Spring Cloud Stream Reference Guide

Ditmars.SR3

Sabby Anandan, Marius Bogoevici, Eric Bottard, Mark Fisher, llayaperumal Gopinathan,
Gunnar Hillert, Mark Pollack, Patrick Peralta, Glenn Renfro, Thomas Risberg, Dave Syer,
David Turanski, Janne Valkealahti, Benjamin Klein, Soby Chacko, Vinicius Carvalho

Copyright © 2013-2017 Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Cloud Stream Reference Guide

Table of Contents

[. SPriNG ClOUA SrEAM COMEietiiii ettt ettt et e e et e et e e e e et e e et e e eaeaennns 1
1. Introducing SPring CloUd SErEAIMiiiiiii e 2
A V- Y] T O o] g o= o) 4

2.1, APPlICAtiIoN MOEL oo 4

F At JA R e et e e e et e e e aaeeanae 4

2.2. The Binder ADSIIACHONiiieiiiieiiiiiie ettt e e e e e reeennnnes 4

2.3. Persistent Publish-Subscribe SUPPOItooiuiiii e, 5

2.4, CONSUMET GIOUPS ..etuierieetn ettt eet et et et et et et et e e et e e et e e e e e e e e et e eena s 6

[11 = o111/ 6

2.5. Partitioning SUPPOIT ... cuuieiie ittt et et e e e e e e et e et e e e e eeanas 7

3. Programming MOGEIuuiiiiii et 8

3.1. Declaring and Binding Channelscccouiiiiiiiiiiei e 8

Triggering Binding Via @nabl eBi Ndi NQccouviiiiiiiii e 8

@ NPUt aNd @DUL PUL ..o e e e 8

Customizing Channel NameSscc.viiiiiiiii e 9

Source, Si NK, and ProCESSOr ...c.uuiiiiiiiiiieieiii e 9

Accessing Bound ChannelSovoiiiiiiiii e 10

Injecting the Bound INterfacescovevuiiiii i 10

Injecting Channels DireCtlycooiiiiiiiiii e 10

Producing and Consuming MESSAQESuueieiuunieiiiiiie it ee e eeees 11

Native Spring Integration SUPPOITvvviiiii e 11

Spring Integration Error Channel SUpportc.ooceiiiiiiiiiiiiieeeeeeen, 11

Message Channel Binders and Error Channelsc.c.oooiiiiiiiiiniciiiiin e, 12

Using @StreamListener for Automatic Content Type Handling 12

Using @StreamListener for dispatching messages to multiple methods 13

Reactive Programming SUPPOITuuiiiiiieeiiii et ee et e et e eeeti e e eeai e eeees 14

Reactor-based handlers ... 15

RXJAVA 1. X SUPPOIT .ottt ettt ettt et e e e et e et e e e e e e eaeees 15

REACHVE SOUICES ...ttt e e e e e et e eean e eee 16

2o T | (= - 1o o R 17

Configuring aggregate appliCationocouoviiiiiiiiiii e 19
Configuring binding service properties for non self contained aggregate

=Y o] o] 10> 1o o 19

N 1] oo =T PP PUPPPT TP 21

4.1, Producers and CONSUMIEISciuuuiiiieeiinieeitaeeeieeeiaeeanaeeeneeetaeeanaeeenaaeenaeenaaeenaaes 21

4.2, BINAET SPI ..o e 21

4.3, BIiNder DELECHION ...ccevuuiiiiiii ettt e 22

Classpath DEeECHIONccouuiiiiiii e eeaa e 22

4.4. Multiple Binders on the Classpathcc.ooviiiiiiiiiiii e 22

4.5. Connecting to MUItiple SYSTEMSuiiiiiiii e 23

4.6. Binder configuration ProPertiesocoeuueieiiiinieiii e 23

5. Configuration OPLiONSiiueiiii i e e e e e e e e e 25

5.1. Spring Cloud Stream Properti®soceuuiiuiiiieiieii e e 25

5.2. BINAING PIOPEITIES ...ttt et e e s 25

Properties for Use of Spring Cloud Streamccocoviviiiiiiiiiiiici e 26

CONSUMET PIOPEITIES ...ttt ettt ettt e et et e e e e e et e et n e et e e eaeeanaaes 26

ProduCEr PrOPEITIESiiiii ittt e e et e e e e e eee 27

Ditmars.SR3 Spring Cloud Stream iii

Spring Cloud Stream Reference Guide

5.3. Using dynamically bound destinationsocoeuuiiiiiiiinieiii e 29

6. Content Type and TransSformationcooouiiiiiiiiiii e 31

B.1. MIME TYPES ...iiietiiiiii ettt e et s e e e et e e e e e e e 31

6.2. MIME types and JaVva LYPESccouuuuiiiiiiiieeiiiie ettt e s 31

6.3. CUuStOMIZiNg MESSAGE CONVEISIONuueiiiiiiieiiiii et et eeeeti e et eeeee e e e eene e eennnns 33

6.4. @t reanli st ener and Message CONVEISIONcoevvueeiinieiiieeiiieeeiiee e eeaneeeaes 33

7. Schema eVOIULION SUPPOIT ...c.vuuiiiii ettt e et e e e e 35

7.1. Apache AVro MeSSage CONVEITEIS ...cccuuuiiiiiiii e 35

7.2. Converters with SChema SUPPOITiiiiiiii e 35

7.3. Schema ReQIStrY SUPPOITccouuuiiiiiii ettt et e e e e 36

7.4, SChemMa REQISITY SEIVELuuiiiiiii ettt 36

Schema RegiStry SErVer APl ... e e 36

|20 S TSP PTTTTRRTTSOPUPPPIN 36

GET /{subject}/{format}/{version}cccoooiiiiiiiiniiiiiiniiniiinnennnns 37

GET /{subject}/{format} ..o 37

GET /schemBs/ {0 d} ..o 37

DELETE /{subject}/{format}/{version}cciiiniiiiinieninnnnn. 38

DELETE /schemas/ {i d} .o 38

DELETE [{SUDj @CTL} oo 38

7.5. Schema RegiStry CHENTiiiiiiiiei e e e 38

Using Confluent’s Schema REQISIIYcooviiiiiiiiii e 39

Schema Registry Client Properties ... 39

7.6. Avro Schema Registry Client Message CONVEIEIScoceuveeiiieeinieeiineeineeeieeennnns 39

Avro Schema Registry Message Converter propertiescccovveevieeeiiieviineeenneennn. 40

