
Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE

Copyright © 2013-2017 Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow iii

Table of Contents

I. Preface .. 1
1. About the documentation .. 2
2. Getting help .. 3

II. Introduction ... 4
3. Introducing Spring Cloud Data Flow for Apache YARN project .. 5
4. Spring Cloud Data Flow .. 6
5. Spring Cloud Stream ... 7
6. Spring Cloud Task .. 8

III. Architecture ... 9
7. Introduction ... 10
8. Microservice Architectural Style ... 12

8.1. Comparison to other Platform architectures ... 12
9. Streaming Applications .. 14

9.1. Imperative Programming Model ... 14
9.2. Functional Programming Model ... 14

10. Streams .. 15
10.1. Topologies ... 15
10.2. Concurrency ... 15
10.3. Partitioning ... 15
10.4. Message Delivery Guarantees .. 16

11. Analytics ... 18
12. Task Applications .. 19
13. Data Flow Server .. 20

13.1. Endpoints ... 20
13.2. Customization ... 20
13.3. Security .. 21

14. Runtime .. 22
14.1. Fault Tolerance .. 22
14.2. Resource Management ... 22
14.3. Scaling at runtime .. 22
14.4. Application Versioning .. 22

IV. Spring Cloud Data Flow Runtime ... 23
15. Deploying on YARN .. 24

15.1. Prerequisites .. 24
15.2. Download and Extract Distribution ... 24
15.3. Configure Settings .. 24
15.4. Start Server ... 24
15.5. Connect Shell ... 24
15.6. Register Applications .. 25

Sourcing Applications from HDFS .. 25
15.7. Create Stream .. 25
15.8. Create Task ... 25
15.9. Using YARN Cli ... 26

Check YARN App Statuses ... 26
Push Apps .. 27

15.10. Using Metric Collectors ... 28
16. Deploying on AMBARI ... 29

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow iv

16.1. Install Ambari Server .. 29
16.2. Deploy Data Flow ... 29
16.3. Using Configuration .. 30

Change Datasource .. 30
17. Configuring Runtime Settings and Environment .. 31

17.1. Generic App Settings .. 31
17.2. Configuring Application Resources .. 31
17.3. Configure Base Directory .. 31
17.4. Pre-populate Applications ... 31
17.5. Configure Logging .. 32
17.6. Configure Metrics ... 32
17.7. Global YARN Memory Settings ... 32
17.8. Configure Kerberos .. 33

Working with Kerberized Kafka .. 33
17.9. Configure Hdfs HA ... 34
17.10. Configure Database .. 35
17.11. Configure Network Discovery .. 35

18. How YARN Deployment Works .. 37
19. Troubleshooting ... 38
20. Using Sandboxes .. 39

20.1. Hortonworks Sandbox ... 39
V. Streams ... 40

21. Introduction ... 41
22. Stream DSL .. 42
23. Register a Stream App .. 43

23.1. Whitelisting application properties .. 45
23.2. Creating and using a dedicated metadata artifact ... 45

Using the companion artifact ... 46
24. Creating custom applications ... 48
25. Creating a Stream ... 49

25.1. Application properties ... 49
Passing application properties when creating a stream 49

25.2. Deployment properties .. 51
Application properties versus Deployer properties ... 51
Passing instance count as deployment property ... 51
Inline vs file reference properties ... 52
Passing application properties when deploying a stream 52
Passing Spring Cloud Stream properties for the application 53
Passing per-binding producer consumer properties ... 53
Passing stream partition properties during stream deployment 54
Passing application content type properties .. 54
Overriding application properties during stream deployment 55

25.3. Common application properties ... 55
26. Destroying a Stream ... 57
27. Deploying and Undeploying Streams .. 58
28. Other Source and Sink Application Types .. 59
29. Simple Stream Processing ... 60
30. Stateful Stream Processing .. 61
31. Tap a Stream ... 62
32. Using Labels in a Stream .. 63

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow v

33. Explicit Broker Destinations in a Stream ... 64
34. Directed Graphs in a Stream ... 65
35. Stream applications with multiple binder configurations ... 66

VI. Tasks .. 67
36. Introducing Spring Cloud Task ... 68
37. The Lifecycle of a task .. 69

37.1. Creating a custom Task Application .. 69
37.2. Registering a Task Application .. 69
37.3. Creating a Task ... 70
37.4. Launching a Task ... 71

Common application properties .. 71
37.5. Reviewing Task Executions .. 71
37.6. Destroying a Task .. 72

38. Task Repository .. 73
38.1. Configuring the Task Execution Repository .. 73

Local .. 73
Task Application Repository .. 73

38.2. Datasource ... 73
39. Subscribing to Task/Batch Events .. 75
40. Launching Tasks from a Stream .. 76

40.1. TriggerTask .. 76
40.2. TaskLaunchRequest-transform .. 77

41. Composed Tasks .. 78
41.1. Configuring the Composed Task Runner in Spring Cloud Data Flow 78

Registering the Composed Task Runner application ... 78
Configuring the Composed Task Runner application ... 78

41.2. Creating, Launching, and Destroying a Composed Task 78
Creating a Composed Task ... 78

Task Application Parameters ... 79
Launching a Composed Task .. 79

Exit Statuses ... 79
Destroying a Composed Task .. 80
Stopping a Composed Task .. 80
Restarting a Composed Task .. 80

41.3. Composed Task DSL ... 80
Conditional Execution .. 80
Transitional Execution ... 82

Basic Transition .. 82
Transition With a Wildcard ... 83
Transition With a Following Conditional Execution 84

Split Execution .. 85
Split Containing Conditional Execution ... 86

VII. Dashboard .. 88
42. Introduction ... 89
43. Apps ... 90

43.1. Bulk Import of Applications ... 90
44. Runtime .. 92
45. Streams .. 93
46. Create Stream .. 95
47. Tasks ... 96

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow vi

47.1. Apps .. 96
Create a Task Definition from a selected Task App ... 96
View Task App Details .. 97

47.2. Definitions .. 97
Creating Task Definitions using the bulk define interface 97
Creating Composed Task Definitions ... 98
Launching Tasks ... 99

47.3. Executions ... 100
48. Jobs ... 101

48.1. List job executions .. 101
Job execution details ... 102
Step execution details ... 102
Step Execution Progress ... 102

49. Analytics ... 104
VIII. ‘How-to’ guides .. 105

50. Configure Maven Properties ... 106
51. Logging ... 108

51.1. Deployment Logs .. 108
51.2. Application Logs ... 108

52. Frequently asked questions ... 110
52.1. Advanced SpEL expressions ... 110
52.2. How to use JDBC-sink? .. 110
52.3. How to use multiple message-binders? .. 111

IX. Appendices .. 113
A. Migrating from Spring XD to Spring Cloud Data Flow .. 114

A.1. Terminology Changes .. 114
A.2. Modules to Applications .. 114

Custom Applications .. 114
Application Registration ... 114
Application Properties .. 115

A.3. Message Bus to Binders .. 115
Message Bus .. 115
Binders ... 115
Named Channels .. 116
Directed Graphs .. 116

A.4. Batch to Tasks ... 116
A.5. Shell/DSL Commands .. 117
A.6. REST-API .. 117
A.7. UI / Flo .. 117
A.8. Architecture Components ... 118

ZooKeeper .. 118
RDBMS .. 118
Redis .. 118
Cluster Topology ... 118

A.9. Central Configuration .. 118
A.10. Distribution ... 118
A.11. Hadoop Distribution Compatibility .. 119
A.12. YARN Deployment ... 119
A.13. Use Case Comparison ... 119

Use Case #1 .. 119

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow vii

Use Case #2 .. 120
Use Case #3 .. 120

B. Building .. 122
B.1. Documentation ... 122
B.2. Working with the code .. 122

Importing into eclipse with m2eclipse ... 122
Importing into eclipse without m2eclipse ... 123

C. Contributing .. 124
C.1. Sign the Contributor License Agreement ... 124
C.2. Code Conventions and Housekeeping .. 124

Part I. Preface

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 2

1. About the documentation

The Spring Cloud Data Flow for Apache Yarn reference guide is available as html, pdf and epub
documents. The latest copy is available at docs.spring.io/spring-cloud-dataflow-server-yarn/docs/
current-SNAPSHOT/reference/html/.

Copies of this document may be made for your own use and for distribution to others, provided that
you do not charge any fee for such copies and further provided that each copy contains this Copyright
Notice, whether distributed in print or electronically.

http://docs.spring.io/spring-cloud-dataflow-server-yarn/docs/current/reference/html
http://docs.spring.io/spring-cloud-dataflow-server-yarn/docs/current/reference/pdf/spring-cloud-dataflow-reference.pdf
http://docs.spring.io/spring-cloud-dataflow-server-yarn/docs/current/reference/epub/spring-cloud-dataflow-reference.epub
http://docs.spring.io/spring-cloud-dataflow-server-yarn/docs/current-SNAPSHOT/reference/html/
http://docs.spring.io/spring-cloud-dataflow-server-yarn/docs/current-SNAPSHOT/reference/html/

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 3

2. Getting help

Having trouble with Spring Cloud Data Flow, We’d like to help!

• Try the How-to’s — they provide solutions to the most common questions.

• Ask a question - we monitor stackoverflow.com for questions tagged with spring-cloud.

• Report bugs with Spring Cloud Dataflow for Apache YARN at github.com/spring-cloud/spring-cloud-
dataflow-server-yarn/issues.

Note

All of Spring Cloud Data Flow is open source, including the documentation! If you find problems
with the docs; or if you just want to improve them, please get involved.

http://stackoverflow.com
http://stackoverflow.com/tags/spring-cloud
https://github.com/spring-cloud/spring-cloud-dataflow-server-yarn/issues
https://github.com/spring-cloud/spring-cloud-dataflow-server-yarn/issues
http://github.com/spring-cloud/spring-cloud-dataflow-server-yarn/tree/v1.2.0.RELEASE

Part II. Introduction

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 5

3. Introducing Spring Cloud Data Flow for Apache
YARN project

This project provides support for orchestrating long-running (streaming) and short-lived (task/batch)
data microservices to Apache YARN.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 6

4. Spring Cloud Data Flow

Spring Cloud Data Flow is a cloud-native orchestration service for composable data microservices on
modern runtimes. With Spring Cloud Data Flow, developers can create and orchestrate data pipelines
for common use cases such as data ingest, real-time analytics, and data import/export.

The Spring Cloud Data Flow architecture consists of a server that deploys Streams and Tasks. Streams
are defined using a DSL or visually through the browser based designer UI. Streams are based on the
Spring Cloud Stream programming model while Tasks are based on the Spring Cloud Task programming
model. The sections below describe more information about creating your own custom Streams and
Tasks

For more details about the core architecture components and the supported features, please review
Spring Cloud Data Flow’s core reference guide. There’re several samples available for reference.

http://docs.spring.io/spring-cloud-dataflow/docs/1.2.0.RELEASE/reference/htmlsingle/#streams
http://docs.spring.io/spring-cloud-dataflow/docs/1.2.0.RELEASE/reference/htmlsingle/#spring-cloud-task-overview
http://docs.spring.io/spring-cloud-dataflow/docs/1.2.0.RELEASE/reference/html/_dsl_syntax.html
http://cloud.spring.io/spring-cloud-stream/
http://cloud.spring.io/spring-cloud-task/
http://docs.spring.io/spring-cloud-dataflow/docs/1.2.0.RELEASE/reference/htmlsingle/
https://github.com/spring-cloud/spring-cloud-dataflow-samples

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 7

5. Spring Cloud Stream

Spring Cloud Stream is a framework for building message-driven microservice applications. Spring
Cloud Stream builds upon Spring Boot to create standalone, production-grade Spring applications, and
uses Spring Integration to provide connectivity to message brokers. It provides opinionated configuration
of middleware from several vendors, introducing the concepts of persistent publish-subscribe semantics,
consumer groups, and partitions.

For more details about the core framework components and the supported features, please review
Spring Cloud Stream’s reference guide.

There’s a rich ecosystem of Spring Cloud Stream Application-Starters that can be used either as
standalone data microservice applications or in Spring Cloud Data Flow. For convenience, we have
generated RabbitMQ and Apache Kafka variants of these application-starters that are available for use
from Maven Repo and Docker Hub as maven artifacts and docker images, respectively.

Do you have a requirement to develop custom applications? No problem. Refer to this guide to create
custom stream applications. There’re several samples available for reference.

http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/
http://docs.spring.io/spring-cloud-stream-app-starters/docs/current-SNAPSHOT/reference/htmlsingle
http://repo.spring.io/libs-snapshot/org/springframework/cloud/stream/app/
https://hub.docker.com/r/springcloudstream/
http://docs.spring.io/spring-cloud-stream-app-starters/docs/current-SNAPSHOT/reference/htmlsingle/#_creating_custom_artifacts
https://github.com/spring-cloud/spring-cloud-stream-samples

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 8

6. Spring Cloud Task

Spring Cloud Task makes it easy to create short-lived microservices. We provide capabilities that allow
short-lived JVM processes to be executed on demand in a production environment.

For more details about the core framework components and the supported features, please review
Spring Cloud Task’s reference guide.

There’s a rich ecosystem of Spring Cloud Task Application-Starters that can be used either as
standalone data microservice applications or in Spring Cloud Data Flow. For convenience, the generated
application-starters are available for use from Maven Repo. There are several samples available for
reference.

http://docs.spring.io/spring-cloud-task/1.2.0.RELEASE/reference/htmlsingle/
http://docs.spring.io/spring-cloud-task-app-starters/docs/current-SNAPSHOT/reference/htmlsingle
http://repo.spring.io/libs-snapshot/org/springframework/cloud/task/app/
https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples

Part III. Architecture

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 10

7. Introduction

Spring Cloud Data Flow simplifies the development and deployment of applications focused on data
processing use-cases. The major concepts of the architecture are Applications, the Data Flow Server,
and the target runtime.

Applications come in two flavors

• Long lived Stream applications where an unbounded amount of data is consumed or produced via
messaging middleware.

• Short lived Task applications that process a finite set of data and then terminate.

Depending on the runtime, applications can be packaged in two ways

• Spring Boot uber-jar that is hosted in a maven repository, file, http or any other Spring resource
implementation.

• Docker

The runtime is the place where applications execute. The target runtimes for applications are platforms
that you may already be using for other application deployments.

The supported runtimes are

• Cloud Foundry

• Apache YARN

• Kubernetes

• Apache Mesos

• Local Server for development

There is a deployer Service Provider Interface (SPI) that enables you to extend Data Flow to deploy
onto other runtimes, for example to support Docker Swarm. There are community implementations of
Hashicorp’s Nomad and RedHat Openshift is available. We look forward to working with the community
for further contributions!

The component that is responsible for deploying applications to a runtime is the Data Flow Server. There
is a Data Flow Server executable jar provided for each of the target runtimes. The Data Flow server
is responsible for interpreting

• A stream DSL that describes the logical flow of data through multiple applications.

• A deployment manifest that describes the mapping of applications onto the runtime. For example, to
set the initial number of instances, memory requirements, and data partitioning.

As an example, the DSL to describe the flow of data from an http source to an Apache Cassandra sink
would be written as “http | cassandra”. These names in the DSL are registered with the Data Flow Server
and map onto application artifacts that can be hosted in Maven or Docker repositories. Many source,
processor, and sink applications for common use-cases (e.g. jdbc, hdfs, http, router) are provided by
the Spring Cloud Data Flow team. The pipe symbol represents the communication between the two
applications via messaging middleware. The two messaging middleware brokers that are supported are

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 11

• Apache Kafka

• RabbitMQ

In the case of Kafka, when deploying the stream, the Data Flow server is responsible to create the topics
that correspond to each pipe symbol and configure each application to produce or consume from the
topics so the desired flow of data is achieved.

The interaction of the main components is shown below

Figure 7.1. The Spring Cloud Data High Level Architecure

In this diagram a DSL description of a stream is POSTed to the Data Flow Server. Based on the
mapping of DSL application names to Maven and Docker artifacts, the http-source and cassandra-sink
applications are deployed on the target runtime.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 12

8. Microservice Architectural Style

The Data Flow Server deploys applications onto the target runtime that conform to the microservice
architectural style. For example, a stream represents a high level application that consists of multiple
small microservice applications each running in their own process. Each microservice application can
be scaled up or down independent of the other and each has their own versioning lifecycle.

Both Streaming and Task based microservice applications build upon Spring Boot as the foundational
library. This gives all microservice applications functionality such as health checks, security, configurable
logging, monitoring and management functionality, as well as executable JAR packaging.

It is important to emphasise that these microservice applications are ‘just apps’ that you can run
by yourself using ‘java -jar’ and passing in appropriate configuration properties. We provide many
common microservice applications for common operations so you don’t have to start from scratch when
addressing common use-cases which build upon the rich ecosystem of Spring Projects, e.g Spring
Integration, Spring Data, Spring Hadoop and Spring Batch. Creating your own microservice application
is similar to creating other Spring Boot applications, you can start using the Spring Initialzr web site or
the UI to create the basic scaffolding of either a Stream or Task based microservice.

In addition to passing in the appropriate configuration to the applications, the Data Flow server is
responsible for preparing the target platform’s infrastructure so that the application can be deployed. For
example, in Cloud Foundry it would be binding specified services to the applications and executing the
‘cf push’ command for each application. For Kubernetes it would be creating the replication controller,
service, and load balancer.

The Data Flow Server helps simplify the deployment of multiple applications onto a target runtime, but
one could also opt to deploy each of the microservice applications manually and not use Data Flow at
all. This approach might be more appropriate to start out with for small scale deployments, gradually
adopting the convenience and consistency of Data Flow as you develop more applications. Manual
deployment of Stream and Task based microservices is also a useful educational exercise that will help
you better understand some of the automatic applications configuration and platform targeting steps
that the Data Flow Server provides.

8.1 Comparison to other Platform architectures

Spring Cloud Data Flow’s architectural style is different than other Stream and Batch processing
platforms. For example in Apache Spark, Apache Flink, and Google Cloud Dataflow applications run on
a dedicated compute engine cluster. The nature of the compute engine gives these platforms a richer
environment for performing complex calculations on the data as compared to Spring Cloud Data Flow,
but it introduces complexity of another execution environment that is often not needed when creating
data centric applications. That doesn’t mean you cannot do real time data computations when using
Spring Cloud Data Flow. Refer to the analytics section which describes the integration of Redis to handle
common counting based use-cases as well as the RxJava integration for functional API driven analytics
use-cases, such as time-sliding-window and moving-average among others.

Similarly, Apache Storm, Hortonworks DataFlow and Spring Cloud Data Flow’s predecessor, Spring
XD, use a dedicated application execution cluster, unique to each product, that determines where your
code should execute on the cluster and perform health checks to ensure that long lived applications are
restarted if they fail. Often, framework specific interfaces are required to be used in order to correctly
“plug in” to the cluster’s execution framework.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 13

As we discovered during the evolution of Spring XD, the rise of multiple container frameworks in
2015 made creating our own runtime a duplication of efforts. There is no reason to build your own
resource management mechanics, when there are multiple runtime platforms that offer this functionality
already. Taking these considerations into account is what made us shift to the current architecture
where we delegate the execution to popular runtimes, runtimes that you may already be using for other
purposes. This is an advantage in that it reduces the cognitive distance for creating and managing data
centric applications as many of the same skills used for deploying other end-user/web applications are
applicable.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 14

9. Streaming Applications

While Spring Boot provides the foundation for creating DevOps friendly microservice applications,
other libraries in the Spring ecosystem help create Stream based microservice applications. The most
important of these is Spring Cloud Stream.

The essence of the Spring Cloud Stream programming model is to provide an easy way to describe
multiple inputs and outputs of an application that communicate over messaging middleware. These input
and outputs map onto Kafka topics or Rabbit exchanges and queues. Common application configuration
for a Source that generates data, a Process that consumes and produces data and a Sink that consumes
data is provided as part of the library.

9.1 Imperative Programming Model

Spring Cloud Stream is most closely integrated with Spring Integration’s imperative "event at a time"
programming model. This means you write code that handles a single event callback. For example,

@EnableBinding(Sink.class)

public class LoggingSink {

 @StreamListener(Sink.INPUT)

 public void log(String message) {

 System.out.println(message);

 }

}

In this case the String payload of a message coming on the input channel, is handed to the log method.
The @EnableBinding annotation is what is used to tie together the input channel to the external
middleware.

9.2 Functional Programming Model

However, Spring Cloud Stream can support other programming styles. The use of reactive APIs where
incoming and outgoing data is handled as continuous data flows and it defines how each individual
message should be handled. You can also use operators that describe functional transformations from
inbound to outbound data flows. The upcoming versions will support Apache Kafka’s KStream API in
the programming model.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 15

10. Streams

10.1 Topologies

The Stream DSL describes linear sequences of data flowing through the system. For example, in the
stream definition http | transformer | cassandra, each pipe symbol connects the application
on the left to the one on the right. Named channels can be used for routing and to fan out data to multiple
messaging destinations.

Taps can be used to ‘listen in’ to the data that if flowing across any of the pipe symbols. Taps can be
used as sources for new streams with an in independent life cycle.

10.2 Concurrency

For an application that will consume events, Spring Cloud stream exposes a concurrency setting
that controls the size of a thread pool used for dispatching incoming messages. See the
1.2.0.RELEASE#_consumer_properties[Consumer properties] documentation for more information.

10.3 Partitioning

A common pattern in stream processing is to partition the data as it moves from one application to
the next. Partitioning is a critical concept in stateful processing, for either performance or consistency
reasons, to ensure that all related data is processed together. For example, in a time-windowed average
calculation example, it is important that all measurements from any given sensor are processed by the
same application instance. Alternatively, you may want to cache some data related to the incoming
events so that it can be enriched without making a remote procedure call to retrieve the related data.

