
Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE

Sabby Anandan, Artem Bilan, Marius Bogoevici, Eric Bottard, Mark Fisher,
Ilayaperumal Gopinathan, Gunnar Hillert, Mark Pollack, Patrick Peralta, Glenn

Renfro, Gary Russell, Thomas Risberg, David Turanski, Janne Valkealahti

Copyright © 2013-2016 Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow iii

Table of Contents

I. Reference Guide ... 1
1. Introduction ... 2

1.1. Starters and pre-built applications ... 2
1.2. Classification .. 2
1.3. Using the artifacts .. 3

Maven and Docker access .. 3
Building the artifacts ... 3

1.4. Creating custom artifacts .. 4
Using a different binder ... 4
Creating your own applications .. 4

Using generic Spring Cloud Stream applications ... 5
Using the starters to create custom components .. 5

1.5. Patching pre-built applications .. 5
1.6. Contributing Stream Application Starters and Generating Artifacts 6

II. Starters ... 11
2. Sources .. 12

2.1. File Source .. 12
Options ... 12

2.2. FTP Source ... 13
Options ... 13

2.3. Http Source .. 15
Options ... 15

2.4. JDBC Source ... 15
Options ... 15

2.5. JMS Source ... 16
Options ... 16

2.6. Load Generator Source .. 17
Options ... 17

2.7. RabbitMQ Source ... 17
Options ... 18

A Note About Retry ... 19
2.8. SFTP Source ... 19

Options ... 19
2.9. SYSLOG Source .. 21

Options ... 21
2.10. TCP ... 22

Options ... 22
Available Decoders ... 22

2.11. Time Source .. 23
Options ... 23

2.12. Trigger Source ... 23
Options ... 23

2.13. Twitter Stream Source .. 24
Options ... 24

3. Processors .. 25
3.1. Bridge Processor .. 25
3.2. Filter Processor .. 25

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow iv

Options ... 25
3.3. Groovy Filter Processor .. 25

Options ... 25
3.4. Groovy Transform Processor .. 25

Options ... 25
3.5. Http Client Processor ... 26

Options ... 26
3.6. PMML Processor .. 26

Options ... 26
3.7. Scripable Transform Processor ... 27

Options ... 27
3.8. Splitter Processor ... 27

Options ... 27
JSON Example ... 28

3.9. Transform Processor .. 29
Options ... 29

4. Sinks .. 30
4.1. Cassandra Sink .. 30

Options ... 30
4.2. Counter Sink .. 31

Options ... 31
4.3. Field Value Counter Sink .. 31

Options ... 32
4.4. File Sink .. 33

Options ... 33
4.5. FTP Sink ... 33

Options ... 34
4.6. Gemfire Sink .. 34

Options ... 34
4.7. Gpfdist Sink ... 35

Options ... 35
Implementation Notes .. 37
Detailed Option Descriptions .. 37
How Data Is Sent Into Segments ... 39
Example Usage .. 40
Tuning Transfer Rate .. 41

4.8. HDFS Sink ... 41
Options ... 41

4.9. Jdbc Sink ... 42
Options ... 42

4.10. Log Sink .. 43
Options ... 43

4.11. RabbitMQ Sink ... 43
Options ... 43

4.12. Redis Sink ... 44
Options ... 45

4.13. Router Sink .. 46
Options ... 46
SpEL-based Routing ... 47
Groovy-based Routing ... 47

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow v

4.14. TCP Sink ... 47
Options ... 47
Available Encoders ... 48

4.15. Throughput Sink ... 48
4.16. Websocket Sink ... 48

Options ... 49
Example ... 49

Step 1: Start Redis ... 49
Step 2: Deploy a time-source .. 49
Step 3: Deploy a websocket-sink (the app that contains this starter
jar) .. 49

Actuators .. 49
III. Appendices .. 51

A. Building .. 52
A.1. Basic Compile and Test ... 52
A.2. Documentation ... 52
A.3. Working with the code ... 52

Importing into eclipse with m2eclipse ... 52
Importing into eclipse without m2eclipse ... 53

5. Contributing .. 54
5.1. Sign the Contributor License Agreement ... 54
5.2. Code Conventions and Housekeeping ... 54

Part I. Reference Guide
This section will provide you with a detailed overview of Spring Cloud Stream Application Starters, their
purpose, and how to use them. It assumes familiarity with general Spring Cloud Stream concepts, which
can be found in the Spring Cloud Stream reference documentation.

http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 2

1. Introduction
Spring Cloud Stream Application Starters provide you with predefined Spring Cloud Stream applications
that you can run independently or with Spring Cloud Data Flow. You can also use the starters as a basis
for creating your own applications. They include:

• connectors (sources and sinks) for middleware including message brokers, storage (relational, non-
relational, filesystem);

• adapters for various network protocols;

• generic processors that can be customized via Spring Expression Language (SpEL) or scripting.

You can find a detailed listing of all the starters and as their options in the corresponding section of
this guide.

1.1 Starters and pre-built applications

As a user of Spring Cloud Stream Application Starters you have access to two types of artifacts.

Starters are libraries that contain the complete configuration of a Spring Cloud Stream application
with a specific role (e.g. an HTTP source that receives HTTP POST requests and forwards the data
on its output channel to downstream Spring Cloud Stream applications). Starters are not executable
applications, and are intended to be included in other Spring Boot applications, along with a Binder
implementation.

Prebuilt applications are Spring Boot applications that include the starters and a Binder implementation.
Prebuilt applications are uberjars and include minimal code required to execute standalone. For each
starter, the project provides a prebuilt version including the Kafka Binder and a prebuilt version including
the Rabbit MQ Binder.

Note

Only starters are present in the source code of the project. Prebuilt applications are generated
according to the Maven plugin configuration.

1.2 Classification

Based on their target application type, starters can be either:

• a source that connects to an external resource to receive data that is sent on its sole output channel;

• a processor that receives data from a single input channel and processes it, sending the result on
its single output channel;

• a sink that connects to an external resource to send data that is received on its sole input channel.

You can easily identify the type and functionality of a starter based on its name. All starters are
named following the convention spring-cloud-starter-stream-<type>-<functionality>.
For example spring-cloud-starter-stream-source-file is a starter for a file source that
polls a directory and sends file data on the output channel (read the reference documentation of the
source for details). Conversely, spring-cloud-starter-stream-sink-cassandra is a starter
for a Cassandra sink that writes the data that it receives on the input channel to Cassandra (read the
reference documentation of the sink for details).

http://docs.spring.io/spring/docs/4.2.x/spring-framework-reference/html/expressions.html
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#getting-started-first-application-executable-jar

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 3

The prebuilt applications follow a naming convention too: <functionality>-<type>-<binder>.
For example, cassandra-sink-kafka is a Cassandra sink using the Kafka binder.

1.3 Using the artifacts

You either get access to the artifacts produced by Spring Cloud Stream Application Starters via Maven,
Docker, or building the artifacts yourself.

Maven and Docker access

Starters are available as Maven artifacts in the Spring repositories. You can add them as dependencies
to your application, as follows:

<dependency>

 <group>org.springframework.cloud.stream.app</group>

 <artifactId>spring-cloud-starter-stream-sink-cassandra</artifactId>

 <version>1.0.0.BUILD-SNAPSHOT</version>

</dependency>

From this, you can infer the coordinates for other starters found in this guide. While the version may vary,
the group will always remain org.springframework.cloud.stream.app and the artifact id follows
the naming convention spring-cloud-starter-stream-<type>-<functionality> described
previously.

Prebuilt applications are available as Maven artifacts too. It is not encouraged to use them
directly as dependencies, as starters should be used instead. Following the typical Maven
<group>:<artifactId>:<version> convention, they can be referenced for example as:

org.springframework.cloud.stream.app:cassandra-sink-rabbit:1.0.0.BUILD-SNAPSHOT

Just as with the starters, you can infer the coordinates for other prebuilt applications found in the guide.
The group will be always org.springframework.cloud.stream.app. The version may vary. The
artifact id follows the format <functionality>-<type>-<binder> previously described.

The Docker versions of the applications are available in Docker Hub, at hub.docker.com/r/
springcloudstream/. Naming and versioning follows the same general conventions as Maven, e.g.

docker pull springcloudstream/cassandra-sink-kafka

will pull the latest Docker image of the Cassandra sink with the Kafka binder.

Building the artifacts

You can also build the project and generate the artifacts (including the prebuilt applications) on your
own. This is useful if you want to deploy the artifacts locally, for example for adding a new starter, or if
you want to build the entire set of artifacts with a new binder.

First, you need to generate the prebuilt applications. This is done by running the application generation
Maven plugin. You can do so by simply invoking the corresponding script in the root of the project.

./generate.sh

For the each of the prebuilt applications, the script will generate the following items:

• pom.xml file with the required dependencies (starter and binder)

• a class that contains the main method of the application and imports the predefined configuration

https://github.com/spring-projects/spring-framework/wiki/Spring-repository-FAQ
https://hub.docker.com/r/springcloudstream/
https://hub.docker.com/r/springcloudstream/

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 4

• generated integration test code that exercises the component against the configured binder.

For example, spring-cloud-starter-stream-sink-cassandra will generate cassandra-
sink-rabbit and cassandra-sink-kafka as completely functional applications.

1.4 Creating custom artifacts

Apart from accessing the sources, sinks and processors already provided by the project, in this section
we will describe how to:

• Use a different binder than Kafka or Rabbit

• Create your own applications

• Customize dependencies such as Hadoop distributions or JDBC drivers

Using a different binder

If you want to use one of the applications found in Spring Cloud Stream Application Starters and you
want to use one of the predefined binders (i.e. Kafka or Rabbit), you can just use the prebuilt versions
of the artifacts. But if you want to connect to a different middleware system, and you have a binder for
it, you will create new artifacts.

<dependencies>

 <!- other dependencies -->

 <dependency>

 <groupId>org.springframework.cloud.stream.app</groupId>

 <artifactId>spring-cloud-starter-stream-sink-cassandra</artifactId>

 <version>1.0.0.BUILD-SNAPSHOT</version>

 </dependency>

 <dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-stream-binder-gemfire</artifactId>

 <version>1.0.0.BUILD-SNAPSHOT</version>

 </dependency>

</dependencies>

The next step is to create the project’s main class and import the configuration provided by the starter.
For example, in the same case of the Cassandra sink it can look like the following:

package org.springframework.cloud.stream.app.cassandra.sink.rabbit;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;

import org.springframework.cloud.stream.app.cassandra.sink.CassandraSinkConfiguration;

import org.springframework.context.annotation.Import;

@SpringBootApplication

@Import(CassandraSinkConfiguration.class)

public class CassandraSinkGemfireApplication {

 public static void main(String[] args) {

 SpringApplication.run(CassandraSinkGemfireApplication.class, args);

 }

}

Creating your own applications

Spring Cloud Stream Application Starters consists of regular Spring Cloud Stream applications with
some additional conventions that facilitate generating prebuilt applications with the preconfigured

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 5

binders. Sometimes, your solution may require additional applications that are not in the scope of Spring
Cloud Stream Application Starters, or require additional tweaks and enhancements. In this section we
will show you how to create custom applications that can be part of your solution, along with Spring
Cloud Stream application starters. You have the following options:

• create new Spring Cloud Stream applications;

• use the starters to create customized versions;

Using generic Spring Cloud Stream applications

If you want to add your own custom applications to your solution, you can simply create a new Spring
Cloud Stream project with the binder of your choice and run it the same way as the applications provided
by Spring Cloud Stream Application Starters, independently or via Spring Cloud Data Flow. The process
is described in the Getting Started Guide of Spring Cloud Stream. One restriction is that the applications
must have:

• a single inbound channel named input for sources - the simplest way to do so is by using the
predefined interface org.spring.cloud.stream.messaging.Source;

• a single outbound channel named output for sinks - the simplest way to do so is by using the
predefined interface org.spring.cloud.stream.messaging.Sink;

• both an inbound channel named input and an outbound channel named output

for processors - the simplest way to do so is by using the predefined interface
org.spring.cloud.stream.messaging.Processor.

