Spring Cloud Data Flow for Apache YARN
Table of Contents
	I. Preface	1. About the documentation
	2. Getting help

	II. Introduction	3. Introducing Spring Cloud Data Flow for Apache YARN project

	III. Spring Cloud Data Flow Overview	4. Introducing Spring Cloud Data Flow	Features

	5. Spring Cloud Data Flow Architecture	Components

	IV. Spring Cloud Data Flow Runtime	6. Deploying on YARN	Prerequisites
	Download and Extract Distribution
	Configure Settings
	Start Server
	Connect Shell
	Create Stream
	Create Task
	Check YARN App Statuses

	7. Deploying on AMBARI	Install Ambari Server
	Deploy Data Flow

	V. Appendices	A. Building	Documentation
	Working with the code	Importing into eclipse with m2eclipse
	Importing into eclipse without m2eclipse

	B. Contributing	Sign the Contributor License Agreement
	Code Conventions and Housekeeping

Spring Cloud Data Flow for Apache YARN

Sabby Anandan, Marius Bogoevici, Eric Bottard, Mark Fisher, Ilayaperumal Gopinathan, Gunnar Hillert, Mark Pollack, Patrick Peralta, Glenn Renfro, Thomas Risberg, Dave Syer, David Turanski, Janne Valkealahti

1.0.0.BUILD-SNAPSHOT

Copyright © 2013-2015 Pivotal Software, Inc.

		Copies of this document may be made for your own use and for distribution to
		others, provided that you do not charge any fee for such copies and further
		provided that each copy contains this Copyright Notice, whether distributed in
		print or electronically.
	

Part I. Preface

Chapter 1. About the documentation

The Spring Cloud Data Flow for Apache Yarn reference guide is available as html,
pdf
and epub documents. The latest copy
is available at docs.spring.io/spring-cloud-dataflow-server-yarn/docs/current-SNAPSHOT/reference/html/.
Copies of this document may be made for your own use and for
distribution to others, provided that you do not charge any fee for such copies and
further provided that each copy contains this Copyright Notice, whether distributed in
print or electronically.
Chapter 2. Getting help

Having trouble with Spring Cloud Data Flow, We’d like to help!
	Try the How-to’s — they provide solutions to the most common
questions.
	Ask a question - we monitor stackoverflow.com for questions
tagged with spring-cloud.
	Report bugs with Spring Cloud Dataflow for Apache YARN at github.com/spring-cloud/spring-cloud-dataflow-server-yarn/issues.

Note
All of Spring Cloud Data Flow is open source, including the documentation! If you find problems
with the docs; or if you just want to improve them, please get involved.

Part II. Introduction

Chapter 3. Introducing Spring Cloud Data Flow for Apache YARN project

The Spring Cloud Data Flow for Apache YARN project allows you to deploy the Spring Cloud Dataflow using Apache YARN as the cluster runtime environment.
Part III. Spring Cloud Data Flow Overview

This section provides a brief overview of the Spring Cloud Data Flow reference documentation. Think of
it as map for the rest of the document. You can read this reference guide in a linear
fashion, or you can skip sections if something doesn’t interest you.

Chapter 4. Introducing Spring Cloud Data Flow

A cloud native programming and operating model for composable data microservices on a structured platform.
With Spring Cloud Data Flow, developers can create, orchestrate and refactor data pipelines through single programming model for common use cases such as data ingest, real-time analytics, and data import/export.
Spring Cloud Data Flow is the cloud native redesign of Spring XD – a project that aimed to simplify development of Big Data applications. The integration and batch modules from Spring XD are refactored into Spring Boot data microservices applications that are now autonomous deployment units – thus enabling them to take full advantage of platform capabilities "natively", and they can independently evolve in isolation.
Spring Cloud Data Flow defines best practices for distributed stream and batch microservice design patterns.
Features

	Orchestrate applications across a variety of distributed runtime platforms including: Cloud Foundry, Apache YARN, Apache Mesos, and Kubernetes
	Separate runtime dependencies backed by ‘spring profiles’
	Consume stream and batch data-microservices as maven dependency
	Develop using: DSL, Shell, REST-APIs, Admin-UI, and Flo
	Take advantage of metrics, health checks and remote management of data-microservices
	Scale stream and batch pipelines without interrupting data flows

