Spring Cloud Stream RabbitMQ Binder Reference Guide
Table of Contents
	I. Reference Guide	1. Usage
	2. RabbitMQ Binder Overview
	3. Configuration Options	RabbitMQ Binder Properties
	RabbitMQ Consumer Properties
	Rabbit Producer Properties

	4. Dead-Letter Queue Processing	Non-Partioned Destinations
	Partitioned Destinations	republishToDlq=false
	republishToDlq=true

	II. Appendices	A. Building	Basic Compile and Test
	Documentation
	Working with the code	Importing into eclipse with m2eclipse
	Importing into eclipse without m2eclipse

	B. Contributing	Sign the Contributor License Agreement
	Code Conventions and Housekeeping

List of Figures
	2.1. RabbitMQ Binder

Spring Cloud Stream RabbitMQ Binder Reference Guide

Sabby Anandan, Marius Bogoevici, Eric Bottard, Mark Fisher, Ilayaperumal Gopinathan, Gunnar Hillert, Mark Pollack, Patrick Peralta, Glenn Renfro, Thomas Risberg, Dave Syer, David Turanski, Janne Valkealahti, Benjamin Klein, Gary Russell

1.1.1.RELEASE

Copyright © 2013-2016 Pivotal Software, Inc.

		Copies of this document may be made for your own use and for distribution to
		others, provided that you do not charge any fee for such copies and further
		provided that each copy contains this Copyright Notice, whether distributed in
		print or electronically.
	

Part I. Reference Guide

This guide describes the RabbitMQ implementation of the Spring Cloud Stream Binder.
It contains information about its design, usage and configuration options, as well as information on how the Stream Cloud Stream concepts map into RabbitMQ specific constructs.

Chapter 1. Usage

For using the RabbitMQ binder, you just need to add it to your Spring Cloud Stream application, using the following Maven coordinates:
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-stream-binder-rabbit</artifactId>
</dependency>
Alternatively, you can also use the Spring Cloud Stream RabbitMQ Starter.
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-stream-rabbit</artifactId>
</dependency>
Chapter 2. RabbitMQ Binder Overview

A simplified diagram of how the RabbitMQ binder operates can be seen below.
Figure 2.1. RabbitMQ Binder
	[image: rabbit binder]

The RabbitMQ Binder implementation maps each destination to a TopicExchange.
For each consumer group, a Queue will be bound to that TopicExchange.
Each consumer instance have a corresponding RabbitMQ Consumer instance for its group’s Queue.
For partitioned producers/consumers the queues are suffixed with the partition index and use the partition index as routing key.
Using the autoBindDlq option, you can optionally configure the binder to create and configure dead-letter queues (DLQs) (and a dead-letter exchange DLX).
The dead letter queue has the name of the destination, appended with .dlq.
If retry is enabled (maxAttempts > 1) failed messages will be delivered to the DLQ.
If retry is disabled (maxAttempts = 1), you should set requeueRejected to false (default) so that a failed message will be routed to the DLQ, instead of being requeued.
In addition, republishToDlq causes the binder to publish a failed message to the DLQ (instead of rejecting it); this enables additional information to be added to the message in headers, such as the stack trace in the x-exception-stacktrace header.
This option does not need retry enabled; you can republish a failed message after just one attempt.
Important
Setting requeueRejected to true will cause the message to be requeued and redelivered continually, which is likely not what you want unless the failure issue is transient.
In general, it’s better to enable retry within the binder by setting maxAttempts to greater than one, or set republishToDlq to true.

