Spring Cloud Skipper Reference Guide

Mark Pollack, Ilayaperumal Gopinathan, Janne Valkealahti, Gunnar Hillert,
Sabby Anandan, Vinicius Carvalho, Jay Bryant

Table of Contents

Preface
1. About the Documentation
2. Getting Help
Spring Cloud Skipper Overview
3. Features
4. Concepts
Getting Started
5. System Requirements
6. Installing Skipper
7. A Three-second Tour
Three minute Tour
8. Local Machine
9. Cloud Foundry
10. Kuberenetes
11. CF manifest based deployments
Using Skipper
12. Skipper Shell
12.1. Shell Modes
13. Platforms
14. Packages
14.1. Package Format
14.1.1. Single Application
14.1.2. Multiple Applications
14.2. Package Metadata
14.3. Package Templates
14.3.1. Spring Cloud Deployer
14.3.2. Cloud Foundry
14.3.3. Resources
HTTP Resources
Docker Resources
Maven Resources
14.4. Package Values
14.5. Package Upload
14.6. Creating Your Own Package
15. Repositories
Installation
16. Installing on a Local Platform
16.1. Local Platform configuration

© 00 J O U1 b W N

A OO OO0 O OO0 O 1 U1 1 U1 U1 U1 U1 U1 U1 U1 U1 U1 U1 Uls bW N R = e
N O b RO 0O 00N NN G kW NN O 00NN NN 000w o

17. Installing on Cloud Foundry
17.1. Cloud Foundry Configuration
17.2. Database Connection Pool
17.3. Maximum Disk Quota
17.4. Managing Disk Use
18. Installing on Kubernetes
18.1. Kuberenetes configuration
19. Database configuration
19.1. MySQL
19.2. MariaDB
19.3. PostgreSQL
19.4. SQL Server
19.5. Db2
19.6. Oracle
Security
20. Enabling HTTPS
20.1. Using Self-Signed Certificates
20.2. Self-Signed Certificates and the Shell
20.2.1. Add the Self-signed Certificate to the JVM Truststore
20.2.2. Skip Certificate Validation
21. OAuth 2.0 Security
21.1. OAuth REST Endpoint Authorization
21.1.1. Users and Roles
21.2. OAuth Authentication Using the Spring Cloud Skipper Shell
21.3. OAuth2 Authentication Examples
21.3.1. Local OAuth2 Server
21.3.2. Authentication Using UAA
Skipper Commands
22. Package Commands
22.1. Search
22.2. Upload
22.3. Install
22.4. Delete
23. Release Commands
23.1. List
23.2. Status
23.3. Upgrade
23.4. Rollback
23.5. History
23.6. Delete
23.7. Cancel

68
68
70
70
71
72
72
73
73
73
74
74
75
75
76
77
77
78
78
79
80
82
84
84
85
85
85
86
87
87
91
91
93
94
94
95
97
104
105
106
107

24. Manifest Commands
24.1. Get
25. Platform commands
25.1. List
26. Repository Commands
26.1. List
27. Skipper Server Commands
27.1. Config
27.2. Info
28. Generic Usage
28.1. Timeout Expression
Architecture
REST API Guide
29. Overview
29.1. HTTP Verbs
29.2. HTTP Status Codes
29.3. Headers
29.4. Errors
29.5. Hypermedia
30. Resources
30.1. Index
30.1.1. Accessing the Index
Request Structure
Example Request
Example Response
Links
30.2. Server
30.2.1. Server info
Request structure
Example request
Response structure
Response fields
30.3. Platforms
30.3.1. Find All
Request structure
Example request
Response structure
Response fields
30.4. Packages
30.4.1. Search

Request structure

109
109
110
110
112
112
113
113
114
115
115
116
117
118
118
118
118
119
119
120
120
120
120
120
120
121
122
122
122
122
122
123
123
123
123
123
123
129
130
130
130

Example request
Response structure
Response fields

30.4.2. Search summary
Request structure
Example request
Response structure
Response fields

30.4.3. Search with details
Request structure
Example request
Response structure
Response fields

30.4.4. Search by Package Name
Request structure
Example request
Response structure

Response fields

30.4.5. Search by Package Name, Ignoring Case

Request structure
Example request
Response structure
Response fields
30.5. Package
30.5.1. Upload
Request structure
Example request
Response structure
Response fields
30.5.2. Install
Request structure
Example request
Response structure
Response fields
30.5.3. Install with ID
Request structure
Example request
Response structure
Response fields
30.6. Repositories
30.6.1. Find All

130
130
133
134
134
134
134
136
137
137
137
137
138
139
139
139
139
143
144
144
144
144
146
146
146
147
147
147
148
148
148
148
149
150
152
152
152
152
154
155
155

Request structure
Example request
Response structure
Response fields
30.6.2. Find By Name
Request structure
Example request
Response structure
Response fields
30.7. Releases
30.7.1. Find all
Request structure
Example request
Response structure
Response fields
30.8. Release
30.8.1. List
List latest
List latest by name
30.8.2. Status
Get the status of a release
Status by version
30.8.3. Upgrade
Upgrade a release
30.8.4. Rollback
Rollback release using uri variables
Rollback release using request object
30.8.5. Manifest
Get manifest
Get manifest by version
30.8.6. Delete
Delete a release
Delete a release and uninstall package
30.8.7. Cancel
Cancel a release
Appendices
Appendix A: Building
A.1. Documentation
A.2. Custom Server Build
A.3. Importing into eclipse

Appendix B: Contributing

155
155
155
157
157
157
157
157
158
158
158
159
159
159
161
163
163
163
166
170
170
171
172
173
176
176
179
183
183
184
184
184
188
191
191
193
194
194
194
198
199

B.1. Sign the Contributor License Agreement 199

B.2. Code Conventions and Housekeeping 199

Preface

Chapter 1. About the Documentation

The documentation for this release is available in HTML.
The latest copy of the Spring Cloud Skipper reference guide can be found here.

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

https://docs.spring.io/spring-cloud-skipper/docs/2.3.0.M1/reference/htmlsingle
https://docs.spring.io/spring-cloud-skipper/docs/current-SNAPSHOT/reference/htmlsingle/

Chapter 2. Getting Help

If you are having trouble with Spring Cloud Skipper, we would like to help!

* Ask a question. We monitor stackoverflow.com for questions tagged with spring-cloud-skipper.
* Reach out to us on gitter.

* Report bugs with Spring Cloud Skipper at github.com/spring-cloud/spring-cloud-skipper/issues.

0 All of Spring Cloud Skipper is open source, including the documentation! If you
find problems with the docs or if you want to improve them, please get involved.

https://stackoverflow.com
https://stackoverflow.com/tags/spring-cloud-skipper
https://gitter.im/spring-cloud/spring-cloud-skipper
https://github.com/spring-cloud/spring-cloud-skipper/issues
https://github.com/spring-cloud/spring-cloud-skipper

Spring Cloud Skipper Overview

Skipper is a lightweight tool that lets you discover Spring Boot applications and manage their
lifecycle on multiple Cloud Platforms. You can use Skipper standalone or integrate it with
Continuous Integration pipelines to help implement the practice of Continuous Deployment.

Skipper consists of a server application that exposes an HTTP API. A shell application provides easy-
to-use commands to interact with the server. The server uses a relational database to store state.
Documentation to call the HTTP API is available in the REST API Guide.

Applications in Skipper are bundled as packages that contain a templated configuration file and a
default set of values that are used to fill in the template. You can override these defaults when
installing or upgrading a package. Skipper provides a means to orchestrate the upgrade/rollback
procedure of applications between different versions, taking the minimal set of actions to bring the
system to the desired state.

Skipper’s design is influenced by a large number of projects in the Kubernetes ecosystem that
perform resource templating and/or orchestration, hence the nautically inspired project name
Skipper. In particular, Helm's approach to present the user with a familiar apt-get or brew like
installation experience was a big influence.

https://github.com/kubernetes/helm

Chapter 3. Features

The main features are:
* Define multiple platform accounts where Spring Boot applications can be deployed. Supported
platforms are Local, Cloud Foundry, and Kubernetes.

» Substitute variables in Mustache-templated files that describe how to deploy applications to a
platform.

» Search Package Repositories for existing applications.
» Upgrade/Rollback a package based on a simple workflow.

« Store the history of resolved template files (AKA 'application manifests') that represent the final
description of what has been deployed to a platform for a specific release.

¢ Use a standalone interactive shell or an HTTP API.

Chapter 4. Concepts

The main concepts are Platforms, Packages, Repositories, Releases, and Release Workflows.

Platforms are where your apps run. Skipper 1.0 supports deploying applications to platforms by
using the Spring Cloud Deployer family of libraries. Doing so lets Skipper deploy Spring Boot
applications to Cloud Foundry, Kubernetes, and your local machine. You can configure a single
Skipper server to deploy to multiple platforms, with each platform identified by a unique name.

The Spring Cloud Deployer libraries for Apache YARN, Apache Mesos, Redhat
Openshift, and Hashicorp Nomad were not bundled with Skipper in 1.0. Donovan
Muller has provided support for Redhat Openshift.

Packages define the basic recipe for describing what to install on a platform. A package can define
a single application or it can define a group of applications. It contains descriptive metadata, the
location of the Spring Boot uber jar, and default application or deployment properties. The location
of the uber jar can be a Maven repository, docker registry, file location, or HTTP location. A package
is a collection of YAML files that are zipped up into a file with a naming convention of name-
version.zip (for example: myapp-1.0.3.zip).

Repositories are where package metadata and zip files are hosted. Repositories can either be 'local'
or remote'. A remote repository is one that is only accessible over HTTP. Any arbitrary web app
that serves up files off a file system can be used to host a remote repository as long as certain
directory and file naming conventions are followed. A local repository is managed by the Skipper
server and backed by a relational database. Skipper lets you search for packages that are hosted in
repositories.

Releases are created in Skipper after you install, upgrade, or rollback a package. A release has a
unique name that you provide to perform release operations such as upgrading, rolling back, and
deleting. The release contains the fully resolved template files, also known as application
manifests, that represent the final description of what has been deployed to the platform. You can
also get the status and application manifest for a specific release.

Release Workflows are the steps taken to upgrade or rollback an application from one version to
another. In Skipper terms, it is how we go from one Release to another on a Platform.

0 An upgrade may keep the same version but update application properties.

https://github.com/spring-cloud/spring-cloud-deployer
https://github.com/donovanmuller
https://github.com/donovanmuller

Getting Started

This section describes the minimal steps to install Skipper on your local machine in addition to
using Skipper to installing a sample application. It is the “three-second tour”. After completing this
section, you can move on to the Three minute Tour. When you are ready to dive deeper, head on
over to the “three-hour tour” section, Using Skipper. (Well, it is not really three hours....)

Chapter 5. System Requirements

The Skipper server is a Spring Boot application. Both the server and the shell are based on Java 8.
The server uses an RDBMS to store state. An embedded H2 database is used if you do not provide a
Data Source configuration through Spring Boot configuration properties. Supported databases are
H2, HSQLDB, MySQL, Oracle, Postgresql, DB2, and SqlServer. Schemas are created on server startup

Chapter 6. Installing Skipper

This section covers installing Skipper on your local machine, as it is the easiest way to get started.
The section Installation discusses installing on Cloud Foundry and Kubernetes. It also shows
additional options for installing on your local machine.

* Download the Skipper server and shell apps by using the following commands in a terminal
session:

wget http://repo.spring.io/milestone/org/springframework/cloud/spring-cloud-skipper-
server/2.3.0.M1/spring-cloud-skipper-server-2.3.0.M1.jar

wget http://repo.spring.io/milestone/org/springframework/cloud/spring-cloud-skipper-
shell/2.3.0.M1/spring-cloud-skipper-shell-2.3.0.M1.jar

* Launch the server and shell apps by using the following commands in a terminal session:

java -jar spring-cloud-skipper-server-2.3.0.M1.jar

java -jar spring-cloud-skipper-shell-2.3.0.M1.jar

The default port that the server listens on is 7577. That is SKPR on a telephone keypad. :)
There is also a docker image hosted on dockerhub

Now install some apps!

https://hub.docker.com/r/springcloud/spring-cloud-skipper-server/

Chapter 7. A Three-second Tour

The default configuration of Skipper deploys apps to the local machine. The default configuration
also has one local repository, named local, where you can upload packages. You can get a list of the
package repositories by using the command repo list, as shown (with its output) in the following
example:

skipper:>repo list

| Name | URL
| Local | Order ||

| | | |
T T
1

|| local | https://10.55.13.45:7577 | true |1
|
||

Search for the available packages using the package search or its alias package list command. The
following example shows the package search command and typical output for it:

skipper:>package search

I Name | Version Description
|
: : :
|
|| hellowor1ld | 1.0.1 | The app has two endpoints, /about and /greeting in
Portuguese. Maven resource. |
|| hellowor1ld | 1.0.0 | The app has two endpoints, /about and /greeting in

English. Maven resource. |
|| hellowor1d-docker | 1.0.1 | The app has two endpoints, /about and /greeting in
Portuguese. Docker resource. |
|| hellowor1d-docker | 1.0.0 | The app has two endpoints, /about and /greeting in
English. Docker resource. |

Install the Maven-based Hello World application by using the package install command. Since this
application picks a random port for the HTTP server by default, we specify the Spring Boot property
server.port, prefixed with spec.applicationProperties. The prefix is due to the internal format of
the template file. The following example shows the whole command with its output:

10

skipper:>package install --release-name helloworld-local --package-name helloworld
--package-version 1.0.0 --properties spec.applicationProperties.server.port=8099
Released helloworld-local. Now at version v1.

You can now curl the greeting endpoint, as follows:

$ curl http://localhost:8099/greeting
Hello World!

The release name, helloworld-local, is used for subsequent commands, such as release status,
release upgrade or release delete.

To see the status of the release, use the release status command, as shown (with its output) in the
following example:

skipper:>release status --release-name helloworld-local
[T

1]
|| Last Deployed | Fri Oct 27 16:17:53 IST 2017

|

|| Status | DEPLOYED

[

|| Platform Status | A1l applications have been successfully deployed.

|

I | [helloworld-local.helloworld-v1], State = [helloworld-
local.helloworld-v1-0=deployed] |

Now we can upgrade the release. The 1.0.1 package refers to a newly released application that
changed the default value of the greeting to be in Portuguese. The following example shows a typical
release upgrade command with its output:

skipper:>release upgrade --release-name helloworld-local --package-name helloworld
--package-version 1.0.1 --properties spec.applicationProperties.server.port=8100
helloworld-local has been upgraded. Now at version v2.

The preceding example command deploys the new version of the application, waits until it is
healthy, and then destroys the old version of the application. You can then see the status of the
application by using the release status command, as follows:

11

skipper:>release status --release-name helloworld-local
[T

|| Last Deployed | Fri Oct 27 16;50:07 IST 2017

IIStatus | DEPLOYED

IIPlatform Status | A1l applications have been successfully deployed.

II | [helloworld-local.helloworld-v2], State = [helloworld-
local.helloworld-v2-0=deployed] |

| L |

You can now curl the greeting endpoint at the new port and see that the application has been
updated, as follows:

$ curl http://localhost:8100/greeting
013 Mundo!

To delete the release, use the delete command, as shown (with its output) in the following example:

skipper:>release delete --release-name helloworld-local
helloworld-local has been deleted.

This example, where the upgrade changed only a property of the application, is
not realistic. A more realistic example is the case where code has changed so that
the updated application behaves differently.

You can also deploy the other packages named helloworld-docker to the local machine.

The examples in this section have shown the most basic operations. Other interesting commands
such as manifest get, release rollback, release list, and release history are covered in the Three
minute Tour.

12

Three minute Tour

Picking up from where the A Three-second Tour left off, this section walks through the additional
commands and other features of Skipper. Each section walks through the same set of operations,
but for a different platform:

¢ Local Machine
* Cloud Foundry

¢ Kuberenetes

13

Chapter 8. Local Machine

Start up the server and shell as in the three-second tour.

Now you can install and then update the Hello World application. Start by running the package
install command, as shown (with its output) in the following example:

skipper:>package install --release-name helloworldlocal --package-name helloworld
--package-version 1.0.0 --properties spec.applicationProperties.server.port=8099
Released helloworldlocal. Now at version v1.

You can now curl the greeting endpoint, as shown (with its output) in the following example:

$ curl http://localhost:8099/greeting
Hello World!

$ curl http://localhost:8099/about
Hello World v1.0.0.RELEASE

We use a YAML file to update the release. This application contains a Spring Boot
@ConfigurationProperty, named helloworld.greeting, so we set that along with a standard Spring
Boot property: endpoints.sensitive=false. We also bump the memory up to 2G, make the Boot
actuator endpoint not sensitive, and set the port to 8100.

The helloworld-upgrade-local.yml file contains the following code:

spec:
applicationProperties:
server.port: 8100
endpoints.sensitive: false
helloworld.greeting: yo
deploymentProperties:
spring.cloud.deployer.memory: 2048m

The following example shows the release upgrade command, with its output:

skipper:>release upgrade --release-name helloworldlocal --package-name helloworld
--package-version 1.0.1 --file /home/mpollack/helloworld-upgrade-local.yml
helloworldlocal has been upgraded. Now at version v2.

The --package-version 1.0.1 command line option is also used to upgrade to a newer version of the
package.

The current upgrade strategy is simple: If the new app is healthy, the old app is removed. There is
no rolling upgrade option. All new apps are deployed and checked for health. Then any previous
versions are removed. More flexible upgrade strategies are planned in a future release of Skipper.

14

You can now curl the greeting endpoint and the about endpoint, as shown (with its output) in the
following example:

$ curl http://localhost:8100/greeting

yo
$ curl http://localhost:8100/about
Hello World v1.0.1.RELEASE

You can also view the endpoints in your browser.

The 1ist command shows you the current DEPLOYED and DELETED releases for every release name. In
this case there, is just one entry, as you can see with the release 1ist command, as follows:

skipper:>release list

—
I Name | Version | Last updated | Status | Package | Package | Platform
| Platform Status I
I | | | | Name | Version | Name
||| | | || |

1

- 1
|| helloworldlocal | 2 | Fri Oct 27 | DEPLOYED | helloworld | 1.0.1 | default
| [helloworldlocal.helloworld-v2], State = I
I | | 16:39:03 IST | | | |
| [helloworldlocal.helloworld-v2-0=deployed] I
| | | 2017 | | | |
| I
|| L 1 1
—

You can get the full history of the release by using the history command, as shown (with its output)
in the following example:

15

skipper:>release history --release-name helloworldlocal

—
|| Version | Last updated | Status | Package Name | Package Version

Description ||
| : :
| | |
I | I
—
-1

|| 2 | Fri Oct 27 16:39:03 IST 2017 | DEPLOYED | helloworld | 1.0.1
| Upgrade complete |
I 1 | Fri Oct 27 16:37:59 IST 2017 | DELETED | helloworld | 1.0.0

| Delete complete |
| L 1

—]

To see what changed, you can look at the Skipper manifest for each release by using the manifest
get command, as shown (with its output) in the following example:

skipper:>manifest get --release-name helloworldlocal --release-version 2

Source: helloworld.yml
apiVersion: skipper.spring.io/v1
kind: SpringCloudDeployerApplication

metadata:
name: helloworld
type: demo

spec:

resource: maven://org.springframework.cloud.samples:spring-cloud-skipper-samples-
hellowor1ld:1.0.1.RELEASE
applicationProperties:
server.port: 8100
endpoints.sensitive: false
helloworld.greeting: yo
deploymentProperties:
spring.cloud.deployer.memory: 2048m
spring.cloud.deployer.count: 1

The following example shows the manifest get command and its output for version 1:

16

skipper:>manifest get --release-name helloworldlocal --release-version 1

Source: helloworld.yml
apiVersion: skipper.spring.io/v1
kind: SpringCloudDeployerApplication

metadata:
name: helloworld
type: demo

spec:

resource: maven://org.springframework.cloud.samples:spring-cloud-skipper-samples-
hellowor1ld:1.0.0.RELEASE
applicationProperties:
server.port: 8099
deploymentProperties:

(Amanifest diff command is coming in a future release.)

Now we can use the rollback command to deploy an older version of the application. Since we have
the manifest for that version, we have all we need to redeploy an earlier release, as shown (with its
output) in the following example:

skipper:>release rollback --release-name helloworldlocal --release-version 1
helloworldlocal has been rolled back. Now at version v3.

0 The history now shows a new v3 version, even though it is identical in terms of app
behavior to the v1 version.

The release history command shows all the versions that have been deployed, as shown (with its
output) in the following example:

17

skipper:>release history --release-name helloworldlocal

—
|| Version | Last updated | Status | Package Name | Package Version

Description |

- 1

|
| 3 | Fri Oct 27 16:42:47 IST 2017 | DEPLOYED | helloworld | 1.0.0
| Upgrade complete |
|| 2 | Fri Oct 27 16:39:03 IST 2017 | DELETED | helloworld | 1.0.1
| Delete complete |
I 1 | Fri Oct 27 16:37:59 IST 2017 | DELETED | helloworld | 1.0.0

| Delete complete |
| L L

Ny

You can now curl the greeting endpoint and see the output of each endpoint, as follows:

$ curl http://localhost:8099/greeting
Hello World!

$ curl http://localhost:8099/about
Hello World v1.0.0.RELEASE

18

Chapter 9. Cloud Foundry

First, follow the instructions in the section Installing on Cloud Foundry to deploy the Skipper Server
to Cloud Foundry.

When you start the Skipper shell, by default, it tries to look for the Skipper server on the same
(local) machine. To specify the Skipper server that is running on Cloud Foundry, provide the
serverUrl when launching the shell or use the config command after the shell has started. The
following example provides the serverUrl:

java -jar spring-cloud-skipper-shell-2.3.0.M1.jar
--spring.cloud.skipper.client.serverUri=https://mlp-skipper.cfapps.io/api

The following example uses config:

skipper:>skipper config --uri https://mlp-skipper.cfapps.io/api
Successfully targeted https://mlp-skipper.cfapps.io/api

The repo list command shows the experimental and local repositories, since they are configured
by default. The local repository is where you can upload new packages. The experimental
repository has a few "hello world" applications to help get you started. The following example
shows the repo list command and the output of our example:

skipper:>repo list

| Name | URL
| Local | Order ||

| | |
|| experimental | https://skipper-repository.cfapps.io/repository/experimental | false | @

|
|| local | https://d4d6d1b6-c7e5-4226-69ec-01d4:7577 | true |1

Above example assumes that experimental repository has been added to the server
0 configuration. More about working with repositories can be found from
Repositories.

The following example shows the package search command and the output of our example:

19

skipper:>package search

I Name | Version Description
|! | |
|
|| hellowor1ld | 1.0.1 | The app has two endpoints, /about and /greeting in
Portuguese. Maven resource. |
|| hellowor1ld | 1.0.0 | The app has two endpoints, /about and /greeting in

English. Maven resource. |
|| hellowor1d-docker | 1.0.1 | The app has two endpoints, /about and /greeting in
Portuguese. Docker resource. |
|| hellowor1d-docker | 1.0.0 | The app has two endpoints, /about and /greeting in
English. Docker resource. |

| L | |

The command platform list shows the platforms with which the server has been configured, as
shown (with its output) in the following example:

1l
|| Name | Type Description

|

| : :

—

|| pws | cloudfoundry | org = [scdf-ci], space = [space-mark], url =

[https://api.run.pivotal.io] |
| L |

]

In the preceding example, there is only one Cloud Foundry platform.

Now we can install the Hello World app (specifically, the maven based artifact). The following
example shows the package install command (with its output) that we use to install the Hello World
application:

20

skipper:>package install --release-name helloworldpcf --package-name helloworld
--package-version 1.0.0 --platform-name pws --properties
spec.deploymentProperties.spring.cloud.deployer.cloudfoundry.route=helloworldpcf.cfapp
s.io

Released helloworldpcf. Now at version v1.

The spring.cloud.deployer.cloudfoundry.route=helloworldpcf.cfapps.io deployment property is set
so that, when different versions of this application are deployed, they have the same HTTP route.

\

Because the default value of that shell option is default‘he ‘--platform-name pws, we used the
command option. When installing Skipper, you can register a platform under the name default, but
it is a best practice to specify the target platform name.

You can monitor the progress of the deployment by using the release status command, as shown

(with its output) in the following example:

skipper:>release status --release-name helloworldpcf
[T

1]

|| Last Deployed | Thu Jan 18 13:18:44 EST 2018 |
|| Status | DEPLOYED I
|| Platform Status | The applications are being deployed. |
I | [helloworldpcf-helloworld-v1], State = [partial]|
|| |

Eventually, the Platform Status says, ALl applications have been successfully deployed.

The DEPLOYED status in the preceding example indicates that Skipper has told the

O platform to deploy. Skipper does not keep track of the intermediate states
'deploying’ or ‘'deleting'. The platform status provides finer-grained status
information.

The cf apps command now has a new listing for this deployed application, as shown (with its
output) in the following example:

$ cf apps
Getting apps in org scdf-ci / space space-mark as mpollack@gopivotal.com...
0K

name requested state instances memory disk wurls
helloworldpcf-helloworld-v1l started 1/1 1G 1G
helloworldpcf.cfapps.io

You can now curl the greeting endpoint and the about endpoint, as shown in the following example:

21

$ curl https://helloworldpcf.cfapps.io/greeting
Hello World!

$ curl https://helloworldpcf.cfapps.io/about
Hello World v1.0.0.RELEASE

The name of the application is based on the <release-name>-<package-name>-v<incrementing-counter>
convention.

Also note that we specified a route for this application that is different than the application’s name.
The deployment property spring.cloud.deployer.cloudfoundry.route is set to something that does
not change across the deployment of different versions of this application—in this case,
helloworldpef.cfapps.io.

The package provides a means to template the application version, application properties, and
deployment properties that are used to deploy the application to Cloud Foundry. The manifest get
command shows the final YAML file which is passed off to the Spring Cloud Deployer Library, as
shown (with its output) in the following example:

skipper:>manifest get --release-name helloworldpcf

Source: helloworld.yml
apiVersion: skipper.spring.io/v1l
kind: SpringCloudDeployerApplication

metadata:
name: helloworld
type: demo

spec:

resource: maven://org.springframework.cloud.samples:spring-cloud-skipper-samples-
helloworld:1.0.0.RELEASE
applicationProperties:
deploymentProperties:
spring.cloud.deployer.cloudfoundry.route: helloworldpcf.cfapps.io

The manifest format is inspired by the Kubernetes Resource file format. By looking at the manifest,
you can see which Maven artifact was used and which properties were set before the final push to
Cloud Foundry. A future release of Skipper will use the metadata values to support searching for
releases based on those values.

Since it is somewhat awkward to specify multiple flattened-out YAML values for the --properties
argument in the shell, you can also specify the location of a YAML file when installing or upgrading.
In the next example, we use a YAML file, named helloworld-upgrade.yml, to update the release. This
application contains a Spring Boot @ConfigurationProperty named helloworld.greeting, so we set
that, along with a standard Spring Boot property: endpoints.sensitive=false. We also bump the
memory up to 2G from the default 1G. The contents of the helloworld-upgrade.yml file follows:

22

spec:
applicationProperties:
endpoints.sensitive: false
helloworld.greeting: yo
deploymentProperties:
spring.cloud.deployer.cloudfoundry.route: helloworldpcf.cfapps.io
spring.cloud.deployer.memory: 2048m

Now you can run the release upgrade command, as shown (with its output) in the following
example:

skipper:>release upgrade --release-name helloworldpcf --package-name helloworld
--package-version 1.0.0 --file /home/mpollack/helloworld-upgrade.yml
helloworldpcf has been upgraded. Now at version v2.

The preceding example starts another instance of the hello world application, and Skipper
determines when it can stop the instance of the previous instance. If you do not specify --package
-version, it picks the latest version of the helloworld package. You do not need to specify the
--platform-name, as it is always where the current application was deployed.

The following example shows the c¢f apps command and its output:
$ cf apps

Getting apps in org scdf-ci / space space-mark as mpollack@gopivotal.com...
0K

name requested state instances memory disk wurls
helloworldpcf-helloworld-v1l started 1/1 1G 1G
helloworldpcf.cfapps.io

helloworldpcf-helloworld-v2 stopped 0/1 26 1G

helloworldpcf.cfapps.io

The following example shows the c¢f routes command and its output:

$ cf routes
Getting routes for org scdf-ci / space space-mark as mpollack@gopivotal.com ...

space host domain port path type apps
service
space-mark helloworldpcf cfapps.io

helloworldpcf-helloworld-v1,helloworldpcf-helloworld-v2

At this point, Skipper is checking the health of the new application. The default health checks
whether the HTTP port of the application is open. There is a customization in Skipper that
influences the way the health check is performed. The
spring.cloud.skipper.server.strategies.healthcheck.timeoutInMillis property is the maximum

23

time the upgrade process waits for a healthy app. The default value is 5 minutes. Skipper fails the
deployment if it is not healthy within that time. The
spring.cloud.skipper.server.strategies.healthcheck.sleepInMillis property is how long to sleep
between health checks.

The current upgrade strategy is very simple: If the new app is healthy, the old app is removed.
There is not a rolling upgrade option, all new apps are deployed, checked for health, and then
previous versions removed. More flexible upgrade strategies are planned in a future release.

You can now curl the greeting endpoint and the about endpoint, as shown in the following example:

$ curl https://helloworldpcf.cfapps.io/greeting

yo
$ curl https://helloworldpcf.cfapps.io/about
Hello World v1.0.0.RELEASE

The release list command shows the current DEPLOYED and DELETED releases for every release
name. In the following example from the sample application, there is only one entry, as shown in
the following example:

I Name | Version | Last updated | Status | Package | Package |

Platform | Platform Status |

I | | | | Name | Version |

Name | |

I : : :
|

|| helloworldpcf | 2 | Thu Jan 18 | DEPLOYED | helloworld | 1.0.0 | pws

| [helloworldpcf-helloworld-v2], State = |
I | | 13:26:50 EST 2018 | | | |

| [helloworldpcf-helloworld-v2-0=deployed] ||
|| 1 |

You can get the full history of the release byusing the release history command, as shown (with its
output) in the following example:

24

skipper:>release history --release-name helloworldpcf

—
|| Version | Last updated | Status | Package Name | Package Version

Description ||
| : :

—

-1

|| 2 | Thu Jan 18 13:26:50 EST 2018 | DEPLOYED | helloworld | 1.0.0
| Upgrade complete ||

I 1 | Thu Jan 18 13:18:44 EST 2018 | DELETED | helloworld | 1.0.0

| Delete complete ||
|| 1

—]

A more typical upgrade process is not to change application properties but to change the version of
the application because the code has changed. In the following example, we now upgrade the
release to use a new Maven artifact, version 1.0.1, which also corresponds to version 1.0.1 of the
helloworld Skipper package. In this case, we do not add any additional properties other than the
route. The following example shows the release upgrade command (with its update) to deploy
version 1.0.1:

skipper:>release upgrade --release-name helloworldpcf --package-name helloworld
--package-version 1.0.71 --properties
spec.deploymentProperties.spring.cloud.deployer.cloudfoundry.route=helloworldpcf.cfapp
s.io

helloworldpcf has been upgraded. Now at version v3.

Note that the current release’s property values, such as using 2G or the greeting being yo are not
carried over. A future release will introduce a --reuse-properties command that will carry the
current release properties over to the next release to be made. You can monitor the status of the
upgrade by using the status command, as shown (with its output) in the following example:

skipper:>release status --release-name helloworldpcf
[T

1]

	Last Deployed	Thu Jan 18 13:49:42 EST 2018
	Status	UNKNOWN
	Platform Status	The applications are being deployed.
I	[helloworldpcf-helloworld-v3], State = [partial]	

Now a curl command shows the following output:

25

curl https://helloworldpcf.cfapps.io/greeting
014 Mundo!

