
Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE

Copyright © 2013-2016 Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes iii

Table of Contents

I. Introduction .. 1
1. Introducing Spring Cloud Data Flow for Kubernetes .. 2
2. Spring Cloud Data Flow .. 3
3. Spring Cloud Stream ... 4
4. Spring Cloud Task .. 5

II. Architecture .. 6
5. Introduction ... 7
6. Microservice Architectural Style ... 9

6.1. Comparison to other Platform architectures ... 9
7. Streaming Applications .. 11

7.1. Imperative Programming Model ... 11
7.2. Functional Programming Model ... 11

8. Streams .. 12
8.1. Topologies ... 12
8.2. Concurrency ... 12
8.3. Partitioning ... 12
8.4. Message Delivery Guarantees .. 13

9. Analytics ... 14
10. Task Applications .. 15
11. Data Flow Server .. 16

11.1. Endpoints ... 16
11.2. Customization ... 16
11.3. Security .. 17

12. Runtime .. 18
12.1. Fault Tolerance .. 18
12.2. Resource Management ... 18
12.3. Scaling at runtime .. 18
12.4. Application Versioning .. 18

III. Getting Started ... 19
13. Deploying Streams on Kubernetes ... 20

IV. Server Configuration .. 25
14. Feature Toggles .. 26
15. General Configuration .. 27
16. Database Configuration ... 28
17. Monitoring and Management ... 29

17.1. Server .. 29
17.2. Streams ... 29
17.3. Tasks ... 29

V. Dashboard .. 30
18. Introduction ... 31
19. Apps ... 32

19.1. Bulk Import of Applications ... 32
20. Runtime .. 34
21. Streams .. 35
22. Create Stream .. 37
23. Tasks ... 38

23.1. Apps .. 38

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes iv

Create a Task Definition from a selected Task App ... 38
View Task App Details .. 39

23.2. Definitions .. 39
Creating Task Definitions using the bulk define interface 39
Launching Tasks ... 40

23.3. Executions ... 41
24. Jobs ... 42

24.1. List job executions .. 42
Job execution details ... 43
Step execution details ... 43
Step Execution Progress ... 43

25. Analytics ... 45
VI. Server Implementation ... 46

26. Server Properties .. 47
VII. ‘How-to’ guides ... 48

27. Logging ... 49
27.1. Deployment Logs ... 49

VIII. Appendices .. 50
A. Migrating from Spring XD to Spring Cloud Data Flow ... 51

A.1. Terminology Changes .. 51
A.2. Modules to Applications ... 51

Custom Applications .. 51
Application Registration ... 51
Application Properties .. 52

A.3. Message Bus to Binders .. 52
Message Bus .. 52
Binders ... 52
Named Channels .. 53
Directed Graphs .. 53

A.4. Batch to Tasks .. 53
A.5. Shell/DSL Commands .. 54
A.6. REST-API .. 54
A.7. UI / Flo .. 54
A.8. Architecture Components ... 55

ZooKeeper .. 55
RDBMS .. 55
Redis .. 55
Cluster Topology ... 55

A.9. Central Configuration ... 55
A.10. Distribution ... 55
A.11. Hadoop Distribution Compatibility .. 56
A.12. YARN Deployment ... 56
A.13. Use Case Comparison ... 56

Use Case #1 .. 56
Use Case #2 .. 57
Use Case #3 .. 57

B. Building .. 59
B.1. Documentation ... 59
B.2. Working with the code ... 59

Importing into eclipse with m2eclipse ... 59

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes v

Importing into eclipse without m2eclipse ... 60
C. Contributing .. 61

C.1. Sign the Contributor License Agreement ... 61
C.2. Code Conventions and Housekeeping .. 61

Part I. Introduction

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 2

1. Introducing Spring Cloud Data Flow for
Kubernetes

This project provides support for orchestrating long-running (streaming) and short-lived (task/batch)
data microservices to Kubernetes.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 3

2. Spring Cloud Data Flow

Spring Cloud Data Flow is a cloud-native orchestration service for composable data microservices on
modern runtimes. With Spring Cloud Data Flow, developers can create and orchestrate data pipelines
for common use cases such as data ingest, real-time analytics, and data import/export.

The Spring Cloud Data Flow architecture consists of a server that deploys Streams and Tasks. Streams
are defined using a DSL or visually through the browser based designer UI. Streams are based on the
Spring Cloud Stream programming model while Tasks are based on the Spring Cloud Task programming
model. The sections below describe more information about creating your own custom Streams and
Tasks

For more details about the core architecture components and the supported features, please review
Spring Cloud Data Flow’s core reference guide. There’re several samples available for reference.

http://docs.spring.io/spring-cloud-dataflow/docs/1.1.0.RELEASE/reference/htmlsingle/#streams
http://docs.spring.io/spring-cloud-dataflow/docs/1.1.0.RELEASE/reference/htmlsingle/#spring-cloud-task
http://docs.spring.io/spring-cloud-dataflow/docs/1.1.0.RELEASE/reference/htmlsingle/#_stream_dsl
http://cloud.spring.io/spring-cloud-stream/
http://cloud.spring.io/spring-cloud-task/
http://docs.spring.io/spring-cloud-dataflow/docs/1.1.0.RELEASE/reference/htmlsingle/
https://github.com/spring-cloud/spring-cloud-dataflow-samples

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 4

3. Spring Cloud Stream

Spring Cloud Stream is a framework for building message-driven microservice applications. Spring
Cloud Stream builds upon Spring Boot to create standalone, production-grade Spring applications, and
uses Spring Integration to provide connectivity to message brokers. It provides opinionated configuration
of middleware from several vendors, introducing the concepts of persistent publish-subscribe semantics,
consumer groups, and partitions.

For more details about the core framework components and the supported features, please review
Spring Cloud Stream’s reference guide.

There’s a rich ecosystem of Spring Cloud Stream Application-Starters that can be used either as
standalone data microservice applications or in Spring Cloud Data Flow. For convenience, we have
generated RabbitMQ and Apache Kafka variants of these application-starters that are available for use
from Docker Hub as docker images.

Do you have a requirement to develop custom applications? No problem. Refer to this guide to create
custom stream applications. There’re several samples available for reference.

http://docs.spring.io/spring-cloud-stream/docs/Brooklyn.RELEASE/reference/htmlsingle/
http://docs.spring.io/spring-cloud-stream-app-starters/docs/1.0.4.RELEASE/reference/htmlsingle
https://hub.docker.com/r/springcloudstream/
http://docs.spring.io/spring-cloud-stream-app-starters/docs/1.0.4.RELEASE/reference/htmlsingle/#_creating_custom_artifacts
https://github.com/spring-cloud/spring-cloud-stream-samples

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 5

4. Spring Cloud Task

Spring Cloud Task makes it easy to create short-lived microservices. We provide capabilities that allow
short-lived JVM processes to be executed on demand in a production environment.

For more details about the core framework components and the supported features, please review
Spring Cloud Task’s reference guide.

There’s a rich ecosystem of Spring Cloud Task Application-Starters that can be used either as
standalone data microservice applications or in Spring Cloud Data Flow. For convenience, the generated
application-starters are available for use from Docker Hub as docker images. There are several samples
available for reference.

http://docs.spring.io/spring-cloud-task/docs/1.1.0.RELEASE/reference/htmlsingle/
http://docs.spring.io/spring-cloud-task-app-starters/docs/1.0.1.RELEASE/reference/htmlsingle
https://hub.docker.com/r/springcloudtask/
https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples

Part II. Architecture

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 7

5. Introduction

Spring Cloud Data Flow simplifies the development and deployment of applications focused on data
processing use-cases. The major concepts of the architecture are Applications, the Data Flow Server,
and the target runtime.

Applications come in two flavors

• Long lived Stream applications where an unbounded amount of data is consumed or produced via
messaging middleware.

• Short lived Task applications that process a finite set of data and then terminate.

Depending on the runtime, applications can be packaged in two ways

• Spring Boot uber-jar that is hosted in a maven repository, file, http or any other Spring resource
implementation.

• Docker

The runtime is the place where applications execute. The target runtimes for applications are platforms
that you may already be using for other application deployments.

The supported runtimes are

• Cloud Foundry

• Apache YARN

• Kubernetes

• Apache Mesos

• Local Server for development

There is a deployer Service Provider Interface (SPI) that enables you to extend Data Flow to deploy
onto other runtimes, for example to support Docker Swarm. There are community implementations of
Hashicorp’s Nomad and RedHat Openshift is available. We look forward to working with the community
for further contributions!

The component that is responsible for deploying applications to a runtime is the Data Flow Server. There
is a Data Flow Server executable jar provided for each of the target runtimes. The Data Flow server
is responsible for interpreting

• A stream DSL that describes the logical flow of data through multiple applications.

• A deployment manifest that describes the mapping of applications onto the runtime. For example, to
set the initial number of instances, memory requirements, and data partitioning.

As an example, the DSL to describe the flow of data from an http source to an Apache Cassandra sink
would be written as “http | cassandra”. These names in the DSL are registered with the Data Flow Server
and map onto application artifacts that can be hosted in Maven or Docker repositories. Many source,
processor, and sink applications for common use-cases (e.g. jdbc, hdfs, http, router) are provided by
the Spring Cloud Data Flow team. The pipe symbol represents the communication between the two
applications via messaging middleware. The two messaging middleware brokers that are supported are

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 8

• Apache Kafka

• RabbitMQ

In the case of Kafka, when deploying the stream, the Data Flow server is responsible to create the topics
that correspond to each pipe symbol and configure each application to produce or consume from the
topics so the desired flow of data is achieved.

The interaction of the main components is shown below

Figure 5.1. The Spring Cloud Data High Level Architecure

In this diagram a DSL description of a stream is POSTed to the Data Flow Server. Based on the
mapping of DSL application names to Maven and Docker artifacts, the http-source and cassandra-sink
applications are deployed on the target runtime.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 9

6. Microservice Architectural Style

The Data Flow Server deploys applications onto the target runtime that conform to the microservice
architectural style. For example, a stream represents a high level application that consists of multiple
small microservice applications each running in their own process. Each microservice application can
be scaled up or down independent of the other and each has their own versioning lifecycle.

Both Streaming and Task based microservice applications build upon Spring Boot as the foundational
library. This gives all microservice applications functionality such as health checks, security, configurable
logging, monitoring and management functionality, as well as executable JAR packaging.

