
Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3

Sabby Anandan, Eric Bottard, Mark Fisher, Ilayaperumal Gopinathan,
Gunnar Hillert, Mark Pollack, Thomas Risberg, Marius Bogoevici, Josh Long

Copyright © 2013-2016 Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry iii

Table of Contents

I. Spring Cloud Data Flow for Cloud Foundry ... 1
1. Spring Cloud Data Flow .. 2
2. Spring Cloud Stream ... 3
3. Spring Cloud Task .. 4
4. Deploying on Cloud Foundry ... 5

4.1. Provision a Redis service instance on Cloud Foundry. ... 5
4.2. Provision a Rabbit service instance on Cloud Foundry. .. 5
4.3. Download the Spring Cloud Data Flow Server and Shell apps: 5
4.4. Deploying the Server app on Cloud Foundry ... 5
4.5. Running the Server app locally ... 6
4.6. Running Spring Cloud Data Flow Shell locally ... 7

5. Security .. 8
6. Configuration Reference .. 9

II. Streams .. 10
7. Introduction ... 11
8. Stream DSL .. 12
9. Register a Stream App .. 13

9.1. Whitelisting application properties ... 14
10. Creating a Stream ... 15
11. Destroying a Stream ... 16
12. Deploying and Undeploying Streams .. 17
13. Other Source and Sink Application Types .. 18
14. Simple Stream Processing ... 19
15. Stateful Stream Processing .. 20
16. Tap a Stream ... 21
17. Using Labels in a Stream .. 22
18. Explicit Broker Destinations in a Stream ... 23
19. Directed Graphs in a Stream ... 24

19.1. Common application properties ... 24
III. Dashboard ... 25

20. Introduction ... 26
21. Apps ... 27
22. Runtime .. 28
23. Streams .. 29
24. Create Stream .. 30
25. Tasks ... 31

25.1. Apps .. 31
Create a Task Definition from a selected Task App ... 31
View Task App Details .. 32

25.2. Definitions .. 32
Launching Tasks ... 32

25.3. Executions ... 32
26. Jobs ... 33

26.1. List job executions .. 33
Job execution details ... 34
Step execution details ... 34
Step Execution Progress ... 34

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry iv

27. Analytics ... 36
IV. Appendices .. 37

28. Building ... 38
28.1. Basic Compile and Test .. 38
28.2. Documentation ... 38
28.3. Working with the code .. 38

Importing into eclipse with m2eclipse ... 38
Importing into eclipse without m2eclipse ... 39

Part I. Spring Cloud Data
Flow for Cloud Foundry

This project provides support for deploying Spring Cloud Stream and Spring Cloud Task applications
to Cloud Foundry.

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry 2

1. Spring Cloud Data Flow

Spring Cloud Data Flow is a cloud-native programming and operating model for composable data
microservices on a structured platform. With Spring Cloud Data Flow, developers can create and
orchestrate data pipelines for common use cases such as data ingest, real-time analytics, and data
import/export.

The Spring Cloud Data Flow architecture consists of a server that deploys Streams and Tasks. Streams
are defined using a DSL or visually through the browser based designer UI. Streams are based on the
Spring Cloud Stream programming model while Tasks are based on the Spring Cloud Task programming
model. The sections below describe more information about creating your own custom Streams and
Tasks

For more details about the core architecture components and the supported features, please review
Spring Cloud Data Flow’s core reference guide. There’re several samples available for reference.

http://docs.spring.io/spring-cloud-dataflow/docs/current-SNAPSHOT/reference/htmlsingle/#streams
http://docs.spring.io/spring-cloud-dataflow/docs/current-SNAPSHOT/reference/htmlsingle/#spring-cloud-task-overview
http://docs.spring.io/spring-cloud-dataflow/docs/current-SNAPSHOT/reference/html/_dsl_syntax.html
http://cloud.spring.io/spring-cloud-stream/
http://cloud.spring.io/spring-cloud-task/
http://docs.spring.io/spring-cloud-dataflow/docs/current-SNAPSHOT/reference/htmlsingle/
https://github.com/spring-cloud/spring-cloud-dataflow-samples

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry 3

2. Spring Cloud Stream

Spring Cloud Stream is a framework for building message-driven microservice applications. Spring
Cloud Stream builds upon Spring Boot to create standalone, production-grade Spring applications, and
uses Spring Integration to provide connectivity to message brokers. It provides opinionated configuration
of middleware from several vendors, introducing the concepts of persistent publish-subscribe semantics,
consumer groups, and partitions.

For more details about the core framework components and the supported features, please review
Spring Cloud Stream’s reference guide.

There’s a rich ecosystem of Spring Cloud Stream Application-Starters that can be used either as
standalone data microservice applications or in Spring Cloud Data Flow. For convenience, we have
generated RabbitMQ and Apache Kafka variants of these application-starters that are available for use
from Maven Repo and Docker Hub as maven artifacts and docker images, respectively.

Do you have a requirement to develop custom applications? No problem. Refer to this guide to create
custom stream applications. There’re several samples available for reference.

http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/
http://docs.spring.io/spring-cloud-stream-app-starters/docs/current-SNAPSHOT/reference/htmlsingle
http://repo.spring.io/libs-snapshot/org/springframework/cloud/stream/app/
https://hub.docker.com/r/springcloudstream/
http://docs.spring.io/spring-cloud-stream-app-starters/docs/current-SNAPSHOT/reference/htmlsingle/#_creating_custom_artifacts
https://github.com/spring-cloud/spring-cloud-stream-samples

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry 4

3. Spring Cloud Task

Note

This feature is actively being developed and it is yet to be supported in Spring Cloud Data Flow’s
Cloud Foundry server.

Spring Cloud Task makes it easy to create short-lived microservices. We provide capabilities that allow
short-lived JVM processes to be executed on demand in a production environment.