Spring Cloud Data Flow supports partitioning by configuring Spring Cloud Stream’s output and input
bindings. Spring Cloud Stream provides a common abstraction for implementing partitioned processing
use cases in a uniform fashion across different types of middleware. Partitioning can thus be used
whether the broker itself is naturally partitioned (e.g., Kafka topics) or not (e.g., RabbitMQ). The following
image shows how data could be partitioned into two buckets, such that each instance of the average
processor application consumes a unique set of data.

Figure 10.1. Spring Cloud Stream Partitioning

To use a simple partitioning strategy in Spring Cloud Data Flow, you only need set the instance count for
each application in the stream and a partitionKeyExpression producer property when deploying
the stream. The partitionKeyExpression identifies what part of the message will be used as the
key to partition data in the underlying middleware. An ingest stream can be defined as http |
averageprocessor | cassandra (Note that the Cassandra sink isn’t shown in the diagram above).

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 16

Suppose the payload being sent to the http source was in JSON format and had a field called sensorId.
Deploying the stream with the shell command stream deploy ingest --propertiesFile

ingestStream.properties where the contents of the file ingestStream.properties are

deployer.http.count=3

deployer.averageprocessor.count=2

app.http.producer.partitionKeyExpression=payload.sensorId

will deploy the stream such that all the input and output destinations are configured for data to
flow through the applications but also ensure that a unique set of data is always delivered to each
averageprocessor instance. In this case the default algorithm is to evaluate payload.sensorId %
partitionCount where the partitionCount is the application count in the case of RabbitMQ and
the partition count of the topic in the case of Kafka.

Please refer to the section called “Passing stream partition properties during stream deployment” for
additional strategies to partition streams during deployment and how they map onto the underlying
1.2.0.RELEASE#_partitioning[Spring Cloud Stream Partitioning properties].

Also note, that you can’t currently scale partitioned streams. Read the section Section 14.3, “Scaling
at runtime” for more information.

10.4 Message Delivery Guarantees

Streams are composed of applications that use the Spring Cloud Stream library as the basis
for communicating with the underlying messaging middleware product. Spring Cloud Stream also
provides an opinionated configuration of middleware from several vendors, in particular providing
1.2.0.RELEASE#_persistent_publish_subscribe_support[persistent publish-subscribe semantics].

The 1.2.0.RELEASE#_binders[Binder abstraction] in Spring Cloud Stream is what connects the
application to the middleware. There are several configuration properties of the binder that are portable
across all binder implementations and some that are specific to the middleware.

For consumer applications there is a retry policy for exceptions generated during message
handling. The retry policy is configured using the 1.2.0.RELEASE#_consumer_properties[common
consumer properties] maxAttempts, backOffInitialInterval, backOffMaxInterval, and
backOffMultiplier. The default values of these properties will retry the callback method invocation
3 times and wait one second for the first retry. A backoff multiplier of 2 is used for the second and third
attempts.

When the number of retry attempts has exceeded the maxAttempts value, the exception and the failed
message will become the payload of a message and be sent to the application’s error channel. By
default, the default message handler for this error channel logs the message. You can change the default
behavior in your application by creating your own message handler that subscribes to the error channel.

Spring Cloud Stream also supports a configuration option for both Kafka and RabbitMQ
binder implementations that will send the failed message and stack trace to a dead
letter queue. The dead letter queue is a destination and its nature depends on the
messaging middleware (e.g in the case of Kafka it is a dedicated topic). To enable
this for RabbitMQ set the 1.2.0.RELEASE#_rabbitmq_consumer_properties[consumer properties]
republishtoDlq and autoBindDlq and the 1.2.0.RELEASE#_rabbit_producer_properties[producer
property] autoBindDlq to true when deploying the stream. To always apply these producer and
consumer properties when deploying streams, configure them as common application properties when
starting the Data Flow server.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 17

Additional messaging delivery guarantees are those provided by the underlying messaging
middleware that is chosen for the application for both producing and consuming
applications. Refer to the Kafka 1.2.0.RELEASE#_kafka_consumer_properties[Consumer] and
1.2.0.RELEASE#_kafka_producer_properties[Producer] and Rabbit
1.2.0.RELEASE#_rabbitmq_consumer_properties[Consumer] and
1.2.0.RELEASE#_rabbit_producer_properties[Producer] documentation for more details. You will find
extensive declarative support for all the native QOS options.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 18

11. Analytics

Spring Cloud Data Flow is aware of certain Sink applications that will write counter data to Redis and
provides an REST endpoint to read counter data. The types of counters supported are

• Counter - Counts the number of messages it receives, optionally storing counts in a separate store
such as redis.

• Field Value Counter - Counts occurrences of unique values for a named field in a message payload

• Aggregate Counter - Stores total counts but also retains the total count values for each minute, hour
day and month.

It is important to note that the timestamp that is used in the aggregate counter can come from a field in
the message itself so that out of order messages are properly accounted.

https://github.com/spring-cloud-stream-app-starters/counter/tree/master/spring-cloud-starter-stream-sink-counter
https://github.com/spring-cloud-stream-app-starters/field-value-counter/tree/master/spring-cloud-starter-stream-sink-field-value-counter
https://github.com/spring-cloud-stream-app-starters/aggregate-counter/tree/master/spring-cloud-starter-stream-sink-aggregate-counter

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 19

12. Task Applications

The Spring Cloud Task programming model provides:

• Persistence of the Task’s lifecycle events and exit code status.

• Lifecycle hooks to execute code before or after a task execution.

• Emit task events to a stream (as a source) during the task lifecycle.

• Integration with Spring Batch Jobs.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 20

13. Data Flow Server

13.1 Endpoints

The Data Flow Server uses an embedded servlet container and exposes REST endpoints for creating,
deploying, undeploying, and destroying streams and tasks, querying runtime state, analytics, and the
like. The Data Flow Server is implemented using Spring’s MVC framework and the Spring HATEOAS
library to create REST representations that follow the HATEOAS principle.

Figure 13.1. The Spring Cloud Data Flow Server

13.2 Customization

Each Data Flow Server executable jar targets a single runtime by delegating to the implementation of
the deployer Service Provider Interface found on the classpath.

We provide a Data Flow Server executable jar that targets a single runtime. The Data Flow server
delegates to the implementation of the deployer Service Provider Interface found on the classpath. In
the current version, there are no endpoints specific to a target runtime, but may be available in future
releases as a convenience to access runtime specific features

While we provide a server executable for each of the target runtimes you can also create your own
customized server application using Spring Initialzr. This let’s you add or remove functionality relative
to the executable jar we provide. For example, adding additional security implementations, custom

https://github.com/spring-projects/spring-hateoas

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 21

endpoints, or removing Task or Analytics REST endpoints. You can also enable or disable some features
through the use of feature toggles.

13.3 Security

The Data Flow Server executable jars support basic http, LDAP(S), File-based, and OAuth 2.0
authentication to access its endpoints. Refer to the security section for more information.

Authorization via groups is planned for a future release.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 22

14. Runtime

14.1 Fault Tolerance

The target runtimes supported by Data Flow all have the ability to restart a long lived application should
it fail. Spring Cloud Data Flow sets up whatever health probe is required by the runtime environment
when deploying the application.

The collective state of all applications that comprise the stream is used to determine the state of the
stream. If an application fails, the state of the stream will change from ‘deployed’ to ‘partial’.

14.2 Resource Management

Each target runtime lets you control the amount of memory, disk and CPU that is allocated to each
application. These are passed as properties in the deployment manifest using key names that are unique
to each runtime. Refer to the each platforms server documentation for more information.

14.3 Scaling at runtime

When deploying a stream, you can set the instance count for each individual application that comprises
the stream. Once the stream is deployed, each target runtime lets you control the target number of
instances for each individual application. Using the APIs, UIs, or command line tools for each runtime,
you can scale up or down the number of instances as required. Future work will provide a portable
command in the Data Flow Server to perform this operation.

Currently, this is not supported with the Kafka binder (based on the 0.8 simple consumer at the time
of the release), as well as partitioned streams, for which the suggested workaround is redeploying
the stream with an updated number of instances. Both cases require a static consumer set up based
on information about the total instance count and current instance index, a limitation intended to be
addressed in future releases. For example, Kafka 0.9 and higher provides good infrastructure for scaling
applications dynamically and will be available as an alternative to the current Kafka 0.8 based binder
in the near future. One specific concern regarding scaling partitioned streams is the handling of local
state, which is typically reshuffled as the number of instances is changed. This is also intended to be
addressed in the future versions, by providing first class support for local state management.

14.4 Application Versioning

Application versioning, that is upgrading or downgrading an application from one version to another, is
not directly supported by Spring Cloud Data Flow. You must rely on specific target runtime features to
perform these operational tasks.

The roadmap for Spring Cloud Data Flow will deploy applications that are compatible with Spinnaker
to manage the complete application lifecycle. This also includes automated canary analysis backed by
application metrics. Portable commands in the Data Flow server to trigger pipelines in Spinnaker are
also planned.

Part IV. Spring Cloud
Data Flow Runtime

Data flow runtime can be deployed and used with YARN in two different ways, firstly using it directly with
a YARN cluster and secondly letting Apache Ambari deploy it into its cluster as a service. Difference
between these two deployment types is that YARN only provides a raw runtime environment for
containers where user is required to setup all needed dependencies while Apache Ambari will try to
focus on easy deployment where minimum set of required services exist in ambari managed cluster.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 24

15. Deploying on YARN

The server application is run as a standalone application. All applications used for streams and tasks
will be deployed on the YARN cluster that is targeted by the server.

15.1 Prerequisites

These requirements are not something yarn runtime needs but generally what dataflow core needs.

• Rabbit - If dataflow apps using rabbit bindings are used.

• Kafka - If dataflow apps using kafka bindings are used.

• DB - we currently use embedded H2 database, though any supported DB can be configured.

15.2 Download and Extract Distribution

Download the Spring Cloud Data Flow YARN distribution ZIP file which includes the Server and the
Shell apps:

$ wget http://repo.spring.io/release/org/springframework/cloud/dist/spring-cloud-dataflow-server-yarn-

dist/1.2.0.RELEASE/spring-cloud-dataflow-server-yarn-dist-1.2.0.RELEASE.zip

Unzip the distribution ZIP file and change to the directory containing the deployment files.

$ cd spring-cloud-dataflow-server-yarn-1.2.0.RELEASE

15.3 Configure Settings

Generic runtime settings can changed in config/servers.yml. Dedicated section Chapter 17,
Configuring Runtime Settings and Environment contains detailed information about configuration.

servers.yml file is a central place to share common configuration as it is added to Boot based jvm
processes via option -Dspring.config.location=servers.yml.

15.4 Start Server

If this is the first time deploying make sure the user that runs the Server app has rights to create and
write to /dataflow directory in hdfs. If there is an existing deployment on hdfs remove it using:

$ hdfs dfs -rm -R /dataflow

Start the Spring Cloud Data Flow Server app for YARN

$./bin/dataflow-server-yarn

15.5 Connect Shell

start spring-cloud-dataflow-shell

$./bin/dataflow-shell

Shell in a distribution package contains extension commands for a hdfs file system.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 25

dataflow:>hadoop fs

hadoop fs cat hadoop fs copyFromLocal hadoop fs copyToLocal hadoop fs expunge

hadoop fs ls hadoop fs mkdir hadoop fs mv hadoop fs rm

dataflow:>hadoop fs ls /

rwxrwxrwx root supergroup 0 2016-07-25 06:54:15 /

rwxrwxrwx jvalkealahti supergroup 0 2016-07-25 06:58:38 /dataflow

rwxr-xr-x jvalkealahti supergroup 0 2016-07-25 07:31:32 /repo

rwxrwxrwx root supergroup 0 2016-07-20 16:25:31 /tmp

rwxrwxrwx jvalkealahti supergroup 0 2015-10-29 10:59:24 /user

Tip

You can configure server address automatically by placing it in a configuration using key
dataflow.uri.

15.6 Register Applications

By default, the application registry will be empty. If you would like to register all out-of-the-box stream
applications built with the RabbitMQ binder in bulk, you can with the following command. For more
details, review how to register applications.

dataflow:>app import --uri http://bit.ly/stream-applications-rabbit-maven

Sourcing Applications from HDFS

YARN integration also allows you to store registered applications directly in HDFS instead of relying
on maven or any other resolution. Only thing to change during a registration is to use hdfs address
as shown below.

dataflow:>app register --name ftp --type sink --uri hdfs:/dataflow/artifacts/repo/ftp-sink-

kafka-1.0.0.RC1.jar

15.7 Create Stream

Create a stream:

dataflow:>stream create --name foostream --definition "time|log" --deploy

List streams:

dataflow:>stream list

##

#Stream Name#Stream Definition# Status #

##

#foostream #time|log #deployed#

##

After some time, destroy the stream:

dataflow:>stream destroy --name foostream

The YARN application is pushed and started automatically during a stream deployment process. Once
all streams are destroyed the YARN application will exit.

15.8 Create Task

Create and launch task:

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 26

dataflow:>task create --name footask --definition "timestamp"

Created new task 'footask'

dataflow:>task launch --name footask

Launched task 'footask'

Launch tasks from streams:

task-launcher-yarn-sink itself bundles a YARN Deployer but doesn’t push any apps into hdfs,
thus pushed app needs to exist and match a deployer version task-launcher-yarn-sink uses.

In below sample we use tasklaunchrequest processor to pass needed properties into task-
launcher-yarn sink. We explicitely defined appVersion as appv1 which you would have pushed
into hdfs prior running this stream. With this processor you also need to define a uri for a task application
itself.

stream create --name launchertest --definition "http

--server.port=9000|tasklaunchrequest

--deployment-properties=spring.cloud.deployer.yarn.app.appVersion=appv1

--uri=hdfs:/dataflow/repo/timestamp-task.jar|task-launcher-yarn"

--deploy

To fire up a task just post a dummy message into http source.

http post --target http://localhost:9000 --data empty

Note

Using http source in YARN difficult as you don’t immediately know on which cluster node that
source app is running.

15.9 Using YARN Cli

Overall app status can be seen from YARN Resource Manager UI or using Spring YARN CLI which
gives more info about running containers within an app itself.

$./bin/dataflow-server-yarn-cli shell

Check YARN App Statuses

When stream has been submitted YARN shows it as ACCEPTED before its turned to RUNNING state.

$ submitted

 APPLICATION ID USER NAME QUEUE TYPE STARTTIME

 FINISHTIME STATE FINALSTATUS ORIGINAL TRACKING URL

 ------------------------------ ------------ ----------------------- ------- --------

 -------------- ---------- -------- ----------- ---------------------

 application_1461658614481_0001 jvalkealahti scdstream:app:foostream default DATAFLOW 26/04/16

 16:27 N/A ACCEPTED UNDEFINED

$ submitted

 APPLICATION ID USER NAME QUEUE TYPE STARTTIME

 FINISHTIME STATE FINALSTATUS ORIGINAL TRACKING URL

 ------------------------------ ------------ ----------------------- ------- --------

 -------------- ---------- ------- ----------- -------------------------

 application_1461658614481_0001 jvalkealahti scdstream:app:foostream default DATAFLOW 26/04/16

 16:27 N/A RUNNING UNDEFINED http://192.168.1.96:58580

More info about internals for stream apps can be queried by clustersinfo and clusterinfo
commands:

$ clustersinfo -a application_1461658614481_0001

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 27

 CLUSTER ID

 foostream:log

 foostream:time

$ clusterinfo -a application_1461658614481_0001 -c foostream:time

 CLUSTER STATE MEMBER COUNT

 ------------- ------------

 RUNNING 1

After stream is undeployed YARN app should close itself automatically:

$ submitted -v

 APPLICATION ID USER NAME QUEUE TYPE STARTTIME

 FINISHTIME STATE FINALSTATUS ORIGINAL TRACKING URL

 ------------------------------ ------------ ----------------------- ------- --------

 -------------- -------------- -------- ----------- ---------------------

 application_1461658614481_0001 jvalkealahti scdstream:app:foostream default DATAFLOW 26/04/16

 16:27 26/04/16 16:28 FINISHED SUCCEEDED

Launching a task will be shown in RUNNING state while app is executing its batch jobs:

$ submitted -v

 APPLICATION ID USER NAME QUEUE TYPE STARTTIME

 FINISHTIME STATE FINALSTATUS ORIGINAL TRACKING URL

 ------------------------------ ------------ ----------------------- ------- --------

 -------------- -------------- -------- ----------- -------------------------

 application_1461658614481_0002 jvalkealahti scdtask:timestamp default DATAFLOW 26/04/16

 16:29 N/A RUNNING UNDEFINED http://192.168.1.96:39561

 application_1461658614481_0001 jvalkealahti scdstream:app:foostream default DATAFLOW 26/04/16

 16:27 26/04/16 16:28 FINISHED SUCCEEDED

$ submitted -v

 APPLICATION ID USER NAME QUEUE TYPE STARTTIME

 FINISHTIME STATE FINALSTATUS ORIGINAL TRACKING URL

 ------------------------------ ------------ ----------------------- ------- --------

 -------------- -------------- -------- ----------- ---------------------

 application_1461658614481_0002 jvalkealahti scdtask:timestamp default DATAFLOW 26/04/16

 16:29 26/04/16 16:29 FINISHED SUCCEEDED

 application_1461658614481_0001 jvalkealahti scdstream:app:foostream default DATAFLOW 26/04/16

 16:27 26/04/16 16:28 FINISHED SUCCEEDED

Push Apps

Yarn applications needed for a dataflow can be pushed manually into hdfs with a given version which
default to app.

Spring YARN Cli (v2.4.0.RELEASE)

Hit TAB to complete. Type 'help' and hit RETURN for help, and 'exit' to quit.

$ push -t STREAM

New version installed

$ push -t TASK

New version installed

$ push -t TASK -v appv1

New version installed

After above commands base directories for different app versions would look like as shown below.
Streams and tasks can then use different versions which allows to use alternate configurations.

/dataflow/apps/stream/app

/dataflow/apps/task/app

/dataflow/apps/task/appv1

Note

Push happens automatically when stream is deployer or task launched.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 28

15.10 Using Metric Collectors

We package three different metrics collector implementations, one for RabbitMQ and two for different
Kafka versions. There can be started using shell scripts, dataflow-server-metrics-collector-
kafka-09, dataflow-server-metrics-collector-kafka-10 and dataflow-server-

metrics-collector-rabbit respectively. These applications are not using servers.yml file for
config, instead collectors.yml is used where custom settings can be placed.

Note

With Kafka 0.10.1 and later, kafka-10 should be used. With Kafka 0.10.0 and earlier,
kafka-09 should be used.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 29

16. Deploying on AMBARI

Ambari basically automates YARN installation instead of requiring user to do it manually. Also a lot of
other configuration steps are automated as much as possible to easy overall installation process.

There is no difference on components deployed into ambari comparing of a manual usage with a
separate YARN cluster. With ambari we simply package needed dataflow components into a rpm
package so that it can be managed as an ambari service. After that ambari really only manage a runtime
configuration of those components.

16.1 Install Ambari Server

Generally it is only needed to install scdf-plugin-hdp plugin into ambari server which adds needed
service definitions.

[root@ambari-1 ~]# yum -y install ambari-server

[root@ambari-1 ~]# ambari-server setup -s

[root@ambari-1 ~]# wget -nv http://repo.spring.io/yum-release-local/scdf/1.2.0/scdf-release-1.2.0.repo -

O /etc/yum.repos.d/scdf-release-1.2.0.repo

[root@ambari-1 ~]# yum -y install scdf-plugin-hdp

[root@ambari-1 ~]# ambari-server start

Note

Ambari plugin only works for redhat6/redhat7 and related centos based systems for now.

16.2 Deploy Data Flow

When you create your cluster and choose a stack, make sure that redhat6 or/and redhat7 sections
contains repository named SCDF-1.2.0 and that it points to repo.spring.io/yum-release-
local/scdf/1.2.0.

Ambari 2.4 contains major rewrites for stack definitions and how it is possible to integrate with those
from external contributions. Our plugin will eventually integrate via extensions or management packs,
but for now you need to choose stack marked as a Default Version Definition which contains correct
yum repository. For example with HDP 2.5 you have two default choices, HDP-2.5.0.0 and HDP-2.5
(Default Version Definition). As mentioned you need to pick latter. With older ambari versions you don’t
have these new options.

From services choose Spring Cloud Data Flow and Kafka. Hdfs, Yarn and Zookeeper are
forced dependencies.

Note

With Kafka you can do "one-click" installation while using Rabbit you need to provide
appropriate connection settings as Rabbit is not part of a Ambari managed service.

Then in Customize Services what is really left for user to do is to customise settings if needed. Everything
else is automatically configured. Technically it also allows you to switch to use rabbit by leaving Kafka
out and defining rabbit settings there. But generally use of Kafka is a good choice.

Note

We also install H2 DB as service so that it can be accessed from every node.

http://repo.spring.io/yum-release-local/scdf/1.2.0
http://repo.spring.io/yum-release-local/scdf/1.2.0

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 30

16.3 Using Configuration

servers.yml file is also used to store common configuration with Ambari. Settings in Advanced scdf-
site and Custom scdf-site are used to dynamically create a this file which is then copied over to hdfs
when needed application files are deployd.

Every additional entry added via Custom scdf-site is added into servers.yml as is and overrides
everything else in it.

Important

If ambari configuration is modified, you need to delete /dataflow/apps/stream/app and
/dataflow/apps/task/app directories from hdfs for new settings to get applied. Files in
above directories will not get overridden including generated servers.yml config file.

