
Spring Cloud Stream Reference Guide

1.0.0.M4

Copyright © 2013-2016Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Cloud Stream Reference Guide

1.0.0.M4 Spring Cloud Stream ii

Table of Contents

I. Reference Guide ... 1
1. Spring Cloud Stream Overview .. 2

1.1. Introducing Spring Cloud Stream .. 2
Multiple Input or Output Channels ... 3
Inter-app Communication .. 3
Consumer Group Support ... 3
Instance Index and Instance Count .. 4
Advanced Binding Properties ... 4

Partitioning .. 5
1.2. Binder Selection ... 6

Classpath Detection .. 6
Multiple Binders on the Classpath ... 6
Connecting to Multiple Systems ... 6

1.3. Managed vs Standalone ... 7
Fat JAR .. 7
Health Indicator .. 7

1.4. Binder SPI ... 7
Producers and Consumers .. 8
Kafka Binder ... 8
RabbitMQ Binder .. 9
Redis Binder ... 9

II. Samples ... 10
2. Sample Applications .. 11

III. Appendices .. 12
A. Building .. 13

A.1. Basic Compile and Test ... 13
A.2. Documentation ... 13
A.3. Working with the code ... 13

Importing into eclipse with m2eclipse ... 13
Importing into eclipse without m2eclipse ... 14

A.4. Sign the Contributor License Agreement ... 14
A.5. Code Conventions and Housekeeping .. 14

Part I. Reference Guide

Spring Cloud Stream Reference Guide

1.0.0.M4 Spring Cloud Stream 2

1. Spring Cloud Stream Overview

1.1 Introducing Spring Cloud Stream

The Spring Cloud Stream project allows a user to develop and run messaging microservices using
Spring Integration. Just add @EnableBinding and run your app as a Spring Boot app (single
application context). Spring Cloud Stream applications connect to the physical broker through bindings,
which link Spring Integration channels to physical broker destinations, for either input (consumer
bindings) or output (producer bindings). The creation of the bindings, and therefore their broker-specific
implementation is handled by a binder, which is another important abstraction of Spring Cloud Stream.
Binders abstract out the broker-specific implementation details. In order to connect to a specific type of
broker (e.g. Rabbit or Kafka) you just need to have the relevant binder implementation on the classpath.

Here’s a sample source app (output channel only):

@SpringBootApplication

public class StreamApplication {

 public static void main(String[] args) {

 SpringApplication.run(StreamApplication.class, args);

 }

}

@EnableBinding(Source.class)

public class TimerSource {

 @Value("${format}")

 private String format;

 @Bean

 @InboundChannelAdapter(value = Source.OUTPUT, poller = @Poller(fixedDelay = "${fixedDelay}",

 maxMessagesPerPoll = "1"))

 public MessageSource<String> timerMessageSource() {

 return () -> new GenericMessage<>(new SimpleDateFormat(format).format(new Date()));

 }

}

@EnableBinding is parameterized by one or more interfaces (in this case a single Source interface),
which declares input and/or output channels. The interfaces Source, Sink and Processor are
provided off the shelf, but you can define others. Here’s the definition of Source:

public interface Source {

 String OUTPUT = "output";

 @Output(Source.OUTPUT)

 MessageChannel output();

}

The @Output annotation is used to identify output channels (messages leaving the app), and @Input is
used to identify input channels (messages entering the app). It is optionally parameterized by a channel
name - if the name is not provided the method name is used instead. An implementation of the interface
is created for you and can be used in the application context by autowiring it, e.g. into a test case:

@RunWith(SpringJUnit4ClassRunner.class)

@SpringApplicationConfiguration(classes = StreamApplication.class)

@WebAppConfiguration

@DirtiesContext

public class StreamApplicationTests {

 @Autowired

 private Source source

Spring Cloud Stream Reference Guide

1.0.0.M4 Spring Cloud Stream 3

 @Test

 public void contextLoads() {

 assertNotNull(this.source.output());

 }

}

Note

In this case there is only one Source in the application context so there is no need to qualify it
when it is autowired. If there is ambiguity, e.g. if you are composing one application from some
others, you can use the @Bindings qualifier to inject a specific channel set. The @Bindings
qualifier takes a parameter which is the class that carries the @EnableBinding annotation (in
this case the TimerSource).

