Spring Cloud Data Flow Server for Cloud Foundry

1.1.1.RELEASE

Sabby Anandan, Eric Bottard, Mark Fisher, llayaperumal Gopinathan, Gunnar Hillert,
Mark Pollack, Thomas Risberg, Marius Bogoevici, Josh Long, Michael Minella

Copyright © 2013-2016 Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Cloud Data Flow Server for Cloud Foundry

Table of Contents

I. Spring Cloud Data Flow for Cloud FOUNAIYco.uiiiiiiiiii e 1
1. SPring Cloud Data FIOWc..uuiiiiiiiieiiii et ettt e e et e eeeaa e eeees 2
S o 1T @ 1o T IS == o P 3
3. SPriNG ClOUA TASK ...eneiiieii ettt et e e e e et e e e eannas 4

LY o 11 =T X 0P 5
v [0 11 o 0T 1T] o I PP SS 6
5. Microservice ArchiteCtural STYIE ... e 8

5.1. Comparison to other Platform architeCturesccooviviiiiiiiiiiineci e, 8
(SIS (=T T g To T aY o] o] [{o%= 11T 1S 10
6.1. Imperative Programming MOAElcouiiiiiiiiii e 10
6.2. Functional Programming Modelcoooiiiiiiiiiiii e 10
S =TT 101 PP 11
4% T o] o To] [To | 1= S PP 11
A ©7e] o[l U1 1] 0Ty PP UPT PP 11
4 T - Vg 111 11 o 11
7.4. Message Delivery GUAIANTEESiiiuuiiiii e e eai e 12
8. ANAIYLICS ..ttt ettt ettt e e et a b e e et e eeera e aee 14
9. TASK APPIICALIONS ...iieiiiiii e e 15
10. DA FIOW SEIVET ..ottt et ettt et e e e e e e e e naens 16
25t O =1 0T [o To T | ST PT O TOP PP PUTUPPPTRRPPIN 16
10.2. CUSIOMIZALION ...ciieiiiiii it e e e e e e e e e e ennreeas 16
L0.3. SECUIMLY et ettt ettt ettt e e et e et et e e et e et e et eean e e et e eaaaee 17
5 R 1 11T 18
11.1. FAUIt TOIBIANCE ..cooviiiie et e e 18
11.2. ReSoUrce ManagemMENTc.uiuuiei ittt e e et e et et e e et e e e eaeenaens 18
11.3. Scaling At FUNLIMEiiii e et e et e et e eeenae e eenes 18
Y o o] o= 1T Y =T 7T 11T [18

1T Tt i 1] To] £= 4 (=T TP 19

12. Deploying 0N Cloud FOUNTIYo.uuiiiiiii e e e 20
12.1. Provision a Redis service instance on Cloud Foundrycccoveviviiiiiiiiiniennnnns 20
12.2. Provision a Rabbit service instance on Cloud Foundryc.cooooiiiiiiiiiiineinenn. 20
12.3. Provision a MySQL service instance on Cloud Foundrycccoooeveiiiiiiiiiiinenen. 20
12.4. Download the Spring Cloud Data Flow Server and Shell appscccoccevvvvvnenennn. 21
12.5. RUNNING thE SEIVE ..ottt e e e e e e e 21

Deploying and Running the Server app on Cloud Foundrycccooeviiivviiineennnnns 21
Configuring Defaults for Deployed APPScvvvrieeeieiiiieeie e eaens 22

Running the Server app [0CallYcooouiiiii e 23
Sample Manifest TEMPIALEiiiiiii e 24
12.6. Running Spring Cloud Data Flow Shell locallycccoovviiiiiiiiii e, 24

RS R Y=Y ol U | 1Y PSPPSR 26
13.1. Authentication and Cloud FOUNAIYco.uiiiiiiiiiiiiii e e 26

14. Application Names and PrefiXeSvieuiiiiiiii e e e 27
14.1. USING CUSIOM ROULESuiitiiiii ittt ettt e e e e e et eeaa s 27

15. Configuration REFEIENCE it e e 28
15.1. Understanding What's goiNg ONccouuiiiiiiiiii e e e e e e e e eaneees 29
15.2. Using Spring Cloud Config SEIVETcc.uiiiiiiiiiiiii et 29

Spring Cloud Data Flow and Spring Cloud Config Servercccooevviviinneeiennnnn. 29

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry iii

Spring Cloud Data Flow Server for Cloud Foundry

Stream, Task, and Spring Cloud Config SErvercccooovviiiiiieiiiiic e 30

Sample Manifest TEMPIALEuiiiii e e 31
Self-signed SSL Certificate and Spring Cloud Config Serverccooovievevieeennnn. 31

16. Application Level Service BiNAiNGSoioiieiiiiiiiiieiei e 33
17. A Note About User Provided SEIVICESiciuuiiiiiiiiiiiieii et e e e e e e e e e e e eanneees 34
18. Application ROIING UPGradesoeiiiiiiiiiiiiieeie e e e e e e e et e e e e naae s 35
19. Maximum Disk Quota CONfIQUIALIONcoouueiiiiiiiiie e 38
19.1. PCF's Operations Manager Configurationoceeuuivieiiinneieiinneeeine e 38
19.2. Scale APPIICALION ..o 38
19.3. Configuring target free diSk percentageccooveeiiuiiiieiiiiinieii e 38

V. Server CONfIQUIALIONiiiiii ettt e et e e et e e e et e e e e et s 40
b T =Y L0] (=T o T o |1 41
21. Database CONfIQUIALIONiiiiiitieeiii et e et e ettt e et e e e et eeeeraaeeees 42
S T o 1Y PSPPI 43
22.1. ENAbliNg HTTPS ittt e e e e et e e e et e eeeate e eaees 43
Using Self-Signed CertifiCatescouuuiiiiiiiiii e 43
Self-Signed Certificates and the Shell ..o 44

22.2. BaSiC AULNENLICALIONiiiiiii et e e 45

File based authentiCationooiiiiiiiii e 45

[N 011 1= o = i) o 46

LDAP TranSPOrt SECUIILYccuueiiiieiiiieeiiiee e eei e e e e e e e e s ieeeae e st e eeaeeaanees 47

22.3. OAULN 2.0 Louiiiii e 48
Authentication using the Spring Cloud Data Flow Shellccooviiiiiiiiiiinennn. 49

OAuth2 Authentication EXamMPIESccvvniiiiiiiiii e e e 49

LocCal QAULNZ SEIVEL ...ceeii e e 49

Authentication using GItHUD ..., 49

22.4. Securing the Spring Boot Management Endpointsc.cccovvviiiiiiiineiiiieiineeiees 50

23. Monitoring and ManageMENTiiiiiiiieiiii et 52
23.1. SPring BOOt AGIMIN ..couuiiiiii et e e e e 52
23.2. Monitoring Deployed APPlICAtIONScccuiiiiiiieiiiici e e 53
V21 (=710 £ S PP 55
22 1o o To 11 o3 1T o I 56
25, SIEAIM DS ..o e 57
26. REQISTEr @ SIIEAM AP ittt ettt ettt e ettt e ettt e et et e e et et e e e eebe e e e eeba e aeen 58
26.1. Whitelisting application Propertiesuvv it 60

27. Creating custom appliCAtIONSciiiiiiiiii e e e e e e e 61
28. Creating @ SIMEAMiiiiii ettt ettt e et e et e e e et e e ena s 62
2SI AN o] o] o= 140) g I o] (o] 1] =2 TP UPPRT 62
Passing application properties when creating a streamccooeeiiveviineennenn. 62

28.2. DEPIOYMENE PrOPEITIES ...eiiiiieeiiiii ettt ettt 64
Passing instance count as deployment Propertyoc.ueeveeeevinieiiiiinneeeiiineeeeiinnnn 64

Inline vs file reference Propertiescovvviiiiiii i 64

Passing application properties when deploying a streamccooeviviiiiineennneee. 64

Passing Spring Cloud Stream properties for the applicationcc..ccooveviiievnns 65

Passing per-binding producer consumer pPropertiesccoeevvuiieviieeeiiieeiineennnnenns 65

Passing stream partition properties during stream deploymentccc.oceunnnee. 66

Passing application content type Propertiesooeeeuiiiriiiiiiniiiiiiee e 67
Overriding application properties during stream deploymentcccoeeevneeennnn. 67

28.3. DePIOYMENE PrOPEITIES ...ciiri ettt ettt e e 67
Passing instance count as deployment Propertyco.ueveeeieinieiiiiiineeeiiineeeeiinnnn 68

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry iv

Spring Cloud Data Flow Server for Cloud Foundry

Inline vs file reference Properties ... 68
29. DESIIOYING 8 SIIEAM ...uiiiiti i ittt ettt et e et e e e et e e e e et e e e eata e e e eaaa e eaennns 69
30. Deploying and UNdeploying StrEAMScccuiiiiiiiiiii e e e e e e e e e e e e eaen 70
31. Other Source and Sink ApplCAtioN TYPES ...ccovuiiiiiiiieei e 71
32. SIMPple Sream PrOCESSINGuuiiiiiiii ettt e e e e et e e e 72
33. Stateful Sream PrOCESSING ...c..uiiiiiiiiii e ee e e e e e e e et e e e e e e et e e eanaeees 73
K - To - W] ((=T= o PP PPN 74
35. USiNg LabelS iN @ SrEAIM ...cciiiiiiiiiiii et e e 75
36. Explicit Broker Destinations iN @ SrEamcociuiiiiiieiiii e e e e e e 76
37. Directed Graphs iN @ ST AIMiiiiii e et e e e e e e eees 77
37.1. Common application ProPEItIESccceuuiiiiiiii e 77
38. Stream applications with multiple binder configurationsccoooiiiiiiiiine e, 78
RV TR =T TP 79
39. Introducing Spring CloUd TaskKviiiiiiii e 80
40. The LifecyCle of @ task ... 81
40.1. Creating a custom Task APPlICALIONcooiiiiiieiiiiiieii e 81
40.2. Registering @ Task ApPlICAtiONcoouuiiiiii e 81
40.3. Creating @ TaASK ...ccuuiiiiiiiiii e e 82
40.4. LAUNCRING @ TASK ...eiiiiiiiiiiii e e 83
40.5. Reviewing Task EXECULIONScciiuuiiiiiiiii it eaees 83
40.6. DESIIOYING @ TASK ..evuiiiiiiiiii e e e e e e e e e e e e e et e e ean e e eaaaes 84
A1, TASK REPOSITONY ...vuiieiiitiieeieit ettt ettt e et e e e et e e e ebe s 85
41.1. Configuring the Task Execution REPOSItOrYovviiiiiiiiiiiiiinieiiii e 85
LOCAD ettt e 85
Task Application REPOSIIONYccouuuiiiiiiiei ittt eeees 85
O B - | = Lo 11] o 85
42. Subscribing to Task/BatCh EVENLSccccuiiiiiiiiiiii e e e e e e e e 87
43. Launching Tasks from @ SreamMuiiiiiiiiieiii e 88
T I I 1o To =T g I T PP 88
43.2. TIANSIALOT .. iiieiiiii ettt e e e e et e e e e 88
VII. Tasks 0N CloUd FOUNAIYiiiiiieiiiie ettt ettt e e aa e e eaaas 89
44, Version CompatiDilityoooiiiiiii 90
T 1o Yo 1 o 91
46. Task Database SChEmMaoooiiiiiiii e 92
47. RunNNing Task APPIICALIONSuuuiiiiiii et eeaens 93
7.1, Create @ TaASK ..ooieeiiiiiiie e 93
A7.2. LAUNCN @ TaASK oeiiiiiii e 93
A7.3. VIEW TASK LOUS ittt ettt et e et e e eaeans 93
7.4, LISt TASKS ..t 94
A47.5. List TASK EXECULIONSceuiiiiiiiii e e e e 94
A7.6. DESIIOY @ TASK ..eiiiiiiiiiiii e et et et 94
47.7. Deleting Task From Cloud FOUNAIYcociiiiiiiiiiiiii e e e 94
RV =T] oo = o PP 95
8 T 11 0o [o oo 96
T LY o] o S PP 97
49.1. Bulk Import of APPlICALIONSccieiiiiiiii e 97
LT 0 R {1 o] 110 T 99
5L, SHBAIMS .oiiiitiii i e 100
B2, CrEate SIIBAIM ...ttt et et e et e et a e ans 102
L3 T I 11 € 103
Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry \

Spring Cloud Data Flow Server for Cloud Foundry

3G T N o] o S TP PPPT 103
Create a Task Definition from a selected Task ApPovvvviiiiiiiiiiiiieieec, 103

View Task APP DEtailSccouiiiiiiiiiii e 104

53.2. DEfINILIONS ...t e e 104
Creating Task Definitions using the bulk define interfaceccccooooiiiieinnnnnnn. 104

[10 T Tod o 1T o N 1= 1) & 105

LIS TR T =T od ¥ 1T 1= PP 106

LS [1 107
o T Iy T o =)= U 1o 107

Job execution detailSc.uiiiiiiiii e 108

Step eXecution detallSooiiiiiiiii 108

Step EXECULION PrOGIESS ..vuuiiiiiiiiiiiiii et e e e e e e e e e aaa e 108

B8, ANBIYEICS ... ettt naas 110
IX. THOW-TO" QUILES ...ttt ettt et et e e ettt e e e e et e e e eaba e e e ennens 111
56. Configure Maven PrOPEItIEScciuuiiiiiiiii e e e e e e aaa s 112
Y R WoTo o1 o R PP P PSPPI 114
oY 8 N B 1< o] ()Y 1 4 1=T01 B 1o o PSPPI 114
YA Y o] o] [To= 11 o] o N 1Yo 1= PPN 114

Ko APPENTICES .ttt et ettt ettt e eaaaas 116
A. Migrating from Spring XD to Spring Cloud Data FIOWccooveiiiiiiiiiiiiiineci, 117
A.L Terminology ChanQEScciiiiiiiii e e e e eaas 117

A.2. Modules t0 APPIICALIONSuuiiiiiiiie ittt 117
OI0S] (0] o I o] o] o%=1 o] PP 117
Application REGISITAtiONcouuiiiiiiiiiii e e 117
APPIICALION PrOPEITIES ...ciiiiieiiiii e 118

A.3. Message BUS 10 BINUEIScoiiiiiiiiiii e 118
MESSAGE BUS vttt 118

2] o = PRSP 118

= T 1= o B O o =T o 1= 119

D1 = Tox (=To €] = 1] 1= 119

A4 BatCh 10 TASKS ..uiiiiiiii e e 119

A.5. Shell/DSL COMMANGSuiiieiiiiiiei e et e e e e e e e e et e e e e een s 120

ALB. REST-AP Lot 120

AT UL T IO et e ettt e e e e e e bbb aaaaeeae 120

A.8. Architecture COMPONENTSiiiiiiii ettt e 121

pAo o] (C=T=T 01T PP PPN 121

RDBIMS .ttt a e e e a b 121

=0 1 121

(O 11551 (=] S o] o To] [0 o 2P 121

A.9. Central ConfIQUIAtIONuuiiiiiii it 121
A.L0. DISHHBULION .oeeiee e e e e e 121
A.11. Hadoop Distribution Compatibilityc.ccciiiiiiiiiiii e 122
A.12. YARN DEPIOYMENT ...euiiiiiii ettt et 122
A.13. USE CaSE COMPANISON ...vuuieiiiiaeeiiii et e et e e et e e et e e et e e e et eeeeaa s 122

USE CaSE HL ooiiiiiiiiiii e 122

USE CaS 2 et 123

LT = 1S < 2 123

L = Y01 o [T Vo P 125
B.1. Basic COMPIle @Nd TESLuuiiiiiii et 125

[0720 B To Tor 01 41T | = 4 [o 125

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry Vi

Spring Cloud Data Flow Server for Cloud Foundry

B.3. Working With the COOEiiiiiiiii e 125
Importing into eclipse with M2eClipSeooooiiiiiiii 125
Importing into eclipse without M2eClipSeccvieviiiiiiiii e, 126
Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry vii

Part |. Spring Cloud Data
Flow for Cloud Foundry

This project provides support for orchestrating the deployment of Spring Cloud Stream applications to
Cloud Foundry.

Spring Cloud Data Flow Server for Cloud Foundry

1. Spring Cloud Data Flow

Spring Cloud Data Flow is a cloud-native orchestration service for composable microservice applications
on modern runtimes. With Spring Cloud Data Flow, developers can create and orchestrate data pipelines
for common use cases such as data ingest, real-time analytics, and data import/export.

The Spring Cloud Data Flow architecture consists of a server that deploys Streams and Tasks. Streams
and Tasks are defined using a DSL or visually through the browser based designer Ul. Streams and
Tasks are based on Spring Cloud Stream and Spring Cloud Task programming models respectively.

For more details about the core architecture components and the supported features, please review
Spring Cloud Data Flow's core reference guide. There're several samples available for reference.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 2

http://docs.spring.io/spring-cloud-dataflow/docs/1.1.4.RELEASE/reference/htmlsingle/#streams
http://docs.spring.io/spring-cloud-dataflow/docs/1.1.4.RELEASE/reference/htmlsingle/#spring-cloud-task-overview
http://docs.spring.io/spring-cloud-dataflow/docs/1.1.4.RELEASE/reference/html/_dsl_syntax.html
http://cloud.spring.io/spring-cloud-stream/
http://cloud.spring.io/spring-cloud-task/
http://docs.spring.io/spring-cloud-dataflow/docs/1.1.4.RELEASE/reference/htmlsingle/
https://github.com/spring-cloud/spring-cloud-dataflow-samples

Spring Cloud Data Flow Server for Cloud Foundry

2. Spring Cloud Stream

Spring Cloud Stream is a framework for building message-driven microservice applications. Spring
Cloud Stream builds upon Spring Boot to create standalone, production-grade Spring applications, and
uses Spring Integration to provide connectivity to message brokers. It provides opinionated configuration
of middleware from several vendors, introducing the concepts of persistent publish-subscribe semantics,
consumer groups, and partitions.

For more details about the core framework components and the supported features, please review
Spring Cloud Stream'’s reference guide.

There's a rich ecosystem of Spring Cloud Stream Application-Starters that can be used either as
standalone microservice applications or in Spring Cloud Data Flow. For convenience, we have
generated RabbitMQ and Apache Kafka variants of these application-starters that are available for use
from Maven Repo and Docker Hub as maven artifacts and docker images, respectively.

Do you have a requirement to develop custom applications? No problem. Refer to this guide to create
custom stream applications. There’re several samples available for reference.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 3

http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/
http://docs.spring.io/spring-cloud-stream-app-starters/docs/current-SNAPSHOT/reference/htmlsingle
http://repo.spring.io/libs-snapshot/org/springframework/cloud/stream/app/
https://hub.docker.com/r/springcloudstream/
http://docs.spring.io/spring-cloud-stream-app-starters/docs/current-SNAPSHOT/reference/htmlsingle/#_creating_custom_artifacts
https://github.com/spring-cloud/spring-cloud-stream-samples

Spring Cloud Data Flow Server for Cloud Foundry

3. Spring Cloud Task

Spring Cloud Task makes it easy to create short-lived microservices. We provide capabilities that allow
short-lived JVM processes to be executed on demand in a production environment.

For more details about the core framework components and the supported features, please review
Spring Cloud Task’s reference guide.

There's a rich ecosystem of Spring Cloud Task Application-Starters that can be used either as
standalone microservice applications or in Spring Cloud Data Flow. For convenience, the generated
application-starters are available for use from Maven Repo. There are several samples available for
reference.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 4

http://docs.spring.io/spring-cloud-task/1.1.2.RELEASE/reference/htmlsingle/
http://docs.spring.io/spring-cloud-task-app-starters/docs/current-SNAPSHOT/reference/htmlsingle
http://repo.spring.io/libs-snapshot/org/springframework/cloud/task/app/
https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples

Part Il. Architecture

Spring Cloud Data Flow Server for Cloud Foundry

4. Introduction

Spring Cloud Data Flow simplifies the development and deployment of applications focused on data
processing use-cases. The major concepts of the architecture are Applications, the Data Flow Server,
and the target runtime.

Applications come in two flavors

* Long lived Stream applications where an unbounded amount of data is consumed or produced via
messaging middleware.

» Short lived Task applications that process a finite set of data and then terminate.
Depending on the runtime, applications can be packaged in two ways

» Spring Boot uber-jar that is hosted in a maven repository, file, http or any other Spring resource
implementation.

» Docker

The runtime is the place where applications execute. The target runtimes for applications are platforms
that you may already be using for other application deployments.

The supported runtimes are

» Cloud Foundry

Apache YARN

* Kubernetes

* Apache Mesos

» Local Server for development

There is a deployer Service Provider Interface (SPI) that enables you to extend Data Flow to deploy
onto other runtimes, for example to support Docker Swarm. There are community implementations of
Hashicorp’s Nomad and RedHat Openshift is available. We look forward to working with the community
for further contributions!

The component that is responsible for deploying applications to a runtime is the Data Flow Server. There
is a Data Flow Server executable jar provided for each of the target runtimes. The Data Flow server
is responsible for interpreting

» A stream DSL that describes the logical flow of data through multiple applications.

» A deployment manifest that describes the mapping of applications onto the runtime. For example, to
set the initial number of instances, memory requirements, and data partitioning.

As an example, the DSL to describe the flow of data from an http source to an Apache Cassandra sink
would be written as “http | cassandra”. These names in the DSL are registered with the Data Flow Server
and map onto application artifacts that can be hosted in Maven or Docker repositories. Many source,
processor, and sink applications for common use-cases (e.g. jdbc, hdfs, http, router) are provided by
the Spring Cloud Data Flow team. The pipe symbol represents the communication between the two
applications via messaging middleware. The two messaging middleware brokers that are supported are

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 6

Spring Cloud Data Flow Server for Cloud Foundry

» Apache Kafka
* RabbitMQ

In the case of Kafka, when deploying the stream, the Data Flow server is responsible to create the topics
that correspond to each pipe symbol and configure each application to produce or consume from the
topics so the desired flow of data is achieved.

The interaction of the main components is shown below

| Stream DSL | Data Flow
| http | cassandra I——)

Server

l

Target Runtime

Spring Boot

cassandra

Applications \ /

Figure 4.1. The Spring Cloud Data High Level Architecure

In this diagram a DSL description of a stream is POSTed to the Data Flow Server. Based on the
mapping of DSL application names to Maven and Docker artifacts, the http-source and cassandra-sink
applications are deployed on the target runtime.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 7

Spring Cloud Data Flow Server for Cloud Foundry

5. Microservice Architectural Style

The Data Flow Server deploys applications onto the target runtime that conform to the microservice
architectural style. For example, a stream represents a high level application that consists of multiple
small microservice applications each running in their own process. Each microservice application can
be scaled up or down independent of the other and each has their own versioning lifecycle.

Both Streaming and Task based microservice applications build upon Spring Boot as the foundational
library. This gives all microservice applications functionality such as health checks, security, configurable
logging, monitoring and management functionality, as well as executable JAR packaging.

It is important to emphasise that these microservice applications are ‘just apps’ that you can run
by yourself using ‘java -jar'’ and passing in appropriate configuration properties. We provide many
common microservice applications for common operations so you don’t have to start from scratch when
addressing common use-cases which build upon the rich ecosystem of Spring Projects, e.g Spring
Integration, Spring Data, Spring Hadoop and Spring Batch. Creating your own microservice application
is similar to creating other Spring Boot applications, you can start using the Spring Initialzr web site or
the Ul to create the basic scaffolding of either a Stream or Task based microservice.

In addition to passing in the appropriate configuration to the applications, the Data Flow server is
responsible for preparing the target platform’s infrastructure so that the application can be deployed. For
example, in Cloud Foundry it would be binding specified services to the applications and executing the
‘cf push’ command for each application. For Kubernetes it would be creating the replication controller,
service, and load balancer.

The Data Flow Server helps simplify the deployment of multiple applications onto a target runtime, but
one could also opt to deploy each of the microservice applications manually and not use Data Flow at
all. This approach might be more appropriate to start out with for small scale deployments, gradually
adopting the convenience and consistency of Data Flow as you develop more applications. Manual
deployment of Stream and Task based microservices is also a useful educational exercise that will help
you better understand some of the automatic applications configuration and platform targeting steps
that the Data Flow Server provides.

5.1 Comparison to other Platform architectures

Spring Cloud Data Flow's architectural style is different than other Stream and Batch processing
platforms. For example in Apache Spark, Apache Flink, and Google Cloud Dataflow applications run on
a dedicated compute engine cluster. The nature of the compute engine gives these platforms a richer
environment for performing complex calculations on the data as compared to Spring Cloud Data Flow,
but it introduces complexity of another execution environment that is often not needed when creating
data centric applications. That doesn’t mean you cannot do real time data computations when using
Spring Cloud Data Flow. Refer to the analytics section which describes the integration of Redis to handle
common counting based use-cases as well as the RxJava integration for functional API driven analytics
use-cases, such as time-sliding-window and moving-average among others.

Similarly, Apache Storm, Hortonworks DataFlow and Spring Cloud Data Flow’'s predecessor, Spring
XD, use a dedicated application execution cluster, unique to each product, that determines where your
code should execute on the cluster and perform health checks to ensure that long lived applications are
restarted if they fail. Often, framework specific interfaces are required to be used in order to correctly
“plug in” to the cluster’s execution framework.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 8

Spring Cloud Data Flow Server for Cloud Foundry

As we discovered during the evolution of Spring XD, the rise of multiple container frameworks in
2015 made creating our own runtime a duplication of efforts. There is no reason to build your own
resource management mechanics, when there are multiple runtime platforms that offer this functionality
already. Taking these considerations into account is what made us shift to the current architecture
where we delegate the execution to popular runtimes, runtimes that you may already be using for other
purposes. This is an advantage in that it reduces the cognitive distance for creating and managing data
centric applications as many of the same skills used for deploying other end-user/web applications are
applicable.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 9

Spring Cloud Data Flow Server for Cloud Foundry

6. Streaming Applications

While Spring Boot provides the foundation for creating DevOps friendly microservice applications,
other libraries in the Spring ecosystem help create Stream based microservice applications. The most
important of these is Spring Cloud Stream.

The essence of the Spring Cloud Stream programming model is to provide an easy way to describe
multiple inputs and outputs of an application that communicate over messaging middleware. These input
and outputs map onto Kafka topics or Rabbit exchanges and queues. Common application configuration
for a Source that generates data, a Process that consumes and produces data and a Sink that consumes
data is provided as part of the library.

6.1 Imperative Programming Model

Spring Cloud Stream is most closely integrated with Spring Integration’s imperative "event at a time"
programming model. This means you write code that handles a single event callback. For example,

@nabl eBi ndi ng(Si nk. cl ass)
public class Loggi ngSi nk {

@t r eanli st ener (Si nk. | NPUT)
public void log(String nessage) {
System out. printl n(nessage);

}

In this case the String payload of a message coming on the input channel, is handed to the log method.
The @nabl eBi ndi ng annotation is what is used to tie together the input channel to the external
middleware.

6.2 Functional Programming Model

However, Spring Cloud Stream can support other programming styles. The use of reactive APIs where
incoming and outgoing data is handled as continuous data flows and it defines how each individual
message should be handled. You can also use operators that describe functional transformations from
inbound to outbound data flows. The upcoming versions will support Apache Kafka’'s KStream APl in
the programming model.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 10

Spring Cloud Data Flow Server for Cloud Foundry

/. Streams

7.1 Topologies

The Stream DSL describes linear sequences of data flowing through the system. For example, in the
stream definition http | transformer | cassandr a, each pipe symbol connects the application
on the left to the one on the right. Named channels can be used for routing and to fan out data to multiple
messaging destinations.

