
Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.BUILD-SNAPSHOT

Copyright © 2013-2016Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.BUILD-SNAPSHOT
Spring Cloud Data Flow

Server for Cloud Foundry ii

Table of Contents

I. Spring Cloud Data Flow for Cloud Foundry ... 1
1. Spring Cloud Data Flow .. 2
2. Spring Cloud Stream ... 3
3. Spring Cloud Task .. 4
4. Deploying on Cloud Foundry ... 5

4.1. Provision a Redis service instance on Cloud Foundry. ... 5
4.2. Provision a Rabbit service instance on Cloud Foundry. .. 5
4.3. Download the Spring Cloud Data Flow Server and Shell apps: 5
4.4. Deploying the Server app on Cloud Foundry ... 5
4.5. Running the Server app locally ... 6
4.6. Running Spring Cloud Data Flow Shell locally ... 7

5. Configuration Reference .. 8
II. Appendices ... 9

6. Building .. 10
6.1. Basic Compile and Test ... 10
6.2. Documentation ... 10
6.3. Working with the code .. 10

Importing into eclipse with m2eclipse ... 10
Importing into eclipse without m2eclipse ... 11

Part I. Spring Cloud Data
Flow for Cloud Foundry

This project provides support for deploying Spring Cloud Stream and Spring Cloud Task applications
to Cloud Foundry.

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.BUILD-SNAPSHOT
Spring Cloud Data Flow

Server for Cloud Foundry 2

1. Spring Cloud Data Flow

Spring Cloud Data Flow is a cloud-native programming and operating model for composable data
microservices on a structured platform. With Spring Cloud Data Flow, developers can create and
orchestrate data pipelines for common use cases such as data ingest, real-time analytics, and data
import/export.

The Spring Cloud Data Flow architecture consists of a server that deploys Streams and Tasks. Streams
are defined using a DSL or visually through the browser based designer UI. Streams are based on the
Spring Cloud Stream programming model while Tasks are based on the Spring Cloud Task programming
model. The sections below describe more information about creating your own custom Streams and
Tasks

For more details about the core architecture components and the supported features, please review
Spring Cloud Data Flow’s core reference guide. There’re several samples available for reference.

http://docs.spring.io/spring-cloud-dataflow/docs/current-SNAPSHOT/reference/htmlsingle/#streams
http://docs.spring.io/spring-cloud-dataflow/docs/current-SNAPSHOT/reference/htmlsingle/#spring-cloud-task-overview
http://docs.spring.io/spring-cloud-dataflow/docs/current-SNAPSHOT/reference/html/_dsl_syntax.html
http://cloud.spring.io/spring-cloud-stream/
http://cloud.spring.io/spring-cloud-task/
http://docs.spring.io/spring-cloud-dataflow/docs/current-SNAPSHOT/reference/htmlsingle/
https://github.com/spring-cloud/spring-cloud-dataflow-samples

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.BUILD-SNAPSHOT
Spring Cloud Data Flow

Server for Cloud Foundry 3

2. Spring Cloud Stream

Spring Cloud Stream is a framework for building message-driven microservice applications. Spring
Cloud Stream builds upon Spring Boot to create standalone, production-grade Spring applications, and
uses Spring Integration to provide connectivity to message brokers. It provides opinionated configuration
of middleware from several vendors, introducing the concepts of persistent publish-subscribe semantics,
consumer groups, and partitions.

For more details about the core framework components and the supported features, please review
Spring Cloud Stream’s reference guide.

There’s a rich ecosystem of Spring Cloud Stream Application-Starters that can be used either as
standalone data microservice applications or in Spring Cloud Data Flow. For convenience, we have
generated RabbitMQ and Apache Kafka variants of these application-starters that are available for use
from Maven Repo and Docker Hub as maven artifacts and docker images, respectively.

