Spring Cloud Data Flow Server for Cloud Foundry

1.3.0.BUILD-SNAPSHOT

Sabby Anandan, Eric Bottard, Mark Fisher, llayaperumal Gopinathan, Gunnar Hillert, Mark
Pollack, Thomas Risberg, Marius Bogoevici, Josh Long, Michael Minella, David Turanski

Copyright © 2013-2017 Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Cloud Data Flow Server for Cloud Foundry

Table of Contents

I CT =) 1] o] ¢= T (=0 H PP P PSPPI 1
1. Deploying on Cloud FOUNGIYooiiiiiiiiii e 2
1.1. Provision a Redis service instance on Cloud Foundrycc.ccoivviiiiiiicvinccieee, 2

1.2. Provision a Rabbit service instance on Cloud Foundrycccooviiiiiiiiiiiiiinecinee. 2

1.3. Provision a MySQL service instance on Cloud Foundryccccoiviiiiiiiiiiiiiiinnenns 2

1.4. Running the Data FIOW SEIVETc...iiiiiiii e e e e 2
Deploying and Running the Server app on Cloud Foundrycccoeeuiiiiiiniiinnenennn. 3

Sample Manifest TEMPIALEuiiiiiiii e 4

Configuring Defaults for Deployed APPS ...ccvvveveeieiiiiieiieeeieee e e e 4

Running the Server app 10Callyoooouiii i 5

1.5. Running Spring Cloud Data Flow Shell ocallyccooiiiiiiiiiiii e 6

2. Spring Cloud SKIipper INtEOrationccuuiiiiiiirii e e e e e e e e e e an s 8
2.1. Download the Spring Cloud Skipper and Shell appscccoveeiiiiiiiiiiieeen 8

2.2. RUNNING the SKIPPEI SEIVEToeuiiiiiiii et 8

3. Application Names and PrefiXeS ... 10
3.1. USIiNG CUSLOM ROULESoutiiiiiiiiie ettt e e eeans 10

4. Deploying Docker APPIICALIONScc.uuiiiiiiiiieiiii et 11
5. Application Level Service BINAINGScc.uiiiiiiiiieii e e e e 12
6. A Note About User Provided SEIVICEScocuuuiiiiiiiiieiieii et 13
7. Application ROIING UPGratdesoooeuiiiiiiiiieeeei ettt e 14
8. Maximum Disk Quota Configurationcc.cveiuiiiiiiie e e e e eans 17
8.1. PCF's Operations Manager Configurationc.ccoiiiiiiiiiiiiiie e 17

8.2. Scale APPHCALION ...t 17

8.3. Configuring target free disk percentagecocovveviiiiiiii i 17

9. Application Resolution AREINALIVESoiiueiiiii e 19
LY o] o] [Tor= 11T] L PP PPTRPPPPTI 20
1IN (o] 11 =T (0 PP PPTTTT 21
O i (o To (3Tt i o T o E PP PPPPT 22
11. Microservice ArChiteCtural StYIEcooouiiiiiii e 24
11.1. Comparison to other Platform architeCturesccooeviiiiiiiiiii e 24

12. Streaming APPHCALIONSoueiii et e aa 26
12.1. Imperative Programming Modelcoooiiiiiiiiiiii e 26
12.2. Functional Programming MoOdelcooeuiiiiiiiiiiici e 26

R =T 1 PP PT 27
13,1, TOPOIOGIES ..ceveeeeiet ettt ettt e e e e e et eaaas 27
R o] o ¢ = T3 27
13.3. PArtitiONiNgeeeiiieei e et ea e 27
13.4. Message Delivery GUAranteesco.uuiiiiiiiiiieiiiii et 28

N T TN 30
15. TaSK APPHCALIONSoeeiiie ettt e e et e et e et e et e e e e eeens 31
16. DAt FIOW SEIVEL ...uiiiiiieiie et et e e e e e e e et e et e e et s e e et e e eaeeeens 32
G700 R 1 T oo g £ 32
16.2. CUSTOMUZALION ..oevtiiiiiii ettt e e e e e e et e e e eraes 32
L16.3. SECUILY .eeeeniee ettt ettt et ettt e e et e et e e e e e 33

L7, RUNEIME ettt e e ettt e e e e et et n e n e e e e e e e e n e e 34
17.0. FAUIT TOIEIANCE ...ttt et 34
17.2. Resource ManagemMENTiiiiiiiiieii ettt e e e e eeeas 34

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry iii

Spring Cloud Data Flow Server for Cloud Foundry

17.3. Scaling At FUNTIME ... ettt e e e e et e e e nae e eenes 34
17.4. ApPPlIcation VEISIONING . .coouuniiiiiiie et e et e e e 34

V. Server CONfIQUIALIONiiiuuiiiii e e e e e e e e e e e et e e et e e et e e et e e et eeaneeeen 35
18. FEALUIE TOGUIES ..ouiiiiiiiii ettt e et e et e e e et e e e 36
T ST =T o U] 1 PSPPSR 37
19.1. Authentication and Cloud FOUNAIYccooiiiiiiiiii e 37
Pivotal Single SigN-On SEIVICEccoiuiiiiiiiiii e 37

Cloud Foundry UAA .. et 38

20. Configuration REEIENCEiiiiii i e e e e eens 39
20.1. Understanding What's gOING ONcoouuuiiiiiiieiii e 40
20.2. Using Spring Cloud Config SEIVENcooiiiiiiiiiiiie e 40
Stream, Task, and Spring Cloud Config SErverccooociieiiiiiiiii e, 40

Sample Manifest TEMPIALEiiiiiiii e e 41
Self-signed SSL Certificate and Spring Cloud Config Serverccccooeviiveevennnnnn. 41

Vo SREIL e et e e e 43
P ST g 1= | I @ o] 1] o I PSP TP PR 44
22. Listing available COMMEANGAScoooiiiiiii e 45
22 TN 1= 1o I @0 11 o] =3 1o) o 1SS 46
24. White space and QUOLE TUIEScoiiiuiiiiii e e 47
24.1. QUOLES ANd ESCAPING ...eiiiriieeiiiii et 47
SREIL TUIBS .. e 47

DSL PArSiNg TUIES ...ceeiiieiiii ettt et e e 48

SPEL syntax and SPEL lItEralSoviiiiiiiiiiiii e 48

Putting it all together ... 49

Y Y1 (=TT 0 0 PP PRUPRPPIN 50
25 T 1o To 18 o3 1T o I 51
25.1. Stream PIpeling DSL ...coouiiiiiii e 51
25.2. APPlICAtiON PrOPEITIESciieei ettt ettt ettt et e e a e e eeeans 52

26. SErea@am LIfECYCIEoceiii e e e 53
26.1. REQISIEr @ SEAM ADD tirniiiiiiiii ettt e e e e e e e e et e et e et e e et e eaanaas 53
26.2. Register Supported Applications and TasKScoevieiiiiiiiiiiieiiiece e 53
Whitelisting application Propertiesov o 55

Creating and using a dedicated metadata artifactccooeeeiiiiiiieiiin e, 55

Using the companion artifaCt ... 56

26.3. Creating custom appliCationsuiiiiiiiiiiiiii e 57
26.4. Creating @ SIrEAIMicui i e e e e e e e e e e e e et e et e aanaees 57
APPIICALION PrOPEITIES ...ttt ettt e e e e e e erb e eees 58

Common application ProPEITIESuiiiiuiieeeiii e e eeeens 59

26.5. DePIOYING @ SIrEAIMciiiiiiii i e e e e e e e e 59
Deployment PrOPEITIESceeiei it 60

Passing iNStANCE COUNTuuiiiiiiie e 61

Inline vs file based Propertiescooeiiiiiiii i 61

Passing application Propertiesov e 62

Passing Spring Cloud Stream Propertiescoouevveieiiiniereiiineeeeiieeeeeiiee 62

Passing per-binding producer consumer propertiesccoeeevvveeiineeennennn. 63

Passing stream partition Propertiescocuuvieieriiieriiiirieeei e 63

Passing application content type propertiescooveveeviiieiiiiinneiiiiineeceiie 64

Overriding application properties during stream deployment 65

26.6. DESIIOYING @ SIIEAIM ..eouuuiiiiii ettt et ettt e e e e eea s 65
26.7. UNdeployiNg SIrEAMSciiiiiieiiiii et 65

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry iv

Spring Cloud Data Flow Server for Cloud Foundry

27. Stream Lifecycle With SKIPPETuuiiiii e 66
27.1. Creating and Deploying @ StrEaAIMvviiiiiiiiiiiii e 66
27.2. UPAAtiNng @ SErEAM ...ivvuiiii e e e e e e e e e e e e e e e et e e e e aaen 66
27.3. SITEAIM VEISIONS ...euiiitiieei ettt e e e et e e et e et e e et e e et e eean e eanaeeees 67
27.4. Sream ManifEStSiiiei i 67
27.5. ROIIDACK @ SIFEAIMcciiiiiiiiii ettt e e e e 68
27.6. APPLCAtION COUNT ...ooitiiiiiii et 68
27.7. SKipper's Upgrade Strategyoveeeeueiiriiiiieeii e 68

28. SIrEAM DSL ..ot 69
28.1. TAP @ SEIEAM L.iiriiiii e et 69
28.2. Using Labels in @ SIre@moooiiiiiiiiii et 69
28.3. Named DESHNALIONSvuuuiieeeiiiiiiii e e ettt e e e et e e e e e e ees bbb e e e e eeeennes 69
28.4. Fan-in and Fan-0ULcouiiiiii et 70

29. SIrea@m JAVA DSL ... 71
29,1, OVEIVIEW .ttt e ettt ettt et e e ettt bbbt e e e e ettt e bbb e e e e e et e e e snbe i n e e e e e e eeennnnes 71
29.2. JAVA DSL SIYIES ...oeeiiiieiii e 72

30. Stream applications with multiple binder configurationsccccooiviiiiiinneiiin e, 75

31 I = 1 1]][76
31.1. SImple Stream PrOCESSINGcccuuuuieiiiiiiaieiia ettt et e et e e e 76
31.2. Stateful Stream ProCESSINGccuuui ittt e e eees 76
31.3. Other Source and Sink AppliCatioN TYPESueiviiiiiiiiiiieeei e e e 77

VII. Streams deployed USING SKIPPEIiiiiii et 78
T L TR 1=] 83

K2 01 (oo (1ot i o] o RO PP TP 84

33. The LIfeCYCle OF @ TASKcceiiiiiiiiiiii et 85
33.1. Creating a Task APPLICALIONiiiiiiiiiei e 85

Task Database Configurationc.cooiiiiiiiiiiiii e e e 85
33.2. Registering a Task ApPlCAtiONcoouuuiiiiiiiii e 86
33.3. Creating a Task DefiNItioNoiiiiiiiiiiiii e 87
I I I IR 10 [o Tod o1 o T T = 1= N 87

Common appliCation PrOPEITIESueierrenieieiii ettt e e e eeeens 87
33.5. Reviewing Task EXECULIONSiiiiiiiieiiiiiiiee ettt e eeeai e e 88
33.6. Destroying a Task Definitionccccouiiiiiiiiiii e 88

34. Subscribing to Task/BatCh EVENLSiiiiiiiiiiiii e 90

35. COMPOSEA TASKS ...eeitiieiiiii ettt ettt e e et e e e et e e et et e e e ea b e e e eeta e e eeebn e eeees 91
35.1. Configuring the Composed Task RUNNETcoiiiiiiiiiiiii e 91

Registering the Composed Task RUNNETcoouiiiiiiiiiiiii e 91
Configuring the Composed Task RUNNENccoouiiiiiiiiiiiei e 91
35.2. The Lifecycle of a Composed Taskcc.coeiiiiiiiiiiiiii e 91
Creating @ ComPOSEd TASKccouuiiiiiiiiiiie et 91
Task Application Parameterscc.uuiieiiiiiieiiii e e 92
Launching a ComposSed TasKcccuiiiiiiiiiii e e 92

o S] F= (1=T = P 92

Destroying a CompoSed TASKcccuuuiiiiiiiiieiiiii e 93

Stopping @ CompoSed TaSKoiiiiiii e 93

Restarting a CompoSed TaSKcccuuuiiiiiiiiaiiiii et 93

36. COMPOSEA TASKS DSL ..ttt ettt e e et e e et e e e et e e eeae e aees 94
36.1. ConditioNal EXECULIONoevvuiiiiiiieeei ittt e e 94
36.2. Transitional EXECULIONuiiiiiiiiiii et et 96

2T T (o I -V 1T o 96

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry \

Spring Cloud Data Flow Server for Cloud Foundry

Transition With @ WIlACardo.uooiiiiii e 97

Transition With a Following Conditional EXeCUtionccoevviiiiiiiiinieiiiiinneeennn 97

36.3. SPIIt EXECULIONiiiiiiii e e e e e e e e e e e e aen 98

Split Containing Conditional EXECULIONoiiiiiiiiiiiiiiiieeieie e 99

37. Launching Tasks from @ SIreamccouuiiiiiiiiii e 101
A T o o =T =T PN 101
37.2. TaskLaunchRequest-tranSformccoouuiiiiiiiie e 102
37.3. Launching a Composed Task From a Streamcccoooevviiniiiiiiinneiiiiineeeciien 102

IX. Tasks 0N CloUd FOUNAIYuiiiiiiiiiieee e e e e e e e e e e e et e e e e et e e e eann s 104
38. Version CompPatiDIlityoiiiiiiii e 105
11 I e To] 11 o TP UPPPTRSPPPI 106
40. Task Database SChEemM@ouuuiiiiiiiiiiii e eeenes 107
41. RunNing Task APPIICALIONScouuuiiiiiii et e e e e et eene 108
41,1, Create @ TaSK .ouuieie i 108
41.2. LAUNCH 8 TASK ..o 108
A1.3. VIEW TASK LOGS ..oitiiiiiiiiiiei ittt ettt e et e et e e e e e eeees 108
g N 1 A 1= 1] 109
41.5. List TASK EXECULIONS ...cevviiiiiiieeiii ittt ettt e e e e e e e e e e 109
41.6. DESIIOY 8 TASK ...oeeiiiiiiiiiii et 109
41.7. Deleting Task From Cloud FOUNAIYoooiiiiiiiiiiiiiiei e 109

Ko DASNDOAIT ... e 110
A 111 (oo [Tox 1o o P 111
T Y o] o1 PP UPPTPPP 113
43.1. Bulk Import of ApplICAtIONSccuuiiiii e 113

N W01 1] T P TPRP 115
TS Y1 = T o 0 116
4B, Creatl SIMEAM ...cuuuiiiii it e 118
N I T 119
O R o o 1 PP 119
Create a Task Definition from a selected Task APPcccovevviiiiiiiieiin e, 120

View Task APP DetailSccouuiiiiiiiiiiiii e 120

N I T {11 4T 1 120
Creating Task Definitions using the bulk define interfacecccoooiiee. 120

Creating Composed Task Definitionsccoouviieiiiiiiiei e 122

(6= 18] (o] 11 o N IF=] PP 123

A7.3. EXECULIONS ...ttt ettt e ettt n e e e e et e e e bt a e e e e e e rnnaaaas 123

A8. JODIS .t e e e et b e e e e e et e e e aeeaanaa 124
48.1. LiSt JOD EXECULIONSuuuiiiitii ettt e s 124

JOD eXECULION dELAIISuii et 125

Step eXeCution detallScoouuiiiiiii e 125

StEP EXECULION PrOGIESSiiiiiiieiiiii ettt e e et eeeeaa e eees 126

e T A = 1 1o 127
X REST APL GUIAE ..ottt e ettt e e e e e e e ettt e e e e e e e een bbb e e eas 128
D LY o] 0 T= g o Lol PP 129
A. Data FIOW TEMPIALEcovviiiiiiii e e e e e e e aanas 130
A.1. Using the Data FIOW TemMPIatecoouuiiiiiiiiii e 130

B. SPriNg XD t0 SCDF ...ouuiiiiiiii it e e et e e e e a e 132
B.1. Terminology ChanQescccuiiiiiiiiiiii e e 132

B.2. Modules t0 APPIICALIONSuiiiiiiiieei et 132

OI01S] (0] o I Y o] o] o%=1 o] PP 132

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry Vi

Spring Cloud Data Flow Server for Cloud Foundry

Application REGISIIAtIONcoouuuiiiiiiie e 132
APPIICAtION PrOPEITIES ..ottt 133

B.3. Message BUS 10 BINEISciuiiiiiii e e 133
MESSAGE BUS .. eeeiiiiiit e 133
1] o = PP 133
Named ChanNEIScooiiiiiiii e 134
Directed Graphsi oo 134

B.4. BAtCh 10 TASKS ...uiiiiiiiiiiiii e 134
B.5. Shell/DSL COMMANGScovviiiiiiiie ettt e e e e s 135
BLB. REST-API ...ttt e e e ettt e e e e e et 135
2 TR [T 135
B.8. Architecture COMPONENLSuiiiiiiiiiiie i e e e e e e e e e e e e e et e et e e aaeeaens 136
o To] (=TT o [T SO UPR T PPTRPPTPPN 136

LI 21 136
REAIS . 136
ClIUSEEN TOPOIOGY ..ttt 136

B.9. Central ConfiQUIratioNoooiiiiiiiiii e 136
B.10. DISHDULION ... e 136
B.11. Hadoop Distribution Compatibilitycooeiiiiiiiiiiiii e 137
B.12. YARN DEPIOYMENL ..oiiiiiiiiieeiii ettt 137
B.13. USE Case COMPAIISONceuuiiiiieiiieeiiieeetieetaesttaeesteesteestnae et eeannaretrerraeranns 137
USE CaSE L i 137

USE CASE HH2 oiiiiiiii ettt ettt 138

USE CaSE H3 ittt 138
C.BUIING .t et e e 140
O30 I B T T 0 1 1= 01 7= 11T o [T PP 140
C.2. Working With the COUEcouiiiiiii e e 140
Importing into eclipse with M2eClipSe ..o 140
Importing into eclipse without M2eclipSeccooiiiiiiiiiii e 141

[T @do] 11U 1] o R 142
D.1. Sign the Contributor License AgQreementcc.uuiiiiiiiiieiiiiie e 142
D.2. Code Conventions and HOUSEKEEPINGccouvuiiiiiiiieiiiiie e 142

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry vii

Part I. Getting started

Spring Cloud Data Flow Server for Cloud Foundry

1. Deploying on Cloud Foundry

Spring Cloud Data Flow can be used to deploy modules in a Cloud Foundry environment. When doing
S0, the server application can either run itself on Cloud Foundry, or on another installation (e.g. a simple

laptop).

The required configuration amounts to the same in either case, and is merely related to providing
credentials to the Cloud Foundry instance so that the server can spawn applications itself. Any
Spring Boot compatible configuration mechanism can be used (passing program arguments, editing
configuration files before building the application, using Spring Cloud Config, using environment
variables, etc.), although some may prove more practicable than others when running on Cloud Foundry.

@ Note

By default, the application registry in Spring Cloud Data Flow’s Cloud Foundry server is empty.
It is intentionally designed to allow users to have the flexibility of choosing and registering
applications, as they find appropriate for the given use-case requirement. Depending on the
message-binder of choice, users can register between RabbitMQ or Apache Kafka based
maven artifacts.

1.1 Provision a Redis service instance on Cloud Foundry

Use cf mar ket pl ace to discover which plans are available to you, depending on the details of your
Cloud Foundry setup. For example when using Pivotal Web Services:

cf create-service rediscloud 30nb redis

A redis instance is required for analytics apps, and would typically be bound to such apps when you
create an analytics stream using the per-app-binding feature.

1.2 Provision a Rabbit service instance on Cloud Foundry

Use cf mar ket pl ace to discover which plans are available to you, depending on the details of your
Cloud Foundry setup. For example when using Pivotal Web Services:

cf create-service cloudangp | emur rabbit

Rabbit is typically used as a messaging middleware between streaming apps and would be bound to
each deployed app thanks to the SPRI NG_CLOUD_ DEPLOYER CLOUDFOUNDRY_STREAM SERVI CES
setting (see below).

1.3 Provision a MySQL service instance on Cloud Foundry

Use cf mar ket pl ace to discover which plans are available to you, depending on the details of your
Cloud Foundry setup. For example when using Pivotal Web Services:

cf create-service cleardb spark my_nysql

An RDBMS is used to persist Data Flow state, such as stream definitions and deployment ids. It can
also be used for tasks to persist execution history.

1.4 Running the Data Flow Server

First download the server and shell applications

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 2

https://github.com/spring-cloud/spring-cloud-config
https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-registry
http://docs.spring.io/spring-cloud-dataflow/docs/1.3.0.BUILD-SNAPSHOT/reference/htmlsingle/#spring-cloud-dataflow-register-stream-apps
http://repo.spring.io/libs-snapshot/org/springframework/cloud/stream/app/
https://run.pivotal.io/
https://run.pivotal.io/
https://run.pivotal.io/

Spring Cloud Data Flow Server for Cloud Foundry

wget http://repo.spring.iol/snapshot/org/springframework/cloud/spring-cl oud-dat af | ow server -

cl oudf oundry/ 1. 3. 0. BU LD- SNAPSHOT/ spri ng- cl oud- dat af | ow server - cl oudf oundry- 1. 3. 0. BUl LD- SNAPSHCT. j ar
wget http://repo.spring.iol/snapshot/org/springfranmework/cl oud/ spring-cl oud-dat af | owshel | /1. 3. 0. BUl LD
SNAPSHOT/ spri ng- cl oud- dat af | ow shel | - 1. 3. 0. BUl LD- SNAPSHOT. j ar

You can either deploy the server application on Cloud Foundry itself or on your local machine. The
following two sections explain each way of running the server.

Deploying and Running the Server app on Cloud Foundry

Push the server application on Cloud Foundry, configure it (see below) and start it.

@ Note

You must use a unique name for your app; an app with the same name in the same organization
will cause your deployment to fail

cf push datafl owserver -b java_buildpack -m 2G -k 2G --no-start -p spring-cloud-dataf| ow server-
cl oudf oundry- 1. 3. 0. BUl LD- SNAPSHOT. j ar

cf bind-service datafl ow server redis

cf bind-service datafl ow server ny_nysql

@ Important

The recommended minimal memory setting for the server is 2G. Also, to push apps to PCF and
obtain application property metadata, the server downloads applications to Maven repository
hosted on the local disk. While you can specify up to 2G as a typical maximum value for disk
space on a PCF installation, this can be increased to 10G. Read the maximum disk quota
section for information on how to configure this PCF property. Also, the Data Flow server itself
implements a Last Recently Used algorithm to free disk space when it falls below a low water
mark value.

@ Note

If you are pushing to a space with multiple users, for example on PWS, there may already be
a route taken for the applicaiton name you have chosen. You can use the options - - r andom
r out e to avoid this when pushing the app.

Now we can configure the app. The following configuration is for Pivotal Web Services. You need to fill
in {org}, {space}, {email} and {password} before running these commands.

cf set-env datafl ow server SPRI NG CLOUD _DEPLOYER CLOUDFOUNDRY_URL https://api.run.pivotal.io
cf set-env datafl ow server SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_ORG {or g}

cf set-env datafl ow server SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_SPACE {space}

cf set-env datafl owserver SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_DOMAI N cf apps.io

cf set-env datafl ow server SPRI NG CLOUD_DEPLOYER_CLOUDFOUNDRY_STREAM SERVI CES r abbi t

cf set-env datafl ow server SPRI NG CLOUD_DEPLOYER_CLOUDFOUNDRY_TASK_ SERVI CES mny_nysql

cf set-env datafl ow server SPRI NG CLOUD_DEPLOYER_CLOUDFOUNDRY_USERNAME {enai | }

cf set-env datafl ow server SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_PASSWORD { passwor d}

cf set-env datafl ow server SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_SKI P_SSL_VALI DATI ON f al se

0 Warning

Only set 'Skip SSL Validation' to true if you're running on a Cloud Foundry instance using self-
signed certs (e.g. in development). Do not use for production.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 3

Spring Cloud Data Flow Server for Cloud Foundry

@ Note

If you are deploying in an environment that requires you to sign on using the Pivotal Single Sign-
On Service, refer to the section Section 19.1, “Authentication and Cloud Foundry” for information
on how to configure the server.

Spring Cloud Data Flow server implementations (be it for Cloud Foundry, Mesos, YARN, or Kubernetes)
do not have any default remote maven repository configured. This is intentionally designed to provide the
flexibility for the users, so they can override and point to a remote repository of their choice. The out-of-
the-box applications that are supported by Spring Cloud Data Flow are available in Spring’s repository,
so if you want to use them, set it as the remote repository as listed below.

cf set-env datafl ow server SPRI NG APPLI CATI ON_JSON ' {"maven": { "renpte-repositories": { "repol":
{ "url": "https://repo.spring.io/libs-release” } } } }'

where r epol is the alias name for the remote repository.

@ Note

If you need to configure multiple Maven repositories, a proxy, or authorization for a private
repository, see Maven Configuration.

Sample Manifest Template

As an alternative to setting environment variables via cf set - env command, you can curate all the
relevant env-var’'s in mani f est . ynl file and use cf push command to provision the server.

Following is a sample template to provision the server on PCFDev.

appl i cations:
- nane: data-flow server
host: data-fl ow server
nenory: 2G
di sk_quota: 2G
instances: 1
path: {PATH TO SERVER UBER- JAR}
env:
SPRI NG_APPLI| CATI ON_NAME: dat a- f | ow server
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_URL: https://api.|ocal . pcfdev.io
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_ORG pcf dev-or g
SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_SPACE: pcf dev- space
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_DOVAI N: | ocal . pcfdev.io
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_USERNAME: admi n
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_PASSWORD: admi n
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_STREAM SERVI CES: rabbi t
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_TASK_SERVI CES: nysql
SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_SKI P_SSL_VALI DATI ON: true

SPRI NG_APPLI CATI ON_JSON {"maven": { "renote-repositories": { "repol": { "url": "https://
repo.spring.io/libs-release"} } } }
services:
- nysql

Once you're ready with the relevant properties in this file, you can issue cf push command from the
directory where this file is stored.

Configuring Defaults for Deployed Apps

You can also set other optional properties that alter the way Spring Cloud Data Flow will deploy stream
and task apps:

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 4

http://docs.spring.io/spring-cloud-dataflow/docs/1.3.0.BUILD-SNAPSHOT/reference/htmlsingle/#getting-started-maven-configuration

Spring Cloud Data Flow Server for Cloud Foundry

» The default memory and disk sizes for a deployed application can be configured. By default they are
1024 MB memory and 1024 MB disk. To change these, as an example to 512 and 2048 respectively,
use

cf set-env datafl ow server SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_STREAM MEMORY 512
cf set-env datafl ow server SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_STREAM DI SK 2048

» The default number of instances to deploy is set to 1, but can be overridden using

cf set-env datafl ow server SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_STREAM | NSTANCES 1

» You can set the buildpack that will be used to deploy each application. For example, to use the Java
offline buildback, set the following environment variable

cf set-env datafl ow server SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_STREAM BUI LDPACK j ava_bui | dpack_of fli ne

» The health check mechanism used by Cloud Foundry to assert if apps are running can be customized.
Current supported options are port (the default) and none. Change the default like so:

cf set-env datafl ow server SPRI NG CLOUD_DEPLOYER_ CLOUDFOUNDRY_STREAM HEALTH CHECK none

@ Note

These settings can be configured separately for stream and task apps. To alter settings for
tasks, simply substitute STREAMwith TASK in the property name. As an example,

‘ cf set-env datafl ow server SPRI NG CLOUD_DEPLOYER_CLOUDFOUNDRY_TASK_MEMORY 512
€) Tip

All the properties mentioned above are @onfi gur ati onProperti es of the Cloud Foundry
deployer. See CloudFoundryDeploymentProperties.java for more information.

We are now ready to start the app.

cf start datafl ow server

Alternatively, you can run the Admin application locally on your machine which is described in the next
section.

Running the Server app locally

To run the server application locally, targeting your Cloud Foundry installation, you you need to configure
the application either by passing in command line arguments (see below) or setting a number of
environment variables.

To use environment variables set the following:

export SPRI NG CLOUD_DEPLOYER_CLOUDFOUNDRY_URL=https://api.run.pivotal.io
export SPRI NG CLOUD_DEPLOYER CLOUDFOUNDRY_ORGH or g}

export SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_SPACE={ space}

export SPRI NG CLOUD_DEPLOYER_CLOUDFOUNDRY_DOVAI N=cf apps. i 0

export SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_USERNAME={ eni | }

export SPRI NG CLOUD_DEPLOYER_CLOUDFOUNDRY_PASSWORD={ passwor d}

export SPRI NG CLOUD_ DEPLOYER CLOUDFOUNDRY_SKI P_SSL_VALI DATI ON=f al se

export SPRI NG _CLOUD_DEPLOYER_ CLOUDFOUNDRY_STREAM SERVI CES=r abbi t
The following is for letting task apps wite to their db.
Note however that when the *server* is running locally, it can't access that db

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 5

https://github.com/spring-cloud/spring-cloud-deployer-cloudfoundry/blob/v1.3.0.M4/src/main/java/org/springframework/cloud/deployer/spi/cloudfoundry/CloudFoundryDeploymentProperties.java

Spring Cloud Data Flow Server for Cloud Foundry

task rel ated commands that show executions won't work then
export SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_TASK_SERVI CES=ny_nysq|

You need to fill in {org}, {space}, {email} and {password} before running these commands.

0 Warning

Only set 'Skip SSL Validation' to true if you're running on a Cloud Foundry instance using self-
signed certs (e.g. in development). Do not use for production.

Now we are ready to start the server application:

java -jar spring-cloud-datafl ow server-cl oudf oundry-1. 3. 0. BU LD- SNAPSHOT. j ar [--optionl=val uel] [--
option2=val ue2] [etc.]

c: Tip
Of course, all other parameterization options that were available when running the server on

Cloud Foundry are still available. This is particularly true for configuring defaults for applications.
Just substitute cf set - env syntax with export .

@ Note

The current underlying PCF task capabilities are considered experimental for PCF version
versions less than 1.9. See Feature Togglers for how to disable task support in Data Flow.

1.5 Running Spring Cloud Data Flow Shell locally

Run the shell and optionally target the Admin application if not running on the same host (will typically
be the case if deployed on Cloud Foundry as explained here)

$ java -jar spring-cloud-datafl ow shell-1.3.0.BU LD SNAPSHOT. j ar

server - unknown: >dat af | ow confi g server http://datafl ow server.cfapps.io
Successfully targeted http://datafl ow server.cfapps.io
dat af | ow: >

By default, the application registry will be empty. If you would like to register all out-of-the-box stream
applications built with the RabbitMQ binder in bulk, you can with the following command. For more
details, review how to register applications.

dat af | ow. >app inport --uri http://bit.ly/Avogadro- SR1-stream applicati ons-rabbit-nmaven

@ A Note about application URIs

While Spring Cloud Data Flow for Cloud Foundry leverages the core Data Flow project, and as
such theoretically supports registering apps using any scheme, the use offi | e: // URIs does
not really make sense on Cloud Foundry. Indeed, the local filesystem of the Data Flow server
is ephemeral and chances are that you don’t want to manually upload your apps there.

When deploying apps using Data Flow for Cloud Foundry, a typical choice is to use maven: / /
coordinates, or maybe htt p: // URIs.

You can now use the shell commands to list available applications (source/processors/sink) and create
streams. For example:

datafl ow. > stream create --nanme httptest --definition "http | |og" --deploy

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 6

http://docs.spring.io/spring-cloud-dataflow/docs/1.3.0.BUILD-SNAPSHOT/reference/htmlsingle/enable-disable-specific-features.html

Spring Cloud Data Flow Server for Cloud Foundry

@ Note

You will need to wait a little while until the apps are actually deployed successfully before posting
data. Tail the log file for each application to verify the application has started.

Now post some data. The URL will be unique to your deployment, the following is just an example

datafl ow. > http post --target http://datafl ow AxwwAhK-httptest-http.cfapps.io --data "hello world"

Look to see if hel | o wor | d ended up in log files for the | og application.

To run a simple task application, you can register all the out-of-the-box task applications with the
following command.

dat af | ow. >app inport --uri http://bit.|y/Addi son- GA-task-applicati ons-maven

Now create a simple timestamp task.

dat af | ow. >t ask create nmytask --definition "timestanp --format="yyyy'"

Tail the logs, e.g. cf | ogs nyt ask and then launch the task in the Ul or in the Data Flow Shell

dat af | ow. >t ask | aunch nyt ask

You will see the year 2017 printed in the logs. The execution status of the task is stored in the database
and you can retrieve information about the task execution using the shell commandst ask executi on
list andtask execution status --id <I D O-_TASK> or though the Data Flow Ul.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 7

http://docs.spring.io/spring-cloud-task-app-starters/docs/1.0.1.RELEASE/reference/html/_timestamp_task.html

Spring Cloud Data Flow Server for Cloud Foundry

2. Spring Cloud Skipper Integration

Skipper is a tool that allows you to discover Spring Boot applications and manage their lifecycle on
multiple Cloud Platforms. You can use Skipper standalone or integrate it with Continuous Integration
pipelines to help achieve Continuous Deployment of applications. For more details, review the reference
guide for a complete overview and the feature capabilities.

Before we begin setting up Skipper to use with Spring Cloud Data Flow, let's review the basics by
understanding foundational design by which the relevant infrastructure is provisioned in Kubernetes.
The tailormade three-minute-tour for Cloud Foundry walks through the fundamentals.

