Spring Cloud Stream Kafka Binder Reference Guide

Sabby Anandan, Marius Bogoevici, Eric Bottard, Mark Fisher, Ilayaperumal Gopinathan, Gunnar Hillert, Mark Pollack, Patrick Peralta, Glenn Renfro, Thomas Risberg, Dave Syer, David Turanski, Janne Valkealahti, Benjamin Klein

1.1.0.RELEASE

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.


Table of Contents

I. Reference Guide
1. Usage
2. Apache Kafka Binder Overview
3. Configuration Options
3.1. Kafka Binder Properties
3.2. Kafka Consumer Properties
3.3. Kafka Producer Properties
3.4. Usage examples
3.4.1. Example: Setting autoCommitOffset false and relying on manual acking.
3.4.2. Example: security configuration
Using JAAS configuration files
Using Spring Boot properties
3.4.3. Using the binder with Apache Kafka 0.10
3.4.4. Excluding Kafka broker jar from the classpath of the binder based application
II. Appendices
A. Building
A.1. Basic Compile and Test
A.2. Documentation
A.3. Working with the code
A.3.1. Importing into eclipse with m2eclipse
A.3.2. Importing into eclipse without m2eclipse
A.4. Sign the Contributor License Agreement
A.5. Code Conventions and Housekeeping

Part I. Reference Guide

This guide describes the Apache Kafka implementation of the Spring Cloud Stream Binder. It contains information about its design, usage and configuration options, as well as information on how the Stream Cloud Stream concepts map into Apache Kafka specific constructs.

1. Usage

For using the Apache Kafka binder, you just need to add it to your Spring Cloud Stream application, using the following Maven coordinates:

<dependency>
  <groupId>org.springframework.cloud</groupId>
  <artifactId>spring-cloud-stream-binder-kafka</artifactId>
</dependency>

Alternatively, you can also use the Spring Cloud Stream Kafka Starter.

<dependency>
  <groupId>org.springframework.cloud</groupId>
  <artifactId>spring-cloud-starter-stream-kafka</artifactId>
</dependency>

2. Apache Kafka Binder Overview

A simplified diagram of how the Apache Kafka binder operates can be seen below.

Figure 2.1. Kafka Binder

kafka binder

The Apache Kafka Binder implementation maps each destination to an Apache Kafka topic. The consumer group maps directly to the same Apache Kafka concept. Partitioning also maps directly to Apache Kafka partitions as well.

3. Configuration Options

This section contains the configuration options used by the Apache Kafka binder.

For common configuration options and properties pertaining to binder, refer to the core docs.

3.1 Kafka Binder Properties

spring.cloud.stream.kafka.binder.brokers

A list of brokers to which the Kafka binder will connect.

Default: localhost.

spring.cloud.stream.kafka.binder.defaultBrokerPort

brokers allows hosts specified with or without port information (e.g., host1,host2:port2). This sets the default port when no port is configured in the broker list.

Default: 9092.

spring.cloud.stream.kafka.binder.zkNodes

A list of ZooKeeper nodes to which the Kafka binder can connect.

Default: localhost.

spring.cloud.stream.kafka.binder.defaultZkPort

zkNodes allows hosts specified with or without port information (e.g., host1,host2:port2). This sets the default port when no port is configured in the node list.

Default: 2181.

spring.cloud.stream.kafka.binder.configuration

Key/Value map of client properties (both producers and consumer) passed to all clients created by the binder. Due to the fact that these properties will be used by both producers and consumers, usage should be restricted to common properties, especially security settings.

Default: Empty map.

spring.cloud.stream.kafka.binder.headers

The list of custom headers that will be transported by the binder.

Default: empty.

spring.cloud.stream.kafka.binder.offsetUpdateTimeWindow

The frequency, in milliseconds, with which offsets are saved. Ignored if 0.

Default: 10000.

spring.cloud.stream.kafka.binder.offsetUpdateCount

The frequency, in number of updates, which which consumed offsets are persisted. Ignored if 0. Mutually exclusive with offsetUpdateTimeWindow.

Default: 0.

spring.cloud.stream.kafka.binder.requiredAcks

The number of required acks on the broker.

