
Spring Cloud Stream Reference Guide

1.0.0.RC1

Copyright © 2013-2016Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.



Spring Cloud Stream Reference Guide

1.0.0.RC1 Spring Cloud Stream ii

Table of Contents

I. Reference Guide .....................................................................................................................  1
II. Spring Cloud Stream Reference Manual ..................................................................................  2

1. Introducing Spring Cloud Stream .....................................................................................  3
2. Spring Cloud Stream Main Concepts ...............................................................................  5

2.1. Application structure .............................................................................................  5
Fat JAR ..............................................................................................................  6

2.2. Persistent publish subscribe and consumer groups ................................................  6
Consumer Groups ............................................................................................... 7
Durability ............................................................................................................  7

2.3. Partitioning ........................................................................................................... 7
3. Programming model ........................................................................................................  9

3.1. Declaring and binding channels ............................................................................  9
Triggering binding via @EnableBinding .............................................................  9
@Input and @Output ........................................................................................  9

Customizing channel names ......................................................................  10
Source, Sink, and Processor ...............................................................  10

Accessing bound channels ................................................................................  10
Injecting the bound interfaces ....................................................................  10
Injecting channels directly .......................................................................... 11

Programming model ..........................................................................................  11
Native Spring Integration support ...............................................................  12
@StreamListener for automatic content type handling .................................  12

3.2. Binder SPI .........................................................................................................  13
Producers and Consumers ................................................................................  13
Kafka Binder .....................................................................................................  14
RabbitMQ Binder ..............................................................................................  14

4. Configuration options ....................................................................................................  15
4.1. Spring Cloud Stream Properties ..........................................................................  15
4.2. Binding properties ..............................................................................................  15

Properties for the use of Spring Cloud Stream .................................................... 15
Consumer properties .........................................................................................  16
Producer properties ...........................................................................................  16

5. Binder-specific configuration ..........................................................................................  18
5.1. Rabbit-specific settings .......................................................................................  18

Rabbit MQ Binder properties .............................................................................  18
Rabbit MQ Consumer Properties .......................................................................  18
Rabbit Producer Properties ................................................................................ 19

5.2. Kafka-specific settings ........................................................................................  20
Kafka binder properties .....................................................................................  20
Kafka Consumer Properties ...............................................................................  20
Kafka Producer Properties ................................................................................. 21

6. Binder detection ............................................................................................................  22
6.1. Classpath Detection ...........................................................................................  22
6.2. Multiple Binders on the Classpath .......................................................................  22
6.3. Connecting to Multiple Systems ..........................................................................  22

7. Content Type and Transformation ..................................................................................  24
7.1. Type converting message channels ....................................................................  24



Spring Cloud Stream Reference Guide

1.0.0.RC1 Spring Cloud Stream iii

7.2. @StreamListener and conversion ........................................................................ 24
8. Inter-app Communication ............................................................................................... 25

8.1. Connecting multiple application instances ............................................................  25
8.2. Instance Index and Instance Count .....................................................................  25
8.3. Partitioning .........................................................................................................  25

Configuring Output Bindings for Partitioning .......................................................  25
Configuring Input Bindings for Partitioning ..................................................  26

9. Health Indicator ............................................................................................................. 27
10. Samples .....................................................................................................................  28
11. Getting Started ............................................................................................................ 29



Part I. Reference Guide



Part II. Spring Cloud
Stream Reference Manual

This section goes into more detail about how you can work with Spring Cloud Stream. It covers topics
such as creating and running stream applications.



Spring Cloud Stream Reference Guide

1.0.0.RC1 Spring Cloud Stream 3

1. Introducing Spring Cloud Stream
Spring Cloud Stream is a framework for building message-driven microservices. Spring Cloud Stream
builds upon Spring Boot to create DevOps friendly microservice applications and Spring Integration to
provide connectivity to message brokers. Spring Cloud Stream provides an opinionated configuration
of message brokers, introducing the concepts of persistent pub/sub semantics, consumer groups and
partitions across several middleware vendors. This opinionated configuration provides the basis to
create stream processing applications.

By adding @EnableBinding to your main application, you get immediate connectivity to a message
broker and by adding @StreamListener to a method, you will receive events for stream processing.

Here’s a sample sink application for receiving external messages:

@SpringBootApplication

public class StreamApplication {

  public static void main(String[] args) {

    SpringApplication.run(StreamApplication.class, args);

  }

}

@EnableBinding(Sink.class)

public class TimerSource {

  ...

  @StreamListener(Sink.INPUT)

  public void processVote(Vote vote) {

      votingService.recordVote(vote);

  }

}

@EnableBinding is parameterized by one or more interfaces (in this case a single Sink interface),
which declares input and/or output channels. The interfaces Source, Sink and Processor are
provided but you can define others. Here’s the definition of Source:

public interface Sink {

  String INPUT = "input";

  @Input(Sink.INPUT)

  SubscribableChannel input();

}

The @Input annotation is used to identify input channels (messages entering the app), and @Output
is used to identify output channels (messages leaving the app). These annotations are optionally
parameterized by a channel name. If the name is not provided then the method name is used instead.
An implementation of the interface is created for you and can be used in the application context by
autowiring it, e.g. into a test case:

@RunWith(SpringJUnit4ClassRunner.class)

@SpringApplicationConfiguration(classes = StreamApplication.class)

@WebAppConfiguration

@DirtiesContext

public class StreamApplicationTests {

  @Autowired

  private Sink sink;

  @Test

  public void contextLoads() {

    assertNotNull(this.sink.input());



Spring Cloud Stream Reference Guide

1.0.0.RC1 Spring Cloud Stream 4

  }

}



Spring Cloud Stream Reference Guide

1.0.0.RC1 Spring Cloud Stream 5

2. Spring Cloud Stream Main Concepts

Spring Cloud Stream provides a number of abstractions and primitives that simplify writing message-
driven microservices. In this section we will provide an overview of:

• Spring Cloud Stream application model together with the Binder abstraction

• Persistent publish-subscribe and consumer group support

• Partitioning

• Pluggable Binder API

2.1 Application structure

A Spring Cloud Stream application consists of a middleware-neutral core that communicates with the
outside world through input and output channels. The channels are managed and injected into it by the
framework, and a Binder connects them to the external brokers. Different Binder implementations
exist for different types of middleware, such as Kafka, Rabbit MQ, Redis or Gemfire, and an extensible
API allows you to write your own Binder. There is also TestSupportBinder that leaves the channel as-
is so a test author can interact with the channels directly and easily assert on what is received.

