Spring Cloud Data Flow Admin for Cloud Foundry
Table of Contents
	I. Spring Cloud Data Flow for Cloud Foundry
	II. Deploying on Cloud Foundry	1. Deploying Admin app on Cloud Foundry
	2. Running Admin app locally
	3. Running Spring Cloud Data Flow Shell locally
	4. Spring Cloud Data Flow Admin app configuration settings for Cloud Foundry

	III. Modules	5. Sources	File	Options

	FTP (ftp)	Options

	HTTP (http)
	Load Generator (load-generator)	Options

	SFTP (sftp)	Options

	TCP	Options
	Available Decoders

	Time (time)	Options

	Twitter Stream (twitterstream)	Options

	6. Processors	Filter (filter)	Filter with SpEL expression

	Groovy Filter (groovy-filter)	Options

	Http Client (httpclient)	Options

	Noop (noop)
	Groovy Transform (groovy-transform)	Options

	Transform (transform)	Options
	Transform with SpEL expression

	Splitter	JSON Example

	7. Sinks	Cassandra (cassandra)	Options

	Counter (counter)
	Field Value Counter (field-value-counter)	Options

	File (file)	Options

	FTP Sink (ftp)
	Gemfire (gemfire)	Options

	Hadoop (HDFS) (hdfs)	Options
	Partition Path Expression	Accessing Properties
	Custom Methods	path
	dateFormat
	list
	range
	hash

	JDBC (jdbc)	Options

	Log (log)
	Redis (redis)	Options

	TCP Sink	Options
	Available Encoders

	IV. Appendices	A. Building	Documentation
	Working with the code	Importing into eclipse with m2eclipse
	Importing into eclipse without m2eclipse

	B. Contributing	Sign the Contributor License Agreement
	Code Conventions and Housekeeping

Spring Cloud Data Flow Admin for Cloud Foundry

Thomas Risberg, Janne Valkealahti

1.0.0.M1

Copyright © 2013-2015 Pivotal Software, Inc.

		Copies of this document may be made for your own use and for distribution to
		others, provided that you do not charge any fee for such copies and further
		provided that each copy contains this Copyright Notice, whether distributed in
		print or electronically.
	

Part I. Spring Cloud Data Flow for Cloud Foundry

This project provides support for deploying Spring Cloud Stream modules to Cloud Foundry.

Part II. Deploying on Cloud Foundry

Note
The Cloud Foundry SPI implementation is a separate project.

Spring Cloud Data Flow can be used to deploy modules in a Cloud Foundry environment. When doing so, the Admin application can either run itself on Cloud Foundry, or on another installation (e.g. a simple laptop).
The required configuration amounts to the same in either case, and is merely related to providing credentials to the Cloud Foundry instance so that the admin can spawn applications itself. Any Spring Boot compatible configuration mechanism can be used (passing program arguments, editing configuration files before building the application, using Spring Cloud Config, using environment variables, etc.), although some may prove more practicable than others when running on Cloud Foundry.
	provision a redis service instance on Cloud Foundry.
Use cf marketplace to discover which plans are available to you, depending on the details of your Cloud Foundry setup. For example when using Pivotal Web Services:

cf create-service rediscloud 30mb redis
	download the Spring Cloud Data Flow Admin and Shell apps:

wget http://repo.spring.io/milestone/org/springframework/cloud/spring-cloud-dataflow-admin/1.0.0.M2/spring-cloud-dataflow-admin-cloudfoundry-1.0.0.M2.jar
wget http://repo.spring.io/milestone/org/springframework/cloud/spring-cloud-dataflow-shell/1.0.0.M2/spring-cloud-dataflow-shell-1.0.0.M2.jar

Chapter 1. Deploying Admin app on Cloud Foundry

3a. push the admin application on Cloud Foundry, configure it (see below) and start it
Note
You must use a unique name for your app; an app with the same name in the same organization will cause your deployment to fail

cf push s-c-dataflow-admin --no-start -p spring-cloud-dataflow-admin-cloudfoundry-1.0.0.M2.jar
cf bind-service s-c-dataflow-admin redis
Now we can configure the app. This configuration is for Pivotal Web Services. You need to fill in {org}, {space}, {email} and {password} before running these commands.
Note
Only set 'Skip SSL Validation' to true if you’re running on a Cloud Foundry instance using self-signed certs (e.g. in development). Do not use for production.

cf set-env s-c-dataflow-admin CLOUDFOUNDRY_API_ENDPOINT https://api.run.pivotal.io
cf set-env s-c-dataflow-admin CLOUDFOUNDRY_ORGANIZATION {org}
cf set-env s-c-dataflow-admin CLOUDFOUNDRY_SPACE {space}
cf set-env s-c-dataflow-admin CLOUDFOUNDRY_DOMAIN cfapps.io
cf set-env s-c-dataflow-admin CLOUDFOUNDRY_SERVICES redis
cf set-env s-c-dataflow-admin CLOUDFOUNDRY_USERNAME {email}
cf set-env s-c-dataflow-admin CLOUDFOUNDRY_PASSWORD {password}
cf set-env s-c-dataflow-admin CLOUDFOUNDRY_SKIP_SSL_VALIDATION false
We are now ready to start the app.
cf start s-c-dataflow-admin
Alternatively,
Chapter 2. Running Admin app locally

3b. run the admin application locally, targeting your Cloud Foundry installation
First you need to configure the application either by passing in command line arguments (see below) or setting a number of environment variables.
To use environment variables set the following:
export CLOUDFOUNDRY_API_ENDPOINT=https://api.run.pivotal.io
export CLOUDFOUNDRY_ORGANIZATION={org}
export CLOUDFOUNDRY_SPACE={space}
export CLOUDFOUNDRY_DOMAIN=cfapps.io
export CLOUDFOUNDRY_SERVICES=redis
export CLOUDFOUNDRY_USERNAME={email}
export CLOUDFOUNDRY_PASSWORD={password}
export CLOUDFOUNDRY_SKIP_SSL_VALIDATION=false
You need to fill in {org}, {space}, {email} and {password} before running these commands.
Note
Only set 'Skip SSL Validation' to true if you’re running on a Cloud Foundry instance using self-signed certs (e.g. in development). Do not use for production.

Now we are ready to start the admin application:
java -jar spring-cloud-dataflow-admin-cloudfoundry-1.0.0.M2.jar [--option1=value1] [--option2=value2] [etc.]
Chapter 3. Running Spring Cloud Data Flow Shell locally

	run the shell and optionally target the Admin application if not running on the same host (will typically be the case if deployed on Cloud Foundry as 3a.)

