Spring Cloud Stream App Starters Reference Guide
Table of Contents
	I. Reference Guide	1. Introduction	Pre-built applications
	Classification
	Using the Artifacts	Maven and Docker access
	Building the Artifacts

	Custom Artifacts	Using a different binder
	New Applications	Generic Applications
	Customize Starter Applications

	Patching Pre-built Applications
	Creating New Stream Application Starters and Generating Artifacts
	General FAQ on Spring Cloud Stream App Starters

	II. Starters	2. Sources	File Source	Input
	Output	mode = contents	Headers:
	Payload:

	mode = lines	Headers:
	Payload:

	mode = ref	Headers:
	Payload:

	Options
	Build
	Examples

	FTP Source	Input
	Output	mode = contents	Headers:
	Payload:

	mode = lines	Headers:
	Payload:

	mode = ref	Headers:
	Payload:

	Options
	Build
	Examples

	Gemfire Source	Input
	Output	Headers
	Payload

	Options
	Build
	Examples

	Gemfire-CQ Source	Input
	Output	Headers
	Payload

	Options
	Build
	Examples

	Http Source	Input
	Output	Headers:
	Payload:

	Options
	Build
	Examples

	JDBC Source	Input
	Output	Headers
	Payload

	Options
	Build
	Examples

	JMS Source	Input
	Output	Headers
	Payload
	Headers
	Payload
	Headers
	Payload
	Headers
	Payload

	Options
	Build
	Examples

	Load Generator Source	Input
	Output	Headers:
	Payload:

	Options
	Build
	Examples

	Loggregator Source	Input
	Output	Headers:
	Payload:

	Options
	Build
	Examples

	Mail Source	Input
	Output	Headers
	Payload

	Options
	Build
	Examples

	MongoDB Source	Input
	Output	Headers:
	Payload:

	Options
	Build
	Examples

	MQTT Source	Input
	Output	Headers:
	Payload:

	Options
	Build
	Examples

	RabbitMQ Source	Input
	Output	Headers
	Payload
	Headers
	Payload
	Headers
	Payload

	Options	A Note About Retry

	Build
	Examples

	Amazon S3 Source	Input
	Output	mode = contents	Headers:
	Payload:

	mode = lines	Headers:
	Payload:

	mode = ref	Headers:
	Payload:

	Options
	Amazon AWS common options
	Build
	Examples

	SFTP Source	Multiple SFTP Servers
	Input
	Output	mode = contents	Headers:
	Payload:

	mode = lines	Headers:
	Payload:

	mode = ref	Headers:
	Payload:

	task-launcher-output = true	Headers:
	Payload:

	Options
	Build
	Examples

	SYSLOG Source	Input
	Output	Headers
	Payload

	Options
	Build
	Examples

	TCP	Input
	Output	Headers:
	Payload:

	Options
	Available Decoders
	Build
	Examples

	TCP Client as a Source which connects to a TCP server and receives data	Input
	Output	Headers:
	Payload:

	Options
	Build
	Examples

	Time Source	Input
	Output	Headers:
	Payload:

	Options
	Build
	Examples

	Trigger Source	Input
	Output	Headers:
	Payload:

	Options
	Build
	Examples

	TriggerTask Source	Input
	Output	Headers:
	Payload:

	Options
	Build	Examples

	Twitter Stream Source	Input
	Output	Headers
	Payload

	Options
	Build
	Examples

	3. Processors	Aggregator Processor	Input	Headers
	Payload

	Output	Headers
	Payload

	Options
	Build
	Examples
	Code of Conduct

	Bridge Processor	Input	Headers
	Payload

	Output	Headers
	Payload

	Options
	Build
	Examples

	Counter Processor	Options

	Filter Processor	Input	Headers
	Payload

	Output	Headers
	Payload

	Options
	Build
	Examples

	Groovy Filter Processor	Input	Headers
	Payload

	Output	Headers
	Payload

	Options
	Build
	Examples

	Groovy Transform Processor	Input	Headers
	Payload

	Output	Headers
	Payload

	Options
	Build
	Examples

	gRPC Processor	Input	Headers
	Payload

	Output	Headers
	Payload

	Options

	Header Enricher Processor	Input	Headers
	Payload

	Output	Headers
	Payload

	Options
	Build
	Examples
	Code of Conduct

	Http Client Processor	Input	Headers
	Payload

	Output	Headers
	Payload

	Options
	Build
	Examples

	PMML Processor	Input	Headers
	Payload

	Output	Headers
	Payload

	Options
	Build
	Examples

	Python Http Processor	Input	Headers
	Payload

	Output	Headers
	Payload

	Options
	Build
	Examples

	Jython Processor	Input	Headers
	Payload

	Output	Headers
	Payload

	Options
	Build
	Examples

	Scripable Transform Processor	Input	Headers
	Payload

	Output	Headers
	Payload

	Options
	Build
	Examples

	Splitter Processor	Input	Headers
	Payload

	Output	Headers
	Payload

	Options
	JSON Example
	Build
	Examples

	Task Launch Request Transform	Input
	Output	Headers:
	Payload:

	Options
	Building with Maven	Examples

	TCP Client as a processor which connects to a TCP server, sends data to it and also receives data.	Input	Headers:
	Payload:
	Headers:
	Payload:

	Output	Headers:
	Payload:

	Options
	Build
	Examples

	Transform Processor	Input	Headers
	Payload

	Output	Headers
	Payload

	Options
	Build
	Examples

	TensorFlow Processor	Input	Headers
	Payload

	Output	Headers
	Payload

	Options
	Build
	Examples

	Twitter Sentiment Analysis Processor	Input	Headers
	Payload

	Output	Headers
	Payload
	Payload

	Options
	Build
	Examples

	Image Recognition Processor	Options

	Object Detection Processor	Options

	Pose Estimation Processor	Options

	4. Sinks	Cassandra Sink	Input
	Output
	Options
	Build
	Examples

	Counter Sink	Options

	File Sink	Input	Headers
	Payload

	Output
	Options
	Build	Examples

	FTP Sink	Input	Headers
	Payload

	Output
	Options
	Build	Examples

	Gemfire Sink	Input	Headers
	Payload
	Headers
	Payload

	Output
	Options
	Build
	Examples

	Gpfdist Sink	Input	Headers:
	Payload:

	Output
	Options
	Implementation Notes
	Detailed Option Descriptions
	How Data Is Sent Into Segments
	Example Usage
	Tuning Transfer Rate
	Build
	Examples

	HDFS Sink	Input	Headers
	Payload

	Output
	Options
	Build
	Examples

	Jdbc Sink	Input	Headers
	Payload

	Output
	Options
	Build
	Examples

	Log Sink	Input	Headers
	Payload

	Output
	Options
	Build
	Examples

	RabbitMQ Sink	Input	Headers
	Payload
	Headers
	Payload
	Headers
	Payload

	Output
	Options
	Build
	Examples

	MongoDB Sink	Input	Headers
	Payload

	Output
	Options
	Build
	Examples

	MQTT Sink	Input	Headers:
	Payload:

	Output
	Options
	Build
	Examples

	Pgcopy Sink	Input	Headers
	Payload

	Output
	Options
	Build
	Examples

	Redis Sink	Input	Headers
	Payload
	Headers
	Payload

	Output
	Options
	Build
	Examples

	Router Sink	Input	Headers
	Payload

	Output
	Options
	Options
	SpEL-based Routing
	Groovy-based Routing
	Build
	Examples

	Amazon S3 Sink	Input	Headers
	Payload

	Output
	Options
	Amazon AWS common options
	Build	Examples

	SFTP Sink	Input	Headers
	Payload

	Output
	Options
	Build	Examples

	TCP Sink	Input	Headers:
	Payload:
	Headers:
	Payload:

	Output
	Options
	Available Encoders
	Build
	Examples

	Throughput Sink	Input	Headers
	Payload

	Output
	Options
	Build
	Examples

	Websocket Sink	Input	Headers
	Payload

	Output
	Options
	Build
	Examples	Step 1: Start Rabbitmq
	Step 2: Deploy a time-source
	Step 3: Deploy a websocket-sink (the app that contains this starter jar)

	Actuators

	TaskLauncher Data Flow Sink	Input	Headers:
	Payload:

	Output	Options

	Using the TaskLauncher
	Build	Examples

	III. Appendices	A. Building	Basic Compile and Test
	Documentation
	Working with the code	Importing into eclipse with m2eclipse
	Importing into eclipse without m2eclipse

	B. App Starter POM Dependencies
	C. App Starter Naming Conventions
	5. Contributing	Sign the Contributor License Agreement
	Code Conventions and Housekeeping

Spring Cloud Stream App Starters Reference Guide

Sabby Anandan

Artem Bilan

Marius Bogoevici

Eric Bottard

Mark Fisher

Ilayaperumal Gopinathan

Gunnar Hillert

Mark Pollack

Patrick Peralta

Glenn Renfro

Gary Russell

Thomas Risberg

David Turanski

Janne Valkealahti

Soby Chacko

Christian Tzolov

Einstein.RELEASE

Copyright © 2013-2019 Pivotal Software, Inc.

		Copies of this document may be made for your own use and for distribution to
		others, provided that you do not charge any fee for such copies and further
		provided that each copy contains this Copyright Notice, whether distributed in
		print or electronically.
	

Part I. Reference Guide

This section will provide you with a detailed overview of Spring Cloud Stream Application Starters, their purpose, and how to use them.
It assumes familiarity with general Spring Cloud Stream concepts, which can be found in the Spring Cloud Stream reference documentation.

Chapter 1. Introduction

Spring Cloud Stream Application Starters provide you with out-of-the-box Spring Cloud Stream uility applications that you can run independently or with Spring Cloud Data Flow.
You can also use the starters as a basis for creating your own applications.
They include:
	connectors (sources, processors, and sinks) for a variety of middleware technologies including message brokers, storage (relational, non-relational, filesystem);
	adapters for various network protocols;
	generic processors that can be customized via Spring Expression Language (SpEL) or scripting.

You can find a detailed listing of all the starters and as their options in the corresponding section of this guide.
You can find all available app starter repositories in this GitHub Organization.
Pre-built applications

As a user of Spring Cloud Stream Application Starters you have access to two types of artifacts.
Starters are libraries that contain the complete configuration of a Spring Cloud Stream application with a specific role (e.g. an HTTP source that receives HTTP POST requests and forwards the data on its output channel to downstream Spring Cloud Stream applications).
Starters are not executable applications, and are intended to be included in other Spring Boot applications, along with an available Binder implementation of your choice.
Out-of-the-box applications are Spring Boot applications that include the starters and a Binder implementation - a fully functional uber-jar.
These uber-jar’s include minimal code required to execute standalone. For each starter application, the project provides a prebuilt version for Apache Kafka and Rabbit MQ Binders.
	[image: [Note]]	Note
	Only starters are present in the source code of the project.
Prebuilt applications are generated according to the stream apps generator maven plugin.

Classification

Based on their target application type, starters can be either:
	a source that connects to an external resource to poll and receive data that is published to the default "output" channel;
	a processor that receives data from an "input" channel and processes it, sending the result on the default "output" channel;
	a sink that connects to an external resource to send the received data to the default "input" channel.

You can easily identify the type and functionality of a starter based on its name.
All starters are named following the convention spring-cloud-starter-stream-<type>-<functionality>.
For example spring-cloud-starter-stream-source-file is a starter for a file source that polls a directory and sends file data on the output channel (read the reference documentation of the source for details).
Conversely, spring-cloud-starter-stream-sink-cassandra is a starter for a Cassandra sink that writes the data that it receives on the input channel to Cassandra (read the reference documentation of the sink for details).
The prebuilt applications follow a naming convention too: <functionality>-<type>-<binder>. For example, cassandra-sink-kafka-10 is a Cassandra sink using the Kafka binder that is running with Kafka version 0.10.
Using the Artifacts

You either get access to the artifacts produced by Spring Cloud Stream Application Starters via Maven, Docker, or building the artifacts yourself.
Maven and Docker access

Starters are available as Maven artifacts in the Spring repositories. You can add them as dependencies to your application, as follows:
<dependency>
 <groupId>org.springframework.cloud.stream.app</groupId>
 <artifactId>spring-cloud-starter-stream-sink-cassandra</artifactId>
 <version>2.1.0.BUILD-SNAPSHOT</version>
</dependency>
From this, you can infer the coordinates for other starters found in this guide.
While the version may vary, the group will always remain org.springframework.cloud.stream.app and the artifact id follows the naming convention spring-cloud-starter-stream-<type>-<functionality> described previously.
Prebuilt applications are available as Maven artifacts too.
It is not encouraged to use them directly as dependencies, as starters should be used instead.
Following the typical Maven <group>:<artifactId>:<version> convention, they can be referenced for example as:
org.springframework.cloud.stream.app:cassandra-sink-rabbit:2.1.0.BUILD-SNAPSHOT
You can download the executable jar artifacts from the Spring Maven repositories. The root directory of the Maven repository that hosts release versions is repo.spring.io/release/org/springframework/cloud/stream/app/. From there you can navigate to the latest release version of a specific app, for example log-sink-rabbit-2.0.2.RELEASE.jar. Use the Milestone and Snapshot repository locations for Milestone and Snapshot executable jar artifacts.
The Docker versions of the applications are available in Docker Hub, at hub.docker.com/r/springcloudstream/. Naming and versioning follows the same general conventions as Maven, e.g.
docker pull springcloudstream/cassandra-sink-kafka
will pull the latest Docker image of the Cassandra sink with the Kafka binder.
Building the Artifacts

You can build the project and generate the artifacts (including the prebuilt applications) on your own.
This is useful if you want to deploy the artifacts locally or add additional features.
First, you need to generate the prebuilt applications.
This is done by running the application generation Maven plugin.
You can do so by simply invoking the maven build with the generateApps profile and install lifecycle.
mvn clean install -PgenerateApps
Each of the prebuilt applciation will contain:
	pom.xml file with the required dependencies (starter and binder)
	a class that contains the main method of the application and imports the predefined configuration
	generated integration test code that validates the component against the configured binder.

For example, spring-cloud-starter-stream-sink-cassandra will generate cassandra-sink-rabbit and cassandra-sink-kafka as completely functional applications.
Custom Artifacts

Apart from accessing the sources, sinks and processors already provided by the project, in this section we will describe how to:
	Use a different binder than Kafka or Rabbit
	Create your own applications
	Customize dependencies such as Hadoop distributions or JDBC drivers

Using a different binder

Prebuilt applications are provided for both kafka and rabbit binders.
But if you want to connect to a different middleware system, and you have a binder for it, you will need to create new artifacts.
<dependencies>
 <!- other dependencies -->
 <dependency>
 <groupId>org.springframework.cloud.stream.app</groupId>
 <artifactId>spring-cloud-starter-stream-sink-cassandra</artifactId>
 <version>2.1.0.BUILD-SNAPSHOT</version>
 </dependency>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-stream-binder-kinesis</artifactId>
 <version>1.0.0.BUILD-SNAPSHOT</version>
 </dependency>
</dependencies>
The next step is to create the project’s main class and import the configuration provided by the starter.
package org.springframework.cloud.stream.app.cassandra.sink.rabbit;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.stream.app.cassandra.sink.CassandraSinkConfiguration;
import org.springframework.context.annotation.Import;

@SpringBootApplication
@Import(CassandraSinkConfiguration.class)
public class CassandraSinkKinesisApplication {

	public static void main(String[] args) {
		SpringApplication.run(CassandraSinkKinesisApplication.class, args);
	}
}
New Applications

Spring Cloud Stream Application Starters consists of regular Spring Boot applications with some additional conventions that facilitate generating prebuilt applications with the preconfigured binders.
Sometimes, your solution may require additional applications that are not in the scope of out-of-the-box Spring Cloud Stream Application Starters, or require additional tweaks and enhancements.
In this section we will show you how to create custom applications that can be part of your solution, along with Spring Cloud Stream application starters.
You have the following options:
	create new Spring Cloud Stream applications;
	use the starters to create customized versions;

Generic Applications

If you want to add your own custom applications to your solution, you can simply create a new Spring Cloud Stream app project with the binder of your choice and run it the same way as the applications provided by Spring Cloud Stream Application Starters, independently or via Spring Cloud Data Flow.
The process is described in the Quick Start section of Spring Cloud Stream.
In a nutshell, you can go to the Spring Initializr and choose a Spring Cloud Stream Binder of your choice.
This way you already have the necessary infrastructure ready to go and mainly focus on the specifics of the application.
The following requirements need to be followed when you go with this option:
	a single inbound channel named output for sources - the simplest way to do so is by using the predefined interface org.spring.cloud.stream.messaging.Source;
	a single outbound channel named input for sinks - the simplest way to do so is by using the predefined interface org.spring.cloud.stream.messaging.Sink;
	both an inbound channel named input and an outbound channel named output for processors - the simplest way to do so is by using the predefined interface org.spring.cloud.stream.messaging.Processor.

Customize Starter Applications

You can also reuse the starters provided by Spring Cloud Stream Application Starters to create custom components, enriching the behavior of the application.
For example, you can add a Spring Security layer to your HTTP source, add additional configurations to the ObjectMapper used for JSON transformation wherever that happens, or change the JDBC driver or Hadoop distribution that the application is using.
In order to do this, you should set up your project following a process similar to customizing a binder.
In fact, customizing the binder is the simplest form of creating a custom component.
As a reminder, this involves:
	adding the starter to your project
	choosing the binder
	adding the main class and importing the starter configuration.

After doing so, you can add the additional configuration for the extra features of your application.
Patching Pre-built Applications

If you’re looking to patch the pre-built applications to accommodate the addition of new dependencies, you can use the following example as the reference. Let’s review the steps to add mysql driver to jdbc-sink application.
	Go to: start-scs.cfapps.io/
	Select the application and binder dependencies [`JDBC sink` and `Rabbit binder starter`]
	Generate and load the project in an IDE
	Add mysql java-driver dependency

<dependencies>
 <dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <version>5.1.37</version>
 </dependency>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-stream-binder-rabbit</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.cloud.stream.app</groupId>
 <artifactId>spring-cloud-starter-stream-sink-jdbc</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
</dependencies>
	Import the respective configuration class to the generated Spring Boot application. In the case of jdbc sink, it is: @Import(org.springframework.cloud.stream.app.jdbc.sink.JdbcSinkConfiguration.class). You can find the configuration class for other applications in their respective repositories.

@SpringBootApplication
@Import(org.springframework.cloud.stream.app.jdbc.sink.JdbcSinkConfiguration.class)
public class DemoApplication {

 public static void main(String[] args) {
 SpringApplication.run(DemoApplication.class, args);
 }
}
	Build and install the application to desired maven repository
	The patched copy of jdbc-sink application now includes mysql driver in it
	This application can be run as a standalone uberjar

Creating New Stream Application Starters and Generating Artifacts

In this section, we will explain how to develop a custom source/sink/processor application and then generate
maven and docker artifacts for it with the necessary middleware bindings using the existing tooling provided by the
spring cloud stream app starter infrastructure. For explanation purposes, we will assume that we are creating a new
source application for a technology named foobar.
	Create a repository called foobar in your local github account
	The root artifact (something like foobar-app-starters-build) must inherit from app-starters-build

Please follow the instructions above for designing a proper Spring Cloud Stream Source. You may also look into the existing
starters for how to structure a new one. The default naming for the main @Configuration class is
FoobarSourceConfiguration and the default package for this @Configuration
is org.springfamework.cloud.stream.app.foobar.source. If you have a different class/package name, see below for
overriding that in the app generator. The technology/functionality name for which you create
a starter can be a hyphenated stream of strings such as in scriptable-transform which is a processor type in the
module spring-cloud-starter-stream-processor-scriptable-transform.
The starters in spring-cloud-stream-app-starters are slightly different from the other starters in spring-boot and
spring-cloud in that here we don’t provide a way to auto configure any configuration through spring factories mechanism.
Rather, we delegate this responsibility to the maven plugin that is generating the binder based apps. Therefore, you don’t
have to provide a spring.factories file that lists all your configuration classes.
	The starter module needs to inherit from the parent (foobar-app-starters-build)
	Add the new foobar source module to the root pom of the new repository
	In the pom.xml for the source module, add the following in the build section. This will add the necessary plugin configuration for app generation as well as generating proper documentation metadata.
Please ensure that your root pom inherits app-starters-build as the base configuration for the plugins is specified there.

<build>
		<plugins>
			<plugin>
				<groupId>org.springframework.cloud</groupId>
				<artifactId>spring-cloud-app-starter-doc-maven-plugin</artifactId>
			</plugin>
			<plugin>
				<groupId>org.springframework.cloud.stream.app.plugin</groupId>
				<artifactId>spring-cloud-stream-app-maven-plugin</artifactId>
				<configuration>
					<generatedProjectHome>${session.executionRootDirectory}/apps</generatedProjectHome>
					<generatedProjectVersion>${project.version}</generatedProjectVersion>
					<bom>
						<name>scs-bom</name>
						<groupId>org.springframework.cloud.stream.app</groupId>
						<artifactId>foobar-app-dependencies</artifactId>
						<version>${project.version}</version>
					</bom>
					<generatedApps>
						<foobar-source/>
					</generatedApps>
				</configuration>
			</plugin>
		</plugins>
	</build>
More information about the maven plugin used above to generate the apps can be found here:
github.com/spring-cloud/spring-cloud-stream-app-maven-plugin
If you did not follow the default convention expected by the plugin for where it is looking for the main configuration
class, which is org.springfamework.cloud.stream.app.foobar.source.FoobarSourceConfiguration, you can override that in
the configuration for the plugin. For example, if your main configuration class is foo.bar.SpecialFooBarConfiguration.class,
this is how you can tell the plugin to override the default.
<foobar-source>
 <autoConfigClass>foo.bar.SpecialFooBarConfiguration.class</autoConfigClass>
</foobar-source>
	Create a new module to manage dependencies for foobar (foobar-app-dependencies). This is the bom (bill of material) for this project. It is advised that this bom is inherited from spring-cloud-dependencies-parent. Please see other starter repositories for guidelines.
	You need to add the new starter dependency to the BOM in the dependency management section. For example,

<dependencyManagement>
...
...
 <dependency>
 <groupId>org.springframework.cloud.stream.app</groupId>
 <artifactId>spring-cloud-starter-stream-source-foobar</artifactId>
 <version>1.0.0.BUILD-SNAPSHOT</version>
 </dependency>
...
...
	At the root of the repository build, install and generate the apps:

./mvnw clean install -PgenerateApps
This will generate the binder based foobar source apps in a directory named apps at the root of the repository.
If you want to change the location where the apps are generated, for instance `/tmp/scst-apps, you can do it in the
configuration section of the plugin.
<configuration>
 ...
 <generatedProjectHome>/tmp/scst-apps</generatedProjectHome>
 ...
</configuration
By default, we generate apps for both Kafka and Rabbitmq binders - spring-cloud-stream-binder-kafka and
spring-cloud-stream-binder-rabbit. Say, if you have a custom binder you created for some middleware (E.g. JMS),
which you need to generate apps for foobar source, you can add that binder to the binders list in the configuration
section as in the following.
<binders>
 <jms />
</binders>
Please note that this will only work, as long as there is a binder with the maven coordinates of
org.springframework.cloud.stream as group id and spring-cloud-stream-binder-jms as artifact id.
This artifact needs to be specified in the BOM above and available through a maven repository as well.
If you have an artifact that is only available through a private internal maven repository (may be an enterprise wide
Nexus repo that you use globally across teams), and you need that for your app, you can define that as part of the maven
plugin configuration.
For example,
<configuration>
...
 <extraRepositories>
 <repository>
 <id>private-internal-nexus</id>
 <url>.../</url>
 <name>...</name>
 <snapshotEnabled>...</snapshotEnabled>
 </repository>
 </extraRepositories>
</configuration>
Then you can define this as part of your app tag:
<foobar-source>
 <extraRepositories>
 <private-internal-nexus />
 </extraRepositories>
</foobar-source>
	cd into the directory where you generated the apps (apps at the root of the repository by default, unless you changed
it elsewhere as described above).