Taps can be used to ‘listen in’ to the data that if flowing across any of the pipe symbols. Taps can be
used as sources for new streams with an in independent life cycle.

7.2 Concurrency

For an application that will consume events, Spring Cloud stream exposes a concurrency setting that
controls the size of a thread pool used for dispatching incoming messages. See the Consumer properties
documentation for more information.

7.3 Partitioning

A common pattern in stream processing is to partition the data as it moves from one application to
the next. Partitioning is a critical concept in stateful processing, for either performance or consistency
reasons, to ensure that all related data is processed together. For example, in a time-windowed average
calculation example, it is important that all measurements from any given sensor are processed by the
same application instance. Alternatively, you may want to cache some data related to the incoming
events so that it can be enriched without making a remote procedure call to retrieve the related data.

Spring Cloud Data Flow supports partitioning by configuring Spring Cloud Stream’s output and input
bindings. Spring Cloud Stream provides a common abstraction for implementing partitioned processing
use cases in a uniform fashion across different types of middleware. Partitioning can thus be used
whether the broker itself is naturally partitioned (e.g., Kafka topics) or not (e.g., RabbitMQ). The following
image shows how data could be partitioned into two buckets, such that each instance of the average
processor application consumes a unique set of data.

HTTP —_——
e : N Average
Partition 1 *‘ Processor ‘
N S 4 (.
HTTP
J - = (Average |
HTTP \ ’

Topic
Figure 7.1. Spring Cloud Stream Partitioning

To use a simple partitioning strategy in Spring Cloud Data Flow, you only need set the instance count for
each application in the stream and a parti ti onKeyExpr essi on producer property when deploying
the stream. The parti ti onKeyExpr essi on identifies what part of the message will be used as the
key to partition data in the underlying middleware. An i ngest stream can be defined as http |
aver ageprocessor | cassandr a (Note that the Cassandra sink isn’t shown in the diagram above).

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 11

http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_consumer_properties

Spring Cloud Data Flow Server for Cloud Foundry

Suppose the payload being sent to the http source was in JSON format and had a field called sensor | d.
Deploying the stream with the shell command stream deploy ingest --propertiesFile
i ngest Stream properti es where the contents of the file i ngest Stream properti es are

app. http. count =3
app. aver agepr ocessor . count =2
app. htt p. producer. partiti onKeyExpr essi on=payl oad. sensor | d

will deploy the stream such that all the input and output destinations are configured for data to
flow through the applications but also ensure that a unique set of data is always delivered to each
averageprocessor instance. In this case the default algorithm is to evaluate payl oad. sensorld %
partiti onCount where the partiti onCount is the application count in the case of RabbitMQ and
the partition count of the topic in the case of Kafka.

Please refer to the section called “Passing stream partition properties during stream deployment” for
additional strategies to partition streams during deployment and how they map onto the underlying
Spring Cloud Stream Partitioning properties.

Also note, that you can't currently scale partitioned streams. Read the section Section 11.3, “Scaling
at runtime” for more information.

7.4 Message Delivery Guarantees

Streams are composed of applications that use the Spring Cloud Stream library as the basis for
communicating with the underlying messaging middleware product. Spring Cloud Stream also provides
an opinionated configuration of middleware from several vendors, in particular providing persistent
publish-subscribe semantics.

The Binder abstraction in Spring Cloud Stream is what connects the application to the middleware. There
are several configuration properties of the binder that are portable across all binder implementations
and some that are specific to the middleware.

For consumer applications there is a retry policy for exceptions generated during message
handling. The retry policy is configured using the common consumer properties maxAttenpts,
backOffInitiallnterval, backCOi f Maxl nterval, and backO f Mul tiplier. The default
values of these properties will retry the callback method invocation 3 times and wait one second for the
first retry. A backoff multiplier of 2 is used for the second and third attempts.

When the number of retry attempts has exceeded the naxAt t enpt s value, the exception and the failed
message will become the payload of a message and be sent to the application’s error channel. By
default, the default message handler for this error channel logs the message. You can change the default
behavior in your application by creating your own message handler that subscribes to the error channel.

Spring Cloud Stream also supports a configuration option for both Kafka and RabbitMQ binder
implementations that will send the failed message and stack trace to a dead letter queue. The dead letter
gueue is a destination and its nature depends on the messaging middleware (e.g in the case of Kafka it
is a dedicated topic). To enable this for RabbitMQ set the consumer properties r epubl i sht oDl g and
aut oBi ndDl q and the producer property aut oBi ndDl g to true when deploying the stream. To always
apply these producer and consumer properties when deploying streams, configure them as common
application properties when starting the Data Flow server.

Additional messaging delivery guarantees are those provided by the underlying messaging middleware
that is chosen for the application for both producing and consuming applications. Refer to the Kafka

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 12

http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_partitioning
http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_persistent_publish_subscribe_support
http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_persistent_publish_subscribe_support
http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_binders
http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_consumer_properties
http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_rabbitmq_consumer_properties
http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_rabbit_producer_properties

Spring Cloud Data Flow Server for Cloud Foundry

Consumer and Producer and Rabbit Consumer and Producer documentation for more details. You will
find extensive declarative support for all the native QOS options.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 13

http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_kafka_consumer_properties
http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_kafka_producer_properties
http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_rabbitmq_consumer_properties
http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_rabbit_producer_properties

Spring Cloud Data Flow Server for Cloud Foundry

8. Analytics

Spring Cloud Data Flow is aware of certain Sink applications that will write counter data to Redis and
provides an REST endpoint to read counter data. The types of counters supported are

» Counter - Counts the number of messages it receives, optionally storing counts in a separate store
such as redis.

 Field Value Counter - Counts occurrences of unique values for a named field in a message payload

» Aggregate Counter - Stores total counts but also retains the total count values for each minute, hour
day and month.

It is important to note that the timestamp that is used in the aggregate counter can come from a field in
the message itself so that out of order messages are properly accounted.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 14

https://github.com/spring-cloud/spring-cloud-stream-app-starters/tree/master/metrics/spring-cloud-starter-stream-sink-counter
https://github.com/spring-cloud/spring-cloud-stream-app-starters/tree/master/metrics/spring-cloud-starter-stream-sink-field-value-counter
https://github.com/spring-cloud/spring-cloud-stream-app-starters/tree/master/metrics/spring-cloud-starter-stream-sink-aggregate-counter

Spring Cloud Data Flow Server for Cloud Foundry

9. Task Applications

The Spring Cloud Task programming model provides:

» Persistence of the Task’s lifecycle events and exit code status.

« Lifecycle hooks to execute code before or after a task execution.

» Emit task events to a stream (as a source) during the task lifecycle.

« Integration with Spring Batch Jobs.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry

15

Spring Cloud Data Flow Server for Cloud Foundry

10. Data Flow Server

10.1 Endpoints

The Data Flow Server uses an embedded servlet container and exposes REST endpoints for creating,
deploying, undeploying, and destroying streams and tasks, querying runtime state, analytics, and the
like. The Data Flow Server is implemented using Spring’s MVC framework and the Spring HATEOAS
library to create REST representations that follow the HATEOAS principle.

Dataflow REST-API
Server Deployer SPI

Admin / Flo Ul

AN Nos

CURL nof@EV
Cloud @undry @ X

Figure 10.1. The Spring Cloud Data Flow Server

10.2 Customization

Each Data Flow Server executable jar targets a single runtime by delegating to the implementation of
the deployer Service Provider Interface found on the classpath.

We provide a Data Flow Server executable jar that targets a single runtime. The Data Flow server
delegates to the implementation of the deployer Service Provider Interface found on the classpath. In
the current version, there are no endpoints specific to a target runtime, but may be available in future
releases as a convenience to access runtime specific features

While we provide a server executable for each of the target runtimes you can also create your own
customized server application using Spring Initialzr. This let's you add or remove functionality relative
to the executable jar we provide. For example, adding additional security implementations, custom

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 16

https://github.com/SpringSource/spring-hateoas

Spring Cloud Data Flow Server for Cloud Foundry

endpoints, or removing Task or Analytics REST endpoints. You can also enable or disable some features
through the use of feature toggles.

10.3 Security

The Data Flow Server executable jars support basic http, LDAP(S), File-based, and OAuth 2.0
authentication to access its endpoints. Refer to the security section for more information.

Authorization via groups is planned for a future release.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 17

Spring Cloud Data Flow Server for Cloud Foundry

11. Runtime

11.1 Fault Tolerance

The target runtimes supported by Data Flow all have the ability to restart a long lived application should
it fail. Spring Cloud Data Flow sets up whatever health probe is required by the runtime environment
when deploying the application.

The collective state of all applications that comprise the stream is used to determine the state of the
stream. If an application fails, the state of the stream will change from ‘deployed’ to ‘partial’.

11.2 Resource Management

Each target runtime lets you control the amount of memory, disk and CPU that is allocated to each
application. These are passed as properties in the deployment manifest using key names that are unique
to each runtime. Refer to the each platforms server documentation for more information.

11.3 Scaling at runtime

When deploying a stream, you can set the instance count for each individual application that comprises
the stream. Once the stream is deployed, each target runtime lets you control the target number of
instances for each individual application. Using the APIs, Uls, or command line tools for each runtime,
you can scale up or down the number of instances as required. Future work will provide a portable
command in the Data Flow Server to perform this operation.

Currently, this is not supported with the Kafka binder (based on the 0.8 simple consumer at the time
of the release), as well as partitioned streams, for which the suggested workaround is redeploying
the stream with an updated number of instances. Both cases require a static consumer set up based
on information about the total instance count and current instance index, a limitation intended to be
addressed in future releases. For example, Kafka 0.9 and higher provides good infrastructure for scaling
applications dynamically and will be available as an alternative to the current Kafka 0.8 based binder
in the near future. One specific concern regarding scaling partitioned streams is the handling of local
state, which is typically reshuffled as the number of instances is changed. This is also intended to be
addressed in the future versions, by providing first class support for local state management.

11.4 Application Versioning

Application versioning, that is upgrading or downgrading an application from one version to another, is
not directly supported by Spring Cloud Data Flow. You must rely on specific target runtime features to
perform these operational tasks.

The roadmap for Spring Cloud Data Flow will deploy applications that are compatible with Spinnaker
to manage the complete application lifecycle. This also includes automated canary analysis backed by
application metrics. Portable commands in the Data Flow server to trigger pipelines in Spinnaker are
also planned.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 18

Part lll. Getting started

Spring Cloud Data Flow Server for Cloud Foundry

12. Deploying on Cloud Foundry

Spring Cloud Data Flow can be used to deploy modules in a Cloud Foundry environment. When doing
so, the server application can either run itself on Cloud Foundry, or on another installation (e.g. a simple

laptop).

The required configuration amounts to the same in either case, and is merely related to providing
credentials to the Cloud Foundry instance so that the server can spawn applications itself. Any
Spring Boot compatible configuration mechanism can be used (passing program arguments, editing
configuration files before building the application, using Spring Cloud Config, using environment
variables, etc.), although some may prove more practicable than others when running on Cloud Foundry.

@ Note

By default, the application registry in Spring Cloud Data Flow’s Cloud Foundry server is empty.
It is intentionally designed to allow users to have the flexibility of choosing and registering
applications, as they find appropriate for the given use-case requirement. Depending on the
message-binder of choice, users can register between RabbitMQ or Apache Kafka based
maven artifacts.

12.1 Provision a Redis service instance on Cloud Foundry

Use cf mar ket pl ace to discover which plans are available to you, depending on the details of your
Cloud Foundry setup. For example when using Pivotal Web Services:

cf create-service rediscloud 30nb redis

A redis instance is required for analytics apps, and would typically be bound to such apps when you
create an analytics stream using the per-app-binding feature.

12.2 Provision a Rabbit service instance on Cloud Foundry

Use cf nar ket pl ace to discover which plans are available to you, depending on the details of your
Cloud Foundry setup. For example when using Pivotal Web Services:

cf create-service cloudamgp | emur rabbit

Rabbit is typically used as a messaging middleware between streaming apps and would be bound to
each deployed app thanks to the SPRI NG_CLOUD_DEPLOYER CLOUDFOUNDRY_STREAM SERVI CES
setting (see below).

12.3 Provision a MySQL service instance on Cloud Foundry

Use cf mar ket pl ace to discover which plans are available to you, depending on the details of your
Cloud Foundry setup. For example when using Pivotal Web Services:

cf create-service cleardb spark ny_nysql

An RDBMS is used to persist Data Flow state, such as stream definitions and deployment ids. It can
also be used for tasks to persist execution history.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 20

https://github.com/spring-cloud/spring-cloud-config
https://github.com/spring-cloud/spring-cloud-dataflow/tree/master/spring-cloud-dataflow-registry
http://docs.spring.io/spring-cloud-dataflow/docs/1.1.4.RELEASE/reference/html/_dsl_syntax.html#_register_a_stream_app
http://repo.spring.io/libs-snapshot/org/springframework/cloud/stream/app/
https://run.pivotal.io/
https://run.pivotal.io/
https://run.pivotal.io/

Spring Cloud Data Flow Server for Cloud Foundry

12.4 Download the Spring Cloud Data Flow Server and Shell
apps

wget http://repo.spring.iolrel easel/ org/springframework/cl oud/ spring-cl oud- dat af | ow server -

cl oudf oundry/ 1. 1. 1. RELEASE/ spri ng- cl oud- dat af | ow server - cl oudf oundry- 1. 1. 1. RELEASE. j ar

wget http://repo.spring.iolrel ease/org/springframework/cloud/spring-cloud-datafl owshell/1.1. 4. RELEASE
spring- cl oud- dat af | ow-shel | -1. 1. 4. RELEASE. j ar

12.5 Running the Server

You can either deploy the server application on Cloud Foundry itself or on your local machine. The
following two sections explain each way of running the server.

Deploying and Running the Server app on Cloud Foundry

Push the server application on Cloud Foundry, configure it (see below) and start it.

@ Note

You must use a unique name for your app; an app with the same name in the same organization
will cause your deployment to fail

cf push datafl owserver -m2G -k 2G --no-start -p spring-cloud-datafl ow server-
cl oudf oundry-1. 1. 1. RELEASE. j ar

cf bind-service datafl owserver redis

cf bind-service datafl ow server ny_nysql

@ Important

The recommended minimal memory setting for the server is 2G. Also, to push apps to PCF and
obtain application property metadata, the server downloads applications to Maven repository
hosted on the local disk. While you can specify up to 2G as a typical maximum value for disk
space on a PCF installation, this can be increased to 10G. Read the maximum disk quota
section for information on how to configure this PCF property. Also, the Data Flow server itself
implements a Last Recently Used algorithm to free disk space when it falls below a low water
mark value.

@ Note

If you are pushing to a space with multiple users, for example on PWS, there may already be
a route taken for the applicaiton name you have chosen. You can use the options - - r andom
r out e to avoid this when pushing the app.

Now we can configure the app. The following configuration is for Pivotal Web Services. You need to fill
in {org}, {space}, {email} and {password} before running these commands.

cf set-env datafl ow server SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_URL https://api.run.pivotal.io
cf set-env datafl owserver SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_ORG {or g}

cf set-env datafl ow server SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_SPACE {space}

cf set-env datafl ow server SPRI NG CLOUD DEPLOYER_ CLOUDFOUNDRY_DOMAI N cf apps.io

cf set-env datafl ow server SPRI NG CLOUD_DEPLOYER_CLOUDFOUNDRY_STREAM SERVI CES r abbi t

cf set-env datafl ow server SPRI NG CLOUD_DEPLOYER_ CLOUDFOUNDRY_TASK_SERVI CES ny_nysql

cf set-env datafl ow server SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_USERNAME {enmi |}

cf set-env datafl owserver SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_PASSWORD { passwor d}

cf set-env datafl ow server SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_SKI P_SSL_VALI DATI ON f al se

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 21

Spring Cloud Data Flow Server for Cloud Foundry

0 Warning

Only set 'Skip SSL Validation' to true if you're running on a Cloud Foundry instance using self-
signed certs (e.g. in development). Do not use for production.

@ Note

If you are deploying in an environment that requires you to sign on using the Pivotal Single Sign-
On Service, refer to the section Section 13.1, “Authentication and Cloud Foundry” for information
on how to configure the server.

Spring Cloud Data Flow server implementations (be it for Cloud Foundry, Mesos, YARN, or Kubernetes)
do not have any default remote maven repository configured. This is intentionally designed to provide the
flexibility for the users, so they can override and point to a remote repository of their choice. The out-of-
the-box applications that are supported by Spring Cloud Data Flow are available in Spring’s repository,
so if you want to use them, you must set it as the remote repository as listed below.

cf set-env datafl ow server MAVEN REMOTE REPCS| TORI ES REPOL_URL https://repo.spring.iol/libs-snapshot

where r epol is an alias name for the remote repository.
Configuring Defaults for Deployed Apps

You can also set other optional properties that alter the way Spring Cloud Data Flow will deploy stream
and task apps:

» The default memory and disk sizes for a deployed application can be configured. By default they are
1024 MB memory and 1024 MB disk. To change these, as an example to 512 and 2048 respectively,
use

cf set-env datafl ow server SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_STREAM MEMORY 512
cf set-env datafl ow server SPRI NG CLOUD_DEPLOYER_ CLOUDFOUNDRY_STREAM DI SK 2048

» The default number of instances to deploy is set to 1, but can be overridden using

cf set-env datafl ow server SPRI NG CLOUD_DEPLOYER CLOUDFOUNDRY_STREAM | NSTANCES 1

* You can set the buildpack that will be used to deploy each application. For example, to use the Java
offline buildback, set the following environment variable

cf set-env datafl ow server SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_STREAM BUI LDPACK j ava_bui | dpack_of fli ne

» The health check mechanism used by Cloud Foundry to assert if apps are running can be customized.
Current supported options are port (the default) and none. Change the default like so:

cf set-env datafl ow server SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_STREAM HEALTH CHECK none

@ Note

These settings can be configured separately for stream and task apps. To alter settings for
tasks, simply substitute STREAMwith TASK in the property name. As an example,

cf set-env datafl ow server SPRI NG CLOUD_DEPLOYER CLOUDFOUNDRY_TASK MEMORY 512

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 22

Spring Cloud Data Flow Server for Cloud Foundry

0 Tip

All the properties mentioned above are @onfi gur ati onProperti es of the Cloud Foundry
deployer. See CloudFoundryDeploymentProperties.java for more information.

We are now ready to start the app.

cf start datafl ow server

Alternatively, you can run the Admin application locally on your machine which is described in the next
section.

Running the Server app locally

To run the server application locally, targeting your Cloud Foundry installation, you you need to configure
the application either by passing in command line arguments (see below) or setting a number of
environment variables.

To use environment variables set the following:

export SPRI NG CLOUD_DEPLOYER_CLOUDFOUNDRY_URL=https://api.run.pivotal.io
export SPRI NG CLOUD_DEPLOYER_ CLOUDFOUNDRY_ORG={ or g}

export SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_SPACE={ space}

export SPRI NG CLOUD_DEPLOYER_CLOUDFOUNDRY_DOVAI N=cf apps. i 0

export SPRI NG_CLOUD_ DEPLOYER_CLOUDFOUNDRY_USERNAVE={ emai | }

export SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY PASSWORD={ passwor d}

export SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_SKI P_SSL_VALI DATI ON=f al se

export SPRI NG CLOUD_DEPLOYER CLOUDFOUNDRY_STREAM SERVI CES=r abbi t

The following is for letting task apps wite to their db.

Note however that when the *server* is running locally, it can't access that db
task rel ated commands that show executions won't work then

export SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_TASK_SERVI CES=ny_nysq|l

You need to fill in {org}, {space}, {email} and {password} before running these commands.

0 Warning

Only set 'Skip SSL Validation' to true if you're running on a Cloud Foundry instance using self-
signed certs (e.g. in development). Do not use for production.

Now we are ready to start the server application:

java -jar spring-cloud-datafl owserver-cloudfoundry-1.1.1. RELEASE. jar [--optionl=valuel] [--
option2=val ue2] [etc.]

0 Tip

Of course, all other parameterization options that were available when running the server on
Cloud Foundry are still available. This is particularly true for configuring defaults for applications.
Just substitute cf set - env syntax with export .

@ Note

The current underlying PCF task capabilities are considered experimental for PCF version
versions less than 1.9. See Feature Togglers for how to disable task support in Data Flow.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 23

https://github.com/spring-cloud/spring-cloud-deployer-cloudfoundry/blob/v1.1.1.RELEASE/src/main/java/org/springframework/cloud/deployer/spi/cloudfoundry/CloudFoundryDeploymentProperties.java
http://docs.spring.io/spring-cloud-dataflow/docs/1.1.4.RELEASE/reference/html/enable-disable-specific-features.html

Spring Cloud Data Flow Server for Cloud Foundry

Sample Manifest Template

As an alternative to setting environment variables via cf set - env command, you can curate all the

relevant env-var's in mani f est . yni file and use cf push command to provision the server.

Following is a sample template to provision the server on PCFDev.

applications:
- nane: {PREFERRED NAME OF THE SERVER APP}
host: {PREFERRED HOST}
menory: { PREFERRED MEMORY}
di sk_quot a: {PREFERRED DI SKQUOTA}
timeout: {PREFERRED APl TI MEOUT}
instances: {NO OF | NSTANCES}
pat h: { ABSOLUTE PATH TO SERVER UBER- JAR}
env:
SPRI NG_APPLI CATI ON_NAME: { PREFERRED NAME OF THE SERVER APP}

SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_ORG. pcfdev-org

SPRI NG_CLOUD_DEPLOYER CLOUDFOUNDRY_SPACE: pcfdev-space
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_DOVAI N: | ocal . pcfdev.io
SPRI NG_CLOUD_DEPLOYER CLOUDFOUNDRY_USERNAME: adni n

SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_PASSWORD: admi n

SPRI NG_CLOUD_DEPLOYER CLOUDFOUNDRY_TASK_SERVI CES: mysq|

JAVA_COPTS: '-Dl oggi ng. | evel . cl oudf oundr y=DEBUG
servi ces:
- nysql
- config-server

SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_URL: https://api.local.pcfdev.io

SPRI NG_CLOUD_DEPLOYER CLOUDFQUNDRY_STREAM SERVI CES: rabbit, redis

SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_SKI P_SSL_VALI DATI ON: true
MAVEN_REMOTE_REPCSI TORI ES_REPOL_URL: https://repo.spring.io/libs-snapshot

Once you're ready with the relevant properties in this file, you can issue cf push command from the

directory where this file is stored.

12.6 Running Spring Cloud Data Flow Shell locally

Run the shell and optionally target the Admin application if not running on the same host (will typically

be the case if deployed on Cloud Foundry as explained here)

$ java -jar spring-cloud-dataflowshell-1.1.4. RELEASE. jar

server - unknown: >dat af | ow confi g server http://datafl ow server.cfapps.io

Successfully targeted http://datafl owserver.cfapps.io
dat af | ow: >

By default, the application registry will be empty. If you would like to register all out-of-the-box stream
applications built with the RabbitMQ binder in bulk, you can with the following command. For more

details, review how to register applications.

‘ dat af | ow: >app inport --uri http://bit.|y/Avogadro- GA-stream applications-rabbit-naven

@ A Note about application URIs

While Spring Cloud Data Flow for Cloud Foundry leverages the core Data Flow project, and as
such theoretically supports registering apps using any scheme, the use offi |l e: // URIs does
not really make sense on Cloud Foundry. Indeed, the local filesystem of the Data Flow server

is ephemeral and chances are that you don’t want to manually upload your apps there.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry

24

Spring Cloud Data Flow Server for Cloud Foundry

When deploying apps using Data Flow for Cloud Foundry, a typical choice is to use maven: / /
coordinates, or maybe htt p: // URIs.

Note that at the time of writing, Docker resources are not supported.

You can now use the shell commands to list available applications (source/processors/sink) and create
streams. For example:

datafl ow. > stream create --nanme httptest --definition "http | |1og" --deploy

@ Note

You will need to wait a little while until the apps are actually deployed successfully before posting
data. Tail the log file for each application to verify the application has started.

Now post some data. The URL will be unique to your deployment, the following is just an example
datafl ow. > http post --target http://datafl ow AxwwAhK- httptest-http.cfapps.io --data "hello world"
Look to see if hel | o wor | d ended up in log files for the | og application.

To run a simple task application, you can register all the out-of-the-box task applications with the
following command.

dat af | ow: >app inport --uri http://bit.|y/Addi son- GA-task-applicati ons-maven

Now create a simple timestamp task.

dat af | ow. >t ask create nytask --definition "tinmestanp --format="yyyy'"

Tail the logs, e.g. cf | ogs myt ask and then launch the task in the Ul or in the Data Flow Shell

dat af | ow: >t ask | aunch nytask

You will see the year 2017 printed in the logs. The execution status of the task is stored in the database
and you can retrieve information about the task execution using the shell commandst ask executi on
list andtask execution status --id <I D _OF_TASK> or though the Data Flow Ul.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 25

http://docs.spring.io/spring-cloud-task-app-starters/docs/1.0.1.RELEASE/reference/html/_timestamp_task.html

Spring Cloud Data Flow Server for Cloud Foundry

13. Security

By default, the Data Flow server is unsecured and runs on an unencrypted HTTP connection. You can
secure your REST endpoints, as well as the Data Flow Dashboard by enabling HTTPS and requiring
clients to authenticate. More details about securing the REST endpoints and configuring to authenticate
against an OAUTH backend (i.e: UAA/SSO running on Cloud Foundry), please review the security
section from the core reference guide. The security configurations can be configured in dat af | ow
server.ym or passed as environment variables through cf set - env commands.

13.1 Authentication and Cloud Foundry

When deploying Spring Cloud Data Flow to Cloud Foundry, you can take advantage of the Spring Cloud
Single Sign-On Connector, which provides Cloud Foundry specific auto-configuration support for OAuth
2.0, when used in conjunction with the Pivotal Single Sign-On Service.

Simply set security. basi c. enabl ed to t rue and in Cloud Foundry bind the SSO service to your
Data Flow Server app and SSO will be enabled.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 26

http://docs.spring.io/spring-cloud-dataflow/docs/1.1.4.RELEASE/reference/html/getting-started-security.html
https://github.com/pivotal-cf/spring-cloud-sso-connector
https://github.com/pivotal-cf/spring-cloud-sso-connector

Spring Cloud Data Flow Server for Cloud Foundry

14. Application Names and Prefixes

To help avoid clashes with routes across spaces in Cloud Foundry, a naming strategy to provide a
random prefix to a deployed application is available and is enabled by default. The default configurations
are overridable and the respective properties can be set via cf set - env commands.