7.7. Schema Registration and ReESOIULIONccc.uuiiiiiiiiiiiiiii e 40

Schema Registration Process (Serialization)ccoooveiiiiiiiiiniiiiiiieee e, 41

Schema Resolution Process (Deserialization)ccooveviieiiiiiiiii e, 41

8. Inter-Application COMMUINMICALIONiiiiiii it 42

8.1. Connecting Multiple Application INStANCESuiiiiiiiiiiiiiiie e 42

8.2. Instance Index and INStaNCE COUNLcouuiiiiiiieeiiiiiii e 42

8.3, PAITIIONING ...ceiiieieeiii et ettt ettt e et e e e e e aeae 42

Configuring Output Bindings for Partitioningccccoovveiiiiinieiiii e, 42
Spring-managed custom Partiti onKeyExtract or Cl ass

IMPIEMENTALIONSceete et e e e e e e 43

Configuring Input Bindings for Partitioningcoooeveiiiiiiiiiieiieie, 43

LS TR I =1 i o N 45

9.1. Disabling the test binder autoconfigurationcccooeeieiiiiiiiiiin e, 46

O o 1= = 111 T o [T o 47

11, MELFICS EMILEEE ..ottt e ettt e e e e e e ens b e e e e e e ennnes 48

12, SAMPIES ..ot e et e e et et e e ena e aen 51

R A 1= 1] g [0 IS =T [=T o PP 52

13.1. Deploying Stream applications on CloudFoundryc.ccooveviiiiiiiniciiiiecie e 53

[I. Binder IMPIEMENTALIONSouuuiiiiii ettt et e ettt e e ettt e e et et e e e ent e e e entn e eeees 54

14. Apache Kafka BINAEIccoouuiiiiiiiie e e e e e 55

ot R S T [PP 55

14.2. Apache Kafka BiNder OVEIVIEWccouuuiiiiiiiiieieiie ettt 55

14.3. Configuration OPLIONSc.uuuiiiiiiii et e et e e e 55

Kafka BINAEr PrOPEIIEScivviiiiii it e e e e e 55

Kafka CONSUMEr PrOPEITIESciiiiiiieiiiiie ettt 57

Kafka ProduCer PrOPEITIESuuiiiiiiiiiei ittt 58

Ditmars.SR3 Spring Cloud Stream iv

Spring Cloud Stream Reference Guide

USOE EXAMPIES .ot 59

Example: Setting aut oCommi t Of f set false and relying on manual
= T3 (1T 59
Example: security configurationccoooieeiiioiiiin e 60
Using the binder with Apache Kafka 0.10c.oooiiiiiiiiiiiiniei e 61

Excluding Kafka broker jar from the classpath of the binder based

APPIICALION .ottt 62
14.4. Kafka Streams Binding Capabilities of Spring Cloud Streamccccoeveevinnnnnn.. 63
Usage example of high level streams DSLccoooviiiiiiniiiiicceeeec e 63
Support for INtEractive QUETIEScoeuuniiiiiii et 64
Kafka Streams Propertiesooooeuii it 64
14.5. Error ChanNEISoouuuiiiiiiei e e 65
14.6. KafKa MEIIICS ..t e e eanns 65
14.7. Dead-Letter TOPIC PrOCESSING ...cuuuiiiiiiiieiiiii et e 65
ST = o] 1117 [I = 17 o =T N 68
T I U To [P PP UPPUPTN 68
15.2. RabbitMQ BIiNAEr OVEIVIEWciiiieiii e e e e e e e e e e ean e eeen 68
15.3. Configuration OPLIONSc.uuiiiiiiiiiieeie e e e e e e e e e et e e e e e e e e et e eeanaanes 69
RabbitMQ Binder Propertiescccoeuuiiiiiiiieeiei e 69
RabbitMQ CoNnSUMEr PrOPEITIEScoouiiiiiiiiiie e 70
Rabbit Producer Propertiesoiiiiiiiiiii i 74
15.4. Retry With the RabbitMQ BinNderoooiiiiiiiiii e 78
L YT T S 78
Putting it All TOGELNET . .cveiei e 78
15.5. Error CRANNEISoeeiiei ettt et e e e e e e 79
15.6. Dead-Letter QUEUE PrOCESSING .. cvvvvtneieiiiiee it ee et e et eeet e e eeai e eens 80
Non-Partitioned DESHNALIONSiiieeiiiiiiiiiii ettt e e e eenneaens 80
Partitioned DeStiNatiONScocuiiiiiiiiiie e e 81
republiShTODIG=FalSEvniiiii e 82
rePUBIISNTODIGTIIUE . ovve e e 82
1 BN o] 1T g o [T TSSO PP PPPTTR 84
AL BUIIING e e 85
A.1. Basic Compile and TeST ...c.uuiiiiiiiii e 85
Y N2 B To o 4 1= 0] 7= Ui o] o [P PP 85
A.3. Working With the COOEcoouiiii e 85
Importing into eclipse With M2eCHPSEccoviiiiii i 85
Importing into eclipse without M2eclipSecoiiiiiiiiiii e 86
A.4. Sign the Contributor License Agreementoveveiiiiieiiiiiieee e 86
A.5. Code Conventions and HOUSEKEEPINGc.uveiiuiiiiieiiiieeii e e e e e e e e e 86

Ditmars.SR3 Spring Cloud Stream \

Part I. Spring Cloud Stream Core

This section goes into more detail about how you can work with Spring Cloud Stream. It covers topics
such as creating and running stream applications.

Spring Cloud Stream Reference Guide

1. Introducing Spring Cloud Stream

Spring Cloud Stream is a framework for building message-driven microservice applications. Spring
Cloud Stream builds upon Spring Boot to create standalone, production-grade Spring applications, and
uses Spring Integration to provide connectivity to message brokers. It provides opinionated configuration
of middleware from several vendors, introducing the concepts of persistent publish-subscribe semantics,
consumer groups, and partitions.

You can add the @nabl eBi ndi ng annotation to your application to get immediate connectivity to a
message broker, and you can add @5t r eanLi st ener to a method to cause it to receive events for
stream processing. The following is a simple sink application which receives external messages.

@pr i ngBoot Appl i cati on
@nabl eBi ndi ng(Si nk. cl ass)
public class VoteRecordi ngSi nkApplication {

public static void main(String[] args) {
SpringAppl i cation. run(Vot eRecor di ngSi nkAppl i cati on. cl ass, args);

}

@5t r eanli st ener (Si nk. | NPUT)
public void processVote(Vote vote) {
voti ngService. recordVote(vote);
}
}

The @tnabl eBi ndi ng annotation takes one or more interfaces as parameters (in this case, the
parameter is a single Si nk interface). An interface declares input and/or output channels. Spring
Cloud Stream provides the interfaces Sour ce, Si nk, and Pr ocessor ; you can also define your own
interfaces.