For more details about the core framework components and the supported features, please review
Spring Cloud Task’s reference guide.

There’s a rich ecosystem of Spring Cloud Task Application-Starters that can be used either as
standalone data microservice applications or in Spring Cloud Data Flow. For convenience, the generated
application-starters are available for use from Maven Repo. There are several samples available for
reference.

http://docs.spring.io/spring-cloud-task/current-SNAPSHOT/reference/htmlsingle/
http://docs.spring.io/spring-cloud-task-app-starters/docs/current-SNAPSHOT/reference/htmlsingle
http://repo.spring.io/libs-snapshot/org/springframework/cloud/task/app/
https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry 5

4. Deploying on Cloud Foundry

Spring Cloud Data Flow can be used to deploy modules in a Cloud Foundry environment. When doing
so, the server application can either run itself on Cloud Foundry, or on another installation (e.g. a simple
laptop).

The required configuration amounts to the same in either case, and is merely related to providing
credentials to the Cloud Foundry instance so that the server can spawn applications itself. Any
Spring Boot compatible configuration mechanism can be used (passing program arguments, editing
configuration files before building the application, using Spring Cloud Config, using environment
variables, etc.), although some may prove more practicable than others when running on Cloud Foundry.

Note

By default, the application registry in Spring Cloud Data Flow’s Cloud Foundry server is empty.
It is intentionally designed to allow users to have the flexibility of choosing and registering
applications, as they find appropriate for the given use-case requirement. Depending on the
message-binder of choice, users can register between RabbitMQ or Apache Kafka based
maven artifacts.

4.1 Provision a Redis service instance on Cloud Foundry.

Use cf marketplace to discover which plans are available to you, depending on the details of your
Cloud Foundry setup. For example when using Pivotal Web Services:

cf create-service rediscloud 30mb redis

4.2 Provision a Rabbit service instance on Cloud Foundry.

Use cf marketplace to discover which plans are available to you, depending on the details of your
Cloud Foundry setup. For example when using Pivotal Web Services:

cf create-service cloudamqp lemur rabbit

4.3 Download the Spring Cloud Data Flow Server and Shell
apps:

wget http://repo.spring.io/milestone/org/springframework/cloud/spring-cloud-dataflow-server-

cloudfoundry/1.0.0.M3/spring-cloud-dataflow-server-cloudfoundry-1.0.0.M3.jar

wget http://repo.spring.io/milestone/org/springframework/cloud/spring-cloud-dataflow-shell/1.0.0.RC1/

spring-cloud-dataflow-shell-1.0.0.RC1.jar

You can either deploy the server application on Cloud Foundry itself or on your local machine. The
following two sections explain each way of running the server.

4.4 Deploying the Server app on Cloud Foundry

Push the server application on Cloud Foundry, configure it (see below) and start it.

Note

You must use a unique name for your app; an app with the same name in the same organization
will cause your deployment to fail

https://github.com/spring-cloud/spring-cloud-config
https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-registry
http://docs.spring.io/spring-cloud-dataflow/docs/current-SNAPSHOT/reference/html/_dsl_syntax.html#_register_a_stream_app
http://repo.spring.io/libs-snapshot/org/springframework/cloud/stream/app/
https://run.pivotal.io/
https://run.pivotal.io/

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry 6

cf push dataflow-server --no-start -p spring-cloud-dataflow-server-cloudfoundry-1.0.0.M3.jar

cf bind-service dataflow-server redis

cf bind-service dataflow-server rabbit

Note

If you are pushing to a space with multiple users, for example on PWS, there may already be
a route taken for the applicaiton name you have chosen. You can use the options --random-
route to avoid this when pushing the app.

Now we can configure the app. The following configuration is for Pivotal Web Services. You need to fill
in {org}, {space}, {email} and {password} before running these commands.

Note

Only set 'Skip SSL Validation' to true if you’re running on a Cloud Foundry instance using self-
signed certs (e.g. in development). Do not use for production.

cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_URL https://api.run.pivotal.io

cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_ORG {org}

cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_SPACE {space}

cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_DOMAIN cfapps.io

cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_SERVICES redis,rabbit

cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_USERNAME {email}

cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_PASSWORD {password}

cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_SKIP_SSL_VALIDATION false

You can also set other optional properties for deployment to Cloud Foundry.

You can set the buildpack that will be used to deploy the application. For example, to use the Java
offline buildback, set the following environment variable

cf set-env dataflow-server SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_BUILDPACK java_buildpack_offline

The default memory and disk sizes for a deployed application can also
be configured. By default they are 1024 MB memory and 1024 MB disk.
Thse are controlled by setting an integer value, representing the number of
MB, to the following properties, SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_MEMORY
and SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_DISK. The default number of
instances to deploy is set to 1, but can be overridden using with
the SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_INSTANCES property. All these
properties are @ConfigurationProperties of the Cloud Foundry deployer. See
CloudFoundryDeployerProperties.java for more information.

We are now ready to start the app.

cf start dataflow-server

Alternatively, you can run the Admin application locally on your machine which is described in the next
section.

4.5 Running the Server app locally

To run the server application locally, targeting your Cloud Foundry installation, you you need to configure
the application either by passing in command line arguments (see below) or setting a number of
environment variables.

https://github.com/spring-cloud/spring-cloud-deployer-cloudfoundry/blob/master/src/main/java/org/springframework/cloud/deployer/spi/cloudfoundry/CloudFoundryDeployerProperties.java

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry 7

To use environment variables set the following:

export SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_URL=https://api.run.pivotal.io

export SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_ORG={org}

export SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_SPACE={space}

export SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_DOMAIN=cfapps.io

export SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_SERVICES=redis,rabbit

export SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_USERNAME={email}

export SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_PASSWORD={password}

export SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_SKIP_SSL_VALIDATION=false

You need to fill in {org}, {space}, {email} and {password} before running these commands.