Figure 2.1. Spring Cloud Stream Application

Spring Cloud Stream uses Spring Boot for configuration, and the Binder makes it possible for
Spring Cloud Stream applications to be flexible in terms of how it connects to the middleware.
For example, deployers can dynamically choose the destinations that these channels connect
to at runtime (e.g. Kafka topics or Rabbit MQ exchanges). This can be done through external
configuration properties in any form that is supported by Spring Boot (application arguments,
environment variables, application.yml files, etc). Taking the sink example from the previous
section, providing the spring.cloud.stream.bindings.input.destination=raw-sensor-
data property to the application will cause it to read from the raw-sensor-data Kafka topic, or from a
queue bound to the raw-sensor-data exchange in Rabbit MQ. See Section 4.2, “Binding properties”

https://github.com/spring-cloud/spring-cloud-stream/tree/master/spring-cloud-stream-binders/spring-cloud-stream-binder-kafka
https://github.com/spring-cloud/spring-cloud-stream/tree/master/spring-cloud-stream-binders/spring-cloud-stream-binder-rabbit
https://github.com/spring-cloud/spring-cloud-stream-binder-redis
https://github.com/spring-cloud/spring-cloud-stream-binder-gemfire
https://github.com/spring-cloud/spring-cloud-stream/blob/master/spring-cloud-stream-test-support/src/main/java/org/springframework/cloud/stream/test/binder/TestSupportBinder.java


Spring Cloud Stream Reference Guide

1.0.0.RC1 Spring Cloud Stream 6

for more information on the available binder properties you can configure. You are also able to configure
middleware specific properties, see ??? for more information.

Spring Cloud Stream will automatically detect and use a binder that is found on the classpath, so you
can easily use different types of middleware with the same code, just by including a different binder at
build time. For more complex use cases, Spring Cloud Stream also provides the ability of packaging
multiple binders within the same application and choosing what type of binder should be used at runtime,
and even if multiple binders should be used at runtime for different channels.

Fat JAR

Spring Cloud Stream applications can be run in standalone mode from your IDE for testing. To run in
production you can create an executable (or "fat") JAR using the standard Spring Boot tooling provided
for Maven or Gradle.

2.2 Persistent publish subscribe and consumer groups

Communication between different applications follows a publish-subscribe pattern, with data being
broadcast through shared topics. This can be seen in the following picture, which shows a typical
deployment for a set of interacting Spring Cloud Stream applications.

Figure 2.2. Spring Cloud Stream Application topologies

Data reported by sensors to an HTTP endpoint is sent to a common destination named raw-sensor-
data, from where it is independently processed by a microservice that computes time windowed
averages, as well as by a microservice that ingests the raw data into HDFS. In order to do so, both
applications will declare the topic as their input at runtime. The publish-subscribe communication model
reduces the complexity of both the producer and the consumer, and allows adding new applications to
the topology without disrupting the existing flow. For example, downstream from the average calculator
we can have a component that calculates the highest temperature values in order to display and monitor
them. Later on, we can add an application that interprets the very same flow of averages for fault
detection. The fact that all the communication is done through shared topics rather than point to point
queues reduces the coupling between microservices.



Spring Cloud Stream Reference Guide

1.0.0.RC1 Spring Cloud Stream 7

While the concept of publish-subscribe messaging is not new, Spring Cloud Stream takes the extra step
of making it an opinionated choice for its application model. It also makes it easy for users to work with
it across different platform by using the native support of the middleware.

Consumer Groups

While the publish subscribe model ensures that it is easy to connect multiple application by
sharing a topic, it is equally important to be able to scale up by creating multiple instances of a
given application. When doing so, the different instances would find themselves in a competing
consumer relationship with each other: only one of the instances is expected to handle the message.
Spring Cloud Stream models this behavior through the concept of a consumer group, which is
similar to (and inspired by) the notion of consumer groups in Kafka. Each consumer binding can
specify a group name such as spring.cloud.stream.bindings.input.group=hdfsWrite or
spring.cloud.stream.bindings.input.group=average, as shown in the picture. All groups
that subscribe to a given destination will receive a copy of the published data, but only one member of
the group will receive a given message from that destination. By default, when a group is not specified,
Spring Cloud Stream assigns the application to an anonymous, independent, single-member consumer
group that will be in a publish-subscribe relationship with all the other consumer groups.

Figure 2.3. Spring Cloud Stream Consumer Groups

Durability

Consistent with the opinionated application model of Spring Cloud Stream, consumer group
subscriptions are durable. This is to say that the binder implementation will ensure that group
subscriptions are persistent and, once at least one subscription for a group has been created, that
group will receive messages, even if they are sent while all the applications of the group were stopped.
Anonymous subscriptions are non-durable by nature. For some binder implementations (e.g. Rabbit) it
is possible to have non-durable group subscriptions.

In general, it is preferable to always specify a consumer group when binding an application to a given
destination. When scaling up a Spring Cloud Stream application, a consumer group must be specified
for each of its input bindings, in order to prevent its instances from receiving duplicate messages (unless
that behavior is desired, which is a less common use case).

2.3 Partitioning

Spring Cloud Stream provides support for partitioning data between multiple instances of a given
application. In a partitioned scenario, one or more producer application instances will send data to



Spring Cloud Stream Reference Guide

1.0.0.RC1 Spring Cloud Stream 8

multiple consumer application instances, ensuring that data with common characteristics is processed
by the same consumer instance. The physical communication medium (e.g. the broker topic) is viewed
as structured into multiple partitions. This happens regardless of whether the broker type is naturally
partitioned (e.g. Kafka) or not (e.g. Rabbit), Spring Cloud Stream provides a common abstraction for
implementing partitioned processing use cases in a uniform fashion.

Figure 2.4. Spring Cloud Stream Partitioning

Partitioning is a critical concept in stateful processing, where ensuring that all the related data is
processed together is critical for either performance or consistency. For example, in the time-windowed
average calculation example, it is important that measurements from the same sensor land in the same
application instance.

Setting up a partitioned processing scenario requires configuring both the data producing and the data
consuming end.



Spring Cloud Stream Reference Guide

1.0.0.RC1 Spring Cloud Stream 9

3. Programming model
This section will describe the programming model of Spring Cloud Stream, which consists from a number
of predefined annotations that can be used to declare bound inputs and output channels, as well as
how to listen to them.

3.1 Declaring and binding channels

Triggering binding via @EnableBinding

A Spring application becomes a Spring Cloud Stream application when the @EnableBinding
annotation is applied to one of its configuration classes. @EnableBinding itself is meta-annotated with
@Configuration, and triggers the configuration of Spring Cloud Stream infrastructure as follows:

...