The following is the definition of the Si nk interface:

public interface Sink {
String INPUT = "input";

@ nput (Si nk. I NPUT)
Subscri babl eChannel input();
}

The @ nput annotation identifies an input channel, through which received messages enter the
application; the @ut put annotation identifies an output channel, through which published messages
leave the application. The @ nput and @ut put annotations can take a channel name as a parameter;
if a name is not provided, the name of the annotated method will be used.

Spring Cloud Stream will create an implementation of the interface for you. You can use this in the
application by autowiring it, as in the following example of a test case.

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)

@pringAppl i cationConfiguration(classes = VoteRecordi ngSi nkAppl i cati on. cl ass)
@\ebAppConfi guration

@i rtiesCont ext

public class StreamApplicationTests {

@\ut owi r ed
private Sink sink;

@est
public void contextLoads() {
assertNot Nul | (this.sink.input());

}

Ditmars.SR3 Spring Cloud Stream 2

Spring Cloud Stream Reference Guide

}

Ditmars.SR3 Spring Cloud Stream

Spring Cloud Stream Reference Guide

2. Main Concepts

Spring Cloud Stream provides a number of abstractions and primitives that simplify the writing of
message-driven microservice applications. This section gives an overview of the following:

» Spring Cloud Stream’s application model

* The Binder abstraction

Persistent publish-subscribe support

« Consumer group support

Partitioning support

A pluggable Binder API

2.1 Application Model

A Spring Cloud Stream application consists of a middleware-neutral core. The application communicates
with the outside world through input and output channels injected into it by Spring Cloud Stream.
Channels are connected to external brokers through middleware-specific Binder implementations.

Spring Cloud Stream Application

Application Core

inputs outputs

Binder

Middleware

., A

Figure 2.1. Spring Cloud Stream Application

Fat JAR

Spring Cloud Stream applications can be run in standalone mode from your IDE for testing. To run a
Spring Cloud Stream application in production, you can create an executable (or “fat") JAR by using the
standard Spring Boot tooling provided for Maven or Gradle.

2.2 The Binder Abstraction

Spring Cloud Stream provides Binder implementations for Kafka and Rabbit MQ. Spring Cloud Stream
also includes a TestSupportBinder, which leaves a channel unmodified so that tests can interact with

Ditmars.SR3 Spring Cloud Stream 4

https://github.com/spring-cloud/spring-cloud-stream/tree/master/spring-cloud-stream-binders/spring-cloud-stream-binder-kafka
https://github.com/spring-cloud/spring-cloud-stream/tree/master/spring-cloud-stream-binders/spring-cloud-stream-binder-rabbit
https://github.com/spring-cloud/spring-cloud-stream/blob/master/spring-cloud-stream-test-support/src/main/java/org/springframework/cloud/stream/test/binder/TestSupportBinder.java

Spring Cloud Stream Reference Guide

channels directly and reliably assert on what is received. You can use the extensible API to write your
own Binder.

Spring Cloud Stream uses Spring Boot for configuration, and the Binder abstraction makes it
possible for a Spring Cloud Stream application to be flexible in how it connects to middleware. For
example, deployers can dynamically choose, at runtime, the destinations (e.g., the Kafka topics or
RabbitMQ exchanges) to which channels connect. Such configuration can be provided through external
configuration properties and in any form supported by Spring Boot (including application arguments,
environment variables, and appl i cati on.ynl or application. properties files). In the sink
example from the Chapter 1, Introducing Spring Cloud Stream section, setting the application property
spring. cl oud. st ream bi ndi ngs. i nput . desti nati on to r aw sensor - dat a will cause it to
read from the r aw sensor - dat a Kafka topic, or from a queue bound to the r aw sensor - dat a
RabbitMQ exchange.

Spring Cloud Stream automatically detects and uses a binder found on the classpath. You can easily use
different types of middleware with the same code: just include a different binder at build time. For more
complex use cases, you can also package multiple binders with your application and have it choose the
binder, and even whether to use different binders for different channels, at runtime.

2.3 Persistent Publish-Subscribe Support

Communication between applications follows a publish-subscribe model, where data is broadcast
through shared topics. This can be seen in the following figure, which shows a typical deployment for
a set of interacting Spring Cloud Stream applications.

HTTP
v
raw-sensor-data
A - yr
' Ty 5
Ingest
Averages HDFS
v
averages
i " ™
TopN Fault Detection
¥
hottest

Figure 2.2. Spring Cloud Stream Publish-Subscribe

Data reported by sensors to an HTTP endpoint is sent to a common destination named r aw sensor -
dat a. From the destination, it is independently processed by a microservice application that computes

Ditmars.SR3 Spring Cloud Stream 5

Spring Cloud Stream Reference Guide

time-windowed averages and by another microservice application that ingests the raw data into HDFS.
In order to process the data, both applications declare the topic as their input at runtime.

The publish-subscribe communication model reduces the complexity of both the producer and the
consumer, and allows new applications to be added to the topology without disruption of the existing
flow. For example, downstream from the average-calculating application, you can add an application
that calculates the highest temperature values for display and monitoring. You can then add another
application that interprets the same flow of averages for fault detection. Doing all communication through
shared topics rather than point-to-point queues reduces coupling between microservices.

While the concept of publish-subscribe messaging is not new, Spring Cloud Stream takes the extra step
of making it an opinionated choice for its application model. By using native middleware support, Spring
Cloud Stream also simplifies use of the publish-subscribe model across different platforms.

2.4 Consumer Groups

While the publish-subscribe model makes it easy to connect applications through shared topics, the
ability to scale up by creating multiple instances of a given application is equally important. When doing
this, different instances of an application are placed in a competing consumer relationship, where only
one of the instances is expected to handle a given message.

Spring Cloud Stream models this behavior through the concept of a consumer group. (Spring
Cloud Stream consumer groups are similar to and inspired by Kafka consumer groups.)
Each consumer binding can use the spri ng. cl oud. stream bi ndi ngs. <channel Nane>. gr oup
property to specify a group name. For the consumers shown in the following figure, this property
would be set as spring. cl oud. stream bi ndi ngs. <channel Nane>. gr oup=hdf sWite or
spring. cl oud. st ream bi ndi ngs. <channel Name>. gr oup=aver age.