It is important to emphasise that these microservice applications are ‘just apps’ that you can run
by yourself using ‘java -jar’ and passing in appropriate configuration properties. We provide many
common microservice applications for common operations so you don’t have to start from scratch when
addressing common use-cases which build upon the rich ecosystem of Spring Projects, e.g Spring
Integration, Spring Data, Spring Hadoop and Spring Batch. Creating your own microservice application
is similar to creating other Spring Boot applications, you can start using the Spring Initialzr web site or
the UI to create the basic scaffolding of either a Stream or Task based microservice.

In addition to passing in the appropriate configuration to the applications, the Data Flow server is
responsible for preparing the target platform’s infrastructure so that the application can be deployed. For
example, in Cloud Foundry it would be binding specified services to the applications and executing the
‘cf push’ command for each application. For Kubernetes it would be creating the replication controller,
service, and load balancer.

The Data Flow Server helps simplify the deployment of multiple applications onto a target runtime, but
one could also opt to deploy each of the microservice applications manually and not use Data Flow at
all. This approach might be more appropriate to start out with for small scale deployments, gradually
adopting the convenience and consistency of Data Flow as you develop more applications. Manual
deployment of Stream and Task based microservices is also a useful educational exercise that will help
you better understand some of the automatic applications configuration and platform targeting steps
that the Data Flow Server provides.

6.1 Comparison to other Platform architectures

Spring Cloud Data Flow’s architectural style is different than other Stream and Batch processing
platforms. For example in Apache Spark, Apache Flink, and Google Cloud Dataflow applications run on
a dedicated compute engine cluster. The nature of the compute engine gives these platforms a richer
environment for performing complex calculations on the data as compared to Spring Cloud Data Flow,
but it introduces complexity of another execution environment that is often not needed when creating
data centric applications. That doesn’t mean you cannot do real time data computations when using
Spring Cloud Data Flow. Refer to the analytics section which describes the integration of Redis to handle
common counting based use-cases as well as the RxJava integration for functional API driven analytics
use-cases, such as time-sliding-window and moving-average among others.

Similarly, Apache Storm, Hortonworks DataFlow and Spring Cloud Data Flow’s predecessor, Spring
XD, use a dedicated application execution cluster, unique to each product, that determines where your
code should execute on the cluster and perform health checks to ensure that long lived applications are
restarted if they fail. Often, framework specific interfaces are required to be used in order to correctly
“plug in” to the cluster’s execution framework.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 10

As we discovered during the evolution of Spring XD, the rise of multiple container frameworks in
2015 made creating our own runtime a duplication of efforts. There is no reason to build your own
resource management mechanics, when there are multiple runtime platforms that offer this functionality
already. Taking these considerations into account is what made us shift to the current architecture
where we delegate the execution to popular runtimes, runtimes that you may already be using for other
purposes. This is an advantage in that it reduces the cognitive distance for creating and managing data
centric applications as many of the same skills used for deploying other end-user/web applications are
applicable.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 11

7. Streaming Applications

While Spring Boot provides the foundation for creating DevOps friendly microservice applications,
other libraries in the Spring ecosystem help create Stream based microservice applications. The most
important of these is Spring Cloud Stream.

The essence of the Spring Cloud Stream programming model is to provide an easy way to describe
multiple inputs and outputs of an application that communicate over messaging middleware. These input
and outputs map onto Kafka topics or Rabbit exchanges and queues. Common application configuration
for a Source that generates data, a Process that consumes and produces data and a Sink that consumes
data is provided as part of the library.

7.1 Imperative Programming Model

Spring Cloud Stream is most closely integrated with Spring Integration’s imperative "event at a time"
programming model. This means you write code that handles a single event callback. For example,

@EnableBinding(Sink.class)

public class LoggingSink {

 @StreamListener(Sink.INPUT)

 public void log(String message) {

 System.out.println(message);

 }

}

In this case the String payload of a message coming on the input channel, is handed to the log method.
The @EnableBinding annotation is what is used to tie together the input channel to the external
middleware.

7.2 Functional Programming Model

However, Spring Cloud Stream can support other programming styles. The use of reactive APIs where
incoming and outgoing data is handled as continuous data flows and it defines how each individual
message should be handled. You can also use operators that describe functional transformations from
inbound to outbound data flows. The upcoming versions will support Apache Kafka’s KStream API in
the programming model.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 12

8. Streams

8.1 Topologies

The Stream DSL describes linear sequences of data flowing through the system. For example, in the
stream definition http | transformer | cassandra, each pipe symbol connects the application
on the left to the one on the right. Named channels can be used for routing and to fan out data to multiple
messaging destinations.

Taps can be used to ‘listen in’ to the data that if flowing across any of the pipe symbols. Taps can be
used as sources for new streams with an in independent life cycle.

8.2 Concurrency

For an application that will consume events, Spring Cloud stream exposes a concurrency setting that
controls the size of a thread pool used for dispatching incoming messages. See the Consumer properties
documentation for more information.

8.3 Partitioning

A common pattern in stream processing is to partition the data as it moves from one application to
the next. Partitioning is a critical concept in stateful processing, for either performance or consistency
reasons, to ensure that all related data is processed together. For example, in a time-windowed average
calculation example, it is important that all measurements from any given sensor are processed by the
same application instance. Alternatively, you may want to cache some data related to the incoming
events so that it can be enriched without making a remote procedure call to retrieve the related data.

Spring Cloud Data Flow supports partitioning by configuring Spring Cloud Stream’s output and input
bindings. Spring Cloud Stream provides a common abstraction for implementing partitioned processing
use cases in a uniform fashion across different types of middleware. Partitioning can thus be used
whether the broker itself is naturally partitioned (e.g., Kafka topics) or not (e.g., RabbitMQ). The following
image shows how data could be partitioned into two buckets, such that each instance of the average
processor application consumes a unique set of data.

Figure 8.1. Spring Cloud Stream Partitioning

To use a simple partitioning strategy in Spring Cloud Data Flow, you only need set the instance count for
each application in the stream and a partitionKeyExpression producer property when deploying
the stream. The partitionKeyExpression identifies what part of the message will be used as the
key to partition data in the underlying middleware. An ingest stream can be defined as http |
averageprocessor | cassandra (Note that the Cassandra sink isn’t shown in the diagram above).
Suppose the payload being sent to the http source was in JSON format and had a field called sensorId.

http://docs.spring.io/spring-cloud-stream/docs/Brooklyn.RELEASE/reference/htmlsingle/index.html#_consumer_properties

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 13

Deploying the stream with the shell command stream deploy ingest --propertiesFile

ingestStream.properties where the contents of the file ingestStream.properties are

app.http.count=3

app.averageprocessor.count=2

app.http.producer.partitionKeyExpression=payload.sensorId

will deploy the stream such that all the input and output destinations are configured for data to
flow through the applications but also ensure that a unique set of data is always delivered to each
averageprocessor instance. In this case the default algorithm is to evaluate payload.sensorId %
partitionCount where the partitionCount is the application count in the case of RabbitMQ and
the partition count of the topic in the case of Kafka.

Please refer to ??? for additional strategies to partition streams during deployment and how they map
onto the underlying Spring Cloud Stream Partitioning properties.

Also note, that you can’t currently scale partitioned streams. Read the section Section 12.3, “Scaling
at runtime” for more information.

8.4 Message Delivery Guarantees

Streams are composed of applications that use the Spring Cloud Stream library as the basis for
communicating with the underlying messaging middleware product. Spring Cloud Stream also provides
an opinionated configuration of middleware from several vendors, in particular providing persistent
publish-subscribe semantics.

The Binder abstraction in Spring Cloud Stream is what connects the application to the middleware. There
are several configuration properties of the binder that are portable across all binder implementations
and some that are specific to the middleware.

For consumer applications there is a retry policy for exceptions generated during message
handling. The retry policy is configured using the common consumer properties maxAttempts,
backOffInitialInterval, backOffMaxInterval, and backOffMultiplier. The default
values of these properties will retry the callback method invocation 3 times and wait one second for the
first retry. A backoff multiplier of 2 is used for the second and third attempts.

When the number of retry attempts has exceeded the maxAttempts value, the exception and the failed
message will become the payload of a message and be sent to the application’s error channel. By
default, the default message handler for this error channel logs the message. You can change the default
behavior in your application by creating your own message handler that subscribes to the error channel.

Spring Cloud Stream also supports a configuration option for both Kafka and RabbitMQ binder
implementations that will send the failed message and stack trace to a dead letter queue. The dead letter
queue is a destination and its nature depends on the messaging middleware (e.g in the case of Kafka it
is a dedicated topic). To enable this for RabbitMQ set the consumer properties republishtoDlq and
autoBindDlq and the producer property autoBindDlq to true when deploying the stream. To always
apply these producer and consumer properties when deploying streams, configure them as common
application properties when starting the Data Flow server.

Additional messaging delivery guarantees are those provided by the underlying messaging middleware
that is chosen for the application for both producing and consuming applications. Refer to the Kafka
Consumer and Producer and Rabbit Consumer and Producer documentation for more details. You will
find extensive declarative support for all the native QOS options.

http://docs.spring.io/spring-cloud-stream/docs/Brooklyn.RELEASE/reference/htmlsingle/index.html#_partitioning
http://docs.spring.io/spring-cloud-stream/docs/Brooklyn.RELEASE/reference/htmlsingle/index.html#_persistent_publish_subscribe_support
http://docs.spring.io/spring-cloud-stream/docs/Brooklyn.RELEASE/reference/htmlsingle/index.html#_persistent_publish_subscribe_support
http://docs.spring.io/spring-cloud-stream/docs/Brooklyn.RELEASE/reference/htmlsingle/index.html#_binders
http://docs.spring.io/spring-cloud-stream/docs/Brooklyn.RELEASE/reference/htmlsingle/index.html#_consumer_properties
http://docs.spring.io/spring-cloud-stream/docs/Brooklyn.RELEASE/reference/htmlsingle/index.html#_rabbitmq_consumer_properties
http://docs.spring.io/spring-cloud-stream/docs/Brooklyn.RELEASE/reference/htmlsingle/index.html#_rabbit_producer_properties
http://docs.spring.io/spring-cloud-stream/docs/Brooklyn.RELEASE/reference/htmlsingle/index.html#_kafka_consumer_properties
http://docs.spring.io/spring-cloud-stream/docs/Brooklyn.RELEASE/reference/htmlsingle/index.html#_kafka_producer_properties
http://docs.spring.io/spring-cloud-stream/docs/Brooklyn.RELEASE/reference/htmlsingle/index.html#_rabbitmq_consumer_properties
http://docs.spring.io/spring-cloud-stream/docs/Brooklyn.RELEASE/reference/htmlsingle/index.html#_rabbit_producer_properties

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 14

9. Analytics

Spring Cloud Data Flow is aware of certain Sink applications that will write counter data to Redis and
provides an REST endpoint to read counter data. The types of counters supported are

• Counter - Counts the number of messages it receives, optionally storing counts in a separate store
such as redis.

