
Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT

Copyright © 2013-2016Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream ii

Table of Contents

I. Reference Guide ... 1
1. Introducing Spring Cloud Stream ... 2
2. Main Concepts .. 4

2.1. Application Model ... 4
Fat JAR .. 4

2.2. The Binder Abstraction ... 4
2.3. Persistent Publish-Subscribe Support .. 5
2.4. Consumer Groups .. 6

Durability .. 6
2.5. Partitioning Support .. 7

3. Programming Model .. 8
3.1. Declaring and Binding Channels ... 8

Triggering Binding Via @EnableBinding .. 8
@Input and @Output .. 8

Customizing Channel Names .. 9
Source, Sink, and Processor ... 9

Accessing Bound Channels ... 9
Injecting the Bound Interfaces ... 9
Injecting Channels Directly .. 10

Producing and Consuming Messages .. 10
Native Spring Integration Support .. 11
Using @StreamListener for Automatic Content Type Handling 11

Aggregation .. 12
RxJava support ... 14

4. Binders ... 15
4.1. Producers and Consumers ... 15
4.2. Binder SPI ... 15
4.3. Binder Detection ... 16

Classpath Detection .. 16
4.4. Multiple Binders on the Classpath ... 16
4.5. Connecting to Multiple Systems .. 17
4.6. Binder configuration properties .. 17
4.7. Implementation strategies ... 18

Kafka Binder ... 18
RabbitMQ Binder .. 19

5. Configuration Options .. 20
5.1. Spring Cloud Stream Properties .. 20
5.2. Binding Properties .. 20

Properties for Use of Spring Cloud Stream ... 20
Consumer properties ... 21
Producer Properties .. 21

6. Binder-Specific Configuration ... 23
6.1. Rabbit-Specific Settings .. 23

RabbitMQ Binder Properties .. 23
RabbitMQ Consumer Properties .. 23
Rabbit Producer Properties .. 24

6.2. Kafka-Specific Settings ... 25

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream iii

Kafka Binder Properties ... 25
Kafka Consumer Properties ... 27
Kafka Producer Properties ... 28

7. Content Type and Transformation .. 29
7.1. MIME types .. 29
7.2. MIME types and Java types ... 29
7.3. `@StreamListener and Message Conversion .. 30

8. Inter-Application Communication .. 32
8.1. Connecting Multiple Application Instances ... 32
8.2. Instance Index and Instance Count ... 32
8.3. Partitioning ... 32

Configuring Output Bindings for Partitioning ... 32
Configuring Input Bindings for Partitioning .. 33

9. Testing ... 35
10. Health Indicator ... 36
11. Samples ... 37
12. Getting Started .. 38

II. Appendices ... 40
A. Building .. 41

A.1. Basic Compile and Test ... 41
A.2. Documentation ... 41
A.3. Working with the code ... 41

Importing into eclipse with m2eclipse ... 41
Importing into eclipse without m2eclipse ... 42

A.4. Sign the Contributor License Agreement ... 42
A.5. Code Conventions and Housekeeping .. 42

Part I. Reference Guide
This section goes into more detail about how you can work with Spring Cloud Stream. It covers topics
such as creating and running stream applications.

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 2

1. Introducing Spring Cloud Stream

Spring Cloud Stream is a framework for building message-driven microservice applications. Spring
Cloud Stream builds upon Spring Boot to create standalone, production-grade Spring applications, and
uses Spring Integration to provide connectivity to message brokers. It provides opinionated configuration
of middleware from several vendors, introducing the concepts of persistent publish-subscribe semantics,
consumer groups, and partitions.

You can add the @EnableBinding annotation to your application to get immediate connectivity to a
message broker, and you can add @StreamListener to a method to cause it to receive events for
stream processing. The following is a simple sink application which receives external messages.

@SpringBootApplication

public class StreamApplication {

 public static void main(String[] args) {

 SpringApplication.run(StreamApplication.class, args);

 }

}

@EnableBinding(Sink.class)

public class TimerSource {

 ...

 @StreamListener(Sink.INPUT)

 public void processVote(Vote vote) {

 votingService.recordVote(vote);

 }

}

The @EnableBinding annotation takes one or more interfaces as parameters (in this case, the
parameter is a single Sink interface). An interface declares input and/or output channels. Spring
Cloud Stream provides the interfaces Source, Sink, and Processor; you can also define your own
interfaces.

The following is the definition of the Source interface:

public interface Sink {

 String INPUT = "input";

 @Input(Sink.INPUT)

 SubscribableChannel input();

}

The @Input annotation identifies an input channel, through which received messages enter the
application; the @Output annotation identifies an output channel, through which published messages
leave the application. The @Input and @Output annotations can take a channel name as a parameter;
if a name is not provided, the name of the annotated method will be used.

Spring Cloud Stream will create an implementation of the interface for you. You can use this in the
application by autowiring it, as in the following example of a test case.

@RunWith(SpringJUnit4ClassRunner.class)

@SpringApplicationConfiguration(classes = StreamApplication.class)

@WebAppConfiguration

@DirtiesContext

public class StreamApplicationTests {

 @Autowired

 private Sink sink;

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 3

 @Test

 public void contextLoads() {

 assertNotNull(this.sink.input());

 }

}

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 4

2. Main Concepts
Spring Cloud Stream provides a number of abstractions and primitives that simplify the writing of
message-driven microservice applications. This section gives an overview of the following:

• Spring Cloud Stream’s application model

• The Binder abstraction

• Persistent publish-subscribe support

• Consumer group support

• Partitioning support

• A pluggable Binder API

2.1 Application Model

A Spring Cloud Stream application consists of a middleware-neutral core. The application communicates
with the outside world through input and output channels injected into it by Spring Cloud Stream.
Channels are connected to external brokers through middleware-specific Binder implementations.

Figure 2.1. Spring Cloud Stream Application

Fat JAR

Spring Cloud Stream applications can be run in standalone mode from your IDE for testing. To run a
Spring Cloud Stream application in production, you can create an executable (or "fat") JAR by using the
standard Spring Boot tooling provided for Maven or Gradle.

2.2 The Binder Abstraction

Spring Cloud Stream provides Binder implementations for Kafka, Rabbit MQ, Redis, and Gemfire. Spring
Cloud Stream also includes a TestSupportBinder, which leaves a channel unmodified so that tests can

https://github.com/spring-cloud/spring-cloud-stream/tree/master/spring-cloud-stream-binders/spring-cloud-stream-binder-kafka
https://github.com/spring-cloud/spring-cloud-stream/tree/master/spring-cloud-stream-binders/spring-cloud-stream-binder-rabbit
https://github.com/spring-cloud/spring-cloud-stream-binder-redis
https://github.com/spring-cloud/spring-cloud-stream-binder-gemfire
https://github.com/spring-cloud/spring-cloud-stream/blob/master/spring-cloud-stream-test-support/src/main/java/org/springframework/cloud/stream/test/binder/TestSupportBinder.java

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 5

interact with channels directly and reliably assert on what is received. You can use the extensible API
to write your own Binder.

Spring Cloud Stream uses Spring Boot for configuration, and the Binder abstraction makes it
possible for a Spring Cloud Stream application to be flexible in how it connects to middleware. For
example, deployers can dynamically choose, at runtime, the destinations (e.g., the Kafka topics or
RabbitMQ exchanges) to which channels connect. Such configuration can be provided through external
configuration properties and in any form supported by Spring Boot (including application arguments,
environment variables, and application.yml or application.properties files). In the sink
example from the Chapter 1, Introducing Spring Cloud Stream section, setting the application property
spring.cloud.stream.bindings.input.destination to raw-sensor-data will cause it to
read from the raw-sensor-data Kafka topic, or from a queue bound to the raw-sensor-data
RabbitMQ exchange.

Spring Cloud Stream automatically detects and uses a binder found on the classpath. You can easily use
different types of middleware with the same code: just include a different binder at build time. For more
complex use cases, you can also package multiple binders with your application and have it choose the
binder, and even whether to use different binders for different channels, at runtime.

2.3 Persistent Publish-Subscribe Support

Communication between applications follows a publish-subscribe model, where data is broadcast
through shared topics. This can be seen in the following figure, which shows a typical deployment for
a set of interacting Spring Cloud Stream applications.