The other restriction is to use the same kind of binder as the rest of your solution.

Using the starters to create custom components

You can also reuse the starters provided by Spring Cloud Stream Application Starters to create custom
components, enriching the behavior of the application. For example, you can add a Spring Security layer
to your HTTP source, add additional configurations to the ObjectMapper used for JSON transformation
wherever that happens, or change the JDBC driver or Hadoop distribution that the application is using.
For doing so should set up your project following a process similar to customizing a binder. In fact,
customizing the binder is the simplest form of creating a custom component.

As a reminder, this involves:

• adding the starter to your project

• choosing the binder

• adding the main class and importing the starter configuration.

After doing so, you can simply add the additional configuration for the extra features of your application.

1.5 Patching pre-built applications

If you’re looking to patch the pre-built applications to accommodate addition of new dependencies, you
can use the following example as the reference. Let’s review the steps to add mysql driver to jdbc-
sink application.

http://docs.spring.io/spring-cloud-stream/docs/current-SNAPSHOT/reference/htmlsingle/#_getting_started

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 6

• Go to: start-scs.cfapps.io/

• Select the appliation and binder dependencies [`JDBC sink` and `Rabbit binder starter`]

• Generate and load the project in an IDE

• Add mysql java-driver dependency

<dependencies>

 <dependency>

 <groupId>mysql</groupId>

 <artifactId>mysql-connector-java</artifactId>

 <version>5.1.37</version>

 </dependency>

 <dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-stream-binder-rabbit</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework.cloud.stream.app</groupId>

 <artifactId>spring-cloud-starter-stream-sink-jdbc</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-test</artifactId>

 <scope>test</scope>

 </dependency>

</dependencies>

• Import the respective configuration class to the generated Spring
Boot application. In the case of jdbc sink, it is:
@Import(org.springframework.cloud.stream.app.jdbc.sink.JdbcSinkConfiguration.class).
You can find the configuration class for other applications in their respective packages.

@SpringBootApplication

@Import(org.springframework.cloud.stream.app.jdbc.sink.JdbcSinkConfiguration.class)

public class DemoApplication {

 public static void main(String[] args) {

 SpringApplication.run(DemoApplication.class, args);

 }

}

• Build and install the application to desired maven repository

• The patched copy of jdbc-sink application now includes mysql driver in it

• This application can be run as standalone uberjars

1.6 Contributing Stream Application Starters and Generating
Artifacts

In this section, we will explain how to develop a custom source/sink/processor application and then
generate maven and docker artifacts for it with the necessary middleware bindings using the existing
tooling provided by the spring cloud stream app starter infrastructure. For explanation purposes, we will
assume that we are creating a new source application for a technology named foobar.

• Create a new top level module named spring-cloud-starter-stream-source-foobar

Please follow the instructions above for designing a proper Spring Cloud Stream Source. You may
also look into the existing starters for how to structure a new one. The default naming for the

http://start-scs.cfapps.io/
https://github.com/spring-cloud/spring-cloud-stream-app-starters

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 7

main @Configuration class is FoobarSourceConfiguration and the default package for this
@Configuration is org.springfamework.cloud.stream.app.foobar.source. If you have
a different class/package name, see below for overriding that in the app generator. The technology/
functionality name for which you create a starter can be a hyphenated stream of strings such as
in scriptable-transform which is a processor type in the module spring-cloud-starter-
stream-processor-scriptable-transform.

The starters in spring-cloud-stream-app-starters are slightly different from the other starters
in spring-boot and spring-cloud in that here we don’t provide a way to auto configure any configuration
through spring factories mechanism. Rather, we delegate this responsibility to the maven plugin that is
generating the binder based apps. Therefore, you don’t have to provide a spring.factories file that lists
all your configuration classes.

• Add the new foobar source module to the root pom of the repository

• At the root of the repository build and install the new module into your local maven cache:

./mvnw clean install -pl :spring-cloud-starter-stream-source-foobar

• You need to add the new starter dependency to the spring-cloud-stream-app-dependencies
bill of material (BOM) in the dependecy management section. For example,

<dependencyManagement>

...

...

 <dependency>

 <groupId>org.springframework.cloud.stream.app</groupId>

 <artifactId>spring-cloud-starter-stream-source-foobar</artifactId>

 <version>1.0.0.BUILD-SNAPSHOT</version>

 </dependency>

...

...

• Build and install the newly updated bom:

./mvnw clean install -pl :spring-cloud-stream-app-dependencies

• At this point, you are ready to generate the binder based spring boot apps for foobar-source. Go to
the spring-cloud-stream-app-generator module and start editing as below.

The minimal configuration needed to generate the app is to add to plugin configuration in spring-
cloud-stream-app-generator/pom.xml. There are other plugin options that customize the generated
applications which are described in the plugin documentation (github.com/spring-cloud/spring-cloud-
stream-app-maven-plugin). A few plugin features are described below.

<generatedApps>

....

 <foobar-source />

....

</generatedApps>

More information about the maven plugin used above can be found here: github.com/spring-cloud/
spring-cloud-stream-app-maven-plugin

If you did not follow the default convention expected by the plugin
of where it is looking for the main configuration class, which is
org.springfamework.cloud.stream.app.foobar.source.FoobarSourceConfiguration,

https://github.com/spring-cloud/spring-cloud-stream-app-maven-plugin
https://github.com/spring-cloud/spring-cloud-stream-app-maven-plugin
https://github.com/spring-cloud/spring-cloud-stream-app-maven-plugin
https://github.com/spring-cloud/spring-cloud-stream-app-maven-plugin

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 8

you can override that in the configuration for the plugin. For example, if your main configuration class
is foo.bar.SpecialFooBarConfiguration.class, this is how you can tell the plugin to override
the default.

<foobar-source>

 <autoConfigClass>foo.bar.SpecialFooBarConfiguration.class</autoConfigClass>

</foobar-source>

• Go to the root of the repository and execute the script: ./generateApps.sh

This will generate the binder based foobar source apps in a directory named apps at the root of the
repository. If you want to change the location where the apps are generated, for instance /tmp/scs-apps,
you can do it in the configuration section of the plugin.

<configuration>

 ...

 <generatedProjectHome>/tmp/scs-apps</generatedProjectHome>

 ...

</configuration

By default, we generate apps for both Kafka and Rabbitmq binders - spring-cloud-stream-
binder-kafka and spring-cloud-stream-binder-rabbit. Say, if you have a custom binder
you created for some middleware (say JMS), which you need to generate apps for foobar source, you
can add that binder to the binders list in the configuration section as in the following.

<binders>

 <kafka />

 <rabbit />

 <jms />

</binders>

Please note that this would only work, as long as there is a binder with the maven coordinates of
org.springframework.cloud.stream as group id and spring-cloud-stream-binder-jms
as artifact id. This artifact needs to be specified in the BOM above and available through a maven
repository as well.

If you have an artifact that is only available through a private internal maven repository (may be an
enterprise wide Nexus repo that you use globally across teams), and you need that for your app, you
can define that as part of the maven plugin configuration.

For example,

<configuration>

...

 <extraRepositories>

 <repository>

 <id>private-internal-nexus</id>

 <url>.../</url>

 <name>...</name>

 <snapshotEnabled>...</snapshotEnabled>

 </repository>

 </extraRepositories>

</configuration>

Then you can define this as part of your app tag:

<foobar-source>

 <extraRepositories>

 <private-internal-nexus />

 </extraRepositories>

</foobar-source>

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 9

• cd into the directory where you generated the apps (apps at the root of the repository by default,
unless you changed it elsewhere as described above).

Here you will see both foobar-source-kafka and foobar-source-rabbit along with all the other
out of the box apps that is generated. If you added more binders as described above, you would see
that app as well here - for example foobar-source-jms.

If you only care about the foobar-source apps and nothing else, you can cd into those particular foo-bar-
[binder] directories and import them directly into your IDE of choice. Each of them is a self contained
spring boot application project. For all the generated apps, the parent is spring-boot-starter-
parent as required by the underlying Spring Initializr library.

You can cd into these custom foobar-source directories and do the following to build the apps:

cd foo-source-kafka

mvn clean install

This would install the foo-source-kafka into your local maven cache (~/.m2 by default).

The app generation phase adds an integration test to the app project that is making sure that all the
spring components and contexts are loaded properly. However, these tests are not run by default when
you do a mvn install. You can force the running of these tests by doing the following:

mvn clean install -DskipTests=false

One important note about running these tests in generated
apps: If your application’s spring beans need to interact with
some real services out there or expect some properties be
present in the context, these tests would fail unless you
make those things available. An example would be a Twitter
Source, where the underlying spring beans are trying to
create a twitter template and would fail if it can’t find
the credentials available through properties. One way to solve
this and still run the generated context load tests would
be to create a mock class that provides these properties
or mock beans (for example, a mock twitter template) and
tell the maven plugin about its existence. You can use
the existing module app-starters-test-support for this purpose
and add the mock class there. See the class
org.springframework.cloud.stream.app.test.twitter.TwitterTestConfiguration

for reference. You can create a similar class for your foobar source - FoobarTestConfiguration
and add that to the plugin configuration. You only need to do this if you run into this particular issue of
spring beans are not created properly in the integration test in the generated apps.

<foobar-source>

 <extraTestConfigClass>org.springframework.cloud.stream.app.test.foobar.FoobarTestConfiguration.class</

extraTestConfigClass>

</foobar-source>

When you do the above, this test configuration will be automatically imported into the context of your
test class.

Also note that, you need to rerun the script for generating the apps each time you make a configuration
change in the plugin.

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 10

• Now that you built the applications, they are available under the target directories of the respective
apps and also as maven artifacts in your local maven repository. Go to the target directory and
run the following:

java -jar foobar-source-kafa.jar [Ensure that you have kafka running locally when you do
this]

It should start the application up.

• The generated apps also support the creation of docker images. You can cd into one of the foobar-
source* app and do the following:

mvn clean package docker:build

This creates the docker image under the target/docker/springcloudstream directory. Please
ensure that the Docker container is up and running and DOCKER_HOST environment variable is
properly set before you try docker:build.

All the generated apps from the repository are uploaded to Docker Hub

However, for a custom app that you build, this won’t be uploaded to docker hub under
springcloudstream repository. If you think that there is a general need for this app, you should try
contributing this starter to the main repository and upon review, this app then can be uploaded to the
above location in docker hub.

If you still need to push this to docker hub under a different repository you can take the following steps.

Go to the pom.xml of the generated app [example - foo-source-kafka/pom.xml] Search for
springcloudstream. Replace with your repository name.

Then do this:

mvn clean package docker:build docker:push -Ddocker.username=[provide your

username] -Ddocker.password=[provide password]

This would upload the docker image to the docker hub in your custom repository.

https://hub.docker.com/u/springcloudstream/

Part II. Starters

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 12

2. Sources

2.1 File Source

This application polls a directory and sends new files or their contents to the output channel. The file
source provides the contents of a File as a byte array by default. However, this can be customized using
the --mode option:

• ref Provides a java.io.File reference

• lines Will split files line-by-line and emit a new message for each line

• contents The default. Provides the contents of a file as a byte array

When using --mode=lines, you can also provide the additional option --withMarkers=true. If
set to true, the underlying FileSplitter will emit additional start-of-file and end-of-file marker
messages before and after the actual data. The payload of these 2 additional marker messages is of
type FileSplitter.FileMarker. The option withMarkers defaults to false if not explicitly set.