$ curl https://helloworldpcf.cfapps.io/about
Hello World v1.0.1.RELEASE

Our release history is now as follows:

skipper:>release history --release-name helloworldpcf

— 1l

|| Version | Last updated | Status | Package Name | Package Version

Description ||

| | |
T T T

_

| 3 | Thu Jan 18 13:49:42 EST 2018 | DEPLOYED | helloworld | 1.0.1
| Upgrade complete |

|| 2 | Thu Jan 18 13:26:50 EST 2018 | DELETED | helloworld | 1.0.0
| Delete complete |

I 1 | Thu Jan 18 13:18:44 EST 2018 | DELETED | helloworld | 1.0.0
| Delete complete |

|| 1

Ny

Next, we use the rollback command to deploy an older version of the application. Since we have the
manifest for that version, we have all we need to redeploy an earlier release. The following

example shows the release rollback command and its output:

skipper:>release rollback --release-name helloworldpcf --release-version 2
helloworldpcf has been rolled back. Now at version v4.

The history now shows a new v4 version, even though it is identical in terms of app behavior to the

v2 version, as follows:

26

skipper:>release history --release-name helloworldpcf

—)
|| Version | Last updated | Status | Package Name | Package Version
Description |

T T T
I I 1
J—

|| 4 | Thu Jan 18 13:51:43 EST 2018 | DEPLOYED | helloworld | 1.0.0
| Upgrade complete |
| 3 | Thu Jan 18 13:49:42 EST 2018 | DELETED | helloworld | 1.0.1
| Delete complete |
|| 2 | Thu Jan 18 13:26:50 EST 2018 | DELETED | helloworld | 1.0.0
| Delete complete |
[1 | Thu Jan 18 13:18:44 EST 2018 | DELETED | helloworld | 1.0.0
| Delete complete |

]

The curl commands shows the following output:

$ curl https://helloworldpcf.cfapps.io/greeting
yo

$ curl https://helloworldpcf.cfapps.io/about
Hello World v1.0.0.RELEASE

Chapter 10. Kuberenetes

In this example, we run the Skipper server on the local machine and deploy to minikube, which
also runs on the local machine.

ﬂ The upgrade approach in 1.02 does not correctly handle the routing of HTTP traffic
between versions, so the following representation may not be exactly accurate.

The Spring Cloud Deployer for Kubernetes creates a service, a replication controller, and a pod for
the app (or, optionally, a deployment). This is not an issue for apps that communicate over
Messaging middleware and will be addressed in a future release.

Start the Skipper server with the --spring.config.additional-location=skipper.yml option. The
YAML content follows:

spring:
cloud:
skipper:
server:
platform:
kubernetes:
accounts:
minikube:
namespace: default

The repo list command shows the experimental and local repositories, since they are configured
by default, as follows:

skipper:>repo list

| Name | URL
| Local | Order ||
I :

| | | |
T T
I I 1

|| experimental | https://skipper-repository.cfapps.io/repository/experimental | false | @
|

|| local | https://d4d6d1b6-c7e5-4226-69ec-01d4:7577 | true |1
|
||

The package search command shows the Name, the Version, and the Description, as follows:

28

skipper:>package search

I Name | Version Description
|! | |
|
|| hellowor1ld | 1.0.1 | The app has two endpoints, /about and /greeting in
Portuguese. Maven resource. |
|| hellowor1ld | 1.0.0 | The app has two endpoints, /about and /greeting in

English. Maven resource. |
|| hellowor1d-docker | 1.0.1 | The app has two endpoints, /about and /greeting in
Portuguese. Docker resource. |
|| hellowor1d-docker | 1.0.0 | The app has two endpoints, /about and /greeting in
English. Docker resource. |

| L | |

The platform 1list command shows which platforms the server has been configured with —in this
case, one Kubernetes namespace.

skipper:>platform list

|| Name | Type | Description

|
|| minikube | kubernetes | master url = [https://192.168.99.100:8443/], namespace =
[default], api version = [v1]|

| L | |

Now we can install the Hello World app (specifically, the Docker-based artifact), as follows:

skipper:>package install --release-name hellowor1dk8s --package-name helloworld-docker
--package-version 1.0.0 --platform-name minikube --properties
spec.deploymentProperties.spring.cloud.deployer.kubernetes.createNodePort=32123
Released helloworldk8s. Now at version v1.

We use the --platform-name minikube command option, because the default value of that shell

29

option is default. You can register a platform under the default name when installing Skipper, but
it is a best practice to specify the target platform name.

You can monitor the process by using the release status command, as follows:

skipper:>release status --release-name helloworldk8s
[T

|| Last Deployed | Wed Oct 25 17:34:24 EDT 2017

|
| Status | DEPLOYED

[
|| Platform Status | The applications are being deployed.

|
I | [hellowor1ldk8s-helloworld-docker-v1], State = [hellowor1ldk8s-

helloworld-docker-v1-cch68=deploying] |
| L |

Eventually, the Platform Status says, ALl applications have been successfully deployed.

Note that the DEPLOYED status in the preceding example indicates that Skipper has told the platform
to deploy. Skipper does not keep track of the intermediate states (‘deploying' or 'deleting’).

A kubectl pods command now shows a new listing for this deployed application, as follows:

$ kubectl get pods

NAME READY STATUS RESTARTS AGE
hellowor1ldk8s-hellowor1ld-docker-v1-g8j39 0/1 Running @ 37s

$ kubectl get service

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
hellowor1ldk8s-helloworld-docker-vl 10.0.0.202 <nodes> 8080:32123/TCP 41s
kubernetes 10.0.0.1 <none> 443/TCP 57m

To get the URL of this app on minikube, use the minikube service command, as follows:

$ minikube service --url helloworldk8s-helloworld-docker-v1
https://192.168.99.100:32123

You can now curl the greeting endpoint and the about endpoint, as shown in the following example:

30

$ curl https://192.168.99.100:32123/greeting
Hello World!

$ curl https://192.168.99.100:32123/about
Hello World v1.0.0.RELEASE

The name of the application is based on the following convention: <release-name>-<package-name>-
v<incrementing-counter>. Future releases will change this convention to correctly handle routing.

The package provides a means to template the application version, application properties, and
deployment properties that are used to deploy the application to Kubernetes. The manifest get
command shows the final YAML file, which is passed off to the Spring Cloud Deployer Library, as
shown (with its output) in the following example:

skipper:>manifest get --release-name helloworldk8s

Source: template.yml
apiVersion: skipper.spring.io/v1l
kind: SpringCloudDeployerApplication
metadata:
name: helloworld-docker
spec:
resource: docker:springcloud/spring-cloud-skipper-samples-helloworld:1.0.0.RELEASE
applicationProperties:
deploymentProperties:
spring.cloud.deployer.kubernetes.createNodePort: 32123

The format of the is inspired by the Kubernetes Resource file format. By looking at the manifest,
you can see which Docker images were used and which properties were set before the final push to
Kubernetes. A future release of Skipper will use the metadata values to support searching for
releases based on those values.

Since it is somewhat awkward to specify multiple flattened out YAML values for the --properties
argument in the shell, you can also specify the location of a YAML file when installing or upgrading.
We use a YAML file when we update the release. This application contains a Spring Boot
@ConfigurationProperty named helloworld.greeting, so we set that, along with a standard Spring
Boot property: endpoints.sensitive=false. We also bump the memory down to 768m from the
default 1G. The following listing shows all the settings:

spec:
applicationProperties:
endpoints.sensitive: false
helloworld.greeting: yo
deploymentProperties:
spring.cloud.deployer.kubernetes.createNodePort: 32124
spring.cloud.deployer.memory: 768m

31

The following example shows the release upgrade command and its output:

skipper:>release upgrade --release-name hellowor1dk8s --package-name helloworld-docker
--package-version 1.0.0 --file /home/mpollack/helloworld-upgrade-k8s.yml
helloworldk8s has been upgraded. Now at version v2.

The preceding command starts another instance of the hello world application. If you do not
specify --package-version, it picks the latest version of the helloworld-docker package. You do not
need to specify the --platform-name as it is always where the current application was deployed.

The following example shows the kubectl get all command and its output:

$ kubectl get all

NAME READY STATUS RESTARTS AGE
po/hellowor1ldk8s-helloworld-docker-v1-g8j39 1/1 Running 0 2m
po/hellowor1ldk8s-helloworld-docker-v2-jz851 @/1 Running 0 50s
NAME DESIRED CURRENT READY AGE
rc/hellowor1ldk8s-helloworld-docker-v1l 1 1 1 2m
rc/hellowor1dk8s-helloworld-docker-v2 1 1 0 50s

NAME CLUSTER-IP EXTERNAL-IP PORT(S)

AGE

svc/hellowor1dk8s-helloworld-docker-vl 10.0.0.202 <nodes> 8080:32123/TCP
2m

svc/hellowor1dk8s-helloworld-docker-v2 10.0.0.154 <nodes> 8080:32124/TCP
51s

svc/kubernetes 10.0.0.1 <none> 443/TCP

59m

At this point, Skipper is looking to see if the health endpoint of the Boot application is OK. The
spring.cloud.skipper.server.strategies.healthcheck.timeoutInMillis property sets the maximum
time the upgrade process waits for a healthy app. The default value is 5 minutes. Skipper fails the
deployment if it is not healthy within that time. The
spring.cloud.skipper.server.strategies.healthcheck.sleepInMillis property sets how long to sleep
between health checks.

The current upgrade strategy is simple: If the new app is healthy, the old app is removed. There is
not a rolling upgrade option. All new apps are deployed and checked for health. Then any previous
versions are removed. Future releases will have more flexible upgrade strategies, along with the
introduction of the Spring Cloud State Machine project to orchestrate the update process.

You can now curl the greeting endpoint and the about endpoint, as follows:

32

https://projects.spring.io/spring-statemachine/

$ curl https://192.168.99.100:32124/greeting

yo
$ curl https://192.168.99.100:32124/about
Hello World v1.0.0.RELEASE

The release list command shows the current DEPLOYED and DELETED release for every release name.
In the following example, there is only one entry:

skipper:>release list

T T 1]
I Name | Version | Last updated | Status | Package Name
| Package Version | Platform Name | Platform Status |

: : |
|| hellowor1dk8s | 2 | Wed Oct 25 17:36:16 EDT 2017 | DEPLOYED | helloworld-
docker | 1.0.0 | minikube | |

You can get the full history of the release using the history command, as follows:

skipper:>release history --release-name hellowor1dk8s

11
|| Version | Last updated | Status | Package Name | Package

Version | Description ||
|

| L |
T T
[I I
| | |
T T T
I I I

|| 2 | Wed Oct 25 17:36:16 EDT 2017 | DEPLOYED | helloworld-docker | 1.0.0
| Upgrade complete |
I 1 | Wed Oct 25 17:34:24 EDT 2017 | DELETED | helloworld-docker | 1.0.0

| Delete complete |
| L 1

A more typical upgrade process is not to change application properties but to change the version of
the application because the code has changed. We can now upgrade the release to use a new Docker
artifact, version 1.0.1, which also corresponds to version 1.0.1 of the helloworld Skipper package. In
the following example, we do not add any additional properties other than NodePort:

33

skipper:>release upgrade --release-name helloworldk8s --package-name helloworld-docker
--package-version 1.0.1 --properties
spec.deploymentProperties.spring.cloud.deployer.kubernetes.createNodePort=32125
Released helloworldk8s. Now at version v3.

Note that the the current release’s property values, such as using 2G RAM or the greeting being yo,
are not carried over. A future release will introduce a --reuse-properties command option that will
carry the current release properties over to the next release to be made. You can monitor the status
of the upgrade by using the status command, as shown (with its output) in the following example:

skipper:>release status --release-name hellowor1dk8s

[T T

|| Last Deployed | Wed Oct 25 17:41:33 EDT 2017

::Status | DEPLOYED

IIPlatform Status | A1l applications have been successfully deployed.

II | [hellowor1dk8s-helloworld-docker-v3], State = [hellowor1ldk8s-

helloworld-docker-v3-sb59j=deployed] |
| L |

A curl command shows the following output:

$ curl https://192.168.99.100:32125/greeting
01a Mundo!

$ curl https://192.168.99.100:32125/about
Hello World v1.0.17.RELEASE

The following example shows the release history command and its output:

34

skipper:>release history --release-name hellowor1dk8s

11
|| Version | Last updated | Status | Package Name | Package

Version | Description ||
|

| 3 | Wed Oct 25 17:41:33 EDT 2017 | DEPLOYED | helloworld-docker | 1.0.1
| Upgrade complete |
|| 2 | Wed Oct 25 17:36:16 EDT 2017 | DELETED | helloworld-docker | 1.0.0
| Delete complete |
I 1 | Wed Oct 25 17:34:24 EDT 2017 | DELETED | helloworld-docker | 1.0.0

| Delete complete |
| L L

Next, we use the rollback command to deploy an older version of the application. Since we have the
manifest for that version, we have all we need to redeploy an earlier release. The following
example shows the rollback command and its output:

skipper:>release rollback --release-name helloworldk8s --release-version 2
hellowor1ldk8s has been rolled back. Now at version v4.

The history now shows a new v4 version, even though it is identical to the v2 version, as shown in
the following example:

35

skipper:>release history --release-name hellowor1dk8s

11
|| Version | Last updated | Status | Package Name | Package
Version | Description ||

|| 4 | Wed Oct 25 17:44:25 EDT 2017 | DEPLOYED | helloworld-docker | 1.0.0
| Upgrade complete |
| 3 | Wed Oct 25 17:41:33 EDT 2017 | DELETED | helloworld-docker | 1.0.1
| Delete complete |
|| 2 | Wed Oct 25 17:36:16 EDT 2017 | DELETED | helloworld-docker | 1.0.0
| Delete complete |
[1 | Wed Oct 25 17:34:24 EDT 2017 | DELETED | helloworld-docker | 1.0.0

| Delete complete |

The curl commands now shows the following:

$ curl https://192.168.99.100:32124/greeting

yo
$ curl https://192.168.99.100:32124/about
Hello World v1.0.0.RELEASE

36

Chapter 11. CF manifest based deployments

Following examples cover the scenarios of managing CF manifest based packages.

skipper:>platform list

|| Name | Type | Description

|
|| cf-dev | cloudfoundry | org = [scdf-ci], space = [space-ilaya], url =

[https://api.run.pivotal.io] |
| L 1

|

Upload the log application packages available in the test directory under spring-cloud-skipper-
server-core.

skipper:>package upload --repo-name local --path spring-cloud-skipper-server-
core/src/test/resources/repositories/binaries/test/log/logcf-1.0.0.zip
Package uploaded successfully:[logcf:1.0.0]

skipper:>package upload --repo-name local --path spring-cloud-skipper-server-
core/src/test/resources/repositories/binaries/test/log/logcf-1.0.1.zip
Package uploaded successfully:[logcf:1.0.1]

37

skipper:>package search

I Name | Version Description
|! | |
|
|| hellowor1ld | 1.0.0 | The app has two endpoints, /about and /greeting in
English. Maven resource. |
|| hellowor1ld | 1.0.1 | The app has two endpoints, /about and /greeting in

Portuguese. Maven resource. |

|| hellowor1d-docker | 1.0.0 | The
English. Docker resource. |

|| hellowor1ld-docker | 1.0.1 | The
Portuguese. Docker resource. |

|| Togcf | 1.0.0 | The
data for inspection. |

|| Llogcf |1.0.1 | The

data for inspection. |
| L

app has two endpoints,

app has two endpoints,

/about

/about

log sink uses the application

log sink uses the application

and /greeting 1in
and /greeting in
logger to output the

logger to output the

Install the logcf package with the version 1.0.0

38

skipper:>package install logcf --release-name al --platform-name cf-dev --package
-version 1.0.0
Released al. Now at version v1.

skipper:>release list

=
|| Name | Version | Last updated | Status | Package Name | Package
Version | Platform Name | Platform Status |

| : :

_ll I

—

a1 |1 | Thu Aug 09 12:29:02 IST 2018 | DEPLOYED | logcf |1.0.0

| cf-dev | [a1-v1], State = [a1-v1-0=deployed] |

|| 1 1

—]

skipper:>release history al

1l
|| Version | Last updated | Status | Package Name | Package Version

Description ||

1 1
| | |
T T T

I I I
|
_

|| 1 | Thu Aug 09 12:29:02 IST 2018 | DEPLOYED | logcf | 1.0.0

| Install complete |
| L |

| |

]

skipper:>manifest get al
"apiVersion": "skipper.spring.io/v1"
"kind": "CloudFoundryApplication"
"spec":
"resource": "maven://org.springframework.cloud.stream.app:log-sink-rabbit"
"version": "1.3.0.RELEASE"
"manifest":
"memory": "1024"
"disk-quota": "2048"
"instances": "1"
"services":
- "rabbit"
"timeout": "180"

$ cf apps
Getting apps in org scdf-ci / space space-ilaya as igopinathan@pivotal.io...
0K

name requested state instances memory disk wurls
al-vl started 1/1 16 26 al-vl.cfapps.io

Upgrade the logcf package with the version 1.0.1

skipper:>release upgrade --package-name logcf --package-version 1.0.1 --release-name
al
al has been upgraded. Now at version v2.

skipper:>release list

=i
|| Name | Version | Last updated | Status | Package Name | Package
Version | Platform Name | Platform Status |

| : :

_ll I

—

a1 |2 | Thu Aug 09 12:33:44 IST 2018 | DEPLOYED | logcf | 1.0.1

| cf-dev | [a1-v2], State = [a1-v2-0=deployed] |

|| 1 1

—]

skipper:>release history al

1l
|| Version | Last updated | Status | Package Name | Package Version

Description |

I I
| | |
T

T T
I I I
e —

|| 2 | Thu Aug 09 12:33:44 IST 2018 | DEPLOYED |1ogcf [1.0.1
| Upgrade complete |
I 1 | Thu Aug 09 12:29:02 IST 2018 | DELETED | logef [1.0.0

| Delete complete |
| L 1

—]

skipper:>manifest get al

40

"apiVersion": "skipper.spring.io/v1"
"kind": "CloudFoundryApplication"
"spec":
"resource": "maven://org.springframework.cloud.stream.app:log-sink-rabbit"
"version": "1.3.1.RELEASE"
"manifest":
"memory": "1024"
"disk-quota": "2048"
"instances": "1"
"services":
- "rabbit"
"timeout": "180"

$ cf apps
Getting apps in org scdf-ci / space space-ilaya as igopinathan@pivotal.io...
0K

name requested state instances memory disk wurls
al-v2 started 1/1 16 26 al-v2.cfapps.io

Rollback the logcf package with the version 1.0.1

skipper:>release rollback a1
al has been rolled back. Now at version v3.

skipper:>release list

T 11
|| Name | Version | Last updated | Status | Package Name | Package
Version | Platform Name | Platform Status |

: |
a1l |3 | Thu Aug 09 12:39:17 IST 2018 | DEPLOYED | logcf | 1.0.0
| cf-dev | I

skipper:>release history al

|| Version | Last updated | Status | Package Name | Package Version

Description ||

41

I 3 | Thu Aug 09 12:39:17 IST 2018 | DEPLOYED | logcf [1.0.0
| Rollback complete |

|| 2 | Thu Aug 09 12:33:44 IST 2018 | DELETED |1ogcf [1.0.1
| Delete complete |
I 1 | Thu Aug 09 12:29:02 IST 2018 | DELETED | logcf |1.0.0

| Delete complete |

skipper:>manifest get al
"apiVersion": "skipper.spring.io/v1"
"kind": "CloudFoundryApplication”
"spec”:
"resource": "maven://org.springframework.cloud.stream.app:log-sink-rabbit"
"version": "1.3.0.RELEASE"
"manifest":
"memory": "1024"
"disk-quota": "2048"
"instances": "1"
"services":
- "rabbit"
"timeout": "180"

$ cf apps
Getting apps in org scdf-ci / space space-ilaya as igopinathan@pivotal.io...
0K

name requested state instances memory disk wurls
al-v3 started 1/1 16 2G al-v3.cfapps.io

Upgrade the logcf package into the latest 1.0.17 version and also update the manifest’s memory to
2.

skipper:>release upgrade --package-name logcf --release-name al --properties
"spec.manifest.memory=2G"
al has been upgraded. Now at version v4.

skipper:>release list

=
|| Name | Version | Last updated | Status | Package Name | Package
Version | Platform Name | Platform Status |
| : : :
| ! |
I | T
|
T
;'
1

42

a1 |4 | Thu Aug 09 12:49:49 IST 2018 | DEPLOYED | logcf | 1.0.1

| cf-dev | [a1-v4], State = [a1-v4-0=deployed] |
| L 1

=|

skipper:>release history a1l

E
|| Version | Last updated | Status | Package Name | Package Version
Description ||

| | |
T

=

|| 4 | Thu Aug 09 12:49:49 IST 2018 | DEPLOYED | logcf [1.0.1
| Upgrade complete |

| 3 | Thu Aug 09 12:39:17 IST 2018 | DELETED | logcf |1.0.0
| Delete complete |

|| 2 | Thu Aug 09 12:33:44 IST 2018 | DELETED | logcf [1.0.1
| Delete complete |

I 1 | Thu Aug 09 12:29:02 IST 2018 | DELETED | logcf |1.0.0

| Delete complete |
| L |

Ny

skipper:>manifest get al
"apiVersion": "skipper.spring.io/v1"
"kind": "CloudFoundryApplication"
"spec":
"resource": "maven://org.springframework.cloud.stream.app:log-sink-rabbit"
"version": "1.3.1.RELEASE"
"manifest":
“memory": "2G6"
"disk-quota": "2048"
"instances": "1"
"services":
- "rabbit"
“timeout": "180"

$ cf apps
Getting apps in org scdf-ci / space space-ilaya as igopinathan@pivotal.io...

0K

name requested state instances memory disk wurls
al-v4 started 1/1 26 26 al-v4.cfapps.io

Delete the release

skipper:>release delete a1
al has been deleted.

The following example shows how Skipper helps managing any application that can be deployed
into CF using manifest In this case, we have a couple of python packages that print the greeting
messages.

Upload the python packages from the spring-cloud-skipper-server-core test directory

skipper:>package upload --path spring-cloud-skipper-server-
core/src/test/resources/repositories/binaries/test/python/python-printer-1.0.0.zip
Package uploaded successfully:[python-printer:1.0.0]

skipper:>package upload --path spring-cloud-skipper-server-
core/src/test/resources/repositories/binaries/test/python/python-printer-1.0.1.zip
Package uploaded successfully:[python-printer:1.0.1]

Install the python package

skipper:>package install --package-name python-printer --package-version 1.0.0
--release-name printer --platform-name cf-dev
Released printer. Now at version v1.

skipper:>manifest get printer
"apiVersion": "skipper.spring.io/v1"
"kind": "CloudFoundryApplication"
"spec":
"resource":
"https://github.com/ilayaperumalg/sandbox/raw/master/python/1.0.0/hello.py-1.0.0.zip"
"version": "1.0.0"
"manifest":
"memory": "1024"
"disk-quota": "1024"
"instances": "1"
"health-check-type": "process"
"buildpack": "python_buildpack"
"timeout": "180"
"command": "python hello.py"

44

$ cf apps
Getting apps in org scdf-ci / space space-ilaya as igopinathan@pivotal.io...
0K

name requested state instances memory disk urls
printer-vl started 1/1 16 16 printer-vl.cfapps.io

$ cf logs printer-vi
Retrieving logs for app printer-v1 in org scdf-ci / space space-ilaya as
igopinathan@pivotal.io...

2018-08-09T713:33:36.55+0530 [APP/PROC/WEB/@] OUT Hello!
2018-08-09713:33:41.55+0530 [APP/PROC/WEB/@] OUT Hello!

Upgrade the python package with the version 1.0.1

skipper:>release upgrade printer --package-name python-printer --package-version 1.0.1
printer has been upgraded. Now at version v2.

skipper:>manifest get printer
"apiVersion": "skipper.spring.io/v1"
"kind": "CloudFoundryApplication"
"spec”:
“resource":
"https://github.com/ilayaperumalg/sandbox/raw/master/python/1.0.1/hello.py-1.0.1.zip"
"version": "1.0.1"
"manifest":
"memory": "1024"
"disk-quota": "1024"
"instances": "1"
"health-check-type": "process"
"buildpack": "python_buildpack"
"timeout": "180"
"command": "python vanakkam.py"

$ cf apps
Getting apps in org scdf-ci / space space-ilaya as igopinathan@pivotal.io...
0K

name requested state instances memory disk urls
printer-v2 started 1/1 16 16 printer-v2.cfapps.io

45

46

$ cf logs printer-v2
Retrieving logs for app printer-v2 in org scdf-ci / space space-ilaya as
igopinathan@pivotal.io...

2018-08-09713:36:13.39+0530 [APP/PROC/WEB/@] OUT Vanakkam!
2018-08-09713:36:18.40+0530 [APP/PROC/WEB/@] OUT Vanakkam!

Using Skipper

m

This section is the "'three-hour tour™ of Skipper. It describes how to configure and use the main
feature set of Skipper in detail. We will cover the shell, platforms, packages, and repositories.

Feel free to reach out on Gitter for help and ask questions on Stack Overflow. Issues can be filed on
Github issues.

47

https://gitter.im/spring-cloud/spring-cloud-skipper
https://stackoverflow.com/questions/tagged/spring-cloud-skipper
https://github.com/spring-cloud/spring-cloud-skipper/issues

Chapter 12. Skipper Shell

The shell is based on the Spring Shell project. Two of the shell’s best features are tab-completion
and colorization of commands. Use the 'help' command or the --help argument when starting the
shell to get help information. The output of using the --help argument follows:

Skipper Options:

--spring.cloud.skipper.client.serverUri=<uri> Address of the
Skipper Server [default: http://localhost:7577].

--spring.cloud.skipper.client.username=<USER> Username of the
Skipper Server [no default].

--spring.cloud.skipper.client.password=<PASSWORD> Password of the

Skipper Server [no default].
--spring.cloud.skipper.client.credentials-provider-command=<COMMAND> Executes an
external command which must return an OAuth Access Token [no default].
--spring.cloud.skipper.client.skip-ssl-validation=<true|false> Accept any SSL
certificate (even self-signed) [default: no].

--spring.shell.historySize=<SIZE> Default size of the shell log file
[default: 3000].
--spring.shell.commandFile=<FILE> Skipper Shell executes commands

read from the file(s) and then exits.

--help This message.

12.1. Shell Modes

The shell can be started in either interactive or non-interactive mode. In the case of the non-
interactive mode, command line arguments are executed as Skipper commands, and then the shell
exits. If there are any arguments that do not have the prefix spring.cloud.skipper.client, they are
considered as skipper commands to execute.

Consider the following example:

java -jar spring-cloud-skipper-shell-2.3.0.M1.jar
--spring.cloud.skipper.client.serverUri=http://localhost:9123/api

The preceding example brings up the interactive shell and connects to localhost:9123/api. Now
consider the following command:

$ java -jar spring-cloud-skipper-shell-2.3.0.M1.jar
--spring.cloud.skipper.client.serverUri=http://localhost:9123/api search

The preceding command connects to localhost:9123/api, executes the search command, and then

48

https://projects.spring.io/spring-shell/
http://localhost:9123/api
http://localhost:9123/api
http://localhost:9123/api
http://localhost:9123/api
http://localhost:9123/api
http://localhost:9123/api

exits.

A more common use case would be to update a package from within a CI job —for example, in a
Jenkins Stage, as shown in the following example:

stage ('Build') {

steps {
checkout([
$class: 'GitSCM',
branches: [
[name: "*/master"]
P

userRemoteConfigs: [
[url: "https://github.com/markpollack/skipper-samples.git"]
]
D)

sh ""'
VERSION="1.0.0.M1-$(date +%Y%m%d_%H%M%S)-VERSION"
mvn org.codehaus.mojo:versions-maven-plugin:2.3:set
-DnewVersion="${VERSION}"
mvn install
java -jar /home/mpollack/software/skipper.jar upgrade --package-name
helloworld --release-name helloworld-jenkins --properties version=§{VERSION}

}

49

Chapter 13. Platforms

Skipper supports deploying to multiple platforms. The platforms included are Local, Cloud Foundry,
and Kubernetes. For each platform, you can configure multiple accounts. Each account name must
be globally unique across all platforms.

Usually, different accounts correspond to different orgs or spaces for Cloud Foundry and to different
namespaces for a single Kubernetes cluster.

Platforms are defined by using Spring Boot’s Externalized Configuration feature. To simplify the
getting started experience, if a local platform account is not defined in your configuration, Skipper
creates a local deployer implementation named default.

You can make use of the Encryption and Decryption features of Spring Cloud Config as one way to
secure credentials.

Distinct from where Skipper deploys the application, you can also run the Skipper server itself on a
platform. Installation on other platforms is covered in the Installation section.

The following example YAML file shows configuration of all three platforms:

spring:
cloud:
skipper:
server:
platform:
local:
accounts:
localDevDebug:
javalOpts: "-Xdebug"
cloudfoundry:
accounts:
cf-dev:
connection:
url: https://api.run.pivotal.io
org: scdf-ci
space: space-mark
domain: cfapps.io
username: <your-username>
password: <your-password>
skipSslValidation: false
deployment:
deleteRoutes: false
kubernetes:
accounts:
minikube:

namespace: default

The properties available for each platform can be found in the following classes:

50

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html
https://cloud.spring.io/spring-cloud-static/spring-cloud-config/1.3.3.RELEASE/multi/multi__spring_cloud_config_server.html#_encryption_and_decryption

* LocalDeployerProperties.

* CloudFoundryDeploymentProperties for deployment: and CloudFoundryConnectionProperties
for the connection:.

* KubernetesDeployerProperties

51

https://github.com/spring-cloud/spring-cloud-deployer-local/blob/master/spring-cloud-deployer-local/src/main/java/org/springframework/cloud/deployer/spi/local/LocalDeployerProperties.java
https://github.com/spring-cloud/spring-cloud-deployer-cloudfoundry/blob/master/src/main/java/org/springframework/cloud/deployer/spi/cloudfoundry/CloudFoundryDeploymentProperties.java
https://github.com/spring-cloud/spring-cloud-deployer-cloudfoundry/blob/master/src/main/java/org/springframework/cloud/deployer/spi/cloudfoundry/CloudFoundryConnectionProperties.java
https://github.com/spring-cloud/spring-cloud-deployer-kubernetes/blob/master/src/main/java/org/springframework/cloud/deployer/spi/kubernetes/KubernetesDeployerProperties.java

Chapter 14. Packages

Packages contain all the necessary information to install your application or group of applications.
The approach to describing the applications is to use a YAML file that provides all the necessary
information to help facilitate searching for your application hosted in a Package Registry and to
install your application to a platform.

To make it easy to customize a package, the YAML files are templated. The final version of the YAML
file, with all values substituted, is known as the release manifest. Skipper currently understands
how to deploy applications based off a YAML file that contains the information needed for a Spring
Cloud Deployer or Cloud Foundry implementation to deploy an application. It describes where to
find the application (an HTTP, Maven or Docker location), application properties (think Spring Boot
@ConfigurationProperties), and deployment properties (such as how much memory to use).

14.1. Package Format

A package is a collection of YAML files that are zipped up into a file with the following naming
convention: [PackageName]-[PackageVersion].zip (for example: mypackage-1.0.0.zip).

A package can define a single application or a group of applications.

14.1.1. Single Application

The single application package file, mypackage-1.0.0.z1p, when unzipped, should have the following
directory structure:

mypackage-1.0.0
—— package.yml
—— templates

| L—— template.yml
L—— values.yml

The package.yml file contains metadata about the package and is used to support Skipper’s search
functionality. The template.yml file contains placeholders for values that are specified in the
values.yml file. When installing a package, placeholder values can also be specified, and they would
override the values in the values.yml file. The templating engine that Skipper uses is JMustache. The
YAML files can have either .yml or .yaml extensions.

The helloworld-1.0.0.zip or helloworld-docker-1.0.0.zip files are good examples to use as a basis to
create your own package "'by hand™.

The source code for the helloworld sample can be found here.