HTTP

L
‘ raw-sensor-data |

- -

*° Y
HDFS HDFS Average Average
Write Write Calculator Calculator
1 2 1 2
group=hdfsWrite group=average

Figure 2.3. Spring Cloud Stream Consumer Groups

All groups which subscribe to a given destination receive a copy of published data, but only one
member of each group receives a given message from that destination. By default, when a group is
not specified, Spring Cloud Stream assigns the application to an anonymous and independent single-
member consumer group that is in a publish-subscribe relationship with all other consumer groups.

Durability

Consistent with the opinionated application model of Spring Cloud Stream, consumer group
subscriptions are durable. That is, a binder implementation ensures that group subscriptions are

Ditmars.SR3 Spring Cloud Stream 6

Spring Cloud Stream Reference Guide

persistent, and once at least one subscription for a group has been created, the group will receive
messages, even if they are sent while all applications in the group are stopped.

@ Note

Anonymous subscriptions are non-durable by nature. For some binder implementations (e.g.,
RabbitMQ), it is possible to have non-durable group subscriptions.

In general, it is preferable to always specify a consumer group when binding an application to a given
destination. When scaling up a Spring Cloud Stream application, you must specify a consumer group for
each of its input bindings. This prevents the application’s instances from receiving duplicate messages
(unless that behavior is desired, which is unusual).

2.5 Partitioning Support

Spring Cloud Stream provides support for partitioning data between multiple instances of a given
application. In a partitioned scenario, the physical communication medium (e.g., the broker topic)
is viewed as being structured into multiple partitions. One or more producer application instances
send data to multiple consumer application instances and ensure that data identified by common
characteristics are processed by the same consumer instance.

Spring Cloud Stream provides a common abstraction for implementing partitioned processing use cases
in a uniform fashion. Partitioning can thus be used whether the broker itself is naturally partitioned (e.qg.,
Kafka) or not (e.g., RabbitMQ).

HTTP
1 n . Average
- el ®| Processor
I i
HTTP
IO e Average
e CRULET "17"™| Processor
HTTP
Topic

Figure 2.4. Spring Cloud Stream Partitioning

Partitioning is a critical concept in stateful processing, where it is critiical, for either performance or
consistency reasons, to ensure that all related data is processed together. For example, in the time-
windowed average calculation example, it is important that all measurements from any given sensor
are processed by the same application instance.

@ Note

To set up a partitioned processing scenario, you must configure both the data-producing and
the data-consuming ends.

Ditmars.SR3 Spring Cloud Stream 7

Spring Cloud Stream Reference Guide

3. Programming Model

This section describes Spring Cloud Stream’s programming model. Spring Cloud Stream provides a
number of predefined annotations for declaring bound input and output channels as well as how to listen
to channels.

3.1 Declaring and Binding Channels
Triggering Binding Via @nabl eBi ndi ng

You can turn a Spring application into a Spring Cloud Stream application by applying the
@nabl eBi ndi ng annotation to one of the application’s configuration classes. The @nabl eBi ndi ng
annotation itself is meta-annotated with @onfi gurati on and triggers the configuration of Spring
Cloud Stream infrastructure:

@nport(...)

@onfiguration

@nabl el nt egration

public @nterface Enabl eBinding {

.Cl...':lss<?>[] val ue() default {};

The @nabl eBi ndi ng annotation can take as parameters one or more interface classes that contain
methods which represent bindable components (typically message channels).

@ Note

The @Enabl eBi ndi ng annotation is only required on your Configuration
classes, you can provide as many binding interfaces as you need, for instance:
@knabl eBi ndi ng(val ue={ Orders. cl ass, Paynent.cl ass}. Where both Or der and
Paynent interfaces would declare @ nput and @ut put channels.

@ nput and @Dut put

A Spring Cloud Stream application can have an arbitrary number of input and output channels defined
in an interface as @ nput and @ut put methods:

public interface Barista {

@ nput
Subscri babl eChannel orders();

@out put
MessageChannel hot Dri nks();

@ut put
MessageChannel col dDrinks();

Using this interface as a parameter to @nabl eBi ndi ng will trigger the creation of three bound
channels named or der s, hot Dri nks, and col dDr i nks, respectively.

@Enabl eBi ndi ng(Bari st a. cl ass)
public class CafeConfiguration {

Ditmars.SR3 Spring Cloud Stream 8

Spring Cloud Stream Reference Guide

‘ }

@ Note

In Spring Cloud Stream, the bindable MessageChannel components are the Spring Messaging
MessageChannel (for outbound) and its extension Subscri babl eChannel (for inbound).
Using the same mechanism other bindable components can be supported. KSt r eamsupport
in Spring Cloud Stream Kafka binder is one such example where KStream is used as
inbound/outbound bi ndabl e components. In this documentation, we will continue to refer to
MessageChannels as the bi ndabl e components.

Customizing Channel Names

Using the @ nput and @out put annotations, you can specify a customized channel name for the
channel, as shown in the following example:

public interface Barista {

@ nput ("i nboundOr der s")
Subscri babl eChannel orders();

In this example, the created bound channel will be named i nboundOr der s.
Sour ce, Si nk, and Processor

For easy addressing of the most common use cases, which involve either an input channel, an output
channel, or both, Spring Cloud Stream provides three predefined interfaces out of the box.

Sour ce can be used for an application which has a single outbound channel.

public interface Source {
String OUTPUT = "output"”;

@out put (Sour ce. QUTPUT)
MessageChannel out put ();

Si nk can be used for an application which has a single inbound channel.

public interface Sink {
String INPUT = "input";

@ nput (Si nk. | NPUT)
Subscri babl eChannel input();

Processor can be used for an application which has both an inbound channel and an outbound
channel.

public interface Processor extends Source, Sink {

}

Spring Cloud Stream provides no special handling for any of these interfaces; they are only provided
out of the box.

Ditmars.SR3 Spring Cloud Stream 9

Spring Cloud Stream Reference Guide

Accessing Bound Channels
Injecting the Bound Interfaces

For each bound interface, Spring Cloud Stream will generate a bean that implements the interface.
Invoking a @ nput -annotated or @ut put -annotated method of one of these beans will return the
relevant bound channel.

The bean in the following example sends a message on the output channel when its hel | o method is
invoked. It invokes out put () on the injected Sour ce bean to retrieve the target channel.