Options

The file source has the following options:

file.consumer.markers-json
When 'fileMarkers == true', specify if they should be produced as FileSplitter.FileMarker objects or
JSON. (Boolean, default: true)

file.consumer.mode
The FileReadingMode to use for file reading sources. Values are 'ref' - The File object, 'lines' -
a message per line, or 'contents' - the contents as bytes. (FileReadingMode, default: <none>,
possible values: ref,lines,contents)

file.consumer.with-markers
Set to true to emit start of file/end of file marker messages before/after the data. Only valid with
FileReadingMode 'lines'. (Boolean, default: <none>)

file.directory
The directory to poll for new files. (String, default: <none>)

file.filename-pattern
A simple ant pattern to match files. (String, default: <none>)

file.filename-regex
A regex pattern to match files. (Pattern, default: <none>)

file.prevent-duplicates
Set to true to include an AcceptOnceFileListFilter which prevents duplicates. (Boolean, default:
true)

trigger.cron
Cron expression value for the Cron Trigger. (String, default: <none>)

trigger.date-format
Format for the date value. (String, default: <none>)

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 13

trigger.fixed-delay
Fixed delay for periodic triggers. (Integer, default: 1)

trigger.initial-delay
Initial delay for periodic triggers. (Integer, default: 0)

trigger.max-messages
Maximum messages per poll, -1 means infinity. (Long, default: -1)

trigger.time-unit
The TimeUnit to apply to delay values. (TimeUnit, default: SECONDS, possible values:
NANOSECONDS,MICROSECONDS,MILLISECONDS,SECONDS,MINUTES,HOURS,DAYS)

The ref option is useful in some cases in which the file contents are large and it would be more efficient
to send the file path.

2.2 FTP Source

This source application supports transfer of files using the FTP protocol. Files are transferred from the
remote directory to the local directory where the app is deployed. Messages emitted by the source
are provided as a byte array by default. However, this can be customized using the --mode option:

• ref Provides a java.io.File reference

• lines Will split files line-by-line and emit a new message for each line

• contents The default. Provides the contents of a file as a byte array

When using --mode=lines, you can also provide the additional option --withMarkers=true. If
set to true, the underlying FileSplitter will emit additional start-of-file and end-of-file marker
messages before and after the actual data. The payload of these 2 additional marker messages is of
type FileSplitter.FileMarker. The option withMarkers defaults to false if not explicitly set.

Options

The ftp source has the following options:

file.consumer.markers-json
When 'fileMarkers == true', specify if they should be produced as FileSplitter.FileMarker objects or
JSON. (Boolean, default: true)

file.consumer.mode
The FileReadingMode to use for file reading sources. Values are 'ref' - The File object, 'lines' -
a message per line, or 'contents' - the contents as bytes. (FileReadingMode, default: <none>,
possible values: ref,lines,contents)

file.consumer.with-markers
Set to true to emit start of file/end of file marker messages before/after the data. Only valid with
FileReadingMode 'lines'. (Boolean, default: <none>)

ftp.auto-create-local-dir
<documentation missing> (Boolean, default: <none>)

ftp.delete-remote-files
<documentation missing> (Boolean, default: <none>)

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 14

ftp.factory.cache-sessions
<documentation missing> (Boolean, default: <none>)

ftp.factory.client-mode
The client mode to use for the FTP session. (ClientMode, default: <none>, possible values:
ACTIVE,PASSIVE)

ftp.factory.host
<documentation missing> (String, default: <none>)

ftp.factory.password
<documentation missing> (String, default: <none>)

ftp.factory.port
The port of the server. (Integer, default: 21)

ftp.factory.username
<documentation missing> (String, default: <none>)

ftp.filename-pattern
<documentation missing> (String, default: <none>)

ftp.filename-regex
<documentation missing> (Pattern, default: <none>)

ftp.local-dir
<documentation missing> (File, default: <none>)

ftp.preserve-timestamp
<documentation missing> (Boolean, default: <none>)

ftp.remote-dir
<documentation missing> (String, default: <none>)

ftp.remote-file-separator
<documentation missing> (String, default: <none>)

ftp.tmp-file-suffix
<documentation missing> (String, default: <none>)

trigger.cron
Cron expression value for the Cron Trigger. (String, default: <none>)

trigger.date-format
Format for the date value. (String, default: <none>)

trigger.fixed-delay
Fixed delay for periodic triggers. (Integer, default: 1)

trigger.initial-delay
Initial delay for periodic triggers. (Integer, default: 0)

trigger.max-messages
Maximum messages per poll, -1 means infinity. (Long, default: -1)

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 15

trigger.time-unit
The TimeUnit to apply to delay values. (TimeUnit, default: SECONDS, possible values:
NANOSECONDS,MICROSECONDS,MILLISECONDS,SECONDS,MINUTES,HOURS,DAYS)

2.3 Http Source

A source module that listens for HTTP requests and emits the body as a message payload. If the
Content-Type matches text/* or application/json, the payload will be a String, otherwise the
payload will be a byte array.

Options

The http source supports the following configuration properties:

http.path-pattern
An Ant-Style pattern to determine which http requests will be captured. (String, default: /)

server.port
Server HTTP port. (Integer, default: <none>)

2.4 JDBC Source

This source polls data from an RDBMS. This source is fully based on the
DataSourceAutoConfiguration, so refer to the Spring Boot JDBC Support for more information.

Options

The jdbc source has the following options:

jdbc.max-rows-per-poll
Max numbers of rows to process for each poll. (Integer, default: 0)

jdbc.query
The query to use to select data. (String, default: <none>)

jdbc.split
Whether to split the SQL result as individual messages. (Boolean, default: true)

jdbc.update
An SQL update statement to execute for marking polled messages as 'seen'. (String, default:
<none>)

spring.datasource.driver-class-name
<documentation missing> (String, default: <none>)

spring.datasource.init-sql
<documentation missing> (String, default: <none>)

spring.datasource.initialize
Populate the database using 'data.sql'. (Boolean, default: true)

spring.datasource.password
<documentation missing> (String, default: <none>)

http://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 16

spring.datasource.url
<documentation missing> (String, default: <none>)

spring.datasource.username
<documentation missing> (String, default: <none>)

trigger.cron
Cron expression value for the Cron Trigger. (String, default: <none>)

trigger.date-format
Format for the date value. (String, default: <none>)

trigger.fixed-delay
Fixed delay for periodic triggers. (Integer, default: 1)

trigger.initial-delay
Initial delay for periodic triggers. (Integer, default: 0)

trigger.max-messages
Maximum messages per poll, -1 means infinity. (Long, default: 1)

trigger.time-unit
The TimeUnit to apply to delay values. (TimeUnit, default: <none>, possible values:
NANOSECONDS,MICROSECONDS,MILLISECONDS,SECONDS,MINUTES,HOURS,DAYS)

Also see the Spring Boot Documentation for addition DataSource properties and
TriggerProperties and MaxMessagesProperties for polling options.

2.5 JMS Source

The "jms" source enables receiving messages from JMS.

Options

The jms source has the following options:

jms.client-id
Client id for durable subscriptions. (String, default: <none>)

jms.destination
The destination from which to receive messages (queue or topic). (String, default: <none>)

jms.message-selector
A selector for messages; (String, default: <none>)

jms.session-transacted
True to enable transactions and select a DefaultMessageListenerContainer, false to select a
SimpleMessageListenerContainer. (Boolean, default: true)

jms.subscription-durable
True for a durable subscription. (Boolean, default: <none>)

jms.subscription-name
The name of a durable or shared subscription. (String, default: <none>)

http://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 17

jms.subscription-shared
True for a shared subscription. (Boolean, default: <none>)

spring.jms.jndi-name
Connection factory JNDI name. When set, takes precedence to others connection factory auto-
configurations. (String, default: <none>)

spring.jms.listener.acknowledge-mode
Acknowledge mode of the container. By default, the listener is transacted with
automatic acknowledgment. (AcknowledgeMode, default: <none>, possible values:
AUTO,CLIENT,DUPS_OK)

spring.jms.listener.auto-startup
Start the container automatically on startup. (Boolean, default: true)

spring.jms.listener.concurrency
Minimum number of concurrent consumers. (Integer, default: <none>)

spring.jms.listener.max-concurrency
Maximum number of concurrent consumers. (Integer, default: <none>)

spring.jms.pub-sub-domain
Specify if the default destination type is topic. (Boolean, default: false)

Note

Spring boot broker configuration is used; refer to the Spring Boot Documentation for more
information. The spring.jms.* properties above are also handled by the boot JMS support.

2.6 Load Generator Source

A source that sends generated data and dispatches it to the stream. This is to provide a method for users
to identify the performance of Spring Cloud Data Flow in different environments and deployment types.

Options

The load-generator source has the following options:

Unresolved directive in sources.adoc - include::https://raw.githubusercontent.com/spring-cloud/spring-
cloud-stream-app-starters/master/testing/spring-cloud-starter-stream-source-mail/
README.adoc[tags=ref-doc]

Unresolved directive in sources.adoc - include::https://raw.githubusercontent.com/spring-cloud/spring-
cloud-stream-app-starters/master/testing/spring-cloud-starter-stream-source-mongodb/
README.adoc[tags=ref-doc]

2.7 RabbitMQ Source

The "rabbit" source enables receiving messages from RabbitMQ.

The queue(s) must exist before the stream is deployed; they are not created automatically. You can
easily create a Queue using the RabbitMQ web UI.

http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#boot-features-jms

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 18

Options

The rabbit source has the following options:

rabbit.enable-retry
true to enable retry. (Boolean, default: false)

rabbit.initial-retry-interval
Initial retry interval when retry is enabled. (Integer, default: 1000)

rabbit.mapped-request-headers
Headers that will be mapped. (String[], default: [STANDARD_REQUEST_HEADERS])

rabbit.max-attempts
The maximum delivery attempts when retry is enabled. (Integer, default: 3)

rabbit.max-retry-interval
Max retry interval when retry is enabled. (Integer, default: 30000)

rabbit.queues
The queues to which the source will listen for messages. (String[], default: <none>)

rabbit.requeue
Whether rejected messages should be requeued. (Boolean, default: true)

rabbit.retry-multiplier
Retry backoff multiplier when retry is enabled. (Double, default: 2)

rabbit.transacted
Whether the channel is transacted. (Boolean, default: false)

spring.rabbitmq.addresses
Comma-separated list of addresses to which the client should connect to. (String, default: <none>)

spring.rabbitmq.host
RabbitMQ host. (String, default: localhost)

spring.rabbitmq.password
Login to authenticate against the broker. (String, default: <none>)

spring.rabbitmq.port
RabbitMQ port. (Integer, default: 5672)

spring.rabbitmq.requested-heartbeat
Requested heartbeat timeout, in seconds; zero for none. (Integer, default: <none>)

spring.rabbitmq.username
Login user to authenticate to the broker. (String, default: <none>)

spring.rabbitmq.virtual-host
Virtual host to use when connecting to the broker. (String, default: <none>)

Also see the Spring Boot Documentation for addition properties for the broker connections and listener
properties.

http://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 19

A Note About Retry

Note

With the default ackMode (AUTO) and requeue (true) options, failed message deliveries will
be retried indefinitely. Since there is not much processing in the rabbit source, the risk of
failure in the source itself is small, unless the downstream Binder is not connected for some
reason. Setting requeue to false will cause messages to be rejected on the first attempt (and
possibly sent to a Dead Letter Exchange/Queue if the broker is so configured). The enableRetry
option allows configuration of retry parameters such that a failed message delivery can be
retried and eventually discarded (or dead-lettered) when retries are exhausted. The delivery
thread is suspended during the retry interval(s). Retry options are enableRetry, maxAttempts,
initialRetryInterval, retryMultiplier, and maxRetryInterval. Message deliveries failing with a
MessageConversionException are never retried; the assumption being that if a message could
not be converted on the first attempt, subsequent attempts will also fail. Such messages are
discarded (or dead-lettered).