14.1.2. Multiple Applications

A package can contain a group of applications bundled in it. In those cases, the structure of the
package would resemble the following:

52

https://github.com/samskivert/jmustache
https://github.com/markpollack/skipper-sample-repository/blob/master/src/main/resources/static/repository/experimental/helloworld/helloworld-1.0.0.zip
https://github.com/markpollack/skipper-sample-repository/blob/master/src/main/resources/static/repository/experimental/helloworld-docker/helloworld-docker-1.0.0.zip
https://github.com/markpollack/skipper-samples

mypackagegroup-1.0.0
—— package.yml
—— packages

| F—— appT

| | —— package.yml
| | —— templates

| | | L—— log.yml
| | L—— values.yml

| —— app2

| —— package.yml

| —— templates

| | L—— time.yml
’ L—— values.yml
L—— values.yml

In the preceding example, the mypackagegroup still has its own package.yml and values.yml to specify
the package metadata and the values to override. All the applications inside the mypackagegroup are
considered to be sub-packages and follow a package structure similar to the individual packages.
These sub packages need to be specified inside the packages directory of the root package,
mypackagegroup

The ticktock-1.0.0.zip file is a good example to use as a basis for creating your own package 'by-
hand'.

0 Packages with template kind CloudFoundryApplication currently doesn’t support
multiple applications format.

14.2. Package Metadata

The package.yml file specifies the package metadata. A sample package metadata would resemble
the following:

Required Fields

apiVersion: skipper.spring.io/v1l
kind: SkipperPackageMetadata
name: mypackage

version: 1.0.0

Optional Fields

packageSourceUrl: https://github.com/some-mypackage-project/v1.0.0.RELEASE
packageHomeUr1l: https://some-mypackage-project/

tags: skipper, mypackage, sample

maintainer: https://github.com/maintainer

description: This is a mypackage sample.

Required Fields:

53

https://github.com/spring-cloud/spring-cloud-skipper/blob/master/spring-cloud-skipper-server-core/src/test/resources/repositories/binaries/test/ticktock/ticktock-1.0.0.zip

 apiVersion: The Package Index spec version this file is based on.
* kinds: What type of package system is being used.
* name: The name of the package.

 version: The version of the package.
0 Currently only supported kind is SkipperPackageMetadata.

Optional Fields:

 packageSourceUr1: The location of the source code for this package.
* packageHomeUr1l: The home page of the package.

» tags: A comma-separated list of tags to be used for searching.

* maintainer: Who maintains this package.

» description: Free-form text describing the functionality of the package — generally shown in
search results.

* sha256: The hash of the package binary (not yet enforced).
* iconUrl: The URL for an icon to show for this package.

* origin: Free-form text describing the origin of this package — for example, your company name.

0 Currently, the package search functionality is only a wildcard match against the
name of the package.

A Package Repository exposes an index.yml file that contains multiple metadata documents and that
uses the standard three dash notation --- to separate the documents — for example, index.yml.

14.3. Package Templates

Currently, two type of applications are supported. One having SpringCloudDeployerApplication kind,
which means the applications can be deployed into the target platforms only by using their
corresponding Spring Cloud Deployer implementations (CF, Kubernetes Deployer, and so on). Other
is having CloudFoundryApplication kind, which means the applications are directly deployed into
Cloud Foundry using its manifest support.

14.3.1. Spring Cloud Deployer

The template.yml file has a package structure similar to that of the following example:

mypackage-1.0.0
—— package.yml
—— templates

| L—— template.yml
L—— values.yml

54

https://skipper-repository.cfapps.io/repository/experimental/index.yml

ﬂ Actual template file name doesn’t matter and you can have multiple template files.
These just need to be inside of a templates directory.

template.yml
apiVersion: skipper.spring.io/v1l
kind: SpringCloudDeployerApplication
metadata:
name: mypackage
type: sample
spec:
resource: maven://org.mysample:mypackage
resourceMetadata: maven://org.mysample:mypackage:jar:metadata:{{spec.version}}
version: {{spec.version}}
applicationProperties:
{{#spec.applicationProperties.entrySet}}
{{key}}: {{value}}
{{/spec.applicationProperties.entrySet}}
deploymentProperties:
{{#spec.deploymentProperties.entrySet}}
{{key}}: {{value}}
{{/spec.deploymentProperties.entrySet}}

The apiVersion, kind, and spec.resource are required.

The spec.resource and spec.version define where the application executable is located. The
spec.resourceMetadata field defines where a Spring Boot Configuration metadata jar is located that
contains the configuration properties of the application. This is either a Spring Boot uber jar hosted
under a HTTP endpoint or a Maven or Docker repository. The template placeholder
{{spec.version}} exists so that the version of a specific application can be easily upgraded without
having to create a new package .zip file.

The resource is based on http:// or maven:// or docker:. The format for specifying a resource follows
documented types in Resources.

14.3.2. Cloud Foundry

The template.yml file has a package structure similar to that of the following example:

mypackage-1.0.0

—— package.yml
—— templates

| L—— template.yml
L—— values.yml

template.yml commonly has content similar to the following:

55

https://docs.spring.io/spring-boot/docs/current/reference/html/configuration-metadata.html

ﬁ Actual template file name doesn’t matter and you can have multiple template files.
These just need to be inside of a templates directory.

template.yml

apiVersion: skipper.spring.io/v1l
kind: CloudFoundryApplication

spec:

resource: maven://org.mysample:mypackage

version: {{spec.version}}

manifest:

{{#spec.manifest.entrySet}}

{{key}}: {{value}}

{{/spec.manifest.entrySet}}

Where values could for example be something like:

values.yml
spec:
version: 1.0.0
manifest:
memory: 1024
disk-quota: 1024

Possible values of a spec.manifest are:

Key
buildpack

command

memory

disk-quota

timeout
instances
no-hostname
no-route
random-route

health-check-type

Value

(String)

(String)

(String or Integer)

(String or Integer)

(Integer)
(Integer)
(Boolean)
(Boolean)
(Boolean)

(String)

health-check-http-endpoint (String)

56

Notes
buildpack attribute as is.
command attribute as is.

memory attribute as is if type is Integer,
String is converted using same format in
a CF, like 1024M or 2G. 1024 and 1024M are
equivalent.

disk_quota attribute as is if type is
Integer, String is converted using same
format in a CF, like 1024M or 2G. 1024 and
1024M are equivalent.

timeout attribute as is.
instances attribute as is.
no-hostname attribute as is.
no-route attribute as is.
random-route attribute as is.

health-check-type having possible values
of port, process or http.

health-check-http-endpoint attribute as is.

Key Value Notes

stack (String) stack attribute as is.
services (List<String>) services attribute as is.
domains (List<String>) domains attribute as is.
hosts (List<String>) hosts attribute as is.
env (Map<String,Object>) env attribute as is.

Remember that when a value is given from a command-line, replacement happens
as is defined in a template. Using a template format {{#spec.manifest.entrySet}}

0 shown above, List would be given in format spec.manifest.services=[servicel,
service2] and Map would be given in format spec.manifest.env={key1: valuel,
key2: value2}.

The resource is based on http:// or maven:// or docker:. The format for specifying a resource follows
documented types in Resources.

14.3.3. Resources

This section contains resource types currently supported.

HTTP Resources
The following example shows a typical spec for HTTP:
spec:

resource: https://example.com/app/hello-world
version: 1.0.0.RELEASE

There is a naming convention that must be followed for HTTP-based resources so that Skipper can
assemble a full URL from the resource and version field and also parse the version number given
the URL. The preceding spec references a URL at example.com/app/hello-world-1.0.0.RELEASE.jar.
The resource and version fields should not have any numbers after the - character.

Docker Resources

The following example shows a typical spec for Docker:

spec:
resource: docker:springcloud/spring-cloud-skipper-samples-helloworld
version: 1.0.0.RELEASE

The mapping to docker registry names follows:

57

https://example.com/app/hello-world-1.0.0.RELEASE.jar
https://example.com/app/hello-world-1.0.0.RELEASE.jar
https://example.com/app/hello-world-1.0.0.RELEASE.jar
https://example.com/app/hello-world-1.0.0.RELEASE.jar
https://example.com/app/hello-world-1.0.0.RELEASE.jar

spec:
resource: docker:<user>/<repo>
version: <tag>

Maven Resources

The following example shows a typical spec for Maven:

spec:

resource: maven://org.springframework.cloud.samples:spring-cloud-skipper-samples-
hellowor1ld:1.0.0.RELEASE

version: 1.0.0.RELEASE

The mapping to Maven artifact names follows

spec:
resource: maven://<maven-group-name>:<maven-artifact-name>
version:<maven-version>

There is only one setting to specify with Maven repositories to search. This setting applies across all
platform accounts. By default, the following configuration is used:

maven:
remoteRepositories:
springRepo: https://repo.spring.io/libs-snapshot

You can specify other entries and also specify proxy properties. This is currently best documented
here. Essentially, this needs to be set as a property in your launch properties or manifest.yml (when
pushing to PCF), as follows:

manifest.yml

env:
SPRING_APPLICATION_JSON: '{"maven": { "remote-repositories": { "springRepo": {
"url": "https://repo.spring.io/libs-snapshot"} } } }'

The metadata section is used to help search for applications after they have been installed. This
feature will be made available in a future release.

The spec contains the resource specification and the properties for the package.

The resource represents the resource URI to download the application from. This would typically be
a Maven co-ordinate or a Docker image URL.

58

https://docs.spring.io/spring-cloud-dataflow/docs/current/reference/htmlsingle/#local-configuration-maven

The SpringCloudDeployerApplication kind of application can have applicationProperties and
deploymentProperties as the configuration properties.

The application properties correspond to the properties for the application itself.

The deployment properties correspond to the properties for the deployment operation performed
by Spring Cloud Deployer implementations.

0 The name of the template file can be anything, as all the files under templates
directory are loaded to apply the template configurations.

14.4. Package Values

The values.yml file contains the default values for any of the keys specified in the template files.

For instance, in a package that defines one application, the format is as follows:

version: 1.0.0.RELEASE
spec:
applicationProperties:
server.port: 9090

If the package defines multiple applications, provide the name of the package in the top-level YML
section to scope the spec section. Consider the example of a multiple application package with the
following layout:

ticktock-1.0.0/

—— packages

| F—— Tlog

| | —— package.yml
| | L—— values.yml
| L—— time

|

—— package.yml

| L—— values.yml

—— package.yml

L—— values.yml

The top-level values.yml file might resemble the following:

59

#values.yml
hello: world

time:
appVersion: 1.3.0.M1
deployment:
applicationProperties:
log.level: WARN
trigger.fixed-delay: 1
log:
deployment:
count: 2
applicationProperties:
log.level: WARN
log.name: skipperlogger

The preceding values.yml file sets hello as a variable available to be used as a placeholder in the
packages\log\values.yml file and the packages\time\values.yml. However, the YML section under
time: is applied only to the packages\time\values.yml file and the YML section under log: is applied
only to the packages\log\values.yml file.

14.5. Package Upload

After creating the package in the structure shown in the previous section, we can compress it in a
zip file with the following naming scheme: [PackageName]-[PackageVersion].zip (for example,
mypackage-1.0.0.zip).

For instance, the package directory would resemble the following before compression:

mypackage-1.0.0

—— package.yml
—— templates

| L—— template.yml
L—— values.yml

The zip file can be uploaded into one of the local repositories of the Skipper server. By default, the
Skipper server has a local repository with the name, local.

By using the Skipper shell, we can upload the package zip file into the Skipper server’s local
repository, as follows:

skipper:>package upload --path /path-to-package/mypackage-1.0.0.zip
Package uploaded successfully:[mypackage:1.0.0]

If no --repo-name is set, the upload command uses local as the repository to upload.

60

We can then use the package 1list or package search command to see that our package has been
uploaded, as shown (with its output) in the following example:

skipper:>package list

I Name | Version Description

|

' ! !

[I 1

|

|| helloworld | 1.0.0 | The app has two endpoints, /about and /greeting in
English. Maven resource. |

|| hellowor1ld | 1.0.1 | The app has two endpoints, /about and /greeting in

Portuguese. Maven resource. |

|| hellowor1d-docker | 1.0.0 | The app has two endpoints, /about and /greeting in
English. Docker resource. |

|| hellowor1d-docker | 1.0.1 | The app has two endpoints, /about and /greeting in
Portuguese. Docker resource. |

|| mypackage | 1.0.0 | This is a mypackage sample

|

14.6. Creating Your Own Package

In this section, we create a package that can be deployed by using Spring Cloud Deployer
implementations.

For this package, we are going to create a simple package and upload it to our local machine.

To get started creating your own package, create a folder following a naming convention of
[package-name]-[package-version]. In our case, the folder name is demo-1.0.0. In this directory,
create empty files named values.yml and package.yml and create a templates directory. In the
templates directory, create an empty file named template.yml.

Go into the package.yml where we are going to specify the package metadata. For this app, we fill
only the minimum values possible, as shown in the following example:

package.yml

apiVersion: skipper.spring.io/v1l
kind: SkipperPackageMetadata
name: demo

version: 1.0.0

description: Greets the world!

61

0 Ensure that your name and version matches the name and version in your folder
name, or you get an error.

Next, open up your templates/template.yml file. Here, we are going to specify the actual information
about your package and, most importantly, set default values. In the template.yml, copy the
template for the kind SpringCloudDeployerApplication from the preceding sample. Your resulting
template.yml file should resemble the following:

templates/template.yml

apiVersion: skipper.spring.io/v1
kind: SpringCloudDeployerApplication
metadata:
name: demo
spec:
resource: maven://org.springframework.cloud.samples:spring-cloud-skipper-samples-
helloworld
version: {{version}}
applicationProperties:
{{#ispec.applicationProperties.entrySet}}
{{key}}: {{value}}
{{/spec.applicationProperties.entrySet}}
deploymentProperties:
{{#spec.deploymentProperties.entrySet}}
{{key}}: {{value}}
{{/spec.deploymentProperties.entrySet}}

The preceding example file specifies that our application name is demo and finds our package in
Maven. Now we can specify the version, applicationProperties, and deploymentProperties in our
values.yml, as follows:

values.yml

This is a YAML-formatted file.
Declare variables to be passed into your templates
version: 1.0.0.RELEASE
spec:
applicationProperties:
server.port: 8100

The preceding example sets the version to 1.0.0.RELEASE and also sets the server.port=8100 as one of
the application properties. When the Skipper Package reader resolves these values by merging the
values.yml against the template, the resolved values resemble the following:

62

hypothetical template.yml

apiVersion: skipper.spring.io/v1l
kind: SpringCloudDeployerApplication
metadata:
name: demo
spec:
resource: maven://org.springframework.cloud.samples:spring-cloud-skipper-samples-
helloworld
version: 1.0.0.RELEASE
applicationProperties:
server.port: 8100
deploymentProperties:

The reason to use values.yml instead of entering the values directly is that it lets you overwrite the
values at run time by using the --file or --properties flags.

We have finished making our file. Now we have to zip it up. The easiest way to do is by using the
zip -r command on the command line, as follows:

$ zip -r demo-1.0.0.zip demo-1.0.0/
adding: demo-1.0.0/ (stored 0%)
adding: demo-1.0.0/package.yml (deflated 14%)
adding: demo-1.0.0/templates/ (stored 0%)
adding: demo-1.0.0/templates/template.yml (deflated 55%)
adding: demo-1.0.0/values.yml (deflated 4%)

Armed with our zipped file and the path to it, we can head to Skipper and use the upload command,
as follows:

skipper:>package upload --path /Users/path-to-your-zip/demo-1.0.0.zip
Package uploaded successfully:[demo:1.0.0]

Now you can search for it as shown previously and then install it, as follows

skipper:>package install --package-name demo --package-version 1.0.0 --release-name
demo
Released demo. Now at version v1.

Congratulations! You have now created, packaged, uploaded, and installed your own Skipper
package!

63

Chapter 15. Repositories

Repositories store package metadata and host package .zip files. Repositores can be local or remote,
were local means backed by Skipper’s relational database and remote means a filesystem exposed
over HTTP.

When registering a remote registry (for example, the experimental one that is currently not defined
by default in addition to one named local *), use the following format:

spring
cloud:
skipper:
server:
package-repositories:
experimental:

url: https://skipper-repository.cfapps.io/repository/experimental
description: Experimental Skipper Repository
repoOrder: 0

local:
url: http://${spring.cloud.client.hostname}:7577
local: true

description: Default local database backed repository
repoOrder: 1

For Skipper 2.x, spring.cloud.skipper.server.package-repositories structure has
o been changed from a list to a map where key is the repository name. Having a map
format makes it easier to define and override configuration values.

The repoOrder determines which repository serves up a package if one with the same name is
registered in two or more repositories.

The directory structure assumed for a remote repository is the registered url value followed by the
package name and then the zip file name (for example, skipper-repository.cfapps.io/repository/
experimental/helloworld/helloworld-1.0.0.z1p for the package helloworld with a version of 1.0.0). A
file named index.yml is expected to be directly under the registered url—for example, skipper-
repository.cfapps.io/repository/experimental/index.yml. This file contains the package metadata for
all the packages hosted by the repository.

It is up to you to update the index.yml file "by hand™ for remote repositories.

'Local' repositories are backed by Skipper’s database. In the Skipper 1.0 release, they do not expose
the index.yml or the .zip files under a filesystem-like URL structure as with remote repositories.
This feature will be provided in the next version. However, you can upload packages to a local
repository and do not need to maintain an index file. See the “Skipper Commands” section for
information on creating local repositories.

A good example that shows using a Spring Boot web application with static resources to host a
Repository can be found here. This application is currently running under skipper-

64

https://skipper-repository.cfapps.io/repository/experimental/helloworld/helloworld-1.0.0.zip
https://skipper-repository.cfapps.io/repository/experimental/helloworld/helloworld-1.0.0.zip
https://skipper-repository.cfapps.io/repository/experimental/helloworld/helloworld-1.0.0.zip
https://skipper-repository.cfapps.io/repository/experimental/helloworld/helloworld-1.0.0.zip
https://skipper-repository.cfapps.io/repository/experimental/helloworld/helloworld-1.0.0.zip
https://skipper-repository.cfapps.io/repository/experimental/helloworld/helloworld-1.0.0.zip
https://skipper-repository.cfapps.io/repository/experimental/helloworld/helloworld-1.0.0.zip
https://skipper-repository.cfapps.io/repository/experimental/helloworld/helloworld-1.0.0.zip
https://skipper-repository.cfapps.io/repository/experimental/helloworld/helloworld-1.0.0.zip
https://skipper-repository.cfapps.io/repository/experimental/index.yml
https://skipper-repository.cfapps.io/repository/experimental/index.yml
https://github.com/markpollack/skipper-sample-repository
https://skipper-repository.cfapps.io/repository/experimental

repository.cfapps.io/repository/experimental.

65

https://skipper-repository.cfapps.io/repository/experimental

Installation

66

Chapter 16. Installing on a Local Platform

16.1. Local Platform configuration

The following example YAML file configures two local deployer accounts, named localDev and
localDevDebug:

spring:
cloud:
skipper:
server:
platform:
local:
accounts:
localDev:
shutdownTimeout: 60
javaOpts: "-Dtest=foo"
localDevDebug:
javalOpts: "-Xdebug"

The key-value pairs that follow the name of the account are javaCmd, workingDirectoriesRoot,
deleteFilesOnExit, envVarsToInherit, shutdownTimeout, javaOpts, and useSpringApplication]son. More
information can be found in the JavaDocs for LocalDeployerProperties.

67

https://github.com/spring-cloud/spring-cloud-deployer-local/blob/master/spring-cloud-deployer-local/src/main/java/org/springframework/cloud/deployer/spi/local/LocalDeployerProperties.java

Chapter 17. Installing on Cloud Foundry

This section contains an example YAML file that configures two Cloud Foundry accounts, named cf-
dev and cf-qa. This is useful on Cloud Foundry if you use the Spring Cloud Config Server to manage
Skipper’s configuration properties.

17.1. Cloud Foundry Configuration

You can modify the following sample YML snippet to fit your needs:

spring:
cloud:
skipper:
server:
platform:
cloudfoundry:
accounts:
cf-dev:
connection:
url: https://api.run.pivotal.io
org: myOrg
space: mySpace
domain: cfapps.io
username: cf-dev@example.com
password: drowssap
skipSslValidation: false
deployment:
memory: 2048m
disk: 2048m
services: rabbit
deleteRoutes: false
cf-qa:
connection:
url: https://api.run.pivotal.io
org: myOrgQA
space: mySpaceQA
domain: cfapps.io
username: cf-qa@example.com
password: drowssap
skipSslValidation: true
deployment:
memory: 1024m
disk: 1024m
services: rabbitQA
deleteRoutes: false

O The deleteRoutes deployment setting is false so that “v2” of an application has the
same route as “v1”. Otherwise, undeploying “v1” removes the route.

68

You can also run the Skipper server locally and deploy to Cloud Foundry. In this case, it is more
convenient to specify the configuration in a skipper.yml file and start the server with the
--spring.config.additional-location=skipper.yml option.

If you use cf push to deploy Skipper, a Cloud Foundry manifest is more appropriate to use. You can
modify the following sample manifest.yml to fit your needs:

applications:
- name: mlp-skipper
host: mlp-skipper
memory: 1G
disk_quota: 16
timeout: 180
instances: 1
buildpack: java_buildpack
path: spring-cloud-skipper-server.jar
env:
SPRING_APPLICATION_NAME: mlp-skipper
JBP_CONFIG_SPRING_AUTO_RECONFIGURATION: '{enabled: false}'
SPRING_CLOUD_SKIPPER_SERVER_PLATFORM_CLOUDFOUNDRY_ACCOUNTS[pws]_CONNECTION_URL:
https://api.run.pivotal.io
SPRING_CLOUD_SKIPPER_SERVER_PLATFORM_CLOUDFOUNDRY_ACCOUNTS[pws]_CONNECTION_ORG:
myOrgQA
SPRING_CLOUD_SKIPPER_SERVER_PLATFORM_CLOUDFOUNDRY_ACCOUNTS[pws]_CONNECTION_SPACE:
mySpaceQA
SPRING_CLOUD_SKIPPER_SERVER_PLATFORM_CLOUDFOUNDRY_ACCOUNTS[pws]_CONNECTION_DOMAIN:
cfapps.io

SPRING_CLOUD_SKIPPER_SERVER_PLATFORM_CLOUDFOUNDRY_ACCOUNTS[pws]_CONNECTION_USERNAME:
cf-qa@example.com

SPRING_CLOUD_SKIPPER_SERVER_PLATFORM_CLOUDFOUNDRY_ACCOUNTS[pws]_CONNECTION_PASSWORD:
drowssap

SPRING_CLOUD_SKIPPER_SERVER_PLATFORM_CLOUDFOUNDRY_ACCOUNTS[pws]_CONNECTION_SKIPSSLVALI
DATION: false

SPRING_CLOUD_SKIPPER_SERVER_PLATFORM_CLOUDFOUNDRY_ACCOUNTS[pws]_DEPLOYMENT_DELETEROUTE
S: false

SPRING_CLOUD_SKIPPER_SERVER_PLATFORM_CLOUDFOUNDRY_ACCOUNTS[pws]_DEPLOYMENT _SERVICES:

rabbitmq
services:
- mysqlboost
0 In the preceding manifest, we bound the application to the mysqlboost service. If

you do not specify a service, the server uses an embedded database.

69

ﬁ As of Skipper 2.0, you must disable Spring Auto-reconfiguration and set the profile
to cloud.

You must set
0 SPRING_CLOUD_SKIPPER_SERVER_PLATFORM_CLOUDFOUNDRY_ACCOUNTS[pws]_DEPLOYMENT _DELE
TEROUTES: false so that “v2” of an application has the same route as “v1”.

Otherwise, undeploying “v1” removes the route.

You must set
ﬂ SPRING_CLOUD_SKIPPER_SERVER_PLATFORM_CLOUDFOUNDRY_ACCOUNTS[pws]_DEPLOYMENT_SERV

ICES property that binds the specified services to each of the deployed applications.

You can find information on the deployment properties that you can configure in
CloudFoundryDeploymentProperties.

When starting the Skipper shell on your local machine, it tries to connect to the Server at the
default location of localhost:7577/api. Use the shell’s --spring.cloud.skipper.client.serverUri
command line option to specify the location of the server. You can alternatively use the config
interactive shell command to set the server location, as follows:

server-unknown:>skipper config --uri https://mlp-skipper.cfapps.io/api
Successfully targeted https://mlp-skipper.cfapps.io/api
skipper:>

17.2. Database Connection Pool

As of Skipper 2.0, the Spring Cloud Connector library is no longer used to create the DataSource.
The library java-cfenv is now used which allows you to set Spring Boot properties to configure the
connection pool.

17.3. Maximum Disk Quota

By default, every application in Cloud Foundry starts with 1G disk quota and this can be adjusted to
a default maximum of 2G. The default maximum can also be overridden up to 10G by using Pivotal
Cloud Foundry’s (PCF) Ops Manager GUI.

This configuration is relevant for Spring Cloud Skipper because every deployment is composed of
applications (typically Spring Boot uber-jar’s), and those applications are resolved from a remote
maven repository. After resolution, the application artifacts are downloaded to the local Maven
Repository for caching and reuse. With this happening in the background, the default disk quota
(1G) can fill up rapidly, especially when we experiment with streams that are made up of unique
applications. In order to overcome this disk limitation and depending on your scaling
requirements, you may want to change the default maximum from 2G to 10G. Let’s review the steps
to change the default maximum disk quota allocation.

From PCF’s Ops Manager, select the “Pivotal Elastic Runtime” tile and navigate to the “Application

70

https://github.com/spring-cloud/spring-cloud-deployer-cloudfoundry/blob/master/src/main/java/org/springframework/cloud/deployer/spi/cloudfoundry/CloudFoundryDeploymentProperties.java
http://localhost:7577/api
http://localhost:7577/api
http://localhost:7577/api
https://github.com/pivotal-cf/java-cfenv
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#boot-features-connect-to-production-database

Developer Controls” tab. Change the “Maximum Disk Quota per App (MB)” setting from 2048 (2G) to
10240 (10G). Save the disk quota update and click “Apply Changes” to complete the configuration
override.

17.4. Managing Disk Use

Even when configuring Skipper to use 10G of space, there is the possibility of exhausting the
available space on the local disk. To prevent this, jar artifacts downloaded from external sources,
i.e., apps registered as http or maven resources, are automatically deleted whenever the application
is deployed, whether or not the deployment request succeeds. This behavior is optimal for
production environments in which container runtime stability is more critical than I/O latency
incurred during deployment. In development environments deployment happens more frequently.
Additionally, the jar artifact (or a lighter metadata jar) contains metadata describing application
configuration properties which is used by various operations related to application configuration,
more frequently performed during pre-production activities. To provide a more responsive
interactive developer experience at the expense of more disk usage in pre-production
environments, you can set the CloudFoundry deployer property autoDeleteMavenArtifacts to false.

If you deploy the Skipper by using the default port health check type, you must explicitly monitor
the disk space on the server in order to avoid running out space. If you deploy the server by using
the http health check type (see the next example), the server is restarted if there is low disk space.
This is due to Spring Boot’s Disk Space Health Indicator. You can configure the settings of the Disk
Space Health Indicator by using the properties that have the management.health.diskspace prefix.

For version 1.7, we are investigating the use of Volume Services for the server to store .jar artifacts
before pushing them to Cloud Foundry.

The following example shows how to deploy the http health check type to an endpoint called
/management/health:

health-check-type: http
health-check-http-endpoint: /management/health

71

https://github.com/spring-projects/spring-boot/blob/v1.5.14.RELEASE/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/DiskSpaceHealthIndicator.java
https://docs.spring.io/spring-boot/docs/1.5.14.RELEASE/reference/htmlsingle/#common-application-properties
https://docs.cloudfoundry.org/devguide/services/using-vol-services.html

Chapter 18. Installing on Kubernetes

A docker image, named springcloud/spring-cloud-skipper-server, is available for Skipper server in
dockerhub. You can use this image to run the Skipper server in Kubernetes.

18.1. Kuberenetes configuration

The following example YAML file configures two accounts, named k8s-dev and k8sga, on a
Kubernetes cluster.

spring:
cloud:
skipper:
server:
platform:
kubernetes:
accounts:
k8s-dev:
namespace: devNamespace
cpu: 4
k8s-qa:
namespace: qaNamespace
memory: 1024m

The accounts correspond to different namespaces. We are investigating how to support connecting
to different Kubernetes clusters.

You can find more information on the deployment properties that you can configure in
KubernetesDeployerProperties

72

https://github.com/spring-cloud/spring-cloud-deployer-kubernetes/blob/master/src/main/java/org/springframework/cloud/deployer/spi/kubernetes/KubernetesDeployerProperties.java

Chapter 19. Database configuration

A relational database is used to store stream and task definitions as well as the state of executed
tasks. Spring Cloud Skipper provides schemas for H2, MySQL, Oracle, PostgreSQL, Db2, and SQL
Server. The schema is automatically created when the server starts.

By default, Spring Cloud Skipper offers an embedded instance of the H2 database. The H2 database
is good for development purposes but is not recommended for production use.

o H2 database in Server Mode is not supported, only Embedded Mode.

The JDBC drivers for MySQL (through the MariaDB driver), PostgreSQL, SQL Server, and
embedded H2 are available without additional configuration. If you are using any other database,
then you need to put the corresponding JDBC driver jar on the classpath of the server.

The database properties can be passed as environment variables or command-line arguments to
the Skipper Server.

19.1. MySQL

The following example shows how to define a MySQL database connection using MariaDB driver.

java -jar spring-cloud-skipper-server-2.3.0.M1.jar \
--spring.datasource.url=jdbc:mysql://localhost:3306/mydb \
--spring.datasource.username=<user> \
--spring.datasource.password=<password> \
--spring.datasource.driver-class-name=org.mariadb.jdbc.Driver

MySQL versions up to 5.7 can be used with a MariaDB driver. Starting from version 8.0 MySQL’s
own driver has to be used.

java -jar spring-cloud-skipper-server-2.3.0.M1.jar \
--spring.datasource.url=jdbc:mysql://localhost:3306/mydb \
--spring.datasource.username=<user> \
--spring.datasource.password=<password> \
--spring.datasource.driver-class-name=com.mysql.jdbc.Driver

0 Due to licensing restrictions we’re unable to bundle the MySQL driver. You need to
add it to server’s classpath yourself.

19.2. MariaDB

The following example shows how to define a MariaDB database connection with command Line
arguments

73

java -jar spring-cloud-skipper-server-server-2.3.0.M1.jar \
--spring.datasource.url=jdbc:mariadb://localhost:3306/mydb?useMysqlMetadata=true \
--spring.datasource.username=<user> \
--spring.datasource.password=<password> \
--spring.datasource.driver-class-name=org.mariadb.jdbc.Driver

Starting with MariaDB v2.4.1 connector release, it is required to also add useMysqlMetadata=true to
the JDBC URL. This is a required workaround until the time when MySQL and MariaDB are
considered to be two different databases.

MariaDB version 10.3 introduced a support for real database sequences which is yet another
breaking change while toolings around these databases fully support MySQL and MariaDB as a
separate database types. A workaround is to use an older hibernate dialect which doesn’t try to use
sequences.

java -jar spring-cloud-spring-cloud-skipper-server-server-2.3.0.M1.jar \
--spring.datasource.url=jdbc:mariadb://localhost:3306/mydb?useMysqlMetadata=true \
--spring.datasource.username=<user> \
--spring.datasource.password=<password> \
--spring.jpa.properties.hibernate.dialect=org.hibernate.dialect.MariaDB102Dialect

--spring.datasource.driver-class-name=org.mariadb.jdbc.Driver

19.3. PostgreSQL

The following example shows how to define a PostgreSQL database connection with command line
arguments:

java -jar spring-cloud-skipper-server-2.3.0.M1.jar \
--spring.datasource.url=jdbc:postgresql://localhost:5432/mydb \
--spring.datasource.username=<user> \
--spring.datasource.password=<password> \
--spring.datasource.driver-class-name=org.postgresql.Driver

19.4. SQL Server

The following example shows how to define a SQL Server database connection with command line
arguments:

java -jar spring-cloud-skipper-server-2.3.0.M1.jar \
--spring.datasource.url="jdbc:sqlserver://localhost:1433;databaseName=mydb" \
--spring.datasource.username=<user> \
--spring.datasource.password=<password> \
--spring.datasource.driver-class-name=com.microsoft.sqlserver.jdbc.SQLServerDriver

74

19.5. Db2

The following example shows how to define a Db2 database connection with command line
arguments:

java -jar spring-cloud-skipper-server-2.3.0.M1.jar \
--spring.datasource.url=jdbc:db2://1localhost:50000/mydb \
--spring.datasource.username=<user> \
--spring.datasource.password=<password> \
--spring.datasource.driver-class-name=com.ibm.db2.jcc.DB2Driver

O Due to licensing restrictions we’re unable to bundle Db2 driver. You need to add it
to server’s classpath yourself.

