dataflow-server-cloudfoundry/1.1.0.BUILD-SNAPSHOT/spring-cloud-dataflow-server-cloudfoundry-1.1.0.BUILD-SNAPSHOT.jar
wget http://repo.spring.io/release/org/springframework/cloud/spring-cloud-dataflow-shell/1.1.2.RELEASE/spring-cloud-dataflow-shell-1.1.2.RELEASE.jar
Running the Server

You can either deploy the server application on Cloud Foundry itself or on your local machine.
The following two sections explain each way of running the server.
Deploying and Running the Server app on Cloud Foundry

Push the server application on Cloud Foundry, configure it (see below) and start it.
	[image: [Note]]	Note
	You must use a unique name for your app; an app with the same name in the same organization will cause your
deployment to fail

cf push dataflow-server -m 2G -k 2G --no-start -p spring-cloud-dataflow-server-cloudfoundry-1.1.0.BUILD-SNAPSHOT.jar
cf bind-service dataflow-server redis
cf bind-service dataflow-server my_mysql
	[image: [Important]]	Important
	The recommended minimal memory setting for the server is 2G. Also, to push apps to PCF and obtain
application property metadata, the server downloads applications to Maven repository hosted on the local disk. While
you can specify up to 2G as a typical maximum value for disk space on a PCF installation, this can be increased to
10G. Read the maximum disk quota section for information on
how to configure this PCF property. Also, the Data Flow server itself implements a Last Recently Used algorithm to
free disk space when it falls below a low water mark value.

	[image: [Note]]	Note
	If you are pushing to a space with multiple users, for example on PWS, there may already be a route taken for the
applicaiton name you have chosen. You can use the options --random-route to avoid this when pushing the app.

Now we can configure the app. The following configuration is for Pivotal Web Services. You need to fill in {org}, {space},
{email} and {password} before running these commands.
cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_URL https://api.run.pivotal.io
cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_ORG {org}
cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_SPACE {space}
cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_DOMAIN cfapps.io
cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_STREAM_SERVICES rabbit
cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_TASK_SERVICES my_mysql
cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_USERNAME {email}
cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_PASSWORD {password}
cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_SKIP_SSL_VALIDATION false
	[image: [Warning]]	Warning
	Only set 'Skip SSL Validation' to true if you’re running on a Cloud Foundry instance using self-signed
certs (e.g. in development). Do not use for production.

	[image: [Note]]	Note
	If you are deploying in an environment that requires you to sign on using the Pivotal Single Sign-On Service,
refer to the section Chapter 7, Authentication and Cloud Foundry for information on how to configure the server.

Spring Cloud Data Flow server implementations (be it for Cloud Foundry, Mesos, YARN, or Kubernetes) do not have
any default remote maven repository configured. This is intentionally designed to provide the flexibility for
the users, so they can override and point to a remote repository of their choice. The out-of-the-box
applications that are supported by Spring Cloud Data Flow are available in Spring’s repository,
so if you want to use them, you must set it as the remote repository as listed below.
cf set-env dataflow-server MAVEN_REMOTE_REPOSITORIES_REPO1_URL https://repo.spring.io/libs-snapshot
where repo1 is an alias name for the remote repository.
Configuring Defaults for Deployed Apps

You can also set other optional properties that alter the way Spring Cloud Data Flow will deploy stream and task apps:
	The default memory and disk sizes for a deployed application can be configured. By default they are 1024 MB memory
and 1024 MB disk. To change these, as an example to 512 and 2048 respectively, use
cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_STREAM_MEMORY 512
cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_STREAM_DISK 2048

	The default number of instances to deploy is set to 1, but can be overridden using
cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_STREAM_INSTANCES 1

	You can set the buildpack that will be used to deploy each application. For example, to use the Java offline buildback,
set the following environment variable
cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_STREAM_BUILDPACK java_buildpack_offline

	The health check mechanism used by Cloud Foundry to assert if apps are running can be customized. Current supported options
are port (the default) and none. Change the default like so:
cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_STREAM_HEALTH_CHECK none

	[image: [Note]]	Note
	These settings can be configured separately for stream and task apps. To alter settings for tasks, simply
substitute STREAM with TASK in the property name. As an example,
cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_TASK_MEMORY 512

	[image: [Tip]]	Tip
	All the properties mentioned above are @ConfigurationProperties of the
Cloud Foundry deployer. See CloudFoundryDeploymentProperties.java for more information.