Change Datasource

Ambari managed service defaults to H2 database. We currently support using MySQL, PostgreSQL and
HSQLDB as external datasources. Custom datasource configuration can be applied via Custom scdf-
site as shown in below screenshot. After these settings are modified, all related services needs to be
restarted.

Figure 16.1. Custom Datasource Config

Note

Managed service SCDF H2 Database can be stopped and put in a maintenance mode after
custom datasource settings has been added.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 31

17. Configuring Runtime Settings and Environment

This section describes how settings related to running YARN application can be modified.

17.1 Generic App Settings

All applications whether those are stream apps or task apps can be centrally configured with
servers.yml as that file is passed to apps using --spring.config.location='servers.yml'.

17.2 Configuring Application Resources

Stream and task processes for application master and containers can be further tuned by setting memory
and cpu settings. Also java options allow to define actual jvm options.

spring:

 cloud:

 deployer:

 yarn:

 app:

 streamappmaster:

 memory: 512m

 virtualCores: 1

 javaOpts: "-Xms512m -Xmx512m"

 streamcontainer:

 priority: 5

 memory: 256m

 virtualCores: 1

 javaOpts: "-Xms64m -Xmx256m"

 taskappmaster:

 memory: 512m

 virtualCores: 1

 javaOpts: "-Xms512m -Xmx512m"

 taskcontainer:

 priority: 10

 memory: 256m

 virtualCores: 1

 javaOpts: "-Xms64m -Xmx256m"

17.3 Configure Base Directory

Base directory where all needed files are kept defaults to /dataflow and can be changed using
baseDir property.

spring:

 cloud:

 deployer:

 yarn:

 app:

 baseDir: /dataflow

17.4 Pre-populate Applications

Spring Cloud Data Flow app registration is based on URI’s with various different endpoints. As
mentioned in section Chapter 18, How YARN Deployment Works all applications are first stored into
hdfs before application container is launched. Server can use http, file, http and maven based uris
as well direct hdfs uris.

It is possible to place these applications directly into HDFS and register application based on that URI.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 32

17.5 Configure Logging

Logging for all components is done centrally via servers.yml file using normal Spring Boot properties.

logging:

 level:

 org.apache.hadoop: INFO

 org.springframework.yarn: INFO

17.6 Configure Metrics

If metrics are enabled, needed settings are written into servers.yml files used by applications. Also
specific settings are written into collectors.yml used by SCDF Metrics Collector service. You need
to choose a correct collector type, its service port and output channel name.

Figure 17.1. Metrics Config

17.7 Global YARN Memory Settings

YARN Nodemanager is continously tracking how much memory is used by individual YARN containers.
If containers are using more memory than what the configuration allows, containers are simply killed by
a Nodemanager. Application master controlling the app lifecycle is given a little more freedom meaning
that Nodemanager is not that aggressive when making a desicion when a container should be killed.

Important

These are global cluster settings and cannot be changed during an application deployment.

Lets take a quick look of memory related settings in YARN cluster and in YARN applications. Below xml
config is what a default vanilla Apache Hadoop uses for memory related settings. Other distributions
may have different defaults.

yarn.nodemanager.pmem-check-enabled
Enables a check for physical memory of a process. This check if enabled is directly tracking amount
of memory requested for a YARN container.

yarn.nodemanager.vmem-check-enabled
Enables a check for virtual memory of a process. This setting is one which is usually causing
containers of a custom YARN applications to get killed by a node manager. Usually the actual ratio

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 33

between physical and virtual memory is higher than a default 2.1 or bugs in a OS is causing wrong
calculation of a used virtual memory.

yarn.nodemanager.vmem-pmem-ratio
Defines a ratio of allowed virtual memory compared to physical memory. This ratio simply defines
how much virtual memory a process can use but the actual tracked size is always calculated from
a physical memory limit.

yarn.scheduler.minimum-allocation-mb
Defines a minimum allocated memory for container.

Note

This setting also indirectly defines what is the actual physical memory limit requested during
a container allocation. Actual physical memory limit is always going to be multiple of this
setting rounded to upper bound. For example if this setting is left to default 1024 and
container is requested with 512M, 1024M is going to be used. However if requested size
is 1100M, actual size is set to 2048M.

yarn.scheduler.maximum-allocation-mb
Defines a maximum allocated memory for container.

yarn.nodemanager.resource.memory-mb
Defines how much memory a node controlled by a node manager is allowed to allocate. This setting
should be set to amount of which OS is able give to YARN managed processes in a way which
doesn’t cause OS to swap, etc.

17.8 Configure Kerberos

Enabling kerberos is relatively easy when existing kerberized cluster exists. Just like with every other
hadoop related service, use a specific user and a keytab.

spring:

 hadoop:

 security:

 userPrincipal: scdf/_HOST@HORTONWORKS.COM

 userKeytab: /etc/security/keytabs/scdf.service.keytab

 authMethod: kerberos

 namenodePrincipal: nn/_HOST@HORTONWORKS.COM

 rmManagerPrincipal: rm/_HOST@HORTONWORKS.COM

 jobHistoryPrincipal: jhs/_HOST@HORTONWORKS.COM

Note

When using ambari, configuration and keytab generation are fully automated.

Working with Kerberized Kafka

Important

Currently released kafka based apps doesn’t work with cluster where zookeeper and kafka itself
are configured to for kerberos authentication. Workaround is to use rabbit based apps or build
stream apps based on new kafka binder having support for kerberized kafka.

After a kafka based stream app has a kerberos support, some settings in ambari’s kafka configuration
needs to be changed. Effectively listeners and security.inter.broker.protocol needs to

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 34

use SASL_PLAINTEXT. Also binder needs to be able to create topics, thus scdf user needs to be
added to a kafka’s super users.

listeners=SASL_PLAINTEXT://localhost:6667

security.inter.broker.protocol=SASL_PLAINTEXT

super.users=user:kafka;user:scdf

Additional configs are needed for binder and sasl config.

spring:

 cloud:

 stream:

 kafka:

 binder:

 configuration:

 security:

 protocol: SASL_PLAINTEXT

spring:

 cloud:

 deployer:

 yarn:

 app:

 streamcontainer:

 saslConfig: "-Djava.security.auth.login.config=/etc/scdf/conf/scdf_kafka_jaas.conf"

Where scdf_kafka_jaas.conf looks something like shown below.

KafkaClient {

 com.sun.security.auth.module.Krb5LoginModule required

 useKeyTab=true

 keyTab="/etc/security/keytabs/scdf.service.keytab"

 storeKey=true

 useTicketCache=false

 serviceName="kafka"

 principal="scdf/sandbox.hortonworks.com@HORTONWORKS.COM";

};

Important

When ambari is kerberized via its wizard, everything else is automatically configured except
kafka settings for a super.users, listeners and security.inter.broker.protocol.

17.9 Configure Hdfs HA

Generic settings for dataflow components to work with HA setup can be seen below where id is set
to mycluster.

spring:

 hadoop:

 fsUri: hdfs://mycluster:8020

 config:

 dfs.ha.automatic-failover.enabled=True

 dfs.nameservices=mycluster

 dfs.client.failover.proxy.provider.mycluster=org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider

 dfs.ha.namenodes.mycluster=nn1,nn2

 dfs.namenode.rpc-address.mycluster.nn2=ambari-3.localdomain:8020

 dfs.namenode.rpc-address.mycluster.nn1=ambari-2.localdomain:8020

Note

When using ambari and Hdfs HA setup, configuration is fully automated.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 35

17.10 Configure Database

On default a dataflow server will start embedded H2 database using in-memory storage and effectively
using configuration.

spring:

 datasource:

 url: jdbc:h2:tcp://localhost:19092/mem:dataflow

 username: sa

 password:

 driverClassName: org.h2.Driver

Distribution package contains a bundled self-contained H2 executable which can be used instead. This
allows to persist data throughout server restarts and is not limited to single host.

./bin/dataflow-server-yarn-h2 --dataflow.database.h2.directory=/var/run/scdf/data

spring:

 datasource:

 url: jdbc:h2:tcp://neo:19092/dataflow

 username: sa

 password:

 driverClassName: org.h2.Driver

Important

With external H2 instance you cannot use localhost, instead use a real hostname.

Note

Port can be changed using property dataflow.database.h2.port.

This bundled H2 database is also used in ambari to have a default out of a box functionality. Any
database supported by a dataflow itself can be used by changing datasource settings.

17.11 Configure Network Discovery

YARN Deployer has to be able to talk with Application Master which then is responsible controlling
containers running stream and task applications. The way this work is that Application Master tries to
discover its own address which YARN Deployer is then able to use. If YARN cluster nodes have multiple
NICs or for some other reason address is discovered wrongly, some settings can be changed to alter
default discovery logic.

Below is a generic settings what can be changed.

spring

 yarn:

 hostdiscovery:

 pointToPoint: false

 loopback: false

 preferInterface: ['eth', 'en']

 matchIpv4: 192.168.0.0/24

 matchInterface: eth\\d*

• pointToPoint - Skips all interfaces which are most likely i.e. VPNs. Defaults to false.

• loopback - Don’t take loopback interface. Defaults to false.

• preferInterface - In case multiple interface names exist, setup preference order for discovery. Format
is interface name without number qualifier so with eth0, use eth. There’s no defaults.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 36

• matchIpv4 - Interface can be matched using its existing ip address which is given as CIDR format.
There’s no defaults.

• matchInterface - Interface can also matched using a simple regex pattern which gives even better
control if complex interface combinations exist in a cluster. There’s no defaults.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 37

18. How YARN Deployment Works

When YARN application is deployed into a YARN cluster it consists of two parts, Application Master
and Containers. Application master is a control program responsible of handling applications lifecycle
and allocation of containers. Containers are then where a real heavy lifting is done. In case of a stream
there is always minimum of 3 containers, one for application master, one for sink and one for source.
When running tasks there is always one application master and one container running a particular task.

Needed application files are pushed into hdfs automatically when needed. After stream and task is used
once hdfs directory structure would like like shown above.

/dataflow/apps

/dataflow/apps/stream

/dataflow/apps/stream/app

/dataflow/apps/stream/app/application.properties

/dataflow/apps/stream/app/servers.yml

/dataflow/apps/stream/app/spring-cloud-deployer-yarn-appdeployerappmaster-1.0.0.BUILD-SNAPSHOT.jar

/dataflow/apps/task

/dataflow/apps/task/app

/dataflow/apps/task/app/application.properties

/dataflow/apps/task/app/servers.yml

/dataflow/apps/task/app/spring-cloud-deployer-yarn-tasklauncherappmaster-1.0.0.BUILD-SNAPSHOT.jar

Note

/dataflow/apps can deleted in case application version is changed or configuration related
to servers.yml is modified. Once created these files are not overridden.

Application artifacts are cached under /dataflow/artifacts/cache directory.

/dataflow/artifacts

/dataflow/artifacts/cache

/dataflow/artifacts/cache/hdfs-sink-rabbit-1.0.0.RC1.jar

/dataflow/artifacts/cache/time-source-rabbit-1.0.0.RC1.jar

/dataflow/artifacts/cache/timestamp-task-1.0.0.RC1.jar

Important

Artifact caching is happening on two levels, firstly on a local disk where server is running, and
secondly in a hdfs cache directory. If working with snapshots or own development, it may be
required to wipe out /dataflow/artifacts/cache directory and do a server restart.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 38

19. Troubleshooting

YARN is fantastic runtime environment for running various workflows but when things don’t work excatly
as it was planned, it may be a little bit of a tedious process to find out what went wrong. This section
tries to provide instructions how to troubleshoot various issues causing abnormal behaviour.

When something is about to get launched into yarn, a generic procedure goes like this:

• Client is requesting resources(cpu and memory) for an application master.

• Application master is started as an jvm process controlling lifecycle of a yarn application as whole.

• Application master is requesting resources(cpu and memory) for its containers where real work is
executed.

• Containers are executed as a jvm processes.

There are various places where things can go wrong in this flow:

• YARN resource scheduler will not allocate resources for a container possibly due to overallocation
or misconfiguration.

• YARN will kill container because it thinks that a container is abusing requested amount of memory.

• JVM process itself dies either by abnormal behaviour or OOM errors caused by a wrong jvm options.

Log files are the most obvious place to look errors. YARN application itself writes log files name
Appmaster.stdout, Appmaster.stderr, Container.stdout and Container.stderr under
yarn’s application logging directory. Also yarn’s own logs for Resource Manager and especially for Node
Manager contains additional information when i.e. containers are getting killed by yarn itself.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 39

20. Using Sandboxes

Sandboxes are a single VM images to ease testing and demos without going through a full multi-machine
cluster setup. However these images have a natural restrictions of resources which are a cornerstone of
YARN to be able to run applications on it. With same limitations and a carefull configuration it is possible
to install Spring Cloud Data Flow on those sandboxes. In this section we try to provide some instructions
how this can be accomplished.

20.1 Hortonworks Sandbox

Install plugin repository.

$ wget -nv http://repo.spring.io/yum-release-local/scdf/1.2.0/scdf-release-1.2.0.repo -O /etc/

yum.repos.d/scdf-release-1.2.0.repo

Install plugin.

$ ambari-server stop

$ yum -y install scdf-plugin-hdp

$ ambari-server start

Add needed services together spring Spring Cloud Data Flow. Tune server jvm options. Spring Cloud
Data Flow → Configs → Advanced scdf-server-env → scdf-server-env template:

export JAVA_OPTS="-Xms512m -Xmx512m"

Tune jvm options for application masters and container. Spring Cloud Data Flow → Configs → Custom
scdf-site:

spring.cloud.deployer.yarn.app.streamappmaster.javaOpts=-Xms512m -Xmx512m

spring.cloud.deployer.yarn.app.streamcontainer.javaOpts=-Xms512m -Xmx512m

spring.cloud.deployer.yarn.app.taskappmaster.javaOpts=-Xms512m -Xmx512m

spring.cloud.deployer.yarn.app.taskcontainer.javaOpts=-Xms512m -Xmx512m

Part V. Streams
In this section you will learn all about Streams and how to use them with Spring Cloud Data Flow.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 41

21. Introduction

In Spring Cloud Data Flow, a basic stream defines the ingestion of event data from a source to a sink that
passes through any number of processors. Streams are composed of Spring Cloud Stream applications
and the deployment of stream definitions is done via the Data Flow Server (REST API). The Getting
Started section shows you how to start the server and how to start and use the Spring Cloud Data Flow
shell.

A high level DSL is used to create stream definitions. The DSL to define a stream that has an http source
and a file sink (with no processors) is shown below

http | file

The DSL mimics UNIX pipes and filters syntax. Default values for ports and filenames are used in this
example but can be overridden using -- options, such as

http --server.port=8091 | file --directory=/tmp/httpdata/

To create these stream definitions you use the shell or make an HTTP POST request to the Spring
Cloud Data Flow Server. For more information on making HTTP request directly to the server, consult
the REST API Guide.

http://cloud.spring.io/spring-cloud-stream/

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 42

22. Stream DSL

In the example above, we connected a source to a sink using the pipe symbol |. You can also pass
properties to the source and sink configurations. The property names will depend on the individual app
implementations, but as an example, the http source app exposes a server.port setting and it
allows you to change the data ingestion port from the default value. To create the stream using port
8000, we would use

dataflow:> stream create --definition "http --server.port=8000 | log" --name myhttpstream

The shell provides tab completion for application properties and also the shell command app info
<appType>:<appName> provides additional documentation for all the supported properties.

Note

Supported Stream <appType>'s are: source, processor, and sink

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 43

23. Register a Stream App

Register a Stream App with the App Registry using the Spring Cloud Data Flow Shell app register
command. You must provide a unique name, application type, and a URI that can be resolved to the
app artifact. For the type, specify "source", "processor", or "sink". Here are a few examples:

dataflow:>app register --name mysource --type source --uri maven://com.example:mysource:0.0.1-SNAPSHOT

dataflow:>app register --name myprocessor --type processor --uri file:///Users/example/

myprocessor-1.2.3.jar

dataflow:>app register --name mysink --type sink --uri http://example.com/mysink-2.0.1.jar

When providing a URI with the maven scheme, the format should conform to the following:

maven://<groupId>:<artifactId>[:<extension>[:<classifier>]]:<version>

For example, if you would like to register the snapshot versions of the http and log applications built
with the RabbitMQ binder, you could do the following:

dataflow:>app register --name http --type source --uri maven://

org.springframework.cloud.stream.app:http-source-rabbit:1.2.1.BUILD-SNAPSHOT

dataflow:>app register --name log --type sink --uri maven://org.springframework.cloud.stream.app:log-

sink-rabbit:1.2.1.BUILD-SNAPSHOT

If you would like to register multiple apps at one time, you can store them in a properties file where the
keys are formatted as <type>.<name> and the values are the URIs.

For example, if you would like to register the snapshot versions of the http and log applications built
with the RabbitMQ binder, you could have the following in a properties file [eg: stream-apps.properties]:

source.http=maven://org.springframework.cloud.stream.app:http-source-rabbit:1.2.1.BUILD-SNAPSHOT

sink.log=maven://org.springframework.cloud.stream.app:log-sink-rabbit:1.2.1.BUILD-SNAPSHOT

Then to import the apps in bulk, use the app import command and provide the location of the
properties file via --uri:

dataflow:>app import --uri file:///<YOUR_FILE_LOCATION>/stream-apps.properties

For convenience, we have the static files with application-URIs (for both maven and docker) available
for all the out-of-the-box stream and task/batch app-starters. You can point to this file and import all
the application-URIs in bulk. Otherwise, as explained in previous paragraphs, you can register them
individually or have your own custom property file with only the required application-URIs in it. It is
recommended, however, to have a "focused" list of desired application-URIs in a custom property file.

List of available Stream Application Starters:

Artifact Type Stable Release SNAPSHOT Release

RabbitMQ + Maven bit.ly/Bacon-RELEASE-stream-
applications-rabbit-maven

bit.ly/Bacon-BUILD-
SNAPSHOT-stream-
applications-rabbit-maven

RabbitMQ + Docker bit.ly/Bacon-RELEASE-stream-
applications-rabbit-docker

N/A

http://bit.ly/Bacon-RELEASE-stream-applications-rabbit-maven
http://bit.ly/Bacon-RELEASE-stream-applications-rabbit-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-rabbit-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-rabbit-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-rabbit-maven
http://bit.ly/Bacon-RELEASE-stream-applications-rabbit-docker
http://bit.ly/Bacon-RELEASE-stream-applications-rabbit-docker

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 44

Artifact Type Stable Release SNAPSHOT Release

Kafka 0.9 + Maven bit.ly/Bacon-RELEASE-stream-
applications-kafka-09-maven

bit.ly/Bacon-BUILD-
SNAPSHOT-stream-
applications-kafka-09-maven

Kafka 0.9 + Docker bit.ly/Bacon-RELEASE-stream-
applications-kafka-09-docker

N/A

Kafka 0.10 + Maven bit.ly/Bacon-RELEASE-stream-
applications-kafka-10-maven

bit.ly/Bacon-BUILD-
SNAPSHOT-stream-
applications-kafka-10-maven

Kafka 0.10 + Docker bit.ly/Bacon-RELEASE-stream-
applications-kafka-10-docker

N/A

List of available Task Application Starters:

Artifact Type Stable Release SNAPSHOT Release

Maven bit.ly/Belmont-GA-task-
applications-maven

bit.ly/Belmont-BUILD-
SNAPSHOT-task-applications-
maven

Docker bit.ly/Belmont-GA-task-
applications-docker

N/A

You can find more information about the available task starters in the Task App Starters Project Page
and related reference documentation. For more information about the available stream starters look at
the Stream App Starters Project Page and related reference documentation.

As an example, if you would like to register all out-of-the-box stream applications built with the RabbitMQ
binder in bulk, you can with the following command.

dataflow:>app import --uri http://bit.ly/Bacon-RELEASE-stream-applications-rabbit-maven

You can also pass the --local option (which is true by default) to indicate whether the properties file
location should be resolved within the shell process itself. If the location should be resolved from the
Data Flow Server process, specify --local false.

Warning

When using either app register or app import, if an app is already registered with the
provided name and type, it will not be overridden by default. If you would like to override the
pre-existing app coordinates, then include the --force option.

Note however that once downloaded, applications may be cached locally on the Data Flow
server, based on the resource location. If the resource location doesn’t change (even though the
actual resource bytes may be different), then it won’t be re-downloaded. When using maven://
resources on the other hand, using a constant location still may circumvent caching (if using
-SNAPSHOT versions).

Moreover, if a stream is already deployed and using some version of a registered app, then
(forcibly) re-registering a different app will have no effect until the stream is deployed anew.

http://bit.ly/Bacon-RELEASE-stream-applications-kafka-09-maven
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-09-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-09-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-09-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-09-maven
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-09-docker
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-09-docker
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-10-maven
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-10-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-10-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-10-maven
http://bit.ly/Bacon-BUILD-SNAPSHOT-stream-applications-kafka-10-maven
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-10-docker
http://bit.ly/Bacon-RELEASE-stream-applications-kafka-10-docker
http://bit.ly/Belmont-GA-task-applications-maven
http://bit.ly/Belmont-GA-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-GA-task-applications-docker
http://bit.ly/Belmont-GA-task-applications-docker
http://cloud.spring.io/spring-cloud-task-app-starters/
http://cloud.spring.io/spring-cloud-stream-app-starters/

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 45

Note

In some cases the Resource is resolved on the server side, whereas in others the URI will be
passed to a runtime container instance where it is resolved. Consult the specific documentation
of each Data Flow Server for more detail.

23.1 Whitelisting application properties

Stream and Task applications are Spring Boot applications which are aware of many Section 25.3,
“Common application properties”, e.g. server.port but also families of properties such as those with
the prefix spring.jmx and logging. When creating your own application it is desirable to whitelist
properties so that the shell and the UI can display them first as primary properties when presenting
options via TAB completion or in drop-down boxes.