Figure 2.2. Spring Cloud Stream Publish-Subscribe

Data reported by sensors to an HTTP endpoint is sent to a common destination named raw-sensor-
data. From the destination, it is independently processed by a microservice application that computes

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 6

time-windowed averages and by another microservice application that ingests the raw data into HDFS.
In order to process the data, both applications declare the topic as their input at runtime.

The publish-subscribe communication model reduces the complexity of both the producer and the
consumer, and allows new applications to be added to the topology without disruption of the existing
flow. For example, downstream from the average-calculating application, you can add an application
that calculates the highest temperature values for display and monitoring. You can then add another
application that interprets the same flow of averages for fault detection. Doing all communication through
shared topics rather than point-to-point queues reduces coupling between microservices.

While the concept of publish-subscribe messaging is not new, Spring Cloud Stream takes the extra step
of making it an opinionated choice for its application model. By using native middleware support, Spring
Cloud Stream also simplifies use of the publish-subscribe model across different platforms.

2.4 Consumer Groups

While the publish-subscribe model makes it easy to connect applications through shared topics, the
ability to scale up by creating multiple instances of a given application is equally important. When doing
this, different instances of an application are placed in a competing consumer relationship, where only
one of the instances is expected to handle a given message.

Spring Cloud Stream models this behavior through the concept of a consumer group.
(Spring Cloud Stream consumer groups are similar to and inspired by Kafka consumer
groups.) Each consumer binding can use the spring.cloud.stream.bindings.input.group
property to specify a group name. For the consumers shown in the following figure, this
property would be set as spring.cloud.stream.bindings.input.group=hdfsWrite or
spring.cloud.stream.bindings.input.group=average.

Figure 2.3. Spring Cloud Stream Consumer Groups

All groups which subscribe to a given destination receive a copy of published data, but only one
member of each group receives a given message from that destination. By default, when a group is
not specified, Spring Cloud Stream assigns the application to an anonymous and independent single-
member consumer group that is in a publish-subscribe relationship with all other consumer groups.

Durability

Consistent with the opinionated application model of Spring Cloud Stream, consumer group
subscriptions are durable. That is, a binder implementation ensures that group subscriptions are

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 7

persistent, and once at least one subscription for a group has been created, the group will receive
messages, even if they are sent while all applications in the group are stopped.

Note

Anonymous subscriptions are non-durable by nature. For some binder implementations (e.g.,
RabbitMQ), it is possible to have non-durable group subscriptions.

In general, it is preferable to always specify a consumer group when binding an application to a given
destination. When scaling up a Spring Cloud Stream application, you must specify a consumer group for
each of its input bindings. This prevents the application’s instances from receiving duplicate messages
(unless that behavior is desired, which is unusual).

2.5 Partitioning Support

Spring Cloud Stream provides support for partitioning data between multiple instances of a given
application. In a partitioned scenario, the physical communication medium (e.g., the broker topic)
is viewed as being structured into multiple partitions. One or more producer application instances
send data to multiple consumer application instances and ensure that data identified by common
characteristics are processed by the same consumer instance.

Spring Cloud Stream provides a common abstraction for implementing partitioned processing use cases
in a uniform fashion. Partitioning can thus be used whether the broker itself is naturally partitioned (e.g.,
Kafka) or not (e.g., RabbitMQ).

Figure 2.4. Spring Cloud Stream Partitioning

Partitioning is a critical concept in stateful processing, where it is critiical, for either performance or
consistency reasons, to ensure that all related data is processed together. For example, in the time-
windowed average calculation example, it is important that all measurements from any given sensor
are processed by the same application instance.

Note

To set up a partitioned processing scenario, you must configure both the data-producing and the
data-consuming ends.

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 8

3. Programming Model

This section describes Spring Cloud Stream’s programming model. Spring Cloud Stream provides a
number of predefined annotations for declaring bound input and output channels as well as how to listen
to channels.

3.1 Declaring and Binding Channels

Triggering Binding Via @EnableBinding

You can turn a Spring application into a Spring Cloud Stream application by applying the
@EnableBinding annotation to one of the application’s configuration classes. The @EnableBinding
annotation itself is meta-annotated with @Configuration and triggers the configuration of Spring
Cloud Stream infrastructure:

...

@Import(...)

@Configuration

@EnableIntegration

public @interface EnableBinding {

 ...

 Class<?>[] value() default {};

}

The @EnableBinding annotation can take as parameters one or more interface classes that contain
methods which represent bindable components (typically message channels).

Note

In Spring Cloud Stream 1.0, the only supported bindable components are the Spring Messaging
MessageChannel and its extensions SubscribableChannel and PollableChannel. Future
versions should extend this support to other types of components, using the same mechanism.
In this documentation, we will continue to refer to channels.

@Input and @Output

A Spring Cloud Stream application can have an arbitrary number of input and output channels defined
in an interface as @Input and @Output methods:

public interface Barista {

 @Input

 SubscribableChannel orders();

 @Output

 MessageChannel hotDrinks();

 @Output

 MessageChannel coldDrinks();

}

Using this interface as a parameter to @EnableBinding will trigger the creation of three bound
channels named orders, hotDrinks, and coldDrinks, respectively.

@EnableBinding(Barista.class)

public class CafeConfiguration {

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 9

 ...

}

Customizing Channel Names

Using the @Input and @Output annotations, you can specify a customized channel name for the
channel, as shown in the following example:

public interface Barista {

 ...

 @Input("inboundOrders")

 SubscribableChannel orders();

}

In this example, the created bound channel will be named inboundOrders.

Source, Sink, and Processor

For easy addressing of the most common use cases, which involve either an input channel, an output
channel, or both, Spring Cloud Stream provides three predefined interfaces out of the box.

Source can be used for an application which has a single outbound channel.

public interface Source {

 String OUTPUT = "output";

 @Output(Source.OUTPUT)

 MessageChannel output();

}

Sink can be used for an application which has a single inbound channel.

public interface Sink {

 String INPUT = "input";

 @Input(Sink.INPUT)

 SubscribableChannel input();

}

Processor can be used for an application which has both an inbound channel and an outbound
channel.

public interface Processor extends Source, Sink {

}

Spring Cloud Stream provides no special handling for any of these interfaces; they are only provided
out of the box.

Accessing Bound Channels

Injecting the Bound Interfaces

For each bound interface, Spring Cloud Stream will generate a bean that implements the interface.
Invoking a @Input-annotated or @Output-annotated method of one of these beans will return the
relevant bound channel.

The bean in the following example sends a message on the output channel when its hello method is
invoked. It invokes output() on the injected Source bean to retrieve the target channel.

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 10

@Component

public class SendingBean {

 private Source source;

 @Autowired

 public SendingBean(Source source) {

 this.source = source;

 }

 public void sayHello(String name) {

 source.output().send(MessageBuilder.withPayload(body).build());

 }

}

Injecting Channels Directly

Bound channels can be also injected directly:

@Component

public class SendingBean {

 private MessageChannel output;

 @Autowired

 public SendingBean(MessageChannel output) {

 this.output = output;

 }

 public void sayHello(String name) {

 output.send(MessageBuilder.withPayload(body).build());

 }

}

If the name of the channel is customized on the declaring annotation, that name should be used instead
of the method name. Given the following declaration:

public interface CustomSource {

 ...

 @Output("customOutput")

 MessageChannel output();

}

The channel will be injected as shown in the following example:

@Component

public class SendingBean {

 @Autowired

 private MessageChannel output;

 @Autowired @Qualifier("customOutput")

 public SendingBean(MessageChannel output) {

 this.output = output;

 }

 public void sayHello(String name) {

 customOutput.send(MessageBuilder.withPayload(body).build());

 }

}

Producing and Consuming Messages

You can write a Spring Cloud Stream application using either Spring Integration annotations
or Spring Cloud Stream’s @StreamListener annotation. The @StreamListener annotation is

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 11

modeled after other Spring Messaging annotations (such as @MessageMapping, @JmsListener,
@RabbitListener, etc.) but adds content type management and type coercion features.

