Spring Cloud Data Flow Reference Guide
Table of Contents
	I. Spring Cloud Data Flow Overview	1. About the documentation
	2. Getting help
	3. Introducing Spring Cloud Data Flow	Features

	4. Spring Cloud Data Flow Architecture	Components

	II. Getting started	5. System Requirements
	6. Building Spring Cloud Data Flow
	7. Deploying Spring Cloud Data Flow	Deploying 'local'
	Deploying on Lattice
	Deploying on Cloud Foundry
	Deploying on YARN

	III. Spring Cloud Stream Overview	8. Introducing Spring Cloud Stream	Multiple Input or Output Channels
	Samples
	Module or App	Fat JAR

	Making Standalone Modules Talk to Each Other

	IV. Using Spring Cloud Stream Modules	9. Sources	FTP (ftp)	Options

	HTTP (http)
	Time (time)
	Twitter Stream (twitterstream)

	10. Processors	Filter (filter)	Filter with SpEL expression

	groovy-filter
	groovy-transform
	Transform (transform)	Transform with SpEL expression

	11. Sinks	Counter (counter)
	Hadoop (HDFS) (hdfs)	Options
	Partition Path Expression	Accessing Properties
	Custom Methods	path
	dateFormat
	list
	range
	hash

	Log (log)
	Redis (redis)	Options

	12. Tasks	Timestamp (timestamp)

Spring Cloud Data Flow Reference Guide

Sabby Anandan, Marius Bogoevici, Eric Bottard, Mark Fisher, Ilayaperumal Gopinathan, Gunnar Hillert, Mark Pollack, Patrick Peralta, Glenn Renfro, Thomas Risberg, Dave Syer, David Turanski, Janne Valkealahti

1.0.0.M1

Copyright © 2013-2015 Pivotal Software, Inc.

		Copies of this document may be made for your own use and for distribution to
		others, provided that you do not charge any fee for such copies and further
		provided that each copy contains this Copyright Notice, whether distributed in
		print or electronically.
	

Part I. Spring Cloud Data Flow Overview

This section provides a brief overview of the Spring Cloud Data Flow reference documentation. Think of
it as map for the rest of the document. You can read this reference guide in a linear
fashion, or you can skip sections if something doesn’t interest you.

Chapter 1. About the documentation

The Spring Cloud Data Flow reference guide is available as html,
pdf
and epub documents. The latest copy
is available at docs.spring.io/spring-cloud-dataflow/docs/current/reference.
Copies of this document may be made for your own use and for
distribution to others, provided that you do not charge any fee for such copies and
further provided that each copy contains this Copyright Notice, whether distributed in
print or electronically.
Chapter 2. Getting help

Having trouble with Spring Boot, We’d like to help!
	Try the How-to’s — they provide solutions to the most common
questions.
	Ask a question - we monitor stackoverflow.com for questions
tagged with spring-cloud.
	Report bugs with Spring Boot at github.com/spring-cloud/spring-cloud-dataflow/issues.

Note
All of Spring Cloud Data Flow is open source, including the documentation! If you find problems
with the docs; or if you just want to improve them, please get involved.

Chapter 3. Introducing Spring Cloud Data Flow

Spring Cloud Data Flow is a cloud native data framework that unifies stream and batch processing for data microservices, across the cloud or on-prem.
It allows developers to create, orchestrate and refactor data pipelines with a single programming model for common use cases
like data ingest, real time analytics, and data import/export.
Spring Cloud Data Flow defines the best practices for distributed stream and batch data processing.
Spring Cloud Data Flow is the cloud native redesign of Spring XD - a project that aimed to simplify Big Data application
development. This redesign allows running stream and batch applications as data microservices and they can independently
evolve in isolation.
Features

	Orchestrate applications across a variety of distributed runtime platforms including: Cloud Foundry, Lattice, and Apache YARN
	Separate runtime dependencies backed by ‘spring profiles’
	Consume stream and batch microservices as maven dependency and push it to production
	Develop using: DSL, Shell, REST-APIs, Admin-UI, and Flo
	Take advantage of metrics, health checks and remote management functionalities
	Scale stream and batch pipelines without interrupting data flows

Chapter 4. Spring Cloud Data Flow Architecture

The architecture for Spring Cloud Data Flow is separated into a number of distinct components.
Components

The Core
domain module includes the concept of a stream that is a composition of spring-cloud-stream
modules in a linear pipeline from a source to a sink, optionally including processor modules
in between. The domain also includes the concept of a task, which may be any process that does
not run indefinitely, including Spring Batch jobs.
The Module Registry
maintains the set of available modules, and their mappings to Maven coordinates.
The Module Deployer SPI provides the abstraction layer for deploying the modules of a given stream across a variety of runtime environments, including:
	Local
	Lattice
	Cloud Foundry
	Yarn

The Admin provides a REST API and UI. It is an executable Spring Boot application that is profile aware, so that the proper implementation of the Module Deployer SPI will be instantiated based on the environment within which the Admin application itself is running.
The Shell connects to the Admin’s REST API and supports a DSL that simplifies the process of defining a stream and managing its lifecycle.
Part II. Getting started

If you’re just getting started with Spring Cloud Data Flow, this is the section
for you! Here we answer the basic “what?”, “how?” and “why?” questions. You’ll
find a gentle introduction to Spring Cloud Data Flow along with installation instructions.
We’ll then build our first Spring Cloud Data Flow application, discussing some core principles as
we go.