$ java -jar spring-cloud-dataflow-shell-1.0.0.M2.jar
server-unknown:>admin config server http://s-c-dataflow-admin.cfapps.io
Successfully targeted http://s-c-dataflow-admin.cfapps.io
dataflow:>
Chapter 4. Spring Cloud Data Flow Admin app configuration settings for Cloud Foundry

The following pieces of configuration must be provided, e.g. by setting variables in the apps environment, or passing variables on the Java invocation:
Default values cited after the equal sign.
Example values, typical for Pivotal Web Services, cited as a comment

url of the CF API (used when using cf login -a for example), e.g. https://api.run.pivotal.io
(for setting env var use CLOUDFOUNDRY_API_ENDPOINT)
cloudfoundry.apiEndpoint=

name of the organization that owns the space above, e.g. youruser-org
(for setting env var use CLOUDFOUNDRY_ORGANIZATION)
cloudfoundry.organization=

name of the space into which modules will be deployed
(for setting env var use CLOUDFOUNDRY_SPACE)
cloudfoundry.space=<same space as admin when running on CF, or 'development'>

the root domain to use when mapping routes, e.g. cfapps.io
(for setting env var use CLOUDFOUNDRY_DOMAIN)
cloudfoundry.domain=

Comma separated set of service instance names to bind to the module.
Amongst other things, this should include a service that will be used
for Spring Cloud Stream binding
(for setting env var use CLOUDFOUNDRY_SERVICES)
cloudfoundry.services=redis

username and password of the user to use to create apps (modules)
(for setting env var use CLOUDFOUNDRY_USERNAME and CLOUDFOUNDRY_PASSWORD)
cloudfoundry.username=
cloudfoundry.password=

Whether to allow self-signed certificates during SSL validation
(for setting env var use CLOUDFOUNDRY_SKIP_SSL_VALIDATION)
cloudfoundry.skipSslValidation=false
Part III. Modules

Chapter 5. Sources

File

The file source provides the contents of a File as a byte array by default.
However, this can be customized using the --mode option:
	ref Provides a java.io.File reference
	lines Will split files line-by-line and emit a new message for each line
	contents The default. Provides the contents of a file as a byte array

When using --mode=lines, you can also provide the additional option --withMarkers=true.
If set to true, the underlying FileSplitter will emit additional start-of-file and end-of-file marker messages before and after the actual data.
The payload of these 2 additional marker messages is of type FileSplitter.FileMarker. The option withMarkers defaults to false if not explicitly set.
Options

The file source has the following options:
	dir
	the absolute path to the directory to monitor for files (String, default: ``)
	fixedDelay
	the fixed delay polling interval specified in seconds (int, default: 5)
	initialDelay
	an initial delay when using a fixed delay trigger, expressed in TimeUnits (seconds by default) (int, default: 0)
	maxMessages
	the maximum messages per poll; -1 for unlimited (long, default: -1)
	mode
	specifies how the file is being read. By default the content of a file is provided as byte array (FileReadingMode, default: contents, possible values: ref,lines,contents)
	pattern
	a filter expression (Ant style) to accept only files that match the pattern (String, default: *)
	preventDuplicates
	whether to prevent the same file from being processed twice (boolean, default: true)
	timeUnit
	the time unit for the fixed and initial delays (String, default: SECONDS)
	withMarkers
	if true emits start of file/end of file marker messages before/after the data. Only valid with FileReadingMode 'lines' (Boolean, no default)

The ref option is useful in some cases in which the file contents are large and it would be more efficient to send the file path.
FTP (ftp)

This source module supports transfer of files using the FTP protocol.
Files are transferred from the remote directory to the local directory where the module is deployed.
Messages emitted by the source are provided as a byte array by default. However, this can be
customized using the --mode option:
	ref Provides a java.io.File reference
	lines Will split files line-by-line and emit a new message for each line
	contents The default. Provides the contents of a file as a byte array

When using --mode=lines, you can also provide the additional option --withMarkers=true.
If set to true, the underlying FileSplitter will emit additional start-of-file and end-of-file marker messages before and after the actual data.
The payload of these 2 additional marker messages is of type FileSplitter.FileMarker. The option withMarkers defaults to false if not explicitly set.
Options

The ftp source has the following options:
	autoCreateLocalDir
	local directory must be auto created if it does not exist (boolean, default: true)
	clientMode
	client mode to use : 2 for passive mode and 0 for active mode (int, default: 0)
	deleteRemoteFiles
	delete remote files after transfer (boolean, default: false)
	filenamePattern
	simple filename pattern to apply to the filter (String, default: *)
	fixedDelay
	the rate at which to poll the remote directory (int, default: 1)
	host
	the host name for the FTP server (String, default: localhost)
	initialDelay
	an initial delay when using a fixed delay trigger, expressed in TimeUnits (seconds by default) (int, default: 0)
	localDir
	set the local directory the remote files are transferred to (String, default: ``)
	maxMessages
	the maximum messages per poll; -1 for unlimited (long, default: -1)
	mode
	specifies how the file is being read. By default the content of a file is provided as byte array (FileReadingMode, default: contents, possible values: ref,lines,contents)
	password
	the password for the FTP connection (Password, no default)
	port
	the port for the FTP server (int, default: 21)
	preserveTimestamp
	whether to preserve the timestamp of files retrieved (boolean, default: true)
	remoteDir
	the remote directory to transfer the files from (String, default: /)
	remoteFileSeparator
	file separator to use on the remote side (String, default: /)
	timeUnit
	the time unit for the fixed and initial delays (String, default: SECONDS)
	tmpFileSuffix
	extension to use when downloading files (String, default: .tmp)
	username
	the username for the FTP connection (String, no default)
	withMarkers
	if true emits start of file/end of file marker messages before/after the data. Only valid with FileReadingMode 'lines' (Boolean, no default)

HTTP (http)

A source module that listens for HTTP requests and emits the body as a message payload.
If the Content-Type matches 'text/*' or 'application/json', the payload will be a String,
otherwise the payload will be a byte array.
To create a stream definition in the server using the Spring Cloud Data Flow shell
dataflow:> stream create --name httptest --definition "http --server.port=9000 | log" --deploy
Post some data to the http server on port 9000
dataflow:> http post --target http://localhost:9000 --data "hello world"
See if the data ended up in the log.
Load Generator (load-generator)

A source that sends generated data and dispatches it to the stream. This is to provide a method for users to identify the performance of Spring Cloud Data Flow in different environments and deployment types.
Options

The load-generator source has the following options:
	messageCount
	the number of messages to send (Integer, default: 100)
	messageSize
	the size of message to send (Integer, 1000)
	producers
	the number of producers (Integer, 1)
	outputType
	how this module should emit messages it produces (MimeType, default: no default)

SFTP (sftp)

This source module supports transfer of files using the SFTP protocol.
Files are transferred from the remote directory to the local directory where the module is deployed.
Messages emitted by the source are provided as a byte array by default. However, this can be
customized using the --mode option:
	ref Provides a java.io.File reference
	lines Will split files line-by-line and emit a new message for each line
	contents The default. Provides the contents of a file as a byte array

When using --mode=lines, you can also provide the additional option --withMarkers=true.
If set to true, the underlying FileSplitter will emit additional start-of-file and end-of-file marker messages before and after the actual data.
The payload of these 2 additional marker messages is of type FileSplitter.FileMarker. The option withMarkers defaults to false if not explicitly set.
Options