Native Spring Integration Support

Because Spring Cloud Stream is based on Spring Integration, Stream completely inherits Integration’s
foundation and infrastructure as well as the component itself. For example, you can attach the output
channel of a Source to a MessageSource:

@EnableBinding(Source.class)

public class TimerSource {

 @Value("${format}")

 private String format;

 @Bean

 @InboundChannelAdapter(value = Source.OUTPUT, poller = @Poller(fixedDelay = "${fixedDelay}",

 maxMessagesPerPoll = "1"))

 public MessageSource<String> timerMessageSource() {

 return () -> new GenericMessage<>(new SimpleDateFormat(format).format(new Date()));

 }

}

Or you can use a processor’s channels in a transformer:

@EnableBinding(Processor.class)

public class TransformProcessor {

 @Transformer(inputChannel = Processor.INPUT, outputChannel = Processor.OUTPUT)

 public Object transform(String message) {

 return message.toUpper();

 }

}

Using @StreamListener for Automatic Content Type Handling

Complementary to its Spring Integration support, Spring Cloud Stream provides its own
@StreamListener annotation, modeled after other Spring Messaging annotations (e.g.
@MessageMapping, @JmsListener, @RabbitListener, etc.). The @StreamListener annotation
provides a simpler model for handling inbound messages, especially when dealing with use cases that
involve content type management and type coercion.

Spring Cloud Stream provides an extensible MessageConverter mechanism for handling data
conversion by bound channels and for, in this case, dispatching to methods annotated with
@StreamListener. The following is an example of an application which processes external Vote
events:

@EnableBinding(Sink.class)

public class VoteHandler {

 @Autowired

 VotingService votingService;

 @StreamListener(Sink.INPUT)

 public void handle(Vote vote) {

 votingService.record(vote);

 }

}

The distinction between @StreamListener and a Spring Integration @ServiceActivator is seen
when considering an inbound Message that has a String payload and a contentType header of
application/json. In the case of @StreamListener, the MessageConverter mechanism will
use the contentType header to parse the String payload into a Vote object.

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 12

As with other Spring Messaging methods, method arguments can be annotated with @Payload,
@Headers and @Header.

Note

For methods which return data, you must use the @SendTo annotation to specify the output
binding destination for data returned by the method:

@EnableBinding(Processor.class)

public class TransformProcessor {

 @Autowired

 VotingService votingService;

 @StreamListener(Processor.INPUT)

 @SendTo(Processor.OUTPUT)

 public VoteResult handle(Vote vote) {

 return votingService.record(vote);

 }

}

Note

In the case of RabbitMQ, content type headers can be set by external applications. Spring Cloud
Stream supports them as part of an extended internal protocol used for any type of transport
(including transports, such as Kafka, that do not normally support headers).

Aggregation

Spring Cloud Stream provides support for aggregating multiple applications together, connecting their
input and output channels directly and avoiding the additional cost of exchanging messages via a broker.
As of version 1.0 of Spring Cloud Stream, aggregation is supported only for the following types of
applications:

• sources - applications with a single output channel named output, typically having a single binding
of the type org.springframework.cloud.stream.messaging.Source

• sinks - applications with a single input channel named input, typically having a single binding of the
type org.springframework.cloud.stream.messaging.Sink

• processors - applications with a single input channel named input and a single
output channel named output, typically having a single binding of the type
org.springframework.cloud.stream.messaging.Processor.

They can be aggregated together by creating a sequence of interconnected applications, in which the
output channel of an element in the sequence is connected to the input channel of the next element, if
it exists. A sequence can start with either a source or a processor, it can contain an arbitrary number
of processors and must end with either a processor or a sink.

Depending on the nature of the starting and ending element, the sequence may have one or more
bindable channels, as follows:

• if the sequence starts with a source and ends with a sink, all communication between the applications
is direct and no channels will be bound

• if the sequence starts with a processor, then its input channel will become the input channel of the
aggregate and will be bound accordingly

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 13

• if the sequence ends with a processor, then its output channel will become the output channel of
the aggregate and will be bound accordingly

Aggregation is performed using the AggregateApplicationBuilder utility class, as in the following
example. Let’s consider a project in which we have source, processor and a sink, which may be defined
in the project, or may be contained in one of the project’s dependencies.

@SpringBootApplication

@EnableBinding(Sink.class)

public class SinkApplication {

 private static Logger logger = LoggerFactory.getLogger(SinkModuleDefinition.class);

 @ServiceActivator(inputChannel=Sink.INPUT)

 public void loggerSink(Object payload) {

 logger.info("Received: " + payload);

 }

}

@SpringBootApplication

@EnableBinding(Processor.class)

public class ProcessorApplication {

 @Transformer

 public String loggerSink(String payload) {

 return payload.toUpperCase();

 }

}

@SpringBootApplication

@EnableBinding(Source.class)

public class SourceApplication {

 @Bean

 @InboundChannelAdapter(value = Source.OUTPUT)

 public String timerMessageSource() {

 return new SimpleDateFormat().format(new Date());

 }

}

Each configuration can be used for running a separate component, but in this case they can be
aggregated together as follows:

@SpringBootApplication

public class SampleAggregateApplication {

 public static void main(String[] args) {

 new AggregateApplicationBuilder()

 .from(SourceApplication.class).args("--fixedDelay=5000")

 .via(ProcessorApplication.class)

 .to(SinkApplication.class).args("--debug=true").run(args);

 }

}

The starting component of the sequence is provided as argument to the from() method. The ending
component of the sequence is provided as argument to the to() method. Intermediate processors
are provided as argument to the via() method. Multiple processors of the same type can be chained
together (e.g. for pipelining transformations with different configurations). For each component, the
builder can provide runtime arguments for Spring Boot configuration.

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 14

RxJava support

Spring Cloud Stream provides support for RxJava-based processors through the RxJavaProcessor
available in spring-cloud-stream-rxjava.

public interface RxJavaProcessor<I, O> {

 Observable<O> process(Observable<I> input);

}

An implementation of RxJavaProcessor will receive Observable as an input that represents the
flow of inbound message payloads. The process method is invoked once at startup for setting up the
data flow.

You can enable the use of RxJava-based processors and use them in your processor application by
using the @EnableRxJavaProcessor annotation. @EnableRxJavaProcessor is meta-annotated
with @EnableBinding(Processor.class) and will create the Processor binding. Here is an
example of an RxJava-based processor:

@EnableRxJavaProcessor

public class RxJavaTransformer {

 private static Logger logger = LoggerFactory.getLogger(RxJavaTransformer.class);

 @Bean

 public RxJavaProcessor<String,String> processor() {

 return inputStream -> inputStream.map(data -> {

 logger.info("Got data = " + data);

 return data;

 })

 .buffer(5)

 .map(data -> String.valueOf(avg(data)));

 }

 private static Double avg(List<String> data) {

 double sum = 0;

 double count = 0;

 for(String d : data) {

 count++;

 sum += Double.valueOf(d);

 }

 return sum/count;

 }

}

Note

When implementing an RxJava processor, it is important to handle exceptions as part of your
processing flow. Uncaught exceptions will be treated as errors by RxJava and will cause the
Observable to complete, disrupting the flow.

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 15

4. Binders

Spring Cloud Stream provides a Binder abstraction for use in connecting to physical destinations at the
external middleware. This section provides information about the main concepts behind the Binder SPI,
its main components, and implementation-specific details.

4.1 Producers and Consumers

Figure 4.1. Producers and Consumers

A producer is any component that sends messages to a channel. The channel can be bound
to an external message broker via a Binder implementation for that broker. When invoking the
bindProducer() method, the first parameter is the name of the destination within the broker, the
second parameter is the local channel instance to which the producer will send messages, and the third
parameter contains properties (such as a partition key expression) to be used within the adapter that
is created for that channel.

A consumer is any component that receives messages from a channel. As with a producer,
the consumer’s channel can be bound to an external message broker. When invoking the
bindConsumer() method, the first parameter is the destination name, and a second parameter
provides the name of a logical group of consumers. Each group that is represented by consumer
bindings for a given destination receives a copy of each message that a producer sends to that
destination (i.e., publish-subscribe semantics). If there are multiple consumer instances bound using
the same group name, then messages will be load-balanced across those consumer instances so that
each message sent by a producer is consumed by only a single consumer instance within each group
(i.e., queueing semantics).