• Field Value Counter - Counts occurrences of unique values for a named field in a message payload

• Aggregate Counter - Stores total counts but also retains the total count values for each minute, hour
day and month.

It is important to note that the timestamp that is used in the aggregate counter can come from a field in
the message itself so that out of order messages are properly accounted.

https://github.com/spring-cloud/spring-cloud-stream-app-starters/tree/master/metrics/spring-cloud-starter-stream-sink-counter
https://github.com/spring-cloud/spring-cloud-stream-app-starters/tree/master/metrics/spring-cloud-starter-stream-sink-field-value-counter
https://github.com/spring-cloud/spring-cloud-stream-app-starters/tree/master/metrics/spring-cloud-starter-stream-sink-aggregate-counter

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 15

10. Task Applications

The Spring Cloud Task programming model provides:

• Persistence of the Task’s lifecycle events and exit code status.

• Lifecycle hooks to execute code before or after a task execution.

• Emit task events to a stream (as a source) during the task lifecycle.

• Integration with Spring Batch Jobs.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 16

11. Data Flow Server

11.1 Endpoints

The Data Flow Server uses an embedded servlet container and exposes REST endpoints for creating,
deploying, undeploying, and destroying streams and tasks, querying runtime state, analytics, and the
like. The Data Flow Server is implemented using Spring’s MVC framework and the Spring HATEOAS
library to create REST representations that follow the HATEOAS principle.

Figure 11.1. The Spring Cloud Data Flow Server

11.2 Customization

Each Data Flow Server executable jar targets a single runtime by delegating to the implementation of
the deployer Service Provider Interface found on the classpath.

We provide a Data Flow Server executable jar that targets a single runtime. The Data Flow server
delegates to the implementation of the deployer Service Provider Interface found on the classpath. In
the current version, there are no endpoints specific to a target runtime, but may be available in future
releases as a convenience to access runtime specific features

While we provide a server executable for each of the target runtimes you can also create your own
customized server application using Spring Initialzr. This let’s you add or remove functionality relative
to the executable jar we provide. For example, adding additional security implementations, custom

https://github.com/SpringSource/spring-hateoas

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 17

endpoints, or removing Task or Analytics REST endpoints. You can also enable or disable some features
through the use of feature toggles.

11.3 Security

The Data Flow Server executable jars support basic http, LDAP(S), File-based, and OAuth 2.0
authentication to access its endpoints. Refer to the security section for more information.

Authorization via groups is planned for a future release.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 18

12. Runtime

12.1 Fault Tolerance

The target runtimes supported by Data Flow all have the ability to restart a long lived application should
it fail. Spring Cloud Data Flow sets up whatever health probe is required by the runtime environment
when deploying the application.

The collective state of all applications that comprise the stream is used to determine the state of the
stream. If an application fails, the state of the stream will change from ‘deployed’ to ‘partial’.

12.2 Resource Management

Each target runtime lets you control the amount of memory, disk and CPU that is allocated to each
application. These are passed as properties in the deployment manifest using key names that are unique
to each runtime. Refer to the each platforms server documentation for more information.

12.3 Scaling at runtime

When deploying a stream, you can set the instance count for each individual application that comprises
the stream. Once the stream is deployed, each target runtime lets you control the target number of
instances for each individual application. Using the APIs, UIs, or command line tools for each runtime,
you can scale up or down the number of instances as required. Future work will provide a portable
command in the Data Flow Server to perform this operation.

Currently, this is not supported with the Kafka binder (based on the 0.8 simple consumer at the time
of the release), as well as partitioned streams, for which the suggested workaround is redeploying
the stream with an updated number of instances. Both cases require a static consumer set up based
on information about the total instance count and current instance index, a limitation intended to be
addressed in future releases. For example, Kafka 0.9 and higher provides good infrastructure for scaling
applications dynamically and will be available as an alternative to the current Kafka 0.8 based binder
in the near future. One specific concern regarding scaling partitioned streams is the handling of local
state, which is typically reshuffled as the number of instances is changed. This is also intended to be
addressed in the future versions, by providing first class support for local state management.

12.4 Application Versioning

Application versioning, that is upgrading or downgrading an application from one version to another, is
not directly supported by Spring Cloud Data Flow. You must rely on specific target runtime features to
perform these operational tasks.

The roadmap for Spring Cloud Data Flow will deploy applications that are compatible with Spinnaker
to manage the complete application lifecycle. This also includes automated canary analysis backed by
application metrics. Portable commands in the Data Flow server to trigger pipelines in Spinnaker are
also planned.

Part III. Getting Started

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 20

13. Deploying Streams on Kubernetes

In this getting started guide, the Data Flow Server is deployed to the Kubernetes cluster. This means
that we need to make available an RDBMS service for stream and task repositories, app registry plus
a transport option of either Kafka or Rabbit MQ. We also need a Redis instance if we are planning on
using the analytics features.

1. Deploy a Kubernetes cluster.

The Kubernetes Getting Started guide lets you choose among many deployment options so you can
pick one that you are most comfortable using. We have successfully used the Vagrant option from
a downloaded Kubernetes release.

We have also used the Minikube project to run a local Kubernetes cluster for testing.

The rest of this getting started guide assumes that you have a working Kubernetes cluster and a
kubectl command line. For the MySQL service we used the gcloud comand line utility. See the
docs for installing both these utilities: Installing Cloud SDK and Installing and Setting up kubectl.

2. Create a Kafka service on the Kubernetes cluster.

The Kafka service will be used for messaging between modules in the stream. You can instead use
Rabbit MQ, but, in order to simplify, we only show the Kafka configurations in this guide. There are
sample replication controller and service YAML files in the spring-cloud-dataflow-server-
kubernetes repository that you can use as a starting point as they have the required metadata set
for service discovery by the modules. For Kafka we use the files with a "zk" and "kafka" prefix.

$ git clone https://github.com/spring-cloud/spring-cloud-dataflow-server-kubernetes

$ cd spring-cloud-dataflow-server-kubernetes

$ kubectl create -f src/etc/kubernetes/kafka-zk-controller.yml

$ kubectl create -f src/etc/kubernetes/kafka-zk-service.yml

$ kubectl create -f src/etc/kubernetes/kafka-controller.yml

$ kubectl create -f src/etc/kubernetes/kafka-service.yml

You can use the command kubectl get pods to verify that the controller and service is running.
Use the command kubectl get services to check on the state of the service. Use the commands
kubectl delete svc kafka and kubectl delete rc kafka-broker plus kubectl delete
svc kafka-zk and kubectl delete rc kafka-zk to clean up afterwards.

3. Create a MySQL service on the Kubernetes cluster.

We are using MySQL for this guide, but you could use Postgres or H2 database instead. We include
JDBC drivers for all three of these databases, you would just have to adjust the database URL and
driver class name settings.

Before creating the MySQL service we need to create a persistent disk and modify the password in
the config file. To create a persistent disk you can use the following command:

$ gcloud compute disks create mysql-disk --size 200 --type pd-standard

Modify the password in the src/etc/kubernetes/mysql-controller.yml file inside the
spring-cloud-dataflow-server-kubernetes repository. Then run the following commands
to start the database service:

$ kubectl create -f src/etc/kubernetes/mysql-controller.yml

http://kubernetes.io/docs/getting-started-guides/
https://github.com/kubernetes/minikube
https://cloud.google.com/sdk/downloads
http://kubernetes.io/docs/user-guide/prereqs/

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 21

$ kubectl create -f src/etc/kubernetes/mysql-service.yml

Again, you can use the command kubectl get pods to verify that the controller is running. Note
that it can take a minute or so until there is an external IP address for the MySQL server. Use the
command kubectl get services to check on the state of the service and look for when there is
a value under the EXTERNAL_IP column. Use the commands kubectl delete svc mysql and
kubectl delete rc mysql to clean up afterwards. Use the EXTERNAL_IP address to connect
to the database and create a test database that we can use for our testing. Use your favorit SQL
developer tool for this:

CREATE DATABASE test;

4. Create a Redis service on the Kubernetes cluster.

The Redis service will be used for the analytics functionality. There are sample replication controller
and service YAML files in the spring-cloud-dataflow-server-kubernetes repository that
you can use as a starting point as they have the required metadata set for service discovery by the
modules.

$ kubectl create -f src/etc/kubernetes/redis-controller.yml

$ kubectl create -f src/etc/kubernetes/redis-service.yml

Note

If you don’t need the analytics functionality you can turn this feature off by changing
SPRING_CLOUD_DATAFLOW_FEATURES_ANALYTICS_ENABLED to false in the scdf-
controller.yml file. If you don’t install the Redis service then you should also remove the
Redis configuration settings in scdf-config-kafka.yml mentioned below.

5. Update configuration files with values needed to connect to Kubernetes, MySQL and Redis.

The Data Flow Server uses the Fabric8 Java client library to connect to the Kubernetes cluster.
We are using environment variables to set the values needed when deploying the Data Flow server
to Kubernetes. We are also using the Fabric8 Spring Cloud integration with Kubernetes library to
access Kubernetes ConfigMap and Secrets settings. The ConfigMap settings are specified in the
src/etc/kubernetes/scdf-config.yml file and the Secrets in the src/etc/kubernetes/
scdf-secrets.yml file. Modify the password for MySQL in the latter if you changed it. It has to
be provided encoded as base64.

This approach supports using one Data Flow Server instance per Kubernetes namespace.

6. Deploy the Spring Cloud Data Flow Server for Kubernetes using the Docker image and the
configuration settings you just modified.

$ kubectl create -f src/etc/kubernetes/scdf-config-kafka.yml

$ kubectl create -f src/etc/kubernetes/scdf-secrets.yml

$ kubectl create -f src/etc/kubernetes/scdf-service.yml

$ kubectl create -f src/etc/kubernetes/scdf-controller.yml

Note

We haven’t tuned the memory use of the OOTB apps yet, so to be on the safe
side we are increasing the memory for the pods by providing the following property:
spring.cloud.deployer.kubernetes.memory=640Mi

https://github.com/fabric8io/kubernetes-client
https://github.com/fabric8io/spring-cloud-kubernetes
http://kubernetes.io/docs/user-guide/configmap/
http://kubernetes.io/docs/user-guide/secrets/

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 22

Use the kubectl get svc command to locate the EXTERNAL_IP address assigned to scdf, we
use that to connect from the shell.