	If you’d like to use config-server to manage centralized configurations for all the applications orchestrated by
Spring Cloud Data Flow, you can set it up like the following.
cf set-env dataflow-server SPRING_APPLICATION_JSON '{"spring.cloud.dataflow.applicationProperties.stream.spring.cloud.config.uri": "http://<CONFIG_SERVER_URI>"}'

We are now ready to start the app.
cf start dataflow-server
Alternatively, you can run the Admin application locally on your machine which is described in the next section.
Running the Server app locally

To run the server application locally, targeting your Cloud Foundry installation, you you need to configure the
application either by passing in command line arguments (see below) or setting a number of environment variables.
To use environment variables set the following:
export SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_URL=https://api.run.pivotal.io
export SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_ORG={org}
export SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_SPACE={space}
export SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_DOMAIN=cfapps.io
export SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_USERNAME={email}
export SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_PASSWORD={password}
export SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_SKIP_SSL_VALIDATION=false

export SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_STREAM_SERVICES=rabbit
The following is for letting task apps write to their db.
Note however that when the *server* is running locally, it can't access that db
task related commands that show executions won't work then
export SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_TASK_SERVICES=my_mysql
You need to fill in {org}, {space}, {email} and {password} before running these commands.
	[image: [Warning]]	Warning
	Only set 'Skip SSL Validation' to true if you’re running on a Cloud Foundry instance using self-signed
certs (e.g. in development). Do not use for production.

Now we are ready to start the server application:
java -jar spring-cloud-dataflow-server-cloudfoundry-1.1.0.BUILD-SNAPSHOT.jar [--option1=value1] [--option2=value2] [etc.]
	[image: [Tip]]	Tip
	Of course, all other parameterization options that were available when running the server on Cloud Foundry are
still available. This is particularly true for configuring defaults for applications. Just
substitute cf set-env syntax with export.

	[image: [Note]]	Note
	The current underlying PCF task capabilities are considered experimental for PCF version
versions less than 1.9. See Feature Togglers
for how to disable task support in Data Flow.

Running Spring Cloud Data Flow Shell locally

Run the shell and optionally target the Admin application if not running on the same host (will typically be the case if
deployed on Cloud Foundry as explained here)
$ java -jar spring-cloud-dataflow-shell-1.1.2.RELEASE.jar
server-unknown:>dataflow config server http://dataflow-server.cfapps.io
Successfully targeted http://dataflow-server.cfapps.io
dataflow:>
By default, the application registry will be empty. If you would like to register all out-of-the-box stream applications
built with the RabbitMQ binder in bulk, you can with the following command. For more details, review how to
register applications.
dataflow:>app import --uri http://bit.ly/Avogadro-GA-stream-applications-rabbit-maven
You can now use the shell commands to list available applications (source/processors/sink) and create streams. For example:
dataflow:> stream create --name httptest --definition "http | log" --deploy
	[image: [Note]]	Note
	You will need to wait a little while until the apps are actually deployed successfully
before posting data. Tail the log file for each application to verify
the application has started.

Now post some data. The URL will be unique to your deployment, the following is just an example
dataflow:> http post --target http://dataflow-AxwwAhK-httptest-http.cfapps.io --data "hello world"
Look to see if hello world ended up in log files for the log application.
To run a simple task application, you can register all the out-of-the-box task applications with the following command.
dataflow:>app import --uri http://bit.ly/Addison-GA-task-applications-maven
Now create a simple timestamp task.
dataflow:>task create mytask --definition "timestamp --format='yyyy'"
Tail the logs, e.g. cf logs mytask and then launch the task in the UI or in the Data Flow Shell
dataflow:>task launch mytask
You will see the year 2016 printed in the logs. The execution status of the task is stored
in the database and you can retrieve information about the task execution using the shell commands
task execution list and task execution status --id <ID_OF_TASK> or though the Data Flow UI.
Chapter 5. Security

By default, the Data Flow server is unsecured and runs on an unencrypted HTTP connection. You can secure your REST endpoints,
as well as the Data Flow Dashboard by enabling HTTPS and requiring clients to authenticate. More details about securing the
REST endpoints and configuring to authenticate against an OAUTH backend (i.e: UAA/SSO running on Cloud Foundry), please
review the security section from the core reference guide. The security configurations can be configured in dataflow-server.yml or passed as environment variables through cf set-env commands.
Chapter 6. Application Names and Prefixes