To whitelist application properties create a file named spring-configuration-metadata-
whitelist.properties in the META-INF resource directory. There are two property keys that can
be used inside this file. The first key is named configuration-properties.classes. The value
is a comma separated list of fully qualified @ConfigurationProperty class names. The second key
is configuration-properties.names whose value is a comma separated list of property names.
This can contain the full name of property, such as server.port or a partial name to whitelist a
category of property names, e.g. spring.jmx.

The Spring Cloud Stream application starters are a good place to look for examples of usage. Here is
a simple example of the file sink’s spring-configuration-metadata-whitelist.properties
file

configuration-properties.classes=org.springframework.cloud.stream.app.file.sink.FileSinkProperties

If we also wanted to add server.port to be white listed, then it would look like this:

configuration-properties.classes=org.springframework.cloud.stream.app.file.sink.FileSinkProperties

configuration-properties.names=server.port

Important

Make sure to add 'spring-boot-configuration-processor' as an optional dependency to generate
configuration metadata file for the properties.

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-configuration-processor</artifactId>

 <optional>true</optional>

</dependency>

23.2 Creating and using a dedicated metadata artifact

You can go a step further in the process of describing the main properties that your stream or task
app supports by creating a so-called metadata companion artifact. This simple jar file contains only the
Spring boot JSON file about configuration properties metadata, as well as the whitelisting file described
in the previous section.

Here is the contents of such an artifact, for the canonical log sink:

$ jar tvf log-sink-rabbit-1.2.1.BUILD-SNAPSHOT-metadata.jar

373848 META-INF/spring-configuration-metadata.json

https://github.com/spring-cloud-stream-app-starters

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 46

 174 META-INF/spring-configuration-metadata-whitelist.properties

Note that the spring-configuration-metadata.json file is quite large. This is because it
contains the concatenation of all the properties that are available at runtime to the log sink (some
of them come from spring-boot-actuator.jar, some of them come from spring-boot-
autoconfigure.jar, even some more from spring-cloud-starter-stream-sink-log.jar,
etc.) Data Flow always relies on all those properties, even when a companion artifact is not available,
but here all have been merged into a single file.

To help with that (as a matter of fact, you don’t want to try to craft this giant JSON file by hand), you
can use the following plugin in your build:

<plugin>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-app-starter-metadata-maven-plugin</artifactId>

 <executions>

 <execution>

 <id>aggregate-metadata</id>

 <phase>compile</phase>

 <goals>

 <goal>aggregate-metadata</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

Note

This plugin comes in addition to the spring-boot-configuration-processor that
creates the individual JSON files. Be sure to configure the two!

The benefits of a companion artifact are manifold:

1. being way lighter (usually a few kilobytes, as opposed to megabytes for the actual app), they are
quicker to download, allowing quicker feedback when using e.g. app info or the Dashboard UI

2. as a consequence of the above, they can be used in resource constrained environments (such as
PaaS) when metadata is the only piece of information needed

3. finally, for environments that don’t deal with boot uberjars directly (for example, Docker-based
runtimes such as Kubernetes or Mesos), this is the only way to provide metadata about the properties
supported by the app.

Remember though, that this is entirely optional when dealing with uberjars. The uberjar itself also
includes the metadata in it already.

Using the companion artifact

Once you have a companion artifact at hand, you need to make the system aware of it so that it can
be used.

When registering a single app via app register, you can use the optional --metadata-uri option
in the shell, like so:

dataflow:>app register --name log --type sink

 --uri maven://org.springframework.cloud.stream.app:log-sink-kafka-10:1.2.1.BUILD-SNAPSHOT

 --metadata-uri=maven://org.springframework.cloud.stream.app:log-sink-

kafka-10:jar:metadata:1.2.1.BUILD-SNAPSHOT

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 47

When registering several files using the app import command, the file should contain a
<type>.<name>.metadata line in addition to each <type>.<name> line. This is optional (i.e. if some
apps have it but some others don’t, that’s fine).

Here is an example for a Dockerized app, where the metadata artifact is being hosted in a Maven
repository (but retrieving it via http:// or file:// would be equally possible).

...

source.http=docker:springcloudstream/http-source-rabbit:latest

source.http.metadata=maven://org.springframework.cloud.stream.app:http-source-

rabbit:jar:metadata:1.2.1.BUILD-SNAPSHOT

...

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 48

24. Creating custom applications

While there are out of the box source, processor, sink applications available, one can extend these
applications or write a custom Spring Cloud Stream application.

The process of creating Spring Cloud Stream applications via Spring Initializr is detailed in the
Spring Cloud Stream 1.2.0.RELEASE#_getting_started[documentation]. It is possible to include multiple
binders to an application. If doing so, refer the instructions in the section called “Passing Spring Cloud
Stream properties for the application” on how to configure them.

For supporting property whitelisting, Spring Cloud Stream applications running in Spring Cloud Data
Flow may include the Spring Boot configuration-processor as an optional dependency, as in the
following example.

<dependencies>

 <!-- other dependencies -->

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-configuration-processor</artifactId>

 <optional>true</optional>

 </dependency>

</dependencies>

Note

Make sure that the spring-boot-maven-plugin is included in the POM. The plugin is
necesary for creating the executable jar that will be registered with Spring Cloud Data Flow.
Spring Initialzr will include the plugin in the generated POM.

Once a custom application has been created, it can be registered as described in Chapter 23, Register
a Stream App.

https://github.com/spring-cloud/spring-cloud-stream

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 49

25. Creating a Stream

The Spring Cloud Data Flow Server exposes a full RESTful API for managing the lifecycle of stream
definitions, but the easiest way to use is it is via the Spring Cloud Data Flow shell. Start the shell as
described in the Getting Started section.

New streams are created by with the help of stream definitions. The definitions are built from a simple
DSL. For example, let’s walk through what happens if we execute the following shell command:

dataflow:> stream create --definition "time | log" --name ticktock

This defines a stream named ticktock based off the DSL expression time | log. The DSL uses
the "pipe" symbol |, to connect a source to a sink.

Then to deploy the stream execute the following shell command (or alternatively add the --deploy
flag when creating the stream so that this step is not needed):

dataflow:> stream deploy --name ticktock

The Data Flow Server resolves time and log to maven coordinates and uses those to launch the time
and log applications of the stream.

2016-06-01 09:41:21.728 INFO 79016 --- [nio-9393-exec-6] o.s.c.d.spi.local.LocalAppDeployer :

 deploying app ticktock.log instance 0

 Logs will be in /var/folders/wn/8jxm_tbd1vj28c8vj37n900m0000gn/T/spring-cloud-

dataflow-912434582726479179/ticktock-1464788481708/ticktock.log

2016-06-01 09:41:21.914 INFO 79016 --- [nio-9393-exec-6] o.s.c.d.spi.local.LocalAppDeployer :

 deploying app ticktock.time instance 0

 Logs will be in /var/folders/wn/8jxm_tbd1vj28c8vj37n900m0000gn/T/spring-cloud-

dataflow-912434582726479179/ticktock-1464788481910/ticktock.time

In this example, the time source simply sends the current time as a message each second, and the log
sink outputs it using the logging framework. You can tail the stdout log (which has an "_<instance>"
suffix). The log files are located within the directory displayed in the Data Flow Server’s log output, as
shown above.

$ tail -f /var/folders/wn/8jxm_tbd1vj28c8vj37n900m0000gn/T/spring-cloud-dataflow-912434582726479179/

ticktock-1464788481708/ticktock.log/stdout_0.log

2016-06-01 09:45:11.250 INFO 79194 --- [kafka-binder-] log.sink : 06/01/16 09:45:11

2016-06-01 09:45:12.250 INFO 79194 --- [kafka-binder-] log.sink : 06/01/16 09:45:12

2016-06-01 09:45:13.251 INFO 79194 --- [kafka-binder-] log.sink : 06/01/16 09:45:13

25.1 Application properties

Application properties are the properties associated with each application in the stream. When the
application is deployed, the application properties are applied to the application via command line
arguments or environment variables based on the underlying deployment implementation.

Passing application properties when creating a stream

The following stream

dataflow:> stream create --definition "time | log" --name ticktock

can have application properties defined at the time of stream creation.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 50

The shell command app info <appType>:<appName> displays the white-listed application
properties for the application. For more info on the property white listing refer to Section 23.1,
“Whitelisting application properties”

Below are the white listed properties for the app time:

dataflow:> app info source:time

###

Option Name # Description # Default #

 Type #

###

#trigger.time-unit #The TimeUnit to apply to delay#<none>

 #java.util.concurrent.TimeUnit #

#values. # #

 #

#trigger.fixed-delay #Fixed delay for periodic #1

 #java.lang.Integer #

#triggers. # #

 #

#trigger.cron #Cron expression value for the #<none>

 #java.lang.String #

#Cron Trigger. # #

 #

#trigger.initial-delay #Initial delay for periodic #0

 #java.lang.Integer #

#triggers. # #

 #

#trigger.max-messages #Maximum messages per poll, -1 #1

 #java.lang.Long #

#means infinity. # #

 #

#trigger.date-format #Format for the date value. #<none>

 #java.lang.String #

###

Below are the white listed properties for the app log:

dataflow:> app info sink:log

###

Option Name # Description # Default #

 Type #

###

#log.name #The name of the logger to use.#<none>

 #java.lang.String #

#log.level #The level at which to log #<none>

 #org.springframework.integratio#

#messages. #

 #n.handler.LoggingHandler$Level#

#log.expression #A SpEL expression (against the#payload

 #java.lang.String #

#incoming message) to evaluate # #

 #

#as the logged message. # #

 #

###

The application properties for the time and log apps can be specified at the time of stream creation
as follows:

dataflow:> stream create --definition "time --fixed-delay=5 | log --level=WARN" --name ticktock

Note that the properties fixed-delay and level defined above for the apps time and log are the
'short-form' property names provided by the shell completion. These 'short-form' property names are
applicable only for the white-listed properties and in all other cases, only fully qualified property names
should be used.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 51

25.2 Deployment properties

When deploying the stream, properties that control the deployment of the apps into the target platform
are known as deployment properties. For instance, one can specify how many instances need to be
deployed for the specific application defined in the stream using the deployment property called count.

Application properties versus Deployer properties

Starting with version 1.2, the distinction between properties that are meant for the deployed app
and properties that govern how this app is deployed (thanks to some implementation of a spring
cloud deployer) is more explicit. The former should be passed using the syntax app.<app-
name>.<property-name>=<value> while the latter use the deployer.<app-name>.<short-
property-name>=<value>

The following table recaps the difference in behavior between the two.

 Application Properties Deployer Properties

Example Syntax app.filter.expression=foodeployer.filter.count=3

What the application "sees" expression=foo or <some-
prefix>.expression=foo

if expression is one of the
whitelisted properties

Nothing

What the deployer "sees" Nothing spring.cloud.deployer.count=3

The
spring.cloud.deployer

prefix is automatically and
always prepended to the
property name

Typical usage Passing/Overriding application
properties, passing Spring
Cloud Stream binder or
partitionning properties

Setting the number of
instances, memory, disk, etc.

Passing instance count as deployment property

If you would like to have multiple instances of an application in the stream, you can include a deployer
property with the deploy command:

dataflow:> stream deploy --name ticktock --properties "deployer.time.count=3"

Note that count is the reserved property name used by the underlying deployer. Hence, if the
application also has a custom property named count, it is not supported when specified in 'short-
form' form during stream deployment as it could conflict with the instance count deployer property.
Instead, the count as a custom application property can be specified in its fully qualified form (example:
app.foo.bar.count) during stream deployment or it can be specified using 'short-form' or fully
qualified form during the stream creation where it will be considered as an app property.

Important

See Chapter 32, Using Labels in a Stream.

https://github.com/spring-cloud/spring-cloud-deployer/
https://github.com/spring-cloud/spring-cloud-deployer/

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 52

Inline vs file reference properties

When using the Spring Cloud Data Flow Shell, there are two ways to provide deployment properties:
either inline or via a file reference. Those two ways are exclusive and documented below:

Inline properties
use the --properties shell option and list properties as a comma separated list of key=value
pairs, like so:

stream deploy foo

 --properties "deployer.transform.count=2,app.transform.producer.partitionKeyExpression=payload"

Using a file reference
use the --propertiesFile option and point it to a local .properties, .yaml or .yml file (i.e.
that lives in the filesystem of the machine running the shell). Being read as a .properties file,
normal rules apply (ISO 8859-1 encoding, =, <space> or : delimiter, etc.) although we recommend
using = as a key-value pair delimiter for consistency:

stream deploy foo --propertiesFile myprops.properties

where myprops.properties contains:

deployer.transform.count=2

app.transform.producer.partitionKeyExpression=payload

Both the above properties will be passed as deployment properties for the stream foo above.

In case of using YAML as the format for the deployment properties, use the .yaml or .yml file extention
when deploying the stream,

stream deploy foo --propertiesFile myprops.yaml

where myprops.yaml contains:

deployer:

 transform:

 count: 2

app:

 transform:

 producer:

 partitionKeyExpression: payload

Passing application properties when deploying a stream

The application properties can also be specified when deploying a stream. When specified during
deployment, these application properties can either be specified as 'short-form' property names
(applicable for white-listed properties) or fully qualified property names. The application properties
should have the prefix "app.<appName/label>".

For example, the stream

dataflow:> stream create --definition "time | log" --name ticktock

can be deployed with application properties using the 'short-form' property names:

dataflow:>stream deploy ticktock --properties "app.time.fixed-delay=5,app.log.level=ERROR"

When using the app label,

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 53

stream create ticktock --definition "a: time | b: log"

the application properties can be defined as:

stream deploy ticktock --properties "app.a.fixed-delay=4,app.b.level=ERROR"

Passing Spring Cloud Stream properties for the application

Spring Cloud Data Flow sets the required Spring Cloud Stream properties for the
applications inside the stream. Most importantly, the spring.cloud.stream.bindings.<input/
output>.destination is set internally for the apps to bind.

If someone wants to override any of the Spring Cloud Stream properties, they can be set via deployment
properties.

For example, for the below stream

dataflow:> stream create --definition "http | transform --

expression=payload.getValue('hello').toUpperCase() | log" --name ticktock

if there are multiple binders available in the classpath for each of the applications and the binder is
chosen for each deployment then the stream can be deployed with the specific Spring Cloud Stream
properties as:

dataflow:>stream deploy ticktock --

properties "app.time.spring.cloud.stream.bindings.output.binder=kafka,app.transform.spring.cloud.stream.bindings.input.binder=kafka,app.transform.spring.cloud.stream.bindings.output.binder=rabbit,app.log.spring.cloud.stream.bindings.input.binder=rabbit"

Note

Overriding the destination names is not recommended as Spring Cloud Data Flow takes care
of setting this internally.

Passing per-binding producer consumer properties

A Spring Cloud Stream application can have producer and consumer properties set per-binding
basis. While Spring Cloud Data Flow supports specifying short-hand notation for per binding producer
properties such as partitionKeyExpression, partitionKeyExtractorClass as described in
the section called “Passing stream partition properties during stream deployment”, all the supported
Spring Cloud Stream producer/consumer properties can be set as Spring Cloud Stream properties for
the app directly as well.

The consumer properties can be set for the inbound channel name with the prefix app.
[app/label name].spring.cloud.stream.bindings.<channelName>.consumer. and the
producer properties can be set for the outbound channel name with the prefix app.[app/
label name].spring.cloud.stream.bindings.<channelName>.producer.. For example,
the stream

dataflow:> stream create --definition "time | log" --name ticktock

can be deployed with producer/consumer properties as:

dataflow:>stream deploy ticktock --

properties "app.time.spring.cloud.stream.bindings.output.producer.requiredGroups=myGroup,app.time.spring.cloud.stream.bindings.output.producer.headerMode=raw,app.log.spring.cloud.stream.bindings.input.consumer.concurrency=3,app.log.spring.cloud.stream.bindings.input.consumer.maxAttempts=5"

The binder specific producer/consumer properties can also be specified in a similar way.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 54

For instance

dataflow:>stream deploy ticktock --

properties "app.time.spring.cloud.stream.rabbit.bindings.output.producer.autoBindDlq=true,app.log.spring.cloud.stream.rabbit.bindings.input.consumer.transacted=true"

Passing stream partition properties during stream deployment

A common pattern in stream processing is to partition the data as it is streamed. This entails deploying
multiple instances of a message consuming app and using content-based routing so that messages with
a given key (as determined at runtime) are always routed to the same app instance. You can pass the
partition properties during stream deployment to declaratively configure a partitioning strategy to route
each message to a specific consumer instance.

See below for examples of deploying partitioned streams:

app.[app/label name].producer.partitionKeyExtractorClass
The class name of a PartitionKeyExtractorStrategy (default null)

app.[app/label name].producer.partitionKeyExpression
A SpEL expression, evaluated against the message, to determine the partition key; only applies if
partitionKeyExtractorClass is null. If both are null, the app is not partitioned (default null)

app.[app/label name].producer.partitionSelectorClass
The class name of a PartitionSelectorStrategy (default null)

app.[app/label name].producer.partitionSelectorExpression
A SpEL expression, evaluated against the partition key, to determine the partition index to which
the message will be routed. The final partition index will be the return value (an integer) modulo
[nextModule].count. If both the class and expression are null, the underlying binder’s default
PartitionSelectorStrategy will be applied to the key (default null)

In summary, an app is partitioned if its count is > 1 and the previous app has a
partitionKeyExtractorClass or partitionKeyExpression (class takes precedence).
When a partition key is extracted, the partitioned app instance is determined by invoking
the partitionSelectorClass, if present, or the partitionSelectorExpression %

partitionCount, where partitionCount is application count in the case of RabbitMQ, and the
underlying partition count of the topic in the case of Kafka.

If neither a partitionSelectorClass nor a partitionSelectorExpression is present the
result is key.hashCode() % partitionCount.

Passing application content type properties

In a stream definition you can specify that the input or the output of an application need to be converted
to a different type. You can use the inputType and outputType properties to specify the content
type for the incoming data and outgoing data, respectively.

For example, consider the following stream:

dataflow:>stream create tuple --definition "http | filter --inputType=application/x-spring-tuple

 --expression=payload.hasFieldName('hello') | transform --

expression=payload.getValue('hello').toUpperCase()

 | log" --deploy

The http app is expected to send the data in JSON and the filter app receives the JSON data and
processes it as a Spring Tuple. In order to do so, we use the inputType property on the filter app

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 55

to convert the data into the expected Spring Tuple format. The transform application processes the
Tuple data and sends the processed data to the downstream log application.

When sending some data to the http application:

dataflow:>http post --data {"hello":"world","foo":"bar"} --contentType application/json --target http://

localhost:<http-port>

At the log application you see the content as follows:

INFO 18745 --- [transform.tuple-1] log.sink : WORLD

Depending on how applications are chained, the content type conversion can be specified either as
via the --outputType in the upstream app or as an --inputType in the downstream app. For
instance, in the above stream, instead of specifying the --inputType on the 'transform' application to
convert, the option --outputType=application/x-spring-tuple can also be specified on the
'http' application.

For the complete list of message conversion and message converters, please refer to Spring Cloud
Stream 1.2.0.RELEASE#contenttypemanagement[documentation].

Overriding application properties during stream deployment

Application properties that are defined during deployment override the same properties defined during
the stream creation.

For example, the following stream has application properties defined during stream creation:

dataflow:> stream create --definition "time --fixed-delay=5 | log --level=WARN" --name ticktock

To override these application properties, one can specify the new property values during deployment:

dataflow:>stream deploy ticktock --properties "app.time.fixed-delay=4,app.log.level=ERROR"

25.3 Common application properties

In addition to configuration via DSL, Spring Cloud Data Flow provides a mechanism for setting common
properties to all the streaming applications that are launched by it. This can be done by adding properties
prefixed with spring.cloud.dataflow.applicationProperties.stream when starting the
server. When doing so, the server will pass all the properties, without the prefix, to the instances it
launches.

For example, all the launched applications can be configured to use a specific Kafka broker by launching
the Data Flow server with the following options:

--

spring.cloud.dataflow.applicationProperties.stream.spring.cloud.stream.kafka.binder.brokers=192.168.1.100:9092

--

spring.cloud.dataflow.applicationProperties.stream.spring.cloud.stream.kafka.binder.zkNodes=192.168.1.100:2181

This will cause the properties spring.cloud.stream.kafka.binder.brokers and
spring.cloud.stream.kafka.binder.zkNodes to be passed to all the launched applications.

Note

Properties configured using this mechanism have lower precedence than stream deployment
properties. They will be overridden if a property with the same key is specified at stream

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 56

deployment time (e.g. app.http.spring.cloud.stream.kafka.binder.brokers will
override the common property).

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 57

26. Destroying a Stream

You can delete a stream by issuing the stream destroy command from the shell:

dataflow:> stream destroy --name ticktock

If the stream was deployed, it will be undeployed before the stream definition is deleted.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 58

27. Deploying and Undeploying Streams

Often you will want to stop a stream, but retain the name and definition for future use. In that case you
can undeploy the stream by name and issue the deploy command at a later time to restart it.

dataflow:> stream undeploy --name ticktock

dataflow:> stream deploy --name ticktock

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 59

28. Other Source and Sink Application Types

Let’s try something a bit more complicated and swap out the time source for something else. Another
supported source type is http, which accepts data for ingestion over HTTP POSTs. Note that the http
source accepts data on a different port from the Data Flow Server (default 8080). By default the port
is randomly assigned.