Chapter 5. System Requirements

You need Java installed (Java 7 or better, we recommend Java 8) and to build you need to have Maven installed as well.
You also need to have Redis installed and running if you plan on running a local system.
Chapter 6. Building Spring Cloud Data Flow

Clone the GitHub repository:
git clone https://github.com/spring-cloud/spring-cloud-dataflow.git
Switch to the project directory:
cd spring-cloud-dataflow
Build the project:
mvn clean install -s .settings.xml
Chapter 7. Deploying Spring Cloud Data Flow

Deploying 'local'

	start Redis locally via redis-server
	download the Spring Cloud Data Flow Admin and Shell apps:

wget http://repo.spring.io/milestone/org/springframework/cloud/spring-cloud-dataflow-admin/1.0.0.M1/spring-cloud-dataflow-admin-1.0.0.M1.jar
wget http://repo.spring.io/milestone/org/springframework/cloud/spring-cloud-dataflow-shell/1.0.0.M1/spring-cloud-dataflow-shell-1.0.0.M1.jar
	launch the admin:

$ java -jar spring-cloud-dataflow-admin-1.0.0.M1.jar
	launch the shell:

$ java -jar spring-cloud-dataflow-shell-1.0.0.M1.jar
thus far, only the following commands are supported in the shell when running singlenode:
	stream list
	stream create
	stream deploy

Deploying on Lattice

	start Redis on Lattice (running as root):

ltc create redis redis -r
	launch the admin, with a mapping for port 9393 and extra memory (the default is 128MB):

ltc create admin springcloud/dataflow-admin -p 9393 -m 512
	launching the shell is the same as above, but once running must be
configured to point to the admin that is running on Lattice:

server-unknown:>admin config server http://admin.192.168.11.11.xip.io
Successfully targeted http://admin.192.168.11.11.xip.io
dataflow:>
all stream commands are supported in the shell when running on Lattice:
	stream list
	stream create
	stream deploy
	stream undeploy
	stream all undeploy
	stream destroy
	stream all destroy

Deploying on Cloud Foundry

Spring Cloud Data Flow can be used to deploy modules in a Cloud Foundry
environment. When doing so, the Admin application can either run itself on Cloud Foundry, or on another installation (e.g. a simple laptop).
The required configuration amounts to the same, and is merely related to providing credentials to the Cloud Foundry instance, so that the admin can spawn applications itself. Any Spring Boot compatible configuration mechanism can be used (passing program arguments, editing configuration files before building the application, using Spring Cloud Config, using environment variables, etc.), although although some may prove more adequate than others when running on Cloud Foundry.
	provision a redis service instance on Cloud Foundry.
Your mileage may vary depending on your Cloud Foundry installation. Use cf marketplace to discover which plans are available to you. For example when using Pivotal Web Services:

cf create-service rediscloud 30mb redis
	download the Spring Cloud Data Flow Admin and Shell apps:

wget http://repo.spring.io/milestone/org/springframework/cloud/spring-cloud-dataflow-admin/1.0.0.M1/spring-cloud-dataflow-admin-1.0.0.M1.jar
wget http://repo.spring.io/milestone/org/springframework/cloud/spring-cloud-dataflow-shell/1.0.0.M1/spring-cloud-dataflow-shell-1.0.0.M1.jar
3a. push the admin application on Cloud Foundry, configure it (see below) and start it
Note
You must use a unique name for your app that’s not already used by someone else or your deployment will fail

cf push s-c-dataflow-admin --no-start -p spring-cloud-dataflow-admin-1.0.0.M1.jar
cf bind-service s-c-dataflow-admin redis
Now we can configure the app. This configuration is for Pivotal Web Services. You need to fill in {org}, {space}, {email} and {password} before running these commands.
cf set-env s-c-dataflow-admin CLOUDFOUNDRY_API_ENDPOINT https://api.run.pivotal.io
cf set-env s-c-dataflow-admin CLOUDFOUNDRY_ORGANIZATION {org}
cf set-env s-c-dataflow-admin CLOUDFOUNDRY_SPACE {space}
cf set-env s-c-dataflow-admin CLOUDFOUNDRY_DOMAIN cfapps.io
cf set-env s-c-dataflow-admin CLOUDFOUNDRY_SERVICES redis
cf set-env s-c-dataflow-admin SECURITY_OAUTH2_CLIENT_USERNAME {email}
cf set-env s-c-dataflow-admin SECURITY_OAUTH2_CLIENT_PASSWORD {password}
cf set-env s-c-dataflow-admin SECURITY_OAUTH2_CLIENT_ACCESS_TOKEN_URI https://login.run.pivotal.io/oauth/token
cf set-env s-c-dataflow-admin SECURITY_OAUTH2_CLIENT_USER_AUTHORIZATION_URI https://login.run.pivotal.io/oauth/authorize
We are now ready to start the app.
cf start s-c-dataflow-admin
alternatively,
3b. run the admin application locally, targeting your Cloud Foundry installation (see below for configuration)
java -jar spring-cloud-dataflow-admin-1.0.0.M1.jar [--option1=value1] [--option2=value2] [etc.]
	run the shell and optionally target the Admin application if not running on the same host (will typically be the case if deployed on Cloud Foundry as 3a.)

$ java -jar spring-cloud-dataflow-shell-1.0.0.M1.jar
server-unknown:>admin config server http://s-c-dataflow-admin.cfapps.io
Successfully targeted http://s-c-dataflow-admin.cfapps.io
dataflow:>
At step 3., either running on Cloud Foundry or targeting Cloud Foundry, the following pieces of configuration must be provided, for example using cf env s-c-dataflow-admin CLOUDFOUNDRY_DOMAIN mydomain.cfapps.io (note the use of underscores) when running in Cloud Foundry
Default values cited after the equal sign.
Example values, typical for Pivotal Web Services, cited as a comment

url of the CF API (used when using cf login -a for example), e.g. https://api.run.pivotal.io
(for setting env var use CLOUDFOUNDRY_API_ENDPOINT)
cloudfoundry.apiEndpoint=

name of the organization that owns the space above, e.g. youruser-org
(for setting env var use CLOUDFOUNDRY_ORGANIZATION)
cloudfoundry.organization=

name of the space into which modules will be deployed
(for setting env var use CLOUDFOUNDRY_SPACE)
cloudfoundry.space=<same as admin when running on CF or 'development'>

the root domain to use when mapping routes, e.g. cfapps.io
(for setting env var use CLOUDFOUNDRY_DOMAIN)
cloudfoundry.domain=

Comma separated set of service instance names to bind to the module.
Amongst other things, this should include a service that will be used
for Spring Cloud Stream binding
(for setting env var use CLOUDFOUNDRY_SERVICES)
cloudfoundry.services=redis

url used for obtaining an OAuth2 token, e.g. https://uaa.run.pivotal.io/oauth/token
(for setting env var use SECURITY_OAUTH2_CLIENT_ACCESS_TOKEN_URI)
security.oauth2.client.access-token-uri=

url used to grant user authorizations, e.g. https://login.run.pivotal.io/oauth/authorize
(for setting env var use SECURITY_OAUTH2_CLIENT_USER_AUTHORIZATION_URI)
security.oauth2.client.user-authorization-uri=

username and password of the user to use to create apps (modules)
(for setting env var use SECURITY_OAUTH2_CLIENT_USERNAME and SECURITY_OAUTH2_CLIENT_PASSWORD)
security.oauth2.client.username=
security.oauth2.client.password=
Deploying on YARN