See the section called “RabbitMQ Binder Properties” for more information about these properties.
The framework does not provide any standard mechanism to consume dead-letter messages (or to re-route them back to the primary queue).
Some options are described in Chapter 4, Dead-Letter Queue Processing.
Chapter 3. Configuration Options

This section contains settings specific to the RabbitMQ Binder and bound channels.
For general binding configuration options and properties,
please refer to the Spring Cloud Stream core documentation.
RabbitMQ Binder Properties

By default, the RabbitMQ binder uses Spring Boot’s ConnectionFactory, and it therefore supports all Spring Boot configuration options for RabbitMQ.
(For reference, consult the Spring Boot documentation.)
RabbitMQ configuration options use the spring.rabbitmq prefix.
In addition to Spring Boot options, the RabbitMQ binder supports the following properties:
	spring.cloud.stream.rabbit.binder.adminAddresses
	 A comma-separated list of RabbitMQ management plugin URLs.
Only used when nodes contains more than one entry.
Each entry in this list must have a corresponding entry in spring.rabbitmq.addresses.
Default: empty.

	spring.cloud.stream.rabbit.binder.nodes
	 A comma-separated list of RabbitMQ node names.
When more than one entry, used to locate the server address where a queue is located.
Each entry in this list must have a corresponding entry in spring.rabbitmq.addresses.
Default: empty.

	spring.cloud.stream.rabbit.binder.compressionLevel
	 Compression level for compressed bindings.
See java.util.zip.Deflater.
Default: 1 (BEST_LEVEL).

RabbitMQ Consumer Properties

The following properties are available for Rabbit consumers only and
must be prefixed with spring.cloud.stream.rabbit.bindings.<channelName>.consumer..
	acknowledgeMode
	The acknowledge mode.
Default: AUTO.

	autoBindDlq
	Whether to automatically declare the DLQ and bind it to the binder DLX.
Default: false.

	durableSubscription
	 Whether subscription should be durable.
Only effective if group is also set.
Default: true.

	maxConcurrency
	Default: 1.
	prefetch
	Prefetch count.
Default: 1.

	prefix
	A prefix to be added to the name of the destination and queues.
Default: "".

	recoveryInterval
	The interval between connection recovery attempts, in milliseconds.
Default: 5000.

	requeueRejected
	Whether delivery failures should be requeued when retry is disabled or republishToDlq is false.
Default: false.

	requestHeaderPatterns
	The request headers to be transported.
Default: [STANDARD_REQUEST_HEADERS,'*'].

	replyHeaderPatterns
	The reply headers to be transported.
Default: [STANDARD_REPLY_HEADERS,'*'].

	republishToDlq
	 By default, messages which fail after retries are exhausted are rejected.
If a dead-letter queue (DLQ) is configured, RabbitMQ will route the failed message (unchanged) to the DLQ.
If set to true, the binder will republish failed messages to the DLQ with additional headers, including the exception message and stack trace from the cause of the final failure.
Default: false

	transacted
	Whether to use transacted channels.
Default: false.

	txSize
	The number of deliveries between acks.
Default: 1.

Rabbit Producer Properties

The following properties are available for Rabbit producers only and
must be prefixed with spring.cloud.stream.rabbit.bindings.<channelName>.producer..
	autoBindDlq
	Whether to automatically declare the DLQ and bind it to the binder DLX.
Default: false.

	batchingEnabled
	Whether to enable message batching by producers.
Default: false.

	batchSize
	The number of messages to buffer when batching is enabled.
Default: 100.

	batchBufferLimit
	Default: 10000.
	batchTimeout
	Default: 5000.
	compress
	Whether data should be compressed when sent.
Default: false.

	deliveryMode
	Delivery mode.
Default: PERSISTENT.

	prefix
	A prefix to be added to the name of the destination exchange.
Default: "".

	requestHeaderPatterns
	The request headers to be transported.
Default: [STANDARD_REQUEST_HEADERS,'*'].

	replyHeaderPatterns
	The reply headers to be transported.
Default: [STANDARD_REPLY_HEADERS,'*'].

Note
In the case of RabbitMQ, content type headers can be set by external applications.
Spring Cloud Stream supports them as part of an extended internal protocol used for any type of transport (including transports, such as Kafka, that do not normally support headers).