To create a stream using an http source, but still using the same log sink, we would change the
original command above to

dataflow:> stream create --definition "http | log" --name myhttpstream --deploy

which will produce the following output from the server

2016-06-01 09:47:58.920 INFO 79016 --- [io-9393-exec-10] o.s.c.d.spi.local.LocalAppDeployer :

 deploying app myhttpstream.log instance 0

 Logs will be in /var/folders/wn/8jxm_tbd1vj28c8vj37n900m0000gn/T/spring-cloud-

dataflow-912434582726479179/myhttpstream-1464788878747/myhttpstream.log

2016-06-01 09:48:06.396 INFO 79016 --- [io-9393-exec-10] o.s.c.d.spi.local.LocalAppDeployer :

 deploying app myhttpstream.http instance 0

 Logs will be in /var/folders/wn/8jxm_tbd1vj28c8vj37n900m0000gn/T/spring-cloud-

dataflow-912434582726479179/myhttpstream-1464788886383/myhttpstream.http

Note that we don’t see any other output this time until we actually post some data (using a shell
command). In order to see the randomly assigned port on which the http source is listening, execute:

dataflow:> runtime apps

You should see that the corresponding http source has a url property containing the host and port
information on which it is listening. You are now ready to post to that url, e.g.:

dataflow:> http post --target http://localhost:1234 --data "hello"

dataflow:> http post --target http://localhost:1234 --data "goodbye"

and the stream will then funnel the data from the http source to the output log implemented by the log sink

2016-06-01 09:50:22.121 INFO 79654 --- [kafka-binder-] log.sink : hello

2016-06-01 09:50:26.810 INFO 79654 --- [kafka-binder-] log.sink : goodbye

Of course, we could also change the sink implementation. You could pipe the output to a file (file), to
hadoop (hdfs) or to any of the other sink apps which are available. You can also define your own apps.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 60

29. Simple Stream Processing

As an example of a simple processing step, we can transform the payload of the HTTP posted data to
upper case using the stream definitions

http | transform --expression=payload.toUpperCase() | log

To create this stream enter the following command in the shell

dataflow:> stream create --definition "http | transform --expression=payload.toUpperCase() | log" --name

 mystream --deploy

Posting some data (using a shell command)

dataflow:> http post --target http://localhost:1234 --data "hello"

Will result in an uppercased 'HELLO' in the log

2016-06-01 09:54:37.749 INFO 80083 --- [kafka-binder-] log.sink : HELLO

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 61

30. Stateful Stream Processing

To demonstrate the data partitioning functionality, let’s deploy the following stream with Kafka as the
binder.

dataflow:>stream create --name words --definition "http --server.port=9900 | splitter --

expression=payload.split(' ') | log"

Created new stream 'words'

dataflow:>stream deploy words --properties

 "app.splitter.producer.partitionKeyExpression=payload,deployer.log.count=2"

Deployed stream 'words'

dataflow:>http post --target http://localhost:9900 --data "How much wood would a woodchuck chuck if a

 woodchuck could chuck wood"

> POST (text/plain;Charset=UTF-8) http://localhost:9900 How much wood would a woodchuck chuck if a

 woodchuck could chuck wood

> 202 ACCEPTED

You’ll see the following in the server logs.

2016-06-05 18:33:24.982 INFO 58039 --- [nio-9393-exec-9] o.s.c.d.spi.local.LocalAppDeployer :

 deploying app words.log instance 0

 Logs will be in /var/folders/c3/ctx7_rns6x30tq7rb76wzqwr0000gp/T/spring-cloud-

dataflow-694182453710731989/words-1465176804970/words.log

2016-06-05 18:33:24.988 INFO 58039 --- [nio-9393-exec-9] o.s.c.d.spi.local.LocalAppDeployer :

 deploying app words.log instance 1

 Logs will be in /var/folders/c3/ctx7_rns6x30tq7rb76wzqwr0000gp/T/spring-cloud-

dataflow-694182453710731989/words-1465176804970/words.log

Review the words.log instance 0 logs:

2016-06-05 18:35:47.047 INFO 58638 --- [kafka-binder-] log.sink : How

2016-06-05 18:35:47.066 INFO 58638 --- [kafka-binder-] log.sink :

 chuck

2016-06-05 18:35:47.066 INFO 58638 --- [kafka-binder-] log.sink :

 chuck

Review the words.log instance 1 logs:

2016-06-05 18:35:47.047 INFO 58639 --- [kafka-binder-] log.sink :

 much

2016-06-05 18:35:47.066 INFO 58639 --- [kafka-binder-] log.sink :

 wood

2016-06-05 18:35:47.066 INFO 58639 --- [kafka-binder-] log.sink :

 would

2016-06-05 18:35:47.066 INFO 58639 --- [kafka-binder-] log.sink : a

2016-06-05 18:35:47.066 INFO 58639 --- [kafka-binder-] log.sink :

 woodchuck

2016-06-05 18:35:47.067 INFO 58639 --- [kafka-binder-] log.sink : if

2016-06-05 18:35:47.067 INFO 58639 --- [kafka-binder-] log.sink : a

2016-06-05 18:35:47.067 INFO 58639 --- [kafka-binder-] log.sink :

 woodchuck

2016-06-05 18:35:47.067 INFO 58639 --- [kafka-binder-] log.sink :

 could

2016-06-05 18:35:47.067 INFO 58639 --- [kafka-binder-] log.sink :

 wood

This shows that payload splits that contain the same word are routed to the same application instance.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 62

31. Tap a Stream

Taps can be created at various producer endpoints in a stream. For a stream like this:

stream create --definition "http | step1: transform --expression=payload.toUpperCase() | step2:

 transform --expression=payload+'!' | log" --name mainstream --deploy

taps can be created at the output of http, step1 and step2.

To create a stream that acts as a 'tap' on another stream requires to specify the source destination
name for the tap stream. The syntax for source destination name is:

`:<streamName>.<label/appName>`

To create a tap at the output of http in the stream above, the source destination name is
mainstream.http To create a tap at the output of the first transform app in the stream above, the
source destination name is mainstream.step1

The tap stream DSL looks like this:

stream create --definition ":mainstream.http > counter" --name tap_at_http --deploy

stream create --definition ":mainstream.step1 > jdbc" --name tap_at_step1_transformer --deploy

Note the colon (:) prefix before the destination names. The colon allows the parser to recognize this as
a destination name instead of an app name.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 63

32. Using Labels in a Stream

When a stream is comprised of multiple apps with the same name, they must be qualified with labels:

stream create --definition "http | firstLabel: transform --expression=payload.toUpperCase() |

 secondLabel: transform --expression=payload+'!' | log" --name myStreamWithLabels --deploy

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 64

33. Explicit Broker Destinations in a Stream

One can connect to a specific destination name located in the broker (Rabbit, Kafka etc.,) either at the
source or at the sink position.

The following stream has the destination name at the source position:

stream create --definition ":myDestination > log" --name ingest_from_broker --deploy

This stream receives messages from the destination myDestination located at the broker and
connects it to the log app.

The following stream has the destination name at the sink position:

stream create --definition "http > :myDestination" --name ingest_to_broker --deploy

This stream sends the messages from the http app to the destination myDestination located at
the broker.

From the above streams, notice that the http and log apps are interacting with each other via the
broker (through the destination myDestination) rather than having a pipe directly between http and
log within a single stream.

It is also possible to connect two different destinations (source and sink positions) at the broker in
a stream.

stream create --definition ":destination1 > :destination2" --name bridge_destinations --deploy

In the above stream, both the destinations (destination1 and destination2) are located in the
broker. The messages flow from the source destination to the sink destination via a bridge app that
connects them.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 65

34. Directed Graphs in a Stream

If directed graphs are needed instead of the simple linear streams described above, two features are
relevant.

First, named destinations may be used as a way to combine the output from multiple streams or for
multiple consumers to share the output from a single stream. This can be done using the DSL syntax
http > :mydestination or :mydestination > log.

Second, you may need to determine the output channel of a stream based on some information that is
only known at runtime. In that case, a router may be used in the sink position of a stream definition. For
more information, refer to the Router Sink starter’s README.

https://github.com/spring-cloud-stream-app-starters/router/tree/master/spring-cloud-starter-stream-sink-router

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 66

35. Stream applications with multiple binder
configurations

In some cases, a stream can have its applications bound to multiple spring cloud stream binders when
they are required to connect to different messaging middleware configurations. In those cases, it is
important to make sure the applications are configured appropriately with their binder configurations.
For example, let’s consider the following stream:

http | transform --expression=payload.toUpperCase() | log

and in this stream, each application connects to messaging middleware in the following way:

Http source sends events to RabbitMQ (rabbit1)

Transform processor receives events from RabbitMQ (rabbit1) and sends the processed events into Kafka

 (kafka1)

Log sink receives events from Kafka (kafka1)

Here, rabbit1 and kafka1 are the binder names given in the spring cloud stream application
properties. Based on this setup, the applications will have the following binder(s) in their classpath with
the appropriate configuration:

Http - Rabbit binder

Transform - Both Kafka and Rabbit binders

Log - Kafka binder

The spring-cloud-stream binder configuration properties can be set within the applications themselves.
If not, they can be passed via deployment properties when the stream is deployed.

For example,

dataflow:>stream create --definition "http | transform --expression=payload.toUpperCase() | log" --name

 mystream

dataflow:>stream deploy mystream --properties

 "app.http.spring.cloud.stream.bindings.output.binder=rabbit1,app.transform.spring.cloud.stream.bindings.input.binder=rabbit1,

app.transform.spring.cloud.stream.bindings.output.binder=kafka1,app.log.spring.cloud.stream.bindings.input.binder=kafka1"

One can override any of the binder configuration properties by specifying them via deployment
properties.

Part VI. Tasks
This section goes into more detail about how you can work with Spring Cloud Task. It covers topics
such as creating and running task applications.

If you’re just starting out with Spring Cloud Data Flow, you should probably read the Getting Started
guide before diving into this section.

http://cloud.spring.io/spring-cloud-task/

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 68

36. Introducing Spring Cloud Task

A task executes a process on demand. In this case a task is a Spring Boot application that is annotated
with @EnableTask. Hence a user launches a task that performs a certain process, and once complete
the task ends. An example of a task would be a boot application that exports data from a JDBC repository
to an HDFS instance. Tasks record the start time and the end time as well as the boot exit code in a
relational database. The task implementation is based on the Spring Cloud Task project.

http://projects.spring.io/spring-boot/
http://cloud.spring.io/spring-cloud-task/

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 69

37. The Lifecycle of a task
Before we dive deeper into the details of creating Tasks, we need to understand the typical lifecycle for
tasks in the context of Spring Cloud Data Flow:

1. Register a Task App

2. Create a Task Definition

3. Launch a Task

4. Task Execution

5. Destroy a Task Definition

37.1 Creating a custom Task Application

While Spring Cloud Task does provide a number of out of the box applications (via the spring-cloud-
task-app-starters), most task applications will be custom developed. In order to create a custom task
application:

1. Create a new project via Spring Initializer via either the website or your IDE making sure to select
the following starters:

a. Cloud Task - This dependency is the spring-cloud-starter-task.

b. JDBC - This is the dependency for the spring-jdbc starter.

2. Within your new project, create a new class that will serve as your main class:

@EnableTask

@SpringBootApplication

public class MyTask {

 public static void main(String[] args) {

 SpringApplication.run(MyTask.class, args);

 }

}

3. With this, you’ll need one or more CommandLineRunner or ApplicationRunner within your
application. You can either implement your own or use the ones provided by Spring Boot (there is
one for running batch jobs for example).

4. Packaging your application up via Spring Boot into an über jar is done via the standard Boot
conventions.

5. The packaged application can be registered and deployed as noted below.

37.2 Registering a Task Application

Register a Task App with the App Registry using the Spring Cloud Data Flow Shell app register
command. You must provide a unique name and a URI that can be resolved to the app artifact. For the
type, specify "task". Here are a few examples:

dataflow:>app register --name task1 --type task --uri maven://com.example:mytask:1.0.2

dataflow:>app register --name task2 --type task --uri file:///Users/example/mytask-1.0.2.jar

dataflow:>app register --name task3 --type task --uri http://example.com/mytask-1.0.2.jar

https://github.com/spring-cloud-task-app-starters
https://github.com/spring-cloud-task-app-starters
http://start.spring.io

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 70

When providing a URI with the maven scheme, the format should conform to the following:

maven://<groupId>:<artifactId>[:<extension>[:<classifier>]]:<version>

If you would like to register multiple apps at one time, you can store them in a properties file where
the keys are formatted as <type>.<name> and the values are the URIs. For example, this would be
a valid properties file:

task.foo=file:///tmp/foo.jar

task.bar=file:///tmp/bar.jar

Then use the app import command and provide the location of the properties file via --uri:

app import --uri file:///tmp/task-apps.properties

For convenience, we have the static files with application-URIs (for both maven and docker) available
for all the out-of-the-box Task app-starters. You can point to this file and import all the application-URIs
in bulk. Otherwise, as explained in previous paragraphs, you can register them individually or have your
own custom property file with only the required application-URIs in it. It is recommended, however, to
have a "focused" list of desired application-URIs in a custom property file.

List of available static property files:

Artifact Type Stable Release SNAPSHOT Release

Maven http://bit.ly/Belmont-GA-task-
applications-maven

http://bit.ly/Belmont-BUILD-
SNAPSHOT-task-applications-
maven

Docker http://bit.ly/Belmont-GA-task-
applications-docker

http://bit.ly/Belmont-BUILD-
SNAPSHOT-task-applications-
docker

For example, if you would like to register all out-of-the-box task applications in bulk, you can with the
following command.

dataflow:>app import --uri http://bit.ly/Belmont-GA-task-applications-maven

You can also pass the --local option (which is TRUE by default) to indicate whether the properties
file location should be resolved within the shell process itself. If the location should be resolved from the
Data Flow Server process, specify --local false.

When using either app register or app import, if a task app is already registered with the provided
name, it will not be overridden by default. If you would like to override the pre-existing task app, then
include the --force option.

Note

In some cases the Resource is resolved on the server side, whereas in others the URI will be
passed to a runtime container instance where it is resolved. Consult the specific documentation
of each Data Flow Server for more detail.

37.3 Creating a Task

Create a Task Definition from a Task App by providing a definition name as well as properties that
apply to the task execution. Creating a task definition can be done via the restful API or the shell. To

http://bit.ly/Belmont-GA-task-applications-maven
http://bit.ly/Belmont-GA-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-maven
http://bit.ly/Belmont-GA-task-applications-docker
http://bit.ly/Belmont-GA-task-applications-docker
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-docker
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-docker
http://bit.ly/Belmont-BUILD-SNAPSHOT-task-applications-docker

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 71

create a task definition using the shell, use the task create command to create the task definition.
For example:

dataflow:>task create mytask --definition "timestamp --format=\"yyyy\""

 Created new task 'mytask'

A listing of the current task definitions can be obtained via the restful API or the shell. To get the task
definition list using the shell, use the task list command.

37.4 Launching a Task

An adhoc task can be launched via the restful API or via the shell. To launch an ad-hoc task via the
shell use the task launch command. For example:

dataflow:>task launch mytask

 Launched task 'mytask'

When a task is launched, any properties that need to be passed as the command line arguments to the
task application can be set when launching the task as follows:

dataflow:>task launch mytask --arguments "--server.port=8080,--foo=bar"

Additional properties meant for a TaskLauncher itself can be passed in using a --properties option.
Format of this option is a comma delimited string of properties prefixed with app.<task definition
name>.<property>. Properties are passed to TaskLauncher as application properties and it is up
to an implementation to choose how those are passed into an actual task application. If the property is
prefixed with deployer instead of app it is passed to TaskLauncher as a deployment property and
its meaning may be TaskLauncher implementation specific.

dataflow:>task launch mytask --properties "deployer.timestamp.foo1=bar1,app.timestamp.foo2=bar2"

Common application properties

In addition to configuration via DSL, Spring Cloud Data Flow provides a mechanism for setting
common properties to all the task applications that are launched by it. This can be done by
adding properties prefixed with spring.cloud.dataflow.applicationProperties.task when
starting the server. When doing so, the server will pass all the properties, without the prefix, to the
instances it launches.

For example, all the launched applications can be configured to use the properties foo and fizz by
launching the Data Flow server with the following options:

--spring.cloud.dataflow.applicationProperties.task.foo=bar

--spring.cloud.dataflow.applicationProperties.task.fizz=bar2

This will cause the properties foo=bar and fizz=bar2 to be passed to all the launched applications.

Note

Properties configured using this mechanism have lower precedence than task deployment
properties. They will be overridden if a property with the same key is specified at task launch
time (e.g. app.trigger.fizz will override the common property).

37.5 Reviewing Task Executions

Once the task is launched the state of the task is stored in a relational DB. The state includes:

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 72

• Task Name

• Start Time

• End Time

• Exit Code

• Exit Message

• Last Updated Time

• Parameters

A user can check the status of their task executions via the restful API or by the shell. To display the
latest task executions via the shell use the task execution list command.

To get a list of task executions for just one task definition, add --name and the task definition name, for
example task execution list --name foo. To retrieve full details for a task execution use the
task display command with the id of the task execution, for example task display --id 549.

37.6 Destroying a Task

Destroying a Task Definition will remove the definition from the definition repository. This can be done
via the restful API or via the shell. To destroy a task via the shell use the task destroy command.
For example:

dataflow:>task destroy mytask

 Destroyed task 'mytask'

The task execution information for previously launched tasks for the definition will remain in the task
repository.

Note

This will not stop any currently executing tasks for this definition, instead it just removes the
task definition from the database.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 73

38. Task Repository

Out of the box Spring Cloud Data Flow offers an embedded instance of the H2 database. The H2 is
good for development purposes but is not recommended for production use.

38.1 Configuring the Task Execution Repository

To add a driver for the database that will store the Task Execution information, a dependency for the
driver will need to be added to a maven pom file and the Spring Cloud Data Flow will need to be rebuilt.
Since Spring Cloud Data Flow is comprised of an SPI for each environment it supports, please review
the SPI’s documentation on which POM should be updated to add the dependency and how to build.
This document will cover how to setup the dependency for local SPI.

Local

1. Open the spring-cloud-dataflow-server-local/pom.xml in your IDE.

2. In the dependencies section add the dependency for the database driver required. In the sample
below postgresql has been chosen.

<dependencies>

...

 <dependency>

 <groupId>org.postgresql</groupId>

 <artifactId>postgresql</artifactId>

 </dependency>

...

</dependencies>

3. Save the changed pom.xml

4. Build the application as described here: Building Spring Cloud Data Flow

Task Application Repository

When launching a task application be sure that the database driver that is being used by Spring Cloud
Data Flow is also a dependency on the task application. For example if your Spring Cloud Data Flow is
set to use Postgresql, be sure that the task application also has Postgresql as a dependency.

Note

When executing tasks externally (i.e. command line) and you wish for Spring Cloud Data Flow
to show the TaskExecutions in its UI, be sure that common datasource settings are shared
among the both. By default Spring Cloud Task will use a local H2 instance and the execution
will not be recorded to the database used by Spring Cloud Data Flow.

38.2 Datasource

To configure the datasource Add the following properties to the dataflow-server.yml or via environment
variables:

a. spring.datasource.url

b. spring.datasource.username

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 74

c. spring.datasource.password

d. spring.datasource.driver-class-name

For example adding postgres would look something like this:

• Environment variables:

export spring_datasource_url=jdbc:postgresql://localhost:5432/mydb

export spring_datasource_username=myuser

export spring_datasource_password=mypass

export spring_datasource_driver-class-name="org.postgresql.Driver"

• dataflow-server.yml

spring:

 datasource:

 url: jdbc:postgresql://localhost:5432/mydb

 username: myuser

 password: mypass

 driver-class-name:org.postgresql.Driver

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 75

39. Subscribing to Task/Batch Events

You can also tap into various task/batch events when the task is launched. If the task is enabled to
generate task and/or batch events (with the additional dependencies spring-cloud-task-stream
and spring-cloud-stream-binder-kafka, in the case of Kafka as the binder), those events are
published during the task lifecycle. By default, the destination names for those published events on
the broker (rabbit, kafka etc.,) are the event names themselves (for instance: task-events, job-
execution-events etc.,).

dataflow:>task create myTask --definition “myBatchJob"

dataflow:>task launch myTask

dataflow:>stream create task-event-subscriber1 --definition ":task-events > log" --deploy

You can control the destination name for those events by specifying explicit names when launching the
task such as:

dataflow:>task launch myTask --properties "spring.cloud.stream.bindings.task-

events.destination=myTaskEvents"

dataflow:>stream create task-event-subscriber2 --definition ":myTaskEvents > log" --deploy

The default Task/Batch event and destination names on the broker are enumerated below:

Table 39.1. Task/Batch Event Destinations

Event Destination

Task events task-events

Job Execution events job-execution-events

Step Execution events step-execution-events

Item Read events item-read-events

Item Process events item-process-events

Item Write events item-write-events

Skip events skip-events

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 76

40. Launching Tasks from a Stream

You can launch a task from a stream by using one of the available task-launcher sinks. Currently
the platforms supported via the task-launcher sinks are local, Cloud Foundry, and Yarn.

Note

task-launcher-local is meant for development purposes only.

A task-launcher sink expects a message containing a TaskLaunchRequest object in its payload.
From the TaskLaunchRequest object the task-launcher will obtain the URI of the artifact to be
launched as well as the environment properties, command line arguments, deployment properties and
application name to be used by the task.

The task-launcher-local can be added to the available sinks by executing the app register command as
follows (for the Rabbit Binder):

app register --name task-launcher-local --type sink --uri maven://

org.springframework.cloud.stream.app:task-launcher-local-sink-rabbit:jar:1.2.0.RELEASE

In the case of a maven based task that is to be launched, the task-launcher

application is responsible for downloading the artifact. You must configure the task-

launcher with the appropriate configuration of Maven Properties such as --maven.remote-
repositories.repo1.url=http://repo.spring.io/libs-milestone" to resolve artifacts,
in this case against a milestone repo. Note that this repo can be different than the one used to register
the task-launcher application itself.