Multiple Input or Output Channels

A stream app can have multiple input or output channels defined as @Input and @Output
methods in an interface. Instead of just one channel named "input" or "output", you can add
multiple MessageChannel methods annotated with @Input or @Output, and their names will
be converted to external destination names on the broker. It is common to specify the channel
names at runtime in order to have multiple applications communicate over well known destination
names. Channel names can be specified as properties that consist of the channel names prefixed
with spring.cloud.stream.bindings (e.g. spring.cloud.stream.bindings.input or
spring.cloud.stream.bindings.output). These properties can be specified though
environment variables, the application YAML file, or any of the other mechanisms supported by Spring
Boot.

For example, you can have two MessageChannels called "default" and "tap" in
an application with spring.cloud.stream.bindings.default.destination=foo and
spring.cloud.stream.bindings.tap.destination=bar, and the result is 2 bindings to an
external broker with destinations called "foo" and "bar".

Inter-app Communication

While Spring Cloud Stream makes it easy for individual boot apps to connect to messaging systems, the
typical scenario for Spring Cloud Stream is the creation of multi-app pipelines, where microservice apps
are sending data to each other. This can be achieved by correlating the input and output destinations
of adjacent apps, as in the following example.

Supposing that the design calls for the time-source app to send data to the log-sink app, we
will use a common destination named ticktock for bindings within both apps. time-source will set
spring.cloud.stream.bindings.output.destination=ticktock, and log-sink will set
spring.cloud.stream.bindings.input.destination=ticktock.

Consumer Group Support

Spring Cloud Stream is a library focusing on building message-driven microservices, and more
specifically stream processing applications. In such scenarios, communication between different logical
applications follows a publish-subscribe pattern, with data being broadcast through a shared topic, but at
the same time, it is important to be able to scale up by creating multiple instances of a given application,
which are in a competing consumer relationship with each other.

Spring Cloud Stream Reference Guide

1.0.0.M4 Spring Cloud Stream 4

Spring Cloud Stream models this behavior through the concept of a consumer group, which is similar
to the notion of consumer groups in Kafka. Each consumer binding can specify a group name such as
spring.cloud.stream.bindings.input.group=foo (the actual name of the binding may vary).
Each consumer group bound to a given destination will receive a copy of the published data, but within
the group, only one application will receive each specific message.

If no consumer group is specified for a given binding, then the binding is treated as if belonging to an
anonymous, independent, single-member consumer group. Otherwise said, if no consumer group is
specified for a binding, it will be in a publish-subscribe relationship with any other consumer groups.

In general, it is preferable to always specify a consumer group when binding an application to a given
destination. When scaling up a Spring Cloud Stream application, a consumer group must be specified
for each of its input bindings, in order to prevent its instances from receiving duplicate messages (unless
that behavior is desired, which is a less common use case).

Note

This feature has been introduced since version 1.0.0.M4.

Instance Index and Instance Count

When scaling up Spring Cloud Stream applications, each instance can receive information
about how many other instances of the same application exist and what its own
instance index is. This is done through the spring.cloud.stream.instanceCount and
spring.cloud.stream.instanceIndex properties. For example, if there are 3 instances of the
HDFS sink application, all three will have spring.cloud.stream.instanceCount set to 3, and
the applications will have spring.cloud.stream.instanceIndex set to 0, 1 and 2, respectively.
When Spring Cloud Stream applications are deployed via Spring Cloud Data Flow, these properties
are configured automatically, but when Spring Cloud Stream applications are launched independently,
these properties must be set correctly. By default spring.cloud.stream.instanceCount is 1, and
spring.cloud.stream.instanceIndex is 0.

Setting up the two properties correctly on scale up scenarios is important for addressing partitioning
behavior in general (see below), and they are always required by certain types of binders (e.g. the Kafka
binder) in order to ensure that data is split correctly across multiple consumer instances.