Currently the YARN configuration is set to use localhost, meaning this can only be run against a local cluster. Also, all commands shown here need to be run from the project root.
	download the Spring Cloud Data Flow YARN and Shell apps:

wget http://repo.spring.io/milestone/org/springframework/cloud/spring-cloud-dataflow-yarn-appmaster/1.0.0.M1/spring-cloud-dataflow-yarn-appmaster-1.0.0.M1.jar
wget http://repo.spring.io/milestone/org/springframework/cloud/spring-cloud-dataflow-yarn-container/1.0.0.M1/spring-cloud-dataflow-yarn-container-1.0.0.M1.jar
wget http://repo.spring.io/milestone/org/springframework/cloud/spring-cloud-dataflow-yarn-client/1.0.0.M1/spring-cloud-dataflow-yarn-client-1.0.0.M1.jar
wget http://repo.spring.io/milestone/org/springframework/cloud/spring-cloud-dataflow-admin/1.0.0.M1/spring-cloud-dataflow-admin-1.0.0.M1.jar
wget http://repo.spring.io/milestone/org/springframework/cloud/spring-cloud-dataflow-shell/1.0.0.M1/spring-cloud-dataflow-shell-1.0.0.M1.jar
	start Redis locally via redis-server

	optionally wipe existing data on hdfs

$ hdfs dfs -rm -R /app/app
	start spring-cloud-dataflow-admin with yarn profile

$ java -Dspring.profiles.active=yarn -jar spring-cloud-dataflow-admin-1.0.0.M1.jar
	start spring-cloud-dataflow-shell

$ java -jar spring-cloud-dataflow-shell-1.0.0.M1.jar

dataflow:>stream create --name "ticktock" --definition "time --fixedDelay=5|log" --deploy

dataflow:>stream list
 Stream Name Stream Definition Status
 ----------- ----------------------- --------
 ticktock time --fixedDelay=5|log deployed

dataflow:>stream destroy --name "ticktock"
Destroyed stream 'ticktock'
YARN application is pushed and started automatically during a stream deployment process. This application instance is not automatically closed which can be done from CLI:
$ java -jar spring-cloud-dataflow-yarn-client-1.0.0.M1.jar shell
Spring YARN Cli (v2.3.0.M2)
Hit TAB to complete. Type 'help' and hit RETURN for help, and 'exit' to quit.

$ submitted
 APPLICATION ID USER NAME QUEUE TYPE STARTTIME FINISHTIME STATE FINALSTATUS ORIGINAL TRACKING URL
 ------------------------------ ------------ ---------------------------------- ------- -------- -------------- ---------- ------- ----------- --------------------------
 application_1439803106751_0088 jvalkealahti spring-cloud-dataflow-yarn-app_app default DATAFLOW 01/09/15 09:02 N/A RUNNING UNDEFINED http://192.168.122.1:48913

$ shutdown -a application_1439803106751_0088
shutdown requested
Properties dataflow.yarn.app.appmaster.path and dataflow.yarn.app.container.path can be used with both spring-cloud-dataflow-admin and and spring-cloud-dataflow-yarn-client to define directory for appmaster and container jars. Values for those default to . which then assumes all needed jars are in a same working directory.
Part III. Spring Cloud Stream Overview

This section goes into more detail about how you can work with Spring Cloud Stream. It covers topics
such as creating and running stream modules.
If you’re just starting out with Spring Cloud Data Flow, you should probably read the
Getting Started guide before diving into
this section.

Chapter 8. Introducing Spring Cloud Stream

The Spring Cloud Stream project allows a user to develop and run messaging microservices using Spring Integration and run them locally, or in the cloud, or even on Spring XD. Just add @EnableBinding and run your app as a Spring Boot app (single application context). You just need to connect to the physical broker for the bindings, which is automatic if the relevant binder implementation is available on the classpath. The sample uses Redis.
Here’s a sample source module (output channel only):
@SpringBootApplication
@ComponentScan(basePackageClasses=TimerSource.class)
public class ModuleApplication {

 public static void main(String[] args) {
 SpringApplication.run(ModuleApplication.class, args);
 }

}

@Configuration
@EnableBinding(Source.class)
public class TimerSource {

 @Value("${format}")
 private String format;

 @Bean
 @InboundChannelAdapter(value = Source.OUTPUT, poller = @Poller(fixedDelay = "${fixedDelay}", maxMessagesPerPoll = "1"))
 public MessageSource<String> timerMessageSource() {
 return () -> new GenericMessage<>(new SimpleDateFormat(format).format(new Date()));
 }

}
@EnableBinding is parameterized by an interface (in this case Source) which declares input and output channels. Source, Sink and Processor are provided off the shelf, but you can define others. Here’s the definition of Source:
public interface Source {
 @Output("output")
 MessageChannel output();
}
The @Output annotation is used to identify output channels (messages leaving the module) and @Input is used to identify input channels (messages entering the module). It is optionally parameterized by a channel name - if the name is not provided the method name is used instead. An implementation of the interface is created for you and can be used in the application context by autowiring it, e.g. into a test case:
@RunWith(SpringJUnit4ClassRunner.class)
@SpringApplicationConfiguration(classes = ModuleApplication.class)
@WebAppConfiguration
@DirtiesContext
public class ModuleApplicationTests {

	@Autowired
	private Source source

	@Test
	public void contextLoads() {
		assertNotNull(this.source.output());
	}

}
Note
In this case there is only one Source in the application context so there is no need to qualify it when it is autowired. If there is ambiguity, e.g. if you are composing one module from some others, you can use @Bindings qualifier to inject a specific channel set. The @Bindings qualifier takes a parameter which is the class that carries the @EnableBinding annotation (in this case the TimerSource).