19.6. Oracle

The following example shows how to define a Oracle database connection with command line
arguments:

java -jar spring-cloud-skipper-server-2.3.0.M1.jar \
--spring.datasource.url=jdbc:oracle:thin:@localhost:1521/MYDB \
--spring.datasource.username=<user> \
--spring.datasource.password=<password> \
--spring.datasource.driver-class-name=oracle.jdbc.OracleDriver

0 Due to licensing restrictions we’re unable to bundle Oracle driver. You need to add
it to server’s classpath yourself.

75

Security

By default, the Spring Cloud Skipper server is unsecured and runs on an unencrypted HTTP
connection. You can secure your REST endpoints by enabling HTTPS and requiring clients to
authenticate using OAuth 2.0

O By default, the REST endpoints (administration, management and health) do not
require authenticated access.

76

https://oauth.net/2/

Chapter 20. Enabling HTTPS

By default, the REST endpoints use plain HTTP as a transport. You can switch to HTTPS by adding a
certificate to your configuration, as shown in the following skipper.yml example:

server:

port: 8443

ssl:
key-alias: yourKeyAlias
key-store: path/to/keystore
key-store-password: yourKeyStorePassword
key-password: yourKeyPassword
trust-store: path/to/trust-store
trust-store-password: yourTrustStorePassword

Q@PO®OE O

@ As the default port is 7577, you may choose to change the port to a more common HTTPs-typical
port.

@ The alias (or name) under which the key is stored in the keystore.

® The path to the keystore file. Classpath resources may also be specified, by using the classpath
prefix: classpath:path/to/keystore

@ The password of the keystore.
® The password of the key.

® The path to the truststore file. Classpath resources may also be specified, by using the classpath
prefix: classpath:path/to/trust-store

@ The password of the trust store.

Q You can reference the YAML file wusing the following parameter:
--spring.config.additional-location=skipper.yml

If HTTPS is enabled, it completely replaces HTTP as the protocol over which the
0 REST endpoints interact. Plain HTTP requests then fail. Therefore, you must make
sure that you configure the Skipper shell accordingly.

20.1. Using Self-Signed Certificates

For testing purposes or during development, it might be convenient to create self-signed
certificates. To get started, run the following command to create a certificate:

$ keytool -genkey -alias skipper -keyalg RSA -keystore skipper.keystore \
-validity 3650 -storetype JKS \
-dname "CN=localhost, 0U=Spring, O=Pivotal, L=Holualoa, ST=HI, C=US" @
-keypass skipper -storepass skipper

@ CN is the only important parameter here. It should match the domain you are trying to access,

77

e.g. localhost.

Then add the following to your skipper.yml file:

server:

port: 8443

ssl:
enabled: true
key-alias: skipper
key-store: "/your/path/to/skipper.keystore"
key-store-type: jks
key-store-password: skipper
key-password: skipper

That is all you need for the Skipper Server. Once you start the server, you should be able to access it
at https://localhost:8443/. As this is a self-signed certificate, you should hit a warning in your
browser. You need to ignore that.

20.2. Self-Signed Certificates and the Shell

By default, self-signed certificates are an issue for the shell. Additional steps are necessary to make
the shell work with self-signed certificates. Two options are available:

* Add the self-signed certificate to the JVM truststore

» Skip certificate validation

20.2.1. Add the Self-signed Certificate to the JVM Truststore

In order to use the JVM truststore option, we need to export the previously created certificate from
the keystore:

$ keytool -export -alias skipper -keystore skipper.keystore -file skipper_cert
-storepass skipper

Next, we need to create a truststore which the Shell uses:

$ keytool -importcert -keystore skipper.truststore -alias skipper -storepass skipper
-file skipper_cert -noprompt

Now you can launch the Skipper shell by using the following JVM arguments:

$ java -Djavax.net.ssl.trustStorePassword=skipper \
-Djavax.net.ssl.trustStore=/path/to/skipper.truststore \
-Djavax.net.ssl.trustStoreType=jks \
-jar spring-cloud-skipper-shell-2.3.0.M1.jar

78

https://localhost:8443/

Q If you run into trouble establishing a connection over SSL, you can enable
additional logging by setting the javax.net.debug JVM argument to ssl.

Remember to target the Skipper server with a config command similar to the following:

skipper:>skipper config --uri https://localhost:8443/api

20.2.2. Skip Certificate Validation

Alternatively, you can bypass the certification validation by providing the following optional
command-line parameter: --spring.cloud.skipper.client.skip-ssl-validation=true.

When you set this command-line parameter, the shell accepts any (self-signed) SSL certificate.

ﬁ If possible, you should avoid using this option. Disabling the trust manager defeats
the purpose of SSL and makes your site vulnerable to man-in-the-middle attacks.

79

Chapter 21. OAuth 2.0 Security

OAuth 2.0 lets you integrate Spring Cloud Skipper into Single Sign-on (SSO) environments. You can
use the following OAuth2 Grant Types:

* Password: Used by the shell (and the REST integration), so you can login with a username and a
password

* Client Credentials: Retrieve an Access Token directly from your OAuth provider and pass it to
the Skipper server in the Authorization HTTP header.

The REST endpoints can be accessed in two ways:

» Basic Authentication: Uses the Password Grant Type to authenticate with your OAuth2 service.

* Access Token: Uses the Client Credentials Grant Type

0 When you set up authentication, we strongly recommended enabling HTTPS as
well, especially in production environments.

You can turn on OAuth2 authentication by setting environment variables or by adding the following
block to skipper.yml:

security:
oauth2:
client:
client-id: myclient @
client-secret: mysecret
access-token-uri: http://127.0.0.1:9999/0auth/token
user-authorization-uri: http://127.0.0.1:9999/0auth/authorize
resource:
user-info-uri: http://127.0.0.1:9999/me

80

https://oauth.net/2/

spring:

security:
oauth2: @
client:
registration:
uaa: @

client-id: myclient
client-secret: mysecret
redirect-uri: '{baseUrl}/login/oauth2/code/{registrationId}’
authorization-grant-type: authorization_code
scope:
- openid ®
provider:
uaa:
jwk-set-uri: http://uaa.local:8080/uaa/token_keys
token-uri: http://uaa.local:8080/uaa/oauth/token

user-info-uri: http://uaa.local:8080/uaa/userinfo @

user-name-attribute: user_name ®

authorization-uri: http://uaa.local:8080/uaa/oauth/authorize
resourceserver:
opaquetoken:

introspection-uri: http://uaa.local:8080/uaa/introspect ®
client-id: dataflow
client-secret: dataflow
cloud:
skipper:
security:
authorization:
provider-role-mappings: @
uaa:
map-oauth-scopes: true
role-mappings:
ROLE_VIEW: skipper.view
ROLE_CREATE: skipper.create
ROLE_MANAGE: skipper.manage

@ Providing this property activates OAuth2 security
@ The provider id. It is possible to specify more than 1 provider

® As the UAA is an OpenID provider, you must at least specify the openid scope. If your provider
also provides additional scopes to control the role assignments, you must specify those scopes
here as well

@ OpenlID endpoint. Used to retrieve user information such as the username. Mandatory.
® The JSON property of the response that contains the username
® Used to introspect and validate a directly passed-in token. Mandatory.

@ Role mappings for authorization. You can verify that basic authentication is working properly
by using curl, as follows:

81

‘curl -u myusername:mypassword http://localhost:7577/"

As a result, you should see a list of available REST endpoints.

Besides Basic Authentication, you can also provide an Access Token to access the REST API. To make
that happen, retrieve an OAuth2 Access Token from your OAuth2 provider and then pass that
Access Token to the REST API by using the Authorization HTTP header, as follows:

curl -H "Authorization: Bearer <ACCESS_TOKEN>" http://localhost:7577/

21.1. OAuth REST Endpoint Authorization

Spring Cloud Skipper supports the following roles:

* VIEW: For anything that relates to retrieving state.
* CREATE: For anything that involves creating, deleting, or mutating the state of the system.
* MANAGE: For boot management endpoints.

The rules regarding which REST endpoints require which roles are specified in the application.yml
of the spring-cloud-skipper-server-core module.

Nonetheless, you can override those, if desired. The configuration takes the form of a YAML list (as
some rules may have precedence over others). Consequently, you need to copy/paste the whole list
and tailor it to your needs (as there is no way to merge lists). Always refer to your version of
application.yml, as the snippet reproduced below may be outdated. The default rules are as follows:

About

GET /api/about => hasRole('ROLE_VIEW")

AppDeployerDatas

GET /api/appDeployerDatas => hasRole('ROLE_VIEW")

Deployers

GET /api/deployers => hasRole('ROLE_VIEW")

Releases

- GET /api/releases => hasRole('ROLE_VIEW")
Status
- GET /api/release/status/** => hasRole('ROLE_VIEW")

82

Manifest

GET /api/release/manifest/**
Upgrade

POST /api/release/upgrade

Rollback

POST /api/release/rollback/**

Delete

DELETE /api/release/**
History

GET /api/release/history/**
List

GET /api/release/list
GET /api/release/list/**

Packages

GET /api/packages

Upload

POST /api/package/upload
Install

POST /api/package/install
POST /api/package/install/**

Delete
DELETE /api/package/**
PackageMetaData

GET /api/packageMetadata
GET /api/packageMetadata/**

Repositories

GET /api/repositories
GET /api/repositories/**

=>

=>

hasRole('ROLE_VIEW")

hasRole('ROLE_CREATE")

hasRole('ROLE_CREATE")

hasRole('ROLE_CREATE")

hasRole('ROLE VIEW')

hasRole('ROLE _VIEW')
hasRole('ROLE_VIEW')

hasRole('ROLE VIEW")

hasRole('ROLE_CREATE")

hasRole('ROLE_CREATE")
hasRole('ROLE_CREATE")

hasRole('ROLE_CREATE")

hasRole('ROLE _VIEW')
hasRole('ROLE_VIEW")

hasRole('ROLE VIEW")
hasRole('ROLE_VIEW")

83

Boot Endpoints

- GET /actuator/** => hasRole('ROLE_MANAGE")

The format of each line is as follows:
HTTP_METHOD URL_PATTERN '="' SECURITY_ATTRIBUTE

where

HTTP_METHOD is one http method, capital case.

URL_PATTERN is an Ant-style URL pattern.

SECURITY_ATTRIBUTE is a SpEL expression (see docs.spring.io/spring-security/site/docs/current/
reference/htmlsingle/#el-access)

Each of those parts is separated by one or several white space characters (spaces, tabs, and
others).

Be mindful that the above is indeed a YAML list, not a map (thus the use of -' dashes at the start of
each line) that lives under the spring.cloud.skipper.security.authorization.rules Kkey.

21.1.1. Users and Roles

Spring Cloud Skipper does not make any assumptions of how roles are assigned to users. Due to the
fact that the determination of security roles is very environment-specific, Spring Cloud Data
Skipper, by default, assigns all roles to authenticated OAuth2 users by wusing the
DefaultAuthoritiesExtractor class.

You can customize that behavior by providing your own Spring bean definition that extends Spring
Security OAuth’s AuthoritiesExtractor interface. In that case, the custom bean definition takes
precedence over the default one provided by Spring Cloud Skipper.

21.2. OAuth Authentication Using the Spring Cloud
Skipper Shell

If your OAuth2 provider supports the Password Grant Type, you can start the Skipper shell with the
following command:

$ java -jar spring-cloud-skipper-shell-2.3.0.M1.jar \
--spring.cloud.skipper.client.serverUrl=http://localhost:7577 \
--spring.cloud.skipper.client.username=my_username \
--spring.cloud.skipper.client.password=my_password

When authentication for Spring Cloud Skipper is enabled, the underlying OAuth2
0 provider must support the Password OAuth2 Grant Type if you want to use the
hell.

84

https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#el-access
https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#el-access

From within the Skipper shell, you can also provide credentials by using the following command:

skipper:> skipper config --uri https://localhost:7577/api --username my_username
--password my_password

Once successfully targeted, you should see the following output:

Successfully targeted http://localhost:7577/api
skipper:>

21.3. OAuth2 Authentication Examples

This section provides examples of some common security arrangements for Skipper:

* Local OAuth2 Server
* Authentication Using UAA

* [skipper-security-authentication-using-github]

21.3.1. Local OAuth2 Server

With Spring Security OAuth, you can create your own OAuth2 Server by using the following
annotations:

« @EnableResourceServer

« @EnableAuthorizationServer
You can find a working example application at https://github.com/ghillert/oauth-test-server/.

To do so, clone the project, build it, and start it. Then configure Spring Cloud Skipper with the
respective Client ID and Client Secret.

A Use this option only for development or demo purposes.

21.3.2. Authentication Using UAA

If you need to set up a production-ready OAuth provider, you may want to consider using the
CloudFoundry User Account and Authentication (UAA) Server. While it is used by Cloud Foundry, it
can also be used stand-alone. For more information see github.com/cloudfoundry/uaa.

85

https://projects.spring.io/spring-security-oauth/
https://github.com/ghillert/oauth-test-server/
https://github.com/cloudfoundry/uaa

Skipper Commands

Skipper commands fit into the following categories:

» Package Commands
* Release Commands

* Manifest Commands
» Platform commands

* Repository Commands

Skipper Server Commands

0 More details about commands can be found from Generic Usage.

86

Chapter 22. Package Commands

Skipper’s package commands include the following:

e Search
* Upload
e Install

* Delete

22.1. Search

This command searches existing packages.

NAME
package search - Search for packages.

SYNOPSYS
package search [[-name] string] [--details]

OPTIONS
--name string

wildcard expression to search for the package name
[Optional, default = <none>]

--details boolean

to set for more detailed package metadata
[Optional, default = false]

ALSO KNOWN AS
package list

The search or its alias 1ist command shows all the packages available to be installed by the Skipper

server, as shown (with output) in the following example:

87

skipper:>package search

I Name | Version Description

|

|| hellowor1ld | 1.0.0 | The app has two endpoints, /about and /greeting in
English. Maven resource. |

|| hellowor1ld | 1.0.1 | The app has two endpoints, /about and /greeting in

Portuguese. Maven resource. |
|| hellowor1d-docker | 1.0.1 | The app has two endpoints, /about and /greeting in
Portuguese. Docker resource. |
|| hellowor1d-docker | 1.0.0 | The app has two endpoints, /about and /greeting in
English. Docker resource. |

| L | |

skipper:>package list

I Name | Version Description

|

|| hellowor1ld | 1.0.0 | The app has two endpoints, /about and /greeting in
English. Maven resource. |

|| hellowor1ld | 1.0.1 | The app has two endpoints, /about and /greeting in

Portuguese. Maven resource. |
|| hellowor1d-docker | 1.0.1 | The app has two endpoints, /about and /greeting in
Portuguese. Docker resource. |
|| hellowor1d-docker | 1.0.0 | The app has two endpoints, /about and /greeting in
English. Docker resource. |

| L | |

The search command can use --name option to search for the package name containing the given
option value, as shown (with output) in the following example:

88

skipper:>package search --name helloworld-

I Name | Version Description

|

|| hellowor1d-docker | 1.0.0 | The app has two endpoints, /about and /greeting in
English. Docker resource. |

|| hellowor1d-docker | 1.0.1 | The app has two endpoints, /about and /greeting in
Portuguese. Docker resource. |

To search for more details of the packages, the --details option can be used, as shown (with output)
in the following example:

skipper:>package search --name helloworld- --details
[T

| Name | Value
|
|
|| apiVersion | v1
;;origin | A sample repository for using Skipper
IIrepositoryId | 1
::kind | skipper
::name | helloworld-docker
Ilversion | 1.0.0

|
|| packageSourceUr1l | https://github.com/markpollack/skipper-sample-repository

|
|| packageHomeUr1 | https://github.com/markpollack/skipper-sample-repository

|| tags | web, demo, docker, helloworld

|| maintainer | https://github.com/markpollack
|

89

|| description | The app has two endpoints, /about and /greeting in English.
Docker resource. |

|| sha256 |
iconUrl \
1
/|

[T

1]
I Name Value
[

|
|| apiVersion | v1
IIorigin | A sample repository for using Skipper
IIrepositoryId | 1
Ilkind | skipper
::name | helloworld-docker
;;version | 1.0.1

|
|| packageSourceUr1l | https://github.com/markpollack/skipper-sample-repository

|
|| packageHomeUr1 | https://github.com/markpollack/skipper-sample-repository

|| tags | web, demo, docker, helloworld

|

|| maintainer | https://github.com/markpollack

|

|| description | The app has two endpoints, /about and /greeting in Portuguese.
Docker resource. |

|| sha256 |

|| iconUrl |

22.2. Upload

This command uploads a package .zip file, as shown (with output) in the following example:

NAME
package upload - Upload a package.

SYNOPSYS

package upload [--path] string [[--repo-name] string]

OPTIONS
--path string

the package to be uploaded
[Mandatory]

--repo-name string

the local repository name to upload to
[Optional, default = <none>]

skipper:>package upload --path /path-to-package/mypackage-1.0.0.zip
Package uploaded successfully:[mypackage:1.0.0]

If no --repo-name is set, the upload command uses local as the repository to upload.

22.3. Install

This command installs a package, as shown (with output) in the following example:

91

NAME

package install - Install a package.

SYNOPSYS

package install [--package-name] string [[--package-version] string] [[--file] file] [[
--properties] string] [--release-name] string [[--platform-name] string]

OPTIONS
--package-name string

name of the package to install
[Mandatory]

--package-version string

version of the package to install, if not specified latest version will be used
[Optional, default = <none>]

-file file

specify values in a YAML file
[Optional, default = <none>]

--properties string

the comma separated set of properties to override during install
[Optional, default = <none>]

-release-name string

the release name to use
[Mandatory]

--platform-name string

the platform name to use
[Optional, default = default]

skipper:>package install --release-name helloworldlocal --package-name helloworld
--package-version 1.0.0 --properties spec.applicationProperties.server.port=8099
Released helloworldlocal. Now at version v1.

If no package-version is specified, then the latest package version by the given package-name is
considered.

If no platform-name is specified, the platform name, default, is used.

The properties can either be provided through comma separated YAML string by using the
--properties option or through a YAML file by using the --file option.

92

22.4. Delete

This command deletes a package.

NAME
package delete - Delete a package.

SYNOPSYS

package delete [--package-name] string

OPTIONS
--package-name string

the package name to be deleted
[Mandatory]

You can only delete a package that is in a local (database backed) repository, as shown (with output)
in the following example:

skipper:>package delete --package-name helloworld
Can not delete package [helloworld], associated repository [experimental] is remote.

93

Chapter 23. Release Commands

Skipper’s release commands include the following:

o List

» Status

» Upgrade
* Rollback
* History
* Delete

e Cancel

23.1. List

This command lists the latest deployed or failed release.

NAME

release list - List the latest version of releases with status of deployed or failed.

SYNOPSYS

release list [[--release-name] string]

OPTIONS
-release-name string

wildcard expression to search by release name
[Optional, default = <none>]

Listing the latest deployed or failed release, as shown (with output) in the following example:

94

skipper:>release list

————l
I Name | Version | Last updated | Status | Package |
Package | Platform | Platform Status
|
| | | | | Name |
Version | Name |
|
| : :
—
|| helloworldlocal | 3 | Mon Oct 30 17:57:41 IST | DEPLOYED | helloworld | 1.0.0
| default | [helloworldlocal.helloworld-v3], State =
|
| | | 2017 | | |
| | [helloworldlocal.helloworld-v3-0=deployed]
I
|| |
|
23.2. Status

This command shows a release status.

95

NAME

release status - Status for a last known release version.

SYNOPSYS

release status [--release-name] string [[--release-version] integer]

OPTIONS
--release-name string

release name
[Mandatory]
[may not be null]

--release-version integer

the specific release version.
[Optional, default = <none>]

Shows the status of a specific release and version, as shown (with output) in the following example:

skipper:>release status --release-name helloworldlocal
[T

|| Last Deployed | Mon Oct 3él17:53:5@ IST 2017

::Status | DEPLOYED

IIPlatform Status | A1l applications have been successfully deployed.
;; | [helloworldlocal.helloworld-v2], State =

[helloworldlocal.helloworld-v2-@=deployed] |
| L |

If no --release-version specified, the latest release version is used. The following example shows
the command with the --release-version option:

96

skipper:>release status --release-name helloworldlocal --release-version 1

2
|| Last Deployed | Mon Oct 30 17:52:57 IST 2017

|
| Status | DELETED

|| Platform Status | The applications are known to the system, but is not currently
deployed. |
I | [helloworldlocal.helloworld-v1], State = [unknown]

| L |

23.3. Upgrade

This command upgrades a package.

NAME

release upgrade - Upgrade a release.

SYNOPSYS

release upgrade [--release-name] string [--package-name] string [[--package-version]
string] [[--file] file] [[--properties] string] [[--timeout-expression] string]

OPTIONS
-release-name string

The name of the release to upgrade
[Mandatory]

--package-name string

the name of the package to use for the upgrade
[Mandatory]

--package-version string

the version of the package to use for the upgrade, if not specified latest version will be
used
[Optional, default = <none>]

--file file

specify values in a YAML file
[Optional, default = <none>]

--properties string

the comma separated set of properties to override during upgrade
[Optional, default = <none>]

--timeout-expression string

the expression for upgrade timeout
[Optional, default = <none>]

--force force upgrade
[Optional, default = false]

--app-names string

application names to force upgrade. If no specific list is provided, all
the apps in the packages are force upgraded

[Optional, default = <none>]

Upgrades a package, as shown (with output) in the following example:

98

skipper:>release upgrade --release-name helloworldlocal --package-name helloworld
--package-version 1.0.0 --properties spec.applicationProperties.server.port=9090
helloworldpcf has been upgraded. Now at version v2.

The manifest for this release would look like this:

"apiVersion": "skipper.spring.io/v1"
"kind": "SpringCloudDeployerApplication”

"metadata":
"name": "helloworld"
“type": "dem0"
"SpeC":

"resource": "maven://org.springframework.cloud.samples:spring-cloud-skipper-samples-
hellowor1ld"
"version": "1.0.0.RELEASE"
"applicationProperties":
"server.port": "9090"
"deploymentProperties": !lnull "null"

If no package-version is specified, the latest package version by the given --package-name option is
considered. The properties can either be provided through comma separated YAML string by using
the --properties option or through a YAML file by using the --file option.

An upgrade can be done by overriding the package version or by keeping the
existing package version but overriding the properties. When overriding the

9 package version, it needs to accompany with the corresponding properties as the
existing properties are not carried over. In a future release, we plan to introduce a
--reuse-properties command that will carry the current release properties over to
the next release to be made.

For instance, if the package version is not changed but only other properties are changed, the
manifest would add the new properties with the existing properties of the same package version.

skipper:>release upgrade --release-name helloworldlocal --package-name helloworld
--package-version 1.0.0 --properties spec.applicationProperties.log.level=DEBUG
helloworldpcf has been upgraded. Now at version v3.

99

"apiVersion": "skipper.spring.io/v1"
"kind": "SpringCloudDeployerApplication”

"metadata”:
"name": "hellowor1ld"
"type": "demo"
"spec":

"resource": "maven://org.springframework.cloud.samples:spring-cloud-skipper-samples-
hellowor1ld"

"version": "1.0.0.RELEASE"
"applicationProperties":
"server.port": "9090"
"log.level": "DEBUG"
"deploymentProperties": !lnull "null"

Instead, if the upgrade is performed with a new package version as follows,

skipper:>release upgrade --release-name helloworldlocal --package-name helloworld
--package-version 1.0.1

helloworldpcf has been upgraded. Now at version v3.

Since the package version is changed, the manifest wouldn’t carry the properties from the existing
release.

skipper:>manifest get helloworldlocal
"apiVersion": "skipper.spring.io/v1"
"kind": "SpringCloudDeployerApplication”

"metadata":
"name": "helloworld"
“type": "dem0"
"SpeC":

"resource": "maven://org.springframework.cloud.samples:spring-cloud-skipper-samples-
hellowor1ld"

"version": "1.0.7.RELEASE"
"applicationProperties": !lnull "null"
"deploymentProperties": !lnull "null"

When performing an update on a package that contains nested packages, use the name of the
package as a prefix in the property string or as the first level in the YAML document. For example,

the ticktock package that contains a time and a log application, a command to upgrade the log
application would be as follows:

skipper:>release upgrade --release-name ticktockskipper --package-name ticktock --file
/home/mpollack/log-level-change.yml

where log-level-change.yml contains the following:

100

log:
version: 1.1.7.RELEASE
spec:
applicationProperties:
server.port: 9999
endpoints.sensitive: false
log.level: ERROR

Since it is a common use-case to change only the version of the application, the packages can list the
version as a top-level property in the values.yml file. For example, in the test package ticktock
(located here), values.yml contains the following:

version: 1.71.0.RELEASE
spec:
applicationProperties:
log.level: DEBUG
deploymentProperties:
memory: 1024m

You can then use the --properties option in the upgrade command, as shown in the following
example:

skipper:>release upgrade --release-name ticktockskipper --package-name ticktock
--properties log.version=1.1.1.RELEASE

You can use --timeout-expression to alter timeout setting used to wait healthy applications when
server is in state to do that. Global setting to override is
spring.cloud.skipper.server.strategies.healthcheck.timeoutInMillis mentioned earlier. More
about expression itself, see Timeout Expression.

skipper:>release upgrade --release-name ticktockskipper --package-name ticktock
--timeout-expression=30s

The --force option is used to deploy new instances of currently deployed applications. In other
words, Skipper will upgrade the application again even if the manifest is unchanged. This behavior
is needed in the case when configuration information is obtained by the application itself at startup
time, for example from Spring Cloud Config Server. You can specify which applications for force
upgrade by using the option --app-names. If you do not specify any application names, all the
applications will be force upgraded. You can specify --force and --app-names options together with
--properties or --file options.

Following example describes force upgrade:

First, install the package ticktock that has time and log apps.

101

https://github.com/spring-cloud/spring-cloud-skipper/blob/master/spring-cloud-skipper-server-core/src/test/resources/repositories/sources/test/ticktock/ticktock-1.0.0/packages/log/values.yml
https://cloud.spring.io/spring-cloud-config/

skipper:>package upload --repo-name local --path spring-cloud-skipper-server-
core/src/test/resources/repositories/binaries/test/ticktock/ticktock-1.0.0.zip
Package uploaded successfully:[ticktock:1.0.0]

skipper:>package install --package-name ticktock --release-name al
Released al. Now at version v1.

skipper:>release list

|| Name | Version | Last updated | Status | Package Name | Package
Version | Platform Name | Platform Status |
I : : :
|
a1 |1 | Thu Sep 13 08:34:50 IST 2018 | DEPLOYED | ticktock | 1.0.0
| default | [al.10g-v1], State = [al.log-v1-@=deployed] |

| | | | | |
| | [al.time-v1], State = [al.time-v1-0=deployed] |

skipper:>release history --release-name al

E
|| Version | Last updated | Status | Package Name | Package Version
Description ||

| | |
T T T
I I 1
|
_

|| 1 | Thu Sep 13 ©8:34:50 IST 2018 | DEPLOYED | ticktock | 1.0.0

| Install complete |
| L L

P —T

Now, perform the upgrade even though there are no explicit differences between the latest and the
current package.

skipper:>release upgrade --release-name al --package-name ticktock
Package to upgrade has no difference than existing deployed/deleted package. Not
upgrading.

102

If the upgrade needs to be forced for all the apps of ticktock (for both time and 1log)

skipper:>release upgrade --release-name al --package-name ticktock --force
al has been upgraded. Now at version v2.
skipper:>release history --release-name al

1]
|| Version | Last updated | Status | Package Name | Package Version

Description I
|

|| 2 | Thu Sep 13 08:35:53 IST 2018 | UNKNOWN | ticktock |1.0.0
| Upgrade install underway |
I 1 | Thu Sep 13 ©8:34:50 IST 2018 | DEPLOYED | ticktock |1.0.0

| Install complete I|
| L 1

skipper:>release history --release-name al

]
|| Version | Last updated | Status | Package Name | Package Version
Description ||

B ——|

|| 2 | Thu Sep 13 08:35:53 IST 2018 | DEPLOYED | ticktock |1.0.0
| Upgrade complete |

I 1 | Thu Sep 13 ©8:34:50 IST 2018 | DELETED | ticktock |1.0.0

| Delete complete |
| L 1

]

If the force upgrade needs to be done for a specific list of applications, then --app-names option can
be used.

103

skipper:>release upgrade --release-name al --package-name ticktock --force --app-names
log

al has been upgraded. Now at version v3.

skipper:>release history al

E
|| Version | Last updated | Status | Package Name | Package Version
Description ||
E : :
| | |
I I I
—|

|| 3 | Thu Sep 13 ©8:36:51 IST 2018 | DEPLOYED | ticktock |1.0.0
| Upgrade complete ||
|| 2 | Thu Sep 13 ©8:35:53 IST 2018 | DELETED | ticktock |1.0.0
| Delete complete ||
[1 | Thu Sep 13 ©8:34:50 IST 2018 | DELETED | ticktock |1.0.0

| Delete complete ||
|| 1

23.4. Rollback

This command rolls back the release.

NAME

release rollback - Rollback the release to a previous or a specific release.

SYNOPSYS

release rollback [--release-name] string [[--release-version] int] [[--timeout-expression]
string]

OPTIONS
--release-name string

the name of the release to rollback
[Mandatory]

--release-version int

the specific release version to rollback to. Not specifying the value rolls back to the
previous release.
[Optional, default = 0]

--timeout-expression string

the expression for rollback timeout
[Optional, default = <none>]

104

Rolls back the release to a specific version, as shown (with output) in the following example:

skipper:>release rollback --release-name helloworldlocal --release-version 1
helloworldlocal has been rolled back. Now at version v3.

If no --release-version is specified, then the rollback version is the previous stable release (either
in DELETED or DEPLOYED status).

You can use --timeout-expression to alter timeout setting used to wait healthy applications when
server is in state to do that. Global setting to override is
spring.cloud.skipper.server.strategies.healthcheck.timeoutInMillis mentioned earlier. More
about expression itself, see Timeout Expression.

23.5. History

This command shows the history of a specific release.

NAME

release history - List the history of versions for a given release.

SYNOPSYS

release history [--release-name] string

OPTIONS
--release-name string

wildcard expression to search by release name
[Mandatory]
*[may not be null]

Showing the history of a specific release, as shown (with output) in the following example:

105

skipper:>release history --release-name helloworldlocal

—)

|| Version | Last updated | Status | Package Name | Package Version
Description ||

| : :

| | |
T T T
I I 1
|
_—

| 3 | Mon Oct 30 17:57:41 IST 2017 | DEPLOYED | helloworld | 1.0.0
| Upgrade complete ||
|| 2 | Mon Oct 30 17:53:50 IST 2017 | DELETED | helloworld | 1.0.0
| Delete complete ||
I 1 | Mon Oct 30 17:52:57 IST 2017 | DELETED | helloworld | 1.0.0

| Delete complete ||
|| L

23.6. Delete

This command deletes a specific release’s latest deployed revision.

NAME

release delete - Delete the release.

SYNOPSYS

release delete [--release-name] string [--delete-package]

OPTIONS
--release-name string

the name of the release to delete
[Mandatory]

--delete-package delete the release package

[Optional, default = false]

Deleting a specific release’s latest deployed revision, undeploying the application or applications, as
shown (with output) in the following example:

skipper:>release delete --release-name helloworldlocal
helloworldlocal has been deleted.