To help avoid clashes with routes across spaces in Cloud Foundry, a naming strategy to provide a random prefix to a
deployed application is available and is enabled by default. The default configurations
are overridable and the respective properties can be set via cf set-env commands.
For instance, if you’d like to disable the randomization, you can override it through:
cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_STREAM_ENABLE_RANDOM_APP_NAME_PREFIX false
Using Custom Routes

As an alternative to random name, or to get even more control over the hostname used by the deployed apps, one can use
custom deployment properties, as such:
[[source]
dataflow:>stream create foo --definition "http | log"

dataflow:>stream deploy foo --properties "app.http.spring.cloud.deployer.cloudfoundry.domain=mydomain.com,
 app.http.spring.cloud.deployer.cloudfoundry.host=myhost,
 app.http.spring.cloud.deployer.cloudfoundry.route-path=my-path"
This would result in the http app being bound to the URL myhost.mydomain.com/my-path. Note that this is an
example showing all customization options available. One can of course only leverage one or two out of the three.
Chapter 7. Authentication and Cloud Foundry

When deploying Spring Cloud Data Flow to Cloud Foundry, you can take advantage of the
 Spring Cloud Single Sign-On Connector,
 which provides Cloud Foundry specific auto-configuration support for OAuth 2.0,
 when used in conjunction with the Pivotal Single Sign-On Service.
Simply set security.basic.enabled to true and in Cloud Foundry bind the SSO
service to your Data Flow Server app and SSO will be enabled.
Chapter 8. Configuration Reference

The following pieces of configuration must be provided. These are Spring Boot @ConfigurationProperties so you can set
them as environment variables or by any other means that Spring Boot supports. Here is a listing in environment
variable format as that is an easy way to get started configuring Boot applications in Cloud Foundry.
Default values cited after the equal sign.
Example values, typical for Pivotal Web Services, cited as a comment

url of the CF API (used when using cf login -a for example), e.g. https://api.run.pivotal.io
(for setting env var use SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_URL)
spring.cloud.deployer.cloudfoundry.url=

name of the organization that owns the space above, e.g. youruser-org
(For Setting Env var use SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_ORG)
spring.cloud.deployer.cloudfoundry.org=

name of the space into which modules will be deployed, e.g. development
(for setting env var use SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_SPACE)
spring.cloud.deployer.cloudfoundry.space=

the root domain to use when mapping routes, e.g. cfapps.io
(for setting env var use SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_DOMAIN)
spring.cloud.deployer.cloudfoundry.domain=

username and password of the user to use to create apps
(for setting env var use SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_USERNAME and SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_PASSWORD)
spring.cloud.deployer.cloudfoundry.username=
spring.cloud.deployer.cloudfoundry.password=

Whether to allow self-signed certificates during SSL validation
(for setting env var use SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_SKIP_SSL_VALIDATION)
spring.cloud.deployer.cloudfoundry.skipSslValidation=false

Comma separated set of service instance names to bind to every stream app deployed.
Amongst other things, this should include a service that will be used
for Spring Cloud Stream binding, e.g. rabbit
(for setting env var use SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_STREAM_SERVICES)
spring.cloud.deployer.cloudfoundry.stream.services=

Health check type to use for stream apps. Accepts 'none' and 'port'
spring.cloud.deployer.cloudfoundry.stream.health-check=

Comma separated set of service instance names to bind to every task app deployed.
Amongst other things, this should include an RDBMS service that will be used
for Spring Cloud Task execution reporting, e.g. my_mysql
(for setting env var use SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_TASK_SERVICES)
spring.cloud.deployer.cloudfoundry.task.services=

Timeout to use, in seconds, when doing blocking API calls to Cloud Foundry.
(for setting env var use SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_TASK_API_TIMEOUT
and SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_STREAM_API_TIMEOUT)
spring.cloud.deployer.cloudfoundry.stream.apiTimeout=360
spring.cloud.deployer.cloudfoundry.task.apiTimeout=360
Note that you can set the following properties spring.cloud.deployer.cloudfoundry.services,
spring.cloud.deployer.cloudfoundry.buildpack or the Spring Cloud Deployer standard
spring.cloud.deployer.memory and spring.cloud.deployer.disk
as part of an individual deployment request prefixed by the app.<name of application>. For example
>stream create --name ticktock --definition "time | log"
>stream deploy --name ticktock --properties "app.time.spring.cloud.deployer.memory=2g"
will deploy the time source with 2048MB of memory, while the log sink will use the default 1024MB.
Using Spring Cloud Config Server