Multiple Input or Output Channels

A module can have multiple input or output channels all defined either as @Input and @Output methods in an interface (preferrable) or as bean definitions. Instead of just one channel named "input" or "output" you can add multiple MessageChannel methods annotated @Input or @Output and the names are converted to external channel names on the broker. The external channel names can be specified as properties that consist of the channel names prefixed with spring.cloud.stream.bindings (e.g. spring.cloud.stream.bindings.input or spring.cloud.stream.bindings.output). External channel names can have a channel type as a colon-separated prefix, and the semantics of the external bus channel changes accordingly. For example, you can have two MessageChannels called "output" and "foo" in a module with spring.cloud.stream.bindings.output=bar and spring.cloud.stream.bindings.foo=topic:foo, and the result is 2 external channels called "bar" and "topic:foo".
Samples

There are several samples, all running on the redis transport (so you need redis running locally to test them).
Note
The main set of samples are "vanilla" in the sense that they are not deployable as XD modules by the current generation (1.x) of XD. You can still interact with an XD system using the appropriate naming convention for input and output channel names (<stream>.<index> format).

	source is a Java config version of the classic "timer" module from Spring XD. It has a "fixedDelay" option (in milliseconds) for the period between emitting messages.
	sink is a Java config version of the classic "log" module from Spring XD. It has no options (but some could easily be added), and just logs incoming messages at INFO level.
	transform is a simple pass through logging transformer (just logs the incoming message and passes it on).
	double is a combination of 2 modules defined locally (a source and a sink, so the whole app is self contained).
	extended is a multi-module mashup of source | transform | transform | sink, where the modules are defined in the other samples and referred to in this app just as dependencies.

If you run the source and the sink and point them at the same redis instance (e.g. do nothing to get the one on localhost, or the one they are both bound to as a service on Cloud Foundry) then they will form a "stream" and start talking to each other. All the samples have friendly JMX and Actuator endpoints for inspecting what is going on in the system.
Module or App

Code using this library can be deployed as a standalone app or as an XD module. In standalone mode you app will run happily as a service or in any PaaS (Cloud Foundry, Lattice, Heroku, Azure, etc.). Depending on whether your main aim is to develop an XD module and you just want to test it locally using the standalone mode, or if the ultimate goal is a standalone app, there are some things that you might do differently.
Fat JAR

You can run in standalone mode from your IDE for testing. To run in production you can create an executable (or "fat") JAR using the standard Spring Boot tooling.
Making Standalone Modules Talk to Each Other

The [input,output]ChannelName are used to create physical endpoints in the external broker (e.g. queue.<channelName> in Redis).
For an XD module the channel names are <group>.<index> and a source (output only) has index=0 (the default) and downstream modules have the same group but incremented index, with a sink module (input only) having the highest index. To listen to the output from a running XD module, just use the same "group" name and an index 1 larger than the app before it in the chain.
Note: since the same naming conventions are used in XD, you can steal messages from or send messages to an existing XD stream by copying the stream name (to spring.cloud.streams.group) and knowing the index of the XD module you want to interact with.

Part IV. Using Spring Cloud Stream Modules

This section dives into the details of using the modules from Spring Cloud Stream Modules with Spring Cloud Data Flow.

Chapter 9. Sources

FTP (ftp)

This source module supports transfer of files using the FTP protocol.
Files are transferred from the remote directory to the local directory where the module is deployed.
Messages emitted by the source are provided as a byte array by default. However, this can be
customized using the --mode option:
	ref Provides a java.io.File reference
	lines Will split files line-by-line and emit a new message for each line
	contents The default. Provides the contents of a file as a byte array

When using --mode=lines, you can also provide the additional option --withMarkers=true.
If set to true, the underlying FileSplitter will emit additional start-of-file and end-of-file marker messages before and after the actual data.
The payload of these 2 additional marker messages is of type FileSplitter.FileMarker. The option withMarkers defaults to false if not explicitly set.
Options

The ftp source has the following options:
	autoCreateLocalDir
	local directory must be auto created if it does not exist (boolean, default: true)
	clientMode
	client mode to use : 2 for passive mode and 0 for active mode (int, default: 0)
	deleteRemoteFiles
	delete remote files after transfer (boolean, default: false)
	filenamePattern
	simple filename pattern to apply to the filter (String, default: *)
	fixedDelay
	the rate at which to poll the remote directory (int, default: 1)
	host
	the host name for the FTP server (String, default: localhost)
	initialDelay
	an initial delay when using a fixed delay trigger, expressed in TimeUnits (seconds by default) (int, default: 0)
	localDir
	set the local directory the remote files are transferred to (String, default: /tmp/xd/ftp)
	maxMessages
	the maximum messages per poll; -1 for unlimited (long, default: -1)
	mode
	specifies how the file is being read. By default the content of a file is provided as byte array (FileReadingMode, default: contents, possible values: ref,lines,contents)
	password
	the password for the FTP connection (Password, no default)
	port
	the port for the FTP server (int, default: 21)
	preserveTimestamp
	whether to preserve the timestamp of files retrieved (boolean, default: true)
	remoteDir
	the remote directory to transfer the files from (String, default: /)
	remoteFileSeparator
	file separator to use on the remote side (String, default: /)
	timeUnit
	the time unit for the fixed and initial delays (String, default: SECONDS)
	tmpFileSuffix
	extension to use when downloading files (String, default: .tmp)
	username
	the username for the FTP connection (String, no default)
	withMarkers
	if true emits start of file/end of file marker messages before/after the data. Only valid with FileReadingMode 'lines' (Boolean, no default)

HTTP (http)

A source module that listens for HTTP requests and emits the body as a message payload.
If the Content-Type matches 'text/*' or 'application/json', the payload will be a String,
otherwise the payload will be a byte array.
To create a stream definition in the server using the XD shell
dataflow:> stream create --name httptest --definition "http | log" --deploy
Post some data to the http server on the default port of 9000
dataflow:> http post --target http://localhost:9000 --data "hello world"
See if the data ended up in the log.
Time (time)

The time source will simply emit a String with the current time every so often.
The time source has the following options:
	fixedDelay
	time delay between messages, expressed in TimeUnits (seconds by default) (int, default: 1)
	format
	how to render the current time, using SimpleDateFormat (String, default: yyyy-MM-dd HH:mm:ss)
	initialDelay
	an initial delay when using a fixed delay trigger, expressed in TimeUnits (seconds by default) (int, default: 0)
	timeUnit
	the time unit for the fixed and initial delays (String, default: SECONDS)

Twitter Stream (twitterstream)

This source ingests data from Twitter’s streaming API v1.1. It uses the sample and filter stream endpoints rather than the full "firehose" which needs special access. The endpoint used will depend on the parameters you supply in the stream definition (some are specific to the filter endpoint).
You need to supply all keys and secrets (both consumer and accessToken) to authenticate for this source, so it is easiest if you just add these as the following environment variables: CONSUMER_KEY, CONSUMER_SECRET, ACCESS_TOKEN and ACCESS_TOKEN_SECRET.
Stream creation is then straightforward:
dataflow:> stream create --name tweets --definition "twitterstream | log" --deploy
The twitterstream source has the following options:
	accessToken
	a valid OAuth access token (String, no default)
	accessTokenSecret
	an OAuth secret corresponding to the access token (String, no default)
	consumerKey
	a consumer key issued by twitter (String, no default)
	consumerSecret
	consumer secret corresponding to the consumer key (String, no default)
	language
	language code e.g. 'en' (String, default: ``)

Note
twittersearch emit JSON in the native Twitter format.