Here you will see foobar-source-kafka and foobar-source-rabbit.
If you added more binders as described above, apps will be generated for them as well - e.g. foobar-source-jms.
You can import these apps directly into your IDE of choice if you further want to do any customizations on them. Each of them is a self contained spring boot application project.
For the generated apps, the parent is spring-boot-starter-parent as required by the underlying Spring Initializr library.
You can cd into these custom foobar-source directories and do the following to build the apps:
cd foo-source-kafka
mvn clean install
This installs the foo-source-kafka into your local maven cache (~/.m2 by default).
The app generation phase adds an integration test to the app project that is making sure that all the spring
components and contexts are loaded properly. However, these tests are not run by default when you do a mvn install.
You can force the running of these tests by doing the following:
mvn clean install -DskipTests=false
One important note about running these tests in generated apps:
If your application’s spring beans need to interact with
some real services out there or expect some properties to be present in the context, these tests will fail unless you make
those things available. An example would be a Twitter Source, where the underlying spring beans are trying to create a
twitter template and will fail if it can’t find the credentials available through properties. One way to solve this and
still run the generated context load tests would be to create a mock class that provides these properties or mock beans
(for example, a mock twitter template) and tell the maven plugin about its existence. You can use the existing module
app-starters-test-support for this purpose and add the mock class there.
See the class org.springframework.cloud.stream.app.test.twitter.TwitterTestConfiguration for reference.
You can create a similar class for your foobar source - FoobarTestConfiguration and add that to the plugin configuration.
You only need to do this if you run into this particular issue of Spring beans are not created properly in the
integration test in the generated apps.
<foobar-source>
 <extraTestConfigClass>org.springframework.cloud.stream.app.test.foobar.FoobarTestConfiguration.class</extraTestConfigClass>
</foobar-source>
When you do the above, this test configuration will automatically be imported into the context of your test class.
Also note that, you need to regenerate the apps each time you make a configuration change in the plugin.
	Now that you built the applications, they are available under the target directories of the respective apps and also as
maven artifacts in your local maven repository. Go to the target directory and run the following:

java -jar foobar-source-kafa.jar [Ensure that you have Apache Kafka running locally when you do this]
It should start the application up.
	The generated apps also support the creation of docker images. You can cd into one of the foobar-source* app and do the
following:

mvn clean package docker:build
This creates the docker image under the target/docker/springcloudstream directory. Please ensure that the Docker
container is up and running when executing the above Docker command.
All the generated apps from the various app repositories are uploaded to Docker Hub
However, for a custom app that you build, this won’t be uploaded to docker hub under springcloudstream repository.
If you think that there is a general need for this app, you should try contributing this starter as a new repository to Spring Cloud Stream App Starters.
Upon review, this app then can be eventually available through the above location in docker hub.
If you still need to push this to docker hub under a different repository (may be an enterprise repo that you manage for your organization) you can take the following steps.
Go to the pom.xml of the generated app [example - foo-source-kafka/pom.xml]
Search for springcloudstream. Replace with your repository name.
Then do this:
mvn clean package docker:build docker:push -Ddocker.username=[provide your username] -Ddocker.password=[provide password]
This will upload the docker image to the docker hub in your custom repository.
General FAQ on Spring Cloud Stream App Starters

In the following sections, you can find a brief FAQ on various things that we discussed above and a few other infrastructure related topics.
	What are Spring Cloud Stream Application Starters?
Spring Cloud Stream Application Starters are Spring Boot based Spring Integration applications that provide integration with external systems. GitHub: github.com/spring-cloud-stream-app-starters
Project page: cloud.spring.io/spring-cloud-stream-app-starters/
	What is the parent for stream app starters?
The parent for all app starters is app-starters-build which is coming from the core project. github.com/spring-cloud-stream-app-starters/core
For example:
<parent>
 <groupId>org.springframework.cloud.stream.app</groupId>
 <artifactId>app-starters-build</artifactId>
 <version>2.1.0.RELEASE</version>
 <relativePath/>
</parent>

	Why is there a BOM in the core proejct?
Core defines a BOM which contains all the dependency management for common artifacts. This BOM is named as app-starters-core-dependencies.
 We need this bom during app generation to pull down all the core dependencies.
	What are the contents of the core BOM?
In addition to the common artifacts in core, the app-starters-core-dependencies BOM also adds dependency management for spring-cloud-dependencies which will include spring-cloud-stream transitively.
	Where is the core BOM used?
There are two places where the core BOM is used. It is used to provide compile time dependency management for all the starters.
This is defined in the app-starters-build artfiact. This same BOM is referenced through the maven plugin configuration for the app generation.
The generated apps thus will include this bom also in their pom.xml files.
	What spring cloud stream artifacts does the parent artifact (app-starters-build) include?
	spring-cloud-stream
	Spring-cloud-stream-test-support-internal
	spring-cloud-stream-test-support

	What other artfiacts are available through the parent app-starters-build and where are they coming from?
In addition to the above artifacts, the artifacts below also included in app-starters-build by default.
	json-path
	spring-integration-xml
	spring-boot-starter-logging
	spring boot-starter-security
Spring-cloud-build is the parent for app-starters-build. Spring-cloud-build imports spring-boot-dependencies and that is from where these artifacts are coming from.

	I did not see any other Spring Integration components used in the above 2 lists. Where are those dependencies coming from for individual starters?
Spring-integration bom is imported in the spring-boot-dependencies bom and this is where the default SI dependencies are coming for SCSt app starters.
	Can you summarize all the BOM’s that SCSt app starters depend on?
All SCSt app starters have access to dependencies defined in the following BOM’s and other dependencies from any other BOM’s these three boms import transitively as in the case of Spring Integration:
	app-starters-core-dependencies
	spring-cloud-dependencies
	spring-boot-dependencies

	Each app starter has app-starter-build as the parent which in turn has spring-cloud-build as parent. The above documentation states that the
generated apps have spring-boot-starter as the parent. Why the mismatch?
There is no mismatch per se, but a slight subtlety. As the question frames, each app starter has access to artifacts managed all the way through spring-cloud-build at compile time.
However, this is not the case for the generated apps at runtime. Generated apps are managed by boot. Their parent is spring-boot-starter that imports spring-boot-dependencies bom that includes a majority of the components that these apps need.
The additional dependencies that the generated application needs are managed by including a BOM specific to each application starter.
	Why is there an app starter specific BOM in each app starer repositories? For example, time-app-dependencies.
This is an important BOM. At runtime, the generated apps get the versions used in their dependencies through a BOM that is managing the dependencies. Since all the boms
that we specified above only for the helper artifacts, we need a place to manage the starters themselves. This is where the app specific BOM comes into play.
In addition to this need, as it becomes clear below, there are other uses for this BOM such as dependency overrides etc. But in a nutshell, all the starter dependencies go to this BOM.
For instance, take TCP repo as an example. It has a starter for source, sink, client processor etc. All these dependencies are managed through the app specific tcp-app-dependencies bom.
This bom is provided to the app generator maven plugin in addition to the core bom. This app specific bom has spring-cloud-dependencies-parent as parent.
	How do I create a new app starter project?
If you have a general purpose starter that can be provided as an of of the box app, create an issue for that in app-starters-release.
If there is a consensus, then a repository can be created in the spring-cloud-stream-app-starters organization where you can start contributing the starters and other components.
	I created a new starter according to the guidelines above, now how do I generate binder specific apps for the new starters?
By default, the app-starters-build in core is configured with the common configuration needed for the app generator maven plugin. It is configured for generating apps for kafka-09, kafka-10 and rabbitmq binders.
In your starter you already have the configuration specified for the plugin from the parent. Modify the configuration for your starter accordingly. Refer to an existing starter for guidelines.
Here is an example of modifying such a configuration : github.com/spring-cloud-stream-app-starters/time/blob/master/spring-cloud-starter-stream-source-time/pom.xml
Look for spring-cloud-stream-app-maven-plugin in the plugins section under build.
You generate binder based apps using the generateApps maven profile. You need the maven install lifecycle to generate the apps.
	How do I override Spring Integration version that is coming from spring-boot-dependencies by default?
The following solution only works if the versions you want to override are available through a new Spring Integration BOM.
Go to your app starter specific bom. Override the property as following:
<spring-integration.version>VERSION GOES HERE</spring-integration.version>
Then add the following in the dependencies management section in the BOM.
 <dependency>
	<groupId>org.springframework.integration</groupId>
	<artifactId>spring-integration-bom</artifactId>
	<version>${spring-integration.version}</version>
	<scope>import</scope>
	<type>pom</type>
</dependency>

	How do I override spring-cloud-stream artifacts coming by default in spring-cloud-dependencies defined in core BOM?
The following solution only works if the versions you want to override are available through a new Spring-Cloud-Dependencies BOM.
Go to your app starter specific bom. Override the property as following:
<spring-cloud-dependencies.version>VERSION GOES HERE</spring-cloud-dependencies.version>
Then add the following in the dependencies management section in the BOM.
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>${spring-cloud-dependencies.version}</version>
 <scope>import</scope>
 <type>pom</type>
</dependency>

	What if there is no spring-cloud-dependencies BOM available that contains my versions of spring-cloud-stream, but there is a spring-cloud-stream BOM available?
Go to your app starter specific BOM. Override the property as below.
<spring-cloud-stream.version>VERSION GOES HERE</spring-cloud-stream.version>
Then add the following in the dependencies management section in the BOM.
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-stream-dependencies</artifactId>
 <version>${spring-cloud-stream.version}</version>
 <scope>import</scope>
 <type>pom</type>
</dependency>

	What if I want to override a single artifact that is provided through a bom? For example spring-integration-java-dsl?
Go to your app starter BOM and add the following property with the version you want to override:
<spring-integration-java-dsl.version>VERSION GOES HERE</spring-integration-java-dsl.version>
Then in the dependency management section add the following:
<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-java-dsl</artifactId>
 <version>${spring-integration-java-dsl.version}</version>
</dependency>

	How do I override the boot version used in a particular app?
When you generate the app, override the boot version as follows.
./mvnw clean install -PgenerateApps -DbootVersion=<boot version to override>
For example: ./mvnw clean install -PgenerateApps -DbootVersion=2.0.0.BUILD-SNAPSHOT

You can also override the boot version more permanently by overriding the following property in your starter pom.
<bootVersion>2.0.0.BUILD-SNAPSHOT</bootVersion>
Part II. Starters

Chapter 2. Sources

File Source

This application polls a directory and sends new files or their contents to the output channel.
The file source provides the contents of a File as a byte array by default.
However, this can be customized using the --mode option:
	ref Provides a java.io.File reference
	lines Will split files line-by-line and emit a new message for each line
	contents The default. Provides the contents of a file as a byte array

When using --mode=lines, you can also provide the additional option --withMarkers=true.
If set to true, the underlying FileSplitter will emit additional start-of-file and end-of-file marker messages before and after the actual data.
The payload of these 2 additional marker messages is of type FileSplitter.FileMarker. The option withMarkers defaults to false if not explicitly set.
Input

N/A (Reads from a file system directory).
Output

mode = contents

Headers:

	Content-Type: application/octet-stream
	file_originalFile: <java.io.File>
	file_name: <file name>

Payload:

A byte[] filled with the file contents.
mode = lines

Headers:

	Content-Type: text/plain
	file_originalFile: <java.io.File>
	file_name: <file name>
	correlationId: <UUID> (same for each line)
	sequenceNumber: <n>
	sequenceSize: 0 (number of lines is not know until the file is read)

Payload:

A String for each line.
The first line is optionally preceded by a message with a START marker payload.
The last line is optionally followed by a message with an END marker payload.
Marker presence and format are determined by the with-markers and markers-json properties.
mode = ref

Headers:

None.
Payload:

A java.io.File object.
Options

The file source has the following options:
	file.consumer.markers-json
	When 'fileMarkers == true', specify if they should be produced
as FileSplitter.FileMarker objects or JSON. (Boolean, default: true)
	file.consumer.mode
	The FileReadingMode to use for file reading sources.
Values are 'ref' - The File object,
'lines' - a message per line, or
'contents' - the contents as bytes. (FileReadingMode, default: <none>, possible values: ref,lines,contents)
	file.consumer.with-markers
	Set to true to emit start of file/end of file marker messages before/after the data.
Only valid with FileReadingMode 'lines'. (Boolean, default: <none>)
	file.directory
	The directory to poll for new files. (String, default: <none>)
	file.filename-pattern
	A simple ant pattern to match files. (String, default: <none>)
	file.filename-regex
	A regex pattern to match files. (Pattern, default: <none>)
	file.prevent-duplicates
	Set to true to include an AcceptOnceFileListFilter which prevents duplicates. (Boolean, default: true)
	trigger.cron
	Cron expression value for the Cron Trigger. (String, default: <none>)
	trigger.date-format
	Format for the date value. (String, default: <none>)
	trigger.fixed-delay
	Fixed delay for periodic triggers. (Integer, default: 1)
	trigger.initial-delay
	Initial delay for periodic triggers. (Integer, default: 0)
	trigger.max-messages
	Maximum messages per poll, -1 means infinity. (Long, default: -1)
	trigger.time-unit
	The TimeUnit to apply to delay values. (TimeUnit, default: SECONDS, possible values: NANOSECONDS,MICROSECONDS,MILLISECONDS,SECONDS,MINUTES,HOURS,DAYS)

The ref option is useful in some cases in which the file contents are large and it would be more efficient to send the file path.
Build

$./mvnw clean install -PgenerateApps
$ cd apps

You can find the corresponding binder based projects here. You can then cd into one of the folders and build it:

$./mvnw clean package
Examples

java -jar file_source.jar --file.directory=/tmp/foo --file.consumer.mode=lines --trigger.fixed-delay=60
FTP Source

This source application supports transfer of files using the FTP protocol.
Files are transferred from the remote directory to the local directory where the app is deployed.
Messages emitted by the source are provided as a byte array by default. However, this can be
customized using the --mode option:
	ref Provides a java.io.File reference
	lines Will split files line-by-line and emit a new message for each line
	contents The default. Provides the contents of a file as a byte array

When using --mode=lines, you can also provide the additional option --withMarkers=true.
If set to true, the underlying FileSplitter will emit additional start-of-file and end-of-file marker messages before and after the actual data.
The payload of these 2 additional marker messages is of type FileSplitter.FileMarker. The option withMarkers defaults to false if not explicitly set.
See also MetaDataStore options for possible shared persistent store configuration for the FtpPersistentAcceptOnceFileListFilter used in the FTP Source.
Input

N/A (Fetches files from an FTP server).
Output

mode = contents

Headers:

	Content-Type: application/octet-stream
	file_originalFile: <java.io.File>
	file_name: <file name>

Payload:

A byte[] filled with the file contents.
mode = lines

Headers:

	Content-Type: text/plain
	file_orginalFile: <java.io.File>
	file_name: <file name>
	correlationId: <UUID> (same for each line)
	sequenceNumber: <n>
	sequenceSize: 0 (number of lines is not know until the file is read)

Payload:

A String for each line.
The first line is optionally preceded by a message with a START marker payload.
The last line is optionally followed by a message with an END marker payload.
Marker presence and format are determined by the with-markers and markers-json properties.
mode = ref

Headers:

None.
Payload:

A java.io.File object.
Options

The ftp source has the following options:
	file.consumer.markers-json
	When 'fileMarkers == true', specify if they should be produced
as FileSplitter.FileMarker objects or JSON. (Boolean, default: true)
	file.consumer.mode
	The FileReadingMode to use for file reading sources.
Values are 'ref' - The File object,
'lines' - a message per line, or
'contents' - the contents as bytes. (FileReadingMode, default: <none>, possible values: ref,lines,contents)
	file.consumer.with-markers
	Set to true to emit start of file/end of file marker messages before/after the data.
Only valid with FileReadingMode 'lines'. (Boolean, default: <none>)
	ftp.auto-create-local-dir
	Set to true to create the local directory if it does not exist. (Boolean, default: true)
	ftp.delete-remote-files
	Set to true to delete remote files after successful transfer. (Boolean, default: false)
	ftp.factory.cache-sessions
	<documentation missing> (Boolean, default: <none>)
	ftp.factory.client-mode
	The client mode to use for the FTP session. (ClientMode, default: <none>, possible values: ACTIVE,PASSIVE)
	ftp.factory.host
	<documentation missing> (String, default: <none>)
	ftp.factory.password
	<documentation missing> (String, default: <none>)
	ftp.factory.port
	The port of the server. (Integer, default: 21)
	ftp.factory.username
	<documentation missing> (String, default: <none>)
	ftp.filename-pattern
	A filter pattern to match the names of files to transfer. (String, default: <none>)
	ftp.filename-regex
	A filter regex pattern to match the names of files to transfer. (Pattern, default: <none>)
	ftp.local-dir
	The local directory to use for file transfers. (File, default: <none>)
	ftp.preserve-timestamp
	Set to true to preserve the original timestamp. (Boolean, default: true)
	ftp.remote-dir
	The remote FTP directory. (String, default: /)
	ftp.remote-file-separator
	The remote file separator. (String, default: /)
	ftp.tmp-file-suffix
	The suffix to use while the transfer is in progress. (String, default: .tmp)
	trigger.cron
	Cron expression value for the Cron Trigger. (String, default: <none>)
	trigger.date-format
	Format for the date value. (String, default: <none>)
	trigger.fixed-delay
	Fixed delay for periodic triggers. (Integer, default: 1)
	trigger.initial-delay
	Initial delay for periodic triggers. (Integer, default: 0)
	trigger.max-messages
	Maximum messages per poll, -1 means infinity. (Long, default: -1)
	trigger.time-unit
	The TimeUnit to apply to delay values. (TimeUnit, default: SECONDS, possible values: NANOSECONDS,MICROSECONDS,MILLISECONDS,SECONDS,MINUTES,HOURS,DAYS)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one one of the folders and build it:
$./mvnw clean package
Examples

java -jar ftp_source.jar --ftp.remote-dir=foo --file.mode=lines --trigger.fixed-delay=60 --ftp.factory.host=ftpserver \
 --ftp.factory.username=user --ftp.factory.password=pw --ftp.local-dir=/foo
Gemfire Source

This source allows you to subscribe to any creates or updates to a Gemfire region. The application configures a client cache and client region, along with the necessary
subscriptions enabled. By default the payload contains the updated entry value,
but may be controlled by passing in a SpEL expression that uses the EntryEvent as the
evaluation context.
To enable SSL communication between Geode Source and the Geode cluster you need to provide the URIs of the
Keystore and Truststore files using the gemfire.security.ssl.keystore-uri and gemfire.security.ssl.truststore-uri properties.
(If a single file is ued for both stores then point both URIs to it).
Input

N/A
Output

Headers

	content-type: text/plain

Payload

	String

Options

The gemfire source supports the following configuration properties:
	gemfire.cache-event-expression
	SpEL expression to extract fields from a cache event. (Expression, default: <none>)
	gemfire.pool.connect-type
	Specifies connection type: 'server' or 'locator'. (ConnectType, default: <none>, possible values: locator,server)
	gemfire.pool.host-addresses
	Specifies one or more Gemfire locator or server addresses formatted as [host]:[port]. (InetSocketAddress[], default: <none>)
	gemfire.pool.subscription-enabled
	Set to true to enable subscriptions for the client pool. Required to sync updates to the client cache. (Boolean, default: false)
	gemfire.region.region-name
	The region name. (String, default: <none>)
	gemfire.security.password
	The cache password. (String, default: <none>)
	gemfire.security.ssl.ciphers
	Configures the SSL ciphers used for secure Socket connections as an array of valid cipher names. (String, default: any)
	gemfire.security.ssl.keystore-type
	Identifies the type of Keystore used for SSL communications (e.g. JKS, PKCS11, etc.). (String, default: JKS)
	gemfire.security.ssl.keystore-uri
	Location of the pre-created Keystore URI to be used for connecting to the Geode cluster. (Resource, default: <none>)
	gemfire.security.ssl.ssl-keystore-password
	Password for accessing the keys truststore (String, default: <none>)
	gemfire.security.ssl.ssl-truststore-password
	Password for accessing the trust store. (String, default: <none>)
	gemfire.security.ssl.truststore-type
	Identifies the type of truststore used for SSL communications (e.g. JKS, PKCS11, etc.). (String, default: JKS)
	gemfire.security.ssl.truststore-uri
	Location of the pre-created truststore URI to be used for connecting to the Geode cluster. (Resource, default: <none>)
	gemfire.security.ssl.user-home-directory
	Local directory to cache the truststore and keystore files downloaded form the truststoreUri and keystoreUri locations. (String, default: user.home)
	gemfire.security.username
	The cache username. (String, default: <none>)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one of the folders and build it:
$./mvnw clean package
Examples

java -jar ./gemfire-source.jar --gemfire.region.region-name=MyRegion --gemfire.cacheEventExpression="newValue"
Gemfire-CQ Source

Continuous query allows client applications to create a GemFire query using Object Query Language (OQL) and to
register a CQ listener which subscribes to the query and is notified every time the query’s result set changes.
The gemfire-cq source registers a CQ which will post CQEvent messages to the stream.
To enable SSL communication between Geode CQ and the Geode cluster you need to provide the URIs of the
Keystore and Truststore files using the gemfire.security.ssl.keystore-uri and gemfire.security.ssl.truststore-uri properties.
(If a single file is ued for both stores then point both URIs to it).
Input

N/A
Output

Headers

	content-type: text/plain

Payload

	String

Options

The gemfire-cq source supports the following configuration properties:
	gemfire.cq-event-expression
	SpEL expression to use to extract data from a cq event. (Expression, default: <none>)
	gemfire.pool.connect-type
	Specifies connection type: 'server' or 'locator'. (ConnectType, default: <none>, possible values: locator,server)
	gemfire.pool.host-addresses
	Specifies one or more Gemfire locator or server addresses formatted as [host]:[port]. (InetSocketAddress[], default: <none>)
	gemfire.pool.subscription-enabled
	Set to true to enable subscriptions for the client pool. Required to sync updates to the client cache. (Boolean, default: false)
	gemfire.query
	The OQL query (String, default: <none>)
	gemfire.security.password
	The cache password. (String, default: <none>)
	gemfire.security.ssl.ciphers
	Configures the SSL ciphers used for secure Socket connections as an array of valid cipher names. (String, default: any)
	gemfire.security.ssl.keystore-type
	Identifies the type of Keystore used for SSL communications (e.g. JKS, PKCS11, etc.). (String, default: JKS)
	gemfire.security.ssl.keystore-uri
	Location of the pre-created Keystore URI to be used for connecting to the Geode cluster. (Resource, default: <none>)
	gemfire.security.ssl.ssl-keystore-password
	Password for accessing the keys truststore (String, default: <none>)
	gemfire.security.ssl.ssl-truststore-password
	Password for accessing the trust store. (String, default: <none>)
	gemfire.security.ssl.truststore-type
	Identifies the type of truststore used for SSL communications (e.g. JKS, PKCS11, etc.). (String, default: JKS)
	gemfire.security.ssl.truststore-uri
	Location of the pre-created truststore URI to be used for connecting to the Geode cluster. (Resource, default: <none>)
	gemfire.security.ssl.user-home-directory
	Local directory to cache the truststore and keystore files downloaded form the truststoreUri and keystoreUri locations. (String, default: user.home)
	gemfire.security.username
	The cache username. (String, default: <none>)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one of the folders and build it:
$./mvnw clean package
Examples

java -jar gemfire-cq-source.jar --gemfire.query=
Http Source

A source application that listens for HTTP requests and emits the body as a message payload.
If the Content-Type matches text/* or application/json, the payload will be a String,
otherwise the payload will be a byte array.
Input

N/A
Output

Headers:

	Content-Type: Any

Payload:

If content type matches text/* or application/json
	String

If content type does not match text/* or application/json
	byte array

Options

The http source supports the following configuration properties:
	http.cors.allow-credentials
	Whether the browser should include any cookies associated with the domain of the request being annotated. (Boolean, default: <none>)
	http.cors.allowed-headers
	List of request headers that can be used during the actual request. (String[], default: <none>)
	http.cors.allowed-origins
	List of allowed origins, e.g. "http://domain1.com". (String[], default: <none>)
	http.mapped-request-headers
	Headers that will be mapped. (String[], default: <none>)
	http.path-pattern
	An Ant-Style pattern to determine which http requests will be captured. (String, default: /)
	server.port
	Server HTTP port. (Integer, default: 8080)

	[image: [Note]]	Note
	Security is disabled for this application by default.
To enable it, you should use the mentioned above http.enable-security = true property.

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one one of the folders and build it:
$./mvnw clean package
Examples

java -jar http_source.jar
JDBC Source

This source polls data from an RDBMS.
This source is fully based on the DataSourceAutoConfiguration, so refer to the Spring Boot JDBC Support for more information.
Input

N/A
Output

Headers

	Content-Type: application/x-java-object

Payload

	Map<String, Object> when jdbc.split == true (default) and List<Map<String, Object>> otherwise

Options

The jdbc source has the following options:
	jdbc.max-rows-per-poll
	Max numbers of rows to process for each poll. (Integer, default: 0)
	jdbc.query
	The query to use to select data. (String, default: <none>)
	jdbc.split
	Whether to split the SQL result as individual messages. (Boolean, default: true)
	jdbc.update
	An SQL update statement to execute for marking polled messages as 'seen'. (String, default: <none>)
	spring.datasource.data
	Data (DML) script resource references. (List<String>, default: <none>)
	spring.datasource.driver-class-name
	Fully qualified name of the JDBC driver. Auto-detected based on the URL by default. (String, default: <none>)
	spring.datasource.initialization-mode
	Initialize the datasource using available DDL and DML scripts. (DataSourceInitializationMode, default: embedded, possible values: ALWAYS,EMBEDDED,NEVER)
	spring.datasource.password
	Login password of the database. (String, default: <none>)
	spring.datasource.schema
	Schema (DDL) script resource references. (List<String>, default: <none>)
	spring.datasource.url
	JDBC url of the database. (String, default: <none>)
	spring.datasource.username
	Login username of the database. (String, default: <none>)
	trigger.cron
	Cron expression value for the Cron Trigger. (String, default: <none>)
	trigger.date-format
	Format for the date value. (String, default: <none>)
	trigger.fixed-delay
	Fixed delay for periodic triggers. (Integer, default: 1)
	trigger.initial-delay
	Initial delay for periodic triggers. (Integer, default: 0)
	trigger.max-messages
	Maximum messages per poll, -1 means infinity. (Long, default: 1)
	trigger.time-unit
	The TimeUnit to apply to delay values. (TimeUnit, default: <none>, possible values: NANOSECONDS,MICROSECONDS,MILLISECONDS,SECONDS,MINUTES,HOURS,DAYS)

Also see the Spring Boot Documentation
for addition DataSource properties and TriggerProperties and MaxMessagesProperties for polling options.
Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one one of the folders and build it:
$./mvnw clean package
Examples

java -jar jdbc_source.jar --query=<QUERY> [datasource credentials]
JMS Source

The "jms" source enables receiving messages from JMS.
Input

N/A
Output

Headers

	content-type: text/plain

Payload

	String

Headers

	content-type: application/octet-stream

Payload

	byte[]

Headers

	content-type: application/x-java-serialized-object

Payload

	java.io.Serializable

Headers

	content-type: application/x-java-object

Payload

	Map

Options

The jms source has the following options:
	jms.client-id
	Client id for durable subscriptions. (String, default: <none>)
	jms.destination
	The destination from which to receive messages (queue or topic). (String, default: <none>)
	jms.message-selector
	A selector for messages; (String, default: <none>)
	jms.session-transacted
	True to enable transactions and select a DefaultMessageListenerContainer, false to
select a SimpleMessageListenerContainer. (Boolean, default: true)
	jms.subscription-durable
	True for a durable subscription. (Boolean, default: <none>)
	jms.subscription-name
	The name of a durable or shared subscription. (String, default: <none>)
	jms.subscription-shared
	True for a shared subscription. (Boolean, default: <none>)
	spring.jms.jndi-name
	Connection factory JNDI name. When set, takes precedence to others connection
factory auto-configurations. (String, default: <none>)
	spring.jms.listener.acknowledge-mode
	Acknowledge mode of the container. By default, the listener is transacted with
automatic acknowledgment. (AcknowledgeMode, default: <none>, possible values: AUTO,CLIENT,DUPS_OK)
	spring.jms.listener.auto-startup
	Start the container automatically on startup. (Boolean, default: true)
	spring.jms.listener.concurrency
	Minimum number of concurrent consumers. (Integer, default: <none>)
	spring.jms.listener.max-concurrency
	Maximum number of concurrent consumers. (Integer, default: <none>)
	spring.jms.pub-sub-domain
	Whether the default destination type is topic. (Boolean, default: false)

	[image: [Note]]	Note
	Spring boot broker configuration is used; refer to the
Spring Boot Documentation for more information.
The spring.jms.* properties above are also handled by the boot JMS support.