The sftp source has the following options:
	allowUnknownKeys
	true to allow connecting to a host with an unknown or changed key (boolean, default: false)
	autoCreateLocalDir
	if local directory must be auto created if it does not exist (boolean, default: true)
	deleteRemoteFiles
	delete remote files after transfer (boolean, default: false)
	fixedDelay
	fixed delay in SECONDS to poll the remote directory (int, default: 1)
	host
	the remote host to connect to (String, default: localhost)
	initialDelay
	an initial delay when using a fixed delay trigger, expressed in TimeUnits (seconds by default) (int, default: 0)
	knownHostsExpression
	a SpEL expresssion location of known hosts file; required if 'allowUnknownKeys' is false; examples: systemProperties["user.home"]+"/.ssh/known_hosts", "/foo/bar/known_hosts" (String, no default)
	localDir
	set the local directory the remote files are transferred to (String, default: ``)
	maxMessages
	the maximum messages per poll; -1 for unlimited (long, default: -1)
	mode
	specifies how the file is being read. By default the content of a file is provided as byte array (FileReadingMode, default: contents, possible values: ref,lines,contents)
	passPhrase
	the passphrase to use (String, default: ``)
	password
	the password for the provided user (String, default: ``)
	pattern
	simple filename pattern to apply to the filter (String, no default)
	port
	the remote port to connect to (int, default: 22)
	privateKey
	the private key location (a valid Spring Resource URL) (String, default: ``)
	regexPattern
	filename regex pattern to apply to the filter (String, no default)
	remoteDir
	the remote directory to transfer the files from (String, no default)
	timeUnit
	the time unit for the fixed and initial delays (String, default: SECONDS)
	tmpFileSuffix
	extension to use when downloading files (String, default: .tmp)
	user
	the username to use (String, no default)
	withMarkers
	if true emits start of file/end of file marker messages before/after the data. Only valid with FileReadingMode 'lines' (Boolean, no default)

TCP

The tcp source acts as a server and allows a remote party to connect to Spring Cloud Data Flow and submit data over a raw tcp socket.
TCP is a streaming protocol and some mechanism is needed to frame messages on the wire. A number of decoders are
available, the default being 'CRLF' which is compatible with Telnet.
Messages produced by the TCP source module have a byte[] payload.
Options

	bufferSize
	the size of the buffer (bytes) to use when decoding (int, default: 2048)
	decoder
	the decoder to use when receiving messages (Encoding, default: CRLF, possible values: CRLF,LF,NULL,STXETX,RAW,L1,L2,L4)
	nio
	whether or not to use NIO (boolean, default: false)
	port
	the port on which to listen (int, default: 1234)
	reverseLookup
	perform a reverse DNS lookup on the remote IP Address (boolean, default: false)
	socketTimeout
	the timeout (ms) before closing the socket when no data is received (int, default: 120000)
	useDirectBuffers
	whether or not to use direct buffers (boolean, default: false)

Available Decoders

Text Data
	CRLF (default)
	text terminated by carriage return (0x0d) followed by line feed (0x0a)
	LF
	text terminated by line feed (0x0a)
	NULL
	text terminated by a null byte (0x00)
	STXETX
	text preceded by an STX (0x02) and terminated by an ETX (0x03)

Text and Binary Data
	RAW
	no structure - the client indicates a complete message by closing the socket
	L1
	data preceded by a one byte (unsigned) length field (supports up to 255 bytes)
	L2
	data preceded by a two byte (unsigned) length field (up to 216-1 bytes)
	L4
	data preceded by a four byte (signed) length field (up to 231-1 bytes)

Time (time)

The time source will simply emit a String with the current time every so often.
Options

The time source has the following options:
	fixedDelay
	time delay between messages, expressed in TimeUnits (seconds by default) (int, default: 1)
	format
	how to render the current time, using SimpleDateFormat (String, default: yyyy-MM-dd HH:mm:ss)
	initialDelay
	an initial delay when using a fixed delay trigger, expressed in TimeUnits (seconds by default) (int, default: 0)
	timeUnit
	the time unit for the fixed and initial delays (String, default: SECONDS)

Twitter Stream (twitterstream)

This source ingests data from Twitter’s streaming API v1.1. It uses the sample and filter stream endpoints rather than the full "firehose" which needs special access. The endpoint used will depend on the parameters you supply in the stream definition (some are specific to the filter endpoint).
You need to supply all keys and secrets (both consumer and accessToken) to authenticate for this source, so it is easiest if you just add these as the following environment variables: CONSUMER_KEY, CONSUMER_SECRET, ACCESS_TOKEN and ACCESS_TOKEN_SECRET.
Stream creation is then straightforward:
dataflow:> stream create --name tweets --definition "twitterstream | log" --deploy
Options

The twitterstream source has the following options:
	accessToken
	a valid OAuth access token (String, no default)
	accessTokenSecret
	an OAuth secret corresponding to the access token (String, no default)
	consumerKey
	a consumer key issued by twitter (String, no default)
	consumerSecret
	consumer secret corresponding to the consumer key (String, no default)
	language
	language code e.g. 'en' (String, default: ``)

Note
twitterstream emit JSON in the native Twitter format.

Chapter 6. Processors

Filter (filter)

Use the filter module in a stream to determine whether a Message should be passed to the output channel.
The filter processor has the following options:
	expression
	a SpEL expression used to transform messages (String, default: payload.toString())

Filter with SpEL expression

The simplest way to use the filter processor is to pass a SpEL expression when creating the stream. The expression should evaluate the message and return true or false. For example:
dataflow:> stream create --name filtertest --definition "http --server.port=9000 | filter --expression=payload=='good' | log" --deploy
This filter will only pass Messages to the log sink if the payload is the word "good". Try sending "good" to the HTTP endpoint and you should see it in the Spring Cloud Data Flow logs:
dataflow:> http post --target http://localhost:9000 --data "good"
Alternatively, if you send the word "bad" (or anything else), you shouldn’t see the log entry.
Groovy Filter (groovy-filter)

A Processor module that retains or discards messages according to a predicate, expressed as a Groovy script.
Options

The groovy-filter processor has the following options:
	script
	The script resource location (String, default: ``)
	variables
	Variable bindings as a comma delimited string of name-value pairs, e.g. 'foo=bar,baz=car' (String, default: ``)
	variablesLocation
	The location of a properties file containing custom script variable bindings (String, default: ``)

Http Client (httpclient)

A processor module that makes requests to an HTTP resource and emits the response body as a message payload. This processor can be combined, e.g., with a time source module to periodically poll results from a HTTP resource.
Options

The httpclient processor has the following options:
	url
	The URL to issue an http request to, as a static value.
	urlExpression
	A SpEL expression against incoming message to determine the URL to use.
	httpMethod
	The kind of http method to use.
	body
	The (static) body of the request to use.
	bodyExpression
	A SpEL expression against incoming message to derive the request body to use.
	headersExpression
	A SpEL expression used to derive the http headers map to use.
	expectedResponseType
	The type used to interpret the response.
	replyExpression
	A SpEL expression used to compute the final result, applied against the whole http response.