$ kubectl get svc

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

kafka 10.103.248.211 <none> 9092/TCP 14d

kubernetes 10.103.240.1 <none> 443/TCP 16d

mysql 10.103.251.179 104.154.246.220 3306/TCP 10d

redis 10.103.242.191 <none> 6379/TCP 8d

scdf 10.103.246.82 130.211.203.246 9393/TCP 4m

zk 10.103.243.29 <none> 2181/TCP 14d

7. Download and run the Spring Cloud Data Flow shell.

wget http://repo.spring.io/release/org/springframework/cloud/spring-cloud-dataflow-

shell/1.1.0.RELEASE/spring-cloud-dataflow-shell-1.1.0.RELEASE.jar

$ java -jar spring-cloud-dataflow-shell-1.1.0.RELEASE.jar

Configure the Data Flow server URI with the following command (use the IP address from previous
step and at the moment we are using port 9393):

 ____ ____ _ __

 / ___| _ __ _ __(_)_ __ __ _ / ___| | ___ _ _ __| |

 ___ \| '_ \| '__| | '_ \ / _` | | | | |/ _ \| | | |/ _` |

 ___) | |_) | | | | | | | (_| | | |___| | (_) | |_| | (_| |

 |____/| .__/|_| |_|_| |_|__, | ____|_|___/ __,_|__,_|

 ____ |_| _ __|___/ __________

 | _ \ __ _| |_ __ _ | ___| | _____ __ \ \ \ \ \ \

 | | | |/ _` | __/ _` | | |_ | |/ _ \ \ /\ / / \ \ \ \ \ \

 | |_| | (_| | || (_| | | _| | | (_) \ V V / / / / / / /

 |____/ __,_|____,_| |_| |_|___/ _/_/ /_/_/_/_/_/

1.1.0.RELEASE

Welcome to the Spring Cloud Data Flow shell. For assistance hit TAB or type "help".

server-unknown:>dataflow config server --uri http://130.211.203.246:9393

Successfully targeted http://130.211.203.246:9393

dataflow:>

8. Register the Kafka version of the time and log apps using the shell and also register the timestamp
app.

dataflow:>app register --type source --name time --uri docker:springcloudstream/time-source-

kafka:latest

dataflow:>app register --type sink --name log --uri docker:springcloudstream/log-sink-kafka:latest

dataflow:>app register --type task --name timestamp --uri docker:springcloudtask/timestamp-

task:latest

9. Alternatively, if you would like to register all out-of-the-box stream applications built with the Kafka
binder in bulk, you can with the following command. For more details, review how to register
applications.

dataflow:>app import --uri http://bit.ly/stream-applications-kafka-docker

10.Deploy a simple stream in the shell

dataflow:>stream create --name ticktock --definition "time | log" --deploy

You can use the command kubectl get pods to check on the state of the pods corresponding to
this stream. We can run this from the shell by running it as an OS command by adding a "!" before
the command.

http://docs.spring.io/spring-cloud-dataflow/docs/1.1.0.RELEASE/reference/html/spring-cloud-dataflow-register-apps.html
http://docs.spring.io/spring-cloud-dataflow/docs/1.1.0.RELEASE/reference/html/spring-cloud-dataflow-register-apps.html

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 23

dataflow:>! kubectl get pods

command is:kubectl get pods

NAME READY STATUS RESTARTS AGE

kafka-d207a 1/1 Running 0 50m

ticktock-log-qnk72 1/1 Running 0 2m

ticktock-time-r65cn 1/1 Running 0 2m

Look at the logs for the pod deployed for the log sink.

$ kubectl logs -f ticktock-log-qnk72

...

2015-12-28 18:50:02.897 INFO 1 --- [main] o.s.c.s.module.log.LogSinkApplication :

 Started LogSinkApplication in 10.973 seconds (JVM running for 50.055)

2015-12-28 18:50:08.561 INFO 1 --- [hannel-adapter1] log.sink :

 2015-12-28 18:50:08

2015-12-28 18:50:09.556 INFO 1 --- [hannel-adapter1] log.sink :

 2015-12-28 18:50:09

2015-12-28 18:50:10.557 INFO 1 --- [hannel-adapter1] log.sink :

 2015-12-28 18:50:10

2015-12-28 18:50:11.558 INFO 1 --- [hannel-adapter1] log.sink :

 2015-12-28 18:50:11

Note

If you need to specify any of the app specific configuration properties then you must use
"long-form" of them including the app specific prefix like --jdbc.tableName=TEST_DATA.
This is due to the server not being able to access the metadata for the Docker based starter
apps. You will also not see the configuration properties listed when using the app info
command or in the Dashboard GUI.

Note

If you need to be able to connect from outside of the Kubernetes cluster to an app
that you deploy, like the http-source, then you can provide a deployment property
of spring.cloud.deployer.kubernetes.createLoadBalancer=true for the app
module to specify that you want to have a LoadBalancer with an external IP address created
for your app’s service.

To register the http-source and use it in a stream where you can post data to it, you can use the
following commands:

dataflow:>app register --type source --name http --uri docker:springcloudstream/http-source-

kafka:latest

dataflow:>stream create --name test --definition "http | log"

dataflow:>stream deploy test --properties

 "app.http.spring.cloud.deployer.kubernetes.createLoadBalancer=true"

Now, look up the external IP address for the http app (it can sometimes take a minute or two for
the external IP to get assigned):

dataflow:>! kubectl get service

command is:kubectl get service

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE

kafka 10.103.240.92 <none> 9092/TCP 7m

kubernetes 10.103.240.1 <none> 443/TCP 4h

test-http 10.103.251.157 130.211.200.96 8080/TCP 58s

test-log 10.103.240.28 <none> 8080/TCP 59s

zk 10.103.247.25 <none> 2181/TCP 7m

Next, post some data to the test-http app:

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 24

dataflow:>http post --target http://130.211.200.96:8080 --data "Hello"

Finally, look at the logs for the test-log pod:

dataflow:>! kubectl get pods

command is:kubectl get pods

NAME READY STATUS RESTARTS AGE

kafka-o20qq 1/1 Running 0 9m

mysql-o2v83 1/1 Running 0 9m

redis-zb87a 1/1 Running 0 8m

test-http-9obkq 1/1 Running 0 2m

test-log-ysiz3 1/1 Running 0 2m

dataflow:>! kubectl logs test-log-ysiz3

command is:kubectl logs test-log-ysiz3

...

2016-04-27 16:54:29.789 INFO 1 --- [main] o.s.c.s.b.k.KafkaMessageChannelBinder$3 :

 started inbound.test.http.test

2016-04-27 16:54:29.799 INFO 1 --- [main] o.s.c.support.DefaultLifecycleProcessor :

 Starting beans in phase 0

2016-04-27 16:54:29.799 INFO 1 --- [main] o.s.c.support.DefaultLifecycleProcessor :

 Starting beans in phase 2147482647

2016-04-27 16:54:29.895 INFO 1 --- [main] s.b.c.e.t.TomcatEmbeddedServletContainer :

 Tomcat started on port(s): 8080 (http)

2016-04-27 16:54:29.896 INFO 1 --- [kafka-binder-] log.sink :

 Hello

A useful command to help in troubleshooting issues, such as a container that has a fatal error starting
up, add the options --previous to view last terminated container log. You can also get more detailed
information about the pods by using the kubctl describe like:

kubectl describe pods/ticktock-log-qnk72

11.Destroy the stream

dataflow:>stream destroy --name ticktock

12.Create a task and launch it

Let’s create a simple task definition and launch it.

dataflow:>task create task1 --definition "timestamp"

dataflow:>task launch task1

We can now list the tasks and executions using these commands:

dataflow:>task list

#######################################

#Task Name#Task Definition#Task Status#

#######################################

#task1 #timestamp #running #

#######################################

dataflow:>task execution list

##

#Task Name#ID# Start Time # End Time #Exit Code#

##

#task1 #1 #Fri Jun 03 18:12:05 EDT 2016#Fri Jun 03 18:12:05 EDT 2016#0 #

##

13.Destroy the task

dataflow:>task destroy --name task1

Part IV. Server Configuration
In this section you will learn how to configure Spring Cloud Data Flow server’s features such as the
relational database to use and security.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 26

14. Feature Toggles

Data Flow server offers specific set of features that can be enabled/disabled when launching. These
features include all the lifecycle operations, REST endpoints (server, client implementations including
Shell and the UI) for:

1. Streams

2. Tasks

3. Analytics

You can enable or disable these features by setting the following boolean environment variables when
launching the Data Flow server:

• SPRING_CLOUD_DATAFLOW_FEATURES_STREAMS_ENABLED

• SPRING_CLOUD_DATAFLOW_FEATURES_TASKS_ENABLED

• SPRING_CLOUD_DATAFLOW_FEATURES_ANALYTICS_ENABLED

By default, all the features are enabled.

Note

Since analytics feature is enabled by default, the Data Flow server is expected to have a valid
Redis store available as analytic repository as we provide a default implementation of analytics
based on Redis. This also means that the Data Flow server’s health depends on the redis
store availability as well. If you do not want to enabled HTTP endpoints to read analytics data
written to Redis, then disable the analytics feature using the property mentioned above.

The REST endpoint /features provides information on the features enabled/disabled.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 27

15. General Configuration

Configuration properties can be passed to the Data Flow Server using Kubernetes ConfigMap
and Secrets. The server uses the Fabric8 spring-cloud-kubernetes module to process both
ConfigMap and Secrets settings. You just need to enable the ConfigMap support by passing
in an environment variable of SPRING_CLOUD_KUBERNETES_CONFIG_NAME and setting that to
the name of the ConfigMap. Same is true for the Secrets where the environment variable
is SPRING_CLOUD_KUBERNETES_SECRETS_NAME. To use the Secrets you also need to set
SPRING_CLOUD_KUBERNETES_SECRETS_ENABLE_API to true.