Next up, we will review the relevant artifacts to provision Spring Cloud Skipper in Cloud Foundry.

2.1 Download the Spring Cloud Skipper and Shell apps

wget http://repo.spring.iol/snapshot/org/springfranmework/cl oud/ spring-cl oud- ski pper-server/1.0.0. BU LD
SNAPSHOT/ spri ng- cl oud- ski pper - server-1. 0. 0. BUl LD- SNAPSHOT. j ar

wget http://repo.spring.iol/snapshot/org/springframework/ cloud/spring-cl oud-ski pper-shell/1.0.0. BU LD
SNAPSHOT/ spri ng- cl oud- ski pper -shel | -1. 0. 0. BUl LD- SNAPSHOT. j ar

2.2 Running the Skipper Server

Similar to SCDF-server, you can either deploy the skipper-server application on Cloud Foundry or on
your local machine.

Let's review the sample mani f est . ymi file to deploy the skipper-server application to Cloud Foundry.

appl i cations
- nane: skipper-server
host: ski pper-server
nenory: 1G
di sk_quota: 1G
i nstances: 1
pat h: <PATH TO THE DOANLOADED SKI PPER SERVER UBER- JAR>
env:
SPRI NG_APPLI CATI ON_NAME: ski pper - server
SPRI NG_CLOUD_SKI PPER_SERVER_PLATFORM_CL OUDFOUNDRY_ACCOUNTS[pws] _CONNECTI ON_URL: https://
api .run.pivotal .io
SPRI NG_CLOUD_SKI PPER_SERVER PLATFORM CLOUDFOUNDRY_ACCOUNTS[pws] _CONNECTI ON_ ORG {or g}
SPRI NG_CLOUD_SKI PPER_SERVER_PLATFORM CLOUDFOUNDRY_ACCOUNTS[pws] _ CONNECTI ON_SPACE: {space}
SPRI NG_CLOUD_SKI PPER_SERVER_PLATFORM CLOUDFOUNDRY_ACCOUNTS[pws] _CONNECTI ON_DOVAI N: cf apps. i 0
SPRI NG_CLOUD_SKI PPER_SERVER_PLATFORM CLOUDFOUNDRY_ACCOUNTS[pws] _CONNECTI ON_USERNAME: {enmi | }
SPRI NG_CLOUD_SKI PPER_SERVER_PLATFORM_CL OUDFOUNDRY_ACCOUNTS[pws] _CONNECTI ON_PASSWORD: { passwor d}
SPRI NG CLOUD_SKI PPER_SERVER PLATFORM CLOUDFOUNDRY ACCOUNTS[pws] DEPLOYMENT SERVI CES: r abbi t

You need to fill in {org}, {space}, {email} and {password} before running these commands. Once you
have the desired config values in the mani f est. ym , you can run cf push command to provision
the skipper-server.

0 Warning

Only set 'Skip SSL Validation' to true if you're running on a Cloud Foundry instance using self-
signed certs (e.g. in development). Do not use for production.

SPRI NG_CLOUD_SKI PPER_SERVER PLATFORM CLOUDFOUNDRY_ACCOUNTS[pws] _CONNECTI ON_STREAM ENABLE_RANDOM APP_NAME_PREFI X:

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 8

fal se

https://docs.spring.io/spring-cloud-skipper/docs/1.0.0.BUILD-SNAPSHOT/reference/htmlsingle/#overview
https://docs.spring.io/spring-cloud-skipper/docs/1.0.0.BUILD-SNAPSHOT/reference/htmlsingle/#overview
https://docs.spring.io/spring-cloud-skipper/docs/1.0.0.BUILD-SNAPSHOT/reference/htmlsingle/#tour-cloud-foundry

Spring Cloud Data Flow Server for Cloud Foundry

@ Note

Skipper includes the concept of platforms, so it is important to define the "accounts" based on
the project preferences. In the above YAML file, the accounts map to pws as the platform. This
can be modified, and of course, you can have any number of platform definitions. More details
are in Spring Cloud Skipper reference guide.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 9

https://docs.spring.io/spring-cloud-skipper/docs/current/reference/htmlsingle/#platforms

Spring Cloud Data Flow Server for Cloud Foundry

3. Application Names and Prefixes

To help avoid clashes with routes across spaces in Cloud Foundry, a naming strategy to provide a
random prefix to a deployed application is available and is enabled by default. The default configurations
are overridable and the respective properties can be set via cf set - env commands.

For instance, if you'd like to disable the randomization, you can override it through:

cf set-env datafl ow server SPRI NG CLOUD_DEPLOYER CLOUDFOUNDRY_STREAM ENABLE_RANDOM APP_NAME_PREFI X f al se

3.1 Using Custom Routes

As an alternative to random name, or to get even more control over the hostname used by the deployed
apps, one can use custom deployment properties, as such:

dat af | ow. >stream create foo --definition "http | |o0g"

dat af | ow: >stream depl oy foo --properties "deployer. http.cloudfoundry. domai n=nmydonai n. com
depl oyer. htt p. cl oudf oundry. host =nyhost,
depl oyer. http. cl oudf oundry. r out e- pat h=ny- pat h"

This would result in the ht t p app being bound to the URL nyhost . mydonai n. conf ny- pat h. Note
that this is an example showing all customization options available. One can of course only leverage
one or two out of the three.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 10

https://github.com/spring-cloud/spring-cloud-deployer-cloudfoundry#application-name-settings-and-deployments
http://myhost.mydomain.com/my-path

Spring Cloud Data Flow Server for Cloud Foundry

4. Deploying Docker Applications

Starting with version 1.2, it is possible to register and deploy Docker based apps as part of streams and
tasks using Data Flow for Cloud Foundry.

If you are using Spring Boot and RabbitMQ based Docker images you can provide a common
deployment property to facilitate the apps binding to the RabbitMQ service. Assuming your RabbitMQ
service is named r abbi t you can provide the following:

cf set-env datafl ow server SPRI NG APPL| CATI ON_JSON
"{"spring.cloud. dat af | ow. appl i cati onProperties.stream spring.rabbitng. addresses":
"${vcap. servi ces.rabbit.credential s. protocol s.anmgp. uris}"}'

For Spring Cloud Task apps, something similar to the following could be used, if using a database
service instance named nysql :

cf set-env SPRI NG DATASOURCE URL ' ${vcap. services. nysql.credentials.jdbcUrl}"

cf set-env SPRI NG _DATASOURCE_USERNAME ' ${vcap. servi ces. nysql . credenti al s. user nane}'
cf set-env SPRI NG _DATASOURCE_PASSWORD ' ${vcap. servi ces. nysql . credenti al s. password}"'
cf set-env SPRI NG DATASOURCE DRI VER_CLASS NAME 'org. mari adb. j dbc. Dri ver'

For non-Java or non-Boot apps, your Docker app would have to parse the VCAP_SERVI CES variable
in order to bind to any available services.

@ Passing application properties

When using non-boot apps, chances are that you want the application properties passed
to your app using traditional environment variables, as opposed to using the special
SPRI NG_APPLI CATI ON_JSONvariable. To achieve this, set the following variables for streams
and tasks, respectively:

SPRI NG_CLOUD_DEPLOYER CLOUDFOUNDRY_STREAM USE_SPRI NG_APPLI CATI ON_JSON=f al se
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_TASK_USE_SPRI NG_APPLI CATI ON_JSON=f al se

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 11

Spring Cloud Data Flow Server for Cloud Foundry

5. Application Level Service Bindings

When deploying streams in Cloud Foundry, you can take advantage of application specific service
bindings, so not all services are globally configured for all the apps orchestrated by Spring Cloud Data
Flow.

For instance, if you'd like to provide mysql service binding only for the j dbc application in the following
stream definition, you can pass the service binding as a deployment property.

dat af | ow. >stream create --name httptojdbc --definition "http | jdbc"
dat af | ow: >stream depl oy --name httptojdbc --properties
"depl oyer. j dbc. cl oudf oundry. servi ces=nysql Service"

Where, nysql Service is the name of the service specifically only bound to jdbc
application and the http application wouldn't get the binding by this method. If you have
more than one service to bind, they can be passed as comma separated items (eg:
depl oyer. j dbc. cl oudf oundry. servi ces=nysql Servi ce, soneSer vi ce).

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 12

Spring Cloud Data Flow Server for Cloud Foundry

6. A Note About User Provided Services

In addition to marketplace services, Cloud Foundry supports User Provided Services (UPS). Throughout
this reference manual, regular services have been mentioned, but there is nothing precluding the use
of UPSs as well, whether for use as the messaging middleware (e.g. if you'd like to use an external
Apache Kafka installation) or for ad hoc usage by some of the stream apps (e.g. an Oracle Database).

Let's review an example of extracting and supplying the connection credentials from an UPS.

» A sample UPS setup for Apache Kafka.

cf create-user-provi ded-servi ce kaf kacups -p '{”brokers":"HOST: PORT", "zkNodes": " HOST: PORT" }"

e The UPS credentials will be wrapped within VCAP_SERVI CES and it can be supplied directly in the
stream definition like the following.

stream create fooz --definition "time | |og"

stream depl oy fooz --properties "app.tine.spring.cloud. stream kaf ka. bi nder. br okers=

${vcap. servi ces. kaf kacups. credenti al s. broker s}, app. ti me. spri ng. cl oud. st ream kaf ka. bi nder . zkNodes=
${vcap. servi ces. kaf kacups. credenti al s. zkNodes}, app. | og. spri ng. cl oud. stream kaf ka. bi nder. br oker s=
${vcap. servi ces. kaf kacups. credenti al s. broker s}, app. | og. spri ng. cl oud. stream kaf ka. bi nder. zkNodes=
${vcap. servi ces. kaf kacups. credenti al s. zkNodes}"

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 13

https://docs.cloudfoundry.org/devguide/services/user-provided.html

Spring Cloud Data Flow Server for Cloud Foundry

7. Application Rolling Upgrades

Similar to Cloud Foundry’s blue-green deployments, you can perform rolling upgrades on the
applications orchestrated by Spring Cloud Data Flow.

Let’'s start with the following simple stream definition.

dat af | ow. >stream create --nane foo --definition "time | |0g" --deploy
List Apps.
cf apps
Getting apps in org test-org / space devel opnent as test@ivotal.io...
K
name requested state i nstances menory di sk urls
foo-1 og started 1/1 1G 1G foo-1og. cfapps.io
foo-time started 1/1 1G 1G foo-tine.cfapps.io

Let's assume you've to make an enhancement to update the "logger" to append extra text in every log
statement.

» Download the Log Si nk application starter with "Rabbit binder starter” from start-scs.cfapps.io/

» Load the downloaded project in an IDE
e Import the LogSi nkConfi gur ati on. cl ass

e Adapt the handler to add extra text: | oggi ngHandl er. set Logger Nane("TEST [" +
this.properties.getNane() + "]1");

 Build the application locally

@Bpr i ngBoot Appl i cati on
@ nport (LogSi nkConf i gurati on. cl ass)
public class DenpApplication {

@\ut owi r ed
private LogSi nkProperties properties;

public static void main(String[] args) {
SpringApplication. run(DenmoApplication.class, args);

}

@Bean

@ber vi ceAct i vat or (i nput Channel = Si nk. | NPUT)

publ i ¢ Loggi ngHandl er | 0gSi nkHandl er () {
Loggi ngHandl er | oggi ngHandl er = new Loggi ngHandl er (t hi s. properties. getLevel ().nane());
| oggi ngHandl er . set Expressi on(this. properties. get Expression());
| oggi ngHandl er . set Logger Nane(" TEST [" + this.properties.getNane() + "]");
return | oggi ngHandl er;

}

}

Let's deploy the locally built application to Cloud Foundry

‘# cf push foo-log-v2 -b java_buil dpack -p denp-0.0.1-SNAPSHOT.jar -n foo-10g-v2 --no-start

List Apps.

cf apps
Getting apps in org test-org / space devel opnment as test@ivotal.io...

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 14

https://docs.pivotal.io/pivotalcf/1-7/devguide/deploy-apps/blue-green.html
http://start-scs.cfapps.io/

Spring Cloud Data Flow Server for Cloud Foundry

K

nanme requested state i nstances menory di sk urls

f oo-1 og started 1/1 1G 1G foo-1og. cfapps.io
foo-tine started 1/1 1G 1G foo-tine.cfapps.io

f oo-1 0g-v2 stopped 1/1 1G 1G foo-10g-v2. cfapps.io

The stream applications do not communicate via (Go)Router, so they aren't generating HTTP
traffic. Instead, they communicate via the underlying messaging middleware such as Kafka or
RabbitMQ. In order to rolling upgrade to route the payload from old to the new version of the
application, you'd have to replicate the SPRI NG_APPLI CATI ON_JSON environment variable from
the old application that includes spri ng. cl oud. stream bi ndi ngs. i nput . desti nati on and
spring. cl oud. st ream bi ndi ngs. i nput . gr oup credentials.

@ Note

You can find the SPRI NG_APPLI CATI ON_J SONof the old applicationvia: " cf env f oo-1 og".

cf set-env foo-log-v2
SPRI NG_APPL| CATI ON_JSON ' {"spri ng. cl oud. st ream bi ndi ngs. i nput. destination":"foo.tinme", "spring.cloud. stream bi ndi ngs. i nput.

Let's start f 0o- | 0og- v2 application.

cf start foo-1o0g-v2

As soon as the application bootstraps, you'd now notice the payload being load balanced between two
log application instances running on Cloud Foundry. Since they both share the same "destination" and
"consumer group", they are now acting as competing consumers.

Old App Logs:
2016- 08- 08T17: 11: 08. 94- 0700 [APP/ 0] QOUT 2016-08-09 00: 11: 08.942 INFO 19 --- [foo.tine.foo-1]
| 0g. si nk : 08/09/16 00:11: 08
2016- 08- 08T17: 11: 10. 95- 0700 [APP/ 0] QUT 2016-08-09 00: 11:10.954 INFO 19 --- [foo.tine.foo-1]
| 0g. si nk : 08/09/16 00:11:10
2016- 08- 08T17: 11: 12. 94- 0700 [APP/ 0] QOUT 2016-08-09 00: 11:12.944 [INFO 19 --- [foo.tine.foo-1]
| 0g. si nk : 08/09/16 00:11:12

New App Logs:

2016- 08-08T17: 11: 07. 94- 0700 [APP/ 0] QUT 2016-08-09 00:11:07.945 INFO 26 --- [foo.time.foo-1] TEST
[l og. si nk : 08/09/16 00:11:07]

2016- 08- 08T17: 11: 09. 92- 0700 [APP/ 0] QUT 2016-08-09 00:11:09.925 INFO 26 --- [foo.tine.foo-1] TEST
[10g. sink : 08/09/16 00:11:09]

2016- 08-08T17: 11: 11. 94- 0700 [APP/ 0] QUT 2016-08-09 00:11:11.941 |INFO 26 --- [foo.tinme.foo-1] TEST
[1 o0g. sink : 08/09/16 00:11: 11]

Deleting the old version f oo- | og from the CF CLI would make all the payload consumed by the f 0o-
| 0g- v2 application. Now, you've successfully upgraded an application in the streaming pipeline without
bringing it down in entirety to do an adjustment in it.

List Apps.
cf apps
Getting apps in org test-org / space devel opment as test@ivotal.io...
K
nanme requested state i nstances menory di sk urls
foo-tine started 1/1 1G 1G foo-tine.cfapps.io
foo-1o0g-v2 started 1/1 1G 1G foo-10g-v2. cfapps.io

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 15

Spring Cloud Data Flow Server for Cloud Foundry

@ Note

A comprehensive canary analysis along with rolling upgrades will be supported via Spinnaker
in future releases.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 16

http://www.spinnaker.io/

Spring Cloud Data Flow Server for Cloud Foundry

8. Maximum Disk Quota Configuration

By default, every application in Cloud Foundry starts with 1G disk quota and this can be adjusted to
a default maximum of 2G. The default maximum can also be overridden up to 10G via Pivotal Cloud
Foundry’s (PCF) Ops Manager GUI.

This configuration is relevant for Spring Cloud Data Flow because every stream and task deployment is
composed of applications (typically Spring Boot uber-jar’s) and those applications are resolved from a
remote maven repository. After resolution, the application artifacts are downloaded to the local Maven
Repository for caching/reuse. With this happening in the background, there is a possibility the default
disk quota (1G) fills up rapidly; especially, when we are experimenting with streams that are made
up of unique applications. In order to overcome this disk limitation and depending on your scaling
requirements,you may want to change the default maximum from 2G to 10G. Let's review the steps to
change the default maximum disk quota allocation.

8.1 PCF’s Operations Manager Configuration

From PCF's Ops Manager, Select "Pivotal Elastic Runtime" tile and navigate to "Application
Developer Controls" tab. Change the "Maximum Disk Quota per App (MB)" setting from 2048
to 10240 (10G). Save the disk quota update and hit "Apply Changes" to complete the configuration
override.

8.2 Scale Application

Once the disk quota change is applied successfully and assuming you've a running application, you
may scale the application with a new di sk_1 i m t through CF CLI.

cf scal e datafl owserver -k 10GB
Scal i ng app datafl owserver in org ORG/ space SPACE as user...
K
state since cpu menory di sk details
#0 runni ng 2016-10-31 03:07:23 PM 1.8% 497.9M of 1.1G 193. 9M of 10G
cf apps
Getting apps in org ORG/ space SPACE as user...
K
name requested state i nst ances menory di sk urls
dat af | ow server started 1/1 1.1G 10G dat af | ow server. apps.io

8.3 Configuring target free disk percentage

Even when configuring the Data Flow server to use 10G of space, there is the possibility of exhausting
the available space on the local disk. The server implements a least recently used (LRU) algorithm
that will remove maven artifacts from the local maven repository. This is configured using the following
configuration property, the default value is 25.

The | ow water mark percentage, expressed as in integer between 0 and 100, that triggers cleanup of
the local nmaven repository

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 17

Spring Cloud Data Flow Server for Cloud Foundry

(for setting env var use SPRI NG CLOUD DATAFLOW SERVER CLOUDFOUNDRY_FREE_DI SK_SPACE_PERCENTAGE)
spring. cl oud. dat af | ow. server. cl oudf oundry. f reeDi skSpacePer cent age=25

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry

18

Spring Cloud Data Flow Server for Cloud Foundry

9. Application Resolution Alternatives

Though we highly recommend using Maven Repository for application resolution and registration in
Cloud Foundry, there might be situations where an alternative approach would make sense. Following
alternative options could come handy for resolving applications when running on Cloud Foundry.

With the help of Spring Boot, we can serve static content in Cloud Foundry. A simple Spring Boot
application can bundle all the required stream/task applications and by having it run on Cloud Foundry,
the static application can then serve the Uber-jar's. From the Shell, you can, for example, register
the app with the name ht t p- source. j ar via--uri=http://<Route-To-Stati cApp>/http-
source. jar.

The Uber-jar's can be hosted on any external server that's reachable via HTTP. They can be resolved
from raw GitHub URIs as well. From the Shell, you can, for example, register the app with the name
http-source.jar via--uri=http://<Raw Gt Hub_URI >/ htt p- source.j ar.

Static Buildpack support in Cloud Foundry is another option. A similar HTTP resolution will work on
this model, too.

Volume Services is another great option. The required Uber-jar's can be hosted in an external file-
system and with the help of volume-services, you can, for example, register the app with the name
http-source.jar via--uri=file://<Path-To-FileSystenms/ http-source.jar.

Spring Cloud Data Flow

1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 19

http://docs.spring.io/spring-cloud-dataflow/docs/1.3.0.BUILD-SNAPSHOT/reference/htmlsingle/#spring-cloud-dataflow-register-stream-apps
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-developing-web-applications.html#boot-features-spring-mvc-static-content
http://docs.cloudfoundry.org/buildpacks/staticfile/index.html
https://docs.cloudfoundry.org/devguide/services/using-vol-services.html

Part Il. Applications

A selection of pre-built stream and task/batch starter apps for various data integration and processing
scenarios facilitate learning and experimentation. For more details, review how to register applications

http://cloud.spring.io/spring-cloud-stream-app-starters/
http://cloud.spring.io/spring-cloud-task-app-starters/

Part Ill. Architecture

Spring Cloud Data Flow Server for Cloud Foundry

10. Introduction

Spring Cloud Data Flow simplifies the development and deployment of applications focused on data
processing use-cases. The major concepts of the architecture are Applications, the Data Flow Server,
and the target runtime.

Applications come in two flavors

* Long lived Stream applications where an unbounded amount of data is consumed or produced via
messaging middleware.

» Short lived Task applications that process a finite set of data and then terminate.
Depending on the runtime, applications can be packaged in two ways

» Spring Boot uber-jar that is hosted in a maven repository, file, http or any other Spring resource
implementation.

* Docker

The runtime is the place where applications execute. The target runtimes for applications are platforms
that you may already be using for other application deployments.

The supported runtimes are
e Cloud Foundry

» Apache YARN

Kubernetes
» Apache Mesos
* Local Server for development

There is a deployer Service Provider Interface (SPI) that enables you to extend Data Flow to deploy
onto other runtimes, for example to support Docker Swarm. There are community implementations of
Hashicorp’s Nomad and RedHat Openshift is available. We look forward to working with the community
for further contributions!

The component that is responsible for deploying applications to a runtime is the Data Flow Server. There
is a Data Flow Server executable jar provided for each of the target runtimes. The Data Flow server
is responsible for:

* Interpreting and executing a stream DSL that describes the logical flow of data through multiple long
lived applications.

» Launching a long lived task application

* Interpreting and executing a composed task DSL that describes the logical flow of data through
multiple short lived applications.

» Applyhing a deployment manifest that describes the mapping of applications onto the runtime. For
example, to set the initial number of instances, memory requirements, and data partitioning.

» Providing the runtime status of deployed applications

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 22

Spring Cloud Data Flow Server for Cloud Foundry

As an example, the stream DSL to describe the flow of data from an http source to an Apache Cassandra
sink would be written as “http | cassandra”. These names in the DSL are registered with the Data
Flow Server and map onto application artifacts that can be hosted in Maven or Docker repositories.
Many source, processor, and sink applications for common use-cases (e.g. jdbc, hdfs, http, router)
are provided by the Spring Cloud Data Flow team. The pipe symbol represents the communication
between the two applications via messaging middleware. The two messaging middleware brokers that
are supported are

» Apache Kafka
* RabbitMQ

In the case of Kafka, when deploying the stream, the Data Flow server is responsible to create the topics
that correspond to each pipe symbol and configure each application to produce or consume from the
topics so the desired flow of data is achieved.

The interaction of the main components is shown below

| Stream DSL | Data Flow
| http | cassandra I——)

Server

l

Target Runtime

Spring Boot

cassandra

Applications \ /

Figure 10.1. The Spring Cloud Data High Level Architecure

In this diagram a DSL description of a stream is POSTed to the Data Flow Server. Based on the
mapping of DSL application names to Maven and Docker artifacts, the http-source and cassandra-sink
applications are deployed on the target runtime.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 23

Spring Cloud Data Flow Server for Cloud Foundry

11. Microservice Architectural Style

The Data Flow Server deploys applications onto the target runtime that conform to the microservice
architectural style. For example, a stream represents a high level application that consists of multiple
small microservice applications each running in their own process. Each microservice application can
be scaled up or down independent of the other and each has their own versioning lifecycle.

Both Streaming and Task based microservice applications build upon Spring Boot as the foundational
library. This gives all microservice applications functionality such as health checks, security, configurable
logging, monitoring and management functionality, as well as executable JAR packaging.

It is important to emphasise that these microservice applications are ‘just apps’ that you can run
by yourself using ‘java -jar'’ and passing in appropriate configuration properties. We provide many
common microservice applications for common operations so you don’t have to start from scratch when
addressing common use-cases which build upon the rich ecosystem of Spring Projects, e.g Spring
Integration, Spring Data, Spring Hadoop and Spring Batch. Creating your own microservice application
is similar to creating other Spring Boot applications, you can start using the Spring Initialzr web site or
the Ul to create the basic scaffolding of either a Stream or Task based microservice.

In addition to passing in the appropriate configuration to the applications, the Data Flow server is
responsible for preparing the target platform’s infrastructure so that the application can be deployed. For
example, in Cloud Foundry it would be binding specified services to the applications and executing the
‘cf push’ command for each application. For Kubernetes it would be creating the replication controller,
service, and load balancer.

The Data Flow Server helps simplify the deployment of multiple applications onto a target runtime, but
one could also opt to deploy each of the microservice applications manually and not use Data Flow at
all. This approach might be more appropriate to start out with for small scale deployments, gradually
adopting the convenience and consistency of Data Flow as you develop more applications. Manual
deployment of Stream and Task based microservices is also a useful educational exercise that will help
you better understand some of the automatic applications configuration and platform targeting steps
that the Data Flow Server provides.

11.1 Comparison to other Platform architectures

Spring Cloud Data Flow's architectural style is different than other Stream and Batch processing
platforms. For example in Apache Spark, Apache Flink, and Google Cloud Dataflow applications run on
a dedicated compute engine cluster. The nature of the compute engine gives these platforms a richer
environment for performing complex calculations on the data as compared to Spring Cloud Data Flow,
but it introduces complexity of another execution environment that is often not needed when creating
data centric applications. That doesn’t mean you cannot do real time data computations when using
Spring Cloud Data Flow. Refer to the analytics section which describes the integration of Redis to handle
common counting based use-cases as well as the RxJava integration for functional API driven analytics
use-cases, such as time-sliding-window and moving-average among others.

Similarly, Apache Storm, Hortonworks DataFlow and Spring Cloud Data Flow’'s predecessor, Spring
XD, use a dedicated application execution cluster, unique to each product, that determines where your
code should execute on the cluster and perform health checks to ensure that long lived applications are
restarted if they fail. Often, framework specific interfaces are required to be used in order to correctly
“plug in” to the cluster’s execution framework.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 24

Spring Cloud Data Flow Server for Cloud Foundry

As we discovered during the evolution of Spring XD, the rise of multiple container frameworks in
2015 made creating our own runtime a duplication of efforts. There is no reason to build your own
resource management mechanics, when there are multiple runtime platforms that offer this functionality
already. Taking these considerations into account is what made us shift to the current architecture
where we delegate the execution to popular runtimes, runtimes that you may already be using for other
purposes. This is an advantage in that it reduces the cognitive distance for creating and managing data
centric applications as many of the same skills used for deploying other end-user/web applications are
applicable.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 25

Spring Cloud Data Flow Server for Cloud Foundry

12. Streaming Applications

While Spring Boot provides the foundation for creating DevOps friendly microservice applications,
other libraries in the Spring ecosystem help create Stream based microservice applications. The most
important of these is Spring Cloud Stream.

The essence of the Spring Cloud Stream programming model is to provide an easy way to describe
multiple inputs and outputs of an application that communicate over messaging middleware. These input
and outputs map onto Kafka topics or Rabbit exchanges and queues. Common application configuration
for a Source that generates data, a Process that consumes and produces data and a Sink that consumes
data is provided as part of the library.

12.1 Imperative Programming Model

Spring Cloud Stream is most closely integrated with Spring Integration’s imperative "event at a time"
programming model. This means you write code that handles a single event callback. For example,

@nabl eBi ndi ng(Si nk. cl ass)
public class Loggi ngSi nk {

@t r eanli st ener (Si nk. | NPUT)
public void log(String nessage) {
System out. printl n(nessage);

}

In this case the String payload of a message coming on the input channel, is handed to the log method.
The @nabl eBi ndi ng annotation is what is used to tie together the input channel to the external
middleware.

12.2 Functional Programming Model

However, Spring Cloud Stream can support other programming styles. The use of reactive APIs where
incoming and outgoing data is handled as continuous data flows and it defines how each individual
message should be handled. You can also use operators that describe functional transformations from
inbound to outbound data flows. The upcoming versions will support Apache Kafka’'s KStream APl in
the programming model.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 26

Spring Cloud Data Flow Server for Cloud Foundry

13. Streams

13.1 Topologies

The Stream DSL describes linear sequences of data flowing through the system. For example, in the
stream definition http | transformer | cassandr a, each pipe symbol connects the application
on the left to the one on the right. Named channels can be used for routing and to fan out data to multiple
messaging destinations.

Taps can be used to ‘listen in’ to the data that if flowing across any of the pipe symbols. Taps can be
used as sources for new streams with an in independent life cycle.

13.2 Concurrency

For an application that will consume events, Spring Cloud stream exposes a concurrency setting that
controls the size of a thread pool used for dispatching incoming messages. See the Consumer properties
documentation for more information.

13.3 Partitioning

A common pattern in stream processing is to partition the data as it moves from one application to
the next. Partitioning is a critical concept in stateful processing, for either performance or consistency
reasons, to ensure that all related data is processed together. For example, in a time-windowed average
calculation example, it is important that all measurements from any given sensor are processed by the
same application instance. Alternatively, you may want to cache some data related to the incoming
events so that it can be enriched without making a remote procedure call to retrieve the related data.

Spring Cloud Data Flow supports partitioning by configuring Spring Cloud Stream’s output and input
bindings. Spring Cloud Stream provides a common abstraction for implementing partitioned processing
use cases in a uniform fashion across different types of middleware. Partitioning can thus be used
whether the broker itself is naturally partitioned (e.g., Kafka topics) or not (e.g., RabbitMQ). The following
image shows how data could be partitioned into two buckets, such that each instance of the average
processor application consumes a unique set of data.

HTTP —_——
e : N Average
Partition 1 *‘ Processor ‘
N S 4 (.
HTTP
J - = (Average |
HTTP \ ’

Topic
Figure 13.1. Spring Cloud Stream Partitioning

To use a simple partitioning strategy in Spring Cloud Data Flow, you only need set the instance count for
each application in the stream and a parti ti onKeyExpr essi on producer property when deploying
the stream. The parti ti onKeyExpr essi on identifies what part of the message will be used as the
key to partition data in the underlying middleware. An i ngest stream can be defined as http |
aver ageprocessor | cassandr a (Note that the Cassandra sink isn’t shown in the diagram above).

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 27

http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_consumer_properties

Spring Cloud Data Flow Server for Cloud Foundry

Suppose the payload being sent to the http source was in JSON format and had a field called sensor | d.
Deploying the stream with the shell command stream deploy ingest --propertiesFile
i ngest Stream properti es where the contents of the file i ngest Stream properti es are

depl oyer. http. count =3
depl oyer . aver agepr ocessor . count =2
app. htt p. producer. partiti onKeyExpr essi on=payl oad. sensor | d

will deploy the stream such that all the input and output destinations are configured for data to
flow through the applications but also ensure that a unique set of data is always delivered to each
averageprocessor instance. In this case the default algorithm is to evaluate payl oad. sensorld %
partiti onCount where the partiti onCount is the application count in the case of RabbitMQ and
the partition count of the topic in the case of Kafka.

Please refer to the section called “Passing stream partition properties” for additional strategies to
partition streams during deployment and how they map onto the underlying Spring Cloud Stream
Partitioning properties.

Also note, that you can't currently scale partitioned streams. Read the section Section 17.3, “Scaling
at runtime” for more information.

13.4 Message Delivery Guarantees

Streams are composed of applications that use the Spring Cloud Stream library as the basis for
communicating with the underlying messaging middleware product. Spring Cloud Stream also provides
an opinionated configuration of middleware from several vendors, in particular providing persistent
publish-subscribe semantics.

The Binder abstraction in Spring Cloud Stream is what connects the application to the middleware. There
are several configuration properties of the binder that are portable across all binder implementations
and some that are specific to the middleware.

For consumer applications there is a retry policy for exceptions generated during message
handling. The retry policy is configured using the common consumer properties maxAttenpts,
backOffInitiallnterval, backCOi f Maxl nterval, and backO f Mul tiplier. The default
values of these properties will retry the callback method invocation 3 times and wait one second for the
first retry. A backoff multiplier of 2 is used for the second and third attempts.

When the number of retry attempts has exceeded the naxAt t enpt s value, the exception and the failed
message will become the payload of a message and be sent to the application’s error channel. By
default, the default message handler for this error channel logs the message. You can change the default
behavior in your application by creating your own message handler that subscribes to the error channel.

Spring Cloud Stream also supports a configuration option for both Kafka and RabbitMQ binder
implementations that will send the failed message and stack trace to a dead letter queue. The dead letter
gueue is a destination and its nature depends on the messaging middleware (e.g in the case of Kafka it
is a dedicated topic). To enable this for RabbitMQ set the consumer properties r epubl i sht oDl g and
aut oBi ndDl q and the producer property aut oBi ndDl g to true when deploying the stream. To always
apply these producer and consumer properties when deploying streams, configure them as common
application properties when starting the Data Flow server.

Additional messaging delivery guarantees are those provided by the underlying messaging middleware
that is chosen for the application for both producing and consuming applications. Refer to the Kafka

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 28

http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_partitioning
http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_partitioning
http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_persistent_publish_subscribe_support
http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_persistent_publish_subscribe_support
http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_binders
http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_consumer_properties
http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_rabbitmq_consumer_properties
http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_rabbit_producer_properties

Spring Cloud Data Flow Server for Cloud Foundry

Consumer and Producer and Rabbit Consumer and Producer documentation for more details. You will
find extensive declarative support for all the native QOS options.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 29

http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_kafka_consumer_properties
http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_kafka_producer_properties
http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_rabbitmq_consumer_properties
http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_rabbit_producer_properties

Spring Cloud Data Flow Server for Cloud Foundry

14. Analytics

Spring Cloud Data Flow is aware of certain Sink applications that will write counter data to Redis and
provides an REST endpoint to read counter data. The types of counters supported are

» Counter - Counts the number of messages it receives, optionally storing counts in a separate store
such as redis.