Unresolved directive in sources.adoc - include::https://raw.githubusercontent.com/spring-cloud/spring-
cloud-stream-app-starters/master/s3/spring-cloud-starter-stream-source-s3/README.adoc[tags=ref-
doc]

2.8 SFTP Source

This source app supports transfer of files using the SFTP protocol. Files are transferred from the remote
directory to the local directory where the application is deployed.

Messages emitted by the source are provided as a byte array by default. However, this can be
customized using the --mode option:

• ref Provides a java.io.File reference

• lines Will split files line-by-line and emit a new message for each line

• contents The default. Provides the contents of a file as a byte array

When using --mode=lines, you can also provide the additional option --withMarkers=true. If
set to true, the underlying FileSplitter will emit additional start-of-file and end-of-file marker
messages before and after the actual data. The payload of these 2 additional marker messages is of
type FileSplitter.FileMarker. The option withMarkers defaults to false if not explicitly set.

Options

The sftp source has the following options:

file.consumer.markers-json
When 'fileMarkers == true', specify if they should be produced as FileSplitter.FileMarker objects or
JSON. (Boolean, default: true)

file.consumer.mode
The FileReadingMode to use for file reading sources. Values are 'ref' - The File object, 'lines' -
a message per line, or 'contents' - the contents as bytes. (FileReadingMode, default: <none>,
possible values: ref,lines,contents)

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 20

file.consumer.with-markers
Set to true to emit start of file/end of file marker messages before/after the data. Only valid with
FileReadingMode 'lines'. (Boolean, default: <none>)

sftp.auto-create-local-dir
<documentation missing> (Boolean, default: <none>)

sftp.delete-remote-files
<documentation missing> (Boolean, default: <none>)

sftp.factory.allow-unknown-keys
True to allow an unknown or changed key. (Boolean, default: false)

sftp.factory.cache-sessions
<documentation missing> (Boolean, default: <none>)

sftp.factory.host
<documentation missing> (String, default: <none>)

sftp.factory.known-hosts-expression
A SpEL expression resolving to the location of the known hosts file. (String, default: <none>)

sftp.factory.pass-phrase
Passphrase for user's private key. (String, default: <empty string>)

sftp.factory.password
<documentation missing> (String, default: <none>)

sftp.factory.port
The port of the server. (Integer, default: 22)

sftp.factory.private-key
Resource location of user's private key. (String, default: <empty string>)

sftp.factory.username
<documentation missing> (String, default: <none>)

sftp.filename-pattern
<documentation missing> (String, default: <none>)

sftp.filename-regex
<documentation missing> (Pattern, default: <none>)

sftp.local-dir
<documentation missing> (File, default: <none>)

sftp.preserve-timestamp
<documentation missing> (Boolean, default: <none>)

sftp.remote-dir
<documentation missing> (String, default: <none>)

sftp.remote-file-separator
<documentation missing> (String, default: <none>)

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 21

sftp.tmp-file-suffix
<documentation missing> (String, default: <none>)

trigger.cron
Cron expression value for the Cron Trigger. (String, default: <none>)

trigger.date-format
Format for the date value. (String, default: <none>)

trigger.fixed-delay
Fixed delay for periodic triggers. (Integer, default: 1)

trigger.initial-delay
Initial delay for periodic triggers. (Integer, default: 0)

trigger.max-messages
Maximum messages per poll, -1 means infinity. (Long, default: -1)

trigger.time-unit
The TimeUnit to apply to delay values. (TimeUnit, default: SECONDS, possible values:
NANOSECONDS,MICROSECONDS,MILLISECONDS,SECONDS,MINUTES,HOURS,DAYS)

2.9 SYSLOG Source

The syslog source receives SYSLOG packets over UDP, TCP, or both. RFC3164 (BSD) and RFC5424
formats are supported.

Options

The syslog source has the following options:

syslog.buffer-size
the buffer size used when decoding messages; larger messages will be rejected. (Integer, default:
2048)

syslog.nio
whether or not to use NIO (when supporting a large number of connections). (Boolean, default:
false)

syslog.port
The port to listen on. (Integer, default: 1514)

syslog.protocol
tcp or udp (String, default: tcp)

syslog.reverse-lookup
whether or not to perform a reverse lookup on the incoming socket. (Boolean, default: false)

syslog.rfc
'5424' or '3164' - the syslog format according the the RFC; 3164 is aka 'BSD' format. (String, default:
3164)

syslog.socket-timeout
the socket timeout. (Integer, default: 0)

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 22

2.10 TCP

The tcp source acts as a server and allows a remote party to connect to it and submit data over a
raw tcp socket.

TCP is a streaming protocol and some mechanism is needed to frame messages on the wire. A number
of decoders are available, the default being 'CRLF' which is compatible with Telnet.

Messages produced by the TCP source application have a byte[] payload.

Options

tcp.buffer-size
The buffer size used when decoding messages; larger messages will be rejected. (Integer, default:
2048)

tcp.decoder
The decoder to use when receiving messages. (Encoding, default: <none>, possible values:
CRLF,LF,NULL,STXETX,RAW,L1,L2,L4)

tcp.nio
<documentation missing> (Boolean, default: <none>)

tcp.port
<documentation missing> (Integer, default: <none>)

tcp.reverse-lookup
<documentation missing> (Boolean, default: <none>)

tcp.socket-timeout
<documentation missing> (Integer, default: <none>)

tcp.use-direct-buffers
<documentation missing> (Boolean, default: <none>)

Available Decoders
Text Data

CRLF (default)
text terminated by carriage return (0x0d) followed by line feed (0x0a)

LF
text terminated by line feed (0x0a)

NULL
text terminated by a null byte (0x00)

STXETX
text preceded by an STX (0x02) and terminated by an ETX (0x03)

Text and Binary Data

RAW
no structure - the client indicates a complete message by closing the socket

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 23

L1
data preceded by a one byte (unsigned) length field (supports up to 255 bytes)

L2
data preceded by a two byte (unsigned) length field (up to 216-1 bytes)

L4
data preceded by a four byte (signed) length field (up to 231-1 bytes)

2.11 Time Source

The time source will simply emit a String with the current time every so often.

Options

The time source has the following options:

trigger.cron
Cron expression value for the Cron Trigger. (String, default: <none>)

trigger.date-format
Format for the date value. (String, default: <none>)

trigger.fixed-delay
Fixed delay for periodic triggers. (Integer, default: 1)

trigger.initial-delay
Initial delay for periodic triggers. (Integer, default: 0)

trigger.max-messages
Maximum messages per poll, -1 means infinity. (Long, default: 1)

trigger.time-unit
The TimeUnit to apply to delay values. (TimeUnit, default: <none>, possible values:
NANOSECONDS,MICROSECONDS,MILLISECONDS,SECONDS,MINUTES,HOURS,DAYS)

2.12 Trigger Source

This app sends trigger based on a fixed delay, date or cron expression. A payload which is evaluated
using SpEL can also be sent each time the trigger fires.

Options

The trigger source has the following options:

trigger.cron
Cron expression value for the Cron Trigger. (String, default: <none>)

trigger.date-format
Format for the date value. (String, default: <none>)

trigger.fixed-delay
Fixed delay for periodic triggers. (Integer, default: 1)

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 24

trigger.initial-delay
Initial delay for periodic triggers. (Integer, default: 0)

trigger.max-messages
Maximum messages per poll, -1 means infinity. (Long, default: 1)

trigger.source.payload
The expression for the payload of the Source module. (Expression, default: <none>)

trigger.time-unit
The TimeUnit to apply to delay values. (TimeUnit, default: <none>, possible values:
NANOSECONDS,MICROSECONDS,MILLISECONDS,SECONDS,MINUTES,HOURS,DAYS)

2.13 Twitter Stream Source

This source ingests data from Twitter’s streaming API v1.1. It uses the sample and filter stream endpoints
rather than the full "firehose" which needs special access. The endpoint used will depend on the
parameters you supply in the stream definition (some are specific to the filter endpoint).

You need to supply all keys and secrets (both consumer and accessToken) to authenticate for this
source, so it is easiest if you just add these as the following environment variables: CONSUMER_KEY,
CONSUMER_SECRET, ACCESS_TOKEN and ACCESS_TOKEN_SECRET.

Options

The twitterstream source has the following options:

twitter.credentials.access-token
Access token (String, default: <none>)

twitter.credentials.access-token-secret
Access token secret (String, default: <none>)

twitter.credentials.consumer-key
Consumer key (String, default: <none>)

twitter.credentials.consumer-secret
Consumer secret (String, default: <none>)

twitter.stream.language
The language of the tweet text. (String, default: <none>)

twitter.stream.stream-type
Twitter stream type (such as sample, firehose). Default is sample. (TwitterStreamType, default:
<none>, possible values: SAMPLE,FIREHOSE)

Note

twitterstream emit JSON in the native Twitter format.

https://dev.twitter.com/docs/streaming-apis/streams/public
https://dev.twitter.com/docs/streaming-apis/streams/public
https://dev.twitter.com/docs/platform-objects/tweets

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 25

3. Processors

3.1 Bridge Processor

A Processor module that returns messages that is passed by connecting just the input and output
channels.

3.2 Filter Processor

Use the filter module in a stream to determine whether a Message should be passed to the output
channel.

Options

The filter processor has the following options:

filter.expression
A SpEL expression to be evaluated against each message, to decide whether or not to accept it.
(Expression, default: true)

3.3 Groovy Filter Processor

A Processor module that retains or discards messages according to a predicate, expressed as a Groovy
script.

Options

The groovy-filter processor has the following options:

groovy-filter.script
The resource location of the groovy script (Resource, default: <none>)

groovy-filter.variables
Variable bindings as a new line delimited string of name-value pairs, e.g. 'foo=bar\n baz=car'.
(Properties, default: <none>)

groovy-filter.variables-location
The location of a properties file containing custom script variable bindings. (Resource, default:
<none>)

3.4 Groovy Transform Processor

A Processor module that transforms messages using a Groovy script.

Options

The groovy-transform processor has the following options:

groovy-transformer.script
Reference to a script used to process messages. (Resource, default: <none>)

groovy-transformer.variables
Variable bindings as a new line delimited string of name-value pairs, e.g. 'foo=bar\n baz=car'.
(Properties, default: <none>)

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 26

groovy-transformer.variables-location
The location of a properties file containing custom script variable bindings. (Resource, default:
<none>)

3.5 Http Client Processor

A processor app that makes requests to an HTTP resource and emits the response body as a message
payload. This processor can be combined, e.g., with a time source app to periodically poll results from
a HTTP resource.

Options

The httpclient processor has the following options:

httpclient.body
The (static) request body; if neither this nor bodyExpression is provided, the payload will be used.
(Object, default: <none>)

httpclient.body-expression
A SpEL expression to derive the request body from the incoming message. (Expression, default:
<none>)

httpclient.expected-response-type
The type used to interpret the response. (java.lang.Class<?>, default: <none>)

httpclient.headers-expression
A SpEL expression used to derive the http headers map to use. (Expression, default: <none>)

httpclient.http-method
The kind of http method to use. (HttpMethod, default: <none>, possible values:
GET,HEAD,POST,PUT,PATCH,DELETE,OPTIONS,TRACE)

httpclient.reply-expression
A SpEL expression used to compute the final result, applied against the whole http response.
(Expression, default: body)

httpclient.url-expression
A SpEL expression against incoming message to determine the URL to use. (Expression, default:
<none>)

3.6 PMML Processor

A processor that evaluates a machine learning model stored in PMML format.