Note

Only set 'Skip SSL Validation' to true if you’re running on a Cloud Foundry instance using self-
signed certs (e.g. in development). Do not use for production.

Now we are ready to start the server application:

java -jar spring-cloud-dataflow-server-cloudfoundry-1.0.0.M3.jar [--option1=value1] [--option2=value2]

 [etc.]

4.6 Running Spring Cloud Data Flow Shell locally

Run the shell and optionally target the Admin application if not running on the same host (will typically
be the case if deployed on Cloud Foundry as explained here)

$ java -jar spring-cloud-dataflow-shell-1.0.0.RC1.jar

server-unknown:>dataflow config server http://dataflow-server.cfapps.io

Successfully targeted http://dataflow-server.cfapps.io

dataflow:>

By default, the application registry will be empty. If you would like to register all out-of-the-box stream
applications built with the RabbitMQ binder in bulk, you can with the following command. For more
details, review how to register applications.

dataflow:>app import --uri http://bit.ly/stream-applications-rabbit-maven

http://docs.spring.io/spring-cloud-dataflow/docs/current-SNAPSHOT/reference/html/spring-cloud-dataflow-register-apps.html

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry 8

5. Security

By default, the Data Flow server is unsecured and runs on an unencrypted HTTP connection. You can
secure your REST endpoints, as well as the Data Flow Dashboard by enabling HTTPS and requiring
clients to authenticate. More details about securing the REST endpoints and configuring to authenticate
against an OAUTH backend (i.e: UAA/SSO running on Cloud Foundry), please review the security
section from the core reference guide. The security configurations can be configured in dataflow-
server.yml or passed as environment variables through cf set-env commands.

http://docs.spring.io/spring-cloud-dataflow/docs/current-SNAPSHOT/reference/html/getting-started-security.html

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry 9

6. Configuration Reference

The following pieces of configuration must be provided. These are Spring Boot
@ConfigurationProperties so you can set them as environment variables or by any other means that
Spring Boot supports. Here is a listing in environment variable format as that is an easy way to get
started configuring Boot applications in Cloud Foundry.

Default values cited after the equal sign.

Example values, typical for Pivotal Web Services, cited as a comment

url of the CF API (used when using cf login -a for example), e.g. https://api.run.pivotal.io

(for setting env var use SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_URL)

spring.cloud.deployer.cloudfoundry.url=

name of the organization that owns the space above, e.g. youruser-org

(For Setting Env var use SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_ORG)

spring.cloud.deployer.cloudfoundry.org=

name of the space into which modules will be deployed

(for setting env var use SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_SPACE)

spring.cloud.deployer.cloudfoundry.space=<same space as server when running on CF, or 'development'>

the root domain to use when mapping routes, e.g. cfapps.io

(for setting env var use SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_DOMAIN)

spring.cloud.deployer.cloudfoundry.domain=

Comma separated set of service instance names to bind to the module.

Amongst other things, this should include a service that will be used

for Spring Cloud Stream binding

(for setting env var use SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_SERVICES)

spring.cloud.deployer.cloudfoundry.services=redis,rabbit

username and password of the user to use to create apps (modules)

(for setting env var use SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_USERNAME and

 SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_PASSWORD)

spring.cloud.deployer.cloudfoundry.username=

spring.cloud.deployer.cloudfoundry.password=

Whether to allow self-signed certificates during SSL validation

(for setting env var use SPRING_CLOUD_DEPLOYER_CLOUDFOUNDRY_SKIP_SSL_VALIDATION)

spring.cloud.deployer.cloudfoundry.skipSslValidation=false

Note that you can set the following properties
spring.cloud.deployer.cloudfoundry.services,
spring.cloud.deployer.cloudfoundry.memory, and
spring.cloud.deployer.cloudfoundry.disk as part of an individual deployment request.

Part II. Streams
In this section you will learn all about Streams and how to use them with Spring Cloud Data Flow.

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry 11

7. Introduction

In Spring Cloud Data Flow, a basic stream defines the ingestion of event driven data from a source to
a sink that passes through any number of processors. Streams are composed of spring-cloud-stream
applications and the deployment of stream definitions is done via the Data Flow Server (REST API).
The Getting Started section shows you how to start these servers and how to start and use the Spring
Cloud Data Flow shell.

A high level DSL is used to create stream definitions. The DSL to define a stream that has an http source
and a file sink (with no processors) is shown below

http | file

The DSL mimics a UNIX pipes and filters syntax. Default values for ports and filenames are used in this
example but can be overridden using -- options, such as

http --server.port=8091 | file --directory=/tmp/httpdata/

To create these stream definitions you use the shell or make an HTTP POST request to the Spring
Cloud Data Flow Server. More details can be found in the sections below.

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry 12

8. Stream DSL

In the examples above, we connected a source to a sink using the pipe symbol |. You can also pass
properties to the source and sink configurations. The property names will depend on the individual app
implementations, but as an example, the http source app exposes a server.port setting which
allows you to change the data ingestion port from the default value. To create the stream using port
8000, we would use

dataflow:> stream create --definition "http --server.port=8000 | log" --name myhttpstream

The shell provides tab completion for application properties and also the shell command app info
provides some additional documentation.