 Field Value Counter - Counts occurrences of unique values for a named field in a message payload

» Aggregate Counter - Stores total counts but also retains the total count values for each minute, hour
day and month.

It is important to note that the timestamp that is used in the aggregate counter can come from a field in
the message itself so that out of order messages are properly accounted.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 30

https://github.com/spring-cloud-stream-app-starters/counter/tree/master/spring-cloud-starter-stream-sink-counter
https://github.com/spring-cloud-stream-app-starters/field-value-counter/tree/master/spring-cloud-starter-stream-sink-field-value-counter
https://github.com/spring-cloud-stream-app-starters/aggregate-counter/tree/master/spring-cloud-starter-stream-sink-aggregate-counter

Spring Cloud Data Flow Server for Cloud Foundry

15. Task Applications

The Spring Cloud Task programming model provides:

» Persistence of the Task’s lifecycle events and exit code status.

« Lifecycle hooks to execute code before or after a task execution.

» Emit task events to a stream (as a source) during the task lifecycle.

« Integration with Spring Batch Jobs.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry

31

Spring Cloud Data Flow Server for Cloud Foundry

16. Data Flow Server

16.1 Endpoints

The Data Flow Server uses an embedded servlet container and exposes REST endpoints for creating,
deploying, undeploying, and destroying streams and tasks, querying runtime state, analytics, and the
like. The Data Flow Server is implemented using Spring’s MVC framework and the Spring HATEOAS
library to create REST representations that follow the HATEOAS principle.

Dataflow REST-API
Server Deployer SPI

Admin / Flo Ul

AN Nos

CURL nof@EV
Cloud @undry @ X

Figure 16.1. The Spring Cloud Data Flow Server

16.2 Customization

Each Data Flow Server executable jar targets a single runtime by delegating to the implementation of
the deployer Service Provider Interface found on the classpath.

We provide a Data Flow Server executable jar that targets a single runtime. The Data Flow server
delegates to the implementation of the deployer Service Provider Interface found on the classpath. In
the current version, there are no endpoints specific to a target runtime, but may be available in future
releases as a convenience to access runtime specific features

While we provide a server executable for each of the target runtimes you can also create your own
customized server application using Spring Initialzr. This let's you add or remove functionality relative
to the executable jar we provide. For example, adding additional security implementations, custom

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 32

https://github.com/spring-projects/spring-hateoas

Spring Cloud Data Flow Server for Cloud Foundry

endpoints, or removing Task or Analytics REST endpoints. You can also enable or disable some features
through the use of feature toggles.

16.3 Security

The Data Flow Server executable jars support basic http, LDAP(S), File-based, and OAuth 2.0
authentication to access its endpoints. Refer to the security section for more information.

Authorization via groups is planned for a future release.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 33

Spring Cloud Data Flow Server for Cloud Foundry

17. Runtime

17.1 Fault Tolerance

The target runtimes supported by Data Flow all have the ability to restart a long lived application should
it fail. Spring Cloud Data Flow sets up whatever health probe is required by the runtime environment
when deploying the application.

The collective state of all applications that comprise the stream is used to determine the state of the
stream. If an application fails, the state of the stream will change from ‘deployed’ to ‘partial’.

17.2 Resource Management

Each target runtime lets you control the amount of memory, disk and CPU that is allocated to each
application. These are passed as properties in the deployment manifest using key names that are unique
to each runtime. Refer to the each platforms server documentation for more information.

17.3 Scaling at runtime

When deploying a stream, you can set the instance count for each individual application that comprises
the stream. Once the stream is deployed, each target runtime lets you control the target number of
instances for each individual application. Using the APIs, Uls, or command line tools for each runtime,
you can scale up or down the number of instances as required. Future work will provide a portable
command in the Data Flow Server to perform this operation.

Currently, this is not supported with the Kafka binder (based on the 0.8 simple consumer at the time
of the release), as well as partitioned streams, for which the suggested workaround is redeploying
the stream with an updated number of instances. Both cases require a static consumer set up based
on information about the total instance count and current instance index, a limitation intended to be
addressed in future releases. For example, Kafka 0.9 and higher provides good infrastructure for scaling
applications dynamically and will be available as an alternative to the current Kafka 0.8 based binder
in the near future. One specific concern regarding scaling partitioned streams is the handling of local
state, which is typically reshuffled as the number of instances is changed. This is also intended to be
addressed in the future versions, by providing first class support for local state management.

17.4 Application Versioning

Application versioning, that is upgrading or downgrading an application from one version to another, is
not directly supported by Spring Cloud Data Flow. You must rely on specific target runtime features to
perform these operational tasks.

The roadmap for Spring Cloud Data Flow will deploy applications that are compatible with Spinnaker
to manage the complete application lifecycle. This also includes automated canary analysis backed by
application metrics. Portable commands in the Data Flow server to trigger pipelines in Spinnaker are
also planned.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 34

Part IV. Server Configuration

In this section you will learn how to configure Spring Cloud Data Flow server’s features such as the
relational database to use and security. You will also learn how to configure Spring Cloud Data Flow
shell’s features.

Spring Cloud Data Flow Server for Cloud Foundry

18. Feature Toggles

Data Flow server offers specific set of features that can be enabled/disabled when launching. These
features include all the lifecycle operations, REST endpoints (server, client implementations including
Shell and the UlI) for:

1. Streams
2. Tasks
3. Analytics

One can enable, disable these features by setting the following boolean properties when launching the
Data Flow server:

e spring. cloud. dat af | ow. f eat ures. streans- enabl ed
e spring. cloud. dat af | ow. f eat ur es. t asks- enabl ed
e spring. cloud. dat af | ow. f eat ur es. anal yti cs-enabl ed

By default, all the features are enabled. Note: Since analytics feature is enabled by default, the Data
Flow server is expected to have a valid Redis store available as analytic repository as we provide a
defaultimplementation of analytics based on Redis. This also means that the Data Flow server'sheal t h
depends on the redis store availability as well. If you do not want to enabled HTTP endpoints to read
analytics data written to Redis, then disable the analytics feature using the property mentioned above.

The REST endpoint / f eat ur es provides information on the features enabled/disabled.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 36

Spring Cloud Data Flow Server for Cloud Foundry

19. Security

By default, the Data Flow server is unsecured and runs on an unencrypted HTTP connection. You
can secure your REST endpoints, as well as the Data Flow Dashboard by enabling HTTPS and
requiring clients to authenticate. For more details about securing the REST endpoints and configuring
to authenticate against an OAUTH backend (i.e: UAA/SSO running on Cloud Foundry), please review
the security section from the core reference guide. The security configurations can be configured in
dat af | ow server.ym or passed as environment variables through cf set -env commands.

19.1 Authentication and Cloud Foundry

Spring Cloud Data Flow can either integrate with Pivotal Single Sign-On Service (E.g. on PWS) or Cloud
Foundry User Account and Authentication (UAA) Server.

Pivotal Single Sign-On Service

When deploying Spring Cloud Data Flow to Cloud Foundry you can simply bind the application to the
Pivotal Single Sign-On Service. By doing so, Spring Cloud Data Flow takes advantage of the Spring
Cloud Single Sign-On Connector, which provides Cloud Foundry specific auto-configuration support for
OAuth 2.0.

Simply bind the Pivotal Single Sign-On Service to your Data Flow Server app and Single Sign-On (SSO)
via OAuth2 will be enabled by default.

Authorization is similarly support as for non-Cloud Foundry security scenarios. Please refer to the
security section from the core Data Flow reference guide.

As the provisioning of roles can vary widely across environments, we assign by default all Spring Cloud
Data Flow roles to users.

This can be customized by providing your own AuthoritiesExtractor.

One possible approach to set the custom AuthoritiesExtractor on the
User | nf oTokenSer vi ces could be this:

public class MyUserl nfoTokenServi cesPost Processor
i mpl ement s BeanPost Processor {

@verride
public Object postProcessBeforelnitialization(Object bean, String beanNane) {
i f (bean instanceof UserlnfoTokenServices) {
final UserlnfoTokenServices userlnfoTokenServices = (UserlnfoTokenServi ces) bean;
user | nf oTokenSer vi ces. set Aut hori ti esExtractor (ctx. get Bean(AuthoritiesExtractor.class));
}

return bean;

}

@verride
public Object postProcessAfterlnitialization(Object bean, String beanNane) {
return bean;
}
}

And you simply declare it in your configuration class:

@Bean
publ i ¢ BeanPost Processor nyUser | nf oTokenSer vi cesPost Processor () {
BeanPost Processor post Processor = new MyUser | nf oTokenSer vi cesPost Processor () ;

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 37

http://docs.spring.io/spring-cloud-dataflow/docs/1.3.0.BUILD-SNAPSHOT/reference/html/getting-started-security.html
https://github.com/pivotal-cf/spring-cloud-sso-connector
https://github.com/pivotal-cf/spring-cloud-sso-connector
http://docs.spring.io/spring-cloud-dataflow/docs/1.3.0.BUILD-SNAPSHOT/reference/html/getting-started-security.html
http://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/autoconfigure/security/oauth2/resource/AuthoritiesExtractor.html

Spring Cloud Data Flow Server for Cloud Foundry

return postProcessor;

}

Cloud Foundry UAA

The availability of this option depends on the used Cloud Foundry environment. In order to provide UAA
integration, you have to manually provide the necessary OAuth2 configuration properties, for instance
via the SPRI NG_APPLI| CATI ON_JSON property.

{
"security.oauth2.client.client-id": "scdf",
"security.oauth2.client.client-secret": "scdf-secret",
"security.oauth2.client.access-token-uri": "https://login.cf.nyhost.conf oauth/token",
"security.oauth2.client.user-authorization-uri": "https://login.cf.nmyhost.conf oauth/authorize",
"security.oauth2.resource.user-info-uri": "https://1ogin.cf.nmhost.confuserinfo"

By default, the property spri ng. cl oud. dat af | ow. security. cf-use-uaa is set to true. This
property will activate a special

AuthoritiesExtractor CloudFoundryDataflowAuthoritiesExtractor.

If CloudFoundry UAA is not used, then make sure to set spri ng. cl oud. dat af | ow. security. cf-
use-uaatofal se.

Under the covers this AuthoritiesExtractor will call out to the Cloud Foundry Apps APl and ensure that
users are in fact Space Developers.

If the authenticated user is verified as Space Developer, all roles will be assigned, otherwise no roles
whatsoever will be assigned. In that case you may see the following Dashboard screen:

&) spring

Roles Missing

It appears that you are missing the proper roles to use the Dashboard. Please contact your administrator to rectify the
situation.

Figure 19.1. Accessing the Data Flow Dashboard without Roles

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 38

http://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/autoconfigure/security/oauth2/resource/AuthoritiesExtractor.html
https://apidocs.cloudfoundry.org/253/apps/retrieving_permissions_on_a_app.html

Spring Cloud Data Flow Server for Cloud Foundry

20. Configuration Reference

The following pieces of configuration must be provided. These are Spring Boot
@confi gurati onProperti es soyou can setthem as environment variables or by any other means
that Spring Boot supports. Here is a listing in environment variable format as that is an easy way to get
started configuring Boot applications in Cloud Foundry.

Default values cited after the equal sign.
Exanpl e val ues, typical for Pivotal Wb Services, cited as a coment

url of the CF APl (used when using cf login -a for exanple), e.g. https://api.run.pivotal.io
(for setting env var use SPRI NG CLOUD DEPLOYER_ CLOUDFOUNDRY_URL)
spring. cl oud. depl oyer. cl oudf oundry. url =

nanme of the organization that owns the space above, e.g. youruser-org
(For Setting Env var use SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_ORG
spring. cl oud. depl oyer. cl oudf oundry. or g=

name of the space into which nodules will be depl oyed, e.g. devel opnent
(for setting env var use SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_SPACE)
spring. cl oud. depl oyer. cl oudf oundry. space=

the root domain to use when mapping routes, e.g. cfapps.io
(for setting env var use SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_DOVAI N)
spring. cl oud. depl oyer. cl oudf oundry. domai n=

usernane and password of the user to use to create apps

(for setting env var use SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_USERNAME and
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_PASSWORD)

spring. cl oud. depl oyer. cl oudf oundry. user name=

spring. cl oud. depl oyer. cl oudf oundry. passwor d=

Whether to allow self-signed certificates during SSL validation
(for setting env var use SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_SKI P_SSL_VALI DATI ON)
spring. cl oud. depl oyer. cl oudf oundry. ski pSsl Val i dati on=f al se

Comma separated set of service instance names to bind to every stream app depl oyed.
Anongst ot her things, this should include a service that will be used

for Spring Coud Stream binding, e.g. rabbit

(for setting env var use SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_STREAM SERVI CES)
spring. cl oud. depl oyer. cl oudf oundry. stream servi ces=

Health check type to use for stream apps. Accepts 'none' and 'port'
spring. cl oud. depl oyer. cl oudf oundry. stream heal t h- check=

Conme separated set of service instance nanmes to bind to every task app depl oyed.
Amongst other things, this should include an RDBMS service that will be used

for Spring O oud Task execution reporting, e.g. ny_nysql

(for setting env var use SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY TASK_SERVI CES)
spring. cl oud. depl oyer. cl oudf oundry. t ask. servi ces=

Tineout to use, in seconds, when doing bl ocking APl calls to C oud Foundry.
(for setting env var use SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_TASK_API _TI MEQUT
and SPRI NG_CLOUD_DEPLOYER CLOUDFOUNDRY_STREAM APl _TI MEQUT)

spring. cl oud. depl oyer. cl oudf oundry. stream api Ti reout =360

spring. cl oud. depl oyer. cl oudf oundry. t ask. api Ti meout =360

Tinmeout to use, in mlliseconds, when querying the O oud Foundry APl to conpute app status.
(for setting env var use SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_TASK_STATUS_TI MEQUT

and SPRI NG_CLOUD_DEPLOYER CLOUDFOUNDRY_STREAM STATUS_TI MEQUT)

spring. cl oud. depl oyer. cl oudf oundry. stream st at usTi meout =5000

spring. cl oud. depl oyer. cl oudf oundry. t ask. st at usTi meout =5000

Note that you can set the following properties
spring. cl oud. depl oyer. cl oudf oundry. servi ces,

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 39

Spring Cloud Data Flow Server for Cloud Foundry

spring. cl oud. depl oyer. cl oudf oundry. bui | dpack or the Spring Cloud Deployer standard
spring. cl oud. depl oyer. nenory and spri ng. cl oud. depl oyer . di sk as part of an individual
deployment request by using the depl oyer . <app- nanme> shortcut. For example

>stream create --nanme ticktock --definition "time | |og"
>stream depl oy --nane ticktock --properties "deployer.tine. menory=2g"

will deploy the time source with 2048MB of memory, while the log sink will use the default 1024MB.

20.1 Understanding what’s going on

If you want to get better insights into what is happening when your streams and tasks are being deployed,
you may want to turn on the following features:

» Reactor "stacktraces", showing which operators were involved before an error occurred. This is helpful
as the deployer relies on project reactor and regular stacktraces may not always allow understanding
the flow before an error happened. Note that this comes with a performance penalty, so is disabled
by default.

spring. cl oud. dat af | ow. server. cl oudf oundry. debugReactor = true

» Deployer and Cloud Foundry client library request/response logs. This allows seeing detailed
conversation between the Data Flow server and the Cloud Foundry Cloud Controller.

1 oggi ng. | evel . cl oudf oundry-client = DEBUG

20.2 Using Spring Cloud Config Server

Spring Cloud Config Server can be used to centralize configuration properties for Spring Boot
applications. Likewise, both Spring Cloud Data Flow and the applications orchestrated using Spring
Cloud Data Flow can be integrated with config-server to leverage the same capabilities.

Stream, Task, and Spring Cloud Config Server

Similar to Spring Cloud Data Flow server, it is also possible to configure both the stream and
task applications to resolve the centralized properties from config-server. Setting the property
spring. cl oud. confi g.uri for the deployed applications is a common way to bind to the Config
Server. See the Spring Cloud Config Client reference guide for more information. Since this property
is likely to be used across all applications deployed by the Data Flow server, the Data Flow
Server’s property spri ng. cl oud. dat af | ow. appl i cati onProperti es. st reamfor stream apps
and spring. cl oud. dat af | ow. appl i cati onProperties.task for task apps can be used to
pass the ur i of the Config Server to each deployed stream or task application. Refer to the section on
Common application properties for more information.

If you're using applications from the App Starters project, note that these applications already
embed the spri ng-cl oud-servi ces-starter-config-client dependency. If you're building
your application from scratch and want to add the client side support for config server, simply add a
reference dependency reference to the config server client library. A maven example snippet follows:

<dependency>

<groupl d>i o. pi votal . spring. cl oud</ gr oupl d>
<artifactld>spring-cloud-services-starter-config-client</artifactld>

<ver si on>CONFI G_CLI| ENT_VERSI ON</ ver si on>
</ dependency>

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 40

https://cloud.spring.io/spring-cloud-config/spring-cloud-config.html#_spring_cloud_config_client
http://cloud.spring.io/spring-cloud-stream-app-starters/

Spring Cloud Data Flow Server for Cloud Foundry

Where, CONFI G_CLI ENT_VERSI ON can be the latest release of Spring Cloud Config Server client for
Pivotal Cloud Foundry.

@ Note

You will observe a WARN logging message if the application that uses this library can not
connect to the config server when the applicaiton starts and whenever the / heal t h endpoint
is accessed. You can disable the client library if you know that you are not using config server
functionality by setting the environment variable SPRI NG_CLOUD CONFI G_ENABLED=f al se.
Another, more drastic option, is to disable the platform health check with the environment
variable SPRI NG_CLOUD _DEPLOYER CLOUDFOUNDRY_STREAM HEALTH_CHECK=none

Sample Manifest Template

Following mani f est . ym template includes the required env-var’s for the Spring Cloud Data Flow
server and deployed apps/tasks to successfully run on Cloud Foundry and automatically resolve
centralized properties from my- conf i g- ser ver at the runtime.

appl i cations:
- nane: data-flow server
host: data-fl ow server
menory: 2G
di sk_quota: 2G
instances: 1
path: {PATH TO SERVER UBER- JAR}
env:
SPRI NG_APPLI CATI ON_NAME: dat a- f | ow server
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_URL: https://api.local .pcfdev.io
SPRI NG_CLOUD_DEPLOYER CLOUDFOUNDRY_ORG pcf dev- or g
SPRI NG_CLOUD DEPLOYER CLOUDFOUNDRY_SPACE: pcf dev- space
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_DOVAI N: | ocal . pcfdev.io
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_USERNAME: admi n
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_PASSWORD: admi n
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_STREAM SERVI CES: rabbi t, my-confi g-server
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_TASK_SERVI CES: nysql, my-confi g- server
SPRI NG_CLOUD_DEPLOYER CLOUDFOUNDRY_SKI P_SSL_VALI DATI ON: true
SPRI NG_APPLI CATI ON_JSON: ' {"maven": { "renote-repositories": { "repol": { "url": "https://
repo.spring.io/libs-release"} } } }'
services:
- nysql
- my-config-server

Where, my- conf i g- ser ver is the name of the Spring Cloud Config Service instance running on Cloud
Foundry. By binding the service to both Spring Cloud Data Flow server as well as all the Spring Cloud
Stream and Spring Cloud Task applications respectively, we can now resolve centralized properties
backed by this service.

Self-signed SSL Certificate and Spring Cloud Config Server

Often, in a development environment, we may not have a valid certificate to enable SSL communication
between clients and the backend services. However, the config-server for Pivotal Cloud Foundry uses
HTTPS for all client-to-service communication, so it is necessary to add a self-signed SSL certificate
in environments with no valid certificates.

Using the same nani f est . ym template listed in the previous section, for the server, we can provide
the self-signed SSL certificate via: TRUST _CERTS: <API _ENDPQO NT>.

However, the deployed applications also require TRUST CERTS as a flat env-
var (as opposed to being wrapped inside SPRI NG APPLI CATI ON_JSON), so

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 41

https://github.com/pivotal-cf/spring-cloud-services-connector/releases

Spring Cloud Data Flow Server for Cloud Foundry

we will have to instruct the server with yet another set of tokens
SPRI NG_CLOUD DEPLOYER CLOUDFOUNDRY_STREAM USE SPRI NG _APPLI CATI ON_JSON:
fal se and

SPRI NG_CLOUD_DEPLOYER_ CLOUDFOUNDRY_TASK USE SPRI NG APPLI CATI ON_JSON: fal se
for stream and task applications respectively. With this setup, the applications will receive their
application properties as regular environment variables

Let's review the updated nmani f est.ym with the required changes. Both the Data Flow server
and deployed applications would get their config from the ny- confi g- ser ver Cloud Config server
(deployed as a Cloud Foundry service)

appl i cations:
- nane: test-server
host: test-server
nmenory: 1G
di sk_quota: 1G
instances: 1
pat h: spring-cl oud- dat af | ow ser ver - cl oudf oundr y- VERSI ON. j ar
env:
SPRI NG_APPLI CATI ON_NAME: test-server
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_URL: <URL>
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_ORG: <ORG>
SPRI NG_CLOUD_DEPLOYER CLOUDFOUNDRY_SPACE: <SPACE>
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_DOVAI N: <DOVAI N>
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_USERNAME: <USER>
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_PASSWORD: <PASSWORD>
MAVEN_REMOTE_REPCS| TORI ES_REPOL_URL: https://repo.spring.io/libs-rel ease
SPRI NG_CLOUD_DEPLOYER CLOUDFOUNDRY_STREAM SERVI CES: ny-confi g-server #this is so all stream
applications bind to ny-config-server
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_TASK_SERVI CES: confi g-server #this for so all task
applications bind to nmy-config-server
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_STREAM USE_SPRI NG_APPLI CATI ON_JSON: fal se #this is for all the
stream appl i cati ons
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_TASK_USE_SPRI NG_APPLI CATI ON_JSON: false #this is for all the task
appl i cations
TRUST_CERTS: <API _ENDPO NT> #this is for the server
spring. cl oud. dat af | ow. appl i cati onProperties. stream TRUST_CERTS: <API _ENDPO NT> #t his propagates to
all streans
spring. cl oud. dat af | ow. appl i cati onProperties.task. TRUST_CERTS: <API _ENDPO NT> #this propagates to
al | tasks
services:
- nysql
- my-config-server #this is for the server

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 42

Part V. Shell

In this section you will learn about the options for starting the Shell and more advanced functionality
relating to how it handles white spaces, quotes, and interpretation of SpEL expressions. The introductory
chapters to the Stream DSL and Composed Task DSL is a good place to start for the most common
usage of shell commands.

Spring Cloud Data Flow Server for Cloud Foundry

21. Shell Options

The Shell is built upon the Spring Shell project. There are command line options generic to Spring Shell
and some specific to Data Flow. The shell takes the following command line options

Data Fl ow Options:
--datafl ow. uri=<uri>
| ocal host: 9393] .
- - dat af | ow. user name=<USER>
- - dat af | ow. passwor d=<PASSWORD>
--dat afl ow. credenti al s- provi der - command=<COMVAND>
QAut h Access Token [no defaul t].
- -dat af | ow. ski p-ssl -val i dati on=<true|fal se>
[defaul t: no].
--spring. shel |l . hi storySi ze=<S| ZE>
--spring.shell.commandFi | e=<FI LE>
file(s) and then exits.
--hel p

uni x: >j ava -jar spring-cloud-datafl owshell-1.2.1. RELEASE. jar --help

Address of the Data Flow Server [default: http://
Usernane of the Data Fl ow Server [no default].
Password of the Data Flow Server [no default].

Execut es an external command whi ch nmust return an
Accept any SSL certificate (even self-signed)

Default size of the shell
Data Fl ow Shel |

log file [default: 3000].
execut es commands read fromthe

Thi s nessage.

The spring. shel | . commandFi | e option is of note, as it can be used to point to an existing file which
contains all the shell commands to deploy one or many related streams and tasks. This is useful when
creating some scripts to help automate the deployment.

There is also a shell command

dat af | ow: >script --file <YOUR AWESOVE_SCRI PT>

This is useful to help modularize a complex script into multiple indepenent files.

Spring Cloud Data Flow

1.3.0.BUILD-SNAPSHOT

Server for Cloud Foundry

44

https://projects.spring.io/spring-shell/

Spring Cloud Data Flow Server for Cloud Foundry

22. Listing available commands

Typing hel p atthe command prompt will give a listing of all available commands. Most of the commands
are for Data Flow functionality, but a few are general purpose.

I - Allows execution of operating system (0S) comnmands
clear - Cears the console

cls - Clears the console

date - Displays the local date and tine

exit - Exits the shell

http get - Make GET request to http endpoi nt

http post - POST data to http endpoi nt

quit - Exits the shell

system properties - Shows the shell's properties
version - Displays shell version

Adding the name of the command to hel p will display additional information on how to invoke the
command.

dat af | ow: >hel p stream create
Keywor d: stream create
Descri ption: Create a new streamdefinition
Keywor d: ** default **
Keywor d: nane
Hel p: the nane to give to the stream
Mandat ory: true
Default if specified: ' NuLL_
Default if unspecified: '__ NULL__'
Keywor d: definition
Hel p: a streamdefinition, using the DSL (e.g. "http --port=9000 | hdfs")
Mandat ory: true
Default if specified: ' NuLL_
Default if unspecified: '__ NULL_ '
Keywor d: depl oy
Hel p: whet her to deploy the stream i mmediately
Mandat ory: fal se
Default if specified: "true'
Default if unspecified: 'false'

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 45

Spring Cloud Data Flow Server for Cloud Foundry

23. Tab Completion

The shell command options can be completed in the shell by hitting the TAB key after the leading - - .
For example, hitting TAB after st r eam creat e -- resultsin

dat af | ow. >stream create --
stream create --definition stream create --nane

If you type - - de and then hit tab, - - def i ni ti on will be expanded.

Tab completion is also available inside the stream or composed task DSL expression for application
or task properties. You can also use TAB to get hints in a stream DSL expression for what available
sources, processors, or sinks can be used.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 46

Spring Cloud Data Flow Server for Cloud Foundry

24. White space and quote rules

It is only necessary to quote parameter values if they contain spaces or the | character. Here the
transform processor is being passed a SpEL expression that will be applied to any data it encounters:

transform --expressi on='new StringBuil der (payl oad).reverse()"'

If the parameter value needs to embed a single quote, use two single quotes:

/'l Query is: Select * from/Custoners where nanme=' Smith'
scan --query='Select * from/Custonmers where nane=''Smth' "'

24.1 Quotes and Escaping

There is a Spring Shell based client that talks to the Data Flow Server that is responsible for parsing
the DSL. In turn, applications may have applications properties that rely on embedded languages, such
as the Spring Expression Language.

The shell, Data Flow DSL parser, and SpEL have rules about how they handle quotes and how syntax
escaping works. When combined together, confusion may arise. This section explains the rules that
apply and provides examples of the most complicated situations you will encounter when all three
components are involved.

@ It's not always that complicated

If you don't use the Data Flow shell, for example you're using the REST API directly, or if
applications properties are not SpEL expressions, then escaping rules are simpler.

Shell rules

Arguably, the most complex component when it comes to quotes is the shell. The rules can be laid out
quite simply, though:

» a shell command is made of keys (- - f 00) and corresponding values. There is a special, key-less
mapping though, see below

» avalue can not normally contain spaces, as space is the default delimiter for commands

» spaces can be added though, by surrounding the value with quotes (either single ['] or double ["]
quotes)

« if surrounded with quotes, a value can embed a literal quote of the same kind by prefixing it with a
backslash (\)

» Other escapes are available, suchas\t,\n,\r,\ f and unicode escapes of the form \ uxxxx

 Lastly, the key-less mapping is handled in a special way in the sense that if does not need quoting
to contain spaces

For example, the shell supports the ! command to execute native shell commands. The ! accepts a
single, key-less argument. This is why the following works:

datafl ow. > rmfoo

The argument here is the whole r m f 0o string, which is passed as is to the underlying shell.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 47

Spring Cloud Data Flow Server for Cloud Foundry

As another example, the following commands are strictly equivalent, and the argument value is f oo
(without the quotes):

dat af | ow. >stream destroy foo

dat af | ow: >stream destroy --name foo
dat af | ow. >stream destroy "foo"

dat af | ow. >stream destroy --nanme "foo0"

DSL parsing rules

At the parser level (that is, inside the body of a stream or task definition) the rules are the following:
» option values are normally parsed until the first space character

 they can be made of literal strings though, surrounded by single or double quotes

» To embed such a quote, use two consecutive quotes of the desired kind

As such, the values of the - - expr essi on option to the filter application are semantically equivalent
in the following examples:

filter --expression=payl oad>5
filter --expression="payl oad>5"
filter --expression='payl oad>5
filter --expression='payload > 5

Arguably, the last one is more readable. It is made possible thanks to the surrounding quotes. The actual
expression is payl oad > 5 (without quotes).

Now, let's imagine we want to test against string messages. If we'd like to compare the payload to the
SpEL literal string, " f 00", this is how we could do:

filter --expression=payl oad=='f o0’ O
filter --expression='payload == "'foo' "' O
filter --expression='payload == "foo"' O

0 This works because there are no spaces. Not very legible though

0 This uses single quotes to protect the whole argument, hence actual single quotes need to be
doubled

0 But SpEL recognizes String literals with either single or double quotes, so this last method is
arguably the best

Please note that the examples above are to be considered outside of the shell, for example if when
calling the REST API directly. When entered inside the shell, chances are that the whole stream
definition will itself be inside double quotes, which would need escaping. The whole example then
becomes:

dat af | ow. >stream create foo --definition "http | filter --expression=payload='foo' | |o0g"
dat af | ow. >stream create foo --definition "http | filter --expression='payload == "''foo''' | |o0g"
dat af | ow. >stream create foo --definition "http | filter --expression='payload == \"foo\"' | |o0g"

SpEL syntax and SpEL literals

The last piece of the puzzle is about SpEL expressions. Many applications accept options that are to
be interpreted as SpEL expressions, and as seen above, String literals are handled in a special way
there too. The rules are:

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 48

Spring Cloud Data Flow Server for Cloud Foundry

« literals can be enclosed in either single or double quotes

» quotes need to be doubled to embed a literal quote. Single quotes inside double quotes need no
special treatment, and vice versa

As a last example, assume you want to use the transform processor. This processor accepts an
expr essi on option which is a SpEL expression. It is to be evaluated against the incoming message,
with a default of payl oad (which forwards the message payload untouched).

It is important to understand that the following are equivalent:

transform - -expressi on=payl oad
transform --expressi on=' payl oad'

but very different from the following:

transform --expressi on=""'payl oad" "
transform --expression="""'payload "'

and other variations.

The first series will simply evaluate to the message payload, while the latter examples will evaluate to
the actual literal string pay!| oad (again, without quotes).

Putting it all together

As a last, complete example, let’s review how one could force the transformation of all messages to the
string literal hel | o wor | d, by creating a stream in the context of the Data Flow shell:

dat af | ow: >stream create foo --definition "http | transform--expression="""hello world'' | log" O
dat af | ow. >stream create foo --definition "http | transform--expression="\"hello world\"' | log" O
dat af | ow: >stream create foo --definition "http | transform--expression=\""hello world'\" | log" O

0 This uses single quotes around the string (at the Data Flow parser level), but they need to be
doubled because we're inside a string literal (very first single quote after the equals sign)

OO use single and double quotes respectively to encompass the whole string at the Data Flow parser
level. Hence, the other kind of quote can be used inside the string. The whole thing is inside the
--defini ti on argument to the shell though, which uses double quotes. So double quotes are
escaped (at the shell level)

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 49

http://docs.spring.io/spring-cloud-stream-app-starters/docs/Bacon.RELEASE/reference/html/spring-cloud-stream-modules-processors.html#spring-clound-stream-modules-transform-processor

Part VI. Streams

This section goes into more detail about how you can create Streams which are a collection of Spring
Cloud Stream. It covers topics such as creating and deploying Streams.

If you're just starting out with Spring Cloud Data Flow, you should probably read the Getting Started
guide before diving into this section.

http://cloud.spring.io/spring-cloud-stream/
http://cloud.spring.io/spring-cloud-stream/

Spring Cloud Data Flow Server for Cloud Foundry

25. Introduction

Streams are a collection of long lived Spring Cloud Stream applications that communicate with each
other over messaging middleware. A text based DSL defines the configuration and data flow between
the applications. While many applications are provided for you to implement common use-cases, you
will typically create a custom Spring Cloud Stream application to implement custom business logic.

The general lifecycle of a Stream is:

1. Register applications

2. Create a Stream Definition

3. Deploy the Stream

4. Undeploy or Destroy the Stream.

There are two options for deploying streams:

1. Use a Data Flow Server implementation that deploys to a single platform.

2. Configure the Data Flow Server to delegate the deployment to new server in the Spring Cloud
ecosystem named Skipper.

When using the first option, you can use the Data Flow Server for Cloud Foundry to deploy streams
to a single org and space on Cloud Foundry. Alternatively, you can use Data Flow for Kuberenetes to
deploy stream to a single namespace on a Kubernetes cluster. See here for a list of implementations.