@Import(...)

@Configuration

@EnableIntegration

public @interface EnableBinding {

    ...

    Class<?>[] value() default {};

}

@EnableBinding can be parameterized with one or more interface classes, containing methods that
represent bindable components (typically message channels).

Note

As of version 1.0, the only supported bindable component is the Spring Messaging
MessageChannel and its extensions SubscribableChannel and PollableChannel. It is
intended for future versions to extend support to other types of components, using the same
mechanism. In this documentation, we will continue to refer to channels.

@Input and @Output

A Spring Cloud Stream application can have an arbitrary number of input and output channels defined
as @Input and @Output methods in an interface, as follows:

public interface Barista {

    @Input

    SubscribableChannel orders();

    @Output

    MessageChannel hotDrinks();

    @Output

    MessageChannel coldDrinks();

}

Using this interface as a parameter to @EnableBinding, as in the following example, will trigger the
creation of three bound channels named orders, hotDrinks and coldDrinks respectively.

@EnableBinding(Barista.class)

public class CafeConfiguration {

   ...

}



Spring Cloud Stream Reference Guide

1.0.0.RC1 Spring Cloud Stream 10

Customizing channel names

Both @Input and @Output allow specifying a customized name for the channel, as follows:

public interface Barista {

    ...

    @Input("inboundOrders")

    SubscribableChannel orders();

}

In this case, the name of the bound channel being created will be inboundOrders.

Source, Sink, and Processor

For ease of addressing the most common use cases that involve either an input or an output channel,
or both, out of the box Spring Cloud Stream provides three predefined interfaces.

Source can be used for applications that have a single outbound channel.

public interface Source {

 String OUTPUT = "output";

 @Output(Source.OUTPUT)

 MessageChannel output();

}

Sink can be used for applications that have a single inbound channel.

public interface Sink {

 String INPUT = "input";

 @Input(Sink.INPUT)

 SubscribableChannel input();

}

Processor can be used for applications that have both an inbound and an outbound channel.

public interface Processor extends Source, Sink {

}

There is no special handling for either of these interfaces in Spring Cloud Stream, besides of the fact
that they are provided out of the box.

Accessing bound channels

Injecting the bound interfaces

For each of the bound interfaces, Spring Cloud Stream will generate a bean that implements it, and for
which invoking an @Input or @Output annotated method will return the bound channel. For example,
the bean in the following example will send a message on the output channel every time its hello
method is invoked, using the injected Source bean, and invoking output() to retrieve the target
channel.

@Component

public class SendingBean {



Spring Cloud Stream Reference Guide

1.0.0.RC1 Spring Cloud Stream 11

    private Source source;

    @Autowired

    public SendingBean(Source source) {

        this.source = source;

    }

    public void sayHello(String name) {

       source.output().send(MessageBuilder.withPayload(body).build());

   }

}

Injecting channels directly

Bound channels can be also injected directly. For example:

@Component

public class SendingBean {

    private MessageChannel output;

    @Autowired

    public SendingBean(MessageChannel output) {

        this.output = output;

    }

    public void sayHello(String name) {

       output.send(MessageBuilder.withPayload(body).build());

   }

}

Note that if the name of the channel is customized on the declaring annotation, that name should be
used instead of the method name. Considering this declaration:

public interface CustomSource {

    ...

    @Output("customOutput")

    MessageChannel output();

}

The channel will be injected as follows:

@Component

public class SendingBean {

    @Autowired

    private MessageChannel output;

    @Autowired @Qualifier("customOutput")

    public SendingBean(MessageChannel output) {

        this.output = output;

    }

    public void sayHello(String name) {

       customOutput.send(MessageBuilder.withPayload(body).build());

   }

}

Programming model

Spring Cloud Stream allows you to write applications by either using Spring Integration annotations or
Spring Cloud Stream’s @StreamListener annotation which is modeled after other Spring Messaging
annotations (e.g. @MessageMapping, @JmsListener, @RabbitListener, etc.) but add content type
management and type coercion features.



Spring Cloud Stream Reference Guide

1.0.0.RC1 Spring Cloud Stream 12

Native Spring Integration support

Due to the fact that Spring Cloud Stream is Spring Integration based, it completely inherits its foundation
and infrastructure, as well as the component. For example, the output channel of a Source can be
attached to a MessageSource, as follows:

@EnableBinding(Source.class)

public class TimerSource {

  @Value("${format}")

  private String format;

  @Bean

  @InboundChannelAdapter(value = Source.OUTPUT, poller = @Poller(fixedDelay = "${fixedDelay}",

 maxMessagesPerPoll = "1"))

  public MessageSource<String> timerMessageSource() {

    return () -> new GenericMessage<>(new SimpleDateFormat(format).format(new Date()));

  }

}

Or, the channels of a processor can be used in a transformer, as follows:

@EnableBinding(Processor.class)

public class TransformProcessor {

 @Transformer(inputChannel = Processor.INPUT, outputChannel = Processor.OUTPUT)

 public Object transform(String message) {

  return message.toUpper();

 }

}

@StreamListener for automatic content type handling

Complementary to the Spring Integration support, Spring Cloud Stream provides a @StreamListener
annotation of its own modeled by the other similar Spring Messaging annotations (e.g.
@MessageMapping, @JmsListener, @RabbitListener, etc.). It provides a simpler model for
handling inbound messages, especially for dealing with use cases that involve content type
management and type coercion. Spring Cloud Stream provides an extensible MessageConverter
mechanism for handling data conversion by bound channels and, in this case, for dispatching to
@StreamListener annotated methods.

For example, an application that processes external Vote events can be declared as follows:

@EnableBinding(Sink.class)

public class VoteHandler {

  @Autowired

  VotingService votingService;

  @StreamListener(Sink.INPUT)

 public void handle(Vote vote) {

  votingService.record(vote);

 }

}

The distinction between this approach and a Spring Integration @ServiceActivator becomes
relevant if one considers an inbound Message with a String payload and a contentType header
of application/json. For @StreamListener, the MessageConverter mechanism will use the
contentType header to parse the String into a Vote object.

Just as with the other Spring Messaging methods, method arguments can be annotated with @Payload,
@Headers and @Header. For methods that return data, @SendTo must be used for specifying the output
binding destination for data returned by the methods as follows:



Spring Cloud Stream Reference Guide

1.0.0.RC1 Spring Cloud Stream 13

@EnableBinding(Processor.class)

public class TransformProcessor {

  @Autowired

  VotingService votingService;

  @StreamListener(Processor.INPUT)

  @SendTo(Processor.OUTPUT)

 public VoteResult handle(Vote vote) {

  return votingService.record(vote);

 }

}

Note

Content type headers can be set by external applications in the case of Rabbit MQ, and they
are supported as part of an extended internal protocol by Spring Cloud Stream for any type of
transport (even the ones that do not support headers normally, like Kafka).