For instance, if you'd like to disable the randomization, you can override it through:

cf set-env datafl ow server SPRI NG CLOUD_DEPLOYER CLOUDFOUNDRY_STREAM ENABLE_RANDOM APP_NAME_PREFI X f al se

14.1 Using Custom Routes

As an alternative to random name, or to get even more control over the hostname used by the deployed
apps, one can use custom deployment properties, as such:

[[source]

dat af | ow. >stream create foo --definition "http | |o0g"

dat af | ow: >stream depl oy foo --properties
"app. http. spring. cl oud. depl oyer. cl oudf oundry. domai n=nydonai n. com
app. htt p. spring. cl oud. depl oyer. cl oudf oundry. host =nyhost,
app. htt p. spring. cl oud. depl oyer. cl oudf oundry. r out e- pat h=ny-
pat h"

This would result in the ht t p app being bound to the URL nyhost . nydonai n. conf ny- pat h. Note
that this is an example showing all customization options available. One can of course only leverage
one or two out of the three.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 27

https://github.com/spring-cloud/spring-cloud-deployer-cloudfoundry#application-name-settings-and-deployments
http://myhost.mydomain.com/my-path

Spring Cloud Data Flow Server for Cloud Foundry

15. Configuration Reference

The following pieces of configuration must be provided. These are Spring Boot
@confi gurati onProperti es soyou can setthem as environment variables or by any other means
that Spring Boot supports. Here is a listing in environment variable format as that is an easy way to get
started configuring Boot applications in Cloud Foundry.

Default values cited after the equal sign.
Exanpl e val ues, typical for Pivotal Wb Services, cited as a coment

url of the CF APl (used when using cf login -a for exanple), e.g. https://api.run.pivotal.io
(for setting env var use SPRI NG CLOUD DEPLOYER_ CLOUDFOUNDRY_URL)
spring. cl oud. depl oyer. cl oudf oundry. url =

nanme of the organization that owns the space above, e.g. youruser-org
(For Setting Env var use SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_ORG
spring. cl oud. depl oyer. cl oudf oundry. or g=

name of the space into which nodules will be depl oyed, e.g. devel opnent
(for setting env var use SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_SPACE)
spring. cl oud. depl oyer. cl oudf oundry. space=

the root domain to use when mapping routes, e.g. cfapps.io
(for setting env var use SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_DOVAI N)
spring. cl oud. depl oyer. cl oudf oundry. domai n=

usernane and password of the user to use to create apps

(for setting env var use SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_USERNAME and
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_PASSWORD)

spring. cl oud. depl oyer. cl oudf oundry. user name=

spring. cl oud. depl oyer. cl oudf oundry. passwor d=

Whether to allow self-signed certificates during SSL validation
(for setting env var use SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_SKI P_SSL_VALI DATI ON)
spring. cl oud. depl oyer. cl oudf oundry. ski pSsl Val i dati on=f al se

Comma separated set of service instance names to bind to every stream app depl oyed.
Anongst ot her things, this should include a service that will be used

for Spring Coud Stream binding, e.g. rabbit

(for setting env var use SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_STREAM SERVI CES)
spring. cl oud. depl oyer. cl oudf oundry. stream servi ces=

Health check type to use for stream apps. Accepts 'none' and 'port'
spring. cl oud. depl oyer. cl oudf oundry. stream heal t h- check=

Conme separated set of service instance nanmes to bind to every task app depl oyed.
Amongst other things, this should include an RDBMS service that will be used

for Spring O oud Task execution reporting, e.g. ny_nysql

(for setting env var use SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY TASK_SERVI CES)
spring. cl oud. depl oyer. cl oudf oundry. t ask. servi ces=

Tineout to use, in seconds, when doing bl ocking APl calls to C oud Foundry.
(for setting env var use SPRI NG CLOUD DEPLOYER CLOUDFOUNDRY_TASK_API _TI MEQUT
and SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_STREAM APl _TI MEQUT)

spring. cl oud. depl oyer. cl oudf oundry. stream api Ti reout =360

spring. cl oud. depl oyer. cl oudf oundry. t ask. api Ti meout =360

Note that you can set the following properties
spring. cl oud. depl oyer. cl oudf oundry. servi ces,

spring. cl oud. depl oyer. cl oudf oundry. bui | dpack or the Spring Cloud Deployer standard
spring. cl oud. depl oyer. nenory and spri ng. cl oud. depl oyer . di sk as part of an individual
deployment request prefixed by the app. <name of appl i cati on>. For example

‘>stream create --nanme ticktock --definition "tine | |og

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 28

Spring Cloud Data Flow Server for Cloud Foundry

‘ >stream depl oy --nane ticktock --properties "app.tine.spring.cloud. depl oyer. menory=2g"

will deploy the time source with 2048MB of memory, while the log sink will use the default 1024MB.

15.1 Understanding what’s going on

If you want to get better insights into what is happening when your streams and tasks are being deployed,
you may want to turn on the following features:

Reactor "stacktraces", showing which operators were involved before an error occurred. This is helpful
as the deployer relies on project reactor and regular stacktraces may not always allow understanding
the flow before an error happened. Note that this comes with a performance penalty, so is disabled

by default.

spring. cl oud. dat af | ow. server. cl oudf oundry. debugReactor = true

Deployer and Cloud Foundry client library request/response logs. This allows seeing detailed

conversation between the Data Flow server and the Cloud Foundry Cloud Controller.

| oggi ng. | evel . cl oudf oundry-client = DEBUG

15.2 Using Spring Cloud Config Server

Spring Cloud Config Server can be used to centralize configuration properties for Spring Boot
applications. Likewise, both Spring Cloud Data Flow and the applications orchestrated using Spring
Cloud Data Flow can be integrated with config-server to leverage the same capabilities. Let's review
the integration steps for both the variants.

Spring Cloud Data Flow and Spring Cloud Config Server

Download 1.4.x release of Spring Boot from start.spring.io

* Add spri ng-cl oud- dat af | ow ser ver - cl oudf oundr y- aut oconf i g dependency pointing to

Spring Cloud Data Flow’s Cloud Foundry release

Add @nabl eDat aFl owSer ver to the downloaded application

@pr i ngBoot Appl i cati on
@nabl eDat aFl owSer ver
public class DataFl owServer {

public static void main(String[] args) {
new Spri ngApplication(DataFl owServer.cl ass).run(args);
}
}

* Add spring-cloud-services-starter-config-client dependency in pom xmni . A maven
example follows.
<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cloud-datafl ow server-cl oudf oundry-autoconfig</artifactld>
<ver si on>CF_SERVER_VERSI ON</ ver si on>
</ dependency>
<dependency>
<groupl d>i o. pi votal . spri ng. cl oud</ gr oupl d>
<artifact!|d>spring-cloud-services-starter-config-client</artifactld>
<versi on>CONFI G_CLI ENT_VERSI ON</ ver si on>
</ dependency>
Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 29

http://start.spring.io
https://github.com/spring-cloud/spring-cloud-dataflow-server-cloudfoundry/releases

Spring Cloud Data Flow Server for Cloud Foundry

Where, CF_SERVER VERSI ON and CONFI G_CLI ENT_VERSI ON tokens can be the latest release
versions of SCDF's CF-server and Spring Cloud Config Server client for Pivotal Cloud Foundry
respectively.

* Build the application locally

This completes the custom build of Spring Cloud Data Flow with spri ng-cl oud- servi ces-
starter-config-client library included in it as a dependency.

The final Uber-jar is now ready to be deployed to Cloud Foundry. With this setup and having the deployed
application bound to config-server service on Cloud Foundry, we can successfully negotiate, read, and
resolve centralized properties at the runtime.

Follow the documentation for Config Server for Pivotal Cloud Foundry. For more details, please refer to
Spring Cloud Services client-dependencies documentation.

Stream, Task, and Spring Cloud Config Server

Similar to Spring Cloud Data Flow server, it is also possible to configure both the stream and task
applications to resolve the centralized properties from config-server.

Let's assume you'd like to read properties for t i ne- sour ce application from config-server.

» Download the t i me- sour ce application starter with "Rabbit binder starter" from start-scs.cfapps.io/

» Load the downloaded project in an IDE

+ Add
@ nport (org.springfranmework. cl oud. stream app. ti ne. source. Ti meSour ceConfi gurati on. cl ass
to import time-source’s configuration properties

e Add spri ng-cl oud-servi ces-starter-config-client dependency
* Build the application locally

This completes the custom build of ti nme-sour ce application with spri ng-cl oud- servi ces-
starter-config-client library included in it as a dependency. A maven example follows.

<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud. stream app</ gr oupl d>
<artifactld>spring-cloud-starter-streamsource-tinme</artifactld>

</ dependency>

<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cloud-starter-streamrabbit</artifactld>

</ dependency>

<dependency>
<groupl d>i o. pi votal . spri ng. cl oud</ gr oupl d>
<artifactld>spring-cloud-services-starter-config-client</artifactld>
<versi on>CONFI G_CLI ENT_VERSI ON</ ver si on>

</ dependency>

Where, CONFI G_CLI ENT_VERSI ON can be the latest release of Spring Cloud Config Server client for
Pivotal Cloud Foundry.

The final t i me- sour ce Uber-jar is now ready to be registered in Spring Cloud Data Flow. For more
details, review how to register applications. With this setup and having the deployed application bound

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 30

https://github.com/spring-cloud/spring-cloud-dataflow-server-cloudfoundry/releases
https://github.com/pivotal-cf/spring-cloud-services-connector/releases
http://docs.pivotal.io/spring-cloud-services/config-server
http://docs.pivotal.io/spring-cloud-services/client-dependencies.html#config-server
http://start-scs.cfapps.io/
https://github.com/pivotal-cf/spring-cloud-services-connector/releases

Spring Cloud Data Flow Server for Cloud Foundry

to config-server service on Cloud Foundry, we can successfully negotiate, read, and resolve centralized
properties at the runtime.

@ Note

When deploying apps using Data Flow for Cloud Foundry, a typical choice is to use maven: / /
coordinates, or maybe http:// URIs.

Sample Manifest Template

Following mani f est . yml template includes the required env-var’s for the Spring Cloud Data Flow
server to successfully run on Cloud Foundry and automatically resolve centralized properties from
config-server at the runtime.

applications:
- nane: test-server
host: test-server
menory: 1G
di sk_quota: 1G
instances: 1
pat h: spring-cl oud- dat af | ow ser ver - cl oudf oundr y- VERSI ON. j ar
env:
SPRI NG_APPLI CATI ON_NAME: test-server
SPRI NG_CLOUD DEPLOYER CLOUDFOUNDRY_URL: <URL>
SPRI NG_CLOUD_DEPLOYER CLOUDFOUNDRY_ORG <ORG>
SPRI NG_CLOUD DEPLOYER_CLOUDFOUNDRY_SPACE: <SPACE>
SPRI NG_CLOUD_DEPLOYER_ CLOUDFOUNDRY_DOVAI N: <DOVAI N>
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_USERNAME: <USER>
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_PASSWORD: <PASSWORD>
MAVEN_REMOTE_REPCSI TORI ES_REPOL_URL: https://repo.spring.io/libs-rel ease
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_STREAM SERVI CES: config-server #this is for all the stream
appl i cati ons
SPRI NG_CLOUD_DEPLOYER CLOUDFOUNDRY_TASK_SERVI CES: config-server #this is for all the task
appl i cations
services:
- nysql
- config-server #this is for the server

Where, config-server is the name of the Spring Cloud Config Service instance
running on Cloud Foundry. By binding the service to both Spring Cloud Data Flow
server and as well as all the Spring Cloud Stream and Spring Cloud Task applications
through SPRI NG_CLOUD _DEPLOYER CLOUDFOUNDRY_STREAM SERVI CES: confi g-server and
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_TASK_SERVI CES: confi g- server respectively, we
can now resolve centralized properties backed by this service.

Self-signed SSL Certificate and Spring Cloud Config Server

Often, in a development environment, we may not have a valid certificate to enable SSL communication
between clients and the backend services. However, the config-server for Pivotal Cloud Foundry uses
HTTPS for all client-to-service communication, so it is necessary to add a self-signed SSL certificate
in environments with no valid certificates.

Using the same mani f est . ynl template listed in the previous section, for the server, we can provide
the self-signed SSL certificate via: TRUST_CERTS: <API _ENDPO NT>.

For Spring Cloud Stream and Spring Cloud Task applications, it is necessary to wrap the
TRUST_CERTS in SPRI NG _APPLI CATI ON_JSON token - this instructs the server to propagate
SPRI NG_APPLI CATI ON_JSON content to all the deployed applications.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 31

Spring Cloud Data Flow Server for Cloud Foundry

However, the deployed applications require TRUST CERTS as a flat env-
var as opposed to being wrapped inside SPRI NG APPLI CATI ON JSON, so

we will have to instruct the server with yet another set of tokens
SPRI NG _CLOUD_DEPLOYER_CLOUDFOUNDRY_STREAM USE_SPRI NG _APPLI CATI ON_JSON:
fal se and

SPRI NG_CLOUD_DEPLOYER_CLOUDFCQUNDRY_TASK_USE_SPRI NG_APPLI CATI ON_JSON: fal se
for stream and task applications respectively. With this setup, the applications will be deployed with the
content in SPRI NG_APPLI| CATI ON_JSON as flat env-var's.

Let's review the updated mani f est . ym with the required changes.

appl i cations:
- nane: test-server
host: test-server
nmenory: 1G
di sk_quota: 1G
instances: 1
pat h: spring-cl oud- dat af | ow ser ver - cl oudf oundr y- VERSI ON. j ar
env:
SPRI NG_APPLI CATI ON_NAME: test-server
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_URL: <URL>
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_ORG: <ORG>
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_SPACE: <SPACE>
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_DOVAI N: <DOVAI N>
SPRI NG_CLOUD_DEPLOYER _CLOUDFQUNDRY_USERNAME: <USER>
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_PASSWORD: <PASSWORD>
MAVEN_REMOTE_REPCS| TORI ES_REPOL_URL: https://repo.spring.io/libs-rel ease
SPRI NG_CLOUD_DEPLOYER CLOUDFOUNDRY_STREAM SERVI CES: config-server #this is for all the stream
appl i cations
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_TASK_SERVI CES: config-server #this is for all the task
appl i cati ons
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_STREAM USE_SPRI NG _APPLI CATI ON JSON: false #this is for all the
stream appl i cati ons
SPRI NG_CLOUD_DEPLOYER_CLOUDFOUNDRY_TASK_USE_SPRI NG_APPLI CATI ON_JSON: false #this is for all the task
appl i cations
TRUST_CERTS: <API _ENDPO NT> #this is for the server
SPRI NG_APPLI CATI ON_JSON: ' {"spri ng. cl oud. dat af | ow. appl i cati onProperties. stream TRUST_CERTS" :
<API _ENDPO NT>, "spri ng. cl oud. dat af | ow. appl i cati onProperties.task. TRUST_CERTS" : <API _ENDPO NT>}'
services:
- nysql
- config-server #this is for the server

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 32

Spring Cloud Data Flow Server for Cloud Foundry

16. Application Level Service Bindings

When deploying streams in Cloud Foundry, you can take advantage of application specific service
bindings, so not all services are globally configured for all the apps orchestrated by Spring Cloud Data
Flow.

For instance, if you'd like to provide mysql service binding only for the j dbc application in the following
stream definition, you can pass the service binding as a deployment property.

dat af | ow. >stream create --name httptojdbc --definition "http | jdbc"
dat af | ow: >stream depl oy --name httptojdbc --properties
"app. j dbc. spring. cl oud. depl oyer. cl oudf oundry. servi ces=nysql Servi ce"

Where, nysql Service is the name of the service specifically only bound to jdbc
application and the http application wouldn't get the binding by this method. If you have
more than one service to bind, they can be passed as comma separated items (eg:
app.jdbc.spring.cloud.deployer.cloudfoundry.services=mysqlService,someService).

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 33

Spring Cloud Data Flow Server for Cloud Foundry

17. A Note About User Provided Services

In addition to marketplace services, Cloud Foundry supports User Provided Services (UPS). Throughout
this reference manual, regular services have been mentioned, but there is nothing precluding the use
of UPSs as well, whether for use as the messaging middleware (e.g. if you'd like to use an external
Apache Kafka installation) or for ad hoc usage by some of the stream apps (e.g. an Oracle Database).

Let's review an example of extracting and supplying the connection credentials from an UPS.

» A sample UPS setup for Apache Kafka.

cf create-user-provi ded-servi ce kaf kacups -p '{”brokers":"HOST: PORT", "zkNodes": " HOST: PORT" }"

e The UPS credentials will be wrapped within VCAP_SERVI CES and it can be supplied directly in the
stream definition like the following.

stream create fooz --definition "time | |og"

stream depl oy fooz --properties "app.tine.spring.cloud. stream kaf ka. bi nder. br okers=

${vcap. servi ces. kaf kacups. credenti al s. broker s}, app. ti me. spri ng. cl oud. st ream kaf ka. bi nder . zkNodes=
${vcap. servi ces. kaf kacups. credenti al s. zkNodes}, app. | og. spri ng. cl oud. stream kaf ka. bi nder. br oker s=
${vcap. servi ces. kaf kacups. credenti al s. broker s}, app. | og. spri ng. cl oud. stream kaf ka. bi nder. zkNodes=
${vcap. servi ces. kaf kacups. credenti al s. zkNodes}"

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 34

https://docs.cloudfoundry.org/devguide/services/user-provided.html

Spring Cloud Data Flow Server for Cloud Foundry

18. Application Rolling Upgrades

Similar to Cloud Foundry’s blue-green deployments, you can perform rolling upgrades on the
applications orchestrated by Spring Cloud Data Flow.

Let’'s start with the following simple stream definition.

dat af | ow. >stream create --nane foo --definition "time | |0g" --deploy
List Apps.
cf apps
Getting apps in org test-org / space devel opnent as test@ivotal.io...
K
name requested state i nstances menory di sk urls
foo-1 og started 1/1 1G 1G foo-1og. cfapps.io
foo-time started 1/1 1G 1G foo-tine.cfapps.io

Let's assume you've to make an enhancement to update the "logger" to append extra text in every log
statement.

» Download the Log Si nk application starter with "Rabbit binder starter” from start-scs.cfapps.io/

» Load the downloaded project in an IDE
e Import the LogSi nkConfi gur ati on. cl ass

e Adapt the handler to add extra text: | oggi ngHandl er. set Logger Nane("TEST [" +
this.properties.getNane() + "]1");

 Build the application locally

@Bpr i ngBoot Appl i cati on
@ nport (LogSi nkConf i gurati on. cl ass)
public class DenpApplication {

@\ut owi r ed
private LogSi nkProperties properties;

public static void main(String[] args) {
SpringApplication. run(DenmoApplication.class, args);

}

@ean

@per vi ceAct i vat or (i nput Channel = Sink. | NPUT)

publ i c Loggi ngHandl er | 0gSi nkHandl er () {
Loggi ngHandl er | oggi ngHandl er = new Loggi ngHandl er (t hi s. properties. getLevel ().nane());
| oggi ngHandl er . set Expressi on(this. properties.get Expression());
| oggi ngHandl er . set Logger Nane(" TEST [" + this.properties.getNane() + "]");
return | oggi ngHandl er;

}

}

Let's deploy the locally built application to Cloud Foundry

‘# cf push foo-10g-v2 -p denp-0.0.1-SNAPSHOT. jar -n foo-10g-v2 --no-start

List Apps.

cf apps
Getting apps in org test-org / space devel opnment as test@ivotal.io...

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 35

https://docs.pivotal.io/pivotalcf/1-7/devguide/deploy-apps/blue-green.html
http://start-scs.cfapps.io/

Spring Cloud Data Flow Server for Cloud Foundry

K

nanme requested state i nstances menory di sk urls

f oo-1 og started 1/1 1G 1G foo-1og. cfapps.io
foo-tine started 1/1 1G 1G foo-tine.cfapps.io

f oo-1 0g-v2 stopped 1/1 1G 1G foo-10g-v2. cfapps.io

The stream applications do not communicate via (Go)Router, so they aren't generating HTTP
traffic. Instead, they communicate via the underlying messaging middleware such as Kafka or
RabbitMQ. In order to rolling upgrade to route the payload from old to the new version of the
application, you'd have to replicate the SPRI NG_APPLI CATI ON_JSON environment variable from
the old application that includes spri ng. cl oud. stream bi ndi ngs. i nput . desti nati on and
spring. cl oud. st ream bi ndi ngs. i nput . gr oup credentials.

@ Note

You can find the SPRI NG_APPLI CATI ON_J SONof the old applicationvia: " cf env f oo-1 og".

cf set-env foo-log-v2
SPRI NG_APPL| CATI ON_JSON ' {"spri ng. cl oud. st ream bi ndi ngs. i nput. destination":"foo.tinme", "spring.cloud. stream bi ndi ngs. i nput.

Let's start f 0o- | 0og- v2 application.

cf start foo-1o0g-v2

As soon as the application bootstraps, you'd now notice the payload being load balanced between two
log application instances running on Cloud Foundry. Since they both share the same "destination" and
"consumer group", they are now acting as competing consumers.

Old App Logs:
2016- 08- 08T17: 11: 08. 94- 0700 [APP/ 0] QOUT 2016-08-09 00: 11: 08.942 INFO 19 --- [foo.tine.foo-1]
| 0g. si nk : 08/09/16 00:11: 08
2016- 08- 08T17: 11: 10. 95- 0700 [APP/ 0] QUT 2016-08-09 00: 11:10.954 INFO 19 --- [foo.tine.foo-1]
| 0g. si nk : 08/09/16 00:11:10
2016- 08- 08T17: 11: 12. 94- 0700 [APP/ 0] QOUT 2016-08-09 00: 11:12.944 [INFO 19 --- [foo.tine.foo-1]
| 0g. si nk : 08/09/16 00:11:12

New App Logs:

2016- 08-08T17: 11: 07. 94- 0700 [APP/ 0] QUT 2016-08-09 00:11:07.945 INFO 26 --- [foo.time.foo-1] TEST
[l og. si nk : 08/09/16 00:11:07]

2016- 08- 08T17: 11: 09. 92- 0700 [APP/ 0] QUT 2016-08-09 00:11:09.925 INFO 26 --- [foo.tine.foo-1] TEST
[10g. sink : 08/09/16 00:11:09]

2016- 08-08T17: 11: 11. 94- 0700 [APP/ 0] QUT 2016-08-09 00:11:11.941 |INFO 26 --- [foo.tinme.foo-1] TEST
[1 o0g. sink : 08/09/16 00:11: 11]

Deleting the old version f oo- | og from the CF CLI would make all the payload consumed by the f 0o-
| 0g- v2 application. Now, you've successfully upgraded an application in the streaming pipeline without
bringing it down in entirety to do an adjustment in it.

List Apps.
cf apps
Getting apps in org test-org / space devel opment as test@ivotal.io...
K
nanme requested state i nstances menory di sk urls
foo-tine started 1/1 1G 1G foo-tine.cfapps.io
foo-1o0g-v2 started 1/1 1G 1G foo-10g-v2. cfapps.io

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 36

Spring Cloud Data Flow Server for Cloud Foundry

@ Note

A comprehensive canary analysis along with rolling upgrades will be supported via Spinnaker
in future releases.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 37

http://www.spinnaker.io/

Spring Cloud Data Flow Server for Cloud Foundry

19. Maximum Disk Quota Configuration

By default, every application in Cloud Foundry starts with 1G disk quota and this can be adjusted to
a default maximum of 2G. The default maximum can also be overridden up to 10G via Pivotal Cloud
Foundry’s (PCF) Ops Manager GUI.

This configuration is relevant for Spring Cloud Data Flow because every stream and task deployment is
composed of applications (typically Spring Boot uber-jar’s) and those applications are resolved from a
remote maven repository. After resolution, the application artifacts are downloaded to the local Maven
Repository for caching/reuse. With this happening in the background, there is a possibility the default
disk quota (1G) fills up rapidly; especially, when we are experimenting with streams that are made
up of unique applications. In order to overcome this disk limitation and depending on your scaling
requirements,you may want to change the default maximum from 2G to 10G. Let's review the steps to
change the default maximum disk quota allocation.

19.1 PCF’s Operations Manager Configuration

From PCF's Ops Manager, Select "Pivotal Elastic Runtime" tile and navigate to "Application
Developer Controls" tab. Change the "Maximum Disk Quota per App (MB)" setting from 2048
to 10240 (10G). Save the disk quota update and hit "Apply Changes" to complete the configuration
override.

19.2 Scale Application

Once the disk quota change is applied successfully and assuming you've a running application, you
may scale the application with a new di sk_1 i m t through CF CLI.

cf scal e datafl owserver -k 10GB
Scal i ng app datafl owserver in org ORG/ space SPACE as user...
K
state since cpu menory di sk details
#0 runni ng 2016-10-31 03:07:23 PM 1.8% 497.9M of 1.1G 193. 9M of 10G
cf apps
Getting apps in org ORG/ space SPACE as user...
K
name requested state i nst ances menory di sk urls
dat af | ow server started 1/1 1.1G 10G dat af | ow server. apps.io

19.3 Configuring target free disk percentage

Even when configuring the Data Flow server to use 10G of space, there is the possibility of exhausting
the available space on the local disk. The server implements a least recently used (LRU) algorithm
that will remove maven artifacts from the local maven repository. This is configured using the following
configuration property, the default value is 25.

The | ow water mark percentage, expressed as in integer between 0 and 100, that triggers cleanup of
the local nmaven repository

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 38

Spring Cloud Data Flow Server for Cloud Foundry

(for setting env var use SPRI NG CLOUD DATAFLOW SERVER CLOUDFOUNDRY_FREE_DI SK_SPACE_PERCENTAGE)
spring. cl oud. dat af | ow. server. cl oudf oundry. f reeDi skSpacePer cent age=25

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry

39

Part IV. Server Configuration

In this section you will learn how to configure Spring Cloud Data Flow server’s features such as the
relational database to use and security.

Spring Cloud Data Flow Server for Cloud Foundry

20. Feature Toggles

Data Flow server offers specific set of features that can be enabled/disabled when launching. These
features include all the lifecycle operations, REST endpoints (server, client implementations including
Shell and the UlI) for:

1. Streams
2. Tasks
3. Analytics

One can enable, disable these features by setting the following boolean properties when launching the
Data Flow server:

e spring. cloud. dat af | ow. f eat ures. streans- enabl ed
e spring. cloud. dat af | ow. f eat ur es. t asks- enabl ed
e spring. cloud. dat af | ow. f eat ur es. anal yti cs-enabl ed

By default, all the features are enabled. Note: Since analytics feature is enabled by default, the Data
Flow server is expected to have a valid Redis store available as analytic repository as we provide a
defaultimplementation of analytics based on Redis. This also means that the Data Flow server'sheal t h
depends on the redis store availability as well. If you do not want to enabled HTTP endpoints to read
analytics data written to Redis, then disable the analytics feature using the property mentioned above.

The REST endpoint / f eat ur es provides information on the features enabled/disabled.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 41

Spring Cloud Data Flow Server for Cloud Foundry

21. Database Configuration

Spring Cloud Data Flow provides schemas for H2, HSQLDB, MySQL, Oracle, Postgresql, DB2 and
SqlServer that will be automatically created when the server starts.

The JDBC drivers for MySQL (via MariaDB driver), HSQLDB, PostgreSQL along with embedded H2
are available out of the box. If you are using any other database, then the corresponding JDBC driver
jar needs to be on the classpath of the server.

The database properties can be passed as command-line arguments to the Data Flow Server.