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one of the folders and build it:
$./mvnw clean package
Examples

java -jar jms-source.jar --jms.destination=
Load Generator Source

A source that sends generated data and dispatches it to the stream. This is to provide a method for users to identify the performance of Spring Cloud Data Flow in different environments and deployment types.
Input

N/A
Output

Headers:

	Content-Type: application/octet-stream

Payload:

	byte[]

Options

The load-generator source has the following options:
	load-generator.generate-timestamp
	<documentation missing> (Boolean, default: false)
	load-generator.message-count
	<documentation missing> (Integer, default: 1000)
	load-generator.message-size
	<documentation missing> (Integer, default: 1000)
	load-generator.producers
	<documentation missing> (Integer, default: 1)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here. You can then cd into one one of the folders and build it:
$./mvnw clean package
Examples

java -jar load-generator-source.jar
Loggregator Source

A source that can be used to read logging messages from Cloud Foundry Loggregator.
Input

N/A
Output

Headers:

	Content-Type: text/plain

Payload:

A String with the log message.
Options

The loggregator source has the following options:
	loggregator.application-name
	<documentation missing> (String, default: <none>)
	loggregator.cloud-foundry-api
	<documentation missing> (String, default: <none>)
	loggregator.cloud-foundry-password
	<documentation missing> (String, default: <none>)
	loggregator.cloud-foundry-user
	<documentation missing> (String, default: <none>)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here. You can then cd into one one of the folders and
build it:
$./mvnw clean package
Examples

java -jar loggregator-source.jar --cloudFoundryApi="api" --cloudFoundryUser="CF user" --cloudFoundryPassword="CF password \
 --applicationName=app-name
Mail Source

A source module that listens for Emails and emits the message body as a message payload.
Input

N/A
Output

Headers

	content-type: text/plain

Payload

	String

Options

The mail source supports the following configuration properties:
	mail.charset
	The charset for byte[] mail-to-string transformation. (String, default: UTF-8)
	mail.delete
	Set to true to delete email after download. (Boolean, default: false)
	mail.expression
	Configure a SpEL expression to select messages. (String, default: true)
	mail.idle-imap
	Set to true to use IdleImap Configuration. (Boolean, default: false)
	mail.java-mail-properties
	JavaMail properties as a new line delimited string of name-value pairs, e.g.
'foo=bar\n baz=car'. (Properties, default: <none>)
	mail.mark-as-read
	Set to true to mark email as read. (Boolean, default: false)
	mail.url
	Mail connection URL for connection to Mail server e.g.
'imaps://username:password@imap.server.com:993/Inbox'. (URLName, default: <none>)
	mail.user-flag
	The flag to mark messages when the server does not support \Recent (String, default: <none>)
	trigger.cron
	Cron expression value for the Cron Trigger. (String, default: <none>)
	trigger.date-format
	Format for the date value. (String, default: <none>)
	trigger.fixed-delay
	Fixed delay for periodic triggers. (Integer, default: 1)
	trigger.initial-delay
	Initial delay for periodic triggers. (Integer, default: 0)
	trigger.max-messages
	Maximum messages per poll, -1 means infinity. (Long, default: 1)
	trigger.time-unit
	The TimeUnit to apply to delay values. (TimeUnit, default: <none>, possible values: NANOSECONDS,MICROSECONDS,MILLISECONDS,SECONDS,MINUTES,HOURS,DAYS)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one of the folders and build it:
$./mvnw clean package
Examples

java -jar mail-source.jar --mail.javaMailProperties= --mail.url= --mail.expression= \
 --mail.charset= --mail.userFlag=
MongoDB Source

This source polls data from MongoDB.
This source is fully based on the MongoDataAutoConfiguration, so refer to the
Spring Boot MongoDB Support
for more information.
Input

N/A
Output

Headers:

	Content-Type: text/plain

Payload:

	String

Options

The mongodb source has the following options:
	mongodb.collection
	The MongoDB collection to query (String, default: <none>)
	mongodb.query
	The MongoDB query (String, default: { })
	mongodb.query-expression
	The SpEL expression in MongoDB query DSL style (Expression, default: <none>)
	mongodb.split
	Whether to split the query result as individual messages. (Boolean, default: true)
	spring.data.mongodb.authentication-database
	Authentication database name. (String, default: <none>)
	spring.data.mongodb.database
	Database name. (String, default: <none>)
	spring.data.mongodb.field-naming-strategy
	Fully qualified name of the FieldNamingStrategy to use. (Class<?>, default: <none>)
	spring.data.mongodb.grid-fs-database
	GridFS database name. (String, default: <none>)
	spring.data.mongodb.host
	Mongo server host. Cannot be set with URI. (String, default: <none>)
	spring.data.mongodb.password
	Login password of the mongo server. Cannot be set with URI. (Character[], default: <none>)
	spring.data.mongodb.port
	Mongo server port. Cannot be set with URI. (Integer, default: <none>)
	spring.data.mongodb.uri
	Mongo database URI. Cannot be set with host, port and credentials. (String, default: mongodb://localhost/test)
	spring.data.mongodb.username
	Login user of the mongo server. Cannot be set with URI. (String, default: <none>)
	trigger.cron
	Cron expression value for the Cron Trigger. (String, default: <none>)
	trigger.date-format
	Format for the date value. (String, default: <none>)
	trigger.fixed-delay
	Fixed delay for periodic triggers. (Integer, default: 1)
	trigger.initial-delay
	Initial delay for periodic triggers. (Integer, default: 0)
	trigger.max-messages
	Maximum messages per poll, -1 means infinity. (Long, default: -1)
	trigger.time-unit
	The TimeUnit to apply to delay values. (TimeUnit, default: SECONDS, possible values: NANOSECONDS,MICROSECONDS,MILLISECONDS,SECONDS,MINUTES,HOURS,DAYS)

Also see the Spring Boot Documentation for additional MongoProperties properties.
See and TriggerProperties for polling options.
Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one of the folders and build it:
$./mvnw clean package
Examples

java -jar mongodb-source.jar --mongodb.query= --mongodb.collection=
MQTT Source

The "mqtt" source enables receiving messages from MQTT.
Input

N/A
Output

Headers:

Payload:

	String if binary setting is false (default)
	byte[] if binary setting is true

Options

The mqtt source has the following options:
	mqtt.binary
	true to leave the payload as bytes (Boolean, default: false)
	mqtt.charset
	the charset used to convert bytes to String (when binary is false) (String, default: UTF-8)
	mqtt.clean-session
	whether the client and server should remember state across restarts and reconnects (Boolean, default: true)
	mqtt.client-id
	identifies the client (String, default: stream.client.id.source)
	mqtt.connection-timeout
	the connection timeout in seconds (Integer, default: 30)
	mqtt.keep-alive-interval
	the ping interval in seconds (Integer, default: 60)
	mqtt.password
	the password to use when connecting to the broker (String, default: guest)
	mqtt.persistence
	'memory' or 'file' (String, default: memory)
	mqtt.persistence-directory
	Persistence directory (String, default: /tmp/paho)
	mqtt.qos
	the qos; a single value for all topics or a comma-delimited list to match the topics (int[], default: [0])
	mqtt.topics
	the topic(s) (comma-delimited) to which the source will subscribe (String[], default: [stream.mqtt])
	mqtt.url
	location of the mqtt broker(s) (comma-delimited list) (String[], default: [tcp://localhost:1883])
	mqtt.username
	the username to use when connecting to the broker (String, default: guest)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here. You can then cd into one one of the folders and build it:
$./mvnw clean package
Examples

java -jar mqtt-source.jar --mqtt.clientId=
RabbitMQ Source

The "rabbit" source enables receiving messages from RabbitMQ.
The queue(s) must exist before the stream is deployed; they are not created automatically.
You can easily create a Queue using the RabbitMQ web UI.
Input

N/A
Output

Headers

	content-type: text/plain

Payload

	String

Headers

	content-type: application/octet-stream

Payload

	byte[]

Headers

	content-type: application/x-java-serialized-object

Payload

	java.io.Serializable

Options

The rabbit source has the following options:
	rabbit.enable-retry
	true to enable retry. (Boolean, default: false)
	rabbit.initial-retry-interval
	Initial retry interval when retry is enabled. (Integer, default: 1000)
	rabbit.mapped-request-headers
	Headers that will be mapped. (String[], default: [STANDARD_REQUEST_HEADERS])
	rabbit.max-attempts
	The maximum delivery attempts when retry is enabled. (Integer, default: 3)
	rabbit.max-retry-interval
	Max retry interval when retry is enabled. (Integer, default: 30000)
	rabbit.own-connection
	When true, use a separate connection based on the boot properties. (Boolean, default: false)
	rabbit.queues
	The queues to which the source will listen for messages. (String[], default: <none>)
	rabbit.requeue
	Whether rejected messages should be requeued. (Boolean, default: true)
	rabbit.retry-multiplier
	Retry backoff multiplier when retry is enabled. (Double, default: 2)
	rabbit.transacted
	Whether the channel is transacted. (Boolean, default: false)
	spring.rabbitmq.addresses
	Comma-separated list of addresses to which the client should connect. (String, default: <none>)
	spring.rabbitmq.connection-timeout
	Connection timeout. Set it to zero to wait forever. (Duration, default: <none>)
	spring.rabbitmq.host
	RabbitMQ host. (String, default: localhost)
	spring.rabbitmq.password
	Login to authenticate against the broker. (String, default: guest)
	spring.rabbitmq.port
	RabbitMQ port. (Integer, default: 5672)
	spring.rabbitmq.publisher-confirms
	Whether to enable publisher confirms. (Boolean, default: false)
	spring.rabbitmq.publisher-returns
	Whether to enable publisher returns. (Boolean, default: false)
	spring.rabbitmq.requested-heartbeat
	Requested heartbeat timeout; zero for none. If a duration suffix is not specified,
seconds will be used. (Duration, default: <none>)
	spring.rabbitmq.username
	Login user to authenticate to the broker. (String, default: guest)
	spring.rabbitmq.virtual-host
	Virtual host to use when connecting to the broker. (String, default: <none>)

Also see the Spring Boot Documentation
for addition properties for the broker connections and listener properties.
A Note About Retry

	[image: [Note]]	Note
	With the default ackMode (AUTO) and requeue (true) options, failed message deliveries will be retried
indefinitely.
Since there is not much processing in the rabbit source, the risk of failure in the source itself is small, unless
the downstream Binder is not connected for some reason.
Setting requeue to false will cause messages to be rejected on the first attempt (and possibly sent to a Dead Letter
Exchange/Queue if the broker is so configured).
The enableRetry option allows configuration of retry parameters such that a failed message delivery can be retried and
eventually discarded (or dead-lettered) when retries are exhausted.
The delivery thread is suspended during the retry interval(s).
Retry options are enableRetry, maxAttempts, initialRetryInterval, retryMultiplier, and maxRetryInterval.
Message deliveries failing with a MessageConversionException are never retried; the assumption being that if a message
could not be converted on the first attempt, subsequent attempts will also fail.
Such messages are discarded (or dead-lettered).

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one of the folders and build it:
$./mvnw clean package
Examples

java -jar rabbit-source.jar --rabbit.queues=
Amazon S3 Source

This source app supports transfer of files using the Amazon S3 protocol.
Files are transferred from the remote directory (S3 bucket) to the local directory where the application is deployed.
Messages emitted by the source are provided as a byte array by default. However, this can be
customized using the --mode option:
	ref Provides a java.io.File reference
	lines Will split files line-by-line and emit a new message for each line
	contents The default. Provides the contents of a file as a byte array

When using --mode=lines, you can also provide the additional option --withMarkers=true.
If set to true, the underlying FileSplitter will emit additional start-of-file and end-of-file marker messages before and after the actual data.
The payload of these 2 additional marker messages is of type FileSplitter.FileMarker. The option withMarkers defaults to false if not explicitly set.
Input

N/A
Output

mode = contents

Headers:

	Content-Type: application/octet-stream
	file_orginalFile: <java.io.File>
	file_name: <file name>

Payload:

A byte[] filled with the file contents.
mode = lines

Headers:

	Content-Type: text/plain
	file_orginalFile: <java.io.File>
	file_name: <file name>
	correlationId: <UUID> (same for each line)
	sequenceNumber: <n>
	sequenceSize: 0 (number of lines is not know until the file is read)

Payload:

A String for each line.
The first line is optionally preceded by a message with a START marker payload.
The last line is optionally followed by a message with an END marker payload.
Marker presence and format are determined by the with-markers and markers-json properties.
mode = ref

Headers:

None.
Payload:

A java.io.File object.
Options

The s3 source has the following options:
	file.consumer.markers-json
	When 'fileMarkers == true', specify if they should be produced as FileSplitter.FileMarker objects or JSON. (Boolean, default: true)
	file.consumer.mode
	The FileReadingMode to use for file reading sources. Values are 'ref' - The File object, 'lines' - a message per line, or 'contents' - the contents as bytes. (FileReadingMode, default: <none>, possible values: ref,lines,contents)
	file.consumer.with-markers
	Set to true to emit start of file/end of file marker messages before/after the data. 	Only valid with FileReadingMode 'lines'. (Boolean, default: <none>)
	s3.auto-create-local-dir
	Create or not the local directory. (Boolean, default: true)
	s3.delete-remote-files
	Delete or not remote files after processing. (Boolean, default: false)
	s3.filename-pattern
	The pattern to filter remote files. (String, default: <none>)
	s3.filename-regex
	The regexp to filter remote files. (Pattern, default: <none>)
	s3.local-dir
	The local directory to store files. (File, default: <none>)
	s3.preserve-timestamp
	To transfer or not the timestamp of the remote file to the local one. (Boolean, default: true)
	s3.remote-dir
	AWS S3 bucket resource. (String, default: bucket)
	s3.remote-file-separator
	Remote File separator. (String, default: /)
	s3.tmp-file-suffix
	Temporary file suffix. (String, default: .tmp)
	trigger.cron
	Cron expression value for the Cron Trigger. (String, default: <none>)
	trigger.date-format
	Format for the date value. (String, default: <none>)
	trigger.fixed-delay
	Fixed delay for periodic triggers. (Integer, default: 1)
	trigger.initial-delay
	Initial delay for periodic triggers. (Integer, default: 0)
	trigger.max-messages
	Maximum messages per poll, -1 means infinity. (Long, default: -1)
	trigger.time-unit
	The TimeUnit to apply to delay values. (TimeUnit, default: SECONDS, possible values: NANOSECONDS,MICROSECONDS,MILLISECONDS,SECONDS,MINUTES,HOURS,DAYS)

Amazon AWS common options

The Amazon S3 Source (as all other Amazon AWS applications) is based on the
Spring Cloud AWS project as a foundation, and its auto-configuration
classes are used automatically by Spring Boot.
Consult their documentation regarding required and useful auto-configuration properties.
Some of them are about AWS credentials:
	cloud.aws.credentials.accessKey
	cloud.aws.credentials.secretKey
	cloud.aws.credentials.instanceProfile
	cloud.aws.credentials.profileName
	cloud.aws.credentials.profilePath

Other are for AWS Region definition:
	cloud.aws.region.auto
	cloud.aws.region.static

And for AWS Stack:
	cloud.aws.stack.auto
	cloud.aws.stack.name

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here. You can then cd into one one of the folders and build it:
$./mvnw clean package
Examples

java -jar s3-source.jar --s3.remoteDir=/tmp/foo --file.consumer.mode=lines --trigger.fixed-delay=60
SFTP Source

This source app supports transfer of files using the SFTP protocol.
Files are transferred from the remote directory to the local directory where the application is deployed.
Messages emitted by the source are provided as a byte array by default. However, this can be customized using the --mode option:
	ref Provides a java.io.File reference
	lines Will split files line-by-line and emit a new message for each line
	contents The default. Provides the contents of a file as a byte array

When using --mode=lines, you can also provide the additional option --withMarkers=true.
If set to true, the underlying FileSplitter will emit additional start-of-file and end-of-file marker messages before and after the actual data.
The payload of these 2 additional marker messages is of type FileSplitter.FileMarker.
The option withMarkers defaults to false if not explicitly set.
When configuring the sftp.factory.known-hosts-expression option, the root object of the evaluation is the application context, an example might be sftp.factory.known-hosts-expression = @systemProperties['user.home'] + '/.ssh/known_hosts'.
See also MetadataStore options for possible shared persistent store configuration for the SftpPersistentAcceptOnceFileListFilter and IdempotentReceiverInterceptor used in the SFTP Source.
Multiple SFTP Servers

This source supports polling multiple sftp servers. This requires configuring multiple session factories.
The following configuration will poll two sftp servers, consuming files in a round-robin fashion:
sftp.factories.one.host=host1
sftp.factories.one.port=1234,
sftp.factories.one.username = user1,
sftp.factories.one.password = pass1,
...
sftp.factories.two.host=host2,
sftp.factories.two.port=2345,
sftp.factories.two.username = user2,
sftp.factories.two.password = pass2,
sftp.directories=one.sftpSource,two.sftpSecondSource,
sftp.max-fetch=1,
sftp.fair=true

	[image: [Note]]	Note
	The TaskLaunchRequest output functionality is currently supported here for legacy reasons.
If you are interested in this feature, we recommend using the sftp-datafow-source which is intended specifically for this use case.
A task launch request posted to the Data Flow Server API is much simpler to use than the TaskLaunchRequest supported by this app which supports launching tasks using one of the provided platform specific task launchers.
Using a platform specific task launcher makes it possible to launch tasks when a Data Flow server is not deployed, but requires several additional configuration parameters.

Input

N/A (Fetches files from an SFTP server).
Output

mode = contents

Headers:

	Content-Type: application/octet-stream
	file_originalFile: <java.io.File>
	file_name: <file name>

Payload:

A byte[] filled with the file contents.
mode = lines

Headers:

	Content-Type: text/plain
	file_originalFile: <java.io.File>
	file_name: <file name>
	correlationId: <UUID> (same for each line)
	sequenceNumber: <n>
	sequenceSize: 0 (number of lines is not know until the file is read)

Payload:

A String for each line.
The first line is optionally preceded by a message with a START marker payload.
The last line is optionally followed by a message with an END marker payload.
Marker presence and format are determined by the with-markers and markers-json properties.
mode = ref

Headers:

None.
Payload:

A java.io.File object.
task-launcher-output = true

Headers:

	Content-Type: application/json
	file_remoteDirectory: <java.lang.String>

Payload:

A TaskLaunchRequest object with the following set as command line arguments (also bound to job parameters for Spring Batch):
	<task.local-file-path-parameter-name>=<task.local-file-path-parameter-value>
	<task.remote-file-path-parameter-name>=<task.remote-file-path-parameter-value>
	Any provided`task.parameters`

task.resource-uri is required.
task.deployment-properties and task.environment-properties are optional.
Options

The sftp source has the following options:
	file.consumer.markers-json
	When 'fileMarkers == true', specify if they should be produced as FileSplitter.FileMarker objects or JSON. (Boolean, default: true)
	file.consumer.mode
	The FileReadingMode to use for file reading sources. Values are 'ref' - The File object, 'lines' - a message per line, or 'contents' - the contents as bytes. (FileReadingMode, default: <none>, possible values: ref,lines,contents)
	file.consumer.with-markers
	Set to true to emit start of file/end of file marker messages before/after the data. 	Only valid with FileReadingMode 'lines'. (Boolean, default: <none>)
	sftp.auto-create-local-dir
	Set to true to create the local directory if it does not exist. (Boolean, default: true)
	sftp.delete-remote-files
	Set to true to delete remote files after successful transfer. (Boolean, default: false)
	sftp.directories
	A list of factory "name.directory" pairs. (String[], default: <none>)
	sftp.factories
	A map of factory names to factories. (Map<String, Factory>, default: <none>)
	sftp.factory.allow-unknown-keys
	True to allow an unknown or changed key. (Boolean, default: false)
	sftp.factory.host
	The host name of the server. (String, default: localhost)
	sftp.factory.known-hosts-expression
	A SpEL expression resolving to the location of the known hosts file. (Expression, default: <none>)
	sftp.factory.pass-phrase
	Passphrase for user's private key. (String, default: <empty string>)
	sftp.factory.password
	The password to use to connect to the server. (String, default: <none>)
	sftp.factory.port
	The port of the server. (Integer, default: 22)
	sftp.factory.private-key
	Resource location of user's private key. (Resource, default: <none>)
	sftp.factory.username
	The username to use to connect to the server. (String, default: <none>)
	sftp.fair
	True for fair polling of multiple servers/directories. (Boolean, default: false)
	sftp.filename-pattern
	A filter pattern to match the names of files to transfer. (String, default: <none>)
	sftp.filename-regex
	A filter regex pattern to match the names of files to transfer. (Pattern, default: <none>)
	sftp.list-only
	Set to true to return file metadata without the entire payload. (Boolean, default: false)
	sftp.local-dir
	The local directory to use for file transfers. (File, default: <none>)
	sftp.max-fetch
	The maximum number of remote files to fetch per poll; default unlimited. Does not apply when listing files or building task launch requests. (Integer, default: <none>)
	sftp.preserve-timestamp
	Set to true to preserve the original timestamp. (Boolean, default: true)
	sftp.remote-dir
	The remote FTP directory. (String, default: /)
	sftp.remote-file-separator
	The remote file separator. (String, default: /)
	sftp.stream
	Set to true to stream the file rather than copy to a local directory. (Boolean, default: false)
	sftp.task-launcher-output
	Set to true to create output suitable for a task launch request. (Boolean, default: false)
	sftp.task.application-name
	The task application name. (String, default: <none>)
	sftp.task.data-source-password
	The datasource password to be applied to the TaskLaunchRequest. (String, default: <none>)
	sftp.task.data-source-url
	The datasource url to be applied to the TaskLaunchRequest. Defaults to h2 in-memory JDBC datasource url. (String, default: jdbc:h2:tcp://localhost:19092/mem:dataflow)
	sftp.task.data-source-user-name
	The datasource user name to be applied to the TaskLaunchRequest. Defaults to "sa" (String, default: sa)
	sftp.task.deployment-properties
	Comma delimited list of deployment properties to be applied to the TaskLaunchRequest. (String, default: <none>)
	sftp.task.environment-properties
	Comma delimited list of environment properties to be applied to the TaskLaunchRequest. (String, default: <none>)
	sftp.task.local-file-path-parameter-name
	Value to use as the local file parameter name. (String, default: localFilePath)
	sftp.task.local-file-path-parameter-value
	The file path to use as the local file parameter value. Defaults to "java.io.tmpdir". (String, default: <none>)
	sftp.task.parameters
	Comma separated list of optional parameters in key=value format. (List<String>, default: <none>)
	sftp.task.remote-file-path-parameter-name
	Value to use as the remote file parameter name. (String, default: remoteFilePath)
	sftp.task.resource-uri
	The URI of the task artifact to be applied to the TaskLaunchRequest. (String, default: <empty string>)
	sftp.tmp-file-suffix
	The suffix to use while the transfer is in progress. (String, default: .tmp)
	trigger.cron
	Cron expression value for the Cron Trigger. (String, default: <none>)
	trigger.date-format
	Format for the date value. (String, default: <none>)
	trigger.fixed-delay
	Fixed delay for periodic triggers. (Integer, default: 1)
	trigger.initial-delay
	Initial delay for periodic triggers. (Integer, default: 0)
	trigger.max-messages
	Maximum messages per poll, -1 means infinity. (Long, default: -1)
	trigger.time-unit
	The TimeUnit to apply to delay values. (TimeUnit, default: SECONDS, possible values: NANOSECONDS,MICROSECONDS,MILLISECONDS,SECONDS,MINUTES,HOURS,DAYS)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one one of the folders and build it:
$./mvnw clean package
Examples

java -jar sftp_source.jar --sftp.remote-dir=foo --file.consumer.mode=lines --trigger.fixed-delay=60 \
 --sftp.factory.host=sftpserver --sftp.factory.username=user --sftp.factory.password=pw --sftp.local-dir=/foo
SYSLOG Source

The syslog source receives SYSLOG packets over UDP, TCP, or both.
RFC3164 (BSD) and RFC5424 formats are supported.
Input

N/A
Output

Headers

	content-type: application/json

Payload

	Map of field/values

Options

The syslog source has the following options:
	syslog.buffer-size
	the buffer size used when decoding messages; larger messages will be rejected. (Integer, default: 2048)
	syslog.nio
	whether or not to use NIO (when supporting a large number of connections). (Boolean, default: false)
	syslog.port
	The port to listen on. (Integer, default: 1514)
	syslog.protocol
	tcp or udp (String, default: tcp)
	syslog.reverse-lookup
	whether or not to perform a reverse lookup on the incoming socket. (Boolean, default: false)
	syslog.rfc
	'5424' or '3164' - the syslog format according the the RFC; 3164 is aka 'BSD' format. (String, default: 3164)
	syslog.socket-timeout
	the socket timeout. (Integer, default: 0)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one of the folders and build it:
$./mvnw clean package
Examples

java -jar syslog-source.jar --syslog.rfc=5424 --syslog.protocol=tcp
TCP

The tcp source acts as a server and allows a remote party to connect to it and submit data over a raw tcp socket.
TCP is a streaming protocol and some mechanism is needed to frame messages on the wire. A number of decoders are
available, the default being 'CRLF' which is compatible with Telnet.
Messages produced by the TCP source application have a byte[] payload.
Input

N/A
Output

Headers:

	Content-Type: application/octet-stream

Payload:

	byte[]

Options

	tcp.buffer-size
	The buffer size used when decoding messages; larger messages will be rejected. (Integer, default: 2048)
	tcp.decoder
	The decoder to use when receiving messages. (Encoding, default: <none>, possible values: CRLF,LF,NULL,STXETX,RAW,L1,L2,L4)
	tcp.nio
	Whether or not to use NIO. (Boolean, default: false)
	tcp.port
	The port on which to listen; 0 for the OS to choose a port. (Integer, default: 1234)
	tcp.reverse-lookup
	Perform a reverse DNS lookup on the remote IP Address; if false,
just the IP address is included in the message headers. (Boolean, default: false)
	tcp.socket-timeout
	The timeout (ms) before closing the socket when no data is received. (Integer, default: 120000)
	tcp.use-direct-buffers
	Whether or not to use direct buffers. (Boolean, default: false)