3.2 Binder SPI

As described above, Spring Cloud Stream provides a binder abstraction for connecting to physical
destinations. This section will provide more information about the main concepts behind the Binder SPI,
its main components, as well as details specific to different implementations.

Producers and Consumers

Figure 3.1. Producers and Consumers

A producer is any component that sends messages to a channel. That channel can be bound
to an external message broker via a Binder implementation for that broker. When invoking the
bindProducer method, the first parameter is the name of the destination within that broker. The second
parameter is the local channel instance to which the producer will be sending messages, and the third
parameter contains properties to be used within the adapter that is created for that channel, such as
a partition key expression.

A consumer is any component that receives messages from a channel. As with the producer, the
consumer’s channel can be bound to an external message broker, and the first parameter for the
bindConsumer method is the destination name. However, on the consumer side, a second parameter
provides the name of a logical group of consumers. Each group represented by consumer bindings
for a given destination will receive a copy of each message that a producer sends to that destination
(i.e. pub/sub semantics). If there are multiple consumer instances bound using the same group name,
then messages will be load balanced across those consumer instances so that each message sent
by a producer would only be consumed by a single consumer instance within each group (i.e. queue
semantics).



Spring Cloud Stream Reference Guide

1.0.0.RC1 Spring Cloud Stream 14

Kafka Binder

Figure 3.2. Kafka Binder

The Kafka Binder implementation maps the destination to a Kafka topic, and the consumer group maps
directly to the same Kafka concept. Spring Cloud Stream does not use the high level consumer, but
implements a similar concept for the simple consumer.

RabbitMQ Binder

Figure 3.3. RabbitMQ Binder

The RabbitMQ Binder implementation maps the destination to a TopicExchange, and for each
consumer group, a Queue will be bound to that TopicExchange. Each consumer instance that binds
will trigger creation of a corresponding RabbitMQ Consumer instance for its group’s Queue.



Spring Cloud Stream Reference Guide

1.0.0.RC1 Spring Cloud Stream 15

4. Configuration options

Spring Cloud Stream supports general configuration options, as well as configuration for bindings
and binders. Some binders allow additional properties for the bindings, supporting middleware-specific
features.

All configuration options can be provided to Spring Cloud Stream applications via all the mechanisms
supported by Spring Boot: application arguments, environment variables, YML files etc.

4.1 Spring Cloud Stream Properties

spring.cloud.stream.instanceCount
The number of deployed instances of the same application. Must be set for partitioning and with
Kafka. Default value is 1.

spring.cloud.stream.instanceIndex
The instance index of the application, a number from 0 to instanceCount-1. Used for partitioning
and with Kafka. Automatically set in Cloud Foundry to match the instance index of the application.

spring.cloud.stream.dynamicDestinations
A list of destinations that can be bound dynamically, for example in a dynamic routing scenario.
Only listed destinations can be bound if set. Default empty, allowing any destination to be bound.

spring.cloud.stream.defaultBinder
The default binder to use, if there are multiple binders configured. See multiple binders.

4.2 Binding properties

Binding properties are supplied using the format
spring.cloud.stream.bindings.<channelName>.<property>=<value>.<channelName>
represents the name of the channel being configured, e.g. output for a Source. In what follows, we
will indicate where the spring.cloud.stream.bindings.<channelName>. prefix is omitted and
focus just on the property name, with the understanding that the prefix will be included at runtime.

Properties for the use of Spring Cloud Stream

The following binding properties are available for both input and output bindings and must be prefixed
with spring.cloud.stream.bindings.<channelName>. .

destination
The target destination of channel on the bound middleware, e.g. Rabbit MQ exchange or Kafka
topic. If not set, the channel name will be used instead.

group
The consumer group of the channel. This property applies only to inbound bindings. By default it is
null, and indicates an anonymous consumer. See consumer groups.

contentType
The content type of the channel. By default it is null and no type coercion is performed. See ???.

binder
The binder used by this binding. By default, it is set to null and will use the default binder, if one
exists. See Section 6.2, “Multiple Binders on the Classpath” for details.



Spring Cloud Stream Reference Guide

1.0.0.RC1 Spring Cloud Stream 16

Consumer properties

The following binding properties are available for input bindings only and must be prefixed with
spring.cloud.stream.bindings.<channelName>.consumer:

concurrency
The concurrency of the inbound consumer. By default, set to 1.

partitioned
Must be set to true if the consumer is receiving data from a partitioned producer. By default it is
set to false.

maxAttempts
The number of attempts of re-processing an inbound message. Default '3'. (Ignored by Kafka,
currently).

backOffInitialInterval
The backoff initial interval on retry. Default 1000.(Ignored by Kafka, currently).

backOffMaxInterval
The maximum backoff interval. Default 10000.(Ignored by Kafka, currently).

backOffMultiplier
The backoff multiplier. Default 2.0.

Producer properties

The following binding properties are available for output bindings only and must be prefixed with
spring.cloud.stream.bindings.<channelName>.producer:

partitionKeyExpression
A SpEL expression for partitioning outbound data. Default: null. If either this property is set or
partitionKeyExtractorClass is present, outbound data on this channel will be partitioned,
and partitionCount must be set to a value larger than 1 to be effective. The two options are
mutually exclusive. See Section 2.3, “Partitioning”.

partitionKeyExtractorClass
A PartitionKeyExtractorStrategy implementation. Default: null. If either this property is
set or partitionKeyExpression is present, outbound data on this channel will be partitioned,
and partitionCount must be set to a value larger than 1 to be effective. The two options are
mutually exclusive. See Section 2.3, “Partitioning”.

partitionSelectorClass
A PartitionSelectorStrategy implementation. Default null. Mutually exclusive with
partitionSelectorExpression. If none is set, the partition will be selected as
the hashCode(key) % partitionCount, where key is computed via either
partitionKeyExpression or partitionKeyExtractorClass.

partitionSelectorExpression
A SpEL expression for customizing partition selection. Default null. Mutually exclusive with
partitionSelectorClass. If none is set, the partition will be selected as the hashCode(key)
% partitionCount, where key is computed via either partitionKeyExpression or
partitionKeyExtractorClass.



