Spring Cloud Sleuth Reference
Documentation

Table of Contents

1. Legal
2. Getting Started
2.1. Introducing Spring Cloud Sleuth
2.2. Developing Your First Spring Cloud sleuth-based Application
2.3. Next Steps
3. Using Spring Cloud Sleuth
3.1. Span Lifecycle with Spring Cloud Sleuth’s API
3.2. Naming Spans
3.3. Managing Spans with Annotations
3.4. What to Read Next
4. Spring Cloud Sleuth Features
4.1. Context Propagation
4.2. Sampling
4.3. Baggage
4.4. OpenZipkin Brave Tracer Integration
4.5. Sending Spans to Zipkin
4.6. Log integration
4.7. What to Read Next
5. “How-to” Guides
5.1. How to Set Up Sleuth with Brave?
5.2. How to Set Up Sleuth with Brave & Zipkin via HTTP?
5.3. How to Set Up Sleuth with Brave & Zipkin via Messaging?
5.4. How to See Spans in an External System?
5.5. How to Make RestTemplate, WebClient, etc. Work?
5.6. How to Add Headers to the HTTP Server Response?
5.7. How to Customize HTTP Client Spans?
5.8. How to Customize HTTP Server Spans?
5.9. How to See the Application Name in Logs?
5.10. How to Change The Context Propagation Mechanism?
5.11. How to Implement My Own Tracer?
6. Spring Cloud Sleuth customization
6.1. Asynchronous Communication
6.2. HTTP Client Integration
6.3. HTTP Server Integration

© © 00 = N DN

12
13
16
16
16
17
17
19
22
27
30
31
31
32
33
37
37
38
39
40
42
42
43
43
44
46
48

6.4. Messaging 50

6.5. OpenFeign 53
6.6. OpenTracing 53
6.7. Quartz 53
6.8. Reactor 54
6.9. Redis 54
6.10. Runnable and Callable 55
6.11. RPC 56
6.12. RxJava 58
6.13. Spring Cloud CircuitBreaker 58
Common application properties 59

1. Legal

3.0.7-SNAPSHOT
Copyright © 2012-2021

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

2. Getting Started

If you are getting started with Spring Cloud Sleuth or Spring in general, start by reading this
section. It answers the basic “what?”, “how?” and “why?” questions. It includes an introduction to
Spring Cloud Sleuth, along with installation instructions. We then walk you through building your
first Spring Cloud Sleuth application, discussing some core principles as we go.

2.1. Introducing Spring Cloud Sleuth

Spring Cloud Sleuth provides API for distributed tracing solution for Spring Cloud. It integrates with
OpenZipkin Brave

Spring Cloud Sleuth is able to trace your requests and messages so that you can correlate that
communication to corresponding log entries. You can also export the tracing information to an
external system to visualize latency. Spring Cloud Sleuth supports OpenZipkin compatible systems
directly.

2.1.1. Terminology
Spring Cloud Sleuth borrows Dapper’s terminology.

Span: The basic unit of work. For example, sending an RPC is a new span, as is sending a response
to an RPC. Spans also have other data, such as descriptions, timestamped events, key-value

https://cloud.spring.io
https://github.com/openzipkin/brave
https://zipkin.io
https://research.google.com/pubs/pub36356.html

annotations (tags), the ID of the span that caused them, and process IDs (normally IP addresses).

Spans can be started and stopped, and they keep track of their timing information. Once you create
a span, you must stop it at some point in the future.

Trace: A set of spans forming a tree-like structure. For example, if you run a distributed big-data
store, a trace might be formed by a PUT request.

Annotation/Event: Used to record the existence of an event in time.

Conceptually in a typical RPC scenario we mark these events to highlight what kind of an action
took place (it doesn’t mean that physically such an event will be set on a span).

* cs: Client Sent. The client has made a request. This annotation indicates the start of the span.

sr: Server Received: The server side got the request and started processing it. Subtracting the cs
timestamp from this timestamp reveals the network latency.

ss: Server Sent. Annotated upon completion of request processing (when the response got sent

back to the client). Subtracting the sr timestamp from this timestamp reveals the time needed
by the server side to process the request.

cr: Client Received. Signifies the end of the span. The client has successfully received the

response from the server side. Subtracting the cs timestamp from this timestamp reveals the

whole time needed by the client to receive the response from the server.

The following image shows how Span and Trace look in a system.

Ne Tracs Id
Mo Span id

RESPONSE

Trace Id = X
Spanld=A

of 1l

Trace |d = X

Spanid=A m:& ';
{no custom span) Chent Sent
]
SERVICE 1
RESPONSE
Trace Id = X
\, J Span Id =B
Client Received
Trace Id =X
Spanld=A
(ne custom span)

Trace Id = X 3
Spanld=B an

Trace id = X
Span Id = E
d (ustom span)

SERVICE 2

SERVICE 3

Trace = Trace Id = X
Srazo || Smiace J
K 2 {eustom span}
E S,
Trace k=X Trace id = X

ey 1 = | Spanld=G J

{Gustom span)
SERVICE 4

Fs :llg-}{ Trace Id = X
o nF Span ki = G
mﬂw (eustom span)

Each color of a note signifies a span (there are seven spans - from A to G). Consider the following

note:

Trace Id = X
Span Id = D
Client Sent

This note indicates that the current span has Trace Id set to X and Span Id set to D. Also, from the
RPC perspective, the Client Sent event took place.

Let’s consider more notes:

Trace Id = X
Span Id = A

(no custom span)
Trace Id = X
Span Id = C

(custom span)

You can continue with a created span (example with no custom span indication) or you can create
child spans manually (example with custom span indication).

The following image shows how parent-child relationships of spans look:

TR Span ld =E
_: sm'g;""% Parent Id = D
Paeenthd s - {custom span)
S
Span Id = A Spanid= B
Farent id = null Parentid = A
I R
LT Spanld=0G
Spanfd=F Parant Id = F
| TR {custom span)
- F

2.2. Developing Your First Spring Cloud sleuth-based
Application

This section describes how to develop a small “Hello World!” web application that highlights some
of Spring Cloud Sleuth’s key features. We use Maven to build this project, since most IDEs support it.
As the tracer implementation we’ll use OpenZipkin Brave.

You can shortcut the steps below by going to start.spring.io and choosing the "Web"
@ and "Spring Cloud Sleuth" starters from the dependencies searcher. Doing so
w
generates a new project structure so that you can start coding right away.

https://github.com/openzipkin/brave
https://start.spring.io

2.2.1. Creating the POM

We need to start by creating a Maven pom. xml file. The pom.xml is the recipe that is used to build your
project. Open your favorite text editor and add the following:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/PONM/4.0.0

https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>com.example</groupld>
<artifactId>myproject</artifactId>
<version>0.0.1-SNAPSHOT</version>

<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<!-- Use the latest compatible Spring Boot version. You can check
https://spring.io/projects/spring-cloud for more information -->
<version>$2.4.13</version>
</parent>

<!-- Spring Cloud Sleuth requires a Spring Cloud BOM -->
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<!-- Provide the latest stable Spring Cloud release train version
(e.g. 2020.0.0) -->
<version>${release.train.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

<!-- (you don't need this if you are using a GA version) -->
<repositories>
<repository>
<id>spring-snapshots</id>
<url>https://repo.spring.io/snapshot</url>
<snapshots><enabled>true</enabled></snapshots>
</repository>
<repository>
<id>spring-milestones</id>
<url>https://repo.spring.io/milestone</url>
</repository>

</repositories>
<pluginRepositories>
<pluginRepository>
<id>spring-snapshots</id>
<url>https://repo.spring.io/snapshot</url>
</pluginRepository>
<pluginRepository>
<id>spring-milestones</id>
<url>https://repo.spring.io/milestone</url>
</pluginRepository>
</pluginRepositories>
</project>

The preceding listing should give you a working build. You can test it by running mvn package (for
now, you can ignore the “jar will be empty - no content was marked for inclusion!” warning).

At this point, you could import the project into an IDE (most modern Java IDEs
o include built-in support for Maven). For simplicity, we continue to use a plain text
editor for this example.

2.2.2. Adding Classpath Dependencies

To add the necessary dependencies, edit your pom.xml and add the spring-boot-starter-web
dependency immediately below the parent section:

<dependencies>
<!-- Boot's Web support -->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<!-- Sleuth with Brave tracer implementation -->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-sleuth</artifactId>
</dependency>
</dependencies>

2.2.3. Writing the Code

To finish our application, we need to create a single Java file. By default, Maven compiles sources
from src/main/java, so you need to create that directory structure and then add a file named
src/main/java/Example.java to contain the following code:

import org.slf4j.Logger;

import org.s1f4j.LoggerFactory;

import org.springframework.boot.*;

import org.springframework.boot.autoconfigure.*;
import org.springframework.web.bind.annotation.*;

@RestController
@EnableAutoConfiguration
public class Example {

private static final Logger log = LoggerFactory.getlLogger(Backend.class);

@RequestMapping("/")

String home() {
log.info("Hello world!");
return "Hello World!";

}

public static void main(String[] args) {
SpringApplication.run(Example.class, args);

}

Although there is not much code here, quite a lot is going on. We step through the important parts
in the next few sections.

The @RestController and @RequestMapping Annotations

Spring Boot sets up the Rest Controller and makes our application bind to a Tomcat port. Spring
Cloud Sleuth with Brave tracer will provide instrumentation of the incoming request.

2.2.4. Running the Example

At this point, your application should work. Since you used the spring-boot-starter-parent POM,
you have a wuseful run goal that you can wuse to start the application. Type
SPRING_APPLICATION_NAME=backend mvn spring-boot:run from the root project directory to start the
application. You should see output similar to the following:

$ mvn spring-boot:run

/\\ / '_____(:)___ SRR W U U

CON_ "2 2V 2 VA
N DDk)y)))
S (R R U I I U B VNP B A A A
:::::::::|_|:::===::::::::| __/:/_/_/_/

. « . . (log output here)

:::::::..S£a;ted Example in 2.222 seconds (JVM running for 6.514)

If you open a web browser to localhost:8080, you should see the following output:
Hello World!

If you check the logs you should see a similar output

2020-10-21 12:01:16.285 INFO [backend,@bbaaf642574edd3,0bbaaf642574edd3] 289589 ---
[ni0-9000-exec-1] Example : Hello world!

You can notice that the logging format has been updated with the following information
[backend,@bbaafb42574edd3,0bbaafb42574edd3. This entry corresponds to [application name,trace id,
span id]. The application name got read from the SPRING_APPLICATION_NAME environment variable.

o Instead of logging the request in the handler explicitly, you could set
logging.level.org.springframework.web.servlet.DispatcherServlet=DEBUG.

To gracefully exit the application, press ctrl-c.

2.3. Next Steps

Hopefully, this section provided some of the Spring Cloud Sleuth basics and got you on your way to
writing your own applications. If you are a task-oriented type of developer, you might want to jump
over to spring.io and check out some of the getting started guides that solve specific “How do I do
that with Spring?” problems. We also have Spring Cloud Sleuth-specific “how-t0” reference
documentation.

Otherwise, the next logical step is to read Using Spring Cloud Sleuth. If you are really impatient, you
could also jump ahead and read about Spring Cloud Sleuth features.

You can find the default project samples at samples.

http://localhost:8080
https://spring.io
https://spring.io/guides/
https://github.com/spring-cloud/spring-cloud-sleuth/tree/{branch}/spring-cloud-sleuth-samples

3. Using Spring Cloud Sleuth

This section goes into more detail about how you should use Spring Cloud Sleuth. It covers topics
such as controlling the span lifecycle with Spring Cloud Sleuth API or via annotations. We also
cover some Spring Cloud Sleuth best practices.

If you are starting out with Spring Cloud Sleuth, you should probably read the Getting Started guide
before diving into this section.

3.1. Span Lifecycle with Spring Cloud Sleuth’s API

Spring Cloud Sleuth Core in its api module contains all necessary interfaces to be implemented by a
tracer. The project comes with OpenZipkin Brave implementation. You can check how the tracers
are bridged to the Sleuth’s API by looking at the org.springframework.cloud.sleuth.brave.bridge.