For instance, If you are using MySQL.:

java -jar spring-cloud-dataflow server-|ocal/target/spring-cloud-dataflow server-I|ocal-1.0.0.BU LD
SNAPSHOT. j ar \

--spring. datasource. url =jdbc: nysql : <db-info> \

--spring. dat asour ce. user nane=<user > \

--spring. dat asour ce. passwor d=<passwor d> \

--spring. datasource. driver-cl ass-nanme=or g. mari adb. j dbc. Dri ver &

For PostgreSQL:

java -jar spring-cloud-dataflow server-|ocal/target/spring-cloud-dataflow server-I|ocal -1.0.0.BU LD
SNAPSHOT. j ar \

--spring. datasource. url =j dbc: post gresqgl : <db-i nfo> \

--spring. dat asour ce. user nane=<user > \

--spring. dat asour ce. passwor d=<passwor d> \

--spring. datasource. driver-cl ass- nane=or g. postgresql . Dri ver &

For HSQLDB:

java -jar spring-cloud-dataflow server-|ocal/target/spring-cloud-dataflow server-I|ocal -1.0.0.BU LD
SNAPSHOT. j ar \

--spring. datasource. url =j dbc: hsqgl db: <db-i nfo> \

--spring. datasour ce. user nane=SA \

--spring.datasource.driver-cl ass-nanme=org. hsql db. j dbc. JDBCDri ver &

@ Note

There is a schema update to the Spring Cloud Data Flow datastore when upgrading from version
1. 0. x to 1. 1. x. Migration scripts for specific database types can be found here.

@ Note

If you wish to use an external H2 database instance instead of the one embedded with Spring
Cloud Data Flow set the spri ng. dat af | ow. enbedded. dat abase. enabl ed property to
false. If spri ng. dat af | ow. enbedded. dat abase. enabl ed is set to false or a database
other than h2 is specified as the datasource the embedded database will not start.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 42

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-core/src/main/resources/org/springframework/cloud/task/migration

Spring Cloud Data Flow Server for Cloud Foundry

22. Security

By default, the Data Flow server is unsecured and runs on an unencrypted HTTP connection. You can
secure your REST endpoints, as well as the Data Flow Dashboard by enabling HTTPS and requiring
clients to authenticate using either:

e OAuth 2.0
» Basic Authentication

NOTE: By default, the REST endpoints (administration, management and health), as well as the
Dashboard Ul do not require authenticated access.

22.1 Enabling HTTPS

By default, the dashboard, management, and health endpoints use HTTP as a transport. You can switch
to HTTPS easily, by adding a certificate to your configuration in appl i cati on. ym .

server:
port: 8443 O
ssl:

key-alias: yourKeyAlias

key-store: path/to/keystore

key- st or e- passwor d: your KeySt or ePasswor d
key- password: your KeyPasswor d
trust-store: path/to/trust-store

Oo0Oooogo

trust-store-password: your Trust St or ePasswor d

0 As the default port is 9393, you may choose to change the port to a more common HTTPs-typical
port.

0 The alias (or name) under which the key is stored in the keystore.

0 The path to the keystore file. Classpath resources may also be specified, by using the classpath
prefix: cl asspat h: pat h/ t o/ keystore

0 The password of the keystore.

O The password of the key.

0 The path to the truststore file. Classpath resources may also be specified, by using the classpath
prefix: cl asspat h: path/to/trust-store

O The password of the trust store.

@ Note

If HTTPS is enabled, it will completely replace HTTP as the protocol over which the REST
endpoints and the Data Flow Dashboard interact. Plain HTTP requests will fail - therefore, make
sure that you configure your Shell accordingly.

Using Self-Signed Certificates

For testing purposes or during development it might be convenient to create self-signed certificates. To
get started, execute the following command to create a certificate:

$ keytool -genkey -alias datafl ow -keyal g RSA -keystore datafl ow keystore \
-validity 3650 -storetype JKS \
-dnarme "CN=l ocal host, OU=Spring, O=Pivotal, L=Kailua-Kona, ST=H, C=US' [
- keypass dat afl ow - storepass datafl ow

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 43

http://oauth.net/2/

Spring Cloud Data Flow Server for Cloud Foundry

O CNis the only important parameter here. It should match the domain you are trying to access,
e.g. | ocal host .

Then add the following to your appl i cati on. ym file:

server:
port: 8443
ssl:
enabl ed: true
key-al i as: datafl ow
key-store: "/your/path/to/dataflow keystore"
key-store-type: jks
key-store-password: dataflow
key- password: datafl ow

This is all that's needed for the Data Flow Server. Once you start the server, you should be able to
access it via https://localhost:8443/. As this is a self-signed certificate, you will hit a warning in your
browser, that you need to ignore.

Self-Signed Certificates and the Shell

By default self-signed certificates are an issue for the Shell and additional steps are necessary to make
the Shell work with self-signed certificates. Two options are available:

1. Add the self-signed certificate to the JVM truststore
2. Skip certificate validation
Add the self-signed certificate to the JVM truststore

In order to use the JVM truststore option, we need to export the previously created certificate from the
keystore:

‘ $ keytool -export -alias dataflow -keystore datafl ow keystore -file datafl ow cert -storepass dataflow

Next, we need to create a truststore which the Shell will use:

$ keytool -inportcert -keystore dataflow truststore -alias dataflow -storepass dataflow -file
dat af | ow_cert -nopronpt

Now, you are ready to launch the Data Flow Shell using the following JVM arguments:

$ java - Dj avax. net. ssl.trust StorePasswor d=dat af | ow \
-D avax. net.ssl.trustStore=/path/to/datafl ow. truststore \
- D avax. net.ssl.trust StoreType=j ks \
-jar spring-cloud-dataflowshell-1.1.1. RELEASE. | ar

0 Tip

In case you run into trouble establishing a connection via SSL, you can enable additional logging
by using and setting the j avax. net . debug JVM argument to ssl .

Don't forget to target the Data Flow Server with:

dat af | ow. > dat af | ow config server https://|ocal host: 8443/

Skip Certificate Validation

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 44

https://localhost:8443/

Spring Cloud Data Flow Server for Cloud Foundry

Alternatively, you can also bypass the certification validation by providing the optional command-line
parameter - - dat af | ow. ski p-ssl -val i dati on=true.

Using this command-line parameter, the shell will accept any (self-signed) SSL certificate.

0 Warning

If possible you should avoid using this option. Disabling the trust manager defeats the purpose
of SSL and makes you vulnerable to man-in-the-middle attacks.

22.2 Basic Authentication

Basic Authentication can be enabled by adding the following to appl i cati on. ym or via environment
variables:

security:

basi c:
enabl ed: true O
realm Spring Coud Data Fl ow u]

0 Enables basic authentication. Must be set to true for security to be enabled.
0 (Optional) The realm for Basic authentication. Will default to Spring if not explicitly set.

@ Note

Current versions of Chrome do not display the realm. Please see the following Chromium issue
ticket for more information.

In this use-case, the underlying Spring Boot will auto-create a user called user with an auto-generated
password which will be printed out to the console upon startup.

2016-08-23 15:49:26.266 INFO 25861 --- [ost-startStop-1] o.s.b.c.embedded.FilterRegistrationBean : Mapping filter: 'applicationC
2016-08-23 15:49:26.267 INFO 25861 --- [ost-startStop-1] o.s.b.c.e.ServlietRegistrationBean : Mapping servlet: 'dispatcherS
2016-08-23 15:49:27.663 INFO 25861 --- [ost-startStop-1] b.a.s.AuthenticationManagerConfiguration

Using default security password: BcheSGS—31ca—4548—9&32—eda?885d0030

2016-08-23 15:49:28 008 INFO 25861 --- [ost-startStop-1] o.s.s.web.DefaultSecurityFilterChain : Creating filter chain: OrRequ
2016-08-23 15:49:28.415 INFO 25861 --- [ost-startStop-1] o.:=.s.web.DefaultSecurityFilterChain : Creating filter chain: Ant [p
2016-08-23 15:49:28.525 INFO 25861 --- [main] erverConfiguration$H2ServerConfiguration : Starting HZ2 Server with URL:

Figure 22.1. Default Spring Boot user credentials

@ Note

Please be aware of inherentissues of Basic Authentication and logging out, since the credentials
are cached by the browser and simply browsing back to application pages will log you back in.

If you need to define more than one file-based user account, please take a look at File based
authentication.

File based authentication

By default Spring Boot allows you to only specify one single user. Spring Cloud Data Flow also supports
the listing of more than one user in a configuration file, as described below. Each user must be assigned
a password and one or more roles:

security:
basi c:
enabl ed: true

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 45

https://en.wikipedia.org/wiki/Basic_access_authentication
https://bugs.chromium.org/p/chromium/issues/detail?id=544244
https://bugs.chromium.org/p/chromium/issues/detail?id=544244

Spring Cloud Data Flow Server for Cloud Foundry

realm Spring Coud Data Fl ow
dat af | ow:
security:
aut henti cati on:
file:
enabl ed: true O
users: O
bob: bobspassword, ROLE_ADM N O
alice: alicepwd, ROLE_VIEW ROLE_CREATE

0 Enables file based authentication
This is a yaml map of username to password
O Each map val ue is made of a corresponding password and role(s), comma separated

@ Important

As of Spring Cloud Data Flow 1.1, roles are not supported, yet (specified roles are ignored).
Due to an issue in Spring Security, though, at least one role must be provided.

O

LDAP Authentication

Spring Cloud Data Flow also supports authentication against an LDAP server (Lightweight Directory
Access Protocol), providing support for the following 2 modes:

 Direct bind
» Search and bind
When the LDAP authentication option is activated, the default single user mode is turned off.

In direct bind mode, a pattern is defined for the user’s distinguished name (DN), using a placeholder for
the username. The authentication process derives the distinguished name of the user by replacing the
placeholder and use it to authenticate a user against the LDAP server, along with the supplied password.
You can set up LDAP direct bind as follows:

security:
basi c:
enabl ed: true
realm Spring Cl oud Data Fl ow

dat af | ow
security:
aut henti cati on:
| dap:
enabl ed: true O
url: 1dap://|dap. exanpl e. com 3309 O
user DnPat t ern: ui d={ 0}, ou=peopl e, dc=exanpl e, dc=com O

0 Enables LDAP authentication
0 The URL for the LDAP server
0 The distinguished name (DN) pattern for authenticating against the server

The search and bind mode involves connecting to an LDAP server, either anonymously or with a fixed
account, and searching for the distinguished name of the authenticating user based on its username,
and then using the resulting value and the supplied password for binding to the LDAP server. This option
is configured as follows:

security:
basi c:
enabl ed: true

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 46

https://github.com/spring-projects/spring-security/issues/3403

Spring Cloud Data Flow Server for Cloud Foundry

realm Spring Coud Data Fl ow
dat af | ow:
security:
aut henti cati on:
| dap:
enabl ed: true
url: Idap://1ocal host: 10389
manager Dn: ui d=adm n, ou=syst em
manager Passwor d: secr et
user Sear chBase: ou=ot her peopl e, dc=exanpl e, dc=com
user Sear chFi |l ter: uid={0}

O 0Oo0ooogd

0 Enables LDAP integration

The URL of the LDAP server

0 A DN for to authenticate to the LDAP server, if anonymous searches are not supported (optional,
required together with next option)

0 Apassword to authenticate to the LDAP server, if anonymous searches are not supported (optional,
required together with previous option)

0 The base for searching the DN of the authenticating user (serves to restrict the scope of the search)

0 The search filter for the DN of the authenticating user

c: Tip
For more information, please also see the chapter LDAP Authentication of the Spring Security
reference guide.

O

LDAP Transport Security

When connecting to an LDAP server, you typically (In the LDAP world) have 2 options in order to
establish a connection to an LDAP server securely:

» LDAP over SSL (LDAPSs)
» Start Transport Layer Security (Start TLS is defined in REC2830)

As of Spring Cloud Data Flow 1.1.0 only LDAPs is supported out-of-the-box. When using official
certificates no special configuration is necessary, in order to connect to an LDAP Server via LDAPs.
Just change the url format to Idaps, e.g. | daps: / /| ocal host : 636.

In case of using self-signed certificates, the setup for your Spring Cloud Data Flow server becomes
slightly more complex. The setup is very similar to the section called “Using Self-Signed Certificates”
(Please read first) and Spring Cloud Data Flow needs to reference a trustStore in order to work with
your self-signed certificates.

@ Important

While useful during development and testing, please never use self-signed certificates in
production!

Ultimately you have to provide a set of system properties to reference the trustStore and its credentials
when starting the server:

$ java - Dj avax. net.ssl.trust StorePassword=dat af | ow \
-D avax. net.ssl.trustStore=/path/to/datafl ow. truststore \
- D avax. net.ssl.trust StoreType=sj ks \
-jar spring-cloud-starter-dataflowserver-|local-1.1.1. RELEASE. j ar

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 47

http://docs.spring.io/spring-security/site/docs/current/reference/html/ldap.html
https://www.ietf.org/rfc/rfc2830.txt

Spring Cloud Data Flow Server for Cloud Foundry

As mentioned above, another option to connect to an LDAP server securely is via Start TLS. In the LDAP
world, LDAPs is technically even considered deprecated in favor of Start TLS. However, this option is
currently not supported out-of-the-box by Spring Cloud Data Flow.

Please follow the following issue tracker ticket to track its implementation. You may also want to look
at the Spring LDAP reference documentation chapter on Custom DirContext Authentication Processing
for further details.

22.3 OAuth 2.0

OAuth 2.0 allows you to integrate Spring Cloud Data Flow into Single Sign On (SSO) environments.
The following 2 OAuth2 Grant Types will be used:

» Authorization Code - Used for the GUI (Browser) integration. You will be redirected to your OAuth
Service for authentication

» Password - Used by the shell (And the REST integration), so you can login using username and
password

The REST endpoints are secured via Basic Authentication but will use the Password Grand Type under
the covers to authenticate with your OAuth2 service.

@ Note

When authentication is set up, it is strongly recommended to enable HTTPS as well, especially
in production environments.

You can turn on OAuth2 authentication by adding the following to appli cation.ym or via
environment variables:

security:
basi c:
enabl ed: true O
realm Spring Cloud Data Fl ow O
oaut h2: O
client:

client-id: myclient

client-secret: mysecret

access-token-uri: http://127.0.0.1: 9999/ oaut h/ t oken

user -aut hori zation-uri: http://127.0.0.1: 9999/ oaut h/ aut hori ze
resour ce:

user-info-uri: http://127.0.0.1:9999/ ne

0 Mustbe settot rue for security to be enabled.

The realm for Basic authentication

0 OAuth Configuration Section, if you leave off the OAuth2 section, Basic Authentication will be
enabled instead.

@ Note

As of version 1.0 Spring Cloud Data Flow does not provide finer-grained authorization. Thus,
once you are logged in, you have full access to all functionality.

O

You can verify that basic authentication is working properly using curl:

$ curl -u nyusername: nypassword http://1 ocal host: 9393/

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 48

https://github.com/spring-cloud/spring-cloud-dataflow/issues/963
http://docs.spring.io/spring-ldap/docs/current/reference/#custom-dircontext-authentication-processing
http://oauth.net/2/

Spring Cloud Data Flow Server for Cloud Foundry

As a result you should see a list of available REST endpoints.
Authentication using the Spring Cloud Data Flow Shell

If your OAuth2 provider supports the Password Grant Type you can start the Data Flow Shell with:

$ java -jar spring-cloud-dataflowshell-1.1.1. RELEASE.jar \
--datafl ow uri=http://1ocal host: 9393 \
--dat af | ow. user name=ny_user nane - - dat af | ow. passwor d=nmy_passwor d

@ Note

Keep in mind that when authentication for Spring Cloud Data Flow is enabled, the underlying
OAuth2 provider must support the Password OAuth2 Grant Type, if you want to use the Shell.

From within the Data Flow Shell you can also provide credentials using:

dataf | ow config server --uri http://local host: 9393 --username ny_username --password ny_password

Once successfully targeted, you should see the following output:

dat af | ow: >dat afl ow config info
dat afl ow config info

#Credent i al s#[user name=' my_user nane, password=****']#

#Resul t # #
#Tar get #http://1 ocal host: 9393 #

OAuth2 Authentication Examples
Local OAuth2 Server

With Spring Security OAuth you can easily create your own OAuth2 Server with the following 2 simple
annotations:

* @EnableResourceServer
* @EnableAuthorizationServer
A working example application can be found at:

https://github.com/ghillert/oauth-test-server/

Simply clone the project, built and start it. Furthermore configure Spring Cloud Data Flow with the
respective Client Id and Client Secret.

Authentication using GitHub

If you rather like to use an existing OAuth2 provider, here is an example for GitHub. First you need to
Register a new application under your GitHub account at:

https://github.com/settings/developers

When running a default version of Spring Cloud Data Flow locally, your GitHub configuration should
look like the following:

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 49

http://projects.spring.io/spring-security-oauth/
https://github.com/ghillert/oauth-test-server/
https://github.com/settings/developers

Spring Cloud Data Flow Server for Cloud Foundry

Application name

Spring Cloud Data Flow
Something users will recognize and trust
Homepage URL

http:Mocalhost:8393/
The full URL to your application homepage
Application description

Spring Cloud Data Flow

#
This is displayed to all potential users of your application

Authorization callback URL

http:/Mocalhest:3393/ogin

Your application's callback URL. Read our OAuth documentation for more information.

Delete application

Figure 22.2. Register an OAuth Application for GitHub

@ Note

For the Authorization callback URL you will enter Spring Cloud Data Flow's Login URL, e.g.
| ocal host: 9393/ 1 ogi n.

Configure Spring Cloud Data Flow with the GitHub relevant Client Id and Secret:

security:
basi c:
enabl ed: true
oaut h2:
client:
client-id: your-github-client-id
client-secret: your-github-client-secret
access-token-uri: https://github.conllogin/oauth/access_token
user-aut hori zation-uri: https://github.conllogin/oauth/authorize
resource:
user-info-uri: https://api.github.conf user

@ Important

GitHub does not support the OAuth2 password grant type. As such you cannot use the Spring
Cloud Data Flow Shell in conjunction with GitHub.

22.4 Securing the Spring Boot Management Endpoints

When enabling security, please also make sure that the Spring Boot HTTP Management Endpoints
are secured as well. You can enable security for the management endpoints by adding the following
toapplication.ym :

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 50

http://localhost:9393/login
http://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-monitoring.html

Spring Cloud Data Flow Server for Cloud Foundry

managenent :
cont ext Pat h: / managenent
security:
enabl ed: true

@ Important

If you don't explicitly enable security for the management endpoints, you may end up having
unsecured REST endpoints, despite securi ty. basi c. enabl ed being settotrue.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 51

Spring Cloud Data Flow Server for Cloud Foundry

23. Monitoring and Management

The Spring Cloud Data Flow server is a Spring Boot application that includes the Actuator library, which
adds several production ready features to help you monitor and manage your application.

The Actuator library adds http endpoints under the context path / managenent that is also a discovery
page for available endpoints. For example, there is a heal t h endpoint that shows application health
information and an env that lists properties from Spring’s Conf i gur abl eEnvi r onnment . By default
only the health and application info endpoints are accessible. The other endpoints are considered to
be sensitive and need to be enabled explicitly via configuration. If you are enabling sensitive endpoints
then you should also secure the Data Flow server’s endpoints so that information is not inadvertently
exposed to unauthenticated users. The local Data Flow server has security disabled by default, so all
actuator endpoints are available.

The Data Flow server requires a relational database and if the feature toggled for analytics is enabled,
a Redis server is also required. The Data Flow server will autoconfigure the DataSourceHealthIndicator
and RedisHealthindicator if needed. The health of these two services is incorporated to the overall health
status of the server through the heal t h endpoint.

23.1 Spring Boot Admin

A nice way to visualize and interact with actuator endpoints is to incorporate the Spring Boot Admin
client library into the Spring Cloud Data Flow server. You can create the Spring Boot Admin application
by following a few simple steps.

An easy way to include the client library into the Data Flow server is to create a new Data Flow Server
project from start.spring.io. Type 'flow' in the "Search for dependencies” text box and select the server
runtime you want to customize. A simple way to have the Spring Cloud Data Flow server be a client
to the Spring Boot Admin Server is by adding a dependency to the Data Flow server's pom and an
additional configuration property as documented in Registering Client Applications.

This will result in a Ul with tabs for each of the actuator endpoints.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 52

http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#production-ready
http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#production-ready-customizing-endpoints
https://github.com/spring-projects/spring-boot/blob/v1.4.1.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/DataSourceHealthIndicator.java
https://github.com/spring-projects/spring-boot/blob/v1.4.1.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/RedisHealthIndicator.java
https://github.com/codecentric/spring-boot-admin
http://codecentric.github.io/spring-boot-admin/1.4.3/#set-up-admin-server
http://start.spring.io
http://codecentric.github.io/spring-boot-admin/1.4.3/#register-clients-via-spring-boot-admin

Spring Cloud Data Flow Server for Cloud Foundry

Q‘] spring @ APPLICATIONS JOURNAL ABOUT

spring -cloud-dataflow-server-local http://feynman:9393/management/health ¢
http://feynman:9393/management &

" - _ ' ““eynman:9393 #
i Details BlLog Ll Metrics ZEnvironment +Logging O IMX EThreads @Trace SeHeapdump

c £ T sec

app name:spring-cloud-starter-dataflow-server-local Application up
version: 1.1.0.M2
description: Local Data Flow Server Starter
DiskSpace uP
git commit:
time: '2016-10-18T15:56:26.000Z' Free 16.1G6
id: 4285340
branch: master Threshold Hen
Redis UpP
Version 28.17
Db UP
Database H2
Hello)
RefreshScope uUp
ConfigServer
JVM
Memory (1G / 1.1G) Uptime 00:00:01:01 [d:h:m:s]
Systemload 0.85 (last min. e rung-sz)
Heap Memory (953.4M / 1.1G)
86.40% Available Processors 2

Figure 23.1. Spring Boot Admin Ul

Additional configuration is required to interact with IMX beans and logging levels. Refer to the Spring
Boot admin documentation for more information. As only the i nf o and heal t h endpoints are available
to unauthenticated users, you should enable security on the Data Flow Server and also configure Spring
Boot Admin server’s security so that it can securely access the actuator endpoints.

23.2 Monitoring Deployed Applications

The applications that are deployed by Spring Cloud Data Flow are based on Spring Boot which contains
several features for monitoring your application in production. Each deployed application contains
several web endpoints for monitoring and interacting with Stream and Task applications.

In particular, the metrics endpoint contains counters and gauges for HTTP requests, System Metrics
(such as JVM stats), DataSource Metrics and Message Channel Metrics (such as message rates). In
turn, these metrics can be exported periodically to various application monitoring tools via MetricWriter
implementations. You can control how often and which Spring Boot metrics are exported through the
use of include and exclude name filters.

The project Spring Cloud Data Flow Metrics provides the foundation for exporting Spring Boot metrics.
The main project provides Spring Boots AutoConfiguration to setup the exporting process and common
functionality such as defining a metric name prefix appropriate for your environement. For example, you
may want to include the region where the application is running in addition to the application’s name and
stream/task to which it belongs. The main project also includes a LogMetri cWi t er so that metrics
can be stored into the log file. While very simple in approach, log files are often ingested into application
monitoring tools (such as Splunk) where they can be further processed to create dashboards of an
application’s performance.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 53

http://codecentric.github.io/spring-boot-admin/1.4.3/#_securing_spring_boot_admin_server
http://codecentric.github.io/spring-boot-admin/1.4.3/#_securing_spring_boot_admin_server
http://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html
http://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html#production-ready-system-metrics
http://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html#production-ready-datasource-metrics
http://docs.spring.io/spring-integration/reference/htmlsingle/#mgmt-channel-features
http://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html#production-ready-metric-writers
https://github.com/spring-cloud/spring-cloud-dataflow-metrics

Spring Cloud Data Flow Server for Cloud Foundry

The project Spring Cloud Data Flow Metrics Datadog Metrics provides integration to export Spring Boot
metrics to Datadog.

To make use of this functionality, you will need to add additional dependencies into your Stream and
Task applications. To customize the "out of the box" Task and Stream applications you can use the
Data Flow Initializr to generate a project and then add to the generated Maven pom file the MetricWriter
implementation you want to use. The documentation on the Data Flow Metrics project pages provides
the additional information you need to get started.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 54

https://github.com/spring-cloud/spring-cloud-dataflow-metrics-datadog
https://www.datadoghq.com/
http://start-scs.cfapps.io/

Part V. Streams

In this section you will learn all about Streams and how to use them with Spring Cloud Data Flow.

Spring Cloud Data Flow Server for Cloud Foundry

24. Introduction

In Spring Cloud Data Flow, a basic stream defines the ingestion of event data from a source to a sink that
passes through any number of processors. Streams are composed of Spring Cloud Stream applications
and the deployment of stream definitions is done via the Data Flow Server (REST API). The Getting
Started section shows you how to start the server and how to start and use the Spring Cloud Data Flow
shell.

A high level DSL is used to create stream definitions. The DSL to define a stream that has an http source
and a file sink (with no processors) is shown below

‘http | file

The DSL mimics UNIX pipes and filters syntax. Default values for ports and filenames are used in this
example but can be overridden using - - options, such as

‘http --server.port=8091 | file --directory=/tnp/httpdata/

To create these stream definitions you use the shell or make an HTTP POST request to the Spring
Cloud Data Flow Server. For more information on making HTTP request directly to the server, consult
the REST API Guide.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 56

http://cloud.spring.io/spring-cloud-stream/

Spring Cloud Data Flow Server for Cloud Foundry

25. Stream DSL

In the example above, we connected a source to a sink using the pipe symbol | . You can also pass
properties to the source and sink configurations. The property names will depend on the individual app
implementations, but as an example, the htt p source app exposes a server. port setting and it
allows you to change the data ingestion port from the default value. To create the stream using port
8000, we would use

datafl ow. > stream create --definition "http --server.port=8000 | |0g" --nanme nyhttpstream

The shell provides tab completion for application properties and also the shell command app i nfo
<appType>: <appNane> provides additional documentation for all the supported properties.

@ Note

Supported Stream <appType>'s are: source, processor, and sink

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 57

Spring Cloud Data Flow Server for Cloud Foundry

26. Register a Stream App

Register a Stream App with the App Registry using the Spring Cloud Data Flow Shell app regi ster
command. You must provide a unique name, application type, and a URI that can be resolved to the

app artifact. For the type, specify "source", "processor", or "sink". Here are a few examples:

dat af | ow. >app regi ster --name nysource --type source --uri maven://com exanpl e: nysource: 0. 0. 1- SNAPSHOT

dat af | ow. >app regi ster --name nyprocessor --type processor --uri file:///Users/exanplel
nyprocessor-1.2.3.jar

dat af | ow. >app regi ster --nanme nysink --type sink --uri http://exanple.com nysink-2.0.1.jar

When providing a URI with the maven scheme, the format should conform to the following:

maven: // <groupl d>: <artifactl d>[: <extensi on>[: <cl assifier>]]:<version>

For example, if you would like to register the snapshot versions of the ht t p and | og applications built
with the RabbitMQ binder, you could do the following:

dat af | ow. >app register --nanme http --type source --uri maven://

or g. spri ngf ramewor k. cl oud. stream app: htt p-source-rabbit: 1. 1. 2. BU LD- SNAPSHOT

dat af | ow. >app register --nanme log --type sink --uri maven://org.springframework. cl oud. stream app: | 0og-
sink-rabbit:1.1.2. BU LD- SNAPSHOT

If you would like to register multiple apps at one time, you can store them in a properties file where the
keys are formatted as <t ype>. <nane> and the values are the URIs.