When using the second option, you can configure Skipper to deploy applications to one or more Cloud
Foundry org/spaces, one or more namespaces on a Kubernetes cluster, as well as deploy to the local
machine. When deploying a stream in Data Flow using Skipper, you can specify which platfrom to use.
Skipper also provides Data Flow with the ability to perform updates to deployed streams. There are
many ways the applications in a stream can be updated, but one of the most common examples is to
upgrade a processor application with new custom business logic while leaving the existing source and
sink applications alone.

25.1 Stream Pipeline DSL

A stream is defined using a unix-inspired Pipeline syntax. The syntax uses vertical bars, also known as
"pipes" to connect multiple commands. The command s -1 | grep key | |ess in Unix takes
the output of the | s -1 process and pipes it to the input of the grep key process. The output of
grep in turn is sent to the input of the | ess process. Each | symbol will connect the standard ouput
of the program on the left to the standard input of the command on the right. Data flows through the
pipeline from left to right.

In Data Flow, the Unix command is replaced by a Spring Cloud Stream application and each pipe
symbol represents connecting the input and output of applications via messaging middleware, such as
RabbitMQ or Apache Kafka.

Each Spring Cloud Stream application is registered under a simple name. The registration process
specifies where the application can be obtained, for example in a Maven Repository or a Docker registry.
You can find out more information on how to register Spring Cloud Stream applications in this section.
In Data Flow, we classify the Spring Cloud Stream applications as either Sources, Processors, or Sinks.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 51

http://cloud.spring.io/spring-cloud-stream/
http://cloud.spring.io/spring-cloud-skipper/
http://cloud.spring.io/spring-cloud-dataflow/#platform-implementations
https://en.wikipedia.org/wiki/Pipeline_(Unix)
http://cloud.spring.io/spring-cloud-stream/

Spring Cloud Data Flow Server for Cloud Foundry

As a simple example consider the collection of data from an HTTP Source writing to a File Sink. Using
the DSL the stream description is:

‘http| file

A stream that involves some processing would be expresed as:

‘http| filter | transform| file

Stream definitions can be created using the shell's cr eat e st r eamcommand. For example:

dat af | ow: > stream create --name httplngest --definition "http | file"

The Stream DSL is passed in to the - - def i ni ti on command option.

The deployment of stream definitions is done via the shell’s st r eam depl oy command.

dat af | ow. > stream depl oy --nane ticktock

The Getting Started section shows you how to start the server and how to start and use the Spring
Cloud Data Flow shell.

Note that shell is calling the Data Flow Servers' REST API. For more information on making HTTP
request directly to the server, consult the REST API Guide.

25.2 Application properties

Each application takes properties to customize its behavior. As an example the ht t p source module
exposes a port setting which allows the data ingestion port to be changed from the default value.

datafl ow. > stream create --definition "http --port=8090 | |o0g" --nane nyhttpstream

This port property is actually the same as the standard Spring Boot ser ver. port property. Data
Flow adds the ability to use the shorthand form port instead of ser ver. port. One may also specify
the longhand version as well.

datafl ow. > stream create --definition "http --server.port=8000 | |0g" --nane nyhttpstream

This shorthand behavior is discussed more in the section on the section called “Whitelisting application
properties”. If you have registered application property metadata you can use tab completion in the shell
after typing - - to get a list of candidate property names.

The shell provides tab completion for application properties and also the shell command app i nfo
<appType>: <appNane> provides additional documentation for all the supported properties.

@ Note

Supported Stream “<appType>'s are: source, processor, and sink

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 52

Spring Cloud Data Flow Server for Cloud Foundry

26. Stream Lifecycle

26.1 Register a Stream App

Register a Stream App with the App Registry using the Spring Cloud Data Flow Shell app regi ster
command. You must provide a unique name, application type, and a URI that can be resolved to the
app artifact. For the type, specify "source", "processor", or "sink". Here are a few examples:

dat af | ow. >app regi ster --name nysource --type source --uri maven://com exanpl e: nysource: 0. 0. 1- SNAPSHOT

dat af | ow. >app regi ster --name nyprocessor --type processor --uri file:///Users/exanple/
nyprocessor-1.2.3.jar

dat af | ow: >app regi ster --nane nysink --type sink --uri http://exanple.con nysink-2.0.1.jar

When providing a URI with the maven scheme, the format should conform to the following:

maven: // <groupl d>: <artifactld>[: <extension>[:<classifier>]]:<version>

For example, if you would like to register the snapshot versions of the ht t p and | og applications built
with the RabbitMQ binder, you could do the following:

dat af | ow: >app regi ster --nane http --type source --uri maven://

org. springfranmework. cl oud. stream app: htt p-source-rabbit: 1. 2. 1. BUl LD- SNAPSHOT

dat af | ow: >app regi ster --nane log --type sink --uri maven://org.springfranmework. cloud. stream app: | og-
sink-rabbit:1.2.1. BU LD- SNAPSHOT

If you would like to register multiple apps at one time, you can store them in a properties file where the
keys are formatted as <t ype>. <nane> and the values are the URIs.

For example, if you would like to register the snapshot versions of the ht t p and | og applications built
with the RabbitMQ binder, you could have the following in a properties file [eg: stream-apps.properties]:

sour ce. htt p=maven: // or g. spri ngf ramewor k. cl oud. st ream app: htt p-source-rabbit: 1. 2. 1. BUl LD- SNAPSHOT
si nk. | og=maven://org. springframework. cl oud. stream app: | 0g-si nk-rabbit:1.2. 1. BUl LD- SNAPSHOT

Then to import the apps in bulk, use the app i nport command and provide the location of the
properties file via - - uri :

dat af | ow. >app inport --uri file:///<YOUR_FILE LOCATI ON>/ stream apps. properties

26.2 Register Supported Applications and Tasks

For convenience, we have the static files with application-URIs (for both maven and docker) available
for all the out-of-the-box stream and task/batch app-starters. You can point to this file and import all
the application-URIs in bulk. Otherwise, as explained in previous paragraphs, you can register them
individually or have your own custom property file with only the required application-URIs in it. It is
recommended, however, to have a "focused" list of desired application-URIs in a custom property file.

List of available Stream Application Starters:

Artifact Type Stable Release SNAPSHOT Release
RabbitMQ + Maven bit.ly/Bacon-RELEASE-stream- bit.ly/Bacon-BUILD-
applications-rabbit-maven SNAPSHOT-stream-

applications-rabbit-maven

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 53

http://bit.ly/Bacon-RELEASE-stream-applications-rabbit-maven
http://bit.ly/Bacon-RELEASE-stream-applications-rabbit-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-rabbit-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-rabbit-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-rabbit-maven

Spring Cloud Data Flow Server for Cloud Foundry

Artifact Type Stable Release SNAPSHOT Release

RabbitMQ + Docker bit.ly/Bacon-RELEASE-stream- N/A
applications-rabbit-docker

Kafka 0.9 + Maven bit.ly/Bacon-RELEASE-stream- bit.ly/Bacon-BUILD-
applications-kafka-09-maven SNAPSHOT-stream-
applications-kafka-09-maven

Kafka 0.9 + Docker bit.ly/Bacon-RELEASE-stream- N/A
applications-kafka-09-docker

Kafka 0.10 + Maven bit.ly/Bacon-RELEASE-stream- bit.ly/Bacon-BUILD-
applications-kafka-10-maven SNAPSHOT-stream-
applications-kafka-10-maven

Kafka 0.10 + Docker bit.ly/Bacon-RELEASE-stream- N/A
applications-kafka-10-docker

List of available Task Application Starters:

Artifact Type Stable Release SNAPSHOT Release
Maven bit.ly/Belmont-GA-task- bit.ly/Belmont-BUILD-
applications-maven SNAPSHOT-task-applications-
maven
Docker bit.ly/Belmont-GA-task- N/A

applications-docker

You can find more information about the available task starters in the Task App Starters Project Page
and related reference documentation. For more information about the available stream starters look at
the Stream App Starters Project Page and related reference documentation.

As an example, ff you would like to register all out-of-the-box stream applications built with the Kafka
binder in bulk, you can with the following command.

‘ $ datafl ow >app inport --uri http://bit.|y/Bacon- RELEASE- stream appl i cati ons- kaf ka- 10- maven

Alternatively you can register all the stream applications with the Rabbit binder

‘ $ datafl ow >app inport --uri http://bit.|y/Bacon- RELEASE- stream appl i cations-rabbit-mven

You can also pass the - - | ocal option (which ist r ue by default) to indicate whether the properties file
location should be resolved within the shell process itself. If the location should be resolved from the
Data Flow Server process, specify - -1 ocal fal se.

0 Warning

When using either app regi ster orapp inport, if an app is already registered with the
provided name and type, it will not be overridden by default. If you would like to override the
pre-existing app coordinates, then include the - - f or ce option.

Note however that once downloaded, applications may be cached locally on the Data Flow
server, based on the resource location. If the resource location doesn’t change (even though the
actual resource bytes may be different), then it won’t be re-downloaded. When using maven: / /

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 54

http://bit.ly/Bacon-RELEASE-stream-applications-rabbit-docker
http://bit.ly/Bacon-RELEASE-stream-applications-rabbit-docker
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-09-maven
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-09-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-09-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-09-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-09-maven
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-09-docker
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-09-docker
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-10-maven
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-10-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-10-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-10-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-10-maven
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-10-docker
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-10-docker
http://bit.ly/Belmont-GA-task-applications-maven
http://bit.ly/Belmont-GA-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-GA-task-applications-docker
http://bit.ly/Belmont-GA-task-applications-docker
http://cloud.spring.io/spring-cloud-task-app-starters/
http://cloud.spring.io/spring-cloud-stream-app-starters/

Spring Cloud Data Flow Server for Cloud Foundry

resources on the other hand, using a constant location still may circumvent caching (if using
- SNAPSHOT versions).

Moreover, if a stream is already deployed and using some version of a registered app, then
(forcibly) re-registering a different app will have no effect until the stream is deployed anew.

@ Note

In some cases the Resource is resolved on the server side, whereas in others the URI will be
passed to a runtime container instance where it is resolved. Consult the specific documentation
of each Data Flow Server for more detail.

Whitelisting application properties

Stream and Task applications are Spring Boot applications which are aware of many the section called
“Common application properties”, e.g. server . port but also families of properties such as those with
the prefix spri ng. j mx and | oggi ng. When creating your own application it is desirable to whitelist
properties so that the shell and the Ul can display them first as primary properties when presenting
options via TAB completion or in drop-down boxes.

To whitelist application properties create a file named spri ng-confi guration-netadat a-
whitelist.properties inthe META- | NF resource directory. There are two property keys that can
be used inside this file. The first key is named confi gur ati on- properti es. cl asses. The value
is a comma separated list of fully qualified @Conf i gur at i onPr operty class names. The second key
is confi guration-properties. nanmes whose value is a comma separated list of property names.
This can contain the full name of property, such as server. port or a partial name to whitelist a
category of property names, e.g. spri ng. j nx.

The Spring Cloud Stream application starters are a good place to look for examples of usage. Here is
a simple example of the file sink’s spri ng- confi gur ati on- net adat a-whitelist. properties
file

configuration-properties.classes=org. springframework. cl oud. stream app.file.sink.FileSinkProperties

If we also wanted to add ser ver. port to be white listed, then it would look like this:

configuration-properties.classes=org. springframework. cl oud. stream app. file.sink.FileSinkProperties
configuration-properties. nanes=server. port

@ Important

Make sure to add 'spring-boot-configuration-processor' as an optional dependency to generate
configuration metadata file for the properties.

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-configuration-processor</artifactld>
<opti onal >t rue</ opti onal >

</ dependency>

Creating and using a dedicated metadata artifact

You can go a step further in the process of describing the main properties that your stream or task
app supports by creating a so-called metadata companion artifact. This simple jar file contains only the
Spring boot JSON file about configuration properties metadata, as well as the whitelisting file described
in the previous section.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 55

https://github.com/spring-cloud-stream-app-starters

Spring Cloud Data Flow Server for Cloud Foundry

Here is the contents of such an artifact, for the canonical | og sink:

$ jar tvf |og-sink-rabbit-1.2. 1. BU LD- SNAPSHOT- net adat a. j ar
373848 META-| NF/ spring-configuration-netadata.json
174 META-| NF/ spring-configuration-nmetadata-whitelist.properties

Note that the spring-confi guration-netadata.json file is quite large. This is because it
contains the concatenation of all the properties that are available at runtime to the | og sink (some
of them come from spri ng-boot-actuator.jar, some of them come from spri ng-boot -
aut oconfi gure. jar, even some more from spri ng- cl oud-starter-streamsink-1o0g.j ar,
etc.) Data Flow always relies on all those properties, even when a companion artifact is not available,
but here all have been merged into a single file.

To help with that (as a matter of fact, you don’t want to try to craft this giant JSON file by hand), you
can use the following plugin in your build:

<pl ugi n>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cloud-app-starter-netadata-mven-plugin</artifactld>
<execut i ons>
<execution>
<i d>aggr egat e- net adat a</ i d>
<phase>conpi | e</ phase>
<goal s>
<goal >aggr egat e- et adat a</ goal >
</ goal s>
</ executi on>
</ executi ons>
</ pl ugi n>

@ Note

This plugin comes in addition to the spri ng-boot-confi gurati on-processor that
creates the individual JSON files. Be sure to configure the two!

The benefits of a companion artifact are manifold:

1. being way lighter (usually a few kilobytes, as opposed to megabytes for the actual app), they are
quicker to download, allowing quicker feedback when using e.g. app i nf o or the Dashboard Ul

2. as a consequence of the above, they can be used in resource constrained environments (such as
PaaS) when metadata is the only piece of information needed

3. finally, for environments that don’t deal with boot uberjars directly (for example, Docker-based
runtimes such as Kubernetes or Mesos), this is the only way to provide metadata about the properties
supported by the app.

Remember though, that this is entirely optional when dealing with uberjars. The uberjar itself also
includes the metadata in it already.

Using the companion artifact

Once you have a companion artifact at hand, you need to make the system aware of it so that it can
be used.

When registering a single app via app r egi st er, you can use the optional - - met adat a- uri option
in the shell, like so:

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 56

Spring Cloud Data Flow Server for Cloud Foundry

dat af | ow: >app regi ster --nane |log --type sink
--uri maven://org.springframework. cl oud. stream app: | og- si nk- kaf ka- 10: 1. 2. 1. BUI LD- SNAPSHOT
--net adat a- uri =maven:// org. spri ngf ramewor k. cl oud. st ream app: | 0g- si nk-

kaf ka- 10: j ar: met adat a: 1. 2. 1. BUl LD- SNAPSHOT

When registering several files using the app inport command, the file should contain a
<t ype>. <nane>. net adat a line in addition to each <t ype>. <nane> line. This is optional (i.e. if some
apps have it but some others don't, that's fine).

Here is an example for a Dockerized app, where the metadata artifact is being hosted in a Maven
repository (but retrieving itviahttp: // orfil e:// would be equally possible).

sour ce. htt p=docker: springcl oudstreani http-source-rabbit:| atest
sour ce. htt p. met adat a=maven: // or g. spri ngf ramewor k. cl oud. stream app: htt p- sour ce-
rabbit:jar:metadata: 1. 2. 1. BUI LD- SNAPSHOT

26.3 Creating custom applications

While there are out of the box source, processor, sink applications available, one can extend these
applications or write a custom Spring Cloud Stream application.

The process of creating Spring Cloud Stream applications via Spring Initializr is detailed in the Spring
Cloud Stream documentation. It is possible to include multiple binders to an application. If doing so, refer
the instructions in the section called “Passing Spring Cloud Stream properties” on how to configure them.

For supporting property whitelisting, Spring Cloud Stream applications running in Spring Cloud Data
Flow may include the Spring Boot conf i gur at i on- pr ocessor as an optional dependency, as in the
following example.

<dependenci es>
<l-- other dependencies -->
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-configuration-processor</artifactld>
<opti onal >true</ optional >
</ dependency>
</ dependenci es>

@ Note

Make sure that the spri ng- boot - maven- pl ugi n is included in the POM. The plugin is
necesary for creating the executable jar that will be registered with Spring Cloud Data Flow.
Spring Initialzr will include the plugin in the generated POM.

Once a custom application has been created, it can be registered as described in Section 26.1, “Register
a Stream App”.

26.4 Creating a Stream

The Spring Cloud Data Flow Server exposes a full RESTful API for managing the lifecycle of stream
definitions, but the easiest way to use is it is via the Spring Cloud Data Flow shell. Start the shell as
described in the Getting Started section.

New streams are created by with the help of stream definitions. The definitions are built from a simple
DSL. For example, let's walk through what happens if we execute the following shell command:

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 57

https://github.com/spring-cloud/spring-cloud-stream
http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_getting_started

Spring Cloud Data Flow Server for Cloud Foundry

datafl ow. > stream create --definition "time | |og" --nane ticktock

This defines a stream named t i ckt ock based off the DSL expressiontine | | og. The DSL uses
the "pipe" symbol | , to connect a source to a sink.

Application properties

Application properties are the properties associated with each application in the stream. When the
application is deployed, the application properties are applied to the application via command line
arguments or environment variables based on the underlying deployment implementation.

The following stream
datafl ow. > stream create --definition "tinme | log" --nanme ticktock
can have application properties defined at the time of stream creation.

The shell command app info <appType>: <appNane> displays the white-listed application
properties for the application. For more info on the property white listing refer to the section called
“Whitelisting application properties”

Below are the white listed properties for the app t i ne:

dat af | ow. > app info source:tine
Opti on Nane # Description # Def aul t
Type #
HHHHHHHHHH T H R T R H R H R H T H R H R T
#trigger.tine-unit #The TineUnit to apply to del ay#<none>
#j ava. util.concurrent. TineUnit #
#val ues. #
#
#trigger.fixed-del ay #Fi xed del ay for periodic #1
#] ava. | ang. | nt eger #
#triggers. #
#
#trigger.cron #Cron expression value for the #<none>
#j ava.lang. String #
#Cron Tri gger. #
#
#trigger.initial-delay #lnitial delay for periodic #0
#j ava. | ang. | nt eger #
#triggers. #
#
#trigger. nax- nessages #Maxi mum nessages per poll, -1 #1
#j ava. | ang. Long #
#means infinity. #
#
#trigger. date-fornmat #Format for the date val ue. #<none>
#j ava.lang. String #

Below are the white listed properties for the app | og:

dat afl ow. > app info sink:log
Opti on Nane # Description # Def aul t
Type #
#l og. name #The name of the | ogger to use. #<none>
#j ava.lang. String #
#l og. | evel #The | evel at which to |og #<none>
#or g. spri ngfranework. i ntegrati o#

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 58

Spring Cloud Data Flow Server for Cloud Foundry

#messages.
#n. handl er. Loggi ngHandl er $Level #
#l og. expr essi on #A SpEL expression (against the#payl oad
#j ava.l ang. String #
#i ncom ng nessage) to eval uate #
#
#as the | ogged nessage. #
#

The application properties for the t i me and | og apps can be specified at the time of st r eamcreation
as follows:

datafl ow. > streamcreate --definition "tinme --fixed-delay=5 | log --level =WARN' --nane ticktock

Note that the properties f i xed- del ay and | evel defined above for the appsti ne and | og are the
'short-form' property names provided by the shell completion. These 'short-form' property names are
applicable only for the white-listed properties and in all other cases, only fully qualified property names
should be used.

Common application properties

In addition to configuration via DSL, Spring Cloud Data Flow provides a mechanism for setting common
properties to all the streaming applications that are launched by it. This can be done by adding properties
prefixed with spri ng. cl oud. dat af | ow. appl i cati onProperti es. stream when starting the
server. When doing so, the server will pass all the properties, without the prefix, to the instances it
launches.

For example, all the launched applications can be configured to use a specific Kafka broker by launching
the Data Flow server with the following options:

spring. cl oud. dat af | ow. appl i cati onProperties. stream spring. cl oud. stream kaf ka. bi nder. br oker s=192. 168. 1. 100: 9092

spring. cl oud. dat af | ow. appl i cati onProperties. stream spring. cl oud. stream kaf ka. bi nder. zkNodes=192. 168. 1. 100: 2181

This will cause the properties spring.cloud. stream kaf ka. bi nder. brokers and
spring. cl oud. st ream kaf ka. bi nder . zkNodes to be passed to all the launched applications.

@ Note

Properties configured using this mechanism have lower precedence than stream deployment
properties. They will be overridden if a property with the same key is specified at stream
deployment time (e.g. app. http. spring. cl oud. st r eam kaf ka. bi nder. br oker s will
override the common property).

26.5 Deploying a Stream

This section describes how to deploy a Stream when the Spring Cloud Data Flow server is responsible
for deploying the stream. The following section, ???, covers the new deployment and upgrade features
when the Spring Cloud Data Flow server delegates to Skipper for stream deployment. In both cases,
the description of how deployment properties applies to both approaches of Stream deployment.

Give the t i ckt ock stream definition:

datafl ow. > stream create --definition "time | log" --nane ticktock

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 59

Spring Cloud Data Flow Server for Cloud Foundry

You can deploy the stream using the following command: Then to deploy the stream execute the
following shell command

dat af | ow. > stream depl oy --nane ticktock

The Data Flow Server resolves t i me and | og to maven coordinates and uses those to launch theti ne
and | og applications of the stream.

2016- 06- 01 09: 41:21.728 |NFO 79016 --- [nio0-9393-exec-6] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app ticktock.log instance 0
Logs will be in /var/folders/wn/8jxmtbdlvj28c8vj37n900nD000gn/ T/ spri ng- cl oud-
dat af | ow- 912434582726479179/ ti ckt ock- 1464788481708/ ti ckt ock. | og
2016-06- 01 09: 41:21.914 |INFO 79016 --- [nio0-9393-exec-6] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app ticktock.time instance 0
Logs will be in /var/folders/wn/8jxmtbhdlvj28c8vj37n900nD000gn/ T/ spri ng-cl oud-
dat af | ow- 912434582726479179/ ti ckt ock- 1464788481910/ ti cktock. tine

In this example, the time source simply sends the current time as a message each second, and the log
sink outputs it using the logging framework. You can tail the st dout log (which has an "_<instance>"
suffix). The log files are located within the directory displayed in the Data Flow Server’s log output, as
shown above.

$ tail -f /var/folders/wn/8jxmtbdlvj28c8vj37n900nmD000gn/ T/ spri ng- cl oud- dat af | ow 912434582726479179/
ticktock-1464788481708/ti cktock. | og/ stdout_O. | og

2016-06-01 09: 45:11.250 |NFO 79194 --- [kafka-binder-] |og.sink : 06/01/16 09:45:11
2016-06-01 09:45:12.250 |NFO 79194 --- [kafka-binder-] |og.sink : 06/01/16 09:45:12
2016-06-01 09:45:13.251 |[|NFO 79194 --- [kafka-binder-] |og.sink : 06/01/16 09:45:13

You can also create an deploy the stream in one step by passing the - - depl oy flag when creating
the stream.

datafl ow. > streamcreate --definition "time | log" --name ticktock --depl oy

However, it is not very common in real world use cases to do create and deploy the stream in one step.
The reason is that when you use the st r eam depl oy command, you can pass in properties that define
how to map the applications onto the platform, e.g. what is the memory size of the container to use, the
number of each application to run, or to enable data partitioning features. Properties can also override
application properties which were set when creating the stream. The next sections cover this in detail.

Deployment properties
When deploying a stream, you can specify properties that fall into two groups.

1. Properties that control how the apps are deployed to the target platform. These properties use a
depl oyer prefix. These are referred to as depl oyer properties.

2. Properties that set application properties or override application properties set during stream creation.
These are referred to as appl i cat i on properties.

The syntax for deployer properties is depl oyer. <app-nane>. <short-property-
nane>=<val ue> and the syntax for applicati on properties app. <app- nane>. <property-
nane>=<val ue>. This syntax is used when passing deployment properties via the shell. You may also
specify them in a YAML file which is discussed below.

The following table shows the difference in behavior between settings depl oyer and appl i cati on
properties when deploying an application.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 60

Spring Cloud Data Flow Server for Cloud Foundry

Application Properties Deployer Properties
Example Syntax app.filter. expression=foodepl oyer.filter.count=3
What the application "sees" expr essi on=f 0o or <sorme- Nothing

prefi x>. expressi on=f oo
if expr essi on is one of the
whitelisted properties

What the deployer "sees" Nothing spring. cl oud. depl oyer. count =3
The

spring. cl oud. depl oyer

prefix is automatically and

always prepended to the

property name

Typical usage Passing/Overriding application Setting the number of
properties, passing Spring instances, memory, disk, etc.
Cloud Stream binder or

partitionning properties

Passing instance count

If you would like to have multiple instances of an application in the stream, you can include a deployer
property with the deploy command:

dat af | ow. > stream depl oy --nanme ticktock --properties "deployer.tine.count=3"

Note that count is the reserved property name used by the underlying deployer. Hence, if the
application also has a custom property named count, it is not supported when specified in 'short-
form' form during stream deployment as it could conflict with the instance count deployer property.
Instead, the count as a custom application property can be specified in its fully qualified form (example:
app. f 0o. bar. count) during stream deployment or it can be specified using 'short-form' or fully
qualified form during the stream creation where it will be considered as an app property.

@ Important

See ?27?7.
Inline vs file based properties

When using the Spring Cloud Data Flow Shell, there are two ways to provide deployment properties:
either inline or via a file reference. Those two ways are exclusive and documented below:

Inline properties
use the - - properti es shell option and list properties as a comma separated list of key=value
pairs, like so:

stream depl oy foo
--properties "depl oyer.transform count=2, app.transform producer. partitionKeyExpressi on=payl oad"

Using afile reference
use the - - properti esFi | e option and pointitto a local . properti es,.yam or.ynl file (i.e.
that lives in the filesystem of the machine running the shell). Being read as a . properti es file,

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 61

Spring Cloud Data Flow Server for Cloud Foundry

normal rules apply (ISO 8859-1 encoding, =, <space> or : delimiter, etc.) although we recommend
using = as a key-value pair delimiter for consistency:

stream depl oy foo --propertiesFile nyprops. properties

where nypr ops. properti es contains:

depl oyer. transform count =2
app. transform producer. partiti onKeyExpressi on=payl oad

Both the above properties will be passed as deployment properties for the stream f oo above.

In case of using YAML as the format for the deployment properties, use the . yam or. ynl file extention
when deploying the stream,

stream depl oy foo --propertiesFile nyprops.yan

where nypr ops. yam contains:

depl oyer:
transform
count: 2
app:
transform
producer:
partitionKeyExpression: payl oad

Passing application properties

The application properties can also be specified when deploying a stream. When specified during
deployment, these application properties can either be specified as 'short-form' property names
(applicable for white-listed properties) or fully qualified property names. The application properties
should have the prefix "app.<appName/label>".

For example, the stream

datafl ow. > stream create --definition "tinme | log" --name ticktock

can be deployed with application properties using the 'short-form' property names:

dat af | ow: >stream depl oy ticktock --properties "app.tine.fixed-del ay=5, app.| og.|evel =ERROR"

When using the app label,

streamcreate ticktock --definition "a: time | b: |og"

the application properties can be defined as:

stream depl oy ticktock --properties "app.a.fixed-del ay=4, app. b. | evel =ERROR"

Passing Spring Cloud Stream properties

Spring Cloud Data Flow sets the required Spring Cloud Stream properties for the
applications inside the stream. Most importantly, the spri ng. cl oud. st r eam bi ndi ngs. <i nput/
out put >. dest i nat i on is set internally for the apps to bind.

If someone wants to override any of the Spring Cloud Stream properties, they can be set via deployment
properties.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 62

Spring Cloud Data Flow Server for Cloud Foundry

For example, for the below stream

datafl ow. > stream create --definition "http | transform --
expr essi on=payl oad. get Val ue(' hell o'). toUpperCase() | |og" --name ticktock

if there are multiple binders available in the classpath for each of the applications and the binder is
chosen for each deployment then the stream can be deployed with the specific Spring Cloud Stream
properties as:

dat af | ow: >stream depl oy ticktock --
properties "app.tine.spring.cloud. stream bi ndi ngs. out put. bi nder =kaf ka, app. transf orm spri ng. cl oud. st ream bi ndi ngs. i nput . bi nd

@ Note

Overriding the destination names is not recommended as Spring Cloud Data Flow takes care
of setting this internally.

Passing per-binding producer consumer properties

A Spring Cloud Stream application can have producer and consumer properties set per - bi ndi ng
basis. While Spring Cloud Data Flow supports specifying short-hand notation for per binding producer
properties such as partiti onKeyExpression, partitionKeyExtractorCl ass as described in
the section called “Passing stream partition properties”, all the supported Spring Cloud Stream producer/
consumer properties can be set as Spring Cloud Stream properties for the app directly as well.

The consumer properties can be set for the i nbound channel name with the prefix app.
[app/ | abel nane]. spring. cl oud. stream bi ndi ngs. <channel Name>. consuner. and the
producer properties can be set for the out bound channel name with the prefix app. [app/
I abel nane]. spring.cloud. stream bi ndi ngs. <channel Name>. producer . . For example,
the stream

‘dataflow> stream create --definition "tinme | |og" --nane ticktock

can be deployed with producer/consumer properties as:

dat af | ow: >stream depl oy ticktock --
properties "app.tine.spring.cloud. stream bi ndi ngs. out put. producer. requi redG oups=nyG oup, app. ti me. spri ng. cl oud. st ream bi ndi

The bi nder specific producer/consumer properties can also be specified in a similar way.

For instance

dat af | ow. >stream depl oy ticktock --
properties "app.tine.spring.cloud. stream rabbit.bi ndi ngs. out put. producer. aut oBi ndDl g=t r ue, app. | 0g. spri ng. cl oud. stream r abbi

Passing stream partition properties

A common pattern in stream processing is to partition the data as it is streamed. This entails deploying
multiple instances of a message consuming app and using content-based routing so that messages with
a given key (as determined at runtime) are always routed to the same app instance. You can pass the
partition properties during stream deployment to declaratively configure a partitioning strategy to route
each message to a specific consumer instance.

See below for examples of deploying partitioned streams:

app.[app/label name].producer.partitionKeyExtractorClass
The class name of a PartitionKeyExtractorStrategy (default nul 1)

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 63

Spring Cloud Data Flow Server for Cloud Foundry

app.[app/label nhame].producer.partitionKeyExpression
A SpEL expression, evaluated against the message, to determine the partition key; only applies if
partiti onKeyExtractorC ass is null. If both are null, the app is not partitioned (default nul |)

app.[app/label name].producer.partitionSelectorClass
The class name of a PartitionSelectorStrategy (default nul |)

app.[app/label name].producer.partitionSelectorExpression
A SpEL expression, evaluated against the partition key, to determine the partition index to which
the message will be routed. The final partition index will be the return value (an integer) modulo
[next Modul e] . count . If both the class and expression are null, the underlying binder’s default
PartitionSelectorStrategy will be applied to the key (default nul |)

In summary, an app is partitioned if its count is > 1 and the previous app has a
partiti onKeyExtractorC ass or partitionKeyExpression (class takes precedence).
When a partition key is extracted, the partitioned app instance is determined by invoking
the partitionSel ectorC ass, if present, or the partitionSel ectorExpression %
partitionCount, where partitionCount is application count in the case of RabbitMQ, and the
underlying partition count of the topic in the case of Kafka.

If neither a partitionSel ectorC ass nor a partitionSel ector Expressi on is present the
result is key. hashCode() % partiti onCount.

Passing application content type properties

In a stream definition you can specify that the input or the output of an application need to be converted
to a different type. You can use the i nput Type and out put Type properties to specify the content
type for the incoming data and outgoing data, respectively.

For example, consider the following stream:

dat af | ow. >stream create tuple --definition "http | filter --inputType=application/x-spring-tuple
- - expressi on=payl oad. hasFi el dName(' hello') | transform --

expr essi on=payl oad. get Val ue("' hel | o').t oUpper Case()
| log" --deploy

The ht t p app is expected to send the data in JSON and the fi | t er app receives the JSON data and
processes it as a Spring Tuple. In order to do so, we use the i nput Type property on the filter app
to convert the data into the expected Spring Tuple format. The t r ansf or mapplication processes the
Tuple data and sends the processed data to the downstream | og application.

When sending some data to the ht t p application:

dat af | ow. >http post --data {"hello":"world","foo":"bar"} --contentType application/json --target http://
I ocal host : <htt p-port>

At the log application you see the content as follows:

‘INFO 18745 --- [transformtuple-1] |og.sink : WORLD

Depending on how applications are chained, the content type conversion can be specified either as
via the - - out put Type in the upstream app or as an - -i nput Type in the downstream app. For
instance, in the above stream, instead of specifying the - - i nput Type on the 'transform' application to
convert, the option - - out put Type=appl i cati on/ x-spri ng-tupl e can also be specified on the
‘http' application.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 64

Spring Cloud Data Flow Server for Cloud Foundry

For the complete list of message conversion and message converters, please refer to Spring Cloud
Stream documentation.

Overriding application properties during stream deployment

Application properties that are defined during deployment override the same properties defined during
the stream creation.

For example, the following stream has application properties defined during stream creation:

‘dataflow> streamcreate --definition "time --fixed-delay=5 | log --level =WARN' --nane ticktock

To override these application properties, one can specify the new property values during deployment:

‘ dat af | ow. >stream depl oy ticktock --properties "app.tine.fixed-del ay=4, app.| og.| evel =ERROR"

26.6 Destroying a Stream

You can delete a stream by issuing the st r eam dest r oy command from the shell:

‘dataflow> stream destroy --name ticktock

If the stream was deployed, it will be undeployed before the stream definition is deleted.