Available Decoders

Text Data
	CRLF (default)
	text terminated by carriage return (0x0d) followed by line feed (0x0a)
	LF
	text terminated by line feed (0x0a)
	NULL
	text terminated by a null byte (0x00)
	STXETX
	text preceded by an STX (0x02) and terminated by an ETX (0x03)

Text and Binary Data
	RAW
	no structure - the client indicates a complete message by closing the socket
	L1
	data preceded by a one byte (unsigned) length field (supports up to 255 bytes)
	L2
	data preceded by a two byte (unsigned) length field (up to 216-1 bytes)
	L4
	data preceded by a four byte (signed) length field (up to 231-1 bytes)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here. You can then cd into one one of the folders and build it:
$./mvnw clean package
Examples

java -jar tcp_source.jar --tcp.decoder=LF
The "decoder" property determines the message format (default is termination with CRLF).
TCP Client as a Source which connects to a TCP server and receives data

Input

N/A
Output

Headers:

	Content-Type: application/octet-stream

Payload:

	byte[]

Options

The tcp-client source has the following options:
	tcp.buffer-size
	The buffer size used when decoding messages; larger messages will be rejected. (Integer, default: 2048)
	tcp.charset
	The charset used when converting from bytes to String. (String, default: UTF-8)
	tcp.decoder
	The decoder to use when receiving messages. (Encoding, default: <none>, possible values: CRLF,LF,NULL,STXETX,RAW,L1,L2,L4)
	tcp.host
	The host to which this client will connect. (String, default: localhost)
	tcp.nio
	Whether or not to use NIO. (Boolean, default: false)
	tcp.port
	The port on which to listen; 0 for the OS to choose a port. (Integer, default: 1234)
	tcp.retry-interval
	Retry interval (in milliseconds) to check the connection and reconnect. (Long, default: 60000)
	tcp.reverse-lookup
	Perform a reverse DNS lookup on the remote IP Address; if false,
just the IP address is included in the message headers. (Boolean, default: false)
	tcp.socket-timeout
	The timeout (ms) before closing the socket when no data is received. (Integer, default: 120000)
	tcp.use-direct-buffers
	Whether or not to use direct buffers. (Boolean, default: false)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here. You can then cd into one one of the folders and build it:
$./mvnw clean package
Examples

java -jar tcp_client_source.jar --tcp.decoder=LF
Time Source

The time source will simply emit a String with the current time every so often.
Input

N/A
Output

Headers:

	Content-Type: text/plain

Payload:

A String with the time output.
Options

The time source has the following options:
	trigger.cron
	Cron expression value for the Cron Trigger. (String, default: <none>)
	trigger.date-format
	Format for the date value. (String, default: <none>)
	trigger.fixed-delay
	Fixed delay for periodic triggers. (Integer, default: 1)
	trigger.initial-delay
	Initial delay for periodic triggers. (Integer, default: 0)
	trigger.max-messages
	Maximum messages per poll, -1 means infinity. (Long, default: 1)
	trigger.time-unit
	The TimeUnit to apply to delay values. (TimeUnit, default: <none>, possible values: NANOSECONDS,MICROSECONDS,MILLISECONDS,SECONDS,MINUTES,HOURS,DAYS)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here. You can then cd into one one of the folders and
build it:
$./mvnw clean package
Examples

java -jar time-source.jar
Trigger Source

This app sends trigger based on a fixed delay, date or cron expression. A payload which is evaluated using SpEL can
also be sent each time the trigger fires.
Input

N/A
Output

Headers:

Payload:

	Any

Options

The trigger source has the following options:
	trigger.cron
	Cron expression value for the Cron Trigger. (String, default: <none>)
	trigger.date-format
	Format for the date value. (String, default: <none>)
	trigger.fixed-delay
	Fixed delay for periodic triggers. (Integer, default: 1)
	trigger.initial-delay
	Initial delay for periodic triggers. (Integer, default: 0)
	trigger.max-messages
	Maximum messages per poll, -1 means infinity. (Long, default: 1)
	trigger.source.payload
	The expression for the payload of the Source module. (Expression, default: <none>)
	trigger.time-unit
	The TimeUnit to apply to delay values. (TimeUnit, default: <none>, possible values: NANOSECONDS,MICROSECONDS,MILLISECONDS,SECONDS,MINUTES,HOURS,DAYS)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here. You can then cd into one one of the folders and build it:
$./mvnw clean package
Examples

java -jar trigger_source.jar --trigger.source.payload=payload-expression
TriggerTask Source

The TriggerTask app sends a TaskLaunchRequest based on a fixed delay, date or
cron expression. The TaskLaunchRequest is used by a tasklauncher-* sink that
will deploy and launch a task. The only required property for the triggertask
is the --uri which specifies the artifact that will be launched by the
tasklauncher-* that you have selected. The user is also allowed to set the
command line arguments as well as the
Spring Boot properties
that are used by the task.
Input

N/A
Output

Headers:

	Content-Type: application/octet-stream

Payload:

A byte array containing the TaskLaunchRequest
Options

The triggertask source has the following options:
	trigger.cron
	Cron expression value for the Cron Trigger. (String, default: <none>)
	trigger.date-format
	Format for the date value. (String, default: <none>)
	trigger.fixed-delay
	Fixed delay for periodic triggers. (Integer, default: 1)
	trigger.initial-delay
	Initial delay for periodic triggers. (Integer, default: 0)
	trigger.max-messages
	Maximum messages per poll, -1 means infinity. (Long, default: 1)
	trigger.source.payload
	The expression for the payload of the Source module. (Expression, default: <none>)
	trigger.time-unit
	The TimeUnit to apply to delay values. (TimeUnit, default: <none>, possible values: NANOSECONDS,MICROSECONDS,MILLISECONDS,SECONDS,MINUTES,HOURS,DAYS)
	triggertask.application-name
	The name to be applied to the launched task.. (String, default: <empty string>)
	triggertask.command-line-args
	Space delimited key=value pairs to be used as commandline variables for the task. (String, default: <empty string>)
	triggertask.deployment-properties
	Comma delimited key=value pairs to be used as deploymentProperties for the task. (String, default: <empty string>)
	triggertask.environment-properties
	Comma delimited key=value pairs to be used as environmentProperties for the task. (String, default: <empty string>)
	triggertask.uri
	The uri to the task artifact. (String, default: <empty string>)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here. You can then cd into one one of the folders and
build it:
$./mvnw clean package
Examples

java -jar trigger_task.jar --triggertask.uri=maven://org.springframework.cloud.task.app:timestamp-task:1.2.0.RELEASE
Twitter Stream Source

This source ingests data from Twitter’s streaming API.
It uses the sample and
filter stream endpoints rather than the full
"firehose" which needs special access. The endpoint used will depend on the parameters you supply in the stream
definition (some are specific to the filter endpoint).
You need to supply all keys and secrets (both consumer and accessToken) to authenticate for this source, so it is easiest
if you just add these as the following environment variables: CONSUMER_KEY, CONSUMER_SECRET, ACCESS_TOKEN and ACCESS_TOKEN_SECRET.
Input

N/A
Output

Headers

	Content-Type: text/plain

Payload

	String

Options

The twitterstream source has the following options:
	twitter.credentials.access-token
	Access token (String, default: <none>)
	twitter.credentials.access-token-secret
	Access token secret (String, default: <none>)
	twitter.credentials.consumer-key
	Consumer key (String, default: <none>)
	twitter.credentials.consumer-secret
	Consumer secret (String, default: <none>)
	twitter.stream.follow
	A comma separated list of user IDs, indicating the users to return statuses for in the stream. (String, default: <none>)
	twitter.stream.language
	The language of the tweet text. (String, default: <none>)
	twitter.stream.locations
	A set of bounding boxes to track. (String, default: <none>)
	twitter.stream.stream-type
	Twitter stream type (such as sample, firehose). Default is sample. (TwitterStreamType, default: <none>, possible values: SAMPLE,FIREHOSE,FILTER)
	twitter.stream.track
	Keywords to track. (String, default: <none>)

	[image: [Note]]	Note
	twitterstream emit JSON in the native Twitter format.

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one one of the folders and build it:
$./mvnw clean package
Examples

java -jar twitter_stream_source.jar --twitter.credentials.consumerKey=<CONSUMER_KEY> --twitter.credentials.consumerSecret=<CONSUMER_SECRET> \
 --twitter.credentials.accessToken=<ACCESS_TOKEN> --twitter.credentials.accessTokenSecret=<ACCESS_TOKEN_SECRET>
Chapter 3. Processors

Aggregator Processor

Use the aggregator application to combine multiple messages into one, based on some correlation mechanism.
This processor is fully based on the Aggregator component from Spring Integration.
So, please, consult there for use-cases and functionality.
Input

Headers

If the aggregation and correlation logic is based on the default strategies, the correlationId, sequenceNumber and sequenceSize headers must be presented in the incoming message.
Payload

Aggregator Processor is fully based on the Spring Integration’s AggregatingMessageHandler and since correlation and aggregation logic don’t require particular types, the input payload can be anything able to be transferred over the network and Spring Cloud Stream Binder.
If payload is JSON, the JsonPropertyAccessor helps to build straightforward SpEL expressions for correlation, release and aggregation functions.
Output

Headers

Returns all headers of the incoming messages that have no conflicts among the group.
An absent header on one or more messages within the group is not considered a conflict.
Payload

By default the DefaultAggregatingMessageGroupProcessor is used for aggregation function with meaning return the java.util.List of payloads of incoming messages.
The custom aggregation SpEL expression may produce any required object to be sent to the output of the processor.
Options

The aggregator processor has the following options:
	aggregator.aggregation
	SpEL expression for aggregation strategy. Default is collection of payloads (Expression, default: <none>)
	aggregator.correlation
	SpEL expression for correlation key. Default to correlationId header (Expression, default: <none>)
	aggregator.group-timeout
	SpEL expression for timeout to expiring uncompleted groups (Expression, default: <none>)
	aggregator.message-store-entity
	Persistence message store entity: table prefix in RDBMS, collection name in MongoDb, etc (String, default: <none>)
	aggregator.message-store-type
	Message store type (String, default: <none>)
	aggregator.release
	SpEL expression for release strategy. Default is based on the sequenceSize header (Expression, default: <none>)
	spring.data.mongodb.authentication-database
	Authentication database name. (String, default: <none>)
	spring.data.mongodb.database
	Database name. (String, default: <none>)
	spring.data.mongodb.field-naming-strategy
	Fully qualified name of the FieldNamingStrategy to use. (Class<?>, default: <none>)
	spring.data.mongodb.grid-fs-database
	GridFS database name. (String, default: <none>)
	spring.data.mongodb.host
	Mongo server host. Cannot be set with URI. (String, default: <none>)
	spring.data.mongodb.password
	Login password of the mongo server. Cannot be set with URI. (Character[], default: <none>)
	spring.data.mongodb.port
	Mongo server port. Cannot be set with URI. (Integer, default: <none>)
	spring.data.mongodb.uri
	Mongo database URI. Cannot be set with host, port and credentials. (String, default: mongodb://localhost/test)
	spring.data.mongodb.username
	Login user of the mongo server. Cannot be set with URI. (String, default: <none>)
	spring.datasource.continue-on-error
	Whether to stop if an error occurs while initializing the database. (Boolean, default: false)
	spring.datasource.data
	Data (DML) script resource references. (List<String>, default: <none>)
	spring.datasource.data-password
	Password of the database to execute DML scripts (if different). (String, default: <none>)
	spring.datasource.data-username
	Username of the database to execute DML scripts (if different). (String, default: <none>)
	spring.datasource.driver-class-name
	Fully qualified name of the JDBC driver. Auto-detected based on the URL by default. (String, default: <none>)
	spring.datasource.generate-unique-name
	Whether to generate a random datasource name. (Boolean, default: false)
	spring.datasource.initialization-mode
	Initialize the datasource with available DDL and DML scripts. (DataSourceInitializationMode, default: embedded, possible values: ALWAYS,EMBEDDED,NEVER)
	spring.datasource.jndi-name
	JNDI location of the datasource. Class, url, username & password are ignored when set. (String, default: <none>)
	spring.datasource.name
	Name of the datasource. Default to "testdb" when using an embedded database. (String, default: <none>)
	spring.datasource.password
	Login password of the database. (String, default: <none>)
	spring.datasource.platform
	Platform to use in the DDL or DML scripts (such as schema-${platform}.sql or data-${platform}.sql). (String, default: all)
	spring.datasource.schema
	Schema (DDL) script resource references. (List<String>, default: <none>)
	spring.datasource.schema-password
	Password of the database to execute DDL scripts (if different). (String, default: <none>)
	spring.datasource.schema-username
	Username of the database to execute DDL scripts (if different). (String, default: <none>)
	spring.datasource.separator
	Statement separator in SQL initialization scripts. (String, default: ;)
	spring.datasource.sql-script-encoding
	SQL scripts encoding. (Charset, default: <none>)
	spring.datasource.type
	Fully qualified name of the connection pool implementation to use. By default, it is auto-detected from the classpath. (Class<DataSource>, default: <none>)
	spring.datasource.url
	JDBC URL of the database. (String, default: <none>)
	spring.datasource.username
	Login username of the database. (String, default: <none>)
	spring.mongodb.embedded.features
	Comma-separated list of features to enable. Uses the defaults of the configured version by default. (Set<Feature>, default: [sync_delay])
	spring.mongodb.embedded.version
	Version of Mongo to use. (String, default: 3.5.5)
	spring.redis.database
	Database index used by the connection factory. (Integer, default: 0)
	spring.redis.host
	Redis server host. (String, default: localhost)
	spring.redis.password
	Login password of the redis server. (String, default: <none>)
	spring.redis.port
	Redis server port. (Integer, default: 6379)
	spring.redis.ssl
	Whether to enable SSL support. (Boolean, default: false)
	spring.redis.timeout
	Connection timeout. (Duration, default: <none>)
	spring.redis.url
	Connection URL. Overrides host, port, and password. User is ignored. Example: redis://user:password@example.com:6379 (String, default: <none>)

By default the aggregator processor uses:
- HeaderAttributeCorrelationStrategy(IntegrationMessageHeaderAccessor.CORRELATION_ID) - for correlation;
- SequenceSizeReleaseStrategy - for release;
- DefaultAggregatingMessageGroupProcessor - for aggregation;
- SimpleMessageStore - for messageStoreType.
The aggregator application can be configured for persistent MessageGroupStore implementations.
The configuration for target technology is fully based on the Spring Boot auto-configuration.
But default JDBC, MongoDb and Redis auto-configurations are excluded.
They are @Import ed basing on the aggregator.messageStoreType configuration property.
Consult Spring Boot Reference Manual for auto-configuration for particular technology you use for aggregator.
The JDBC JdbcMessageStore requires particular tables in the target data base.
You can find schema scripts for appropriate RDBMS vendors in the org.springframework.integration.jdbc package of the spring-integration-jdbc jar.
Those scripts can be used for automatic data base initialization via Spring Boot.
For example:
java -jar aggregator-rabbit-1.0.0.RELEASE.jar
 --aggregator.message-store-type=jdbc
 --spring.datasource.url=jdbc:h2:mem:test
 --spring.datasource.schema=org/springframework/integration/jdbc/schema-h2.sql
Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one of the folders and build it:
$./mvnw clean package
Examples

java -jar aggregator_processor.jar
 --aggregator.message-store-type=jdbc
 --spring.datasource.url=jdbc:h2:mem:test
 --spring.datasource.schema=org/springframework/integration/jdbc/schema-h2.sql

java -jar aggregator_processor.jar
 --spring.data.mongodb.port=0
 --aggregator.correlation=T(Thread).currentThread().id
 --aggregator.release="!#this.?[payload == 'bar'].empty"
 --aggregator.aggregation="#this.?[payload == 'foo'].![payload]"
 --aggregator.message-store-type=mongodb
 --aggregator.message-store-entity=aggregatorTest
Code of Conduct

This project adheres to the Contributor Covenant code of conduct.
By participating, you are expected to uphold this code.
Please report unacceptable behavior to spring-code-of-conduct@pivotal.io.
Bridge Processor

A Processor module that returns messages that is passed by connecting just the input and output channels.
Input

Headers

Payload

Any
Output

Headers

Payload

Any
Options

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one one of the folders and build it:
$./mvnw clean package
Examples

java -jar bridge-processor.jar
Counter Processor

Pass-Through Processor that computes multiple Counters from the messages that pass through. The input messages are re-send unchanged!
Using the Micrometer library the Counter Processor integrates with the popular TSDB for persisting and processing the counter values.
By default the Counter Processor increments the message.name counter on every received message. The message-counter-enabled controls the behavior of the message counter.
If tag expressions are provided (via the counter.tag.expression.<tagKey>=<tagValue SpEL expression> property) then the `name counter is incremented. Every SpEL expression may evaluate into multiple values causing multiple counter increments for the same message (one fore every value resolved).
If fixed tags are provided they are include in all message and expression counters.
Counter’s implementation is based on the Micrometer library which is a Vendor-neutral application metrics facade that supports the most popular monitoring systems.
See the Micrometer documentation for the list of supported monitoring systems. Starting with Spring Boot 2.0, Micrometer is the instrumentation library powering the delivery of application metrics from Spring Boot.
All Spring Cloud Stream App Starters are configured to support two of the most popular monitoring systems, Prometheus and InfluxDB. You can declaratively select which monitoring system to use.
If you are not using Prometheus or InfluxDB, you can customise the App starters to use a different monitoring system as well as include your preferred micrometer monitoring system library in your own custom applications.
Grafana is a popular platform for building visualization dashboards.
To enable Micrometer’s Prometheus meter registry for Spring Cloud Stream application starters, set the following properties.
management.metrics.export.prometheus.enabled=true
management.endpoints.web.exposure.include=prometheus
and disable the application’s security which allows for a simple Prometheus configuration to scrape counter information by setting the following property.
spring.cloud.streamapp.security.enabled=false
To enable Micrometer’s Influx meter registry for Spring Cloud Stream application starters, set the following property.
management.metrics.export.influx.enabled=true
management.metrics.export.influx.uri={influxdb-server-url}
	[image: [Note]]	Note
	if the Data Flow Server metrics is enabled then the Counter will reuse the exiting configurations.

Following diagram illustrates Counter’s information collection and processing flow.
	[image: Counter Architecture]

Options

	counter.message-counter-enabled
	Enables counting the number of messages processed. Uses the 'message.' counter name prefix to distinct it form the expression based counter. The message counter includes the fixed tags when provided. (Boolean, default: true)
	counter.name
	The name of the counter to increment. (String, default: <none>)
	counter.name-expression
	A SpEL expression (against the incoming Message) to derive the name of the counter to increment. (Expression, default: <none>)
	counter.tag.expression
	Computes tags from SpEL expression. Single SpEL expression can produce an array of values, which in turn means distinct name/value tags. Every name/value tag will produce a separate counter increment. Tag expression format is: counter.tag.expression.[tag-name]=[SpEL expression] (Map<String, Expression>, default: <none>)
	counter.tag.fixed
	Custom tags assigned to every counter increment measurements. This is a map so the property convention fixed tags is: counter.tag.fixed.[tag-name]=[tag-value] (Map<String, String>, default: <none>)

Filter Processor

Use the filter module in a stream to determine whether a Message should be passed to the output channel.
Input

Headers

N/A
Payload

Any
Output

Headers

N/A
Payload

Any
Options

The filter processor has the following options:
	filter.expression
	A SpEL expression to be evaluated against each message, to decide whether or not to accept it. (Expression, default: true)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one one of the folders and build it:
$./mvnw clean package
Examples

java -jar filter-processor.jar --expression="payload"
Groovy Filter Processor

A Processor application that retains or discards messages according to a predicate, expressed as a Groovy script.
Input

Headers

N/A
Payload

	Any

Output

Headers

N/A
Payload

	Any

Options

The groovy-filter processor has the following options:
	groovy-filter.script
	The resource location of the groovy script (Resource, default: <none>)
	groovy-filter.variables
	Variable bindings as a new line delimited string of name-value pairs, e.g. 'foo=bar\n baz=car'. (Properties, default: <none>)
	groovy-filter.variables-location
	The location of a properties file containing custom script variable bindings. (Resource, default: <none>)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one one of the folders and build it:
$./mvnw clean package
Examples

java -jar groovy-filter-processor.jar --script=script.groovy
Groovy Transform Processor

A Processor module that transforms messages using a Groovy script.
Input

Headers

N/A
Payload

	Any

Output

Headers

N/A
Payload

	Any

Options

The groovy-transform processor has the following options:
	groovy-transformer.script
	Reference to a script used to process messages. (Resource, default: <none>)
	groovy-transformer.variables
	Variable bindings as a new line delimited string of name-value pairs, e.g. 'foo=bar\n baz=car'. (Properties, default: <none>)
	groovy-transformer.variables-location
	The location of a properties file containing custom script variable bindings. (Resource, default: <none>)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one one of the folders and build it:
$./mvnw clean package
Examples

java -jar groovy-transform-processor.jar --script=script.groovy
gRPC Processor

This processor uses gRPC to process Messages via a remote process written in any language that supports gRPC. This
pattern, allows the Java app to handle the stream processing while the gRPC service handles the business logic.
The service must implement the grpc service using link:.
./grpc-app-protos/src/main/proto/processor.proto[this protobuf schema].
	[image: [Note]]	Note
	The gRPC client stub is blocking by default. Asynchronous and streaming stubs are provided. The Asynchronous stub will
perform better if the server is multi-threaded however message ordering will not be guaranteed. If the server
supports bidirectional streaming, use the streaming stub.

	[image: [Note]]	Note
	A riff stub is available for interoperability with riff function containers. This does not
 interact with the Riff FaaS platform but supports running an existing function container standalone, for example,
 docker run -it -p10382:10382 some/riff-function:latest .

Input

Headers

Headers are available to the sidecar application via the process
schema if grpc.include-headers is true. The header value contains one or more string values to support multiple
values, e.g., the HTTP Accepts header.
Payload

The payload is a byte array as defined by the schema.
Output

Headers

In most cases the return message should simply contain the original headers provided.
The sidecar application may modify or add headers however it is recommended to only add headers if necessary.
Payload

It is expected that the payload will normally be a string or byte array. However common primitive types are supported
 as defined by the schema.
Options

The grpc processor has the following options:
	grpc.host
	The gRPC host name. (String, default: <none>)
	grpc.idle-timeout
	The idle timeout in seconds. (Long, default: 0)
	grpc.include-headers
	Flag to include headers in Messages to the remote process. (Boolean, default: false)
	grpc.max-message-size
	The maximum message size (bytes). (Integer, default: 0)
	grpc.plain-text
	Flag to send messages in plain text. SSL configuration required otherwise. (Boolean, default: true)
	grpc.port
	The gRPC server port. (Integer, default: 0)
	grpc.stub
	RPC communications style (default 'blocking'). (Stub, default: <none>, possible values: async,blocking,streaming,riff)

Header Enricher Processor

Use the header-enricher app to add message headers.
The headers are provided in the form of new line delimited key value pairs, where the keys are the header names and the values are SpEL expressions.
For example --headers='foo=payload.someProperty \n bar=payload.otherProperty'
Input

Headers

N/A
Payload

	Any

Output

Headers

N/A
Payload

	Any

Options

The header-enricher processor has the following options:
	header.enricher.headers
	\n separated properties representing headers in which values are SpEL expressions, e.g foo='bar' \n baz=payload.baz (Properties, default: <none>)
	header.enricher.overwrite
	set to true to overwrite any existing message headers (Boolean, default: false)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one one of the folders and build it:
$./mvnw clean package
Examples

java -jar header-enricher-processor.jar --headers='foo=payload.someProperty \n bar=payload.otherProperty'
Code of Conduct

This project adheres to the Contributor Covenant code of conduct. By participating, you are expected to uphold this code. Please report unacceptable behavior to spring-code-of-conduct@pivotal.io.
Http Client Processor

A processor app that makes requests to an HTTP resource and emits the response body as a message payload. This processor can be combined, e.g., with a time source app to periodically poll results from a HTTP resource.
Input

Headers

Any Required HTTP headers must be explicitly set via the headers-expression property. See examples below.
Header values may also be used to construct the request body when referenced in the body-expression property.
Payload

You can set the http-method-expression property to derive the HTTP method from the inbound Message, or http-method to set it statically (defaults to GET method).
The Message payload may be any Java type.
Generally, standard Java types such as String(e.g., JSON, XML) or byte array payloads are recommended.
A Map should work without too much effort.
By default, the payload will become HTTP request body (if needed).
You may also set the body-expression property to construct a value derived from the Message, or body to use a static (literal) value.
Internally, the processor uses RestTemplate.exchange(…​).
The RestTemplate supports Jackson JSON serialization to support any request and response types if necessary.
The expected-response-type property, String.class by default, may be set to any class in your application class path.
(Note user defined payload types will require adding required dependencies to your pom file)
Output

Headers

No HTTP message headers are mapped to the outbound Message.
Payload

The raw output object is ResponseEntity<?> any of its fields (e.g., body, headers) or accessor methods (statusCode) may be referenced as part of the reply-expression.
By default the outbound Message payload is the response body.
Options

The httpclient processor has the following options:
	httpclient.body
	The (static) request body; if neither this nor bodyExpression is provided, the payload will be used. (Object, default: <none>)
	httpclient.body-expression
	A SpEL expression to derive the request body from the incoming message. (Expression, default: <none>)
	httpclient.expected-response-type
	The type used to interpret the response. (Class<?>, default: <none>)
	httpclient.headers-expression
	A SpEL expression used to derive the http headers map to use. (Expression, default: <none>)
	httpclient.http-method
	The kind of http method to use. (HttpMethod, default: <none>, possible values: GET,HEAD,POST,PUT,PATCH,DELETE,OPTIONS,TRACE)
	httpclient.http-method-expression
	A SpEL expression to derive the request method from the incoming message. (Expression, default: <none>)
	httpclient.reply-expression
	A SpEL expression used to compute the final result, applied against the whole http response. (Expression, default: body)
	httpclient.url
	The URL to issue an http request to, as a static value. (String, default: <none>)
	httpclient.url-expression
	A SpEL expression against incoming message to determine the URL to use. (Expression, default: <none>)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one one of the folders and build it:
$./mvnw clean package
Examples

$ java -jar httpclient-processor.jar --httpclient.url=http://someurl --httpclient.http-method=POST --httpclient.headers-expression="{'Content-Type':'application/json'}"

$ java -jar httpclient-processor.jar --httpclient.url=http://someurl --httpclient.reply-expression="statusCode.name()"
PMML Processor

A processor that evaluates a machine learning model stored in PMML format.
Input

Headers

N/A
Payload

	PMML model data

Output

Headers

N/A
Payload

	Tuple carrying information about the evaluated data

Options

The pmml processor has the following options:
	pmml.inputs
	How to compute model active fields from input message properties as modelField->SpEL. (Map<String, Expression>, default: <none>)
	pmml.model-location
	The location of the PMML model file. (Resource, default: <none>)
	pmml.model-name
	If the model file contains multiple models, the name of the one to use. (String, default: <none>)
	pmml.model-name-expression
	If the model file contains multiple models, the name of the one to use, as a SpEL expression. (Expression, default: <none>)
	pmml.outputs
	How to emit evaluation results in the output message as msgProperty->SpEL. (Map<String, Expression>, default: <none>)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one of the folders and build it:
$./mvnw clean package
Examples

java -jar pmml-processor.jar --pmml.modelLocation= --pmml.modelName="
java -jar pmml-processor.jar --pmml.modelLocation= --pmml.modelNameExpression="
Python Http Processor

Spring Cloud Stream App Starters for integrating with python
This application invokes a REST service, using httpclient processor. As a convenience for Python developers, this
processor allows you to provide a Jython wrapper script that may execute a function before and after REST call in order to
perform any necessary data transformation. If you don’t require any custom transformations, just use the
httpclient processor.
The diagram shows input and output adapters as conceptual components. These are actually implemented as
functions defined in a single script that must conform to a simple convention:
def input():
 return "Pre" + payload;

def output():
 return payload + "Post";

result = locals()[channel]()
The function names input and output map to the conventional channel names used by Spring Cloud Stream processors.
The last line is a bit of Python reflection magic to invoke a function by its name, given by the bound variable
channel. Implemented with Spring Integration Scripting, headers and payload are always bound to the Message
headers and payload respectively. The payload on the input side is the object you use to build the REST request.
The output side transforms the response. If you don’t need any additional processing on one side, implement the
function with pass as the body:
def output():
 pass
	[image: [Note]]	Note
	The last line in the script must be an assignment statement. The variable name doesn’t matter. This is required to bind the return value correctly.