@onponent
public class Sendi ngBean {

private Source source;

@\ut owi r ed
publ i ¢ Sendi ngBean(Source source) {
this.source = source;

}

public void sayHell o(String nane) {
sour ce. out put (). send(MessageBui | der. wi t hPayl oad(nane) . bui l d());

}

Injecting Channels Directly

Bound channels can be also injected directly:

@onponent
public class Sendi ngBean {

private MessageChannel output;

@\ut owi r ed
publ i ¢ Sendi ngBean(MessageChannel output) {
this.output = output;

}

public void sayHell o(String nane) {
out put . send(MessageBui | der . wi t hPayl oad(nare) . bui l d());
}

If the name of the channel is customized on the declaring annotation, that name should be used instead
of the method name. Given the following declaration:

public interface Custonfource {

@ut put (" cust omQut put ")
MessageChannel output();

The channel will be injected as shown in the following example:

@onponent
public class Sendi ngBean {

private MessageChannel output;
@\ut owi r ed

publ i c Sendi ngBean(@ual i fier("custonfutput") MessageChannel output) {
this.output = output;

Ditmars.SR3 Spring Cloud Stream 10

Spring Cloud Stream Reference Guide

}

public void sayHello(String nane) {
t hi s. out put.send(MessageBui | der. w t hPayl oad(nane) . buil d());
}

Producing and Consuming Messages

You can write a Spring Cloud Stream application using either Spring Integration annotations
or Spring Cloud Stream’s @bt r eanli st ener annotation. The @t r eanlLi st ener annotation is
modeled after other Spring Messaging annotations (such as @vwessageMappi ng, @nsLi st ener,
@rabbi t Li st ener, etc.) but adds content type management and type coercion features.

Native Spring Integration Support

Because Spring Cloud Stream is based on Spring Integration, Stream completely inherits Integration’s
foundation and infrastructure as well as the component itself. For example, you can attach the output
channel of a Sour ce to a MessageSour ce:

@nabl eBi ndi ng(Sour ce. cl ass)
public class TinmerSource {

@al ue("${format}")
private String format;

@Bean
@ nboundChannel Adapt er (val ue = Sour ce. OUTPUT, poller = @Pol |l er(fixedDelay = "${fi xedDel ay}",
maxMessagesPer Pol | = "1"))

publ i c MessageSource<String> tiner MessageSource() {
return () -> new GenericMessage<>(new Si npl eDat eFor mat (format) . format (new Date()));

}

}

Or you can use a processor’s channels in a transformer:

@nabl eBi ndi ng(Processor. cl ass)
public class TransfornProcessor {
@r ansf or mer (i nput Channel = Processor. | NPUT, output Channel = Processor.OUTPUT)
public Object transforn(String nessage) {
return nessage.toUpper Case();
}
}

@ Note

It's important to understant that when you consume from the same binding using
@t reanLi stener a pubsub model is used, where each method annotated with
@5t r eanLi st ener receives it's own copy of the message, each one has its own consumer
group. However, if you share a bindable channel as an input for @GA\ggr egat or , @tr ansf or ner
or @er vi ceActi vat or, those will consume in a competing model, no individual consumer
group is created for each subscription.

Spring Integration Error Channel Support

Spring Cloud Stream supports publishing error messages received by the Spring Integration global
error channel. Error messages sent to the err or Channel can be published to a specific destination
at the broker by configuring a binding for the outbound target named error. For example, to
publish error messages to a broker destination named "myErrors", provide the following property:
spring. cl oud. st ream bi ndi ngs. error.destinati on=nyErrors.

Ditmars.SR3 Spring Cloud Stream 11

Spring Cloud Stream Reference Guide

Message Channel Binders and Error Channels

Starting with version 1.3, some MessageChannel - based binders publish errors to a discrete
error channel for each destination. In addition, these error channels are bridged to the global
Spring Integration er r or Channel mentioned above. You can therefore consume errors for specific
destinations and/or for all destinations, using a standard Spring Integration flow (I nt egr at i onFl ow,
@Ber vi ceAct i vat or, etc).

On the consumer side, the listener thread catches any exceptions and forwards an Er r or Message
to the destination’s error channel. The payload of the message is a Messagi ngExcept i on with the
normal f ai | edMessage and cause properties. Usually, the raw data received from the broker is
included in a header. For binders that support (and are configured with) a dead letter destination; a
MessagePubl i shi ngEr r or Handl er is subscribed to the channel, and the raw data is forwarded to
the dead letter destination.

On the producer side; for binders that support some kind of async result after publishing
messages (e.g. RabbitMQ, Kafka), you can enable an error channel by setting the

producer. err or Channel Enabl ed to tr ue. The payload of the Err or Message depends on the
binder implementation but will be a Messagi ngExcept i on with the normal f ai | edMessage property,
as well as additional properties about the failure. Refer to the binder documentation for complete details.

Using @StreamListener for Automatic Content Type Handling

Complementary to its Spring Integration support, Spring Cloud Stream provides its own
@5t reanLi st ener annotation, modeled after other Spring Messaging annotations (e.g.
@kssageMappi ng, @nsLi st ener, @Rabbi t Li st ener, etc.). The @t r eanLi st ener annotation
provides a simpler model for handling inbound messages, especially when dealing with use cases that
involve content type management and type coercion.

Spring Cloud Stream provides an extensible MessageConverter mechanism for handling data
conversion by bound channels and for, in this case, dispatching to methods annotated with
@&t r eanLi st ener . The following is an example of an application which processes external Vot e
events:

@Enabl eBi ndi ng(Si nk. cl ass)
public class VoteHandl er {

@\ut owi r ed
Vot i ngServi ce votingService;

@t r eanli st ener (Si nk. | NPUT)
public void handl e(Vote vote) {
votingService.record(vote);
}
}

The distinction between @t r eanli st ener and a Spring Integration @ser vi ceActi vat or is seen
when considering an inbound Message that has a St ri ng payload and a cont ent Type header of
application/json. In the case of @t r eamnli st ener, the MessageConvert er mechanism will
use the cont ent Type header to parse the St ri ng payload into a Vot e object.

As with other Spring Messaging methods, method arguments can be annotated with @ayl oad,
@Header s and @Header .