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry 13

9. Register a Stream App

Register a Stream App with the App Registry using the Spring Cloud Data Flow Shell app register
command. You must provide a unique name, application type, and a URI that can be resolved to the
app artifact. For the type, specify "source", "processor", or "sink". Here are a few examples:

dataflow:>app register --name mysource --type source --uri maven://com.example:mysource:0.0.1-SNAPSHOT

dataflow:>app register --name myprocessor --type processor --uri file:///Users/example/

myprocessor-1.2.3.jar

dataflow:>app register --name mysink --type sink --uri http://example.com/mysink-2.0.1.jar

When providing a URI with the maven scheme, the format should conform to the following:

maven://<groupId>:<artifactId>[:<extension>[:<classifier>]]:<version>

For example, if you would like to register the snapshot versions of the http and log applications built
with the RabbitMQ binder, you could do the following:

dataflow:>app register --name http --type source --uri maven://

org.springframework.cloud.stream.app:http-source-rabbit:1.0.0.BUILD-SNAPSHOT

dataflow:>app register --name log --type sink --uri maven://org.springframework.cloud.stream.app:http-

log-rabbit:1.0.0.BUILD-SNAPSHOT

If you would like to register multiple apps at one time, you can store them in a properties file where the
keys are formatted as <type>.<name> and the values are the URIs.

For example, if you would like to register the snapshot versions of the http and log applications built
with the RabbitMQ binder, you could have the following in a properties file [eg: stream-apps.properties]:

source.http=maven://org.springframework.cloud.stream.app:http-source-rabbit:1.0.0.BUILD-SNAPSHOT

sink.log=maven://org.springframework.cloud.stream.app:log-sink-rabbit:1.0.0.BUILD-SNAPSHOT

Then to import the apps in bulk, use the app import command and provide the location of the
properties file via --uri:

dataflow:>app import --uri file:///<YOUR_FILE_LOCATION>/stream-apps.properties

For convenience, we have the static files with application-URIs (for both maven and docker) available
for all the out-of-the-box Stream and Task app-starters. You can point to this file and import all
the application-URIs in bulk. Otherwise, as explained in previous paragraphs, you can register them
individually or have your own custom property file with only the required application-URIs in it. It is
recommended, however, to have a "focused" list of desired application-URIs in a custom property file.

List of available static property files:

• Maven based Stream Applications with RabbitMQ Binder: bit.ly/stream-applications-rabbit-maven

• Maven based Stream Applications with Kafka Binder: bit.ly/stream-applications-kafka-maven

• Maven based Task Applications: bit.ly/task-applications-maven

• Docker based Stream Applications with RabbitMQ Binder: bit.ly/stream-applications-rabbit-docker

• Docker based Stream Applications with Kafka Binder: bit.ly/stream-applications-kafka-docker

• Docker based Task Applications: bit.ly/task-applications-docker

http://bit.ly/stream-applications-rabbit-maven
http://bit.ly/stream-applications-kafka-maven
http://bit.ly/task-applications-maven
http://bit.ly/stream-applications-rabbit-docker
http://bit.ly/stream-applications-kafka-docker
http://bit.ly/task-applications-docker

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry 14

For example, if you would like to register all out-of-the-box stream applications built with the RabbitMQ
binder in bulk, you can with the following command.

dataflow:>app import --uri http://bit.ly/stream-applications-rabbit-maven

You can also pass the --local option (which is TRUE by default) to indicate whether the properties
file location should be resolved within the shell process itself. If the location should be resolved from the
Data Flow Server process, specify --local false.

When using either app register or app import, if a stream app is already registered with the
provided name and type, it will not be overridden by default. If you would like to override the pre-existing
stream app, then include the --force option.

Note

In some cases the Resource is resolved on the server side, whereas in others the URI will be
passed to a runtime container instance where it is resolved. Consult the specific documentation
of each Data Flow Server for more detail.

9.1 Whitelisting application properties

Stream applications are Spring Boot applications which are aware of many common application
properties, e.g. server.port but also families of properties such as those with the prefix spring.jmx
and logging. When creating your own application it is desirable to whitelist properties so that the shell
and the UI can display them first as primary properties when presenting options via TAB completion
or in drop-down boxes.

To whitelist application properties create a file named spring-configuration-metadata-
whitelist.properties in the META-INF resource directory. There are two property keys that can
be used inside this file. The first key is named configuration-properties.classes. The value
is a comma separated list of fully qualified @ConfigurationProperty class names. The second key
is configuration-properties.names whose value is a comma separated list of property names.
This can contain the full name of property, such as server.port or a partial name to whitelist a
category of property names, e.g. spring.jmx.

The Spring Cloud Stream application starters are a good place to look for examples of usage. Here is a
simple example of the file source’s spring-configuration-metadata-whitelist.properties
file

configuration.classes=org.springframework.cloud.stream.app.file.sink.FileSinkProperties

If for some reason we also wanted to add file.prefix to this file, it would look like

configuration.classes=org.springframework.cloud.stream.app.file.sink.FileSinkProperties

configuration-properties.names=server.port

http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#common-application-properties
http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#common-application-properties
https://github.com/spring-cloud/spring-cloud-stream-app-starters

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry 15

10. Creating a Stream

The Spring Cloud Data Flow Server exposes a full RESTful API for managing the lifecycle of stream
definitions, but the easiest way to use is it is via the Spring Cloud Data Flow shell. Start the shell as
described in the Getting Started section.

New streams are created by posting stream definitions. The definitions are built from a simple DSL. For
example, let’s walk through what happens if we execute the following shell command:

dataflow:> stream create --definition "time | log" --name ticktock

This defines a stream named ticktock based off the DSL expression time | log. The DSL uses
the "pipe" symbol |, to connect a source to a sink.

Then to deploy the stream execute the following shell command (or alternatively add the --deploy
flag when creating the stream so that this step is not needed):

dataflow:> stream deploy --name ticktock

The Data Flow Server resolves time and log to maven coordinates and uses those to launch the time
and log applications of the stream.