For example, if you would like to register the snapshot versions of the ht t p and | og applications built
with the RabbitMQ binder, you could have the following in a properties file [eg: stream-apps.properties]:

sour ce. htt p=maven: // or g. spri ngf ramewor k. cl oud. st ream app: htt p-source-rabbit: 1. 1. 2. BUl LD- SNAPSHOT
si nk. | og=maven://org. springframework. cl oud. stream app: | 0og- si nk-rabbi t: 1. 1. 2. BUl LD- SNAPSHOT

Then to import the apps in bulk, use the app i nmport command and provide the location of the
properties file via - - uri :

dat af | ow. >app inport --uri file:///<YOUR_FILE LOCATI ON>/ stream apps. properties

For convenience, we have the static files with application-URIs (for both maven and docker) available
for all the out-of-the-box stream and task/batch app-starters. You can point to this file and import all
the application-URIs in bulk. Otherwise, as explained in previous paragraphs, you can register them
individually or have your own custom property file with only the required application-URIs in it. It is
recommended, however, to have a "focused" list of desired application-URIs in a custom property file.

List of available Stream Application Starters:

Artifact Type Stable Release SNAPSHOT Release
RabbitMQ + Maven http://bit.ly/Avogadro-SR1- http://bit.ly/Bacon-BUILD-
stream-applications-rabbit- SNAPSHOT-stream-
maven applications-rabbit-maven
RabbitMQ + Docker http://bit.ly/Avogadro-SR1- N/A]
stream-applications-rabbit-
docker

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 58

http://bit.ly/Avogadro-SR1-stream-applications-rabbit-maven
http://bit.ly/Avogadro-SR1-stream-applications-rabbit-maven
http://bit.ly/Avogadro-SR1-stream-applications-rabbit-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-rabbit-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-rabbit-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-rabbit-maven
http://bit.ly/Avogadro-SR1-stream-applications-rabbit-docker
http://bit.ly/Avogadro-SR1-stream-applications-rabbit-docker
http://bit.ly/Avogadro-SR1-stream-applications-rabbit-docker

Spring Cloud Data Flow Server for Cloud Foundry

Artifact Type

Kafka 0.9 + Maven

Kafka 0.9 + Docker

Stable Release

http://bit.ly/Avogadro-SR1-
stream-applications-kafka-09-

SNAPSHOT Release

http://bit.ly/Bacon-BUILD-
SNAPSHOT-stream-

maven

http://bit.ly/Avogadro-SR1-
stream-applications-kafka-09-

docker

applications-kafka-09-maven

N/A]

Kafka 0.10 + Maven

http://bit.ly/Avogadro-SR1-
stream-applications-kafka-10-

http://bit.ly/Bacon-BUILD-
SNAPSHOT-stream-

maven

applications-kafka-10-maven

Kafka 0.10 + Docker

http://bit.ly/Avogadro-SR1-

N/A]

stream-applications-kafka-10-
docker

List of available Task Application Starters:

Artifact Type Stable Release SNAPSHOT Release

Maven http://bit.ly/Addison-GA-task- http://bit.ly/Belmont-BUILD-
applications-maven SNAPSHOT-task-applications-
maven
Docker http://bit.ly/Addison-GA-task- N/A]

applications-docker

You can find more information about the available task starters look the Task App Starters Project Page
and related reference documentation. For more information about the available stream starters look at
the Stream App Starters Project Page and related reference documentation.

As an example, if you would like to register all out-of-the-box stream applications built with the RabbitMQ
binder in bulk, you can with the following command.

dat af | ow: >app inport --uri http://bit.|y/Avogadro- SR1-stream appli cations-rabbit-nmaven

You can also pass the - - | ocal option (which is TRUE by default) to indicate whether the properties
file location should be resolved within the shell process itself. If the location should be resolved from the
Data Flow Server process, specify - -1 ocal fal se.

When using either app regi ster or app inport, if a stream app is already registered with the
provided name and type, it will not be overridden by default. If you would like to override the pre-existing
stream app, then include the - - f or ce option.

@ Note

In some cases the Resource is resolved on the server side, whereas in others the URI will be
passed to a runtime container instance where it is resolved. Consult the specific documentation
of each Data Flow Server for more detail.

Spring Cloud Data Flow

1.1.1.RELEASE Server for Cloud Foundry 59

http://bit.ly/Avogadro-SR1-stream-applications-kafka-09-maven
http://bit.ly/Avogadro-SR1-stream-applications-kafka-09-maven
http://bit.ly/Avogadro-SR1-stream-applications-kafka-09-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-09-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-09-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-09-maven
http://bit.ly/Avogadro-SR1-stream-applications-kafka-09-docker
http://bit.ly/Avogadro-SR1-stream-applications-kafka-09-docker
http://bit.ly/Avogadro-SR1-stream-applications-kafka-09-docker
http://bit.ly/Avogadro-SR1-stream-applications-kafka-10-maven
http://bit.ly/Avogadro-SR1-stream-applications-kafka-10-maven
http://bit.ly/Avogadro-SR1-stream-applications-kafka-10-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-10-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-10-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-10-maven
http://bit.ly/Avogadro-SR1-stream-applications-kafka-10-docker
http://bit.ly/Avogadro-SR1-stream-applications-kafka-10-docker
http://bit.ly/Avogadro-SR1-stream-applications-kafka-10-docker
http://bit.ly/Addison-GA-task-applications-maven
http://bit.ly/Addison-GA-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Addison-GA-task-applications-docker
http://bit.ly/Addison-GA-task-applications-docker
http://cloud.spring.io/spring-cloud-task-app-starters/
http://cloud.spring.io/spring-cloud-stream-app-starters/

Spring Cloud Data Flow Server for Cloud Foundry

26.1 Whitelisting application properties

Stream applications are Spring Boot applications which are aware of many Section 37.1, “Common
application properties”, e.g. ser ver . port but also families of properties such as those with the prefix
spring.jmx and | oggi ng. When creating your own application it is desirable to whitelist properties
so that the shell and the Ul can display them first as primary properties when presenting options via
TAB completion or in drop-down boxes.

To whitelist application properties create a file named spri ng-confi gurati on-net adat a-
whitelist.properties inthe META- | NF resource directory. There are two property keys that can
be used inside this file. The first key is named confi gur ati on- properti es. cl asses. The value
is a comma separated list of fully qualified @Conf i gur at i onPr opert y class names. The second key
is confi guration-properties. names whose value is a comma separated list of property names.
This can contain the full name of property, such as server. port or a partial name to whitelist a
category of property names, e.g. spri ng. j nx.

The Spring Cloud Stream application starters are a good place to look for examples of usage. Here is
a simple example of the file sink’s spri ng- confi gurati on-met adat a-whitelist. properties
file

‘ configuration-properties.classes=org. springframework. cl oud. stream app.file.sink.FileSinkProperties

If we also wanted to add ser ver. port to be white listed, then it would look like this:

configuration-properties.classes=org. springframework. cl oud. stream app. file.sink.FileSi nkProperties
configuration-properties. nanes=server. port

@ Important

Make sure to add 'spring-boot-configuration-processor' as an optional dependency to generate
configuration metadata file for the properties.

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-configuration-processor</artifactld>
<opti onal >t rue</ opti onal >

</ dependency>

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 60

https://github.com/spring-cloud-stream-app-starters

Spring Cloud Data Flow Server for Cloud Foundry

27. Creating custom applications

While there are out of the box source, processor, sink applications available, one can extend these
applications or write a custom Spring Cloud Stream application.

The process of creating Spring Cloud Stream applications via Spring Initializr is detailed in the Spring
Cloud Stream documentation. It is possible to include multiple binders to an application. If doing so,
refer the instructions in the section called “Passing Spring Cloud Stream properties for the application”
on how to configure them.

For supporting property whitelisting, Spring Cloud Stream applications running in Spring Cloud Data
Flow may include the Spring Boot conf i gur at i on- pr ocessor as an optional dependency, as in the
following example.

<dependenci es>
<I-- other dependencies -->
<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-configuration-processor</artifactld>
<opti onal >t rue</ opti onal >
</ dependency>
</ dependenci es>

@ Note

Make sure that the spri ng- boot - naven- pl ugi n is included in the POM. The plugin is
necesary for creating the executable jar that will be registered with Spring Cloud Data Flow.
Spring Initialzr will include the plugin in the generated POM.

Once a custom application has been created, it can be registered as described in 2?2?.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 61

https://github.com/spring-cloud/spring-cloud-stream
http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#_getting_started

Spring Cloud Data Flow Server for Cloud Foundry

28. Creating a Stream

The Spring Cloud Data Flow Server exposes a full RESTful API for managing the lifecycle of stream
definitions, but the easiest way to use is it is via the Spring Cloud Data Flow shell. Start the shell as
described in the Getting Started section.

New streams are created by with the help of stream definitions. The definitions are built from a simple
DSL. For example, let's walk through what happens if we execute the following shell command:

datafl ow. > stream create --definition "time | log" --name ticktock

This defines a stream named t i ckt ock based off the DSL expressiontine | | og. The DSL uses
the "pipe" symbol | , to connect a source to a sink.

Then to deploy the stream execute the following shell command (or alternatively add the - - depl oy
flag when creating the stream so that this step is not needed):

dat af | ow. > stream depl oy --nane ticktock

The Data Flow Server resolves t i me and | og to maven coordinates and uses those to launch theti ne
and | og applications of the stream.

2016- 06- 01 09: 41:21.728 |NFO 79016 --- [ni0-9393-exec-6] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app ticktock.log instance 0
Logs will be in /var/folders/wn/8jxmtbhdlvj28c8vj37n900nD000gn/ T/ spri ng-cl oud-
dat af | ow 912434582726479179/ ti ckt ock- 1464788481708/ ti ckt ock. | og
2016- 06-01 09:41:21.914 | NFO 79016 --- [nio-9393-exec-6] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app ticktock.time instance 0
Logs will be in /var/folders/wn/8jxmtbdlvj28c8vj37n900nD000gn/ T/ spri ng-cl oud-
dat af | ow- 912434582726479179/ ti ckt ock- 1464788481910/ ti cktock. tine

In this example, the time source simply sends the current time as a message each second, and the log
sink outputs it using the logging framework. You can tail the st dout log (which has an "_<instance>"
suffix). The log files are located within the directory displayed in the Data Flow Server’s log output, as
shown above.

$ tail -f /var/folders/wn/8jxmtbdlvj28c8vj37n900nmD000gn/ T/ spri ng- cl oud- dat af | ow 912434582726479179/
ticktock-1464788481708/ti cktock. | og/ stdout_0O. | og

2016- 06-01 09:45:11.250 |INFO 79194 --- [kafka-binder-] |og.sink : 06/01/16 09:45:11
2016- 06- 01 09:45:12.250 |NFO 79194 --- [kafka-bi nder-] | og. sink : 06/01/16 09:45:12
2016- 06-01 09:45:13.251 |INFO 79194 --- [kafka-binder-] |og.sink : 06/01/16 09:45:13

28.1 Application properties

Application properties are the properties associated with each application in the stream. When the
application is deployed, the application properties are applied to the application via command line
arguments or environment variables based on the underlying deployment implementation.

Passing application properties when creating a stream

The following stream

datafl ow. > stream create --definition "tinme | log" --name ticktock

can have application properties defined at the time of stream creation.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 62

Getting-Started.xml#getting-started

Spring Cloud Data Flow Server for Cloud Foundry

The shell command app info <appType>: <appNanme> displays the white-listed application
properties for the application. For more info on the property white listing refer to Section 26.1
“Whitelisting application properties”

Below are the white listed properties for the app t i ne:

dat af | ow. > app info source:tinme
Option Nane # Descri ption # Def aul t
Type #
#trigger.tine-unit #The TimeUnit to apply to del ay#<none>
#j ava. util.concurrent. Ti neUnit #
#val ues. #
#
#trigger.fixed-del ay #Fi xed delay for periodic #1
#] ava. | ang. | nt eger #
#triggers. #
#
#trigger.cron #Cron expression value for the #<none>
#j ava.lang. String #
#Cron Trigger. #
#
#trigger.initial-delay #lnitial delay for periodic #0
#j ava. | ang. | nt eger #
#triggers. #
#
#trigger. max- nessages #Maxi mum nessages per poll, -1 #1
#j ava. | ang. Long #
#means infinity. #
#
#trigger. date-format #Format for the date val ue. #<none>
#j ava.lang. String #

Below are the white listed properties for the app | 0g:

dat afl ow. > app info sink:log
Opti on Nane # Description # Def aul t
Type #
#l og. name #The name of the | ogger to use.#<none>
#j ava. |l ang. String #
#l og. | evel #The |l evel at which to |og #<none>
#or g. spri ngfranework. i nt egrati o#
#messages.
#n. handl er. Loggi ngHandl er $Level #
#| og. expr essi on #A SpEL expression (agai nst the#payl oad
#j ava. |l ang. String #
#i ncom ng nessage) to evaluate #
#
#as the | ogged nessage. #
#

The application properties for the t i me and | og apps can be specified at the time of st r eamcreation
as follows:

datafl ow. > streamcreate --definition "tinme --fixed-delay=5 | log --level =WARN' --nane ticktock

Note that the properties f i xed- del ay and | evel defined above for the apps ti me and | og are the
'short-form' property names provided by the shell completion. These 'short-form' property names are
applicable only for the white-listed properties and in all other cases, only fully qualified property names
should be used.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 63

Spring Cloud Data Flow Server for Cloud Foundry

28.2 Deployment properties

When deploying the stream, properties that control the deployment of the apps into the target platform
are known as depl oynment properties. For instance, one can specify how many instances need to be
deployed for the specific application defined in the stream using the deployment property called count .

Passing instance count as deployment property

If you would like to have multiple instances of an application in the stream, you can include a property
with the deploy command:

dat af | ow. > stream depl oy --nane ticktock --properties "app.tine.count=3"

Note that count is the reserved property name used by the underlying deployer. Hence, if the
application also has a custom property hamed count, it is not supported when specified in 'short-
form' form during stream deployment as it could conflict with the instance count deployer property.
Instead, the count as a custom application property can be specified in its fully qualified form (example:
app. f oo. bar. count) during stream deployment or it can be specified using 'short-form" or fully
qualified form during the stream creation where it will be considered as an app property.

@ Important

See Chapter 35, Using Labels in a Stream.

Inline vs file reference properties

When using the Spring Cloud Data Flow Shell, there are two ways to provide deployment properties:
either inline or via a file reference. Those two ways are exclusive and documented below:

Inline properties
use the - - properti es shell option and list properties as a comma separated list of key=value
pairs, like so:

stream depl oy foo
--properties "app.transform count=2, app.transform producer. partiti onKeyExpressi on=payl oad"

Using a file reference
use the --propertiesFil e option and point it to a local Java . properties file or . yam
or . ym file. The file should be on the file system of the machine running the shell. If using a
. properties file, normal rules apply (ISO 8859-1 encoding, =, <space> or : delimiter, etc.)
although we recommend using = as a key-value pair delimiter for consistency.

stream depl oy foo --propertiesFile nmyprops. properties

where nypr ops. properti es contains:

app. transf orm count =2
app. transform producer. partiti onKeyExpressi on=payl oad

Both the above properties will be passed as deployment properties for the stream f 0o above.
Passing application properties when deploying a stream

The application properties can also be specified when deploying a stream. When specified during
deployment, these application properties can either be specified as 'short-form' property names

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 64

Spring Cloud Data Flow Server for Cloud Foundry

(applicable for white-listed properties) or fully qualified property names. The application properties
should have the prefix "app.<appName/label>".

For example, the stream

dat af | ow. > stream create --definition "tinme | |og" --nane ticktock

can be deployed with application properties using the 'short-form' property names:

dat af | ow. >stream depl oy ticktock --properties "app.tine.fixed-del ay=5, app.| og.| evel =ERROR'

When using the app label,

streamcreate ticktock --definition "a: time | b: |og"

the application properties can be defined as:

stream depl oy ticktock --properties "app.a.fixed-del ay=4, app. b. | evel =ERROR"

Passing Spring Cloud Stream properties for the application

Spring Cloud Data Flow sets the required Spring Cloud Stream properties for the
applications inside the stream. Most importantly, the spri ng. cl oud. st r eam bi ndi ngs. <i nput/
out put >. dest i nat i on is set internally for the apps to bind.

If someone wants to override any of the Spring Cloud Stream properties, they can be set via deployment
properties.

For example, for the below stream

datafl ow. > stream create --definition "http | transform --
expr essi on=payl oad. get Val ue(' hel |l 0').toUpperCase() | |og" --nane ticktock

if there are multiple binders available in the classpath for each of the applications and the binder is
chosen for each deployment then the stream can be deployed with the specific Spring Cloud Stream
properties as:

dat af | ow: >stream depl oy ticktock --
properties "app.tine.spring.cloud. stream bi ndi ngs. out put. bi nder =kaf ka, app. transf orm spri ng. cl oud. st ream bi ndi ngs. i nput . bi nd

@ Note

Overriding the destination names is not recommended as Spring Cloud Data Flow takes care
of setting this internally.

Passing per-binding producer consumer properties

A Spring Cloud Stream application can have producer and consumer properties set per - bi ndi ng
basis. While Spring Cloud Data Flow supports specifying short-hand notation for per binding producer
properties such as partiti onKeyExpression, partiti onKeyExtractorC ass as described in
the section called “Passing stream partition properties during stream deployment”, all the supported
Spring Cloud Stream producer/consumer properties can be set as Spring Cloud Stream properties for
the app directly as well.

The consumer properties can be set for the i nbound channel name with the prefix app.
[app/ | abel nane]. spring. cl oud. stream bi ndi ngs. <channel Nanme>. consurer. and the

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 65

Spring Cloud Data Flow Server for Cloud Foundry

producer properties can be set for the out bound channel name with the prefix app. [app/
| abel nane]. spring.cloud. stream bi ndi ngs. <channel Nanme>. pr oducer .. For example,
the stream

datafl ow. > stream create --definition "tinme | |log" --name ticktock

can be deployed with producer/consumer properties as:

dat af | ow. >stream depl oy ticktock --
properties "app.tinme.spring.cloud.stream bi ndi ngs. out put. producer. requi redG oups=nyG oup, app. ti me. spri ng. cl oud. stream bi ndi

The bi nder specific producer/consumer properties can also be specified in a similar way.

For instance

dat af | ow: >stream depl oy ticktock --
properties "app.time.spring.cloud.stream rabbit.bindings.output.producer. aut oBi ndDl g=true, app. | og. spri ng. cl oud. stream rabbi

Passing stream partition properties during stream deployment

A common pattern in stream processing is to partition the data as it is streamed. This entails deploying
multiple instances of a message consuming app and using content-based routing so that messages with
a given key (as determined at runtime) are always routed to the same app instance. You can pass the
partition properties during stream deployment to declaratively configure a partitioning strategy to route
each message to a specific consumer instance.

See below for examples of deploying partitioned streams:

app.[app/label name].producer.partitionKeyExtractorClass
The class name of a PartitionKeyExtractorStrategy (default nul 1)

app.[app/label name].producer.partitionKeyExpression
A SpEL expression, evaluated against the message, to determine the partition key; only applies if
partitionKeyExtractord ass is null. If both are null, the app is not partitioned (default nul)

app.[app/label name].producer.partitionSelectorClass
The class name of a PartitionSelectorStrategy (default nul 1)

app.[app/label name].producer.partitionSelectorExpression
A SpEL expression, evaluated against the partition key, to determine the partition index to which
the message will be routed. The final partition index will be the return value (an integer) modulo
[next Modul €] . count . If both the class and expression are null, the underlying binder’s default
PartitionSelectorStrategy will be applied to the key (default nul I ')

In summary, an app is partitioned if its count is > 1 and the previous app has a
partiti onKeyExtractorCl ass or partitionKeyExpression (class takes precedence).
When a partition key is extracted, the partitioned app instance is determined by invoking
the partitionSel ectorC ass, if present, or the partitionSel ectorExpression %
partitionCount, where partitionCount is application count in the case of RabbitMQ, and the
underlying partition count of the topic in the case of Kafka.

If neither a partitionSel ectorCl ass nor a partitionSel ector Expressi on is present the
result is key. hashCode() % partitionCount.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 66

Spring Cloud Data Flow Server for Cloud Foundry

Passing application content type properties

In a stream definition you can specify that the input or the output of an application need to be converted
to a different type. You can use the i nput Type and out put Type properties to specify the content
type for the incoming data and outgoing data, respectively.

For example, consider the following stream:

dat af | ow: >stream create tuple --definition "http | filter --inputType=application/x-spring-tuple
- - expr essi on=payl oad. hasFi el dName(' hello') | transform --

expr essi on=payl oad. get Val ue(' hell 0").t oUpper Case()
| log" --deploy

The ht t p app is expected to send the data in JSON and the fi | t er app receives the JSON data and
processes it as a Spring Tuple. In order to do so, we use the i nput Type property on the filter app
to convert the data into the expected Spring Tuple format. The t r ansf or mapplication processes the
Tuple data and sends the processed data to the downstream | og application.

When sending some data to the ht t p application:

dat af | ow. >http post --data {"hello":"world","foo":"bar"} --contentType application/json --target http://
| ocal host : <htt p-port>

At the log application you see the content as follows:

‘INFO 18745 --- [transformtuple-1] |o0g. sink : WORLD

Depending on how applications are chained, the content type conversion can be specified either as
via the - - out put Type in the upstream app or as an --i nput Type in the downstream app. For
instance, in the above stream, instead of specifying the - - i nput Type on the 'transform' application to
convert, the option - - out put Type=appl i cati on/ x-spri ng-tupl e can also be specified on the
'http' application.

For the complete list of message conversion and message converters, please refer to Spring Cloud
Stream documentation.

Overriding application properties during stream deployment

Application properties that are defined during deployment override the same properties defined during
the stream creation.

For example, the following stream has application properties defined during stream creation:

datafl ow. > streamcreate --definition "tinme --fixed-delay=5 | log --level =WARN' --nane ticktock

To override these application properties, one can specify the new property values during deployment:

dat af | ow. >stream depl oy ticktock --properties "app.tine.fixed-del ay=4, app.| og.| evel =ERROR'

28.3 Deployment properties

When deploying the stream, properties that control the deployment of the apps into the target platform
are known as depl oynent properties. For instance, one can specify how many instances need to be
deployed for the specific application defined in the stream using the deployment property called count .

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 67

http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/index.html#contenttypemanagement

Spring Cloud Data Flow Server for Cloud Foundry

Passing instance count as deployment property

If you would like to have multiple instances of an application in the stream, you can include a property
with the deploy command:

dat af | ow. > stream depl oy --nane ticktock --properties "app.tine.count=3"

Note that count is the reserved property name used by the underlying deployer. Hence, if the
application also has a custom property hamed count, it is not supported when specified in 'short-
form' form during stream deployment as it could conflict with the instance count deployer property.
Instead, the count as a custom application property can be specified in its fully qualified form (example:
app. f oo. bar. count) during stream deployment or it can be specified using 'short-form' or fully
qualified form during the stream creation where it will be considered as an app property.

@ Important

See Chapter 35, Using Labels in a Stream.

Inline vs file reference properties

When using the Spring Cloud Data Flow Shell, there are two ways to provide deployment properties:
either inline or via a file reference. Those two ways are exclusive and documented below:

Inline properties
use the - - properti es shell option and list properties as a comma separated list of key=value
pairs, like so:

stream depl oy foo
--properties "app.transform count=2, app.transform producer. partiti onKeyExpressi on=payl oad"

Using a file reference
use the - - properti esFi | e option and point it to a local . properties,.yam or.yml file (i.e.
that lives in the filesystem of the machine running the shell). Being read as a . properti es file,
normal rules apply (ISO 8859-1 encoding, =, <space> or : delimiter, etc.) although we recommend
using = as a key-value pair delimiter for consistency:

stream depl oy foo --propertiesFile nmyprops. properties

where nypr ops. properti es contains:

app. t ransf orm count =2
app. transform producer. partiti onKeyExpr essi on=payl oad

Both the above properties will be passed as deployment properties for the stream f 0o above.

In case of using YAML as the format for the deployment properties, use the . yam or. ynl file extention
when deploying the stream,

stream depl oy foo --propertiesFile nyprops.yan

where nypr ops. yam contains:

app:
transform
count: 2
producer:
partitionKeyExpression: payl oad

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 68

Spring Cloud Data Flow Server for Cloud Foundry

29. Destroying a Stream

You can delete a stream by issuing the st r eam dest r oy command from the shell:

‘dataflow> stream destroy --name ticktock

If the stream was deployed, it will be undeployed before the stream definition is deleted.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry

69

Spring Cloud Data Flow Server for Cloud Foundry

30. Deploying and Undeploying Streams

Often you will want to stop a stream, but retain the name and definition for future use. In that case you
can undepl oy the stream by hame and issue the depl oy command at a later time to restart it.

dat af | ow: > stream undepl oy --nane ticktock
dat af | ow. > stream depl oy --nane ticktock

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 70

Spring Cloud Data Flow Server for Cloud Foundry

31. Other Source and Sink Application Types

Let’s try something a bit more complicated and swap out the t i e source for something else. Another
supported source type is ht t p, which accepts data for ingestion over HTTP POSTSs. Note thatthe ht t p
source accepts data on a different port from the Data Flow Server (default 8080). By default the port
is randomly assigned.

To create a stream using an htt p source, but still using the same | og sink, we would change the
original command above to

datafl ow. > streamcreate --definition "http | 10g" --nanme nyhttpstream --depl oy

which will produce the following output from the server

2016- 06- 01 09: 47:58.920 |NFO 79016 --- [i0-9393-exec-10] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app nyhttpstream | og instance 0
Logs will be in /var/folders/wn/8jxmtbhdlvj28c8vj37n900nD000gn/ T/ spri ng-cl oud-
dat af | ow 912434582726479179/ nyht t pst ream 1464788878747/ nyhtt pstream | og
2016- 06-01 09:48:06.396 | NFO 79016 --- [io0-9393-exec-10] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app nyhttpstreamhttp i nstance 0
Logs will be in /var/folders/wn/8jxmtbdlvj28c8vj37n900nD000gn/ T/ spri ng-cl oud-
dat af | ow 912434582726479179/ nyht t pst ream 1464788886383/ nyhtt pstream http

Note that we don't see any other output this time until we actually post some data (using a shell
command). In order to see the randomly assigned port on which the http source is listening, execute:

‘dataflow> runti me apps

You should see that the corresponding http source has a ur| property containing the host and port
information on which it is listening. You are now ready to post to that url, e.g.:

datafl ow. > http post --target http://local host: 1234 --data "hello"
datafl ow. > http post --target http://local host: 1234 --data "goodbye"

and the stream will then funnel the data from the http source to the output log implemented by the log sink

2016- 06-01 09: 50: 22. 121 |INFO 79654 --- [kafka-binder-] |og.sink : hello
2016-06-01 09:50: 26. 810 | NFO 79654 --- [kafka-binder-] |og.sink . goodbye

Of course, we could also change the sink implementation. You could pipe the output to a file (fi |), to
hadoop (hdf s) or to any of the other sink apps which are available. You can also define your own apps.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 71

Spring Cloud Data Flow Server for Cloud Foundry

32. Simple Stream Processing

As an example of a simple processing step, we can transform the payload of the HTTP posted data to
upper case using the stream definitions

‘ http | transform --expressi on=payl oad. t oUpper Case() | |og

To create this stream enter the following command in the shell

datafl ow. > stream create --definition "http | transform --expressi on=payl oad. t oUpper Case() | |0g" --nane
nmyst ream - - depl oy

Posting some data (using a shell command)

‘dataflow> http post --target http://local host: 1234 --data "hell 0"

Will result in an uppercased 'HELLO' in the log

‘ 2016- 06- 01 09: 54: 37. 749 | NFO 80083 --- [kafka-binder-] |og.sink : HELLO

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 72

Spring Cloud Data Flow Server for Cloud Foundry

33. Stateful Stream Processing

To demonstrate the data partitioning functionality, let's deploy the following stream with Kafka as the
binder.

dat af | ow. >stream create --name words --definition "http --server.port=9900 | splitter --
expressi on=payl oad.split(' ') | |og"
Created new stream ' words

dat af | ow: >stream depl oy words --properties
"app. splitter.producer. partitionKeyExpressi on=payl oad, app. | og. count =2"
Depl oyed stream ' words

dat af | ow. >http post --target http://local host: 9900 --data "How nuch wood woul d a woodchuck chuck if a
woodchuck coul d chuck wood"

> POST (text/plain;Charset=UTF-8) http://|ocal host: 9900 How much wood woul d a woodchuck chuck if a
woodchuck coul d chuck wood

> 202 ACCEPTED

You'll see the following in the server logs.