Ditmars.SR3 Spring Cloud Stream 12

Spring Cloud Stream Reference Guide

@ Note

For methods which return data, you must use the @endTo annotation to specify the output
binding destination for data returned by the method:

@Enabl eBi ndi ng(Processor. cl ass)
public class TransfornProcessor {

@\ut owi r ed
Vot i ngServi ce votingServi ce;

@5t r eanli st ener (Processor. | NPUT)
@endTo(Processor . QUTPUT)
public VoteResult handl e(Vote vote) {
return votingService.record(vote);
}
}

Using @StreamListener for dispatching messages to multiple methods

Since version 1.2, Spring Cloud Stream supports dispatching messages to multiple @t r eanli st ener
methods registered on an input channel, based on a condition.

In order to be eligible to support conditional dispatching, a method must satisfy the follow conditions:
* it must not return a value
* it must be an individual message handling method (reactive API methods are not supported)

The condition is specified via a SpEL expression in the condi t i on attribute of the annotation and is
evaluated for each message. All the handlers that match the condition will be invoked in the same thread
and no assumption must be made about the order in which the invocations take place.

An example of using @bt r eanlLi st ener with dispatching conditions can be seen below. In this
example, all the messages bearing a header t ype with the value f oo will be dispatched to the
recei veFoo method, and all the messages bearing a header t ype with the value bar will be
dispatched to the r ecei veBar method.

@Enabl eBi ndi ng(Si nk. cl ass)
@Enabl eAut oConfi gurati on
public static class TestPoj oW thAnnot at edAr gunents {

@t reanli stener(target = Sink.|NPUT, condition = "headers['type']=="foo0"'")
public void recei veFoo(@ayl oad FooPojo fooPojo) {
/1 handl e the nessage

}

@t reanili stener (target = Sink.|NPUT, condition = "headers['type']=="bar"'")
public void receiveBar(@ayl oad BarPojo barPojo) {
/1 handl e the nessage

}

@ Note

Dispatching via @bt r eanli st ener conditions is only supported for handlers of individual
messages, and not for reactive programming support (described below).

Ditmars.SR3 Spring Cloud Stream 13

Spring Cloud Stream Reference Guide

Reactive Programming Support

Spring Cloud Stream also supports the use of reactive APIs where incoming and outgoing data is
handled as continuous data flows. Support for reactive APIs is available via the spri ng- cl oud-
streamreacti ve, which needs to be added explicitly to your project.

The programming model with reactive APIs is declarative, where instead of specifying how each
individual message should be handled, you can use operators that describe functional transformations
from inbound to outbound data flows.

Spring Cloud Stream supports the following reactive APIs:

* Reactor

* RxJava 1.x

In the future, it is intended to support a more generic model based on Reactive Streams.

The reactive programming model is also using the @5t r eanLi st ener annotation for setting up reactive
handlers. The differences are that:

» the @5t r eanli st ener annotation must not specify an input or output, as they are provided as
arguments and return values from the method;

 the arguments of the method must be annotated with @ nput and @ut put indicating which input
or output will the incoming and respectively outgoing data flows connect to;

« the return value of the method, if any, will be annotated with @ut put , indicating the input where
data shall be sent.

o
o

Note
Reactive programming support requires Java 1.8.
Note

As of Spring Cloud Stream 1.1.1 and later (starting with release train Brooklyn.SR2),
reactive programming support requires the use of Reactor 3.0.4.RELEASE and higher.
Earlier Reactor versions (including 3.0.1.RELEASE, 3.0.2.RELEASE and 3.0.3.RELEASE)
are not supported. spri ng-cl oud-streamreactive will transitively retrieve the proper
version, but it is possible for the project structure to manage the version of the
i 0. projectreactor:reactor-core to an earlier release, especially when using Maven.
This is the case for projects generated via Spring Initializr with Spring Boot 1.x, which will
override the Reactor version to 2. 0. 8. RELEASE. In such cases you must ensure that the
proper version of the artifact is released. This can be simply achieved by adding a direct
dependency oni 0. proj ectreact or: r eact or - cor e with a version of 3. 0. 4. RELEASE or
later to your project.

Note

The use of term r eact i ve is currently referring to the reactive APIs being used and not to the
execution model being reactive (i.e. the bound endpoints are still using a 'push’ rather than "pull’
model). While some backpressure support is provided by the use of Reactor, we do intend on
the long run to support entirely reactive pipelines by the use of native reactive clients for the
connected middleware.

Ditmars.SR3 Spring Cloud Stream 14

Spring Cloud Stream Reference Guide

Reactor-based handlers
A Reactor based handler can have the following argument types:

» For arguments annotated with @ nput , it supports the Reactor type Fl ux. The parameterization of
the inbound Flux follows the same rules as in the case of individual message handling: it can be the
entire Message, a POJO which can be the Message payload, or a POJO which is the result of a
transformation based on the Message content-type header. Multiple inputs are provided;

» For arguments annotated with Qut put, it supports the type Fl uxSender which connects a Fl ux
produced by the method with an output. Generally speaking, specifying outputs as arguments is only
recommended when the method can have multiple outputs;

A Reactor based handler supports a return type of Fl ux, case in which it must be annotated with
@ut put . We recommend using the return value of the method when a single output flux is available.

Here is an example of a simple Reactor-based Processor.

@Enabl eBi ndi ng(Processor . cl ass)
@Enabl eAut oConfi gurati on
public static class UppercaseTransforner {

@5t r eanii st ener
@ut put (Processor . OUTPUT)
public Flux<String> receive(@ nput (Processor.|NPUT) Flux<String> input) {
return input.map(s -> s.toUpperCase());
}
}

The same processor using output arguments looks like this:

@nabl eBi ndi ng(Processor. cl ass)
@Enabl eAut oConfi gurati on
public static class UppercaseTransforner {

@t r eanli st ener

public void receive(@ nput(Processor. | NPUT) Fl ux<String> input,
@ut put (Processor. QUTPUT) Fl uxSender out put) {
out put . send(i nput. map(s -> s.toUpperCase()));

RxJava 1.x support

RxJava 1.x handlers follow the same rules as Reactor-based one, but will use Cbser vabl e and
nser vabl eSender arguments and return types.