Chapter 4. Dead-Letter Queue Processing

Because it can’t be anticipated how users would want to dispose of dead-lettered messages, the framework does not provide any standard mechanism to handle them.
If the reason for the dead-lettering is transient, you may wish to route the messages back to the original queue.
However, if the problem is a permanent issue, that could cause an infinite loop.
The following spring-boot application is an example of how to route those messages back to the original queue, but moves them to a third "parking lot" queue after three attempts.
The second example utilizes the RabbitMQ Delayed Message Exchange to introduce a delay to the requeued message.
In this example, the delay increases for each attempt.
These examples use a @RabbitListener to receive messages from the DLQ, you could also use RabbitTemplate.receive() in a batch process.
The examples assume the original destination is so8400in and the consumer group is so8400.
Non-Partioned Destinations

The first two examples are when the destination is not partitioned.
@SpringBootApplication
public class ReRouteDlqApplication {

 private static final String ORIGINAL_QUEUE = "so8400in.so8400";

 private static final String DLQ = ORIGINAL_QUEUE + ".dlq";

 private static final String PARKING_LOT = ORIGINAL_QUEUE + ".parkingLot";

 private static final String X_RETRIES_HEADER = "x-retries";

 public static void main(String[] args) throws Exception {
 ConfigurableApplicationContext context = SpringApplication.run(ReRouteDlqApplication.class, args);
 System.out.println("Hit enter to terminate");
 System.in.read();
 context.close();
 }

 @Autowired
 private RabbitTemplate rabbitTemplate;

 @RabbitListener(queues = DLQ)
 public void rePublish(Message failedMessage) {
 Integer retriesHeader = (Integer) failedMessage.getMessageProperties().getHeaders().get(X_RETRIES_HEADER);
 if (retriesHeader == null) {
 retriesHeader = Integer.valueOf(0);
 }
 if (retriesHeader < 3) {
 failedMessage.getMessageProperties().getHeaders().put(X_RETRIES_HEADER, retriesHeader + 1);
 this.rabbitTemplate.send(ORIGINAL_QUEUE, failedMessage);
 }
 else {
 this.rabbitTemplate.send(PARKING_LOT, failedMessage);
 }
 }

 @Bean
 public Queue parkingLot() {
 return new Queue(PARKING_LOT);
 }

}
@SpringBootApplication
public class ReRouteDlqApplication {

 private static final String ORIGINAL_QUEUE = "so8400in.so8400";

 private static final String DLQ = ORIGINAL_QUEUE + ".dlq";

 private static final String PARKING_LOT = ORIGINAL_QUEUE + ".parkingLot";

 private static final String X_RETRIES_HEADER = "x-retries";

 private static final String DELAY_EXCHANGE = "dlqReRouter";

 public static void main(String[] args) throws Exception {
 ConfigurableApplicationContext context = SpringApplication.run(ReRouteDlqApplication.class, args);
 System.out.println("Hit enter to terminate");
 System.in.read();
 context.close();
 }

 @Autowired
 private RabbitTemplate rabbitTemplate;

 @RabbitListener(queues = DLQ)
 public void rePublish(Message failedMessage) {
 Map<String, Object> headers = failedMessage.getMessageProperties().getHeaders();
 Integer retriesHeader = (Integer) headers.get(X_RETRIES_HEADER);
 if (retriesHeader == null) {
 retriesHeader = Integer.valueOf(0);
 }
 if (retriesHeader < 3) {
 headers.put(X_RETRIES_HEADER, retriesHeader + 1);
 headers.put("x-delay", 5000 * retriesHeader);
 this.rabbitTemplate.send(DELAY_EXCHANGE, ORIGINAL_QUEUE, failedMessage);
 }
 else {
 this.rabbitTemplate.send(PARKING_LOT, failedMessage);
 }
 }

 @Bean
 public DirectExchange delayExchange() {
 DirectExchange exchange = new DirectExchange(DELAY_EXCHANGE);
 exchange.setDelayed(true);
 return exchange;
 }

 @Bean
 public Binding bindOriginalToDelay() {
 return BindingBuilder.bind(new Queue(ORIGINAL_QUEUE)).to(delayExchange()).with(ORIGINAL_QUEUE);
 }