Options

The pmml processor has the following options:

pmml.inputs
How to compute model active fields from input message properties as modelField->SpEL.
(java.util.Map<java.lang.String,org.springframework.expression.Expression>, default:
<none>)

pmml.model-location
The location of the PMML model file. (Resource, default: <none>)

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 27

pmml.model-name
If the model file contains multiple models, the name of the one to use. (String, default: <none>)

pmml.model-name-expression
If the model file contains multiple models, the name of the one to use, as a SpEL expression.
(Expression, default: <none>)

pmml.outputs
How to emit evaluation results in the output message as msgProperty->SpEL.
(java.util.Map<java.lang.String,org.springframework.expression.Expression>, default:
<none>)

3.7 Scripable Transform Processor

A Spring Cloud Stream module that transforms messages using a script. The script body is supplied
directly as a property value. The language of the script can be specified (groovy/javascript/ruby/python).

Options

The scriptable-transform processor has the following options:

scriptable-transformer.language
Language of the text in the script property. Supported: groovy, javascript, ruby, python. (String,
default: <none>)

scriptable-transformer.script
Text of the script. (String, default: <none>)

scriptable-transformer.variables
Variable bindings as a new line delimited string of name-value pairs, e.g. 'foo=bar\n baz=car'.
(Properties, default: <none>)

scriptable-transformer.variables-location
The location of a properties file containing custom script variable bindings. (Resource, default:
<none>)

3.8 Splitter Processor

The splitter app builds upon the concept of the same name in Spring Integration and allows the splitting
of a single message into several distinct messages.

Options

splitter.apply-sequence
Add correlation/sequence information in headers to facilitate later aggregation. (Boolean, default:
true)

splitter.charset
The charset to use when converting bytes in text-based files to String. (String, default: <none>)

splitter.delimiters
When expression is null, delimiters to use when tokenizing {@link String} payloads. (String, default:
<none>)

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 28

splitter.expression
A SpEL expression for splitting payloads. (Expression, default: <none>)

splitter.file-markers
Set to true or false to use a {@code FileSplitter} (to split text-based files by line) that includes (or
not) beginning/end of file markers. (Boolean, default: <none>)

splitter.markers-json
When 'fileMarkers == true', specify if they should be produced as FileSplitter.FileMarker objects or
JSON. (Boolean, default: true)

When no expression, fileMarkers, or charset is provided, a DefaultMessageSplitter
is configured with (optional) delimiters. When fileMarkers or charset is provided,
a FileSplitter is configured (you must provide either a fileMarkers or charset

to split files, which must be text-based - they are split into lines). Otherwise, an
ExpressionEvaluatingMessageSplitter is configured.

When splitting File payloads, the sequenceSize header is zero because the size cannot be
determined at the beginning.

Caution

Ambiguous properties are not allowed.

JSON Example

As part of the SpEL expression you can make use of the pre-registered JSON Path function. The syntax
is #jsonPath(payload, '<json path expression>').

For example, consider the following JSON:

{ "store": {

 "book": [

 {

 "category": "reference",

 "author": "Nigel Rees",

 "title": "Sayings of the Century",

 "price": 8.95

 },

 {

 "category": "fiction",

 "author": "Evelyn Waugh",

 "title": "Sword of Honour",

 "price": 12.99

 },

 {

 "category": "fiction",

 "author": "Herman Melville",

 "title": "Moby Dick",

 "isbn": "0-553-21311-3",

 "price": 8.99

 },

 {

 "category": "fiction",

 "author": "J. R. R. Tolkien",

 "title": "The Lord of the Rings",

 "isbn": "0-395-19395-8",

 "price": 22.99

 }

],

 "bicycle": {

 "color": "red",

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 29

 "price": 19.95

 }

}}

and an expression #jsonPath(payload, '$.store.book'); the result will be 4 messages, each
with a Map payload containing the properties of a single book.

3.9 Transform Processor

Use the transform app in a stream to convert a Message’s content or structure.

The transform processor is used by passing a SpEL expression. The expression should return the
modified message or payload. For example, --expression=payload.toUpperCase().

This transform will convert all message payloads to upper case.

As part of the SpEL expression you can make use of the pre-registered JSON Path function. The syntax
is #jsonPath(payload,'<json path expression>')

Options

The transform processor has the following options:

transformer.expression
<documentation missing> (Expression, default: payload)

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 30

4. Sinks

4.1 Cassandra Sink

This sink application writes the content of each message it receives into Cassandra.

Options

The cassandra sink has the following options:

cassandra.cluster.compression-type
The compression to use for the transport. (CompressionType, default: <none>, possible values:
NONE,SNAPPY)

cassandra.cluster.contact-points
The comma-delimited string of the hosts to connect to Cassandra. (String, default: <none>)

cassandra.cluster.create-keyspace
The flag to create (or not) keyspace on application startup. (Boolean, default: false)

cassandra.cluster.entity-base-packages
The base packages to scan for entities annotated with Table annotations. (String[], default: [])

cassandra.cluster.init-script
The resource with CQL scripts (delimited by ';') to initialize keyspace schema. (Resource, default:
<none>)

cassandra.cluster.keyspace
The keyspace name to connect to. (String, default: <none>)

cassandra.cluster.metrics-enabled
Enable/disable metrics collection for the created cluster. (Boolean, default: <none>)

cassandra.cluster.password
The password for connection. (String, default: <none>)

cassandra.cluster.port
The port to use to connect to the Cassandra host. (Integer, default: <none>)

cassandra.cluster.schema-action
The schema action to perform. (SchemaAction, default: <none>, possible values:
NONE,CREATE,RECREATE,RECREATE_DROP_UNUSED)

cassandra.cluster.username
The username for connection. (String, default: <none>)

cassandra.consistency-level
The consistencyLevel option of WriteOptions. (ConsistencyLevel, default: <none>, possible
values:
ANY,ONE,TWO,THREE,QUOROM,LOCAL_QUOROM,EACH_QUOROM,ALL,LOCAL_ONE,SERIAL,LOCAL_SERIAL)

cassandra.ingest-query
The ingest Cassandra query. (String, default: <none>)

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 31

cassandra.query-type
The queryType for Cassandra Sink.
(org.springframework.integration.cassandra.outbound.CassandraMessageHandler<T>
$Type, default: <none>)

cassandra.retry-policy
The retryPolicy option of WriteOptions. (RetryPolicy, default: <none>, possible values:
DEFAULT,DOWNGRADING_CONSISTENCY,FALLTHROUGH,LOGGING)

cassandra.statement-expression
The expression in Cassandra query DSL style. (Expression, default: <none>)

cassandra.ttl
The time-to-live option of WriteOptions. (Integer, default: 0)

4.2 Counter Sink

The counter sink simply counts the number of messages it receives, optionally storing counts in a
separate store such as redis.

Options

The counter sink has the following options:

counter.name
The name of the counter to increment. (String, default: <none>)

counter.name-expression
A SpEL expression (against the incoming Message) to derive the name of the counter to increment.
(Expression, default: <none>)

spring.redis.database
Database index used by the connection factory. (Integer, default: 0)

spring.redis.host
Redis server host. (String, default: localhost)

spring.redis.password
Login password of the redis server. (String, default: <none>)

spring.redis.port
Redis server port. (Integer, default: 6379)

spring.redis.timeout
Connection timeout in milliseconds. (Integer, default: 0)

4.3 Field Value Counter Sink

A field value counter is a Metric used for counting occurrences of unique values for a named field in a
message payload. This sinks supports the following payload types out of the box:

• POJO (Java bean)

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 32

• Tuple

• JSON String

For example suppose a message source produces a payload with a field named user :

class Foo {

 String user;

 public Foo(String user) {

 this.user = user;

 }

}

If the stream source produces messages with the following objects:

 new Foo("fred")

 new Foo("sue")

 new Foo("dave")

 new Foo("sue")

The field value counter on the field user will contain:

fred:1, sue:2, dave:1

Multi-value fields are also supported. For example, if a field contains a list, each value will be counted
once:

users:["dave","fred","sue"]

users:["sue","jon"]

The field value counter on the field users will contain:

dave:1, fred:1, sue:2, jon:1

Options

The field-value-counter sink has the following options:

field-value-counter.field-name
<documentation missing> (String, default: <none>)

field-value-counter.name
The name of the counter to increment. (String, default: <none>)

field-value-counter.name-expression
A SpEL expression (against the incoming Message) to derive the name of the counter to increment.
(Expression, default: <none>)

spring.redis.database
Database index used by the connection factory. (Integer, default: 0)

spring.redis.host
Redis server host. (String, default: localhost)

spring.redis.password
Login password of the redis server. (String, default: <none>)

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 33

spring.redis.port
Redis server port. (Integer, default: 6379)

spring.redis.timeout
Connection timeout in milliseconds. (Integer, default: 0)

4.4 File Sink

This module writes each message it receives to a file.

Options

The file sink has the following options:

file.binary
A flag to indicate whether content should be written as bytes. (Boolean, default: false)

file.charset
The charset to use when writing text content. (String, default: UTF-8)

file.directory
The parent directory of the target file. (String, default: <none>)

file.directory-expression
The expression to evaluate for the parent directory of the target file. (Expression, default: <none>)

file.mode
The FileExistsMode to use if the target file already exists. (FileExistsMode, default: <none>,
possible values: APPEND,FAIL,IGNORE,REPLACE)

file.name
The name of the target file. (String, default: file-sink)

file.name-expression
The expression to evaluate for the name of the target file. (String, default: <none>)

file.suffix
The suffix to append to file name. (String, default: <empty string>)

4.5 FTP Sink

FTP sink is a simple option to push files to an FTP server from incoming messages.

It uses an ftp-outbound-adapter, therefore incoming messages could be either a java.io.File
object, a String (content of the file) or an array of bytes (file content as well).

To use this sink, you need a username and a password to login.

Note

By default Spring Integration will use o.s.i.file.DefaultFileNameGenerator if none is
specified. DefaultFileNameGenerator will determine the file name based on the value of
the file_name header (if it exists) in the MessageHeaders, or if the payload of the Message
is already a java.io.File, then it will use the original name of that file.

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 34

Options

The ftp sink has the following options:

ftp.auto-create-dir
<documentation missing> (Boolean, default: <none>)

ftp.filename-expression
<documentation missing> (Expression, default: <none>)

ftp.mode
<documentation missing> (FileExistsMode, default: <none>, possible values:
APPEND,FAIL,IGNORE,REPLACE)

ftp.remote-dir
<documentation missing> (String, default: <none>)

ftp.remote-file-separator
<documentation missing> (String, default: <none>)

ftp.temporary-remote-dir
<documentation missing> (String, default: <none>)

ftp.tmp-file-suffix
<documentation missing> (String, default: <none>)

ftp.use-temporary-filename
<documentation missing> (Boolean, default: <none>)

4.6 Gemfire Sink

The Gemfire sink allows one to write message payloads to a Gemfire server.