2016-06-01 09:41:21.728 INFO 79016 --- [nio-9393-exec-6] o.s.c.d.spi.local.LocalAppDeployer :

 deploying app ticktock.log instance 0

 Logs will be in /var/folders/wn/8jxm_tbd1vj28c8vj37n900m0000gn/T/spring-cloud-

dataflow-912434582726479179/ticktock-1464788481708/ticktock.log

2016-06-01 09:41:21.914 INFO 79016 --- [nio-9393-exec-6] o.s.c.d.spi.local.LocalAppDeployer :

 deploying app ticktock.time instance 0

 Logs will be in /var/folders/wn/8jxm_tbd1vj28c8vj37n900m0000gn/T/spring-cloud-

dataflow-912434582726479179/ticktock-1464788481910/ticktock.time

In this example, the time source simply sends the current time as a message each second, and the log
sink outputs it using the logging framework. You can tail the stdout log (which has an "_<instance>"
suffix). The log files are located within the directory displayed in the Data Flow Server’s log output, as
shown above.

$ tail -f /var/folders/wn/8jxm_tbd1vj28c8vj37n900m0000gn/T/spring-cloud-dataflow-912434582726479179/

ticktock-1464788481708/ticktock.log/stdout_0.log

2016-06-01 09:45:11.250 INFO 79194 --- [kafka-binder-] log.sink : 06/01/16 09:45:11

2016-06-01 09:45:12.250 INFO 79194 --- [kafka-binder-] log.sink : 06/01/16 09:45:12

2016-06-01 09:45:13.251 INFO 79194 --- [kafka-binder-] log.sink : 06/01/16 09:45:13

If you would like to have multiple instances of an application in the stream, you can include a property
with the deploy command:

dataflow:> stream deploy --name ticktock --properties "app.time.count=3"

Important

See Chapter 17, Using Labels in a Stream.

Getting-Started.xml#getting-started

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry 16

11. Destroying a Stream

You can delete a stream by issuing the stream destroy command from the shell:

dataflow:> stream destroy --name ticktock

If the stream was deployed, it will be undeployed before the stream definition is deleted.

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry 17

12. Deploying and Undeploying Streams

Often you will want to stop a stream, but retain the name and definition for future use. In that case you
can undeploy the stream by name and issue the deploy command at a later time to restart it.

dataflow:> stream undeploy --name ticktock

dataflow:> stream deploy --name ticktock

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry 18

13. Other Source and Sink Application Types

Let’s try something a bit more complicated and swap out the time source for something else. Another
supported source type is http, which accepts data for ingestion over HTTP POSTs. Note that the http
source accepts data on a different port from the Data Flow Server (default 8080). By default the port
is randomly assigned.

To create a stream using an http source, but still using the same log sink, we would change the
original command above to

dataflow:> stream create --definition "http | log" --name myhttpstream --deploy

which will produce the following output from the server

2016-06-01 09:47:58.920 INFO 79016 --- [io-9393-exec-10] o.s.c.d.spi.local.LocalAppDeployer :

 deploying app myhttpstream.log instance 0

 Logs will be in /var/folders/wn/8jxm_tbd1vj28c8vj37n900m0000gn/T/spring-cloud-

dataflow-912434582726479179/myhttpstream-1464788878747/myhttpstream.log

2016-06-01 09:48:06.396 INFO 79016 --- [io-9393-exec-10] o.s.c.d.spi.local.LocalAppDeployer :

 deploying app myhttpstream.http instance 0

 Logs will be in /var/folders/wn/8jxm_tbd1vj28c8vj37n900m0000gn/T/spring-cloud-

dataflow-912434582726479179/myhttpstream-1464788886383/myhttpstream.http

Note that we don’t see any other output this time until we actually post some data (using a shell
command). In order to see the randomly assigned port on which the http source is listening, execute:

dataflow:> runtime apps

You should see that the corresponding http source has a url property containing the host and port
information on which it is listening. You are now ready to post to that url, e.g.:

dataflow:> http post --target http://localhost:1234 --data "hello"

dataflow:> http post --target http://localhost:1234 --data "goodbye"

and the stream will then funnel the data from the http source to the output log implemented by the log sink

2016-06-01 09:50:22.121 INFO 79654 --- [kafka-binder-] log.sink : hello

2016-06-01 09:50:26.810 INFO 79654 --- [kafka-binder-] log.sink : goodbye

Of course, we could also change the sink implementation. You could pipe the output to a file (file), to
hadoop (hdfs) or to any of the other sink apps which are available. You can also define your own apps.

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry 19

14. Simple Stream Processing

As an example of a simple processing step, we can transform the payload of the HTTP posted data to
upper case using the stream definitions

http | transform --expression=payload.toUpperCase() | log

To create this stream enter the following command in the shell

dataflow:> stream create --definition "http | transform --expression=payload.toUpperCase() | log" --name

 mystream --deploy

Posting some data (using a shell command)

dataflow:> http post --target http://localhost:1234 --data "hello"

Will result in an uppercased 'HELLO' in the log

2016-06-01 09:54:37.749 INFO 80083 --- [kafka-binder-] log.sink : HELLO

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry 20

15. Stateful Stream Processing

To demonstrate the data partitioning functionality, let’s deploy the following stream with Kafka as the
binder.

dataflow:>stream create --name words --definition "http --server.port=9900 | splitter --

expression=payload.split(' ') | log"

Created new stream 'words'

dataflow:>stream deploy words --properties

 "app.splitter.producer.partitionKeyExpression=payload,app.log.count=2"

Deployed stream 'words'

dataflow:>http post --target http://localhost:9900 --data "How much wood would a woodchuck chuck if a

 woodchuck could chuck wood"

> POST (text/plain;Charset=UTF-8) http://localhost:9900 How much wood would a woodchuck chuck if a

 woodchuck could chuck wood

> 202 ACCEPTED

You’ll see the following in the server logs.