Noop (noop)

A Processor module that returns messages that is passed in for performance testing.
Groovy Transform (groovy-transform)

A Processor module that transforms messages using a Groovy script.
Options

The groovy-transform processor has the following options:
	script
	The script resource location (String, default: ``)
	variables
	Variable bindings as a comma delimited string of name-value pairs, e.g. 'foo=bar,baz=car' (String, default: ``)
	variablesLocation
	The location of a properties file containing custom script variable bindings (String, default: ``)

Transform (transform)

Use the transform module in a stream to convert a Message’s content or structure.
Options

The transform processor has the following options:
	expression
	a SpEL expression used to transform messages (String, default: payload.toString())

Transform with SpEL expression

The simplest way to use the transform processor is to pass a SpEL expression when creating the stream. The expression should return the modified message or payload. For example:
dataflow:> stream create --name transformtest --definition "http --server.port=9003 | transform --expression=payload.toUpperCase() | log" --deploy
This transform will convert all message payloads to upper case. If sending the word "foo" to the HTTP endpoint and you should see "FOO" in the Spring Cloud Data Flow logs:
dataflow:> http post --target http://localhost:9003 --data "foo"
As part of the SpEL expression you can make use of the pre-registered JSON Path function. The syntax is #jsonPath(payload,'<json path expression>')
Splitter

The splitter module builds upon the concept of the same name in Spring Integration and allows the splitting of a single
message into several distinct messages.
	expression
	a SpEL expression which would typically evaluate to an array or collection (String, default: null)
	delimiters
	A list of delimiters to tokenize a String payload ('expression' must be null) (String, default: null)
	fileMarkers
	Split File payloads, when true, START and END marker messages will be emitted, when false no markers are emitted (String, default: null)
	charset
	Split File payloads using this charset to convert bytes to String (String, default: null)
	applySequence
	Add correlation and sequence information to the message headers (String, default: true)

When no expression, fileMarkers, or charset is provided, a DefaultMessageSplitter is configured with (optional) delimiters.
When fileMarkers or charset is provided, a FileSplitter is configured (you must provide either a fileMarkers
or charset to split files, which must be text-based - they are split into lines).
Otherwise, an ExpressionEvaluatingMessageSplitter is configured.
When splitting File payloads, the sequenceSize header is zero because the size cannot be determined at the beginning.
Ambiguous properties are not allowed.
JSON Example

As part of the SpEL expression you can make use of the pre-registered JSON Path function. The syntax is
#jsonPath(payload, '<json path expression>').
For example, consider the following JSON:
{ "store": {
 "book": [
 {
 "category": "reference",
 "author": "Nigel Rees",
 "title": "Sayings of the Century",
 "price": 8.95
 },
 {
 "category": "fiction",
 "author": "Evelyn Waugh",
 "title": "Sword of Honour",
 "price": 12.99
 },
 {
 "category": "fiction",
 "author": "Herman Melville",
 "title": "Moby Dick",
 "isbn": "0-553-21311-3",
 "price": 8.99
 },
 {
 "category": "fiction",
 "author": "J. R. R. Tolkien",
 "title": "The Lord of the Rings",
 "isbn": "0-395-19395-8",
 "price": 22.99
 }
],
 "bicycle": {
 "color": "red",
 "price": 19.95
 }
}}
and an expression #jsonPath(payload, '$.store.book'); the result will be 4 messages, each with a Map payload
containing the properties of a single book.
Chapter 7. Sinks

Cassandra (cassandra)

The Cassandra sink writes into a Cassandra table. Here is a simple example
dataflow:>stream create cassandrastream --definition "http --server.port=8888 --spring.cloud.stream.bindings.output.contentType='application/json' | cassandra --ingestQuery='insert into book (id, isbn, title, author) values (uuid(), ?, ?, ?)' --spring.cassandra.keyspace=clouddata" --deploy
Create a keyspace and a book table in Cassandra using:
CREATE KEYSPACE clouddata WITH REPLICATION = { 'class' : 'org.apache.cassandra.locator.SimpleStrategy', 'replication_factor': '1' } AND DURABLE_WRITES = true;
USE clouddata;
CREATE TABLE book (
 id uuid PRIMARY KEY,
 isbn text,
 author text,
 title text
);
You can then send data to this stream via
dataflow:>http post --contentType 'application/json' --data '{"isbn": "1599869772", "title": "The Art of War", "author": "Sun Tzu"}' --target http://localhost:8888/
> POST (application/json;charset=UTF-8) http://localhost:8888/ {"isbn": "1599869772", "title": "The Art of War", "author": "Sun Tzu"}
> 202 ACCEPTED
and see the table contents using the CQL
SELECT * FROM clouddata.book;
Options

The cassandra sink has the following options:
	compressionType
	the compression to use for the transport (CompressionType, default: NONE, possible values: NONE,SNAPPY)
	consistencyLevel
	the consistencyLevel option of WriteOptions (ConsistencyLevel, no default, possible values: ANY,ONE,TWO,THREE,QUOROM,LOCAL_QUOROM,EACH_QUOROM,ALL,LOCAL_ONE,SERIAL,LOCAL_SERIAL)
	spring.cassandra.contactPoints
	the comma-delimited string of the hosts to connect to Cassandra (String, default: localhost)
	entityBasePackages
	the base packages to scan for entities annotated with Table annotations (String[], default: [])
	ingestQuery
	the ingest Cassandra query (String, no default)
	spring.cassandra.initScript
	the path to file with CQL scripts (delimited by ';') to initialize keyspace schema (String, no default)
	spring.cassandra.keyspace
	the keyspace name to connect to (String, default: <stream name>)
	metricsEnabled
	enable/disable metrics collection for the created cluster (boolean, default: true)
	spring.cassandra.password
	the password for connection (String, no default)
	spring.cassandra.port
	the port to use to connect to the Cassandra host (int, default: 9042)
	queryType
	the queryType for Cassandra Sink (Type, default: INSERT, possible values: INSERT,UPDATE,DELETE,STATEMENT)
	retryPolicy
	the retryPolicy option of WriteOptions (RetryPolicy, no default, possible values: DEFAULT,DOWNGRADING_CONSISTENCY,FALLTHROUGH,LOGGING)
	statementExpression
	the expression in Cassandra query DSL style (String, no default)
	spring.cassandra.schemaAction
	schema action to perform (SchemaAction, default: NONE, possible values: CREATE,NONE,RECREATE,RECREATE_DROP_UNUSED)
	ttl
	the time-to-live option of WriteOptions (int, default: 0)
	spring.cassandra.username
	the username for connection (String, no default)

Counter (counter)

A simple module that counts messages received, using Spring Boot metrics abstraction.
The counter sink has the following options:
	name
	The name of the counter to increment. (String, default: counts)
	nameExpression
	A SpEL expression (against the incoming Message) to derive the name of the counter to increment. (String, default: ``)
	store
	The name of a store used to store the counter. (String, default: memory, possible values: memory, redis)

Field Value Counter (field-value-counter)

A field value counter is a Metric used for counting occurrences of unique values for a named field in a message payload. Spring Cloud Data Flow supports the following payload types out of the box:
	POJO (Java bean)
	Tuple
	JSON String

For example suppose a message source produces a payload with a field named user :
class Foo {
 String user;
 public Foo(String user) {
 this.user = user;
 }
}
If the stream source produces messages with the following objects:
 new Foo("fred")
 new Foo("sue")
 new Foo("dave")
 new Foo("sue")
The field value counter on the field user will contain:
fred:1, sue:2, dave:1
Multi-value fields are also supported. For example, if a field contains a list, each value will be counted once:
users:["dave","fred","sue"]
users:["sue","jon"]
The field value counter on the field users will contain:
dave:1, fred:1, sue:2, jon:1
Options

The field-value-counter sink has the following options:
	fieldName
	the name of the field for which values are counted (String, no default)
	name
	the name of the metric to contribute to (will be created if necessary) (String, default: <stream name>)
	nameExpression
	a SpEL expression to compute the name of the metric to contribute to (String, no default)

File (file)