The most commonly used interfaces are:

* org.springframework.cloud.sleuth.Tracer - Using a tracer, you can create a root span capturing
the critical path of a request.
* org.springframework.cloud.sleuth.Span - Span is a single unit of work that needs to be started
and stopped. Contains timing information and events and tags.
You can also use your tracer implementation’s API directly.

Let’s look at the following Span lifecycle actions.

 start: When you start a span, its name is assigned and the start timestamp is recorded.

* end: The span gets finished (the end time of the span is recorded) and, if the span is sampled, it
is eligible for collection (e.g. to Zipkin).

» continue: The span gets continued e.g. in another thread.

» create with explicit parent: You can create a new span and set an explicit parent for it.

(r') Spring Cloud Sleuth creates an instance of Tracer for you. In order to use it, you
- can autowire it.

3.1.1. Creating and Ending Spans

You can manually create spans by using the Tracer, as shown in the following example:

// Start a span. If there was a span present in this thread it will become
// the ‘newSpan‘'s parent.
Span newSpan = this.tracer.nextSpan().name("calculateTax");
try (Tracer.SpanInScope ws = this.tracer.withSpan(newSpan.start())) {
/] ...
// You can tag a span
newSpan.tag("taxValue", taxValue);
/] ...
// You can log an event on a span
newSpan.event("taxCalculated");

}

finally {
// Once done remember to end the span. This will allow collecting
// the span to send it to a distributed tracing system e.g. Zipkin
newSpan.end();

}

In the preceding example, we could see how to create a new instance of the span. If there is already
a span in this thread, it becomes the parent of the new span.

o Always clean after you create a span.

If your span contains a name greater than 50 chars, that name is truncated to 50
o chars. Your names have to be explicit and concrete. Big names lead to latency
issues and sometimes even exceptions.

3.1.2. Continuing Spans

Sometimes, you do not want to create a new span but you want to continue one. An example of
such a situation might be as follows:

* AOP: If there was already a span created before an aspect was reached, you might not want to
create a new span.

To continue a span, you can store the span in one thread and pass it on to another one as shown in
the example below.

Span spanFromThreadX = this.tracer.nextSpan().name("calculateTax");
try (Tracer.SpanInScope ws = this.tracer.withSpan(spanFromThreadX.start())) {
executorService.submit(() -> {

// Pass the span from thread X

Span continuedSpan = spanFromThreadX;

/] ...

// You can tag a span

continuedSpan.tag("taxValue", taxValue);

/] ...

// You can log an event on a span

continuedSpan.event("taxCalculated");

}).get();
}
finally {
spanFromThreadX.end();
}

3.1.3. Creating a Span with an explicit Parent

You might want to start a new span and provide an explicit parent of that span. Assume that the
parent of a span is in one thread and you want to start a new span in another thread. Whenever
you call Tracer.nextSpan(), it creates a span in reference to the span that is currently in scope. You
can put the span in scope and then call Tracer.nextSpan(), as shown in the following example:

// let's assume that we're in a thread Y and we've received
// the ‘initialSpan‘ from thread X. ‘initialSpan‘ will be the parent
// of the ‘newSpan’
Span newSpan = null;
try (Tracer.SpanInScope ws = this.tracer.withSpan(initialSpan)) {
newSpan = this.tracer.nextSpan().name("calculateCommission");
/] ...
// You can tag a span
newSpan.tag("commissionValue", commissionValue);
/] ...
// You can log an event on a span
newSpan.event("commissionCalculated");
}
finally {
// Once done remember to end the span. This will allow collecting
// the span to send it to e.q. Zipkin. The tags and events set on the
// newSpan will not be present on the parent
if (newSpan != null) {
newSpan.end();

}

o After creating such a span, you must finish it. Otherwise it is not reported (e.g. to
Zipkin).

You can also use the Tracer.nextSpan(Span parentSpan) version to provide the parent span explicitly.

3.2. Naming Spans

Picking a span name is not a trivial task. A span name should depict an operation name. The name
should be low cardinality, so it should not include identifiers.

Since there is a lot of instrumentation going on, some span names are artificial:

» controller-method-name when received by a Controller with a method name of
controllerMethodName

* async for asynchronous operations done with wrapped (Callable and Runnable interfaces.

* Methods annotated with @Scheduled return the simple name of the class.

Fortunately, for asynchronous processing, you can provide explicit naming.

3.2.1. @SpanName Annotation

You can name the span explicitly by using the @SpanName annotation, as shown in the following
example:

@SpanName("calculateTax")
class TaxCountingRunnable implements Runnable {

@0verride

public void run() {
// perform logic

}

In this case, when processed in the following manner, the span is named calculateTax:

Runnable runnable = new TraceRunnable(this.tracer, spanNamer, new
TaxCountingRunnable());

Future<?> future = executorService.submit(runnable);

// ... some additional logic ...

future.get();

3.2.2. toString() Method

It is pretty rare to create separate classes for Runnable or Callable. Typically, one creates an
anonymous instance of those classes. You cannot annotate such classes. To overcome that

limitation, if there is no @SpanName annotation present, we check whether the class has a custom
implementation of the toString() method.

Running such code leads to creating a span named calculateTax, as shown in the following
example:

Runnable runnable = new TraceRunnable(this.tracer, spanNamer, new Runnable() {
@verride
public void run() {
// perform logic
}

@0verride
public String toString() {
return "calculateTax";

}
1)
Future<?> future = executorService.submit(runnable);
// ... some additional logic ...

future.get();

3.3. Managing Spans with Annotations

There are a number of good reasons to manage spans with annotations, including:

* API-agnostic means to collaborate with a span. Use of annotations lets users add to a span with
no library dependency on a span api. Doing so lets Sleuth change its core API to create less
impact to user code.

* Reduced surface area for basic span operations. Without this feature, you must use the span api,
which has lifecycle commands that could be used incorrectly. By only exposing scope, tag, and
log functionality, you can collaborate without accidentally breaking span lifecycle.

* Collaboration with runtime generated code. With libraries such as Spring Data and Feign, the
implementations of interfaces are generated at runtime. Consequently, span wrapping of
objects was tedious. Now you can provide annotations over interfaces and the arguments of
those interfaces.

3.3.1. Creating New Spans

If you do not want to create local spans manually, you can use the @NewSpan annotation. Also, we
provide the @SpanTag annotation to add tags in an automated fashion.

Now we can consider some examples of usage.

@NewSpan
void testMethod();

Annotating the method without any parameter leads to creating a new span whose name equals the
annotated method name.

@NewSpan("customNameOnTestMethod4")
void testMethod4();

If you provide the value in the annotation (either directly or by setting the name parameter), the
created span has the provided value as the name.

// method declaration
@NewSpan(name = "customNameOnTestMethod5")
void testMethod5(@SpanTag("testTag") String param);

// and method execution
this.testBean.testMethod5("test");

You can combine both the name and a tag. Let’s focus on the latter. In this case, the value of the
annotated method’s parameter runtime value becomes the value of the tag. In our sample, the tag
key is testTag, and the tag value is test.

@NewSpan(name = "customNameOnTestMethod3")
@0verride

public void testMethod3() {

+

You can place the @NewSpan annotation on both the class and an interface. If you override the
interface’s method and provide a different value for the @NewSpan annotation, the most concrete one
wins (in this case customNameOnTestMethod3 is set).

3.3.2. Continuing Spans
If you want to add tags and annotations to an existing span, you can use the @ContinueSpan

annotation, as shown in the following example:

// method declaration
@ContinueSpan(log = "testMethod11")
void testMethod11(@SpanTag("testTag11") String param);

// method execution

this.testBean.testMethod11("test");
this.testBean.testMethod13();

(Note that, in contrast with the @NewSpan annotation ,you can also add logs with the log parameter.)

That way, the span gets continued and:

* Log entries named testMethod11.before and testMethod11.after are created.
* If an exception is thrown, a log entry named testMethod11.afterFailure is also created.

* Atag with a key of testTag11 and a value of test is created.

3.3.3. Advanced Tag Setting

There are 3 different ways to add tags to a span. All of them are controlled by the SpanTag
annotation. The precedence is as follows:
1. Try with a bean of TagValueResolver type and a provided name.

2. If the bean name has not been provided, try to evaluate an expression. We search for a
TagValueExpressionResolver bean. The default implementation uses SPEL expression resolution.
IMPORTANT You can only reference properties from the SPEL expression. Method execution is
not allowed due to security constraints.

3. If we do not find any expression to evaluate, return the toString() value of the parameter.

Custom Extractor

The value of the tag for the following method is computed by an implementation of
TagValueResolver interface. Its class name has to be passed as the value of the resolver attribute.

Consider the following annotated method:

@NewSpan
public void getAnnotationForTagValueResolver(

@SpanTag(key = "test", resolver = TagValueResolver.class) String test) {
}

Now further consider the following TagValueResolver bean implementation:

@Bean(name = "myCustomTagValueResolver")
public TagValueResolver tagValueResolver() {
return parameter -> "Value from myCustomTagValueResolver";

}

The two preceding examples lead to setting a tag value equal to Value from
myCustomTagValueResolver.

Resolving Expressions for a Value

Consider the following annotated method:

@NewSpan
public void getAnnotationForTagValueExpression(
@SpanTag(key = "test", expression = "'hello' +

characters'") String test) {
}

No custom implementation of a TagValueExpressionResolver leads to evaluation of the SPEL
expression, and a tag with a value of 4 characters is set on the span. If you want to use some other
expression resolution mechanism, you can create your own implementation of the bean.

Using The toString() Method
Consider the following annotated method:
@NewSpan

public void getAnnotationForArqumentToString(@SpanTag("test") Long param) {
by

Running the preceding method with a value of 15 leads to setting a tag with a String value of "15".

3.4. What to Read Next

You should now understand how you can use Spring Cloud Sleuth and some best practices that you
should follow. You can now go on to learn about specific Spring Cloud Sleuth features, or you could
skip ahead and read about the integrations available in Spring Cloud Sleuth.

4. Spring Cloud Sleuth Features

This section dives into the details of Spring Cloud Sleuth. Here you can learn about the key features
that you may want to use and customize. If you have not already done so, you might want to read
the "Getting Started" and "Using Spring Cloud Sleuth" sections, so that you have a good grounding in
the basics.

4.1. Context Propagation

Traces connect from service to service using header propagation. The default format is B3. Similar
to data formats, you can configure alternate header formats also, provided trace and span IDs are
compatible with B3. Most notably, this means the trace ID and span IDs are lower-case hex, not
UUIDs. Besides trace identifiers, other properties (Baggage) can also be passed along with the
request. Remote Baggage must be predefined, but is flexible otherwise.

To use the provided defaults you can set the spring.sleuth.propagation.type property. The value
can be a list in which case you will propagate more tracing headers.

For Brave we support AllS, B3, W3C propagation types.

You can read more about how to provide custom context propagation in this "how to section".

integrations
https://github.com/openzipkin/b3-propagation

4.2. Sampling

Spring Cloud Sleuth pushes the sampling decision down to the tracer implementation. However,
there are cases where you can change the sampling decision at runtime.

One of such cases is skip reporting of certain client spans. To achieve that you can set the
spring.sleuth.web.client.skip-pattern with the path patterns to be skipped. Another option is to

provide your own custom
org.springframework.cloud.sleuth.SamplerFunction<‘org.springframework.cloud.sleuth.http.HttpReq

vest> implementation and define when a given HttpRequest should not be sampled.

4.3. Baggage

Distributed tracing works by propagating fields inside and across services that connect the trace
together: traceld and spanld notably. The context that holds these fields can optionally push other
fields that need to be consistent regardless of many services are touched. The simple name for these
extra fields is "Baggage".

Sleuth allows you to define which baggage are permitted to exist in the trace context, including
what header names are used.

The following example shows setting baggage values using Spring Cloud Sleuth’s API:

try (Tracer.SpanInScope ws = this.tracer.withSpan(initialSpan)) {
BaggageInScope businessProcess =

this.tracer.createBaggage (BUSINESS_PROCESS).set("ALM");
BaggageInScope countryCode = this.tracer.createBaggage(COUNTRY_CODE).set("F0");
try {

There is currently no limitation of the count or size of baggage items. Keep in mind

o that too many can decrease system throughput or increase RPC latency. In extreme
cases, too much baggage can crash the application, due to exceeding transport-
level message or header capacity.