Advanced Binding Properties

The input and output destination names are the primary properties to
set in order to have Spring Cloud Stream applications communicate
with each other as their channels are bound to an external message
broker automatically. However, there are a number of scenarios where
it is required to configure other attributes besides the destination name.
This is done using the following naming scheme:
spring.cloud.stream.bindings.<channelName>.<attributeName>=<attributeValue>.
The destination attribute is one such example:
spring.cloud.stream.bindings.input.destination=foo. A shorthand equivalent can be
used as follows: spring.cloud.stream.bindings.input=foo, but that shorthand can only
be used only when there are no other attributes to set on the binding. In other words,
spring.cloud.stream.bindings.input.destination=foo,spring.cloud.stream.bindings.input.partitioned=true
is a valid setup, whereas

Spring Cloud Stream Reference Guide

1.0.0.M4 Spring Cloud Stream 5

spring.cloud.stream.bindings.input=foo,spring.cloud.stream.bindings.input.partitioned=true
is not.

Partitioning

Spring Cloud Stream provides support for partitioning data between multiple instances of a given
application. In a partitioned scenario, one or more producer apps will send data to one or more consumer
apps, ensuring that data with common characteristics is processed by the same consumer instance. The
physical communication medium (i.e. the broker topic or queue) is viewed as structured into multiple
partitions. Regardless of whether the broker type is naturally partitioned (e.g. Kafka) or not (e.g. Rabbit),
Spring Cloud Stream provides a common abstraction for implementing partitioned processing use cases
in a uniform fashion.

Setting up a partitioned processing scenario requires configuring both the data producing and the data
consuming end.

Configuring Output Bindings for Partitioning

An output binding is configured to send partitioned data, by setting one
and only one of its partitionKeyExpression or partitionKeyExtractorClass

properties, as well as its partitionCount property. For example, setting
spring.cloud.stream.bindings.output.partitionKeyExpression=payload.id,spring.cloud.stream.bindings.output.partitionCount=5
is a valid and typical configuration.

Based on this configuration, the data will be sent to the target partition using the following
logic. A partition key’s value is calculated for each message sent to a partitioned output channel
based on the partitionKeyExpression. The partitionKeyExpression is a SpEL expression
that is evaluated against the outbound message for extracting the partitioning key. If a SpEL
expression is not sufficient for your needs, you can instead calculate the partition key value by
setting the property partitionKeyExtractorClass. This class must implement the interface
org.springframework.cloud.stream.binder.PartitionKeyExtractorStrategy. While,
in general, the SpEL expression should suffice, more complex cases may use the custom
implementation strategy.

Once the message key is calculated, the partition selection process will determine the
target partition as a value between 0 and partitionCount - 1. The default
calculation, applicable in most scenarios is based on the formula key.hashCode() %

partitionCount. This can be customized on the binding, either by setting a SpEL expression
to be evaluated against the key via the partitionSelectorExpression property, or
by setting a org.springframework.cloud.stream.binder.PartitionSelectorStrategy
implementation via the partitionSelectorClass property.

Additional properties can be configured for more advanced scenarios, as described in the following
section.

Configuring Input Bindings for Partitioning

An input binding is configured to receive partitioned data by setting its partitioned property,
as well as the instance index and instance count properties on the app itself, as follows:
spring.cloud.stream.bindings.input.partitioned=true,spring.cloud.stream.instanceIndex=3,spring.cloud.stream.instanceCount=5.
The instance count value represents the total number of app instances between which the data needs to
be partitioned, whereas instance index must be a unique value across the multiple instances, between 0
and instanceCount - 1. The instance index helps each app instance to identify the unique partition

Spring Cloud Stream Reference Guide

1.0.0.M4 Spring Cloud Stream 6

(or in the case of Kafka, the partition set) from which it receives data. It is important that both values
are set correctly in order to ensure that all the data is consumed, and that the app instances receive
mutually exclusive datasets.

While setting up multiple instances for partitioned data processing may be complex in the standalone
case, Spring Cloud Data Flow can simplify the process significantly, by populating both the input and
output values correctly, as well as relying on the runtime infrastructure to provide information about the
instance index and instance count.

1.2 Binder Selection

Spring Cloud Stream relies on implementations of the Binder SPI to perform the task of connecting
channels to message brokers. Each Binder implementation typically connects to one type of messaging
system. Spring Cloud Stream provides out of the box binders for Kafka, RabbitMQ and Redis.