This module writes each message it receives to a file.
Options

The file sink has the following options:
	binary
	if false, will append a newline character at the end of each line (boolean, default: false)
	charset
	the charset to use when writing a String payload (String, default: UTF-8)
	dir
	the directory in which files will be created (String, default: ``)
	dirExpression
	spring expression used to define directory name (String, no default)
	mode
	what to do if the file already exists (Mode, default: APPEND, possible values: APPEND,REPLACE,FAIL,IGNORE)
	name
	filename pattern to use (String, default: <stream name>)
	nameExpression
	spring expression used to define filename (String, no default)
	suffix
	filename extension to use (String, no default)

FTP Sink (ftp)

FTP sink is a simple option to push files to an FTP server from incoming messages.
It uses an ftp-outbound-adapter, therefore incoming messages could be either a java.io.File object, a String (content of the file)
or an array of bytes (file content as well).
To use this sink, you need a username and a password to login.
Note
By default Spring Integration will use o.s.i.file.DefaultFileNameGenerator if none is specified. DefaultFileNameGenerator will determine the file name
based on the value of the file_name header (if it exists) in the MessageHeaders, or if the payload of the Message is already a java.io.File, then it will
use the original name of that file.

Gemfire (gemfire)

A sink module that allows one to write message payloads to a Gemfire server.
Options

The gemfire sink has the following options:
	hostAddresses
	a comma separated list of [host]:[port] specifying either locator or server addresses for the client connection pool (String, localhost:10334)
	keyExpression
	a SpEL expression which is evaluated to create a cache key (String, default: the value is currently the message payload')
	port
	port of the cache server or locator (if useLocator=true). May be a comma delimited list (String, no default)
	regionName
	name of the region to use when storing data (String, default: ${spring.application.name})
	connectType
	'server' or 'locator' (String, default: locator)

Hadoop (HDFS) (hdfs)

If you do not have Hadoop installed, you can install Hadoop as described in our separate guide.
Once Hadoop is up and running, you can then use the hdfs sink when creating a stream
dataflow:> stream create --name myhdfsstream1 --definition "time | hdfs" --deploy
In the above example, we’ve scheduled time source to automatically send ticks to hdfs once in every second. If you wait a little while for data to accumuluate you can then list can then list the files in the hadoop filesystem using the shell’s built in hadoop fs commands. Before making any access to HDFS in the shell you first need to configure the shell to point to your name node. This is done using the hadoop config command.
dataflow:>hadoop config fs --namenode hdfs://localhost:8020
In this example the hdfs protocol is used but you may also use the webhdfs protocol. Listing the contents in the output directory (named by default after the stream name) is done by issuing the following command.
dataflow:>hadoop fs ls /xd/myhdfsstream1
Found 1 items
-rw-r--r-- 3 jvalkealahti supergroup 0 2013-12-18 18:10 /xd/myhdfsstream1/myhdfsstream1-0.txt.tmp
While the file is being written to it will have the tmp suffix. When the data written exceeds the rollover size (default 1GB) it will be renamed to remove the tmp suffix. There are several options to control the in use file file naming options. These are --inUsePrefix and --inUseSuffix set the file name prefix and suffix respectfully.
When you destroy a stream
dataflow:>stream destroy --name myhdfsstream1
and list the stream directory again, in use file suffix doesn’t exist anymore.
dataflow:>hadoop fs ls /xd/myhdfsstream1
Found 1 items
-rw-r--r-- 3 jvalkealahti supergroup 380 2013-12-18 18:10 /xd/myhdfsstream1/myhdfsstream1-0.txt
To list the list the contents of a file directly from a shell execute the hadoop cat command.
dataflow:> hadoop fs cat /xd/myhdfsstream1/myhdfsstream1-0.txt
2013-12-18 18:10:07
2013-12-18 18:10:08
2013-12-18 18:10:09
...
In the above examples we didn’t yet go through why the file was written in a specific directory and why it was named in this specific way. Default location of a file is defined as /xd/<stream name>/<stream name>-<rolling part>.txt. These can be changed using options --directory and --fileName respectively. Example is shown below.
dataflow:>stream create --name myhdfsstream2 --definition "time | hdfs --directory=/xd/tmp --fileName=data" --deploy
dataflow:>stream destroy --name myhdfsstream2
dataflow:>hadoop fs ls /xd/tmp
Found 1 items
-rw-r--r-- 3 jvalkealahti supergroup 120 2013-12-18 18:31 /xd/tmp/data-0.txt
It is also possible to control the size of a files written into HDFS. The --rollover option can be used to control when file currently being written is rolled over and a new file opened by providing the rollover size in bytes, kilobytes, megatypes, gigabytes, and terabytes.
dataflow:>stream create --name myhdfsstream3 --definition "time | hdfs --rollover=100" --deploy
dataflow:>stream destroy --name myhdfsstream3
dataflow:>hadoop fs ls /xd/myhdfsstream3
Found 3 items
-rw-r--r-- 3 jvalkealahti supergroup 100 2013-12-18 18:41 /xd/myhdfsstream3/myhdfsstream3-0.txt
-rw-r--r-- 3 jvalkealahti supergroup 100 2013-12-18 18:41 /xd/myhdfsstream3/myhdfsstream3-1.txt
-rw-r--r-- 3 jvalkealahti supergroup 100 2013-12-18 18:41 /xd/myhdfsstream3/myhdfsstream3-2.txt
Shortcuts to specify sizes other than bytes are written as --rollover=64M, --rollover=512G or --rollover=1T.
The stream can also be compressed during the write operation. Example of this is shown below.
dataflow:>stream create --name myhdfsstream4 --definition "time | hdfs --codec=gzip" --deploy
dataflow:>stream destroy --name myhdfsstream4
dataflow:>hadoop fs ls /xd/myhdfsstream4
Found 1 items
-rw-r--r-- 3 jvalkealahti supergroup 80 2013-12-18 18:48 /xd/myhdfsstream4/myhdfsstream4-0.txt.gzip
From a native os shell we can use hadoop’s fs commands and pipe data into gunzip.
bin/hadoop fs -cat /xd/myhdfsstream4/myhdfsstream4-0.txt.gzip | gunzip
2013-12-18 18:48:10
2013-12-18 18:48:11
...
Often a stream of data may not have a high enough rate to roll over files frequently, leaving the file in an opened state. This prevents users from reading a consistent set of data when running mapreduce jobs. While one can alleviate this problem by using a small rollover value, a better way is to use the idleTimeout option that will automatically close the file if there was no writes during the specified period of time. This feature is also useful in cases where burst of data is written into a stream and you’d like that data to become visible in HDFS.
Note
The idleTimeout value should not exceed the timeout values set on the Hadoop cluster. These are typically configured using the dfs.socket.timeout and/or dfs.datanode.socket.write.timeout properties in the hdfs-site.xml configuration file.