2016- 06- 05 18: 33:24.982 | NFO 58039 --- [nio0-9393-exec-9] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app words. | og instance 0

Logs will be in /var/folders/c3/ctx7_rns6x30tq7rb76wzqw 0000gp/ T/ spri ng- cl oud-
dat af | ow- 694182453710731989/ wor ds- 1465176804970/ wor ds. | og
2016- 06- 05 18:33:24.988 | NFO 58039 --- [nio-9393-exec-9] o.s.c.d.spi.local.Local AppDepl oyer
depl oyi ng app words. | og instance 1

Logs will be in /var/folders/c3/ctx7_rns6x30tq7rb76wzqw 0000gp/ T/ spri ng- cl oud-
dat af | ow 694182453710731989/ wor ds- 1465176804970/ wor ds. | og

Review the wor ds. | og i nstance O logs:

2016- 06- 05 18: 35:47.047 |NFO 58638 --- [kafka-binder-] |og.sink : How
2016- 06- 05 18: 35:47.066 |NFO 58638 --- [kafka-binder-] |og.sink

chuck

2016- 06- 05 18:35:47.066 | NFO 58638 --- [kafka-binder-] |og.sink

chuck

Review the wor ds. | og i nstance 1 logs:

2016- 06- 05 18:35:47.047 |NFO 58639 --- [kafka-binder-] |og.sink

much

2016- 06- 05 18: 35:47.066 |NFO 58639 --- [kafka-binder-] |og.sink

wood

2016- 06-05 18:35:47.066 | NFO 58639 --- [kafka-binder-] |og.sink

woul d

2016- 06- 05 18:35:47.066 | NFO 58639 --- [kafka-binder-] |og.sink ©a
2016- 06- 05 18: 35:47.066 |NFO 58639 --- [kafka-binder-] |og.sink

woodchuck

2016- 06- 05 18: 35:47.067 |NFO 58639 --- [kafka-binder-] |og.sink if
2016- 06- 05 18:35:47.067 | NFO 58639 --- [kafka-binder-] |og.sink ©a
2016- 06- 05 18:35:47.067 | NFO 58639 --- [kafka-binder-] |og.sink

woodchuck

2016- 06- 05 18: 35:47.067 |NFO 58639 --- [kafka-binder-] |og.sink

coul d

2016- 06- 05 18: 35:47.067 |NFO 58639 --- [kafka-binder-] |og.sink

wood

This shows that payload splits that contain the same word are routed to the same application instance.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 73

Spring Cloud Data Flow Server for Cloud Foundry

34. Tap a Stream

Taps can be created at various producer endpoints in a stream. For a stream like this:

streamcreate --definition "http | stepl: transform --expressi on=payl oad.toUpper Case() | step2:
transform --expressi on=payl oad+'!" | |og" --nane mainstream --depl oy

taps can be created at the output of ht t p, st epl and st ep2.

To create a stream that acts as a 'tap' on another stream requires to specify the sour ce desti nati on
nane for the tap stream. The syntax for source destination name is:

1 <streanNanme>. <l abel / appNanme>"

To create a tap at the output of http in the stream above, the source destination name is
mai nst ream htt p To create a tap at the output of the first transform app in the stream above, the
source destination name is nai nst r eam st epl

The tap stream DSL looks like this:

streamcreate --definition ":mainstreamhttp > counter” --name tap_at_http --depl oy

streamcreate --definition ":mainstreamstepl > jdbc" --nanme tap_at_stepl_transfornmer --deploy

Note the colon (:) prefix before the destination names. The colon allows the parser to recognize this as
a destination name instead of an app name.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 74

Spring Cloud Data Flow Server for Cloud Foundry

35. Using Labels in a Stream

When a stream is comprised of multiple apps with the same name, they must be qualified with labels:

streamcreate --definition "http | firstLabel: transform --expressi on=payl oad.toUpper Case() |
secondLabel : transform --expressi on=payl oad+'!"' | log" --name nyStreamWthLabel s --depl oy

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 75

Spring Cloud Data Flow Server for Cloud Foundry

36. Explicit Broker Destinations in a Stream

One can connect to a specific destination name located in the broker (Rabbit, Kafka etc.,) either at the
sour ce or at the si nk position.

The following stream has the destination name at the sour ce position:

streamcreate --definition ":nyDestination > 10g" --nanme ingest_frombroker --deploy

This stream receives messages from the destination nyDesti nati on located at the broker and
connects it to the | og app.

The following stream has the destination name at the si nk position:

streamcreate --definition "http > :nyDestination" --nane ingest_to_broker --deploy

This stream sends the messages from the htt p app to the destination myDest i nat i on located at
the broker.

From the above streams, notice that the htt p and | og apps are interacting with each other via the
broker (through the destination myDest i nat i on) rather than having a pipe directly between ht t p and
| og within a single stream.

It is also possible to connect two different destinations (sour ce and si nk positions) at the broker in
a stream.

streamcreate --definition ":destinationl > :destination2" --nane bridge_destinations --depl oy

In the above stream, both the destinations (desti nati onl and desti nati on2) are located in the
broker. The messages flow from the source destination to the sink destination via a br i dge app that
connects them.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 76

Spring Cloud Data Flow Server for Cloud Foundry

37. Directed Graphs in a Stream

If directed graphs are needed instead of the simple linear streams described above, two features are
relevant.

First, named destinations may be used as a way to combine the output from multiple streams or for
multiple consumers to share the output from a single stream. This can be done using the DSL syntax
http > :nydestinationor:nydestination > |og.

Second, you may need to determine the output channel of a stream based on some information that is
only known at runtime. In that case, a router may be used in the sink position of a stream definition. For
more information, refer to the Router Sink starter's README.

37.1 Common application properties

In addition to configuration via DSL, Spring Cloud Data Flow provides a mechanism for setting common
properties to all the streaming applications that are launched by it. This can be done by adding properties
prefixed with spring. cl oud. dat af | ow. appl i cati onProperti es. stream when starting the
server. When doing so, the server will pass all the properties, without the prefix, to the instances it
launches.

For example, all the launched applications can be configured to use a specific Kafka broker by launching
the configuration server with the following options:

spring. cl oud. dat af | ow. appl i cati onProperties. stream spring. cl oud. stream kaf ka. bi nder. br oker s=192. 168. 1. 100: 9092

spring. cl oud. dat af | ow. appl i cati onProperties. stream spring. cl oud. stream kaf ka. bi nder. zkNodes=192. 168. 1. 100: 2181

This will cause the properties spring.cloud. stream kaf ka. bi nder. brokers and
spring. cl oud. st ream kaf ka. bi nder . zkNodes to be passed to all the launched applications.

@ Note

Properties configured using this mechanism have lower precedence than stream deployment
properties. They will be overridden if a property with the same key is specified at stream
deployment time (e.g. app. http. spring. cl oud. st r eam kaf ka. bi nder. br oker s will
override the common property).

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 77

https://github.com/spring-cloud-stream-app-starters/router/tree/master/spring-cloud-starter-stream-sink-router

Spring Cloud Data Flow Server for Cloud Foundry

38. Stream applications with multiple binder
configurations

In sone cases, a stream can have its applications bound to nultiple spring cloud stream bi nders when
they are required to connect to different nessaging

mi ddl eware configurations. In those cases, it is inportant to nake sure the applications are configured
appropriately with their binder

configurations. For exanple, let's consider the follow ng stream

http | transform --expressi on=payl oad. t oUpper Case() | |og

and in this stream, each application connects to messaging middleware in the following way:

Http source sends events to RabbitMQ (rabbit1l)

Transf orm processor receives events from RabbitMQ (rabbitl) and sends the processed events into Kafka
(kaf kal)

Log sink receives events from Kaf ka (kaf kal)

Here, rabbit1l and kaf kal are the binder names given in the spring cloud stream application
properties. Based on this setup, the applications will have the following binder(s) in their classpath with
the appropriate configuration:

Http - Rabbit binder
Transform - Both Kafka and Rabbit binders
Log - Kafka binder

The spring-cloud-stream bi nder configuration properties can be set within the applications themselves.
If not, they can be passed via depl oynent properties when the stream is deployed.

For example,

dat af | ow. >stream create --definition "http | transform --expressi on=payl oad. t oUpper Case() | |og" --nane
nystream

dat af | ow. >stream depl oy nmystream --properties
"app. http. spring. cl oud. stream bi ndi ngs. out put . bi nder =r abbi t 1, app. t ransf orm spri ng. cl oud. st ream bi ndi ngs. i nput . bi nder =r abbi
app. transform spring. cl oud. stream bi ndi ngs. out put. bi nder =kaf kal, app. | 0g. spri ng. cl oud. st ream bi ndi ngs. i nput. bi nder =kaf kal"

One can override any of the binder configuration properties by specifying them via deployment
properties.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 78

Part VI. Tasks

This section goes into more detail about how you can work with Spring Cloud Tasks. It covers topics
such as creating and running task applications.

If you're just starting out with Spring Cloud Data Flow, you should probably read the Getting Started
guide before diving into this section.

http://cloud.spring.io/spring-cloud-task/

Spring Cloud Data Flow Server for Cloud Foundry

39. Introducing Spring Cloud Task

A task executes a process on demand. In this case a task is a Spring Boot application that is annotated
with @nabl eTask. Hence a user launches a task that performs a certain process, and once complete
the task ends. An example of a task would be a boot application that exports data from a JDBC repository
to an HDFS instance. Tasks record the start time and the end time as well as the boot exit code in a
relational database. The task implementation is based on the Spring Cloud Task project.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 80

http://projects.spring.io/spring-boot/
http://cloud.spring.io/spring-cloud-task/

Spring Cloud Data Flow Server for Cloud Foundry

40. The Lifecycle of a task

Before we dive deeper into the details of creating Tasks, we need to understand the typical lifecycle for
tasks in the context of Spring Cloud Data Flow:

1. Register a Task App

2. Create a Task Definition
3. Launch a Task

4. Task Execution

5. Destroy a Task Definition

40.1 Creating a custom Task Application

While Spring Cloud Task does provide a number of out of the box applications (via the spring-cloud-
task-app-starters), most task applications will be custom developed. In order to create a custom task
application:

1. Create a new project via Spring Initializer via either the website or your IDE making sure to select
the following starters:

a. G oud Task - This dependency is the spri ng- cl oud- starter-task.
b. JDBC - This is the dependency for the spri ng-j dbc starter.
2. Within your new project, create a new class that will serve as your main class:

@nabl eTask
@Bpr i ngBoot Appl i cati on
public class MyTask {

public static void main(String[] args) {
Spri ngApplication. run(MTask. cl ass, args);

}
}

3. With this, you'll need one or more CommandLi neRunner or Appl i cati onRunner within your
application. You can either implement your own or use the ones provided by Spring Boot (there is
one for running batch jobs for example).

4. Packaging your application up via Spring Boot into an Uber jar is done via the standard Boot
conventions.

5. The packaged application can be registered and deployed as noted below.

40.2 Registering a Task Application

Register a Task App with the App Registry using the Spring Cloud Data Flow Shell app regi ster
command. You must provide a unique name and a URI that can be resolved to the app artifact. For the
type, specify "task”. Here are a few examples:

dat af | ow. >app regi ster --nanme taskl --type task --uri maven://com exanpl e: nytask: 1. 0. 2
dat af | ow: >app regi ster --nane task2 --type task --uri file:///Users/exanple/mytask-1.0.2.jar

dat af | ow. >app regi ster --nanme task3 --type task --uri http://exanple.conl nytask-1.0.2.jar

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 81

https://github.com/spring-cloud/spring-cloud-task-app-starters
https://github.com/spring-cloud/spring-cloud-task-app-starters
http://start.spring.io

Spring Cloud Data Flow Server for Cloud Foundry

When providing a URI with the maven scheme, the format should conform to the following:

maven: // <groupl d>: <artifactl d>[: <extensi on>[: <cl assifier>]]:<versi on>

If you would like to register multiple apps at one time, you can store them in a properties file where
the keys are formatted as <t ype>. <nanme> and the values are the URIs. For example, this would be
a valid properties file:

task.foo=file:///tnp/foo.jar
task. bar=file:///tnp/bar.jar

Then use the app i mport command and provide the location of the properties file via - - uri :

app inport --uri file:///tnp/task-apps.properties

For convenience, we have the static files with application-URIs (for both maven and docker) available
for all the out-of-the-box Task app-starters. You can point to this file and import all the application-URIs
in bulk. Otherwise, as explained in previous paragraphs, you can register them individually or have your
own custom property file with only the required application-URIs in it. It is recommended, however, to
have a "focused" list of desired application-URIs in a custom property file.

List of available static property files:

Artifact Type Stable Release SNAPSHOT Release

Maven http://bit.ly/1-0-1-GA-task- http://bit.ly/1-0-2-SNAPSHOT-
applications-maven task-applications-maven

Docker http://bit.ly/1-0-1-GA-task- http://bit.ly/1-0-2-SNAPSHOT-
applications-docker task-applications-docker

For example, if you would like to register all out-of-the-box task applications in bulk, you can with the
following command.

dat af | ow. >app inport --uri http://bit.ly/1-0-1-GA-task-applicati ons-maven

You can also pass the - - | ocal option (which is TRUE by default) to indicate whether the properties
file location should be resolved within the shell process itself. If the location should be resolved from the
Data Flow Server process, specify - -1 ocal fal se.

When using either app regi ster orapp i nport, ifatask app is already registered with the provided
name, it will not be overridden by default. If you would like to override the pre-existing task app, then
include the - - f or ce option.

@ Note

In some cases the Resource is resolved on the server side, whereas in others the URI will be
passed to a runtime container instance where it is resolved. Consult the specific documentation
of each Data Flow Server for more detail.

40.3 Creating a Task

Create a Task Definition from a Task App by providing a definition name as well as properties that
apply to the task execution. Creating a task definition can be done via the restful API or the shell. To

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 82

http://bit.ly/1-0-1-GA-task-applications-maven
http://bit.ly/1-0-1-GA-task-applications-maven
http://bit.ly/1-0-2-SNAPSHOT-task-applications-maven
http://bit.ly/1-0-2-SNAPSHOT-task-applications-maven
http://bit.ly/1-0-1-GA-task-applications-docker
http://bit.ly/1-0-1-GA-task-applications-docker
http://bit.ly/1-0-2-SNAPSHOT-task-applications-docker
http://bit.ly/1-0-2-SNAPSHOT-task-applications-docker

Spring Cloud Data Flow Server for Cloud Foundry

create a task definition using the shell, use the t ask cr eat e command to create the task definition.
For example:

dat af | ow: >t ask create mytask --definition "tinestanp --format=\"yyyy\""
Created new task 'nytask’

A listing of the current task definitions can be obtained via the restful API or the shell. To get the task
definition list using the shell, use the t ask | i st command.

40.4 Launching a Task

An adhoc task can be launched via the restful API or via the shell. To launch an ad-hoc task via the
shell use the t ask | aunch command. For Example:

dat af | ow. >t ask | aunch nyt ask
Launched task 'mytask'

When a task is launched, any properties that need to be passed as the command line arguments to the
task application can be set when launching the task as follows:

dat af | ow: >t ask | aunch nytask --argunments "--server. port=8080, - -foo=bar"

Additional properties meant fora TaskLauncher itself can be passedinusinga- - pr operti es option.
Format of this option is a comma delimited string of properties prefixed with app. <t ask definition
name>. <property>.

If actual property is prefixed with spri ng. cl oud. depl oyer it is passed to TaskLauncher as a
deployment property and its meaning may be TaskLauncher implementation specific. Other properties
are passed to TaskLauncher as application properties and it is up to an implementation to choose
how those are passed into an actual task application.

dat af | ow: >t ask | aunch nmytask --properties
"app. ti mestanp. spring. cl oud. depl oyer. f ool=bar 1, app. ti mest anp. f oo2=bar 2"

40.5 Reviewing Task Executions

Once the task is launched the state of the task is stored in a relational DB. The state includes:

* Task Name

Start Time

e End Time

Exit Code

» Exit Message

Last Updated Time
* Parameters

A user can check the status of their task executions via the restful API or by the shell. To display the
latest task executions via the shell use the t ask execution |i st command.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 83

Spring Cloud Data Flow Server for Cloud Foundry

To get a list of task executions for just one task definition, add - - name and the task definition name, for
example t ask execution list --name foo. To retrieve full details for a task execution use the
t ask di spl ay command with the id of the task execution, for example t ask di splay --id 549.

40.6 Destroying a Task

Destroying a Task Definition will remove the definition from the definition repository. This can be done
via the restful API or via the shell. To destroy a task via the shell use the t ask destr oy command.
For Example:

dat af | ow: >t ask destroy nytask
Destroyed task 'nmytask'

The task execution information for previously launched tasks for the definition will remain in the task
repository.

Note: This will not stop any currently executing tasks for this definition, instead it just removes the task
definition from the database.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 84

Spring Cloud Data Flow Server for Cloud Foundry

41. Task Repository

Out of the box Spring Cloud Data Flow offers an embedded instance of the H2 database. The H2 is
good for development purposes but is not recommended for production use.

41.1 Configuring the Task Execution Repository

To add a driver for the database that will store the Task Execution information, a dependency for the
driver will need to be added to a maven pom file and the Spring Cloud Data Flow will need to be rebuilt.
Since Spring Cloud Data Flow is comprised of an SPI for each environment it supports, please review
the SPI's documentation on which POM should be updated to add the dependency and how to build.
This document will cover how to setup the dependency for local SPI.

Local

1. Open the spring-cloud-dataflow-server-local/pom.xml in your IDE.

2. In the dependenci es section add the dependency for the database driver required. In the sample
below postgresql has been chosen.

<dependenci es>

<dependency>
<groupl d>or g. post gresql </ gr oupl d>
<artifactld>postgresql </artifactld>
</ dependency>

</ dependenci es>

3. Save the changed pom.xml

4. Build the application as described here: Building Spring Cloud Data Flow

Task Application Repository

When launching a task application be sure that the database driver that is being used by Spring Cloud
Data Flow is also a dependency on the task application. For example if your Spring Cloud Data Flow is
set to use Postgresql, be sure that the task application also has Postgresql as a dependency.

@ Note

When executing tasks externally (i.e. command line) and you wish for Spring Cloud Data Flow
to show the TaskExecutions in its Ul, be sure that common datasource settings are shared
among the both. By default Spring Cloud Task will use a local H2 instance and the execution
will not be recorded to the database used by Spring Cloud Data Flow.

41.2 Datasource

To configure the datasource Add the following properties to the dataflow-server.yml or via environment
variables:

a. spring.datasource.url

b. spring.datasource.username

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 85

appendix-building.xml#building

Spring Cloud Data Flow Server for Cloud Foundry

. spring.datasource.password

d. spring.datasource.driver-class-name

For example adding postgres would look something like this:

* Environment variables:

export
export
export
export

spring_dat asource_url =j dbc: postgresql : / /1 ocal host: 5432/ nydb
spri ng_dat asour ce_user nanme=myuser
spri ng_dat asour ce_passwor d=nypass
spring_dat asource_dri ver-cl ass- nane="org. postgresql . Driver"

spring:

dataflow-server.yml

dat asour ce
url: jdbc: postgresql://1ocal host: 5432/ nmydb
user nane: myuser
password: nypass
driver-cl ass-nane: org. postgresql . Driver

Spring Cloud Data Flow

1.1.1.RELEASE Server for Cloud Foundry

86

Spring Cloud Data Flow Server for Cloud Foundry

42. Subscribing to Task/Batch Events

You can also tap into various task/batch events when the task is launched. If the task is enabled to
generate task and/or batch events (with the additional dependencies spri ng- cl oud-t ask- stream
and spri ng- cl oud- st ream bi nder - kaf ka, in the case of Kafka as the binder), those events are
published during the task lifecycle. By default, the destination names for those published events on
the broker (rabbit, kafka etc.,) are the event names themselves (for instance: t ask- events, j ob-

executi on-events etc.,).

dat af | ow: >t ask create myTask --definition “nyBatchJob”
dat af | ow: >t ask | aunch nyTask
dat af | ow. >stream create task-event-subscriberl --definition ":task-events > |og" --deploy

You can control the destination name for those events by specifying explicit names when launching the
task such as:

dat af | ow: >t ask | aunch nmyTask --properties "spring.cloud. stream bi ndi ngs. t ask-
event s. desti nati on=nyTaskEvent s"
dat af | ow. >stream create task-event-subscriber2 --definition ":nmyTaskEvents > | 0g" --depl oy

The default Task/Batch event and destination names on the broker are enumerated below:

Table 42.1. Task/Batch Event Destinations

Event Destination

Task events task-events

Job Execution events j ob- executi on-events
Step Execution events st ep- executi on-events
Item Read events itemread-events

Item Process events item process-events
Item Write events itemwite-events

Skip events ski p-events

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 87

Spring Cloud Data Flow Server for Cloud Foundry

43. Launching Tasks from a Stream

You can launch a task from a stream by using one of the available t ask- | auncher sinks. Currently
the only available t ask- | auncher sink is the t ask- | auncher -1 ocal , which will launch a task on
your local machine.

@ Note

t ask- | auncher - | ocal is meant for development purposes only.

A task-| auncher sink expects a message containing a TaskLaunchRequest object in its payload.
From the TaskLaunchRequest object the task-launcher will obtain the URI of the artifact to be launched
as well as the properties and command line arguments to be used by the task.

The task- | auncher -1 ocal can be added to the available sinks by executing the app register
command as follows:

app register --name task-launcher-local --type sink --uri maven://
org. springfranmewor k. cl oud. stream app: t ask- | auncher - | ocal - si nk- kaf ka: jar: 1. 0. 0. BUl LD- SNAPSHOT

43.1 TriggerTask

One way to launch a task using the t ask-1 auncher is to use the tri ggertask source. The
tri ggertask source will emit a message with a TaskLaunchRequest object containing the required
launch information. An example of this would be to launch the timestamp task once every 5 seconds,
the stream to implement this would look like:

streamcreate foo --definition "triggertask --triggertask.uri=nmaven://
org. springfranmework. cl oud. t ask. app: ti mest anp-task:jar:1.0.0. BU LD- SNAPSHOT --trigger.fixed-delay=5 |
t ask- 1 auncher-1local " --depl oy

43.2 Translator

Another option to start a task using the t ask- | auncher would be to create a stream using a your own
translator (as a processor) to translate a message payload to a TaskLaunchRequest. For example:

http --server.port=9000 | ny-task-processor | task-Iauncher-|ocal

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 88

Part VII. Tasks on Cloud Foundry

Spring Cloud Data Flow’s task functionality exposes new task capabilities within the Pivotal Cloud
Foundry runtime. It is important to note that the current underlying PCF task capabilities are considered
experimental for PCF version versions less than 1.9. See Chapter 20, Feature Toggles for how to disable
task support in Data Flow.

Spring Cloud Data Flow Server for Cloud Foundry

44. Version Compatibility

The task functionality depends on the latest versions of PCF for runtime support. This release requires
PCF version 1.7.12 or higher to run tasks. Tasks are an experimental feature in PCF 1.7 and 1.8 and
a GA feature in PCF 1.9.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 20

Spring Cloud Data Flow Server for Cloud Foundry

45. Tooling

It is important to note that there is no Apps Manager support for tasks as of this release. When running
applications as tasks through Spring Cloud Data Flow, the only way is to view them within the context
of CF CLI.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 91

Spring Cloud Data Flow Server for Cloud Foundry

46. Task Database Schema

The database schema for Task applications was changed slighlty from the 1.0.x to 1.1.x version of
Spring Cloud Task. Since Spring Cloud Data Flow automatically creates the database schema if it is
not present upon server startup, you may need to update the schema if you ran a 1.0.x version of the
Data Flow server and now are upgrading to the 1.1.x version. You can find the migration scripts here in
the Spring Cloud Task Github repository. The documentation for Accessing Services with Diego SSH
and this blog entry for connecting a GUI tools to the MySQL Service in PCF should help you to update
the schema.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 92

https://github.com/spring-cloud/spring-cloud-task/tree/1.1.0.RELEASE/spring-cloud-task-core/src/main/resources/org/springframework/cloud/task/migration
https://docs.cloudfoundry.org/devguide/deploy-apps/ssh-services.html
http://pivotaljourney.blogspot.com/2016/05/connecting-gui-tool-to-mysql-service-in.html

Spring Cloud Data Flow Server for Cloud Foundry

47. Running Task Applications

Running a task application within Spring Cloud Data Flow goes through a slightly different lifecycle
than running a stream application. Both types of applications need to be registered with the appropriate
artifact coordinates. Both need a definition created via the SCDF DSL. However, that's where the
similarities end.

With stream based applications, you "deploy" them with the intent that they run until they are undeployed.
A stream definition is only deployed once (it can be scaled, but only deployed as one instance of the
stream as a whole). However, tasks are launched. A single task definition can be launched many times.
With each launch, they will start, execute, and shut down with PCF cleaning up the resources once the
shutdown has occurred. The following sections outline the process of creating, launching, destroying,
and viewing tasks.

47.1 Create a Task

Similar to streams, creating a task application is done via the SCDF DSL or through the dashboard. To
create a task definition in SCDF, you've to either develop a task application or use one of the out-of-
the-box task app-starters. The maven coordinates of the task application should be registered in SCDF.
For more details on how to register task applications, review register task applications section from the
core docs.

Let's see an example that uses the out-of-the-box t i mest anp task application.

dat af | ow. >t ask create --nane foo --definition "ti mestanp"
Created new task 'foo'

@ Note

Tasks in SCDF do not require explicit deployment. They are required to be launched and with
that there are different ways to launch them - refer to this section for more details.

47.2 Launch a Task

Unlike streams, tasks in SCDF requires an explicit launch trigger or it can be manually kicked-off.

dat af | ow: >t ask | aunch foo
Launched task ' foo'

47.3 View Task Logs

As previously mentioned, the CL CLI is the way to interact with tasks on PCF, including viewing the
logs. In order to view the logs as a task is executing use the following command where f 00 is the name
of the task you are executing:

cf v3-logs foo
Tailing logs for app foo...