Classpath Detection

By default, Spring Cloud Stream relies on Spring Boot’s auto-configuration to configure the binding
process. If a single binder implementation is found on the classpath, Spring Cloud Stream will use it
automatically. So, for example, a Spring Cloud Stream project that aims to bind only to RabbitMQ can
simply add the following dependency:

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-stream-binder-rabbit</artifactId>

</dependency>

Multiple Binders on the Classpath

When multiple binders are present on the classpath, the application must indicate which binder is to be
used for each channel binding. Each binder configuration contains a META-INF/spring.binders,
which is a simple properties file:

rabbit:\

org.springframework.cloud.stream.binder.rabbit.config.RabbitServiceAutoConfiguration

Similar files exist for the other binder implementations (i.e. Kafka and Redis), and it is
expected that custom binder implementations will provide them, too. The key represents an
identifying name for the binder implementation, whereas the value is a comma-separated
list of configuration classes that contain one and only one bean definition of the type
org.springframework.cloud.stream.binder.Binder.

Selecting the binder can be done globally by either using the
spring.cloud.stream.defaultBinder property, e.g.
spring.cloud.stream.defaultBinder=rabbit, or by individually configuring them on each
channel binding.

For instance, a processor app that reads from Kafka
and writes to Rabbit can specify the following configuration:
spring.cloud.stream.bindings.input.binder=kafka,spring.cloud.stream.bindings.output.binder=rabbit.

Connecting to Multiple Systems

By default, binders share the Spring Boot auto-configuration of the application and create one instance
of each binder found on the classpath. In scenarios where an application should connect to more than

Spring Cloud Stream Reference Guide

1.0.0.M4 Spring Cloud Stream 7

one broker of the same type, Spring Cloud Stream allows you to specify multiple binder configurations,
with different environment settings. Please note that turning on explicit binder configuration will disable
the default binder configuration process altogether, so all the binders in use must be included in the
configuration.

For example, this is the typical configuration for a processor that connects to two RabbitMQ broker
instances:

spring:

 cloud:

 stream:

 bindings:

 input:

 destination: foo

 binder: rabbit1

 output:

 destination: bar

 binder: rabbit2

 binders:

 rabbit1:

 type: rabbit

 environment:

 spring:

 rabbit:

 host: <host1>

 rabbit2:

 type: rabbit

 environment:

 spring:

 rabbit:

 host: <host2>

1.3 Managed vs Standalone

Code using the Spring Cloud Stream library can be deployed as a standalone application or be used
as a Spring Cloud Data Flow module. In standalone mode, your application will run happily as a
service or in any PaaS (Cloud Foundry, Heroku, Azure, etc.). Spring Cloud Data Flow helps orchestrate
the communication between instances, so the aspects of configuration that deal with application
interconnection will be configured transparently.

Fat JAR

You can run in standalone mode from your IDE for testing. To run in production you can create an
executable (or "fat") JAR using the standard Spring Boot tooling provided for Maven or Gradle.

Health Indicator

Spring Cloud Stream provides a health indicator for the binders, registered under the name of binders.
It can be enabled or disabled using the management.health.binders.enabled property.

1.4 Binder SPI

As described above, Spring Cloud Stream provides a binder abstraction for connecting to physical
destinations. This section will provide more information about the main concepts behind the Binder SPI,
its main components, as well as details specific to different implementations.

Spring Cloud Stream Reference Guide

1.0.0.M4 Spring Cloud Stream 8

Producers and Consumers

Figure 1.1. Producers and Consumers

A producer is any component that sends messages to a channel. That channel can be bound
to an external message broker via a Binder implementation for that broker. When invoking the
bindProducer method, the first parameter is the name of the destination within that broker. The second
parameter is the local channel instance to which the producer will be sending messages, and the third
parameter contains properties to be used within the adapter that is created for that channel, such as
a partition key expression.

A consumer is any component that receives messages from a channel. As with the producer, the
consumer’s channel can be bound to an external message broker, and the first parameter for the
bindConsumer method is the destination name. However, on the consumer side, a second parameter
provides the name of a logical group of consumers. Each group represented by consumer bindings
for a given destination will receive a copy of each message that a producer sends to that destination
(i.e. pub/sub semantics). If there are multiple consumer instances bound using the same group name,
then messages will be load balanced across those consumer instances so that each message sent
by a producer would only be consumed by a single consumer instance within each group (i.e. queue
semantics).