Chapter 5. Spring Cloud Data Flow Architecture

The architecture for Spring Cloud Data Flow is separated into a number of distinct components.
Components

The Core
domain model includes the concept of a stream that is a composition of spring-cloud-stream
apps in a linear pipeline from a source to a sink, optionally including processor apps
in between. The domain also includes the concept of a task, which may be any process that does
not run indefinitely, including Spring Batch jobs.
The App Registry
maintains the set of available apps, and their mappings to a URI.
For example, if relying on Maven coordinates, the URI would be of the format:
maven://<groupId>:<artifactId>:<version>
The Data Flow Server Core
provides the REST API and UI to be used in combination with an implementation of the Deployer SPI
when creating a Data Flow Server for a given deployment environment.
The Shell
connects to the Data Flow Server’s REST API and supports a DSL that simplifies the process of
defining a stream and managing its lifecycle.
Several Data Flow Server implementations exist, covering a range of runtime environments:
	Local (intended for development only)
	Cloud Foundry
	Apache Yarn
	Apache Mesos
	Kubernetes

As mentioned above, the Spring Cloud Data Flow Server implementations all rely upon corresponding
implementations of the Spring Cloud Deployer
SPI, which provides the abstraction layer for deploying the apps of a given stream or task. The
following are links to the deployer SPI projects that correspond to the Data Flow Servers listed above:
	Local
	Cloud Foundry
	Apache Yarn
	Apache Mesos
	Kubernetes

Part IV. Spring Cloud Data Flow Runtime

Data flow runtime can be deployed and used with YARN in two different
ways, firstly using it directly with a YARN cluster and secondly
letting Apache Ambari to deploy it into its cluster as a service.

Chapter 6. Deploying on YARN

The Admin server application is run as a standalone application. All modules used for streams and tasks will be deployed on the YARN cluster that is targeted by the Admin server. configured to be used.
Prerequisites

These requirements are not something yarn runtime needs but generally
what dataflow core needs.
	Redis - Needed for some persisting runtime data.
	Rabbit - If dataflow modules using rabbit bindings are used.
	Kafka - If dataflow modules using kafka bindings are used.
	DB - we currently use embedded H2 database, though any supported
DB can be configured.

Download and Extract Distribution

Download the Spring Cloud Data Flow YARN distribution ZIP file which includes the Admin and the Shell apps:
$ wget http://repo.spring.io/snapshot/org/springframework/cloud/dist/spring-cloud-dataflow-server-yarn-dist/1.0.0.BUILD-SNAPSHOT/spring-cloud-dataflow-server-yarn-dist-1.0.0.BUILD-SNAPSHOT.zip
Unzip the distribution ZIP file and change to the directory containing the deployment files.
$ cd spring-cloud-dataflow-server-yarn-1.0.0.BUILD-SNAPSHOT
Configure Settings

Generic runtime settings can changed in config/servers.yml. Make
sure Hadoop and Redis are running.
If either one is not running on localhost you need to configure them in config/servers.yml
Start Server

If this is the first time deploying make sure the user that runs
the Server app has rights to create and write to /dataflow
directory in hdfs. If there is an existing deployment on hdfs
remove it using:
$ hdfs dfs -rm -R /dataflow
Start the Spring Cloud Data Flow Server app for YARN
$./bin/dataflow-server-yarn
Connect Shell

start spring-cloud-dataflow-shell
$./bin/dataflow-shell
Create Stream

Create a stream:
dataflow:>stream create --name foostream --definition "time|log" --deploy
List streams:
dataflow:>stream list
╔═══════════╤═════════════════╤════════╗
║Stream Name│Stream Definition│ Status ║
╠═══════════╪═════════════════╪════════╣
║foostream │time|log │deployed║
╚═══════════╧═════════════════╧════════╝
After some time, destroy the stream:
dataflow:>stream destroy --name foostream
The YARN application is pushed and started automatically during a stream
deployment process. Once all streams are destroyed the YARN application
will exit.
Create Task

Create and launch task:
dataflow:>task create --name footask --definition "timestamp"
Created new task 'footask'
dataflow:>task launch --name footask
Launched task 'footask'
Check YARN App Statuses