If using Spring Cloud Config Server as a Cloud Foundry service, the easiest way to externalize the above configuration
and consume it from the Data Flow server is to use the spring-cloud-services-starter-config-client dependency, which
is included in the standard distribution of the Spring Cloud Data Flow server for Cloud Foundry.
Follow the documentation
for Config Server for Pivotal Cloud Foundry.
For more details, please refer to Spring Cloud Services
client-dependencies documentation.
Chapter 9. Application Level Service Bindings

When deploying streams in Cloud Foundry, you can take advantage of application specific service bindings, so not all
services are globally configured for all the apps orchestrated by Spring Cloud Data Flow.
For instance, if you’d like to provide mysql service binding only for the jdbc application in the following stream
definition, you can pass the service binding as a deployment property.
dataflow:>stream create --name httptojdbc --definition "http | jdbc"
dataflow:>stream deploy --name httptojdbc --properties "app.jdbc.spring.cloud.deployer.cloudfoundry.services=mysqlService"
Where, mysqlService is the name of the service specifically only bound to jdbc application and the http
application wouldn’t get the binding by this method. If you have more than one service to bind, they can be passed as comma separated items (eg: app.jdbc.spring.cloud.deployer.cloudfoundry.services=mysqlService,someService).
Chapter 10. A Note About User Provided Services

In addition to marketplace services, Cloud Foundry supports
User Provided Services. Throughout this reference manual,
regular services have been mentioned, but there is nothing precluding the use of UPSs as well, whether for use as the
messaging middleware (e.g. if you’d like to use an external Apache Kafka installation) or for ad hoc usage by some
 of the stream apps (e.g. an Oracle Database).
Chapter 11. Application Rolling Upgrades

Similar to Cloud Foundry’s blue-green deployments,
you can perform rolling upgrades on the applications orchestrated by Spring Cloud Data Flow.
Let’s start with the following simple stream definition.
dataflow:>stream create --name foo --definition "time | log" --deploy
List Apps.
→ cf apps
Getting apps in org test-org / space development as test@pivotal.io...
OK

name requested state instances memory disk urls
foo-log started 1/1 1G 1G foo-log.cfapps.io
foo-time started 1/1 1G 1G foo-time.cfapps.io
Let’s assume you’ve to make an enhancement to update the "logger" to append extra text in every log statement.
	Download the Log Sink application starter with "Rabbit binder starter" from start-scs.cfapps.io/
	Load the downloaded project in an IDE
	Import the LogSinkConfiguration.class
	Adapt the handler to add extra text: loggingHandler.setLoggerName("TEST [" + this.properties.getName() + "]");
	Build the application locally

@SpringBootApplication
@Import(LogSinkConfiguration.class)
public class DemoApplication {

	@Autowired
	private LogSinkProperties properties;

	public static void main(String[] args) {
		SpringApplication.run(DemoApplication.class, args);
	}

	@Bean
	@ServiceActivator(inputChannel = Sink.INPUT)
	public LoggingHandler logSinkHandler() {
		LoggingHandler loggingHandler = new LoggingHandler(this.properties.getLevel().name());
		loggingHandler.setExpression(this.properties.getExpression());
		loggingHandler.setLoggerName("TEST [" + this.properties.getName() + "]");
		return loggingHandler;
	}
}
Let’s deploy the locally built application to Cloud Foundry
→ cf push foo-log-v2 -p demo-0.0.1-SNAPSHOT.jar -n foo-log-v2 --no-start
List Apps.
→ cf apps
Getting apps in org test-org / space development as test@pivotal.io...
OK

name requested state instances memory disk urls
foo-log started 1/1 1G 1G foo-log.cfapps.io
foo-time started 1/1 1G 1G foo-time.cfapps.io
foo-log-v2 stopped 1/1 1G 1G foo-log-v2.cfapps.io
The stream applications do not communicate via (Go)Router, so they aren’t generating HTTP traffic. Instead, they
communicate via the underlying messaging middleware such as Kafka or RabbitMQ. In order to rolling upgrade to route the
payload from old to the new version of the application, you’d have to replicate the SPRING_APPLICATION_JSON environment
variable from the old application that includes spring.cloud.stream.bindings.input.destination and spring.cloud.stream.bindings.input.group credentials.
	[image: [Note]]	Note
	You can find the SPRING_APPLICATION_JSON of the old application via: "cf env foo-log".