4.2 Binder SPI

The Binder SPI consists of a number of interfaces, out-of-the box utility classes and discovery strategies
that provide a pluggable mechanism for connecting to external middleware.

The key point of the SPI is the Binder interface which is a strategy for connecting inputs and outputs
to external middleware.

public interface Binder<T, C extends ConsumerProperties, P extends ProducerProperties> {

 Binding<T> bindConsumer(String name, String group, T inboundBindTarget, C consumerProperties);

 Binding<T> bindProducer(String name, T outboundBindTarget, P producerProperties);

}

The interface is parameterized, offering a number of extension points:

• input and output bind targets - as of version 1.0, only MessageChannel is supported, but this is
intended to be used as an extension point in the future;

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 16

• extended consumer and producer properties - allowing specific Binder implementations to add
supplemental properties which can be supported in a type-safe manner.

A typical binder implementation consists of the following

• a class that implements the Binder interface;

• a Spring @Configuration class that creates a bean of the type above along with the middleware
connection infrastructure;

• a META-INF/spring.binders file found on the classpath containing one or more binder definitions,
e.g.

kafka:\

org.springframework.cloud.stream.binder.kafka.config.KafkaBinderConfiguration

4.3 Binder Detection

Spring Cloud Stream relies on implementations of the Binder SPI to perform the task of connecting
channels to message brokers. Each Binder implementation typically connects to one type of messaging
system. Out of the box, Spring Cloud Stream provides binders for Kafka, RabbitMQ, and Redis.

Classpath Detection

By default, Spring Cloud Stream relies on Spring Boot’s auto-configuration to configure the binding
process. If a single Binder implementation is found on the classpath, Spring Cloud Stream will use it
automatically. For example, a Spring Cloud Stream project that aims to bind only to RabbitMQ can
simply add the following dependency:

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-stream-binder-rabbit</artifactId>

</dependency>

4.4 Multiple Binders on the Classpath

When multiple binders are present on the classpath, the application must indicate which binder is to be
used for each channel binding. Each binder configuration contains a META-INF/spring.binders,
which is a simple properties file:

rabbit:\

org.springframework.cloud.stream.binder.rabbit.config.RabbitServiceAutoConfiguration

Similar files exist for the other provided binder implementations (e.g., Kafka), and custom
binder implementations are expected to provide them, as well. The key represents an
identifying name for the binder implementation, whereas the value is a comma-separated
list of configuration classes that each contain one and only one bean definition of type
org.springframework.cloud.stream.binder.Binder.

Binder selection can either be performed globally, using the
spring.cloud.stream.defaultBinder property (e.g.,
spring.cloud.stream.defaultBinder=rabbit) or individually, by configuring the binder on
each channel binding. For instance, a processor application which reads from Kafka and writes to
RabbitMQ can specify the following configuration:

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 17

spring.cloud.stream.bindings.input.binder=kafka

spring.cloud.stream.bindings.output.binder=rabbit

4.5 Connecting to Multiple Systems

By default, binders share the application’s Spring Boot auto-configuration, so that one instance of each
binder found on the classpath will be created. If your application should connect to more than one
broker of the same type, you can specify multiple binder configurations, each with different environment
settings.

Note

Turning on explicit binder configuration will disable the default binder configuration process
altogether. If you do this, all binders in use must be included in the configuration. Frameworks
that intend to use Spring Cloud Stream transparently may create binder configurations that
can be referenced by name, but will not affect the default binder configuration. In order
to do so, a binder configuration may have its defaultCandidate flag set to false, e.g.
spring.cloud.stream.binders.<configurationName>.defaultCandidate=false.
This denotes a configuration that will exist independently of the default binder configuration
process.

For example, this is the typical configuration for a processor application which connects to two RabbitMQ
broker instances:

spring:

 cloud:

 stream:

 bindings:

 input:

 destination: foo

 binder: rabbit1

 output:

 destination: bar

 binder: rabbit2

 binders:

 rabbit1:

 type: rabbit

 environment:

 spring:

 rabbitmq:

 host: <host1>

 rabbit2:

 type: rabbit

 environment:

 spring:

 rabbitmq:

 host: <host2>

4.6 Binder configuration properties

The following properties are available when creating custom binder configurations. They must be
prefixed with spring.cloud.stream.binders.<configurationName>.

type
The binder type. It typically references one of the binders found on the classpath, in particular a key
in a META-INF/spring.binders file.

By default, it has the same value as the configuration name.

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 18

inheritEnvironment
Whether the configuration will inherit the environment of the application itself.

Default true.

environment
Root for a set of properties that can be used to customize the environment of the binder. When
this is configured, the context in which the binder is being created is not a child of the application
context. This allows for complete separation between the binder components and the application
components.

Default empty.

defaultCandidate
Whether the binder configuration is a candidate for being considered a default binder, or can be
used only when explicitly referenced. This allows adding binder configurations without interfering
with the default processing.

Default true.

4.7 Implementation strategies

This section details the binder implementation strategies for Kafka and Rabbit MQ, in what concerns
mapping the Spring Cloud Stream concepts onto the middleware concepts.

Kafka Binder

Figure 4.2. Kafka Binder

The Kafka Binder implementation maps the destination to a Kafka topic. The consumer group maps
directly to the same Kafka concept. Spring Cloud Stream does not use the high-level consumer, but
implements a similar concept for the simple consumer.

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 19

RabbitMQ Binder

Figure 4.3. RabbitMQ Binder

The RabbitMQ Binder implementation maps the destination to a TopicExchange. For each consumer
group, a Queue will be bound to that TopicExchange. Each consumer instance that binds will trigger
creation of a corresponding RabbitMQ Consumer instance for its group’s Queue.

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 20

5. Configuration Options
Spring Cloud Stream supports general configuration options as well as configuration for bindings and
binders. Some binders allow additional binding properties to support middleware-specific features.

Configuration options can be provided to Spring Cloud Stream applications via any mechanism
supported by Spring Boot. This includes application arguments, environment variables, and YAML
or .properties files.

5.1 Spring Cloud Stream Properties

spring.cloud.stream.instanceCount
The number of deployed instances of an application. Must be set for partitioning and if using Kafka.

Default: 1.

spring.cloud.stream.instanceIndex
The instance index of the application: a number from 0 to instanceCount-1. Used for partitioning
and with Kafka. Automatically set in Cloud Foundry to match the application’s instance index.

spring.cloud.stream.dynamicDestinations
A list of destinations that can be bound dynamically (for example, in a dynamic routing scenario).
If set, only listed destinations can be bound.

Default: empty (allowing any destination to be bound).

spring.cloud.stream.defaultBinder
The default binder to use, if multiple binders are configured. See Multiple Binders on the Classpath.

5.2 Binding Properties

Binding properties are supplied using the format
spring.cloud.stream.bindings.<channelName>.<property>=<value>. The
<channelName> represents the name of the channel being configured (e.g., output for a Source).

In what follows, we indicate where we have omitted the
spring.cloud.stream.bindings.<channelName>. prefix and focus just on the property name,
with the understanding that the prefix will be included at runtime.

Properties for Use of Spring Cloud Stream

The following binding properties are available for both input and output bindings and must be prefixed
with spring.cloud.stream.bindings.<channelName>..

destination
The target destination of a channel on the bound middleware (e.g., the RabbitMQ exchange or
Kafka topic). If the channel is bound as a consumer, it could be bound to multiple destinations and
the destination names can be specified as comma separated String values. If not set, the channel
name is used instead.

group
The consumer group of the channel. Applies only to inbound bindings. See Consumer Groups.

Default: null (indicating an anonymous consumer).

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 21

contentType
The content type of the channel. //See ???.

Default: null (so that no type coercion is performed).

binder
The binder used by this binding. See Section 4.4, “Multiple Binders on the Classpath” for details.

Default: null (the default binder will be used, if one exists).

Consumer properties

The following binding properties are available for input bindings only and must be prefixed with
spring.cloud.stream.bindings.<channelName>.consumer..

concurrency
The concurrency of the inbound consumer.