Do you have a requirement to develop custom applications? No problem. Refer to this guide to create
custom stream applications. There’re several samples available for reference.

http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/
http://docs.spring.io/spring-cloud-stream-app-starters/docs/current-SNAPSHOT/reference/htmlsingle
http://repo.spring.io/libs-snapshot/org/springframework/cloud/stream/app/
https://hub.docker.com/r/springcloudstream/
http://docs.spring.io/spring-cloud-stream-app-starters/docs/current-SNAPSHOT/reference/htmlsingle/#_creating_custom_artifacts
https://github.com/spring-cloud/spring-cloud-stream-samples

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.BUILD-SNAPSHOT
Spring Cloud Data Flow

Server for Cloud Foundry 4

3. Spring Cloud Task

Note

This feature is actively being developed and it is yet to be supported in Spring Cloud Data Flow’s
Cloud Foundry server.

Spring Cloud Task makes it easy to create short-lived microservices. We provide capabilities that allow
short-lived JVM processes to be executed on demand in a production environment.

For more details about the core framework components and the supported features, please review
Spring Cloud Task’s reference guide.

There’s a rich ecosystem of Spring Cloud Task Application-Starters that can be used either as
standalone data microservice applications or in Spring Cloud Data Flow. For convenience, the generated
application-starters are available for use from Maven Repo. There are several samples available for
reference.

http://docs.spring.io/spring-cloud-task/current-SNAPSHOT/reference/htmlsingle/
http://docs.spring.io/spring-cloud-task-app-starters/docs/current-SNAPSHOT/reference/htmlsingle
http://repo.spring.io/libs-snapshot/org/springframework/cloud/task/app/
https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.BUILD-SNAPSHOT
Spring Cloud Data Flow

Server for Cloud Foundry 5

4. Deploying on Cloud Foundry

Spring Cloud Data Flow can be used to deploy modules in a Cloud Foundry environment. When doing
so, the server application can either run itself on Cloud Foundry, or on another installation (e.g. a simple
laptop).

The required configuration amounts to the same in either case, and is merely related to providing
credentials to the Cloud Foundry instance so that the server can spawn applications itself. Any
Spring Boot compatible configuration mechanism can be used (passing program arguments, editing
configuration files before building the application, using Spring Cloud Config, using environment
variables, etc.), although some may prove more practicable than others when running on Cloud Foundry.

Note

By default, the application registry in Spring Cloud Data Flow’s Cloud Foundry server is empty. It is
intentionally designed to allow users to have the flexibility of choosing and registering applications,
as they find appropriate for the given use-case requirement. Depending on the message-binder
of choice, users can register between RabbitMQ or Apache Kafka based maven artifacts.

4.1 Provision a Redis service instance on Cloud Foundry.

Use cf marketplace to discover which plans are available to you, depending on the details of your
Cloud Foundry setup. For example when using Pivotal Web Services:

cf create-service rediscloud 30mb redis

4.2 Provision a Rabbit service instance on Cloud Foundry.

Use cf marketplace to discover which plans are available to you, depending on the details of your
Cloud Foundry setup. For example when using Pivotal Web Services:

cf create-service cloudamqp lemur rabbit

4.3 Download the Spring Cloud Data Flow Server and Shell
apps:

wget http://repo.spring.io/snapshot/org/springframework/cloud/spring-cloud-dataflow-server-

cloudfoundry/1.0.0.BUILD-SNAPSHOT/spring-cloud-dataflow-server-cloudfoundry-1.0.0.BUILD-SNAPSHOT.jar

wget http://repo.spring.io/milestone/org/springframework/cloud/spring-cloud-dataflow-shell/1.0.0.M3/

spring-cloud-dataflow-shell-1.0.0.M3.jar

You can either deploy the server application on Cloud Foundry itself or on your local machine. The
following two sections explain each way of running the server.

4.4 Deploying the Server app on Cloud Foundry

Push the server application on Cloud Foundry, configure it (see below) and start it.

Note

You must use a unique name for your app; an app with the same name in the same organization
will cause your deployment to fail

https://github.com/spring-cloud/spring-cloud-config
https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-registry
http://docs.spring.io/spring-cloud-dataflow/docs/current-SNAPSHOT/reference/html/_dsl_syntax.html#_register_a_stream_app
http://repo.spring.io/libs-snapshot/org/springframework/cloud/stream/app/
https://run.pivotal.io/
https://run.pivotal.io/

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.BUILD-SNAPSHOT
Spring Cloud Data Flow

Server for Cloud Foundry 6

cf push dataflow-server --no-start -p spring-cloud-dataflow-server-cloudfoundry-1.0.0.BUILD-SNAPSHOT.jar

cf bind-service dataflow-server redis

cf bind-service dataflow-server rabbit

Note

If you are pushing to a space with multiple users, for example on PWS, there may already be
a route taken for the applicaiton name you have chosen. You can use the options --random-
route to avoid this when pushing the app.