dataflow:> stream create --name myhdfsstream5 --definition "http --server.port=8000 | hdfs --rollover=20 --idleTimeout=10000" --deploy
In the above example we changed a source to http order to control what we write into a hdfs sink. We defined a small rollover size and a timeout of 10 seconds. Now we can simply post data into this stream via source end point using a below command.
dataflow:> http post --target http://localhost:8000 --data "hello"
If we repeat the command very quickly and then wait for the timeout we should be able to see that some files are closed before rollover size was met and some were simply rolled because of a rollover size.
dataflow:>hadoop fs ls /xd/myhdfsstream5
Found 4 items
-rw-r--r-- 3 jvalkealahti supergroup 12 2013-12-18 19:02 /xd/myhdfsstream5/myhdfsstream5-0.txt
-rw-r--r-- 3 jvalkealahti supergroup 24 2013-12-18 19:03 /xd/myhdfsstream5/myhdfsstream5-1.txt
-rw-r--r-- 3 jvalkealahti supergroup 24 2013-12-18 19:03 /xd/myhdfsstream5/myhdfsstream5-2.txt
-rw-r--r-- 3 jvalkealahti supergroup 18 2013-12-18 19:03 /xd/myhdfsstream5/myhdfsstream5-3.txt
Files can be automatically partitioned using a partitionPath expression. If we create a stream with idleTimeout and partitionPath with simple format yyyy/MM/dd/HH/mm we should see writes ending into its own files within every minute boundary.
dataflow:>stream create --name myhdfsstream6 --definition "time|hdfs --idleTimeout=10000 --partitionPath=dateFormat('yyyy/MM/dd/HH/mm')" --deploy
Let a stream run for a short period of time and list files.
dataflow:>hadoop fs ls --recursive true --dir /xd/myhdfsstream6
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 09:42 /xd/myhdfsstream6/2014
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 09:42 /xd/myhdfsstream6/2014/05
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 09:42 /xd/myhdfsstream6/2014/05/28
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 09:45 /xd/myhdfsstream6/2014/05/28/09
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 09:43 /xd/myhdfsstream6/2014/05/28/09/42
-rw-r--r-- 3 jvalkealahti supergroup 140 2014-05-28 09:43 /xd/myhdfsstream6/2014/05/28/09/42/myhdfsstream6-0.txt
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 09:44 /xd/myhdfsstream6/2014/05/28/09/43
-rw-r--r-- 3 jvalkealahti supergroup 1200 2014-05-28 09:44 /xd/myhdfsstream6/2014/05/28/09/43/myhdfsstream6-0.txt
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 09:45 /xd/myhdfsstream6/2014/05/28/09/44
-rw-r--r-- 3 jvalkealahti supergroup 1200 2014-05-28 09:45 /xd/myhdfsstream6/2014/05/28/09/44/myhdfsstream6-0.txt
Partitioning can also be based on defined lists. In a below example we simulate feeding data by using a time and a transform elements. Data passed to hdfs sink has a content APP0:foobar, APP1:foobar, APP2:foobar or APP3:foobar.
dataflow:>stream create --name myhdfsstream7 --definition "time | transform --expression=\"'APP'+T(Math).round(T(Math).random()*3)+':foobar'\" | hdfs --idleTimeout=10000 --partitionPath=path(dateFormat('yyyy/MM/dd/HH'),list(payload.split(':')[0],{{'0TO1','APP0','APP1'},{'2TO3','APP2','APP3'}}))" --deploy
Let the stream run few seconds, destroy it and check what got written in those partitioned files.
dataflow:>stream destroy --name myhdfsstream7
Destroyed stream 'myhdfsstream7'
dataflow:>hadoop fs ls --recursive true --dir /xd
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:24 /xd/myhdfsstream7
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:24 /xd/myhdfsstream7/2014
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:24 /xd/myhdfsstream7/2014/05
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:24 /xd/myhdfsstream7/2014/05/28
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:24 /xd/myhdfsstream7/2014/05/28/19
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:24 /xd/myhdfsstream7/2014/05/28/19/0TO1_list
-rw-r--r-- 3 jvalkealahti supergroup 108 2014-05-28 19:24 /xd/myhdfsstream7/2014/05/28/19/0TO1_list/myhdfsstream7-0.txt
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:24 /xd/myhdfsstream7/2014/05/28/19/2TO3_list
-rw-r--r-- 3 jvalkealahti supergroup 180 2014-05-28 19:24 /xd/myhdfsstream7/2014/05/28/19/2TO3_list/myhdfsstream7-0.txt
dataflow:>hadoop fs cat /xd/myhdfsstream7/2014/05/28/19/0TO1_list/myhdfsstream7-0.txt
APP1:foobar
APP1:foobar
APP0:foobar
APP0:foobar
APP1:foobar
Partitioning can also be based on defined ranges. In a below example we simulate feeding data by using a time and a transform elements. Data passed to hdfs sink has a content ranging from APP0 to APP15. We simple parse the number part and use it to do a partition with ranges {3,5,10}.
dataflow:>stream create --name myhdfsstream8 --definition "time | transform --expression=\"'APP'+T(Math).round(T(Math).random()*15)\" | hdfs --idleTimeout=10000 --partitionPath=path(dateFormat('yyyy/MM/dd/HH'),range(T(Integer).parseInt(payload.substring(3)),{3,5,10}))" --deploy
Let the stream run few seconds, destroy it and check what got written in those partitioned files.
dataflow:>stream destroy --name myhdfsstream8
Destroyed stream 'myhdfsstream8'
dataflow:>hadoop fs ls --recursive true --dir /xd
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:34 /xd/myhdfsstream8
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:34 /xd/myhdfsstream8/2014
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:34 /xd/myhdfsstream8/2014/05
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:34 /xd/myhdfsstream8/2014/05/28
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:34 /xd/myhdfsstream8/2014/05/28/19
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:34 /xd/myhdfsstream8/2014/05/28/19/10_range
-rw-r--r-- 3 jvalkealahti supergroup 16 2014-05-28 19:34 /xd/myhdfsstream8/2014/05/28/19/10_range/myhdfsstream8-0.txt
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:34 /xd/myhdfsstream8/2014/05/28/19/3_range
-rw-r--r-- 3 jvalkealahti supergroup 35 2014-05-28 19:34 /xd/myhdfsstream8/2014/05/28/19/3_range/myhdfsstream8-0.txt
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:34 /xd/myhdfsstream8/2014/05/28/19/5_range
-rw-r--r-- 3 jvalkealahti supergroup 5 2014-05-28 19:34 /xd/myhdfsstream8/2014/05/28/19/5_range/myhdfsstream8-0.txt
dataflow:>hadoop fs cat /xd/myhdfsstream8/2014/05/28/19/3_range/myhdfsstream8-0.txt
APP3
APP3
APP1
APP0
APP1
dataflow:>hadoop fs cat /xd/myhdfsstream8/2014/05/28/19/5_range/myhdfsstream8-0.txt
APP4
dataflow:>hadoop fs cat /xd/myhdfsstream8/2014/05/28/19/10_range/myhdfsstream8-0.txt
APP6
APP15
APP7
Partition using a dateFormat can be based on content itself. This is a good use case if old log files needs to be processed where partitioning should happen based on timestamp of a log entry. We create a fake log data with a simple date string ranging from 1970-01-10 to 1970-01-13.
dataflow:>stream create --name myhdfsstream9 --definition "time | transform --expression=\"'1970-01-'+1+T(Math).round(T(Math).random()*3)\" | hdfs --idleTimeout=10000 --partitionPath=path(dateFormat('yyyy/MM/dd/HH',payload,'yyyy-MM-DD'))" --deploy
Let the stream run few seconds, destroy it and check what got written in those partitioned files. If you see the partition paths, those are based on year 1970, not present year.
dataflow:>stream destroy --name myhdfsstream9
Destroyed stream 'myhdfsstream9'
dataflow:>hadoop fs ls --recursive true --dir /xd
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:56 /xd/myhdfsstream9
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:56 /xd/myhdfsstream9/1970
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:56 /xd/myhdfsstream9/1970/01
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:56 /xd/myhdfsstream9/1970/01/10
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:57 /xd/myhdfsstream9/1970/01/10/00
-rw-r--r-- 3 jvalkealahti supergroup 44 2014-05-28 19:57 /xd/myhdfsstream9/1970/01/10/00/myhdfsstream9-0.txt
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:56 /xd/myhdfsstream9/1970/01/11
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:57 /xd/myhdfsstream9/1970/01/11/00
-rw-r--r-- 3 jvalkealahti supergroup 99 2014-05-28 19:57 /xd/myhdfsstream9/1970/01/11/00/myhdfsstream9-0.txt
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:56 /xd/myhdfsstream9/1970/01/12
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:57 /xd/myhdfsstream9/1970/01/12/00
-rw-r--r-- 3 jvalkealahti supergroup 44 2014-05-28 19:57 /xd/myhdfsstream9/1970/01/12/00/myhdfsstream9-0.txt
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:56 /xd/myhdfsstream9/1970/01/13
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:57 /xd/myhdfsstream9/1970/01/13/00
-rw-r--r-- 3 jvalkealahti supergroup 55 2014-05-28 19:57 /xd/myhdfsstream9/1970/01/13/00/myhdfsstream9-0.txt
dataflow:>hadoop fs cat /xd/myhdfsstream9/1970/01/10/00/myhdfsstream9-0.txt
1970-01-10
1970-01-10
1970-01-10
1970-01-10
Options