You can use properties to define fields that have no special configuration such as name mapping:

* spring.sleuth.baggage.remote-fields is a list of header names to accept and propagate to remote
services.

* spring.sleuth.baggage.local-fields is a list of names to propagate locally
No prefixing applies with these keys. What you set is literally what is used.
A name set in either of these properties will result in a Baggage of the same name.

In order to automatically set the baggage values to Slf4j’s MDC, you have to set the
spring.sleuth.baggage.correlation-fields property with a list of allowed local or remote keys. E.g.
spring.sleuth.baggage.correlation-fields=country-code will set the value of the country-code
baggage into MDC.

Note that the extra field is propagated and added to MDC starting with the next downstream trace
context. To immediately add the extra field to MDC in the current trace context, configure the field
to flush on update:

// configuration
@Bean
BaggageField countryCodeField() {
return BaggageField.create("country-code");

}

@Bean
ScopeDecorator mdcScopeDecorator() {
return MDCScopeDecorator.newBuilder()

.clear()
.add(SingleCorrelationField.newBuilder(countryCodeField())
.flushOnUpdate()
.build())
.build();
}
// service
@Autowired

BaggageField countryCodeField;

countryCodeField.updateValue("new-value");

o Remember that adding entries to MDC can drastically decrease the performance of
your application!

If you want to add the baggage entries as tags, to make it possible to search for spans via the
baggage entries, you can set the value of spring.sleuth.baggage.tag-fields with a list of allowed
baggage keys. To disable the feature you have to pass the
spring.sleuth.propagation.tag.enabled=false property.

4.3.1. Baggage versus Tags

Like trace IDs, Baggage is attached to messages or requests, usually as headers. Tags are key value
pairs sent in a Span to Zipkin. Baggage values are not added spans by default, which means you
can’t search based on Baggage unless you opt-in.

To make baggage also tags, use the property spring.sleuth.baggage.tag-fields like so:

spring:
sleuth:
baggage:

foo: bar

remoteFields:
- country-code
- X-vcap-request-id

tagFields:
- country-code

4.4. OpenZipkin Brave Tracer Integration

Spring Cloud Sleuth integrates with the OpenZipkin Brave tracer via the bridge that is available in
the spring-cloud-sleuth-brave module. In this section you can read about specific Brave
integrations.

You can choose to use either Sleuth’s API or the Brave API directly in your code (e.g. either Sleuth’s
Tracer or Brave’s Tracer). If you want to use this tracer implementation’s API directly please read
their documentation to learn more about it.

4.4.1. Brave Basics
Here are the most core types you might use:

* brave.SpanCustomizer - to change the span currently in progress

* brave.Tracer - to get a start new spans ad-hoc
Here are the most relevant links from the OpenZipkin Brave project:

* Brave’s core library
* Baggage (propagated fields)
* HTTP tracing

4.4.2. Brave Sampling

Sampling only applies to tracing backends, such as Zipkin. Trace IDs appear in logs regardless of
sample rate. Sampling is a way to prevent overloading the system, by consistently tracing some, but
not all requests.

The default rate of 10 traces per second is controlled by the spring.sleuth.sampler.rate property
and applies when we know Sleuth is used for reasons besides logging. Use a rate above 100 traces
per second with extreme caution as it can overload your tracing system.

The sampler can be set by Java Config also, as shown in the following example:

https://github.com/openzipkin/brave
https://github.com/openzipkin/brave/tree/master/brave
https://github.com/openzipkin/brave/tree/master/brave#baggage
https://github.com/openzipkin/brave/tree/master/instrumentation/http

@Bean
public Sampler defaultSampler() {
return Sampler.ALWAYS_SAMPLE;

}

You can set the HTTP header b3 to 1, or, when doing messaging, you can set the
(2 .
O spanFlags header to 1. Doing so forces the current request to be sampled regardless
et of configuration.

By default samplers will work with the refresh scope mechanism. That means that you can change
the sampling properties at runtime, refresh the application and the changes will be reflected.
However, sometimes the fact of creating a proxy around samplers and calling it from too early
(from @PostConstruct annotated method) may lead to dead locks. In such a case either create a
sampler bean explicitly, or set the property spring.sleuth.sampler.refresh.enabled to false to
disable the refresh scope support.

4.4.3. Brave Baggage Java configuration

If you need to do anything more advanced than above, do not define properties and instead use a
@Bean config for the baggage fields you use.

» BaggagePropagationCustomizer sets up baggage fields

* Add a SingleBaggageField to control header names for a Baggage.

* CorrelationScopeCustomizer sets up MDC fields

* Add a SingleCorrelationField to change the MDC name of a Baggage or if updates flush.

4.4.4. Brave Customizations

The brave.Tracer object is fully managed by sleuth, so you rarely need to affect it. That said, Sleuth
supports a number of Customizer types, that allow you to configure anything not already done by
Sleuth with auto-configuration or properties.

If you define one of the following as a Bean, Sleuth will invoke it to customize behaviour:

* RpcTracingCustomizer - for RPC tagging and sampling policy

* HttpTracingCustomizer - for HTTP tagging and sampling policy

* MessagingTracingCustomizer - for messaging tagging and sampling policy

* CurrentTraceContextCustomizer - to integrate decorators such as correlation.

* BaggagePropagationCustomizer - for propagating baggage fields in process and over headers

» CorrelationScopeDecoratorCustomizer - for scope decorations such as MDC (logging) field
correlation

Brave Sampling Customizations

If client /server sampling is required, just vregister a bean of type
brave.sampler.SamplerFunction<HttpRequest> and name the bean sleuthHttpClientSampler for client
sampler and sleuthHttpServerSampler for server sampler.

For your convenience the @HttpClientSampler and @HttpServerSampler annotations can be used to
inject the proper beans or to reference the bean names via their static String NAME fields.

Check out Brave’s code to see an example of how to make a path-based sampler github.com/
openzipkin/brave/tree/master/instrumentation/http#sampling-policy

If you want to completely rewrite the HttpTracing bean you can use the SkipPatternProvider
interface to retrieve the URL Pattern for spans that should be not sampled. Below you can see an
example of usage of SkipPatternProvider inside a server side, Sampler<HttpRequest>.

@Configuration(proxyBeanMethods = false)
class Config {
@Bean(name = HttpServerSampler.NAME)
SamplerFunction<HttpRequest> myHttpSampler(SkipPatternProvider provider) {
Pattern pattern = provider.skipPattern();
return request -> {
String url = request.path();
boolean shouldSkip = pattern.matcher(url).matches();
if (shouldSkip) {
return false;

}

return null;

4.4.5. Brave Messaging

Sleuth automatically configures the MessagingTracing bean which serves as a foundation for
Messaging instrumentation such as Kafka or JMS.

If a customization of producer / consumer sampling of messaging traces is required, just register a
bean of type brave.sampler.SamplerFunction<MessagingRequest> and name the bean
sleuthProducerSampler for producer sampler and sleuthConsumerSampler for consumer sampler.

For your convenience the @ProducerSampler and @ConsumerSampler annotations can be used to inject
the proper beans or to reference the bean names via their static String NAME fields.

Ex. Here’s a sampler that traces 100 consumer requests per second, except for the "alerts" channel.
Other requests will use a global rate provided by the Tracing component.

https://github.com/openzipkin/brave/tree/master/instrumentation/http#sampling-policy
https://github.com/openzipkin/brave/tree/master/instrumentation/http#sampling-policy

@Configuration(proxyBeanMethods = false)
class Config {
@Bean(name = ConsumerSampler.NAME)
SamplerFunction<MessagingRequest> myMessagingSampler() {
return MessagingRuleSampler.newBuilder().putRule(channelNameEquals("alerts"),
Sampler.NEVER_SAMPLE)
.putRule(Matchers.alwaysMatch(),

RateLimitingSampler.create(100)).build();

}
}

For more, see github.com/openzipkin/brave/tree/master/instrumentation/messaging#sampling-
policy
4.4.6. Brave Opentracing

You can integrate with Brave and OpenTracing via the io.opentracing.brave:brave-opentracing
bridge. Just add it to the classpath and the OpenTracing Tracer will be set up automatically.

4.5. Sending Spans to Zipkin

Spring Cloud Sleuth provides various integrations with the OpenZipkin distributed tracing system.
Regardless of the chosen tracer implementation it’s enough to add spring-cloud-sleuth-zipkin to
the classpath to start sending spans to Zipkin. You can choose whether to do that via HTTP or
messaging. You can read more about how to do that in "how to section".

When the span is closed, it is sent to Zipkin over HTTP. The communication is asynchronous. You
can configure the URL by setting the spring.zipkin.baselUrl property, as follows:

spring.zipkin.baseUrl: https://192.168.99.100:9411/

If you want to find Zipkin through service discovery, you can pass the Zipkin’s service ID inside the
URL, as shown in the following example for zipkinserver service ID:

spring.zipkin.baseUrl: https://zipkinserver/

To disable this feature just set spring.zipkin.discovery-client-enabled to false.

When the Discovery Client feature is enabled, Sleuth uses LoadBalancerClient to find the URL of the
Zipkin Server. It means that you can set up the load balancing configuration.

If you have web, rabbit, activemq or kafka together on the classpath, you might need to pick the
means by which you would like to send spans to zipkin. To do so, set web, rabbit, activemq or kafka to
the spring.zipkin.sender.type property. The following example shows setting the sender type for
web:

https://github.com/openzipkin/brave/tree/master/instrumentation/messaging#sampling-policy
https://github.com/openzipkin/brave/tree/master/instrumentation/messaging#sampling-policy
https://opentracing.io/
https://zipkin.io

spring.zipkin.sender.type: web

To customize the RestTemplate that sends spans to Zipkin via HTTP, you can register the
ZipkinRestTemplateCustomizer bean.

@Configuration(proxyBeanMethods = false)
class MyConfig {
@Bean ZipkinRestTemplateCustomizer myCustomizer() {
return new ZipkinRestTemplateCustomizer() {
@override
void customize(RestTemplate restTemplate) {
// customize the RestTemplate
}
b

If, however, you would like to control the full process of creating the RestTemplate object, you will
have to create a bean of zipkin2.reporter.Sender type.

@Bean Sender myRestTemplateSender(ZipkinProperties zipkin,
ZipkinRestTemplateCustomizer zipkinRestTemplateCustomizer) {
RestTemplate restTemplate = mySuperCustomRestTemplate();
zipkinRestTemplateCustomizer.customize(restTemplate);
return myCustomSender(zipkin, restTemplate);

By default, api path will be set to api/v2/spans or api/v1/spans depending on the encoder version. If
you want to use a custom api path, you can configure it using the following property (empty case,
set""):

spring.zipkin.api-path: v2/path2

4.5.1. Custom service name

By default, Sleuth assumes that, when you send a span to Zipkin, you want the span’s service name
to be equal to the value of the spring.application.name property. That is not always the case, though.
There are situations in which you want to explicitly provide a different service name for all spans
coming from your application. To achieve that, you can pass the following property to your
application to override that value (the example is for a service named myService):

spring.zipkin.service.name: myService

4.5.2. Host Locator

o This section is about defining host from service discovery. It is NOT about finding
Zipkin through service discovery.

To define the host that corresponds to a particular span, we need to resolve the host name and port.
The default approach is to take these values from server properties. If those are not set, we try to
retrieve the host name from the network interfaces.

If you have the discovery client enabled and prefer to retrieve the host address from the registered
instance in a service registry, you have to set the spring.zipkin.locator.discovery.enabled property
(it is applicable for both HTTP-based and Stream-based span reporting), as follows:

spring.zipkin.locator.discovery.enabled: true

4.5.3. Customization of Reported Spans

In Sleuth, we generate spans with a fixed name. Some users want to modify the name depending on
values of tags.

Sleuth registers a SpanFilter bean that can automatically skip reporting spans of given name
patterns. The property spring.sleuth.span-filter.span-name-patterns-to-skip contains the default
skip patterns for span names. The property spring.sleuth.span-filter.additional-span-name-
patterns-to-skip will append the provided span name patterns to the existing ones. In order to
disable this functionality just set spring.sleuth.span-filter.enabled to false.

Brave Customization of Reported Spans
o This section is applicable for Brave tracer only.