Spring Cloud Stream Reference Guide

1.0.0.RC1 Spring Cloud Stream 17

partitionCount
The number of target partitions for the data, if partitioning is enabled. Default 1. Must be set to a
value higher than 1 if the producer is partitioned. On Kafka it is interpreted as a hint, and the larger
of this and the partition count of the target topic will be used instead.

requiredGroups
A comma separated list of groups that the producer must ensure message delivery even if they start
after it has been created (e.g. by pre-creating durable queues in Rabbit MQ).



Spring Cloud Stream Reference Guide

1.0.0.RC1 Spring Cloud Stream 18

5. Binder-specific configuration

This captures the binder, consumer and producer properties that are specific for several binder
implementations.

5.1 Rabbit-specific settings

Rabbit MQ Binder properties

The binder supports the all Spring Boot properties for Rabbit MQ configuration.

In addition to that, it also supports the following properties:

spring.cloud.stream.rabbit.binder.addresses
A comma-separated list of RabbitMQ server addresses (used only for clustering and in conjunction
with nodes). Default empty. spring.cloud.stream.rabbit.binder.adminAddresses. Default empty. A
comma-separated list of RabbitMQ management plugin URLs - only used when nodes contains
more than one entry. Entries in this list must correspond to the corresponding entry in addresses.
Default empty.

spring.cloud.stream.rabbit.binder.nodes
A comma-separated list of RabbitMQ node names; when more than one entry, used to locate the
server address where a queue is located. Entries in this list must correspond to the corresponding
entry in addresses. Default empty.

spring.cloud.stream.rabbit.rabbit.username
The user name. Default null.

spring.cloud.stream.rabbit.binder.password
The password. Default null.

spring.cloud.stream.rabbit.binder.vhost
The virtual host. Default null.

spring.cloud.stream.rabbit.binder.useSSL
True if Rabbit MQ should use SSL.

spring.cloud.stream.rabbit.binder.sslPropertiesLocation
The location of the SSL properties file, when certificate exchange is used.

spring.cloud.stream.rabbit.binder.compressionLevel
Compression level for compressed bindings. Defaults to 1 (BEST_LEVEL). See
java.util.zip.Deflater.

Rabbit MQ Consumer Properties

The following properties are available for Rabbit consumers only and must be prefixed with
spring.cloud.stream.rabbit.bindings.<channelName>.consumer .

acknowledgeMode
The acknowledge mode. Default AUTO.

autoBindDlq
Whether to automatically declare the DLQ and bind it to the binder DLX. Default false.



Spring Cloud Stream Reference Guide

1.0.0.RC1 Spring Cloud Stream 19

durableSubscription
Whether subscription should be durable. Only effective if group is also set. Default true.
maxConcurrency: Default 1. prefetch: Prefetch count. Default 1.

prefix
A prefix to be added to the name of the destination and queues. Default "".

requeueRejected
Whether delivery failures should be requeued. Default true.

requestHeaderPatterns
The request headers to be transported. Default [STANDARD_REQUEST_HEADERS,'*'].

replyHeaderPatterns
The reply headers to be transported. Default [STANDARD_REQUEST_HEADERS,'*']

republishToDlq
By default, failed messages after retries are exhausted are rejected. If a dead-letter queue (DLQ)
is configured, rabbitmq will route the failed message (unchanged) to the DLQ. Setting this property
to true instructs the bus to republish failed messages to the DLQ, with additional headers, including
the exception message and stack trace from the cause of the final failure.

transacted
Whether to use transacted channels. Default false.

txSize
The number of deliveries between acks. Default 1.

Rabbit Producer Properties

The following properties are available for Rabbit producers only and must be prefixed with
spring.cloud.stream.rabbit.bindings.<channelName>.producer .

autoBindDlq
Whether to automatically declare the DLQ and bind it to the binder DLX. Default false.

batchingEnabled
True to enable message batching by producers. Default false.

batchSize
The number of message to buffer when batching is enabled. Default 100.

batchBufferLimit
Default 10000.

batchTimeout
Default 5000.

compress
Whether data should be compressed when sent. Default false.

deliveryMode
Delivery mode. Default PERSISTENT.

prefix
A prefix to be added to the name of the destination exchange. Default "".



Spring Cloud Stream Reference Guide

1.0.0.RC1 Spring Cloud Stream 20

requestHeaderPatterns
The request headers to be transported. Default [STANDARD_REQUEST_HEADERS,'*'].

replyHeaderPatterns
The reply headers to be transported. Default [STANDARD_REQUEST_HEADERS,'*']

5.2 Kafka-specific settings

Kafka binder properties

spring.cloud.stream.kafka.binder.brokers
A list of brokers that the Kafka binder will connect to. Default localhost.

spring.cloud.stream.kafka.binder.defaultBrokerPort
The list of brokers allows to specify hosts with or without port information, i.e.
host1,host2:port2. This configuration sets the default port when no port is configured in the
broker list. Default 9092.

spring.cloud.stream.kafka.binder.zkNodes
A list of Zookeeper nodes for the Kafka binder to connect to. Default localhost.

spring.cloud.stream.kafka.binder.defaultZkPort
The list of Zookeeper nodes allows to specify hosts with or without port information, i.e.
host1,host2:port2. This configuration sets the default port when no port is configured in the
node list. Default 2181.

spring.cloud.stream.kafka.binder.headers
The list of custom that will be transported by the binder. Default empty.

spring.cloud.stream.kafka.binder.offsetUpdateTimeWindow
The frequency in milliseconds with which offsets are saved. Ignored if 0. Default 10000.

spring.cloud.stream.kafka.binder.offsetUpdateCount
The frequency in number of updates, which which consumed offsets are persisted. Ignored if 0.
Default 0. Mutually exclusive with offsetUpdateTimeWindow.

spring.cloud.stream.kafka.binder.requiredAcks
The number of required acks on the broker.

Kafka Consumer Properties

The following properties are available for Kafka consumers only and must be prefixed with
spring.cloud.stream.kafka.bindings.<channelName>.consumer .

autoCommitOffset
True to autocommit offsets when a message has been processed. If set to false, an
Acknowledgment header will be available in the message headers for late acknowledgment.
Default true.

mode
When set to raw, will disable header parsing on input. Useful when inbound data is coming from
outside Spring Cloud Stream applications. Default embeddedHeaders.



Spring Cloud Stream Reference Guide

1.0.0.RC1 Spring Cloud Stream 21

resetOffsets
True to reset offsets on the consumer to the value provided by startOffset. Default false.

startOffset
The starting offset for new groups or when resetOffsets is true. Allowed values:
earliest,latest. Defaults to null (equivalent to earliest).

minPartitionCount
The minimum number of partitions expected by the consumer if it creates the consumed topic
automatically. Defaults to 1.