2016-06-05 18:33:24.982 INFO 58039 --- [nio-9393-exec-9] o.s.c.d.spi.local.LocalAppDeployer :

 deploying app words.log instance 0

 Logs will be in /var/folders/c3/ctx7_rns6x30tq7rb76wzqwr0000gp/T/spring-cloud-

dataflow-694182453710731989/words-1465176804970/words.log

2016-06-05 18:33:24.988 INFO 58039 --- [nio-9393-exec-9] o.s.c.d.spi.local.LocalAppDeployer :

 deploying app words.log instance 1

 Logs will be in /var/folders/c3/ctx7_rns6x30tq7rb76wzqwr0000gp/T/spring-cloud-

dataflow-694182453710731989/words-1465176804970/words.log

Review the words.log instance 0 logs:

2016-06-05 18:35:47.047 INFO 58638 --- [kafka-binder-] log.sink : How

2016-06-05 18:35:47.066 INFO 58638 --- [kafka-binder-] log.sink :

 chuck

2016-06-05 18:35:47.066 INFO 58638 --- [kafka-binder-] log.sink :

 chuck

Review the words.log instance 1 logs:

2016-06-05 18:35:47.047 INFO 58639 --- [kafka-binder-] log.sink :

 much

2016-06-05 18:35:47.066 INFO 58639 --- [kafka-binder-] log.sink :

 wood

2016-06-05 18:35:47.066 INFO 58639 --- [kafka-binder-] log.sink :

 would

2016-06-05 18:35:47.066 INFO 58639 --- [kafka-binder-] log.sink : a

2016-06-05 18:35:47.066 INFO 58639 --- [kafka-binder-] log.sink :

 woodchuck

2016-06-05 18:35:47.067 INFO 58639 --- [kafka-binder-] log.sink : if

2016-06-05 18:35:47.067 INFO 58639 --- [kafka-binder-] log.sink : a

2016-06-05 18:35:47.067 INFO 58639 --- [kafka-binder-] log.sink :

 woodchuck

2016-06-05 18:35:47.067 INFO 58639 --- [kafka-binder-] log.sink :

 could

2016-06-05 18:35:47.067 INFO 58639 --- [kafka-binder-] log.sink :

 wood

This shows that payload splits that contain the same word are routed to the same application instance.

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry 21

16. Tap a Stream

Taps can be created at various producer endpoints in a stream. For a stream like this:

stream create --definition "http | step1: transform --expression=payload.toUpperCase() | step2:

 transform --expression=payload+'!' | log" --name mainstream --deploy

taps can be created at the output of http, step1 and step2.

To create a stream that acts as a 'tap' on another stream requires to specify the source destination
name for the tap stream. The syntax for source destination name is:

`:<stream-name>.<label/app-name>`

To create a tap at the output of http in the stream above, the source destination name is
mainstream.http To create a tap at the output of the first transform app in the stream above, the
source destination name is mainstream.step1

The tap stream DSL looks like this:

stream create --definition ":mainstream.http > counter" --name tap_at_http --deploy

stream create --definition ":mainstream.step1 > jdbc" --name tap_at_step1_transformer --deploy

Note the colon (:) prefix before the destination names. The colon allows the parser to recognize this as
a destination name instead of an app name.

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry 22

17. Using Labels in a Stream

When a stream is comprised of multiple apps with the same name, they must be qualified with labels:

stream create --definition "http | firstLabel: transform --expression=payload.toUpperCase() |

 secondLabel: transform --expression=payload+'!' | log" --name myStreamWithLabels --deploy

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry 23

18. Explicit Broker Destinations in a Stream

One can connect to a specific destination name located in the broker (Rabbit, Kafka etc.,) either at the
source or at the sink position.

The following stream has the destination name at the source position:

stream create --definition ":myDestination > log" --name ingest_from_broker --deploy

This stream receives messages from the destination myDestination located at the broker and
connects it to the log app.

The following stream has the destination name at the sink position:

stream create --definition "http > :myDestination" --name ingest_to_broker --deploy

This stream sends the messages from the http app to the destination myDestination located at
the broker.

From the above streams, notice that the http and log apps are interacting with each other via the
broker (through the destination myDestination) rather than having a pipe directly between http and
log within a single stream.

It is also possible to connect two different destinations (source and sink positions) at the broker in
a stream.

stream create --definition ":destination1 > :destination2" --name bridge_destinations --deploy

In the above stream, both the destinations (destination1 and destination2) are located in the
broker. The messages flow from the source destination to the sink destination via a bridge app that
connects them.

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry 24

19. Directed Graphs in a Stream

If directed graphs are needed instead of the simple linear streams described above, two features are
relevant.

First, named destinations may be used as a way to combine the output from multiple streams or for
multiple consumers to share the output from a single stream. This can be done using the DSL syntax
http > :mydestination or :mydestination > log.

Second, you may need to determine the output channel of a stream based on some information that is
only known at runtime. In that case, a router may be used in the sink position of a stream definition. For
more information, refer to the Router Sink starter’s README.

19.1 Common application properties

In addition to configuration via DSL, Spring Cloud Data Flow provides a mechanism for setting common
properties to all the streaming applications that are launched by it. This can be done by adding properties
prefixed with spring.cloud.dataflow.applicationProperties.stream when starting the
server. When doing so, the server will pass all the properties, without the prefix, to the instances it
launches.

For example, all the launched applications can be configured to use a specific Kafka broker by launching
the configuration server with the following options:

--

spring.cloud.dataflow.applicationProperties.stream.spring.cloud.stream.kafka.binder.brokers=192.168.1.100:9092

--

spring.cloud.dataflow.applicationProperties.stream.spring.cloud.stream.kafka.binder.zkNodes=192.168.1.100:2181

This will cause the properties stream.spring.cloud.stream.kafka.binder.brokers and
spring.cloud.stream.kafka.binder.zkNodes to be passed to all the launched applications.