Overall app status can be seen from YARN Resource Manager UI or
using Spring YARN CLI which gives more info about running containers
within an app itself.
$./bin/dataflow-server-yarn-cli shell
When stream has been submitted YARN shows it as ACCEPTED before its
turned to RUNNING state.
$ submitted
 APPLICATION ID USER NAME QUEUE TYPE STARTTIME FINISHTIME STATE FINALSTATUS ORIGINAL TRACKING URL
 ------------------------------ ------------ ----------------------- ------- -------- -------------- ---------- -------- ----------- ---------------------
 application_1461658614481_0001 jvalkealahti scdstream:app:foostream default DATAFLOW 26/04/16 16:27 N/A ACCEPTED UNDEFINED

$ submitted
 APPLICATION ID USER NAME QUEUE TYPE STARTTIME FINISHTIME STATE FINALSTATUS ORIGINAL TRACKING URL
 ------------------------------ ------------ ----------------------- ------- -------- -------------- ---------- ------- ----------- -------------------------
 application_1461658614481_0001 jvalkealahti scdstream:app:foostream default DATAFLOW 26/04/16 16:27 N/A RUNNING UNDEFINED http://192.168.1.96:58580
More info about internals for stream apps can be queried by
clustersinfo and clusterinfo commands:
$ clustersinfo -a application_1461658614481_0001
 CLUSTER ID

 foostream:log
 foostream:time

$ clusterinfo -a application_1461658614481_0001 -c foostream:time
 CLUSTER STATE MEMBER COUNT
 ------------- ------------
 RUNNING 1
After stream is undeployed YARN app should close itself automatically:
$ submitted -v
 APPLICATION ID USER NAME QUEUE TYPE STARTTIME FINISHTIME STATE FINALSTATUS ORIGINAL TRACKING URL
 ------------------------------ ------------ ----------------------- ------- -------- -------------- -------------- -------- ----------- ---------------------
 application_1461658614481_0001 jvalkealahti scdstream:app:foostream default DATAFLOW 26/04/16 16:27 26/04/16 16:28 FINISHED SUCCEEDED
Launching a task will be shown in RUNNING state while app is
executing its batch jobs:
$ submitted -v
 APPLICATION ID USER NAME QUEUE TYPE STARTTIME FINISHTIME STATE FINALSTATUS ORIGINAL TRACKING URL
 ------------------------------ ------------ ----------------------- ------- -------- -------------- -------------- -------- ----------- -------------------------
 application_1461658614481_0002 jvalkealahti scdtask:timestamp default DATAFLOW 26/04/16 16:29 N/A RUNNING UNDEFINED http://192.168.1.96:39561
 application_1461658614481_0001 jvalkealahti scdstream:app:foostream default DATAFLOW 26/04/16 16:27 26/04/16 16:28 FINISHED SUCCEEDED

$ submitted -v
 APPLICATION ID USER NAME QUEUE TYPE STARTTIME FINISHTIME STATE FINALSTATUS ORIGINAL TRACKING URL
 ------------------------------ ------------ ----------------------- ------- -------- -------------- -------------- -------- ----------- ---------------------
 application_1461658614481_0002 jvalkealahti scdtask:timestamp default DATAFLOW 26/04/16 16:29 26/04/16 16:29 FINISHED SUCCEEDED
 application_1461658614481_0001 jvalkealahti scdstream:app:foostream default DATAFLOW 26/04/16 16:27 26/04/16 16:28 FINISHED SUCCEEDED
Chapter 7. Deploying on AMBARI

Ambari basically automates YARN installation instead of doing it
manually. Also a lot of other configuration steps are automated as
much as possible to easy overall installation process.
Install Ambari Server

Generally it is only needed to install scdf-plugin-hdp plugin into
ambari server which adds needed service definitions.
[root@ambari-1 ~]# yum -y install ambari-server
[root@ambari-1 ~]# ambari-server setup -s
[root@ambari-1 ~]# wget -nv http://repo.spring.io/yum-snapshot-local/scdf/1.0/scdf-snapshot-1.0.repo -O /etc/yum.repos.d/scdf-snapshot-1.0.repo
[root@ambari-1 ~]# yum -y install scdf-plugin-hdp
[root@ambari-1 ~]# ambari-server start
Note
Ambari plugin only works for redhat6 based systems for now.