The hdfs sink has the following options:
	closeTimeout
	timeout in ms, regardless of activity, after which file will be automatically closed (long, default: 0)
	codec
	compression codec alias name (gzip, snappy, bzip2, lzo, or slzo) (String, default: ``)
	directory
	where to output the files in the Hadoop FileSystem (String, default: /tmp/hdfs-sink)
	fileExtension
	the base filename extension to use for the created files (String, default: txt)
	fileName
	the base filename to use for the created files (String, default: <stream name>)
	fileOpenAttempts
	maximum number of file open attempts to find a path (int, default: 10)
	fileUuid
	whether file name should contain uuid (boolean, default: false)
	fsUri
	the URI to use to access the Hadoop FileSystem (String, default: ${spring.hadoop.fsUri})
	idleTimeout
	inactivity timeout in ms after which file will be automatically closed (long, default: 0)
	inUsePrefix
	prefix for files currently being written (String, default: ``)
	inUseSuffix
	suffix for files currently being written (String, default: .tmp)
	overwrite
	whether writer is allowed to overwrite files in Hadoop FileSystem (boolean, default: false)
	partitionPath
	a SpEL expression defining the partition path (String, default: ``)
	rollover
	threshold in bytes when file will be automatically rolled over (String, default: 1G)

Note
In the context of the fileOpenAttempts option, attempt is either one rollover request or failed stream open request for a path (if another writer came up with a same path and already opened it).

Partition Path Expression

SpEL expression is evaluated against a Spring Messaging Message passed internally into a HDFS writer. This allows expression to use headers and payload from that message. While you could do a custom processing within a stream and add custom headers, timestamp is always going to be there. Data to be written is then available in a payload.
Accessing Properties

Using a payload simply returns whatever is currently being written. Access to headers is via headers property. Any other property is automatically resolved from headers if found. For example headers.timestamp is equivalent to timestamp.
Custom Methods

Addition to a normal SpEL functionality, few custom methods has been added to make it easier to build partition paths. These custom methods can be used to work with a normal partition concepts like date formatting, lists, ranges and hashes.
path

path(String... paths)
Concatenates paths together with a delimiter /. This method can be used to make the expression less verbose than using a native SpEL functionality to combine path parts together. To create a path part1/part2, expression 'part1' + '/' + 'part2' is equivalent to path('part1','part2').
Parameters
	paths
	Any number of path parts

Return Value. Concatenated value of paths delimited with /.
dateFormat

dateFormat(String pattern)
dateFormat(String pattern, Long epoch)
dateFormat(String pattern, Date date)
dateFormat(String pattern, String datestring)
dateFormat(String pattern, String datestring, String dateformat)
Creates a path using date formatting. Internally this method delegates into SimpleDateFormat and needs a Date and a pattern. On default if no parameter used for conversion is given, timestamp is expected. Effectively dateFormat('yyyy') equals to dateFormat('yyyy', timestamp) or dateFormat('yyyy', headers.timestamp).
Method signature with three parameters can be used to create a custom Date object which is then passed to SimpleDateFormat conversion using a dateformat pattern. This is useful in use cases where partition should be based on a date or time string found from a payload content itself. Default dateformat pattern if omitted is yyyy-MM-dd.
Parameters
	pattern
	Pattern compatible with SimpleDateFormat to produce a final output.
	epoch
	Timestamp as Long which is converted into a Date.
	date
	A Date to be formatted.
	dateformat
	Secondary pattern to convert datestring into a Date.
	datestring
	Date as a String

Return Value. A path part representation which can be a simple file or directory name or a directory structure.
list

list(Object source, List<List<Object>> lists)
Creates a partition path part by matching a source against a lists denoted by lists.
Lets assume that data is being written and it’s possible to extrace an appid either from headers or payload. We can automatically do a list based partition by using a partition method list(headers.appid,{{'1TO3','APP1','APP2','APP3'},{'4TO6','APP4','APP5','APP6'}}). This method would create three partitions, 1TO3_list, 4TO6_list and list. Latter is used if no match is found from partition lists passed to lists.
Parameters
	source
	An Object to be matched against lists.
	lists
	A definition of list of lists.

Return Value. A path part prefixed with a matched key i.e. XXX_list or list if no match.
range

range(Object source, List<Object> list)
Creates a partition path part by matching a source against a list denoted by list using a simple binary search.
The partition method takes a source as first argument and list as a second argument. Behind the scenes this is using jvm’s binarySearch which works on an Object level so we can pass in anything. Remember that meaningful range match only works if passed in Object and types in list are of same type like Integer. Range is defined by a binarySearch itself so mostly it is to match against an upper bound except the last range in a list. Having a list of {1000,3000,5000} means that everything above 3000 will be matched with 5000. If that is an issue then simply adding Integer.MAX_VALUE as last range would overflow everything above 5000 into a new partition. Created partitions would then be 1000_range, 3000_range and 5000_range.
Parameters
	source
	An Object to be matched against list.
	list
	A definition of list.