	[image: [Note]]	Note
	The script is evaluated for every message. This tends to create a a lot of classes for each execution which puts
stress on the JRE Metaspace memory region (or Permgen if using
a JRE prior to version 8). In Java 8, Metaspace is unlimited by default, allocated from native memory, and therefore
limited by the native OS. If deploying to CloudFoundry, the Java Buildpack Memory Calculator sets -XXMaxMetaspaceSize.
(see github.com/cloudfoundry/java-buildpack-memory-calculator for details). If using JBP v4.x, you may
override the calculated value (and others) by specifying -XXMaxMetaspaceSize explicitly in JAVA_OPTS. You also
need to increase the container memory accordingly. Similar tuning is advised in any containerized environment.

[image: PythonHttpProcessor]
Input

Headers

Headers will be bound automatically to the wrapper script variable headers.
Payload

Any type. Payload will be automatically bound to the wrapper script variable payload. Jython scripts can
effectively access any Java type on the app’s classpath.
Output

Headers

Headers may be set by the Jython wrapper script if the output() script function returns a Message.
Payload

Whatever the `output()`wrapper script function returns.
	[image: [Note]]	Note
	The wrapper script is intended to perform some required transformations prior to sending an HTTP request and/or after
 the response is received. The return value of the input adapter will be the inbound payload of the
 httpclient processor and shoud conform to its requirements. Likewise
 the HTTP reply-expression will bound to be the payload when the output() function is invoked.

Options

The python-http processor has the following options:
	git.basedir
	The base directory where the repository should be cloned. If not specified, a temporary directory will be created. (File, default: <none>)
	git.clone-on-start
	Flag to indicate that the repository should be cloned on startup (not on demand). Generally leads to slower startup but faster first query. (Boolean, default: true)
	git.label
	The label or branch to clone. (String, default: master)
	git.passphrase
	The passphrase for the remote repository. (String, default: <none>)
	git.password
	The password for the remote repository. (String, default: <none>)
	git.timeout
	Timeout (in seconds) for obtaining HTTP or SSH connection (if applicable). Default 5 seconds. (Integer, default: 5)
	git.uri
	The URI of the remote repository. (String, default: <none>)
	git.username
	The username for the remote repository. (String, default: <none>)
	httpclient.body
	The (static) request body; if neither this nor bodyExpression is provided, the payload will be used. (Object, default: <none>)
	httpclient.body-expression
	A SpEL expression to derive the request body from the incoming message. (Expression, default: <none>)
	httpclient.expected-response-type
	The type used to interpret the response. (Class<?>, default: <none>)
	httpclient.headers-expression
	A SpEL expression used to derive the http headers map to use. (Expression, default: <none>)
	httpclient.http-method
	The kind of http method to use. (HttpMethod, default: <none>, possible values: GET,HEAD,POST,PUT,PATCH,DELETE,OPTIONS,TRACE)
	httpclient.http-method-expression
	A SpEL expression to derive the request method from the incoming message. (Expression, default: <none>)
	httpclient.reply-expression
	A SpEL expression used to compute the final result, applied against the whole http response. (Expression, default: body)
	httpclient.url
	The URL to issue an http request to, as a static value. (String, default: <none>)
	httpclient.url-expression
	A SpEL expression against incoming message to determine the URL to use. (Expression, default: <none>)
	wrapper.content-type
	Sets the Content type header for the outgoing Message. (MediaType, default: <none>)
	wrapper.delimiter
	The variable delimiter. (Delimiter, default: <none>, possible values: COMMA,SPACE,TAB,NEWLINE)
	wrapper.script
	The Python script file name. (String, default: <none>)
	wrapper.variables
	Variable bindings as a delimited string of name-value pairs, e.g. 'foo=bar,baz=car'. (String, default: <none>)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here. You can then cd into one one of the folders and build it:
$./mvnw clean package
Examples

See httpclient processor for more examples on
httpclient properties.
$java -jar python-http-processor.jar --wrapper.script=/local/directory/build-json.py --httpclient.url=http://someurl
--httpclient.http-method=POST --httpclient.headers-expression="{'Content-Type':'application/json'}"

$java -jar python-http-processor.jar --git.uri=https://github.com/some-repo --wrapper.script=some-script.py --wrapper
.variables=foo=0.45,bar=0.55 --httpclient.url=http://someurl
Jython Processor

This application executes a Jython script that binds payload and headers variables to the Message payload
and headers respectively. In addition you may provide a jython.variables property containing a (comma delimited by
default) delimited string, e.g., var1=val1,var2=val2,…​.
This processor uses a JSR-223 compliant embedded ScriptEngine provided by www.jython.org/.
	[image: [Note]]	Note
	The last line in the script must be an assignment statement. The variable name doesn’t matter. This is required to bind the return value correctly.

	[image: [Note]]	Note
	The script is evaluated for every message which may limit your performance with high message loads. This also tends
to create a a lot of classes for each execution which puts stress on the JRE Metaspace memory region (or Permgen if using
a JRE prior to version 8). In Java 8, Metaspace is unlimited by default, allocated from native memory, and therefore
limited by the native OS. If deploying to CloudFoundry, the Java Buildpack Memory Calculator sets -XXMaxMetaspaceSize.
(see github.com/cloudfoundry/java-buildpack-memory-calculator for details). If using JBP v4.x, you may
override the calculated value (and others) by specifying -XXMaxMetaspaceSize explicitly in JAVA_OPTS. You also
need to increase the container memory accordingly. Similar tuning is advised in any containerized environment.

Input

Headers

Headers will be bound automatically to the script variable headers.
Payload

Any type. Payload will be automatically bound to the script variable payload.
Output

Headers

Headers may be set by the Jython script if the script returns a Message.
Payload

Whatever the script returns.

[image: JythonProcessor]
Options

The jython processor has the following options:
	git.basedir
	The base directory where the repository should be cloned. If not specified, a temporary directory will be created. (File, default: <none>)
	git.clone-on-start
	Flag to indicate that the repository should be cloned on startup (not on demand). Generally leads to slower startup but faster first query. (Boolean, default: true)
	git.label
	The label or branch to clone. (String, default: master)
	git.passphrase
	The passphrase for the remote repository. (String, default: <none>)
	git.password
	The password for the remote repository. (String, default: <none>)
	git.timeout
	Timeout (in seconds) for obtaining HTTP or SSH connection (if applicable). Default 5 seconds. (Integer, default: 5)
	git.uri
	The URI of the remote repository. (String, default: <none>)
	git.username
	The username for the remote repository. (String, default: <none>)
	jython.content-type
	Sets the Content type header for the outgoing Message. (MediaType, default: <none>)
	jython.delimiter
	The variable delimiter. (Delimiter, default: <none>, possible values: COMMA,SPACE,TAB,NEWLINE)
	jython.script
	The Python script file name. (String, default: <none>)
	jython.variables
	Variable bindings as a delimited string of name-value pairs, e.g. 'foo=bar,baz=car'. (String, default: <none>)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here. You can then cd into one one of the folders and build it:
$./mvnw clean package
Examples

$java -jar python-jython-processor.jar --jython.script=/local/directory/to_uppercase.py

$java -jar python-jython-processor.jar --git.uri=https://github.com/some-repo --jython
.script=map-tweet-sentiments.py --jython.variables=neutral=0.45,positive=0.55
Scripable Transform Processor

A Spring Cloud Stream module that transforms messages using a script. The script body is supplied directly
as a property value. The language of the script can be specified (groovy/javascript/ruby/python).
Input

Headers

N/A
Payload

	Any

Output

Headers

N/A
Payload

	Any

Options

The scriptable-transform processor has the following options:
	scriptable-transformer.language
	Language of the text in the script property. Supported: groovy, javascript, ruby, python. (String, default: <none>)
	scriptable-transformer.script
	Text of the script. (String, default: <none>)
	scriptable-transformer.variables
	Variable bindings as a new line delimited string of name-value pairs, e.g. 'foo=bar\n baz=car'. (Properties, default: <none>)
	scriptable-transformer.variables-location
	The location of a properties file containing custom script variable bindings. (Resource, default: <none>)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one one of the folders and build it:
$./mvnw clean package
Folder target will then contain generated jars (original, repackaged also known as executable jar, with javadoc, etc.) of which the executable jar can be used directly with java to run the application.
Name of executable jar follows the pattern:
scriptable-transform-processor-BINDER-VERSION.jar
Examples

Starting from top-level folder, assuming you target rabbitmq and your pom.xml has 2.1.0.RELEASE for the project.version property, you can build and run the standalone application with :
$./mvnw clean install -PgenerateApps
$ cd apps/scriptable-transform-processor-rabbit
$./mvnw clean package
$ java -jar target/scriptable-transform-processor-rabbit-2.1.0.RELEASE.jar --scriptable-transformer.language=ruby --scriptable-transformer.script="return ""#{payload.upcase}"""
Splitter Processor

The splitter app builds upon the concept of the same name in Spring Integration and allows the splitting of a single
message into several distinct messages.
Input

Headers

N/A
Payload

	Any

Output

Headers

N/A
Payload

	A collection of split messages based on a given expression, delimiter or file marker.

Options

	splitter.apply-sequence
	Add correlation/sequence information in headers to facilitate later
aggregation. (Boolean, default: true)
	splitter.charset
	The charset to use when converting bytes in text-based files
to String. (String, default: <none>)
	splitter.delimiters
	When expression is null, delimiters to use when tokenizing
{@link String} payloads. (String, default: <none>)
	splitter.expression
	A SpEL expression for splitting payloads. (Expression, default: <none>)
	splitter.file-markers
	Set to true or false to use a {@code FileSplitter} (to split
text-based files by line) that includes
(or not) beginning/end of file markers. (Boolean, default: <none>)
	splitter.markers-json
	When 'fileMarkers == true', specify if they should be produced
as FileSplitter.FileMarker objects or JSON. (Boolean, default: true)

When no expression, fileMarkers, or charset is provided, a DefaultMessageSplitter is configured with (optional) delimiters.
When fileMarkers or charset is provided, a FileSplitter is configured (you must provide either a fileMarkers
or charset to split files, which must be text-based - they are split into lines).
Otherwise, an ExpressionEvaluatingMessageSplitter is configured.
When splitting File payloads, the sequenceSize header is zero because the size cannot be determined at the beginning.
	[image: [Caution]]	Caution
	Ambiguous properties are not allowed.

JSON Example

As part of the SpEL expression you can make use of the pre-registered JSON Path function. The syntax is
#jsonPath(payload, '<json path expression>').
For example, consider the following JSON:
{ "store": {
 "book": [
 {
 "category": "reference",
 "author": "Nigel Rees",
 "title": "Sayings of the Century",
 "price": 8.95
 },
 {
 "category": "fiction",
 "author": "Evelyn Waugh",
 "title": "Sword of Honour",
 "price": 12.99
 },
 {
 "category": "fiction",
 "author": "Herman Melville",
 "title": "Moby Dick",
 "isbn": "0-553-21311-3",
 "price": 8.99
 },
 {
 "category": "fiction",
 "author": "J. R. R. Tolkien",
 "title": "The Lord of the Rings",
 "isbn": "0-395-19395-8",
 "price": 22.99
 }
],
 "bicycle": {
 "color": "red",
 "price": 19.95
 }
}}
and an expression #jsonPath(payload, '$.store.book'); the result will be 4 messages, each with a Map payload
containing the properties of a single book.
Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one of the folders and build it:
$./mvnw clean package
Examples

java -jar splitter-processor.jar --splitter.expression=expression
java -jar splitter-processor.jar --splitter.delimiters=delimiters
Task Launch Request Transform

Use the task launch request transform in a stream to create a TaskLaunchRequest
to be passed to the output channel. The TaskLaunchRequest is used by a
TaskLauncher to launch tasks on the platform.
Input

Any input type. (payload and header are discarded)
Output

Headers:

	Content-Type: application/octet-stream

Payload:

A byte array containing the TaskLaunchRequest
Options

The tasklaunchrequest processor has the following options:
	task.launch.request.application-name
	The name to be applied to the launched task. (String, default: <empty string>)
	task.launch.request.command-line-arguments
	Space delimited list of commandLineArguments to be applied to the
TaskLaunchRequest. (String, default: <none>)
	task.launch.request.data-source-driver-class-name
	The datasource driver class name to be applied to the TaskLaunchRequest. (String, default: <none>)
	task.launch.request.data-source-password
	The datasource password to be applied to the TaskLaunchRequest. (String, default: <none>)
	task.launch.request.data-source-url
	The datasource url to be applied to the TaskLaunchRequest. (String, default: <none>)
	task.launch.request.data-source-user-name
	The datasource user name to be applied to the TaskLaunchRequest. (String, default: <none>)
	task.launch.request.deployment-properties
	Comma delimited list of deployment properties to be applied to the
TaskLaunchRequest. (String, default: <none>)
	task.launch.request.environment-properties
	Comma delimited list of environment properties to be applied to the
TaskLaunchRequest. (String, default: <none>)
	task.launch.request.uri
	The uri of the artifact to be applied to the TaskLaunchRequest. (String, default: <none>)

Building with Maven

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here. You can then cd into one one of the folders and
build it:
$./mvnw clean package
Examples

java -jar tasklaunchrequest_transform_processor.jar --uri=maven://org.springframework.cloud.task.app:timestamp-task:1.2.0.RELEASE
TCP Client as a processor which connects to a TCP server, sends data to it and also receives data.

Input

Headers:

	Content-Type: application/octet-stream

Payload:

	byte[]

Headers:

	Content-Type: text/plain

Payload:

	String

Output

Headers:

	Content-Type: application/octet-stream

Payload:

	byte[]

Options

The tcp-client processor has the following options:
	tcp.buffer-size
	The buffer size used when decoding messages; larger messages will be rejected. (Integer, default: 2048)
	tcp.charset
	The charset used when converting from bytes to String. (String, default: UTF-8)
	tcp.decoder
	The decoder to use when receiving messages. (Encoding, default: <none>, possible values: CRLF,LF,NULL,STXETX,RAW,L1,L2,L4)
	tcp.encoder
	The encoder to use when sending messages. (Encoding, default: <none>, possible values: CRLF,LF,NULL,STXETX,RAW,L1,L2,L4)
	tcp.host
	The host to which this sink will connect. (String, default: localhost)
	tcp.nio
	Whether or not to use NIO. (Boolean, default: false)
	tcp.port
	The port on which to listen; 0 for the OS to choose a port. (Integer, default: 1234)
	tcp.retry-interval
	Retry interval (in milliseconds) to check the connection and reconnect. (Long, default: 60000)
	tcp.reverse-lookup
	Perform a reverse DNS lookup on the remote IP Address; if false,
just the IP address is included in the message headers. (Boolean, default: false)
	tcp.socket-timeout
	The timeout (ms) before closing the socket when no data is received. (Integer, default: 120000)
	tcp.use-direct-buffers
	Whether or not to use direct buffers. (Boolean, default: false)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here. You can then cd into one one of the folders and build it:
$./mvnw clean package
Examples

java -jar tcp-client-processor.jar --tcp.decoder=LF --tcp.encoder=LF
Transform Processor

Use the transform app in a stream to convert a Message’s content or structure.
The transform processor is used by passing a SpEL expression. The expression should return the modified message or payload.
As part of the SpEL expression you can make use of the pre-registered JSON Path function. The syntax is #jsonPath(payload,'<json path expression>')
Input

Headers

N/A
Payload

	Any

Output

Headers

N/A
Payload

	Any

Options

The transform processor has the following options:
	transformer.expression
	<documentation missing> (Expression, default: payload)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one one of the folders and build it:
$./mvnw clean package
Examples

java -jar transform-processor.jar --expression=payload.toUpperCase()
This transform will convert all message payloads to upper case.
TensorFlow Processor

A processor that evaluates a machine learning model stored in TensorFlow Protobuf format.
Following snippet shows how to export a TensorFlow model into ProtocolBuffer binary format as required by the Processor.
from tensorflow.python.framework.graph_util import convert_variables_to_constants
...
SAVE_DIR = os.path.abspath(os.path.curdir)
minimal_graph = convert_variables_to_constants(sess, sess.graph_def, ['<model output>'])
tf.train.write_graph(minimal_graph, SAVE_DIR, 'my_graph.proto', as_text=False)
tf.train.write_graph(minimal_graph, SAVE_DIR, 'my.txt', as_text=True)
[image: TensorFlowProcessorArcutectureOverview]

The --tensorflow.model property configures the Processor with the location of the serialized Tensorflow model.
The TensorflowInputConverter converts the input data into the format, specific for the given model.
The TensorflowOutputConverter converts the computed Tensors result into a pipeline Message.
The --tensorflow.modelFetch property defines the list of TensorFlow graph outputs to fetch the output Tensors from.
The --tensorflow.mode property defines whether the computed results are passed in the message payload or in the message header.
Input

Headers

N/A
Payload

The TensorFlow Processor uses a TensorflowInputConverter to convert the input data into data format compliant with the
TensorFlow Model used. The input converter converts the input Messages into key/value Map, where
the Key corresponds to a model input placeholder and the content is org.tensorflow.DataType compliant value.
The default converter implementation expects either Map payload or flat json message that can be converted into a Map.
The TensorflowInputConverter can be extended and customized.
See TwitterSentimentTensorflowInputConverter.java for example.
Output

Headers

N/A
Payload

Processor’s output uses TensorflowOutputConverter to convert the computed Tensor result into a serializable
message. The default implementation uses JSON.
Custom TensorflowOutputConverter can provide more convenient data representations.
See TwitterSentimentTensorflowOutputConverter.java.
Options

The tensorflow processor has the following options:
	tensorflow.expression
	How to obtain the input data from the input message. If empty it defaults to the input message payload. The headers[myHeaderName] expression to get input data from message's header using myHeaderName as a key. (Expression, default: <none>)
	tensorflow.mode
	The outbound message can store the inference result either in the payload or in a header with name outputName. The payload mode (default) stores the inference result in the outbound message payload. The inbound payload is discarded. The header mode stores the inference result in outbound message's header defined by the outputName property. The the inbound message payload is passed through to the outbound such. (OutputMode, default: <none>, possible values: payload,header)
	tensorflow.model
	The location of the pre-trained TensorFlow model file. The file, http and classpath schemas are supported. For archive locations takes the first file with '.pb' extension. Use the URI fragment parameter to specify an exact model name (e.g. https://foo/bar/model.tar.gz#frozen_inference_graph.pb) (Resource, default: <none>)
	tensorflow.model-fetch
	The TensorFlow graph model outputs. Comma separate list of TensorFlow operation names to fetch the output Tensors from. (List<String>, default: <none>)
	tensorflow.output-name
	The output data key used for the Header modes. (String, default: result)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one of the folders and build it:
$./mvnw clean package
Examples

java -jar tensorflow-processor.jar --model= --modelFetch= --mode="
Twitter Sentiment Analysis Processor

A processor that evaluates a machine learning model stored in TensorFlow Protobuf format.
It operationalizes the github.com/danielegrattarola/twitter-sentiment-cnn
[image: SCDF TF Sentiment]

Real-time Twitter Sentiment Analytics with TensorFlow and Spring Cloud Dataflow
Input

Headers

	content-type: application/json

Payload

	JSON tweet message

Output

Headers

	content-type: application/json

Payload

Decodes the evaluated result into POSITIVE, NEGATIVE and NEUTRAL values.
Then creates and returns a simple JSON message with this structure:
N/A
Payload

Processor’s output uses TensorflowOutputConverter to convert the computed Tensor result into a serializable
message. The default implementation uses JSON.
Custom TensorflowOutputConverter can provide more convenient data representations.
See TwitterSentimentTensorflowOutputConverter.java.
Options

The twitter-sentiment processor has the following options:
	tensorflow.expression
	How to obtain the input data from the input message. If empty it defaults to the input message payload. The headers[myHeaderName] expression to get input data from message's header using myHeaderName as a key. (Expression, default: <none>)
	tensorflow.mode
	The outbound message can store the inference result either in the payload or in a header with name outputName. The payload mode (default) stores the inference result in the outbound message payload. The inbound payload is discarded. The header mode stores the inference result in outbound message's header defined by the outputName property. The the inbound message payload is passed through to the outbound such. (OutputMode, default: <none>, possible values: payload,header)
	tensorflow.model
	The location of the pre-trained TensorFlow model file. The file, http and classpath schemas are supported. For archive locations takes the first file with '.pb' extension. Use the URI fragment parameter to specify an exact model name (e.g. https://foo/bar/model.tar.gz#frozen_inference_graph.pb) (Resource, default: <none>)
	tensorflow.model-fetch
	The TensorFlow graph model outputs. Comma separate list of TensorFlow operation names to fetch the output Tensors from. (List<String>, default: <none>)
	tensorflow.output-name
	The output data key used for the Header modes. (String, default: result)
	tensorflow.twitter.vocabulary
	The location of the word vocabulary file, used for training the model (Resource, default: <none>)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one of the folders and build it:
$./mvnw clean package
Examples

java -jar twitter-sentiment-processor.jar --tensorflow.twitter.vocabulary= --tensorflow.model= \
 --tensorflow.modelFetch= --tensorflow.mode="
And here is a sample pipeline that computes sentiments for json tweets coming from the twitterstream source and
using the pre-build minimal_graph.proto and vocab.csv:
tweets=twitterstream --access-token-secret=xxx --access-token=xxx --consumer-secret=xxx --consumer-key=xxx \
| filter --expression=#jsonPath(payload,'$.lang')=='en' \
| twitter-sentimet --vocabulary='http://dl.bintray.com/big-data/generic/vocab.csv' \
 --output-name=output/Softmax --model='http://dl.bintray.com/big-data/generic/minimal_graph.proto' \
 --model-fetch=output/Softmax \
| log
Image Recognition Processor

A processor that uses an Inception model to classify
in real-time images into different categories (e.g. labels).
Model implements a deep Convolutional Neural Network that can achieve reasonable performance on hard visual recognition tasks
- matching or exceeding human performance in some domains like image recognition.
The input of the model is an image as binary array.
The output is a JSON message in this format:
{
 "labels" : [
 {"giant panda":0.98649305}
]
}
Result contains the name of the recognized category (e.g. label) along with the confidence (e.g. confidence) that the image represents this category.
If the response-seize is set to value higher then 1, then the result will include the top response-seize probable labels. For example response-size=3 would return:
{
 "labels": [
 {"giant panda":0.98649305},
 {"badger":0.010562794},
 {"ice bear":0.001130851}
]
}
Options

The image-recognition processor has the following options:
	tensorflow.expression
	How to obtain the input data from the input message. If empty it defaults to the input message payload. The headers[myHeaderName] expression to get input data from message's header using myHeaderName as a key. (Expression, default: <none>)
	tensorflow.image.recognition.draw-labels
	When set to true it augment the input image with the predicted labels (Boolean, default: true)
	tensorflow.image.recognition.labels
	The text file containing the category names (e.g. labels) of all categories that this model is trained to recognize. Every category is on a separate line. (Resource, default: <none>)
	tensorflow.image.recognition.response-size
	Number of top K alternatives to add to the result. Only used when the responseSize > 0. (Integer, default: 1)
	tensorflow.mode
	The outbound message can store the inference result either in the payload or in a header with name outputName. The payload mode (default) stores the inference result in the outbound message payload. The inbound payload is discarded. The header mode stores the inference result in outbound message's header defined by the outputName property. The the inbound message payload is passed through to the outbound such. (OutputMode, default: <none>, possible values: payload,header)
	tensorflow.model
	The location of the pre-trained TensorFlow model file. The file, http and classpath schemas are supported. For archive locations takes the first file with '.pb' extension. Use the URI fragment parameter to specify an exact model name (e.g. https://foo/bar/model.tar.gz#frozen_inference_graph.pb) (Resource, default: <none>)
	tensorflow.model-fetch
	The TensorFlow graph model outputs. Comma separate list of TensorFlow operation names to fetch the output Tensors from. (List<String>, default: <none>)
	tensorflow.output-name
	The output data key used for the Header modes. (String, default: result)

Object Detection Processor

The new Object Detection processor provides out-of-the-box support for the TensorFlow Object Detection API. It allows for real-time localization and identification of multiple objects in a single image or image stream. The Object Detection processor uses one of the pre-trained object detection models and corresponding object labels.
If the pre-trained model is not set explicitly set then following defaults are used:
	tensorflow.modelFetch : detection_scores,detection_classes,detection_boxes,num_detections
	tensorflow.model : dl.bintray.com/big-data/generic/faster_rcnn_resnet101_coco_2018_01_28_frozen_inference_graph.pb
	tensorflow.object.detection.labels : dl.bintray.com/big-data/generic/mscoco_label_map.pbtxt

The following diagram illustrates a Spring Cloud Data Flow streaming pipeline that predicts object types from the images in real-time.
[image: scdf tensorflow object detection arch]

Processor’s input is an image byte array and the output is a JSON message in this format:
{
 "labels" : [
 {"name":"person", "confidence":0.9996774,"x1":0.0,"y1":0.3940161,"x2":0.9465165,"y2":0.5592592,"cid":1},
 {"name":"person", "confidence":0.9996604,"x1":0.047891676,"y1":0.03169123,"x2":0.941098,"y2":0.2085562,"cid":1},
 {"name":"backpack", "confidence":0.96534747,"x1":0.15588468,"y1":0.85957795,"x2":0.5091308,"y2":0.9908878,"cid":23},
 {"name":"backpack", "confidence":0.963343,"x1":0.1273736,"y1":0.57658505,"x2":0.47765,"y2":0.6986431,"cid":23}
]
}
The output format is:
	object-name:confidence - human readable name of the detected object (e.g. label) with its confidence as a float between [0-1]
	x1, y1, x2, y2 - Response also provides the bounding box of the detected objects represented as (x1, y1, x2, y2). The coordinates are relative to the size of the image size.
	cid - Classification identifier as defined in the provided labels configuration file.