 @Bean
 public Queue parkingLot() {
 return new Queue(PARKING_LOT);
 }

}
Partitioned Destinations

With partitioned destinations, there is one DLQ for all partitions and we determine the original queue from the headers.
republishToDlq=false

When republishToDlq is false, RabbitMQ publishes the message to the DLX/DLQ with an x-death header containing information about the original destination.
@SpringBootApplication
public class ReRouteDlqApplication {

	private static final String ORIGINAL_QUEUE = "so8400in.so8400";

	private static final String DLQ = ORIGINAL_QUEUE + ".dlq";

	private static final String PARKING_LOT = ORIGINAL_QUEUE + ".parkingLot";

	private static final String X_DEATH_HEADER = "x-death";

	private static final String X_RETRIES_HEADER = "x-retries";

	public static void main(String[] args) throws Exception {
		ConfigurableApplicationContext context = SpringApplication.run(ReRouteDlqApplication.class, args);
		System.out.println("Hit enter to terminate");
		System.in.read();
		context.close();
	}

	@Autowired
	private RabbitTemplate rabbitTemplate;

	@SuppressWarnings("unchecked")
	@RabbitListener(queues = DLQ)
	public void rePublish(Message failedMessage) {
		Map<String, Object> headers = failedMessage.getMessageProperties().getHeaders();
		Integer retriesHeader = (Integer) headers.get(X_RETRIES_HEADER);
		if (retriesHeader == null) {
			retriesHeader = Integer.valueOf(0);
		}
		if (retriesHeader < 3) {
			headers.put(X_RETRIES_HEADER, retriesHeader + 1);
			List<Map<String, ?>> xDeath = (List<Map<String, ?>>) headers.get(X_DEATH_HEADER);
			String exchange = (String) xDeath.get(0).get("exchange");
			List<String> routingKeys = (List<String>) xDeath.get(0).get("routing-keys");
			this.rabbitTemplate.send(exchange, routingKeys.get(0), failedMessage);
		}
		else {
			this.rabbitTemplate.send(PARKING_LOT, failedMessage);
		}
	}

	@Bean
	public Queue parkingLot() {
		return new Queue(PARKING_LOT);
	}

}
republishToDlq=true

When republishToDlq is true, the republishing recoverer adds the original exchange and routing key to headers.
@SpringBootApplication
public class ReRouteDlqApplication {

	private static final String ORIGINAL_QUEUE = "so8400in.so8400";

	private static final String DLQ = ORIGINAL_QUEUE + ".dlq";

	private static final String PARKING_LOT = ORIGINAL_QUEUE + ".parkingLot";

	private static final String X_RETRIES_HEADER = "x-retries";

	private static final String X_ORIGINAL_EXCHANGE_HEADER = RepublishMessageRecoverer.X_ORIGINAL_EXCHANGE;

	private static final String X_ORIGINAL_ROUTING_KEY_HEADER = RepublishMessageRecoverer.X_ORIGINAL_ROUTING_KEY;

	public static void main(String[] args) throws Exception {
		ConfigurableApplicationContext context = SpringApplication.run(ReRouteDlqApplication.class, args);
		System.out.println("Hit enter to terminate");
		System.in.read();
		context.close();
	}

	@Autowired
	private RabbitTemplate rabbitTemplate;

	@RabbitListener(queues = DLQ)
	public void rePublish(Message failedMessage) {
		Map<String, Object> headers = failedMessage.getMessageProperties().getHeaders();
		Integer retriesHeader = (Integer) headers.get(X_RETRIES_HEADER);
		if (retriesHeader == null) {
			retriesHeader = Integer.valueOf(0);
		}
		if (retriesHeader < 3) {
			headers.put(X_RETRIES_HEADER, retriesHeader + 1);
			String exchange = (String) headers.get(X_ORIGINAL_EXCHANGE_HEADER);
			String originalRoutingKey = (String) headers.get(X_ORIGINAL_ROUTING_KEY_HEADER);
			this.rabbitTemplate.send(exchange, originalRoutingKey, failedMessage);
		}
		else {
			this.rabbitTemplate.send(PARKING_LOT, failedMessage);
		}
	}