An example configuration could look like the following where we configure Kafka, MySQL and Redis
for the server:

apiVersion: v1

kind: ConfigMap

metadata:

 name: scdf-config

data:

 application.yaml: |-

 spring:

 cloud:

 deployer:

 kubernetes:

 environmentVariables: 'SPRING_CLOUD_STREAM_KAFKA_BINDER_BROKERS=${KAFKA_SERVICE_HOST}:

${KAFKA_SERVICE_PORT},SPRING_CLOUD_STREAM_KAFKA_BINDER_ZK_NODES=${KAFKA_ZK_SERVICE_HOST}:

${KAFKA_ZK_SERVICE_PORT},SPRING_REDIS_HOST=${REDIS_SERVICE_HOST},SPRING_REDIS_PORT=

${REDIS_SERVICE_PORT}'

 datasource:

 url: jdbc:mysql://${MYSQL_SERVICE_HOST}:${MYSQL_SERVICE_PORT}/test

 driverClassName: org.mariadb.jdbc.Driver

 testOnBorrow: true

 validationQuery: "SELECT 1"

 redis:

 host: ${REDIS_SERVICE_HOST}

 port: ${REDIS_SERVICE_PORT}

We assume here that Kafka is deployed using kafka and kafka_zk as the service names. For the
MySQL we assume the service name is mysql and for Redis we assume it is redis. Kubernetes will
publish these services host and port values as environment variables that we can use when configuring
any deployed apps.

We prefer to provide the MySQL connection secrets in a Secrets file:

apiVersion: v1

kind: Secret

metadata:

 name: scdf-secrets

data:

 spring.datasource.username: cm9vdA==

 spring.datasource.password: eW91cnBhc3N3b3Jk

The username and password are provided as base64 encoded values.

http://kubernetes.io/docs/user-guide/configmap/
http://kubernetes.io/docs/user-guide/secrets/
https://github.com/fabric8io/spring-cloud-kubernetes

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 28

16. Database Configuration

Spring Cloud Data Flow provides schemas for H2, HSQLDB, MySQL, Oracle, Postgresql, DB2 and
SqlServer that will be automatically created when the server starts.

The JDBC drivers for MySQL (via MariaDB driver), HSQLDB, PostgreSQL along with embedded H2
are available out of the box. If you are using any other database, then the corresponding JDBC driver
jar needs to be on the classpath of the server.

For instance, If you are using MySQL in addition to username and password in the Secrets file provide
the following properties in the ConfigMap:

data:

 application.yaml: |-

 spring:

 datasource:

 url: jdbc:mysql://${MYSQL_SERVICE_HOST}:${MYSQL_SERVICE_PORT}/test

 driverClassName: org.mariadb.jdbc.Driver

For PostgreSQL:

data:

 application.yaml: |-

 spring:

 datasource:

 url: jdbc:postgresql://${PGSQL_SERVICE_HOST}:${PGSQL_SERVICE_PORT}/database

 driverClassName: org.postgresql.Driver

For HSQLDB:

data:

 application.yaml: |-

 spring:

 datasource:

 url: jdbc:hsqldb:hsql://${HSQLDB_SERVICE_HOST}:${HSQLDB_SERVICE_PORT}/database

 driverClassName: org.hsqldb.jdbc.JDBCDriver

Note

There is a schema update to the Spring Cloud Data Flow datastore when upgrading from version
1.0.x to 1.1.x. Migration scripts for specific database types can be found here.

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-core/src/main/resources/org/springframework/cloud/task/migration

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 29

17. Monitoring and Management

We recommend using the kubectl command for troubleshooting streams and tasks.

You can list all artifacts used by using the following command:

kubectl get cm,secrets,svc,rc,pod

17.1 Server

You can access the server log by using the following command (just supply the name of pod for the
server):

kubectl logs <scdf-pod-name>

17.2 Streams

The streams apps are deployed with teh stream name followed by the name of the app and for
processors and sinks there is also an instance index appended.

To see details for a specifc app deployment you can use (just supply the name of pod for the app):

kubectl details <app-pod-name>

For the application logs use:

kubectl logs <app-pod-name>

If you would like to tail a log you can use:

kubectl logs -f <app-pod-name>

17.3 Tasks

Tasks are launched as bare pods without a replication controller. The pods remein after the tasks
complete and you would have to delete them manually once they are no longer needed.

For the task logs use:

kubectl logs <task-pod-name>

To delete the task pod use:

kubectl delete pod <task-pod-name>

Part V. Dashboard
This section describe how to use the Dashboard of Spring Cloud Data Flow.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 31

18. Introduction

Spring Cloud Data Flow provides a browser-based GUI and it currently includes 6 tabs:

• Apps Lists all available applications and provides the control to register/unregister them

• Runtime Provides the Data Flow cluster view with the list of all running applications

• Streams List, create, deploy, and destroy Stream Definitions

• Tasks List, create, launch and destroy Task Definitions

• Jobs Perform Batch Job related functions

• Analytics Create data visualizations for the various analytics applications

Upon starting Spring Cloud Data Flow, the Dashboard is available at:

http://<host>:<port>/dashboard

For example: http://localhost:9393/dashboard

If you have enabled https, then it will be located at https://localhost:9393/dashboard. If you
have enabled security, a login form is available at http://localhost:9393/dashboard/#/login.

Note: The default Dashboard server port is 9393

Figure 18.1. The Spring Cloud Data Flow Dashboard

http://localhost:9393/dashboard

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 32

19. Apps

The Apps section of the Dashboard lists all the available applications and provides the control to register/
unregister them (if applicable). It is possible to import a number of applications at once using the Bulk
Import Applications action.

Figure 19.1. List of Available Applications

19.1 Bulk Import of Applications

The bulk import applications page provides numerous options for defining and importing a set of
applications in one go. For bulk import the application definitions are expected to be expressed in a
properties style:

<type>.<name> = <coordinates>

For example:

task.timestamp=maven://org.springframework.cloud.task.app:timestamp-

task:1.0.0.BUILD-SNAPSHOT

processor.transform=maven://org.springframework.cloud.stream.app:transform-

processor-rabbit:1.0.3.BUILD-SNAPSHOT

At the top of the bulk import page an Uri can be specified that points to a properties file stored
elsewhere, it should contain properties formatted as above. Alternatively, using the textbox labeled Apps
as Properties it is possible to directly list each property string. Finally, if the properties are stored in a
local file the Select Properties File option will open a local file browser to select the file. After setting
your definitions via one of these routes, click Import.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 33

At the bottom of the page there are quick links to the property files for common groups of stream apps
and task apps. If those meet your needs, simply select your appropriate variant (rabbit, kafka, docker,
etc) and click the Import action on those lines to immediately import all those applications.

Figure 19.2. Bulk Import Applications

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 34

20. Runtime

The Runtime section of the Dashboard application shows the Spring Cloud Data Flow cluster view with
the list of all running applications. For each runtime app the state of the deployment and the number
of deployed instances is shown. A list of the used deployment properties is available by clicking on the
app id.

Figure 20.1. List of Running Applications

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 35

21. Streams

The Streams section of the Dashboard provides the Definitions tab that provides a listing of Stream
definitions. There you have the option to deploy or undeploy those stream definitions. Additionally
you can remove the definition by clicking on destroy. Each row includes an arrow on the left, which
can be clicked to see a visual representation of the definition. Hovering over the boxes in the visual
representation will show more details about the apps including any options passed to them. In this
screenshot the timer stream has been expanded to show the visual representation:

Figure 21.1. List of Stream Definitions

If the details button is clicked the view will change to show a visual representation of that stream and
also any related streams. In the above example, if clicking details for the timer stream, the view will
change to the one shown below which clearly shows the relationship between the three streams (two
of them are tapping into the timer stream).

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 36

Figure 21.2. Stream Details Page

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 37

22. Create Stream

The Create Stream section of the Dashboard includes the Spring Flo designer tab that provides the
canvas application, offering a interactive graphical interface for creating data pipelines.

In this tab, you can:

• Create, manage, and visualize stream pipelines using DSL, a graphical canvas, or both

• Write pipelines via DSL with content-assist and auto-complete

• Use auto-adjustment and grid-layout capabilities in the GUI for simpler and interactive organization
of pipelines

Watch this screencast that highlights some of the "Flo for Spring Cloud Data Flow" capabilities. Spring
Flo wiki includes more detailed content on core Flo capabilities.

Figure 22.1. Flo for Spring Cloud Data Flow

https://github.com/spring-projects/spring-flo
https://www.youtube.com/watch?v=78CgV46OstI
https://github.com/spring-projects/spring-flo/wiki

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 38

23. Tasks

The Tasks section of the Dashboard currently has three tabs:

• Apps

• Definitions

• Executions

23.1 Apps

Apps encapsulate a unit of work into a reusable component. Within the Data Flow runtime environment
Apps allow users to create definitions for Streams as well as Tasks. Consequently, the Apps tab within
the Tasks section allows users to create Task definitions.

Note: You will also use this tab to create Batch Jobs.

Figure 23.1. List of Task Apps

On this screen you can perform the following actions:

• View details such as the task app options.

• Create a Task Definition from the respective App.

Create a Task Definition from a selected Task App

On this screen you can create a new Task Definition. As a minimum you must provide a name for
the new definition. You will also have the option to specify various properties that are used during the
deployment of the app.

Note: Each parameter is only included if the Include checkbox is selected.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 39

View Task App Details

On this page you can view the details of a selected task app, including the list of available options
(properties) for that app.

23.2 Definitions

This page lists the Data Flow Task definitions and provides actions to launch or destroy those tasks.
It also provides a shortcut operation to define one or more tasks using simple textual input, indicated
by the bulk define tasks button.

Figure 23.2. List of Task Definitions

Creating Task Definitions using the bulk define interface

After pressing bulk define tasks, the following screen will be shown.

Figure 23.3. Bulk Define Tasks

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 40

It includes a textbox where one or more definitions can be entered and then various actions performed
on those definitions. The required input text format for task definitions is very basic, each line should
be of the form:

<task-definition-name> = <task-application> <options>

For example:

demo-timestamp = timestamp --format=hhmmss

After entering any data a validator will run asynchronously to verify both the syntax and that the
application name entered is a valid application and it supports the options specified. If validation fails
the editor will show the errors with more information via tooltips.

To make it easier to enter definitions into the text area, content assist is supported. Pressing Ctrl+Space
will invoke content assist to suggest simple task names (based on the line on which it is invoked), task
applications and task application options. Press ESCape to close the content assist window without
taking a selection.