26.7 Undeploying Streams

Often you will want to stop a stream, but retain the name and definition for future use. In that case you
can undepl oy the stream by name.

dat af | ow. > stream undepl oy --nane ticktock
dat af | ow: > stream depl oy --name ticktock

You can issue the depl oy command at a later time to restart it.

‘dataflow> stream depl oy --name ticktock

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 65

http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#contenttypemanagement

Spring Cloud Data Flow Server for Cloud Foundry

27. Stream Lifecycle with Skipper

Skipper is a server that allows you to discover Spring Boot applications and manage their lifecycle on
multiple Cloud Platforms.

Applications in Skipper are bundled as packages which contain templated configuration files. They also
contain an optional val ues file that contains default values using to fill in template placeholders. You
can find out more about the format of the package .zip file in Skipper’'s documentation on Packages.
Skipper’s templated configuration files contain placeholders for application properties, application
version, and deployment properties. Package .zip files are uploaded to Skipper and stored in a package
repository. Skipper’s package repository is analogous to those found in tools such as apt - get or br ew.

You can override template values when installing or upgrading a package. Skipper orchestrates the
upgrade/rollback procedure of applications between different versions, taking the minimal set of actions
to bring the system to the desired state. For example, if only one application in a stream has been
updated, only that single application is deployed with a new version and the old version undeployed.
An application is considered different when upgrading if any of it's application properties, deployment
properties (excluding count), or application version (e.g. 1.0.0.RELEASE) is different from the currently
installed application.

Spring Cloud Data Flow is integrated with Skipper by generating a Skipper package when deploying
a Stream. The generated package name is the same name as the Stream. The generated package is
uploaded to Skipper’'s package repository and Data Flow then instructs Skipper to install the package
that corresponds to the Stream. Subsequent commands to upgrade and rollback applications within the
Stream are passed through to Skipper after some validation checks are performed by Data Flow.

27.1 Creating and Deploying a Stream

You create and deploy a stream using skipper in two steps, creating the stream definition and then
deploying the stream.

dataf | ow. > stream create --name httptest --definition "http --server.port=9000 | |og"
dat af | ow. > stream ski pper depl oy --nanme httptest

There is an important optional command argument to the st ream ski pper depl oy command,
which is - - pl at f or mNare. Skipper can be configured to deploy to multiple platforms. Skipper is pre-
configured with a platform named def aul t which will deploys applications to the local machine where
Skipper is running. The default value of the command line argument - - pl at f or nNane is def aul t . If
you are commonly deploying to one platform, when installing Skipper you can override the configuration
of the def aul t platform. Otherwise, specify the platformName to one of the values returned by the
command st ream ski pper platformli st

@ Note

In future releases, only the local Data Flow server will be configured with the def aul t platform.

27.2 Updating a Stream

To update the stream, use the command stream ski pper updat e which takes as a command
argument either - - properties or--properti esFil e. You can pass in values to these command
arguments in the same format as when deploy the stream with or without Skipper. There is an important
new top level prefix available when using Skipper, which is ver si on. If the Stream http | | og was

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 66

https://cloud.spring.io/spring-cloud-skipper/
https://docs.spring.io/spring-cloud-skipper/docs/1.0.0.M2/reference/htmlsingle/#packages

Spring Cloud Data Flow Server for Cloud Foundry

deployed, and the version of | og which registered at the time of deploymentwas 1. 1. 0. RELEASE, the
following command will update the Stream to use the 1. 2. 0. RELEASE of the log application.

‘ dat af | ow: >stream ski pper update --name httptest --properties version.|log=1.2.0. RELEASE

27.3 Stream versions

Skipper keeps a history of the Streams that were deployed. After updating a Stream, there will be a
second version of the stream. You can query for the history of the versions using the command st r eam
ski pper history --name <nane-of - streanp.

dat af | ow: >stream ski pper history --nane httptest

#Ver si on# Last updat ed # Status #Package Nane#Package Version# Description #

#2 #Mon Nov 27 22:41:16 EST 2017#DEPLOYED#ht t pt est #1.0.0 #Upgr ade conpl et e#
#1 #Mon Nov 27 22:40:41 EST 2017#DELETED #htt pt est #1.0.0 #Del ete conplete #

27.4 Stream Manifests

Skipper keeps an "manifest" of the all the applications, their application properties and deployment
properties after all values have been substituted. This represents the final state of what was deployed to
the platform. You can view the manifest for any of the versions of a Stream using the command st r eam
ski pper mani fest --name <nane-of -streant --rel easeVersi on <optional -versi on>
If the - - r el easeVer si on is not specified, the manifest for the last version is returned.

dat af | ow. >st ream ski pper mani fest --nanme httptest

Source: |og.ym
api Ver si on: ski pper.spring.io/vl
ki nd: SpringC oudDepl oyer Appl i cati on
nmet adat a:
nanme: | og
spec:
resource: maven://org.springfranmework. cl oud. stream app: | og- si nk-rabbi t
version: 1.2.0. RELEASE
appl i cationProperties:
spring. metrics.export.triggers.application.includes: integration**
spring. cl oud. dat af | ow. stream app. | abel : | og
spring.cloud. stream netrics. key: httptest.|og. ${spring.cloud. application.guid}
spring. cl oud. stream bi ndi ngs. i nput.group: httptest
spring. cloud. stream metrics. properties:
spring. appl i cation. name, spri ng. appl i cation.index, spring.cl oud. application.*, spring.cloud. dat af | ow. *
spring. cl oud. dat af | ow. st ream nanme: htt pt est
spring. cl oud. dat af | ow. stream app. type: sink
spring. cl oud. stream bi ndi ngs. i nput . destination: httptest.http
depl oynent Properti es:
spring. cl oud. depl oyer . i ndexed: true
spring. cl oud. depl oyer. group: httptest
spring. cl oud. depl oyer. count: 1

Source: http.ynl
api Ver si on: ski pper.spring.io/vl
ki nd: SpringC oudDepl oyer Appl i cati on
nmet adat a:
name: http
spec:
resource: maven://org.springfranmework. cl oud. stream app: htt p-source-rabbi t
version: 1.2.0. RELEASE
appl i cationProperties:
spring. metrics.export.triggers.application.includes: integration**

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 67

Spring Cloud Data Flow Server for Cloud Foundry

spring. cl oud. dat af | ow. stream app. | abel : http
spring.cloud. streamnetrics. key: httptest.http.${spring.cloud. application. guid}
spring. cl oud. stream bi ndi ngs. out put. producer. requi redG oups: htt ptest
spring. cloud. stream netrics. properties:

spring. appl i cation. name, spring. application.index, spring.cloud. application.*, spring.cloud. datafl ow. *
server.port: 9000
spring. cl oud. stream bi ndi ngs. out put . destination: httptest.http
spring. cl oud. dat af | ow. st ream nane: httptest
spring. cl oud. dat af | ow. st ream app. type: source

depl oynent Properties:

spring. cl oud. depl oyer. group: httptest

The majority of the deployment and application properties were set by Data Flow in order to enable the
applications to talk to each other and sending application metrics with identifying labels.

27.5 Rollback a Stream

You can rollback to a previous version of the Stream using the command st r eam ski pper rol | back.

dat af | ow: >stream ski pper rollback --nane httptest

There is an optional - - r el easeVer si on command argument which is the version of the Stream. If
not specified, the rollback goes to the previous stream version.

27.6 Application Count

The application count is a dynamic property of the system. If due to scaling at runtime, the application
to be upgraded has 5 instances running, then 5 instances of the upgraded application will be deployed.

27.7 Skipper’'s Upgrade Strategy

Skipper has a simple 'red/black' upgrade strategy. It deploys the new version of the applications, as
many instances as the currently running version, and checks the / heal t h endpoint of the application.
If the health of the new application is good, then the previous application is undeployed. If the health
of the new application is bad, then all new applications are undeployed and the upgrade is considered
not successful.

The upgrade strategy is not a rolling upgrade, so if 5 applications of the application to upgrade are
runningn, then in a sunny day scenario, 5 of the new applications will also be running before the older
version is undeployed. Future versions of Skipper will support rolling upgrades and other types of
checks, e.g. manual, to continue to upgrade process.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 68

Spring Cloud Data Flow Server for Cloud Foundry

28. Stream DSL

This section covers additional features of the Stream DSL not covered in the Stream DSL introduction.

28.1 Tap a Stream

Taps can be created at various producer endpoints in a stream. For a stream like this:

streamcreate --definition "http | stepl: transform --expressi on=payl oad.t oUpper Case() | step2:
transform - -expressi on=payl oad+'!" | |o0g" --nane mainstream --depl oy

taps can be created at the output of ht t p, st epl and st ep2.

To create a stream that acts as a 'tap' on another stream requires to specify the sour ce desti nati on
nane for the tap stream. The syntax for source destination name is:

1 <streaniNanme>. <| abel / appNane>"

To create a tap at the output of http in the stream above, the source destination name is
mai nst ream htt p To create a tap at the output of the first transform app in the stream above, the
source destination name is mai nst r eam st epl

The tap stream DSL looks like this:

streamcreate --definition ":mainstreamhttp > counter" --name tap_at_http --depl oy

streamcreate --definition ":mainstreamstepl > jdbc" --nanme tap_at_stepl_transfornmer --deploy

Note the colon (:) prefix before the destination names. The colon allows the parser to recognize this as
a destination name instead of an app name.

28.2 Using Labels in a Stream

When a stream is comprised of multiple apps with the same name, they must be qualified with labels:

streamcreate --definition "http | firstLabel: transform --expressi on=payl oad.toUpper Case() |
secondLabel : transform --expressi on=payl oad+'!" | log" --nanme nyStreamWthLabels --depl oy

28.3 Named Destinations

Instead of referencing a source or sink applications, you can use a named destination. A named
destination corresponds to a specific destination name in the middleware broker (Rabbit, Kafka, etc.,).
When using the | symbol, applications are connected to each other using messaging middleware
destination names created by the Data Flow server. In keeping with the unix analogy, one can redirect
standard input and output using the less-than < greater-than > charaters. To specify the name of the
destination, prefix it with a colon : . For example the following stream has the destination name in the
sour ce position:

dat af | ow. >stream create --definition ":nyDestination > 10g" --nanme ingest_frombroker --deploy

This stream receives messages from the destination nyDesti nati on located at the broker and
connects it to the | og app. You can also create additional streams that will consume data from the
same named destination.

The following stream has the destination name in the si nk position:

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 69

Spring Cloud Data Flow Server for Cloud Foundry

dat af | ow. >stream create --definition "http > :nyDestination" --nanme ingest_to_broker --deploy

It is also possible to connect two different destinations (sour ce and si nk positions) at the broker in
a stream.

dat af | ow: >stream create --definition ":destinationl > :destination2" --nanme bridge_destinations --depl oy

In the above stream, both the destinations (desti nati onl and desti nati on2) are located in the
broker. The messages flow from the source destination to the sink destination via a bri dge app that
connects them.

28.4 Fan-in and Fan-out

Using named destinations, you can support Fan-in and Fan-out use cases. Fan-in use cases are when
multiple sources all send data to the same named destination. For example

s3 > :data

ftp > :data
http > :data

Would direct the data payloads from the Amazon S3, FTP, and HTTP sources to the same named
destination called dat a. Then an additional stream created with the DSL expression

:data > file
would have all the data from those three sources sent to the file sink.

The Fan-out use case is when you determine the destination of a stream based on some information
that is only known at runtime. In this case, the Router Application can be used to specify how to direct
the incoming message to one of N named destinations.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 70

http://docs.spring.io/spring-cloud-stream-app-starters/docs/Bacon.RELEASE/reference/html/spring-cloud-stream-modules-sinks.html#spring-cloud-stream-modules-router-sink

Spring Cloud Data Flow Server for Cloud Foundry

29. Stream Java DSL

Instead of using the shell to create and deploy streams, you can use the Java based DSL provided by the
spring-cl oud- dat af | owrest-client module. The Java DSL is a convenient wrapper around
the Dat aFl owTenpl at e class that makes it simple to create and deploy streams programmatically.

To get started, you will need to add the following dependency to your project.

<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cloud-dataflowrest-client</artifactld>
<ver si on>1. 3. 0. BUl LD- SNAPSHOT</ ver si on>

</ dependency>

You will also need to add a reference to the Spring Milestone Maven repository.

<repositories>
<repository>
<i d>spring-mlestones</id>
<nanme>Spring M| estones</nane>
<url >http://repo.spring.io/libs-mlestone-local </url>
<snapshot s>
<enabl ed>f al se</ enabl ed>
</ snapshot s>
</repository>
</repositories>

@ Note

A complete sample can be found in the Spring Cloud Data Flow Samples Repository to simplify
getting started.

29.1 Overview

The classes you will encounter using the Java DSL are StreanBuil der, StreanDefinition,
Stream StreamAppl i cation, and Dat aFl owTenpl at e. The entry point is a bui | der method
on Stream that takes an instance of a Dat aFl owTenpl ate. To create an instance of a
Dat aFl owTenpl at e you need to provide a URI location of the Data Flow Server.

@ Note

The Dat aFl owTenpl ate does not support a simple way to configure HTTP basic
authentication or OAuth. This will be addressed in a future release.

We will now walk though a quick example, using the def i ni ti on style.

URI dataFlowri = URI.create("http://local host:9393");
Dat aFl owOper at i ons dat aFl owOper ati ons = new Dat aFl owTenpl at e(dat aFl owUri) ;
dat aFl owQper ati ons. appRegi stryQperati ons(). i nmportFronmResour ce(
“http://bit.lylCelsius-RCl-stream applications-rabbit-maven", true);
StreanDefinition streanDefinition = Stream buil der (dat aFl owOper ati ons)
.name("ticktock")
.definition("tine | 1og")
.create();

The method cr eat e returns an instance of a St r eanDef i ni ti on representing a Stream that has
been created but not deployed. This is called the def i ni ti on style since it takes as a single string for
the stream definition, just like in the shell. If applications have not yet been registered in the Data Flow

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 71

https://github.com/spring-cloud/spring-cloud-dataflow-samples

Spring Cloud Data Flow Server for Cloud Foundry

server, you can use the Dat aFl owOper at i ons class to register them. With the St r eanDef i ni ti on
instance, you have methods available to depl oy or dest or y the stream.

Stream stream = streanDefinition.deploy();

The St r eaminstance has the methods get St at us, dest r oy and undepl oy to control and query the
stream. If you are going to immediately deploy the stream, there is no need to create a separate local
variable of the type St r eanDef i ni ti on. You can just chain the calls together.

Stream stream = Stream bui | der (dat aFl owOper ati ons)
.nanme("ticktock")
.definition("tine | |og")
.create()
-deploy();

The depl oy method is overloaded to take aj ava. uti | . Map of deployment properties.

The StreamApplication class is used in the ‘fluent'’ Java DSL style and is discussed
in the next section. The StreanBuilder class is what is returned from the method
St ream bui | der (dat aFl owOper at i ons) . In larger applications, it is common to create a single
instance of the St r eanBui | der as a Spring @ean and share it across the application.

29.2 Java DSL styles

The Java DSL offers two styles to create Streams.

e The definition style keeps the feel of using the pipes and filters textual DSL in the shell.
This style is selected by using the defi niti on method after setting the stream name, e.g.
St ream bui | der (dat aFl owOper ati ons) . name("ti cktock"). definition(<definition
goes here>).

» The fluent style lets you chain together sources, processors and sinks
by passing in an instance of a StreamApplication. This style is
selected by using the source method after setting the stream name,
e.g. St ream bui | der (dat aFl owQper ati ons). name("ti cktock").source(<stream
application instance goes here>). You then chain together processor () and si nk()
methods to create a stream definition.

To demonstrate both styles we will create a simple stream using both approaches. A complete sample
for you to get started can be found in the Spring Cloud Data Flow Samples Repository

public void definitionStyle() throws Exception{

Dat aFl owOper ati ons dat aFl owOper ati ons = creat eDat aFl owOper ati ons();
Map<String, String> depl oynent Properties = createDepl oynent Properties();

St ream woodchuck = Stream bui | der (dat aFl owOper at i ons)
. nanme(" woodchuck")
.definition("http --server.port=9900 | splitter --expression=payload.split(' ') | log")
.create()
. depl oy(depl oynment Properties);

wai t AndDest r oy(woodchuck)
}

public void fluentStyle() throws Exception {

Dat aFl owOper at i ons dat aFl owOper ati ons = cr eat eDat aFl owOper ati ons() ;

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 72

https://github.com/spring-cloud/spring-cloud-dataflow-samples

Spring Cloud Data Flow Server for Cloud Foundry

StreamAppl i cation source = new StreamApplication("http").addProperty("server.port"”, 9900);

StreamAppl i cati on processor = new StreamApplication("splitter")
. addProperty("producer. partitionKeyExpression", "payload");

StreamAppl i cation sink = new StreamPpplication("log")
. addDepl oynment Property("count", 2);

St ream woodchuck = Stream bui | der (dat aFl owOper ati ons) . name(" woodchuck™)
. sour ce(source)
. processor (processor)
. si nk(si nk)
.create()
. depl oy(depl oynment Properties);

wai t AndDest r oy(woodchuck)

The wai t AndDest r oy method uses the get St at us method to poll for the stream’s status.

private void waitAndDestroy(Stream strean) throws |nterruptedException {

whi | e(!stream get Status().equal s("depl oyed")){
Systemout. println("Wating for deploynent of stream");
Thr ead. sl eep(5000) ;

}

Systemout.println("Letting the streamrun for 2 mnutes.");
/1 Let the streamrun for 2 mnutes
Thr ead. sl eep(120000) ;

System out. println("Destroying streant);
stream destroy();

When using the definition style, the deployment properties are specified as a j ava. util . Map in the
same manner as using the shell. The method cr eat eDepl oynent Properti es is defined as:

private Map<String, String> createDepl oyment Properties() {
Map<String, String> depl oynent Properties = new HashMap<>();
depl oynment Properties. put ("app.splitter.producer.partitionKeyExpression", "payload");
depl oynment Properti es. put ("depl oyer.| og. count”, "2");
return depl oynment Properti es;

}

Is this case, application properties are also overridden at deployment time in addition to
setting the deployer property count for the log application. When using the fluent style, the
the deployment properties are added using the method addDepl oynent Property, e.g. new
StreamAppl i cation("l og").addDepl oynment Property("count”, 2) andyou do not need to
prefix the property with depl oyer . <app_nanme>.

@ Note

In order to create/deploy your streams, you need to make sure that the corresponding apps
have been registered in the DataFlow server first. Attempting to create or deploy a stream
that contains an unknown app will throw an exception. You can register application using the
Dat aFl owTenpl at e, e.g.

dat aFl owQper at i ons. appRegi stryQperati ons(). i nmportFronmResour ce(
"http://bit.lyl/Cel sius-RCl-stream applications-rabbit-mven", true);

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 73

Spring Cloud Data Flow Server for Cloud Foundry

The Stream applications can also be beans within your application that are injected in other classes to
create Streams. There are many ways to structure Spring applications, but one way to structure it is to
have an @Conf i gur at i on class define the St r eanBui | der and St r eamAppl i cat i ons.

@onfiguration
public StreanConfiguration {

@Bean
public StreanBuil der builder() {
return Stream buil der (new Dat aFl owTenpl ate(URI . create("http://| ocal host:9393")));

}

@Bean
public StreamApplication httpSource(){
return new StreamApplication("http");

}

@Bean
public StreamApplication | ogSink(){
return new StreamApplication("log");
}
}

Then in another class you can @\ut owi r e these classes and deploy a stream.

@onponent
public MyStreamApps {

@\ut owi r ed
private StreanBuilder streanBuil der;

@\ut owi r ed
private StreamApplication httpSource;

@\ut owi r ed
private StreamApplication | ogSink;

public void depl oySi npl eStrean() {
Stream si npl eStream = streanBui | der. nane("si npl eStreant')
. source(httpSource);
. si nk(1 ogSi nk)
.create()
- deploy();

This style allows you to easily share St r eamAppl i cat i ons across multiple Streams.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 74

Spring Cloud Data Flow Server for Cloud Foundry

30. Stream applications with multiple binder
configurations

In some cases, a stream can have its applications bound to multiple spring cloud stream binders when
they are required to connect to different messaging middleware configurations. In those cases, it is
important to make sure the applications are configured appropriately with their binder configurations.
For example, let’s consider the following stream:

http | transform --expressi on=payl oad. t oUpper Case() | |og

and in this stream, each application connects to messaging middleware in the following way:

Http source sends events to RabbitMQ (rabbit1l)

Transform processor receives events from Rabbit MQ (rabbitl) and sends the processed events into Kafka
(kaf kal)

Log sink receives events from Kaf ka (kaf kal)

Here, rabbit1l and kaf kal are the binder names given in the spring cloud stream application
properties. Based on this setup, the applications will have the following binder(s) in their classpath with
the appropriate configuration:

Http - Rabbit binder
Transform - Both Kafka and Rabbit binders
Log - Kafka binder

The spring-cloud-stream bi nder configuration properties can be set within the applications themselves.
If not, they can be passed via depl oynent properties when the stream is deployed.

For example,

dat af | ow. >stream create --definition "http | transform --expressi on=payl oad. t oUpper Case() | |og" --nane
nystream

dat af | ow. >stream depl oy nmystream --properties
"app. http. spring.cl oud. stream bi ndi ngs. out put . bi nder =rabbi t 1, app. transf orm spri ng. cl oud. st ream bi ndi ngs. i nput . bi nder =r abbi
app. transform spring. cl oud. stream bi ndi ngs. out put . bi nder =kaf kal, app. | og. spri ng. cl oud. st ream bi ndi ngs. i nput . bi nder =kaf kal"

One can override any of the binder configuration properties by specifying them via deployment
properties.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 75

Spring Cloud Data Flow Server for Cloud Foundry

31. Examples

31.1 Simple Stream Processing

As an example of a simple processing step, we can transform the payload of the HTTP posted data to
upper case using the stream definitions

‘ http | transform --expressi on=payl oad. t oUpper Case() | |og

To create this stream enter the following command in the shell

datafl ow. > stream create --definition "http | transform --expressi on=payl oad. t oUpper Case() | l|og" --name
nyst ream - - depl oy

Posting some data (using a shell command)

‘dataflow.> http post --target http://local host: 1234 --data "hello"

Will result in an uppercased 'HELLO' in the log

‘ 2016- 06- 01 09: 54:37.749 |NFO 80083 --- [kafka-binder-] |og.sink : HELLO

31.2 Stateful Stream Processing

To demonstrate the data partitioning functionality, let's deploy the following stream with Kafka as the
binder.

dat af | ow. >stream create --name words --definition "http --server.port=9900 | splitter --
expressi on=payl oad. split('" ') | log"
Created new stream ' words'

dat af | ow: >stream depl oy words --properties
"app.splitter.producer. partitionKeyExpressi on=payl oad, depl oyer.| og. count =2"
Depl oyed stream ' words'

dat af | ow. >http post --target http://local host: 9900 --data "How nmuch wood woul d a woodchuck chuck if a
woodchuck coul d chuck wood"

> POST (text/plain;Charset=UTF-8) http://local host: 9900 How nmuch wood woul d a woodchuck chuck if a
woodchuck coul d chuck wood

> 202 ACCEPTED

You'll see the following in the server logs.

2016- 06- 05 18:33:24.982 | NFO 58039 --- [nio-9393-exec-9] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app words. | og i nstance 0
Logs will be in /var/folders/c3/ctx7_rns6x30tq7rb76wzqw 0000gp/ T/ spri ng- cl oud-
dat af | ow 694182453710731989/ wor ds- 1465176804970/ wor ds. | og
2016- 06- 05 18: 33:24.988 | NFO 58039 --- [nio0-9393-exec-9] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app words.log instance 1
Logs will be in /var/folders/c3/ctx7_rns6x30tq7rb76wzgqw 0000gp/ T/ spri ng- cl oud-
dat af | ow 694182453710731989/ wor ds- 1465176804970/ wor ds. | og

Review the wor ds. | og i nstance O logs:

2016- 06- 05 18: 35:47.047 |NFO 58638 --- [kafka-binder-] |og.sink : How
2016- 06- 05 18: 35:47.066 |NFO 58638 --- [kafka-binder-] |og.sink

chuck

2016- 06- 05 18:35:47.066 | NFO 58638 --- [kafka-binder-] |og.sink

chuck

Review the wor ds. | og i nstance 1 logs:

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 76

Spring Cloud Data Flow Server for Cloud Foundry

2016- 06- 05 18:35:47.047 | NFO 58639 --- [kafka-binder-] |og.sink
much
2016- 06- 05 18:35:47.066 | NFO 58639 --- [kafka-binder-] |og.sink
wood
2016- 06- 05 18: 35:47.066 |NFO 58639 --- [kafka-binder-] |og.sink
woul d
2016- 06-05 18:35:47.066 | NFO 58639 --- [kafka-binder-] |og.sink ©a
2016- 06- 05 18:35:47.066 | NFO 58639 --- [kafka-binder-] |og.sink :
woodchuck
2016- 06- 05 18: 35:47.067 |NFO 58639 --- [kafka-binder-] |og.sink if
2016- 06- 05 18: 35:47.067 |NFO 58639 --- [kafka-binder-] |og.sink ©a
2016- 06- 05 18: 35:47.067 |NFO 58639 --- [kafka-binder-] |og.sink :
woodchuck
2016- 06- 05 18:35:47.067 | NFO 58639 --- [kafka-binder-] |og.sink
could
2016- 06- 05 18: 35:47.067 |NFO 58639 --- [kafka-binder-] |og.sink
wood

This shows that payload splits that contain the same word are routed to the same application instance.

31.3 Other Source and Sink Application Types

Let's try something a bit more complicated and swap out the t i me source for something else. Another
supported source type is ht t p, which accepts data for ingestion over HTTP POSTSs. Note thatthe ht t p
source accepts data on a different port from the Data Flow Server (default 8080). By default the port
is randomly assigned.

To create a stream using an ht t p source, but still using the same | og sink, we would change the
original command above to

dat afl ow. > stream create --definition "http | 10g" --name nyhttpstream --depl oy

which will produce the following output from the server

2016- 06- 01 09: 47:58.920 |NFO 79016 --- [i0-9393-exec-10] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app nyhttpstream|og instance 0
Logs will be in /var/folders/wn/ 8 xmtbdlvj28c8vj37n900nD000gn/ T/ spri ng- cl oud-
dat af | ow- 912434582726479179/ nyht t pst ream 1464788878747/ nyhtt pstream | og
2016- 06-01 09:48:06.396 | NFO 79016 --- [i0-9393-exec-10] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app nyhttpstreamhttp i nstance 0
Logs will be in /var/folders/wn/8jxmtbhdlvj28c8vj37n900nD000gn/ T/ spri ng-cl oud-
dat af | ow 912434582726479179/ nyht t pst ream 1464788886383/ nyhtt pstream http

Note that we don’t see any other output this time until we actually post some data (using a shell
command). In order to see the randomly assigned port on which the http source is listening, execute:

dat af | ow. > runtinme apps

You should see that the corresponding http source has a ur| property containing the host and port
information on which it is listening. You are now ready to post to that url, e.g.:

datafl ow > http post --target http://|ocal host: 1234 --data "hel |l 0"
datafl ow. > http post --target http://local host: 1234 --data "goodbye"

and the stream will then funnel the data from the http source to the output log implemented by the log sink

2016- 06-01 09: 50: 22. 121 | NFO 79654 --- [kafka-binder-] |og.sink : hello
2016- 06- 01 09: 50: 26. 810 | NFO 79654 --- [kafka-binder-] |og.sink : goodbye

Of course, we could also change the sink implementation. You could pipe the output to afile (fi | e), to
hadoop (hdf s) or to any of the other sink apps which are available. You can also define your own apps.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 77

Part VIl. Streams
deployed using Skipper

We will proceed with the assumption that Spring Cloud Data Flow, Spring Cloud Skipper, RDBMS, and
desired messaging middleware is up and running in PWS.

+ cf apps
[1h] #
Getting apps in org ORG/ space SPACE as emmi|l @ivotal .io...
oK
nanme requested state i nstances menory di sk urls
ski pper - server started 1/1 1G 1G ski pper -server. cfapps.io
dat af | ow server started 1/1 1G 1G dat af | ow server. cfapps.io

Verify the available platforms in Skipper.

dat af | ow. >stream ski pper platformli st
Nanme # Type # Descri ption
#
#def aul t #1 ocal #Shut downTi neout = [30], EnvVarsTolnherit = [TMP, LANG LANGUAGE, LC . *, PATH , JavaCnd
= #
#[/ hone/ vcap/ app/ . j ava- bui | dpack/ open_j dk_j re/ bi n/java], WrkingDirectoriesRoot =
[/ home/ vcap/ t np], #
#Del et eFi |l esOnExit = [true]
#
#pws #cl oudf oundr y#org = [scdf-ci], space = [space-sabby], url = [https://api.run.pivotal.io]
#

Let's start with deploying a stream with the t i ne- sour ce pointing to 1.2.0.RELEASE and | og- si nk
pointing to 1.1.0.RELEASE. The goal is to rolling upgrade the | og- si nk applicationto 1.2.0.RELEASE.

dat af | ow. >app register --nanme tinme --type source --uri maven://
or g. spri ngframewor k. cl oud. stream app: ti me-source-rabbit:1.2. 0. RELEASE
Successful ly registered application 'source:tinge'

dat af | ow. >app register --name log --type sink --uri maven://org. springframework. cl oud. stream app: | og-
sink-rabbit:1.1.0. RELEASE
Successfully regi stered application 'sink:log

dat af | ow: >app info source:tine
I nf ormati on about source application 'time':
Resource URI: nmaven://org.springfranmework. cl oud. stream app: ti me-source-rabbit: 1. 2. 0. RELEASE

dat af | ow: >app info sink:log
I nformati on about sink application 'log":
Resource URI: maven://org. springfranmework. cl oud. stream app: | og- si nk-rabbi t: 1. 1. 0. RELEASE

1. Create stream.

dat af | ow: >stream create foo --definition "tine | |og"
Created new stream' foo'

2. Deploy stream.

dat af | ow. >st ream ski pper depl oy foo --platfornmName pws
Depl oynent request has been sent for stream'foo'

o

Note

While deploying the stream, we are supplying - - pl at f or Nanme and that indicates the
platform repository (i.e., pws) to use when deploying the stream applications via Skipper.

3. List apps.

$ cf apps

[1h] #

Getting apps in org ORG/ space SPACE as emai |l @ivotal .io...

nane requested state i nstances nenory di sk urls

foo-1o0g-vl started 1/1 1G 1G foo-1o0g-vl. cfapps.io
foo-tine-vl started 1/1 1G 1G foo-tine-vl. cfapps.io

ski pper - server started 1/1 1G 1G ski pper -server. cfapps.io
dat af | ow server started 1/1 1G 1G dat af | ow- server. cfapps.io

4. Verify logs.

[foo.
[foo.

[foo.

$ cf logs foo-log-vil

2017-11- 20T15: 39: 43. 76- 0800 [APP/ PROC/ VEB/ 0] OUT 2017-11-20 23:39:43.761 |INFO 12 ---

tine.foo-1] | og-sink : 11/ 20/ 17 23:39:43

2017-11-20T15: 39: 44. 75- 0800 [APP/ PROC/ VEB/ 0] QUT 2017-11-20 23:39:44.757 |INFO 12 ---

time.foo-1] |og-sink © 11/ 20/ 17 23:39: 44

2017-11-20T15: 39: 45. 75- 0800 [APP/ PROC/ VEB/ 0] OUT 2017-11-20 23:39:45.757 |INFO 12 ---

time.foo-1] |og-sink : 11/ 20/ 17 23:39: 45

5. Verify the stream history.

dat af | ow. >stream ski pper history --name foo

#Ver si on# Last updat ed # Status #Package Nane#Package Version# Description #

#1

#Mon Nov 20 15:34:37 PST 2017#DEPLOYED#f oo #1.0.0 #l nstal |l conpl et e#

6. Verify the package manifest in Skipper. The | og- si nk should be at 1.1.0.RELEASE.

name:
spec:

versi
appl i

dat af | ow. >st ream ski pper nmani fest --nanme foo

Source: |og.yn

api Versi on: ski pper.spring.io/vl

ki nd: SpringC oudDepl oyer Appl i cati on
net adat a:

| og

resource: maven://org.springframework. cl oud. stream app: | og- si nk-rabbi t

on: 1.1.0. RELEASE
cationProperties:

spring. cl oud. dat af | ow. st ream app. | abel : | og
spring. cloud. stream netrics. properties:

spring. appl i cati on. nanme, spring. appl i cation.index, spring.cl oud. application.*, spring.cloud. datafl ow. *
spring. cl oud. stream bi ndi ngs. appl i cati onMetrics. destination: netrics
spring. cl oud. dat af | ow. stream nane: foo
spring. netrics.export.triggers.application.includes: integration**
spring. cloud. stream netrics. key: foo.log.${spring.cloud. application. guid}
spring. cl oud. stream bi ndi ngs. i nput. group: foo
spring. cl oud. dat af | ow. stream app. type: sink
spring. cl oud. stream bi ndi ngs. i nput. destination: foo.tine

depl oynent Properti es:

spring. cl oud. depl oyer . i ndexed: true
spring. cl oud. depl oyer. group: foo

Source: tine.ynl
api Versi on: skipper.spring.io/vl
ki nd: SpringC oudDepl oyer Appl i cati on

met adat a:
name: tinme

spec:
resource: maven://org.springframework. cl oud. stream app: ti me-source-rabbit
version: 1.2.0. RELEASE

appl i cati onProperties:
spring. cl oud. dat af | ow. st ream app. | abel :
spring.cloud. stream netrics. properties:
spring. application. nange, spring. application.index, spring.cloud. application.*,spring.cloud.datafl ow. *
spring. cl oud. stream bi ndi ngs. appl i cati onMetrics. destination: nmetrics

tinme

spring. cl oud. dat af | ow. st ream nane: foo

spring. metrics.export.triggers.application.includes: integration**
spring.cloud. stream netrics. key: foo.tine.${spring.cloud. application.guid}
spring. cl oud. stream bi ndi ngs. out put . producer. requi redG oups: f oo

spring. cl oud. stream bi ndi ngs. out put . desti nation: foo.tine

spring. cl oud. dat af | ow. st ream app. type: source

depl oynent Properties:

spring. cl oud. depl oyer. group: foo

7. Let's update | og- si nk from 1.1.0.RELEASE to 1.2.0.RELEASE

dat af | ow: >st ream ski pper update --name foo --properties version.|og=1.2.0. RELEASE
Updat e request has been sent for stream'foo'

8. List apps.

e

cf apps

[1h] #
Getting apps in org ORG/ space SPACE as emmi |l @ivotal .io...