Before reporting spans (for example, to Zipkin) you may want to modify that span in some way. You
can do so by implementing a SpanHandler.

The following example shows how to register two beans that implement SpanHandler:

©Bean
SpanHandler handlerOne() {
return new SpanHandler() {
@0verride
public boolean end(TraceContext traceContext, MutableSpan span, Cause cause) {
span.name("foo");
return true; // keep this span

@Bean
SpanHandler handlerTwo() {
return new SpanHandler() {
@override
public boolean end(TraceContext traceContext, MutableSpan span, Cause cause) {
span.name(span.name() + " bar");
return true; // keep this span

};

The preceding example results in changing the name of the reported span to foo bar, just before it
gets reported (for example, to Zipkin).

4.5.4. Overriding the auto-configuration of Zipkin

Spring Cloud Sleuth supports sending traces to multiple tracing systems as of version 2.1.0. In order
to get this to work, every tracing system needs to have a Reporter and Sender. If you want to
override the provided beans you need to give them a specific name. To do this you can use
respectively ZipkinAutoConfiguration.REPORTER_BEAN_NAME and
ZipkinAutoConfiguration.SENDER_BEAN_NAME

@Configuration(proxyBeanMethods = false)
protected static class MyConfig {

@Bean(ZipkinAutoConfiguration.REPORTER_BEAN_NAME)
Reporter<zipkin2.Span>
myReporter(@Qualifier(ZipkinAutoConfiguration.SENDER_BEAN_NAME) MySender mySender) {
return AsyncReporter.create(mySender);

}

@Bean(ZipkinAutoConfiguration.SENDER_BEAN_NAME)
MySender mySender() {
return new MySender();

}

static class MySender extends Sender {
private boolean spanSent = false;

boolean isSpanSent() {
return this.spanSent;

}

@override

public Encoding encoding() {
return Encoding.JSON;

}

@0verride

public int messageMaxBytes() {
return Integer.MAX_VALUE;

}

@0verride
public int messageSizeInBytes(List<byte[]> encodedSpans) {
return encoding().listSizeInBytes(encodedSpans);

}

@override

public Call<Void> sendSpans(List<byte[]> encodedSpans) {
this.spanSent = true;
return Call.create(null);

4.6. Log integration

Sleuth configures the logging context with variables including the service name

%{spring.zipkin.service.name} or %{spring.application.name} if the previous one was not set), span
ID (%{spanld}) and the trace ID (%{traceld}). These help you connect logs with distributed traces and
allow you choice in what tools you use to troubleshoot your services.

Once you find any log with an error, you can look for the trace ID in the message. Paste that into
your distributed tracing system to visualize the entire trace, regardless of how many services the
first request ended up hitting.

backend.log: 2020-04-09 17:45:40.516 ERROR

[backend, 5e8eeec48b08e26882aba313eb08f0ad,dcc1df555b5777b3] 97203 --- [nio-9000-exec-
1] o.s.c.s.i.web.ExceptionLoggingFilter : Uncaught exception thrown
frontend.1og:2020-04-09 17:45:40.574 ERROR

[frontend, 5e8eeec48b08e26882aba313eb08f0a4,82aba313eb@8f0a4] 97192 --- [nio-8081-exec-
2] o.s.c.s.i.web.ExceptionLoggingFilter : Uncaught exception thrown

Above, youw’ll notice the trace ID is 5e8eeec48b08e26882aba313eb08f0a4, for example. This log
configuration was automatically setup by Sleuth. You can disable it by disabling Sleuth via
spring.sleuth.enabled=false property or putting your own logging.pattern.level property.

If you use a log aggregating tool (such as Kibana, Splunk, and others), you can order the events that
took place. An example from Kibana would resemble the following image:

Selected Fields March 4th 2016, 10:39:40,100 - March 4th 2016, 10:54:40.100 — by 30 seconds
t
I
thread
pid
exportable
10:4000 10:41:00 104200 10:4300 10:44:00 104500 10:4600 10:47:00 104500 10:4900 105000 105100 10:5200 105300
" @timestamp per 30 seconds
trace “
EEEEEE - Time severity service trace span exportable pid thread dlass rest
3 b March 4th 2016, 10:52:40.837 INFO service 1 f2dbd3c74410aal f2dbd3c744102al true 6811 nio-808l-exec-7 i.s.c.sleuth.docs.ser Hello from servicel. Calling service2
Available Fields (o] vicel.Application
Popular .
" b March 4th 2016, 10:52:41.040 INFO service? f2dbd3c744102a1 678edd6362502279 true 6812 nio-8082-exec-7 i.s.c.sleuth.docs.ser Hello from service2. Calling service3 and then services
= vice2.Application
@timestamp » March 4th 2016, 10:52:41.342 INFO service3 f2dbd3c74410aal aQea3aatac6ccds true 6813 nio-8083-exec-7 i.s.c.sleuth.docs.ser Hello from services
e vices.Application
& » March 4th 2016, 10:52:41.347 INFO service? fadbd3cT4d10aal 678edd63b2592279 true 6812 nio-8982-exec-7 1i.s.c.sleuth.docs.ser Got response from service3 [Hello from service3]
i vice2.Application
< > March 4th 2016, 10:52:41.752 INFO serviced fadbd3c74410aal 234cae76362b7270 true 6814 nio-8084-exec-7 i.s.c.sleuth.docs.ser Hello from serviced
host vicea.application
sssss e » March 4th 2016, 10:52:41.754 INFO service2 fadbd3cTddl0mal 678edd63b259a279 true 6812 nio-8082-exec-7 1i.s.C.sleuth.docs.ser Got response from serviced [Hello from serviced]
= vice2.application
» March 4th 2016, 10:52:41.856 INFO servicel fadbd3c74dloaal fadbd3c74dl0mal true 6811 nio-808l-exec-7 1i.s.C.sleuth.docs.ser Got response from service2 [Hello from service2, response from

vicel.Application

If you want to use Logstash, the following listing shows the Grok pattern for Logstash:

https://www.elastic.co/products/kibana
https://www.splunk.com/
https://www.elastic.co/guide/en/logstash/current/index.html

filter {
pattern matching logback pattern
grok {
match => { "message" =>
"%{TIMESTAMP_IS08601:timestamp}\s+%{LOGLEVEL:severity}\s+\[%{DATA:service},%{DATA:trac
e}, %{DATA:span}\]\s+%{DATA:pid}\s+---
\s+\[%{DATA: thread}\]\s+%{DATA:class}\s+:\s+%{GREEDYDATA:rest}" }

}
date {
match => ["timestamp", "IS08601"]
}
mutate {
remove_field => ["timestamp"]
}
+
o If you want to use Grok together with the logs from Cloud Foundry, you have to use
the following pattern:
filter {
pattern matching logback pattern
grok {

match => { "message" =>
"(7m)OUT\s+%{TIMESTAMP_IS08601:timestamp}\s+%{LOGLEVEL:severity}\s+\[%{DATA:service},%
{DATA:trace}, %{DATA:span}\]\s+%{DATA:pid}\s+---
\s+\[%{DATA:thread}\]\s+%{DATA:class}\s+:\s+%{GREEDYDATA:rest}" }

}
date {
match => ["timestamp", "IS08601"]
}
mutate {
remove_field => ["timestamp"]
}

}

4.6.1. JSON Logback with Logstash

Often, you do not want to store your logs in a text file but in a JSON file that Logstash can
immediately pick. To do so, you have to do the following (for readability, we pass the dependencies
in the groupId:artifactId:version notation).

Dependencies Setup

1. Ensure that Logback is on the classpath (ch.qos.logback:1ogback-core).

2. Add Logstash Logback encode. For example, to wuse version 4.6, add
net.logstash.logback:1logstash-logback-encoder:4.6

Logback Setup

Consider the following example of a Logback configuration file (logback-spring.xml).

<?xml version="1.0" encoding="UTF-8"7>
<confiquration>
<include resource="org/springframework/boot/1logging/logback/defaults.xml"/>
<springProperty scope="context" name="springAppName"
source="spring.application.name"/>
<!-- Example for logging into the build folder of your project -->
<property name="L0G_FILE" value="${BUILD_FOLDER:-build}/${springAppName}"/>

<!-- You can override this to have a custom pattern -->
<property name="CONSOLE_LOG_PATTERN"
value="%c1r(%d{yyyy-MM-dd HH:mm:ss.SSS}){faint}
%c1r(${LOG_LEVEL_PATTERN:-%5p}) %clr(${PID:- }){magenta} %clr(---){faint}
%clr([%15.15t]){faint} %clr(%-40.401ogger{39}){cyan} %clr(:){faint}
%m%n${L0G_EXCEPTION_CONVERSION_WORD:-%wEx}"/>

<!-- Appender to log to console -->
<appender name="console" class="ch.qos.logback.core.ConsoleAppender">
<filter class="ch.qos.logback.classic.filter.ThresholdFilter">
<!-- Minimum logging level to be presented in the console logs-->
<level>DEBUG</1evel>
</filter>
<encoder>
<pattern>${CONSOLE_LOG_PATTERN}</pattern>
<charset>utf8</charset>
</encoder>
</appender>

<!-- Appender to log to file -->
<appender name="flatfile" class="ch.qos.logback.core.rolling.RollingFileAppender">
<file>${LOG_FILE}</file>
<rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
<fileNamePattern>${L0G_FILE}.%d{yyyy-MM-dd}.gz</fileNamePattern>
<maxHistory>7</maxHistory>
</rollingPolicy>
<encoder>
<pattern>${CONSOLE_LOG_PATTERN}</pattern>
<charset>utf8</charset>
</encoder>
</appender>
<!-- Appender to log to file in a JSON format -->
<appender name="logstash" class="ch.qos.logback.core.rolling.RollingFileAppender">
<file>${LOG_FILE}.json</file>
<rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
<fileNamePattern>${L0G_FILE}.json.%d{yyyy-MM-dd}.gz</fileNamePattern>
<maxHistory>7</maxHistory>
</rollingPolicy>
<encoder

class="net.logstash.logback.encoder.LoggingEventCompositeJsonEncoder">

<providers>
<timestamp>
<timeZone>UT(C</timeZone>
</timestamp>
<pattern>
<pattern>
{
"timestamp": "@timestamp",
"severity": "%level",
"service": "${springAppName:-}",
"trace": "%X{traceld:-}",
"span": "%X{spanId:-}",
"pid": "${PID:-}",
"thread": "%thread",
"class": "%logger{40}",
"rest": "%message"
¥
</pattern>
</pattern>
</providers>
</encoder>
</appender>

<root level="INF0">
<appender-ref ref="console"/>
<!-- uncomment this to have also JSON logs -->
<!--<appender-ref ref="logstash"/>-->
<!--<appender-ref ref="flatfile"/>-->
</root>
</configuration>

That Logback configuration file:

* Logs information from the application in a JSON
build/${spring.application.name}.json file.

» Has commented out two additional appenders: console and standard log file.

* Has the same logging pattern as the one presented in the previous section.

format to a

If you use a custom logback-spring.xml, you must pass the spring.application.name
in the bootstrap rather than the application property file. Otherwise, your custom

logback file does not properly read the property.

4.7. What to Read Next

If you want to learn more about any of the classes discussed in this section, you can browse the

source code directly. If you have specific questions, see the how-to section.

If you are comfortable with Spring Cloud Sleuth’s core features, you can continue on and read

https://github.com/spring-cloud/spring-cloud-sleuth/tree/3.0.x

about Spring Cloud Sleuth’s integrations.

5. “How-to” Guides

This section provides answers to some common “how do I do that...?” questions that often arise
when using Spring Cloud Sleuth. Its coverage is not exhaustive, but it does cover quite a lot.

If you have a specific problem that we do not cover here, you might want to check out
stackoverflow.com to see if someone has already provided an answer. Stack Overflow is also a great
place to ask new questions (please use the spring-cloud-sleuth tag).

We are also more than happy to extend this section. If you want to add a “how-to”, send us a pull
request.