Kafka Producer Properties

The following properties are available for Kafka producers only and must be prefixed with
spring.cloud.stream.kafka.bindings.<channelName>.producer .

bufferSize
This is an upper limit of how much data the Kafka Producer will attempt to batch before sending –
specified in bytes. Default 16384.

sync
Whether the producer is synchronous. Defaults to false.

batchTimeout
How long will the producer wait before sending in order to allow more messages to get accumulated
in the same batch. Normally the producer will not wait at all, and simply send all the messages that
accumulated while the previous send was in progress. A non-zero value may increase throughput
at the expense of latency. Default 0.

mode
When set to raw, disable header propagation on output. Useful when producing data for non-Spring
Cloud Stream applications. Default embeddedHeaders.



Spring Cloud Stream Reference Guide

1.0.0.RC1 Spring Cloud Stream 22

6. Binder detection

Spring Cloud Stream relies on implementations of the Binder SPI to perform the task of connecting
channels to message brokers. Each Binder implementation typically connects to one type of messaging
system. Spring Cloud Stream provides out of the box binders for Kafka, RabbitMQ and Redis.

6.1 Classpath Detection

By default, Spring Cloud Stream relies on Spring Boot’s auto-configuration to configure the binding
process. If a single binder implementation is found on the classpath, Spring Cloud Stream will use it
automatically. So, for example, a Spring Cloud Stream project that aims to bind only to RabbitMQ can
simply add the following dependency:

<dependency>

  <groupId>org.springframework.cloud</groupId>

  <artifactId>spring-cloud-stream-binder-rabbit</artifactId>

</dependency>

6.2 Multiple Binders on the Classpath

When multiple binders are present on the classpath, the application must indicate which binder is to be
used for each channel binding. Each binder configuration contains a META-INF/spring.binders,
which is a simple properties file:

rabbit:\

org.springframework.cloud.stream.binder.rabbit.config.RabbitServiceAutoConfiguration

Similar files exist for the other binder implementations (e.g. Kafka), and it is expected that custom
binder implementations will provide them, too. The key represents an identifying name for the binder
implementation, whereas the value is a comma-separated list of configuration classes that contain one
and only one bean definition of the type org.springframework.cloud.stream.binder.Binder.

Selecting the binder can be done globally by either using the
spring.cloud.stream.defaultBinder property, e.g.
spring.cloud.stream.defaultBinder=rabbit, or by individually configuring them on each
channel binding.

For instance, a processor app that reads from Kafka
and writes to Rabbit can specify the following configuration:
spring.cloud.stream.bindings.input.binder=kafka,spring.cloud.stream.bindings.output.binder=rabbit.

6.3 Connecting to Multiple Systems

By default, binders share the Spring Boot auto-configuration of the application and create one instance
of each binder found on the classpath. In scenarios where an application should connect to more than
one broker of the same type, Spring Cloud Stream allows you to specify multiple binder configurations,
with different environment settings. Please note that turning on explicit binder configuration will disable
the default binder configuration process altogether, so all the binders in use must be included in the
configuration.

For example, this is the typical configuration for a processor that connects to two RabbitMQ broker
instances:



Spring Cloud Stream Reference Guide

1.0.0.RC1 Spring Cloud Stream 23

spring:

  cloud:

    stream:

      bindings:

        input:

          destination: foo

          binder: rabbit1

        output:

          destination: bar

          binder: rabbit2

      binders:

        rabbit1:

          type: rabbit

          environment:

            spring:

              rabbitmq:

                host: <host1>

        rabbit2:

          type: rabbit

          environment:

            spring:

              rabbitmq:

                host: <host2>



Spring Cloud Stream Reference Guide

1.0.0.RC1 Spring Cloud Stream 24

7. Content Type and Transformation

Spring Cloud Stream allows to propagate information about the content type of the messages it produces
by attaching by default a contentType header to outbound messages. For middleware that does
not directly support headers, Spring Cloud Stream provides its own mechanism of wrapping outbound
messages in an envelope of its own, automatically. For middleware that does support headers, Spring
Cloud Stream applications may receive messages with a given content type from non-Spring Cloud
Stream applications.

Spring Cloud Stream can handle messages based on this information in two ways:

• through its contentType settings on inbound and outbound channels;

• through its argument mapping done for @StreamListener-annotated methods.

7.1 Type converting message channels

7.2 @StreamListener and conversion



Spring Cloud Stream Reference Guide

1.0.0.RC1 Spring Cloud Stream 25

8. Inter-app Communication

8.1 Connecting multiple application instances

While Spring Cloud Stream makes it easy for individual boot apps to connect to messaging systems, the
typical scenario for Spring Cloud Stream is the creation of multi-app pipelines, where microservice apps
are sending data to each other. This can be achieved by correlating the input and output destinations
of adjacent apps, as in the following example.

Supposing that the design calls for the time-source app to send data to the log-sink app, we
will use a common destination named ticktock for bindings within both apps. time-source will set
spring.cloud.stream.bindings.output.destination=ticktock, and log-sink will set
spring.cloud.stream.bindings.input.destination=ticktock.

8.2 Instance Index and Instance Count

When scaling up Spring Cloud Stream applications, each instance can receive information
about how many other instances of the same application exist and what its own
instance index is. This is done through the spring.cloud.stream.instanceCount and
spring.cloud.stream.instanceIndex properties. For example, if there are 3 instances of the
HDFS sink application, all three will have spring.cloud.stream.instanceCount set to 3, and
the applications will have spring.cloud.stream.instanceIndex set to 0, 1 and 2, respectively.
When Spring Cloud Stream applications are deployed via Spring Cloud Data Flow, these properties
are configured automatically, but when Spring Cloud Stream applications are launched independently,
these properties must be set correctly. By default spring.cloud.stream.instanceCount is 1, and
spring.cloud.stream.instanceIndex is 0.

Setting up the two properties correctly on scale up scenarios is important for addressing partitioning
behavior in general (see below), and they are always required by certain types of binders (e.g. the Kafka
binder) in order to ensure that data is split correctly across multiple consumer instances.

8.3 Partitioning

Configuring Output Bindings for Partitioning

An output binding is configured to send partitioned data, by setting one
and only one of its partitionKeyExpression or partitionKeyExtractorClass

properties, as well as its partitionCount property. For example, setting
spring.cloud.stream.bindings.output.partitionKeyExpression=payload.id,spring.cloud.stream.bindings.output.partitionCount=5
is a valid and typical configuration.