Getting apps in org scdf-ci / space space-sabby as sanandan@i votal .io...

K

nanme requested state i nstances menory di sk urls

f oo-1 0g-v2 started 1/1 1G 1G foo-10g-v2. cfapps.io
foo-1o0g-vl st opped 0/1 1G 1G

foo-tinme-vl started 1/1 1G 1G foo-tine-vl. cfapps.io

ski pper - server started 1/1 1G 1G ski pper - server. cfapps.io
dat af | ow server started 1/1 1G 1G dat af | owserver. cfapps.io

Note

o

Notice that there are two versions of the | og-si nk applications. The foo-I o0g-vl
application instance is going down (route already removed) and the newly spawned f 0o-
| 0g- v2 application is bootstrapping. The version number is incremented and the version-
number (v2) is included in the new application name.

9. Once the new application is up and running, let’s verify the logs.

$ cf logs foo-1o0g-v2

[foo.tine.foo-1] foo-I|og-v2 11/ 21/ 17

2017- 11- 20T18: 38: 36. 00- 0800 [APP/ PROC/ VEEB/ 0]
[foo.tine.foo-1] foo-I|og-v2

2017-11-20T18: 38: 37. 00- 0800 [APP/ PROC/ VEEB/ 0]

[foo.time.foo-1] foo-lo0g-v2

11/ 21/ 17

11/ 21/ 17

2017-11-20T18: 38: 35. 00- 0800 [APP/ PROC/ VEB/ 0] QUT 2017-11-21 02: 38: 35.
QUT 2017-11-21 02: 38: 36.

QUT 2017-11-21 02: 38: 37.

003 INFO 18 ---
02: 38: 34
004 [INFO 18 ---
02: 38: 35
005 INFO 18 ---
02: 38: 36

10Let’s look at the updated package manifest persisted in Skipper. We should now be seeing | og-
si nk at 1.2.0.RELEASE.

dat af | ow: >st ream ski pper mani fest --nane foo

Source: |og.ynl
api Ver si on: skipper.spring.io/vl
ki nd: SpringC oudDepl oyer Appl i cati on
net adat a:
nanme: | og
spec:
resource: maven://org.springframework. cl oud. stream app: | og- si nk-rabbi t
version: 1.2.0. RELEASE
appl i cati onProperties:
spring. cl oud. dat af | ow. st ream app. | abel : | og
spring.cloud. stream netrics. properties:
spring. appl i cation. nane, spring. appl i cation.index, spring.cloud. application.*, spring.cloud. datafl ow. *
spring. cl oud. stream bi ndi ngs. appl i cati onMetrics. destination: nmetrics
spring. cl oud. dat af | ow. st ream nane: foo
spring.metrics.export.triggers.application.includes: integration**
spring. cloud. stream netrics. key: foo.log.${spring.cloud. application.guid}
spring. cl oud. stream bi ndi ngs. i nput. group: foo
spring. cl oud. dat af | ow. stream app. type: sink
spring. cl oud. stream bi ndi ngs. i nput. destination: foo.tinme
depl oynment Properti es:
spring. cl oud. depl oyer. i ndexed: true
spring. cl oud. depl oyer. group: foo
spring. cl oud. depl oyer. count: 1

Source: tine.yn
api Versi on: ski pper.spring.io/vl
ki nd: SpringCl oudDepl oyer Appl i cati on
net adat a:
nane: tine
spec:
resource: maven://org.springframework. cl oud. stream app: ti me-source-rabbit
version: 1.2.0. RELEASE
appl i cati onProperties:
spring. cl oud. dat af | ow. stream app. | abel : tine
spring. cloud. stream netrics. properties:
spring. appl i cati on. nane, spring. application.index, spring.cloud. application.*, spring.cloud. datafl ow. *
spring. cl oud. stream bi ndi ngs. appl i cati onMetrics. destination: netrics
spring. cl oud. dat af | ow. stream nane: foo
spring. netrics.export.triggers.application.includes: integration**
spring.cloud. stream netrics. key: foo.tinme.${spring.cloud. application.guid}
spring. cl oud. stream bi ndi ngs. out put . producer. requi redG oups: foo
spring. cl oud. stream bi ndi ngs. out put. desti nati on: foo.tinme
spring. cl oud. dat af | ow. st ream app. type: source
depl oynment Properti es:
spring. cl oud. depl oyer. group: foo

11Verify stream history for the latest updates.

dat af | ow: >stream ski pper history --nane foo

#Ver si on# Last updat ed # Status #Package Nane#Package Version# Description #
BRI R R R IR B R R IR R R
#2 #Mon Nov 20 15: 39: 37 PST 2017#DEPLOYED#f oo #1.0.0 #Upgr ade conpl et e#
#1 #Mon Nov 20 15:34:37 PST 2017#DELETED #f oo #1.0.0 #Del ete conplete #

12Rolling-back to the previous version is just a command away.

dat af | ow: >st ream ski pper rol | back --nane foo
Rol | back request has been sent for the stream'foo'

dat af | ow: >st ream ski pper history --nane foo

#Ver si on# Last updated # Status #Package Nane#Package Version# Description #

#3 #Mon Nov 20 15:41: 37 PST 2017#DEPLOYED#f oo #1.0.0 #Upgr ade conpl et e#
#2 #Mon Nov 20 15:39: 37 PST 2017#DELETED #f oo

#Del ete conplete #
#1 #Mon Nov 20 15: 34: 37 PST 2017#DELETED #f oo

#Del ete conplete #

Part VIII. Tasks

This section goes into more detail about how you can work with Spring Cloud Task. It covers topics
such as creating and running task applications.

If you're just starting out with Spring Cloud Data Flow, you should probably read the Getting Started
guide before diving into this section.

http://cloud.spring.io/spring-cloud-task/

Spring Cloud Data Flow Server for Cloud Foundry

32. Introduction

A task executes a process on demand. In this case a task is a Spring Boot application that is annotated
with @nabl eTask. Hence a user launches a task that performs a certain process, and once complete
the task ends. An example of a task would be a boot application that exports data from a JDBC repository
to an HDFS instance. Tasks record the start time and the end time as well as the boot exit code in a
relational database. The task implementation is based on the Spring Cloud Task project.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 84

http://projects.spring.io/spring-boot/
http://cloud.spring.io/spring-cloud-task/

Spring Cloud Data Flow Server for Cloud Foundry

33. The Lifecycle of a Task

Before we dive deeper into the details of creating Tasks, we need to understand the typical lifecycle for
tasks in the context of Spring Cloud Data Flow:

1. Creating a Task Application

2. Registering a Task Application

3. Creating a Task Definition

4. Launching a Task

5. Reviewing Task Executions

6. Destroying a Task Definition

33.1 Creating a Task Application

While Spring Cloud Task does provide a number of out of the box applications (via the spring-cloud-

task-app-starters), most task applications will be custom developed. In order to create a custom task
application:

1. Create a new project via Spring Initializer via either the website or your IDE making sure to select
the following starters:

a. G oud Task - This dependency is the spri ng- cl oud- starter-task.
b. JDBC - This is the dependency for the spri ng-j dbc starter.

2. Within your new project, create a new class that will serve as your main class:

@nabl eTask
@Bpr i ngBoot Appl i cati on
public class MyTask {

public static void main(String[] args) {
Spri ngApplication. run(MTask. cl ass, args);

}
}

3. With this, you'll need one or more CormandLi neRunner or Appl i cati onRunner within your
application. You can either implement your own or use the ones provided by Spring Boot (there is
one for running batch jobs for example).

4. Packaging your application up via Spring Boot into an Uber jar is done via the standard Boot
conventions.

5. The packaged application can be registered and deployed as noted below.
Task Database Configuration

When launching a task application be sure that the database driver that is being used by Spring Cloud
Data Flow is also a dependency on the task application. For example if your Spring Cloud Data Flow is
set to use Postgresql, be sure that the task application also has Postgresql as a dependency.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 85

https://github.com/spring-cloud-task-app-starters
https://github.com/spring-cloud-task-app-starters
http://start.spring.io

Spring Cloud Data Flow Server for Cloud Foundry

@ Note

When executing tasks externally (i.e. command line) and you wish for Spring Cloud Data Flow
to show the TaskExecutions in its Ul, be sure that common datasource settings are shared
among the both. By default Spring Cloud Task will use a local H2 instance and the execution
will not be recorded to the database used by Spring Cloud Data Flow.

33.2 Registering a Task Application

Register a Task App with the App Registry using the Spring Cloud Data Flow Shell app regi ster
command. You must provide a unique name and a URI that can be resolved to the app artifact. For the
type, specify "task". Here are a few examples:

dat af | ow: >app regi ster --nane taskl --type task --uri maven://com exanpl e: nytask: 1. 0. 2

dat af | ow. >app register --nanme task2 --type task --uri file:///Users/exanpl e/ nmytask-1.0.2.jar

dat af | ow. >app regi ster --name task3 --type task --uri http://exanple.conl nytask-1.0.2.jar
When providing a URI with the nmaven scheme, the format should conform to the following:

maven: // <groupl d>: <artifact|d>[: <extension>[:<classifier>]]:<version>

If you would like to register multiple apps at one time, you can store them in a properties file where
the keys are formatted as <t ype>. <nane> and the values are the URIs. For example, this would be
a valid properties file:

task. foo=file:///tnp/foo.jar
task. bar=file:///tnp/bar.jar

Then use the app i mport command and provide the location of the properties file via - - uri :

app inport --uri file:///tnp/task-apps.properties

For convenience, we have the static files with application-URIs (for both maven and docker) available
for all the out-of-the-box Task app-starters. You can point to this file and import all the application-URIs
in bulk. Otherwise, as explained in previous paragraphs, you can register them individually or have your
own custom property file with only the required application-URIs in it. It is recommended, however, to
have a "focused" list of desired application-URIs in a custom property file.

List of available static property files:

Artifact Type Stable Release SNAPSHOT Release
Maven http://bit.ly/Belmont-GA-task- http://bit.ly/Belmont-BUILD-
applications-maven SNAPSHOT-task-applications-
maven
Docker http://bit.ly/Belmont-GA-task- http://bit.ly/Belmont-BUILD-
applications-docker SNAPSHOT-task-applications-
docker

For example, if you would like to register all out-of-the-box task applications in bulk, you can with the
following command.

dat af | ow: >app inport --uri http://bit.|y/Bel nont-GA-task-applications-maven

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 86

http://bit.ly/Belmont-GA-task-applications-maven
http://bit.ly/Belmont-GA-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-GA-task-applications-docker
http://bit.ly/Belmont-GA-task-applications-docker
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-docker
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-docker
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-docker

Spring Cloud Data Flow Server for Cloud Foundry

You can also pass the - - | ocal option (which is TRUE by default) to indicate whether the properties
file location should be resolved within the shell process itself. If the location should be resolved from the
Data Flow Server process, specify - -1 ocal fal se.

When using either app regi ster orapp i nport, ifatask app is already registered with the provided
name, it will not be overridden by default. If you would like to override the pre-existing task app, then
include the - - f or ce option.

@ Note

In some cases the Resource is resolved on the server side, whereas in others the URI will be
passed to a runtime container instance where it is resolved. Consult the specific documentation
of each Data Flow Server for more detail.

33.3 Creating a Task Definition

Create a Task Definition from a Task App by providing a definition name as well as properties that
apply to the task execution. Creating a task definition can be done via the restful API or the shell. To
create a task definition using the shell, use the t ask cr eat e command to create the task definition.
For example:

dat af | ow. >t ask create nytask --definition "timestanp --format=\"yyyy\""
Created new task 'nytask’

A listing of the current task definitions can be obtained via the restful API or the shell. To get the task
definition list using the shell, use the t ask | i st command.

33.4 Launching a Task

An adhoc task can be launched via the restful API or via the shell. To launch an ad-hoc task via the
shell use the t ask | aunch command. For example:

dat af | ow: >t ask | aunch mytask
Launched task ' nytask’

When a task is launched, any properties that need to be passed as the command line arguments to the
task application can be set when launching the task as follows:

dat af | ow: >t ask | aunch mytask --argunments "--server. port=8080, --foo=bar"

Additional properties meant fora TaskLauncher itself can be passedinusinga- - pr operti es option.
Format of this option is a comma delimited string of properties prefixed with app. <t ask definition
nane>. <pr opert y>. Properties are passed to TaskLauncher as application properties and it is up
to an implementation to choose how those are passed into an actual task application. If the property is
prefixed with depl oyer instead of app it is passed to TaskLauncher as a deployment property and
its meaning may be TaskLauncher implementation specific.

dat af | ow. >t ask | aunch nmytask --properties "depl oyer.tinestanp.fool=bar1l, app.tinestanp.foo2=bar2"

Common application properties

In addition to configuration via DSL, Spring Cloud Data Flow provides a mechanism for setting
common properties to all the task applications that are launched by it. This can be done by

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 87

Spring Cloud Data Flow Server for Cloud Foundry

adding properties prefixed with spri ng. cl oud. dat af | ow. appl i cati onProperties.task when
starting the server. When doing so, the server will pass all the properties, without the prefix, to the
instances it launches.

For example, all the launched applications can be configured to use the properties f oo and fi zz by
launching the Data Flow server with the following options:

--spring.cloud. dat af | ow. appl i cati onProperties.task.foo=bar
--spring.cloud. dat af | ow. appl i cati onProperties.task.fizz=bar2

This will cause the properties f oo=bar and fi zz=bar 2 to be passed to all the launched applications.

@ Note

Properties configured using this mechanism have lower precedence than task deployment
properties. They will be overridden if a property with the same key is specified at task launch
time (e.g. app. tri gger. fi zz will override the common property).

33.5 Reviewing Task Executions

Once the task is launched the state of the task is stored in a relational DB. The state includes:
» Task Name

» Start Time

* End Time

+ Exit Code

» Exit Message

» Last Updated Time

» Parameters

A user can check the status of their task executions via the restful API or by the shell. To display the
latest task executions via the shell use the t ask executi on |i st command.

To get a list of task executions for just one task definition, add - - nanme and the task definition name, for
example t ask execution list --nane foo. To retrieve full details for a task execution use the
t ask di spl ay command with the id of the task execution, for example t ask di splay --id 549.

33.6 Destroying a Task Definition

Destroying a Task Definition will remove the definition from the definition repository. This can be done
via the restful API or via the shell. To destroy a task via the shell use the t ask destr oy command.
For example:

dat af | ow. >t ask destroy mnytask
Destroyed task 'nmytask’

The task execution information for previously launched tasks for the definition will remain in the task
repository.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 88

Spring Cloud Data Flow Server for Cloud Foundry

@ Note

This will not stop any currently executing tasks for this definition, instead it just removes the
task definition from the database.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 89

Spring Cloud Data Flow Server for Cloud Foundry

34. Subscribing to Task/Batch Events

You can also tap into various task/batch events when the task is launched. If the task is enabled to
generate task and/or batch events (with the additional dependencies spri ng- cl oud-t ask- stream
and spri ng- cl oud- st ream bi nder - kaf ka, in the case of Kafka as the binder), those events are
published during the task lifecycle. By default, the destination names for those published events on
the broker (rabbit, kafka etc.,) are the event names themselves (for instance: t ask- events, j ob-

executi on-events etc.,).

dat af | ow: >t ask create myTask --definition “nyBatchJob”
dat af | ow: >t ask | aunch nyTask
dat af | ow. >stream create task-event-subscriberl --definition ":task-events > |og" --deploy

You can control the destination name for those events by specifying explicit names when launching the
task such as:

dat af | ow: >t ask | aunch nmyTask --properties "spring.cloud. stream bi ndi ngs. t ask-
event s. desti nati on=nyTaskEvent s"
dat af | ow. >stream create task-event-subscriber2 --definition ":nmyTaskEvents > | 0g" --depl oy

The default Task/Batch event and destination names on the broker are enumerated below:

Table 34.1. Task/Batch Event Destinations

Event Destination

Task events task-events

Job Execution events j ob- executi on-events
Step Execution events st ep- executi on-events
Item Read events itemread-events

Item Process events item process-events
Item Write events itemwite-events

Skip events ski p-events

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 20

Spring Cloud Data Flow Server for Cloud Foundry

35. Composed Tasks
Spring Cloud Data Flow allows a user to create a directed graph where each node of the graph is a task
application. This is done by using the DSL for composed tasks. A composed task can be created via

the RESTful API, the Spring Cloud Data Flow Shell, or the Spring Cloud Data Flow Ul.

35.1 Configuring the Composed Task Runner

Composed tasks are executed via a task application called the Composed Task Runner.

Registering the Composed Task Runner

Out of the box the Composed Task Runner application is not registered with Spring Cloud Data Flow.
So, to launch composed tasks we must first register the Composed Task Runner as an application with
Spring Cloud Data Flow as follows:

app register --name conposed-task-runner --type task --uri maven://
or g. spri ngf ramewor k. cl oud. t ask. app: conposedt askr unner - t ask: <DESI RED_VERS| O\>

You can also configure Spring Cloud Data Flow to use a different task
definiton name for the composed task runner. This can be done by setting the
spring. cl oud. dat af | ow. t ask. conposedTaskRunner Nare property to the name of your choice.
You can then register the composed task runner application with the name you set using that property.

Configuring the Composed Task Runner

The Composed Task Runner application has a dat af | ow. server. uri property that is used for
validation and for launching child tasks. This defaults to | ocal host : 9393. If you run a distributed
Spring Cloud Data Flow server, like you would do if you deploy the server on Cloud Foundry, YARN
or Kubernetes, then you need to provide the URI that can be used to access the server. You can
either provide this dat af | ow. ser ver . uri property for the Composed Task Runner application when
launching a composed task, or you can provide a spri ng. cl oud. dat af | ow. server. uri property
for the Spring Cloud Data Flow server when it is started. For the latter case the dat af | ow. server. uri
Composed Task Runner application property will be automatically set when a composed task is
launched.

In some cases you may wish to execute an instance of the Composed Task Runner via the
Task Launcher sink. In this case you must configure the Composed Task Runner to use the
same datasource that the Spring Cloud Data Flow instance is using. The datasource properties
are set via the TaskLaunchRequest through the use of the commandl i neArgunents or
the environment Properties. This is because, the Composed Task Runner monitors the
task_executions table to check the status of the tasks that it is executing. Using this information from
the table, it determines how it should navigate the graph.

35.2 The Lifecycle of a Composed Task

Creating a Composed Task

The DSL for the composed tasks is used when creating a task definition via the task create command.
For example:

dat af | ow. > app register --nanme tinmestanp --type task --uri maven://
or g. spri ngframewor k. cl oud. t ask. app: ti mest anp-t ask: <DESI RED_VERSI O\>

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 91

https://github.com/spring-cloud-task-app-starters/composed-task-runner
http://localhost:9393

Spring Cloud Data Flow Server for Cloud Foundry

dat af | ow. > app register --name nytaskapp --type task --uri file:///hone/tasks/ nytask.jar
dat af | ow: > task create ny-conposed-task --definition "nytaskapp & ti nestanp”
dat af | ow. > task | aunch ny-conposed-t ask

In the example above we assume that the applications to be used by our composed task have not been
registered yet. So the first two steps we register two task applications. We then create our composed
task definition by using the task create command. The composed task DSL in the example above will,
when launched, execute mytaskapp and then execute the timestamp application.

But before we launch the my-composed-task definition, we can view what Spring Cloud Data Flow
generated for us. This can be done by executing the task list command.

dat af | ow. >t ask |i st

Task Name # Task Definition #Task Status#
#ny- conposed- t ask #nyt askapp && ti nest anp#unknown #
#ny- conposed- t ask- nyt askapp#nyt askapp #unknown #

#ny- conposed- t ask-t i nest anp#t i nest anp #unknown #

Spring Cloud Data Flow created three task definitions, one for each of the applications that comprises our
composed task (ny- conposed-t ask- nmyt askapp and ny- conposed-t ask-ti mest anp) as well
as the composed task (nmy- conposed- t ask) definition. We also see that each of the generated names
for the child tasks is comprised of the name of the composed task and the name of the application
separated by a dash - . i.e. my-composed-task - mytaskapp.

Task Application Parameters

The task applications that comprise the composed task definition can also contain parameters. For
example:

dat af | ow. > task create ny-conposed-task --definition "nytaskapp --di spl ayMessage=hell o && tinestanp --
f or mat =YYYY"

Launching a Composed Task

Launching a composed task is done the same way as launching a stand-alone task. i.e.

task launch ny-conposed-task

Once the task is launched and assuming all the tasks complete successfully you will see three task
executions when executing at ask execution |i st.For example:

dat af | ow: >t ask execution |ist

Task Name #1 D # Start Tine # End Tinme #Exit Code#
HHHHHBHHHH T H R R H A T H R H R H R R H T R
#ny- conposed-t ask-ti nmest anp#713#Wed Apr 12 16:43: 07 EDT 2017#Wed Apr 12 16:43: 07 EDT 2017#0 #
#nmy- conposed- t ask- myt askapp#712#Wed Apr 12 16:42:57 EDT 2017#Wed Apr 12 16:42:57 EDT 2017#0 #
#my- conposed- t ask #711#Wed Apr 12 16:42:55 EDT 2017#Wed Apr 12 16:43:15 EDT 2017#0 #

In the example above we see that my-compose-task launched and it also launched the other tasks in
sequential order and all of them executed successfully with "Exit Code" as 0.

Exit Statuses

The following list shows how the Exit Status will be set for each step (task) contained in the composed
task following each step execution.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 92

Spring Cloud Data Flow Server for Cloud Foundry

» If the TaskExecut i on has an Exi t Message that will be used as the Exi t St at us

» If no Exi t Message is present and the Exi t Code is set to zero then the Exi t St at us for the step
will be COVPLETED.

e If no Exit Message is present and the Exit Code is set to any non zero number then the
Exi t St at us for the step will be FAI LED.

Destroying a Composed Task

The same command used to destroy a stand-alone task is the same as destroying a composed task.
The only difference is that destroying a composed task will also destroy the child tasks associated with
it. For example

dat af | ow. >t ask |i st

Task Name # Task Definition #Task Status#
#ny- conposed- t ask #nyt askapp && ti nest anp#COVPLETED #
#ny- conposed- t ask- nyt askapp#nyt askapp #COWPLETED #
#ny- conposed-t ask-t i nest anp#t i nest anp #COWPLETED #

dat af | ow. >t ask destroy ny-conposed-task
dat af | ow. >t ask |i st

#Task Nane#Task Definition#Task Status#

Stopping a Composed Task
In cases where a composed task execution needs to be stopped. This can be done via the:
e RESTful API

» Spring Cloud Data Flow Dashboard by selecting the Job’s tab and then clicking the stop button by
the job execution that needs to be stopped.

The composed task run will be stopped when the currently running child task completes. The step
associated with the child task that was running at the time that the composed task was stopped will be
marked as STOPPED as well as the composed task job execution.

Restarting a Composed Task

In cases where a composed task fails during execution and the status of the composed task is FAI LED
then the task can be restarted. This can be done via the:

« RESTful API
 Shell by launching the task using the same parameters

» Spring Cloud Data Flow Dashboard by selecting the Job’s tab and then clicking the restart button by
the job execution that needs to be restarted.

@ Note

Restarting a Composed Task job that has been stopped (via the Spring Cloud Data Flow
Dashboard or RESTful API), will relaunch the STOPPED child task, and then launch the
remaining (unlaunched) child tasks in the specified order.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 93

Spring Cloud Data Flow Server for Cloud Foundry

36. Composed Tasks DSL

36.1 Conditional Execution

Conditional execution is expressed using a double ampersand symbol &&. This allows each task in the
sequence to be launched only if the previous task successfully completed. For example:

task create ny-conposed-task --definition "foo & bar"

When the composed task my-composed-task is launched, it will launch the task f oo and if it completes
successfully, then the task bar will be launched. If the f 0o task fails, then the task bar will not launch.

You can also use the Spring Cloud Data Flow Dashboard to create your conditional execution. By using
the designer to drag and drop applications that are required, and connecting them together to create
your directed graph. For example:

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 94

Spring Cloud Data Flow Server for Cloud Foundry

START

. () '
foo

L Pt .

, () \
bar

: Y .

Figure 36.1. Conditional Execution

The diagram above is a screen capture of the directed graph as it being created using the Spring
Cloud Data Flow Dashboard. We see that are 4 components in the diagram that comprise a conditional
execution:

Start icon - All directed graphs start from this symbol. There will only be one.
» Task icon - Represents each task in the directed graph.

» End icon - Represents the termination of a directed graph.

Solid line arrow - Represents the flow conditional execution flow between:

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 95

Spring Cloud Data Flow Server for Cloud Foundry

* Two applications
¢ The start control node and an application
* An application and the end control node

@ Note

You can view a diagram of your directed graph by clicking the detail button next to the composed
task definition on the definitions tab.

36.2 Transitional Execution

The DSL supports fine grained control over the transitions taken during the execution of the directed
graph. Transitions are specified by providing a condition for equality based on the exit status of the
previous task. A task transition is represented by the following symbol - >.

Basic Transition
A basic transition would look like the following:

task create ny-transition-conposed-task --definition "foo ' FAILED -> bar 'COWLETED -> baz"

In the example above f oo would launch and if it had an exit status of FAI LED, then the bar task would
launch. If the exit status of f oo was COVPLETED then baz would launch. All other statuses returned by
f oo will have no effect and task would terminate normally.

Using the Spring Cloud Data Flow Dashboard to create the same "basic transition" would look like:

START

Figure 36.2. Basic Transition

The diagram above is a screen capture of the directed graph as it being created using the Spring Cloud
Data Flow Dashboard. Notice that there are 2 different types of connectors:

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 96

Spring Cloud Data Flow Server for Cloud Foundry

» Dashed line - Is the line used to represent transitions from the application to one of the possible
destination applications.

» Solid line - Used to connect applications in a conditional execution or a connection between the
application and a control node (end, start).

When creating a transition, link the application to each of possible destination using the connector. Once
complete go to each connection and select it by clicking it. A bolt icon should appear, click that icon and
enter the exit status required for that connector. The solid line for that connector will turn to a dashed line.

Transition With a Wildcard

Wildcards are supported for transitions by the DSL for example:

task create ny-transition-conposed-task --definition "foo ' FAILED -> bar '*' -> baz"

In the example above f oo would launch and if it had an exit status of FAI LED, then the bar task would
launch. Any exit status of f oo other than FAI LED then baz would launch.

Using the Spring Cloud Data Flow Dashboard to create the same "transition with wildcard" would look
like:

START

foo

Figure 36.3. Basic Transition With Wildcard
Transition With a Following Conditional Execution

A transition can be followed by a conditional execution so long as the wildcard is not used. For example:

task create my-transition-conditional -execution-task --definition "foo ' FAILED -> bar ' UNKNOWN -> baz
&& qux && quux"

In the example above f oo would launch and if it had an exit status of FAI LED, then the bar task would
launch. If f oo had an exit status of UNKNOWN then baz would launch. Any exit status of f 0o other than
FAI LED or UNKNOWN then qux would launch and upon successful completion quux would launch.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 97

Spring Cloud Data Flow Server for Cloud Foundry

Using the Spring Cloud Data Flow Dashboard to create the same "transition with conditional execution"
would look like:

START

Figure 36.4. Transition With Conditional Execution

@ Note

In this diagram we see the dashed line (transition) connecting the f 0o application to the target
applications, but a solid line connecting the conditional executions between f oo, qux, and
guux.

36.3 Split Execution

Splits allow for multiple tasks within a composed task to be run in parallel. It is denoted by using angle
brackets <> to group tasks and flows that are to be run in parallel. These tasks and flows are separated
by the double pipe | | . For example:

task create nmy-split-task --definition "<foo || bar || baz>"

The example above will launch tasks f oo, bar and baz in parallel.
Using the Spring Cloud Data Flow Dashboard to create the same "split execution" would look like:

START

Figure 36.5. Split

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 98

Spring Cloud Data Flow Server for Cloud Foundry

With the task DSL a user may also execute multiple split groups in succession. For example:

task create ny-split-task --definition "<foo || bar || baz> && <qux || quux>"

In the example above tasks f 0o, bar and baz will be launched in parallel, once they all complete then
tasks qux, quux will be launched in parallel. Once they complete the composed task will end. However
if f 00, bar, or baz fails then, the split containing qux and quux will not launch.

Using the Spring Cloud Data Flow Dashboard to create the same "split with multiple groups" would
look like:

START

Figure 36.6. Split as a part of a conditional execution
Notice that there is a SYNC control node that is by the designer when connecting two consecutive splits.
Split Containing Conditional Execution

A split can also have a conditional execution within the angle brackets. For example:

task create nmy-split-task --definition "<foo & bar || baz>"

In the example above we see that f oo and baz will be launched in parallel, however bar will not launch
until f oo completes successfully.

Using the Spring Cloud Data Flow Dashboard to create the same "split containing conditional execution"
would look like:

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 99

Spring Cloud Data Flow Server for Cloud Foundry

START

C
C

bar baz

Figure 36.7. Split with conditional execution

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 100

Spring Cloud Data Flow Server for Cloud Foundry

37. Launching Tasks from a Stream

You can launch a task from a stream by using one of the available t ask- | auncher sinks. Currently
the platforms supported via the t ask- | auncher sinks are local, Cloud Foundry, and Yarn.

@ Note

t ask- | auncher -1 ocal is meant for development purposes only.

A task-| auncher sink expects a message containing a TaskLaunchRequest object in its payload.
From the TaskLaunchRequest object the t ask- | auncher will obtain the URI of the artifact to be
launched as well as the environment properties, command line arguments, deployment properties and
application name to be used by the task.

The task-launcher-local can be added to the available sinks by executing the app register command as
follows (for the Rabbit Binder):

app register --name task-launcher-local --type sink --uri maven://
or g. springfranewor k. cl oud. stream app: t ask- | auncher -l ocal -si nk-rabbit:jar: 1. 2. 0. RELEASE

In the case of a maven based task that is to be launched, the task-I|auncher
application is responsible for downloading the artifact. You must configure the task-
I auncher with the appropriate configuration of Maven Properties such as --maven. r enot e-
repositories.repol.url=http://repo.spring.io/libs-mlestone" to resolve artifacts,
in this case against a milestone repo. Note that this repo can be different than the one used to register
the t ask- 1 auncher application itself.