Options

The gemfire sink has the following options:

gemfire.json
Indicates if the Gemfire region stores json objects as native Gemfire PdxInstance (Boolean, default:
false)

gemfire.key-expression
SpEL expression to use as a cache key (String, default: <none>)

gemfire.pool.connect-type
Specifies connection type: 'server' or 'locator'. (ConnectType, default: <none>, possible values:
locator,server)

gemfire.pool.host-addresses
Specifies one or more Gemfire locator or server addresses formatted as [host]:[port].
(InetSocketAddress[], default: <none>)

gemfire.pool.subscription-enabled
Set to true to enable subscriptions for the client pool. Required to sync updates to the client cache.
(Boolean, default: false)

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 35

gemfire.region.region-name
The region name. (String, default: <none>)

4.7 Gpfdist Sink

A sink module that route messages into GPDB/HAWQ segments via gpfdist protocol. Internally, this sink
creates a custom http listener that supports the gpfdist protcol and schedules a task that orchestrates
a gploadd session in the same way it is done natively in Greenplum.

No data is written into temporary files and all data is kept in stream buffers waiting to get inserted into
Greenplum DB or HAWQ. If there are no existing load sessions from Greenplum, the sink will block until
such sessions are established.

Options

The gpfdist sink has the following options:

gpfdist.batch-count
Number of windowed batch each segment takest (int, default: 100) (Integer, default: 100)

gpfdist.batch-period
Time in seconds for each load operation to sleep in between operations (int, default: 10) (Integer,
default: 10)

gpfdist.batch-timeout
Timeout in seconds for segment inactivity. (Integer, default: 4) (Integer, default: 4)

gpfdist.column-delimiter
Data record column delimiter. *(Character, default: no default) (Character, default: <none>)

gpfdist.control-file
Path to yaml control file (String, no default) (Resource, default: <none>)

gpfdist.db-host
Database host (String, default: localhost) (String, default: localhost)

gpfdist.db-name
Database name (String, default: gpadmin) (String, default: gpadmin)

gpfdist.db-password
Database password (String, default: gpadmin) (String, default: gpadmin)

gpfdist.db-port
Database port (int, default: 5432) (Integer, default: 5432)

gpfdist.db-user
Database user (String, default: gpadmin) (String, default: gpadmin)

gpfdist.delimiter
Data line delimiter (String, default: newline character) (String, default:)

gpfdist.error-table
Tablename to log errors. (String, default: ``) (String, default: <none>)

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 36

gpfdist.flush-count
Flush item count (int, default: 100) (Integer, default: 100)

gpfdist.flush-time
Flush item time (int, default: 2) (Integer, default: 2)

gpfdist.gpfdist-port
Port of gpfdist server. Default port `0` indicates that a random port is chosen. (Integer, default: 0)
(Integer, default: 0)

gpfdist.match-columns
Match columns with update (String, no default) (String, default: <none>)

gpfdist.mode
Mode, either insert or update (String, no default) (String, default: <none>)

gpfdist.null-string
Null string definition. (String, default: ``) (String, default: <none>)

gpfdist.rate-interval
Enable transfer rate interval (int, default: 0) (Integer, default: 0)

gpfdist.segment-reject-limit
Error reject limit. (String, default: ``) (String, default: <none>)

gpfdist.segment-reject-type
Error reject type, either `rows` or `percent`. (String, default: ``) (SegmentRejectType, default:
<none>, possible values: ROWS,PERCENT)

gpfdist.sql-after
Sql to run after load (String, no default) (String, default: <none>)

gpfdist.sql-before
Sql to run before load (String, no default) (String, default: <none>)

gpfdist.table
Target database table (String, no default) (String, default: <none>)

gpfdist.update-columns
Update columns with update (String, no default) (String, default: <none>)

spring.net.hostdiscovery.loopback
The new loopback flag. Default value is FALSE (Boolean, default: false)

spring.net.hostdiscovery.match-interface
The new match interface regex pattern. Default value is is empty (String, default: <none>)

spring.net.hostdiscovery.match-ipv4
Used to match ip address from a network using a cidr notation (String, default: <none>)

spring.net.hostdiscovery.point-to-point
The new point to point flag. Default value is FALSE (Boolean, default: false)

spring.net.hostdiscovery.prefer-interface
The new preferred interface list (java.util.List<java.lang.String>, default: <none>)

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 37

Implementation Notes

Within a gpfdist sink we have a Reactor based stream where data is published from the incoming
SI channel. This channel receives data from the Message Bus. The Reactor stream is then connected
to Netty based http channel adapters so that when a new http connection is established, the Reactor
stream is flushed and balanced among existing http clients. When Greenplum does a load from an
external table, each segment will initiate a http connection and start loading data. The net effect is that
incoming data is automatically spread among the Greenplum segments.

Detailed Option Descriptions

The gpfdist sink supports the following configuration properties:

table
Database table to work with. (String, default: ``, required)

This option denotes a table where data will be inserted or updated. Also external table structure will
be derived from structure of this table.

Currently table is only way to define a structure of an external table. Effectively it will replace
other_table in below clause segment.

CREATE READABLE EXTERNAL TABLE table_name LIKE other_table

mode
Gpfdist mode, either `insert` or `update`. (String, default: insert)

Currently only insert and update gpfdist mode is supported. Mode merge familiar from a native
gpfdist loader is not yet supported.

For mode update options matchColumns and updateColumns are required.

columnDelimiter
Data record column delimiter. (Character, default: ``)

Defines used delimiter character in below clause segment which would be part of a FORMAT
'TEXT' or FORMAT 'CSV' sections.

[DELIMITER AS 'delimiter']

segmentRejectLimit
Error reject limit. (String, default: ``)

Defines a count value in a below clause segment.

[[LOG ERRORS INTO error_table] SEGMENT REJECT LIMIT count

 [ROWS | PERCENT]]

As a conveniance this reject limit also recognizes a percentage format 2% and if used,
segmentRejectType is automatically set to percent.

segmentRejectType
Error reject type, either `rows` or `percent`. (String, default: ``)

Defines ROWS or PERCENT in below clause segment.

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 38

[[LOG ERRORS INTO error_table] SEGMENT REJECT LIMIT count

 [ROWS | PERCENT]]

errorTable
Tablename to log errors. (String, default: ``)

As error table is optional with SEGMENT REJECT LIMIT, it’s only used if both
segmentRejectLimit and segmentRejectType are set. Sets error_table in below clause
segment.

[[LOG ERRORS INTO error_table] SEGMENT REJECT LIMIT count

 [ROWS | PERCENT]]

nullString
Null string definition. (String, default: ``)

Defines used null string in below clause segment which would be part of a FORMAT 'TEXT'
or FORMAT 'CSV' sections.

[NULL AS 'null string']

delimiter
Data record delimiter for incoming messages. (String, default: \n)

On default a delimiter in this option will be added as a postfix to every message sent into this sink.
Currently NEWLINE is not a supported config option and line termination for data is coming from
a default functionality.

If not specified, a Greenplum Database segment will detect the newline type
by looking at the first row of data it receives and using the first newline type
encountered.

— External Table Docs

matchColumns
Comma delimited list of columns to match. (String, default: ``)

Note

See more from examples below.

updateColumns
Comma delimited list of columns to update. (String, default: ``)

Note

See more from examples below.

sqlBefore
Sql clause to run before each load operation. (String, default: ``)

sqlAfter
Sql clause to run after each load operation. (String, default: ``)

rateInterval
Debug rate of data transfer. (Integer, default: 0)

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 39

If set to non zero, sink will log a rate of messages passing throught a sink after number of messages
denoted by this setting has been processed. Value 0 means that this rate calculation and logging
is disabled.

flushCount
Max collected size per windowed data. (Integer, default: 100)

Note

For more info on flush and batch settings, see above.

How Data Is Sent Into Segments

There are few important concepts involving how data passes into a sink, through it and finally lands
into a database.

• Sink has its normal message handler for incoming data from a source module, gpfdist protocol listener
based on netty where segments connect to and in between those two a reactor based streams
controlling load balancing into different segment connections.

• Incoming data is first sent into a reactor which first constructs a windows. This window is then released
into a downstream when it gets full(flushTime) or timeouts(flushTime) if window doesn’t get full.
One window is then ready to get send into a segment.

• Segments which connects to this stream are now able to see a stream of window data, not stream of
individual messages. We can also call this as a stream of batches.

• When segment makes a connection to a protocol listener it subscribes itself into this stream and takes
count of batches denoted by batchCount and completes a stream if it got enough batches or if
batchTimeout occurred due to inactivity.

• It doesn’t matter how many simultaneous connections there are from a database cluster at any given
time as reactor will load balance batches with all subscribers.

• Database cluster will initiate this loading session when select is done from an external table which
will point to this sink. These loading operations are run in a background in a loop one after another.
Option batchPeriod is then used as a sleep time in between these load sessions.

Lets take a closer look how options flushCount, flushTime, batchCount, batchTimeout and
batchPeriod work.

As in a highest level where incoming data into a sink is windowed, flushCount and flushTime
controls when a batch of messages are sent into a downstream. If there are a lot of simultaneous
segment connections, flushing less will keep more segments inactive as there is more demand for
batches than what flushing will produce.

When existing segment connection is active and it has subscribed itself with a stream of batches, data
will keep flowing until either batchCount is met or batchTimeout occurs due to inactivity of data from
an upstream. Higher a batchCount is more data each segment will read. Higher a batchTimeout is
more time segment will wait in case there is more data to come.

As gpfdist load operations are done in a loop, batchPeriod simply controls not to run things in a buzy
loop. Buzy loop would be ok if there is a constant stream of data coming in but if incoming data is more
like bursts then buzy loop would be unnecessary.

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 40

Note

Data loaded via gpfdist will not become visible in a database until whole distributed loading
session have finished successfully.

Reactor is also handling backpressure meaning if existing load operations will not produce enought
demand for data, eventually message passing into a sink will block. This happens when Reactor’s
internal ring buffer(size of 32 items) gets full. Flow of data through sink really happens when data is
pulled from it by segments.

Example Usage

In this first example we’re just creating a simple stream which inserts data from a time source. Let’s
create a table with two text columns.

gpadmin=# create table ticktock (date text, time text);

Create a simple stream gpstream.

dataflow:>stream create --name gpstream1 --definition "time | gpfdist

--dbHost=mdw --table=ticktock --batchTime=1 --batchPeriod=1

--flushCount=2 --flushTime=2 --columnDelimiter=' '" --deploy

Let it run and see results from a database.

gpadmin=# select count(*) from ticktock;

 count

 14

(1 row)

In previous example we did a simple inserts into a table. Let’s see how we can update data in a table.
Create a simple table httpdata with three text columns and insert some data.

gpadmin=# create table httpdata (col1 text, col2 text, col3 text);

gpadmin=# insert into httpdata values ('DATA1', 'DATA', 'DATA');

gpadmin=# insert into httpdata values ('DATA2', 'DATA', 'DATA');

gpadmin=# insert into httpdata values ('DATA3', 'DATA', 'DATA');

Now table looks like this.

gpadmin=# select * from httpdata;

 col1 | col2 | col3

-------+------+------

 DATA3 | DATA | DATA

 DATA2 | DATA | DATA

 DATA1 | DATA | DATA

(3 rows)

Let’s create a stream which will update table httpdata by matching a column col1 and updates columns
col2 and col3.

dataflow:>stream create --name gpfdiststream2 --definition "http

--server.port=8081|gpfdist --mode=update --table=httpdata

--dbHost=mdw --columnDelimiter=',' --matchColumns=col1

--updateColumns=col2,col3" --deploy

Post some data into a stream which will be passed into a gpfdist sink via http source.

curl --data "DATA1,DATA1,DATA1" -H "Content-Type:text/plain" http://localhost:8081/

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 41

If you query table again, you’ll see that row for DATA1 has been updated.

gpadmin=# select * from httpdata;

 col1 | col2 | col3

-------+-------+-------

 DATA3 | DATA | DATA

 DATA2 | DATA | DATA

 DATA1 | DATA1 | DATA1

(3 rows)

Tuning Transfer Rate

Default values for options flushCount, flushTime, batchCount, batchTimeout and
batchPeriod are relatively conservative and needs to be tuned for every use case for optimal
performance. Order to make a decision on how to tune sink behaviour to suit your needs few things
needs to be considered.