5.1. How to Set Up Sleuth with Brave?

Add the Sleuth starter to the classpath.

https://stackoverflow.com/tags/spring-cloud-sleuth
https://github.com/spring-cloud/spring-cloud-sleuth/tree/3.0.x
https://github.com/spring-cloud/spring-cloud-sleuth/tree/3.0.x

Maven

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>${release.train-version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-sleuth</artifactId>
</dependency>

Gradle

dependencyManagement {
imports {
mavenBom "org.springframework.cloud:spring-cloud-
dependencies:${releaseTrainVersion}"

}
}

dependencies {
implementation "org.springframework.cloud:spring-cloud-starter-sleuth"

}

5.2. How to Set Up Sleuth with Brave & Zipkin via
HTTP?

Add the Sleuth starter and Zipkin to the classpath.

Maven

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>${release.train-version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-sleuth</artifactId>

</dependency>

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-sleuth-zipkin</artifactId>

</dependency>

Gradle

dependencyManagement {
imports {
mavenBom "org.springframework.cloud:spring-cloud-
dependencies:${releaseTrainVersion}"

}
}

dependencies {
implementation "org.springframework.cloud:spring-cloud-starter-sleuth"
implementation "org.springframework.cloud:spring-cloud-sleuth-zipkin"

5.3. How to Set Up Sleuth with Brave & Zipkin via
Messaging?

If you want to use RabbitMQ, Kafka or ActiveMQ instead of HTTP, add the spring-rabbit, spring-
kafka or org.apache.activemg:activemg-client dependency. The default destination name is Zipkin.

If using Kafka, you must add the Kafka dependency.

Maven

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>${release.train-version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-sleuth</artifactId>

</dependency>

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-sleuth-zipkin</artifactId>

</dependency>

<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>

</dependency>

Gradle

dependencyManagement {
imports {
mavenBom "org.springframework.cloud:spring-cloud-
dependencies:${releaseTrainVersion}"
}
}

dependencies {
implementation "org.springframework.cloud:spring-cloud-starter-sleuth”
implementation "org.springframework.cloud:spring-cloud-sleuth-zipkin"
implementation "org.springframework.kafka:spring-kafka"

Also, you need to set the property spring.zipkin.sender.type property accordingly:

spring.zipkin.sender.type: kafka

If you want Sleuth over RabbitMQ, add the spring-cloud-starter-sleuth, spring-cloud-sleuth-

zipkin and spring-rabbit dependencies.

Maven

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>${release.train-version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-sleuth</artifactId>

</dependency>

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-sleuth-zipkin</artifactId>

</dependency>

<dependency>
<groupld>org.springframework.amgp</groupId>
<artifactId>spring-rabbit</artifactId>

</dependency>

Gradle

dependencyManagement {
imports {
mavenBom "org.springframework.cloud:spring-cloud-
dependencies:${releaseTrainVersion}"
}
}

dependencies {
implementation "org.springframework.cloud:spring-cloud-starter-sleuth"
implementation "org.springframework.cloud:spring-cloud-sleuth-zipkin"
implementation "org.springframework.amgp:spring-rabbit"

If you want Sleuth over ActiveMQ, add the spring-cloud-starter-sleuth, spring-cloud-sleuth-zipkin
and activemg-client dependencies.

Maven

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>${release.train-version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-sleuth</artifactId>

</dependency>

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-sleuth-zipkin</artifactId>

</dependency>

<dependency>
<groupld>org.apache.activemq</groupld>
<artifactId>activemq-client</artifactId>

</dependency>

Gradle

dependencyManagement {
imports {
mavenBom "org.springframework.cloud:spring-cloud-
dependencies:${releaseTrainVersion}"
}
}

dependencies {
implementation "org.springframework.cloud:spring-cloud-starter-sleuth”
implementation "org.springframework.cloud:spring-cloud-sleuth-zipkin"
implementation "org.apache.activemq:activemg-client"

Also, you need to set the property spring.zipkin.sender.type property accordingly:

spring.zipkin.sender.type: activemq

5.4. How to See Spans in an External System?

If you can’t see spans get reported to an external system (e.g. Zipkin), then it’s most likely due to the
following causes:

* Your span is not being sampled

* You have forgotten to add the dependency to report to an external system (e.g. spring-cloud-
sleuth-zipkin)

* You have misconfigured the connection to the external system
5.4.1. Your Span Is Not Being Sampled
In order to check if the span is not being sampled it’s enough to see if the exportable flag is being

set. Let’s look at the following example:

2020-10-21 12:01:16.285 INFO [backend,@bbaaf642574edd3,0bbaaf642574edd3, true] 289589
--- [ni0-9000-exec-1] Example : Hello world!

If the boolean value in the section [backend,@b6aaf642574edd3,0bbaafb642574edd3, true] is true means
that the span is being sampled and should be reported.

5.4.2. Missing Dependency

Up till Sleuth 3.0.0 the dependency spring-cloud-starter-zipkin included the spring-cloud-starter-
sleuth dependency and the spring-cloud-sleuth-zipkin dependency. With 3.0.0 spring-cloud-
starter-zipkin was removed, so you need to change it to spring-cloud-sleuth-zipkin.

5.4.3. Connection Misconfiguration

Double check if the remote system address is correct (e.g. spring.zipkin.baselUrl) and that if trying
to communicate over the broker, your broker connection is set up properly.

5.5. How to Make RestTemplate, WebClient, etc. Work?

If you're observing that the tracing context is not being propagated then cause is one of the
following:

* We are not instrumenting the given library

* We are instrumenting the library, however you misconfigured the setup

In case of lack of instrumentation capabilities please file an issue with a request to add such
instrumentation.

In case of the misconfiguration please ensure that the client you're using to communicate is a
Spring bean. If you create the client manually via the new operator the instrumentation will not
work.

https://github.com/spring-cloud/spring-cloud-sleuth/issues

Example where instrumentation will work:

import org.springframework.context.annotation.Configuration;
import org.springframework.web.client.RestTemplate;

@Configuration(proxyBeanMethods = false)
class MyConfiguration {
@Bean RestTemplate myRestTemplate() {
return new RestTemplate();

}
}

@Service
class MyService {
private final RestTemplate restTemplate;

MyService(RestTemplate restTemplate) {
this.restTemplate = restTemplate;

}

String makeACall() {
return this.restTemplate.getForObject("http://example.com", String.class);

}

Example where instrumentation will NOT work:

@Service
class MyService {

String makeACall() {
// This will not work because RestTemplate is not a bean
return new RestTemplate().getForObject("http://example.com",
String.class);

}

5.6. How to Add Headers to the HTTP Server Response?

Register a filter that will set the server response.

import org.springframework.cloud.sleuth.Span;
import org.springframework.cloud.sleuth.Tracer;

import javax.servlet.Filter;
import org.springframework.web.server.WebFilter;

@Configuration(proxyBeanMethods = false)
class MyConfig {

// Example of a servlet Filter for non-reactive applications
@Bean
Filter traceIdInResponseFilter(Tracer tracer) {
return (request, response, chain) -> {
Span currentSpan = tracer.currentSpan();
if (currentSpan != null) {
HttpServletResponse resp = (HttpServletResponse) response;
// putting trace id value in [mytraceid] response header
resp.addHeader ("mytraceid", currentSpan.context().traceld());
}
chain.doFilter(request, response);
1
}

// Example of a reactive WebFilter for reactive applications
@Bean
WebFilter traceIdInResponseFilter(Tracer tracer) {
return (exchange, chain) -> {
Span currentSpan = tracer.currentSpan();
if (currentSpan != null) {
// putting trace id value in [mytraceid] response header
exchange.getResponse().getHeaders().add("mytraceid",
currentSpan.context().traceld());

}

return chain.filter(exchange);

h
}
}
o Your spans need to be sampled for the parser to work. That means that you need to
be able to export spans to e.g. Zipkin.

5.7. How to Customize HTTP Client Spans?

Register a bean of HttpRequestParser type whose name is HttpClientRequestParser.NAME to add
customization for the request side. Register a bean of HttpResponseParser type whose name is
HttpClientRequestParser.NAME to add customization for the response side.

@Configuration(proxyBeanMethods = false)
public static class ClientParserConfiguration {

// example for Feign
@Bean(name = HttpClientRequestParser.NAME)
HttpRequestParser myHttpClientRequestParser() {
return (request, context, span) -> {
// Span customization
span.name(request.method());
span.tag("ClientRequest”, "Tag");
Object unwrap = request.unwrap();
if (unwrap instanceof feign.Request) {
feign.Request req = (feign.Request) unwrap;
// Span customization
span.tag("ClientRequestFeign", req.httpMethod().name());

};
}

// example for Feign
@Bean(name = HttpClientResponseParser.NAME)
HttpResponseParser myHttpClientResponseParser() {
return (response, context, span) -> {
// Span customization
span.tag("ClientResponse”, "Tag");
Object unwrap = response.unwrap();
if (unwrap instanceof feign.Response) {
feign.Response resp = (feign.Response) unwrap;
// Span customization
span.tag("ClientResponseFeign", String.valueOf(resp.status()));

};

5.8. How to Customize HTTP Server Spans?

Register a bean of HttpRequestParser type whose name is HttpServerRequestParser.NAME to add
customization for the request side. Register a bean of HttpResponseParser type whose name is
HttpServerResponseParser.NAME to add customization for the response side.

@Configuration(proxyBeanMethods = false)
public static class ServerParserConfiguration {

@Bean(name = HttpServerRequestParser.NAME)
HttpRequestParser myHttpRequestParser() {
return (request, context, span) -> {
// Span customization
span.tag("ServerRequest”, "Tag");
Object unwrap = request.unwrap();
if (unwrap instanceof HttpServletRequest) {
HttpServletRequest req = (HttpServletRequest) unwrap;
// Span customization
span.tag("ServerRequestServlet", req.getMethod());

};
}

@Bean(name = HttpServerResponseParser.NAME)
HttpResponseParser myHttpResponseParser() {
return (response, context, span) -> {
// Span customization
span.tag("ServerResponse", "Tag");
Object unwrap = response.unwrap();
if (unwrap instanceof HttpServletResponse) {
HttpServletResponse resp = (HttpServletResponse) unwrap;
// Span customization
span.tag("ServerResponseServlet"”,
String.valueOf(resp.getStatus()));
}
};
}

@Bean
Filter traceldInResponseFilter(Tracer tracer) {
return (request, response, chain) -> {
Span currentSpan = tracer.currentSpan();
if (currentSpan != null) {
HttpServletResponse resp = (HttpServletResponse) response;
resp.addHeader ("mytraceid", currentSpan.context().traceld());

}

chain.doFilter(request, response);

o Your spans need to be sampled for the parser to work. That means that you need to
be able to export spans to e.g. Zipkin.

5.9. How to See the Application Name in Logs?

Assuming that you haven’t changed the default logging format set the spring.application.name
property in bootstrap.yml, not in application.yml.

G With the new Spring Cloud configuration bootstrap this should no longer be
- required since there will be no Bootstrap Context anymore.

5.10. How to Change The Context Propagation
Mechanism?

To use the provided defaults you can set the spring.sleuth.propagation.type property. The value
can be a list in which case you will propagate more tracing headers.

For Brave we support AllS, B3, W3C propagation types.

If you want to provide a custom propagation mechanism set the spring.sleuth.propagation.type
property to CUSTOM and implement your own bean (Propagation.Factory for Brave). Below you can
find the examples:

@Component
class CustomPropagator extends Propagation.Factory implements Propagation<String>

{

@0verride
public List<String> keys() {
return Arrays.asList("myCustomTraceId", "myCustomSpanId");

}

@0verride
public <R> TraceContext.Injector<R> injector(Setter<R, String> setter) {
return (traceContext, request) -> {
setter.put(request, "myCustomTraceId", traceContext.traceIdString());
setter.put(request, "myCustomSpanId", traceContext.spanIdString());
I
}

@lverride
public <R> TraceContext.Extractor<R> extractor(Getter<R, String> getter) {
return request ->
TraceContextOrSamplingFlags.create(TraceContext.newBuilder()
.traceId(HexCodec.lowerHexToUnsignedLong(getter.get(request,
"myCustomTracelId")))
.spanId(HexCodec.lowerHexToUnsignedLong(getter.get(request,
"myCustomSpanId"))).build());
}

@0verride

public <K> Propagation<K> create(KeyFactory<K> keyFactory) {
return StringPropagationAdapter.create(this, keyFactory);

}

5.11. How to Implement My Own Tracer?

Spring Cloud Sleuth API contains all necessary interfaces to be implemented by a tracer. The project
comes with OpenZipkin Brave implementation. You can check how both tracers are bridged to the
Sleuth’s API by looking at the org.springframework.cloud.sleuth.brave.bridge module.