37.1 TriggerTask

One way to launch a task using the task-I|auncher is to use the triggertask source. The
tri ggert ask source will emit a message with a TaskLaunchRequest object containing the required
launch information. The tri ggert ask can be added to the available sources by executing the app
register command as follows (for the Rabbit Binder):

app register --type source --nane triggertask --uri maven://
or g. springfranmewor k. cl oud. stream app: tri ggertask-source-rabbit:1.2. 0. RELEASE

An example of this would be to launch the timestamp task once every 60 seconds, the stream to
implement this would look like:

stream create foo --definition "triggertask --triggertask.uri=maven://

or g. springframewor k. cl oud. t ask. app: ti mestanp-task:jar:1.2.0. RELEASE --trigger.fixed-

del ay=60 --triggertask.environnment-properties=spring.datasource.url=jdbc:h2:tcp://

| ocal host: 19092/ mem dat af | ow, spri ng. dat asour ce. user nanme=sa | task-|auncher-Ilocal --maven.renote-
repositories.repol.url =http://repo.spring.io/libs-rel ease" --deploy

If you execute runt i ne apps you can find the log file for the task launcher sink. Tailing that file you
can find the log file for the launched tasks. The setting of t ri ggert ask. envi ronnent - properties
is so that all the task executions can be collected in the same H2 database used in the local version
of the Data Flow Server. You can then see the list of task executions using the shell command t ask
execution |ist

dat af | ow: >t ask execution |ist

Task Nane #| D# Start Tinme # End Ti ne #Exit Code#
HHHH

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 101

https://github.com/spring-cloud-stream-app-starters/tasklauncher-local
https://github.com/spring-cloud-stream-app-starters/tasklauncher-cloudfoundry
https://github.com/spring-cloud-stream-app-starters/tasklauncher-yarn
https://github.com/spring-cloud/spring-cloud-task/blob/master/spring-cloud-task-stream/src/main/java/org/springframework/cloud/task/launcher/TaskLaunchRequest.java
https://github.com/spring-cloud-stream-app-starters/tasklauncher-local/blob/v1.2.0.RELEASE/spring-cloud-starter-stream-sink-task-launcher-local/README.adoc
https://github.com/spring-cloud/spring-cloud-deployer/blob/master/spring-cloud-deployer-resource-maven/src/main/java/org/springframework/cloud/deployer/resource/maven/MavenProperties.java
https://github.com/spring-cloud-stream-app-starters/triggertask/blob/v1.2.0.RELEASE/spring-cloud-starter-stream-source-triggertask/README.adoc

Spring Cloud Data Flow Server for Cloud Foundry

#ti mest anp-t ask_26176#4 #Tue May 02 12:13:49 EDT 2017#Tue May 02 12:13:49 EDT 2017#0
#ti mest anp- t ask_32996#3 #Tue May 02 12:12:49 EDT 2017#Tue May 02 12:12:49 EDT 2017#0
#ti mest anp-t ask_58971#2 #Tue May 02 12:11:50 EDT 2017#Tue May 02 12:11:50 EDT 2017#0
#ti mest anp-task_13467#1 #Tue May 02 12:10: 50 EDT 2017#Tue May 02 12:10:50 EDT 2017#0

T

37.2 TaskLaunchRequest-transform

Another option to start a task using the t ask-| auncher would be to create a stream using the
Tasklaunchrequest-transform processor to translate a message payload to a TaskLaunchRequest .

The t askl aunchr equest -t r ansf or mcan be added to the available processors by executing the
app register command as follows (for the Rabbit Binder):

app register --type processor --nane tasklaunchrequest-transform--uri maven://
or g. spri ngf ramewor k. cl oud. stream app: t askl aunchr equest -t ransf orm processor-rabbit: 1. 2. 0. RELEASE

For example:

stream create task-stream--definition "http --port=9000 | tasklaunchrequest-transform --uri=maven://
org. springfranmework. cl oud. t ask. app: ti nest anp-task:jar:1.2.0. RELEASE | task-launcher-local --
maven. renot e-repositories.repol.url=http://repo.spring.io/libs-rel ease"

37.3 Launching a Composed Task From a Stream

A composed task can be launched using one of the t ask- | auncher sinks as discussed here. Since
we will be using the ConposedTaskRunner directly we will need to setup the task definitions it will use
prior to the creation of the composed task launching stream. So let's say that we wanted to create the
following composed task definition AAA && BBB. The first step would be to create the task definitions.
For example:

task create AAA --definition "tinestanp”
task create BBB --definition "timestanp"

Now that the task definitions we need for composed task definition are ready, we need to create a stream
that will launch ConposedTaskRunner . So in this case we will create a stream that has a trigger that will
emit a message once every 30 seconds, a transformer that will create a TaskLaunchRequest for each
message received, and at ask- | auncher -1 ocal sink that will launch a the ConposedTaskRunner
on our local machine. The stream should look something like this:

streamcreate ctr-stream--definition "tine --fixed-delay=30 | tasklaunchrequest-transform --

uri =maven:// org. springfranmework. cl oud. t ask. app: conposedt askr unner - t ask: <current rel ease> --comrand-

li ne-argunent s=' - - gr aph=AAA&R&BBB - -i ncrenent -i nst ance- enabl ed=true --spring.datasource.url=..." | task-
I auncher -l ocal "

In the example above we see that the t askl aunchr equest -t ransf or mis establishing 2 primary
components:

* uri - the URI of the ConposedTaskRunner that will be used.
e command-line-arguments - that configure the ConposedTaskRunner .
For now let’s focus on the configuration that is required to launch the ConposedTaskRunner :

e graph - this is the graph that is to be executed by the ConposedTaskRunner. In this case it is
AAA&EBBB

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 102

https://github.com/spring-cloud-stream-app-starters/tasklaunchrequest-transform

Spring Cloud Data Flow Server for Cloud Foundry

» increment-instance-enabled - this allows each execution of ConposedTaskRunner to be unique.
ConposedTaskRunner is built using Spring Batch, and thus each we will want a new Job Instance
for each launch of the ConposedTaskRunner. To do this we set the increment-instance-enabled
tobetrue.

» spring.datasource.* - the datasource that is used by Spring Cloud Data Flow which allows the user to
track the tasks launched by the ConposedTaskRunner and the state of the job execution. Also this
is so that the ConposedTaskRunner can track the state of the tasks it launched and update its state.

@ Note

Releases of ConposedTaskRunner can be found here

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 103

http://projects.spring.io/spring-batch/
https://github.com/spring-cloud-task-app-starters/composed-task-runner/releases

Part IX. Tasks on Cloud Foundry

Spring Cloud Data Flow’s task functionality exposes new task capabilities within the Pivotal Cloud
Foundry runtime. It is important to note that the current underlying PCF task capabilities are considered
experimental for PCF version versions less than 1.9. See Chapter 18, Feature Toggles for how to disable
task support in Data Flow.

Spring Cloud Data Flow Server for Cloud Foundry

38. Version Compatibility

The task functionality depends on the latest versions of PCF for runtime support. This release requires
PCF version 1.7.12 or higher to run tasks. Tasks are an experimental feature in PCF 1.7 and 1.8 and
a GA feature in PCF 1.9.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 105

Spring Cloud Data Flow Server for Cloud Foundry

39. Tooling

It is important to note that there is no Apps Manager support for tasks as of this release. When running
applications as tasks through Spring Cloud Data Flow, the only way is to view them within the context
of CF CLI.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 106

Spring Cloud Data Flow Server for Cloud Foundry

40. Task Database Schema

The database schema for Task applications was changed slighlty from the 1.0.x to 1.1.x version of
Spring Cloud Task. Since Spring Cloud Data Flow automatically creates the database schema if it is
not present upon server startup, you may need to update the schema if you ran a 1.0.x version of the
Data Flow server and now are upgrading to the 1.1.x version. You can find the migration scripts here in
the Spring Cloud Task Github repository. The documentation for Accessing Services with Diego SSH
and this blog entry for connecting a GUI tools to the MySQL Service in PCF should help you to update
the schema.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 107

https://github.com/spring-cloud/spring-cloud-task/tree/1.1.0.RELEASE/spring-cloud-task-core/src/main/resources/org/springframework/cloud/task/migration
https://docs.cloudfoundry.org/devguide/deploy-apps/ssh-services.html
http://pivotaljourney.blogspot.com/2016/05/connecting-gui-tool-to-mysql-service-in.html

Spring Cloud Data Flow Server for Cloud Foundry

41. Running Task Applications

Running a task application within Spring Cloud Data Flow goes through a slightly different lifecycle
than running a stream application. Both types of applications need to be registered with the appropriate
artifact coordinates. Both need a definition created via the SCDF DSL. However, that's where the
similarities end.

With stream based applications, you "deploy" them with the intent that they run until they are undeployed.
A stream definition is only deployed once (it can be scaled, but only deployed as one instance of the
stream as a whole). However, tasks are launched. A single task definition can be launched many times.
With each launch, they will start, execute, and shut down with PCF cleaning up the resources once the
shutdown has occurred. The following sections outline the process of creating, launching, destroying,
and viewing tasks.

41.1 Create a Task

Similar to streams, creating a task application is done via the SCDF DSL or through the dashboard. To
create a task definition in SCDF, you've to either develop a task application or use one of the out-of-
the-box task app-starters. The maven coordinates of the task application should be registered in SCDF.
For more details on how to register task applications, review register task applications section from the
core docs.

Let's see an example that uses the out-of-the-box t i mest anp task application.

dat af | ow. >t ask create --nane foo --definition "ti mestanp"
Created new task 'foo'

@ Note

Tasks in SCDF do not require explicit deployment. They are required to be launched and with
that there are different ways to launch them - refer to this section for more details.

41.2 Launch a Task

Unlike streams, tasks in SCDF requires an explicit launch trigger or it can be manually kicked-off.

dat af | ow: >t ask | aunch foo
Launched task ' foo'

41.3 View Task Logs

As previously mentioned, the CL CLI is the way to interact with tasks on PCF, including viewing the
logs. In order to view the logs as a task is executing use the following command where f 00 is the name
of the task you are executing:

cf v3-logs foo
Tailing logs for app foo...

2016- 08- 19T09: 44: 49. 11- 0700 [APP/ TASK/ bar 1/ 0] QUT 2016-08-19 16:44:49.111 INFO 7 --- [nai n]
o.s.c.t.a.t. Ti mestanpTaskAppl i cation : Started TinestanpTaskApplication in 2.734 seconds (JVM
running for 3.288)

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 108

http://docs.spring.io/spring-cloud-task-app-starters/docs/current-SNAPSHOT/reference/htmlsingle

Spring Cloud Data Flow Server for Cloud Foundry

2016- 08- 19T09: 44: 49. 13- 0700 [APP/ TASK/ bar 1/ 0] OUT Exit status 0
2016- 08- 19T09: 44: 49. 19- 0700 [APP/ TASK/ bar 1/ 0] OQUT Destroyi ng cont ai ner
2016- 08- 19T09: 44: 50. 41- 0700 [APP/ TASK/ bar 1/ 0] QUT Successful |y destroyed contai ner

@ Note

Logs are only viewable through the CF CLI as the app is running. Historic logs are not available.

41.4 List Tasks

Listing tasks is as simple as:

dat af | ow: >t ask |i st

Task Nane # Task Definition #Task St at us#

#f 0o #ti mest anp #conpl ete #

41.5 List Task Executions

If you'd like to view the execution details of the launched task, you could do the following.

dat af | ow. >t ask execution |ist

Task Nanme #| D# Start Tine # End Ti me # Exit
Code

#f oo: cl oud: #1 # Fri Aug 19 09:44:49 PDT #Fri Aug 19 09:44:49 PDT #0 #

41.6 Destroy a Task

Destroying the task application from SCDF removes the task definition from task repository.

dat af | ow. >t ask destroy foo
Destroyed task 'foo'
dat af | ow: >t ask |i st

#Task Nane#Task Defi nition#Task Status#

41.7 Deleting Task From Cloud Foundry

Currently Spring Cloud Data Flow does not delete tasks deployed on a Cloud Foundry instance once
they have been pushed. The only way to do this now is via CLI on a Cloud Foundry instance version
1.9 or above. This is done in 2 steps:

1. Obtain a list of the apps via the cf apps command.
2. ldentify the task app to be deleted and execute the cf del et e <t ask- name> command.

@ Note

The t ask destroy <task-name> only deletes the definition and not the task deployed on
Cloud Foundry.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 109

Part X. Dashboard

This section describe how to use the Dashboard of Spring Cloud Data Flow.

Spring Cloud Data Flow Server for Cloud Foundry

42. Introduction

Spring Cloud Data Flow provides a browser-based GUI and it currently includes 6 tabs:

» Apps Lists all available applications and provides the control to register/unregister them

Runtime Provides the Data Flow cluster view with the list of all running applications

Streams List, create, deploy, and destroy Stream Definitions

Tasks List, create, launch and destroy Task Definitions

Jobs Perform Batch Job related functions

Analytics Create data visualizations for the various analytics applications
Upon starting Spring Cloud Data Flow, the Dashboard is available at:
htt p: // <host >: <port >/ dashboard

For example: http://localhost:9393/dashboard

If you have enabled https, then it will be located at ht t ps: // | ocal host : 9393/ dashboar d. If you
have enabled security, alogin form is available atht t p: / / | ocal host : 9393/ dashboar d/ #/ | ogi n.

@ Note

The default Dashboard server port is 9393

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 111

http://localhost:9393/dashboard

Spring Cloud Data Flow Server for Cloud Foundry

&) spring

About

simplify the development of big data applications.

Data Flow Server Implementation

Name spring-cloud-dataflow-server-local

Version 1.3.0.BUILD-SNAPSHOT

Q SHOW DETAILS

Get the Spring Cloud Data Flow Shell

As an alternative to the Dashboard Ul, you can also download the compatible version of the Shell {1.3.0.BUILD-SNAPSHOT).

Need Help or Found an Issue?

Project Page http://cloud.spring.io/spring-cloud-dataflow/

Sources https://github.com/spring-cloud/spring-cloud-dataflow

Documentation ht docs.spring.io/spring-cloud-dataflow/docs/1.3.0.BUILD-SNAPSHOT reference/htmlsingle/
APl Docs http://docs.spring.io/spring-cloud-dataflow/docs/1.3.0.BUILD-SNAPSHOT/api/

Support Forum http://stackoverflow.com/questions/tagged/spring-cloud-dataflow

Issue Tracker https://github.com/spring-cloud/spring-cloud-dataflow/issues

PROJECT MENTATION

Spring Cloud Data Flow is a unified, distributed, and extensible system for data ingestion, real time analytics, batch processing, and data expert. The project's geal is to

NEED HELP?

For questions + support:

Figure 42.1. The Spring Cloud Data Flow Dashboard

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry

112

Spring Cloud Data Flow Server for Cloud Foundry

43. Apps

The Apps section of the Dashboard lists all the available applications and provides the control to register/
unregister them (if applicable). It is possible to import a number of applications at once using the Bulk
Import Applications action.

Apps

This section lists all the available applications and provides the control to register/unregister them (if applicable).

=+ REGISTER APPLICATION(S) 2 BULK IMPORT APPLICATIONS Filter items

Name Type URI Actions

1 file source maven://org.springframework.cloud.stream.app:file-source-rabbit:1.3.0.M1 n
1 ftp source maven://org.springframework.cloud.stream.app:ftp-source-rabbit:1.3.0.M1 n
~1 gemfire source maven://org.springframework.cloud.stream.app:gemfire-source-rabbit:1.3.0.M1 n
~) gemfire-cq source maven://org.springframework.cloud stream.app:gemfire-cq-source-rabbit:1.3.0.M1 n
1 http source maven://org.springframework.cloud.stream.appihttp-source-rabbit:1.3.0.M1 n
~1 jdbe source maven://org.springframework.cloud.stream.app:jdbc-source-rabbit:1.3.0.M1 “
1 jms source maven://org.springframework.cloud.stream.app:;jms-source-rabbit:1.3.0.M1 n

~| load-generator source maven://org.springframework.cloud.stream.app:load-generator-source-rabbit:1.3.0.M1 u

T loggregator source maven://org.springframework.cloud stream.app:loggregator-source-rabbit:1.3.0.M1 n

1 mail source maven://org.springframework.cloud.stream.app:mail-source-rabbit:1.3.0.M1 n

234557Next»

PROJECT DOCUMENTATION NEED HELP?

For questions + support:

Figure 43.1. List of Available Applications

43.1 Bulk Import of Applications

The bulk import applications page provides numerous options for defining and importing a set of
applications in one go. For bulk import the application definitions are expected to be expressed in a
properties style:

<type>. <name> = <coor di nat es>
For example:

task. ti mest anp=nmaven://org. springfranmework. cl oud. t ask. app: ti nest anp-
task: 1. 2. 0. RELEASE

processor. transformrmaven: // or g. spri ngfranmewor k. cl oud. stream app: transform
processor-rabbit:1.2.0. RELEASE

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 113

Spring Cloud Data Flow Server for Cloud Foundry

At the top of the bulk import page an Uri can be specified that points to a properties file stored
elsewhere, it should contain properties formatted as above. Alternatively, using the textbox labeled Apps
as Properties it is possible to directly list each property string. Finally, if the properties are stored in a
local file the Select Properties File option will open a local file browser to select the file. After setting
your definitions via one of these routes, click Import.

At the bottom of the page there are quick links to the property files for common groups of stream apps
and task apps. If those meet your needs, simply select your appropriate variant (rabbit, kafka, docker,
etc) and click the Import action on those lines to immediately import all those applications.

Bulk Import Applications
Impoert and register applications in bulk. Simply provide a URI that points to the location of the properties file where the keys are formatted as type.name and the values
are the URIs of the apps. For convenience, a list of out-of-the-box Stream and Task app starters is provided below, as well.

OR

Enter the list of properties into the text area field below. Alternatively, you can also
select a file in your local file system, which is used to populate the text area field.

Apps as Properties

Please provide a valid properties where the keys are formatted as type.name and the values are the URIs of the apps

Choose File = No file chosen
Select Properties File

Please provide a text file containing properties. This will be used to populate the text area above

Force @

PROJECT DOCUMENTATION NEED HELP?

For questions + support:

Figure 43.2. Bulk Import Applications

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 114

Spring Cloud Data Flow Server for Cloud Foundry

44. Runtime

The Runtime section of the Dashboard application shows the Spring Cloud Data Flow cluster view with
the list of all running applications. For each runtime app the state of the deployment and the number
of deployed instances is shown. A list of the used deployment properties is available by clicking on the
app id.

Runtime applications

This section shows the list of all running apps.

AppId State # of Instances
foo.log deployed 1
foo.time deployed 1

PROJECT DOCUMENTATION NEED HELP?

For questiens + support:

Figure 44.1. List of Running Applications

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 115

Spring Cloud Data Flow Server for Cloud Foundry

45. Streams

The Streams section of the Dashboard provides the Definitions tab that provides a listing of Stream
definitions. There you have the option to deploy or undeploy those stream definitions. Additionally
you can remove the definition by clicking on destroy. Each row includes an arrow on the left, which
can be clicked to see a visual representation of the definition. Hovering over the boxes in the visual
representation will show more details about the apps including any options passed to them. In this
screenshot the timer stream has been expanded to show the visual representation:

Streams

This section lists all the stream definitions and provides the ability to deploy/undeploy or destroy streams.
Definitions Create Stream

Filter Stream Definitions

EXPAND ALL COLLAPSE ALL

Name ¥ Definitions ¥ Status @ Actions

(o] cassandraingest http --port=8000 | filter --expression=#jsonPath(payload,'$.lang')=="en" | cassandra undeployed n -n
o] minutes itimer.time > transform --expression=payload.substring(2,4) | log deploying “ n
(o] seconds :timer.time > transform --expression=payload.substring(4) | log deploying n“ n
o] timer time --date-format=hhmmss | log deploying “ n

PROJECT DOCUMENTATION NEED HELP?

For questions + support:

Figure 45.1. List of Stream Definitions

If the details button is clicked the view will change to show a visual representation of that stream and
also any related streams. In the above example, if clicking details for the timer stream, the view will
change to the one shown below which clearly shows the relationship between the three streams (two
of them are tapping into the timer stream).

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 116

Spring Cloud Data Flow Server for Cloud Foundry

‘ : ‘ spr'ng APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

timer

194 = ———

‘ B time #]—E%I:) log ’
A transform é‘]—%lb log
k> log

A\ transform

Figure 45.2. Stream Details Page

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 117

Spring Cloud Data Flow Server for Cloud Foundry

46. Create Stream

The Create Stream section of the Dashboard includes the Spring Flo designer tab that provides the
canvas application, offering a interactive graphical interface for creating data pipelines.

In this tab, you can:
» Create, manage, and visualize stream pipelines using DSL, a graphical canvas, or both
» Write pipelines via DSL with content-assist and auto-complete

» Use auto-adjustment and grid-layout capabilities in the GUI for simpler and interactive organization
of pipelines

Watch this screencast that highlights some of the "Flo for Spring Cloud Data Flow" capabilities. Spring
Flo wiki includes more detailed content on core Flo capabilities.

Streams

Create a stream using text based input or the visual editor.

Definitions Create Stream

IR I (o) o]
STREAM l=time | scriptable-transform --script='''return #{payload.tr('"“A-Za-z0-9', '')}''' --language=ruby |
log
:STREAM 1l.time > scriptable-transform --script='''function double(p) \n{\n return p + '--' +
p;\n}\ndouble(payload);''' --language=javascript | log

4

source

A scriptable-tra... %]—[% = log
‘----[% A scriptable-tra... IJ‘]—E’E = log

1]
> gemfire-cq “
]
L}
1

\
I\ scriptable-tra... B log
D

T
g

E» gemfire p time

Gl

=3
©

T
3

> load-genera...]

i

> logoresator

PROJECT DOCUMENTATION NEED HELP?

For questions + support:

Figure 46.1. Flo for Spring Cloud Data Flow

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 118

https://github.com/spring-projects/spring-flo
https://www.youtube.com/watch?v=78CgV46OstI
https://github.com/spring-projects/spring-flo/wiki

Spring Cloud Data Flow Server for Cloud Foundry

47. Tasks

The Tasks section of the Dashboard currently has three tabs:
* Apps
* Definitions

» Executions

47.1 Apps

Apps encapsulate a unit of work into a reusable component. Within the Data Flow runtime environment
Apps allow users to create definitions for Streams as well as Tasks. Consequently, the Apps tab within

the Tasks section allows users to create Task definitions.

@ Note

You will also use this tab to create Batch Jobs.

Tasks

Create a task using text based input or the visual editor.

Apps Definitions Create Composed Task Executions

Apps

This section lists all available task apps. You have the ability to view app details and to create task definitions.

Name Coordinates

composed-task-runner maven://org.springframework.cloud task.app:composedtaskrunner-task:1.1.0.M1
jdbehdfs-local maven://org.springframework.cloud task.app:jdbchdfs-local-task:1.3.0.M1
spark-client maven://org.springframework.cloud.task.app:spark-client-task:1.3.0.M1
spark-cluster maven://org.springframework.cloud.task.app:spark-cluster-task:1.3.0.M1
spark-yarn maven://org.springframework.cloud.task.app:spark-yarn-task:1.3.0.M1
timestamp maven://org.springframework.cloud.task.app:timestamp-task:1.3.0. M1
timestamp-batch maven://org.springframework.cloud task.app:timestamp-batch-task:1.0.0.M1

PROJECT DOCUMENTATION

Figure 47.1. List of Task Apps
On this screen you can perform the following actions:

» View details such as the task app options.

Actions

NEED HELP?

For questions + support:

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry

119

Spring Cloud Data Flow Server for Cloud Foundry

» Create a Task Definition from the respective App.
Create a Task Definition from a selected Task App
On this screen you can create a new Task Definition. As a minimum you must provide a name for

the new definition. You will also have the option to specify various properties that are used during the
deployment of the app.

@ Note

Each parameter is only included if the Include checkbox is selected.
View Task App Details

On this page you can view the details of a selected task app, including the list of available options
(properties) for that app.

47.2 Definitions

This page lists the Data Flow Task definitions and provides actions to launch or destroy those tasks.
It also provides a shortcut operation to define one or more tasks using simple textual input, indicated
by the bulk define tasks button.

Tasks

Create a task using text based input or the visual editor.

Apps Definitions Create Composed Task Executions

Filter Task Definitions

L L Filter definitions

Mame ¥ Definitions ¥+ Actions

demo timestamp

PROJECT DOCUMENTATION ~ NEED HELP?
For questions +

support:

Figure 47.2. List of Task Definitions

Creating Task Definitions using the bulk define interface

After pressing bulk define tasks, the following screen will be shown.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 120

Spring Cloud Data Flow Server for Cloud Foundry

g spring Apps Runtime ~Streams Jobs Analytics

Tasks

Create a task using text based input or the visual editor.

Apps Definitions Create Composed Task Executions

Bulk Define Tasks

Define tasks in bulk. Type in tasks definitions in the text box or simply browse to a local task definitions file

Task Definitions A

The format of your task definitions are invalid. no definitions detected

. . Choose File No file chosen
Select Definitions File
Please provide a text file containing task definitions. This will be used to populate the text area above.

CANCEL

PROJECT DOCUMENTATION NEED HELP?

For questions + support:

Figure 47.3. Bulk Define Tasks

It includes a textbox where one or more definitions can be entered and then various actions performed
on those definitions. The required input text format for task definitions is very basic, each line should
be of the form:

<t ask-definition-nane> = <task-application> <options>
For example:
deno-ti nestanp = tinmestanp --format=hhnmss

After entering any data a validator will run asynchronously to verify both the syntax and that the
application name entered is a valid application and it supports the options specified. If validation fails
the editor will show the errors with more information via tooltips.

To make it easier to enter definitions into the text area, content assist is supported. Pressing Ctrl+Space
will invoke content assist to suggest simple task names (based on the line on which it is invoked), task
applications and task application options. Press ESCape to close the content assist window without
taking a selection.

If the validator should not verify the applications or the options (for example if specifying non-whitelisted
options to the applications) then turn off that part of validation by toggling the checkbox off on the Verify
Apps button - the validator will then only perform syntax checking. When correctly validated, the create
button will be clickable and on pressing it the Ul will proceed to create each task definition. If there are
any errors during creation then after creation finishes the editor will show any lines of input, as it cannot
be used in task definitions. These can then be fixed up and creation repeated. There is an import file
button to open a file browser on the local file system if the definitions are in a file and it is easier to
import than copy/paste.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 121

Spring Cloud Data Flow Server for Cloud Foundry

@ Note

Bulk loading of composed task definitions is not currently supported.
Creating Composed Task Definitions

The dashboard includes the Create Composed Task tab that provides the canvas application, offering
a interactive graphical interface for creating composed tasks.

In this tab, you can:
» Create and visualize composed tasks using DSL, a graphical canvas, or both

» Use auto-adjustment and grid-layout capabilities in the GUI for simpler and interactive organization
of the composed task

g Sprlng APPS RUNTIME STREAMS TASKS

Tasks

This section allows for creation of composed tasks.

Apps Definitions Create Composed Task Executions

Create Clear Layout Zoom: 95 % il @ Grid @ Close DSL View

1 foo && bar

¥ control nodes

Figure 47.4. Composed Task Designer

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 122

Spring Cloud Data Flow Server for Cloud Foundry

Launching Tasks

Once the task definition is created, they can be launched through the Dashboard as well. Navigate to
the Definitions tab. Select the Task you want to launch by pressing Launch.

On the following screen, you can define one or more Task parameters by entering:
» Parameter Key
» Parameter Value

Task parameters are not typed.

47.3 Executions

Tasks

Create a task using text based input or the visual editor.

Apps Definitions Create Composed Task Executions

Task Executions

This section lists all the available task executions.

Execution Id Task Name ¥ Start Time ¥ End Time ¥ Exit Code ¥ Actions.

4 demo-timestamp 2017-09-07722:51:16.339Z 2017-09-07T22:51:16.3557Z 0 n
5 demo-timestamp 2017-09-07722:51:15.2817 2017-09-07722:51:15.3092 0 n
2 foozz 2017-09-07722:51:15.0247 2017-09-07T22:51:15.4587 1 n
1 foozz 2017-09-07722:46:27.020Z 2017-09-07722:46:27.3382 0 n

PROJECT DOCUMENTATION NEED HELP?

For questions + support:

Figure 47.5. List of Task Executions

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 123

Spring Cloud Data Flow Server for Cloud Foundry

48. Jobs

The Jobs section of the Dashboard allows you to inspect Batch Jobs. The main section of the screen
provides a list of Job Executions. Batch Jobs are Tasks that were executing one or more Batch Job.
As such each Job Execution has a back reference to the Task Execution Id (Task Id).

In case of a failed job, you can also restart the task. When dealing with long-running Batch Jobs, you
can also request to stop it.

Batch Job Executions

This section lists all available batch job executions and provides the control to restart a job execution (if restartable).

~

Step
Execution

Name Task Id Instance Id Execution Id Job Start Time Count Status Actions
job2 1 2 1 2017-09-07 15:46:27,313-07:00 1 COMPLETED n
jobl 1 1 1 2017-09-07 15:46:27,255 -07:00 1 COMPLETED “

PROJECT DOCUMENTATION NEED HELP?

For questions + support:

Figure 48.1. List of Job Executions

48.1 List job executions

This page lists the Batch Job Executions and provides the option to restart or stop a specific job
execution, provided the operation is available. Furthermore, you have the option to view the Job
execution details.

The list of Job Executions also shows the state of the underlying Job Definition. Thus, if the underlying
definition has been deleted, deleted will be shown.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 124

Spring Cloud Data Flow Server for Cloud Foundry

Job execution details

Job Execution Details - Execution ID: 1

Property

Id

Job Name

Job Instance

Task Execution Id

Job Parameters

Value

1

jobl

1

1

--spring.cloud.task.executionid=1 --spring.datasource.username=sa --server.port=23434 —-spring.jmx.default-domain=foozz-0137d 7dc-ef85-4890-

9d9f-5d32b3992357 --spring.datasource.url=jdbc:h2:tcp:/flocalhost: 19092 /mem:dataflow --spring.datasource.driverClassName=org.h2.Driver --
endpoints.shutdown.enabled=true --spring.cloud.task.name=foozz --endpoints.jmx.unique-names=true

Start Time 2017-09-07T15:46:27.2552
End Time 2017-09-07T15:46:27.293Z
Duration 00:00:00.038
Status COMPLETED
Exit Code COMPLETED

Exit Message

Step Execution Count 1
Steps
Step Id Step Name Reads Writes Commits Rollbacks Duration Status Details

1 joblstepl 0 0 1 0 00:00:00.018 COMPLETED n
BACK

PROJECT DOCUMENTATION NEED HELP?

For questions + support:

Figure 48.2. Job Execution Details

The Job Execution Details screen also contains a list of the executed steps. You can further drill into
the Step Execution Details by clicking onto the magnifying glass.

Step execution details

On the top of the page, you will see progress indicator the respective step, with the option to refresh the
indicator. Furthermore, a link is provided to view the step execution history.

The Step Execution details screen provides a complete list of all Step Execution Context key/value pairs.

@ Important

In case of exceptions, the Exit Description field will contain additional error information. Please
be aware, though, that this field can only have a maximum of 2500 characters. Therefore, in
case of long exception stacktraces, trimming of error messages may occur. In that case, please
refer to the server log files for further details.

Spring Cloud Data Flow

1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 125

Spring Cloud Data Flow Server for Cloud Foundry

Step Execution Progress

On this screen, you can see a progress bar indicator in regards to the execution of the current step.
Under the Step Execution History, you can also view various metrics associated with the selected
step such as duration, read counts, write counts etc.

& spring Jobe

Step Execution Details - Step Execution ID: 1

Step Execution Progress

100%
Property Value
Step Execution Id 1
Job Execution Id 1
Step Name joblstepl
Step Type org.springframework.cloud task.app.timestamp.batch. TimestampBatchTaskConfiguration$1
Status COMPLETED
Commits 1
Duration 00:00:00.018
Filter Count 0
Process Skips 0
Reads 0
Read Skips 0
Rollbacks 0
Skips 0
Writes 0
Write Skips 0
Exit Description
N/A
Step Execution Context
Key Value
batch.taskletType org.springframework.cloud.task.app.timestamp.batch. TimestampBatchTaskConfiguration$1
batch.stepType org.springframework.batch.core.step.tasklet. TaskletStep

~
“m

PROJECT DOCUMENTATION NEED HELP?

For questions + support:

Figure 48.3. Step Execution History

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 126

Spring Cloud Data Flow Server for Cloud Foundry

49. Analytics

The Analytics section of the Dashboard provided data visualization capabilities for the various analytics
applications available in Spring Cloud Data Flow:

e Counters
» Field-Value Counters
» Aggregate Counters

For example, if you create a stream with a Counter application, you can now easily create the
corresponding graph from within the Dashboard tab:

1. Under Metri c Type, select Count er s from the select box
2. Under St r eam select t weet count
3. Under Vi sual i zat i on, select the desired chart option, Bar Chart

Using the icons to the right, you can add additional charts to the Dashboard, re-arange the order of
created dashboards or remove data visualizations.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 127

https://github.com/spring-cloud-stream-app-starters/counter/tree/master/spring-cloud-starter-stream-sink-counter

Part XI. REST API Guide

You can find the documentation about the Data Flow REST API in the core documentation.

http://docs.spring.io/spring-cloud-dataflow/docs/1.3.0.BUILD-SNAPSHOT/reference/htmlsingle/index.html#api-guide

Part Xll. Appendices

Having trouble with Spring Cloud Data Flow, We’d like to help!

» Ask a question - we monitor stackoverflow.com for questions tagged with spri ng-cl oud-
dat af | ow.

* Report bugs with Spring Cloud Data Flow at github.com/spring-cloud/spring-cloud-dataflow/issues.

* Report bugs with Spring Cloud Data Flow for Cloud Foundry at github.com/spring-cloud/spring-cloud-
dataflow-server-cloudfoundry/issues.

http://stackoverflow.com
http://stackoverflow.com/tags/spring-cloud-dataflow
http://stackoverflow.com/tags/spring-cloud-dataflow
https://github.com/spring-cloud/spring-cloud-dataflow/issues
https://github.com/spring-cloud/spring-cloud-dataflow-server-cloudfoundry/issues
https://github.com/spring-cloud/spring-cloud-dataflow-server-cloudfoundry/issues

Spring Cloud Data Flow Server for Cloud Foundry

Appendix A. Data Flow Template

As described in the previous chapter, Spring Cloud Data Flow’s functionality is completely exposed via
REST endpoints. While you can use those endpoints directly, Spring Cloud Data Flow also provides a
Java-based API, which makes using those REST endpoints even easier.

The central entrypoint is the Dat aFl owTenpl at e class in package
org. springfranmework. cl oud. datafl ow. rest.client.