Note

Properties configured using this mechanism have lower precedence than stream deployment
properties. They will be overridden if a property with the same key is specified at stream
deployment time (e.g. app.http.spring.cloud.stream.kafka.binder.brokers will
override the common property).

https://github.com/spring-cloud/spring-cloud-stream-app-starters/tree/master/router/spring-cloud-starter-stream-sink-router

Part III. Dashboard
This section describe how to use the Dashboard of Spring Cloud Data Flow.

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry 26

20. Introduction

Spring Cloud Data Flow provides a browser-based GUI which currently has 6 sections:

• Apps Lists all available applications and provides the control to register/unregister them

• Runtime Provides the Data Flow cluster view with the list of all running applications

• Streams Deploy/undeploy Stream Definitions

• Tasks List, create, launch and destroy Task Definitions

• Jobs Perform Batch Job related functions

• Analytics Create data visualizations for the various analytics applications

Upon starting Spring Cloud Data Flow, the Dashboard is available at:

http://<host>:<port>/dashboard

For example: http://localhost:9393/dashboard

If you have enabled https, then it will be located at https://localhost:9393/dashboard. If you
have enabled security, a login form is available at http://localhost:9393/dashboard/#/login.

Note: The default Dashboard server port is 9393

Figure 20.1. The Spring Cloud Data Flow Dashboard

http://localhost:9393/dashboard

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry 27

21. Apps

The Apps section of the Dashboard lists all the available applications and provides the control to register/
unregister them (if applicable). By clicking on the magnifying glass, you will get a listing of available
definition properties.

Figure 21.1. List of Available Applications

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry 28

22. Runtime

The Runtime section of the Dashboard application shows the Spring Cloud Data Flow cluster view with
the list of all running applications. For each runtime app the state of the deployment and the number
of deployed instances is shown. A list of the used deployment properties is available by clicking on the
app id.

Figure 22.1. List of Running Applications

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry 29

23. Streams

The Streams section of the Dashboard provides the Definitions tab that provides a listing of Stream
definitions. There you have the option to deploy or undeploy those stream definitions. Additionally you
can remove the definition by clicking on destroy.

Figure 23.1. List of Stream Definitions

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry 30

24. Create Stream

The Create Stream section of the Dashboard includes the Spring Flo designer tab that provides the
canvas application, offering a interactive graphical interface for creating data pipelines.

In this tab, you can:

• Create, manage, and visualize stream pipelines using DSL, a graphical canvas, or both

• Write pipelines via DSL with content-assist and auto-complete

• Use auto-adjustment and grid-layout capabilities in the GUI for simpler and interactive organization
of pipelines

Watch this screencast that highlights some of the "Flo for Spring Cloud Data Flow" capabilities. Spring
Flo wiki includes more detailed content on core Flo capabilities.

Figure 24.1. Flo for Spring Cloud Data Flow

https://github.com/spring-projects/spring-flo
https://www.youtube.com/watch?v=78CgV46OstI
https://github.com/spring-projects/spring-flo/wiki

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry 31

25. Tasks

The Tasks section of the Dashboard currently has three tabs:

• Apps

• Definitions

• Executions

25.1 Apps

Apps encapsulate a unit of work into a reusable component. Within the Data Flow runtime environment
Apps allow users to create definitions for Streams as well as Tasks. Consequently, the Apps tab within
the Tasks section allows users to create Task definitions.

Note: You will also use this tab to create Batch Jobs.

Figure 25.1. List of Task Apps

On this screen you can perform the following actions:

• View details such as the task app options.

• Create a Task Definition from the respective App.

Create a Task Definition from a selected Task App

On this screen you can create a new Task Definition. As a minimum you must provide a name for
the new definition. You will also have the option to specify various properties that are used during the
deployment of the app.

Note: Each parameter is only included if the Include checkbox is selected.

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry 32

View Task App Details

On this page you can view the details of a selected task app, including the list of available options
(properties) for that app.

25.2 Definitions

This page lists the Data Flow Task definitions and provides actions to launch or destroy those tasks.

Figure 25.2. List of Task Definitions

Launching Tasks

Once the task definition is created, they can be launched through the Dashboard as well. Navigate to
the Definitions tab. Select the Task you want to launch by pressing Launch.

On the following screen, you can define one or more Task parameters by entering:

• Parameter Key

• Parameter Value

Task parameters are not typed.

25.3 Executions

Figure 25.3. List of Task Executions

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry 33

26. Jobs

The Jobs section of the Dashboard allows you to inspect Batch Jobs. The main section of the screen
provides a list of Job Executions. Batch Jobs are Tasks that were executing one or more Batch Job.
As such each Job Execution has a back reference to the Task Execution Id (Task Id).

In case of a failed job, you can also restart the task. When dealing with long-running Batch Jobs, you
can also request to stop it.

Figure 26.1. List of Job Executions

26.1 List job executions

This page lists the Batch Job Executions and provides the option to restart or stop a specific job
execution, provided the operation is available. Furthermore, you have the option to view the Job
execution details.

The list of Job Executions also shows the state of the underlying Job Definition. Thus, if the underlying
definition has been deleted, deleted will be shown.

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry 34

Job execution details

Figure 26.2. Job Execution Details

The Job Execution Details screen also contains a list of the executed steps. You can further drill into
the Step Execution Details by clicking onto the magnifying glass.

Step execution details

On the top of the page, you will see progress indicator the respective step, with the option to refresh the
indicator. Furthermore, a link is provided to view the step execution history.

The Step Execution details screen provides a complete list of all Step Execution Context key/value pairs.