6. Spring Cloud Sleuth customization

In this section, we describe how to customize various parts of Spring Cloud Sleuth.

6.1. Asynchronous Communication

In this section, we describe how to customize asynchronous communication with Spring Cloud
Sleuth.

6.1.1. @Async Annotated methods

This feature is available for all tracer implementations.

In Spring Cloud Sleuth, we instrument async-related components so that the tracing information is
passed between threads. You can disable this behavior by setting the value of
spring.sleuth.async.enabled to false.

If you annotate your method with @Async, we automatically modify the existing Span as follows:

o If the method is annotated with @SpanName, the value of the annotation is the Span’s name.
o If the method is not annotated with @SpanName, the Span name is the annotated method name.

* The span is tagged with the method’s class name and method name.

Since we’re modifying the existing span, if you want to maintain its original name (e.g. a span
created by receiving an HTTP request) you should wrap your @Async annotated method with a
@NewSpan annotation or create a new span manually.

6.1.2. @Scheduled Annotated Methods

This feature is available for all tracer implementations.

In Spring Cloud Sleuth, we instrument scheduled method execution so that the tracing information
is passed between threads. You can disable this behavior by setting the value of
spring.sleuth.scheduled.enabled to false.

If you annotate your method with @Scheduled, we automatically create a new span with the
following characteristics:

* The span name is the annotated method name.

* The span is tagged with the method’s class name and method name.

If you want to skip span creation for some @Scheduled annotated classes, you can set the
spring.sleuth.scheduled.skipPattern with a regular expression that matches the fully qualified
name of the @Scheduled annotated class.

6.1.3. Executor, ExecutorService, and ScheduledExecutorService
This feature is available for all tracer implementations.

We provide LazyTraceExecutor, TraceableExecutorService, and TraceableScheduledExecutorService.
Those implementations create spans each time a new task is submitted, invoked, or scheduled.

The following example shows how to pass tracing information with TraceableExecutorService when

working with CompletableFuture:

CompletableFuture<Long> completableFuture = CompletableFuture.supplyAsync(() -> {
// perform some logic
return 1_000 _000L;
}, new TraceableExecutorService(beanFactory, executorService,
// 'calculateTax' explicitly names the span - this param is optional
"calculateTax"));

Sleuth does not work with parallelStream() out of the box. If you want to have the
tracing information propagated through the stream, you have to use the approach
with supplyAsync(::+), as shown earlier.

If there are beans that implement the Executor interface that you would like to exclude from span
creation, you can use the spring.sleuth.async.ignored-beans property where you can provide a list
of bean names.

You can disable this behavior by setting the value of spring.sleuth.async.enabled to false.

Customization of Executors

Sometimes, you need to set up a custom instance of the AsyncExecutor. The following example
shows how to set up such a custom Executor:

@Configuration(proxyBeanMethods = false)

@EnableAutoConfiguration

@EnableAsync

// add the infrastructure role to ensure that the bean gets auto-proxied
©@Role(BeanDefinition.ROLE_INFRASTRUCTURE)

public static class CustomExecutorConfig extends AsyncConfigurerSupport {

@Autowired
BeanFactory beanFactory;

@0verride

public Executor getAsyncExecutor() {
ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
// CUSTOMIZE HERE
executor.setCorePoolSize(7);
executor.setMaxPoolSize(42);
executor.setQueueCapacity(11);
executor.setThreadNamePrefix("MyExecutor-");
// DON'T FORGET TO INITIALIZE
executor.initialize();
return new LazyTraceExecutor(this.beanFactory, executor);

(r') To ensure that your configuration gets post processed, remember to add the
- @Role(BeanDefinition.ROLE_INFRASTRUCTURE) on your @Configuration class

6.2. HTTP Client Integration

Features from this section can be disabled by setting the spring.sleuth.web.client.enabled property
with value equal to false.

6.2.1. Synchronous Rest Template
This feature is available for all tracer implementations.

We inject a RestTemplate interceptor to ensure that all the tracing information is passed to the
requests. Each time a call is made, a new Span is created. It gets closed upon receiving the response.
To block the synchronous RestTemplate features, set spring.sleuth.web.client.enabled to false.

You have to register RestTemplate as a bean so that the interceptors get injected. If
o you create a RestTemplate instance with a new keyword, the instrumentation does
NOT work.

6.2.2. Asynchronous Rest Template

This feature is available for all tracer implementations.

o Starting with Sleuth 2.0.0, we no longer register a bean of AsyncRestTemplate type.
It is up to you to create such a bean. Then we instrument it.

To block the AsyncRestTemplate features, set spring.sleuth.web.async.client.enabled to false. To
disable creation of the default TraceAsyncClientHttpRequestFactoryWrapper, set
spring.sleuth.web.async.client.factory.enabled to false. If you do not want to create
AsyncRestClient at all, set spring.sleuth.web.async.client.template.enabled to false.

Multiple Asynchronous Rest Templates

Sometimes you need to use multiple implementations of the Asynchronous Rest Template. In the
following snippet, you can see an example of how to set up such a custom AsyncRestTemplate:

@Configuration(proxyBeanMethods = false)
public static class TestConfig {

@Bean(name = "customAsyncRestTemplate")
public AsyncRestTemplate traceAsyncRestTemplate() {
return new AsyncRestTemplate(asyncClientFactory(),
clientHttpRequestFactory());
}

private ClientHttpRequestFactory clientHttpRequestFactory() {
ClientHttpRequestFactory clientHttpRequestFactory = new
CustomClientHttpRequestFactory();
// CUSTOMIZE HERE
return clientHttpRequestFactory;
}

private AsyncClientHttpRequestFactory asyncClientFactory() {
AsyncClientHttpRequestFactory factory = new
CustomAsyncClientHttpRequestFactory();
// CUSTOMIZE HERE
return factory;

WebClient

This feature is available for all tracer implementations.

We inject a ExchangeFilterFunction implementation that creates a span and, through on-success and
on-error callbacks, takes care of closing client-side spans.

To block this feature, set spring.sleuth.web.client.enabled to false.

You have to register WebClient as a bean so that the tracing instrumentation gets
o applied. If you create a WebClient instance with a new keyword, the instrumentation
does NOT work.

Traverson

This feature is available for all tracer implementations.

If you use the Traverson library, you can inject a RestTemplate as a bean into your Traverson object.
Since RestTemplate is already intercepted, you get full support for tracing in your client. The
following pseudo code shows how to do that:

https://docs.spring.io/spring-hateoas/docs/current/reference/html/#client.traverson

@Autowired RestTemplate restTemplate;

Traverson traverson = new Traverson(URI.create("https://some/address"),
MediaType.APPLICATION_J]SON,

MediaType.APPLICATION_JSON_UTF8).setRestOperations(restTemplate);

// use Traverson

Apache HttpClientBuilder and HttpAsyncClientBuilder

This feature is available for Brave tracer implementation.

We instrument the HttpClientBuilder and HttpAsyncClientBuilder so that tracing context gets
injected to the sent requests.

To block these features, set spring.sleuth.web.client.enabled to false.

Netty HttpClient

This feature is available for all tracer implementations.
We instrument the Netty’s HttpClient.

To block this feature, set spring.sleuth.web.client.enabled to false.

You have to register HttpClient as a bean so that the instrumentation happens. If
o you create a HttpClient instance with a new keyword, the instrumentation does
NOT work.

UserInfoRestTemplateCustomizer

This feature is available for all tracer implementations.
We instrument the Spring Security’s UserInfoRestTemplateCustomizer.

To block this feature, set spring.sleuth.web.client.enabled to false.

6.3. HTTP Server Integration

Features from this section can be disabled by setting the spring.sleuth.web.enabled property with
value equal to false.

6.3.1. HTTP Filter
This feature is available for all tracer implementations.

Through the TracingFilter, all sampled incoming requests result in creation of a Span. You can
configure which URIs you would like to skip by setting the spring.sleuth.web.skipPattern property.
If you have ManagementServerProperties on classpath, its value of contextPath gets appended to the
provided skip pattern. If you want to reuse the Sleuth’s default skip patterns and just append your

own, pass those patterns by using the spring.sleuth.web.additionalSkipPattern.

By default, all the spring boot actuator endpoints are automatically added to the skip pattern. If you
want to disable this behaviour set spring.sleuth.web.ignore-auto-configured-skip-patterns to true.

To change the order of tracing filter registration, please set the spring.sleuth.web.filter-order
property.

To disable the filter that logs uncaught exceptions you can disable the spring.sleuth.web.exception-
throwing-filter-enabled property.

6.3.2. HandlerInterceptor

This feature is available for all tracer implementations.

Since we want the span names to be precise, we use a TraceHandlerInterceptor that either wraps an
existing HandlerInterceptor or is added directly to the list of existing HandlerInterceptors. The
TraceHandlerInterceptor adds a special request attribute to the given HttpServletRequest. If the the
TracingFilter does not see this attribute, it creates a “fallback” span, which is an additional span
created on the server side so that the trace is presented properly in the UL If that happens, there is
probably missing instrumentation. In that case, please file an issue in Spring Cloud Sleuth.

6.3.3. Async Servlet support

This feature is available for all tracer implementations.

If your controller returns a Callable or a WebAsyncTask, Spring Cloud Sleuth continues the existing
span instead of creating a new one.

6.3.4. WebFlux support

This feature is available for all tracer implementations.

Through TraceWlebFilter, all sampled incoming requests result in creation of a Span. That Span’s
name is http: + the path to which the request was sent. For example, if the request was sent to
/this/that, the name is http:/this/that. You can configure which URIs you would like to skip by
using the spring.sleuth.web.skipPattern property. If you have ManagementServerProperties on the
classpath, its value of contextPath gets appended to the provided skip pattern. If you want to reuse
Sleuth’s default skip patterns and append your own, pass those patterns by using the
spring.sleuth.web.additionalSkipPattern.

In order to achieve best results in terms of performance and context propagation we suggest that
you switch the spring.sleuth.reactor.instrumentation-type to MANUAL. In order to execute code with
the span in scope you can call WebFluxSleuthOperators.withSpanInScope. Example:

@GetMapping("/simpleManual")
public Mono<String> simpleManual() {
return Mono.just("hello").map(String::toUpperCase).doOnEach(WebFluxSleuthOperators
.withSpanInScope(SignalType.ON_NEXT, signal -> log.info("Hello from simple
[{}1", signal.get())));
}

To change the order of tracing filter registration, please set the spring.sleuth.web.filter-order
property.

6.4. Messaging

Features from this section can be disabled by setting the spring.sleuth.messaging.enabled property
with value equal to false.

6.4.1. Spring Integration

This feature is available for all tracer implementations.

Spring Cloud Sleuth integrates with Spring Integration. It creates spans for publish and subscribe
events. To disable Spring Integration instrumentation, set spring.sleuth.integration.enabled to
false.

You can provide the spring.sleuth.integration.patterns pattern to explicitly provide the names of
channels that you want to include for tracing. By default, all channels but hystrixStreamQutput
channel are included.

When using the Executor to build a Spring Integration IntegrationFlow, you must

o use the untraced version of the Executor. Decorating the Spring Integration
Executor Channel with TraceableExecutorService causes the spans to be
improperly closed.