If the validator should not verify the applications or the options (for example if specifying non-whitelisted
options to the applications) then turn off that part of validation by toggling the checkbox off on the Verify
Apps button - the validator will then only perform syntax checking. When correctly validated, the create
button will be clickable and on pressing it the UI will proceed to create each task definition. If there are
any errors during creation then after creation finishes the editor will show any lines of input, as it cannot
be used in task definitions. These can then be fixed up and creation repeated. There is an import file
button to open a file browser on the local file system if the definitions are in a file and it is easier to
import than copy/paste.

Launching Tasks

Once the task definition is created, they can be launched through the Dashboard as well. Navigate to
the Definitions tab. Select the Task you want to launch by pressing Launch.

On the following screen, you can define one or more Task parameters by entering:

• Parameter Key

• Parameter Value

Task parameters are not typed.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 41

23.3 Executions

Figure 23.4. List of Task Executions

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 42

24. Jobs

The Jobs section of the Dashboard allows you to inspect Batch Jobs. The main section of the screen
provides a list of Job Executions. Batch Jobs are Tasks that were executing one or more Batch Job.
As such each Job Execution has a back reference to the Task Execution Id (Task Id).

In case of a failed job, you can also restart the task. When dealing with long-running Batch Jobs, you
can also request to stop it.

Figure 24.1. List of Job Executions

24.1 List job executions

This page lists the Batch Job Executions and provides the option to restart or stop a specific job
execution, provided the operation is available. Furthermore, you have the option to view the Job
execution details.

The list of Job Executions also shows the state of the underlying Job Definition. Thus, if the underlying
definition has been deleted, deleted will be shown.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 43

Job execution details

Figure 24.2. Job Execution Details

The Job Execution Details screen also contains a list of the executed steps. You can further drill into
the Step Execution Details by clicking onto the magnifying glass.

Step execution details

On the top of the page, you will see progress indicator the respective step, with the option to refresh the
indicator. Furthermore, a link is provided to view the step execution history.

The Step Execution details screen provides a complete list of all Step Execution Context key/value pairs.

Important

In case of exceptions, the Exit Description field will contain additional error information. Please
be aware, though, that this field can only have a maximum of 2500 characters. Therefore, in
case of long exception stacktraces, trimming of error messages may occur. In that case, please
refer to the server log files for further details.

Step Execution Progress

On this screen, you can see a progress bar indicator in regards to the execution of the current step.
Under the Step Execution History, you can also view various metrics associated with the selected
step such as duration, read counts, write counts etc.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 44

Figure 24.3. Step Execution History

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 45

25. Analytics

The Analytics section of the Dashboard provided data visualization capabilities for the various analytics
applications available in Spring Cloud Data Flow:

• Counters

• Field-Value Counters

• Aggregate Counters

For example, if you have created the springtweets stream and the corresponding counter in the
Counter chapter, you can now easily create the corresponding graph from within the Dashboard tab:

1. Under Metric Type, select Counters from the select box

2. Under Stream, select tweetcount

3. Under Visualization, select the desired chart option, Bar Chart

Using the icons to the right, you can add additional charts to the Dashboard, re-arange the order of
created dashboards or remove data visualizations.

Part VI. Server Implementation

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 47

26. Server Properties

The Spring Data Flow Kubernetes Server has several properties you can configure that let you control
the default values to set the cpu and memory requirements for the pods. The configuration is controlled
by configuration properties under the spring.cloud.deployer.kubernetes prefix. For example
you might declare the following section in an application.properties file or pass them as
command line arguments when starting the Server.

spring.cloud.deployer.kubernetes.memory=512Mi

spring.cloud.deployer.kubernetes.cpu=500m

See KubernetesAppDeployerProperties for more of the supported options.

Data Flow Server properties that are common across all of the Data Flow Server implementations that
concern maven repository settings can also be set in a similar manner. See the section on Common
Data Flow Server Properties for more information.

https://github.com/spring-cloud/spring-cloud-deployer-kubernetes/blob/master/src/main/java/org/springframework/cloud/deployer/spi/kubernetes/KubernetesAppDeployerProperties.java

Part VII. ‘How-to’ guides
This section provides answers to some common ‘how do I do that…’ type of questions that often arise
when using Spring Cloud Data Flow.

If you are having a specific problem that we don’t cover here, you might want to check out
stackoverflow.com to see if someone has already provided an answer; this is also a great place to ask
new questions (please use the spring-cloud-dataflow tag).

We’re also more than happy to extend this section; If you want to add a ‘how-to’ you can send us a
pull request.

http://stackoverflow.com/tags/spring-cloud-dataflow
http://github.com/spring-cloud/spring-cloud-dataflow-server-kubernetes

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 49

27. Logging

Spring Cloud Data Flow is built upon several Spring projects, but ultimately the dataflow-server is a
Spring Boot app, so the logging techniques that apply to any Spring Boot application are applicable
here as well.

While troubleshooting, following are the two primary areas where enabling the DEBUG logs could be
useful.

27.1 Deployment Logs

Spring Cloud Data Flow builds upon Spring Cloud Deployer SPI and the platform specific dataflow-
server uses the respective SPI implementations. Specifically, if we were to troubleshoot deployment
specific issues; such as the network errors, it’d be useful to enable the DEBUG logs at the underlying
deployer and the libraries used by it.

1. For instance, if you’d like to enable DEBUG logs for the kubernetes-deployer, you’d be starting the
server with following environment variable set.

LOGGING_LEVEL_ORG_SPRINGFRAMEWORK_CLOUD_DEPLOYER_SPI_KUBERNETES=DEBUG

=== Application Logs

The streaming applications in Spring Cloud Data Flow are Spring Boot applications and they can be
independently setup with logging configurations.

For instance, if you’d have to troubleshoot the header and payload specifics that are being passed
around source, processor and sink channels, you’d be deploying the stream with the following options.

dataflow:>stream create foo --definition "http --logging.level.org.springframework.integration=DEBUG

 | transform --logging.level.org.springframework.integration=DEBUG | log --

logging.level.org.springframework.integration=DEBUG" --deploy

(where, org.springframework.integration is the global package for everything Spring
Integration related, which is responsible for messaging channels)

These properties can also be specified via deployment properties when deploying the stream.

dataflow:>stream deploy foo --properties "app.*.logging.level.org.springframework.integration=DEBUG"

http://docs.spring.io/spring-boot/docs/current/reference/html/howto-logging.html#howto-logging
https://github.com/spring-cloud/spring-cloud-deployer
https://github.com/spring-cloud?utf8=%E2%9C%93&query=deployer
https://github.com/spring-cloud/spring-cloud-deployer-kubernetes/tree/master/spring-cloud-deployer-kubernetes

Part VIII. Appendices

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 51

Appendix A. Migrating from Spring
XD to Spring Cloud Data Flow
A.1 Terminology Changes

Old New

XD-Admin Server (implementations: local, cloud foundry,
apache yarn, kubernetes, and apache mesos)

XD-Container N/A

Modules Applications

Admin UI Dashboard

Message Bus Binders

Batch / Job Task

A.2 Modules to Applications

If you have custom Spring XD modules, you’d have to refactor them to use Spring Cloud Stream
and Spring Cloud Task annotations, with updated dependencies and built as normal Spring Boot
"applications".

Custom Applications

• Spring XD’s stream and batch modules are refactored into Spring Cloud Stream and Spring Cloud
Task application-starters, respectively. These applications can be used as the reference while
refactoring Spring XD modules

• There are also some samples for Spring Cloud Stream and Spring Cloud Task applications for
reference

• If you’d like to create a brand new custom application, use the getting started guide for Spring Cloud
Stream and Spring Cloud Task applications and as well as review the development guide

• Alternatively, if you’d like to patch any of the out-of-the-box stream applications, you can follow the
procedure here

Application Registration

• Custom Stream/Task application requires being installed to a maven repository for Local, YARN, and
CF implementations or as docker images, when deploying to Kubernetes and Mesos. Other than
maven and docker resolution, you can also resolve application artifacts from http, file, or as hdfs
coordinates

• Unlike Spring XD, you do not have to upload the application bits while registering custom applications
anymore; instead, you’re expected to register the application coordinates that are hosted in the maven
repository or by other means as discussed in the previous bullet

https://github.com/spring-cloud/spring-cloud-stream-app-starters
https://github.com/spring-cloud/spring-cloud-task-app-starters
https://github.com/spring-cloud/spring-cloud-task-app-starters
https://github.com/spring-cloud/spring-cloud-stream-samples
https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples
https://github.com/spring-cloud/spring-cloud-stream/blob/master/spring-cloud-stream-docs/src/main/asciidoc/spring-cloud-stream-overview.adoc#getting-started
https://github.com/spring-cloud/spring-cloud-stream/blob/master/spring-cloud-stream-docs/src/main/asciidoc/spring-cloud-stream-overview.adoc#getting-started
https://github.com/spring-cloud/spring-cloud-task/blob/master/spring-cloud-task-docs/src/main/asciidoc/getting-started.adoc#developing-your-first-spring-cloud-task-application
https://github.com/spring-cloud/spring-cloud-stream-app-starters/blob/master/spring-cloud-stream-app-starters-docs/src/main/asciidoc/overview.adoc#creating-your-own-applications
https://github.com/spring-cloud/spring-cloud-stream-app-starters/blob/master/spring-cloud-stream-app-starters-docs/src/main/asciidoc/overview.adoc#patching-pre-built-applications
http://docs.spring.io/spring-cloud-dataflow/docs/current/reference/html/_dsl_syntax.html#_register_a_stream_app

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 52

• By default, none of the out-of-the-box applications are preloaded already. It is intentionally designed
to provide the flexibility to register app(s), as you find appropriate for the given use-case requirement

• Depending on the binder choice, you can manually add the appropriate binder dependency to build
applications specific to that binder-type. Alternatively, you can follow the Spring Initialzr procedure to
create an application with binder embedded in it

Application Properties

• counter-sink:

• The peripheral redis is not required in Spring Cloud Data Flow. If you intend to use the counter-
sink, then redis becomes required, and you’re expected to have your own running redis cluster

• field-value-counter-sink:

• The peripheral redis is not required in Spring Cloud Data Flow. If you intend to use the field-
value-counter-sink, then redis becomes required, and you’re expected to have your own
running redis cluster

• aggregate-counter-sink:

• The peripheral redis is not required in Spring Cloud Data Flow. If you intend to use the
aggregate-counter-sink, then redis becomes required, and you’re expected to have your
own running redis cluster

A.3 Message Bus to Binders

Terminology wise, in Spring Cloud Data Flow, the message bus implementation is commonly referred
to as binders.