40.1 TriggerTask

One way to launch a task using the task-launcher is to use the triggertask source. The
triggertask source will emit a message with a TaskLaunchRequest object containing the required
launch information. The triggertask can be added to the available sources by executing the app
register command as follows (for the Rabbit Binder):

app register --type source --name triggertask --uri maven://

org.springframework.cloud.stream.app:triggertask-source-rabbit:1.2.0.RELEASE

An example of this would be to launch the timestamp task once every 60 seconds, the stream to
implement this would look like:

stream create foo --definition "triggertask --triggertask.uri=maven://

org.springframework.cloud.task.app:timestamp-task:jar:1.2.0.RELEASE --trigger.fixed-

delay=60 --triggertask.environment-properties=spring.datasource.url=jdbc:h2:tcp://

localhost:19092/mem:dataflow,spring.datasource.username=sa | task-launcher-local --maven.remote-

repositories.repo1.url=http://repo.spring.io/libs-release" --deploy

If you execute runtime apps you can find the log file for the task launcher sink. Tailing that file you
can find the log file for the launched tasks. The setting of triggertask.environment-properties
is so that all the task executions can be collected in the same H2 database used in the local version
of the Data Flow Server. You can then see the list of task executions using the shell command task
execution list

dataflow:>task execution list

###

Task Name #ID# Start Time # End Time #Exit Code#

###

https://github.com/spring-cloud-stream-app-starters/tasklauncher-local
https://github.com/spring-cloud-stream-app-starters/tasklauncher-cloudfoundry
https://github.com/spring-cloud-stream-app-starters/tasklauncher-yarn
https://github.com/spring-cloud/spring-cloud-task/blob/master/spring-cloud-task-stream/src/main/java/org/springframework/cloud/task/launcher/TaskLaunchRequest.java
https://github.com/spring-cloud-stream-app-starters/tasklauncher-local/blob/v1.2.0.RELEASE/spring-cloud-starter-stream-sink-task-launcher-local/README.adoc
https://github.com/spring-cloud/spring-cloud-deployer/blob/master/spring-cloud-deployer-resource-maven/src/main/java/org/springframework/cloud/deployer/resource/maven/MavenProperties.java
https://github.com/spring-cloud-stream-app-starters/triggertask/blob/v1.2.0.RELEASE/spring-cloud-starter-stream-source-triggertask/README.adoc

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 77

#timestamp-task_26176#4 #Tue May 02 12:13:49 EDT 2017#Tue May 02 12:13:49 EDT 2017#0 #

#timestamp-task_32996#3 #Tue May 02 12:12:49 EDT 2017#Tue May 02 12:12:49 EDT 2017#0 #

#timestamp-task_58971#2 #Tue May 02 12:11:50 EDT 2017#Tue May 02 12:11:50 EDT 2017#0 #

#timestamp-task_13467#1 #Tue May 02 12:10:50 EDT 2017#Tue May 02 12:10:50 EDT 2017#0 #

###

40.2 TaskLaunchRequest-transform

Another option to start a task using the task-launcher would be to create a stream using the
Tasklaunchrequest-transform processor to translate a message payload to a TaskLaunchRequest.

The tasklaunchrequest-transform can be added to the available processors by executing the
app register command as follows (for the Rabbit Binder):

app register --type processor --name tasklaunchrequest-transform --uri maven://

org.springframework.cloud.stream.app:tasklaunchrequest-transform-processor-rabbit:1.2.0.RELEASE

For example:

stream create task-stream --definition "http --port=9000 | tasklaunchrequest-transform --uri=maven://

org.springframework.cloud.task.app:timestamp-task:jar:1.2.0.RELEASE | task-launcher-local --

maven.remote-repositories.repo1.url=http://repo.spring.io/libs-release"

https://github.com/spring-cloud-stream-app-starters/tasklaunchrequest-transform

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 78

41. Composed Tasks
Spring Cloud Data Flow allows a user to create a directed graph where each node of the graph is a task
application. This is done by using the DSL for composed tasks. A composed task can be created via
the RESTful API, the Spring Cloud Data Flow Shell, or the Spring Cloud Data Flow UI.

41.1 Configuring the Composed Task Runner in Spring Cloud
Data Flow

Composed tasks are executed via a task application called the Composed Task Runner.

Registering the Composed Task Runner application

Out of the box the Composed Task Runner application is not registered with Spring Cloud Data Flow.
So, to launch composed tasks we must first register the Composed Task Runner as an application with
Spring Cloud Data Flow as follows:

app register --name composed-task-runner --type task --uri maven://

org.springframework.cloud.task.app:composedtaskrunner-task:<DESIRED_VERSION>

You can also configure Spring Cloud Data Flow to use a different task
definition name for the composed task runner. This can be done by setting the
spring.cloud.dataflow.task.composedTaskRunnerName property to the name of your choice.
You can then register the composed task runner application with the name you set using that property.

Configuring the Composed Task Runner application

The Composed Task Runner application has a dataflow.server.uri property that is used for
validation and for launching child tasks. This defaults to localhost:9393. If you run a distributed
Spring Cloud Data Flow server, like you would do if you deploy the server on Cloud Foundry, YARN
or Kubernetes, then you need to provide the URI that can be used to access the server. You can
either provide this dataflow.server.uri property for the Composed Task Runner application when
launching a composed task, or you can provide a spring.cloud.dataflow.server.uri property
for the Spring Cloud Data Flow server when it is started. For the latter case the dataflow.server.uri
Composed Task Runner application property will be automatically set when a composed task is
launched.

41.2 Creating, Launching, and Destroying a Composed Task

Creating a Composed Task

The DSL for the composed tasks is used when creating a task definition via the task create command.
For example:

dataflow:> app register --name timestamp --type task --uri maven://

org.springframework.cloud.task.app:timestamp-task:<DESIRED_VERSION>

dataflow:> app register --name mytaskapp --type task --uri file:///home/tasks/mytask.jar

dataflow:> task create my-composed-task --definition "mytaskapp && timestamp"

dataflow:> task launch my-composed-task

In the example above we assume that the applications to be used by our composed task have not been
registered yet. So the first two steps we register two task applications. We then create our composed
task definition by using the task create command. The composed task DSL in the example above will,
when launched, execute mytaskapp and then execute the timestamp application.

https://github.com/spring-cloud-task-app-starters/composed-task-runner
http://localhost:9393

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 79

But before we launch the my-composed-task definition, we can view what Spring Cloud Data Flow
generated for us. This can be done by executing the task list command.

dataflow:>task list

###

Task Name # Task Definition

###

#my-composed-task #mytaskapp && timestamp

#my-composed-task-mytaskapp#mytaskapp

#my-composed-task-timestamp#timestamp

Spring Cloud Data Flow created three task definitions, one for each of the applications that comprises our
composed task (my-composed-task-mytaskapp and my-composed-task-timestamp) as well
as the composed task (my-composed-task) definition. We also see that each of the generated names
for the child tasks is comprised of the name of the composed task and the name of the application
separated by a dash -. i.e. my-composed-task - mytaskapp.

Task Application Parameters

The task applications that comprise the composed task definition can also contain parameters. For
example:

dataflow:> task create my-composed-task --definition "mytaskapp --displayMessage=hello && timestamp --

format=YYYY"

Launching a Composed Task

Launching a composed task is done the same way as launching a stand-alone task. i.e.

task launch my-composed-task

Once the task is launched and assuming all the tasks complete successfully you will see three task
executions when executing a task execution list. For example:

dataflow:>task execution list

##

Task Name #ID # Start Time # End Time #Exit Code#

##

#my-composed-task-timestamp#713#Wed Apr 12 16:43:07 EDT 2017#Wed Apr 12 16:43:07 EDT 2017#0 #

#my-composed-task-mytaskapp#712#Wed Apr 12 16:42:57 EDT 2017#Wed Apr 12 16:42:57 EDT 2017#0 #

#my-composed-task #711#Wed Apr 12 16:42:55 EDT 2017#Wed Apr 12 16:43:15 EDT 2017#0 #

##

In the example above we see that my-compose-task launched and it also launched the other tasks in
sequential order and all of them executed successfully with "Exit Code" as 0.

Exit Statuses

The following list shows how the Exit Status will be set for each step (task) contained in the composed
task following each step execution.

• If the TaskExecution has an ExitMessage that will be used as the ExitStatus

• If no ExitMessage is present and the ExitCode is set to zero then the ExitStatus for the step
will be COMPLETED.

• If no ExitMessage is present and the ExitCode is set to any non zero number then the
ExitStatus for the step will be FAILED.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 80

Destroying a Composed Task

The same command used to destroy a stand-alone task is the same as destroying a composed task.
The only difference is that destroying a composed task will also destroy the child tasks associated with
it. For example

dataflow:>task list

###

Task Name # Task Definition

###

#my-composed-task #mytaskapp && timestamp

#my-composed-task-mytaskapp#mytaskapp

#my-composed-task-timestamp#timestamp

...

dataflow:>task destroy my-composed-task

dataflow:>task list

###

Task Name # Task Definition

###

###

Stopping a Composed Task

In cases where a composed task execution needs to be stopped. This can be done via the:

• RESTful API

• Spring Cloud Data Flow Dashboard by selecting the Job’s tab and then clicking the stop button by
the job execution that needs to be stopped.

The composed task run will be stopped when the currently running child task completes. The step
associated with the child task that was running at the time that the composed task was stopped will be
marked as STOPPED as well as the composed task job execution.

Restarting a Composed Task

In cases where a composed task fails during execution and the status of the composed task is FAILED
then the task can be restarted. This can be done via the:

• RESTful API

• Shell by launching the task using the same parameters

• Spring Cloud Data Flow Dashboard by selecting the Job’s tab and then clicking the restart button by
the job execution that needs to be restarted.

Note

Restarting a Composed Task job that has been stopped (via the Spring Cloud Data Flow
Dashboard or RESTful API), will relaunch the STOPPED child task, and then launch the
remaining (unlaunched) child tasks in the specified order.

41.3 Composed Task DSL

Conditional Execution

Conditional execution is expressed using a double ampersand symbol &&. This allows each task in the
sequence to be launched only if the previous task successfully completed. For example:

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 81

task create my-composed-task --definition "foo && bar"

When the composed task my-composed-task is launched, it will launch the task foo and if it completes
successfully, then the task bar will be launched. If the foo task fails, then the task bar will not launch.

You can also use the Spring Cloud Data Flow Dashboard to create your conditional execution. By using
the designer to drag and drop applications that are required, and connecting them together to create
your directed graph. For example:

Figure 41.1. Conditional Execution

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 82

The diagram above is a screen capture of the directed graph as it being created using the Spring
Cloud Data Flow Dashboard. We see that are 4 components in the diagram that comprise a conditional
execution:

• Start icon - All directed graphs start from this symbol. There will only be one.

• Task icon - Represents each task in the directed graph.

• End icon - Represents the termination of a directed graph.

• Solid line arrow - Represents the flow conditional execution flow between:

• Two applications

• The start control node and an application

• An application and the end control node

Note

You can view a diagram of your directed graph by clicking the detail button next to the composed
task definition on the definitions tab.

Transitional Execution

The DSL supports fine grained control over the transitions taken during the execution of the directed
graph. Transitions are specified by providing a condition for equality based on the exit status of the
previous task. A task transition is represented by the following symbol ->.

Basic Transition

A basic transition would look like the following:

task create my-transition-composed-task --definition "foo 'FAILED' -> bar 'COMPLETED' -> baz"

In the example above foo would launch and if it had an exit status of FAILED, then the bar task would
launch. If the exit status of foo was COMPLETED then baz would launch. All other statuses returned by
foo will have no effect and task would terminate normally.

Using the Spring Cloud Data Flow Dashboard to create the same "basic transition" would look like:

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 83

Figure 41.2. Basic Transition

The diagram above is a screen capture of the directed graph as it being created using the Spring Cloud
Data Flow Dashboard. Notice that there are 2 different types of connectors:

• Dashed line - Is the line used to represent transitions from the application to one of the possible
destination applications.

• Solid line - Used to connect applications in a conditional execution or a connection between the
application and a control node (end, start).

When creating a transition, link the application to each of possible destination using the connector. Once
complete go to each connection and select it by clicking it. A bolt icon should appear, click that icon and
enter the exit status required for that connector. The solid line for that connector will turn to a dashed line.

Transition With a Wildcard

Wildcards are supported for transitions by the DSL for example:

task create my-transition-composed-task --definition "foo 'FAILED' -> bar '*' -> baz"

In the example above foo would launch and if it had an exit status of FAILED, then the bar task would
launch. Any exit status of foo other than FAILED then baz would launch.

Using the Spring Cloud Data Flow Dashboard to create the same "transition with wildcard" would look
like:

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 84

Figure 41.3. Basic Transition With Wildcard

Transition With a Following Conditional Execution

A transition can be followed by a conditional execution so long as the wildcard is not used. For example:

task create my-transition-conditional-execution-task --definition "foo 'FAILED' -> bar 'UNKNOWN' -> baz

 && qux && quux"

In the example above foo would launch and if it had an exit status of FAILED, then the bar task would
launch. If foo had an exit status of UNKNOWN then baz would launch. Any exit status of foo other than
FAILED or UNKNOWN then qux would launch and upon successful completion quux would launch.

Using the Spring Cloud Data Flow Dashboard to create the same "transition with conditional execution"
would look like:

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 85

Figure 41.4. Transition With Conditional Execution

Note

In this diagram we see the dashed line (transition) connecting the foo application to the target
applications, but a solid line connecting the conditional executions between foo, qux, and
quux.

Split Execution

Splits allow for multiple tasks within a composed task to be run in parallel. It is denoted by using angle
brackets <> to group tasks and flows that are to be run in parallel. These tasks and flows are separated
by the double pipe || . For example:

task create my-split-task --definition "<foo || bar || baz>"

The example above will launch tasks foo, bar and baz in parallel.

Using the Spring Cloud Data Flow Dashboard to create the same "split execution" would look like:

Figure 41.5. Split

With the task DSL a user may also execute multiple split groups in succession. For example:

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 86

task create my-split-task --definition "<foo || bar || baz> && <qux || quux>"

In the example above tasks foo, bar and baz will be launched in parallel, once they all complete then
tasks qux, quux will be launched in parallel. Once they complete the composed task will end. However
if foo, bar, or baz fails then, the split containing qux and quux will not launch.

Using the Spring Cloud Data Flow Dashboard to create the same "split with multiple groups" would
look like:

Figure 41.6. Split as a part of a conditional execution

Notice that there is a SYNC control node that is by the designer when connecting two consecutive splits.

Split Containing Conditional Execution

A split can also have a conditional execution within the angle brackets. For example:

task create my-split-task --definition "<foo && bar || baz>"

In the example above we see that foo and baz will be launched in parallel, however bar will not launch
until foo completes successfully.

Using the Spring Cloud Data Flow Dashboard to create the same "split containing conditional execution"
would look like:

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 87

Figure 41.7. Split with conditional execution

Part VII. Dashboard
This section describe how to use the Dashboard of Spring Cloud Data Flow.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 89

42. Introduction

Spring Cloud Data Flow provides a browser-based GUI and it currently includes 6 tabs:

• Apps Lists all available applications and provides the control to register/unregister them

• Runtime Provides the Data Flow cluster view with the list of all running applications

• Streams List, create, deploy, and destroy Stream Definitions

• Tasks List, create, launch and destroy Task Definitions

• Jobs Perform Batch Job related functions

• Analytics Create data visualizations for the various analytics applications

Upon starting Spring Cloud Data Flow, the Dashboard is available at:

http://<host>:<port>/dashboard

For example: http://localhost:9393/dashboard

If you have enabled https, then it will be located at https://localhost:9393/dashboard. If you
have enabled security, a login form is available at http://localhost:9393/dashboard/#/login.

Note

The default Dashboard server port is 9393

Figure 42.1. The Spring Cloud Data Flow Dashboard

http://localhost:9393/dashboard

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 90

43. Apps

The Apps section of the Dashboard lists all the available applications and provides the control to register/
unregister them (if applicable). It is possible to import a number of applications at once using the Bulk
Import Applications action.

Figure 43.1. List of Available Applications

43.1 Bulk Import of Applications

The bulk import applications page provides numerous options for defining and importing a set of
applications in one go. For bulk import the application definitions are expected to be expressed in a
properties style:

<type>.<name> = <coordinates>

For example:

task.timestamp=maven://org.springframework.cloud.task.app:timestamp-

task:1.2.0.RELEASE

processor.transform=maven://org.springframework.cloud.stream.app:transform-

processor-rabbit:1.2.0.RELEASE

At the top of the bulk import page an Uri can be specified that points to a properties file stored
elsewhere, it should contain properties formatted as above. Alternatively, using the textbox labeled Apps
as Properties it is possible to directly list each property string. Finally, if the properties are stored in a
local file the Select Properties File option will open a local file browser to select the file. After setting
your definitions via one of these routes, click Import.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 91

At the bottom of the page there are quick links to the property files for common groups of stream apps
and task apps. If those meet your needs, simply select your appropriate variant (rabbit, kafka, docker,
etc) and click the Import action on those lines to immediately import all those applications.

Figure 43.2. Bulk Import Applications

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 92

44. Runtime

The Runtime section of the Dashboard application shows the Spring Cloud Data Flow cluster view with
the list of all running applications. For each runtime app the state of the deployment and the number
of deployed instances is shown. A list of the used deployment properties is available by clicking on the
app id.

Figure 44.1. List of Running Applications

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 93

45. Streams

The Streams section of the Dashboard provides the Definitions tab that provides a listing of Stream
definitions. There you have the option to deploy or undeploy those stream definitions. Additionally
you can remove the definition by clicking on destroy. Each row includes an arrow on the left, which
can be clicked to see a visual representation of the definition. Hovering over the boxes in the visual
representation will show more details about the apps including any options passed to them. In this
screenshot the timer stream has been expanded to show the visual representation:

Figure 45.1. List of Stream Definitions

If the details button is clicked the view will change to show a visual representation of that stream and
also any related streams. In the above example, if clicking details for the timer stream, the view will
change to the one shown below which clearly shows the relationship between the three streams (two
of them are tapping into the timer stream).

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 94

Figure 45.2. Stream Details Page

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 95

46. Create Stream

The Create Stream section of the Dashboard includes the Spring Flo designer tab that provides the
canvas application, offering a interactive graphical interface for creating data pipelines.

In this tab, you can:

• Create, manage, and visualize stream pipelines using DSL, a graphical canvas, or both

• Write pipelines via DSL with content-assist and auto-complete

• Use auto-adjustment and grid-layout capabilities in the GUI for simpler and interactive organization
of pipelines

Watch this screencast that highlights some of the "Flo for Spring Cloud Data Flow" capabilities. Spring
Flo wiki includes more detailed content on core Flo capabilities.

Figure 46.1. Flo for Spring Cloud Data Flow

https://github.com/spring-projects/spring-flo
https://www.youtube.com/watch?v=78CgV46OstI
https://github.com/spring-projects/spring-flo/wiki

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 96

47. Tasks
The Tasks section of the Dashboard currently has three tabs:

• Apps

• Definitions

• Executions

47.1 Apps

Apps encapsulate a unit of work into a reusable component. Within the Data Flow runtime environment
Apps allow users to create definitions for Streams as well as Tasks. Consequently, the Apps tab within
the Tasks section allows users to create Task definitions.

Note

You will also use this tab to create Batch Jobs.

Figure 47.1. List of Task Apps

On this screen you can perform the following actions:

• View details such as the task app options.

• Create a Task Definition from the respective App.

Create a Task Definition from a selected Task App

On this screen you can create a new Task Definition. As a minimum you must provide a name for
the new definition. You will also have the option to specify various properties that are used during the
deployment of the app.

Note

Each parameter is only included if the Include checkbox is selected.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 97

View Task App Details

On this page you can view the details of a selected task app, including the list of available options
(properties) for that app.

47.2 Definitions

This page lists the Data Flow Task definitions and provides actions to launch or destroy those tasks.
It also provides a shortcut operation to define one or more tasks using simple textual input, indicated
by the bulk define tasks button.

Figure 47.2. List of Task Definitions

Creating Task Definitions using the bulk define interface

After pressing bulk define tasks, the following screen will be shown.

Figure 47.3. Bulk Define Tasks

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 98

It includes a textbox where one or more definitions can be entered and then various actions performed
on those definitions. The required input text format for task definitions is very basic, each line should
be of the form:

<task-definition-name> = <task-application> <options>

For example:

demo-timestamp = timestamp --format=hhmmss

After entering any data a validator will run asynchronously to verify both the syntax and that the
application name entered is a valid application and it supports the options specified. If validation fails
the editor will show the errors with more information via tooltips.

To make it easier to enter definitions into the text area, content assist is supported. Pressing Ctrl+Space
will invoke content assist to suggest simple task names (based on the line on which it is invoked), task
applications and task application options. Press ESCape to close the content assist window without
taking a selection.

If the validator should not verify the applications or the options (for example if specifying non-whitelisted
options to the applications) then turn off that part of validation by toggling the checkbox off on the Verify
Apps button - the validator will then only perform syntax checking. When correctly validated, the create
button will be clickable and on pressing it the UI will proceed to create each task definition. If there are
any errors during creation then after creation finishes the editor will show any lines of input, as it cannot
be used in task definitions. These can then be fixed up and creation repeated. There is an import file
button to open a file browser on the local file system if the definitions are in a file and it is easier to
import than copy/paste.

Note

Bulk loading of composed task definitions is not currently supported.

Creating Composed Task Definitions

The dashboard includes the Create Composed Task tab that provides the canvas application, offering
a interactive graphical interface for creating composed tasks.