Default: 1.

spring.cloud.stream.kafka.binder.minPartitionCount

Effective only if autoCreateTopics or autoAddPartitions is set. The global minimum number of partitions that the binder will configure on topics on which it produces/consumes data. It can be superseded by the partitionCount setting of the producer or by the value of instanceCount * concurrency settings of the producer (if either is larger).

Default: 1.

spring.cloud.stream.kafka.binder.replicationFactor

The replication factor of auto-created topics if autoCreateTopics is active.

Default: 1.

spring.cloud.stream.kafka.binder.autoCreateTopics

If set to true, the binder will create new topics automatically. If set to false, the binder will rely on the topics being already configured. In the latter case, if the topics do not exist, the binder will fail to start. Of note, this setting is independent of the auto.topic.create.enable setting of the broker and it does not influence it: if the server is set to auto-create topics, they may be created as part of the metadata retrieval request, with default broker settings.

Default: true.

spring.cloud.stream.kafka.binder.autoAddPartitions

If set to true, the binder will create add new partitions if required. If set to false, the binder will rely on the partition size of the topic being already configured. If the partition count of the target topic is smaller than the expected value, the binder will fail to start.

Default: false.

spring.cloud.stream.kafka.binder.socketBufferSize

Size (in bytes) of the socket buffer to be used by the Kafka consumers.

Default: 2097152.

3.2 Kafka Consumer Properties

The following properties are available for Kafka consumers only and must be prefixed with spring.cloud.stream.kafka.bindings.<channelName>.consumer..

autoRebalanceEnabled

When true, topic partitions will be automatically rebalanced between the members of a consumer group. When false, each consumer will be assigned a fixed set of partitions based on spring.cloud.stream.instanceCount and spring.cloud.stream.instanceIndex. This requires both spring.cloud.stream.instanceCount and spring.cloud.stream.instanceIndex properties to be set appropriately on each launched instance. The property spring.cloud.stream.instanceCount must typically be greater than 1 in this case.

Default: true.

autoCommitOffset

Whether to autocommit offsets when a message has been processed. If set to false, a header with the key kafka_acknowledgment of the type org.springframework.kafka.support.Acknowledgment header will be present in the inbound message. Applications may use this header for acknowledging messages. See the examples section for details. When this property is set to false, Kafka binder will set the ack mode to org.springframework.kafka.listener.AbstractMessageListenerContainer.AckMode.MANUAL.

Default: true.

autoCommitOnError

Effective only if autoCommitOffset is set to true. If set to false it suppresses auto-commits for messages that result in errors, and will commit only for successful messages, allows a stream to automatically replay from the last successfully processed message, in case of persistent failures. If set to true, it will always auto-commit (if auto-commit is enabled). If not set (default), it effectively has the same value as enableDlq, auto-committing erroneous messages if they are sent to a DLQ, and not committing them otherwise.

Default: not set.

recoveryInterval

The interval between connection recovery attempts, in milliseconds.

Default: 5000.

resetOffsets

Whether to reset offsets on the consumer to the value provided by startOffset.

Default: false.

startOffset

The starting offset for new groups, or when resetOffsets is true. Allowed values: earliest, latest.

Default: null (equivalent to earliest).

enableDlq

When set to true, it will send enable DLQ behavior for the consumer. Messages that result in errors will be forwarded to a topic named error.<destination>.<group>. This provides an alternative option to the more common Kafka replay scenario for the case when the number of errors is relatively small and replaying the entire original topic may be too cumbersome.

Default: false.

configuration

Map with a key/value pair containing generic Kafka consumer properties.

Default: Empty map.

3.3 Kafka Producer Properties

The following properties are available for Kafka producers only and must be prefixed with spring.cloud.stream.kafka.bindings.<channelName>.producer..

bufferSize

Upper limit, in bytes, of how much data the Kafka producer will attempt to batch before sending.

Default: 16384.

sync

Whether the producer is synchronous.

Default: false.

batchTimeout

How long the producer will wait before sending in order to allow more messages to accumulate in the same batch. (Normally the producer does not wait at all, and simply sends all the messages that accumulated while the previous send was in progress.) A non-zero value may increase throughput at the expense of latency.