Message Bus

Similar to Spring XD, there’s an abstraction available to extend the binder interface. By default, we take
the opinionated view of Apache Kafka and RabbitMQ as the production-ready binders and are available
as GA releases. We also have an experimental version of the Gemfire binder.

Binders

Selecting a binder is as simple as providing the right binder dependency in the classpath. If you’re to
choose Kafka as the binder, you’d register stream applications that are pre-built with Kafka binder in
it. If you were to create a custom application with Kafka binder, you’d add the following dependency
in the classpath.

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-stream-binder-kafka</artifactId>

 <version>1.0.2.RELEASE</version>

</dependency>

• Spring Cloud Stream supports Apache Kafka, RabbitMQ and an experimental Gemfire binder
implementation. All binder implementations are maintained and managed in their individual
repositories

https://github.com/spring-cloud/spring-cloud-stream-app-starters/blob/master/spring-cloud-stream-app-starters-docs/src/main/asciidoc/overview.adoc#using-the-starters-to-create-custom-components
https://github.com/spring-cloud/spring-cloud-stream-binder-kafka
https://github.com/spring-cloud/spring-cloud-stream-binder-rabbit
https://github.com/spring-cloud/spring-cloud-stream-binder-gemfire
https://github.com/spring-cloud/spring-cloud-stream-binder-kafka
https://github.com/spring-cloud/spring-cloud-stream-binder-rabbit
https://github.com/spring-cloud/spring-cloud-stream-binder-gemfire

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 53

• Every Stream/Task application can be built with a binder implementation of your choice. All the out-
of-the-box applications are pre-built for both Kafka and Rabbit and they’re readily available for use as
maven artifacts [Spring Cloud Stream / Spring Cloud Task or docker images [Spring Cloud Stream /
Spring Cloud Task Changing the binder requires selecting the right binder dependency. Alternatively,
you can download the pre-built application from this version of Spring Initializr with the desired “binder-
starter” dependency

Named Channels

Fundamentally, all the messaging channels are backed by pub/sub semantics. Unlike Spring XD, the
messaging channels are backed only by topics or topic-exchange and there’s no representation
of queues in the new architecture.

• ${xd.module.index} is not supported anymore; instead, you can directly interact with named
destinations

• stream.index changes to :<stream-name>.<label/app-name>

• for instance: ticktock.0 changes to :ticktock.time

• “topic/queue” prefixes are not required to interact with named-channels

• for instance: topic:foo changes to :foo

• for instance: stream create stream1 --definition ":foo > log"

Directed Graphs

If you’re building non-linear streams, you could take advantage of named destinations to build directed
graphs.

for instance, in Spring XD:

stream create f --definition "queue:foo > transform --expression=payload+'-foo' | log" --deploy

stream create b --definition "queue:bar > transform --expression=payload+'-bar' | log" --deploy

stream create r --definition "http | router --expression=payload.contains('a')?'queue:foo':'queue:bar'"

 --deploy

for instance, in Spring Cloud Data Flow:

stream create f --definition ":foo > transform --expression=payload+'-foo' | log" --deploy

stream create b --definition ":bar > transform --expression=payload+'-bar' | log" --deploy

stream create r --definition "http | router --expression=payload.contains('a')?':foo':':bar'" --deploy

A.4 Batch to Tasks

A Task by definition, is any application that does not run forever, including Spring Batch jobs, and
they end/stop at some point. Task applications can be majorly used for on-demand use-cases such as
database migration, machine learning, scheduled operations etc. Using Spring Cloud Task, users can
build Spring Batch jobs as microservice applications.

• Spring Batch jobs from Spring XD are being refactored to Spring Boot applications a.k.a link: Spring
Cloud Task applications

• Unlike Spring XD, these “Tasks” don’t require explicit deployment; instead, a task is ready to be
launched directly once the definition is declared

http://repo.spring.io/libs-milestone/org/springframework/cloud/stream/app/
http://repo.spring.io/libs-milestone/org/springframework/cloud/task/app/
https://hub.docker.com/r/springcloudstream/
https://hub.docker.com/r/springcloudtask/
https://github.com/spring-cloud/spring-cloud-stream/blob/master/spring-cloud-stream-docs%2Fsrc%2Fmain%2Fasciidoc%2Fspring-cloud-stream-overview.adoc#binder-selection
http://start-scs.cfapps.io/
http://cloud.spring.io/spring-cloud-task/
http://docs.spring.io/spring-xd/docs/current-SNAPSHOT/reference/html/#jobs
https://github.com/spring-cloud/spring-cloud-task-app-starters

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 54

A.5 Shell/DSL Commands

Old Command New Command

module upload app register / app import

module list app list

module info app info

admin config server dataflow config server

job create task create

job launch task launch

job list task list

job status task status

job display task display

job destroy task destroy

job execution list task execution list

runtime modules runtime apps

A.6 REST-API

Old API New API

/modules /apps

/runtime/modules /runtime/apps

/runtime/modules/{moduleId} /runtime/apps/{appId}

/jobs/definitions /task/definitions

/jobs/deployments /task/deployments

A.7 UI / Flo

The Admin-UI is now renamed as Dashboard. The URI for accessing the Dashboard is changed from
localhost:9393/admin-ui to localhost:9393/dashboard

• (New) Apps: Lists all the registered applications that are available for use. This view includes
informational details such as the URI and the properties supported by each application. You can also
register/unregister applications from this view

• Runtime: Container changes to Runtime. The notion of xd-container is gone, replaced by out-
of-the-box applications running as autonomous Spring Boot applications. The Runtime tab displays
the applications running in the runtime platforms (implementations: cloud foundry, apache yarn,
apache mesos, or kubernetes). You can click on each application to review relevant details about the
application such as where it is running with, and what resources etc.

http://localhost:9393/admin-ui
http://localhost:9393/dashboard

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 55

• Spring Flo is now an OSS product. Flo for Spring Cloud Data Flow’s “Create Stream”, the designer-
tab comes pre-built in the Dashboard

• (New) Tasks:

• The sub-tab “Modules” is renamed to “Apps”

• The sub-tab “Definitions” lists all the Task definitions, including Spring Batch jobs that are
orchestrated as Tasks

• The sub-tab “Executions” lists all the Task execution details similar to Spring XD’s Job executions

A.8 Architecture Components

Spring Cloud Data Flow comes with a significantly simplified architecture. In fact, when compared with
Spring XD, there are less peripherals that are necessary to operationalize Spring Cloud Data Flow.

ZooKeeper

ZooKeeper is not used in the new architecture.

RDBMS

Spring Cloud Data Flow uses an RDBMS instead of Redis for stream/task definitions, application
registration, and for job repositories.The default configuration uses an embedded H2 instance, but
Oracle, DB2, SqlServer, MySQL/MariaDB, PostgreSQL, H2, and HSQLDB databases are supported.
To use Oracle, DB2 and SqlServer you will need to create your own Data Flow Server using Spring
Initializr and add the appropriate JDBC driver dependency.

Redis

Running a Redis cluster is only required for analytics functionality. Specifically, when the counter-
sink, field-value-counter-sink, or aggregate-counter-sink applications are used, it is
expected to also have a running instance of Redis cluster.

Cluster Topology

Spring XD’s xd-admin and xd-container server components are replaced by stream and task
applications themselves running as autonomous Spring Boot applications. The applications run natively
on various platforms including Cloud Foundry, Apache YARN, Apache Mesos, or Kubernetes. You can
develop, test, deploy, scale +/-, and interact with (Spring Boot) applications individually, and they can
evolve in isolation.

A.9 Central Configuration

To support centralized and consistent management of an application’s configuration properties, Spring
Cloud Config client libraries have been included into the Spring Cloud Data Flow server as well as the
Spring Cloud Stream applications provided by the Spring Cloud Stream App Starters. You can also pass
common application properties to all streams when the Data Flow Server starts.

A.10 Distribution

Spring Cloud Data Flow is a Spring Boot application. Depending on the platform of your choice, you
can download the respective release uber-jar and deploy/push it to the runtime platform (cloud foundry,

https://github.com/spring-projects/spring-flo
https://start.spring.io/
https://start.spring.io/
https://cloud.spring.io/spring-cloud-config/
https://cloud.spring.io/spring-cloud-config/
http://docs.spring.io/spring-cloud-dataflow/docs/1.0.0.RC1/reference/htmlsingle/#spring-cloud-dataflow-global-properties
http://docs.spring.io/spring-cloud-dataflow/docs/1.0.0.RC1/reference/htmlsingle/#spring-cloud-dataflow-global-properties

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 56

apache yarn, kubernetes, or apache mesos). For example, if you’re running Spring Cloud Data Flow
on Cloud Foundry, you’d download the Cloud Foundry server implementation and do a cf push as
explained in the reference guide.

A.11 Hadoop Distribution Compatibility

The hdfs-sink application builds upon Spring Hadoop 2.4.0 release, so this application is compatible
with following Hadoop distributions.

• Cloudera - cdh5

• Pivotal Hadoop - phd30

• Hortonworks Hadoop - hdp24

• Hortonworks Hadoop - hdp23

• Vanilla Hadoop - hadoop26

• Vanilla Hadoop - 2.7.x (default)

A.12 YARN Deployment

Spring Cloud Data Flow can be deployed and used with Apche YARN in two different ways.

• Deploy the server directly in a YARN cluster

• Leverage Apache Ambari plugin to provision Spring Cloud Data Flow as a service

A.13 Use Case Comparison

Let’s review some use-cases to compare and contrast the differences between Spring XD and Spring
Cloud Data Flow.

Use Case #1

(It is assumed both XD and SCDF distributions are already downloaded)

Description: Simple ticktock example using local/singlenode.

Spring XD Spring Cloud Data Flow

Start xd-singlenode server from CLI

xd-singlenode

Start a binder of your choice

Start local-server implementation of SCDF
from the CLI

java -jar spring-cloud-

dataflow-server-local-1.0.0.BUILD-

SNAPSHOT.jar

Start xd-shell server from the CLI

xd-shell

Start dataflow-shell server from the CLI

http://docs.spring.io/spring-cloud-dataflow-server-cloudfoundry/docs/current-SNAPSHOT/reference/htmlsingle/#getting-started
http://docs.spring.io/spring-cloud-dataflow-server-yarn/docs/current-SNAPSHOT/reference/htmlsingle/#_deploying_on_yarn
http://docs.spring.io/spring-cloud-dataflow-server-yarn/docs/current-SNAPSHOT/reference/htmlsingle/#_deploying_on_ambari

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 57

Spring XD Spring Cloud Data Flow

java -jar spring-cloud-dataflow-

shell-1.0.0.BUILD-SNAPSHOT.jar

Create ticktock stream

xd:>stream create ticktock --

definition “time | log” --deploy

Create ticktock stream

dataflow:>stream create ticktock --

definition “time | log” --deploy

Review ticktock results in the xd-
singlenode server console

Review ticktock results by tailing the
ticktock.log/stdout_log application logs

Use Case #2

(It is assumed both XD and SCDF distributions are already downloaded)

Description: Stream with custom module/application.