In this tab, you can:

• Create and visualize composed tasks using DSL, a graphical canvas, or both

• Use auto-adjustment and grid-layout capabilities in the GUI for simpler and interactive organization
of the composed task

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 99

Figure 47.4. Composed Task Designer

Launching Tasks

Once the task definition is created, they can be launched through the Dashboard as well. Navigate to
the Definitions tab. Select the Task you want to launch by pressing Launch.

On the following screen, you can define one or more Task parameters by entering:

• Parameter Key

• Parameter Value

Task parameters are not typed.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 100

47.3 Executions

Figure 47.5. List of Task Executions

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 101

48. Jobs

The Jobs section of the Dashboard allows you to inspect Batch Jobs. The main section of the screen
provides a list of Job Executions. Batch Jobs are Tasks that were executing one or more Batch Job.
As such each Job Execution has a back reference to the Task Execution Id (Task Id).

In case of a failed job, you can also restart the task. When dealing with long-running Batch Jobs, you
can also request to stop it.

Figure 48.1. List of Job Executions

48.1 List job executions

This page lists the Batch Job Executions and provides the option to restart or stop a specific job
execution, provided the operation is available. Furthermore, you have the option to view the Job
execution details.

The list of Job Executions also shows the state of the underlying Job Definition. Thus, if the underlying
definition has been deleted, deleted will be shown.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 102

Job execution details

Figure 48.2. Job Execution Details

The Job Execution Details screen also contains a list of the executed steps. You can further drill into
the Step Execution Details by clicking onto the magnifying glass.

Step execution details

On the top of the page, you will see progress indicator the respective step, with the option to refresh the
indicator. Furthermore, a link is provided to view the step execution history.

The Step Execution details screen provides a complete list of all Step Execution Context key/value pairs.

Important

In case of exceptions, the Exit Description field will contain additional error information. Please
be aware, though, that this field can only have a maximum of 2500 characters. Therefore, in
case of long exception stacktraces, trimming of error messages may occur. In that case, please
refer to the server log files for further details.

Step Execution Progress

On this screen, you can see a progress bar indicator in regards to the execution of the current step.
Under the Step Execution History, you can also view various metrics associated with the selected
step such as duration, read counts, write counts etc.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 103

Figure 48.3. Step Execution History

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 104

49. Analytics

The Analytics section of the Dashboard provided data visualization capabilities for the various analytics
applications available in Spring Cloud Data Flow:

• Counters

• Field-Value Counters

• Aggregate Counters

For example, if you create a stream with a Counter application, you can now easily create the
corresponding graph from within the Dashboard tab:

1. Under Metric Type, select Counters from the select box

2. Under Stream, select tweetcount

3. Under Visualization, select the desired chart option, Bar Chart

Using the icons to the right, you can add additional charts to the Dashboard, re-arange the order of
created dashboards or remove data visualizations.

https://github.com/spring-cloud-stream-app-starters/counter/tree/master/spring-cloud-starter-stream-sink-counter

Part VIII. ‘How-to’ guides
This section provides answers to some common ‘how do I do that…’ type of questions that often arise
when using Spring Cloud Data Flow.

If you are having a specific problem that we don’t cover here, you might want to check out
stackoverflow.com to see if someone has already provided an answer; this is also a great place to ask
new questions (please use the spring-cloud-dataflow tag).

We’re also more than happy to extend this section; If you want to add a ‘how-to’ you can send us a
pull request.

http://stackoverflow.com/tags/spring-cloud-dataflow
http://github.com/spring-cloud/spring-cloud-dataflow-server-yarn/tree/v1.2.0.RELEASE

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 106

50. Configure Maven Properties

You can set the maven properties such as local maven repository location, remote maven repositories
and their authentication credentials including the proxy server properties via commandline properties
when starting the Dataflow server or using the SPRING_APPLICATION_JSON environment property for
the Dataflow server.

The remote maven repositories need to be configured explicitly if the apps are resolved using maven
repository except for local Data Flow server. The other Data Flow server implementations (that use
maven resources for app artifacts resolution) have no default value for remote repositories. The local
server has repo.spring.io/libs-snapshot as the default remote repository.

To pass the properties as commandline options:

$ java -jar <dataflow-server>.jar --maven.localRepository=mylocal

--maven.remote-repositories.repo1.url=https://repo1

--maven.remote-repositories.repo1.auth.username=repo1user

--maven.remote-repositories.repo1.auth.password=repo1pass

--maven.remote-repositories.repo2.url=https://repo2 --maven.proxy.host=proxyhost

--maven.proxy.port=9018 --maven.proxy.auth.username=proxyuser

--maven.proxy.auth.password=proxypass

or, using the SPRING_APPLICATION_JSON environment property:

export SPRING_APPLICATION_JSON='{ "maven": { "local-repository": "local","remote-repositories":

 { "repo1": { "url": "https://repo1", "auth": { "username": "repo1user", "password": "repo1pass" } },

"repo2": { "url": "https://repo2" } }, "proxy": { "host": "proxyhost", "port":

 9018, "auth": { "username": "proxyuser", "password": "proxypass" } } } }'

Formatted JSON:

SPRING_APPLICATION_JSON='{

 "maven": {

 "local-repository": "local",

 "remote-repositories": {

 "repo1": {

 "url": "https://repo1",

 "auth": {

 "username": "repo1user",

 "password": "repo1pass"

 }

 },

 "repo2": {

 "url": "https://repo2"

 }

 },

 "proxy": {

 "host": "proxyhost",

 "port": 9018,

 "auth": {

 "username": "proxyuser",

 "password": "proxypass"

 }

 }

 }

}'

Note

Depending on Spring Cloud Data Flow server implementation, you may have
to pass the environment properties using the platform specific environment-setting

https://repo.spring.io/libs-snapshot

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 107

capabilities. For instance, in Cloud Foundry, you’d be passing them as cf set-env

SPRING_APPLICATION_JSON.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 108

51. Logging

Spring Cloud Data Flow is built upon several Spring projects, but ultimately the dataflow-server is a
Spring Boot app, so the logging techniques that apply to any Spring Boot application are applicable
here as well.

While troubleshooting, following are the two primary areas where enabling the DEBUG logs could be
useful.

51.1 Deployment Logs

Spring Cloud Data Flow builds upon Spring Cloud Deployer SPI and the platform specific dataflow-
server uses the respective SPI implementations. Specifically, if we were to troubleshoot deployment
specific issues; such as the network errors, it’d be useful to enable the DEBUG logs at the underlying
deployer and the libraries used by it.

1. For instance, if you’d like to enable DEBUG logs for the local-deployer, you’d be starting the server
with following.

$ java -jar <dataflow-server>.jar --logging.level.org.springframework.cloud.deployer.spi.local=DEBUG

(where, org.springframework.cloud.deployer.spi.local is the global package for
everything local-deployer related)

2. For instance, if you’d like to enable DEBUG logs for the cloudfoundry-deployer, you’d be setting the
following environment variable and upon restaging the dataflow-server, we will see more logs around
request, response and the elaborate stack traces (upon failures). The cloudfoundry-deployer uses
cf-java-client, so we will have to enable DEBUG logs for this library.

$ cf set-env dataflow-server JAVA_OPTS '-Dlogging.level.cloudfoundry-client=DEBUG'

$ cf restage dataflow-server

(where, cloudfoundry-client is the global package for everything cf-java-client related)

3. If there’s a need to review Reactor logs, which is used by the cf-java-client, then the following
would be helpful.

$ cf set-env dataflow-server JAVA_OPTS '-Dlogging.level.cloudfoundry-client=DEBUG -

Dlogging.level.reactor.ipc.netty=DEBUG'

$ cf restage dataflow-server

(where, reactor.ipc.netty is the global package for everything reactor-netty related)

Note

Similar to the local-deployer and cloudfoundry-deployer options as discussed above,
there are equivalent settings available for Apache YARN, Apache Mesos and Kubernetes
variants, too. Check out the respective SPI implementations to find out more details about the
packages to configure for logging.

51.2 Application Logs

The streaming applications in Spring Cloud Data Flow are Spring Boot applications and they can be
independently setup with logging configurations.

http://docs.spring.io/spring-boot/docs/current/reference/html/howto-logging.html#howto-logging
https://github.com/spring-cloud/spring-cloud-deployer
https://github.com/spring-cloud?utf8=%E2%9C%93&q=spring-cloud-deployer
https://github.com/spring-cloud/spring-cloud-deployer-local
https://github.com/spring-cloud/spring-cloud-deployer-cloudfoundry
https://github.com/cloudfoundry/cf-java-client
https://github.com/spring-cloud?utf8=%E2%9C%93&q=spring-cloud-deployer

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 109

For instance, if you’d have to troubleshoot the header and payload specifics that are being passed
around source, processor and sink channels, you’d be deploying the stream with the following options.

dataflow:>stream create foo --definition "http --logging.level.org.springframework.integration=DEBUG

 | transform --logging.level.org.springframework.integration=DEBUG | log --

logging.level.org.springframework.integration=DEBUG" --deploy

(where, org.springframework.integration is the global package for everything Spring
Integration related, which is responsible for messaging channels)

These properties can also be specified via deployment properties when deploying the stream.

dataflow:>stream deploy foo --properties "app.*.logging.level.org.springframework.integration=DEBUG"

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 110

52. Frequently asked questions

In this section, we will review the frequently discussed questions in Spring Cloud Data Flow.

52.1 Advanced SpEL expressions

One of the powerful features of SpEL expressions is functions. Spring Integration provides jsonPath()
and xpath() out-of-the-box SpEL-functions, if appropriate libraries are in the classpath. All the
provided Spring Cloud Stream application starters are supplied with the json-path and spring-
integration-xml jars, thus we can use those SpEL-functions in Spring Cloud Data Flow streams
whenever expressions are possible. For example we can transform JSON-aware payload from the
HTTP request using some jsonPath() expression:

dataflow:>stream create jsonPathTransform --definition "http | transform --

expression=#jsonPath(payload,'$.price') | log" --deploy

...

dataflow:> http post --target http://localhost:8080 --data {"symbol":"SCDF","price":72.04}

dataflow:> http post --target http://localhost:8080 --data {"symbol":"SCDF","price":72.06}

dataflow:> http post --target http://localhost:8080 --data {"symbol":"SCDF","price":72.08}

In this sample we apply jsonPath for the incoming payload to extract just only the price field value.
Similar syntax can be used with splitter or filter expression options. Actually any available
SpEL-based option has access to the built-in SpEL-functions. For example we can extract some value
from JSON data to calculate the partitionKey before sending output to the Binder:

dataflow:>stream deploy foo --

properties "deployer.transform.count=2,app.transform.producer.partitionKeyExpression=#jsonPath(payload,'$.symbol')"

The same syntax can be applied for xpath() SpEL-function when you deal with XML data. Any
other custom SpEL-function can also be used, but for this purpose you should build a library with the
@Configuration class containing an appropriate SpelFunctionFactoryBean @Bean definition.
The target Spring Cloud Stream application starter should be re-packaged to supply such a custom
extension via built-in Spring Boot @ComponentScan mechanism or auto-configuration hook.

52.2 How to use JDBC-sink?

The JDBC-sink can be used to insert message payload data into a relational database table. By default,
it inserts the entire payload into a table named after the jdbc.table-name property, and if it is not
set, by default the application expects to use a table with the name messages. To alter this behavior,
the JDBC sink accepts several options that you can pass using the --foo=bar notation in the stream, or
change globally. The JDBC sink has a jdbc.initialize property that if set to true will result in the
sink creating a table based on the specified configuration when the it starts up. If that initialize property
is false, which is the default, you will have to make sure that the table to use is already available.

A stream definition using jdbc sink relying on all defaults with MySQL as the backing database looks
like the following. In this example, the system time is persisted in MySQL for every second.

dataflow:>stream create --name mydata --definition "time | jdbc --spring.datasource.url=jdbc:mysql://

localhost:3306/test --spring.datasource.username=root --spring.datasource.password=root --

spring.datasource.driver-class-name=org.mariadb.jdbc.Driver" --deploy

For this to work, you’d have to have the following table in the MySQL database.

CREATE TABLE test.messages

(

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/expressions.html#expressions-ref-functions
http://docs.spring.io/spring-integration/reference/html/spel.html#spel-functions
http://docs.spring.io/spring-cloud-stream-app-starters/docs/current/reference/html/spring-cloud-stream-modules-sinks.html#spring-cloud-stream-modules-jdbc-sink

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 111

 payload varchar(255)

);

mysql> desc test.messages;

+---------+--------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+---------+--------------+------+-----+---------+-------+

| payload | varchar(255) | YES | | NULL | |

+---------+--------------+------+-----+---------+-------+

1 row in set (0.00 sec)

mysql> select * from test.messages;

+-------------------+

| payload |

+-------------------+

| 04/25/17 09:10:04 |

| 04/25/17 09:10:06 |

| 04/25/17 09:10:07 |

| 04/25/17 09:10:08 |

| 04/25/17 09:10:09 |

.............

.............

.............

52.3 How to use multiple message-binders?

For situations where the data is consumed and processed between two different message brokers,
Spring Cloud Data Flow provides easy to override global configurations, out-of-the-box bridge-
processor, and DSL primitives to build these type of topologies.

Let’s assume we have data queueing up in RabbitMQ (e.g., queue = fooRabbit) and the requirement
is to consume all the payloads and publish them to Apache Kafka (e.g., topic = barKafka), as the
destination for downstream processing.

Follow the global application of configurations to define multiple binder configurations.

Apache Kafka Global Configurations (i.e., identified by "kafka1")

spring.cloud.dataflow.applicationProperties.stream.spring.cloud.stream.binders.kafka1.type=kafka

spring.cloud.dataflow.applicationProperties.stream.spring.cloud.stream.binders.kafka1.environment.spring.cloud.stream.kafka.binder.brokers=localhost:9092

spring.cloud.dataflow.applicationProperties.stream.spring.cloud.stream.binders.kafka1.environment.spring.cloud.stream.kafka.binder.zkNodes=localhost:2181

RabbitMQ Global Configurations (i.e., identified by "rabbit1")

spring.cloud.dataflow.applicationProperties.stream.spring.cloud.stream.binders.rabbit1.type=rabbit

spring.cloud.dataflow.applicationProperties.stream.spring.cloud.stream.binders.rabbit1.environment.spring.rabbitmq.host=localhost

spring.cloud.dataflow.applicationProperties.stream.spring.cloud.stream.binders.rabbit1.environment.spring.rabbitmq.port=5672

Note

In this example, both the message brokers are running locally and reachable at localhost
with respective ports.

These properties can be supplied in a ".properties" file that is accessible to the server directly or via
config-server.

java -jar spring-cloud-dataflow-server-local/target/spring-cloud-dataflow-server-local-1.1.4.RELEASE.jar

 --spring.config.location=<PATH-TO-FILE>/foo.properties

Spring Cloud Data Flow internally uses bridge-processor to directly connect different named
channel destinations. Since we are publishing and subscribing from two different messaging systems,
you’d have to build the bridge-processor with both RabbitMQ and Apache Kafka binders in the
classpath. To do that, head over to start-scs.cfapps.io/ and select Bridge Processor, Kafka binder

https://github.com/spring-cloud-stream-app-starters/bridge
https://github.com/spring-cloud-stream-app-starters/bridge
http://start-scs.cfapps.io/

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 112

starter, and Rabbit binder starter as the dependencies and follow the patching procedure
described in the reference guide. Specifically, for the bridge-processor, you’d have to import the
BridgeProcessorConfiguration provided by the starter.

Once you have the necessary adjustments, you can build the application. Let’s register the name of the
application as multiBinderBridge.

dataflow:>app register --type processor --name multiBinderBridge --uri file:///<PATH-TO-FILE>/

multipleBinderBridge-0.0.1-SNAPSHOT.jar

It is time to create a stream definition with the newly registered processor application.

dataflow:>stream create fooRabbitToBarKafka --definition ":fooRabbit > multiBinderBridge --

spring.cloud.stream.bindings.input.binder=rabbit1 --spring.cloud.stream.bindings.output.binder=kafka1

 > :barKafka" --deploy

Note

Since we are to consume messages from RabbitMQ (i.e., identified by rabbit1) and then
publish the payload to Apache Kafka (i.e., identified by kafka1), we are supplying them as
input and output channel settings respectively.

Note

The queue fooRabbit in RabbitMQ is where the stream is consuming events from and the
topic barKafka in Apache Kafka is where the data is finally landing.

http://docs.spring.io/spring-cloud-stream-app-starters/docs/Bacon.RELEASE/reference/html/_introduction.html#customizing-binder

Part IX. Appendices

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 114

Appendix A. Migrating from Spring
XD to Spring Cloud Data Flow
A.1 Terminology Changes

Old New

XD-Admin Server (implementations: local, cloud foundry,
apache yarn, kubernetes, and apache mesos)

XD-Container N/A

Modules Applications

Admin UI Dashboard

Message Bus Binders

Batch / Job Task

A.2 Modules to Applications

If you have custom Spring XD modules, you’d have to refactor them to use Spring Cloud Stream
and Spring Cloud Task annotations, with updated dependencies and built as normal Spring Boot
"applications".

Custom Applications

• Spring XD’s stream and batch modules are refactored into Spring Cloud Stream and Spring Cloud
Task application-starters, respectively. These applications can be used as the reference while
refactoring Spring XD modules

• There are also some samples for Spring Cloud Stream and Spring Cloud Task applications for
reference

• If you’d like to create a brand new custom application, use the getting started guide for Spring Cloud
Stream and Spring Cloud Task applications and as well as review the development guide

• Alternatively, if you’d like to patch any of the out-of-the-box stream applications, you can follow the
procedure here

Application Registration

• Custom Stream/Task application requires being installed to a maven repository for Local, YARN, and
CF implementations or as docker images, when deploying to Kubernetes and Mesos. Other than
maven and docker resolution, you can also resolve application artifacts from http, file, or as hdfs
coordinates

• Unlike Spring XD, you do not have to upload the application bits while registering custom applications
anymore; instead, you’re expected to register the application coordinates that are hosted in the maven
repository or by other means as discussed in the previous bullet

https://github.com/spring-cloud-stream-app-starters
https://github.com/spring-cloud-task-app-starters
https://github.com/spring-cloud-task-app-starters
https://github.com/spring-cloud/spring-cloud-stream-samples
https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/#_getting_started
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/#_getting_started
http://docs.spring.io/spring-cloud-task/docs/current/reference/htmlsingle/#getting-started
http://docs.spring.io/spring-cloud-stream-app-starters/docs/current/reference/htmlsingle/#_creating_your_own_applications
http://docs.spring.io/spring-cloud-stream-app-starters/docs/current/reference/htmlsingle/#_patching_pre_built_applications

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 115

• By default, none of the out-of-the-box applications are preloaded already. It is intentionally designed
to provide the flexibility to register app(s), as you find appropriate for the given use-case requirement

• Depending on the binder choice, you can manually add the appropriate binder dependency to build
applications specific to that binder-type. Alternatively, you can follow the Spring Initialzr procedure to
create an application with binder embedded in it

Application Properties

• counter-sink:

• The peripheral redis is not required in Spring Cloud Data Flow. If you intend to use the counter-
sink, then redis becomes required, and you’re expected to have your own running redis cluster

• field-value-counter-sink:

• The peripheral redis is not required in Spring Cloud Data Flow. If you intend to use the field-
value-counter-sink, then redis becomes required, and you’re expected to have your own
running redis cluster

• aggregate-counter-sink:

• The peripheral redis is not required in Spring Cloud Data Flow. If you intend to use the
aggregate-counter-sink, then redis becomes required, and you’re expected to have your
own running redis cluster

A.3 Message Bus to Binders

Terminology wise, in Spring Cloud Data Flow, the message bus implementation is commonly referred
to as binders.

Message Bus

Similar to Spring XD, there’s an abstraction available to extend the binder interface. By default, we take
the opinionated view of Apache Kafka and RabbitMQ as the production-ready binders and are available
as GA releases.

Binders

Selecting a binder is as simple as providing the right binder dependency in the classpath. If you’re to
choose Kafka as the binder, you’d register stream applications that are pre-built with Kafka binder in
it. If you were to create a custom application with Kafka binder, you’d add the following dependency
in the classpath.

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-stream-binder-kafka</artifactId>

 <version>1.0.2.RELEASE</version>

</dependency>

• Spring Cloud Stream supports Apache Kafka, RabbitMQ and experimental Google PubSub and
Solace JMS. All binder implementations are maintained and managed in their individual repositories

• Every Stream/Task application can be built with a binder implementation of your choice. All the out-
of-the-box applications are pre-built for both Kafka and Rabbit and they’re readily available for use as

https://github.com/spring-cloud/spring-cloud-stream-app-starters/blob/master/spring-cloud-stream-app-starters-docs/src/main/asciidoc/overview.adoc#using-the-starters-to-create-custom-components
https://github.com/spring-cloud/spring-cloud-stream-binder-kafka
https://github.com/spring-cloud/spring-cloud-stream-binder-rabbit
https://github.com/spring-cloud/spring-cloud-stream-binder-kafka
https://github.com/spring-cloud/spring-cloud-stream-binder-rabbit
https://github.com/spring-cloud/spring-cloud-stream-binder-google-pubsub
https://github.com/spring-cloud/spring-cloud-stream-binder-solace

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 116

maven artifacts [Spring Cloud Stream / Spring Cloud Task or docker images [Spring Cloud Stream /
Spring Cloud Task Changing the binder requires selecting the right binder dependency. Alternatively,
you can download the pre-built application from this version of Spring Initializr with the desired “binder-
starter” dependency

Named Channels

Fundamentally, all the messaging channels are backed by pub/sub semantics. Unlike Spring XD, the
messaging channels are backed only by topics or topic-exchange and there’s no representation
of queues in the new architecture.