Default: 1.

partitioned
Whether the consumer receives data from a partitioned producer.

Default: false.

headerMode
When set to raw, disables header parsing on input. Effective only for messaging middleware that
does not support message headers natively and requires header embedding. Useful when inbound
data is coming from outside Spring Cloud Stream applications.

Default: embeddedHeaders.

maxAttempts
The number of attempts of re-processing an inbound message.

Default: 3.

backOffInitialInterval
The backoff initial interval on retry.

Default: 1000.

backOffMaxInterval
The maximum backoff interval.

Default: 10000.

backOffMultiplier
The backoff multiplier.

Default: 2.0.

Producer Properties

The following binding properties are available for output bindings only and must be prefixed with
spring.cloud.stream.bindings.<channelName>.producer..

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 22

partitionKeyExpression
A SpEL expression that determines how to partition outbound data. If set, or if
partitionKeyExtractorClass is set, outbound data on this channel will be partitioned, and
partitionCount must be set to a value greater than 1 to be effective. The two options are mutually
exclusive. See Section 2.5, “Partitioning Support”.

Default: null.

partitionKeyExtractorClass
A PartitionKeyExtractorStrategy implementation. If set, or if partitionKeyExpression
is set, outbound data on this channel will be partitioned, and partitionCount must be set to
a value greater than 1 to be effective. The two options are mutually exclusive. See Section 2.5,
“Partitioning Support”.

Default: null.

partitionSelectorClass
A PartitionSelectorStrategy implementation. Mutually exclusive with
partitionSelectorExpression. If neither is set, the partition will be selected as
the hashCode(key) % partitionCount, where key is computed via either
partitionKeyExpression or partitionKeyExtractorClass.

Default: null.

partitionSelectorExpression
A SpEL expression for customizing partition selection. Mutually exclusive with
partitionSelectorClass. If neither is set, the partition will be selected as the hashCode(key)
% partitionCount, where key is computed via either partitionKeyExpression or
partitionKeyExtractorClass.

Default: null.

partitionCount
The number of target partitions for the data, if partitioning is enabled. Must be set to a value greater
than 1 if the producer is partitioned. On Kafka, interpreted as a hint; the larger of this and the partition
count of the target topic is used instead.

Default: 1.

requiredGroups
A comma-separated list of groups to which the producer must ensure message delivery even if they
start after it has been created (e.g., by pre-creating durable queues in RabbitMQ).

headerMode
When set to raw, disables header embedding on output. Effective only for messaging middleware
that does not support message headers natively and requires header embedding. Useful when
producing data for non-Spring Cloud Stream applications.

Default: embeddedHeaders.

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 23

6. Binder-Specific Configuration

The following binder, consumer, and producer properties are specific to binder implementations.

6.1 Rabbit-Specific Settings

RabbitMQ Binder Properties

By default, the RabbitMQ binder uses Spring Boot’s ConnectionFactory, and it therefore supports all
Spring Boot configuration options for RabbitMQ. (For reference, consult the Spring Boot documentation.)
RabbitMQ configuration options use the spring.rabbitmq prefix.

In addition to the Spring Boot options, the RabbitMQ binder supports the following properties:

spring.cloud.stream.rabbit.binder.adminAddresses
A comma-separated list of RabbitMQ management plugin URLs. Only used when nodes
contains more than one entry. Each entry in this list must have a corresponding entry in
spring.rabbitmq.addresses.

Default: empty.

spring.cloud.stream.rabbit.binder.nodes
A comma-separated list of RabbitMQ node names. When more than one entry, used to locate the
server address where a queue is located. Each entry in this list must have a corresponding entry
in spring.rabbitmq.addresses.

Default: empty.

spring.cloud.stream.rabbit.binder.compressionLevel
Compression level for compressed bindings. See java.util.zip.Deflater.

Default: 1 (BEST_LEVEL).

RabbitMQ Consumer Properties

The following properties are available for Rabbit consumers only and must be prefixed with
spring.cloud.stream.rabbit.bindings.<channelName>.consumer..

acknowledgeMode
The acknowledge mode.

Default: AUTO.

autoBindDlq
Whether to automatically declare the DLQ and bind it to the binder DLX.

Default: false.

durableSubscription
Whether subscription should be durable. Only effective if group is also set.

Default: true.

http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#common-application-properties

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 24

maxConcurrency
Default: 1.

prefetch
Prefetch count.

Default: 1.

prefix
A prefix to be added to the name of the destination and queues.

Default: "".

recoveryInterval
The interval between connection recovery attempts, in milliseconds.

Default: 5000.

requeueRejected
Whether delivery failures should be requeued.

Default: true.

requestHeaderPatterns
The request headers to be transported.

Default: [STANDARD_REQUEST_HEADERS,'*'].

replyHeaderPatterns
The reply headers to be transported.

Default: [STANDARD_REQUEST_HEADERS,'*'].

republishToDlq
By default, messages which fail after retries are exhausted are rejected. If a dead-letter queue
(DLQ) is configured, RabbitMQ will route the failed message (unchanged) to the DLQ. If set to true,
the bus will republish failed messages to the DLQ with additional headers, including the exception
message and stack trace from the cause of the final failure.

transacted
Whether to use transacted channels.

Default: false.

txSize
The number of deliveries between acks.

Default: 1.

Rabbit Producer Properties

The following properties are available for Rabbit producers only and must be prefixed with
spring.cloud.stream.rabbit.bindings.<channelName>.producer..

autoBindDlq
Whether to automatically declare the DLQ and bind it to the binder DLX.

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 25

Default: false.

batchingEnabled
Whether to enable message batching by producers.

Default: false.

batchSize
The number of messages to buffer when batching is enabled.

Default: 100.

batchBufferLimit
Default: 10000.

batchTimeout
Default: 5000.

compress
Whether data should be compressed when sent.

Default: false.

deliveryMode
Delivery mode.

Default: PERSISTENT.

prefix
A prefix to be added to the name of the destination exchange.

Default: "".

requestHeaderPatterns
The request headers to be transported.

Default: [STANDARD_REQUEST_HEADERS,'*'].

replyHeaderPatterns
The reply headers to be transported.

Default: [STANDARD_REQUEST_HEADERS,'*'].

6.2 Kafka-Specific Settings

Kafka Binder Properties

spring.cloud.stream.kafka.binder.brokers
A list of brokers to which the Kafka binder will connect.

Default: localhost.

spring.cloud.stream.kafka.binder.defaultBrokerPort
brokers allows hosts specified with or without port information (e.g., host1,host2:port2). This
sets the default port when no port is configured in the broker list.

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 26

Default: 9092.

spring.cloud.stream.kafka.binder.zkNodes
A list of ZooKeeper nodes to which the Kafka binder can connect.

Default: localhost.

spring.cloud.stream.kafka.binder.defaultZkPort
zkNodes allows hosts specified with or without port information (e.g., host1,host2:port2). This
sets the default port when no port is configured in the node list.

Default: 2181.

spring.cloud.stream.kafka.binder.headers
The list of custom headers that will be transported by the binder.

Default: empty.

spring.cloud.stream.kafka.binder.offsetUpdateTimeWindow
The frequency, in milliseconds, with which offsets are saved. Ignored if 0.

Default: 10000.

spring.cloud.stream.kafka.binder.offsetUpdateCount
The frequency, in number of updates, which which consumed offsets are persisted. Ignored if 0.
Mutually exclusive with offsetUpdateTimeWindow.

Default: 0.

spring.cloud.stream.kafka.binder.requiredAcks
The number of required acks on the broker.

Default: 1.

spring.cloud.stream.kafka.binder.minPartitionCount
Effective only if autoCreateTopics or autoAddPartitions is set. The global minimum number
of partitions that the binder will configure on topics on which it produces/consumes data. It can be
superseded by the partitionCount setting of the producer or by the value of instanceCount
* concurrency settings of the producer (if either is larger).

Default: 1.

spring.cloud.stream.kafka.binder.replicationFactor
The replication factor of auto-created topics if autoCreateTopics is active.