Spring XD Spring Cloud Data Flow

Start xd-singlenode server from CLI

xd-singlenode

Start a binder of your choice

Start local-server implementation of SCDF
from the CLI

java -jar spring-cloud-

dataflow-server-local-1.0.0.BUILD-

SNAPSHOT.jar

Start xd-shell server from the CLI

xd-shell

Start dataflow-shell server from the CLI

java -jar spring-cloud-dataflow-

shell-1.0.0.BUILD-SNAPSHOT.jar

Register custom “processor” module to transform
payload to a desired format

xd:>module upload --name

toupper --type processor --file

<CUSTOM_JAR_FILE_LOCATION>

Register custom “processor” application to
transform payload to a desired format

dataflow:>app register --name

toupper --type processor --uri

<MAVEN_URI_COORDINATES>

Create a stream with custom module

xd:>stream create testupper --

definition “http | toupper | log” --

deploy

Create a stream with custom application

dataflow:>stream create testupper --

definition “http | toupper | log” --

deploy

Review results in the xd-singlenode server
console

Review results by tailing the testupper.log/
stdout_log application logs

Use Case #3

(It is assumed both XD and SCDF distributions are already downloaded)

Description: Simple batch-job.

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 58

Spring XD Spring Cloud Data Flow

Start xd-singlenode server from CLI

xd-singlenode

Start local-server implementation of SCDF
from the CLI

java -jar spring-cloud-

dataflow-server-local-1.0.0.BUILD-

SNAPSHOT.jar

Start xd-shell server from the CLI

xd-shell

Start dataflow-shell server from the CLI

java -jar spring-cloud-dataflow-

shell-1.0.0.BUILD-SNAPSHOT.jar

Register custom “batch-job” module

xd:>module upload --name

simple-batch --type job --file

<CUSTOM_JAR_FILE_LOCATION>

Register custom “batch-job” as task application

dataflow:>app register --name

simple-batch --type task --uri

<MAVEN_URI_COORDINATES>

Create a job with custom batch-job module

xd:>job create batchtest --

definition “simple-batch”

Create a task with custom batch-job application

dataflow:>task create batchtest --

definition “simple-batch”

Deploy job

xd:>job deploy batchtest

NA

Launch job

xd:>job launch batchtest

Launch task

dataflow:>task launch batchtest

Review results in the xd-singlenode server
console as well as Jobs tab in UI (executions
sub-tab should include all step details)

Review results by tailing the batchtest/
stdout_log application logs as well as Task
tab in UI (executions sub-tab should include all
step details)

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 59

Appendix B. Building
To build the source you will need to install JDK 1.8.

The build uses the Maven wrapper so you don’t have to install a specific version of Maven. To enable
the tests for Redis you should run the server before bulding. See below for more information on how
to run Redis.

The main build command is

$./mvnw clean install

You can also add '-DskipTests' if you like, to avoid running the tests.

Note

You can also install Maven (>=3.3.3) yourself and run the mvn command in place of ./mvnw in
the examples below. If you do that you also might need to add -P spring if your local Maven
settings do not contain repository declarations for spring pre-release artifacts.

Note

Be aware that you might need to increase the amount of memory available to Maven by setting
a MAVEN_OPTS environment variable with a value like -Xmx512m -XX:MaxPermSize=128m.
We try to cover this in the .mvn configuration, so if you find you have to do it to make a build
succeed, please raise a ticket to get the settings added to source control.

The projects that require middleware generally include a docker-compose.yml, so consider using
Docker Compose to run the middeware servers in Docker containers. See the README in the scripts
demo repository for specific instructions about the common cases of mongo, rabbit and redis.

B.1 Documentation

There is a "full" profile that will generate documentation. You can build just the documentation by
executing

$./mvnw clean package -DskipTests -P full -pl spring-cloud-dataflow-server-

kubernetes-docs -am

B.2 Working with the code

If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or Eclipse
when working with the code. We use the m2eclipe eclipse plugin for maven support. Other IDEs and
tools should also work without issue.

Importing into eclipse with m2eclipse

We recommend the m2eclipe eclipse plugin when working with eclipse. If you don’t already have
m2eclipse installed it is available from the "eclipse marketplace".

Unfortunately m2e does not yet support Maven 3.3, so once the projects are imported into Eclipse you
will also need to tell m2eclipse to use the .settings.xml file for the projects. If you do not do this

http://compose.docker.io/
https://github.com/spring-cloud-samples/scripts
https://github.com/spring-cloud-samples/scripts
http://www.springsource.com/developer/sts
http://eclipse.org
http://eclipse.org/m2e/
http://eclipse.org/m2e/

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 60

you may see many different errors related to the POMs in the projects. Open your Eclipse preferences,
expand the Maven preferences, and select User Settings. In the User Settings field click Browse and
navigate to the Spring Cloud project you imported selecting the .settings.xml file in that project.
Click Apply and then OK to save the preference changes.

Note

Alternatively you can copy the repository settings from .settings.xml into your own ~/.m2/
settings.xml.

Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following
command:

$./mvnw eclipse:eclipse

The generated eclipse projects can be imported by selecting import existing projects from the
file menu.

https://github.com/spring-cloud/spring-cloud-build/blob/master/.settings.xml

Spring Cloud Data Flow Server for Kubernetes

1.1.0.RELEASE
Spring Cloud Data Flow

Server Kubernetes 61

Appendix C. Contributing
Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard
Github development process, using Github tracker for issues and merging pull requests into master. If
you want to contribute even something trivial please do not hesitate, but follow the guidelines below.

C.1 Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the contributor’s agreement.
Signing the contributor’s agreement does not grant anyone commit rights to the main repository, but
it does mean that we can accept your contributions, and you will get an author credit if we do. Active
contributors might be asked to join the core team, and given the ability to merge pull requests.

C.2 Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help. They can also be added after the
original pull request but before a merge.

• Use the Spring Framework code format conventions. If you use Eclipse you can import formatter
settings using the eclipse-code-formatter.xml file from the Spring Cloud Build project. If using
IntelliJ, you can use the Eclipse Code Formatter Plugin to import the same file.

• Make sure all new .java files to have a simple Javadoc class comment with at least an @author
tag identifying you, and preferably at least a paragraph on what the class is for.

• Add the ASF license header comment to all new .java files (copy from existing files in the project)

• Add yourself as an @author to the .java files that you modify substantially (more than cosmetic
changes).

• Add some Javadocs and, if you change the namespace, some XSD doc elements.

• A few unit tests would help a lot as well — someone has to do it.

• If no-one else is using your branch, please rebase it against the current master (or other target branch
in the main project).

• When writing a commit message please follow these conventions, if you are fixing an existing issue
please add Fixes gh-XXXX at the end of the commit message (where XXXX is the issue number).

https://support.springsource.com/spring_committer_signup
https://github.com/spring-cloud/spring-cloud-build/blob/master/spring-cloud-dependencies-parent/eclipse-code-formatter.xml
http://plugins.jetbrains.com/plugin/6546
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

	Spring Cloud Data Flow Server for Kubernetes
	Table of Contents
	Part I. Introduction
	1. Introducing Spring Cloud Data Flow for Kubernetes
	2. Spring Cloud Data Flow
	3. Spring Cloud Stream
	4. Spring Cloud Task

	Part II. Architecture
	5. Introduction
	6. Microservice Architectural Style
	6.1 Comparison to other Platform architectures

	7. Streaming Applications
	7.1 Imperative Programming Model
	7.2 Functional Programming Model

	8. Streams
	8.1 Topologies
	8.2 Concurrency
	8.3 Partitioning
	8.4 Message Delivery Guarantees

	9. Analytics
	10. Task Applications
	11. Data Flow Server
	11.1 Endpoints
	11.2 Customization
	11.3 Security

	12. Runtime
	12.1 Fault Tolerance
	12.2 Resource Management
	12.3 Scaling at runtime
	12.4 Application Versioning

	Part III. Getting Started
	13. Deploying Streams on Kubernetes

	Part IV. Server Configuration
	14. Feature Toggles
	15. General Configuration
	16. Database Configuration
	17. Monitoring and Management
	17.1 Server
	17.2 Streams
	17.3 Tasks

	Part V. Dashboard
	18. Introduction
	19. Apps
	19.1 Bulk Import of Applications

	20. Runtime
	21. Streams
	22. Create Stream
	23. Tasks
	23.1 Apps
	Create a Task Definition from a selected Task App
	View Task App Details

	23.2 Definitions
	Creating Task Definitions using the bulk define interface
	Launching Tasks

	23.3 Executions

	24. Jobs
	24.1 List job executions
	Job execution details
	Step execution details
	Step Execution Progress

	25. Analytics

	Part VI. Server Implementation
	26. Server Properties

	Part VII. ‘How-to’ guides
	27. Logging
	27.1 Deployment Logs

	Part VIII. Appendices
	Appendix A. Migrating from Spring XD to Spring Cloud Data Flow
	A.1 Terminology Changes
	A.2 Modules to Applications
	Custom Applications
	Application Registration
	Application Properties

	A.3 Message Bus to Binders
	Message Bus
	Binders
	Named Channels
	Directed Graphs

	A.4 Batch to Tasks
	A.5 Shell/DSL Commands
	A.6 REST-API
	A.7 UI / Flo
	A.8 Architecture Components
	ZooKeeper
	RDBMS
	Redis
	Cluster Topology

	A.9 Central Configuration
	A.10 Distribution
	A.11 Hadoop Distribution Compatibility
	A.12 YARN Deployment
	A.13 Use Case Comparison
	Use Case #1
	Use Case #2
	Use Case #3

	Appendix B. Building
	B.1 Documentation
	B.2 Working with the code
	Importing into eclipse with m2eclipse
	Importing into eclipse without m2eclipse

	Appendix C. Contributing
	C.1 Sign the Contributor License Agreement
	C.2 Code Conventions and Housekeeping