Return Value. A path part prefixed with a matched key i.e. XXX_range.
hash

hash(Object source, int bucketcount)
Creates a partition path part by calculating hashkey using source`s hashCode and bucketcount. Using a partition method hash(timestamp,2) would then create partitions named 0_hash, 1_hash and 2_hash. Number suffixed with _hash is simply calculated using Object.hashCode() % bucketcount.
Parameters
	source
	An Object which hashCode will be used.
	bucketcount
	A number of buckets

Return Value. A path part prefixed with a hash key i.e. XXX_hash.
JDBC (jdbc)

A module that writes its incoming payload to an RDBMS using JDBC.
Options

The jdbc sink has the following options:
	expression
	a SpEL expression used to transform messages (String, default: ``)
	tableName
	String (String, default: <stream name)
	columns
	the names of the columns that shall receive data, as a set of column[:SpEL] mappings, also used at initialization time to issue the DDL (String, default: payload)
	initialize
	String (Boolean, default: false)
	batchSize
	String (long, default: 10000)

The module also uses Spring Boot’s DataSource support
for configuring the database connection, so properties like spring.datasource.url etc. apply.
Log (log)

Probably the simplest option for a sink is just to log the data. The log sink uses the application logger to output the data for inspection. The log level is set to WARN and the logger name is created from the stream name. To create a stream using a log sink you would use a command like
dataflow:> stream create --name mylogstream --definition "http --server.port=8000 | log" --deploy
You can then try adding some data. We’ve used the http source on port 8000 here, so run the following command to send a message
dataflow:> http post --target http://localhost:8000 --data "hello"
and you should see the following output in the Spring Cloud Data Flow console.
13/06/07 16:12:18 INFO Received: hello
Redis (redis)

Redis sink can be used to ingest data into redis store. You can choose queue, topic or key with selcted collection type to point to a specific data store.
For example,
dataflow:>stream create store-into-redis --definition "http | redis --queue=myList" --deploy
dataflow:>Created and deployed new stream 'store-into-redis'
Options

The redis sink has the following options:
	topicExpression
	a SpEL expression to use for topic (String, no default)
	queueExpression
	a SpEL expression to use for queue (String, no default)
	keyExpression
	a SpEL expression to use for keyExpression (String, no default)
	key
	name for the key (String, no default)
	queue
	name for the queue (String, no default)
	topic
	name for the topic (String, no default)

TCP Sink

The TCP Sink provides for outbound messaging over TCP; messages sent to the sink can have String or byte[] payloads.
TCP is a streaming protocol and some mechanism is needed to frame messages on the wire. A number of encoders are
available, the default being 'CRLF'.
Options

The tcp sink has the following options:
	charset
	the charset used when converting from String to bytes (String, default: UTF-8)
	close
	whether to close the socket after each message (boolean, default: false)
	encoder
	the encoder to use when sending messages (Encoding, default: CRLF, possible values: CRLF,LF,NULL,STXETX,RAW,L1,L2,L4)
	host
	the remote host to connect to (String, default: localhost)
	nio
	whether or not to use NIO (boolean, default: false)
	port
	the port on the remote host to connect to (int, default: 1234)
	reverseLookup
	perform a reverse DNS lookup on the remote IP Address (boolean, default: false)
	socketTimeout
	the timeout (ms) before closing the socket when no data is received (int, default: 120000)
	useDirectBuffers
	whether or not to use direct buffers (boolean, default: false)

Available Encoders

Text Data
	CRLF (default)
	text terminated by carriage return (0x0d) followed by line feed (0x0a)
	LF
	text terminated by line feed (0x0a)
	NULL
	text terminated by a null byte (0x00)
	STXETX
	text preceded by an STX (0x02) and terminated by an ETX (0x03)

Text and Binary Data
	RAW
	no structure - the client indicates a complete message by closing the socket
	L1
	data preceded by a one byte (unsigned) length field (supports up to 255 bytes)
	L2
	data preceded by a two byte (unsigned) length field (up to 216-1 bytes)
	L4
	data preceded by a four byte (signed) length field (up to 231-1 bytes)

Part IV. Appendices

Appendix A. Building

To build the source you will need to install JDK 1.7.
The build uses the Maven wrapper so you don’t have to install a specific
version of Maven. To enable the tests for Redis you should run the server
before bulding. See below for more information on how run Redis.
The main build command is
$./mvnw clean install
You can also add '-DskipTests' if you like, to avoid running the tests.
Note
You can also install Maven (>=3.3.3) yourself and run the mvn command
in place of ./mvnw in the examples below. If you do that you also
might need to add -P spring if your local Maven settings do not
contain repository declarations for spring pre-release artifacts.

Note
Be aware that you might need to increase the amount of memory
available to Maven by setting a MAVEN_OPTS environment variable with
a value like -Xmx512m -XX:MaxPermSize=128m. We try to cover this in
the .mvn configuration, so if you find you have to do it to make a
build succeed, please raise a ticket to get the settings added to
source control.

The projects that require middleware generally include a
docker-compose.yml, so consider using
Docker Compose to run the middeware servers
in Docker containers. See the README in the
scripts demo
repository for specific instructions about the common cases of mongo,
rabbit and redis.
Documentation

There is a "full" profile that will generate documentation. You can build just the documentation by executing
$./mvnw clean package -DskipTests -P full -pl {project-doc-module} -am
Working with the code

If you don’t have an IDE preference we would recommend that you use
Spring Tools Suite or
Eclipse when working with the code. We use the
m2eclipe eclipse plugin for maven support. Other IDEs and tools
should also work without issue.
Importing into eclipse with m2eclipse

We recommend the m2eclipe eclipse plugin when working with
eclipse. If you don’t already have m2eclipse installed it is available from the "eclipse
marketplace".
Unfortunately m2e does not yet support Maven 3.3, so once the projects
are imported into Eclipse you will also need to tell m2eclipse to use
the .settings.xml file for the projects. If you do not do this you
may see many different errors related to the POMs in the
projects. Open your Eclipse preferences, expand the Maven
preferences, and select User Settings. In the User Settings field
click Browse and navigate to the Spring Cloud project you imported
selecting the .settings.xml file in that project. Click Apply and
then OK to save the preference changes.
Note
Alternatively you can copy the repository settings from .settings.xml into your own ~/.m2/settings.xml.

Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the
following command:
$./mvnw eclipse:eclipse
The generated eclipse projects can be imported by selecting import existing projects
from the file menu.
Appendix B. Contributing

Spring Cloud is released under the non-restrictive Apache 2.0 license,
and follows a very standard Github development process, using Github
tracker for issues and merging pull requests into master. If you want
to contribute even something trivial please do not hesitate, but
follow the guidelines below.
Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the
contributor’s agreement.
Signing the contributor’s agreement does not grant anyone commit rights to the main
repository, but it does mean that we can accept your contributions, and you will get an
author credit if we do. Active contributors might be asked to join the core team, and
given the ability to merge pull requests.
Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help. They can also be
added after the original pull request but before a merge.
	Use the Spring Framework code format conventions. If you use Eclipse
you can import formatter settings using the
eclipse-code-formatter.xml file from the
Spring
Cloud Build project. If using IntelliJ, you can use the
Eclipse Code Formatter
Plugin to import the same file.
	Make sure all new .java files to have a simple Javadoc class comment with at least an
@author tag identifying you, and preferably at least a paragraph on what the class is
for.
	Add the ASF license header comment to all new .java files (copy from existing files
in the project)
	Add yourself as an @author to the .java files that you modify substantially (more
than cosmetic changes).
	Add some Javadocs and, if you change the namespace, some XSD doc elements.
	A few unit tests would help a lot as well — someone has to do it.
	If no-one else is using your branch, please rebase it against the current master (or
other target branch in the main project).
	When writing a commit message please follow these conventions,
if you are fixing an existing issue please add Fixes gh-XXXX at the end of the commit
message (where XXXX is the issue number).