• What is an average size of messages ingested by a sink.

• How fast you want data to become visible in a database.

• Is incoming data a constant flow or a bursts of data.

Everything what flows throught a sink is kept in-memory and because sink is handling backpressure,
memory consumption is relatively low. However because sink cannot predict what is an average size of
an incoming data and this data is anyway windowed later in a downstream you should not allow window
size to become too large if average data size is large as every batch of data is kept in memory.

Generally speaking if you have a lot of segments in a load operation, it’s adviced to keep flushed window
size relatively small which allows more segments to stay active. This however also depends on how
much data is flowing in into a sink itself.

Longer a load session for each segment is active higher the overall transfer rate is going to be. Option
batchCount naturally controls this. However option batchTimeout then really controls how fast each
segment will complete a stream due to inactivity from upstream and to step away from a loading session
to allow distributes session to finish and data become visible in a database.

4.8 HDFS Sink

This module writes each message it receives to HDFS.

Options

The hdfs sink has the following options:

hdfs.close-timeout
Timeout in ms, regardless of activity, after which file will be automatically closed. (Long, default: 0)

hdfs.codec
Compression codec alias name (gzip, snappy, bzip2, lzo, or slzo). (String, default: <none>)

hdfs.directory
Base path to write files to. (String, default: <none>)

hdfs.enable-sync
Whether writer will sync to datanode when flush is called, setting this to 'true' could impact
throughput. (Boolean, default: false)

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 42

hdfs.file-extension
The base filename extension to use for the created files. (String, default: txt)

hdfs.file-name
The base filename to use for the created files. (String, default: <none>)

hdfs.file-open-attempts
Maximum number of file open attempts to find a path. (Integer, default: 10)

hdfs.file-uuid
Whether file name should contain uuid. (Boolean, default: false)

hdfs.flush-timeout
Timeout in ms, regardless of activity, after which data written to file will be flushed. (Long, default: 0)

hdfs.fs-uri
URL for HDFS Namenode. (String, default: <none>)

hdfs.idle-timeout
Inactivity timeout in ms after which file will be automatically closed. (Long, default: 0)

hdfs.in-use-prefix
Prefix for files currently being written. (String, default: <none>)

hdfs.in-use-suffix
Suffix for files currently being written. (String, default: <none>)

hdfs.overwrite
Whether writer is allowed to overwrite files in Hadoop FileSystem. (Boolean, default: false)

hdfs.partition-path
A SpEL expression defining the partition path. (String, default: <none>)

hdfs.rollover
Threshold in bytes when file will be automatically rolled over. (Integer, default: 1000000000)

Note

This module can have it’s runtime dependencies provided during startup if you would like to use
a Hadoop distribution other than the default one.

4.9 Jdbc Sink

A module that writes its incoming payload to an RDBMS using JDBC.

Options

The jdbc sink has the following options:

jdbc.columns
The names of the columns that shall receive data, as a set of column[:SpEL] mappings. Also used
at initialization time to issue the DDL. (java.util.Map<java.lang.String,java.lang.String>, default:
<none>)

jdbc.initialize
'true', 'false' or the location of a custom initialization script for the table. (String, default: false)

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 43

jdbc.table-name
The name of the table to write into. (String, default: <none>)

spring.datasource.driver-class-name
<documentation missing> (String, default: <none>)

spring.datasource.init-sql
<documentation missing> (String, default: <none>)

spring.datasource.initialize
Populate the database using 'data.sql'. (Boolean, default: true)

spring.datasource.password
<documentation missing> (String, default: <none>)

spring.datasource.url
<documentation missing> (String, default: <none>)

spring.datasource.username
<documentation missing> (String, default: <none>)

Note

The module also uses Spring Boot’s DataSource support for configuring the database
connection, so properties like spring.datasource.url etc. apply.

4.10 Log Sink

The log sink uses the application logger to output the data for inspection.

Options

The log sink has the following options:

log.expression
A SpEL expression (against the incoming message) to evaluate as the logged message. (String,
default: payload)

log.level
The level at which to log messages. (Level, default: <none>, possible values:
FATAL,ERROR,WARN,INFO,DEBUG,TRACE)

log.name
The name of the logger to use. (String, default: <none>)

4.11 RabbitMQ Sink

This module sends messages to RabbitMQ.

Options

The rabbit sink has the following options:

(See the Spring Boot documentation for RabbitMQ connection properties)

http://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html#boot-features-configure-datasource

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 44

rabbit.converter-bean-name
The bean name for a custom message converter; if omitted, a SimpleMessageConverter is used. If
'jsonConverter', a Jackson2JsonMessageConverter bean will be created for you. (String, default:
<none>)

rabbit.exchange
Exchange name - overridden by exchangeNameExpression, if supplied. (String, default: <empty
string>)

rabbit.exchange-expression
A SpEL expression that evaluates to an exchange name. (Expression, default: <none>)

rabbit.mapped-request-headers
Headers that will be mapped. (String[], default: [*])

rabbit.persistent-delivery-mode
Default delivery mode when 'amqp_deliveryMode' header is not present, true for PERSISTENT.
(Boolean, default: false)

rabbit.routing-key
Routing key - overridden by routingKeyExpression, if supplied. (String, default: <none>)

rabbit.routing-key-expression
A SpEL expression that evaluates to a routing key. (Expression, default: <none>)

spring.rabbitmq.addresses
Comma-separated list of addresses to which the client should connect to. (String, default: <none>)

spring.rabbitmq.host
RabbitMQ host. (String, default: localhost)

spring.rabbitmq.password
Login to authenticate against the broker. (String, default: <none>)

spring.rabbitmq.port
RabbitMQ port. (Integer, default: 5672)

spring.rabbitmq.requested-heartbeat
Requested heartbeat timeout, in seconds; zero for none. (Integer, default: <none>)

spring.rabbitmq.username
Login user to authenticate to the broker. (String, default: <none>)

spring.rabbitmq.virtual-host
Virtual host to use when connecting to the broker. (String, default: <none>)

Note

By default, the message converter is a SimpleMessageConverter which handles byte[],
String and java.io.Serializable. A well-known bean name jsonConverter will
configure a Jackson2JsonMessageConverter instead. In addition, a custom converter bean
can be added to the context and referenced by the converterBeanName property.

4.12 Redis Sink

This module sends messages to Redis store.

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 45

Options

The redis sink has the following options:

redis.key
A literal key name to use when storing to a key. (String, default: <none>)

redis.key-expression
A SpEL expression to use for storing to a key. (Expression, default: <none>)

redis.queue
A literal queue name to use when storing in a queue. (String, default: <none>)

redis.queue-expression
A SpEL expression to use for queue. (Expression, default: <none>)

redis.topic
A literal topic name to use when publishing to a topic. (String, default: <none>)

redis.topic-expression
A SpEL expression to use for topic. (Expression, default: <none>)

spring.redis.database
Database index used by the connection factory. (Integer, default: 0)

spring.redis.host
Redis server host. (String, default: localhost)

spring.redis.password
Login password of the redis server. (String, default: <none>)

spring.redis.pool.max-active
Max number of connections that can be allocated by the pool at a given time. Use a negative value
for no limit. (Integer, default: 8)

spring.redis.pool.max-idle
Max number of "idle" connections in the pool. Use a negative value to indicate an unlimited number
of idle connections. (Integer, default: 8)

spring.redis.pool.max-wait
Maximum amount of time (in milliseconds) a connection allocation should block before throwing an
exception when the pool is exhausted. Use a negative value to block indefinitely. (Integer, default:
-1)

spring.redis.pool.min-idle
Target for the minimum number of idle connections to maintain in the pool. This setting only has an
effect if it is positive. (Integer, default: 0)

spring.redis.port
Redis server port. (Integer, default: 6379)

spring.redis.sentinel.master
Name of Redis server. (String, default: <none>)

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 46

spring.redis.sentinel.nodes
Comma-separated list of host:port pairs. (String, default: <none>)

spring.redis.timeout
Connection timeout in milliseconds. (Integer, default: 0)

4.13 Router Sink

This module routes messages to named channels.

Options

The router sink has the following options:

router.default-output-channel
Where to send unroutable messages. (String, default: nullChannel)

router.destination-mappings
Destination mappings as a new line delimited string of name-value pairs, e.g. 'foo=bar\n baz=car'.
(Properties, default: <none>)

router.expression
The expression to be applied to the message to determine the channel(s) to route to. (Expression,
default: <none>)

router.refresh-delay
How often to check for script changes in ms (if present); < 0 means don't refresh. (Integer, default:
60000)

router.resolution-required
Whether or not channel resolution is required. (Boolean, default: false)

router.script
The location of a groovy script that returns channels or channel mapping resolution keys.
(Resource, default: <none>)

router.variables
Variable bindings as a new line delimited string of name-value pairs, e.g. 'foo=bar\n baz=car'.
(Properties, default: <none>)

router.variables-location
The location of a properties file containing custom script variable bindings. (Resource, default:
<none>)

Note

Since this is a dynamic router, destinations are created as needed; therefore, by default the
defaultOutputChannel and resolutionRequired will only be used if the Binder has
some problem binding to the destination.

You can restrict the creation of dynamic bindings using the
spring.cloud.stream.dynamicDestinations property. By default, all resolved destinations will
be bound dynamically; if this property has a comma-delimited list of destination names, only those
will be bound. Messages that resolve to a destination that is not in this list will be routed to the
defaultOutputChannel, which must also appear in the list.

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 47

destinationMappings are used to map the evaluation results to an actual destination name.

SpEL-based Routing

The expression evaluates against the message and returns either a channel name, or the key to a map
of channel names.

For more information, please see the "Routers and the Spring Expression Language (SpEL)" subsection
in the Spring Integration Reference manual Configuring (Generic) Router section.

Groovy-based Routing

Instead of SpEL expressions, Groovy scripts can also be used. Let’s create a Groovy script in the file
system at "file:/my/path/router.groovy", or "classpath:/my/path/router.groovy" :

println("Groovy processing payload '" + payload + "'");

if (payload.contains('a')) {

 return "foo"

}

else {

 return "bar"

}

If you want to pass variable values to your script, you can statically bind values using the variables
option or optionally pass the path to a properties file containing the bindings using the propertiesLocation
option. All properties in the file will be made available to the script as variables. You may specify both
variables and propertiesLocation, in which case any duplicate values provided as variables override
values provided in propertiesLocation. Note that payload and headers are implicitly bound to give you
access to the data contained in a message.

For more information, see the Spring Integration Reference manual Groovy Support.

Unresolved directive in sinks.adoc - include::https://raw.githubusercontent.com/spring-cloud/spring-
cloud-stream-app-starters/master/s3/spring-cloud-starter-stream-sink-s3/README.adoc[tags=ref-doc]

4.14 TCP Sink

This module writes messages to TCP using an Encoder.

TCP is a streaming protocol and some mechanism is needed to frame messages on the wire. A number
of encoders are available, the default being 'CRLF'.