Options

The object-detection processor has the following options:
	tensorflow.expression
	How to obtain the input data from the input message. If empty it defaults to the input message payload. The headers[myHeaderName] expression to get input data from message's header using myHeaderName as a key. (Expression, default: <none>)
	tensorflow.mode
	The outbound message can store the inference result either in the payload or in a header with name outputName. The payload mode (default) stores the inference result in the outbound message payload. The inbound payload is discarded. The header mode stores the inference result in outbound message's header defined by the outputName property. The the inbound message payload is passed through to the outbound such. (OutputMode, default: <none>, possible values: payload,header)
	tensorflow.model
	The location of the pre-trained TensorFlow model file. The file, http and classpath schemas are supported. For archive locations takes the first file with '.pb' extension. Use the URI fragment parameter to specify an exact model name (e.g. https://foo/bar/model.tar.gz#frozen_inference_graph.pb) (Resource, default: <none>)
	tensorflow.model-fetch
	The TensorFlow graph model outputs. Comma separate list of TensorFlow operation names to fetch the output Tensors from. (List<String>, default: <none>)
	tensorflow.object.detection.color-agnostic
	If disabled (default) the bounding box colors are selected as a function of the object class id. If enabled all bounding boxes are visualized with a single color. (Boolean, default: false)
	tensorflow.object.detection.confidence
	Probability threshold. Only objects detected with probability higher then the confidence threshold are accepted. Value is between 0 and 1. (Float, default: 0.4)
	tensorflow.object.detection.draw-bounding-box
	When set to true, the output image will be annotated with the detected object boxes (Boolean, default: true)
	tensorflow.object.detection.draw-mask
	For models with mask support enable drawing the mask of the detected objects (Boolean, default: true)
	tensorflow.object.detection.labels
	The text file containing the category names (e.g. labels) of all categories that this model is trained to recognize. Every category is on a separate line. (Resource, default: <none>)
	tensorflow.output-name
	The output data key used for the Header modes. (String, default: result)

Pose Estimation Processor

	Real-time, multi-person Pose Estimation processor for detecting human figures in images and video. Used for determining where different body parts
 are located in an image an how are they spatially relate to each other.

 Processor is based on the Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields,
 OpenPose and tf-pose-estimation.
	[image: webcamPoseEstimation]

The following diagram illustrates a Spring Cloud Data Flow streaming pipeline that predicts body postures from input images in real-time.
[image: scdf tensorflow pose estimation arch]

The Pose Estimation processor is configured with a pre-trained Tensorflow model (build with the tf-pose-estimation project).
The inference of this model produces auxiliary data structures such a heatmaps with predictions about the parts locations in the image. The post-processing required
for selecting the right body parts and grouping them into poses are implemented by the processor using greedy algorithms.
Use the tensorflow.model property to set the pre-trained Tensorflow model. Here are some options available out of the box:
	dl.bintray.com/big-data/generic/2018-30-05-mobilenet_thin_graph_opt.pb (default) - fast but less accurate
	dl.bintray.com/big-data/generic/2018-05-14-cmu-graph_opt.pb - accurate but slower

Processor’s input is an image byte array and the output is a JSON message and optionally an image with annotated body poses.
The output JSON format looks like:
[
 {
 "limbs": [{"score": 8.4396105, "from": { "type": "lShoulder", "y": 56, "x": 160 }, "to": { "type": "lEar", "y": 24, "x": 152 } },
 { "score": 10.145516, "from": { "type": "neck", "y": 56, "x": 144 }, "to": { "type": "rShoulder", "y": 56, "x": 128 } },
 { "score": 9.970467, "from": { "type": "neck", "y": 56, "x": 144 }, "to": { "type": "lShoulder", "y": 56, "x": 160 } }]
 },
 {
 "limbs": [{"score": 7.85779, "from": { "type": "neck", "y": 48, "x": 328 }, "to": { "type": "rHip", "y": 128, "x": 328 } },
 {"score": 6.8949876, "from": { "type": "neck", "y": 48, "x": 328 }, "to": { "type": "lHip", "y": 128, "x": 304 } }]
 }
]
Every entry in the array represents a single body posture found on the image. Bodies are composed of Parts connected by Limbs represented by the limbs collection.
Every Limb instance has a PAF confidence score and the from and to parts it connects. The Part instances have a type and coordinates.
	[image: [Note]]	Note
	Output image annotated with body pose skeletons
When the tensorflow.mode=header property is set the JSON metadata passed inside the output message header while the payload
contains a copy of the input image. If the tensorflow.pose.estimation.drawPoses=true is set the copied input image is
augmented with the poses described in the JSON metadata.

Options

The pose-estimation processor has the following options:
	tensorflow.expression
	How to obtain the input data from the input message. If empty it defaults to the input message payload. The headers[myHeaderName] expression to get input data from message's header using myHeaderName as a key. (Expression, default: <none>)
	tensorflow.mode
	The outbound message can store the inference result either in the payload or in a header with name outputName. The payload mode (default) stores the inference result in the outbound message payload. The inbound payload is discarded. The header mode stores the inference result in outbound message's header defined by the outputName property. The the inbound message payload is passed through to the outbound such. (OutputMode, default: <none>, possible values: payload,header)
	tensorflow.model
	The location of the pre-trained TensorFlow model file. The file, http and classpath schemas are supported. For archive locations takes the first file with '.pb' extension. Use the URI fragment parameter to specify an exact model name (e.g. https://foo/bar/model.tar.gz#frozen_inference_graph.pb) (Resource, default: <none>)
	tensorflow.model-fetch
	The TensorFlow graph model outputs. Comma separate list of TensorFlow operation names to fetch the output Tensors from. (List<String>, default: <none>)
	tensorflow.output-name
	The output data key used for the Header modes. (String, default: result)
	tensorflow.pose.estimation.body-drawing-color-schema
	When drawPoses is enabled, one can decide to draw all body poses in one color (monochrome), have every body pose drawn in an unique color (bodyInstance) or use common color schema drawing different limbs. (BodyDrawingColorSchema, default: <none>, possible values: monochrome,bodyInstance,limbType)
	tensorflow.pose.estimation.debug-visualisation-enabled
	If enabled the inference operation will produce 4 additional debug visualization of the intermediate processing stages: - PartHeatMap - Part heat map as computed by DL - PafField - PAF limb field as computed by DL - PartCandidates - Part final candidates as computed by the post-processor - LimbCandidates - Limb final candidates as computed by the post-processor Note: Do NOT enable this feature in production or in streaming mode! (Boolean, default: false)
	tensorflow.pose.estimation.debug-visualization-output-path
	Parent directory to save the debug images produced for the intermediate processing stages (String, default: ./target)
	tensorflow.pose.estimation.draw-line-width
	When drawPoses is enabled, defines the line width for drawing the limbs (Integer, default: 2)
	tensorflow.pose.estimation.draw-part-labels
	if drawPoses is enabled, drawPartLabels will show the party type ids and description. (Boolean, default: false)
	tensorflow.pose.estimation.draw-part-radius
	When drawPoses is enabled, defines the radius of the oval drawn for each part instance (Integer, default: 4)
	tensorflow.pose.estimation.draw-poses
	When set to true, the output image will be augmented with the computed person skeletons (Boolean, default: true)
	tensorflow.pose.estimation.min-body-part-count
	Minimum number of parts a body should contain. Body instances with less parts are discarded. (Integer, default: 5)
	tensorflow.pose.estimation.nms-threshold
	Only return instance detections that have part score greater or equal to this value. (Float, default: 0.15)
	tensorflow.pose.estimation.nms-window-size
	Non-maximum suppression (NMS) distance for Part instances. Two parts suppress each other if they are less than `nmsWindowSize` pixels away. (Integer, default: 4)
	tensorflow.pose.estimation.paf-count-threshold
	Minimum number of integration intervals with paf score above the stepPafScoreThreshold, to consider the parts connected. (Integer, default: 2)
	tensorflow.pose.estimation.step-paf-score-threshold
	Minimal paf score between two Parts at individual integration step, to consider the parts connected (Float, default: 0.1)
	tensorflow.pose.estimation.total-paf-score-threshold
	Minimal paf score between two parts to consider them being connected and part of the same limb (Float, default: 4.4)

Chapter 4. Sinks

Cassandra Sink

This sink application writes the content of each message it receives into Cassandra.
It expects a payload of JSON String and uses it’s properties to map to table columns.
Input

Headers:
	Content-Type: application/json

Payload:
A JSON String or byte array representing the entity (or a list of entities) to be persisted
Output

N/A
Options

The cassandra sink has the following options:
	cassandra.async
	Async mode for CassandraMessageHandler. (Boolean, default: true)
	cassandra.cluster.create-keyspace
	Flag to create (or not) keyspace on application startup. (Boolean, default: false)
	cassandra.cluster.entity-base-packages
	Base packages to scan for entities annotated with Table annotations. (String[], default: [])
	cassandra.cluster.init-script
	Resource with CQL scripts (delimited by ';') to initialize keyspace schema. (Resource, default: <none>)
	cassandra.cluster.metrics-enabled
	Enable/disable metrics collection for the created cluster. (Boolean, default: <none>)
	cassandra.cluster.skip-ssl-validation
	Flag to validate the Servers' SSL certs (Boolean, default: false)
	cassandra.consistency-level
	The consistency level for write operation. (ConsistencyLevel, default: <none>, possible values: ANY,ONE,TWO,THREE,QUORUM,ALL,LOCAL_QUORUM,EACH_QUORUM,SERIAL,LOCAL_SERIAL,LOCAL_ONE)
	cassandra.ingest-query
	Ingest Cassandra query. (String, default: <none>)
	cassandra.query-type
	QueryType for Cassandra Sink. (Type, default: <none>, possible values: INSERT,UPDATE,DELETE,STATEMENT)
	cassandra.statement-expression
	Expression in Cassandra query DSL style. (Expression, default: <none>)
	cassandra.ttl
	Time-to-live option of WriteOptions. (Integer, default: 0)
	spring.data.cassandra.cluster-name
	Name of the Cassandra cluster. (String, default: <none>)
	spring.data.cassandra.compression
	Compression supported by the Cassandra binary protocol. (Compression, default: none, possible values: `,`snappy,lz4)
	spring.data.cassandra.connect-timeout
	Socket option: connection time out. (Duration, default: <none>)
	spring.data.cassandra.consistency-level
	Queries consistency level. (ConsistencyLevel, default: <none>, possible values: ANY,ONE,TWO,THREE,QUORUM,ALL,LOCAL_QUORUM,EACH_QUORUM,SERIAL,LOCAL_SERIAL,LOCAL_ONE)
	spring.data.cassandra.contact-points
	Cluster node addresses. (List<String>, default: [localhost])
	spring.data.cassandra.fetch-size
	Queries default fetch size. (Integer, default: <none>)
	spring.data.cassandra.jmx-enabled
	Whether to enable JMX reporting. Default to false as Cassandra JMX reporting is not compatible with Dropwizard Metrics. (Boolean, default: false)
	spring.data.cassandra.keyspace-name
	Keyspace name to use. (String, default: <none>)
	spring.data.cassandra.load-balancing-policy
	Class name of the load balancing policy. The class must have a default constructor. (Class<LoadBalancingPolicy>, default: <none>)
	spring.data.cassandra.password
	Login password of the server. (String, default: <none>)
	spring.data.cassandra.port
	Port of the Cassandra server. (Integer, default: <none>)
	spring.data.cassandra.read-timeout
	Socket option: read time out. (Duration, default: <none>)
	spring.data.cassandra.reconnection-policy
	Class name of the reconnection policy. The class must have a default constructor. (Class<ReconnectionPolicy>, default: <none>)
	spring.data.cassandra.retry-policy
	Class name of the retry policy. The class must have a default constructor. (Class<RetryPolicy>, default: <none>)
	spring.data.cassandra.schema-action
	Schema action to take at startup. (String, default: none)
	spring.data.cassandra.serial-consistency-level
	Queries serial consistency level. (ConsistencyLevel, default: <none>, possible values: ANY,ONE,TWO,THREE,QUORUM,ALL,LOCAL_QUORUM,EACH_QUORUM,SERIAL,LOCAL_SERIAL,LOCAL_ONE)
	spring.data.cassandra.ssl
	Enable SSL support. (Boolean, default: false)
	spring.data.cassandra.username
	Login user of the server. (String, default: <none>)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one of the folders and build it:
$./mvnw clean package
Examples

The following example assumes a JSON payload is sent to a default destination called input, the sink parses some of its properties (id,time,customer_id,value) and persists them into a table called orders.
java -jar cassandra_sink.jar --cassandra.cluster.keyspace=test
--cassandra.ingest-query="insert into orders(id,time,customer_id, value) values (?,?,?,?)"
Counter Sink

Counter that compute multiple counters from the received messages. It leverages the Micrometer library and can use various popular TSDB to persist the counter values.
By default the Counter Sink increments the message.name counter on every received message. The message-counter-enabled allows you to disable this counter when required.
If tag expressions are provided (via the counter.tag.expression.<tagKey>=<tagValue SpEL expression> property) then the `name counter is incremented. Note that each SpEL expression can evaluate into multiple values resulting into multiple counter increments (one fore every value resolved).
If fixed tags are provided they are include in all message and expression counter increment measurements.
Counter’s implementation is based on the Micrometer library which is a Vendor-neutral application metrics facade that supports the most popular monitoring systems.
See the Micrometer documentation for the list of supported monitoring systems. Starting with Spring Boot 2.0, Micrometer is the instrumentation library powering the delivery of application metrics from Spring Boot.
All Spring Cloud Stream App Starters are configured to support two of the most popular monitoring systems, Prometheus and InfluxDB. You can declaratively select which monitoring system to use.
If you are not using Prometheus or InfluxDB, you can customise the App starters to use a different monitoring system as well as include your preferred micrometer monitoring system library in your own custom applications.
Grafana is a popular platform for building visualization dashboards.
To enable Micrometer’s Prometheus meter registry for Spring Cloud Stream application starters, set the following properties.
management.metrics.export.prometheus.enabled=true
management.endpoints.web.exposure.include=prometheus
and disable the application’s security which allows for a simple Prometheus configuration to scrape counter information by setting the following property.
spring.cloud.streamapp.security.enabled=false
To enable Micrometer’s Influx meter registry for Spring Cloud Stream application starters, set the following property.
management.metrics.export.influx.enabled=true
management.metrics.export.influx.uri={influxdb-server-url}
	[image: [Note]]	Note
	if the Data Flow Server metrics is enabled then the Counter will reuse the exiting configurations.

Following diagram illustrates Counter’s information collection and processing flow.
	[image: Counter Architecture]

Options

	counter.message-counter-enabled
	Enables counting the number of messages processed. Uses the 'message.' counter name prefix to distinct it form the expression based counter. The message counter includes the fixed tags when provided. (Boolean, default: true)
	counter.name
	The name of the counter to increment. (String, default: <none>)
	counter.name-expression
	A SpEL expression (against the incoming Message) to derive the name of the counter to increment. (Expression, default: <none>)
	counter.tag.expression
	Computes tags from SpEL expression. Single SpEL expression can produce an array of values, which in turn means distinct name/value tags. Every name/value tag will produce a separate counter increment. Tag expression format is: counter.tag.expression.[tag-name]=[SpEL expression] (Map<String, Expression>, default: <none>)
	counter.tag.fixed
	Custom tags assigned to every counter increment measurements. This is a map so the property convention fixed tags is: counter.tag.fixed.[tag-name]=[tag-value] (Map<String, String>, default: <none>)

File Sink

This module writes each message it receives to a file.
Input

Headers

N/A
Payload

	java.io.File
	java.io.InputStream
	byte[]
	String

Output

N/A (writes to the file system).
Options

The file sink has the following options:
	file.binary
	A flag to indicate whether adding a newline after the write should be suppressed. (Boolean, default: false)
	file.charset
	The charset to use when writing text content. (String, default: UTF-8)
	file.directory
	The parent directory of the target file. (String, default: <none>)
	file.directory-expression
	The expression to evaluate for the parent directory of the target file. (Expression, default: <none>)
	file.mode
	The FileExistsMode to use if the target file already exists. (FileExistsMode, default: <none>, possible values: APPEND,APPEND_NO_FLUSH,FAIL,IGNORE,REPLACE,REPLACE_IF_MODIFIED)
	file.name
	The name of the target file. (String, default: file-sink)
	file.name-expression
	The expression to evaluate for the name of the target file. (String, default: <none>)
	file.suffix
	The suffix to append to file name. (String, default: <empty string>)

Build

$./mvnw clean install -PgenerateApps
$ cd apps

You can find the corresponding binder based projects here. You can then cd into one of the folders and build it:

$./mvnw clean package
Examples

java -jar file_sink.jar --file.directory=/tmp/bar
FTP Sink

FTP sink is a simple option to push files to an FTP server from incoming messages.
It uses an ftp-outbound-adapter, therefore incoming messages can be either a java.io.File object, a String (content of the file)
or an array of bytes (file content as well).
To use this sink, you need a username and a password to login.
	[image: [Note]]	Note
	By default Spring Integration will use o.s.i.file.DefaultFileNameGenerator if none is specified. DefaultFileNameGenerator will determine the file name
based on the value of the file_name header (if it exists) in the MessageHeaders, or if the payload of the Message is already a java.io.File, then it will
use the original name of that file.

Input

Headers

	file_name (See note above)

Payload

	java.io.File
	java.io.InputStream
	byte[]
	String

Output

N/A (writes to the FTP server).
Options

The ftp sink has the following options:
	ftp.auto-create-dir
	Whether or not to create the remote directory. (Boolean, default: true)
	ftp.factory.cache-sessions
	<documentation missing> (Boolean, default: <none>)
	ftp.factory.client-mode
	The client mode to use for the FTP session. (ClientMode, default: <none>, possible values: ACTIVE,PASSIVE)
	ftp.factory.host
	<documentation missing> (String, default: <none>)
	ftp.factory.password
	<documentation missing> (String, default: <none>)
	ftp.factory.port
	The port of the server. (Integer, default: 21)
	ftp.factory.username
	<documentation missing> (String, default: <none>)
	ftp.filename-expression
	A SpEL expression to generate the remote file name. (Expression, default: <none>)
	ftp.mode
	Action to take if the remote file already exists. (FileExistsMode, default: <none>, possible values: APPEND,APPEND_NO_FLUSH,FAIL,IGNORE,REPLACE,REPLACE_IF_MODIFIED)
	ftp.remote-dir
	The remote FTP directory. (String, default: /)
	ftp.remote-file-separator
	The remote file separator. (String, default: /)
	ftp.temporary-remote-dir
	A temporary directory where the file will be written if '#isUseTemporaryFilename()'
is true. (String, default: /)
	ftp.tmp-file-suffix
	The suffix to use while the transfer is in progress. (String, default: .tmp)
	ftp.use-temporary-filename
	Whether or not to write to a temporary file and rename. (Boolean, default: true)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one one of the folders and build it:
$./mvnw clean package
Examples

java -jar ftp_sink.jar --ftp.remote-dir=bar --ftp.factory.host=ftpserver \
 --ftp.factory.username=user --ftp.factory.password=pw
Gemfire Sink

The Gemfire sink allows one to write message payloads to a Gemfire server.
To enable SSL communication between Geode Sink and the Geode cluster you need to provide the URIs of the
Keystore and Truststore files using the gemfire.security.ssl.keystore-uri and gemfire.security.ssl.truststore-uri properties.
(If a single file is used for both stores then point both URIs to it).
Input

Headers

	content-type: text/plain

Payload

	String

Headers

	content-type: application/x-java-serialized-object

Payload

	java.io.Serializable

Output

N/A
Options

The gemfire sink has the following options:
	gemfire.json
	Indicates if the Gemfire region stores json objects as native Gemfire PdxInstance (Boolean, default: false)
	gemfire.key-expression
	SpEL expression to use as a cache key (String, default: <none>)
	gemfire.pool.connect-type
	Specifies connection type: 'server' or 'locator'. (ConnectType, default: <none>, possible values: locator,server)
	gemfire.pool.host-addresses
	Specifies one or more Gemfire locator or server addresses formatted as [host]:[port]. (InetSocketAddress[], default: <none>)
	gemfire.pool.subscription-enabled
	Set to true to enable subscriptions for the client pool. Required to sync updates to the client cache. (Boolean, default: false)
	gemfire.region.region-name
	The region name. (String, default: <none>)
	gemfire.security.password
	The cache password. (String, default: <none>)
	gemfire.security.ssl.ciphers
	Configures the SSL ciphers used for secure Socket connections as an array of valid cipher names. (String, default: any)
	gemfire.security.ssl.keystore-type
	Identifies the type of Keystore used for SSL communications (e.g. JKS, PKCS11, etc.). (String, default: JKS)
	gemfire.security.ssl.keystore-uri
	Location of the pre-created Keystore URI to be used for connecting to the Geode cluster. (Resource, default: <none>)
	gemfire.security.ssl.ssl-keystore-password
	Password for accessing the keys truststore (String, default: <none>)
	gemfire.security.ssl.ssl-truststore-password
	Password for accessing the trust store. (String, default: <none>)
	gemfire.security.ssl.truststore-type
	Identifies the type of truststore used for SSL communications (e.g. JKS, PKCS11, etc.). (String, default: JKS)
	gemfire.security.ssl.truststore-uri
	Location of the pre-created truststore URI to be used for connecting to the Geode cluster. (Resource, default: <none>)
	gemfire.security.ssl.user-home-directory
	Local directory to cache the truststore and keystore files downloaded form the truststoreUri and keystoreUri locations. (String, default: user.home)
	gemfire.security.username
	The cache username. (String, default: <none>)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one of the folders and build it:
$./mvnw clean package
Examples

java -jar gemfire-sink.jar --gemfire.keyExpression=
Gpfdist Sink

A sink module that route messages into GPDB/HAWQ segments via
gpfdist protocol. Internally, this sink creates a custom http listener that supports
the gpfdist protcol and schedules a task that orchestrates a gploadd session in the
same way it is done natively in Greenplum.
No data is written into temporary files and all data is kept in stream buffers waiting
to get inserted into Greenplum DB or HAWQ. If there are no existing load sessions from Greenplum,
the sink will block until such sessions are established.
Input

Headers:

	Content-Type: text/plain

Payload:

	String

Output

N/A
Options

The gpfdist sink has the following options:
	gpfdist.batch-count
	Number of windowed batch each segment takest (int, default: 100) (Integer, default: 100)
	gpfdist.batch-period
	Time in seconds for each load operation to sleep in between operations (int, default: 10) (Integer, default: 10)
	gpfdist.batch-timeout
	Timeout in seconds for segment inactivity. (Integer, default: 4) (Integer, default: 4)
	gpfdist.column-delimiter
	Data record column delimiter. *(Character, default: no default) (Character, default: <none>)
	gpfdist.control-file
	Path to yaml control file (String, no default) (Resource, default: <none>)
	gpfdist.db-host
	Database host (String, default: localhost) (String, default: localhost)
	gpfdist.db-name
	Database name (String, default: gpadmin) (String, default: gpadmin)
	gpfdist.db-password
	Database password (String, default: gpadmin) (String, default: gpadmin)
	gpfdist.db-port
	Database port (int, default: 5432) (Integer, default: 5432)
	gpfdist.db-user
	Database user (String, default: gpadmin) (String, default: gpadmin)
	gpfdist.delimiter
	Data line delimiter (String, default: newline character) (String, default:
)
	gpfdist.flush-count
	Flush item count (int, default: 100) (Integer, default: 100)
	gpfdist.flush-time
	Flush item time (int, default: 2) (Integer, default: 2)
	gpfdist.gpfdist-port
	Port of gpfdist server. Default port `0` indicates that a random port is chosen. (Integer, default: 0) (Integer, default: 0)
	gpfdist.log-errors
	Enable log errors. (Boolean, default: false) (Boolean, default: false)
	gpfdist.match-columns
	Match columns with update (String, no default) (String, default: <none>)
	gpfdist.mode
	Mode, either insert or update (String, no default) (String, default: <none>)
	gpfdist.null-string
	Null string definition. (String, default: ``) (String, default: <none>)
	gpfdist.rate-interval
	Enable transfer rate interval (int, default: 0) (Integer, default: 0)
	gpfdist.segment-reject-limit
	Error reject limit. (String, default: ``) (String, default: <none>)
	gpfdist.segment-reject-type
	Error reject type, either `rows` or `percent`. (String, default: `rows`) (SegmentRejectType, default: <none>, possible values: ROWS,PERCENT)
	gpfdist.sql-after
	Sql to run after load (String, no default) (String, default: <none>)
	gpfdist.sql-before
	Sql to run before load (String, no default) (String, default: <none>)
	gpfdist.table
	Target database table (String, no default) (String, default: <none>)
	gpfdist.update-columns
	Update columns with update (String, no default) (String, default: <none>)
	spring.net.hostdiscovery.loopback
	The new loopback flag. Default value is FALSE (Boolean, default: false)
	spring.net.hostdiscovery.match-interface
	The new match interface regex pattern. Default value is is empty (String, default: <none>)
	spring.net.hostdiscovery.match-ipv4
	Used to match ip address from a network using a cidr notation (String, default: <none>)
	spring.net.hostdiscovery.point-to-point
	The new point to point flag. Default value is FALSE (Boolean, default: false)
	spring.net.hostdiscovery.prefer-interface
	The new preferred interface list (List<String>, default: <none>)