cf set-env foo-log-v2 SPRING_APPLICATION_JSON '{"spring.cloud.stream.bindings.input.destination":"foo.time","spring.cloud.stream.bindings.input.group":"foo"}'
Let’s start foo-log-v2 application.
cf start foo-log-v2
As soon as the application bootstraps, you’d now notice the payload being load balanced between two log application
instances running on Cloud Foundry. Since they both share the same "destination" and "consumer group", they are now
acting as competing consumers.
Old App Logs:
2016-08-08T17:11:08.94-0700 [APP/0] OUT 2016-08-09 00:11:08.942 INFO 19 --- [foo.time.foo-1] log.sink : 08/09/16 00:11:08
2016-08-08T17:11:10.95-0700 [APP/0] OUT 2016-08-09 00:11:10.954 INFO 19 --- [foo.time.foo-1] log.sink : 08/09/16 00:11:10
2016-08-08T17:11:12.94-0700 [APP/0] OUT 2016-08-09 00:11:12.944 INFO 19 --- [foo.time.foo-1] log.sink : 08/09/16 00:11:12
New App Logs:
2016-08-08T17:11:07.94-0700 [APP/0] OUT 2016-08-09 00:11:07.945 INFO 26 --- [foo.time.foo-1] TEST [log.sink : 08/09/16 00:11:07]
2016-08-08T17:11:09.92-0700 [APP/0] OUT 2016-08-09 00:11:09.925 INFO 26 --- [foo.time.foo-1] TEST [log.sink : 08/09/16 00:11:09]
2016-08-08T17:11:11.94-0700 [APP/0] OUT 2016-08-09 00:11:11.941 INFO 26 --- [foo.time.foo-1] TEST [log.sink : 08/09/16 00:11:11]
Deleting the old version foo-log from the CF CLI would make all the payload consumed by the foo-log-v2 application. Now,
you’ve successfully upgraded an application in the streaming pipeline without bringing it down in entirety to do
an adjustment in it.
List Apps.
→ cf apps
Getting apps in org test-org / space development as test@pivotal.io...
OK

name requested state instances memory disk urls
foo-time started 1/1 1G 1G foo-time.cfapps.io
foo-log-v2 started 1/1 1G 1G foo-log-v2.cfapps.io
	[image: [Note]]	Note
	A comprehensive canary analysis along with rolling upgrades will be supported via Spinnaker
in future releases.

Chapter 12. Maximum Disk Quota Configuration

By default, every application in Cloud Foundry starts with 1G disk quota and this can be adjusted to a default maximum of
2G. The default maximum can also be overridden up to 10G via Pivotal Cloud Foundry’s (PCF) Ops Manager GUI.
This configuration is relevant for Spring Cloud Data Flow because every stream and task deployment is composed of applications
(typically Spring Boot uber-jar’s) and those applications are resolved from a remote maven repository. After resolution,
the application artifacts are downloaded to the local Maven Repository for caching/reuse. With this happening in the background,
there is a possibility the default disk quota (1G) fills up rapidly; especially, when we are experimenting with streams that
are made up of unique applications. In order to overcome this disk limitation and depending
on your scaling requirements,you may want to change the default maximum from 2G to 10G. Let’s review the
steps to change the default maximum disk quota allocation.
PCF’s Operations Manager Configuration

From PCF’s Ops Manager, Select "Pivotal Elastic Runtime" tile and navigate to "Application Developer Controls" tab.
Change the "Maximum Disk Quota per App (MB)" setting from 2048 to 10240 (10G). Save the disk quota update and hit
"Apply Changes" to complete the configuration override.
Scale Application

Once the disk quota change is applied successfully and assuming you’ve a running application,
you may scale the application with a new disk_limit through CF CLI.
→ cf scale dataflow-server -k 10GB

Scaling app dataflow-server in org ORG / space SPACE as user...
OK

....
....
....
....

 state since cpu memory disk details
#0 running 2016-10-31 03:07:23 PM 1.8% 497.9M of 1.1G 193.9M of 10G
→ cf apps
Getting apps in org ORG / space SPACE as user...
OK

name requested state instances memory disk urls
dataflow-server started 1/1 1.1G 10G dataflow-server.apps.io
Configuring target free disk percentage