Chapter 10. Processors

Filter (filter)

Use the filter module in a stream to determine whether a Message should be passed to the output channel.
The filter processor has the following options:
	expression
	a SpEL expression used to transform messages (String, default: payload.toString())

Filter with SpEL expression

The simplest way to use the filter processor is to pass a SpEL expression when creating the stream. The expression should evaluate the message and return true or false. For example:
dataflow:> stream create --name filtertest --definition "http | filter --expression=payload=='good' | log" --deploy
This filter will only pass Messages to the log sink if the payload is the word "good". Try sending "good" to the HTTP endpoint and you should see it in the XD log:
dataflow:> http post --target http://localhost:9000 --data "good"
Alternatively, if you send the word "bad" (or anything else), you shouldn’t see the log entry.
groovy-filter

A Processor module that retains or discards messages according to a predicate, expressed as a Groovy script.
The groovy-filter processor has the following options:
	script
	The script resource location (String, default: ``)
	variables
	Variable bindings as a comma delimited string of name-value pairs, e.g. 'foo=bar,baz=car' (String, default: ``)
	variablesLocation
	The location of a properties file containing custom script variable bindings (String, default: ``)

groovy-transform

A Processor module that transforms messages using a Groovy script.
The groovy-filter processor has the following options:
	script
	The script resource location (String, default: ``)
	variables
	Variable bindings as a comma delimited string of name-value pairs, e.g. 'foo=bar,baz=car' (String, default: ``)
	variablesLocation
	The location of a properties file containing custom script variable bindings (String, default: ``)

Transform (transform)

Use the transform module in a stream to convert a Message’s content or structure.
The transform processor has the following options:
	expression
	a SpEL expression used to transform messages (String, default: payload.toString())

Transform with SpEL expression

The simplest way to use the transform processor is to pass a SpEL expression when creating the stream. The expression should return the modified message or payload. For example:
dataflow:> stream create --name transformtest --definition "http --port=9003 | transform --expression=payload.toUpperCase() | log" --deploy
This transform will convert all message payloads to upper case. If sending the word "foo" to the HTTP endpoint and you should see "FOO" in the XD log:
dataflow:> http post --target http://localhost:9003 --data "foo"
As part of the SpEL expression you can make use of the pre-registered JSON Path function. The syntax is #jsonPath(payload,'<json path expression>')
Chapter 11. Sinks

Counter (counter)

A simple module that counts messages received, using Spring Boot metrics abstraction.
The counter sink has the following options:
	name
	The name of the counter to increment. (String, default: counts)
	nameExpression
	A SpEL expression (against the incoming Message) to derive the name of the counter to increment. (String, default: ``)
	store
	The name of a store used to store the counter. (String, default: memory, possible values: memory, redis)

Hadoop (HDFS) (hdfs)

If you do not have Hadoop installed, you can install Hadoop as described in our separate guide. Spring XD supports 4 Hadoop distributions, see using Hadoop for more information on how to start Spring XD to target a specific distribution.
Once Hadoop is up and running, you can then use the hdfs sink when creating a stream
dataflow:> stream create --name myhdfsstream1 --definition "time | hdfs" --deploy
In the above example, we’ve scheduled time source to automatically send ticks to hdfs once in every second. If you wait a little while for data to accumuluate you can then list can then list the files in the hadoop filesystem using the shell’s built in hadoop fs commands. Before making any access to HDFS in the shell you first need to configure the shell to point to your name node. This is done using the hadoop config command.
dataflow:>hadoop config fs --namenode hdfs://localhost:8020
In this example the hdfs protocol is used but you may also use the webhdfs protocol. Listing the contents in the output directory (named by default after the stream name) is done by issuing the following command.
dataflow:>hadoop fs ls /xd/myhdfsstream1
Found 1 items
-rw-r--r-- 3 jvalkealahti supergroup 0 2013-12-18 18:10 /xd/myhdfsstream1/myhdfsstream1-0.txt.tmp
While the file is being written to it will have the tmp suffix. When the data written exceeds the rollover size (default 1GB) it will be renamed to remove the tmp suffix. There are several options to control the in use file file naming options. These are --inUsePrefix and --inUseSuffix set the file name prefix and suffix respectfully.
When you destroy a stream
dataflow:>stream destroy --name myhdfsstream1
and list the stream directory again, in use file suffix doesn’t exist anymore.
dataflow:>hadoop fs ls /xd/myhdfsstream1
Found 1 items
-rw-r--r-- 3 jvalkealahti supergroup 380 2013-12-18 18:10 /xd/myhdfsstream1/myhdfsstream1-0.txt
To list the list the contents of a file directly from a shell execute the hadoop cat command.
dataflow:> hadoop fs cat /xd/myhdfsstream1/myhdfsstream1-0.txt
2013-12-18 18:10:07
2013-12-18 18:10:08
2013-12-18 18:10:09
...
In the above examples we didn’t yet go through why the file was written in a specific directory and why it was named in this specific way. Default location of a file is defined as /xd/<stream name>/<stream name>-<rolling part>.txt. These can be changed using options --directory and --fileName respectively. Example is shown below.
dataflow:>stream create --name myhdfsstream2 --definition "time | hdfs --directory=/xd/tmp --fileName=data" --deploy
dataflow:>stream destroy --name myhdfsstream2
dataflow:>hadoop fs ls /xd/tmp
Found 1 items
-rw-r--r-- 3 jvalkealahti supergroup 120 2013-12-18 18:31 /xd/tmp/data-0.txt
It is also possible to control the size of a files written into HDFS. The --rollover option can be used to control when file currently being written is rolled over and a new file opened by providing the rollover size in bytes, kilobytes, megatypes, gigabytes, and terabytes.
dataflow:>stream create --name myhdfsstream3 --definition "time | hdfs --rollover=100" --deploy
dataflow:>stream destroy --name myhdfsstream3
dataflow:>hadoop fs ls /xd/myhdfsstream3
Found 3 items
-rw-r--r-- 3 jvalkealahti supergroup 100 2013-12-18 18:41 /xd/myhdfsstream3/myhdfsstream3-0.txt
-rw-r--r-- 3 jvalkealahti supergroup 100 2013-12-18 18:41 /xd/myhdfsstream3/myhdfsstream3-1.txt
-rw-r--r-- 3 jvalkealahti supergroup 100 2013-12-18 18:41 /xd/myhdfsstream3/myhdfsstream3-2.txt
Shortcuts to specify sizes other than bytes are written as --rollover=64M, --rollover=512G or --rollover=1T.
The stream can also be compressed during the write operation. Example of this is shown below.
dataflow:>stream create --name myhdfsstream4 --definition "time | hdfs --codec=gzip" --deploy
dataflow:>stream destroy --name myhdfsstream4
dataflow:>hadoop fs ls /xd/myhdfsstream4
Found 1 items
-rw-r--r-- 3 jvalkealahti supergroup 80 2013-12-18 18:48 /xd/myhdfsstream4/myhdfsstream4-0.txt.gzip
From a native os shell we can use hadoop’s fs commands and pipe data into gunzip.
bin/hadoop fs -cat /xd/myhdfsstream4/myhdfsstream4-0.txt.gzip | gunzip
2013-12-18 18:48:10
2013-12-18 18:48:11
...
Often a stream of data may not have a high enough rate to roll over files frequently, leaving the file in an opened state. This prevents users from reading a consistent set of data when running mapreduce jobs. While one can alleviate this problem by using a small rollover value, a better way is to use the idleTimeout option that will automatically close the file if there was no writes during the specified period of time. This feature is also useful in cases where burst of data is written into a stream and you’d like that data to become visible in HDFS.
Note
The idleTimeout value should not exceed the timeout values set on the Hadoop cluster. These are typically configured using the dfs.socket.timeout and/or dfs.datanode.socket.write.timeout properties in the hdfs-site.xml configuration file.