• ${xd.module.index} is not supported anymore; instead, you can directly interact with named
destinations

• stream.index changes to :<stream-name>.<label/app-name>

• for instance: ticktock.0 changes to :ticktock.time

• “topic/queue” prefixes are not required to interact with named-channels

• for instance: topic:foo changes to :foo

• for instance: stream create stream1 --definition ":foo > log"

Directed Graphs

If you’re building non-linear streams, you could take advantage of named destinations to build directed
graphs.

for instance, in Spring XD:

stream create f --definition "queue:foo > transform --expression=payload+'-foo' | log" --deploy

stream create b --definition "queue:bar > transform --expression=payload+'-bar' | log" --deploy

stream create r --definition "http | router --expression=payload.contains('a')?'queue:foo':'queue:bar'"

 --deploy

for instance, in Spring Cloud Data Flow:

stream create f --definition ":foo > transform --expression=payload+'-foo' | log" --deploy

stream create b --definition ":bar > transform --expression=payload+'-bar' | log" --deploy

stream create r --definition "http | router --expression=payload.contains('a')?'foo':'bar'" --deploy

A.4 Batch to Tasks

A Task by definition, is any application that does not run forever, including Spring Batch jobs, and
they end/stop at some point. Task applications can be majorly used for on-demand use-cases such as
database migration, machine learning, scheduled operations etc. Using Spring Cloud Task, users can
build Spring Batch jobs as microservice applications.

• Spring Batch jobs from Spring XD are being refactored to Spring Boot applications a.k.a Spring Cloud
Task applications

• Unlike Spring XD, these “Tasks” don’t require explicit deployment; instead, a task is ready to be
launched directly once the definition is declared

http://repo.spring.io/libs-milestone/org/springframework/cloud/stream/app/
http://repo.spring.io/libs-milestone/org/springframework/cloud/task/app/
https://hub.docker.com/r/springcloudstream/
https://hub.docker.com/r/springcloudtask/
http://docs.spring.io/spring-cloud-stream/docs/current/reference/htmlsingle/#_binders
http://start-scs.cfapps.io/
http://cloud.spring.io/spring-cloud-task/
http://docs.spring.io/spring-xd/docs/current-SNAPSHOT/reference/html/#jobs
https://github.com/spring-cloud-task-app-starters

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 117

A.5 Shell/DSL Commands

Old Command New Command

module upload app register / app import

module list app list

module info app info

admin config server dataflow config server

job create task create

job launch task launch

job list task list

job status task status

job display task display

job destroy task destroy

job execution list task execution list

runtime modules runtime apps

A.6 REST-API

Old API New API

/modules /apps

/runtime/modules /runtime/apps

/runtime/modules/{moduleId} /runtime/apps/{appId}

/jobs/definitions /task/definitions

/jobs/deployments /task/deployments

A.7 UI / Flo

The Admin-UI is now renamed as Dashboard. The URI for accessing the Dashboard is changed from
localhost:9393/admin-ui to localhost:9393/dashboard

• (New) Apps: Lists all the registered applications that are available for use. This view includes
informational details such as the URI and the properties supported by each application. You can also
register/unregister applications from this view

• Runtime: Container changes to Runtime. The notion of xd-container is gone, replaced by out-
of-the-box applications running as autonomous Spring Boot applications. The Runtime tab displays
the applications running in the runtime platforms (implementations: cloud foundry, apache yarn,
apache mesos, or kubernetes). You can click on each application to review relevant details about the
application such as where it is running with, and what resources etc.

http://localhost:9393/admin-ui
http://localhost:9393/dashboard

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 118

• Spring Flo is now an OSS product. Flo for Spring Cloud Data Flow’s “Create Stream”, the designer-
tab comes pre-built in the Dashboard

• (New) Tasks:

• The sub-tab “Modules” is renamed to “Apps”

• The sub-tab “Definitions” lists all the Task definitions, including Spring Batch jobs that are
orchestrated as Tasks

• The sub-tab “Executions” lists all the Task execution details similar to Spring XD’s Job executions

A.8 Architecture Components

Spring Cloud Data Flow comes with a significantly simplified architecture. In fact, when compared with
Spring XD, there are less peripherals that are necessary to operationalize Spring Cloud Data Flow.

ZooKeeper

ZooKeeper is not used in the new architecture.

RDBMS

Spring Cloud Data Flow uses an RDBMS instead of Redis for stream/task definitions, application
registration, and for job repositories.The default configuration uses an embedded H2 instance, but
Oracle, DB2, SqlServer, MySQL/MariaDB, PostgreSQL, H2, and HSQLDB databases are supported.
To use Oracle, DB2 and SqlServer you will need to create your own Data Flow Server using Spring
Initializr and add the appropriate JDBC driver dependency.

Redis

Running a Redis cluster is only required for analytics functionality. Specifically, when the counter-
sink, field-value-counter-sink, or aggregate-counter-sink applications are used, it is
expected to also have a running instance of Redis cluster.

Cluster Topology

Spring XD’s xd-admin and xd-container server components are replaced by stream and task
applications themselves running as autonomous Spring Boot applications. The applications run natively
on various platforms including Cloud Foundry, Apache YARN, Apache Mesos, or Kubernetes. You can
develop, test, deploy, scale +/-, and interact with (Spring Boot) applications individually, and they can
evolve in isolation.

A.9 Central Configuration

To support centralized and consistent management of an application’s configuration properties, Spring
Cloud Config client libraries have been included into the Spring Cloud Data Flow server as well as the
Spring Cloud Stream applications provided by the Spring Cloud Stream App Starters. You can also pass
common application properties to all streams when the Data Flow Server starts.

A.10 Distribution

Spring Cloud Data Flow is a Spring Boot application. Depending on the platform of your choice, you
can download the respective release uber-jar and deploy/push it to the runtime platform (cloud foundry,

https://github.com/spring-projects/spring-flo
https://start.spring.io/
https://start.spring.io/
https://cloud.spring.io/spring-cloud-config/
https://cloud.spring.io/spring-cloud-config/

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 119

apache yarn, kubernetes, or apache mesos). For example, if you’re running Spring Cloud Data Flow
on Cloud Foundry, you’d download the Cloud Foundry server implementation and do a cf push as
explained in the reference guide.

A.11 Hadoop Distribution Compatibility

The hdfs-sink application builds upon Spring Hadoop 2.4.0 release, so this application is compatible
with following Hadoop distributions.

• Cloudera - cdh5

• Pivotal Hadoop - phd30

• Hortonworks Hadoop - hdp24

• Hortonworks Hadoop - hdp23

• Vanilla Hadoop - hadoop26

• Vanilla Hadoop - 2.7.x (default)

A.12 YARN Deployment

Spring Cloud Data Flow can be deployed and used with Apche YARN in two different ways.

• Deploy the server directly in a YARN cluster

• Leverage Apache Ambari plugin to provision Spring Cloud Data Flow as a service

A.13 Use Case Comparison

Let’s review some use-cases to compare and contrast the differences between Spring XD and Spring
Cloud Data Flow.

Use Case #1

(It is assumed both XD and SCDF distributions are already downloaded)

Description: Simple ticktock example using local/singlenode.

Spring XD Spring Cloud Data Flow

Start xd-singlenode server from CLI

xd-singlenode

Start a binder of your choice

Start local-server implementation of SCDF
from the CLI

java -jar spring-cloud-

dataflow-server-local-1.0.0.BUILD-

SNAPSHOT.jar

Start xd-shell server from the CLI

xd-shell

Start dataflow-shell server from the CLI

http://docs.spring.io/spring-cloud-dataflow-server-cloudfoundry/docs/current-SNAPSHOT/reference/htmlsingle/#getting-started
http://docs.spring.io/spring-cloud-dataflow-server-yarn/docs/current-SNAPSHOT/reference/htmlsingle/#yarn-deploying-on-yarn
http://docs.spring.io/spring-cloud-dataflow-server-yarn/docs/current-SNAPSHOT/reference/htmlsingle/#yarn-deploying-on-ambari

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 120

Spring XD Spring Cloud Data Flow

java -jar spring-cloud-dataflow-

shell-1.0.0.BUILD-SNAPSHOT.jar

Create ticktock stream

xd:>stream create ticktock --

definition “time | log” --deploy

Create ticktock stream

dataflow:>stream create ticktock --

definition “time | log” --deploy

Review ticktock results in the xd-
singlenode server console

Review ticktock results by tailing the
ticktock.log/stdout_log application logs

Use Case #2

(It is assumed both XD and SCDF distributions are already downloaded)

Description: Stream with custom module/application.

Spring XD Spring Cloud Data Flow

Start xd-singlenode server from CLI

xd-singlenode

Start a binder of your choice

Start local-server implementation of SCDF
from the CLI

java -jar spring-cloud-

dataflow-server-local-1.0.0.BUILD-

SNAPSHOT.jar

Start xd-shell server from the CLI

xd-shell

Start dataflow-shell server from the CLI

java -jar spring-cloud-dataflow-

shell-1.0.0.BUILD-SNAPSHOT.jar

Register custom “processor” module to transform
payload to a desired format

xd:>module upload --name

toupper --type processor --file

<CUSTOM_JAR_FILE_LOCATION>

Register custom “processor” application to
transform payload to a desired format

dataflow:>app register --name

toupper --type processor --uri

<MAVEN_URI_COORDINATES>

Create a stream with custom module

xd:>stream create testupper --

definition “http | toupper | log” --

deploy

Create a stream with custom application

dataflow:>stream create testupper --

definition “http | toupper | log” --

deploy

Review results in the xd-singlenode server
console

Review results by tailing the testupper.log/
stdout_log application logs

Use Case #3

(It is assumed both XD and SCDF distributions are already downloaded)

Description: Simple batch-job.

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 121

Spring XD Spring Cloud Data Flow

Start xd-singlenode server from CLI

xd-singlenode

Start local-server implementation of SCDF
from the CLI

java -jar spring-cloud-

dataflow-server-local-1.0.0.BUILD-

SNAPSHOT.jar

Start xd-shell server from the CLI

xd-shell

Start dataflow-shell server from the CLI

java -jar spring-cloud-dataflow-

shell-1.0.0.BUILD-SNAPSHOT.jar

Register custom “batch-job” module

xd:>module upload --name

simple-batch --type job --file

<CUSTOM_JAR_FILE_LOCATION>

Register custom “batch-job” as task application

dataflow:>app register --name

simple-batch --type task --uri

<MAVEN_URI_COORDINATES>

Create a job with custom batch-job module

xd:>job create batchtest --

definition “simple-batch”

Create a task with custom batch-job application

dataflow:>task create batchtest --

definition “simple-batch”

Deploy job

xd:>job deploy batchtest

NA

Launch job

xd:>job launch batchtest

Launch task

dataflow:>task launch batchtest

Review results in the xd-singlenode server
console as well as Jobs tab in UI (executions
sub-tab should include all step details)

Review results by tailing the batchtest/
stdout_log application logs as well as Task
tab in UI (executions sub-tab should include all
step details)

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 122

Appendix B. Building
To build the source you will need to install JDK 1.8.

The build uses the Maven wrapper so you don’t have to install a specific version of Maven. To enable
the tests for Redis you should run the server before bulding. See below for more information on how
to run Redis.

The main build command is

$./mvnw clean install

You can also add '-DskipTests' if you like, to avoid running the tests.

Note

You can also install Maven (>=3.3.3) yourself and run the mvn command in place of ./mvnw in
the examples below. If you do that you also might need to add -P spring if your local Maven
settings do not contain repository declarations for spring pre-release artifacts.

Note

Be aware that you might need to increase the amount of memory available to Maven by setting
a MAVEN_OPTS environment variable with a value like -Xmx512m -XX:MaxPermSize=128m.
We try to cover this in the .mvn configuration, so if you find you have to do it to make a build
succeed, please raise a ticket to get the settings added to source control.

The projects that require middleware generally include a docker-compose.yml, so consider using
Docker Compose to run the middeware servers in Docker containers. See the README in the scripts
demo repository for specific instructions about the common cases of mongo, rabbit and redis.

B.1 Documentation

There is a "full" profile that will generate documentation. You can build just the documentation by
executing

$./mvnw clean package -DskipTests -P full -pl spring-cloud-dataflow-server-

yarn-docs -am

B.2 Working with the code

If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or Eclipse
when working with the code. We use the m2eclipe eclipse plugin for maven support. Other IDEs and
tools should also work without issue.

Importing into eclipse with m2eclipse

We recommend the m2eclipe eclipse plugin when working with eclipse. If you don’t already have
m2eclipse installed it is available from the "eclipse marketplace".

Unfortunately m2e does not yet support Maven 3.3, so once the projects are imported into Eclipse you
will also need to tell m2eclipse to use the .settings.xml file for the projects. If you do not do this

https://docs.docker.com/compose/
https://github.com/spring-cloud-samples/scripts
https://github.com/spring-cloud-samples/scripts
https://spring.io/tools
http://www.eclipse.org
http://www.eclipse.org/m2e/
http://www.eclipse.org/m2e/

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 123

you may see many different errors related to the POMs in the projects. Open your Eclipse preferences,
expand the Maven preferences, and select User Settings. In the User Settings field click Browse and
navigate to the Spring Cloud project you imported selecting the .settings.xml file in that project.
Click Apply and then OK to save the preference changes.

Note

Alternatively you can copy the repository settings from .settings.xml into your own ~/.m2/
settings.xml.

Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following
command:

$./mvnw eclipse:eclipse

The generated eclipse projects can be imported by selecting import existing projects from the
file menu.

https://github.com/spring-cloud/spring-cloud-build/blob/master/.settings.xml

Spring Cloud Data Flow for Apache YARN

1.2.0.RELEASE Spring Cloud Data Flow 124

Appendix C. Contributing
Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard
Github development process, using Github tracker for issues and merging pull requests into master. If
you want to contribute even something trivial please do not hesitate, but follow the guidelines below.

C.1 Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the contributor’s agreement.
Signing the contributor’s agreement does not grant anyone commit rights to the main repository, but
it does mean that we can accept your contributions, and you will get an author credit if we do. Active
contributors might be asked to join the core team, and given the ability to merge pull requests.

C.2 Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help. They can also be added after the
original pull request but before a merge.

• Use the Spring Framework code format conventions. If you use Eclipse you can import formatter
settings using the eclipse-code-formatter.xml file from the Spring Cloud Build project. If using
IntelliJ, you can use the Eclipse Code Formatter Plugin to import the same file.

• Make sure all new .java files to have a simple Javadoc class comment with at least an @author
tag identifying you, and preferably at least a paragraph on what the class is for.

• Add the ASF license header comment to all new .java files (copy from existing files in the project)

• Add yourself as an @author to the .java files that you modify substantially (more than cosmetic
changes).

• Add some Javadocs and, if you change the namespace, some XSD doc elements.

• A few unit tests would help a lot as well — someone has to do it.

• If no-one else is using your branch, please rebase it against the current master (or other target branch
in the main project).

• When writing a commit message please follow these conventions, if you are fixing an existing issue
please add Fixes gh-XXXX at the end of the commit message (where XXXX is the issue number).

https://cla.pivotal.io
https://github.com/spring-cloud/spring-cloud-build/blob/master/spring-cloud-dependencies-parent/eclipse-code-formatter.xml
http://plugins.jetbrains.com/plugin/6546
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

	Spring Cloud Data Flow for Apache YARN
	Table of Contents
	Part I. Preface
	1. About the documentation
	2. Getting help

	Part II. Introduction
	3. Introducing Spring Cloud Data Flow for Apache YARN project
	4. Spring Cloud Data Flow
	5. Spring Cloud Stream
	6. Spring Cloud Task

	Part III. Architecture
	7. Introduction
	8. Microservice Architectural Style
	8.1 Comparison to other Platform architectures

	9. Streaming Applications
	9.1 Imperative Programming Model
	9.2 Functional Programming Model

	10. Streams
	10.1 Topologies
	10.2 Concurrency
	10.3 Partitioning
	10.4 Message Delivery Guarantees

	11. Analytics
	12. Task Applications
	13. Data Flow Server
	13.1 Endpoints
	13.2 Customization
	13.3 Security

	14. Runtime
	14.1 Fault Tolerance
	14.2 Resource Management
	14.3 Scaling at runtime
	14.4 Application Versioning

	Part IV. Spring Cloud Data Flow Runtime
	15. Deploying on YARN
	15.1 Prerequisites
	15.2 Download and Extract Distribution
	15.3 Configure Settings
	15.4 Start Server
	15.5 Connect Shell
	15.6 Register Applications
	Sourcing Applications from HDFS

	15.7 Create Stream
	15.8 Create Task
	15.9 Using YARN Cli
	Check YARN App Statuses
	Push Apps

	15.10 Using Metric Collectors

	16. Deploying on AMBARI
	16.1 Install Ambari Server
	16.2 Deploy Data Flow
	16.3 Using Configuration
	Change Datasource

	17. Configuring Runtime Settings and Environment
	17.1 Generic App Settings
	17.2 Configuring Application Resources
	17.3 Configure Base Directory
	17.4 Pre-populate Applications
	17.5 Configure Logging
	17.6 Configure Metrics
	17.7 Global YARN Memory Settings
	17.8 Configure Kerberos
	Working with Kerberized Kafka

	17.9 Configure Hdfs HA
	17.10 Configure Database
	17.11 Configure Network Discovery

	18. How YARN Deployment Works
	19. Troubleshooting
	20. Using Sandboxes
	20.1 Hortonworks Sandbox

	Part V. Streams
	21. Introduction
	22. Stream DSL
	23. Register a Stream App
	23.1 Whitelisting application properties
	23.2 Creating and using a dedicated metadata artifact
	Using the companion artifact

	24. Creating custom applications
	25. Creating a Stream
	25.1 Application properties
	Passing application properties when creating a stream

	25.2 Deployment properties
	Application properties versus Deployer properties
	Passing instance count as deployment property
	Inline vs file reference properties
	Passing application properties when deploying a stream
	Passing Spring Cloud Stream properties for the application
	Passing per-binding producer consumer properties
	Passing stream partition properties during stream deployment
	Passing application content type properties
	Overriding application properties during stream deployment

	25.3 Common application properties

	26. Destroying a Stream
	27. Deploying and Undeploying Streams
	28. Other Source and Sink Application Types
	29. Simple Stream Processing
	30. Stateful Stream Processing
	31. Tap a Stream
	32. Using Labels in a Stream
	33. Explicit Broker Destinations in a Stream
	34. Directed Graphs in a Stream
	35. Stream applications with multiple binder configurations

	Part VI. Tasks
	36. Introducing Spring Cloud Task
	37. The Lifecycle of a task
	37.1 Creating a custom Task Application
	37.2 Registering a Task Application
	37.3 Creating a Task
	37.4 Launching a Task
	Common application properties

	37.5 Reviewing Task Executions
	37.6 Destroying a Task

	38. Task Repository
	38.1 Configuring the Task Execution Repository
	Local
	Task Application Repository

	38.2 Datasource

	39. Subscribing to Task/Batch Events
	40. Launching Tasks from a Stream
	40.1 TriggerTask
	40.2 TaskLaunchRequest-transform

	41. Composed Tasks
	41.1 Configuring the Composed Task Runner in Spring Cloud Data Flow
	Registering the Composed Task Runner application
	Configuring the Composed Task Runner application

	41.2 Creating, Launching, and Destroying a Composed Task
	Creating a Composed Task
	Task Application Parameters

	Launching a Composed Task
	Exit Statuses

	Destroying a Composed Task
	Stopping a Composed Task
	Restarting a Composed Task

	41.3 Composed Task DSL
	Conditional Execution
	Transitional Execution
	Basic Transition
	Transition With a Wildcard
	Transition With a Following Conditional Execution

	Split Execution
	Split Containing Conditional Execution

	Part VII. Dashboard
	42. Introduction
	43. Apps
	43.1 Bulk Import of Applications

	44. Runtime
	45. Streams
	46. Create Stream
	47. Tasks
	47.1 Apps
	Create a Task Definition from a selected Task App
	View Task App Details

	47.2 Definitions
	Creating Task Definitions using the bulk define interface
	Creating Composed Task Definitions
	Launching Tasks

	47.3 Executions

	48. Jobs
	48.1 List job executions
	Job execution details
	Step execution details
	Step Execution Progress

	49. Analytics

	Part VIII. ‘How-to’ guides
	50. Configure Maven Properties
	51. Logging
	51.1 Deployment Logs
	51.2 Application Logs

	52. Frequently asked questions
	52.1 Advanced SpEL expressions
	52.2 How to use JDBC-sink?
	52.3 How to use multiple message-binders?

	Part IX. Appendices
	Appendix A. Migrating from Spring XD to Spring Cloud Data Flow
	A.1 Terminology Changes
	A.2 Modules to Applications
	Custom Applications
	Application Registration
	Application Properties

	A.3 Message Bus to Binders
	Message Bus
	Binders
	Named Channels
	Directed Graphs

	A.4 Batch to Tasks
	A.5 Shell/DSL Commands
	A.6 REST-API
	A.7 UI / Flo
	A.8 Architecture Components
	ZooKeeper
	RDBMS
	Redis
	Cluster Topology

	A.9 Central Configuration
	A.10 Distribution
	A.11 Hadoop Distribution Compatibility
	A.12 YARN Deployment
	A.13 Use Case Comparison
	Use Case #1
	Use Case #2
	Use Case #3

	Appendix B. Building
	B.1 Documentation
	B.2 Working with the code
	Importing into eclipse with m2eclipse
	Importing into eclipse without m2eclipse

	Appendix C. Contributing
	C.1 Sign the Contributor License Agreement
	C.2 Code Conventions and Housekeeping