106

23.7. Cancel

This command attempts cancellation of existing release operation.

NAME

release cancel - Request a cancellation of current release operation.

SYNOPSYS

release cancel [--release-name] string

OPTIONS
-release-name string

the name of the release to cancel
[Mandatory]

This command can be used to attempt a cancel for a running release operation if it supports it and
release is currently in state where any type of cancellation can be attempted. For example during
an upgrade server will delete old applications if new applications are detected healtly. Before state
is transitioned to deleting old applications, it is possible to request cancellation of whole upgrade
procedure.

One other use case is that if new applications are failed and server will timeout waiting healtly
applications, it’s convenient to cancel operation without waiting full timeout to happen.

Here is an example how cancellation is attempted when upgraded applications fail:

skipper:>package install --package-name testapp --package-version 1.0.0 --release-name
mytestapp
Released mytestapp. Now at version v1.

skipper:>release history --release-name mytestapp

]
|| Version | Last updated | Status | Package Name | Package Version

Description ||
| i ’

I 1 | Thu May 17 11:18:07 BST 2018 | DEPLOYED | testapp |1.0.0

| Install complete ||
|| |

P——T

skipper:>release upgrade --package-name testapp --package-version 1.1.0 --release-name
mytestapp
mytestapp has been upgraded. Now at version v2.

107

skipper:>release history --release-name mytestapp

|| Version | Last updated | Status | Package Name | Package Version
Description I
I : :
|
|| 2 | Thu May 17 11:18:52 BST 2018 | UNKNOWN | testapp |1.1.0
| Upgrade install underway |
I 1 | Thu May 17 11:18:07 BST 2018 | DEPLOYED | testapp |1.0.0

| Install complete |
| L 1

skipper:>release status --release-name mytestapp

|| Last Deployed | Thu May 17 11:18:52 BST 2018 |
|| Status | UNKNOWN I
|| Platform Status | A1l apps have failed deployment. |
| | [mytestapp.testapp-v2], State = [mytestapp.testapp-v2-0=failed] |
| L |

i

skipper:>release cancel --release-name mytestapp
Cancel request for release mytestapp sent

skipper:>release history --release-name mytestapp

|| Version | Last updated | Status | Package Name | Package Version
Description I
E : :
|
|| 2 | Thu May 17 11:18:52 BST 2018 | FAILED | testapp [1.1.0
| Cancelled after 39563 ms. |
N | Thu May 17 11:18:07 BST 2018 | DEPLOYED | testapp |1.0.0

| Install complete |
| L |

| | |

108

Chapter 24. Manifest Commands

Skipper’s manifest has only one command: get.

24.1. Get

Thsi command shows a manifest.

NAME
manifest get - Get the manifest for a release

SYNOPSYS

manifest get [--release-name] string [[--release-version] integer]

OPTIONS
-release-name string

release name
[Mandatory]
[may not be null]

--release-version integer

specific release version.
[Optional, default = <none>]

The manifest get command shows the manifest used for a specific release, as shown (with output)
in the following example:

skipper:>manifest get --release-name helloworldk8s

Source: template.yml
apiVersion: skipper.spring.io/v1l
kind: SpringCloudDeployerApplication
metadata:
name: helloworld-docker
spec:
resource: docker:springcloud/spring-cloud-skipper-samples-helloworld:1.0.0.RELEASE
applicationProperties:
deploymentProperties:
spring.cloud.deployer.kubernetes.createNodePort: 32123

109

Chapter 25. Platform commands

Skipper’s platform has only one command: 1ist.

25.1. List

This command lists platforms.

NAME
platform list - List platforms

SYNOPSYS
platform list

The platform 1list command shows the list all the available deployment platform accounts, as
shown (with output) in the following example:

110

skipper:>platform list

|| Name | Type |
Description
|
I : :
|
|| default | local | ShutdownTimeout = [30], EnvVarsToInherit =

[TMP, LANG, LANGUAGE, LC_.*,PATH], JavaCmd =
l

| |
| [/Library/Java/JavaVirtualMachines/jdk1.8.0_131.jdk/Contents/Home/jre/bin/javal,

WorkingDirectoriesRoot = [/var/folders/t3/qf1wkpwj41gd9gjccwk@wr7h0000gp/T], |

I | | DeleteFilesOnExit = [true]

|

|| cf-dev | cloudfoundry | org = [scdf-ci], space = [ilaya-space], url =
[https://api.run.pivotal.io]

|

|| minikube | kubernetes | master url = [https://192.168.99.101:8443/], namespace =
[default], api version = [v1]

111

Chapter 26. Repository Commands

Skipper’s repository commands include the following:

e List

26.1. List

This command list repositories.

NAME

repo list - List package repositories

SYNOPSYS

repo list
List repositories as shown (with output) in the following example:

skipper:>repo list

| Name | URL
| Local | Order ||
I :

| | | |
T T
I 1

|| experimental | https://skipper-repository.cfapps.io/repository/experimental | false | @
|

|| Tlocal | https://10.55.13.45:7577 | true |1
|
||

If a repository is local, it is backed by Skipper’s database and you can upload packages to the
repository. If it is not local, it is a remote repository and you can only read packages. The packages
in a remote repository are updated outside of Skipper’s control. The 1.0 release only polls the
remote repository for contents upon server startup. Follow issue GH-262 for more on adding
support for dynamic updating of remote repository metadata.

112

https://github.com/spring-cloud/spring-cloud-skipper/issues/262

Chapter 27. Skipper Server Commands

Skipper’s package commands include the following:

* Config

e Info

27.1. Config

This command configures the shell to reference the HTTP API endpoint of the Skipper Server.

NAME
skipper config - Configure the Spring Cloud Skipper REST server to use.

SYNOPSYS

skipper config [[--uri] string] [[--username] string] [[--password] string] [[--credentials
-provider-command] string] [--skip-ssl-validation]

OPTIONS
--uri string

the location of the Spring Cloud Skipper REST endpoint
[Optional, default = localhost:7577/api]

--username string

the username for authenticated access to the Admin REST endpoint
[Optional, default = <none>]

--password string

the password for authenticated access to the Admin REST endpoint (valid only with a
username)
[Optional, default = <none>]

--credentials-provider-command string

a command to run that outputs the HTTP credentials used for authentication
[Optional, default = <none>]

--skip-ssl-validation

accept any SSL certificate (even self-signed)
[Optional, default = <none>]

Configures shell as shown in the following example:
skipper:>skipper config --uri https://localhost:8443/api

When using OAuth, you can use the username and password options.

113

http://localhost:7577/api

From within the Skipper Shell you can also provide credentials, as shown in the following example:

skipper:> skipper config --uri https://localhost:7577/api --username my_username
--password my_password

See the Security section for more information.

27.2. Info

This command shows server info.

NAME
skipper info - Show the Skipper server being used.

SYNOPSYS
skipper info

Show which server version is being used, as shown (with output) in the following example:

skipper:>info
Spring Cloud Skipper Server v1.0.0.2.3.0.M1

114

Chapter 28. Generic Usage

This section contains generic notes about commands.

28.1. Timeout Expression

* Aregular long representation (using milliseconds as the default unit)
* The standard ISO-8601 format used by java.util. Duration
* A more readable format where the value and the unit are coupled (e.g. 10s means 10 seconds)

To specify a session timeout of 30 seconds, 30, PT30S and 30s are all equivalent. A read timeout of
500ms can be specified in any of the following form: 500, PT0.5S and 500ms.

You can also use any of the supported unit. These are:

* ns for nanoseconds
e ms for milliseconds
s for seconds

* m for minutes

e h for hours

* d for days

115

https://docs.oracle.com/javase/8/docs/api//java/time/Duration.html#parse-java.lang.CharSequence-

Architecture

Skipper uses a basic client-server architecture. The server exposes a REST API that is used by the
interactive shell. You can browse the API using familiar HTTP client tools. The server persists
Package Metadata and Release state in a relational database.

Platforms are defined by using the following property prefix:
spring.cloud.skipper.server.platform. For each of the supported platforms (cloudfoundry,
'kubernetes’ and local), you can define multiple accounts. Each account maps onto an instance of a
Spring Cloud Deployer implementation that is responsible for deploying the applications. The
Installation shows more details, but it is important to note that the Skipper server is not tied to a
deploying to a single platform. Wherever Skipper is running, it can be configured to deploy to any
platform. For example, if Skipper is deployed on Cloud Foundry, you can still register accounts for
Kubernetes and deploy apps to Kubernetes from Cloud Foundry.

The release workflow is currently a hard-coded workflow managed by the Spring Cloud State
Machine project. The state of the State Machine is persisted in a relational database.

116

https://projects.spring.io/spring-statemachine/
https://projects.spring.io/spring-statemachine/

REST API Guide

This section covers the Spring Cloud Skipper REST API.

117

Chapter 29. Overview

Spring Cloud Skipper provides a REST API that lets you access all aspects of the server. The Spring
Cloud Skipper shell is a first-class consumer of the API.

29.1. HTTP Verbs

Spring Cloud Skipper tries to adhere as closely as possible to standard HTTP and REST conventions
in its use of HTTP verbs. The following table shows each verb and how Skipper uses it:

Verb Usage

GET Used to retrieve a resource.

POST Used to create a new resource.

PUT Used to update an existing resource, including
partial updates. Also used for resources that
imply the concept of restarts.

DELETE Used to delete an existing resource.

29.2. HTTP Status Codes

Skipper adheres as closely as possible to standard HTTP and REST conventions in its use of HTTP
status codes. The following table shows each status and its meaning in Skipper:

Status code Usage
200 0K The request completed successfully.
201 Created A new resource has been created successfully.

The resource’s URI is available from the
response’s Location header.

204 No Content An update to an existing resource has been
applied successfully.

400 Bad Request The request was malformed. The response body
includes an error that provides further
information.

404 Not Found The requested resource does not exist.

29.3. Headers

Every response has the following header(s):

Name Description
Content-Type The Content-Type of the payload (for example

application/hal+json).

118

29.4. Errors

Path

error
message
path
status

timestamp

29.5. Hypermedia

Type
String

String

String

Number

Number

Description

The HTTP error that occurred
(for example, Bad Request).

A description of the cause of the
error.

The path to which the request
was made.

The HTTP status code (for
example 400).

The time, in milliseconds, at
which the error occurred.

Spring Cloud Skipper uses hypermedia. As a result, resources include links to other resources in
their responses. More specifically, responses are in Hypertext Application from resource to
resource Language (HAL) format. Links can be found beneath the _1inks key. Consumers of the API
should not create URIs themselves. Instead they should use the links in the resources to navigate.

119

http://stateless.co/hal_specification.html
http://stateless.co/hal_specification.html

Chapter 30. Resources

30.1. Index

The index provides the entry point into Spring Cloud Skipper’s REST API.

30.1.1. Accessing the Index

You can use a GET request to access the index.

Request Structure

The following

GET /api HTTP/1.1
Host: localhost:7577

Example Request

$ curl 'http://localhost:7577/api' -i

Example Response

HTTP/1.1 200 0K

Vary: Origin

Vary: Access-Control-Request-Method
Vary: Access-Control-Request-Headers
Content-Type: application/hal+json
Content-Length: 1366

{
" links" : {
"repositories” : {
"href" : "http://localhost:7577/api/repositories{?page,size,sort}",
"templated" : true
I
"jpaRepositoryGuards" : {
"href" : "http://localhost:7577/api/jpaRepositoryGuards"”
I
"jpaRepositoryStateMachines" : {
"href" : "http://localhost:7577/api/jpaRepositoryStateMachines”
lis
"jpaRepositoryStates" : {
"href" : "http://localhost:7577/api/jpaRepositoryStates”
}

eployers" : {

120

"href" : "http://localhost:7577/api/deployers{?page,size,sort}",
"templated" : true
¥
"releases" : {
"href" : "http://localhost:7577/api/releases{?page,size,sort}",
"templated" : true
Ifs
"packageMetadata” : {
"href" :
"http://localhost:7577/api/packageMetadata{?page,size,sort,projection}",
"templated" : true
Ifs
"jpaRepositoryActions” : {
"href" : "http://localhost:7577/api/jpaRepositoryActions”
¥
"jpaRepositoryTransitions" : {
"href" : "http://localhost:7577/api/jpaRepositoryTransitions”
¥
"about" : {
"href" : "http://localhost:7577/api/about"
s
"release" : {
"href" : "http://localhost:7577/api/release"

),
"package" : {
"href" : "http://localhost:7577/api/package”
b
"profile" : {
"href" : "http://localhost:7577/api/profile"
}
}
}
Links

The links are the main element of the index, as they allow you to traverse the API and execute the
desired functionality. The following table dsecribes the links:

Relation Description

repositories Exposes the 'package repository' repository.

deployers Exposes the deployer repository.

packageMetadata Exposes the package metadata repository.

releases Exposes the release repository.

profile Entrypoint to provide ALPS metadata that
defines simple descriptions of application-level
semantics.

about Provides meta information about the server.

release Exposes the release resource.

121

Relation Description

package Exposes the package resource.

30.2. Server

The Server resource exposes build and version information of the server.

30.2.1. Server info

A GET request returns meta information for Spring Cloud Skipper, including the following:

» Server name — typically spring-cloud-skipper-server

* Version of the server — for example, 2.3.0.M1

Request structure

GET /api/about HTTP/1.1
Accept: application/json
Host: localhost:7577

Example request

$ curl 'http://localhost:7577/api/about’ -i \
-H "Accept: application/json'

Response structure

HTTP/1.1 200 0K
Content-Type: application/json
Content-Length: 260

{
"versionInfo" : {
"server" : {
"name" : "Spring Cloud Skipper Server",
"version" : "fake-server-version"
Iy
"shell" : {
"name" : "Spring Cloud Skipper Shell",
"version" : "fake-shell-version"
}
I
"links" : []
}

122

Response fields

Path Type Description

versionInfo.server.name String Spring Cloud Skipper Server
dependency.

versionInfo.server.version String Spring Cloud Skipper Server
dependency version.

versionInfo.shell.name String Spring Cloud Skipper Shell
dependency.

versionInfo.shell.version String Spring Cloud Skipper Shell
dependency version.

links Array Links.

30.3. Platforms

The Platforms (or Platform Deployer) resource is exported from the Spring Data Repository
DeployerRepository and exposed by Spring Data REST.

30.3.1. Find All

A GET request returns a paginated list for all the Spring Cloud Skipper platform deployers.

Request structure

GET /api/deployers?page=0&size=10 HTTP/1.1
Host: localhost:7577

Example request

$ curl '"http://localhost:7577/api/deployers?page=0&size=10" -i

Response structure

HTTP/1.1 200 0K

Vary: Origin

Vary: Access-Control-Request-Method
Vary: Access-Control-Request-Headers
Content-Type: application/hal+json
Content-Length: 8692

{
" embedded" : {
"deployers" : [{
"name" : "default",

"type" : "local",

123

"description” : "ShutdownTimeout = [30], EnvVarsToInherit =
[TMP, LANG, LANGUAGE, LC_.*,PATH, SPRING_APPLICATION_]SON], JavaCmd = [/opt/jdk8u232-
b09/jre/bin/javal, WorkingDirectoriesRoot = [/tmp], DeleteFilesOnExit = [true]",

"options" : [{
"id" : "spring.cloud.deployer.local.debug-suspend",
"name" : "debug-suspend",

"type" : "java.lang.String",
"description” : null,
"shortDescription" : null,
"defaultValue" : null,
"hints" : {
"keyHints" : [1,
"keyProviders" : [],
"valueHints" : [{
"value" : "y",
"description” : null,
"shortDescription" : null
b o
"value" : "n",
"description” : null,
"shortDescription” : null
P
"valueProviders" : []
e
"deprecation” : null,
"deprecated" : false

o q
"id" : "spring.cloud.deployer.local.working-directories-root",
"name" : "working-directories-root",
"type" : "java.nio.file.Path",
"description" : "Directory in which all created processes will run and create
log files.",
"shortDescription" : "Directory in which all created processes will run and

create log files.",

"defaultValue" : null,

"hints" : {
"keyHints" : [],
"keyProviders" : [],
"valueHints" : []
"valueProviders" : []

I

"deprecation” : null,

"deprecated" : false

I

o q
"id" : "spring.cloud.deployer.local.java-opts",
"name" : "java-opts",

"type" : "java.lang.String",

"description" : "The Java Options to pass to the JVM, e.g -Dtest=foo",
"shortDescription” : "The Java Options to pass to the JVM, e.g -Dtest=foo",
"defaultValue" : null,

"hints" : {

124

"keyHints" : [],
"keyProviders" : [],
"valueHints" : []
"valueProviders" : []
H
"deprecation” : null,
"deprecated" : false

I

o q
"id" : "spring.cloud.deployer.local.use-spring-application-json",
"name" : "use-spring-application-json",
"type" : "java.lang.Boolean",
"description" : "Flag to indicate whether application properties are passed as

command line args or in a SPRING_APPLICATION_JSON environment variable. Default value
is {@code true}.",

"shortDescription" : "Flag to indicate whether application properties are

passed as command line args or in a SPRING_APPLICATION_JSON environment variable.",

"defaultValue" : true,

"hints" : {
"keyHints" : [1,
"keyProviders" : [1],
"valueHints" : []
"valueProviders" : []

iy

"deprecation” : null,

"deprecated" : false

I

b
"id" : "spring.cloud.deployer.local.inherit-logging",
"name" : "inherit-logging",
"type" : "java.lang.Boolean",

"description” : null,
"shortDescription" : null,
"defaultValue" : false,
"hints" : {
"keyHints" : [1,
"keyProviders" : [],
"valueHints" : [1,
"valueProviders" : []
H
"deprecation” : null,
"deprecated" : false

oA
"id" : "spring.cloud.deployer.local.debug-port",
"name" : "debug-port",

"type" : "java.lang.Integer",
"description” : null,
"shortDescription" : null,
"defaultValue" : null,
"hints" : {
"keyHints" : [],
"keyProviders" : [],
"valueHints" : [1,

125

"valueProviders" : []

e
"deprecation” : null,
"deprecated" : false

oA

"id" : "spring.cloud.deployer.local.delete-files-on-exit",

"name" : "delete-files-on-exit",

"type" : "java.lang.Boolean",

"description” : "Whether to delete created files and directories on JVM
exit.",

"shortDescription"” : "Whether to delete created files and directories on JVM
exit.",

"defaultValue" : true,

"hints" : {
"keyHints" : [],
"keyProviders" : [],
"valueHints" : []
"valueProviders" : []

},

"deprecation” : null,

"deprecated" : false

oA

"id" : "spring.cloud.deployer.local.env-vars-to-inherit",

"name" : "env-vars-to-inherit",

"type" : "java.lang.String[]",

"description" : "Array of regular expression patterns for environment

variables that should be passed to launched applications."”,

"shortDescription" : "Array of reqular expression patterns for environment

variables that should be passed to launched applications."”,

"defaultValue" : null,

"hints" : {
"keyHints" : [1,
"keyProviders" : [],
"valueHints" : []
"valueProviders" : []

},

"deprecation” : null,

"deprecated" : false

r

r

o q
"id" : "spring.cloud.deployer.local.java-cmd",
"name" : "java-cmd",
"type" : "java.lang.String",
"description” : "The command to run java.",
"shortDescription"” : "The command to run java.",
"defaultValue" : null,
"hints" : {

"keyHints" : [1,
"keyProviders" : [],
"valueHints" : []

"valueProviders" : []

I

126

"deprecation” : null,
"deprecated" : false

o q
"id" : "spring.cloud.deployer.local.shutdown-timeout",
"name" : "shutdown-timeout",
"type" : "java.lang.Integer",
"description” : "Maximum number of seconds to wait for application shutdown.

via the {@code /shutdown} endpoint. A timeout value of @ specifies an infinite
timeout. Default is 30 seconds.",
"shortDescription" : "Maximum number of seconds to wait for application
shutdown. via the {@code /shutdown} endpoint.",
"defaultValue" : 30,
"hints" : {
"keyHints" : [1,
"keyProviders" : [],
"valueHints" : []
"valueProviders" : []
I
"deprecation” : null,
"deprecated" : false

I

il

"id" : "spring.cloud.deployer.local.maximum-concurrent-tasks",

"name" : "maximum-concurrent-tasks",

"type" : "java.lang.Integer",

"description” : "The maximum concurrent tasks allowed for this platform
instance.",

"shortDescription" : "The maximum concurrent tasks allowed for this platform
instance.",

"defaultValue" : 20,

"hints" : {

"keyHints" : [1,
"keyProviders" : [1],
"valueHints" : []
"valueProviders" : []
iy
"deprecation” : null,
"deprecated" : false

I

oA
"id" : "spring.cloud.deployer.local.port-range.high",
"name" : "high",
"type" : "java.lang.Integer",
"description" : "Upper bound for computing applications's random port.",
"shortDescription"” : "Upper bound for computing applications's random port.",
"defaultValue" : 61000,
"hints" : {

"keyHints" : [1,
"keyProviders" : [],
"valueHints" : [1,
"valueProviders" : []

}I

"deprecation” : null,

127

"deprecated" : false

oA
"id" : "spring.cloud.deployer.local.port-range.low",
"name" : "low",
"type" : "java.lang.Integer",
"description" : "Lower bound for computing applications's random port.",
"shortDescription" : "Lower bound for computing applications's random port.",
"defaultValue" : 20000,
"hints" : {

"keyHints" : [1,
"keyProviders" : [],
"valueHints" : [1,
"valueProviders" : []
H
"deprecation” : null,
"deprecated" : false

} 1
" links" : {
"self" : {

"href" : "http://localhost:7577/api/deployers/4a@14eda-1614-42ce-b275-
a7b1d388a623"
},
"deployer" : {
“href" : "http://localhost:7577/api/deployers/4a@14e4a-1614-42ce-b275-
a7b1d388a623"
}
}
Fl
ks
" Tinks" : {
"self" : {
"href" : "http://localhost:7577/api/deployers{&sort}",
"templated" : true
}

rofile" : {
"href" : "http://localhost:7577/api/profile/deployers"
s
"search" : {
"href" : "http://localhost:7577/api/deployers/search"
}
Iz
"page” : {
"size" : 10,
"totalElements" : 1,
"totalPages" : 1,
“number" : @

128

Response fields

Path
page

page.size

page.totalElements

page.totalPages

page.number

_embedded.deployers

_embedded.deployers[].name
_embedded.deployers[].type

_embedded.deployers[].descript
ion

_embedded.deployers[].options

_embedded.deployers[].options|[
1.1d
_embedded.deployers[].options|[
1.name

_embedded.deployers[].options|[
1.type

_embedded.deployers[].options|[
].description

_embedded.deployers[].options|[
].shortDescription

_embedded.deployers[].options|[
1.defaultValue

_embedded.deployers[].options|[
1.hints

_embedded.deployers[].options|[
].hints.keyHints
_embedded.deployers[].options|[
].hints.keyProviders

_embedded.deployers[].options|[
1.hints.valueHints

_embedded.deployers[].options|[
1.hints.valueProviders

_embedded.deployers[].options|[
].deprecation

_embedded.deployers[].options|[
].deprecated

Type
Object

Number

Number

Number

Number

Array

String
String
String

Array

String
String
String

String

String

Varies

Object

Array

Array

Array

Array

Null

Boolean

Description
Pagination properties

The size of the page being
returned

Total elements available for
pagination

Total amount of pages

Page number of the page
returned (zero-based)

Array containing Deployer
objects

Name of the deployer
Type of the deployer (e.g. local'’)

Description providing some
deployer properties

Array containing Deployer
deployment properties

Deployment property id
Deployment property name
Deployment property type
Deployment property

description

Deployment property short
description

Deployment property default
value

Object containing deployment
property hints

Deployment property key hints
Deployment property key hint
providers

Deployment property value
hints

Deployment property value hint
providers

129

30.4. Packages

The Packages resource is exported from the Spring Data Repository PackageMetadata and exposed by
Spring Data REST.

30.4.1. Search

A GET request will return a paginated list for all Spring Cloud Skipper package metadata.

Request structure

GET /api/packageMetadata?page=0&size=10 HTTP/1.1
Host: localhost:7577

Example request

$ curl "http://localhost:7577/api/packageMetadata?page=0&size=10" -i

Response structure

HTTP/1.1 200 OK

Vary: Origin

Vary: Access-Control-Request-Method
Vary: Access-Control-Request-Headers
Content-Type: application/hal+json
Content-Length: 4657

{
" embedded" : {
"packageMetadata" : [{
"apiVersion" : "skipper.spring.io/v1",

"origin" : null,

"repositoryId" : 2,

"repositoryName" : "local",

"kind" : "SkipperPackageMetadata",

"name" : "log",

"displayName" : null,

"version" : "1.0.0",

"packageSourceUrl" : "https://github.com/spring-cloud-stream-app-
starters/log/tree/v1.2.0.RC1",

"packageHomeUr1" : "https://cloud.spring.io/spring-cloud-stream-app-starters/",

"tags" : "logging, sink",

"maintainer" : "https://github.com/sobychacko",

"description” : "The log sink uses the application logger to output the data for
inspection.",

"sha256" : null,

"iconUr1l" : null,

130

" links" : {
"self" : {
"href" : "http://localhost:7577/api/packageMetadata/3"
}

"packageMetadata" : {
"href" : "http://localhost:7577/api/packageMetadata/3{?projection}",

"templated" : true

b
"install" : {
"href" : "http://localhost:7577/api/package/install/3"
}
}
hoq
"apiVersion" : "skipper.spring.io/v1",

"origin" : null,
"repositoryId" : 2,
"repositoryName" : "local",
"kind" : "SkipperPackageMetadata",
"name" : "log",
"displayName" : null,
"version" : "1.0.0",
"packageSourcelrl" : "https://github.com/spring-cloud-stream-app-
starters/log/tree/v1.2.0.RC1",
"packageHomeUr1" : "https://cloud.spring.io/spring-cloud-stream-app-starters/",
"tags" : "logging, sink",
"maintainer” : "https://github.com/sobychacko”,
"description” : "The log sink uses the application logger to output the data for
inspection.",
"sha256" : null,
"iconUr1l" : null,
" links" : {
"self" : {
"href" : "http://localhost:7577/api/packageMetadata/4"
},
"packageMetadata" : {
"href" : "http://localhost:7577/api/packageMetadata/4{?projection}",
"templated" : true

H
"ipstall" : {
"href" : "http://localhost:7577/api/package/install/4"
}
}
}oAo
"apiVersion" : "skipper.spring.io/v1",

"origin" : null,

"repositoryId" : 2,
"repositoryName" : "local",

"kind" : "SkipperPackageMetadata",
llname" : "109"'

"displayName" : null,

"version" : "1.0.0",

131

"packageSourceUr1l" : "https://github.com/spring-cloud-stream-app-
starters/log/tree/v1.2.0.RC1",
"packageHomeUr1" : "https://cloud.spring.io/spring-cloud-stream-app-starters/",
"tags" : "logging, sink",
"maintainer" : "https://github.com/sobychacko",
"description” : "The log sink uses the application logger to output the data for
inspection.",
"sha256" : null,
"iconUr1l" : null,
" links" : {
"self" : {
"href" : "http://localhost:7577/api/packageMetadata/5"
}

"packageMetadata" : {
"href" : "http://localhost:7577/api/packageMetadata/5{?projection}",

"templated" : true

I
"install" : {
"href" : "http://localhost:7577/api/package/install/5"
}
}
oA
"apiVersion" : "skipper.spring.io/v1",

"origin" : null,

"repositoryId" : 2,

"repositoryName" : "local",

"kind" : "SkipperPackageMetadata",

"name" : "log",

"displayName" : null,

"version" : "1.0.0",

"packageSourceUrl" : "https://github.com/spring-cloud-stream-app-
starters/log/tree/v1.2.0.RC1",

"packageHomeUr1" : "https://cloud.spring.io/spring-cloud-stream-app-starters/",

"tags" : "logging, sink",

"maintainer” : "https://github.com/sobychacko",

"description” : "The log sink uses the application logger to output the data for
inspection.",

"sha256" : null,

"iconUrl" : null,

" links" : {
"self" : {
"href" : "http://localhost:7577/api/packageMetadata/6"
},

"packageMetadata" : {
"href" : "http://localhost:7577/api/packageMetadata/6{?projection}",
"templated" : true
b
"install" : {
"href" : "http://localhost:7577/api/package/install/6"
}
}

132

F
H
" links" : {
"self" : {
"href" : "http://localhost:7577/api/packageMetadata{&sort,projection}”,
"templated" : true
Ifs
"profile" : {
"href" : "http://localhost:7577/api/profile/packageMetadata”
)
"search" : {
"href" : "http://localhost:7577/api/packageMetadata/search”
}
H
"page" : {
"size" : 10,
"totalElements" : 4,
"totalPages" : 1,

“number" : @
}
}
Response fields
Path Type Description
page Object Pagination properties
page.size Number The size of the page being
returned
page.totalElements Number Total elements available for
pagination
page.totalPages Number Total amount of pages
page.number Number Page number of the page
returned (zero-based)
_embedded. packageMetadata Array Contains a collection of Package
Metadata items
_embedded. packageMetadatal[].ap String The Package Index spec version
Version this file is based on
_embedded. packageMetadatal[].or Null Indicates the origin of the
191N repository (free form text)
_embedded. packageMetadata[].re Number The repository ID this Package
positoryld belongs to
_empedded.packageMetadata[].re String The repository name this
positoryName Package belongs to.
_embedded. packageMetadata[].ki String What type of package system is
nd being used

133

Path

_embedded. packageMetadata[].na
me

_embedded. packageMetadata[].di
splayName

_embedded. packageMetadatal].ve
rsion

_embedded. packageMetadatal[].pa
ckageSourcelrl

_embedded. packageMetadata[].pa
ckageHomeUr1

_embedded. packageMetadata[].ta
gs

_embedded. packageMetadata[].ma
intainer

_embedded. packageMetadata[].de
scription

_embedded. packageMetadatal].sh
a256

_embedded. packageMetadata[].ic
onUrl

30.4.2. Search summary

Type
String

Null
String

String

String

String

String

String

Null

Null

Description

The name of the package
Display name of the release
The version of the package

Location to source code for this
package

The home page of the package

A comma separated list of tags
to use for searching

Who is maintaining this
package

Brief description of the package
Hash of package binary that

will be downloaded using
SHA256 hash algorithm

Url location of a icon

A GET request returns the list of available package metadata with the summary information of each

package.

Request structure

GET /api/packageMetadata?projection=summary HTTP/1.1

Host: localhost:7577

Example request

$ curl '"http://localhost:7577/api/packageMetadata?projection=summary’ -i

Response structure

HTTP/1.1 200 OK
Vary: Origin

Vary: Access-Control-Request-Method
Vary: Access-Control-Request-Headers

Content-Type: application/hal+json

Content-Length: 2296

134

{

" embedded" : {
"packageMetadata" : [{
"version" : "1.0.0",

"description” : "The log sink uses the application logger to output the data for
inspection.",

"repositoryName" : "local",
"iconUr1l" : null,
"name" : "log",
"id" : "3",
"_links" : {

"self" : {

"href" : "http://localhost:7577/api/packageMetadata/3"
}

ackageMetadata" : {
"href" : "http://localhost:7577/api/packageMetadata/3{?projection}",
"templated" : true
}

"install" : {
"href" : "http://localhost:7577/api/package/install/3"
}
}
| P
"version" : "1.0.0",

"description” : "The log sink uses the application logger to output the data for
inspection.",

"repositoryName" : "local",
"iconUr1l" : null,
“name" : "log",
"id" 4",
"_links" : {

"self" : {

"href" : "http://localhost:7577/api/packageMetadata/4"
}

"packageMetadata" : {
"href" : "http://localhost:7577/api/packageMetadata/4{?projection}",

"templated" : true

H
"ipstall" : {
"href" : "http://localhost:7577/api/package/install/4"
}
}
}oAo
"version" : "1.0.0",

"description” : "The log sink uses the application logger to output the data for
inspection.",

"repositoryName" : "local",

"iconUrl" : null,

"name" : "log",

"id" : "5",

"_links" : {

135

"self" : {

"href" : "http://localhost:7577/api/packageMetadata/5"

}

ackageMetadata" : {

"href" : "http://localhost:7577/api/packageMetadata/5{?projection}",

"templated" : true

I
"install" : {

"href" : "http://localhost:7577/api/package/install/5"

}
}
}]
+
" links" : {
"self" : {
"href" :

"http://localhost:7577/api/packageMetadata{?page,size,sort,projection}",

"templated" : true

+
"profile" : {

"href" : "http://localhost:7577/api/profile/packageMetadata”

}I

"search" : {

"href" : "http://localhost:7577/api/packageMetadata/search”

}
H
n agell : {

"size" : 20,
"totalElements" : 3,
"totalPages" : 1,

"number" : 0

Response fields

Path Type
page Object
page.size Number
page.totalElements Number
page.totalPages Number
page.number Number

_embedded. packageMetadata[].id String

136

Description
Pagination properties

The size of the page being
returned

Total elements available for
pagination

Total amount of pages

Page number of the page
returned (zero-based)

Identifier of the package
metadata

Path

_embedded. packageMetadata[].ic
onUrl

_embedded. packageMetadata[].re
positoryName

_embedded. packageMetadata[].ve
rsion

_embedded. packageMetadatal].na
me

_embedded. packageMetadata[].de
scription

_embedded. packageMetadata[]._1
inks.self.href

_embedded. packageMetadata[]._1
inks.packageMetadata.href

_embedded. packageMetadata[]._1
inks.install.href

30.4.3. Search with details

Type
Null

String

String
String
String
String
String

String

Description

Url location of a icon

The repository name this
Package belongs to.