Even when configuring the Data Flow server to use 10G of space, there is the possibility of exhausting
the available space on the local disk. The server implements a least recently used (LRU) algorithm that
will remove maven artifacts from the local maven repository. This is configured using the following
configuration property, the default value is 25.
The low water mark percentage, expressed as in integer between 0 and 100, that triggers cleanup of
the local maven repository
(for setting env var use SPRING_CLOUD_DATAFLOW_SERVER_CLOUDFOUNDRY_FREE_DISK_SPACE_PERCENTAGE)
spring.cloud.dataflow.server.cloudfoundry.freeDiskSpacePercentage=25
Unresolved directive in index.adoc - include::https://raw.githubusercontent.com/spring-cloud/spring-cloud-dataflow/v1.1.2.RELEASE/spring-cloud-dataflow-docs/src/main/asciidoc/configuration.adoc[]
Unresolved directive in index.adoc - include::https://raw.githubusercontent.com/spring-cloud/spring-cloud-dataflow/v1.1.2.RELEASE/spring-cloud-dataflow-docs/src/main/asciidoc/streams.adoc[]
Unresolved directive in index.adoc - include::https://raw.githubusercontent.com/spring-cloud/spring-cloud-dataflow/v1.1.2.RELEASE/spring-cloud-dataflow-docs/src/main/asciidoc/tasks.adoc[]
Part III. Tasks on Cloud Foundry

Spring Cloud Data Flow’s task functionality exposes new task capabilities within
the Pivotal Cloud Foundry runtime. It is important to note that the current underlying PCF
task capabilities are considered experimental for PCF version versions less than 1.9. See
 ??? for how to disable task support in Data Flow.

Chapter 13. Version Compatibility

The task functionality depends on the latest versions of PCF for runtime support. This
release requires PCF version 1.7.12 or higher to run tasks. Tasks are an experimental
feature in PCF 1.7 and 1.8 and a GA feature in PCF 1.9.
Chapter 14. Tooling

Because the task functionality is experimental in PCF for versions less than 1.9, the tooling
around it within the CF ecosystem is not complete. In order to interact with tasks via the
PCF command line interface (CLI) for versions less than 1.9, you need to install a plugin:
v3-cli-plugin. It’s important to note
that this plugin is only compatible with the PCF CLI version 6.17.0+5d0be0a-2016-04-15.
You can read more about the functionality the plugin provides in its README.
It’s also important to note that there is no Apps Manager support for tasks as of this
release. When running applications as tasks through Spring Cloud Data Flow, the only way
to view them within the context of CF is via the plugin mentioned above.
Chapter 15. Task Database Schema

The database schema for Task applications was changed slighlty from the 1.0.x to 1.1.x version of
Spring Cloud Task. Since Spring Cloud Data Flow automatically creates the database schema if it is
not present upon server startup, you may need to update the schema if you ran a 1.0.x version of the
Data Flow server and now are upgrading to the 1.1.x version. You can find the migration scripts
here
in the Spring Cloud Task Github repository. The documentation for
Accessing Services with Diego SSH
and this blog entry
for connecting a GUI tools to the MySQL Service in PCF should help you to update the schema.
Chapter 16. Running Task Applications

Running a task application within Spring Cloud Data Flow goes through a slightly different
lifecycle than running a stream application. Both types of applications need to be registered
with the appropriate artifact coordinates. Both need a definition created via the SCDF DSL.
However, that’s where the similarities end.
With stream based applications, you "deploy" them with the intent that they run until they
are undeployed. A stream definition is only deployed once (it can be scaled, but only
deployed as one instance of the stream as a whole). However, tasks are launched. A single
task definition can be launched many times. With each launch, they will start, execute,
and shut down with PCF cleaning up the resources once the shutdown has occurred. The
following sections outline the process of creating, launching, destroying, and viewing tasks.
Create a Task

Similar to streams, creating a task application is done via the SCDF DSL or through the
dashboard. To create a task definition in SCDF, you’ve to either develop a task
application or use one of the out-of-the-box task app-starters.
The maven coordinates of the task application should be registered in SCDF. For more
details on how to register task applications, review register task applications
section from the core docs.
Let’s see an example that uses the out-of-the-box timestamp task application.
dataflow:>task create --name foo --definition "timestamp"
Created new task 'foo'
	[image: [Note]]	Note
	Tasks in SCDF do not require explicit deployment. They are required to be launched
and with that there are different ways to launch them - refer to this section
for more details.