This class implements the interface Dat aFl owOper ati ons and delegates to sub-templates that
provide the specific functionality for each feature-set:

Interface Description

StreamOperations REST client for stream operations
CounterOperations REST client for counter operations
FieldValueCounterOperations REST client for field value counter operations
AggregateCounterOperations REST client for aggregate counter operations
TaskOperations REST client for task operations
JobOperations REST client for job operations
AppRegistryOperations REST client for app registry operations
CompletionOperations REST client for completion operations
RuntimeOperations REST Client for runtime operations

When the Dat aFl owTenpl at e is being initialized, the sub-templates will be discovered via the REST
relations, which are provided by HATEOAS.!

@ Important

If a resource cannot be resolved, the respective sub-template will result in being NULL. A
common cause is that Spring Cloud Data Flow offers for specific sets of features to be enabled/
disabled when launching. For more information see Chapter 18, Feature Toggles.

A.1 Using the Data Flow Template

When using the Data Flow Template the only needed Data Flow dependency is the Spring Cloud Data
Flow Rest Client:

<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cloud-dataflowrest-client</artifactld>
<ver si on>1. 3. 0. BUl LD- SNAPSHOT</ ver si on>

</ dependency>

With that dependency you will get the Dat aFl owTenpl at e class as well as all needed dependencies
to make calls to a Spring Cloud Data Flow server.

'HATEOAS stands for Hypermedia as the Engine of Application State

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 130

Spring Cloud Data Flow Server for Cloud Foundry

When instantiating the Dat aFlI owTenpl at e, you will also pass in a Rest Tenpl at e. Please be aware
that the needed Rest Tenpl at e requires some additional configuration to be valid in the context of
the Dat aFl owTenpl at e. When declaring a Rest Tenpl at e as a bean, the following configuration will
suffice:

@Bean
public static RestTenpl ate restTenplate() {
Rest Tenpl ate rest Tenpl ate = new Rest Tenpl at e();
rest Tenpl at e. set Error Handl er (new VndEr r or ResponseEr r or Handl er (r est Tenpl at e. get MessageConverters()));
for(H tpMessageConverter<?> converter : restTenpl ate. get MessageConverters()) {
if (converter instanceof Mappi ngJackson2HttpMessageConverter) {
final Mappi ngJackson2Htt pMessageConverter jacksonConverter =
(Mappi ngJackson2Ht t pMessageConverter) converter;
j acksonConvert er. get Obj ect Mapper ()
. regi ster Modul e(new Jackson2Hal Modul e())
.addM xI n(JobExecuti on. cl ass, JobExecutionJacksonM xI n. cl ass)
.addM x| n(JobPar anet ers. cl ass, JobPar anet er sJacksonM xI n. cl ass)
. addM x| n(JobPar anet er . cl ass, JobPar anet er JacksonM xI n. cl ass)
.addM x| n(Jobl nst ance. cl ass, Jobl nst anceJacksonM xI n. cl ass)
.addM xI n(Exi t St atus. cl ass, Exit StatusJacksonM xI n. cl ass)
.addM x| n(St epExecuti on. cl ass, StepExecuti onJacksonM x| n. cl ass)
.addM xI n(Execut i onCont ext . cl ass, Executi onCont ext JacksonM x| n. cl ass)
.addM x| n(St epExecuti onH story. cl ass, StepExecutionHi storyJacksonM xIn. cl ass);
}
}

return restTenpl at e;

}

Now you can instantiate the Dat aFl owTenpl at e with:

Dat aFl owTenpl at e dat aFl owTenpl ate = new Dat aFl owTenpl at e(
new URI ("http://|ocal host:9393/"), restTenpl ate); O

0 The URI points to the ROOT of your Spring Cloud Data Flow Server.

Depending on your requirements, you can nhow make calls to the server. For instance, if you like to get
a list of currently available applications you can execute:

PagedResour ces<AppRegi strati onResour ce> apps = dat aFl owTenpl at e. appRegi stryQperations().list();

Systemout.println(String.format("Retrieved % application(s)",
apps. get Content ().size()));

for (AppRegistrationResource app : apps.getContent()) {
Systemout. println(String.format("App Name: %, App Type: %, App UR: %",
app. get Nare() ,
app. get Type(),
app. get Uri ()));

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 131

Spring Cloud Data Flow Server for Cloud Foundry

Appendix B. Spring XD to SCDF

In this section you will learn all about the migration path from Spring XD to Spring Cloud Data Flow

along with the tips and tricks.

B.1 Terminology Changes

Old

XD-Admin

New

Server (implementations: local, cloud foundry,
apache yarn, kubernetes, and apache mesos)

XD-Container N/A
Modules Applications
Admin Ul Dashboard
Message Bus Binders
Batch / Job Task

B.2 Modules to Applications

If you have custom Spring XD modules, you'd have to refactor them to use Spring Cloud Stream
and Spring Cloud Task annotations, with updated dependencies and built as normal Spring Boot
"applications".

Custom Applications

Spring XD’s stream and batch modules are refactored into Spring Cloud Stream and Spring Cloud
Task application-starters, respectively. These applications can be used as the reference while
refactoring Spring XD modules

There are also some samples for Spring Cloud Stream and Spring Cloud Task applications for
reference

If you'd like to create a brand new custom application, use the getting started guide for Spring Cloud
Stream and Spring Cloud Task applications and as well as review the development guide

Alternatively, if you'd like to patch any of the out-of-the-box stream applications, you can follow the
procedure here

Application Registration

Custom Stream/Task application requires being installed to a maven repository for Local, YARN, and
CF implementations or as docker images, when deploying to Kubernetes and Mesos. Other than
maven and docker resolution, you can also resolve application artifacts fromhtt p,fi |l e, oras hdf s
coordinates

Unlike Spring XD, you do not have to upload the application bits while registering custom applications
anymore; instead, you're expected to register the application coordinates that are hosted in the maven
repository or by other means as discussed in the previous bullet

Spring Cloud Data Flow

1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 132

https://github.com/spring-cloud-stream-app-starters
https://github.com/spring-cloud-task-app-starters
https://github.com/spring-cloud-task-app-starters
https://github.com/spring-cloud/spring-cloud-stream-samples
https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/#_getting_started
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/#_getting_started
http://docs.spring.io/spring-cloud-task/docs/current/reference/htmlsingle/#getting-started
http://docs.spring.io/spring-cloud-stream-app-starters/docs/current/reference/htmlsingle/#_creating_your_own_applications
http://docs.spring.io/spring-cloud-stream-app-starters/docs/current/reference/htmlsingle/#_patching_pre_built_applications

Spring Cloud Data Flow Server for Cloud Foundry

» By default, none of the out-of-the-box applications are preloaded already. It is intentionally designed
to provide the flexibility to register app(s), as you find appropriate for the given use-case requirement

» Depending on the binder choice, you can manually add the appropriate binder dependency to build
applications specific to that binder-type. Alternatively, you can follow the Spring Initialzr procedure to
create an application with binder embedded in it

Application Properties

» counter-sink:

e The peripheral r edi s is not required in Spring Cloud Data Flow. If you intend to use the count er -
si nk, thenr edi s becomes required, and you're expected to have your own running r edi s cluster

« field-value-counter-sink:

* The peripheral r edi s is not required in Spring Cloud Data Flow. If you intend to use the fi el d-
val ue- count er - si nk, then r edi s becomes required, and you're expected to have your own
running r edi s cluster

* aggregate-counter-sink:

e The peripheral redi s is not required in Spring Cloud Data Flow. If you intend to use the
aggr egat e- count er - si nk, then r edi s becomes required, and you're expected to have your
own running r edi s cluster

B.3 Message Bus to Binders

Terminology wise, in Spring Cloud Data Flow, the message bus implementation is commonly referred
to as binders.

Message Bus

Similar to Spring XD, there’s an abstraction available to extend the binder interface. By default, we take
the opinionated view of Apache Kafka and RabbitMQ as the production-ready binders and are available
as GA releases.

Binders

Selecting a binder is as simple as providing the right binder dependency in the classpath. If you're to
choose Kafka as the binder, you'd register stream applications that are pre-built with Kafka binder in
it. If you were to create a custom application with Kafka binder, you'd add the following dependency
in the classpath.

<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cl oud-stream bi nder - kaf ka</artifactld>
<ver si on>1. 0. 2. RELEASE</ ver si on>

</ dependency>

» Spring Cloud Stream supports Apache Kafka, RabbitMQ and experimental Google PubSub and
Solace JMS. All binder implementations are maintained and managed in their individual repositories

» Every Stream/Task application can be built with a binder implementation of your choice. All the out-
of-the-box applications are pre-built for both Kafka and Rabbit and they’re readily available for use as

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 133

https://github.com/spring-cloud/spring-cloud-stream-app-starters/blob/master/spring-cloud-stream-app-starters-docs/src/main/asciidoc/overview.adoc#using-the-starters-to-create-custom-components
https://github.com/spring-cloud/spring-cloud-stream-binder-kafka
https://github.com/spring-cloud/spring-cloud-stream-binder-rabbit
https://github.com/spring-cloud/spring-cloud-stream-binder-kafka
https://github.com/spring-cloud/spring-cloud-stream-binder-rabbit
https://github.com/spring-cloud/spring-cloud-stream-binder-google-pubsub
https://github.com/spring-cloud/spring-cloud-stream-binder-solace

Spring Cloud Data Flow Server for Cloud Foundry

maven artifacts [Spring Cloud Stream / Spring Cloud Task or docker images [Spring Cloud Stream /
Spring Cloud Task Changing the binder requires selecting the right binder dependency. Alternatively,
you can download the pre-built application from this version of Spring Initializr with the desired “binder-
starter” dependency

Named Channels

Fundamentally, all the messaging channels are backed by pub/sub semantics. Unlike Spring XD, the
messaging channels are backed only by t opi ¢s or t opi c- exchange and there’s no representation
of queues in the new architecture.

* ${xd. nodul e. i ndex} is not supported anymore; instead, you can directly interact with named
destinations

» stream i ndex changes to: <stream nane>. <l abel / app- nane>
« forinstance: ti ckt ock. O changesto:ticktock.time

» “topic/queue” prefixes are not required to interact with named-channels
« for instance: t opi c: f oo changesto: f oo

« forinstance: stream create streaml --definition ":foo > | og"

Directed Graphs

If you're building non-linear streams, you could take advantage of named destinations to build directed
graphs.

for instance, in Spring XD:

streamcreate f --definition "queue:foo > transform --expressi on=payl oad+' -foo' | |og" --deploy

streamcreate b --definition "queue:bar > transform --expressi on=payl oad+' -bar' | |o0g" --deploy

streamcreate r --definition "http | router --expression=payload.contains('a')? queue:foo':"'queue:bar"'"
--depl oy

for instance, in Spring Cloud Data Flow:

streamcreate f --definition ":foo > transform --expressi on=payl oad+' -foo' | |0g" --deploy
streamcreate b --definition ":bar > transform --expressi on=payl oad+' -bar' | |0g" --depl oy
streamcreate r --definition "http | router --expression=payload.contains('a)? foo':"bar'" --deploy

B.4 Batch to Tasks

A Task by definition, is any application that does not run forever, including Spring Batch jobs, and
they end/stop at some point. Task applications can be majorly used for on-demand use-cases such as
database migration, machine learning, scheduled operations etc. Using Spring Cloud Task, users can
build Spring Batch jobs as microservice applications.

» Spring Batch jobs from Spring XD are being refactored to Spring Boot applications a.k.a Spring Cloud
Task applications

» Unlike Spring XD, these “Tasks” don’t require explicit deployment; instead, a task is ready to be
launched directly once the definition is declared

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 134

http://repo.spring.io/libs-milestone/org/springframework/cloud/stream/app/
http://repo.spring.io/libs-milestone/org/springframework/cloud/task/app/
https://hub.docker.com/r/springcloudstream/
https://hub.docker.com/r/springcloudtask/
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/#_binders
http://start-scs.cfapps.io/
http://cloud.spring.io/spring-cloud-task/
http://docs.spring.io/spring-xd/docs/current-SNAPSHOT/reference/html/#jobs
https://github.com/spring-cloud-task-app-starters

Spring Cloud Data Flow Server for Cloud Foundry

B.5 Shell/DSL Commands

Old Command

New Command

module upload

app register / app import

module list

app list

module info

app info

admin config server

dataflow config server

job create task create
job launch task launch
job list task list

job status task status
job display task display
job destroy task destroy
job execution list task execution list
runtime modules runtime apps
B.6 REST-API

Old API New API

/modules lapps

/runtime/modules /runtime/apps
/runtime/modules/{moduleld} /runtime/apps/{appld}
/jobs/definitions ltask/definitions
/jobs/deployments /task/deployments

B.7 Ul/Flo

The Admin-Ul is now renamed as Dashboard. The URI for accessing the Dashboard is changed from
localhost:9393/admin-ui to localhost:9393/dashboard

» (New) Apps: Lists all the registered applications that are available for use. This view includes
informational details such as the URI and the properties supported by each application. You can also
register/unregister applications from this view

« Runtime: Container changes to Runtime. The notion of xd- cont ai ner is gone, replaced by out-
of-the-box applications running as autonomous Spring Boot applications. The Runtime tab displays
the applications running in the runtime platforms (implementations: cloud foundry, apache yarn,
apache mesos, or kubernetes). You can click on each application to review relevant details about the
application such as where it is running with, and what resources etc.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 135

http://localhost:9393/admin-ui
http://localhost:9393/dashboard

Spring Cloud Data Flow Server for Cloud Foundry

» Spring Flo is now an OSS product. Flo for Spring Cloud Data Flow’s “Create Stream”, the designer-
tab comes pre-built in the Dashboard

* (New) Tasks:
¢ The sub-tab “Modules” is renamed to “Apps”

e The sub-tab “Definitions” lists all the Task definitions, including Spring Batch jobs that are
orchestrated as Tasks

« The sub-tab “Executions” lists all the Task execution details similar to Spring XD’s Job executions

B.8 Architecture Components

Spring Cloud Data Flow comes with a significantly simplified architecture. In fact, when compared with
Spring XD, there are less peripherals that are necessary to operationalize Spring Cloud Data Flow.

ZooKeeper
ZooKeeper is not used in the new architecture.
RDBMS

Spring Cloud Data Flow uses an RDBMS instead of Redis for stream/task definitions, application
registration, and for job repositories.The default configuration uses an embedded H2 instance, but
Oracle, DB2, SqlServer, MySQL/MariaDB, PostgreSQL, H2, and HSQLDB databases are supported.
To use Oracle, DB2 and SqglServer you will need to create your own Data Flow Server using Spring
Initializr and add the appropriate JDBC driver dependency.

Redis

Running a Redis cluster is only required for analytics functionality. Specifically, when the count er -
si nk, fi el d-val ue-count er - si nk, or aggr egat e- count er - si nk applications are used, it is
expected to also have a running instance of Redis cluster.

Cluster Topology

Spring XD’s xd- adnmi n and xd- cont ai ner server components are replaced by stream and task
applications themselves running as autonomous Spring Boot applications. The applications run natively
on various platforms including Cloud Foundry, Apache YARN, Apache Mesos, or Kubernetes. You can
develop, test, deploy, scale +/-, and interact with (Spring Boot) applications individually, and they can
evolve in isolation.

B.9 Central Configuration

To support centralized and consistent management of an application’s configuration properties, Spring
Cloud Config client libraries have been included into the Spring Cloud Data Flow server as well as the
Spring Cloud Stream applications provided by the Spring Cloud Stream App Starters. You can also pass
common application properties to all streams when the Data Flow Server starts.

B.10 Distribution

Spring Cloud Data Flow is a Spring Boot application. Depending on the platform of your choice, you
can download the respective release uber-jar and deploy/push it to the runtime platform (cloud foundry,

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 136

https://github.com/spring-projects/spring-flo
https://start.spring.io/
https://start.spring.io/
https://cloud.spring.io/spring-cloud-config/
https://cloud.spring.io/spring-cloud-config/
streams.xml#spring-cloud-dataflow-global-properties
streams.xml#spring-cloud-dataflow-global-properties

Spring Cloud Data Flow Server for Cloud Foundry

apache yarn, kubernetes, or apache mesos). For example, if you're running Spring Cloud Data Flow
on Cloud Foundry, you'd download the Cloud Foundry server implementation and do a cf push as
explained in the reference guide.

B.11 Hadoop Distribution Compatibility

The hdf s- si nk application builds upon Spring Hadoop 2.4.0 release, so this application is compatible
with following Hadoop distributions.

» Cloudera - cdh5

Pivotal Hadoop - phd30
» Hortonworks Hadoop - hdp24

» Hortonworks Hadoop - hdp23

Vanilla Hadoop - hadoop26

Vanilla Hadoop - 2.7.x (default)

B.12 YARN Deployment

Spring Cloud Data Flow can be deployed and used with Apche YARN in two different ways.
* Deploy the server directly in a YARN cluster

» Leverage Apache Ambari plugin to provision Spring Cloud Data Flow as a service

B.13 Use Case Comparison

Let's review some use-cases to compare and contrast the differences between Spring XD and Spring
Cloud Data Flow.

Use Case #1

(It is assumed both XD and SCDF distributions are already downloaded)

Description: Simple ti ckt ock example using local/singlenode.

Spring XD Spring Cloud Data Flow

Start xd- si ngl enode server from CLI Start a binder of your choice

xd- si ngl enode Start | ocal - server implementation of SCDF
from the CLI

java -jar spring-cloud-
dat af | ow-server-1|ocal -1.0. 0. BU LD
SNAPSHOT. j ar

Start xd- shel | server from the CLI Start dat af | ow shel | server from the CLI

xd-shel |

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 137

http://docs.spring.io/spring-cloud-dataflow-server-cloudfoundry/docs/current-SNAPSHOT/reference/htmlsingle/#getting-started
http://docs.spring.io/spring-cloud-dataflow-server-yarn/docs/current-SNAPSHOT/reference/htmlsingle/#yarn-deploying-on-yarn
http://docs.spring.io/spring-cloud-dataflow-server-yarn/docs/current-SNAPSHOT/reference/htmlsingle/#yarn-deploying-on-ambari

Spring Cloud Data Flow Server for Cloud Foundry

Spring XD

Create t i ckt ock stream

xd: >stream create ticktock --
definition “tine | 10g” --deploy

Review t i ckt ock results in the xd-
si ngl enode server console

Spring Cloud Data Flow

java -jar spring-cloud-datafl ow
shel | - 1. 0. 0. BUI LD- SNAPSHOT. j ar

Create t i ckt ock stream

dat af | ow. >stream create ticktock --
definition “tine | 10g” --deploy

Review t i ckt ock results by tailing the
ticktock. | og/ stdout | og application logs

Use Case #2

(It is assumed both XD and SCDF distributions are already downloaded)

Description: Stream with custom module/application.

Spring XD

Spring Cloud Data Flow

Start xd- si ngl enode server from CLI

xd- si ngl enode

Start xd- shel | server from the CLI

xd-shel |

Register custom “processor” module to transform
payload to a desired format

xd: >nodul e upl oad --nane
toupper --type processor --file
<CUSTOM JAR FI LE_LOCATI ON>

Create a stream with custom module

xd: >stream create testupper --
definition “http | toupper | |og
depl oy

Review results in the xd- si ngl enode server
console

Start a binder of your choice

Start | ocal - ser ver implementation of SCDF
from the CLI

java -jar spring-cloud-
dat af | ow-server-1ocal -1.0.0. BU LD
SNAPSHOT. j ar

Start dat af | ow shel | server from the CLI

java -jar spring-cloud-datafl ow
shel | - 1. 0. 0. BUI LD- SNAPSHOT. j ar

Register custom “processor” application to
transform payload to a desired format

dat af | ow. >app regi ster --nane
t oupper --type processor --uri
<MAVEN_URI _ COCORDI NATES>

Create a stream with custom application

dat af | ow. >stream create testupper --
definition “http | toupper | log" --
depl oy

Review results by tailing the t est upper. | og/
st dout _I| og application logs

Use Case #3

(It is assumed both XD and SCDF distributions are already downloaded)

Description: Simple batch-job.

Spring Cloud Data Flow

1.3.0.BUILD-SNAPSHOT

Server for Cloud Foundry

138

Spring Cloud Data Flow Server for Cloud Foundry

Spring XD
Start xd- si ngl enode server from CLI

xd- si ngl enode

Start xd- shel | server from the CLI

xd-shel |

Spring Cloud Data Flow

Start | ocal - ser ver implementation of SCDF
from the CLI

java -jar spring-cloud-
dat af | ow-server-1|ocal -1. 0. 0. BU LD
SNAPSHOT. j ar

Start dat af | ow shel | server from the CLI

java -jar spring-cloud-datafl ow
shel | - 1. 0. 0. BUI LD- SNAPSHOT. | ar

Register custom “batch-job” module

xd: >nodul e upl oad --nane
simpl e-batch --type job --file
<CUSTOM JAR_FI LE_LOCATI ON>

Register custom “batch-job” as task application

dat af | ow. >app regi ster --nane
simpl e-batch --type task --uri
<MAVEN_URI _COORDI NATES>

Create a job with custom batch-job module

xd: >j ob create batchtest --
definition “sinple-batch”

Deploy job
xd: >j ob depl oy bat cht est
Launch job
xd: >j ob | aunch bat cht est

Review results in the xd- si ngl enode server
console as well as Jobs tab in Ul (executions
sub-tab should include all step details)

Create a task with custom batch-job application

dat af | ow. >t ask create batchtest --
definition “sinple-batch”

NA

Launch task

dat af | ow. >t ask | aunch bat cht est

Review results by tailing the bat cht est /

st dout _| og application logs as well as Task
tab in Ul (executions sub-tab should include all
step details)

Spring Cloud Data Flow

1.3.0.BUILD-SNAPSHOT

Server for Cloud Foundry

139

Spring Cloud Data Flow Server for Cloud Foundry

Appendix C. Building

To build the source you will need to install JDK 1.8.

The build uses the Maven wrapper so you don't have to install a specific version of Maven. To enable
the tests for Redis you should run the server before bulding. See below for more information on how
to run Redis.

The main build command is

‘$./ mvnw cl ean install

You can also add '-DskipTests' if you like, to avoid running the tests.

@ Note

You can also install Maven (>=3.3.3) yourself and run the mvn command in place of . / mvnwin
the examples below. If you do that you also might need to add - P spri ng if your local Maven
settings do not contain repository declarations for spring pre-release artifacts.

@ Note

Be aware that you might need to increase the amount of memory available to Maven by setting
a MAVEN_OPTS environment variable with a value like - Xnx512m - XX: MaxPer nSi ze=128m
We try to cover this in the . mvn configuration, so if you find you have to do it to make a build
succeed, please raise a ticket to get the settings added to source control.

The projects that require middleware generally include a docker - conpose. ynl , so consider using
Docker Compose to run the middeware servers in Docker containers. See the README in the scripts
demo repository for specific instructions about the common cases of mongo, rabbit and redis.

C.1 Documentation

There is a "full" profile that will generate documentation. You can build just the documentation by
executing

$./ m/nw cl ean package - DskipTests -P full -pl spring-cloud-datafl ow server-
cl oudf oundry-docs -am

C.2 Working with the code

If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or Eclipse
when working with the code. We use the m2eclipe eclipse plugin for maven support. Other IDEs and
tools should also work without issue.

Importing into eclipse with m2eclipse

We recommend the m2eclipe eclipse plugin when working with eclipse. If you don't already have
m2eclipse installed it is available from the "eclipse marketplace".

Unfortunately m2e does not yet support Maven 3.3, so once the projects are imported into Eclipse you
will also need to tell m2eclipse to use the . setti ngs. xm file for the projects. If you do not do this

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 140

https://docs.docker.com/compose/
https://github.com/spring-cloud-samples/scripts
https://github.com/spring-cloud-samples/scripts
https://spring.io/tools
http://www.eclipse.org
http://www.eclipse.org/m2e/
http://www.eclipse.org/m2e/

Spring Cloud Data Flow Server for Cloud Foundry

you may see many different errors related to the POMs in the projects. Open your Eclipse preferences,
expand the Maven preferences, and select User Settings. In the User Settings field click Browse and
navigate to the Spring Cloud project you imported selecting the . setti ngs. xm file in that project.
Click Apply and then OK to save the preference changes.

@ Note

Alternatively you can copy the repository settings from . setti ngs. xm into your own ~/ . n/
settings. xm.

Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following
command:

$./nvnw ecli pse: eclipse

The generated eclipse projects can be imported by selecting i nport exi sting proj ects from the
fil e menu.

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 141

https://github.com/spring-cloud/spring-cloud-build/blob/master/.settings.xml

Spring Cloud Data Flow Server for Cloud Foundry

Appendix D. Contributing

Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard
Github development process, using Github tracker for issues and merging pull requests into master. If
you want to contribute even something trivial please do not hesitate, but follow the guidelines below.

D.1 Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the contributor’s agreement.
Signing the contributor's agreement does not grant anyone commit rights to the main repository, but
it does mean that we can accept your contributions, and you will get an author credit if we do. Active
contributors might be asked to join the core team, and given the ability to merge pull requests.

D.2 Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help. They can also be added after the
original pull request but before a merge.

* Use the Spring Framework code format conventions. If you use Eclipse you can import formatter
settings using the ecl i pse- code-formatter. xm file from the Spring Cloud Build project. If using
IntelliJ, you can use the Eclipse Code Formatter Plugin to import the same file.

» Make sure all new . j ava files to have a simple Javadoc class comment with at least an @ut hor
tag identifying you, and preferably at least a paragraph on what the class is for.

» Add the ASF license header comment to all new . j ava files (copy from existing files in the project)

» Add yourself as an @ut hor to the .java files that you modify substantially (more than cosmetic
changes).

» Add some Javadocs and, if you change the namespace, some XSD doc elements.
« A few unit tests would help a lot as well— someone has to do it.

« If no-one else is using your branch, please rebase it against the current master (or other target branch
in the main project).

» When writing a commit message please follow these conventions, if you are fixing an existing issue
please add Fi xes gh- XXXX at the end of the commit message (where XXXX is the issue number).

Spring Cloud Data Flow
1.3.0.BUILD-SNAPSHOT Server for Cloud Foundry 142

https://cla.pivotal.io
https://github.com/spring-cloud/spring-cloud-build/blob/master/spring-cloud-dependencies-parent/eclipse-code-formatter.xml
http://plugins.jetbrains.com/plugin/6546
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

	Spring Cloud Data Flow Server for Cloud Foundry
	Table of Contents
	Part I. Getting started
	1. Deploying on Cloud Foundry
	1.1 Provision a Redis service instance on Cloud Foundry
	1.2 Provision a Rabbit service instance on Cloud Foundry
	1.3 Provision a MySQL service instance on Cloud Foundry
	1.4 Running the Data Flow Server
	Deploying and Running the Server app on Cloud Foundry
	Sample Manifest Template
	Configuring Defaults for Deployed Apps

	Running the Server app locally

	1.5 Running Spring Cloud Data Flow Shell locally

	2. Spring Cloud Skipper Integration
	2.1 Download the Spring Cloud Skipper and Shell apps
	2.2 Running the Skipper Server

	3. Application Names and Prefixes
	3.1 Using Custom Routes

	4. Deploying Docker Applications
	5. Application Level Service Bindings
	6. A Note About User Provided Services
	7. Application Rolling Upgrades
	8. Maximum Disk Quota Configuration
	8.1 PCF’s Operations Manager Configuration
	8.2 Scale Application
	8.3 Configuring target free disk percentage

	9. Application Resolution Alternatives

	Part II. Applications
	Part III. Architecture
	10. Introduction
	11. Microservice Architectural Style
	11.1 Comparison to other Platform architectures

	12. Streaming Applications
	12.1 Imperative Programming Model
	12.2 Functional Programming Model

	13. Streams
	13.1 Topologies
	13.2 Concurrency
	13.3 Partitioning
	13.4 Message Delivery Guarantees

	14. Analytics
	15. Task Applications
	16. Data Flow Server
	16.1 Endpoints
	16.2 Customization
	16.3 Security

	17. Runtime
	17.1 Fault Tolerance
	17.2 Resource Management
	17.3 Scaling at runtime
	17.4 Application Versioning

	Part IV. Server Configuration
	18. Feature Toggles
	19. Security
	19.1 Authentication and Cloud Foundry
	Pivotal Single Sign-On Service
	Cloud Foundry UAA

	20. Configuration Reference
	20.1 Understanding what’s going on
	20.2 Using Spring Cloud Config Server
	Stream, Task, and Spring Cloud Config Server
	Sample Manifest Template
	Self-signed SSL Certificate and Spring Cloud Config Server

	Part V. Shell
	21. Shell Options
	22. Listing available commands
	23. Tab Completion
	24. White space and quote rules
	24.1 Quotes and Escaping
	Shell rules
	DSL parsing rules
	SpEL syntax and SpEL literals
	Putting it all together

	Part VI. Streams
	25. Introduction
	25.1 Stream Pipeline DSL
	25.2 Application properties

	26. Stream Lifecycle
	26.1 Register a Stream App
	26.2 Register Supported Applications and Tasks
	Whitelisting application properties
	Creating and using a dedicated metadata artifact
	Using the companion artifact

	26.3 Creating custom applications
	26.4 Creating a Stream
	Application properties
	Common application properties

	26.5 Deploying a Stream
	Deployment properties
	Passing instance count
	Inline vs file based properties
	Passing application properties
	Passing Spring Cloud Stream properties
	Passing per-binding producer consumer properties
	Passing stream partition properties
	Passing application content type properties
	Overriding application properties during stream deployment

	26.6 Destroying a Stream
	26.7 Undeploying Streams

	27. Stream Lifecycle with Skipper
	27.1 Creating and Deploying a Stream
	27.2 Updating a Stream
	27.3 Stream versions
	27.4 Stream Manifests
	27.5 Rollback a Stream
	27.6 Application Count
	27.7 Skipper’s Upgrade Strategy

	28. Stream DSL
	28.1 Tap a Stream
	28.2 Using Labels in a Stream
	28.3 Named Destinations
	28.4 Fan-in and Fan-out

	29. Stream Java DSL
	29.1 Overview
	29.2 Java DSL styles

	30. Stream applications with multiple binder configurations
	31. Examples
	31.1 Simple Stream Processing
	31.2 Stateful Stream Processing
	31.3 Other Source and Sink Application Types

	Part VII. Streams deployed using Skipper
	Part VIII. Tasks
	32. Introduction
	33. The Lifecycle of a Task
	33.1 Creating a Task Application
	Task Database Configuration

	33.2 Registering a Task Application
	33.3 Creating a Task Definition
	33.4 Launching a Task
	Common application properties

	33.5 Reviewing Task Executions
	33.6 Destroying a Task Definition

	34. Subscribing to Task/Batch Events
	35. Composed Tasks
	35.1 Configuring the Composed Task Runner
	Registering the Composed Task Runner
	Configuring the Composed Task Runner

	35.2 The Lifecycle of a Composed Task
	Creating a Composed Task
	Task Application Parameters

	Launching a Composed Task
	Exit Statuses

	Destroying a Composed Task
	Stopping a Composed Task
	Restarting a Composed Task

	36. Composed Tasks DSL
	36.1 Conditional Execution
	36.2 Transitional Execution
	Basic Transition
	Transition With a Wildcard
	Transition With a Following Conditional Execution

	36.3 Split Execution
	Split Containing Conditional Execution

	37. Launching Tasks from a Stream
	37.1 TriggerTask
	37.2 TaskLaunchRequest-transform
	37.3 Launching a Composed Task From a Stream

	Part IX. Tasks on Cloud Foundry
	38. Version Compatibility
	39. Tooling
	40. Task Database Schema
	41. Running Task Applications
	41.1 Create a Task
	41.2 Launch a Task
	41.3 View Task Logs
	41.4 List Tasks
	41.5 List Task Executions
	41.6 Destroy a Task
	41.7 Deleting Task From Cloud Foundry

	Part X. Dashboard
	42. Introduction
	43. Apps
	43.1 Bulk Import of Applications

	44. Runtime
	45. Streams
	46. Create Stream
	47. Tasks
	47.1 Apps
	Create a Task Definition from a selected Task App
	View Task App Details

	47.2 Definitions
	Creating Task Definitions using the bulk define interface
	Creating Composed Task Definitions
	Launching Tasks

	47.3 Executions

	48. Jobs
	48.1 List job executions
	Job execution details
	Step execution details
	Step Execution Progress

	49. Analytics

	Part XI. REST API Guide
	Part XII. Appendices
	Appendix A. Data Flow Template
	A.1 Using the Data Flow Template

	Appendix B. Spring XD to SCDF
	B.1 Terminology Changes
	B.2 Modules to Applications
	Custom Applications
	Application Registration
	Application Properties

	B.3 Message Bus to Binders
	Message Bus
	Binders
	Named Channels
	Directed Graphs

	B.4 Batch to Tasks
	B.5 Shell/DSL Commands
	B.6 REST-API
	B.7 UI / Flo
	B.8 Architecture Components
	ZooKeeper
	RDBMS
	Redis
	Cluster Topology

	B.9 Central Configuration
	B.10 Distribution
	B.11 Hadoop Distribution Compatibility
	B.12 YARN Deployment
	B.13 Use Case Comparison
	Use Case #1
	Use Case #2
	Use Case #3

	Appendix C. Building
	C.1 Documentation
	C.2 Working with the code
	Importing into eclipse with m2eclipse
	Importing into eclipse without m2eclipse

	Appendix D. Contributing
	D.1 Sign the Contributor License Agreement
	D.2 Code Conventions and Housekeeping