Based on this configuration, the data will be sent to the target partition using the following
logic. A partition key’s value is calculated for each message sent to a partitioned output channel
based on the partitionKeyExpression. The partitionKeyExpression is a SpEL expression
that is evaluated against the outbound message for extracting the partitioning key. If a SpEL
expression is not sufficient for your needs, you can instead calculate the partition key value by
setting the property partitionKeyExtractorClass. This class must implement the interface
org.springframework.cloud.stream.binder.PartitionKeyExtractorStrategy. While,
in general, the SpEL expression should suffice, more complex cases may use the custom
implementation strategy.



Spring Cloud Stream Reference Guide

1.0.0.RC1 Spring Cloud Stream 26

Once the message key is calculated, the partition selection process will determine the
target partition as a value between 0 and partitionCount - 1. The default
calculation, applicable in most scenarios is based on the formula key.hashCode() %

partitionCount. This can be customized on the binding, either by setting a SpEL expression
to be evaluated against the key via the partitionSelectorExpression property, or
by setting a org.springframework.cloud.stream.binder.PartitionSelectorStrategy
implementation via the partitionSelectorClass property.

Additional properties can be configured for more advanced scenarios, as described in the following
section.

Configuring Input Bindings for Partitioning

An input binding is configured to receive partitioned data by setting its partitioned property,
as well as the instance index and instance count properties on the app itself, as follows:
spring.cloud.stream.bindings.input.partitioned=true,spring.cloud.stream.instanceIndex=3,spring.cloud.stream.instanceCount=5.
The instance count value represents the total number of app instances between which the data needs to
be partitioned, whereas instance index must be a unique value across the multiple instances, between 0
and instanceCount - 1. The instance index helps each app instance to identify the unique partition
(or in the case of Kafka, the partition set) from which it receives data. It is important that both values
are set correctly in order to ensure that all the data is consumed, and that the app instances receive
mutually exclusive datasets.

While setting up multiple instances for partitioned data processing may be complex in the standalone
case, Spring Cloud Data Flow can simplify the process significantly, by populating both the input and
output values correctly, as well as relying on the runtime infrastructure to provide information about the
instance index and instance count.



Spring Cloud Stream Reference Guide

1.0.0.RC1 Spring Cloud Stream 27

9. Health Indicator

Spring Cloud Stream provides a health indicator for the binders, registered under the name of binders.
It can be enabled or disabled using the management.health.binders.enabled property.



Spring Cloud Stream Reference Guide

1.0.0.RC1 Spring Cloud Stream 28

10. Samples

For Spring Cloud Stream samples, please refer: github.com/spring-cloud/spring-cloud-stream-samples

https://github.com/spring-cloud/spring-cloud-stream-samples


Spring Cloud Stream Reference Guide

1.0.0.RC1 Spring Cloud Stream 29

11. Getting Started
To get started creating Spring Cloud Stream applications, head over to start.spring.io and create
a new project named GreetingSource. Select the Spring Boot Version to be 1.3.4 (SNAPSHOT
as of the time of this release) and tick the checkbox for Stream Kafka as we will be using
Kafka for messaging. Next create a new class GreetingSource in the same package as the class
GreetingSourceApplication with the following code:

import org.springframework.cloud.stream.annotation.EnableBinding;

import org.springframework.cloud.stream.messaging.Source;

import org.springframework.integration.annotation.InboundChannelAdapter;

@EnableBinding(Source.class)

public class GreetingSource {

    @InboundChannelAdapter(Source.OUTPUT)

    public String greet() {

        return "hello world " + System.currentTimeMillis();

    }

}

The annotation @EnableBinding is what triggers the creation of Spring Integration infrastructure
components. Specifically, it will create a Kafka Connection Factory, Kafka Outbound Channel Adapter,
and the Message Channel defined inside the Source interface.

public interface Source {

  String OUTPUT = "output";

  @Output(Source.OUTPUT)

  MessageChannel output();

}

Furthermore, the auto configuration creates a default poller so that the greet method will be invoked
once a second. The standard Spring Integration InboundChannelAdapter annotation sends a message
to the source’s output channel using the return value as the payload of the message.

To test drive this setup run a Kafka Message Broker. An easy way to do this is using a docker image.

# on mac

docker run -p 2181:2181 -p 9092:9092 --env ADVERTISED_HOST=`docker-machine ip \`docker-machine active\``

 --env ADVERTISED_PORT=9092 spotify/kafka

# on linux

docker run -p 2181:2181 -p 9092:9092 --env ADVERTISED_HOST=localhost --env ADVERTISED_PORT=9092 spotify/

kafka

Build the application using ./mvnw clean package

The consumer application is coded in a similar manner, go back to start.spring.io and create a new
project named LoggerSink. Then create a new class LoggingSink in the same package as the class
LoggingSinkApplication with the following code

import org.springframework.cloud.stream.annotation.EnableBinding;

import org.springframework.cloud.stream.annotation.StreamListener;

import org.springframework.cloud.stream.messaging.Sink;

@EnableBinding(Sink.class)

public class LoggingSink {

    @StreamListener(Sink.INPUT)

https://start.spring.io
https://start.spring.io


Spring Cloud Stream Reference Guide

1.0.0.RC1 Spring Cloud Stream 30

    public void log(String message) {

        System.out.println(message);

    }

}

Build the application using ./mvnw clean package

To connect the Source application to the Sink application, each application needs to share the same
destination name. Starting up both applications as shown below you will see the consumer application
printing ‘hello world’ and the timestamp to the console.

cd GreetingSource

java -jar target/GreetingSource-0.0.1-SNAPSHOT.jar --

spring.cloud.stream.bindings.output.destination=mydest

cd LoggingSink

java -jar target/LoggingSink-0.0.1-SNAPSHOT.jar --server.port=8090 --

spring.cloud.stream.bindings.input.destination=mydest

The different server port is avoid collisions of the http port used to service the boot actuator endpoints.

The output of the logging sink will look something like

[           main] s.b.c.e.t.TomcatEmbeddedServletContainer : Tomcat started on port(s): 8090 (http)

[           main] com.example.LoggingSinkApplication       : Started LoggingSinkApplication in 6.828

 seconds (JVM running for 7.371)

hello world 1458595076731

hello world 1458595077732

hello world 1458595078733

hello world 1458595079734

hello world 1458595080735

= Appendices

[appendix]

[[building]]

== Building

:jdkversion: 1.7

=== Basic Compile and Test

To build the source you will need to install JDK {jdkversion}.