The version of the package

The name of the package

Brief description of the package
self link

link to full package metadata

link to install the package

A GET request returns the details of a package using the id of the package.

Request structure

GET /api/packageMetadata/3 HTTP/1.1

Host: localhost:7577

Example request

$ curl '"http://localhost:7577/api/packageMetadata/3" -i

Response structure

137

HTTP/1.1 200 OK

Vary: Origin

Vary: Access-Control-Request-Method
Vary: Access-Control-Request-Headers
ETag: "0"

Content-Type: application/hal+json
Content-Length: 931

{

"apiVersion" : "skipper.spring.io/v1",

"origin" : null,

"repositoryId" : 2,

"repositoryName" : "local",

"kind" : "SkipperPackageMetadata",

“name" : "log",

"displayName" : null,

"version" : "1.0.0",

"packageSourceUrl" : "https://github.com/spring-cloud-stream-app-
starters/log/tree/v1.2.0.RC1",

"packageHomeUr1" : "https://cloud.spring.io/spring-cloud-stream-app-starters/",

"tags" : "logging, sink",

"maintainer” : "https://github.com/sobychacko",

"description” : "The log sink uses the application logger to output the data for
inspection.",

"sha256" : null,

"iconUr1l" : null,

"_links" : {

"self" : {
"href" : "http://localhost:7577/api/packageMetadata/3"
}

ackageMetadata" : {
"href" : "http://localhost:7577/api/packageMetadata/3{?projection}",
"templated" : true

I

"install" : {

"href" : "http://localhost:7577/api/package/install/3"
}
}

}

Response fields

Path Type Description

apiVersion String The Package Index spec version
this file is based on

origin Null Indicates the origin of the
repository (free form text)

138

Path Type Description

repositoryId Number The repository ID this Package
belongs to.

repositoryName String The repository name this
Package belongs to.

kind String What type of package system is
being used

name String The name of the package

displayName Null The display name of the
package

version String The version of the package

packageSourcelrl String Location to source code for this
package

packageHomelUr1 String The home page of the package

tags String A comma separated list of tags
to use for searching

maintainer String Who is maintaining this
package

description String Brief description of the package

sha256 Null Hash of package binary that
will be downloaded using
SHA256 hash algorithm

iconUrl Null Url location of a icon

30.4.4. Search by Package Name

A GET request returns a list of all the Spring Cloud Skipper package metadata for the given package
name.

Request structure

getPackageMetadataSearchFindByName

GET /api/packageMetadata/search/findByName?name=1og HTTP/1.1
Host: localhost:7577

Example request

$ curl "http://localhost:7577/api/packageMetadata/search/findByName?name=1o0g" -i

Response structure
HTTP/1.1 200 OK

139

Vary: Origin

Vary: Access-Control-Request-Method
Vary: Access-Control-Request-Headers
Content-Type: application/hal+json
Content-Length: 5404

{
" embedded" : {
"packageMetadata" : [{
"apiVersion" : "skipper.spring.io/v1",

"origin" : null,
"repositoryId" : 2,
"repositoryName" : "local",
"kind" : "SkipperPackageMetadata",
"name" : "log",
"displayName" : null,
"version" : "1.0.0",
"packageSourceUrl" : "https://github.com/spring-cloud-stream-app-
starters/log/tree/v1.2.0.RC1",
"packageHomeUr1" : "https://cloud.spring.io/spring-cloud-stream-app-starters/",
"tags" : "logging, sink",
"maintainer" : "https://github.com/sobychacko",
"description” : "The log sink uses the application logger to output the data for
inspection.",
"sha256" : null,
"iconUr1l" : null,
" links" : {
"self" : {
"href" : "http://localhost:7577/api/packageMetadata/3"
b
"packageMetadata" : {
"href" : "http://localhost:7577/api/packageMetadata/3{?projection}",
"templated" : true

},
"install" : {
"href" : "http://localhost:7577/api/package/install/3"
}
}
oA
"apiVersion" : "skipper.spring.io/v1",

"origin" : null,

"repositoryId" : 2,

“repositoryName" : "local",

"kind" : "SkipperPackageMetadata",

"name" : "log",

"displayName" : null,

"version" : "1.0.0",

"packageSourceUrl" : "https://github.com/spring-cloud-stream-app-
starters/log/tree/v1.2.0.RC1",

"packageHomeUr1" : "https://cloud.spring.io/spring-cloud-stream-app-starters/",

"tags" : "logging, sink",

140

"maintainer" : "https://github.com/sobychacko",
"description” : "The log sink uses the application logger to output the data for
inspection.",

"sha256" : null,
"iconUr1l" : null,
" links" : {

"self" : {

"href" : "http://localhost:7577/api/packageMetadata/4"
}

"packageMetadata" : {
"href" : "http://localhost:7577/api/packageMetadata/4{?projection}",
"templated" : true

}

"install" : {
"href" : "http://localhost:7577/api/package/install/4"
}
}
| P
"apiVersion" : "skipper.spring.io/v1",

"origin" : null,
"repositoryId" : 2,
"repositoryName" : "local",
"kind" : "SkipperPackageMetadata",
“name" : "log",
"displayName" : null,
"version" : "1.0.0",
"packageSourceUrl" : "https://github.com/spring-cloud-stream-app-
starters/log/tree/v1.2.0.RC1",
"packageHomeUr1" : "https://cloud.spring.io/spring-cloud-stream-app-starters/",
"tags" : "logging, sink",
"maintainer” : "https://github.com/sobychacko”,
"description” : "The log sink uses the application logger to output the data for
inspection.",
"sha256" : null,
"iconUr1l" : null,
"_links" : {
"self" : {
"href" : "http://localhost:7577/api/packageMetadata/5"
}

"packageMetadata" : {
"href" : "http://localhost:7577/api/packageMetadata/5{?projection}",

"templated" : true

I
"install" : {
"href" : "http://localhost:7577/api/package/install/5"
}
}
}oAo
"apiVersion" : "skipper.spring.io/v1",

"origin" : null,
"repositoryId" : 2,

141

"repositoryName" : "local",
"kind" : "SkipperPackageMetadata",

Ilnamell : "109"'
"displayName" : null,
"version" : "1.0.0",

"packageSourceUrl" : "https://github.com/spring-cloud-stream-app-
starters/log/tree/v1.2.0.RC1",
"packageHomeUr1" : "https://cloud.spring.io/spring-cloud-stream-app-starters/",
"tags" : "logging, sink",
"maintainer" : "https://github.com/sobychacko",
"description” : "The log sink uses the application logger to output the data for
inspection.",
"sha256" : null,
"iconUr1l" : null,
" links" : {
"self" : {
"href" : "http://localhost:7577/api/packageMetadata/6"
b
"packageMetadata" : {
"href" : "http://localhost:7577/api/packageMetadata/6{?projection}",
"templated" : true

},
"install" : {
"href" : "http://localhost:7577/api/package/install/6"
}
}
oA
"apiVersion" : "skipper.spring.io/v1",

"origin" : null,

"repositoryId" : 2,

“repositoryName" : "local",

"kind" : "SkipperPackageMetadata",

"name" : "log",

"displayName" : null,

"version" : "1.0.0",

"packageSourceUrl" : "https://github.com/spring-cloud-stream-app-
starters/log/tree/v1.2.0.RC1",

"packageHomeUr1" : "https://cloud.spring.io/spring-cloud-stream-app-starters/",

"tags" : "logging, sink",

"maintainer” : "https://github.com/sobychacko",

"description” : "The log sink uses the application logger to output the data for
inspection.",

"sha256" : null,

"iconUr1l" : null,

"_links" : {
"self" : {
"href" : "http://localhost:7577/api/packageMetadata/7"
},

"packageMetadata" : {
"href" : "http://localhost:7577/api/packageMetadata/7{?projection}",
"templated" : true

142

}

"install" : {
"href" : "http://localhost:7577/api/package/install/7"
}
}
}]
}
" links" : {
"self" : {
"href" : "http://localhost:7577/api/packageMetadata/search/findByName?name=10g"
}
}
}
Response fields
Path Type Description
_embedded. packageMetadata[].ap String The Package Index spec version
iVersion this file is based on
_embedded. packageMetadatal[].or Null Indicates the origin of the
UL repository (free form text)
_embedded. packageMetadata[].re Number The repository ID this Package
positoryId belongs to.
_embedded. packageMetadata[].re String The repository name this
positoryName Package belongs to.
_embedded. packageMetadata[].ki String What type of package system is
nd being used
_embedded.packageMetadata[].na String The name of the package
me
_embedded. packageMetadata[].di Null The display name of the
splayName package
_embedded. packageMetadata[].ve String The version of the package
rsion
_embedded.packageMetadata[].pa String Location to source code for this
ckageSourcelrl package
_embedded.packageMetadata[].pa String The home page of the package
ckageHomeUr1l
_embedded.packageMetadata[].ta String A comma separated list of tags
9 to use for searching
_embedded.packageMetadata[].ma String Who is maintaining this
intainer package
_embedded. packageMetadata[].de String Brief description of the package
scription
_embedded. packageMetadata[].sh Null Hash of package binary that
a256 will be downloaded using
SHA256 hash algorithm

143

Path Type Description

_embedded.packageMetadatal[].ic Null Url location of a icon
onUrl

30.4.5. Search by Package Name, Ignoring Case

A GET request returns a list for all Spring Cloud Skipper package metadata by the given package
name ignoring case.

Request structure

GET /api/packageMetadata/search/findByNameContainingIgnoreCase?name=L0 HTTP/1.1
Host: localhost:7577

Example request

$ curl
"http://localhost:7577/api/packageMetadata/search/findByNameContainingIgnoreCase?name=
L0" -i

Response structure

HTTP/1.1 200 0K

Vary: Origin

Vary: Access-Control-Request-Method
Vary: Access-Control-Request-Headers
Content-Type: application/hal+json
Content-Length: 2288

{
" embedded" : {
"packageMetadata" : [{
"apiVersion" : "skipper.spring.io/v1",

"origin" : null,

"repositoryId" : 2,

"repositoryName" : "local",

"kind" : "SkipperPackageMetadata",

"name" : "log",

"displayName" : null,

"version" : "1.0.0",

"packageSourceUrl" : "https://github.com/spring-cloud-stream-app-
starters/log/tree/v1.2.0.RC1",

"packageHomeUr1" : "https://cloud.spring.io/spring-cloud-stream-app-starters/",

"tags" : "logging, sink",

"maintainer" : "https://github.com/sobychacko",

"description” : "The log sink uses the application logger to output the data for
inspection.",

144

"sha256" : null,
"iconUr1l" : null,
"_links" : {
"self" : {
"href" : "http://localhost:7577/api/packageMetadata/3"
}I
"packageMetadata" : {
"href" : "http://localhost:7577/api/packageMetadata/3{?projection}",
"templated" : true

I
"install" : {
"href" : "http://localhost:7577/api/package/install/3"
}
}
oA
"apiVersion" : "skipper.spring.io/v1",

"origin" : null,

"repositoryId" : 2,

"repositoryName" : "local",

"kind" : "SkipperPackageMetadata",

"name" : "log",

"displayName" : null,

"version" : "1.0.0",

"packageSourcelrl" : "https://github.com/spring-cloud-stream-app-
starters/log/tree/v1.2.0.RC1",

"packageHomeUr1" : "https://cloud.spring.io/spring-cloud-stream-app-starters/",

"tags" : "logging, sink",

"maintainer” : "https://github.com/sobychacko",

"description” : "The log sink uses the application logger to output the data for
inspection.",

"sha256" : null,

"iconUr1l" : null,

"_links" : {
"self" : {
"href" : "http://localhost:7577/api/packageMetadata/4"
},

"packageMetadata" : {
"href" : "http://localhost:7577/api/packageMetadata/4{?projection}",
"templated" : true

b
"ipstall" : {
"href" : "http://localhost:7577/api/package/install/4"
}
}
}]
H
"_links" : {
"self" : {
"href" :

"http://localhost:7577/api/packageMetadata/search/findByNameContainingIgnoreCase?name=
Loll

145

}
}

Response fields

Path Type Description

_embedded. packageMetadata[].ap String The Package Index spec version
Version this file is based on

_embedded. packageMetadata[].or Null Indicates the origin of the

U repository (free form text)
_embedded. packageMetadata[].re Number The repository ID this Package
positoryId belongs to.

_embedded. packageMetadata[].re String The repository name this
positoryName Package belongs to.
_embedded.packageMetadata[].ki String What type of package system is
nd being used
_embedded.packageMetadata[].na String The name of the package

me

_embedded.packageMetadata[].di Null The display name of the
splayName package

_embedded. packageMetadata[].ve String The version of the package
rsion

_embedded. packageMetadata[].pa String Location to source code for this
ckageSourcelrl package

_embedded. packageMetadata[].pa String The home page of the package
ckageHomeUr1l

_embedded. packageMetadata[].ta String A comma separated list of tags
9 to use for searching
_embedded.packageMetadata[].ma String Who is maintaining this
intainer package

_embedded. packageMetadata[].de String Brief description of the package
scription

_embedded.packageMetadata[].sh Null Hash of package binary that
a256 will be downloaded using

SHA256 hash algorithm

_embedded.packageMetadata[].ic Null Url location of a icon

onUrl

30.5. Package

The Package resource maps onto the PackageController for uploading and installing packages.

30.5.1. Upload

The upload link uploads a package into a the local database backed repository.

146

Request structure

POST /api/package/upload HTTP/1.1
Content-Type: application/json;charset=UTF-8
Accept: application/json

Host: localhost:7577

Example request

$ curl 'http://localhost:7577/api/package/upload’ -i -X POST \
-H "Content-Type: application/json;charset=UTF-8" \
-H "Accept: application/json'

Response structure

HTTP/1.1 201 Created
Content-Type: application/json
Content-Length: 805

{
"apiVersion" : "skipper.spring.io/v1",
"origin" : null,
"repositoryId" : null,
"repositoryName" : null,
"kind" : "SkipperPackageMetadata",

|Inamell : "109"'
"displayName" : null,
"version" : "1.0.0",

"packageSourceUrl" : "https://github.com/spring-cloud-stream-app-
starters/log/tree/v1.2.0.RC1",

"packageHomeUr1" : "https://cloud.spring.io/spring-cloud-stream-app-starters/",

"tags" : "logging, sink",

"maintainer" : "https://github.com/sobychacko",

"description” : "The log sink uses the application logger to output the data for
inspection.",

"sha256" : null,

"iconUr1l" : null,

"links" : [{

"rel" : "install",

"href" : "http://localhost:7577/api/package/install"
5o

"rel" : "install",

"href" : "http://localhost:7577/api/package/install/{id}"
P

}

147

Response fields

Path

apiVersion

origin

repositoryld

repositoryName

kind

name

displayName

version

packageSourcelrl

packageHomeUr1
tags

maintainer
description

sha256

iconUrl

30.5.2. Install

Type
String

Null

Null

Null

String

String
Null

String
String

String
String

String
String

Null

Null

Description

The Package Index spec version
this file is based on

Indicates the origin of the
repository (free form text)

The repository ID this Package
belongs to.

The repository nane this
Package belongs to.

What type of package system is
being used

The name of the package

The display name of the
package

The version of the package

Location to source code for this
package

The home page of the package

A comma separated list of tags
to use for searching

Who is maintaining this
package

Brief description of the package

Hash of package binary that
will be downloaded using
SHA256 hash algorithm

Url location of a icon

The install link can install a package (identified by the InstallRequest) into the target platform.

Request structure

POST /api/package/install HTTP/1.1

Content-Type: application/json;charset=UTF-8
Accept: application/json
Host: localhost:7577

Example request

148

$ curl '"http://localhost:7577/api/package/install’ -i -X POST \
-H "Content-Type: application/json;charset=UTF-8" \
-H "Accept: application/json'

Response structure

HTTP/1.1 201 Created
Content-Type: application/json
Content-Length: 2624

{
"name" : "test",
"version" : 1,
"info" : {
"status" : {

"statusCode" : "DELETED",
"platformStatus” : null
¥
"firstDeployed" : null,
"lastDeployed" : null,
"deleted" : null,
"description” : null
H
"pkg" : {
"metadata” : {
"apiVersion" : "skipper.spring.io/v1",
"origin" : null,
"repositoryId" : null,
"repositoryName" : null,
"kind" : "SkipperPackageMetadata",

llname" : |l'logl|,
"displayName" : null,
"version" : "1.0.0",

"packageSourceUrl" : "https://github.com/spring-cloud-stream-app-
starters/log/tree/v1.2.0.RC1",

"packageHomeUrl" : "https://cloud.spring.io/spring-cloud-stream-app-starters/",

"tags" : "logging, sink",

"maintainer" : "https://github.com/sobychacko",

"description” : "The log sink uses the application logger to output the data for
inspection.",

"sha256" : null,

"iconUrl" : null

b
"templates" : [{
"name" : "log.yml",
"data" : "apiVersion: skipper.spring.io/vi\nkind:

SpringCloudDeployerApplication\nmetadata:\n name: log\n type: sink\nspec:\n
resource: maven://org.springframework.cloud.stream.app:log-sink-rabbit\n
resourceMetadata: maven://org.springframework.cloud.stream.app:log-sink-

149

rabbit:jar:metadata:{{version}}\n
server.port: 0\n {{#spec.applicationProperties.entrySet}}\n {{key}}: {{value}}\n

{{/spec.applicationProperties.entrySet}}\n
{{#spec.deploymentProperties.entrySet}}\n
{{/spec.deploymentProperties.entrySet}}\n"

Pl

"dependencies" : [1,

"configValues" : {

version: {{version}}\n

applicationProperties:\n

deploymentProperties:\n

{{key}}: {{value}}\n

"raw" : "# Default values for {{namel}}\n# This is a YAML-formatted file.\n#
Declare variables to be passed into your templates\nversion: 1.2.0.RC1\n"

+
"fileHolders" : []
+

"configValues" : {

raw" : "config2: value2\nconfigl: valuel\n"

}I

"manifest" : {

"data" : "\"apiVersion\": \"skipper.spring.io/vI\"\n\"kind\":

\"SpringCloudDeployerApplication\"\n\"metadata\":\n
\"resource\":

\"sink\"\n\"spec\":\n

\Ilname\ll: \lllog\"\n \Iltype\":

\"maven://org.springframework.cloud.stream.app:log-sink-rabbit\"\n
\"resourceMetadata\": \"maven://org.springframework.cloud.stream.app:log-sink-
rabbit:jar:metadata:1.2.0.RC1\"\n \"version\": \"1.2.0.RC1\"\n

\"applicationProperties\":\n

ITnull \"null\"\n"

Ih
"platformName" : "default",
"links" : [{

"rel" : "status",

\"server.port\": \"0\"\n

\"deploymentProperties\":

"href" : "http://localhost:7577/api/release/status/{name}"

}]
}

Response fields

Path

name
version

info.status.statusCode

info.status.platformStatus

info.firstDeployed
info.lastDeployed
info.deleted

150

Type
String

Number

String

Null

Null
Null
Null

Description
Name of the release
Version of the release

StatusCode of the release’s
status
(UNKNOWN,DEPLOYED,DELET
ED,FAILED)

Status from the underlying
platform

Date/Time of first deployment
Date/Time of last deployment

Date/Time of when the release
was deleted

Path

info.description

pkg.metadata.origin

pkg.metadata.apiVersion

pkg.metadata.repositoryld

pkg.metadata.repositoryName

pkg.metadata.kind

pkg.metadata.name
pkg.metadata.displayName
pkg.metadata.version

pkg.metadata.packageSourcelrl

pkg.metadata.packageHomelUrl
pkg.metadata.tags

pkg.metadata.maintainer

pkg.metadata.description

pkg.metadata.sha256

pkg.metadata.iconUrl

pkg.templates[].name

pkg.templates[].data

pkg.dependencies

pkg.configValues.raw

pkg.fileHolders

configValues.raw

manifest.data

Type
Null

Null

String

Null

Null

String

String
Null

String
String

String
String

String

String

Null

Null

String

String

Array

String

Array

String

String

Description

Human-friendly 'log entry'
about this release

Indicates the origin of the
repository (free form text)

The Package Index spec version
this file is based on

The repository ID this Package
belongs to

The repository name this
Package belongs to.

What type of package system is
being used

The name of the package
Display name of the release
The version of the package

Location to source code for this
package

The home page of the package

A comma separated list of tags
to use for searching

Who is maintaining this
package

Brief description of the package

Hash of package binary that
will be downloaded using
SHA256 hash algorithm

Url location of a icon

Name is the path-like name of
the template

Data is the template as string
data

The packages that this package
depends upon

The raw YAML string of
configuration values

Miscellaneous files in a
package, e.g. README,
LICENSE, etc.

The raw YAML string of
configuration values

The manifest of the release

151

Path Type Description

platformName String Platform name of the release

30.5.3. Install with ID

The install link can install a package identified by its ID into the target platform.

Request structure

POST /api/package/install/1 HTTP/1.1
Content-Type: application/json;charset=UTF-8
Accept: application/json

Host: localhost:7577

Example request

$ curl "http://localhost:7577/api/package/install/1" -i -X POST \
-H 'Content-Type: application/json;charset=UTF-8"' \
-H 'Accept: application/json'

Response structure

HTTP/1.1 201 Created
Content-Type: application/json
Content-Length: 2633

{
"name" : "mylLogRelease2",
"version" : 1,
"info" : {
"status" : {

"statusCode" : "DELETED",
"platformStatus” : null
I
"firstDeployed" : null,
"lastDeployed" : null,
"deleted" : null,
"description” : null
I
"pg" :
"metadata" : {
"apiVersion" : "skipper.spring.io/v1",
"origin" : null,
"repositoryId" : null,
"repositoryName" : null,
"kind" : "SkipperPackageMetadata",
"name" : "log",

152

"displayName" : null,

"version" : "1.0.0",

"packageSourcelrl" : "https://github.com/spring-cloud-stream-app-
starters/log/tree/v1.2.0.RC1",

"packageHomeUr1" : "https://cloud.spring.io/spring-cloud-stream-app-starters/",

"tags" : "logging, sink",

"maintainer” : "https://github.com/sobychacko”,

"description” : "The log sink uses the application logger to output the data for
inspection.",

"sha256" : null,

"iconUr1l" : null

+
"templates" : [{
"name" : "log.yml",
"data" : "apiVersion: skipper.spring.io/vi\nkind:

SpringCloudDeployerApplication\nmetadata:\n name: log\n type: sink\nspec:\n
resource: maven://org.springframework.cloud.stream.app:log-sink-rabbit\n
resourceMetadata: maven://org.springframework.cloud.stream.app:log-sink-
rabbit:jar:metadata:{{version}}\n version: {{version}}\n applicationProperties:\n
server.port: 0\n {{#fspec.applicationProperties.entrySet}}\n {{key}}: {{value}}\n
{{/spec.applicationProperties.entrySet}}\n deploymentProperties:\n
{{#ispec.deploymentProperties.entrySet}}\n {{key}}: {{value}}\n
{{/spec.deploymentProperties.entrySet}}\n"

P

"dependencies" : [],

"configValues" : {

"raw" : "# Default values for {{name}}\n# This is a YAML-formatted file.\n#

Declare variables to be passed into your templates\nversion: 1.2.0.RC1\n"

¥

"fileHolders" : []

}
"configValues" : {

“raw" : "config2: value2\nconfigl: valuel\n"
H

"manifest" : {

"data" : "\"apiVersion\": \"skipper.spring.io/vI\"\n\"kind\":
\"SpringCloudDeployerApplication\"\n\"metadata\":\n \"name\": \"log\"\n \"type\":
\"sink\"\n\"spec\":\n \"resource\":
\"maven://org.springframework.cloud.stream.app:log-sink-rabbit\"\n
\"resourceMetadata\": \"maven://org.springframework.cloud.stream.app:log-sink-
rabbit:jar:metadata:1.2.0.RC1\"\n \"version\": \"1.2.0.RC1\"\n
\"applicationProperties\":\n \"server.port\": \"@0\"\n \"deploymentProperties\":
[oull \"null\"\n"

+
"platformName" : "default",
"links" : [{
"rel" : "status",
"href" : "http://localhost:7577/api/release/status/{name}"
}]
}

153

Response fields

Path

name
version

info.status.statusCode

info.status.platformStatus

info.firstDeployed
info.lastDeployed
info.deleted

info.description

pkg.metadata.apiVersion

pkg.metadata.origin

pkg.metadata.repositoryld

pkg.metadata.repositoryName

pkg.metadata.kind

pkg.metadata.name
pkg.metadata.displayName
pkg.metadata.version

pkg.metadata.packageSourcelrl

pkg.metadata.packageHomelrl
pkg.metadata.tags

pkg.metadata.maintainer

pkg.metadata.description
pkg.metadata.sha256

pkg.metadata.iconUrl

154

Type
String

Number

String

Null

Null
Null
Null

Null

String

Null

Null

Null

String

String
Null

String
String

String
String

String
String

Null

Null

Description
Name of the release
Version of the release

StatusCode of the release’s
status
(UNKNOWN,DEPLOYED,DELET
ED,FAILED)

Status from the underlying
platform

Date/Time of first deployment
Date/Time of last deployment

Date/Time of when the release
was deleted

Human-friendly 'log entry’
about this release

The Package Index spec version
this file is based on

Indicates the origin of the
repository (free form text)

The repository ID this Package
belongs to

The repository name this
Package belongs to.

What type of package system is
being used

The name of the package
Display name of the release
The version of the package

Location to source code for this
package

The home page of the package

A comma separated list of tags
to use for searching

Who is maintaining this
package

Brief description of the package

Hash of package binary that
will be downloaded using
SHA256 hash algorithm

Url location of a icon

Path Type Description

pkg.templates[].name String Name is the path-like name of
the template

pkg.templates[].data String Data is the template as string
data

pkg.dependencies Array The packages that this package
depends upon

pkg.configValues.raw String The raw YAML string of

configuration values

pkg.fileHolders Array Miscellaneous files in a
package, e.g. README,
LICENSE, etc.

configValues.raw String The raw YAML string of
configuration values

manifest.data String The manifest of the release

platformName String Platform name of the release

30.6. Repositories

The Repositories resource is exported from the Spring Data Repository RepositoryRepository (yes,
it’s a funny name) and exposed by Spring Data REST.

30.6.1. Find All

A GET request returns a paginated list for all Spring Cloud Skipper repositories.

Request structure

GET /api/repositories?page=0&size=10 HTTP/1.1
Host: localhost:7577

Example request

$ curl "http://localhost:7577/api/repositories?page=0&size=10"' -i

Response structure

HTTP/1.1 200 0K

Vary: Origin

Vary: Access-Control-Request-Method
Vary: Access-Control-Request-Headers
Content-Type: application/hal+json
Content-Length: 1321

155

{

" embedded" : {
"repositories" : [{
"name" : "test",
"url" : "classpath:/repositories/binaries/test",

"sourceUrl" : null,
"local" : false,

"description” : "test repository with a few packages",
"repoOrder" : null,
"_links" : {
"self" : {
"href" : "http://localhost:7577/api/repositories/1"
)

"repository" : {
"href" : "http://localhost:7577/api/repositories/1"
}
}
Ji L

"name" : "local",

"url" : "http://localhost:7577",
"sourceUr1l" : null,

"local" : true,

"description” : "Default local database backed repository",
"repoOrder" : null,
"_Tinks" : {

"self" : {

"href" : "http://localhost:7577/api/repositories/2"
I
"repository" : {

"href" : "http://localhost:7577/api/repositories/2"
}
}

P
¥
"_links" : {

"self" : {

"href" : "http://localhost:7577/api/repositories{&sort}",
"templated" : true

¥
"profile" : {

"href" : "http://localhost:7577/api/profile/repositories”

I

"search" : {

"href" : "http://localhost:7577/api/repositories/search"

}
¥
"page" : {

"size" : 10,
"totalElements" : 2,
"totalPages" : 1,
"number" : @

156

Response fields

Path
page

page.size

page.totalElements

page.totalPages

page.number

_embedded. repositories

_embedded. repositories[].
_embedded. repositories[].

_embedded. repositories[].
elrl

_embedded. repositories[].
iption
_embedded. repositories[].

_embedded. repositories[].
rder

30.6.2. Find By Name

A GET request returns a single Spring Cloud Skipper repositories.

Request structure

GET /api/repositories/search/findByName?name=1ocal HTTP/1.1

Host: localhost:7577

Example request

name
url

sourc
descr

local

repo0

Type
Object

Number

Number

Number

Number

Array

String
String
Null

String

Boolean

Null

Description
Pagination properties

The size of the page being
returned

Total elements available for
pagination

Total amount of pages

Page number of the page
returned (zero-based)

Contains a collection of
Repositories

Name of the Repository
Url of the Repository

Source Url of the repository
Description of the Repository

Is the repo local?

Order of the Repository

$ curl "http://localhost:7577/api/repositories/search/findByName?name=1ocal’ -i

Response structure

157

HTTP/1.1 200 OK

Vary: Origin

Vary: Access-Control-Request-Method
Vary: Access-Control-Request-Headers
ETag: "0"

Content-Type: application/hal+json
Content-Length: 366

{
"name" : "local",
"url" : "http://localhost:7577",
"sourceUrl" : null,
"local" : true,
"description” : "Default local database backed repository",
"repoOrder" : null,
" links" : {
"self" : {
"href" : "http://localhost:7577/api/repositories/2"
I
"repository" : {
"href" : "http://localhost:7577/api/repositories/2"
}
}
}

Response fields

Path Type Description

name String Name of the Repository

url String URL of the Repository
description String Description of the Repository
local Boolean Is the repo local?

repoOrder Null Order of the Repository
sourcelrl Null Source URL of the repository

30.7. Releases

The release resource is exported from the Spring Data Repository ReleaseRepository and exposed
by Spring Data REST.

30.7.1. Find all

A GET request returns a paginated list for all Spring Cloud Skipper releases.