So the first example above will become:

@Enabl eBi ndi ng(Processor. cl ass)
@nabl eAut oConf i guration
public static class UppercaseTransforner {

@t r eanli st ener
@ut put (Processor . OUTPUT)
publ i c Cbservabl e<String> receive(@ nput (Processor. | NPUT) Cbservabl e<String> input) {
return input.map(s -> s.toUpperCase());
}
}

The second example above will become:

Ditmars.SR3 Spring Cloud Stream 15

Spring Cloud Stream Reference Guide

@Enabl eBi ndi ng(Processor. cl ass)
@nabl eAut oConf i guration
public static class UppercaseTransforner {

@t r eanli st ener

public void receive(@nput (Processor. | NPUT) Cbservabl e<String> input,
@ut put (Processor. QUTPUT) Observabl eSender out put) {
out put . send(i nput. map(s -> s.toUpperCase()));

Reactive Sources

Spring Cloud Stream reactive support also provides the ability for creating reactive sources through the
StreamEmitter annotation. Using StreamEmitter annotation, a regular source may be converted to a
reactive one. StreamEmitter is a method level annotation that marks a method to be an emitter to outputs
declared via EnableBinding. It is not allowed to use the Input annotation along with StreamEmitter, as
the methods marked with this annotation are not listening from any input, rather generating to an output.
Following the same programming model used in StreamListener, StreamEmitter also allows flexible
ways of using the Output annotation depending on whether the method has any arguments, return type
etc.

Here are some examples of using StreamEmitter in various styles.

The following example will emit the "Hello World" message every millisecond and publish to a Flux. In
this case, the resulting messages in Flux will be sent to the output channel of the Source.

@Enabl eBi ndi ng(Sour ce. cl ass)
@Enabl eAut oConfi gurati on
public static class HellowrldEmtter {

@t reanEnitter
@@ut put (Sour ce. OUTPUT)
public Flux<String> emt() {
return Flux.interval MI1is(1)
.map(l -> "Hello World");

Following is another flavor of the same sample as above. Instead of returning a Flux, this method uses
a FluxSender to programmatically send Flux from a source.

@Enabl eBi ndi ng(Sour ce. cl ass)
@Enabl eAut oConfi gurati on
public static class HellowrldEmtter {

@t reankEnitter
@out put (Sour ce. QUTPUT)
public void emt(Fl uxSender output) {
out put.send(Flux.interval M11is(1)
.map(l -> "Hello World"));

Following is exactly same as the above snippet in functionality and style. However, instead of using an
explicit Output annotation at the method level, it is used as the method parameter level.

@Enabl eBi ndi ng(Sour ce. cl ass)
@Enabl eAut oConfi gurati on
public static class HellowrldEmtter {

@t reantEnitter
public void emt(@utput(Source. OJTPUT) Fl uxSender output) {

Ditmars.SR3 Spring Cloud Stream 16

Spring Cloud Stream Reference Guide

out put.send(Flux.interval MI1lis(1)
.map(l -> "Hello World"));

Here is yet another flavor of writing reacting sources using the Reactive Streams Publisher API and
the support for it in the Spring Integration Java DSL. The Publisher is still using Reactor Flux under
the hood, but from an application perspective, that is transparent to the user and only needs Reactive
Streams and Java DSL for Spring Integration.

@nabl eBi ndi ng(Sour ce. cl ass)
@Enabl eAut oConfi gurati on
public static class Hell owrldEmtter {

@treantEnm tter

@ut put (Sour ce. QUTPUT)

@Bean

publ i c Publisher<Message<String>> emt() {

return IntegrationFlows.fron(() ->
new GenericMessage<>("Hello Wrld"),

e -> e.poller(p -> p.fixedDelay(1)))
.toReactivePublisher();

Aggregation

Spring Cloud Stream provides support for aggregating multiple applications together, connecting their
input and output channels directly and avoiding the additional cost of exchanging messages via a broker.
As of version 1.0 of Spring Cloud Stream, aggregation is supported only for the following types of
applications:

 sources - applications with a single output channel named out put , typically having a single binding
of the type or g. spri ngf ranmewor k. cl oud. stream nessagi ng. Source

* sinks - applications with a single input channel named i nput , typically having a single binding of the
type or g. spri ngf ranewor k. cl oud. st r eam nessagi ng. Si nk

e processors - applications with a single input channel named input and a single
output channel named output, typically having a single binding of the type
org. spri ngframewor k. cl oud. stream nessagi ng. Processor.

They can be aggregated together by creating a sequence of interconnected applications, in which the
output channel of an element in the sequence is connected to the input channel of the next element, if
it exists. A sequence can start with either a source or a processor, it can contain an arbitrary number
of processors and must end with either a processor or a sink.

Depending on the nature of the starting and ending element, the sequence may have one or more
bindable channels, as follows:

« if the sequence starts with a source and ends with a sink, all communication between the applications
is direct and no channels will be bound

* if the sequence starts with a processor, then its input channel will become the i nput channel of the
aggregate and will be bound accordingly

« if the sequence ends with a processor, then its output channel will become the out put channel of
the aggregate and will be bound accordingly

Ditmars.SR3 Spring Cloud Stream 17

https://github.com/spring-projects/spring-integration-java-dsl/wiki/Spring-Integration-Java-DSL-Reference

Spring Cloud Stream Reference Guide

Aggregation is performed using the Aggr egat eAppl i cat i onBui | der utility class, as in the following
example. Let’s consider a project in which we have source, processor and a sink, which may be defined
in the project, or may be contained in one of the project’s dependencies.

@ Note

Each component (source, sink or processor) in an aggregate application must be provided
in a separate package if the configuration classes use @spri ngBoot Appl i cati on. This is
required to avoid cross-talk between applications, due to the classpath scanning performed
by @bpri ngBoot Appl i cati on on the configuration classes inside the same package.
In the example below, it can be seen that the Source, Processor and Sink application
classes are grouped in separate packages. A possible alternative is to provide the source,
sink or processor configuration in a separate @onfi gurati on class, avoid the use of
@spr i ngBoot Appl i cat i on/@onponent Scan and use those for aggregation.

package com app. nysi nk;

@pr i ngBoot Appl i cati on
@nabl eBi ndi ng(Si nk. cl ass)
public class SinkApplication {

private static Logger |ogger = LoggerFactory. getLogger (Si nkApplication.class);

@per vi ceAct i vat or (i nput Channel =Si nk. | NPUT)
public void | oggerSink(Object payload) {
| ogger.info("Received: " + payload);
}
}

package com app. nyprocessor;
/1 Inports omtted

@pr i ngBoot Appl i cati on
@nabl eBi ndi ng(Processor. cl ass)
public class ProcessorApplication {

@r ansf or ner
public String |oggerSink(String payl oad) {
return payl oad. t oUpper Case();
}
}

package com app. nysour ce;
/1 Inports omtted

@pr i ngBoot Appl i cati on
@nabl eBi ndi ng(Sour ce. cl ass)
public class SourceApplication {

@ nboundChannel Adapt er (val ue = Sour ce. OQUTPUT)
public String timerMessageSource() {
return new Sinpl eDat eFornat (). format(new Date());
}
}

Each configuration can be used for running a separate component, but in this case they can be
aggregated together as follows:

package com app;

/'l lnports onitted

Ditmars.SR3 Spring Cloud Stream 18

Spring Cloud Stream Reference Guide

@pr i ngBoot Appl i cati on
public class Sanpl eAggregat eApplication {

public static void main(String[] args) {
new Aggr egat eAppl i cati onBui | der ()
. fron(Sour ceApplication.class).args("--fixedDel ay=5000")
.via(Processor Application.class)
.to(Si nkApplication.class).args("--debug=true").run(args);
}
}

The starting component of the sequence is provided as argument to the f r on{) method. The ending
component of the sequence is provided as argument to the t o() method. Intermediate processors
are provided as argument to the vi a() method. Multiple processors of the same type can be chained
together (e.g. for pipelining transformations with different configurations). For each component, the
builder can provide runtime arguments for Spring Boot configuration.