Options

The tcp sink has the following options:

tcp.charset
The charset used when converting from bytes to String. (String, default: UTF-8)

tcp.close
Whether to close the socket after each message. (Boolean, default: false)

tcp.encoder
The encoder to use when sending messages. (Encoding, default: <none>, possible values:
CRLF,LF,NULL,STXETX,RAW,L1,L2,L4)

http://docs.spring.io/spring-integration/reference/html/messaging-routing-chapter.html#router-namespace
http://docs.spring.io/spring-integration/reference/html/messaging-endpoints-chapter.html#groovy

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 48

tcp.host
The host to which this sink will connect. (String, default: <none>)

tcp.nio
<documentation missing> (Boolean, default: <none>)

tcp.port
<documentation missing> (Integer, default: <none>)

tcp.reverse-lookup
<documentation missing> (Boolean, default: <none>)

tcp.socket-timeout
<documentation missing> (Integer, default: <none>)

tcp.use-direct-buffers
<documentation missing> (Boolean, default: <none>)

Available Encoders
Text Data

CRLF (default)
text terminated by carriage return (0x0d) followed by line feed (0x0a)

LF
text terminated by line feed (0x0a)

NULL
text terminated by a null byte (0x00)

STXETX
text preceded by an STX (0x02) and terminated by an ETX (0x03)

Text and Binary Data

RAW
no structure - the client indicates a complete message by closing the socket

L1
data preceded by a one byte (unsigned) length field (supports up to 255 bytes)

L2
data preceded by a two byte (unsigned) length field (up to 216-1 bytes)

L4
data preceded by a four byte (signed) length field (up to 231-1 bytes)

4.15 Throughput Sink

A simple handler that will count messages and log witnessed throughput at a selected interval.

4.16 Websocket Sink

A simple Websocket Sink implementation.

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 49

Options

The following commmand line arguments are supported:

websocket.log-level
the logLevel for netty channels. Default is <tt>WARN</tt> (String, default: <none>)

websocket.path
the path on which a WebsocketSink consumer needs to connect. Default is <tt>/websocket</tt>
(String, default: /websocket)

websocket.port
the port on which the Netty server listens. Default is <tt>9292</tt> (Integer, default: 9292)

websocket.ssl
whether or not to create a {@link io.netty.handler.ssl.SslContext} (Boolean, default: false)

websocket.threads
the number of threads for the Netty {@link io.netty.channel.EventLoopGroup}. Default is <tt>1</tt>
(Integer, default: 1)

Example

To verify that the websocket-sink receives messages from other spring-cloud-stream apps, you can use
the following simple end-to-end setup.

Step 1: Start Redis

The default broker that is used is Redis. Normally can start Redis via redis-server.

Step 2: Deploy a time-source

Step 3: Deploy a websocket-sink (the app that contains this starter jar)

Finally start a websocket-sink in trace mode so that you see the messages produced by the time-
source in the log:

java -jar <spring boot application for websocket-sink> --spring.cloud.stream.bindings.input=ticktock --

server.port=9393 \

 --logging.level.org.springframework.cloud.stream.module.websocket=TRACE

You should start seeing log messages in the console where you started the WebsocketSink like this:

Handling message: GenericMessage [payload=2015-10-21 12:52:53, headers={id=09ae31e0-a04e-b811-d211-

b4d4e75b6f29, timestamp=1445424778065}]

Handling message: GenericMessage [payload=2015-10-21 12:52:54, headers={id=75eaaf30-e5c6-494f-

b007-9d5b5b920001, timestamp=1445424778065}]

Handling message: GenericMessage [payload=2015-10-21 12:52:55, headers={id=18b887db-81fc-

c634-7a9a-16b1c72de291, timestamp=1445424778066}]

Actuators

There is an Endpoint that you can use to access the last n messages sent and received. You have
to enable it by providing --endpoints.websocketsinktrace.enabled=true. By default it shows
the last 100 messages via the host:port/websocketsinktrace. Here is a sample output:

http://host:port/websocketsinktrace

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 50

 [

 {

 "timestamp": 1445453703508,

 "info": {

 "type": "text",

 "direction": "out",

 "id": "2ff9be50-c9b2-724b-5404-1a6305c033e4",

 "payload": "2015-10-21 20:54:33"

 }

 },

 ...

 {

 "timestamp": 1445453703506,

 "info": {

 "type": "text",

 "direction": "out",

 "id": "2b9dbcaf-c808-084d-a51b-50f617ae6a75",

 "payload": "2015-10-21 20:54:32"

 }

 }

]

There is also a simple HTML page where you see forwarded messages in a text area. You can access
it directly via host:port in your browser

Note

For SSL mode (--ssl=true) a self signed certificate is used that might cause troubles with
some Websocket clients. In a future release, there will be a --certificate=mycert.cer
switch to pass a valid (not self-signed) certificate.

http://host:port

Part III. Appendices

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 52

Appendix A. Building
A.1 Basic Compile and Test

To build the source you will need to install JDK 1.7.

The build uses the Maven wrapper so you don’t have to install a specific version of Maven. To enable
the tests for Redis you should run the server before bulding. See below for more information on how
run Redis.

The main build command is

$./mvnw clean install

You can also add '-DskipTests' if you like, to avoid running the tests.

Note

You can also install Maven (>=3.3.3) yourself and run the mvn command in place of ./mvnw in
the examples below. If you do that you also might need to add -P spring if your local Maven
settings do not contain repository declarations for spring pre-release artifacts.

Note

Be aware that you might need to increase the amount of memory available to Maven by setting
a MAVEN_OPTS environment variable with a value like -Xmx512m -XX:MaxPermSize=128m.
We try to cover this in the .mvn configuration, so if you find you have to do it to make a build
succeed, please raise a ticket to get the settings added to source control.

The projects that require middleware generally include a docker-compose.yml, so consider using
Docker Compose to run the middeware servers in Docker containers. See the README in the scripts
demo repository for specific instructions about the common cases of mongo, rabbit and redis.

A.2 Documentation

There is a "full" profile that will generate documentation. You can build just the documentation by
executing

$./mvnw package -DskipTests=true -P full -pl spring-cloud-stream-app-starters-docs -am

A.3 Working with the code

If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or Eclipse
when working with the code. We use the m2eclipe eclipse plugin for maven support. Other IDEs and
tools should also work without issue.

Importing into eclipse with m2eclipse

We recommend the m2eclipe eclipse plugin when working with eclipse. If you don’t already have
m2eclipse installed it is available from the "eclipse marketplace".

Unfortunately m2e does not yet support Maven 3.3, so once the projects are imported into Eclipse you
will also need to tell m2eclipse to use the .settings.xml file for the projects. If you do not do this

http://compose.docker.io/
https://github.com/spring-cloud-samples/scripts
https://github.com/spring-cloud-samples/scripts
http://www.springsource.com/developer/sts
http://eclipse.org
http://eclipse.org/m2e/
http://eclipse.org/m2e/

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 53

you may see many different errors related to the POMs in the projects. Open your Eclipse preferences,
expand the Maven preferences, and select User Settings. In the User Settings field click Browse and
navigate to the Spring Cloud project you imported selecting the .settings.xml file in that project.
Click Apply and then OK to save the preference changes.

Note

Alternatively you can copy the repository settings from .settings.xml into your own ~/.m2/
settings.xml.

Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following
command:

$./mvnw eclipse:eclipse

The generated eclipse projects can be imported by selecting import existing projects from the
file menu.

https://github.com/spring-cloud/spring-cloud-build/blob/master/.settings.xml

Spring Cloud Stream App Starters Reference Guide

1.0.2.RELEASE Spring Cloud Data Flow 54

5. Contributing

Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard
Github development process, using Github tracker for issues and merging pull requests into master. If
you want to contribute even something trivial please do not hesitate, but follow the guidelines below.

5.1 Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the contributor’s agreement.
Signing the contributor’s agreement does not grant anyone commit rights to the main repository, but
it does mean that we can accept your contributions, and you will get an author credit if we do. Active
contributors might be asked to join the core team, and given the ability to merge pull requests.

5.2 Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help. They can also be added after the
original pull request but before a merge.

• Use the Spring Framework code format conventions. If you use Eclipse you can import formatter
settings using the eclipse-code-formatter.xml file from the Spring Cloud Build project. If using
IntelliJ, you can use the Eclipse Code Formatter Plugin to import the same file.

• Make sure all new .java files to have a simple Javadoc class comment with at least an @author
tag identifying you, and preferably at least a paragraph on what the class is for.

• Add the ASF license header comment to all new .java files (copy from existing files in the project)

• Add yourself as an @author to the .java files that you modify substantially (more than cosmetic
changes).

• Add some Javadocs and, if you change the namespace, some XSD doc elements.

• A few unit tests would help a lot as well — someone has to do it.

• If no-one else is using your branch, please rebase it against the current master (or other target branch
in the main project).

• When writing a commit message please follow these conventions, if you are fixing an existing issue
please add Fixes gh-XXXX at the end of the commit message (where XXXX is the issue number).

https://support.springsource.com/spring_committer_signup
https://github.com/spring-cloud/build/tree/master/eclipse-coding-conventions.xml
http://plugins.jetbrains.com/plugin/6546
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

	Spring Cloud Stream App Starters Reference Guide
	Table of Contents
	Part I. Reference Guide
	1. Introduction
	1.1 Starters and pre-built applications
	1.2 Classification
	1.3 Using the artifacts
	Maven and Docker access
	Building the artifacts

	1.4 Creating custom artifacts
	Using a different binder
	Creating your own applications
	Using generic Spring Cloud Stream applications
	Using the starters to create custom components

	1.5 Patching pre-built applications
	1.6 Contributing Stream Application Starters and Generating Artifacts

	Part II. Starters
	2. Sources
	2.1 File Source
	Options

	2.2 FTP Source
	Options

	2.3 Http Source
	Options

	2.4 JDBC Source
	Options

	2.5 JMS Source
	Options

	2.6 Load Generator Source
	Options

	2.7 RabbitMQ Source
	Options
	A Note About Retry

	2.8 SFTP Source
	Options

	2.9 SYSLOG Source
	Options

	2.10 TCP
	Options
	Available Decoders

	2.11 Time Source
	Options

	2.12 Trigger Source
	Options

	2.13 Twitter Stream Source
	Options

	3. Processors
	3.1 Bridge Processor
	3.2 Filter Processor
	Options

	3.3 Groovy Filter Processor
	Options

	3.4 Groovy Transform Processor
	Options

	3.5 Http Client Processor
	Options

	3.6 PMML Processor
	Options

	3.7 Scripable Transform Processor
	Options

	3.8 Splitter Processor
	Options
	JSON Example

	3.9 Transform Processor
	Options

	4. Sinks
	4.1 Cassandra Sink
	Options

	4.2 Counter Sink
	Options

	4.3 Field Value Counter Sink
	Options

	4.4 File Sink
	Options

	4.5 FTP Sink
	Options

	4.6 Gemfire Sink
	Options

	4.7 Gpfdist Sink
	Options
	Implementation Notes
	Detailed Option Descriptions
	How Data Is Sent Into Segments
	Example Usage
	Tuning Transfer Rate

	4.8 HDFS Sink
	Options

	4.9 Jdbc Sink
	Options

	4.10 Log Sink
	Options

	4.11 RabbitMQ Sink
	Options

	4.12 Redis Sink
	Options

	4.13 Router Sink
	Options
	SpEL-based Routing
	Groovy-based Routing

	4.14 TCP Sink
	Options
	Available Encoders

	4.15 Throughput Sink
	4.16 Websocket Sink
	Options
	Example
	Step 1: Start Redis
	Step 2: Deploy a time-source
	Step 3: Deploy a websocket-sink (the app that contains this starter jar)

	Actuators

	Part III. Appendices
	Appendix A. Building
	A.1 Basic Compile and Test
	A.2 Documentation
	A.3 Working with the code
	Importing into eclipse with m2eclipse
	Importing into eclipse without m2eclipse

	5. Contributing
	5.1 Sign the Contributor License Agreement
	5.2 Code Conventions and Housekeeping