Now we can configure the app. The following configuration is for Pivotal Web Services. You need to fill
in {org}, {space}, {email} and {password} before running these commands.

Note

Only set 'Skip SSL Validation' to true if you’re running on a Cloud Foundry instance using self-
signed certs (e.g. in development). Do not use for production.

cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_API_ENDPOINT https://api.run.pivotal.io

cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_ORGANIZATION {org}

cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_SPACE {space}

cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_DOMAIN cfapps.io

cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_SERVICES redis,rabbit

cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_USERNAME {email}

cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_PASSWORD {password}

cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_SKIP_SSL_VALIDATION false

We are now ready to start the app.

cf start dataflow-server

Alternatively, you can run the Admin application locally on your machine which is described in the next
section.

4.5 Running the Server app locally

To run the server application locally, targeting your Cloud Foundry installation, you you need to configure
the application either by passing in command line arguments (see below) or setting a number of
environment variables.

To use environment variables set the following:

export SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_API_ENDPOINT=https://api.run.pivotal.io

export SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_ORGANIZATION={org}

export SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_SPACE={space}

export SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_DOMAIN=cfapps.io

export SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_SERVICES=redis,rabbit

export SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_USERNAME={email}

export SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_PASSWORD={password}

export SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_SKIP_SSL_VALIDATION=false

You need to fill in {org}, {space}, {email} and {password} before running these commands.

Note

Only set 'Skip SSL Validation' to true if you’re running on a Cloud Foundry instance using self-
signed certs (e.g. in development). Do not use for production.

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.BUILD-SNAPSHOT
Spring Cloud Data Flow

Server for Cloud Foundry 7

Now we are ready to start the server application:

java -jar spring-cloud-dataflow-server-cloudfoundry-1.0.0.BUILD-SNAPSHOT.jar [--option1=value1] [--

option2=value2] [etc.]

4.6 Running Spring Cloud Data Flow Shell locally

Run the shell and optionally target the Admin application if not running on the same host (will typically
be the case if deployed on Cloud Foundry as explained here)

$ java -jar spring-cloud-dataflow-shell-1.0.0.M3.jar

server-unknown:>dataflow config server http://dataflow-server.cfapps.io

Successfully targeted http://dataflow-server.cfapps.io

dataflow:>

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.BUILD-SNAPSHOT
Spring Cloud Data Flow

Server for Cloud Foundry 8

5. Configuration Reference

The following pieces of configuration must be provided, e.g. by setting variables in the apps environment,
or passing variables on the Java invocation:

Default values cited after the equal sign.

Example values, typical for Pivotal Web Services, cited as a comment

url of the CF API (used when using cf login -a for example), e.g. https://api.run.pivotal.io

(for setting env var use SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_API_ENDPOINT)

spring.cloud.deployer.cloudfoundry.apiEndpoint=

name of the organization that owns the space above, e.g. youruser-org

(For Setting Env var use SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_ORGANIZATION)

spring.cloud.deployer.cloudfoundry.organization=

name of the space into which modules will be deployed

(for setting env var use SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_SPACE)

spring.cloud.deployer.cloudfoundry.space=<same space as server when running on CF, or 'development'>

the root domain to use when mapping routes, e.g. cfapps.io

(for setting env var use SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_DOMAIN)

spring.cloud.deployer.cloudfoundry.domain=

Comma separated set of service instance names to bind to the module.