dataflow:> stream create --name myhdfsstream5 --definition "http --port=8000 | hdfs --rollover=20 --idleTimeout=10000" --deploy
In the above example we changed a source to http order to control what we write into a hdfs sink. We defined a small rollover size and a timeout of 10 seconds. Now we can simply post data into this stream via source end point using a below command.
dataflow:> http post --target http://localhost:8000 --data "hello"
If we repeat the command very quickly and then wait for the timeout we should be able to see that some files are closed before rollover size was met and some were simply rolled because of a rollover size.
dataflow:>hadoop fs ls /xd/myhdfsstream5
Found 4 items
-rw-r--r-- 3 jvalkealahti supergroup 12 2013-12-18 19:02 /xd/myhdfsstream5/myhdfsstream5-0.txt
-rw-r--r-- 3 jvalkealahti supergroup 24 2013-12-18 19:03 /xd/myhdfsstream5/myhdfsstream5-1.txt
-rw-r--r-- 3 jvalkealahti supergroup 24 2013-12-18 19:03 /xd/myhdfsstream5/myhdfsstream5-2.txt
-rw-r--r-- 3 jvalkealahti supergroup 18 2013-12-18 19:03 /xd/myhdfsstream5/myhdfsstream5-3.txt
Files can be automatically partitioned using a partitionPath expression. If we create a stream with idleTimeout and partitionPath with simple format yyyy/MM/dd/HH/mm we should see writes ending into its own files within every minute boundary.
dataflow:>stream create --name myhdfsstream6 --definition "time|hdfs --idleTimeout=10000 --partitionPath=dateFormat('yyyy/MM/dd/HH/mm')" --deploy
Let a stream run for a short period of time and list files.
dataflow:>hadoop fs ls --recursive true --dir /xd/myhdfsstream6
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 09:42 /xd/myhdfsstream6/2014
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 09:42 /xd/myhdfsstream6/2014/05
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 09:42 /xd/myhdfsstream6/2014/05/28
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 09:45 /xd/myhdfsstream6/2014/05/28/09
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 09:43 /xd/myhdfsstream6/2014/05/28/09/42
-rw-r--r-- 3 jvalkealahti supergroup 140 2014-05-28 09:43 /xd/myhdfsstream6/2014/05/28/09/42/myhdfsstream6-0.txt
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 09:44 /xd/myhdfsstream6/2014/05/28/09/43
-rw-r--r-- 3 jvalkealahti supergroup 1200 2014-05-28 09:44 /xd/myhdfsstream6/2014/05/28/09/43/myhdfsstream6-0.txt
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 09:45 /xd/myhdfsstream6/2014/05/28/09/44
-rw-r--r-- 3 jvalkealahti supergroup 1200 2014-05-28 09:45 /xd/myhdfsstream6/2014/05/28/09/44/myhdfsstream6-0.txt
Partitioning can also be based on defined lists. In a below example we simulate feeding data by using a time and a transform elements. Data passed to hdfs sink has a content APP0:foobar, APP1:foobar, APP2:foobar or APP3:foobar.
dataflow:>stream create --name myhdfsstream7 --definition "time | transform --expression=\"'APP'+T(Math).round(T(Math).random()*3)+':foobar'\" | hdfs --idleTimeout=10000 --partitionPath=path(dateFormat('yyyy/MM/dd/HH'),list(payload.split(':')[0],{{'0TO1','APP0','APP1'},{'2TO3','APP2','APP3'}}))" --deploy
Let the stream run few seconds, destroy it and check what got written in those partitioned files.
dataflow:>stream destroy --name myhdfsstream7
Destroyed stream 'myhdfsstream7'
dataflow:>hadoop fs ls --recursive true --dir /xd
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:24 /xd/myhdfsstream7
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:24 /xd/myhdfsstream7/2014
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:24 /xd/myhdfsstream7/2014/05
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:24 /xd/myhdfsstream7/2014/05/28
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:24 /xd/myhdfsstream7/2014/05/28/19
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:24 /xd/myhdfsstream7/2014/05/28/19/0TO1_list
-rw-r--r-- 3 jvalkealahti supergroup 108 2014-05-28 19:24 /xd/myhdfsstream7/2014/05/28/19/0TO1_list/myhdfsstream7-0.txt
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:24 /xd/myhdfsstream7/2014/05/28/19/2TO3_list
-rw-r--r-- 3 jvalkealahti supergroup 180 2014-05-28 19:24 /xd/myhdfsstream7/2014/05/28/19/2TO3_list/myhdfsstream7-0.txt
dataflow:>hadoop fs cat /xd/myhdfsstream7/2014/05/28/19/0TO1_list/myhdfsstream7-0.txt
APP1:foobar
APP1:foobar
APP0:foobar
APP0:foobar
APP1:foobar
Partitioning can also be based on defined ranges. In a below example we simulate feeding data by using a time and a transform elements. Data passed to hdfs sink has a content ranging from APP0 to APP15. We simple parse the number part and use it to do a partition with ranges {3,5,10}.
dataflow:>stream create --name myhdfsstream8 --definition "time | transform --expression=\"'APP'+T(Math).round(T(Math).random()*15)\" | hdfs --idleTimeout=10000 --partitionPath=path(dateFormat('yyyy/MM/dd/HH'),range(T(Integer).parseInt(payload.substring(3)),{3,5,10}))" --deploy
Let the stream run few seconds, destroy it and check what got written in those partitioned files.
dataflow:>stream destroy --name myhdfsstream8
Destroyed stream 'myhdfsstream8'
dataflow:>hadoop fs ls --recursive true --dir /xd
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:34 /xd/myhdfsstream8
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:34 /xd/myhdfsstream8/2014
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:34 /xd/myhdfsstream8/2014/05
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:34 /xd/myhdfsstream8/2014/05/28
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:34 /xd/myhdfsstream8/2014/05/28/19
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:34 /xd/myhdfsstream8/2014/05/28/19/10_range
-rw-r--r-- 3 jvalkealahti supergroup 16 2014-05-28 19:34 /xd/myhdfsstream8/2014/05/28/19/10_range/myhdfsstream8-0.txt
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:34 /xd/myhdfsstream8/2014/05/28/19/3_range
-rw-r--r-- 3 jvalkealahti supergroup 35 2014-05-28 19:34 /xd/myhdfsstream8/2014/05/28/19/3_range/myhdfsstream8-0.txt
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:34 /xd/myhdfsstream8/2014/05/28/19/5_range
-rw-r--r-- 3 jvalkealahti supergroup 5 2014-05-28 19:34 /xd/myhdfsstream8/2014/05/28/19/5_range/myhdfsstream8-0.txt
dataflow:>hadoop fs cat /xd/myhdfsstream8/2014/05/28/19/3_range/myhdfsstream8-0.txt
APP3
APP3
APP1
APP0
APP1
dataflow:>hadoop fs cat /xd/myhdfsstream8/2014/05/28/19/5_range/myhdfsstream8-0.txt
APP4
dataflow:>hadoop fs cat /xd/myhdfsstream8/2014/05/28/19/10_range/myhdfsstream8-0.txt
APP6
APP15
APP7
Partition using a dateFormat can be based on content itself. This is a good use case if old log files needs to be processed where partitioning should happen based on timestamp of a log entry. We create a fake log data with a simple date string ranging from 1970-01-10 to 1970-01-13.
dataflow:>stream create --name myhdfsstream9 --definition "time | transform --expression=\"'1970-01-'+1+T(Math).round(T(Math).random()*3)\" | hdfs --idleTimeout=10000 --partitionPath=path(dateFormat('yyyy/MM/dd/HH',payload,'yyyy-MM-DD'))" --deploy
Let the stream run few seconds, destroy it and check what got written in those partitioned files. If you see the partition paths, those are based on year 1970, not present year.
dataflow:>stream destroy --name myhdfsstream9
Destroyed stream 'myhdfsstream9'
dataflow:>hadoop fs ls --recursive true --dir /xd
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:56 /xd/myhdfsstream9
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:56 /xd/myhdfsstream9/1970
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:56 /xd/myhdfsstream9/1970/01
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:56 /xd/myhdfsstream9/1970/01/10
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:57 /xd/myhdfsstream9/1970/01/10/00
-rw-r--r-- 3 jvalkealahti supergroup 44 2014-05-28 19:57 /xd/myhdfsstream9/1970/01/10/00/myhdfsstream9-0.txt
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:56 /xd/myhdfsstream9/1970/01/11
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:57 /xd/myhdfsstream9/1970/01/11/00
-rw-r--r-- 3 jvalkealahti supergroup 99 2014-05-28 19:57 /xd/myhdfsstream9/1970/01/11/00/myhdfsstream9-0.txt
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:56 /xd/myhdfsstream9/1970/01/12
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:57 /xd/myhdfsstream9/1970/01/12/00
-rw-r--r-- 3 jvalkealahti supergroup 44 2014-05-28 19:57 /xd/myhdfsstream9/1970/01/12/00/myhdfsstream9-0.txt
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:56 /xd/myhdfsstream9/1970/01/13
drwxr-xr-x - jvalkealahti supergroup 0 2014-05-28 19:57 /xd/myhdfsstream9/1970/01/13/00
-rw-r--r-- 3 jvalkealahti supergroup 55 2014-05-28 19:57 /xd/myhdfsstream9/1970/01/13/00/myhdfsstream9-0.txt
dataflow:>hadoop fs cat /xd/myhdfsstream9/1970/01/10/00/myhdfsstream9-0.txt
1970-01-10
1970-01-10
1970-01-10
1970-01-10
Options