2016- 08- 19T09: 44: 49. 11- 0700 [APP/ TASK/ bar 1/ 0] QUT 2016-08-19 16:44:49.111 INFO 7 --- [nai n]
o.s.c.t.a.t. Ti mestanpTaskAppl i cation : Started TinestanpTaskApplication in 2.734 seconds (JVM
running for 3.288)

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 93

http://docs.spring.io/spring-cloud-task-app-starters/docs/current-SNAPSHOT/reference/htmlsingle

Spring Cloud Data Flow Server for Cloud Foundry

2016- 08- 19T09: 44: 49. 13- 0700 [APP/ TASK/ bar 1/ 0] OUT Exit status 0
2016- 08- 19T09: 44: 49. 19- 0700 [APP/ TASK/ bar 1/ 0] OQUT Destroyi ng cont ai ner
2016- 08- 19T09: 44: 50. 41- 0700 [APP/ TASK/ bar 1/ 0] QUT Successful |y destroyed contai ner

@ Note

Logs are only viewable through the CF CLI as the app is running. Historic logs are not available.

47 .4 List Tasks

Listing tasks is as simple as:

dat af | ow: >t ask |i st

Task Nane # Task Definition #Task St at us#

#f 0o #ti mest anp #conpl ete #

475 List Task Executions

If you'd like to view the execution details of the launched task, you could do the following.

dat af | ow. >t ask execution |ist

Task Nanme #| D# Start Tine # End Ti me # Exit
Code

#f oo: cl oud: #1 # Fri Aug 19 09:44:49 PDT #Fri Aug 19 09:44:49 PDT #0 #

47.6 Destroy a Task

Destroying the task application from SCDF removes the task definition from task repository.

dat af | ow. >t ask destroy foo
Destroyed task 'foo'
dat af | ow: >t ask |i st

#Task Nane#Task Defi nition#Task Status#

47.7 Deleting Task From Cloud Foundry

Currently Spring Cloud Data Flow does not delete tasks deployed on a Cloud Foundry instance once
they have been pushed. The only way to do this now is via CLI on a Cloud Foundry instance version
1.9 or above. This is done in 2 steps:

1. Obtain a list of the apps via the cf apps command.
2. ldentify the task app to be deleted and execute the cf del et e <t ask- name> command.

@ Note

The t ask destroy <task-name> only deletes the definition and not the task deployed on
Cloud Foundry.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 94

Part VIIl. Dashboard

This section describe how to use the Dashboard of Spring Cloud Data Flow.

Spring Cloud Data Flow Server for Cloud Foundry

48. Introduction

Spring Cloud Data Flow provides a browser-based GUI and it currently includes 6 tabs:

» Apps Lists all available applications and provides the control to register/unregister them
* Runtime Provides the Data Flow cluster view with the list of all running applications

» Streams List, create, deploy, and destroy Stream Definitions

e Tasks List, create, launch and destroy Task Definitions

» Jobs Perform Batch Job related functions

» Analytics Create data visualizations for the various analytics applications

Upon starting Spring Cloud Data Flow, the Dashboard is available at:

htt p: // <host >: <port >/ dashboard

For example: http://localhost:9393/dashboard

If you have enabled https, then it will be located at htt ps:// | ocal host : 9393/ dashboar d. If you
have enabled security, a login form is available atht t p: / / | ocal host : 9393/ dashboar d/ #/ | ogi n.

Note: The default Dashboard server port is 9393

‘ :’,I spr'ng RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

About

Spring Cloud Data Flow is a unified, distributed, and extensible system for data ingestion, real time analytics, batch processing, and data expert. The
project’s goal is to simplify the development of big data applications.

Dataflow Server Implementation

Name spring-cloud-dataflow-server-local
Version 1.0.0.BUILD-SNAPSHOT (7188a68)
Description Local Data Flow Server

Need Help or Found an Issue?

Project Page http:/fcloud.spring.io/spring-cloud-datafiow/

Sources https://github.com/spring-cloud/spring-cloud-dataflow

Documentation http://docs.spring.io/spring-cloud-dataflow/docs/current/reference/htmi/
APl Docs http://docs spring.io/spring-cloud-dataflow/docs/current/api/

Support Forum http://stackoverflow.com/questions/tagged/spring-cloud

Issue Tracker https://github.com/spring-cloud/spring-cloud-dataflow/issues

Figure 48.1. The Spring Cloud Data Flow Dashboard

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 96

http://localhost:9393/dashboard

Spring Cloud Data Flow Server for Cloud Foundry

49. Apps

The Apps section of the Dashboard lists all the available applications and provides the control to register/
unregister them (if applicable). It is possible to import a number of applications at once using the Bulk
Import Applications action.

‘ ;) spr'ng APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

Apps

This section lists all the available applications and provides the control to register/unregister them (if applicable).

All Applications

+ Register Application(s) 1l Unregister Application(s) A Bulk Import Applications _

Type URI Actions
O file source maven://org.springframework.cloud.stream.app:file-source-rabbit:1.0.2.RELEASE n
o ftp source maven://org.springframework.cloud.stream.app:ftp-source-rabbit:1.0.2.RELEASE n
O gemfire source maven://org.springframework.cloud.stream.app:gemfire-source-rabbit:1.0.2. RELEASE n
O gemfire-cq source maven://org.springframework.cloud.stream.app:gemfire-cq-source-rabbit:1.0.2.RELEASE n
O http source maven://org.springframework.cloud.stream.app:http-source-rabbit:1.0.2. RELEASE n
O jdbc source maven://org.springframework.cloud.stream.app:jdbc-source-rabbit:1.0.2. RELEASE n
O jms source maven://org.springframework.cloud.stream.app:jms-source-rabbit:1.0.2. RELEASE n

Figure 49.1. List of Available Applications

49.1 Bulk Import of Applications

The bulk import applications page provides numerous options for defining and importing a set of
applications in one go. For bulk import the application definitions are expected to be expressed in a
properties style:

<type>. <name> = <coor di nat es>
For example:

task. ti mestanp=maven://org. springframework. cl oud. t ask. app: ti nest anmp-
task: 1. 0. 0. BU LD- SNAPSHOT

processor. transformemaven: // or g. spri ngfranework. cl oud. stream app: transform
processor-rabbit: 1. 0. 3. BU LD SNAPSHOT

At the top of the bulk import page an Uri can be specified that points to a properties file stored
elsewhere, it should contain properties formatted as above. Alternatively, using the textbox labeled Apps
as Properties it is possible to directly list each property string. Finally, if the properties are stored in a
local file the Select Properties File option will open a local file browser to select the file. After setting
your definitions via one of these routes, click Import.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 97

Spring Cloud Data Flow Server for Cloud Foundry

At the bottom of the page there are quick links to the property files for common groups of stream apps
and task apps. If those meet your needs, simply select your appropriate variant (rabbit, kafka, docker,
etc) and click the Import action on those lines to immediately import all those applications.

APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

Bulk Import Applications

Import and register applications in bulk. Simply provide a URI that points to the location of the properties file where the keys are formatted as type.name and the values are
the URIs of the apps. For convenience, a list of out-of-the-box Stream and Task app starters is provided below, as well.

OR

Enter the list of properties into the text area field below. Alternatively, you can alsoc
select a file in your local file system, which is used to populate the text area field.

Apps as Properties

Select Properties File [choose File | No file chosen

[Force @

Out-of-the-box Stream app-starters

Name Force

Maven based Stream Applications with RabbitMQ Binder 0

Docker based Stream Applications with RabbitMQ Binder [m]

Action
Maven based Stream Applications with Kafka Binder (] H

Docker based Stream Applications with Kafka Binder @]

Out-of-the-box Task app-starters

Name Force

Action
Maven based Task Applications (] H

Docker based Task Applications 0

Figure 49.2. Bulk Import Applications

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 98

Spring Cloud Data Flow Server for Cloud Foundry

50. Runtime

The Runtime section of the Dashboard application shows the Spring Cloud Data Flow cluster view with
the list of all running applications. For each runtime app the state of the deployment and the number
of deployed instances is shown. A list of the used deployment properties is available by clicking on the
app id.

A -
‘ ;J Sprlng APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

Cluster view

This section shows the Spring Cloud Data Flow cluster view with the list of all running apps.

Runtime Apps

foo.log deployed 1

foo.time deployed 1

Figure 50.1. List of Running Applications

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 99

Spring Cloud Data Flow Server for Cloud Foundry

51. Streams

The Streams section of the Dashboard provides the Definitions tab that provides a listing of Stream
definitions. There you have the option to deploy or undeploy those stream definitions. Additionally
you can remove the definition by clicking on destroy. Each row includes an arrow on the left, which
can be clicked to see a visual representation of the definition. Hovering over the boxes in the visual
representation will show more details about the apps including any options passed to them. In this
screenshot the timer stream has been expanded to show the visual representation:

Definitions Create Stream

Actions

» minutes :timer.time > transform --expression=payload.substring(2,4) | log deployed W Undeploy b
p seconds :timer.time > transform --expression=payload.substring(4) | log deployed W Undeploy o
¥ timer time --date-format=hhmmss | log deployed © Details W Undeploy D

‘ = time I%]—E%H:) log ‘

Figure 51.1. List of Stream Definitions

If the details button is clicked the view will change to show a visual representation of that stream and
also any related streams. In the above example, if clicking details for the timer stream, the view will
change to the one shown below which clearly shows the relationship between the three streams (two
of them are tapping into the timer stream).

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 100

Spring Cloud Data Flow Server for Cloud Foundry

‘ : ‘ spr'ng APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

timer

194 = ———

‘ B time #]—E%I:) log ’
A transform é‘]—%lb log
k> log

A\ transform

Figure 51.2. Stream Details Page

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 101

Spring Cloud Data Flow Server for Cloud Foundry

52. Create Stream

The Create Stream section of the Dashboard includes the Spring Flo designer tab that provides the
canvas application, offering a interactive graphical interface for creating data pipelines.

In this tab, you can:

» Create, manage, and visualize stream pipelines using DSL, a graphical canvas, or both

» Write pipelines via DSL with content-assist and auto-complete

» Use auto-adjustment and grid-layout capabilities in the GUI for simpler and interactive organization

of pipelines

Watch this screencast that highlights some of the "Flo for Spring Cloud Data Flow" capabilities. Spring
Flo wiki includes more detailed content on core Flo capabilities.

&) spring

Streams

Create a stream using text based input or the visual editor.

Create Stream

Create Stream Clear

Layout

Zoom: 161 % e e—

RUNTIME STREAMS

W Auto Link | Grid

JOBS ANALYTICS ABOUT

1 STREAM_ l=time

tSTREAM l.time > scriptable-transform --script="
language=javascript log

:STREAM l.time > scriptable-transform --script="retu

v source
= fi[e (]
2 fip ']
= ht.tp u}
= jdbc :}.‘
B

[= load-gener. .:]:

Figure 52.1. Flo for Spring Cloud Data Flow

scriptable-transform --script="r

n payload + '::' +

‘ = time

nction double(p) \n{in return p + '

][J}\ scriptable-t... [}

; :

'%]}\Stzriptable-t... 0

'_[[l)\scriptable—t... =

payload” --language=groovy |

" -_language=ruby | leg
' % p;\n}\ndouble(payload);” ==

TH:;» log
}ITI:}» log
I

_f':) log

1.1.1.RELEASE

Spring Cloud Data Flow
Server for Cloud Foundry

102

https://github.com/spring-projects/spring-flo
https://www.youtube.com/watch?v=78CgV46OstI
https://github.com/spring-projects/spring-flo/wiki

Spring Cloud Data Flow Server for Cloud Foundry

53. Tasks

The Tasks section of the Dashboard currently has three tabs:
* Apps
* Definitions

» Executions

53.1 Apps

Apps encapsulate a unit of work into a reusable component. Within the Data Flow runtime environment
Apps allow users to create definitions for Streams as well as Tasks. Consequently, the Apps tab within
the Tasks section allows users to create Task definitions.

Note: You will also use this tab to create Batch Jobs.

‘ ; II' Sprlng APPS RUNTIME STREAMS TASKS JoBS ANALYTICS ABOUT

Tasks

This section lists all available task apps. You have the ability to view app details and to create task definitions.

Apps Definitions Executions

Coordinates

spark-client E n
spark-cluster n n
spark-yarn H n
sqoop-job H n
sqoop-tool E n
timestamp ﬂ n

Figure 53.1. List of Task Apps

On this screen you can perform the following actions:
» View details such as the task app options.

» Create a Task Definition from the respective App.
Create a Task Definition from a selected Task App

On this screen you can create a new Task Definition. As a minimum you must provide a name for
the new definition. You will also have the option to specify various properties that are used during the
deployment of the app.

Note: Each parameter is only included if the Include checkbox is selected.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 103

Spring Cloud Data Flow Server for Cloud Foundry

View Task App Details

On this page you can view the details of a selected task app, including the list of available options
(properties) for that app.

53.2 Definitions

This page lists the Data Flow Task definitions and provides actions to launch or destroy those tasks.
It also provides a shortcut operation to define one or more tasks using simple textual input, indicated
by the bulk define tasks button.

‘ ;) Sprlng APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

Tasks

This section lists all the task definitions and allows you to create, launch and destroy them.

Apps Definitions Executions

Actions

demo-timestamp timestamp complete m X Destroy

Figure 53.2. List of Task Definitions
Creating Task Definitions using the bulk define interface

After pressing bulk define tasks, the following screen will be shown.

‘ ;) Spr'ng APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

Bulk Define Tasks

Define tasks in bulk. Type in tasks definitions in the text box or simply browse to a local task definitions file

1 Please enter one or more definitions in the format: mytask=taskapp --optionl=valuel --option2=value2

B Import File v Verify Apps

Figure 53.3. Bulk Define Tasks

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 104

Spring Cloud Data Flow Server for Cloud Foundry

It includes a textbox where one or more definitions can be entered and then various actions performed
on those definitions. The required input text format for task definitions is very basic, each line should
be of the form:

<task-definition-nane> = <task-application> <options>
For example:
deno-tinestanp = timestanp --format=hhmss

After entering any data a validator will run asynchronously to verify both the syntax and that the
application name entered is a valid application and it supports the options specified. If validation fails
the editor will show the errors with more information via tooltips.

To make it easier to enter definitions into the text area, content assist is supported. Pressing Ctrl+Space
will invoke content assist to suggest simple task names (based on the line on which it is invoked), task
applications and task application options. Press ESCape to close the content assist window without
taking a selection.

If the validator should not verify the applications or the options (for example if specifying non-whitelisted
options to the applications) then turn off that part of validation by toggling the checkbox off on the Verify
Apps button - the validator will then only perform syntax checking. When correctly validated, the create
button will be clickable and on pressing it the Ul will proceed to create each task definition. If there are
any errors during creation then after creation finishes the editor will show any lines of input, as it cannot
be used in task definitions. These can then be fixed up and creation repeated. There is an import file
button to open a file browser on the local file system if the definitions are in a file and it is easier to
import than copy/paste.

Launching Tasks

Once the task definition is created, they can be launched through the Dashboard as well. Navigate to
the Definitions tab. Select the Task you want to launch by pressing Launch.

On the following screen, you can define one or more Task parameters by entering:
» Parameter Key
» Parameter Value

Task parameters are not typed.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 105

Spring Cloud Data Flow Server for Cloud Foundry

53.3 Executions

&) spring

Tasks

APPS RUNTIME

This section lists all the available task executions.

Apps Definitions

demo-timestamp

2016-10-31 13:49:38,086

TASKS JOBS

2016-10-31 13:49:38,363

ANALYTICS

ABOUT

demo-timestamp

2016-10-31 13:49:32,068

2016-10-31 13:49:32,449

demo-timastamp

2016-10-31 13:49:23,676

2016-10-31 13:49:24,049

demo-timestamp

2016-10-31 13:49:11,228

2016-10-31 13:49:11,296

demo-timastamp

2016-10-31 13:42:08,835

2016-10-31 13:49:09,135

Figure 53.4. List of Task Executions

demo-timestamp

2016-10-31 13:46:56,058

. - §

2016-10-31 13:46:56,169

1.1.1.RELEASE

Spring Cloud Data Flow
Server for Cloud Foundry

106

Spring Cloud Data Flow Server for Cloud Foundry

54. Jobs

The Jobs section of the Dashboard allows you to inspect Batch Jobs. The main section of the screen
provides a list of Job Executions. Batch Jobs are Tasks that were executing one or more Batch Job.
As such each Job Execution has a back reference to the Task Execution Id (Task Id).

In case of a failed job, you can also restart the task. When dealing with long-running Batch Jobs, you
can also request to stop it.

‘ :) Sprlng APPS RUNTIME STREAMS TASKS JOBS ANALYTICS ABOUT

Batch Jobs

This section lists all the available batch job executions and provides the control to restart the job execution (if restartable).

Executions

Name Task Id Instance Id Execution|d Job Start Time Step Executions Count Status Actlons

job2 1 2 2 2016-06-13 13:57:58,294 1 COMPLETED n n
job1 1 1 1 2016-06-13 13:57:58,241 1 COMPLETED n n

Figure 54.1. List of Job Executions

54.1 List job executions

This page lists the Batch Job Executions and provides the option to restart or stop a specific job
execution, provided the operation is available. Furthermore, you have the option to view the Job
execution details.

The list of Job Executions also shows the state of the underlying Job Definition. Thus, if the underlying
definition has been deleted, deleted will be shown.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 107

Spring Cloud Data Flow Server for Cloud Foundry

Job execution details

' :) Sprlng APPS RUNTIME STREAMS TASKS JoBs ANALYTICS ABOUT

Job Execution Details - Execution ID: 2

Property Value

a
]

Job Name job2
Job Instance 2
Task Execution Id 1l
Composed Job x
Job Parameters
Start Time 2016-06-13 13:57:58,294
End Time 2016-06-13 13:57:58,317
Duration 23 ms
Status COMPLETED
Exit Code COMPLETED
Exit Message N/A
Step Execution Count 1
Steps
Step ld Step Name Reads Writes Commits Rollbacks Duration Status Details
2 job2stepl 0 0 1 [+] 8ms COMPLETED “

Figure 54.2. Job Execution Details

The Job Execution Details screen also contains a list of the executed steps. You can further drill into
the Step Execution Details by clicking onto the magnifying glass.

Step execution details

On the top of the page, you will see progress indicator the respective step, with the option to refresh the
indicator. Furthermore, a link is provided to view the step execution history.

The Step Execution details screen provides a complete list of all Step Execution Context key/value pairs.

@ Important

In case of exceptions, the Exit Description field will contain additional error information. Please
be aware, though, that this field can only have a maximum of 2500 characters. Therefore, in
case of long exception stacktraces, trimming of error messages may occur. In that case, please
refer to the server log files for further details.

Step Execution Progress
On this screen, you can see a progress bar indicator in regards to the execution of the current step.

Under the Step Execution History, you can also view various metrics associated with the selected
step such as duration, read counts, write counts etc.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 108

Spring Cloud Data Flow Server for Cloud Foundry

Q Spring APPS RUNTIME STREAMS TASKS | JOBS | ANALYTICS ABOUT
Step Execution Details - Step Execution ID: 2
Step Execution Progress

Percentage Complete n

Step Execution Id 2

Job Execution Id 2

Step Name job2stepl

Step Type io.spring.configuration.JobConfiguration$2

Status COMPLETED

Commits 1

Duration 8ms

Filter Count o]

Process Skips 0

Reads [¢]

Read Skips 0

Rollbacks 0

Skips [¢]

Writes)

Write Skips 0

Exit Description

N/A

Step Execution Context

Key Value
batch.taskletType ie.spring.configuration.JebConfiguration$2
batch.stepType org.springframework.batch.core.step.tasklet.TaskletStep

Figure 54.3. Step Execution History

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 109

Spring Cloud Data Flow Server for Cloud Foundry

55. Analytics

The Analytics section of the Dashboard provided data visualization capabilities for the various analytics
applications available in Spring Cloud Data Flow:

e Counters
» Field-Value Counters
» Aggregate Counters

For example, if you have created the spri ngt weet s stream and the corresponding counter in the
Counter chapter, you can now easily create the corresponding graph from within the Dashboard tab:

1. Under Metri c Type, select Count er s from the select box
2. Under St r eam select t weet count
3. Under Vi sual i zat i on, select the desired chart option, Bar Chart

Using the icons to the right, you can add additional charts to the Dashboard, re-arange the order of
created dashboards or remove data visualizations.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 110

Part IX. ‘How-to’ guides

This section provides answers to some common ‘how do | do that...” type of questions that often arise
when using Spring Cloud Data Flow.

If you are having a specific problem that we don’t cover here, you might want to check out
stackoverflow.com to see if someone has already provided an answer; this is also a great place to ask
new questions (please use the spri ng- cl oud- dat af | owtag).

We’'re also more than happy to extend this section; If you want to add a ‘how-to’ you can send us a
pull request.

http://stackoverflow.com/tags/spring-cloud-dataflow
https://github.com/spring-cloud/spring-cloud-dataflow-server-cloudfoundry

Spring Cloud Data Flow Server for Cloud Foundry

56. Configure Maven Properties

You can set the maven properties such as local maven repository location, remote maven repositories
and their authentication credentials including the proxy server properties via commandline properties
when starting the Dataflow server or using the SPRI NG_APPLI CATI ON_JSON environment property for
the Dataflow server.

The remote maven repositories need to be configured explicitly if the apps are resolved using maven
repository except for | ocal Data Flow server. The other Data Flow server implementations (that use
maven resources for app artifacts resolution) have no default value for remote repositories. The | ocal
server hasrepo. spring.io/libs-snapshot asthe default remote repository.

To pass the properties as commandline options:

$ java -jar <datafl owserver>.jar --maven. | ocal Repository=nyl ocal

--maven. renote-repositories.repol.url =https://repol

--maven. renot e-reposi tori es. repol. aut h. user name=r epoluser

--maven. renot e-reposi tori es. repol. aut h. passwor d=r epolpass

--maven. renote-repositories.repo2.url =https://repo2 --maven. proxy. host =pr oxyhost
--maven. proxy. port =9018 - - maven. pr oxy. aut h. user name=pr oxyuser

- -maven. proxy. aut h. passwor d=pr oxypass

or, using the SPRI NG_APPLI CATI ON_J SON environment property:

export SPRI NG APPLI CATI ON_JSON="{ "maven": { "local -repository": "local","renote-repositories":

{ "repol": { "url": "https://repol”, "auth": { "usernane": "repoluser", "password": "repolpass" } },
"repo2": { "url": "https://repo2" } }, "proxy": { "host": "proxyhost", "port":

9018, "auth": { "username": "proxyuser", "password": "proxypass" } } } }'

Formatted JSON:

SPRI NG_APPLI CATI ON_JSON=' {
"maven": {
"local -repository": "local",
"renote-repositories": {
"repol": {
"url": "https://repol",
"auth": {
"usernane": "repoluser",
"password": "repolpass"”
}
ba
"repo2": {
“url": "https://repo2"
}
B
"proxy": {
"host": "proxyhost",
"port": 9018,
"auth": {
"usernane": "proxyuser",
"password": "proxypass"
}
}

@ Note

Depending on Spring Cloud Data Flow server implementation, you may have
to pass the environment properties using the platform specific environment-setting

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 112

https://repo.spring.io/libs-snapshot

Spring Cloud Data Flow Server for Cloud Foundry

capabilities. For instance, in Cloud Foundry, you'd be passing them as cf set-env
SPRI NG_APPLI CATI ON_JSON.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 113

Spring Cloud Data Flow Server for Cloud Foundry

57. Logging

Spring Cloud Data Flow is built upon several Spring projects, but ultimately the dataflow-server is a
Spring Boot app, so the logging techniques that apply to any Spring Boot application are applicable
here as well.

While troubleshooting, following are the two primary areas where enabling the DEBUG logs could be
useful.

57.1 Deployment Logs

Spring Cloud Data Flow builds upon Spring Cloud Deployer SPI and the platform specific dataflow-
server uses the respective SPI implementations. Specifically, if we were to troubleshoot deployment
specific issues; such as the network errors, it'd be useful to enable the DEBUG logs at the underlying
deployer and the libraries used by it.

1. For instance, if you'd like to enable DEBUG logs for the local-deployer, you'd be starting the server
with following.

$ java -jar <datafl owserver>.jar --1o0gging.!|evel.org.springfranmework.cloud. depl oyer. spi .| ocal =DEBUG

(where, org. springframework. cl oud. depl oyer. spi .l ocal is the global package for
everything local-deployer related)

2. For instance, if you'd like to enable DEBUG logs for the cloudfoundry-deployer, you'd be setting the
following environment variable and upon restaging the dataflow-server, we will see more logs around
request, response and the elaborate stack traces (upon failures). The cloudfoundry-deployer uses
cf-java-client, so we will have to enable DEBUG logs for this library.

$ cf set-env datafl owserver JAVA OPTS '-Dl ogging. | evel . cl oudf oundry-client =DEBUG
$ cf restage datafl ow server

(where, cl oudf oundry-cl i ent is the global package for everything cf - j ava- cl i ent related)

3. If there’s a need to review Reactor logs, which is used by the cf - j ava- cl i ent, then the following
would be helpful.

$ cf set-env datafl owserver JAVA OPTS ' - Dl ogging. | evel . cl oudf oundry-cl i ent =DEBUG -
Dl oggi ng. | evel . reactor. i pc. nett y=DEBUG
$ cf restage datafl ow server

(where, react or. i pc. netty is the global package for everything r eact or - net t y related)

@ Note

Similartothe | ocal - depl oyer and cl oudf oundr y- depl oyer options as discussed above,
there are equivalent settings available for Apache YARN, Apache Mesos and Kubernetes
variants, too. Check out the respective SPI implementations to find out more details about the
packages to configure for logging.

57.2 Application Logs

The streaming applications in Spring Cloud Data Flow are Spring Boot applications and they can be
independently setup with logging configurations.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 114

http://docs.spring.io/spring-boot/docs/current/reference/html/howto-logging.html#howto-logging
https://github.com/spring-cloud/spring-cloud-deployer
https://github.com/spring-cloud?utf8=%E2%9C%93&query=deployer
https://github.com/spring-cloud/spring-cloud-deployer/tree/master/spring-cloud-deployer-local
https://github.com/spring-cloud/spring-cloud-deployer-cloudfoundry
https://github.com/cloudfoundry/cf-java-client
https://github.com/spring-cloud?utf8=%E2%9C%93&query=deployer

Spring Cloud Data Flow Server for Cloud Foundry

For instance, if you'd have to troubleshoot the header and payl oad specifics that are being passed
around source, processor and sink channels, you'd be deploying the stream with the following options.

dat af | ow: >stream create foo --definition "http --10gging.level.org.springframework.integrati on=DEBUG
| transform--1o0gging.level.org.springfranework.integrati on=DEBUG | |og --
| oggi ng. | evel . org. spri ngfranmework. i ntegrati on=DEBUG' - -depl oy

(where, org.springframework.integration is the global package for everything Spring
Integration related, which is responsible for messaging channels)

These properties can also be specified via depl oynent properties when deploying the stream.

dat af | ow: >stream depl oy foo --properties "app.*.logging.|evel.org.springfranmework.integrati on=DEBUG'

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 115

Part X. Appendices

Spring Cloud Data Flow Server for Cloud Foundry

Appendix A. Migrating from Spring
XD to Spring Cloud Data Flow

A.l1 Terminology Changes

Old New

XD-Admin Server (implementations: local, cloud foundry,

apache yarn, kubernetes, and apache mesos)

XD-Container N/A
Modules Applications
Admin Ul Dashboard
Message Bus Binders
Batch / Job Task

A.2 Modules to Applications

If you have custom Spring XD modules, you'd have to refactor them to use Spring Cloud Stream
and Spring Cloud Task annotations, with updated dependencies and built as normal Spring Boot
"applications".