Deploy Data Flow

When you create your cluste and choose a stack, make sure that
redhat6 section contains repository named SCDF-1.0 and that it
points to repo.spring.io/yum-snapshot-local/scdf/1.0.
From services choose Spring Cloud Dataflow and Kafka. Hdfs,
Yarn and Zookeeper are forced dependencies.
Then in Customize Services what is really left for user to do is to
add address for redis(as it’s required). Everything else is automatically
configured. Technically it also allows you to switch to use rabbit by
leaving Kafka out and defining rabbit settings there. But generally
use of Kafka is a good choice.
Note
We also install H2 DB as service so that it can be accessed from every
node.

Part V. Appendices

Appendix A. Building

To build the source you will need to install JDK 1.7.
The build uses the Maven wrapper so you don’t have to install a specific
version of Maven. To enable the tests for Redis you should run the server
before bulding. See below for more information on how run Redis.
The main build command is
$./mvnw clean install
You can also add '-DskipTests' if you like, to avoid running the tests.
Note
You can also install Maven (>=3.3.3) yourself and run the mvn command
in place of ./mvnw in the examples below. If you do that you also
might need to add -P spring if your local Maven settings do not
contain repository declarations for spring pre-release artifacts.

Note
Be aware that you might need to increase the amount of memory
available to Maven by setting a MAVEN_OPTS environment variable with
a value like -Xmx512m -XX:MaxPermSize=128m. We try to cover this in
the .mvn configuration, so if you find you have to do it to make a
build succeed, please raise a ticket to get the settings added to
source control.

The projects that require middleware generally include a
docker-compose.yml, so consider using
Docker Compose to run the middeware servers
in Docker containers. See the README in the
scripts demo
repository for specific instructions about the common cases of mongo,
rabbit and redis.
Documentation

There is a "full" profile that will generate documentation. You can build just the documentation by executing
$./mvnw clean package -DskipTests -P full -pl {project-artifactId} -am
Working with the code

If you don’t have an IDE preference we would recommend that you use
Spring Tools Suite or
Eclipse when working with the code. We use the
m2eclipe eclipse plugin for maven support. Other IDEs and tools
should also work without issue.
Importing into eclipse with m2eclipse

We recommend the m2eclipe eclipse plugin when working with
eclipse. If you don’t already have m2eclipse installed it is available from the "eclipse
marketplace".
Unfortunately m2e does not yet support Maven 3.3, so once the projects
are imported into Eclipse you will also need to tell m2eclipse to use
the .settings.xml file for the projects. If you do not do this you
may see many different errors related to the POMs in the
projects. Open your Eclipse preferences, expand the Maven
preferences, and select User Settings. In the User Settings field
click Browse and navigate to the Spring Cloud project you imported
selecting the .settings.xml file in that project. Click Apply and
then OK to save the preference changes.
Note
Alternatively you can copy the repository settings from .settings.xml into your own ~/.m2/settings.xml.

Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the
following command:
$./mvnw eclipse:eclipse
The generated eclipse projects can be imported by selecting import existing projects
from the file menu.
Appendix B. Contributing

Spring Cloud is released under the non-restrictive Apache 2.0 license,
and follows a very standard Github development process, using Github
tracker for issues and merging pull requests into master. If you want
to contribute even something trivial please do not hesitate, but
follow the guidelines below.
Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the
contributor’s agreement.
Signing the contributor’s agreement does not grant anyone commit rights to the main
repository, but it does mean that we can accept your contributions, and you will get an
author credit if we do. Active contributors might be asked to join the core team, and
given the ability to merge pull requests.
Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help. They can also be
added after the original pull request but before a merge.
	Use the Spring Framework code format conventions. If you use Eclipse
you can import formatter settings using the
eclipse-code-formatter.xml file from the
Spring
Cloud Build project. If using IntelliJ, you can use the
Eclipse Code Formatter
Plugin to import the same file.
	Make sure all new .java files to have a simple Javadoc class comment with at least an
@author tag identifying you, and preferably at least a paragraph on what the class is
for.
	Add the ASF license header comment to all new .java files (copy from existing files
in the project)
	Add yourself as an @author to the .java files that you modify substantially (more
than cosmetic changes).
	Add some Javadocs and, if you change the namespace, some XSD doc elements.
	A few unit tests would help a lot as well — someone has to do it.
	If no-one else is using your branch, please rebase it against the current master (or
other target branch in the main project).
	When writing a commit message please follow these conventions,
if you are fixing an existing issue please add Fixes gh-XXXX at the end of the commit
message (where XXXX is the issue number).