Kafka Binder

Figure 1.2. Kafka Binder

The Kafka Binder implementation maps the destination to a Kafka topic, and the consumer group maps
directly to the same Kafka concept. Spring Cloud Stream does not use the high level consumer, but
implements a similar concept for the simple consumer.

Spring Cloud Stream Reference Guide

1.0.0.M4 Spring Cloud Stream 9

RabbitMQ Binder

Figure 1.3. RabbitMQ Binder

The RabbitMQ Binder implementation maps the destination to a TopicExchange, and for each
consumer group, a Queue will be bound to that TopicExchange. Each consumer instance that binds
will trigger creation of a corresponding RabbitMQ Consumer instance for its group’s Queue.

Redis Binder

Figure 1.4. Redis Binder

Note

we recommend only using the Redis Binder for development

The Redis Binder creates a LIST (which performs the role of a queue) for each consumer group. A
consumer binding will trigger BRPOP operations on its group’s LIST. A producer binding will consult a
ZSET to determine what groups currently have active consumers, and then for each message being
sent, an LPUSH operation will be executed on each of those group’s LISTs.

Part II. Samples

Spring Cloud Stream Reference Guide

1.0.0.M4 Spring Cloud Stream 11

2. Sample Applications

There are several samples, all running on the redis transport (so you need redis running locally to test
them).

• source is a Java config version of the classic "timer" module from Spring XD. It has a "fixedDelay"
option (in milliseconds) for the period between emitting messages.

• sink is a Java config version of the classic "log" module from Spring XD. It has no options (but some
could easily be added), and just logs incoming messages at INFO level.

• transform is a simple pass through logging transformer (just logs the incoming message and passes
it on).

• double is a combination of 2 modules defined locally (a source and a sink, so the whole app is self
contained).

• extended is a multi-module mashup of source | transform | transform | sink, where
the modules are defined in the other samples and referred to in this app just as dependencies.

• multibinder is a sample application that shows how an application could use multiple binders. In
this case, the processor’s input/output channels connect to different brokers using their own binder
configurations.

• multibinder-differentsystems shows how an application could use same binder
implementation but different configurations for its channels. In this case, a processor’s input/output
channels connect to same binder implementation but with two separate broker configurations.

If you run the source and the sink and point them at the same redis instance (e.g. do nothing to get the
one on localhost, or the one they are both bound to as a service on Cloud Foundry) then they will form
a "stream" and start talking to each other. All the samples have friendly JMX and Actuator endpoints
for inspecting what is going on in the system.

Part III. Appendices

Spring Cloud Stream Reference Guide

1.0.0.M4 Spring Cloud Stream 13

Appendix A. Building
A.1 Basic Compile and Test

To build the source you will need to install JDK 1.7.

The build uses the Maven wrapper so you don’t have to install a specific version of Maven. To enable
the tests for Redis, Rabbit, and Kafka bindings you should have those servers running before building.
See below for more information on running the servers.

The main build command is

$./mvnw clean install

You can also add '-DskipTests' if you like, to avoid running the tests.

Note

You can also install Maven (>=3.3.3) yourself and run the mvn command in place of ./mvnw in
the examples below. If you do that you also might need to add -P spring if your local Maven
settings do not contain repository declarations for spring pre-release artifacts.

Note

Be aware that you might need to increase the amount of memory available to Maven by setting a
MAVEN_OPTS environment variable with a value like -Xmx512m -XX:MaxPermSize=128m. We
try to cover this in the .mvn configuration, so if you find you have to do it to make a build succeed,
please raise a ticket to get the settings added to source control.

The projects that require middleware generally include a docker-compose.yml, so consider using
Docker Compose to run the middeware servers in Docker containers. See the README in the scripts
demo repository for specific instructions about the common cases of mongo, rabbit and redis.

A.2 Documentation

There is a "full" profile that will generate documentation.

A.3 Working with the code

If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or Eclipse
when working with the code. We use the m2eclipe eclipse plugin for maven support. Other IDEs and
tools should also work without issue.