	@Bean
	public Queue parkingLot() {
		return new Queue(PARKING_LOT);
	}

}
Part II. Appendices

Appendix A. Building

Basic Compile and Test

To build the source you will need to install JDK 1.7.
The build uses the Maven wrapper so you don’t have to install a specific
version of Maven. To enable the tests, you should have Kafka server 0.9 or above running
before building. See below for more information on running the servers.
The main build command is
$./mvnw clean install
You can also add '-DskipTests' if you like, to avoid running the tests.
Note
You can also install Maven (>=3.3.3) yourself and run the mvn command
in place of ./mvnw in the examples below. If you do that you also
might need to add -P spring if your local Maven settings do not
contain repository declarations for spring pre-release artifacts.

Note
Be aware that you might need to increase the amount of memory
available to Maven by setting a MAVEN_OPTS environment variable with
a value like -Xmx512m -XX:MaxPermSize=128m. We try to cover this in
the .mvn configuration, so if you find you have to do it to make a
build succeed, please raise a ticket to get the settings added to
source control.

The projects that require middleware generally include a
docker-compose.yml, so consider using
Docker Compose to run the middeware servers
in Docker containers.
Documentation

There is a "full" profile that will generate documentation.
Working with the code

If you don’t have an IDE preference we would recommend that you use
Spring Tools Suite or
Eclipse when working with the code. We use the
m2eclipe eclipse plugin for maven support. Other IDEs and tools
should also work without issue.
Importing into eclipse with m2eclipse

We recommend the m2eclipe eclipse plugin when working with
eclipse. If you don’t already have m2eclipse installed it is available from the "eclipse
marketplace".
Unfortunately m2e does not yet support Maven 3.3, so once the projects
are imported into Eclipse you will also need to tell m2eclipse to use
the .settings.xml file for the projects. If you do not do this you
may see many different errors related to the POMs in the
projects. Open your Eclipse preferences, expand the Maven
preferences, and select User Settings. In the User Settings field
click Browse and navigate to the Spring Cloud project you imported
selecting the .settings.xml file in that project. Click Apply and
then OK to save the preference changes.
Note
Alternatively you can copy the repository settings from .settings.xml into your own ~/.m2/settings.xml.

Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the
following command:
$./mvnw eclipse:eclipse
The generated eclipse projects can be imported by selecting import existing projects
from the file menu.
Appendix B. Contributing

Spring Cloud is released under the non-restrictive Apache 2.0 license,
and follows a very standard Github development process, using Github
tracker for issues and merging pull requests into master. If you want
to contribute even something trivial please do not hesitate, but
follow the guidelines below.
Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the
contributor’s agreement.
Signing the contributor’s agreement does not grant anyone commit rights to the main
repository, but it does mean that we can accept your contributions, and you will get an
author credit if we do. Active contributors might be asked to join the core team, and
given the ability to merge pull requests.
Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help. They can also be
added after the original pull request but before a merge.
	Use the Spring Framework code format conventions. If you use Eclipse
you can import formatter settings using the
eclipse-code-formatter.xml file from the
Spring
Cloud Build project. If using IntelliJ, you can use the
Eclipse Code Formatter
Plugin to import the same file.
	Make sure all new .java files to have a simple Javadoc class comment with at least an
@author tag identifying you, and preferably at least a paragraph on what the class is
for.
	Add the ASF license header comment to all new .java files (copy from existing files
in the project)
	Add yourself as an @author to the .java files that you modify substantially (more
than cosmetic changes).
	Add some Javadocs and, if you change the namespace, some XSD doc elements.
	A few unit tests would help a lot as well — someone has to do it.
	If no-one else is using your branch, please rebase it against the current master (or
other target branch in the main project).
	When writing a commit message please follow these conventions,
if you are fixing an existing issue please add Fixes gh-XXXX at the end of the commit
message (where XXXX is the issue number).