The hdfs sink has the following options:
	closeTimeout
	timeout in ms, regardless of activity, after which file will be automatically closed (long, default: 0)
	codec
	compression codec alias name (gzip, snappy, bzip2, lzo, or slzo) (String, default: ``)
	directory
	where to output the files in the Hadoop FileSystem (String, default: /tmp/hdfs-sink)
	fileExtension
	the base filename extension to use for the created files (String, default: txt)
	fileName
	the base filename to use for the created files (String, default: <stream name>)
	fileOpenAttempts
	maximum number of file open attempts to find a path (int, default: 10)
	fileUuid
	whether file name should contain uuid (boolean, default: false)
	fsUri
	the URI to use to access the Hadoop FileSystem (String, default: ${spring.hadoop.fsUri})
	idleTimeout
	inactivity timeout in ms after which file will be automatically closed (long, default: 0)
	inUsePrefix
	prefix for files currently being written (String, default: ``)
	inUseSuffix
	suffix for files currently being written (String, default: .tmp)
	overwrite
	whether writer is allowed to overwrite files in Hadoop FileSystem (boolean, default: false)
	partitionPath
	a SpEL expression defining the partition path (String, default: ``)
	rollover
	threshold in bytes when file will be automatically rolled over (String, default: 1G)

Note
In the context of the fileOpenAttempts option, attempt is either one rollover request or failed stream open request for a path (if another writer came up with a same path and already opened it).