Importing into eclipse with m2eclipse

We recommend the m2eclipe eclipse plugin when working with eclipse. If you don’t already have
m2eclipse installed it is available from the "eclipse marketplace".

Unfortunately m2e does not yet support Maven 3.3, so once the projects are imported into Eclipse you
will also need to tell m2eclipse to use the .settings.xml file for the projects. If you do not do this
you may see many different errors related to the POMs in the projects. Open your Eclipse preferences,

http://compose.docker.io/
https://github.com/spring-cloud-samples/scripts
https://github.com/spring-cloud-samples/scripts
http://www.springsource.com/developer/sts
http://eclipse.org
http://eclipse.org/m2e/
http://eclipse.org/m2e/

Spring Cloud Stream Reference Guide

1.0.0.M4 Spring Cloud Stream 14

expand the Maven preferences, and select User Settings. In the User Settings field click Browse and
navigate to the Spring Cloud project you imported selecting the .settings.xml file in that project.
Click Apply and then OK to save the preference changes.

Note

Alternatively you can copy the repository settings from .settings.xml into your own ~/.m2/
settings.xml.

Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following
command:

$./mvnw eclipse:eclipse

The generated eclipse projects can be imported by selecting import existing projects from the
file menu. [[contributing] == Contributing

Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard
Github development process, using Github tracker for issues and merging pull requests into master. If
you want to contribute even something trivial please do not hesitate, but follow the guidelines below.

A.4 Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the contributor’s agreement.
Signing the contributor’s agreement does not grant anyone commit rights to the main repository, but
it does mean that we can accept your contributions, and you will get an author credit if we do. Active
contributors might be asked to join the core team, and given the ability to merge pull requests.

A.5 Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help. They can also be added after the
original pull request but before a merge.

• Use the Spring Framework code format conventions. If you use Eclipse you can import formatter
settings using the eclipse-code-formatter.xml file from the Spring Cloud Build project. If using
IntelliJ, you can use the Eclipse Code Formatter Plugin to import the same file.

• Make sure all new .java files to have a simple Javadoc class comment with at least an @author
tag identifying you, and preferably at least a paragraph on what the class is for.

• Add the ASF license header comment to all new .java files (copy from existing files in the project)

• Add yourself as an @author to the .java files that you modify substantially (more than cosmetic
changes).

• Add some Javadocs and, if you change the namespace, some XSD doc elements.

• A few unit tests would help a lot as well — someone has to do it.

• If no-one else is using your branch, please rebase it against the current master (or other target branch
in the main project).

https://github.com/spring-cloud/spring-cloud-build/blob/master/.settings.xml
https://support.springsource.com/spring_committer_signup
https://github.com/spring-cloud/build/tree/master/eclipse-coding-conventions.xml
http://plugins.jetbrains.com/plugin/6546

Spring Cloud Stream Reference Guide

1.0.0.M4 Spring Cloud Stream 15

• When writing a commit message please follow these conventions, if you are fixing an existing issue
please add Fixes gh-XXXX at the end of the commit message (where XXXX is the issue number).

http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

	Spring Cloud Stream Reference Guide
	Table of Contents
	Part I. Reference Guide
	1. Spring Cloud Stream Overview
	1.1 Introducing Spring Cloud Stream
	Multiple Input or Output Channels
	Inter-app Communication
	Consumer Group Support
	Instance Index and Instance Count
	Advanced Binding Properties
	Partitioning
	Configuring Output Bindings for Partitioning
	Configuring Input Bindings for Partitioning

	1.2 Binder Selection
	Classpath Detection
	Multiple Binders on the Classpath
	Connecting to Multiple Systems

	1.3 Managed vs Standalone
	Fat JAR
	Health Indicator

	1.4 Binder SPI
	Producers and Consumers
	Kafka Binder
	RabbitMQ Binder
	Redis Binder

	Part II. Samples
	2. Sample Applications

	Part III. Appendices
	Appendix A. Building
	A.1 Basic Compile and Test
	A.2 Documentation
	A.3 Working with the code
	Importing into eclipse with m2eclipse
	Importing into eclipse without m2eclipse

	A.4 Sign the Contributor License Agreement
	A.5 Code Conventions and Housekeeping