Default: 0.

configuration

Map with a key/value pair containing generic Kafka producer properties.

Default: Empty map.

[Note]Note

The Kafka binder will use the partitionCount setting of the producer as a hint to create a topic with the given partition count (in conjunction with the minPartitionCount, the maximum of the two being the value being used). Exercise caution when configuring both minPartitionCount for a binder and partitionCount for an application, as the larger value will be used. If a topic already exists with a smaller partition count and autoAddPartitions is disabled (the default), then the binder will fail to start. If a topic already exists with a smaller partition count and autoAddPartitions is enabled, new partitions will be added. If a topic already exists with a larger number of partitions than the maximum of (minPartitionCount and partitionCount), the existing partition count will be used.

3.4 Usage examples

In this section, we illustrate the use of the above properties for specific scenarios.

3.4.1 Example: Setting autoCommitOffset false and relying on manual acking.

This example illustrates how one may manually acknowledge offsets in a consumer application.

This example requires that spring.cloud.stream.kafka.bindings.input.consumer.autoCommitOffset is set to false. Use the corresponding input channel name for your example.

@SpringBootApplication
@EnableBinding(Sink.class)
public class ManuallyAcknowdledgingConsumer {

 public static void main(String[] args) {
     SpringApplication.run(ManuallyAcknowdledgingConsumer.class, args);
 }

 @StreamListener(Sink.INPUT)
 public void process(Message<?> message) {
     Acknowledgment acknowledgment = message.getHeaders().get(KafkaHeaders.ACKNOWLEDGMENT, Acknowledgment.class);
     if (acknowledgment != null) {
         System.out.println("Acknowledgment provided");
         acknowledgment.acknowledge();
     }
 }
}

3.4.2 Example: security configuration

Apache Kafka 0.9 supports secure connections between client and brokers. To take advantage of this feature, follow the guidelines in the Apache Kafka Documentation as well as the Kafka 0.9 security guidelines from the Confluent documentation. Use the spring.cloud.stream.kafka.binder.configuration option to set security properties for all clients created by the binder.

For example, for setting security.protocol to SASL_SSL, set:

spring.cloud.stream.kafka.binder.configuration.security.protocol=SASL_SSL

All the other security properties can be set in a similar manner.

When using Kerberos, follow the instructions in the reference documentation for creating and referencing the JAAS configuration.

Spring Cloud Stream supports passing JAAS configuration information to the application using a JAAS configuration file and using Spring Boot properties.

Using JAAS configuration files

The JAAS, and (optionally) krb5 file locations can be set for Spring Cloud Stream applications by using system properties. Here is an example of launching a Spring Cloud Stream application with SASL and Kerberos using a JAAS configuration file:

 java -Djava.security.auth.login.config=/path.to/kafka_client_jaas.conf -jar log.jar \
   --spring.cloud.stream.kafka.binder.brokers=secure.server:9092 \
   --spring.cloud.stream.kafka.binder.zkNodes=secure.zookeeper:2181 \
   --spring.cloud.stream.bindings.input.destination=stream.ticktock \
   --spring.cloud.stream.kafka.binder.configuration.security.protocol=SASL_PLAINTEXT

Using Spring Boot properties

As an alternative to having a JAAS configuration file, Spring Cloud Stream provides a mechanism for setting up the JAAS configuration for Spring Cloud Stream applications using Spring Boot properties.

The following properties can be used for configuring the login context of the Kafka client.

spring.cloud.stream.kafka.binder.jaas.loginModule

The login module name. Not necessary to be set in normal cases.

Default: com.sun.security.auth.module.Krb5LoginModule.

spring.cloud.stream.kafka.binder.jaas.controlFlag

The control flag of the login module.

Default: required.

spring.cloud.stream.kafka.binder.jaas.options

Map with a key/value pair containing the login module options.

Default: Empty map.