Partition Path Expression

SpEL expression is evaluated against a Spring Messaging Message passed internally into a HDFS writer. This allows expression to use headers and payload from that message. While you could do a custom processing within a stream and add custom headers, timestamp is always going to be there. Data to be written is then available in a payload.
Accessing Properties

Using a payload simply returns whatever is currently being written. Access to headers is via headers property. Any other property is automatically resolved from headers if found. For example headers.timestamp is equivalent to timestamp.
Custom Methods

Addition to a normal SpEL functionality, few custom methods has been added to make it easier to build partition paths. These custom methods can be used to work with a normal partition concepts like date formatting, lists, ranges and hashes.
path

path(String... paths)
Concatenates paths together with a delimiter /. This method can be used to make the expression less verbose than using a native SpEL functionality to combine path parts together. To create a path part1/part2, expression 'part1' + '/' + 'part2' is equivalent to path('part1','part2').
Parameters
	paths
	Any number of path parts

Return Value. Concatenated value of paths delimited with /.
dateFormat

dateFormat(String pattern)
dateFormat(String pattern, Long epoch)
dateFormat(String pattern, Date date)
dateFormat(String pattern, String datestring)
dateFormat(String pattern, String datestring, String dateformat)
Creates a path using date formatting. Internally this method delegates into SimpleDateFormat and needs a Date and a pattern. On default if no parameter used for conversion is given, timestamp is expected. Effectively dateFormat('yyyy') equals to dateFormat('yyyy', timestamp) or dateFormat('yyyy', headers.timestamp).
Method signature with three parameters can be used to create a custom Date object which is then passed to SimpleDateFormat conversion using a dateformat pattern. This is useful in use cases where partition should be based on a date or time string found from a payload content itself. Default dateformat pattern if omitted is yyyy-MM-dd.
Parameters
	pattern
	Pattern compatible with SimpleDateFormat to produce a final output.
	epoch
	Timestamp as Long which is converted into a Date.
	date
	A Date to be formatted.
	dateformat
	Secondary pattern to convert datestring into a Date.
	datestring
	Date as a String

Return Value. A path part representation which can be a simple file or directory name or a directory structure.
list

list(Object source, List<List<Object>> lists)
Creates a partition path part by matching a source against a lists denoted by lists.
Lets assume that data is being written and it’s possible to extrace an appid either from headers or payload. We can automatically do a list based partition by using a partition method list(headers.appid,{{'1TO3','APP1','APP2','APP3'},{'4TO6','APP4','APP5','APP6'}}). This method would create three partitions, 1TO3_list, 4TO6_list and list. Latter is used if no match is found from partition lists passed to lists.
Parameters
	source
	An Object to be matched against lists.
	lists
	A definition of list of lists.

Return Value. A path part prefixed with a matched key i.e. XXX_list or list if no match.
range

range(Object source, List<Object> list)
Creates a partition path part by matching a source against a list denoted by list using a simple binary search.
The partition method takes a source as first argument and list as a second argument. Behind the scenes this is using jvm’s binarySearch which works on an Object level so we can pass in anything. Remember that meaningful range match only works if passed in Object and types in list are of same type like Integer. Range is defined by a binarySearch itself so mostly it is to match against an upper bound except the last range in a list. Having a list of {1000,3000,5000} means that everything above 3000 will be matched with 5000. If that is an issue then simply adding Integer.MAX_VALUE as last range would overflow everything above 5000 into a new partition. Created partitions would then be 1000_range, 3000_range and 5000_range.
Parameters
	source
	An Object to be matched against list.
	list
	A definition of list.

Return Value. A path part prefixed with a matched key i.e. XXX_range.
hash

hash(Object source, int bucketcount)
Creates a partition path part by calculating hashkey using source`s hashCode and bucketcount. Using a partition method hash(timestamp,2) would then create partitions named 0_hash, 1_hash and 2_hash. Number suffixed with _hash is simply calculated using Object.hashCode() % bucketcount.
Parameters
	source
	An Object which hashCode will be used.
	bucketcount
	A number of buckets

Return Value. A path part prefixed with a hash key i.e. XXX_hash.
Log (log)

Probably the simplest option for a sink is just to log the data. The log sink uses the application logger to output the data for inspection. The log level is set to WARN and the logger name is created from the stream name. To create a stream using a log sink you would use a command like
dataflow:> stream create --name mylogstream --definition "http --port=8000 | log" --deploy
You can then try adding some data. We’ve used the http source on port 8000 here, so run the following command to send a message
dataflow:> http post --target http://localhost:8000 --data "hello"
and you should see the following output in the XD container console.
13/06/07 16:12:18 INFO Received: hello
Redis (redis)

Redis sink can be used to ingest data into redis store. You can choose queue, topic or key with selcted collection type to point to a specific data store.
For example,
dataflow:>stream create store-into-redis --definition "http | redis --queue=myList" --deploy
dataflow:>Created and deployed new stream 'store-into-redis'
Options

The redis sink has the following options:
	topicExpression
	a SpEL expression to use for topic (String, no default)
	queueExpression
	a SpEL expression to use for queue (String, no default)
	keyExpression
	a SpEL expression to use for keyExpression (String, no default)
	key
	name for the key (String, no default)
	queue
	name for the queue (String, no default)
	topic
	name for the topic (String, no default)

Chapter 12. Tasks

Timestamp (timestamp)

Executes a batch job that logs a timestamp.
The timestamp task has the following options:
	format
	The timestamp format (String, default: yyyy-MM-dd HH:mm:ss.SSS)