Default: 1.

spring.cloud.stream.kafka.binder.autoCreateTopics
If set to true, the binder will create new topics automatically. If set to false, the binder will rely on
the topics being already configured. In the latter case, if the topics do not exist, the binder will fail
to start. Of note, this setting is independent of the auto.topic.create.enable setting of the
broker and it does not influence it: if the server is set to auto-create topics, they may be created as
part of the metadata retrieval request, with default broker settings.

Default: true.

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 27

spring.cloud.stream.kafka.binder.autoAddPartitions
If set to true, the binder will create add new partitions if required. If set to false, the binder will
rely on the partition size of the topic being already configured. If the partition count of the target topic
is smaller than the expected value, the binder will fail to start.

Default: false.

spring.cloud.stream.kafka.binder.socketBufferSize
Size (in bytes) of the socket buffer to be used by the Kafka consumers.

Default: 2097152.

Kafka Consumer Properties

The following properties are available for Kafka consumers only and must be prefixed with
spring.cloud.stream.kafka.bindings.<channelName>.consumer..

autoCommitOffset
Whether to autocommit offsets when a message has been processed. If set to false, an
Acknowledgment header will be available in the message headers for late acknowledgment.

Default: true.

autoCommitOnError
Effective only if autoCommitOffset is set to true. If set to false it suppresses auto-commits
for messages that result in errors, and will commit only for successful messages, allows a stream to
automatically replay from the last successfully processed message, in case of persistent failures. If
set to true, it will always auto-commit (if auto-commit is enabled). If not set (default), it effectively
has the same value as enableDlq, auto-committing erroneous messages if they are sent to a DLQ,
and not committing them otherwise.

Default: not set.

recoveryInterval
The interval between connection recovery attempts, in milliseconds.

Default: 5000.

resetOffsets
Whether to reset offsets on the consumer to the value provided by startOffset.

Default: false.

startOffset
The starting offset for new groups, or when resetOffsets is true. Allowed values: earliest,
latest.

Default: null (equivalent to earliest).

enableDlq
When set to true, it will send enable DLQ behavior for the consumer. Messages that result in
errors will be forwarded to a topic named error.<destination>.<group>. This provides an
alternative option to the more common Kafka replay scenario for the case when the number of errors
is relatively small and replaying the entire original topic may be too cumbersome.

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 28

Default: false.

Kafka Producer Properties

The following properties are available for Kafka producers only and must be prefixed with
spring.cloud.stream.kafka.bindings.<channelName>.producer..

bufferSize
Upper limit, in bytes, of how much data the Kafka producer will attempt to batch before sending.

Default: 16384.

sync
Whether the producer is synchronous.

Default: false.

batchTimeout
How long the producer will wait before sending in order to allow more messages to accumulate in
the same batch. (Normally the producer does not wait at all, and simply sends all the messages that
accumulated while the previous send was in progress.) A non-zero value may increase throughput
at the expense of latency.

Default: 0.

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 29

7. Content Type and Transformation

To allow you to propagate information about the content type of produced messages, Spring Cloud
Stream attaches, by default, a contentType header to outbound messages. For middleware that
does not directly support headers, Spring Cloud Stream provides its own mechanism of automatically
wrapping outbound messages in an envelope of its own. For middleware that does support headers,
Spring Cloud Stream applications may receive messages with a given content type from non-Spring
Cloud Stream applications.

Spring Cloud Stream can handle messages based on this information in two ways:

• Through its contentType settings on inbound and outbound channels

• Through its argument mapping performed for methods annotated with @StreamListener

Spring Cloud Stream allows you to declaratively configure type conversion for inputs and outputs using
the content-type property of a binding. Note that general type conversion may also be accomplished
easily by using a transformer inside your application. Currently, Spring Cloud Stream natively supports
the following type conversions commonly used in streams:

• JSON to/from POJO

• JSON to/from org.springframework.tuple.Tuple

• Object to/from byte[] : Either the raw bytes serialized for remote transport, bytes emitted by an
application, or converted to bytes using Java serialization(requires the object to be Serializable)

• String to/from byte[]

• Object to plain text (invokes the object’s toString() method)

Where JSON represents either a byte array or String payload containing JSON. Currently, Objects may
be converted from a JSON byte array or String. Converting to JSON always produces a String.

7.1 MIME types

content-type values are parsed as media types, e.g., application/json or text/

plain;charset=UTF-8. MIME types are especially useful for indicating how to convert to
String or byte[] content. Spring Cloud Stream also uses MIME type format to represent
Java types, using the general type application/x-java-object with a type parameter.
For example, application/x-java-object;type=java.util.Map or application/x-java-
object;type=com.bar.Foo can be set as the content-type property of an input binding. In
addition, Spring Cloud Stream provides custom MIME types, notably, application/x-spring-
tuple to specify a Tuple.

7.2 MIME types and Java types

The type conversions Spring Cloud Stream provides out of the box are summarized in the following table:

Source Payload Target Payload content-type
header

content-type Comments

POJO JSON String ignored application/json

https://github.com/spring-projects/spring-tuple/blob/master/spring-tuple/src/main/java/org/springframework/tuple/Tuple.java

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 30

Source Payload Target Payload content-type
header

content-type Comments

Tuple JSON String ignored application/json JSON is tailored
for Tuple

POJO String (toString()) ignored text/plain,
java.lang.String

POJO byte[] (java.io
serialized)

ignored application/x-java-
serialized-object

JSON byte[] or
String

POJO application/json
(or none)

application/x-java-
object

byte[] or String Serializable application/x-java-
serialized-object

application/x-java-
object

JSON byte[] or
String

Tuple application/json
(or none)

application/x-
spring-tuple

byte[] String any text/plain,
java.lang.String

will apply any
Charset specified
in the content-
type header

String byte[] any application/octet-
stream

will apply any
Charset specified
in the content-
type header

Conversion applies to payloads that require type conversion. For example, if a module produces an
XML string with outputType=application/json, the payload will not be converted from XML to JSON.
This is because the payload at the module’s output channel is already a String so no conversion will
be applied at runtime.

While conversion is supported for both input and output channels, it is especially recommended to be
used for the conversion of outbound messages. For the conversion of inbound messages, especially
when the target is a POJO, the @StreamListener support will perform the conversion automatically.

7.3 `@StreamListener and Message Conversion

The @StreamListener annotation provides a convenient way for converting incoming messages
without the need to specify the content type of an input channel. During the dispatching process to
methods annotated with @StreamListener, a conversion will be applied automatically if the argument
requires it.

For example, let’s consider a message with the String content {"greeting":"Hello, world"} and
a content-type header of application/json is received on the input channel. Let us consider the
following application that receives it:

public class GreetingMessage {

 String greeting;

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 31

 public String getGreeting() {

 return greeting;

 }

 public void setGreeting(String greeting) {

 this.greeting = greeting;

 }

}

@EnableBinding(Sink.class)

@EnableAutoConfiguration

public static class GreetingSink {

 @StreamListener(Sink.INPUT)

 public void receive(Greeting greeting) {

 // handle Greeting

 }

 }

The argument of the method will be populated automatically with the POJO containing the unmarshalled
form of the JSON String.

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 32

8. Inter-Application Communication

8.1 Connecting Multiple Application Instances

While Spring Cloud Stream makes it easy for individual Spring Boot applications to connect to
messaging systems, the typical scenario for Spring Cloud Stream is the creation of multi-application
pipelines, where microservice applications send data to each other. You can achieve this scenario by
correlating the input and output destinations of adjacent applications.

Supposing that a design calls for the Time Source application to send data to the Log Sink application,
you can use a common destination named ticktock for bindings within both applications.

Time Source will set the following property:

spring.cloud.stream.bindings.output.destination=ticktock

Log Sink will set the following property:

spring.cloud.stream.bindings.input.destination=ticktock

8.2 Instance Index and Instance Count

When scaling up Spring Cloud Stream applications, each instance can receive information about
how many other instances of the same application exist and what its own instance index
is. Spring Cloud Stream does this through the spring.cloud.stream.instanceCount and
spring.cloud.stream.instanceIndex properties. For example, if there are three instances of a
HDFS sink application, all three instances will have spring.cloud.stream.instanceCount set to
3, and the individual applications will have spring.cloud.stream.instanceIndex set to 0, 1, and
2, respectively.