If you want to customize the way tracing context is read from and written to message headers, it’s
enough for you to register beans of types:

* Propagator.Setter<MessageHeaderAccessor> - for writing headers to the message

* Propagator.Getter<MessageHeaderAccessor> - for reading headers from the message

Spring Integration Customization

Customizing messaging spans

In order to change the default span names and tags, just register a bean of type
MessageSpanCustomizer. You can also override the existing DefaultMessageSpanCustomizer to extend
the existing behaviour.

https://projects.spring.io/spring-integration/

@Component
class MyMessageSpanCustomizer extends DefaultMessageSpanCustomizer {
@0verride
public Span customizeHandle(Span spanCustomizer,
Message<?> message, MessageChannel messageChannel) {
return super.customizeHandle(spanCustomizer, message, messageChannel)

.name("changedHandle")
.tag("handleKey", "handleValue")
.tag("channelName", channelName(messageChannel));

@0verride
public Span.Builder customizeSend(Span.Builder builder,
Message<?> message, MessageChannel messageChannel) {
return super.customizeSend(builder, message, messageChannel)
.name("changedSend")
.tag("sendKey", "sendValue")
.tag("channelName", channelName(messageChannel));

6.4.2. Spring Cloud Function and Spring Cloud Stream
This feature is available for all tracer implementations.

Spring Cloud Sleuth can instrument Spring Cloud Function. The way to achieve it is to provide a
Function or Consumer or Supplier that takes in a Message as a parameter e.g.
Function<Message<String>, Message<Integer>>. If the type is not Message then instrumentation will
not take place. Out of the box instrumentation will not take place when dealing with Reactor based
streams - e.g. Function<Flux<Message<String>>, Flux<Message<Integer>>>.

Since Spring Cloud Stream reuses Spring Cloud Function, you’ll get the instrumentation out of the
box.

You can disable this behavior by setting the value of spring.sleuth.function.enabled to false.

In order to work with reactive Stream functions you can leverage the MessagingSleuthOperators
utility class that allows you to manipulate the input and output messages in order to continue the
tracing context and to execute custom code within the tracing context.

class SimpleReactiveManualFunction implements Function<Flux<Message<String>>,
Flux<Message<String>>> {

private static final Logger log =
LoggerFactory.getlLogger(SimpleReactiveFunction.class);

private final BeanFactory beanFactory;

SimpleReactiveManualFunction(BeanFactory beanFactory) {
this.beanFactory = beanFactory;

}

@lverride
public Flux<Message<String>> apply(Flux<Message<String>> input) {
return input.map(message ->
(MessagingSleuthOperators.asFunction(this.beanFactory, message))

.andThen(msg ->
MessagingSleuthOperators.withSpanInScope(this.beanFactory, msg, stringMessage -> {
log.info("Hello from simple manual [{}]",

stringMessage.getPayload());
return stringMessage;

})).andThen(msg ->
MessagingSleuthOperators.afterMessageHandled(this.beanFactory, msg, null))

.andThen(msg ->
MessageBuilder.createMessage(msg.getPayload().toUpperCase(), msg.getHeaders()))

.andThen(msg ->
MessagingSleuthOperators.handleOutputMessage(this.beanFactory, msg)).apply(message));

}

6.4.3. Spring RabbitMq
This feature is available for Brave tracer implementation.
We instrument the RabbitTemplate so that tracing headers get injected into the message.

To block this feature, set spring.sleuth.messaging.rabbit.enabled to false.

6.4.4. Spring Kafka
This feature is available for Brave tracer implementation.

We instrument the Spring Kafka’s ProducerFactory and ConsumerFactory so that tracing headers get
injected into the created Spring Kafka’s Producer and Consumer.

To block this feature, set spring.sleuth.messaging.kafka.enabled to false.

6.4.5. Spring Kafka Streams
This feature is available for Brave tracer implementation.

We instrument the KafkaStreams KafkaClientSupplier so that tracing headers get injected into the
Producer and Consumer's. A ‘KafkaStreamsTracing bean allows for further instrumentation through
additional TransformerSupplier and ProcessorSupplier methods.

To block this feature, set spring.sleuth.messaging.kafka.streams.enabled to false.

6.4.6. Spring JMS
This feature is available for Brave tracer implementation.

We instrument the JmsTemplate so that tracing headers get injected into the message. We also
support @JmsListener annotated methods on the consumer side.

To block this feature, set spring.sleuth.messaging.jms.enabled to false.

o We don’t support baggage propagation for JMS

6.5. OpenFeign
This feature is available for all tracer implementations.

By default, Spring Cloud Sleuth provides integration with Feign through
TraceFeignClientAutoConfiguration. You can disable it entirely by setting
spring.sleuth.feign.enabled to false. If you do so, no Feign-related instrumentation take place.

Part of Feign instrumentation is done through a FeignBeanPostProcessor. You can disable it by
setting spring.sleuth.feign.processor.enabled to false. If you set it to false, Spring Cloud Sleuth
does not instrument any of your custom Feign components. However, all the default
instrumentation is still there.

6.6. OpenTracing
This feature is available for all tracer implementations.

Spring Cloud Sleuth is compatible with OpenTracing. If you have OpenTracing on the classpath, we
automatically register the OpenTracing Tracer bean. If you wish to disable this, set
spring.sleuth.opentracing.enabled to false

6.7. Quartz

This feature is available for all tracer implementations.
We instrument quartz jobs by adding Job/Trigger listeners to the Quartz Scheduler.

To turn off this feature, set the spring.sleuth.quartz.enabled property to false.

https://opentracing.io/

6.8. Reactor

This feature is available for all tracer implementations.

We have the following modes of instrumenting reactor based applications that can be set via
spring.sleuth.reactor.instrumentation-type property:

* DECORATE_QUEUES - With the new Reactor queue wrapping mechanism (Reactor 3.4.3) we’re
instrumenting the way threads are switched by Reactor. This should lead to feature parity with
ON_EACH with low performance impact.

» DECORATE_ON_EACH - wraps every Reactor operator in a trace representation. Passes the tracing
context in most cases. This mode might lead to drastic performance degradation.

» DECORATE_ON_LAST - wraps last Reactor operator in a trace representation. Passes the tracing
context in some cases thus accessing MDC context might not work. This mode might lead to
medium performance degradation.

» MANUAL - wraps every Reactor in the least invasive way without passing of tracing context. It’s up
to the user to do it.

Current default is ON_EACH for backward compatibility reasons, however we encourage the users to
migrate to the MANUAL instrumentation and profit from WebFluxSleuthOperators and
MessagingSleuthOperators. The performance improvement can be substantial. Example:

@GetMapping("/simpleManual")
public Mono<String> simpleManual() {
return Mono.just("hello").map(String::toUpperCase).doOnEach(WebFluxSleuthOperators
.withSpanInScope(SignalType.ON_NEXT, signal -> log.info("Hello from simple

[{}]", signal.get())));
}

6.9. Redis

This feature is available for Brave tracer implementation.
We set tracing property to Lettuce ClientResources instance to enable Brave tracing built in Lettuce.

Spring Cloud Sleuth will provide a traced version of the ClientResources bean. If you have your own
implementation of that bean, remember to customize the ClientResources.Builder with a stream of
“ClientResourcesBuilderCustomizer 's like presented below:

https://github.com/reactor/reactor-core/pull/2566

©Bean(destroyMethod = "shutdown")
DefaultClientResources
myLettuceClientResources(ObjectProvider<ClientResourcesBuilderCustomizer> customizer)
{

DefaultClientResources.Builder builder = DefaultClientResources.builder();

// setting up the builder manually

customizer.stream().forEach(c -> c.customize(builder));

return builder.build();

To disable Redis support, set the spring.sleuth.redis.enabled property to false.

6.10. Runnable and Callable

This feature is available for all tracer implementations.

If you wrap your logic in Runnable or (Callable, you can wrap those classes in their Sleuth
representative, as shown in the following example for Runnable:

Runnable runnable = new Runnable() {
@0verride
public void run() {
// do some work

}

@lverride
public String toString() {
return "spanNameFromToStringMethod";

}
7
// Manual ‘TraceRunnable' creation with explicit "calculateTax" Span name
Runnable traceRunnable = new TraceRunnable(this.tracer, spanNamer, runnable,
"calculateTax");

The following example shows how to do so for Callable:

Callable<String> callable = new Callable<String>() {
@0verride
public String call() throws Exception {
return somelogic();

}

@0verride
public String toString() {
return "spanNameFromToStringMethod";

}
b
// Manual ‘TraceCallable' creation with explicit "calculateTax" Span name
Callable<String> traceCallable = new TraceCallable<>(tracer, spanNamer, callable,
"calculateTax");

That way, you ensure that a new span is created and closed for each execution.

6.11. RPC

This feature is available for Brave tracer implementation.

Sleuth automatically configures the RpcTracing bean which serves as a foundation for RPC
instrumentation such as gRPC or Dubbo.

If a customization of client / server sampling of the RPC traces is required, just register a bean of
type brave.sampler.SamplerFunction<RpcRequest> and name the bean sleuthRpcClientSampler for
client sampler and sleuthRpcServerSampler for server sampler.

For your convenience the @RpcClientSampler and @RpcServerSampler annotations can be used to
inject the proper beans or to reference the bean names via their static String NAME fields.

Ex. Here’s a sampler that traces 100 "GetUserToken" server requests per second. This doesn’t start
new traces for requests to the health check service. Other requests will use the global sampling
configuration.

@Configuration(proxyBeanMethods = false)
class Config {
@Bean(name = RpcServerSampler.NAME)
SamplerFunction<RpcRequest> myRpcSampler() {
Matcher<RpcRequest> userAuth = and(serviceEquals("users.UserService"),
methodEquals("GetUserToken"));
return
RpcRuleSampler.newBuilder().putRule(serviceEquals("grpc.health.v1.Health"),
Sampler.NEVER_SAMPLE)
.putRule(userAuth, RatelLimitingSampler.create(100)).build();
}
}

For more, see github.com/openzipkin/brave/tree/master/instrumentation/rpc#sampling-policy

6.11.1. Dubbo RPC support

Via the integration with Brave, Spring Cloud Sleuth supports Dubbo. It’s enough to add the brave-
instrumentation-dubbo dependency:

<dependency>
<groupId>io.zipkin.brave</groupId>
<artifactId>brave-instrumentation-dubbo</artifactId>
</dependency>

You need to also set a dubbo.properties file with the following contents:

dubbo.provider.filter=tracing
dubbo.consumer.filter=tracing

You can read more about Brave - Dubbo integration here. An example of Spring Cloud Sleuth and
Dubbo can be found here.

6.11.2. gRPC

Spring Cloud Sleuth provides instrumentation for gRPC via the Brave tracer. You can disable it
entirely by setting spring.sleuth.grpc.enabled to false.

Variant 1
Dependencies

The gRPC integration relies on two external libraries to instrument clients and
o servers and both of those libraries must be on the class path to enable the
instrumentation.

Maven:

<dependency>
<groupId>io.github.lognet</groupId>
<artifactId>grpc-spring-boot-starter</artifactId>
</dependency>
<dependency>
<groupId>io.zipkin.brave</groupId>
<artifactId>brave-instrumentation-grpc</artifactId>
</dependency>

Gradle:

https://github.com/openzipkin/brave/tree/master/instrumentation/rpc#sampling-policy
https://dubbo.apache.org/
https://github.com/openzipkin/brave/tree/master/instrumentation/dubbo-rpc
https://github.com/openzipkin/sleuth-webmvc-example/compare/add-dubbo-tracing
https://grpc.io/

compile("io.github.lognet:grpc-spring-boot-starter")
compile("io.zipkin.brave:brave-instrumentation-grpc")

Server Instrumentation

Spring Cloud Sleuth leverages grpc-spring-boot-starter to register Brave’s gRPC server interceptor
with all services annotated with @GRpcService.

Client Instrumentation

gRPC clients leverage a ManagedChannelBuilder to construct a ManagedChannel used to communicate to
the gRPC server. The native ManagedChannelBuilder provides static methods as entry points for
construction of ManagedChannel instances, however, this mechanism is outside the influence of the
Spring application context.

Spring Cloud Sleuth provides a SpringAwareManagedChannelBuilder that can be
o customized through the Spring application context and injected by gRPC clients.
This builder must be used when creating ManagedChannel instances.

Sleuth creates a TracingManagedChannelBuilderCustomizer which inject Brave’s client interceptor into
the SpringAwareManagedChannelBuilder.

Variant 2

Grpc Spring Boot Starter automatically detects the presence of Spring Cloud Sleuth and Brave’s
instrumentation for gRPC and registers the necessary client and/or server tooling.

6.12. RxJava

This feature is available for all tracer implementations.

We registering a custom RxJavaSchedulersHook that wraps all Action@ instances in their Sleuth
representative, which is called TraceAction. The hook either starts or continues a span, depending
on whether tracing was already going on before the Action was scheduled. To disable the custom
RxJavaSchedulersHook, set the spring.sleuth.rxjava.schedulers.hook.enabled to false.