Implementation Notes

Within a gpfdist sink we have a Reactor based stream where data is published from the incoming SI channel.
This channel receives data from the Message Bus. The Reactor stream is then connected to Netty based
http channel adapters so that when a new http connection is established, the Reactor stream is flushed and balanced among
existing http clients. When Greenplum does a load from an external table, each segment will initiate
a http connection and start loading data. The net effect is that incoming data is automatically spread
among the Greenplum segments.
Detailed Option Descriptions

The gpfdist sink supports the following configuration properties:
	table
	Database table to work with. (String, default: ``, required)
This option denotes a table where data will be inserted or updated.
Also external table structure will be derived from structure of this
table.
Currently table is only way to define a structure of an external
table. Effectively it will replace other_table in below clause
segment.
CREATE READABLE EXTERNAL TABLE table_name LIKE other_table

	mode
	Gpfdist mode, either `insert` or `update`. (String, default: insert)
Currently only insert and update gpfdist mode is supported. Mode
merge familiar from a native gpfdist loader is not yet supported.
For mode update options matchColumns and updateColumns are
required.

	columnDelimiter
	Data record column delimiter. (Character, default: ``)
Defines used delimiter character in below clause segment which would
be part of a FORMAT 'TEXT' or FORMAT 'CSV' sections.
[DELIMITER AS 'delimiter']

	segmentRejectLimit
	Error reject limit. (String, default: ``)
Defines a count value in a below clause segment.
[[LOG ERRORS] SEGMENT REJECT LIMIT count
 [ROWS | PERCENT]]
As a conveniance this reject limit also recognizes a percentage format
2% and if used, segmentRejectType is automatically set to
percent.

	segmentRejectType
	Error reject type, either `rows` or `percent`. (String, default: ``)
Defines ROWS or PERCENT in below clause segment.
[[LOG ERRORS] SEGMENT REJECT LIMIT count
 [ROWS | PERCENT]]

	logErrors
	Enable or disable log errors. (Boolean, default: false)
As error logging is optional with SEGMENT REJECT LIMIT, it’s only used
if both segmentRejectLimit and segmentRejectType are set. Enables
the error log in below clause segment.
[[LOG ERRORS] SEGMENT REJECT LIMIT count
 [ROWS | PERCENT]]

	nullString
	Null string definition. (String, default: ``)
Defines used null string in below clause segment which would
be part of a FORMAT 'TEXT' or FORMAT 'CSV' sections.
[NULL AS 'null string']

	delimiter
	Data record delimiter for incoming messages. (String, default: \n)
On default a delimiter in this option will be added as a postfix to
every message sent into this sink. Currently NEWLINE is not a
supported config option and line termination for data is coming from a
default functionality.
	 	If not specified, a Greenplum Database segment will detect the
newline type by looking at the first row of data it receives and
using the first newline type encountered.
	
	 	--
External Table Docs

	matchColumns
	Comma delimited list of columns to match. (String, default: ``)
	[image: [Note]]	Note
	See more from examples below.

	updateColumns
	Comma delimited list of columns to update. (String, default: ``)
	[image: [Note]]	Note
	See more from examples below.

	sqlBefore
	Sql clause to run before each load operation. (String, default: ``)
	sqlAfter
	Sql clause to run after each load operation. (String, default: ``)
	rateInterval
	Debug rate of data transfer. (Integer, default: 0)
If set to non zero, sink will log a rate of messages passing throught
a sink after number of messages denoted by this setting has been
processed. Value 0 means that this rate calculation and logging is
disabled.

	flushCount
	Max collected size per windowed data. (Integer, default: 100)
	[image: [Note]]	Note
	For more info on flush and batch settings, see above.

How Data Is Sent Into Segments

There are few important concepts involving how data passes into a
sink, through it and finally lands into a database.
	Sink has its normal message handler for incoming data from a source
module, gpfdist protocol listener based on netty where segments
connect to and in between those two a reactor based streams
controlling load balancing into different segment connections.
	Incoming data is first sent into a reactor which first constructs a
windows. This window is then released into a downstream when it gets
full(flushTime) or timeouts(flushTime) if window doesn’t get full.
One window is then ready to get send into a segment.
	Segments which connects to this stream are now able to see a stream
of window data, not stream of individual messages. We can also call
this as a stream of batches.
	When segment makes a connection to a protocol listener it subscribes
itself into this stream and takes count of batches denoted by
batchCount and completes a stream if it got enough batches or if
batchTimeout occurred due to inactivity.
	It doesn’t matter how many simultaneous connections there are from
a database cluster at any given time as reactor will load balance
batches with all subscribers.
	Database cluster will initiate this loading session when select is
done from an external table which will point to this sink. These
loading operations are run in a background in a loop one after
another. Option batchPeriod is then used as a sleep time in
between these load sessions.

Lets take a closer look how options flushCount, flushTime,
batchCount, batchTimeout and batchPeriod work.
As in a highest level where incoming data into a sink is windowed,
flushCount and flushTime controls when a batch of messages are
sent into a downstream. If there are a lot of simultaneous segment
connections, flushing less will keep more segments inactive as there
is more demand for batches than what flushing will produce.
When existing segment connection is active and it has subscribed
itself with a stream of batches, data will keep flowing until either
batchCount is met or batchTimeout occurs due to inactivity of data
from an upstream. Higher a batchCount is more data each segment
will read. Higher a batchTimeout is more time segment will wait in
case there is more data to come.
As gpfdist load operations are done in a loop, batchPeriod simply
controls not to run things in a buzy loop. Buzy loop would be ok if
there is a constant stream of data coming in but if incoming data is
more like bursts then buzy loop would be unnecessary.
	[image: [Note]]	Note
	Data loaded via gpfdist will not become visible in a database until
whole distributed loading session have finished successfully.

Reactor is also handling backpressure meaning if existing load
operations will not produce enought demand for data, eventually
message passing into a sink will block. This happens when Reactor’s
internal ring buffer(size of 32 items) gets full. Flow of data through
sink really happens when data is pulled from it by segments.
Example Usage

In this first example we’re just creating a simple stream which
inserts data from a time source. Let’s create a table with two
text columns.
gpadmin=# create table ticktock (date text, time text);
Create a simple stream gpstream.
dataflow:>stream create --name gpstream1 --definition "time | gpfdist
--dbHost=mdw --table=ticktock --batchTime=1 --batchPeriod=1
--flushCount=2 --flushTime=2 --columnDelimiter=' '" --deploy
Let it run and see results from a database.
gpadmin=# select count(*) from ticktock;
 count

 14
(1 row)
In previous example we did a simple inserts into a table. Let’s see
how we can update data in a table. Create a simple table httpdata with
three text columns and insert some data.
gpadmin=# create table httpdata (col1 text, col2 text, col3 text);
gpadmin=# insert into httpdata values ('DATA1', 'DATA', 'DATA');
gpadmin=# insert into httpdata values ('DATA2', 'DATA', 'DATA');
gpadmin=# insert into httpdata values ('DATA3', 'DATA', 'DATA');
Now table looks like this.
gpadmin=# select * from httpdata;
 col1 | col2 | col3
-------+------+------
 DATA3 | DATA | DATA
 DATA2 | DATA | DATA
 DATA1 | DATA | DATA
(3 rows)
Let’s create a stream which will update table httpdata by matching a
column col1 and updates columns col2 and col3.
dataflow:>stream create --name gpfdiststream2 --definition "http
--server.port=8081|gpfdist --mode=update --table=httpdata
--dbHost=mdw --columnDelimiter=',' --matchColumns=col1
--updateColumns=col2,col3" --deploy
Post some data into a stream which will be passed into a gpfdist sink
via http source.
curl --data "DATA1,DATA1,DATA1" -H "Content-Type:text/plain" http://localhost:8081/
If you query table again, you’ll see that row for DATA1 has been
updated.
gpadmin=# select * from httpdata;
 col1 | col2 | col3
-------+-------+-------
 DATA3 | DATA | DATA
 DATA2 | DATA | DATA
 DATA1 | DATA1 | DATA1
(3 rows)
Tuning Transfer Rate

Default values for options flushCount, flushTime, batchCount,
batchTimeout and batchPeriod are relatively conservative and needs
to be tuned for every use case for optimal performance. Order to make
a decision on how to tune sink behaviour to suit your needs few things
needs to be considered.
	What is an average size of messages ingested by a sink.
	How fast you want data to become visible in a database.
	Is incoming data a constant flow or a bursts of data.

Everything what flows throught a sink is kept in-memory and because
sink is handling backpressure, memory consumption is relatively low.
However because sink cannot predict what is an average size of
an incoming data and this data is anyway windowed later in a
downstream you should not allow window size to become too large if
average data size is large as every batch of data is kept in memory.
Generally speaking if you have a lot of segments in a load operation,
it’s adviced to keep flushed window size relatively small which allows
more segments to stay active. This however also depends on how much
data is flowing in into a sink itself.
Longer a load session for each segment is active higher the overall
transfer rate is going to be. Option batchCount naturally controls
this. However option batchTimeout then really controls how fast each
segment will complete a stream due to inactivity from upstream and to
step away from a loading session to allow distributes session to
finish and data become visible in a database.
Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here. You can then cd into one one of the folders and
build it:
$./mvnw clean package
Examples

See above.
HDFS Sink

This module writes each message it receives to HDFS.
Input

Headers

Payload

Any
Output

N/A
Options

The hdfs sink has the following options:
	hdfs.close-timeout
	Timeout in ms, regardless of activity, after which file will be automatically closed. (Long, default: 0)
	hdfs.codec
	Compression codec alias name (gzip, snappy, bzip2, lzo, or slzo). (String, default: <none>)
	hdfs.directory
	Base path to write files to. (String, default: <none>)
	hdfs.enable-sync
	Whether writer will sync to datanode when flush is called, setting this to 'true' could impact throughput. (Boolean, default: false)
	hdfs.file-extension
	The base filename extension to use for the created files. (String, default: txt)
	hdfs.file-name
	The base filename to use for the created files. (String, default: <none>)
	hdfs.file-open-attempts
	Maximum number of file open attempts to find a path. (Integer, default: 10)
	hdfs.file-uuid
	Whether file name should contain uuid. (Boolean, default: false)
	hdfs.flush-timeout
	Timeout in ms, regardless of activity, after which data written to file will be flushed. (Long, default: 0)
	hdfs.fs-uri
	URL for HDFS Namenode. (String, default: <none>)
	hdfs.idle-timeout
	Inactivity timeout in ms after which file will be automatically closed. (Long, default: 0)
	hdfs.in-use-prefix
	Prefix for files currently being written. (String, default: <none>)
	hdfs.in-use-suffix
	Suffix for files currently being written. (String, default: <none>)
	hdfs.overwrite
	Whether writer is allowed to overwrite files in Hadoop FileSystem. (Boolean, default: false)
	hdfs.partition-path
	A SpEL expression defining the partition path. (String, default: <none>)
	hdfs.rollover
	Threshold in bytes when file will be automatically rolled over. (Integer, default: 1000000000)

	[image: [Note]]	Note
	This module can have it’s runtime dependencies provided during startup if you would like to use a Hadoop distribution other than the default one.

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one one of the folders and build it:
$./mvnw clean package
Examples

java -jar hdfs-sink.jar --fsUri
Jdbc Sink

A module that writes its incoming payload to an RDBMS using JDBC.
Input

Headers

Payload

	Any

Column expression will be evaluated against the message and the expression will usually be compatible with only one type (such as a Map or bean etc.)
Output

N/A
Options

The jdbc sink has the following options:
	jdbc.columns
	The comma separated colon-based pairs of column names and SpEL expressions for values to insert/update.
Names are used at initialization time to issue the DDL. (String, default: payload:payload.toString())
	jdbc.initialize
	'true', 'false' or the location of a custom initialization script for the table. (String, default: false)
	jdbc.table-name
	The name of the table to write into. (String, default: messages)
	jdbc.batch-size
	Threshold in number of messages when data will be flushed to database table. (Integer, default: 1)
	jdbc.idle-timeout
	Idle timeout in milliseconds when data is automatically flushed to database table. (Long, default: -1)
	spring.datasource.data
	Data (DML) script resource references. (List<String>, default: <none>)
	spring.datasource.driver-class-name
	Fully qualified name of the JDBC driver. Auto-detected based on the URL by default. (String, default: <none>)
	spring.datasource.initialization-mode
	Initialize the datasource using available DDL and DML scripts. (DataSourceInitializationMode, default: embedded, possible values: ALWAYS,EMBEDDED,NEVER)
	spring.datasource.password
	Login password of the database. (String, default: <none>)
	spring.datasource.schema
	Schema (DDL) script resource references. (List<String>, default: <none>)
	spring.datasource.url
	JDBC url of the database. (String, default: <none>)
	spring.datasource.username
	Login username of the database. (String, default: <none>)

The jdbc.columns property represents pairs of COLUMN_NAME[:EXPRESSION_FOR_VALUE] where EXPRESSION_FOR_VALUE (together with the colon) is optional.
In this case the value is evaluated via generated expression like payload.COLUMN_NAME, so this way we have a direct mapping from object properties to the table column.
For example we have a JSON payload like:
{
 "name": "My Name"
 "address": {
 "city": "Big City",
 "street": "Narrow Alley"
 }
}
So, we can insert it into the table with name, city and street structure using the configuration:
--jdbc.columns=name,city:address.city,street:address.street
This sink supports batch inserts, as far as supported by the underlying JDBC driver.
Batch inserts are configured via the batch-size and idle-timeout properties:
Incoming messages are aggregated until batch-size messages are present, then inserted as a batch.
If idle-timeout milliseconds pass with no new messages, the aggregated batch is inserted even if it is smaller than batch-size, capping maximum latency.
	[image: [Note]]	Note
	The module also uses Spring Boot’s DataSource support for configuring the database connection, so properties like spring.datasource.url etc. apply.

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one one of the folders and build it:
$./mvnw clean package
Examples

java -jar jdbc-sink.jar --jdbc.tableName=names --jdbc.columns=name --spring.datasource.driver-class-name=org.mariadb.jdbc.Driver \
--spring.datasource.url='jdbc:mysql://localhost:3306/test
Log Sink

The log sink uses the application logger to output the data for inspection.
Please understand that log sink uses type-less handler, which affects how the actual logging will be performed.
This means that if the content-type is textual, then raw payload bytes will be converted to String, otherwise raw bytes will be logged.
Please see more info in the user-guide.
Input

Headers

Payload

Any
Output

N/A
Options

The log sink has the following options:
	log.expression
	A SpEL expression (against the incoming message) to evaluate as the logged message. (String, default: payload)
	log.level
	The level at which to log messages. (Level, default: <none>, possible values: FATAL,ERROR,WARN,INFO,DEBUG,TRACE)
	log.name
	The name of the logger to use. (String, default: <none>)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one one of the folders and build it:
$./mvnw clean package
Examples

java -jar log-sink.jar
RabbitMQ Sink

This module sends messages to RabbitMQ.
Input

Headers

	content-type: text/plain

Payload

	String

Headers

	content-type: application/octet-stream

Payload

	byte[]

Headers

	content-type: application/x-java-serialized-object

Payload

	java.io.Serializable

Note: With converterBeanName = jsonConverter any object that can be converted to JSON by Jackson (content type sent to rabbit will be application/json with type information in other headers.
With converterBeanName set to something else, payload will be any object that the converter can handle.
Output

N/A
Options

The rabbit sink has the following options:
(See the Spring Boot documentation for RabbitMQ connection properties)
	rabbit.converter-bean-name
	The bean name for a custom message converter; if omitted, a SimpleMessageConverter is used.
If 'jsonConverter', a Jackson2JsonMessageConverter bean will be created for you. (String, default: <none>)
	rabbit.exchange
	Exchange name - overridden by exchangeNameExpression, if supplied. (String, default: <empty string>)
	rabbit.exchange-expression
	A SpEL expression that evaluates to an exchange name. (Expression, default: <none>)
	rabbit.mapped-request-headers
	Headers that will be mapped. (String[], default: [*])
	rabbit.own-connection
	When true, use a separate connection based on the boot properties. (Boolean, default: false)
	rabbit.persistent-delivery-mode
	Default delivery mode when 'amqp_deliveryMode' header is not present,
true for PERSISTENT. (Boolean, default: false)
	rabbit.routing-key
	Routing key - overridden by routingKeyExpression, if supplied. (String, default: <none>)
	rabbit.routing-key-expression
	A SpEL expression that evaluates to a routing key. (Expression, default: <none>)
	spring.rabbitmq.addresses
	Comma-separated list of addresses to which the client should connect. (String, default: <none>)
	spring.rabbitmq.connection-timeout
	Connection timeout. Set it to zero to wait forever. (Duration, default: <none>)
	spring.rabbitmq.host
	RabbitMQ host. (String, default: localhost)
	spring.rabbitmq.password
	Login to authenticate against the broker. (String, default: guest)
	spring.rabbitmq.port
	RabbitMQ port. (Integer, default: 5672)
	spring.rabbitmq.publisher-confirms
	Whether to enable publisher confirms. (Boolean, default: false)
	spring.rabbitmq.publisher-returns
	Whether to enable publisher returns. (Boolean, default: false)
	spring.rabbitmq.requested-heartbeat
	Requested heartbeat timeout; zero for none. If a duration suffix is not specified,
seconds will be used. (Duration, default: <none>)
	spring.rabbitmq.username
	Login user to authenticate to the broker. (String, default: guest)
	spring.rabbitmq.virtual-host
	Virtual host to use when connecting to the broker. (String, default: <none>)

	[image: [Note]]	Note
	By default, the message converter is a SimpleMessageConverter which handles byte[], String and
java.io.Serializable.
A well-known bean name jsonConverter will configure a Jackson2JsonMessageConverter instead.
In addition, a custom converter bean can be added to the context and referenced by the converterBeanName property.

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one of the folders and build it:
$./mvnw clean package
Examples

java -jar rabbit-sink.jar --rabbit.routingKey=
java -jar rabbit-sink.jar --rabbit.routingKeyExpression=
MongoDB Sink

This sink application ingest incoming data into MongoDB.
This application is fully based on the MongoDataAutoConfiguration, so refer to the Spring Boot MongoDB Support for more information.
Input

Headers

Payload

	Any POJO
	String
	byte[]

Output

N/A
Options

The mongodb sink has the following options:
	mongodb.collection
	The MongoDB collection to store data (String, default: <none>)
	mongodb.collection-expression
	The SpEL expression to evaluate MongoDB collection (Expression, default: <none>)
	spring.data.mongodb.authentication-database
	Authentication database name. (String, default: <none>)
	spring.data.mongodb.database
	Database name. (String, default: <none>)
	spring.data.mongodb.field-naming-strategy
	Fully qualified name of the FieldNamingStrategy to use. (Class<?>, default: <none>)
	spring.data.mongodb.grid-fs-database
	GridFS database name. (String, default: <none>)
	spring.data.mongodb.host
	Mongo server host. Cannot be set with URI. (String, default: <none>)
	spring.data.mongodb.password
	Login password of the mongo server. Cannot be set with URI. (Character[], default: <none>)
	spring.data.mongodb.port
	Mongo server port. Cannot be set with URI. (Integer, default: <none>)
	spring.data.mongodb.uri
	Mongo database URI. Cannot be set with host, port and credentials. (String, default: mongodb://localhost/test)
	spring.data.mongodb.username
	Login user of the mongo server. Cannot be set with URI. (String, default: <none>)

Also see the Spring Boot Documentation for additional MongoProperties properties.
Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one of the folders and build it:
$./mvnw clean package
Examples

java -jar mongodb-sink.jar --mongodb.collection=
java -jar mongodb-sink.jar --mongodb.collectionExpression=
MQTT Sink

This module sends messages to MQTT.
Input

Headers:

Payload:

	byte[]
	String

Output

N/A
Options

The mqtt sink has the following options:
	mqtt.async
	whether or not to use async sends (Boolean, default: false)
	mqtt.charset
	the charset used to convert a String payload to byte[] (String, default: UTF-8)
	mqtt.clean-session
	whether the client and server should remember state across restarts and reconnects (Boolean, default: true)
	mqtt.client-id
	identifies the client (String, default: stream.client.id.sink)
	mqtt.connection-timeout
	the connection timeout in seconds (Integer, default: 30)
	mqtt.keep-alive-interval
	the ping interval in seconds (Integer, default: 60)
	mqtt.password
	the password to use when connecting to the broker (String, default: guest)
	mqtt.persistence
	'memory' or 'file' (String, default: memory)
	mqtt.persistence-directory
	Persistence directory (String, default: /tmp/paho)
	mqtt.qos
	the quality of service to use (Integer, default: 1)
	mqtt.retained
	whether to set the 'retained' flag (Boolean, default: false)
	mqtt.topic
	the topic to which the sink will publish (String, default: stream.mqtt)
	mqtt.url
	location of the mqtt broker(s) (comma-delimited list) (String[], default: [tcp://localhost:1883])
	mqtt.username
	the username to use when connecting to the broker (String, default: guest)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here. You can then cd into one one of the folders and build it:
$./mvnw clean package
Examples

java -jar mqtt-sink.jar --mqtt.clientid= --mqtt.topic=
Pgcopy Sink

A module that writes its incoming payload to an RDBMS using the PostgreSQL COPY command.
Input

Headers

Payload

	Any

Column expression will be evaluated against the message and the expression will usually be compatible with only one type (such as a Map or bean etc.)
Output

N/A
Options

The jdbc sink has the following options:
	pgcopy.batch-size
	Threshold in number of messages when data will be flushed to database table. (Integer, default: 10000)
	pgcopy.columns
	The names of the columns that shall receive data.
Also used at initialization time to issue the DDL. (List<String>, default: payload)
	pgcopy.delimiter
	Specifies the character that separates columns within each row (line) of the file. The default is a tab character
in text format, a comma in CSV format. This must be a single one-byte character. Using an escaped value like '\t'
is allowed. (String, default: <none>)
	pgcopy.error-table
	The name of the error table used for writing rows causing errors. The error table should have three columns
named "table_name", "error_message" and "payload" large enough to hold potential data values.
You can use the following DDL to create this table:
 'CREATE TABLE ERRORS (TABLE_NAME VARCHAR(255), ERROR_MESSAGE TEXT,PAYLOAD TEXT)' (String, default: <none>)
	pgcopy.escape
	Specifies the character that should appear before a data character that matches the QUOTE value. The default is
the same as the QUOTE value (so that the quoting character is doubled if it appears in the data). This must be
a single one-byte character. This option is allowed only when using CSV format. (Character, default: <none>)
	pgcopy.format
	Format to use for the copy command. (Format, default: <none>, possible values: TEXT,CSV)
	pgcopy.idle-timeout
	Idle timeout in milliseconds when data is automatically flushed to database table. (Long, default: -1)
	pgcopy.initialize
	'true', 'false' or the location of a custom initialization script for the table. (String, default: false)
	pgcopy.null-string
	Specifies the string that represents a null value. The default is \N (backslash-N) in text format, and an
unquoted empty string in CSV format. (String, default: <none>)
	pgcopy.quote
	Specifies the quoting character to be used when a data value is quoted. The default is double-quote. This must
be a single one-byte character. This option is allowed only when using CSV format. (Character, default: <none>)
	pgcopy.table-name
	The name of the table to write into. (String, default: <none>)
	spring.datasource.driver-class-name
	Fully qualified name of the JDBC driver. Auto-detected based on the URL by default. (String, default: <none>)
	spring.datasource.password
	Login password of the database. (String, default: <none>)
	spring.datasource.url
	JDBC url of the database. (String, default: <none>)
	spring.datasource.username
	Login username of the database. (String, default: <none>)

	[image: [Note]]	Note
	The module also uses Spring Boot’s DataSource support for configuring the database connection, so properties like spring.datasource.url etc. apply.