When Spring Cloud Stream applications are deployed via Spring Cloud Data Flow, these properties are
configured automatically; when Spring Cloud Stream applications are launched independently, these
properties must be set correctly. By default, spring.cloud.stream.instanceCount is 1, and
spring.cloud.stream.instanceIndex is 0.

In a scaled-up scenario, correct configuration of these two properties is important for addressing
partitioning behavior (see below) in general, and the two properties are always required by certain
binders (e.g., the Kafka binder) in order to ensure that data are split correctly across multiple consumer
instances.

8.3 Partitioning

Configuring Output Bindings for Partitioning

An output binding is configured to send partitioned data by setting one and only one of
its partitionKeyExpression or partitionKeyExtractorClass properties, as well as its
partitionCount property. For example, the following is a valid and typical configuration:

spring.cloud.stream.bindings.output.producer.partitionKeyExpression=payload.id

spring.cloud.stream.bindings.output.producer.partitionCount=5

Based on the above example configuration, data will be sent to the target partition using the following
logic.

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 33

A partition key’s value is calculated for each message sent to a partitioned output channel based on
the partitionKeyExpression. The partitionKeyExpression is a SpEL expression which is
evaluated against the outbound message for extracting the partitioning key.

Tip

If a SpEL expression is not sufficient for your needs, you can instead calculate
the partition key value by setting the property partitionKeyExtractorClass

to a class which implements the
org.springframework.cloud.stream.binder.PartitionKeyExtractorStrategy

interface. While the SpEL expression should usually suffice, more complex cases may use the
custom implementation strategy.

Once the message key is calculated, the partition selection process will determine the
target partition as a value between 0 and partitionCount - 1. The default
calculation, applicable in most scenarios, is based on the formula key.hashCode() %

partitionCount. This can be customized on the binding, either by setting a SpEL expression
to be evaluated against the key (via the partitionSelectorExpression property) or
by setting a org.springframework.cloud.stream.binder.PartitionSelectorStrategy
implementation (via the partitionSelectorClass property).

Additional properties can be configured for more advanced scenarios, as described in the following
section.

Note

The Kafka binder will use the partitionCount setting as a hint to create a topic with the given
partition count (in conjunction with the minPartitionCount, the maximum of the two being the
value being used). Exercise caution when configuring both minPartitionCount for a binder
and partitionCount for an application, as the larger value will be used. If a topic already exists
with a smaller partition count and autoAddPartitions is disabled (the default), then the binder
will fail to start. If a topic already exists with a smaller partition count and autoAddPartitions
is enabled, new partitions will be added. If a topic already exists with a larger number of partitions
than the maximum of (minPartitionCount and partitionCount), the existing partition count
will be used.

Configuring Input Bindings for Partitioning

An input binding is configured to receive partitioned data by setting its partitioned property, as well
as the instanceIndex and instanceCount properties on the application itself, as in the following
example:

spring.cloud.stream.bindings.input.consumer.partitioned=true

spring.cloud.stream.instanceIndex=3

spring.cloud.stream.instanceCount=5

The instanceCount value represents the total number of application instances between which the
data need to be partitioned, and the instanceIndex must be a unique value across the multiple
instances, between 0 and instanceCount - 1. The instance index helps each application instance
to identify the unique partition (or, in the case of Kafka, the partition set) from which it receives data. It
is important to set both values correctly in order to ensure that all of the data is consumed and that the
application instances receive mutually exclusive datasets.

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 34

While a scenario which using multiple instances for partitioned data processing may be complex to set
up in a standalone case, Spring Cloud Dataflow can simplify the process significantly by populating
both the input and output values correctly as well as relying on the runtime infrastructure to provide
information about the instance index and instance count.

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 35

9. Testing

Spring Cloud Stream provides support for testing your microservice applications without connecting to
a messaging system. You can do that by using the TestSupportBinder. This is useful especially for
unit testing your microservices.

The TestSupportBinder allows users to interact with the bound channels and inspect what messages
are sent and received by the application

For outbound message channels, the TestSupportBinder registers a single subscriber and retains
the messages emitted by the application in a MessageCollector. They can be retrieved during tests
and have assertions made against them.

The user can also send messages to inbound message channels, so that the consumer application can
consume the messages. The following example shows how to test both input and output channels on
a processor.

@RunWith(SpringJUnit4ClassRunner.class)

@SpringApplicationConfiguration(classes = ExampleTest.MyProcessor.class)

@IntegrationTest({"server.port=-1"})

@DirtiesContext

public class ExampleTest {

 @Autowired

 private Processor processor;

 @Autowired

 private BinderFactory<MessageChannel> binderFactory;

 @Autowired

 private MessageCollector messageCollector;

 @Test

 @SuppressWarnings("unchecked")

 public void testWiring() {

 Message<String> message = new GenericMessage<>("hello");

 processor.input().send(message);

 Message<String> received = (Message<String>) messageCollector.forChannel(processor.output()).poll();

 assertThat(received.getPayload(), equalTo("hello world"));

 }

 @SpringBootApplication

 @EnableBinding(Processor.class)

 public static class MyProcessor {

 @Autowired

 private Processor channels;

 @Transformer(inputChannel = Processor.INPUT, outputChannel = Processor.OUTPUT)

 public String transform(String in) {

 return in + " world";

 }

 }

}

In the example above, we are creating an application that has an input and an output channel,
bound through the Processor interface. The bound interface is injected into the test so we can have
access to both channels. We are sending a message on the input channel and we are using the
MessageCollector provided by Spring Cloud Stream’s test support to capture the message has been
sent to the output channel as a result. Once we have received the message, we can validate that the
component functions correctly.

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 36

10. Health Indicator

Spring Cloud Stream provides a health indicator for binders. It is registered under the name of binders
and can be enabled or disabled by setting the management.health.binders.enabled property.

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 37

11. Samples

For Spring Cloud Stream samples, please refer to the spring-cloud-stream-samples repository on
GitHub.

https://github.com/spring-cloud/spring-cloud-stream-samples

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 38

12. Getting Started

To get started with creating Spring Cloud Stream applications, visit the Spring Initializr and create a new
Maven project named "GreetingSource". Select Spring Boot version 1.3.4 SNAPSHOT and search or
tick the checkbox for Stream Kafka (we will be using Kafka for messaging).

Next, create a new class, GreetingSource, in the same package as the
GreetingSourceApplication class. Give it the following code:

import org.springframework.cloud.stream.annotation.EnableBinding;

import org.springframework.cloud.stream.messaging.Source;

import org.springframework.integration.annotation.InboundChannelAdapter;

@EnableBinding(Source.class)

public class GreetingSource {

 @InboundChannelAdapter(Source.OUTPUT)

 public String greet() {

 return "hello world " + System.currentTimeMillis();

 }

}

The @EnableBinding annotation is what triggers the creation of Spring Integration infrastructure
components. Specifically, it will create a Kafka connection factory, a Kafka outbound channel adapter,
and the message channel defined inside the Source interface:

public interface Source {

 String OUTPUT = "output";

 @Output(Source.OUTPUT)

 MessageChannel output();

}

The auto-configuration also creates a default poller, so that the greet() method will be invoked
once per second. The standard Spring Integration @InboundChannelAdapter annotation sends a
message to the source’s output channel, using the return value as the payload of the message.