Important

In case of exceptions, the Exit Description field will contain additional error information. Please
be aware, though, that this field can only have a maximum of 2500 characters. Therefore, in
case of long exception stacktraces, trimming of error messages may occur. In that case, please
refer to the server log files for further details.

Step Execution Progress

On this screen, you can see a progress bar indicator in regards to the execution of the current step.
Under the Step Execution History, you can also view various metrics associated with the selected
step such as duration, read counts, write counts etc.

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry 35

Figure 26.3. Step Execution History

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry 36

27. Analytics

The Analytics section of the Dashboard provided data visualization capabilities for the various analytics
applications available in Spring Cloud Data Flow:

• Counters

• Field-Value Counters

For example, if you have created the springtweets stream and the corresponding counter in the
Counter chapter, you can now easily create the corresponding graph from within the Dashboard tab:

1. Under Metric Type, select Counters from the select box

2. Under Stream, select tweetcount

3. Under Visualization, select the desired chart option, Bar Chart

Using the icons to the right, you can add additional charts to the Dashboard, re-arange the order of
created dashboards or remove data visualizations.

Part IV. Appendices

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry 38

28. Building

28.1 Basic Compile and Test

To build the source you will need to install JDK 1.8.

The build uses the Maven wrapper so you don’t have to install a specific version of Maven. To enable
the tests for Redis you should run the server before bulding. See below for more information on how
run Redis.

The main build command is

$./mvnw clean install

You can also add '-DskipTests' if you like, to avoid running the tests.

Note

You can also install Maven (>=3.3.3) yourself and run the mvn command in place of ./mvnw in
the examples below. If you do that you also might need to add -P spring if your local Maven
settings do not contain repository declarations for spring pre-release artifacts.

Note

Be aware that you might need to increase the amount of memory available to Maven by setting
a MAVEN_OPTS environment variable with a value like -Xmx512m -XX:MaxPermSize=128m.
We try to cover this in the .mvn configuration, so if you find you have to do it to make a build
succeed, please raise a ticket to get the settings added to source control.

The projects that require middleware generally include a docker-compose.yml, so consider using
Docker Compose to run the middeware servers in Docker containers. See the README in the scripts
demo repository for specific instructions about the common cases of mongo, rabbit and redis.

28.2 Documentation

There is a "full" profile that will generate documentation. You can build just the documentation by
executing

$./mvnw package -DskipTests=true -P full -pl spring-cloud-dataflow-server-cloudfoundry-docs -am

28.3 Working with the code

If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or Eclipse
when working with the code. We use the m2eclipe eclipse plugin for maven support. Other IDEs and
tools should also work without issue.

Importing into eclipse with m2eclipse

We recommend the m2eclipe eclipse plugin when working with eclipse. If you don’t already have
m2eclipse installed it is available from the "eclipse marketplace".

Unfortunately m2e does not yet support Maven 3.3, so once the projects are imported into Eclipse you
will also need to tell m2eclipse to use the .settings.xml file for the projects. If you do not do this

https://www.docker.com/products/docker-compose
https://github.com/spring-cloud-samples/scripts
https://github.com/spring-cloud-samples/scripts
http://www.springsource.com/developer/sts
http://eclipse.org
http://eclipse.org/m2e/
http://eclipse.org/m2e/

Spring Cloud Data Flow Server for Cloud Foundry

1.0.0.M3
Spring Cloud Data Flow

Server for Cloud Foundry 39

you may see many different errors related to the POMs in the projects. Open your Eclipse preferences,
expand the Maven preferences, and select User Settings. In the User Settings field click Browse and
navigate to the Spring Cloud project you imported selecting the .settings.xml file in that project.
Click Apply and then OK to save the preference changes.

Note

Alternatively you can copy the repository settings from .settings.xml into your own ~/.m2/
settings.xml.

Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following
command:

$./mvnw eclipse:eclipse

The generated eclipse projects can be imported by selecting import existing projects from the
file menu.

https://github.com/spring-cloud/spring-cloud-build/blob/master/.settings.xml

	Spring Cloud Data Flow Server for Cloud Foundry
	Table of Contents
	Part I. Spring Cloud Data Flow for Cloud Foundry
	1. Spring Cloud Data Flow
	2. Spring Cloud Stream
	3. Spring Cloud Task
	4. Deploying on Cloud Foundry
	4.1 Provision a Redis service instance on Cloud Foundry.
	4.2 Provision a Rabbit service instance on Cloud Foundry.
	4.3 Download the Spring Cloud Data Flow Server and Shell apps:
	4.4 Deploying the Server app on Cloud Foundry
	4.5 Running the Server app locally
	4.6 Running Spring Cloud Data Flow Shell locally

	5. Security
	6. Configuration Reference

	Part II. Streams
	7. Introduction
	8. Stream DSL
	9. Register a Stream App
	9.1 Whitelisting application properties

	10. Creating a Stream
	11. Destroying a Stream
	12. Deploying and Undeploying Streams
	13. Other Source and Sink Application Types
	14. Simple Stream Processing
	15. Stateful Stream Processing
	16. Tap a Stream
	17. Using Labels in a Stream
	18. Explicit Broker Destinations in a Stream
	19. Directed Graphs in a Stream
	19.1 Common application properties

	Part III. Dashboard
	20. Introduction
	21. Apps
	22. Runtime
	23. Streams
	24. Create Stream
	25. Tasks
	25.1 Apps
	Create a Task Definition from a selected Task App
	View Task App Details

	25.2 Definitions
	Launching Tasks

	25.3 Executions

	26. Jobs
	26.1 List job executions
	Job execution details
	Step execution details
	Step Execution Progress

	27. Analytics

	Part IV. Appendices
	28. Building
	28.1 Basic Compile and Test
	28.2 Documentation
	28.3 Working with the code
	Importing into eclipse with m2eclipse
	Importing into eclipse without m2eclipse