158

Request structure

GET /api/releases?page=0&size=10 HTTP/1.1
Host: localhost:7577

Example request

$ curl "http://localhost:7577/api/releases?page=0&size=10" -i

Response structure

HTTP/1.1 200 0K

Vary: Origin

Vary: Access-Control-Request-Method
Vary: Access-Control-Request-Headers
Content-Type: application/hal+json
Content-Length: 3354

{
" embedded" : {
"releases" : [{
"name" : "test",
"version" : 1,
"info" : {
"status" : {

"statusCode" : "DELETED",
"platformStatus” : null
e
"firstDeployed" : null,
"lastDeployed" : null,
"deleted" : null,
"description” : null
I
"pkg" : {
"metadata" : {
"apiVersion" : "skipper.spring.io/v1",
"origin" : null,
"repositoryId" : null,
"repositoryName" : null,
"kind" : "SkipperPackageMetadata",

Ilnamell : ll'l-og",
"displayName" : null,
"version" : "1.0.0",

"packageSourceUrl" : "https://github.com/spring-cloud-stream-app-
starters/log/tree/v1.2.0.RC1",

"packageHomeUr1" : "https://cloud.spring.io/spring-cloud-stream-app-
starters/",

“tags" : "logging, sink",

159

"maintainer" : "https://github.com/sobychacko"”,

"description” : "The log sink uses the application logger to output the data
for inspection.",

"sha256" : null,

"iconUr1l" : null

b
"templates" : [{
"name" : "log.yml",
"data" : "apiVersion: skipper.spring.io/vi\nkind:

SpringCloudDeployerApplication\nmetadata:\n name: log\n type: sink\nspec:\n
resource: maven://org.springframework.cloud.stream.app:log-sink-rabbit\n
resourceMetadata: maven://org.springframework.cloud.stream.app:log-sink-
rabbit:jar:metadata:{{version}}\n version: {{version}}\n applicationProperties:\n
server.port: 0\n {{#spec.applicationProperties.entrySet}}\n {{key}}: {{value}}\n
{{/spec.applicationProperties.entrySet}}\n deploymentProperties:\n
{{#spec.deploymentProperties.entrySet}}\n {{key}}: {{value}}\n
{{/spec.deploymentProperties.entrySet}}\n"
Il
"dependencies" : [],
"configValues" : {
"raw" : "# Default values for {{name}}\n#f This is a YAML-formatted file.\n#
Declare variables to be passed into your templates\nversion: 1.2.0.RC1\n"
Iy
"fileHolders" : []
}

onfigValues" : {

“raw" : "config2: value2\nconfigl: valuel\n"
b
"manifest" : {

"data" : "\"apiVersion\": \"skipper.spring.io/vI\"\n\"kind\":
\"SpringCloudDeployerApplication\"\n\"metadata\":\n \"name\": \"log\"\n \"type\":
\"sink\"\n\"spec\":\n \"resource\":
\"maven://org.springframework.cloud.stream.app:log-sink-rabbit\"\n
\"resourceMetadata\": \"maven://org.springframework.cloud.stream.app:log-sink-
rabbit:jar:metadata:1.2.0.RC1\"\n \"version\": \"1.2.0.RC1\"\n
\"applicationProperties\":\n \"server.port\": \"0\"\n \"deploymentProperties\":
oull \"nulTl\"\n"

e
"platformName" : "default",
"_links" : {
"self" : {
"href" : "http://localhost:7577/api/releases/8"
},

"release" : {
"href" : "http://localhost:7577/api/releases/8"

}
}
}]
+
" links" : {
"self" : {

160

"href" : "http://localhost:7577/api/releases{&sort}",
"templated" : true
}

"profile" : {
"href" : "http://localhost:7577/api/profile/releases"
I
"search" : {
"href" : "http://localhost:7577/api/releases/search"
}
¥
"page" : {
"size" : 10,

"totalElements" : 1,
"totalPages" : 1,

“number" : 0
}
}

Response fields

Path Type Description

page Object Pagination properties

page.size Number The size of the page being
returned

page.totalElements Number Total elements available for
pagination

page.totalPages Number Total amount of pages

page.number Number Page number of the page
returned (zero-based)

_embedded.releases[].name String Name of the release

_embedded.releases[].version Number Version of the release

_embedded.releases[].info.stat String StatusCode of the release’s

us.statusCode status
(UNKNOWN,DEPLOYED,DELET
ED,FAILED)

_embedded.releases[].info.stat Null Status from the underlying

us.platformStatus platform

_embedded.releases[].info.firs Null Date/Time of first deployment

tDeployed

_embedded.releases[].info.last Null Date/Time of last deployment

Deployed

_embedded.releases[].info.dele Null Date/Time of when the release

ted was deleted

_embedded.releases[].info.desc Null Human-friendly 'log entry'

ription about this release

161

Path

_embedded.releases[].
ame

_embedded.releases[].
ata.apiVersion

_embedded.releases[]
ata.origin

_embedded.releases[]
ata.repositoryld

_embedded.releases[]
ata.repositoryName

_embedded.releases[]
ata.kind

_embedded.releases[]
ata.name

_embedded.releases][]
ata.displayName

_embedded.releases[]
ata.version

_embedded.releases[]
ata.packageSourcelrl
_embedded.releases[]
ata.packageHomelrl
_embedded.releases][]
ata.tags

_embedded.releases][]
ata.maintainer

_embedded.releases][]
ata.description

_embedded.releases[]
ata.sha256

_embedded.releases][]
ata.iconUrl

_embedded.releases[]
ates[].name

_embedded.releases[]
ates[].data

_embedded.releases[]
dencies

_embedded.releases[]
gValues.raw

_embedded.releases[]
olders

162

platformN

pkg.

.pkg.

.pkg.

.pkg.

.pkg.

.pkg.
.pkg
-pkg

.pkg

.pkg

-pkg

.pkg

.pkg

-pkg

.pkg

.pkg.

.pkg.

.pkg.

.pkg.

.pkg.

metad

metad

metad

metad

metad

metad

.metad

.metad

.metad

.metad

.metad

.metad

.metad

.metad

.metad

templ

templ

depen

confi

fileH

Type
String

String

Null

Null

Null

String

String
Null
String

String

String

String

String

String

Null

Null

String

String

Array

String

Array

Description

Platform name of the release

The Package Index spec version
this file is based on

Indicates the origin of the
repository (free form text)

The repository ID this Package
belongs to

The repository name this
Package belongs to.

What type of package system is
being used

The name of the package
Display name of the release
The version of the package

Location to source code for this
package

The home page of the package

A comma separated list of tags
to use for searching

Who is maintaining this
package

Brief description of the package

Hash of package binary that
will be downloaded using
SHA256 hash algorithm

Url location of a icon

Name is the path-like name of
the template

Data is the template as string
data

The packages that this package
depends upon

The raw YAML string of
configuration values

Miscellaneous files in a
package, e.g. README,
LICENSE, etc.

Path Type

_embedded.releases[].configVal String
ues.raw

_embedded.releases[].manifest. String
data

_embedded.releases[].platformN String
ame

30.8. Release

Description

The raw YAML string of
configuration values

The manifest of the release

Platform name of the release

The Release resource maps onto the ReleaseController for managing the lifecycle of a release.

30.8.1. List

List latest

The 1ist link can list the latest version of releases with status of deployed or failed.

Request structure

GET /api/release/list HTTP/1.1
Host: localhost:7577

Example request

$ curl "http://localhost:7577/api/release/list" -i

Response structure

HTTP/1.1 200 0K
Content-Type: application/hal+json
Content-Length: 2913

{
"_embedded" : {
"releases" : [{
"name" : "test",
"version" : 1,
"info" : {
"status" : {

"statusCode" : "DELETED",
"platformStatus” : null
e
"firstDeployed" : null,
"lastDeployed" : null,
"deleted" : null,
"description” : null

163

b
"pkg" 1 {
"metadata" : {

"apiVersion" : "skipper.spring.io/v1",
"origin" : null,
"repositoryId" : null,
"repositoryName" : null,
"kind" : "SkipperPackageMetadata",

"namell : "-I_Og"’
"displayName" : null,
"version" : "1.0.0",

"packageSourceUrl" : "https://github.com/spring-cloud-stream-app-
starters/log/tree/v1.2.0.RC1",

"packageHomeUr1" : "https://cloud.spring.io/spring-cloud-stream-app-
starters/",

"tags" : "logging, sink",

"maintainer" : "https://github.com/sobychacko",

"description” : "The log sink uses the application logger to output the data
for inspection.",

"sha256" : null,

"iconUrl" : null

I
"templates" : [{
"name" : "log.yml",
"data" : "apiVersion: skipper.spring.io/vi\nkind:

SpringCloudDeployerApplication\nmetadata:\n name: log\n type: sink\nspec:\n
resource: maven://org.springframework.cloud.stream.app:log-sink-rabbit\n
resourceMetadata: maven://org.springframework.cloud.stream.app:log-sink-
rabbit:jar:metadata:{{version}}\n version: {{version}}\n applicationProperties:\n
server.port: 0\n {{#spec.applicationProperties.entrySet}}\n {{key}}: {{value}}\n
{{/spec.applicationProperties.entrySet}}\n deploymentProperties:\n
{{#ispec.deploymentProperties.entrySet}}\n {{key}}: {{value}}\n
{{/spec.deploymentProperties.entrySet}}\n"
P
"dependencies" : [],
"configValues" : {
"raw" : "# Default values for {{namel}}\n# This is a YAML-formatted file.\n#
Declare variables to be passed into your templates\nversion: 1.2.0.RC1\n"
I#
"fileHolders" : []
}

onfigValues" : {

raw" : "config2: value2\nconfigl: valuel\n"
b
"manifest" : {

"data" : "\"apiVersion\": \"skipper.spring.io/vI\"\n\"kind\":
\"SpringCloudDeployerApplication\"\n\"metadata\":\n \"name\": \"log\"\n \"type\":
\"sink\"\n\"spec\":\n \"resource\":
\"maven://org.springframework.cloud.stream.app:log-sink-rabbit\"\n
\"resourceMetadata\": \"maven://org.springframework.cloud.stream.app:log-sink-
rabbit:jar:metadata:1.2.0.RC1\"\n \"version\": \"1.2.0.RCT\"\n

164

\"applicationProperties\":\n \"server.port\": \"@0\"\n \"deploymentProperties\":
[oull \"null\"\n"

¥

"platformName" : "default",

"_links" : {

"status" : {
"href" : "http://localhost:7577/api/release/status/{name}",
"templated" : true
}
}
P
}
}
Response fields
Path Type Description
_embedded.releases[].name String Name of the release
_embedded.releases[].version Number Version of the release
_embedded.releases[].info.stat String StatusCode of the release’s
us.statusCode status
(UNKNOWN,DEPLOYED,DELET
ED,FAILED)

_embedded.releases[].info.stat Null Status from the underlying
us.platformStatus platform
_embedded.releases[].info.firs Null Date/Time of first deployment
tDeployed
_embedded.releases[].info.last Null Date/Time of last deployment
Deployed
_embedded.releases[].info.dele Null Date/Time of when the release
ted was deleted
_embedded. releases[].info.desc Null Human-friendly 'log entry’
ription about this release
_embedded.releases[].pkg.metad String The Package Index spec version
ata.apiVersion this file is based on
_embedded.releases[].pkg.metad Null Indicates the origin of the
ata.origin repository (free form text)
_embedded. releases[].pkg.metad Null The repository ID this Package
ata.repositoryld belongs to
_embedded. releases[].pkg.metad Null The repository name this
ata.repositoryName Package belongs to.
_embe(jded .releases[].pkg.metad String What type of package system is
ata.kind belng used
_embedded.releases[].pkg.metad String The name of the package
ata.name
_embedded.releases[].pkg.metad Null Display name of the release

ata.displayName

165

Path

_embedded.releases[].pkg.metad
ata.version

_embedded.releases[].pkg.metad
ata.packageSourcelrl
_embedded.releases[].pkg.metad
ata.packageHomelrl

_embedded. releases[].pkg.metad
ata.tags

_embedded.releases[].pkg.metad
ata.maintainer

_embedded. releases[].pkg.metad
ata.description

_embedded.releases[].pkg.metad
ata.sha256

_embedded.releases[].pkg.metad
ata.iconUrl

_embedded.releases[].pkg.templ
ates[].name

_embedded.releases[].pkg.templ
ates[].data

_embedded.releases[].pkg.depen
dencies

_embedded.releases[].pkg.confi
gValues.raw

_embedded.releases[].pkg.fileH
olders

_embedded.releases[].configVal
ues.raw

_embedded.releases[].manifest.
data

_embedded.releases[].platformN
ame

List latest by name

Type
String

String

String

String

String

String

Null

Null

String

String

Array

String

Array

String

String

String

Description

The version of the package

Location to source code for this
package

The home page of the package

A comma separated list of tags
to use for searching

Who is maintaining this
package

Brief description of the package

Hash of package binary that
will be downloaded using
SHA256 hash algorithm

Url location of a icon

Name is the path-like name of
the template

Data is the template as string
data

The packages that this package
depends upon

The raw YAML string of
configuration values

Miscellaneous files in a
package, e.g. README,
LICENSE, etc.

The raw YAML string of
configuration values

The manifest of the release

Platform name of the release

The 1ist link can list the latest version of releases with status of deployed or failed by the given

release name.

Request structure

GET /api/release/list/test HTTP/1.1

Host: localhost:7577

166

Example request

$ curl 'http://localhost:7577/api/release/list/test' -i

Response structure

HTTP/1.1 200 OK
Content-Type: application/hal+json
Content-Length: 2913

{
" embedded" : {
"releases" : [{
"name" : "test",
"version" : 1,
"info" : {
"status" : {

"statusCode" : "DELETED",
"platformStatus" : null
b

"firstDeployed" : null,
"lastDeployed” : null,
"deleted" : null,
"description” : null
b
"pkg" 1 {
"metadata" : {
"apiVersion" : "skipper.spring.io/v1",
"origin" : null,
"repositoryId" : null,
"repositoryName" : null,
"kind" : "SkipperPackageMetadata",

"namell : "109"’
"displayName" : null,
"version" : "1.0.0",

"packageSourceUrl" : "https://github.com/spring-cloud-stream-app-
starters/log/tree/v1.2.0.RC1",

"packageHomeUr1" : "https://cloud.spring.io/spring-cloud-stream-app-
starters/",

"tags" : "logging, sink",
"maintainer" : "https://github.com/sobychacko"”,

"description” : "The log sink uses the application logger to output the data
for inspection.",

"sha256" : null,
"fconUrl" : null

b
"templates" : [{
"name" : "log.yml",
"data" : "apiVersion: skipper.spring.io/vi\nkind:

167

SpringCloudDeployerApplication\nmetadata:\n name: log\n type: sink\nspec:\n
resource: maven://org.springframework.cloud.stream.app:log-sink-rabbit\n
resourceMetadata: maven://org.springframework.cloud.stream.app:log-sink-
rabbit:jar:metadata:{{version}}\n version: {{version}}\n applicationProperties:\n
server.port: 0\n {{#ispec.applicationProperties.entrySet}}\n {{key}}: {{value}}\n
{{/spec.applicationProperties.entrySet}}\n deploymentProperties:\n
{{#ispec.deploymentProperties.entrySet}}\n {{key}}: {{value}}\n
{{/spec.deploymentProperties.entrySet}}\n"
L P
"dependencies" : [],
"configValues" : {
"raw" : "# Default values for {{name}}\n#f This is a YAML-formatted file.\n#
Declare variables to be passed into your templates\nversion: 1.2.0.RC1\n"
e
"fileHolders" : []
}

onfigValues" : {

"raw" : "config2: value2\nconfigl: valuel\n"
I
"manifest" : {

"data" : "\"apiVersion\": \"skipper.spring.io/vI\"\n\"kind\":
\"SpringCloudDeployerApplication\"\n\"metadata\":\n \"name\": \"log\"\n \"type\":
\"sink\"\n\"spec\":\n \"resource\":
\"maven://org.springframework.cloud.stream.app:log-sink-rabbit\"\n
\"resourceMetadata\": \"maven://org.springframework.cloud.stream.app:log-sink-
rabbit:jar:metadata:1.2.0.RC1\"\n \"version\": \"1.2.0.RCT1\"\n
\"applicationProperties\":\n \"server.port\": \"0\"\n \"deploymentProperties\":
[Moull \"null\"\n"

},
"platformName" : "default",
"_links" : {
"status" : {
"href" : "http://localhost:7577/api/release/status/{name}",
"templated" : true
}
}
F
by
}
Response fields
Path Type Description
_embedded.releases[].name String Name of the release
_embedded.releases[].version Number Version of the release
_embedded.releases[].info.stat String StatusCode of the release’s
us.statusCode status
(UNKNOWN,DEPLOYED,DELET
ED,FAILED)

168

Path

_embedded.releases[].

us.platformStatus

_embedded.releases[].

tDeployed

_embedded.releases[].

Deployed
_embedded.releases][]
ted

_embedded.releases][]
ription

_embedded.releases][]
ata.apiVersion

_embedded.releases][]
ata.origin

_embedded.releases][]
ata.repositoryld

_embedded.releases|[]
ata.repositoryName

_embedded.releases][]
ata.kind

_embedded.releases][]
ata.name

_embedded.releases[]
ata.displayName

_embedded.releases[]
ata.version

_embedded.releases][]
ata.packageSourcelrl
_embedded.releases][]
ata.packageHomelrl
_embedded.releases[]
ata.tags

_embedded.releases[]
ata.maintainer

_embedded.releases[]
ata.description

_embedded.releases][]
ata.sha256

_embedded.releases[]
ata.iconUrl

_embedded.releases[]
ates[].name

_embedded.releases|[]
ates[].data

info.stat

info.firs

info.last

.pkg.

.pkg

.pkg

.pkg

.pkg

.pkg

-pkg

.pkg

.pkg

.pkg

-pkg

.pkg

-pkg

.pkg

-pkg

.pkg.

.pkg.

.info.dele

.info.desc

metad

.metad

.metad

.metad

.metad

.metad

.metad

.metad

.metad

.metad

.metad

.metad

.metad

.metad

.metad

templ

templ

Type
Null

Null
Null

Null

Null

String

Null

Null

Null

String

String
Null
String

String

String

String

String

String

Null

Null

String

String

Description

Status from the underlying
platform

Date/Time of first deployment
Date/Time of last deployment

Date/Time of when the release
was deleted

Human-friendly 'log entry'
about this release

The Package Index spec version
this file is based on

Indicates the origin of the
repository (free form text)

The repository ID this Package
belongs to

The repository name this
Package belongs to.

What type of package system is
being used

The name of the package
Display name of the release
The version of the package

Location to source code for this
package

The home page of the package

A comma separated list of tags
to use for searching

Who is maintaining this
package

Brief description of the package

Hash of package binary that
will be downloaded using
SHA256 hash algorithm

Url location of a icon
Name is the path-like name of
the template

Data is the template as string
data

169

Path

_embedded.releases[].pkg.depen
dencies

_embedded.releases[].pkg.confi
gValues.raw

_embedded.releases[].pkg.fileH
olders

_embedded.releases[].configVal
ues.raw

_embedded.releases[].manifest.
data

_embedded.releases[].platformN
ame

30.8.2. Status

Get the status of a release

Type
Array

String

Array

String

String

String

Description

The packages that this package
depends upon

The raw YAML string of
configuration values

Miscellaneous files in a
package, e.g. README,
LICENSE, etc.

The raw YAML string of
configuration values

The manifest of the release

Platform name of the release

The status REST endpoint provides the status for the last known release version.

Request structure

GET /api/release/status/test HTTP/1.1

Host: localhost:7577

Example request

$ curl 'http://localhost:7577/api/release/status/test"' -i

Response structure

170

HTTP/1.1 200 OK
Content-Type: appli
Content-Length: 313

{

"status" : {
"statusCode" :
"platformStatus

i

"firstDeployed"

"lastDeployed" :

"deleted" : null,

"description” : n

"_Tinks" : {
"manifest" : {

cation/hal+json

"DELETED",
" onull

: null,

null,

ull,

"href" : "http://localhost:7577/api/release/manifest/{name}",

"templated" :

}
}
}

Response fields

Path

status.statusCode

status.platformStatus

firstDeployed
lastDeployed
deleted

description

Status by version

true

Type
String

Null

Null
Null
Null

Null

Description

StatusCode of the release’s
status
(UNKNOWN,DEPLOYED,DELET
ED,FAILED)

Status from the underlying
platform

Date/Time of first deployment
Date/Time of last deployment

Date/Time of when the release
was deleted

Human-friendly 'log entry'
about this release

The status REST endpoint can provide the status for a specific release version.

Request structure

GET /api/release/status/test/1 HTTP/1.1

Host: localhost:7577

171

Example request

$ curl "http://localhost:7577/api/release/status/test/1" -i

Response structure

HTTP/1.1 200 OK
Content-Type: application/hal+json
Content-Length: 313

{
"status" : {
"statusCode" : "DELETED",
“platformStatus” : null
I
"firstDeployed" : null,
"lastDeployed" : null,
"deleted" : null,
"description” : null,
" links" : {
"manifest" : {
"href" : "http://localhost:7577/api/release/manifest/{name}",
"templated" : true

}
}
}

Response fields

Path Type Description

status.statusCode String StatusCode of the release’s
status
(UNKNOWN,DEPLOYED,DELET
ED,FAILED)

status.platformStatus Null Status from the underlying
platform

firstDeployed Null Date/Time of first deployment

lastDeployed Null Date/Time of last deployment

deleted Null Date/Time of when the release
was deleted

description Null Human-friendly 'log entry’'
about this release

30.8.3. Upgrade

172

Upgrade a release

The upgrade link upgrades an existing release with the configured package and config values from
the UpgradeRequest

Request structure

POST /api/release/upgrade HTTP/1.1
Content-Type: application/json;charset=UTF-8
Accept: application/json

Host: localhost:7577

Example request

$ curl "http://localhost:7577/api/release/upgrade’ -i -X POST \
-H 'Content-Type: application/json;charset=UTF-8" \
-H "Accept: application/json'

Response structure

HTTP/1.1 201 Created
Content-Type: application/json
Content-Length: 2624

{
"name" : "test",
"version" : 1,
"info" : {
"status" : {
"statusCode" : "DELETED",
"platformStatus” : null
Iy
"firstDeployed" : null,
"lastDeployed" : null,
"deleted" : null,
"description” : null
o
"pg" :
"metadata" : {
"apiVersion" : "skipper.spring.io/v1",

"origin" : null,

"repositoryId" : null,
"repositoryName" : null,

"kind" : "SkipperPackageMetadata",

Ilname" : II109I|'
"displayName" : null,
"version" : "1.0.0",

"packageSourceUrl" : "https://github.com/spring-cloud-stream-app-

173

starters/log/tree/v1.2.0.RC1",

"packageHomeUr1" : "https://cloud.spring.io/spring-cloud-stream-app-starters/",

"tags" : "logging, sink",

"maintainer” : "https://github.com/sobychacko",

"description” : "The log sink uses the application logger to output the data for
inspection.",

"sha256" : null,

"iconUr1l" : null

s
"templates" : [{
"name" : "log.yml",
"data" : "apiVersion: skipper.spring.io/vi\nkind:

SpringCloudDeployerApplication\nmetadata:\n name: log\n type: sink\nspec:\n
resource: maven://org.springframework.cloud.stream.app:log-sink-rabbit\n
resourceMetadata: maven://org.springframework.cloud.stream.app:log-sink-
rabbit:jar:metadata:{{version}}\n version: {{version}}\n applicationProperties:\n
server.port: 0\n {{#ispec.applicationProperties.entrySet}}\n {{key}}: {{value}}\n
{{/spec.applicationProperties.entrySet}}\n deploymentProperties:\n
{{#ispec.deploymentProperties.entrySet}}\n {{key}}: {{value}}\n
{{/spec.deploymentProperties.entrySet}}\n"

el

"dependencies" : [1,

"configValues" : {

"raw" : "# Default values for {{name}}\n# This is a YAML-formatted file.\n#

Declare variables to be passed into your templates\nversion: 1.2.0.RC1\n"

}
"fileHolders" : []

¥
"configValues" : {

"raw" : "config2: value2\nconfigl: valuel\n"
}

"manifest" : {

"data" : "\"apiVersion\": \"skipper.spring.io/vI\"\n\"kind\":
\"SpringCloudDeployerApplication\"\n\"metadata\":\n \"name\": \"log\"\n \"type\":
\"sink\"\n\"spec\":\n \"resource\":
\"maven://org.springframework.cloud.stream.app:log-sink-rabbit\"\n
\"resourceMetadata\": \"maven://org.springframework.cloud.stream.app:log-sink-
rabbit:jar:metadata:1.2.0.RC1\"\n \"version\": \"1.2.0.RCT\"\n
\"applicationProperties\":\n \"server.port\": \"0\"\n \"deploymentProperties\":
[Moull \"null\"\n"

+
"platformName" : "default",
"links" : [{
"rel" : "status",
"href" : "http://localhost:7577/api/release/status/{name}"
}]
}

174

Response fields

Path

name
version

info.status.statusCode

info.status.platformStatus

info.firstDeployed
info.lastDeployed
info.deleted

info.description

pkg.metadata.apiVersion

pkg.metadata.origin

pkg.metadata.repositoryld

pkg.metadata.repositoryName

pkg.metadata.kind

pkg.metadata.name
pkg.metadata.displayName
pkg.metadata.version

pkg.metadata.packageSourcelrl

pkg.metadata.packageHomeUr1
pkg.metadata.tags

pkg.metadata.maintainer
pkg.metadata.description

pkg.metadata.sha256

pkg.metadata.iconUrl

Type
String

Number

String

Null

Null
Null
Null

Null

String

Null

Null

Null

String

String
Null

String
String

String
String

String
String

Null

Null

Description
Name of the release
Version of the release

StatusCode of the release’s
status
(UNKNOWN,DEPLOYED,DELET
ED,FAILED)

Status from the underlying
platform

Date/Time of first deployment
Date/Time of last deployment

Date/Time of when the release
was deleted

Human-friendly 'log entry'
about this release

The Package Index spec version
this file is based on

Indicates the origin of the
repository (free form text)

The repository ID this Package
belongs to.

The repository name this
Package belongs to.

What type of package system is
being used

The name of the package
Display name of the release
The version of the package

Location to source code for this
package

The home page of the package

A comma separated list of tags
to use for searching

Who is maintaining this
package

Brief description of the package

Hash of package binary that
will be downloaded using
SHA256 hash algorithm

Url location of a icon

175

Path
pkg.templates[].name

pkg.templates[].data

pkg.dependencies

pkg.configValues.raw

pkg.fileHolders

configValues.raw

manifest.data

platformName

30.8.4. Rollback

Type
String

String

Array

String

Array

String

String
String

Rollback release using uri variables

Description

Name is the path-like name of
the template

Data is the template as string
data

The packages that this package
depends upon

The raw YAML string of
configuration values

Miscellaneous files in a
package, e.g. README,
LICENSE, etc.

The raw YAML string of
configuration values

The manifest of the release

Platform name of the release

The rollback link rolls back the release to a previous or a specific release.

0 This part of the api is deprecated, please use Rollback release using request object.

Request structure

POST /api/release/rollback/test/1 HTTP/1.1
Host: localhost:7577

Example request

$ curl "http://localhost:7577/api/release/rollback/test/1" -i -X POST

Response structure

HTTP/1.1 201 Created

Content-Type: application/hal+json

Content-Length: 2650

{
"name" : "test",
"version" : 1,
"info" : {

176

"status" : {
"statusCode" : "DELETED",
"platformStatus” : null
Iy
"firstDeployed" : null,
"lastDeployed" : null,
"deleted" : null,
"description” : null
I
"pkg" 1 {
"metadata" : {
"apiVersion" : "skipper.spring.io/v1",
"origin" : null,
"repositoryId" : null,
"repositoryName" : null,
"kind" : "SkipperPackageMetadata",

Ilnamell : "109"'
"displayName" : null,
"version" : "1.0.0",

"packageSourceUr1l” : "https://github.com/spring-cloud-stream-app-
starters/log/tree/v1.2.0.RC1",

"packageHomeUr1" : "https://cloud.spring.io/spring-cloud-stream-app-starters/",

"tags" : "logging, sink",

"maintainer" : "https://github.com/sobychacko",

"description” : "The log sink uses the application logger to output the data for
inspection.",

"sha256" : null,

"iconUr1" : null

I
"templates" : [{
"name" : "log.yml",
"data" : "apiVersion: skipper.spring.io/vi\nkind:

SpringCloudDeployerApplication\nmetadata:\n name: log\n type: sink\nspec:\n
resource: maven://org.springframework.cloud.stream.app:log-sink-rabbit\n
resourceMetadata: maven://org.springframework.cloud.stream.app:log-sink-
rabbit:jar:metadata:{{version}}\n version: {{version}}\n applicationProperties:\n
server.port: 0\n {{#spec.applicationProperties.entrySet}}\n {{key}}: {{value}}\n
{{/spec.applicationProperties.entrySet}}\n deploymentProperties:\n
{{#ispec.deploymentProperties.entrySet}}\n {{key}}: {{value}}\n
{{/spec.deploymentProperties.entrySet}}\n"

P

"dependencies" : [],

"configValues" : {

"raw" : "# Default values for {{name}}\n# This is a YAML-formatted file.\n#

Declare variables to be passed into your templates\nversion: 1.2.0.RC1\n"

¥

"fileHolders" : []

¥
"configValues" : {

“raw" : "config2: value2\nconfigl: valuel\n"
I#

177

"manifest" : {

"data" : "\"apiVersion\": \"skipper.spring.io/vI\"\n\"kind\":

\"SpringCloudDeployerApplication\"\n\"metadata\":\n
\"sink\"\n\"spec\":\n \"resource\":

\"name\": \"log\"\n \"type\":

\"maven://org.springframework.cloud.stream.app:log-sink-rabbit\"\n
\"resourceMetadata\": \"maven://org.springframework.cloud.stream.app:log-sink-
rabbit:jar:metadata:1.2.0.RC1\"\n

\"applicationProperties\":\n

ITnull \"null\"\n"
+

"platformName" : "default",

" links" : {
"status" : {

\"version\": \"1.2.0.RCT\"\n

\"server.port\": \"0\"\n \"deploymentProperties\":

"href" : "http://localhost:7577/api/release/status/{name}",

"templated" : true
}
}
}

Response fields

Path

name
version

info.status.statusCode

info.status.platformStatus

info.firstDeployed
info.lastDeployed
info.deleted

info.description

pkg.metadata.apiVersion

pkg.metadata.origin

pkg.metadata.repositoryld

pkg.metadata.repositoryName

pkg.metadata.kind

178

Type
String

Number

String

Null

Null
Null
Null

Null

String

Null

Null

Null

String

Description
Name of the release
Version of the release

StatusCode of the release’s
status
(UNKNOWN,DEPLOYED,DELET
ED,FAILED)

Status from the underlying
platform

Date/Time of first deployment
Date/Time of last deployment

Date/Time of when the release
was deleted

Human-friendly 'log entry’
about this release

The Package Index spec version
this file is based on

Indicates the origin of the
repository (free form text)

The repository ID this Package
belongs to.

The repository name this
Package belongs to.

What type of package system is
being used

Path

pkg.metadata.name
pkg.metadata.displayName
pkg.metadata.version

pkg.metadata.packageSourcelrl

pkg.metadata.packageHomelUrl
pkg.metadata.tags

pkg.metadata.maintainer

pkg.metadata.description

pkg.metadata.sha256

pkg.metadata.iconUrl

pkg.templates[].name

pkg.templates[].data

pkg.dependencies

pkg.configValues.raw

pkg.fileHolders

configValues.raw

manifest.data

platformName

Type
String

Null
String
String

String
String

String

String

Null

Null

String

String

Array

String

Array

String

String
String

Rollback release using request object

Description

The name of the package
Display name of the release
The version of the package

Location to source code for this
package

The home page of the package

A comma separated list of tags
to use for searching

Who is maintaining this
package

Brief description of the package

Hash of package binary that
will be downloaded using
SHA256 hash algorithm

Url location of a icon

Name is the path-like name of
the template

Data is the template as string
data

The packages that this package
depends upon

The raw YAML string of
configuration values

Miscellaneous files in a
package, e.g. README,
LICENSE, etc.

The raw YAML string of
configuration values

The manifest of the release

Platform name of the release

The rollback link rolls back the release to a previous or a specific release.