The build uses the Maven wrapper so you don't have to install a specific

version of Maven.  To enable the tests for Redis, Rabbit, and Kafka bindings you

should have those servers running before building. See below for more

information on running the servers.

The main build command is

$ ./mvnw clean install

You can also add '-DskipTests' if you like, to avoid running the tests.

NOTE: You can also install Maven (>=3.3.3) yourself and run the `mvn` command

in place of `./mvnw` in the examples below. If you do that you also

might need to add `-P spring` if your local Maven settings do not

contain repository declarations for spring pre-release artifacts.

NOTE: Be aware that you might need to increase the amount of memory

available to Maven by setting a `MAVEN_OPTS` environment variable with

a value like `-Xmx512m -XX:MaxPermSize=128m`. We try to cover this in

the `.mvn` configuration, so if you find you have to do it to make a

build succeed, please raise a ticket to get the settings added to

source control.



Spring Cloud Stream Reference Guide

1.0.0.RC1 Spring Cloud Stream 31

The projects that require middleware generally include a

`docker-compose.yml`, so consider using

http://compose.docker.io/[Docker Compose] to run the middeware servers

in Docker containers. See the README in the

https://github.com/spring-cloud-samples/scripts[scripts demo

repository] for specific instructions about the common cases of mongo,

rabbit and redis.

=== Documentation

There is a "full" profile that will generate documentation.

=== Working with the code

If you don't have an IDE preference we would recommend that you use

http://www.springsource.com/developer/sts[Spring Tools Suite] or

http://eclipse.org[Eclipse] when working with the code. We use the

http://eclipse.org/m2e/[m2eclipe] eclipse plugin for maven support. Other IDEs and tools

should also work without issue.

==== Importing into eclipse with m2eclipse

We recommend the http://eclipse.org/m2e/[m2eclipe] eclipse plugin when working with

eclipse. If you don't already have m2eclipse installed it is available from the "eclipse

marketplace".

Unfortunately m2e does not yet support Maven 3.3, so once the projects

are imported into Eclipse you will also need to tell m2eclipse to use

the `.settings.xml` file for the projects.  If you do not do this you

may see many different errors related to the POMs in the

projects.  Open your Eclipse preferences, expand the Maven

preferences, and select User Settings.  In the User Settings field

click Browse and navigate to the Spring Cloud project you imported

selecting the `.settings.xml` file in that project.  Click Apply and

then OK to save the preference changes.

NOTE: Alternatively you can copy the repository settings from https://github.com/spring-cloud/spring-

cloud-build/blob/master/.settings.xml[`.settings.xml`] into your own `~/.m2/settings.xml`.

==== Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the

following command:

[indent=0]

$ ./mvnw eclipse:eclipse



Spring Cloud Stream Reference Guide

1.0.0.RC1 Spring Cloud Stream 32

The generated eclipse projects can be imported by selecting `import existing projects`

from the `file` menu.

[[contributing]

== Contributing

Spring Cloud is released under the non-restrictive Apache 2.0 license,

and follows a very standard Github development process, using Github

tracker for issues and merging pull requests into master. If you want

to contribute even something trivial please do not hesitate, but

follow the guidelines below.

=== Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the

https://support.springsource.com/spring_committer_signup[contributor's agreement].

Signing the contributor's agreement does not grant anyone commit rights to the main

repository, but it does mean that we can accept your contributions, and you will get an

author credit if we do.  Active contributors might be asked to join the core team, and

given the ability to merge pull requests.

=== Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help.  They can also be

added after the original pull request but before a merge.

* Use the Spring Framework code format conventions. If you use Eclipse

  you can import formatter settings using the

  `eclipse-code-formatter.xml` file from the

  https://github.com/spring-cloud/build/tree/master/eclipse-coding-conventions.xml[Spring

  Cloud Build] project. If using IntelliJ, you can use the

  http://plugins.jetbrains.com/plugin/6546[Eclipse Code Formatter

  Plugin] to import the same file.

* Make sure all new `.java` files to have a simple Javadoc class comment with at least an

  `@author` tag identifying you, and preferably at least a paragraph on what the class is

  for.

* Add the ASF license header comment to all new `.java` files (copy from existing files

  in the project)

* Add yourself as an `@author` to the .java files that you modify substantially (more

  than cosmetic changes).

* Add some Javadocs and, if you change the namespace, some XSD doc elements.

* A few unit tests would help a lot as well -- someone has to do it.

* If no-one else is using your branch, please rebase it against the current master (or

  other target branch in the main project).

* When writing a commit message please follow http://tbaggery.com/2008/04/19/a-note-about-git-commit-

messages.html[these conventions],

  if you are fixing an existing issue please add `Fixes gh-XXXX` at the end of the commit

  message (where XXXX is the issue number).

// ======================================================================================


	Spring Cloud Stream Reference Guide
	Table of Contents
	Part I. Reference Guide
	Part II. Spring Cloud Stream Reference Manual
	1. Introducing Spring Cloud Stream
	2. Spring Cloud Stream Main Concepts
	2.1 Application structure
	Fat JAR

	2.2 Persistent publish subscribe and consumer groups
	Consumer Groups
	Durability

	2.3 Partitioning

	3. Programming model
	3.1 Declaring and binding channels
	Triggering binding via @EnableBinding
	@Input and @Output
	Customizing channel names
	Source, Sink, and Processor

	Accessing bound channels
	Injecting the bound interfaces
	Injecting channels directly

	Programming model
	Native Spring Integration support
	@StreamListener for automatic content type handling


	3.2 Binder SPI
	Producers and Consumers
	Kafka Binder
	RabbitMQ Binder


	4. Configuration options
	4.1 Spring Cloud Stream Properties
	4.2 Binding properties
	Properties for the use of Spring Cloud Stream
	Consumer properties
	Producer properties


	5. Binder-specific configuration
	5.1 Rabbit-specific settings
	Rabbit MQ Binder properties
	Rabbit MQ Consumer Properties
	Rabbit Producer Properties

	5.2 Kafka-specific settings
	Kafka binder properties
	Kafka Consumer Properties
	Kafka Producer Properties


	6. Binder detection
	6.1 Classpath Detection
	6.2 Multiple Binders on the Classpath
	6.3 Connecting to Multiple Systems

	7. Content Type and Transformation
	7.1 Type converting message channels
	7.2 @StreamListener and conversion

	8. Inter-app Communication
	8.1 Connecting multiple application instances
	8.2 Instance Index and Instance Count
	8.3 Partitioning
	Configuring Output Bindings for Partitioning
	Configuring Input Bindings for Partitioning



	9. Health Indicator
	10. Samples
	11. Getting Started