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one one of the folders and build it:
$./mvnw clean package
For integration tests to run, start a PostgreSQL database on localhost:
 docker run -e POSTGRES_PASSWORD=spring -e POSTGRES_DB=test -p 5432:5432 -d postgres:latest
Examples

java -jar pgcopy-sink.jar --tableName=names --columns=name --spring.datasource.driver-class-name=org.mariadb.jdbc.Driver \
--spring.datasource.url='jdbc:mysql://localhost:3306/test
Redis Sink

This module sends messages to Redis store.
Input

Headers

	content-type: text/plain

Payload

	String

Headers

	content-type: application/octet-stream

Payload

	byte[]

Output

N/A
Options

The redis sink has the following options:
	redis.key
	A literal key name to use when storing to a key. (String, default: <none>)
	redis.key-expression
	A SpEL expression to use for storing to a key. (Expression, default: <none>)
	redis.queue
	A literal queue name to use when storing in a queue. (String, default: <none>)
	redis.queue-expression
	A SpEL expression to use for queue. (Expression, default: <none>)
	redis.topic
	A literal topic name to use when publishing to a topic. (String, default: <none>)
	redis.topic-expression
	A SpEL expression to use for topic. (Expression, default: <none>)
	spring.redis.database
	Database index used by the connection factory. (Integer, default: 0)
	spring.redis.host
	Redis server host. (String, default: localhost)
	spring.redis.jedis.pool.max-active
	Maximum number of connections that can be allocated by the pool at a given time. Use a negative value for no limit. (Integer, default: 8)
	spring.redis.jedis.pool.max-idle
	Maximum number of "idle" connections in the pool. Use a negative value to indicate an unlimited number of idle connections. (Integer, default: 8)
	spring.redis.jedis.pool.max-wait
	Maximum amount of time a connection allocation should block before throwing an exception when the pool is exhausted. Use a negative value to block indefinitely. (Duration, default: -1ms)
	spring.redis.jedis.pool.min-idle
	Target for the minimum number of idle connections to maintain in the pool. This setting only has an effect if it is positive. (Integer, default: 0)
	spring.redis.lettuce.pool.max-active
	Maximum number of connections that can be allocated by the pool at a given time. Use a negative value for no limit. (Integer, default: 8)
	spring.redis.lettuce.pool.max-idle
	Maximum number of "idle" connections in the pool. Use a negative value to indicate an unlimited number of idle connections. (Integer, default: 8)
	spring.redis.lettuce.pool.max-wait
	Maximum amount of time a connection allocation should block before throwing an exception when the pool is exhausted. Use a negative value to block indefinitely. (Duration, default: -1ms)
	spring.redis.lettuce.pool.min-idle
	Target for the minimum number of idle connections to maintain in the pool. This setting only has an effect if it is positive. (Integer, default: 0)
	spring.redis.password
	Login password of the redis server. (String, default: <none>)
	spring.redis.port
	Redis server port. (Integer, default: 6379)
	spring.redis.sentinel.master
	Name of the Redis server. (String, default: <none>)
	spring.redis.sentinel.nodes
	Comma-separated list of "host:port" pairs. (List<String>, default: <none>)
	spring.redis.ssl
	Whether to enable SSL support. (Boolean, default: false)
	spring.redis.timeout
	Connection timeout. (Duration, default: <none>)
	spring.redis.url
	Connection URL. Overrides host, port, and password. User is ignored. Example: redis://user:password@example.com:6379 (String, default: <none>)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one of the folders and build it:
$./mvnw clean package
Examples

java -jar redis-pubsub-sink.jar --redis.queue=
java -jar redis-pubsub-sink.jar --redis.queueExpression=
java -jar redis-pubsub-sink.jar --redis.key=
java -jar redis-pubsub-sink.jar --redis.keyExpression=
java -jar redis-pubsub-sink.jar --redis.topic=
java -jar redis-pubsub-sink.jar --redis.topicExpression=
Router Sink

This application routes messages to named channels.
Input

Headers

Payload

Any
Output

N/A
Options

Options

The router sink has the following options:
	router.default-output-channel
	Where to send unroutable messages. (String, default: nullChannel)
	router.destination-mappings
	Destination mappings as a new line delimited string of name-value pairs, e.g. 'foo=bar\n baz=car'. (Properties, default: <none>)
	router.expression
	The expression to be applied to the message to determine the channel(s) to route to. Note that the payload wire format for content types such as text, json or xml is byte[] not String!. Consult the documentation for how to handle byte array payload content. (Expression, default: <none>)
	router.refresh-delay
	How often to check for script changes in ms (if present); < 0 means don't refresh. (Integer, default: 60000)
	router.resolution-required
	Whether or not channel resolution is required. (Boolean, default: false)
	router.script
	The location of a groovy script that returns channels or channel mapping resolution keys. (Resource, default: <none>)
	router.variables
	Variable bindings as a new line delimited string of name-value pairs, e.g. 'foo=bar\n baz=car'. (Properties, default: <none>)
	router.variables-location
	The location of a properties file containing custom script variable bindings. (Resource, default: <none>)

	[image: [Note]]	Note
	Since this is a dynamic router, destinations are created as needed; therefore, by default the defaultOutputChannel
and resolutionRequired will only be used if the Binder has some problem binding to the destination.

You can restrict the creation of dynamic bindings using the spring.cloud.stream.dynamicDestinations property.
By default, all resolved destinations will be bound dynamically; if this property has a comma-delimited list of
destination names, only those will be bound.
Messages that resolve to a destination that is not in this list will be routed to the defaultOutputChannel, which
must also appear in the list.
destinationMappings are used to map the evaluation results to an actual destination name.
SpEL-based Routing

The expression evaluates against the message and returns either a channel name, or the key to a map of channel names.
For more information, please see the "Routers and the Spring Expression Language (SpEL)" subsection in the Spring
Integration Reference manual
Configuring (Generic) Router section.
	[image: [Note]]	Note
	Starting with Spring Cloud Stream 2.0 onwards the message wire format for json, text and xml content types is byte[] not String!
This is an altering change from SCSt 1.x that treats those types as Strings!
Depends on the content type, different techniques for handling the byte[] payloads are available. For plain text
content types, one can covert the octet payload into string using the new String(payload) SpEL expression. For json
types the jsonPath() SpEL utility
already supports string and byte array content interchangeably. Same applies for the xml content type and the
#xpath() SpEL utility.

For example for text content type one should use:
 new String(payload).contains('a')
and for json content type SpEL expressions like this:
 #jsonPath(payload, '$.person.name')
Groovy-based Routing

Instead of SpEL expressions, Groovy scripts can also be used. Let’s create a Groovy script in the file system at
"file:/my/path/router.groovy", or "classpath:/my/path/router.groovy" :
println("Groovy processing payload '" + payload + "'");
if (payload.contains('a')) {
 return "foo"
}
else {
 return "bar"
}
If you want to pass variable values to your script, you can statically bind values using the variables option or
optionally pass the path to a properties file containing the bindings using the propertiesLocation option.
All properties in the file will be made available to the script as variables. You may specify both variables and
propertiesLocation, in which case any duplicate values provided as variables override values provided in
propertiesLocation.
Note that payload and headers are implicitly bound to give you access to the data contained in a message.
For more information, see the Spring Integration Reference manual
Groovy Support.
Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one one of the folders and build it:
$./mvnw clean package
Examples

java -jar router-sink.jar --expression="new String(payload).contains('a')?':foo':':bar'"
java -jar router-sink.jar --script=" "
Amazon S3 Sink

This sink app supports transfer files to the Amazon S3 bucket.
Files payloads (and directories recursively) are transferred to the remote directory (S3 bucket) to the local directory where the application is deployed.
Messages accepted by this sink must contain payload as:
	File, including directories for recursive upload;
	InputStream;
	byte[]

When using --mode=lines, you can also provide the additional option --withMarkers=true.
If set to true, the underlying FileSplitter will emit additional start-of-file and end-of-file marker messages before and after the actual data.
The payload of these 2 additional marker messages is of type FileSplitter.FileMarker. The option withMarkers defaults to false if not explicitly set.
Input

Headers

N/A
Payload

	java.io.File
	java.io.InputStream
	byte[]
	String

Output

N/A
Options

The s3 sink has the following options:
	s3.acl
	S3 Object access control list. (CannedAccessControlList, default: <none>, possible values: private,public-read,public-read-write,authenticated-read,log-delivery-write,bucket-owner-read,bucket-owner-full-control,aws-exec-read)
	s3.acl-expression
	Expression to evaluate S3 Object access control list. (Expression, default: <none>)
	s3.bucket
	AWS bucket for target file(s) to store. (String, default: <none>)
	s3.bucket-expression
	Expression to evaluate AWS bucket name. (Expression, default: <none>)
	s3.key-expression
	Expression to evaluate S3 Object key. (Expression, default: <none>)

The target generated application based on the AmazonS3SinkConfiguration can be enhanced with the S3MessageHandler.UploadMetadataProvider and/or S3ProgressListener, which are injected into S3MessageHandler bean.
Amazon AWS common options

The Amazon S3 Sink (as all other Amazon AWS applications) is based on the
Spring Cloud AWS project as a foundation, and its auto-configuration
classes are used automatically by Spring Boot.
Consult their documentation regarding required and useful auto-configuration properties.
Some of them are about AWS credentials:
	cloud.aws.credentials.accessKey
	cloud.aws.credentials.secretKey
	cloud.aws.credentials.instanceProfile
	cloud.aws.credentials.profileName
	cloud.aws.credentials.profilePath

Other are for AWS Region definition:
	cloud.aws.region.auto
	cloud.aws.region.static

And for AWS Stack:
	cloud.aws.stack.auto
	cloud.aws.stack.name

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here. You can then cd into one one of the folders and build it:
$./mvnw clean package
Examples

java -jar s3-sink.jar --s3.bucket=/tmp/bar
SFTP Sink

SFTP sink is a simple option to push files to an SFTP server from incoming messages.
It uses an sftp-outbound-adapter, therefore incoming messages can be either a java.io.File object, a String (content of the file)
or an array of bytes (file content as well).
To use this sink, you need a username and a password to login.
	[image: [Note]]	Note
	By default Spring Integration will use o.s.i.file.DefaultFileNameGenerator if none is specified. DefaultFileNameGenerator will determine the file name
based on the value of the file_name header (if it exists) in the MessageHeaders, or if the payload of the Message is already a java.io.File, then it will
use the original name of that file.

When configuring the sftp.factory.known-hosts-expression option, the root object of the evaluation is the application context, an example might be sftp.factory.known-hosts-expression = @systemProperties['user.home'] + '/.ssh/known_hosts'.
Input

Headers

	file_name (See note above)

Payload

	java.io.File
	java.io.InputStream
	byte[]
	String

Output

N/A (writes to the SFTP server).
Options

The sftp sink has the following options:
	sftp.auto-create-dir
	Whether or not to create the remote directory. (Boolean, default: true)
	sftp.factory.allow-unknown-keys
	True to allow an unknown or changed key. (Boolean, default: false)
	sftp.factory.cache-sessions
	Cache sessions (Boolean, default: <none>)
	sftp.factory.host
	The host name of the server. (String, default: localhost)
	sftp.factory.known-hosts-expression
	A SpEL expression resolving to the location of the known hosts file. (Expression, default: <none>)
	sftp.factory.pass-phrase
	Passphrase for user's private key. (String, default: <empty string>)
	sftp.factory.password
	The password to use to connect to the server. (String, default: <none>)
	sftp.factory.port
	The port of the server. (Integer, default: 22)
	sftp.factory.private-key
	Resource location of user's private key. (Resource, default: <none>)
	sftp.factory.username
	The username to use to connect to the server. (String, default: <none>)
	sftp.filename-expression
	A SpEL expression to generate the remote file name. (Expression, default: <none>)
	sftp.mode
	Action to take if the remote file already exists. (FileExistsMode, default: <none>, possible values: APPEND,APPEND_NO_FLUSH,FAIL,IGNORE,REPLACE,REPLACE_IF_MODIFIED)
	sftp.remote-dir
	The remote FTP directory. (String, default: /)
	sftp.remote-file-separator
	The remote file separator. (String, default: /)
	sftp.temporary-remote-dir
	A temporary directory where the file will be written if 'isUseTemporaryFilename()' is true. (String, default: /)
	sftp.tmp-file-suffix
	The suffix to use while the transfer is in progress. (String, default: .tmp)
	sftp.use-temporary-filename
	Whether or not to write to a temporary file and rename. (Boolean, default: true)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one one of the folders and build it:
$./mvnw clean package
Examples

java -jar sftp_sink.jar --sftp.remote-dir=bar --sftp.factory.host=sftpserver \
 --sftp.factory.username=user --sftp.factory.password=pw
TCP Sink

This module writes messages to TCP using an Encoder.
TCP is a streaming protocol and some mechanism is needed to frame messages on the wire. A number of encoders are
available, the default being 'CRLF'.
Input

Headers:

	Content-Type: application/octet-stream

Payload:

	byte[]

Headers:

	Content-Type: text/plain

Payload:

	String

Output

N/A
Options

The tcp sink has the following options:
	tcp.charset
	The charset used when converting from bytes to String. (String, default: UTF-8)
	tcp.close
	Whether to close the socket after each message. (Boolean, default: false)
	tcp.encoder
	The encoder to use when sending messages. (Encoding, default: <none>, possible values: CRLF,LF,NULL,STXETX,RAW,L1,L2,L4)
	tcp.host
	The host to which this sink will connect. (String, default: <none>)
	tcp.nio
	Whether or not to use NIO. (Boolean, default: false)
	tcp.port
	The port on which to listen; 0 for the OS to choose a port. (Integer, default: 1234)
	tcp.reverse-lookup
	Perform a reverse DNS lookup on the remote IP Address; if false,
just the IP address is included in the message headers. (Boolean, default: false)
	tcp.socket-timeout
	The timeout (ms) before closing the socket when no data is received. (Integer, default: 120000)
	tcp.use-direct-buffers
	Whether or not to use direct buffers. (Boolean, default: false)

Available Encoders

Text Data
	CRLF (default)
	text terminated by carriage return (0x0d) followed by line feed (0x0a)
	LF
	text terminated by line feed (0x0a)
	NULL
	text terminated by a null byte (0x00)
	STXETX
	text preceded by an STX (0x02) and terminated by an ETX (0x03)

Text and Binary Data
	RAW
	no structure - the client indicates a complete message by closing the socket
	L1
	data preceded by a one byte (unsigned) length field (supports up to 255 bytes)
	L2
	data preceded by a two byte (unsigned) length field (up to 216-1 bytes)
	L4
	data preceded by a four byte (signed) length field (up to 231-1 bytes)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here. You can then cd into one one of the folders and build it:
$./mvnw clean package
Examples

java -jar tcp_sink.jar --tcp.encoder=LF
Throughput Sink

A simple handler that will count messages and log witnessed throughput at a selected interval.
Input

Headers

Payload

Any
Output

N/A
Options

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one one of the folders and build it:
$./mvnw clean package
Examples

java -jar throughput-sink.jar
Websocket Sink

A simple Websocket Sink implementation.
Input

Headers

Payload

Any
Output

N/A
Options

The following commmand line arguments are supported:
	websocket.log-level
	the logLevel for netty channels. Default is <tt>WARN</tt> (String, default: <none>)
	websocket.path
	the path on which a WebsocketSink consumer needs to connect. Default is <tt>/websocket</tt> (String, default: /websocket)
	websocket.port
	the port on which the Netty server listens. Default is <tt>9292</tt> (Integer, default: 9292)
	websocket.ssl
	whether or not to create a {@link io.netty.handler.ssl.SslContext} (Boolean, default: false)
	websocket.threads
	the number of threads for the Netty {@link io.netty.channel.EventLoopGroup}. Default is <tt>1</tt> (Integer, default: 1)

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here.
You can then cd into one one of the folders and build it:
$./mvnw clean package
Examples

To verify that the websocket-sink receives messages from other spring-cloud-stream apps, you can use the
following simple end-to-end setup.
Step 1: Start Rabbitmq

Step 2: Deploy a time-source

Step 3: Deploy a websocket-sink (the app that contains this starter jar)

Finally start a websocket-sink in trace mode so that you see the messages produced by the time-source in the log:
java -jar <spring boot application for websocket-sink> --spring.cloud.stream.bindings.input=ticktock --server.port=9393 \
	--logging.level.org.springframework.cloud.stream.module.websocket=TRACE
You should start seeing log messages in the console where you started the WebsocketSink like this:
Handling message: GenericMessage [payload=2015-10-21 12:52:53, headers={id=09ae31e0-a04e-b811-d211-b4d4e75b6f29, timestamp=1445424778065}]
Handling message: GenericMessage [payload=2015-10-21 12:52:54, headers={id=75eaaf30-e5c6-494f-b007-9d5b5b920001, timestamp=1445424778065}]
Handling message: GenericMessage [payload=2015-10-21 12:52:55, headers={id=18b887db-81fc-c634-7a9a-16b1c72de291, timestamp=1445424778066}]
Actuators

There is an Endpoint that you can use to access the last n messages sent and received. You have to
 enable it by providing --endpoints.websocketsinktrace.enabled=true. By default it shows the last 100 messages via the
host:port/websocketsinktrace. Here is a sample output:
 [
 {
 "timestamp": 1445453703508,
 "info": {
 "type": "text",
 "direction": "out",
 "id": "2ff9be50-c9b2-724b-5404-1a6305c033e4",
 "payload": "2015-10-21 20:54:33"
 }
 },
 ...
 {
 "timestamp": 1445453703506,
 "info": {
 "type": "text",
 "direction": "out",
 "id": "2b9dbcaf-c808-084d-a51b-50f617ae6a75",
 "payload": "2015-10-21 20:54:32"
 }
 }
]
There is also a simple HTML page where you see forwarded messages in a text area. You can access
it directly via host:port in your browser
	[image: [Note]]	Note
	For SSL mode (--ssl=true) a self signed certificate is used that might cause troubles with some
Websocket clients. In a future release, there will be a --certificate=mycert.cer switch to pass a valid (not
self-signed) certificate.

TaskLauncher Data Flow Sink

This application launches a registered task application using the Data Flow Server REST API.
Input

Launch request args including:
	the task name (required and registered as a task with the target Data Flow Server)
	deployment properties (key value pairs, optional).
	program arguments for the task (a list, optional).

Headers:

	Content-Type: application/json

Payload:

A JSON document:
{
 "name":"foo",
 "deploymentProps": {"key1":"val1","key2":"val2"},
 "args":["--debug", "--foo", "bar"]
}
minimally,
{"name":"foo"}
Output

N/A (launches task to the local system).
Options

The tasklauncher-dataflow sink supports the following configuration properties:
	spring.cloud.dataflow.client.authentication.basic.password
	The login password. (String, default: <none>)
	spring.cloud.dataflow.client.authentication.basic.username
	The login username. (String, default: <none>)
	spring.cloud.dataflow.client.enable-dsl
	Enable Data Flow DSL access. (Boolean, default: false)
	spring.cloud.dataflow.client.server-uri
	The Data Flow server URI. (String, default: http://localhost:9393)
	spring.cloud.dataflow.client.skip-ssl-validation
	Skip Ssl validation. (Boolean, default: true)
	trigger.initial-delay
	The initial delay in milliseconds. (Integer, default: 1000)
	trigger.max-period
	The maximum polling period in milliseconds. Will be set to period if period > maxPeriod. (Integer, default: 30000)
	trigger.period
	The polling period in milliseconds. (Integer, default: 1000)

Using the TaskLauncher

A tasklauncher is a sink that consumes LaunchRequest messages, as described above, and launches a task using the
configured Spring Cloud Data Flow server (given by --dataflow.uri). The task launcher periodically polls its input
for launch requests but will pause when the SCDF server’s concurrent task execution limit given by spring.cloud
.dataflow.task
.maximum-concurrent-tasks
is reached (see the
reference docs for more details).
When the number of running tasks drops below this limit message polling resumes. This is intended to prevent
the SCDF deployer’s deployment platform from running out of resources under heavy task load. The poller is
scheduled using a DynamicPeriodicTrigger. By default the polling rate is 1 second, but may be
configured to any duration. When paused, or if there are no launch requests, the trigger period will increase, applying
exponential backoff, up to a configured maximum (30 seconds by default).
	[image: [Note]]	Note
	When the poller is paused it puts pressure
 on the message broker so some tuning will be necessary in extreme cases to balance resource utilization.

Build

$./mvnw clean install -PgenerateApps
$ cd apps
You can find the corresponding binder based projects here. You can then cd into one one of the folders and
build it:
$./mvnw clean package
Examples

Register a task app and create a task, the
timestamp sample
provides a simple demonstration.
dataflow:>app register --name timestamp --type task --uri ...
dataflow:>stream create http | task-launcher-dataflow-sink --deploy
Send a launch request,
$curl http://localhost:<port> -H"Content-Type:application/json" -d '{"name":"timestamp"}'
dataflow:>task execution list
╔═════════╤══╤════════════════════════════╤════════════════════════════╤═════════╗
║Task Name│ID│ Start Time │ End Time │Exit Code║
╠═════════╪══╪════════════════════════════╪════════════════════════════╪═════════╣
║timestamp│1 │Fri Aug 10 08:48:05 EDT 2018│Fri Aug 10 08:48:05 EDT 2018│0 ║
╚═════════╧══╧════════════════════════════╧════════════════════════════╧═════════╝
Part III. Appendices

Appendix A. Building

Basic Compile and Test

To build the source you will need to install JDK 1.7.
The build uses the Maven wrapper so you don’t have to install a specific
version of Maven. To enable the tests for Redis you should run the server
before bulding. See below for more information on how run Redis.
The main build command is
$./mvnw clean install
You can also add '-DskipTests' if you like, to avoid running the tests.
	[image: [Note]]	Note
	You can also install Maven (>=3.3.3) yourself and run the mvn command
in place of ./mvnw in the examples below. If you do that you also
might need to add -P spring if your local Maven settings do not
contain repository declarations for spring pre-release artifacts.

	[image: [Note]]	Note
	Be aware that you might need to increase the amount of memory
available to Maven by setting a MAVEN_OPTS environment variable with
a value like -Xmx512m -XX:MaxPermSize=128m. We try to cover this in
the .mvn configuration, so if you find you have to do it to make a
build succeed, please raise a ticket to get the settings added to
source control.

The projects that require middleware generally include a
docker-compose.yml, so consider using
Docker Compose to run the middeware servers
in Docker containers. See the README in the
scripts demo
repository for specific instructions about the common cases of mongo,
rabbit and redis.
Documentation

There is a "full" profile that will generate documentation. You can build just the documentation by executing
$./mvnw package -DskipTests=true -P full -pl spring-cloud-stream-app-starters-docs -am
Working with the code

If you don’t have an IDE preference we would recommend that you use
Spring Tools Suite or
Eclipse when working with the code. We use the
m2eclipe eclipse plugin for maven support. Other IDEs and tools
should also work without issue.
Importing into eclipse with m2eclipse

We recommend the m2eclipe eclipse plugin when working with
eclipse. If you don’t already have m2eclipse installed it is available from the "eclipse
marketplace".
Unfortunately m2e does not yet support Maven 3.3, so once the projects
are imported into Eclipse you will also need to tell m2eclipse to use
the .settings.xml file for the projects. If you do not do this you
may see many different errors related to the POMs in the
projects. Open your Eclipse preferences, expand the Maven
preferences, and select User Settings. In the User Settings field
click Browse and navigate to the Spring Cloud project you imported
selecting the .settings.xml file in that project. Click Apply and
then OK to save the preference changes.
	[image: [Note]]	Note
	Alternatively you can copy the repository settings from .settings.xml into your own ~/.m2/settings.xml.

Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the
following command:
$./mvnw eclipse:eclipse
The generated eclipse projects can be imported by selecting import existing projects
from the file menu.
Appendix B. App Starter POM Dependencies

Following diagram highlights some of the important Stream App and Stream App Starter POM dependencies.
	[image: PomDependencies]

The dependencies are grouped in three categories:
	Core Spring libraries - represent the core framework libraries such as Spring Boot, Spring Integration,
Spring Cloud. The "Bill Of Materials" (BOM) patterns is used throughout the stack to decouple the dependency
management from the lifecycle configurations.
The app-starters-build parent POM and the app-starters-core-dependencies BOM use inherit by all app starters.
	App Starters - libraries that contain the complete configuration of a Spring Cloud Stream application with a specific role
Starters are not executable applications, and are intended to be included in the Pre-build Apps, along with a Binder
implementation.
The App Starter root pom ([my-app-name]-app-starters-build) inherit all compile-tme configuration for its parent
the core app-starters-build. Starer’s BOM [my-app-name]-app-dependencies is used to manage starter’s own dependencies.
	Pre-build App - pre-build Spring Boot applications that include the app starters and a Binder implementation.

Appendix C. App Starter Naming Conventions

The spring-cloud-stream-app-maven-plugin (used to generate the Pre-build Apps) asserts a naming convention over
certain starter’s resources.
Following diagram describes which resources are involved and how the convention is applied to them.
	[image: NamingConvention]

The [type] placeholder represents the application type and must be either Source, Processor or Sink values.
The [my-app-name] placeholder represents the name of your app starter project.
For multi-word app names, the hyphens (-) is used as word delimiter (e.g. my-app-name). Mind that for package names
 the hyphen delimiter is replaced by (.) character (e.g. o.s.c.s.a.my.app.name). Class name convention expects
CamelCase names in place of any delimiters (e.g. MyAppNameSourceConfiguration.
The capital letters in the placeholders are relevant. For example the [type] refers to lower case names such as
source, processor or sink types, while capitalized placeholder [Type] refers to names like Source,
Processor and Sink.
The Configuration and Properties class suffixes are expected as well.
With the help of the maven plugin configuration all default conventions can be customized or replaced.
More information about the maven plugin can be found here: github.com/spring-cloud/spring-cloud-stream-app-maven-plugin
Chapter 5. Contributing

Spring Cloud is released under the non-restrictive Apache 2.0 license,
and follows a very standard Github development process, using Github
tracker for issues and merging pull requests into master. If you want
to contribute even something trivial please do not hesitate, but
follow the guidelines below.
Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the
contributor’s agreement.
Signing the contributor’s agreement does not grant anyone commit rights to the main
repository, but it does mean that we can accept your contributions, and you will get an
author credit if we do. Active contributors might be asked to join the core team, and
given the ability to merge pull requests.
Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help. They can also be
added after the original pull request but before a merge.
	Use the Spring Framework code format conventions. If you use Eclipse
you can import formatter settings using the
eclipse-code-formatter.xml file from the
Spring
Cloud Build project. If using IntelliJ, you can use the
Eclipse Code Formatter
Plugin to import the same file.
	Make sure all new .java files to have a simple Javadoc class comment with at least an
@author tag identifying you, and preferably at least a paragraph on what the class is
for.
	Add the ASF license header comment to all new .java files (copy from existing files
in the project)
	Add yourself as an @author to the .java files that you modify substantially (more
than cosmetic changes).
	Add some Javadocs and, if you change the namespace, some XSD doc elements.
	A few unit tests would help a lot as well — someone has to do it.
	If no-one else is using your branch, please rebase it against the current master (or
other target branch in the main project).
	When writing a commit message please follow these conventions,
if you are fixing an existing issue please add Fixes gh-XXXX at the end of the commit
message (where XXXX is the issue number).

images/note.png

images/caution.png