Here is an example of launching a Spring Cloud Stream application with SASL and Kerberos using Spring Boot configuration properties:

 java --spring.cloud.stream.kafka.binder.brokers=secure.server:9092 \
   --spring.cloud.stream.kafka.binder.zkNodes=secure.zookeeper:2181 \
   --spring.cloud.stream.bindings.input.destination=stream.ticktock \
   --spring.cloud.stream.kafka.binder.autoCreateTopics=false \
   --spring.cloud.stream.kafka.binder.configuration.security.protocol=SASL_PLAINTEXT \
   --spring.cloud.stream.kafka.binder.jaas.options.useKeyTab=true \
   --spring.cloud.stream.kafka.binder.jaas.options.storeKey=true \
   --spring.cloud.stream.kafka.binder.jaas.options.keyTab=/etc/security/keytabs/kafka_client.keytab \
   --spring.cloud.stream.kafka.binder.jaas.options.principal=kafka-client-1@EXAMPLE.COM

This represents the equivalent of the following JAAS file:

KafkaClient {
    com.sun.security.auth.module.Krb5LoginModule required
    useKeyTab=true
    storeKey=true
    keyTab="/etc/security/keytabs/kafka_client.keytab"
    principal="[email protected]";
};

If the topics required already exist on the broker, or will be created by an administrator, autocreation can be turned off and only client JAAS properties need to be sent. As an alternative to setting spring.cloud.stream.kafka.binder.autoCreateTopics you can simply remove the broker dependency from the application. See Section 3.4.4, “Excluding Kafka broker jar from the classpath of the binder based application” for details.

[Note]Note

Do not mix JAAS configuration files and Spring Boot properties in the same application. If the -Djava.security.auth.login.config system property is already present, Spring Cloud Stream will ignore the Spring Boot properties.

[Note]Note

Exercise caution when using the autoCreateTopics and autoAddPartitions if using Kerberos. Usually applications may use principals that do not have administrative rights in Kafka and Zookeeper, and relying on Spring Cloud Stream to create/modify topics may fail. In secure environments, we strongly recommend creating topics and managing ACLs administratively using Kafka tooling.

3.4.3 Using the binder with Apache Kafka 0.10

The binder also supports connecting to Kafka 0.10 brokers. In order to support this, when you create the project that contains your application, include spring-cloud-starter-stream-kafka as you normally would do for 0.9 based applications. Then add these dependencies at the top of the <dependencies> section in the pom.xml file to override the Apache Kafka, Spring Kafka, and Spring Integration Kafka with 0.10-compatible versions as in the following example:

<dependency>
  <groupId>org.springframework.kafka</groupId>
  <artifactId>spring-kafka</artifactId>
  <version>1.1.1.RELEASE</version>
</dependency>
<dependency>
  <groupId>org.springframework.integration</groupId>
  <artifactId>spring-integration-kafka</artifactId>
  <version>2.1.0.RELEASE</version>
</dependency>
<dependency>
  <groupId>org.apache.kafka</groupId>
  <artifactId>kafka_2.11</artifactId>
  <version>0.10.0.0</version>
  <exclusions>
    <exclusion>
      <groupId>org.slf4j</groupId>
      <artifactId>slf4j-log4j12</artifactId>
    </exclusion>
  </exclusions>
</dependency>
[Note]Note

The versions above are provided only for the sake of the example. For best results, we recommend using the most recent 0.10-compatible versions of the projects.

3.4.4 Excluding Kafka broker jar from the classpath of the binder based application

The Apache Kafka Binder uses the administrative utilities which are part of the Apache Kafka server library to create and reconfigure topics. If the inclusion of the Apache Kafka server library and its dependencies is not necessary at runtime because the application will rely on the topics being configured administratively, the Kafka binder allows for Apache Kafka server dependency to be excluded from the application.

If you use Kafka 10 dependencies as advised above, all you have to do is not to include the kafka broker dependency. If you use Kafka 0.9, then ensure that you exclude the kafka broker jar from the spring-cloud-starter-stream-kafka dependency as following.

<dependency>
  <groupId>org.springframework.cloud</groupId>
  <artifactId>spring-cloud-starter-stream-kafka</artifactId>
  <exclusions>
    <exclusion>
      <groupId>org.apache.kafka</groupId>
      <artifactId>kafka_2.11</artifactId>
    </exclusion>
  </exclusions>
</dependency>

If you exclude the Apache Kafka server dependency and the topic is not present on the server, then the Apache Kafka broker will create the topic if auto topic creation is enabled on the server. Please keep in mind that if you are relying on this, then the Kafka server will use the default number of partitions and replication factors. On the other hand, if auto topic creation is disabled on the server, then care must be taken before running the application to create the topic with the desired number of partitions.