Amongst other things, this should include a service that will be used

for Spring Cloud Stream binding

(for setting env var use SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_SERVICES)

spring.cloud.deployer.cloudfoundry.services=redis,rabbit

username and password of the user to use to create apps (modules)

(for setting env var use SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_USERNAME and

 SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_PASSWORD)

spring.cloud.deployer.cloudfoundry.username=

spring.cloud.deployer.cloudfoundry.password=

Whether to allow self-signed certificates during SSL validation

(for setting env var use SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_SKIP_SSL_VALIDATION)

spring.cloud.deployer.cloudfoundry.skipSslValidation=false

Part II. Appendices

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.BUILD-SNAPSHOT
Spring Cloud Data Flow

Server for Cloud Foundry 10

6. Building

6.1 Basic Compile and Test

To build the source you will need to install JDK 1.8.

The build uses the Maven wrapper so you don’t have to install a specific version of Maven. To enable
the tests for Redis you should run the server before bulding. See below for more information on how
run Redis.

The main build command is

$./mvnw clean install

You can also add '-DskipTests' if you like, to avoid running the tests.

Note

You can also install Maven (>=3.3.3) yourself and run the mvn command in place of ./mvnw in
the examples below. If you do that you also might need to add -P spring if your local Maven
settings do not contain repository declarations for spring pre-release artifacts.

Note

Be aware that you might need to increase the amount of memory available to Maven by setting a
MAVEN_OPTS environment variable with a value like -Xmx512m -XX:MaxPermSize=128m. We
try to cover this in the .mvn configuration, so if you find you have to do it to make a build succeed,
please raise a ticket to get the settings added to source control.

The projects that require middleware generally include a docker-compose.yml, so consider using
Docker Compose to run the middeware servers in Docker containers. See the README in the scripts
demo repository for specific instructions about the common cases of mongo, rabbit and redis.

6.2 Documentation

There is a "full" profile that will generate documentation. You can build just the documentation by
executing

$./mvnw package -DskipTests=true -P full -pl spring-cloud-dataflow-server-cloudfoundry-docs -am

6.3 Working with the code

If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or Eclipse
when working with the code. We use the m2eclipe eclipse plugin for maven support. Other IDEs and
tools should also work without issue.

Importing into eclipse with m2eclipse

We recommend the m2eclipe eclipse plugin when working with eclipse. If you don’t already have
m2eclipse installed it is available from the "eclipse marketplace".

Unfortunately m2e does not yet support Maven 3.3, so once the projects are imported into Eclipse you
will also need to tell m2eclipse to use the .settings.xml file for the projects. If you do not do this

https://www.docker.com/products/docker-compose
https://github.com/spring-cloud-samples/scripts
https://github.com/spring-cloud-samples/scripts
http://www.springsource.com/developer/sts
http://eclipse.org
http://eclipse.org/m2e/
http://eclipse.org/m2e/

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.BUILD-SNAPSHOT
Spring Cloud Data Flow

Server for Cloud Foundry 11

you may see many different errors related to the POMs in the projects. Open your Eclipse preferences,
expand the Maven preferences, and select User Settings. In the User Settings field click Browse and
navigate to the Spring Cloud project you imported selecting the .settings.xml file in that project.
Click Apply and then OK to save the preference changes.

Note

Alternatively you can copy the repository settings from .settings.xml into your own ~/.m2/
settings.xml.

Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following
command:

$./mvnw eclipse:eclipse

The generated eclipse projects can be imported by selecting import existing projects from the
file menu.

https://github.com/spring-cloud/spring-cloud-build/blob/master/.settings.xml

	Spring Cloud Data Flow Server for Cloud Foundry
	Table of Contents
	Part I. Spring Cloud Data Flow for Cloud Foundry
	1. Spring Cloud Data Flow
	2. Spring Cloud Stream
	3. Spring Cloud Task
	4. Deploying on Cloud Foundry
	4.1 Provision a Redis service instance on Cloud Foundry.
	4.2 Provision a Rabbit service instance on Cloud Foundry.
	4.3 Download the Spring Cloud Data Flow Server and Shell apps:
	4.4 Deploying the Server app on Cloud Foundry
	4.5 Running the Server app locally
	4.6 Running Spring Cloud Data Flow Shell locally

	5. Configuration Reference

	Part II. Appendices
	6. Building
	6.1 Basic Compile and Test
	6.2 Documentation
	6.3 Working with the code
	Importing into eclipse with m2eclipse
	Importing into eclipse without m2eclipse