Request structure

POST /api/release/rollback HTTP/1.1
Content-Type: application/json;charset=UTF-8

Accept: application/json
Host: localhost:7577

179

Example request

$ curl 'http://localhost:7577/api/release/rollback' -i -X POST \
-H "Content-Type: application/json;charset=UTF-8" \
-H "Accept: application/json'

Response structure

HTTP/1.1 201 Created
Content-Type: application/json
Content-Length: 2624

{
"name" : "test",
"version" : 1,
"info" : {
"status" : {
"statusCode" : "DELETED",
"platformStatus” : null
Iy,
"firstDeployed" : null,
"lastDeployed” : null,
"deleted" : null,
"description” : null
I
"pkg" 1 {
"metadata" : {
"apiVersion" : "skipper.spring.io/v1",

"origin" : null,

"repositoryId" : null,
"repositoryName" : null,

"kind" : "SkipperPackageMetadata",

Ilnamell : Il'log"'
"displayName" : null,
"version" : "1.0.0",

"packageSourceUrl" : "https://github.com/spring-cloud-stream-app-
starters/log/tree/v1.2.0.RC1",

"packageHomeUr1" : "https://cloud.spring.io/spring-cloud-stream-app-starters/",

"tags" : "logging, sink",

"maintainer” : "https://github.com/sobychacko”,

"description” : "The log sink uses the application logger to output the data for
inspection.",

"sha256" : null,

"iconUr1l" : null

+
"templates" : [{
"name" : "log.yml",
"data" : "apiVersion: skipper.spring.io/vi\nkind:

SpringCloudDeployerApplication\nmetadata:\n name: log\n type: sink\nspec:\n

180

resource: maven://org.springframework.cloud.stream.app:log-sink-rabbit\n
resourceMetadata: maven://org.springframework.cloud.stream.app:log-sink-
rabbit:jar:metadata:{{version}}\n version: {{version}}\n applicationProperties:\n
server.port: 0\n {{#spec.applicationProperties.entrySet}}\n {{key}}: {{value}}\n
{{/spec.applicationProperties.entrySet}}\n deploymentProperties:\n
{{#ispec.deploymentProperties.entrySet}}\n {{key}}: {{value}}\n
{{/spec.deploymentProperties.entrySet}}\n"

3

"dependencies" : [],

"configValues" : {

"raw" : "# Default values for {{namel}}\n# This is a YAML-formatted file.\n#

Declare variables to be passed into your templates\nversion: 1.2.0.RC1\n"

+
"fileHolders" : []
+

"configValues" : {

raw" : "config2: value2\nconfigl: valuel\n"

}l

"manifest" : {

"data" : "\"apiVersion\": \"skipper.spring.io/vI\"\n\"kind\":

\"SpringCloudDeployerApplication\"\n\"metadata\":\n
\"resource\":

\"sink\"\n\"spec\":\n

\llname\": \ll'l-og\"\n \Iltype\":

\"maven://org.springframework.cloud.stream.app:log-sink-rabbit\"\n
\"resourceMetadata\": \"maven://org.springframework.cloud.stream.app:log-sink-
rabbit:jar:metadata:1.2.0.RCT\"\n

\"applicationProperties\":\n

I1null \"null\"\n"

\"version\": \"1.2.0.RC1\"\n

\"server.port\": \"@0\"\n \"deploymentProperties\":

¥
“platformName" : "default",
"links" : [{
"rel" : "status",
"href" : "http://localhost:7577/api/release/status/{name}"
F]
}
Response fields
Path Type Description
name String Name of the release
version Number Version of the release
info.status.statusCode String StatusCode of the release’s
status
(UNKNOWN,DEPLOYED,DELET
ED,FAILED)
info.status.platformStatus Null Status from the underlying
platform
info.firstDeployed Null Date/Time of first deployment
info.lastDeployed Null Date/Time of last deployment

181

Path
info.deleted

info.description

pkg.metadata.apiVersion

pkg.metadata.origin

pkg.metadata.repositoryld

pkg.metadata.repositoryName

pkg.metadata.kind

pkg.metadata.name
pkg.metadata.displayName
pkg.metadata.version

pkg.metadata.packageSourcelrl

pkg.metadata.packageHomelUrl
pkg.metadata.tags

pkg.metadata.maintainer

pkg.metadata.description

pkg.metadata.sha256

pkg.metadata.iconUrl

pkg.templates[].name

pkg.templates[].data

pkg.dependencies

pkg.configValues.raw

pkg.fileHolders

182

Type
Null

Null

String

Null

Null

Null

String

String
Null

String
String

String
String

String

String

Null

Null

String

String

Array

String

Array

Description

Date/Time of when the release
was deleted

Human-friendly 'log entry'
about this release

The Package Index spec version
this file is based on

Indicates the origin of the
repository (free form text)

The repository ID this Package
belongs to.

The repository name this
Package belongs to.

What type of package system is
being used

The name of the package
Display name of the release
The version of the package

Location to source code for this
package

The home page of the package

A comma separated list of tags
to use for searching

Who is maintaining this
package

Brief description of the package

Hash of package binary that
will be downloaded using
SHA256 hash algorithm

Url location of a icon

Name is the path-like name of
the template

Data is the template as string
data

The packages that this package
depends upon

The raw YAML string of
configuration values

Miscellaneous files in a
package, e.g. README,
LICENSE, etc.

Path Type Description

configValues.raw String The raw YAML string of

configuration values
manifest.data String The manifest of the release
platformName String Platform name of the release
30.8.5. Manifest

Get manifest

The manifest REST endpoint returns the manifest for the last known release version.

Request structure

GET /api/release/manifest/test HTTP/1.1
Content-Type: application/json;charset=UTF-8
Accept: application/json

Host: localhost:7577

Example request

$ curl 'http://localhost:7577/api/release/manifest/test’ -i \
-H "Content-Type: application/json;charset=UTF-8"' \
-H 'Accept: application/json'

Response structure

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 610

{

"data" : "\"apiVersion\": \"skipper.spring.io/vI\"\n\"kind\":
\"SpringCloudDeployerApplication\"\n\"metadata\":\n \"name\": \"log\"\n \"type\":
\"sink\"\n\"spec\":\n \"resource\":
\"maven://org.springframework.cloud.stream.app:log-sink-rabbit\"\n
\"resourceMetadata\": \"maven://org.springframework.cloud.stream.app:log-sink-
rabbit:jar:metadata:1.2.0.RC1\"\n \"version\": \"1.2.0.RC1\"\n
\"applicationProperties\":\n \"server.port\": \"0\"\n \"deploymentProperties\":
Inull \"null\"\n",

"links" : [{

"rel" : "status",

"href" : "http://localhost:7577/api/release/status/{name}"
P

}

183

Get manifest by version

The manifest REST endpoint can return the manifest for a specific release version.

Request structure

GET /api/release/manifest/test/1 HTTP/1.1
Host: localhost:7577

Example request

$ curl "http://localhost:7577/api/release/manifest/test/1" -i

Response structure

HTTP/1.1 200 OK
Content-Type: application/hal+json
Content-Length: 636

{

"data" : "\"apiVersion\": \"skipper.spring.io/vI\"\n\"kind\":
\"SpringCloudDeployerApplication\"\n\"metadata\":\n \"name\": \"log\"\n \"type\":
\"sink\"\n\"spec\":\n \"resource\":
\"maven://org.springframework.cloud.stream.app:log-sink-rabbit\"\n
\"resourceMetadata\": \"maven://org.springframework.cloud.stream.app:log-sink-
rabbit:jar:metadata:1.2.0.RC1\"\n \"version\": \"1.2.0.RCT1\"\n
\"applicationProperties\":\n \"server.port\": \"@\"\n \"deploymentProperties\":
Inull \"null\"\n",

" links" : {

"status" : {
"href" : "http://localhost:7577/api/release/status/{name}",
"templated" : true
}
}
}

30.8.6. Delete

Delete a release

You can use a DELETE request to delete an existing release. The delete operation does not uninstall
the uploaded packages corresponding to the release.

Request structure

184

DELETE /api/release/test HTTP/1.1
Content-Type: application/json;charset=UTF-8
Accept: application/json

Host: localhost:7577

Example request

$ curl 'http://localhost:7577/api/release/test' -i -X DELETE \
-H "Content-Type: application/json;charset=UTF-8" \
-H "Accept: application/json'

Response structure

HTTP/1.1 200 0K
Content-Type: application/json
Content-Length: 2624

{
"name" : "test",
"version" : 1,
"info" : {
"status" : {
"statusCode" : "DELETED",
"platformStatus” : null
Iy
"firstDeployed" : null,
"lastDeployed" : null,
"deleted" : null,
"description” : null
I
"pg" : {
"metadata" : {
"apiVersion" : "skipper.spring.io/v1",

"origin" : null,

"repositoryId" : null,
"repositoryName" : null,

"kind" : "SkipperPackageMetadata",

Ilname" : II109I|'
"displayName" : null,
"version" : "1.0.0",

"packageSourceUrl" : "https://github.com/spring-cloud-stream-app-
starters/log/tree/v1.2.0.RC1",

"packageHomeUr1" : "https://cloud.spring.io/spring-cloud-stream-app-starters/",

"tags" : "logging, sink",

"maintainer" : "https://github.com/sobychacko",

"description” : "The log sink uses the application logger to output the data for
inspection.",

"sha256" : null,

185

"iconUr1l" : null

}
"templates" : [{
"name" : "log.yml",
"data" : "apiVersion: skipper.spring.io/vi\nkind:

SpringCloudDeployerApplication\nmetadata:\n name: log\n type: sink\nspec:\n
resource: maven://org.springframework.cloud.stream.app:log-sink-rabbit\n
resourceMetadata: maven://org.springframework.cloud.stream.app:log-sink-
rabbit:jar:metadata:{{version}}\n version: {{version}}\n applicationProperties:\n
server.port: 0\n {{#ispec.applicationProperties.entrySet}}\n {{key}}: {{value}}\n
{{/spec.applicationProperties.entrySet}}\n deploymentProperties:\n
{{#ispec.deploymentProperties.entrySet}}\n {{key}}: {{value}}\n
{{/spec.deploymentProperties.entrySet}}\n"

P

"dependencies" : [1,

"configValues" : {

"raw" : "# Default values for {{name}}\n# This is a YAML-formatted file.\n#

Declare variables to be passed into your templates\nversion: 1.2.0.RC1\n"

)

"fileHolders" : []
},
"configValues" : {

"raw" : "config2: value2\nconfigl: valuel\n"
¥

"manifest" : {

"data" : "\"apiVersion\": \"skipper.spring.io/vI\"\n\"kind\":
\"SpringCloudDeployerApplication\"\n\"metadata\":\n \"name\": \"log\"\n \"type\":
\"sink\"\n\"spec\":\n \"resource\":
\"maven://org.springframework.cloud.stream.app:log-sink-rabbit\"\n
\"resourceMetadata\": \"maven://org.springframework.cloud.stream.app:log-sink-
rabbit:jar:metadata:1.2.0.RC1\"\n \"version\": \"1.2.0.RCT1\"\n
\"applicationProperties\":\n \"server.port\": \"0\"\n \"deploymentProperties\":
[oull \"null\"\n"

b
"platformName" : "default",
"links" : [{
"rel" : "status",
"href" : "http://localhost:7577/api/release/status/{name}"
}]
}
Response fields
Path Type Description
name String Name of the release
version Number Version of the release

186

Path

info.status.statusCode

info.status.platformStatus

info.firstDeployed
info.lastDeployed
info.deleted

info.description

pkg.metadata.apiVersion

pkg.metadata.origin

pkg.metadata.repositoryld

pkg.metadata.repositoryName

pkg.metadata.kind

pkg.metadata.name
pkg.metadata.displayName
pkg.metadata.version

pkg.metadata.packageSourcelrl

pkg.metadata.packageHomeUr1
pkg.metadata.tags

pkg.metadata.maintainer
pkg.metadata.description
pkg.metadata.sha256
pkg.metadata.iconUrl

pkg.templates[].name

pkg.templates[].data

Type
String

Null

Null
Null
Null

Null

String

Null

Null

Null

String

String
Null

String
String

String
String

String
String
Null
Null

String

String

Description

StatusCode of the release’s
status
(UNKNOWN,DEPLOYED,DELET
ED,FAILED)

Status from the underlying
platform

Date/Time of first deployment
Date/Time of last deployment

Date/Time of when the release
was deleted

Human-friendly 'log entry'
about this release

The Package Index spec version
this file is based on

Indicates the origin of the
repository (free form text)

The repository ID this Package
belongs to.

The repository name this
Package belongs to.

What type of package system is
being used

The name of the package
Display name of the release
The version of the package

Location to source code for this
package

The home page of the package

A comma separated list of tags
to use for searching

Who is maintaining this
package

Brief description of the package

Hash of package binary that
will be downloaded using
SHA256 hash algorithm

Url location of a icon

Name is the path-like name of
the template

Data is the template as string
data

187

Path Type

pkg.dependencies Array
pkg.configValues.raw String
pkg.fileHolders Array
configValues.raw String
manifest.data String
platformName String

Delete a release and uninstall package

Description

The packages that this package
depends upon

The raw YAML string of
configuration values

Miscellaneous files in a
package, e.g. README,
LICENSE, etc.

The raw YAML string of
configuration values

The manifest of the release

Platform name of the release

You can use a DELETE request to delete an existing release and uninstall the packages
corresponding to the release, provided there are no other releases in active state use these

packages.

Request structure

DELETE /api/release/test/package HTTP/1.1
Content-Type: application/json

Accept: application/json

Host: localhost:7577

Example request

$ curl 'http://localhost:7577/api/release/test/package’ -i -X DELETE \

-H 'Content-Type: application/json' \
-H "Accept: application/json'

Response structure

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 2624

{
"name" : "test",
"version" : 1,
"info" : {

"status" : {
"statusCode" : "DELETED",
"platformStatus" : null

}I

188

"firstDeployed" : null,
"lastDeployed" : null,
"deleted" : null,
"description” : null
Vs
"pkg" : {
"metadata" : {
"apiVersion" : "skipper.spring.io/v1",
"origin" : null,
"repositoryId" : null,
"repositoryName" : null,
"kind" : "SkipperPackageMetadata",

llname" : "109"'
"displayName" : null,
"version" : "1.0.0",

"packageSourceUrl" : "https://github.com/spring-cloud-stream-app-
starters/log/tree/v1.2.0.RC1",

"packageHomeUrl" : "https://cloud.spring.io/spring-cloud-stream-app-starters/",

"tags" : "logging, sink",

"maintainer" : "https://github.com/sobychacko",

"description” : "The log sink uses the application logger to output the data for
inspection.",

"sha256" : null,

"iconUrl" : null

b
"templates" : [{
"name" : "log.yml",
"data" : "apiVersion: skipper.spring.io/vi\nkind:

SpringCloudDeployerApplication\nmetadata:\n name: log\n type: sink\nspec:\n
resource: maven://org.springframework.cloud.stream.app:log-sink-rabbit\n
resourceMetadata: maven://org.springframework.cloud.stream.app:log-sink-
rabbit:jar:metadata:{{version}}\n version: {{version}}\n applicationProperties:\n
server.port: 0\n {{#spec.applicationProperties.entrySet}}\n {{key}}: {{value}}\n
{{/spec.applicationProperties.entrySet}}\n deploymentProperties:\n
{{#ispec.deploymentProperties.entrySet}}\n {{key}}: {{value}}\n
{{/spec.deploymentProperties.entrySet}}\n"

3

"dependencies" : [],

"configValues" : {

"raw" : "# Default values for {{namel}}\n# This is a YAML-formatted file.\n#

Declare variables to be passed into your templates\nversion: 1.2.0.RC1\n"

Iy,
"fileHolders" : []

}

onfigValues" : {

raw" : "config2: value2\nconfigl: valuel\n"
i
"manifest" : {
"data" : "\"apiVersion\": \"skipper.spring.io/vI\"\n\"kind\":
\"SpringCloudDeployerApplication\"\n\"metadata\":\n \"name\": \"log\"\n \"type\":
\"sink\"\n\"spec\":\n \"resource\":

189

\"maven://org.springframework.cloud.stream.app:log-sink-rabbit\"\n

\"resourceMetadata\": \"maven://org.springframework.cloud.stream.app:log-sink-
rabbit:jar:metadata:1.2.0.RC1\"\n
\"server.port\": \"@0\"\n \"deploymentProperties\":

\"applicationProperties\":\n

I1null \"null\"\n"

I
"platformName" :
"links" : [{
"rel" : "status",
"href" :
}]
}
Response fields
Path
name
version

info.status.statusCode

info.status.platformStatus

info.firstDeployed

info.lastDeployed

info.deleted

info.description

pkg.metadata.

pkg.metadata.

pkg.metadata.

pkg.metadata.

pkg.metadata.

pkg.metadata.
pkg.metadata.
pkg.metadata.

190

apiVersion

origin

repositoryId

repositoryName

kind

name
displayName

version

"default",

Type
String

Number

String

Null

Null
Null
Null

Null

String

Null

Null

Null

String

String
Null
String

\"version\": \"1.2.0.RCT\"\n

"http://localhost:7577/api/release/status/{name}"

Description
Name of the release
Version of the release

StatusCode of the release’s
status
(UNKNOWN,DEPLOYED,DELET
ED,FAILED)

Status from the underlying
platform

Date/Time of first deployment
Date/Time of last deployment

Date/Time of when the release
was deleted

Human-friendly 'log entry'
about this release

The Package Index spec version
this file is based on

Indicates the origin of the
repository (free form text)

The repository ID this Package
belongs to.

The repository name this
Package belongs to.

What type of package system is
being used

The name of the package
Display name of the release

The version of the package

Path

pkg.

pkg
pkg

pkg.

pkg
pkg

pkg.
pkg.

pkg.

pkg.

pkg.

pkg.

metadata.packageSourcelrl

.metadata.packageHomelUr1l

.metadata.tags

metadata.maintainer

.metadata.description

.metadata.sha256

metadata.iconUrl

templates[].name

templates[].data

dependencies

configValues.raw

fileHolders

configValues.raw

manifest.data

platformName

30.8.7. Cancel

Cancel a release

You can use a POST request to cancel an existing release operation.

Request structure

Type
String

String
String

String

String

Null

Null

String

String

Array

String

Array

String

String
String

POST /api/release/cancel HTTP/1.1

Content-Type: application/json;charset=UTF-8

Accept: application/json
Host: localhost:7577

Description

Location to source code for this
package

The home page of the package

A comma separated list of tags
to use for searching

Who is maintaining this
package

Brief description of the package

Hash of package binary that
will be downloaded using
SHA256 hash algorithm

Url location of a icon

Name is the path-like name of
the template

Data is the template as string
data

The packages that this package
depends upon

The raw YAML string of
configuration values

Miscellaneous files in a
package, e.g. README,
LICENSE, etc.

The raw YAML string of
configuration values

The manifest of the release

Platform name of the release

191

Example request

$ curl "http://localhost:7577/api/release/cancel’ -i -X POST \

-H 'Content-Type: application/json;charset=UTF-8"' \

-H "Accept: application/json'

Response structure

HTTP/1.1 200 0K
Content-Type: application/json
Content-Length: 23

{
"accepted" : true
}
Response fields
Path Type
accepted Boolean

192

Description

If cancel request was accepted

Appendices

Having trouble with Spring Cloud Skipper, We’d like to help!

* Ask a question - we monitor stackoverflow.com for questions tagged with spring-cloud-skipper.

* Report bugs with Spring Cloud Skipper at github.com/spring-cloud/spring-cloud-skipper/issues.

193

https://stackoverflow.com
https://stackoverflow.com/tags/spring-cloud-skipper
https://github.com/spring-cloud/spring-cloud-skipper/issues

Appendix A: Building
To build the source, you need to install JDK 1.8.

The build uses the Maven wrapper so that you do not have to install a specific version of Maven.

The main build command is
$./mvnw clean install

To create the executables and avoid running the tests and generating JavaDocs, use the following
command:

$./mvnw clean package -DskipTests -Dmaven.javadoc.skip=true

You can also install Maven (>=3.3.3) yourself and run the mvn command in place of

0 ./mvnw in the examples. If you do so, you also might need to add -P spring if your
local Maven settings do not contain repository declarations for spring pre-release
artifacts.

You might need to increase the amount of memory available to Maven by setting a
MAVEN_OPTS environment variable with a value like -Xmx512m -XX:MaxPermSize=128m.

0 We try to cover this in the .mvn configuration, so, if you find you have to increase
memory to make a build succeed, please raise a ticket to get the settings added to
source control.

A.1. Documentation

To generate only the REST Docs documentation, use the following command:

$./mvnw test -pl spring-cloud-skipper-server-core -Dtest=*Documentation*
To build the only the Asciidoctor documentation, use the following command:

$./mvnw package -DskipTests -Pfull -pl spring-cloud-skipper-docs

A.2. Custom Server Build

This chapter contains instructions how to create a custom server build and should cause exactly
same packaged uber-jar compared to one from a Skipper build itself.

It is required to follow same Spring Boot main class structure used in Skipper itself. Example of it is
shown below:

194

package com.example.customskipperserver;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;

import
org.springframework.boot.actuate.autoconfigure.ManagementWebSecurityAutoConfiguration;
import org.springframework.boot.autoconfigure.security.SecurityAutoConfiguration;
import org.springframework.boot.autoconfigure.session.SessionAutoConfiguration;

import
org.springframework.cloud.deployer.spi.cloudfoundry.CloudFoundryDeployerAutoConfigurat
ion;

import org.springframework.cloud.deployer.spi.kubernetes.KubernetesAutoConfiguration;
import org.springframework.cloud.deployer.spi.local.LocalDeployerAutoConfiguration;
import org.springframework.cloud.skipper.server.EnableSkipperServer;

(exclude = {
CloudFoundryDeployerAutoConfiguration.class,
KubernetesAutoConfiguration.class,
LocalDeployerAutoConfiguration.class,
ManagementWebSecurityAutoConfiguration.class,
SecurityAutoConfiguration.class,
SessionAutoConfiguration.class

b

public class CustomSkipperServerApplication {

public static void main(String[] args) {
SpringApplication.run(CustomSkipperServerApplication.class, args);

}

Working build file for Maven would look like something shown below:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi=

"http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.orqg/PONM/4.0.0

https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>com.example</groupld>
<artifactId>custom-skipper-server</artifactId>
<version>0.0.1-SNAPSHOT</version>
<packaging>jar</packaging>

<name>custom-skipper-server</name>
<description>Demo project for Spring Boot</description>

<parent>

195

196

<groupld>org.springframework.boot</groupId>

<artifactId>spring-boot-starter-parent</artifactId>

<version>1.5.9.RELEASE</version>

<relativePath/> <!-- lookup parent from repository -->
</parent>

<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>

<java.version>1.8</java.version>
<spring-cloud.version>Dalston.SR5</spring-cloud.version>

<spring-cloud-skipper.version>2.3.0.M1</spring-cloud-skipper.version>

SEE

reactor and flyway are managed by boot so only clean way with maven is to
change version properties. trying to import boms in dependencyManagement

would not actually change versions.
-->
<reactor.version>3.0.7.RELEASE</reactor.version>
<flyway.version>5.0.5</flyway.version>
</properties>

<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-skipper-server</artifactId>
</dependency>
<dependency>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>${spring-cloud.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-skipper-dependencies</artifactId>
<version>${spring-cloud-skipper.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>
</project>

Working build file for Gradle would look like something shown below:

buildscript {
ext {
springBootVersion = '1.5.9.RELEASE'

}

repositories {
mavenCentral()

}

dependencies {
classpath("org.springframework.boot:spring-boot-gradle-plugin:
${springBootVersion}")
}
}

apply plugin: 'java'
apply plugin: ‘'eclipse’
apply plugin: 'org.springframework.boot'

group = 'com.example'
version = '0.0.7-SNAPSHOT'
sourceCompatibility = 1.8

repositories {
mavenLocal()
mavenCentral()
maven { url "https://repo.springsource.org/libs-snapshot" }
maven { url "https://repo.springsource.org/libs-release" }
maven { url "https://repo.springsource.org/libs-milestone" }

ext {
springCloudVersion = 'Dalston.SR5'
springCloudSkipperVersion = '2.3.0.M1"
reactorVersion = "Aluminium-SR3'
reactorNettyVersion = '0.6.6.RELEASE'
objenesisVersion = '2.1'

197

}

dependencies {
compile('org.springframework.cloud:spring-cloud-starter-skipper-server")
testCompile('org.springframework.boot:spring-boot-starter-test')

}

dependencyManagement {
imports {
mavenBom "org.springframework.cloud:spring-cloud-dependencies:
${springCloudVersion}"
mavenBom "org.springframework.cloud:spring-cloud-skipper-dependencies:
${springCloudSkipperVersion}"
mavenBom "io.projectreactor:reactor-bom:${reactorVersion}"
}
dependencies {
// latest reactor bom is still using reactor-netty:0.6.3.RELEASE
// so we need to change it here because cf java client use
// dedicated netty version while they should have been using
// reactor boms assuming reactor boms would be up-to-date
dependency "io.projectreactor.ipc:reactor-netty:${reactorNettyVersion}"
// this is unfortunate mess with objenesis as there's versions 2.1 and 2.6
// 1in build path and nobody manages version and maven vs. gradle is different
dependency "org.objenesis:objenesis:${objenesisVersion}"

A.3. Importing into eclipse

You can generate Eclipse project metadata by using the following command:
$./mvnw eclipse:eclipse

In Eclipse, the generated projects can be imported by selecting Import existing projects from the
File menu.

198

Appendix B: Contributing

Spring Cloud is released under the non-restrictive Apache 2.0 license and follows a standard Github
development process, using Github tracker for issues and merging pull requests into master. If you
want to contribute even something trivial, please do not hesitate, but please do follow the
guidelines spelled out in this section.

B.1. Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request, we need you to sign the contributor’s
agreement. Signing the contributor’s agreement does not grant anyone commit rights to the main
repository, but it does mean that we can accept your contributions. You will get an author credit if
we do. Active contributors might be asked to join the core team and be given the ability to merge
pull requests.

B.2. Code Conventions and Housekeeping

None of these conventions is essential for a pull request, but they all help. They can also be added
after the original pull request but before a merge.

» Use the Spring Framework code format conventions. Follow these instructions for setting up the
eclipse formatter in eclipse or Intelli]. Note that checkstyle is enabled in the build.

* Make sure all new .java files have a simple Javadoc class comment with at least an @author tag
identifying you and preferably at least a paragraph on what the class is for.

* Add the ASF license header comment to all new .java files. To do so, copy from existing files in
the project.

* Add yourself as an @author to the .java files that you modify substantially (more than cosmetic
changes).

» Add some Javadocs and, if you change the namespace, some XSD doc elements.

* A few unit tests would help a lot as well —someone has to do it, and your fellow developers
appreciate it.

* If no-one else is using your branch, please rebase it against the current master (or other target
branch in the main project).

* When writing a commit message, please follow these conventions. If you are fixing an existing
issue, please add Fixes gh-XXXX at the end of the commit message (where XXXX is the issue
number).

199

https://cla.pivotal.io
https://cla.pivotal.io
https://github.com/spring-cloud/spring-cloud-skipper#code-formatting-guidelines
https://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

	Spring Cloud Skipper Reference Guide
	Table of Contents
	Preface
	Chapter 1. About the Documentation
	Chapter 2. Getting Help

	Spring Cloud Skipper Overview
	Chapter 3. Features
	Chapter 4. Concepts

	Getting Started
	Chapter 5. System Requirements
	Chapter 6. Installing Skipper
	Chapter 7. A Three-second Tour

	Three minute Tour
	Chapter 8. Local Machine
	Chapter 9. Cloud Foundry
	Chapter 10. Kuberenetes
	Chapter 11. CF manifest based deployments

	Using Skipper
	Chapter 12. Skipper Shell
	12.1. Shell Modes

	Chapter 13. Platforms
	Chapter 14. Packages
	14.1. Package Format
	14.1.1. Single Application
	14.1.2. Multiple Applications

	14.2. Package Metadata
	14.3. Package Templates
	14.3.1. Spring Cloud Deployer
	14.3.2. Cloud Foundry
	14.3.3. Resources
	HTTP Resources
	Docker Resources
	Maven Resources

	14.4. Package Values
	14.5. Package Upload
	14.6. Creating Your Own Package

	Chapter 15. Repositories

	Installation
	Chapter 16. Installing on a Local Platform
	16.1. Local Platform configuration

	Chapter 17. Installing on Cloud Foundry
	17.1. Cloud Foundry Configuration
	17.2. Database Connection Pool
	17.3. Maximum Disk Quota
	17.4. Managing Disk Use

	Chapter 18. Installing on Kubernetes
	18.1. Kuberenetes configuration

	Chapter 19. Database configuration
	19.1. MySQL
	19.2. MariaDB
	19.3. PostgreSQL
	19.4. SQL Server
	19.5. Db2
	19.6. Oracle

	Security
	Chapter 20. Enabling HTTPS
	20.1. Using Self-Signed Certificates
	20.2. Self-Signed Certificates and the Shell
	20.2.1. Add the Self-signed Certificate to the JVM Truststore
	20.2.2. Skip Certificate Validation

	Chapter 21. OAuth 2.0 Security
	21.1. OAuth REST Endpoint Authorization
	21.1.1. Users and Roles

	21.2. OAuth Authentication Using the Spring Cloud Skipper Shell
	21.3. OAuth2 Authentication Examples
	21.3.1. Local OAuth2 Server
	21.3.2. Authentication Using UAA

	Skipper Commands
	Chapter 22. Package Commands
	22.1. Search
	22.2. Upload
	22.3. Install
	22.4. Delete

	Chapter 23. Release Commands
	23.1. List
	23.2. Status
	23.3. Upgrade
	23.4. Rollback
	23.5. History
	23.6. Delete
	23.7. Cancel

	Chapter 24. Manifest Commands
	24.1. Get

	Chapter 25. Platform commands
	25.1. List

	Chapter 26. Repository Commands
	26.1. List

	Chapter 27. Skipper Server Commands
	27.1. Config
	27.2. Info

	Chapter 28. Generic Usage
	28.1. Timeout Expression

	Architecture
	REST API Guide
	Chapter 29. Overview
	29.1. HTTP Verbs
	29.2. HTTP Status Codes
	29.3. Headers
	29.4. Errors
	29.5. Hypermedia

	Chapter 30. Resources
	30.1. Index
	30.1.1. Accessing the Index
	Request Structure
	Example Request
	Example Response
	Links

	30.2. Server
	30.2.1. Server info
	Request structure
	Example request
	Response structure
	Response fields

	30.3. Platforms
	30.3.1. Find All
	Request structure
	Example request
	Response structure
	Response fields

	30.4. Packages
	30.4.1. Search
	Request structure
	Example request
	Response structure
	Response fields

	30.4.2. Search summary
	Request structure
	Example request
	Response structure
	Response fields

	30.4.3. Search with details
	Request structure
	Example request
	Response structure
	Response fields

	30.4.4. Search by Package Name
	Request structure
	Example request
	Response structure
	Response fields

	30.4.5. Search by Package Name, Ignoring Case
	Request structure
	Example request
	Response structure
	Response fields

	30.5. Package
	30.5.1. Upload
	Request structure
	Example request
	Response structure
	Response fields

	30.5.2. Install
	Request structure
	Example request
	Response structure
	Response fields

	30.5.3. Install with ID
	Request structure
	Example request
	Response structure
	Response fields

	30.6. Repositories
	30.6.1. Find All
	Request structure
	Example request
	Response structure
	Response fields

	30.6.2. Find By Name
	Request structure
	Example request
	Response structure
	Response fields

	30.7. Releases
	30.7.1. Find all
	Request structure
	Example request
	Response structure
	Response fields

	30.8. Release
	30.8.1. List
	List latest
	List latest by name

	30.8.2. Status
	Get the status of a release
	Status by version

	30.8.3. Upgrade
	Upgrade a release

	30.8.4. Rollback
	Rollback release using uri variables
	Rollback release using request object

	30.8.5. Manifest
	Get manifest
	Get manifest by version

	30.8.6. Delete
	Delete a release
	Delete a release and uninstall package

	30.8.7. Cancel
	Cancel a release

	Appendices
	Appendix A: Building
	A.1. Documentation
	A.2. Custom Server Build
	A.3. Importing into eclipse

	Appendix B: Contributing
	B.1. Sign the Contributor License Agreement
	B.2. Code Conventions and Housekeeping