You can define a list of regular expressions for thread names for which you do not want spans to be
created. To do so, provide a comma-separated list of regular expressions in the
spring.sleuth.rxjava.schedulers.ignoredthreads property.

o The suggested approach to reactive programming and Sleuth is to use the Reactor
support.

6.13. Spring Cloud CircuitBreaker

This feature is available for all tracer implementations.

https://github.com/yidongnan/grpc-spring-boot-starter
https://github.com/ReactiveX/RxJava/wiki/Plugins#rxjavaschedulershook

If you have Spring Cloud CircuitBreaker on the classpath, we will wrap the passed command
Supplier and the fallback Function in its trace representations. In order to disable this

instrumentation set spring.sleuth.circuitbreaker.enabled to false.

Common application properties

Various properties can be specified inside your application.properties file, inside your
application.yml file, or as command line switches. This appendix provides a list of common Spring
Cloud Sleuth properties and references to the underlying classes that consume them.

Property contributions can come from additional jar files on your classpath, so you
o should not consider this an exhaustive list. Also, you can define your own

properties.

Name Default

spring.sleuth.async.configurer.e true
nabled

spring.sleuth.async.enabled true

spring.sleuth.async.ignored-
beans

spring.sleuth.baggage.correlatio true
n-enabled

spring.sleuth.baggage.correlatio
n-fields

spring.sleuth.baggage.local-
fields

spring.sleuth.baggage.remote-
fields

spring.sleuth.baggage.tag-fields

spring.sleuth.circuitbreaker.ena true
bled

spring.sleuth.enabled true

spring.sleuth.feign.enabled true

Description

Enable default
AsyncConfigurer.

Enable instrumenting async
related components so that the
tracing information is passed
between threads.

List of {@link
java.util.concurrent.Executor}
bean names that should be
ignored and not wrapped in a
trace representation.

Enables correlating the baggage
context with logging contexts.

List of fields that are referenced
the same in-process as it is on
the wire. For example, the field
"x-vcap-request-id” would be set
as-is including the prefix.

Enable Spring Cloud
CircuitBreaker instrumentation.

Enable span information
propagation when using Feign.

Name

spring.sleuth.feign.processor.en
abled

spring.sleuth.function.enabled

spring.sleuth.grpc.enabled

spring.sleuth.http.enabled

spring.sleuth.integration.enable
d

spring.sleuth.integration.patter
ns

spring.sleuth.integration.webso
ckets.enabled

spring.sleuth.messaging.enable
d

spring.sleuth.messaging.jms.en
abled

spring.sleuth.messaging.jms.re
mote-service-name

spring.sleuth.messaging.kafka.e
nabled

spring.sleuth.messaging.kafka.
mapper.enabled

spring.sleuth.messaging.kafka.r
emote-service-name

spring.sleuth.messaging.kafka.s
treams.enabled

spring.sleuth.messaging.rabbit.
enabled

Default

true

true

true

true

true

['hystrixStreamOutput*, ,
Ichannel]

true

false

true

jms

true

true

kafka

false

true

Description

Enable post processor that
wraps Feign Context in its
tracing representations.

Enable instrumenting of Spring
Cloud Function and Spring
Cloud Function based projects
(e.g. Spring Cloud Stream).

Enable span information
propagation when using GRPC.

Enables HTTP support.

Enable Spring Integration
sleuth instrumentation.

An array of patterns against
which channel names will be
matched. @see
org.springframework.integratio
n.config.GlobalChannellntercep
tor#patterns() Defaults to any
channel name not matching the
Hystrix Stream and functional
Stream channel names.

Enable tracing for WebSockets.

Should messaging be turned on.

Enable tracing of JMS.

JMS remote service name.

Enable tracing of Kafka.

Enable
DefaultKafkaHeaderMapper
tracing for Kafka.

Kafka remote service name.

Should Kafka Streams be
turned on.

Enable tracing of RabbitMQ.

Name

spring.sleuth.messaging.rabbit.r
emote-service-name

spring.sleuth.mongodb.enabled

spring.sleuth.opentracing.enabl
ed

spring.sleuth.propagation.type

spring.sleuth.quartz.enabled

spring.sleuth.reactor.decorate-
on-each

spring.sleuth.reactor.enabled

spring.sleuth.reactor.instrumen
tation-type

spring.sleuth.redis.enabled

spring.sleuth.redis.remote-
service-name

spring.sleuth.rpc.enabled

spring.sleuth.rxjava.schedulers.
hook.enabled

spring.sleuth.rxjava.schedulers.
ignoredthreads

spring.sleuth.sampler.probabilit
y

Default
rabbitmqg

true

true

true

true

true

true

redis

true

true

[HystrixMetricPoller,
ARxComputation.*$]

Description

Rabbit remote service name.

Enable tracing for MongoDb.

Enables OpenTracing support.

Tracing context propagation
types.

Enable tracing for Quartz.

When true decorates on each
operator, will be less
performing, but logging will
always contain the tracing
entries in each operator. When
false decorates on last operator,
will be more performing, but
logging might not always
contain the tracing entries.
@deprecated use explicit value
via {@link
SleuthReactorProperties#instru
mentationType}

When true enables
instrumentation for reactor.

Enable span information
propagation when using Redis.

Service name for the remote
Redis endpoint.

Enable tracing of RPC.

Enable support for RxJava via
RxJavaSchedulersHook.

Thread names for which spans
will not be sampled.

Probability of requests that
should be sampled. E.g. 1.0 -
100% requests should be
sampled. The precision is
whole-numbers only (i.e. there’s
no support for 0.1% of the
traces).

Name

spring.sleuth.sampler.rate

Default
10

spring.sleuth.sampler.refresh.e true

nabled

spring.sleuth.scheduled.enabled true

spring.sleuth.scheduled.skip-
pattern

spring.sleuth.span-
filter.additional-span-name-
patterns-to-ignore

spring.sleuth.span-
filter.enabled

spring.sleuth.span-filter.span-
name-patterns-to-skip

false

AcatalogWatchTaskScheduler$

Description

A rate per second can be a nice
choice for low-traffic endpoints
as it allows you surge
protection. For example, you
may never expect the endpoint
to get more than 50 requests
per second. If there was a
sudden surge of traffic, to 5000
requests per second, you would
still end up with 50 traces per
second. Conversely, if you had a
percentage, like 10%, the same
surge would end up with 500
traces per second, possibly
overloading your storage.
Amazon X-Ray includes a rate-
limited sampler (named
Reservoir) for this purpose.
Brave has taken the same
approach via the {@link
brave.sampler.RateLimitingSam
pler}.

Enable refresh scope for
sampler.

Enable tracing for {@link
org.springframework.schedulin
g.annotation.Scheduled}.

Pattern for the fully qualified
name of a class that should be
skipped.

Additional list of span names to
ignore. Will be appended to
{@link
#spanNamePatternsToSkip}.

Will turn on the default Sleuth
handler mechanism. Might
ignore exporting of certain
spans;

List of span names to ignore.
They will not be sent to external
systems.

Name

spring.sleuth.supports-join

spring.sleuth.trace-id128

spring.sleuth.tracer.mode

spring.sleuth.web.additional-
skip-pattern

spring.sleuth.web.client.enable
d

spring.sleuth.web.client.skip-
pattern

spring.sleuth.web.enabled

spring.sleuth.web.filter-order

spring.sleuth.web.ignore-auto-
configured-skip-patterns

spring.sleuth.web.servlet.enabl
ed

spring.sleuth.web.skip-pattern

spring.sleuth.web.webclient.en
abled

spring.zipkin.activemq.message
-max-bytes

spring.zipkin.activemg.queue

Default

true

false

true

true

false

true

/api-docs. |/swagger. | .
\.png|.\.css|.\.js|.\.html|/fa
vicon.ico|/hystrix.stream

true

100000

zipkin

Description

True means the tracing system
supports sharing a span ID
between a client and server.

When true, generate 128-bit
trace IDs instead of 64-bit ones.

Set which tracer
implementation should be
picked.

Additional pattern for URLs that
should be skipped in tracing.
This will be appended to the
{@link
SleuthWebProperties#skipPatte
rn}.

Enable interceptor injecting
into {@link
org.springframework.web.clien
t.RestTemplate}.

Pattern for URLs that should be
skipped in client side tracing.

When true enables
instrumentation for web
applications.

Order in which the tracing
filters should be registered.

If set to true, auto-configured
skip patterns will be ignored.

Enable servlet instrumentation.

Pattern for URLs that should be
skipped in tracing.

Enable tracing instrumentation
for WebClient.

Maximum number of bytes for
a given message with spans
sent to Zipkin over ActiveMQ.

Name of the ActiveMQ queue
where spans should be sent to
Zipkin.

Name

spring.zipkin.api-path

spring.zipkin.base-url

spring.zipkin.compression.enab
led

spring.zipkin.discovery-client-
enabled

spring.zipkin.enabled

spring.zipkin.encoder

spring.zipkin.kafka.topic
spring.zipkin.locator.discovery.

enabled

spring.zipkin.message-timeout

spring.zipkin.rabbitmgq.address

es

spring.zipkin.rabbitmg.queue

spring.zipkin.sender.type

Default

localhost:9411/

false

true

zipkin

false

—_

zipkin

Description

The API path to append to
baseUrl (above) as suffix. This
applies if you use other
monitoring tools, such as New
Relic. The trace API doesn’t
need the API path, so you can
set it to blank ("") in the
configuration.

URL of the zipkin query server
instance. You can also provide
the service id of the Zipkin
server if Zipkin’s registered in
service discovery (e.g.
zipkinserver/).

If set to {@code false}, will treat
the {@link
ZipkinProperties#baseUrl} as a
URL always.

Enables sending spans to
Zipkin.

Encoding type of spans sent to
Zipkin. Set to {@link
SpanBytesEncoder#JSON_V1} if
your server is not recent.

Name of the Kafka topic where
spans should be sent to Zipkin.

Enabling of locating the host
name via service discovery.

Timeout in seconds before
pending spans will be sent in
batches to Zipkin.

Addresses of the RabbitMQ
brokers used to send spans to
Zipkin

Name of the RabbitMQ queue
where spans should be sent to
Zipkin.

Means of sending spans to
Zipkin.

http://localhost:9411/
https://zipkinserver/

Name

spring.zipkin.service.name

Default

Description

The name of the service, from
which the Span was sent via
HTTP, that should appear in
Zipkin.

	Spring Cloud Sleuth Reference Documentation
	Table of Contents
	1. Legal
	2. Getting Started
	2.1. Introducing Spring Cloud Sleuth
	2.2. Developing Your First Spring Cloud sleuth-based Application
	2.3. Next Steps

	3. Using Spring Cloud Sleuth
	3.1. Span Lifecycle with Spring Cloud Sleuth’s API
	3.2. Naming Spans
	3.3. Managing Spans with Annotations
	3.4. What to Read Next

	4. Spring Cloud Sleuth Features
	4.1. Context Propagation
	4.2. Sampling
	4.3. Baggage
	4.4. OpenZipkin Brave Tracer Integration
	4.5. Sending Spans to Zipkin
	4.6. Log integration
	4.7. What to Read Next

	5. “How-to” Guides
	5.1. How to Set Up Sleuth with Brave?
	5.2. How to Set Up Sleuth with Brave & Zipkin via HTTP?
	5.3. How to Set Up Sleuth with Brave & Zipkin via Messaging?
	5.4. How to See Spans in an External System?
	5.5. How to Make RestTemplate, WebClient, etc. Work?
	5.6. How to Add Headers to the HTTP Server Response?
	5.7. How to Customize HTTP Client Spans?
	5.8. How to Customize HTTP Server Spans?
	5.9. How to See the Application Name in Logs?
	5.10. How to Change The Context Propagation Mechanism?
	5.11. How to Implement My Own Tracer?

	6. Spring Cloud Sleuth customization
	6.1. Asynchronous Communication
	6.2. HTTP Client Integration
	6.3. HTTP Server Integration
	6.4. Messaging
	6.5. OpenFeign
	6.6. OpenTracing
	6.7. Quartz
	6.8. Reactor
	6.9. Redis
	6.10. Runnable and Callable
	6.11. RPC
	6.12. RxJava
	6.13. Spring Cloud CircuitBreaker
	Common application properties