If you want to have full control over how partitions are allocated, then leave the default settings as they are, i.e. do not exclude the kafka broker jar and ensure that spring.cloud.stream.kafka.binder.autoCreateTopics is set to true, which is the default.

Part II. Appendices

Appendix A. Building

A.1 Basic Compile and Test

To build the source you will need to install JDK 1.7.

The build uses the Maven wrapper so you don’t have to install a specific version of Maven. To enable the tests, you should have Kafka server 0.9 or above running before building. See below for more information on running the servers.

The main build command is

$ ./mvnw clean install

You can also add '-DskipTests' if you like, to avoid running the tests.

[Note]Note

You can also install Maven (>=3.3.3) yourself and run the mvn command in place of ./mvnw in the examples below. If you do that you also might need to add -P spring if your local Maven settings do not contain repository declarations for spring pre-release artifacts.

[Note]Note

Be aware that you might need to increase the amount of memory available to Maven by setting a MAVEN_OPTS environment variable with a value like -Xmx512m -XX:MaxPermSize=128m. We try to cover this in the .mvn configuration, so if you find you have to do it to make a build succeed, please raise a ticket to get the settings added to source control.

The projects that require middleware generally include a docker-compose.yml, so consider using Docker Compose to run the middeware servers in Docker containers.

A.2 Documentation

There is a "full" profile that will generate documentation.

A.3 Working with the code

If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or Eclipse when working with the code. We use the m2eclipe eclipse plugin for maven support. Other IDEs and tools should also work without issue.

A.3.1 Importing into eclipse with m2eclipse

We recommend the m2eclipe eclipse plugin when working with eclipse. If you don’t already have m2eclipse installed it is available from the "eclipse marketplace".

Unfortunately m2e does not yet support Maven 3.3, so once the projects are imported into Eclipse you will also need to tell m2eclipse to use the .settings.xml file for the projects. If you do not do this you may see many different errors related to the POMs in the projects. Open your Eclipse preferences, expand the Maven preferences, and select User Settings. In the User Settings field click Browse and navigate to the Spring Cloud project you imported selecting the .settings.xml file in that project. Click Apply and then OK to save the preference changes.

[Note]Note

Alternatively you can copy the repository settings from .settings.xml into your own ~/.m2/settings.xml.

A.3.2 Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following command:

$ ./mvnw eclipse:eclipse

The generated eclipse projects can be imported by selecting import existing projects from the file menu. [[contributing] == Contributing

Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard Github development process, using Github tracker for issues and merging pull requests into master. If you want to contribute even something trivial please do not hesitate, but follow the guidelines below.

A.4 Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the contributor’s agreement. Signing the contributor’s agreement does not grant anyone commit rights to the main repository, but it does mean that we can accept your contributions, and you will get an author credit if we do. Active contributors might be asked to join the core team, and given the ability to merge pull requests.

A.5 Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help. They can also be added after the original pull request but before a merge.

  • Use the Spring Framework code format conventions. If you use Eclipse you can import formatter settings using the eclipse-code-formatter.xml file from the Spring Cloud Build project. If using IntelliJ, you can use the Eclipse Code Formatter Plugin to import the same file.
  • Make sure all new .java files to have a simple Javadoc class comment with at least an @author tag identifying you, and preferably at least a paragraph on what the class is for.
  • Add the ASF license header comment to all new .java files (copy from existing files in the project)
  • Add yourself as an @author to the .java files that you modify substantially (more than cosmetic changes).
  • Add some Javadocs and, if you change the namespace, some XSD doc elements.
  • A few unit tests would help a lot as well — someone has to do it.
  • If no-one else is using your branch, please rebase it against the current master (or other target branch in the main project).
  • When writing a commit message please follow these conventions, if you are fixing an existing issue please add Fixes gh-XXXX at the end of the commit message (where XXXX is the issue number).