To test-drive this setup, run a Kafka message broker. An easy way to do this is to use a Docker image:

On OS X

$ docker run -p 2181:2181 -p 9092:9092 --env ADVERTISED_HOST=`docker-machine ip \`docker-machine active

\`` --env ADVERTISED_PORT=9092 spotify/kafka

On Linux

$ docker run -p 2181:2181 -p 9092:9092 --env ADVERTISED_HOST=localhost --env ADVERTISED_PORT=9092

 spotify/kafka

Build the application:

./mvnw clean package

The consumer application is coded in a similar manner. Go back to Initializr and create another project,
named LoggingSink. Then create a new class, LoggingSink, in the same package as the class
LoggingSinkApplication and with the following code:

import org.springframework.cloud.stream.annotation.EnableBinding;

import org.springframework.cloud.stream.annotation.StreamListener;

import org.springframework.cloud.stream.messaging.Sink;

https://start.spring.io

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 39

@EnableBinding(Sink.class)

public class LoggingSink {

 @StreamListener(Sink.INPUT)

 public void log(String message) {

 System.out.println(message);

 }

}

Build the application:

./mvnw clean package

To connect the GreetingSource application to the LoggingSink application, each application must share
the same destination name. Starting up both applications as shown below, you will see the consumer
application printing "hello world" and a timestamp to the console:

cd GreetingSource

java -jar target/GreetingSource-0.0.1-SNAPSHOT.jar --

spring.cloud.stream.bindings.output.destination=mydest

cd LoggingSink

java -jar target/LoggingSink-0.0.1-SNAPSHOT.jar --server.port=8090 --

spring.cloud.stream.bindings.input.destination=mydest

(The different server port prevents collisions of the HTTP port used to service the Spring Boot Actuator
endpoints in the two applications.)

The output of the LoggingSink application will look something like the following:

[main] s.b.c.e.t.TomcatEmbeddedServletContainer : Tomcat started on port(s): 8090 (http)

[main] com.example.LoggingSinkApplication : Started LoggingSinkApplication in 6.828

 seconds (JVM running for 7.371)

hello world 1458595076731

hello world 1458595077732

hello world 1458595078733

hello world 1458595079734

hello world 1458595080735

Part II. Appendices

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 41

Appendix A. Building
A.1 Basic Compile and Test

To build the source you will need to install JDK 1.7.

The build uses the Maven wrapper so you don’t have to install a specific version of Maven. To enable
the tests for Redis, Rabbit, and Kafka bindings you should have those servers running before building.
See below for more information on running the servers.

The main build command is

$./mvnw clean install

You can also add '-DskipTests' if you like, to avoid running the tests.

Note

You can also install Maven (>=3.3.3) yourself and run the mvn command in place of ./mvnw in
the examples below. If you do that you also might need to add -P spring if your local Maven
settings do not contain repository declarations for spring pre-release artifacts.

Note

Be aware that you might need to increase the amount of memory available to Maven by setting a
MAVEN_OPTS environment variable with a value like -Xmx512m -XX:MaxPermSize=128m. We
try to cover this in the .mvn configuration, so if you find you have to do it to make a build succeed,
please raise a ticket to get the settings added to source control.

The projects that require middleware generally include a docker-compose.yml, so consider using
Docker Compose to run the middeware servers in Docker containers. See the README in the scripts
demo repository for specific instructions about the common cases of mongo, rabbit and redis.

A.2 Documentation

There is a "full" profile that will generate documentation.

A.3 Working with the code

If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or Eclipse
when working with the code. We use the m2eclipe eclipse plugin for maven support. Other IDEs and
tools should also work without issue.

Importing into eclipse with m2eclipse

We recommend the m2eclipe eclipse plugin when working with eclipse. If you don’t already have
m2eclipse installed it is available from the "eclipse marketplace".

Unfortunately m2e does not yet support Maven 3.3, so once the projects are imported into Eclipse you
will also need to tell m2eclipse to use the .settings.xml file for the projects. If you do not do this
you may see many different errors related to the POMs in the projects. Open your Eclipse preferences,

http://compose.docker.io/
https://github.com/spring-cloud-samples/scripts
https://github.com/spring-cloud-samples/scripts
http://www.springsource.com/developer/sts
http://eclipse.org
http://eclipse.org/m2e/
http://eclipse.org/m2e/

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 42

expand the Maven preferences, and select User Settings. In the User Settings field click Browse and
navigate to the Spring Cloud project you imported selecting the .settings.xml file in that project.
Click Apply and then OK to save the preference changes.

Note

Alternatively you can copy the repository settings from .settings.xml into your own ~/.m2/
settings.xml.

Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following
command:

$./mvnw eclipse:eclipse

The generated eclipse projects can be imported by selecting import existing projects from the
file menu. [[contributing] == Contributing

Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard
Github development process, using Github tracker for issues and merging pull requests into master. If
you want to contribute even something trivial please do not hesitate, but follow the guidelines below.

A.4 Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the contributor’s agreement.
Signing the contributor’s agreement does not grant anyone commit rights to the main repository, but
it does mean that we can accept your contributions, and you will get an author credit if we do. Active
contributors might be asked to join the core team, and given the ability to merge pull requests.

A.5 Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help. They can also be added after the
original pull request but before a merge.

• Use the Spring Framework code format conventions. If you use Eclipse you can import formatter
settings using the eclipse-code-formatter.xml file from the Spring Cloud Build project. If using
IntelliJ, you can use the Eclipse Code Formatter Plugin to import the same file.

• Make sure all new .java files to have a simple Javadoc class comment with at least an @author
tag identifying you, and preferably at least a paragraph on what the class is for.

• Add the ASF license header comment to all new .java files (copy from existing files in the project)

• Add yourself as an @author to the .java files that you modify substantially (more than cosmetic
changes).

• Add some Javadocs and, if you change the namespace, some XSD doc elements.

• A few unit tests would help a lot as well — someone has to do it.

• If no-one else is using your branch, please rebase it against the current master (or other target branch
in the main project).

https://github.com/spring-cloud/spring-cloud-build/blob/master/.settings.xml
https://support.springsource.com/spring_committer_signup
https://github.com/spring-cloud/build/tree/master/eclipse-coding-conventions.xml
http://plugins.jetbrains.com/plugin/6546

Spring Cloud Stream Reference Guide

1.0.1.BUILD-SNAPSHOT Spring Cloud Stream 43

• When writing a commit message please follow these conventions, if you are fixing an existing issue
please add Fixes gh-XXXX at the end of the commit message (where XXXX is the issue number).

http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

	Spring Cloud Stream Reference Guide
	Table of Contents
	Part I. Reference Guide
	1. Introducing Spring Cloud Stream
	2. Main Concepts
	2.1 Application Model
	Fat JAR

	2.2 The Binder Abstraction
	2.3 Persistent Publish-Subscribe Support
	2.4 Consumer Groups
	Durability

	2.5 Partitioning Support

	3. Programming Model
	3.1 Declaring and Binding Channels
	Triggering Binding Via @EnableBinding
	@Input and @Output
	Customizing Channel Names
	Source, Sink, and Processor

	Accessing Bound Channels
	Injecting the Bound Interfaces
	Injecting Channels Directly

	Producing and Consuming Messages
	Native Spring Integration Support
	Using @StreamListener for Automatic Content Type Handling

	Aggregation
	RxJava support

	4. Binders
	4.1 Producers and Consumers
	4.2 Binder SPI
	4.3 Binder Detection
	Classpath Detection

	4.4 Multiple Binders on the Classpath
	4.5 Connecting to Multiple Systems
	4.6 Binder configuration properties
	4.7 Implementation strategies
	Kafka Binder
	RabbitMQ Binder

	5. Configuration Options
	5.1 Spring Cloud Stream Properties
	5.2 Binding Properties
	Properties for Use of Spring Cloud Stream
	Consumer properties
	Producer Properties

	6. Binder-Specific Configuration
	6.1 Rabbit-Specific Settings
	RabbitMQ Binder Properties
	RabbitMQ Consumer Properties
	Rabbit Producer Properties

	6.2 Kafka-Specific Settings
	Kafka Binder Properties
	Kafka Consumer Properties
	Kafka Producer Properties

	7. Content Type and Transformation
	7.1 MIME types
	7.2 MIME types and Java types
	7.3 `@StreamListener and Message Conversion

	8. Inter-Application Communication
	8.1 Connecting Multiple Application Instances
	8.2 Instance Index and Instance Count
	8.3 Partitioning
	Configuring Output Bindings for Partitioning
	Configuring Input Bindings for Partitioning

	9. Testing
	10. Health Indicator
	11. Samples
	12. Getting Started

	Part II. Appendices
	Appendix A. Building
	A.1 Basic Compile and Test
	A.2 Documentation
	A.3 Working with the code
	Importing into eclipse with m2eclipse
	Importing into eclipse without m2eclipse

	A.4 Sign the Contributor License Agreement
	A.5 Code Conventions and Housekeeping