Custom Applications

Spring XD’s stream and batch modules are refactored into Spring Cloud Stream and Spring Cloud
Task application-starters, respectively. These applications can be used as the reference while
refactoring Spring XD modules

There are also some samples for Spring Cloud Stream and Spring Cloud Task applications for
reference

If you'd like to create a brand new custom application, use the getting started guide for Spring Cloud
Stream and Spring Cloud Task applications and as well as review the development guide

Alternatively, if you'd like to patch any of the out-of-the-box stream applications, you can follow the
procedure here

Application Registration

Custom Stream/Task application requires being installed to a maven repository for Local, YARN, and
CF implementations or as docker images, when deploying to Kubernetes and Mesos. Other than
maven and docker resolution, you can also resolve application artifacts fromhtt p,fil e, oras hdf s
coordinates

Unlike Spring XD, you do not have to upload the application bits while registering custom applications
anymore; instead, you're expected to register the application coordinates that are hosted in the maven
repository or by other means as discussed in the previous bullet

Spring Cloud Data Flow

1.1.1.RELEASE Server for Cloud Foundry 117

https://github.com/spring-cloud/spring-cloud-stream-app-starters
https://github.com/spring-cloud/spring-cloud-task-app-starters
https://github.com/spring-cloud/spring-cloud-task-app-starters
https://github.com/spring-cloud/spring-cloud-stream-samples
https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples
https://github.com/spring-cloud/spring-cloud-stream/blob/master/spring-cloud-stream-docs/src/main/asciidoc/spring-cloud-stream-overview.adoc#getting-started
https://github.com/spring-cloud/spring-cloud-stream/blob/master/spring-cloud-stream-docs/src/main/asciidoc/spring-cloud-stream-overview.adoc#getting-started
https://github.com/spring-cloud/spring-cloud-task/blob/master/spring-cloud-task-docs/src/main/asciidoc/getting-started.adoc#developing-your-first-spring-cloud-task-application
https://github.com/spring-cloud/spring-cloud-stream-app-starters/blob/master/spring-cloud-stream-app-starters-docs/src/main/asciidoc/overview.adoc#creating-your-own-applications
https://github.com/spring-cloud/spring-cloud-stream-app-starters/blob/master/spring-cloud-stream-app-starters-docs/src/main/asciidoc/overview.adoc#patching-pre-built-applications
http://docs.spring.io/spring-cloud-dataflow/docs/current/reference/html/_dsl_syntax.html#_register_a_stream_app

Spring Cloud Data Flow Server for Cloud Foundry

» By default, none of the out-of-the-box applications are preloaded already. It is intentionally designed
to provide the flexibility to register app(s), as you find appropriate for the given use-case requirement

» Depending on the binder choice, you can manually add the appropriate binder dependency to build
applications specific to that binder-type. Alternatively, you can follow the Spring Initialzr procedure to
create an application with binder embedded in it

Application Properties

» counter-sink:

e The peripheral r edi s is not required in Spring Cloud Data Flow. If you intend to use the count er -
si nk, thenr edi s becomes required, and you're expected to have your own running r edi s cluster

« field-value-counter-sink:

* The peripheral r edi s is not required in Spring Cloud Data Flow. If you intend to use the fi el d-
val ue- count er - si nk, then r edi s becomes required, and you're expected to have your own
running r edi s cluster

* aggregate-counter-sink:

e The peripheral redi s is not required in Spring Cloud Data Flow. If you intend to use the
aggr egat e- count er - si nk, then r edi s becomes required, and you're expected to have your
own running r edi s cluster

A.3 Message Bus to Binders

Terminology wise, in Spring Cloud Data Flow, the message bus implementation is commonly referred
to as binders.

Message Bus

Similar to Spring XD, there’s an abstraction available to extend the binder interface. By default, we take
the opinionated view of Apache Kafka and RabbitMQ as the production-ready binders and are available
as GA releases.

Binders

Selecting a binder is as simple as providing the right binder dependency in the classpath. If you're to
choose Kafka as the binder, you'd register stream applications that are pre-built with Kafka binder in
it. If you were to create a custom application with Kafka binder, you'd add the following dependency
in the classpath.

<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cl oud-stream bi nder - kaf ka</artifactld>
<ver si on>1. 0. 2. RELEASE</ ver si on>

</ dependency>

» Spring Cloud Stream supports Apache Kafka, RabbitMQ and experimental Google PubSub and
Solace JMS. All binder implementations are maintained and managed in their individual repositories

» Every Stream/Task application can be built with a binder implementation of your choice. All the out-
of-the-box applications are pre-built for both Kafka and Rabbit and they’re readily available for use as

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 118

https://github.com/spring-cloud/spring-cloud-stream-app-starters/blob/master/spring-cloud-stream-app-starters-docs/src/main/asciidoc/overview.adoc#using-the-starters-to-create-custom-components
https://github.com/spring-cloud/spring-cloud-stream-binder-kafka
https://github.com/spring-cloud/spring-cloud-stream-binder-rabbit
https://github.com/spring-cloud/spring-cloud-stream-binder-kafka
https://github.com/spring-cloud/spring-cloud-stream-binder-rabbit
https://github.com/spring-cloud/spring-cloud-stream-binder-google-pubsub
https://github.com/spring-cloud/spring-cloud-stream-binder-solace

Spring Cloud Data Flow Server for Cloud Foundry

maven artifacts [Spring Cloud Stream / Spring Cloud Task or docker images [Spring Cloud Stream /
Spring Cloud Task Changing the binder requires selecting the right binder dependency. Alternatively,
you can download the pre-built application from this version of Spring Initializr with the desired “binder-
starter” dependency

Named Channels

Fundamentally, all the messaging channels are backed by pub/sub semantics. Unlike Spring XD, the
messaging channels are backed only by t opi ¢s or t opi c- exchange and there’s no representation
of queues in the new architecture.

* ${xd. nodul e. i ndex} is not supported anymore; instead, you can directly interact with named
destinations

» stream i ndex changes to: <stream nane>. <l abel / app- nane>
« forinstance: ti ckt ock. O changesto:ticktock.time

» “topic/queue” prefixes are not required to interact with named-channels
« for instance: t opi c: f oo changesto: f oo

« forinstance: stream create streaml --definition ":foo > | og"

Directed Graphs

If you're building non-linear streams, you could take advantage of named destinations to build directed
graphs.

for instance, in Spring XD:

streamcreate f --definition "queue:foo > transform --expressi on=payl oad+' -foo' | |og" --deploy

streamcreate b --definition "queue:bar > transform --expressi on=payl oad+' -bar' | |o0g" --deploy

streamcreate r --definition "http | router --expression=payload.contains('a')? queue:foo':"'queue:bar"'"
--depl oy

for instance, in Spring Cloud Data Flow:

streamcreate f --definition ":foo > transform --expressi on=payl oad+' -foo' | |0g" --deploy
streamcreate b --definition ":bar > transform --expressi on=payl oad+' -bar' | |0g" --depl oy
streamcreate r --definition "http | router --expression=payload.contains('a)? :foo':':bar'" --deploy

A.4 Batch to Tasks

A Task by definition, is any application that does not run forever, including Spring Batch jobs, and
they end/stop at some point. Task applications can be majorly used for on-demand use-cases such as
database migration, machine learning, scheduled operations etc. Using Spring Cloud Task, users can
build Spring Batch jobs as microservice applications.

» Spring Batch jobs from Spring XD are being refactored to Spring Boot applications a.k.a link: Spring
Cloud Task applications

» Unlike Spring XD, these “Tasks” don’t require explicit deployment; instead, a task is ready to be
launched directly once the definition is declared

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 119

http://repo.spring.io/libs-milestone/org/springframework/cloud/stream/app/
http://repo.spring.io/libs-milestone/org/springframework/cloud/task/app/
https://hub.docker.com/r/springcloudstream/
https://hub.docker.com/r/springcloudtask/
https://github.com/spring-cloud/spring-cloud-stream/blob/master/spring-cloud-stream-docs%2Fsrc%2Fmain%2Fasciidoc%2Fspring-cloud-stream-overview.adoc#binder-selection
http://start-scs.cfapps.io/
http://cloud.spring.io/spring-cloud-task/
http://docs.spring.io/spring-xd/docs/current-SNAPSHOT/reference/html/#jobs
https://github.com/spring-cloud/spring-cloud-task-app-starters

Spring Cloud Data Flow Server for Cloud Foundry

A.5 Shell/DSL Commands

Old Command

New Command

module upload

app register / app import

module list

app list

module info

app info

admin config server

dataflow config server

job create

job launch

job list

job status

job display

job destroy

job execution list

runtime modules

task create

task launch

task list

task status

task display

task destroy

task execution list

runtime apps

A.6 REST-API
Old API New API
/modules lapps

/runtime/modules

/runtime/apps

/runtime/modules/{moduleld}

/runtime/apps/{appld}

/jobs/definitions

/task/definitions

/jobs/deployments

A.7Ul/Flo

The Admin-Ul is now renamed as Dashboard. The URI for accessing the Dashboard is changed from

/task/deployments

localhost:9393/admin-ui to localhost:9393/dashboard

» (New) Apps: Lists all the registered applications that are available for use. This view includes
informational details such as the URI and the properties supported by each application. You can also

register/unregister applications from this view

« Runtime: Container changes to Runtime. The notion of xd- cont ai ner is gone, replaced by out-
of-the-box applications running as autonomous Spring Boot applications. The Runtime tab displays
the applications running in the runtime platforms (implementations: cloud foundry, apache yarn,
apache mesos, or kubernetes). You can click on each application to review relevant details about the

application such as where it is running with, and what resources etc.

1.1.1.RELEASE

Spring Cloud Data Flow
Server for Cloud Foundry

http://localhost:9393/admin-ui
http://localhost:9393/dashboard

Spring Cloud Data Flow Server for Cloud Foundry

» Spring Flo is now an OSS product. Flo for Spring Cloud Data Flow’s “Create Stream”, the designer-
tab comes pre-built in the Dashboard

* (New) Tasks:
¢ The sub-tab “Modules” is renamed to “Apps”

e The sub-tab “Definitions” lists all the Task definitions, including Spring Batch jobs that are
orchestrated as Tasks

« The sub-tab “Executions” lists all the Task execution details similar to Spring XD’s Job executions

A.8 Architecture Components

Spring Cloud Data Flow comes with a significantly simplified architecture. In fact, when compared with
Spring XD, there are less peripherals that are necessary to operationalize Spring Cloud Data Flow.

ZooKeeper
ZooKeeper is not used in the new architecture.
RDBMS

Spring Cloud Data Flow uses an RDBMS instead of Redis for stream/task definitions, application
registration, and for job repositories.The default configuration uses an embedded H2 instance, but
Oracle, DB2, SqlServer, MySQL/MariaDB, PostgreSQL, H2, and HSQLDB databases are supported.
To use Oracle, DB2 and SqglServer you will need to create your own Data Flow Server using Spring
Initializr and add the appropriate JDBC driver dependency.

Redis

Running a Redis cluster is only required for analytics functionality. Specifically, when the count er -
si nk, fi el d-val ue-count er - si nk, or aggr egat e- count er - si nk applications are used, it is
expected to also have a running instance of Redis cluster.

Cluster Topology

Spring XD’s xd- adnmi n and xd- cont ai ner server components are replaced by stream and task
applications themselves running as autonomous Spring Boot applications. The applications run natively
on various platforms including Cloud Foundry, Apache YARN, Apache Mesos, or Kubernetes. You can
develop, test, deploy, scale +/-, and interact with (Spring Boot) applications individually, and they can
evolve in isolation.

A.9 Central Configuration

To support centralized and consistent management of an application’s configuration properties, Spring
Cloud Config client libraries have been included into the Spring Cloud Data Flow server as well as the
Spring Cloud Stream applications provided by the Spring Cloud Stream App Starters. You can also pass
common application properties to all streams when the Data Flow Server starts.

A.10 Distribution

Spring Cloud Data Flow is a Spring Boot application. Depending on the platform of your choice, you
can download the respective release uber-jar and deploy/push it to the runtime platform (cloud foundry,

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 121

https://github.com/spring-projects/spring-flo
https://start.spring.io/
https://start.spring.io/
https://cloud.spring.io/spring-cloud-config/
https://cloud.spring.io/spring-cloud-config/
http://docs.spring.io/spring-cloud-dataflow/docs/1.0.0.RC1/reference/htmlsingle/#spring-cloud-dataflow-global-properties
http://docs.spring.io/spring-cloud-dataflow/docs/1.0.0.RC1/reference/htmlsingle/#spring-cloud-dataflow-global-properties

Spring Cloud Data Flow Server for Cloud Foundry

apache yarn, kubernetes, or apache mesos). For example, if you're running Spring Cloud Data Flow
on Cloud Foundry, you'd download the Cloud Foundry server implementation and do a cf push as
explained in the reference guide.

A.11 Hadoop Distribution Compatibility

The hdf s- si nk application builds upon Spring Hadoop 2.4.0 release, so this application is compatible
with following Hadoop distributions.

» Cloudera - cdh5

Pivotal Hadoop - phd30
» Hortonworks Hadoop - hdp24

» Hortonworks Hadoop - hdp23

Vanilla Hadoop - hadoop26

Vanilla Hadoop - 2.7.x (default)

A.12 YARN Deployment

Spring Cloud Data Flow can be deployed and used with Apche YARN in two different ways.
* Deploy the server directly in a YARN cluster

» Leverage Apache Ambari plugin to provision Spring Cloud Data Flow as a service

A.13 Use Case Comparison

Let's review some use-cases to compare and contrast the differences between Spring XD and Spring
Cloud Data Flow.

Use Case #1

(It is assumed both XD and SCDF distributions are already downloaded)

Description: Simple ti ckt ock example using local/singlenode.

Spring XD Spring Cloud Data Flow

Start xd- si ngl enode server from CLI Start a binder of your choice

xd- si ngl enode Start | ocal - server implementation of SCDF
from the CLI

java -jar spring-cloud-
dat af | ow-server-1|ocal -1.0. 0. BU LD
SNAPSHOT. j ar

Start xd- shel | server from the CLI Start dat af | ow shel | server from the CLI

xd-shel |

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 122

http://docs.spring.io/spring-cloud-dataflow-server-cloudfoundry/docs/current-SNAPSHOT/reference/htmlsingle/#getting-started
http://docs.spring.io/spring-cloud-dataflow-server-yarn/docs/current-SNAPSHOT/reference/htmlsingle/#_deploying_on_yarn
http://docs.spring.io/spring-cloud-dataflow-server-yarn/docs/current-SNAPSHOT/reference/htmlsingle/#_deploying_on_ambari

Spring Cloud Data Flow Server for Cloud Foundry

Spring XD

Create t i ckt ock stream

xd: >stream create ticktock --
definition “tine | 10g” --deploy

Review t i ckt ock results in the xd-
si ngl enode server console

Spring Cloud Data Flow

java -jar spring-cloud-datafl ow
shel | - 1. 0. 0. BUI LD- SNAPSHOT. j ar

Create t i ckt ock stream

dat af | ow. >stream create ticktock --
definition “tine | 10g” --deploy

Review t i ckt ock results by tailing the
ticktock. | og/ stdout | og application logs

Use Case #2

(It is assumed both XD and SCDF distributions are already downloaded)

Description: Stream with custom module/application.

Spring XD

Spring Cloud Data Flow

Start xd- si ngl enode server from CLI

xd- si ngl enode

Start xd- shel | server from the CLI

xd-shel |

Register custom “processor” module to transform
payload to a desired format

xd: >nodul e upl oad --nane
toupper --type processor --file
<CUSTOM JAR FI LE_LOCATI ON>

Create a stream with custom module

xd: >stream create testupper --
definition “http | toupper | |og
depl oy

Review results in the xd- si ngl enode server
console

Start a binder of your choice

Start | ocal - ser ver implementation of SCDF
from the CLI

java -jar spring-cloud-
dat af | ow-server-1ocal -1.0.0. BU LD
SNAPSHOT. j ar

Start dat af | ow shel | server from the CLI

java -jar spring-cloud-datafl ow
shel | - 1. 0. 0. BUI LD- SNAPSHOT. j ar

Register custom “processor” application to
transform payload to a desired format

dat af | ow. >app regi ster --nane
t oupper --type processor --uri
<MAVEN_URI _ COCORDI NATES>

Create a stream with custom application

dat af | ow. >stream create testupper --
definition “http | toupper | log" --
depl oy

Review results by tailing the t est upper. | og/
st dout _I| og application logs

Use Case #3

(It is assumed both XD and SCDF distributions are already downloaded)

Description: Simple batch-job.

Spring Cloud Data Flow

1.1.1.RELEASE

Server for Cloud Foundry

123

Spring Cloud Data Flow Server for Cloud Foundry

Spring XD
Start xd- si ngl enode server from CLI

xd- si ngl enode

Start xd- shel | server from the CLI

xd-shel |

Spring Cloud Data Flow

Start | ocal - ser ver implementation of SCDF
from the CLI

java -jar spring-cloud-
dat af | ow-server-1|ocal -1. 0. 0. BU LD
SNAPSHOT. j ar

Start dat af | ow shel | server from the CLI

java -jar spring-cloud-datafl ow
shel | - 1. 0. 0. BUI LD- SNAPSHOT. | ar

Register custom “batch-job” module

xd: >nodul e upl oad --nane
simpl e-batch --type job --file
<CUSTOM JAR_FI LE_LOCATI ON>

Register custom “batch-job” as task application

dat af | ow. >app regi ster --nane
simpl e-batch --type task --uri
<MAVEN_URI _COORDI NATES>

Create a job with custom batch-job module

xd: >j ob create batchtest --
definition “sinple-batch”

Deploy job
xd: >j ob depl oy bat cht est
Launch job
xd: >j ob | aunch bat cht est

Review results in the xd- si ngl enode server
console as well as Jobs tab in Ul (executions
sub-tab should include all step details)

Create a task with custom batch-job application

dat af | ow. >t ask create batchtest --
definition “sinple-batch”

NA

Launch task

dat af | ow. >t ask | aunch bat cht est

Review results by tailing the bat cht est /

st dout _| og application logs as well as Task
tab in Ul (executions sub-tab should include all
step details)

Spring Cloud Data Flow

1.1.1.RELEASE

Server for Cloud Foundry

124

Spring Cloud Data Flow Server for Cloud Foundry

Appendix B. Building

B.1 Basic Compile and Test

To build the source you will need to install JDK 1.8.

The build uses the Maven wrapper so you don't have to install a specific version of Maven. To enable
the tests for Redis you should run the server before bulding. See below for more information on how
run Redis.

The main build command is

‘$./ mvnw cl ean install

You can also add '-DskipTests' if you like, to avoid running the tests.

@ Note

You can also install Maven (>=3.3.3) yourself and run the nvn command in place of . / nvnwin
the examples below. If you do that you also might need to add - P spri ng if your local Maven
settings do not contain repository declarations for spring pre-release artifacts.

@ Note

Be aware that you might need to increase the amount of memory available to Maven by setting
a MAVEN_OPTS environment variable with a value like - Xnx512m - XX: MaxPer n5i ze=128m
We try to cover this in the . nvn configuration, so if you find you have to do it to make a build
succeed, please raise a ticket to get the settings added to source control.

The projects that require middleware generally include a docker - conpose. ym , so consider using
Docker Compose to run the middeware servers in Docker containers. See the README in the scripts
demo repository for specific instructions about the common cases of mongo, rabbit and redis.

B.2 Documentation

There is a "full" profile that will generate documentation. You can build just the documentation by
executing

‘ $./ nvnw package - DskipTests=true -P full -pl spring-cloud-datafl ow server-cl oudf oundry-docs -am

B.3 Working with the code

If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or Eclipse
when working with the code. We use the m2eclipe eclipse plugin for maven support. Other IDEs and
tools should also work without issue.

Importing into eclipse with m2eclipse

We recommend the m2eclipe eclipse plugin when working with eclipse. If you don't already have
m2eclipse installed it is available from the "eclipse marketplace".

Unfortunately m2e does not yet support Maven 3.3, so once the projects are imported into Eclipse you
will also need to tell m2eclipse to use the . setti ngs. xm file for the projects. If you do not do this

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 125

https://www.docker.com/products/docker-compose
https://github.com/spring-cloud-samples/scripts
https://github.com/spring-cloud-samples/scripts
http://www.springsource.com/developer/sts
http://eclipse.org
http://eclipse.org/m2e/
http://eclipse.org/m2e/

Spring Cloud Data Flow Server for Cloud Foundry

you may see many different errors related to the POMs in the projects. Open your Eclipse preferences,
expand the Maven preferences, and select User Settings. In the User Settings field click Browse and
navigate to the Spring Cloud project you imported selecting the . setti ngs. xm file in that project.
Click Apply and then OK to save the preference changes.

@ Note

Alternatively you can copy the repository settings from . setti ngs. xm into your own ~/ . n/
settings. xm.

Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following
command:

$./nvnw ecli pse: eclipse

The generated eclipse projects can be imported by selecting i nport exi sting proj ects from the
fil e menu.

Spring Cloud Data Flow
1.1.1.RELEASE Server for Cloud Foundry 126

https://github.com/spring-cloud/spring-cloud-build/blob/master/.settings.xml

	Spring Cloud Data Flow Server for Cloud Foundry
	Table of Contents
	Part I. Spring Cloud Data Flow for Cloud Foundry
	1. Spring Cloud Data Flow
	2. Spring Cloud Stream
	3. Spring Cloud Task

	Part II. Architecture
	4. Introduction
	5. Microservice Architectural Style
	5.1 Comparison to other Platform architectures

	6. Streaming Applications
	6.1 Imperative Programming Model
	6.2 Functional Programming Model

	7. Streams
	7.1 Topologies
	7.2 Concurrency
	7.3 Partitioning
	7.4 Message Delivery Guarantees

	8. Analytics
	9. Task Applications
	10. Data Flow Server
	10.1 Endpoints
	10.2 Customization
	10.3 Security

	11. Runtime
	11.1 Fault Tolerance
	11.2 Resource Management
	11.3 Scaling at runtime
	11.4 Application Versioning

	Part III. Getting started
	12. Deploying on Cloud Foundry
	12.1 Provision a Redis service instance on Cloud Foundry
	12.2 Provision a Rabbit service instance on Cloud Foundry
	12.3 Provision a MySQL service instance on Cloud Foundry
	12.4 Download the Spring Cloud Data Flow Server and Shell apps
	12.5 Running the Server
	Deploying and Running the Server app on Cloud Foundry
	Configuring Defaults for Deployed Apps

	Running the Server app locally
	Sample Manifest Template

	12.6 Running Spring Cloud Data Flow Shell locally

	13. Security
	13.1 Authentication and Cloud Foundry

	14. Application Names and Prefixes
	14.1 Using Custom Routes

	15. Configuration Reference
	15.1 Understanding what’s going on
	15.2 Using Spring Cloud Config Server
	Spring Cloud Data Flow and Spring Cloud Config Server
	Stream, Task, and Spring Cloud Config Server
	Sample Manifest Template
	Self-signed SSL Certificate and Spring Cloud Config Server

	16. Application Level Service Bindings
	17. A Note About User Provided Services
	18. Application Rolling Upgrades
	19. Maximum Disk Quota Configuration
	19.1 PCF’s Operations Manager Configuration
	19.2 Scale Application
	19.3 Configuring target free disk percentage

	Part IV. Server Configuration
	20. Feature Toggles
	21. Database Configuration
	22. Security
	22.1 Enabling HTTPS
	Using Self-Signed Certificates
	Self-Signed Certificates and the Shell

	22.2 Basic Authentication
	File based authentication
	LDAP Authentication
	LDAP Transport Security

	22.3 OAuth 2.0
	Authentication using the Spring Cloud Data Flow Shell
	OAuth2 Authentication Examples
	Local OAuth2 Server
	Authentication using GitHub

	22.4 Securing the Spring Boot Management Endpoints

	23. Monitoring and Management
	23.1 Spring Boot Admin
	23.2 Monitoring Deployed Applications

	Part V. Streams
	24. Introduction
	25. Stream DSL
	26. Register a Stream App
	26.1 Whitelisting application properties

	27. Creating custom applications
	28. Creating a Stream
	28.1 Application properties
	Passing application properties when creating a stream

	28.2 Deployment properties
	Passing instance count as deployment property
	Inline vs file reference properties
	Passing application properties when deploying a stream
	Passing Spring Cloud Stream properties for the application
	Passing per-binding producer consumer properties
	Passing stream partition properties during stream deployment
	Passing application content type properties
	Overriding application properties during stream deployment

	28.3 Deployment properties
	Passing instance count as deployment property
	Inline vs file reference properties

	29. Destroying a Stream
	30. Deploying and Undeploying Streams
	31. Other Source and Sink Application Types
	32. Simple Stream Processing
	33. Stateful Stream Processing
	34. Tap a Stream
	35. Using Labels in a Stream
	36. Explicit Broker Destinations in a Stream
	37. Directed Graphs in a Stream
	37.1 Common application properties

	38. Stream applications with multiple binder configurations

	Part VI. Tasks
	39. Introducing Spring Cloud Task
	40. The Lifecycle of a task
	40.1 Creating a custom Task Application
	40.2 Registering a Task Application
	40.3 Creating a Task
	40.4 Launching a Task
	40.5 Reviewing Task Executions
	40.6 Destroying a Task

	41. Task Repository
	41.1 Configuring the Task Execution Repository
	Local
	Task Application Repository

	41.2 Datasource

	42. Subscribing to Task/Batch Events
	43. Launching Tasks from a Stream
	43.1 TriggerTask
	43.2 Translator

	Part VII. Tasks on Cloud Foundry
	44. Version Compatibility
	45. Tooling
	46. Task Database Schema
	47. Running Task Applications
	47.1 Create a Task
	47.2 Launch a Task
	47.3 View Task Logs
	47.4 List Tasks
	47.5 List Task Executions
	47.6 Destroy a Task
	47.7 Deleting Task From Cloud Foundry

	Part VIII. Dashboard
	48. Introduction
	49. Apps
	49.1 Bulk Import of Applications

	50. Runtime
	51. Streams
	52. Create Stream
	53. Tasks
	53.1 Apps
	Create a Task Definition from a selected Task App
	View Task App Details

	53.2 Definitions
	Creating Task Definitions using the bulk define interface
	Launching Tasks

	53.3 Executions

	54. Jobs
	54.1 List job executions
	Job execution details
	Step execution details
	Step Execution Progress

	55. Analytics

	Part IX. ‘How-to’ guides
	56. Configure Maven Properties
	57. Logging
	57.1 Deployment Logs
	57.2 Application Logs

	Part X. Appendices
	Appendix A. Migrating from Spring XD to Spring Cloud Data Flow
	A.1 Terminology Changes
	A.2 Modules to Applications
	Custom Applications
	Application Registration
	Application Properties

	A.3 Message Bus to Binders
	Message Bus
	Binders
	Named Channels
	Directed Graphs

	A.4 Batch to Tasks
	A.5 Shell/DSL Commands
	A.6 REST-API
	A.7 UI / Flo
	A.8 Architecture Components
	ZooKeeper
	RDBMS
	Redis
	Cluster Topology

	A.9 Central Configuration
	A.10 Distribution
	A.11 Hadoop Distribution Compatibility
	A.12 YARN Deployment
	A.13 Use Case Comparison
	Use Case #1
	Use Case #2
	Use Case #3

	Appendix B. Building
	B.1 Basic Compile and Test
	B.2 Documentation
	B.3 Working with the code
	Importing into eclipse with m2eclipse
	Importing into eclipse without m2eclipse