Launch a Task

Unlike streams, tasks in SCDF requires an explicit launch trigger or it can be manually kicked-off.
dataflow:>task launch foo
Launched task 'foo'
View Task Logs

As previously mentioned, the v3-cli-plugin is the way to interact with tasks on PCF,
including viewing the logs. In order to view the logs as a task is executing use the
following command where foo is the name of the task you are executing:
cf v3-logs foo
Tailing logs for app foo...

....
....
....
....

2016-08-19T09:44:49.11-0700 [APP/TASK/bar1/0]OUT 2016-08-19 16:44:49.111 INFO 7 --- [main] o.s.c.t.a.t.TimestampTaskApplication : Started TimestampTaskApplication in 2.734 seconds (JVM running for 3.288)
2016-08-19T09:44:49.13-0700 [APP/TASK/bar1/0]OUT Exit status 0
2016-08-19T09:44:49.19-0700 [APP/TASK/bar1/0]OUT Destroying container
2016-08-19T09:44:50.41-0700 [APP/TASK/bar1/0]OUT Successfully destroyed container
	[image: [Note]]	Note
	Logs are only viewable through the v3-cli-plugin as the app is running. Historic
logs are not available.

List Tasks

Listing tasks is as simple as:
dataflow:>task list
╔══════════════════════╤═════════════════════════╤═══════════╗
║ Task Name │ Task Definition │Task Status║
╠══════════════════════╪═════════════════════════╪═══════════╣
║foo │timestamp │complete ║
╚══════════════════════╧═════════════════════════╧═══════════╝
List Task Executions

If you’d like to view the execution details of the launched task, you could do the following.
dataflow:>task execution list
╔════════════════════════╤══╤═════════════════════════╤═════════════════════════╤════════╗
║ Task Name │ID│ Start Time │ End Time │ Exit ║
║ │ │ │ │ Code ║
╠════════════════════════╪══╪═════════════════════════╪═════════════════════════╪════════╣
║foo:cloud: │1 │ Fri Aug 19 09:44:49 PDT │Fri Aug 19 09:44:49 PDT │0 ║
╚════════════════════════╧══╧═════════════════════════╧═════════════════════════╧════════╝
Destroy a Task

Destroying the task application from SCDF removes the task definition from task repository.
dataflow:>task destroy foo
Destroyed task 'foo'
dataflow:>task list
╔═════════╤═══════════════╤═══════════╗
║Task Name│Task Definition│Task Status║
╚═════════╧═══════════════╧═══════════╝
Deleting Task From Cloud Foundry

Currently Spring Cloud Data Flow does not delete tasks deployed on a Cloud
Foundry instance once they have been pushed. The only way to do this now is via
CLI on a Cloud Foundry instance version 1.9 or above.
This is done in 2 steps:
	Obtain a list of the apps via the cf apps command.
	Identify the task app to be deleted and execute the cf delete <task-name>
command.

	[image: [Note]]	Note
	The task destroy <task-name> only deletes the definition and not the task
deployed on Cloud Foundry.

Unresolved directive in index.adoc - include::https://raw.githubusercontent.com/spring-cloud/spring-cloud-dataflow/v1.1.2.RELEASE/spring-cloud-dataflow-docs/src/main/asciidoc/dashboard.adoc[]
Unresolved directive in index.adoc - include::https://raw.githubusercontent.com/spring-cloud/spring-cloud-dataflow/v1.1.2.RELEASE/spring-cloud-dataflow-docs/src/main/asciidoc/howto.adoc[]
Part IV. Appendices

Unresolved directive in appendix.adoc - include::https://raw.githubusercontent.com/spring-cloud/spring-cloud-dataflow/v1.1.2.RELEASE/spring-cloud-dataflow-docs/src/main/asciidoc/appendix-migration-guide.adoc[]

images/note.png

images/tip.png

images/warning.png

images/cover.png
Spring Cloud Data Flow

Reference Guide

‘
' N I3] \

| D - ' N N
' N " ' N N
e . o
B Vo
! Y o N !
' \

| fo .
O |

' ' . ' -
(- ~ \ -

images/important.png