Configuring aggregate application

Spring Cloud Stream supports passing properties for the individual applications inside the aggregate
application using 'namespace’ as prefix.

The namespace can be set for applications as follows:

@Bpr i ngBoot Appl i cati on
public class Sanpl eAggregat eApplication {

public static void main(String[] args) {
new Aggr egat eAppl i cati onBui | der ()
. fron(SourceApplication. cl ass). nanespace("source").args("--fixedDel ay=5000")
.via(Processor Application.cl ass). nanespace(" processor1")
.to(Si nkApplication.class).nanespace("sink").args("--debug=true").run(args);
}
}

Once the 'namespace’ is set for the individual applications, the application properties with the
nanespace as prefix can be passed to the aggregate application using any supported property source
(commandline, environment properties etc.,)

For instance, to override the default fi xedDel ay and debug properties of 'source' and 'sink’
applications:

java -jar target/M/Aggregat eApplication-0.0.1- SNAPSHOT. j ar --source. fixedDel ay=10000 --si nk. debug=f al se

Configuring binding service properties for non self contained aggregate application

The non self-contained aggregate application is bound to external broker via either or both the inbound/
outbound components (typically, message channels) of the aggregate application while the applications
inside the aggregate application are directly bound. For example: a source application’s output and a
processor application’s input are directly bound while the processor’s output channel is bound to an
external destination at the broker. When passing the binding service properties for non-self contained
aggregate application, it is required to pass the binding service properties to the aggregate application
instead of setting them as 'args' to individual child application. For instance,

@Bpr i ngBoot Appl i cati on
public class Sanpl eAggr egat eApplication {

public static void main(String[] args) {
new Aggr egat eAppl i cati onBui |l der ()
.from(SourceApplication.cl ass).namespace("source").args("--fixedDel ay=5000")
.via(Processor Appl i cation. cl ass) . nanespace(" processor 1"). args("--debug=true").run(args);

Ditmars.SR3 Spring Cloud Stream 19

Spring Cloud Stream Reference Guide

The binding properties like - -
spring. cl oud. st ream bi ndi ngs. out put . desti nati on=processor-output need to be
specified as one of the external configuration properties (cmdline arg etc.,).

Ditmars.SR3 Spring Cloud Stream 20

Spring Cloud Stream Reference Guide

4. Binders

Spring Cloud Stream provides a Binder abstraction for use in connecting to physical destinations at the
external middleware. This section provides information about the main concepts behind the Binder SPI,
its main components, and implementation-specific details.

4.1 Producers and Consumers

bindConsumer (“foo™,
“default”,
inputChannel,
properties);

bindProducer(“foo™,

outputchannel, ‘I

properties);

Broker

Figure 4.1. Producers and Consumers

A producer is any component that sends messages to a channel. The channel can be bound
to an external message broker via a Binder implementation for that broker. When invoking the
bi ndPr oducer () method, the first parameter is the name of the destination within the broker, the
second parameter is the local channel instance to which the producer will send messages, and the third
parameter contains properties (such as a partition key expression) to be used within the adapter that
is created for that channel.

A consumer is any component that receives messages from a channel. As with a producer,
the consumer's channel can be bound to an external message broker. When invoking the
bi ndConsumer () method, the first parameter is the destination name, and a second parameter
provides the name of a logical group of consumers. Each group that is represented by consumer
bindings for a given destination receives a copy of each message that a producer sends to that
destination (i.e., publish-subscribe semantics). If there are multiple consumer instances bound using
the same group name, then messages will be load-balanced across those consumer instances so that
each message sent by a producer is consumed by only a single consumer instance within each group
(i.e., queueing semantics).

4.2 Binder SPI

The Binder SPI consists of a number of interfaces, out-of-the box utility classes and discovery strategies
that provide a pluggable mechanism for connecting to external middleware.

The key point of the SPI is the Bi nder interface which is a strategy for connecting inputs and outputs
to external middleware.

public interface Binder<T, C extends ConsunerProperties, P extends ProducerProperties> {
Bi ndi ng<T> bi ndConsuner (String name, String group, T inboundBindTarget, C consunerProperties);

Bi ndi ng<T> bi ndProducer (String nanme, T outboundBi ndTarget, P producerProperties);

}

The interface is parameterized, offering a number of extension points:

 input and output bind targets - as of version 1.0, only MessageChannel is supported, but this is
intended to be used as an extension point in the future;

» extended consumer and producer properties - allowing specific Binder implementations to add
supplemental properties which can be supported in a type-safe manner.

Ditmars.SR3 Spring Cloud Stream 21

Spring Cloud Stream Reference Guide

A typical binder implementation consists of the following
» aclass that implements the Bi nder interface;

e a Spring @onf i gur ati on class that creates a bean of the type above along with the middleware
connection infrastructure;

* alMETA- I NF/ spri ng. bi nder s file found on the classpath containing one or more binder definitions,
e.g.

kaf ka: \
or g. spri ngf ramewor k. cl oud. stream bi nder. kaf ka. conf i g. Kaf kaBi nder Confi gurati on

4.3 Binder Detection

Spring Cloud Stream relies on implementations of the Binder SPI to perform the task of connecting
channels to message brokers. Each Binder implementation typically connects to one type of messaging
system.

Classpath Detection

By default, Spring Cloud Stream relies on Spring Boot’'s auto-configuration to configure the binding
process. If a single Binder implementation is found on the classpath, Spring Cloud Stream will use it
automatically. For example, a Spring Cloud Stream project that aims to bind only to RabbitMQ can
simply add the following dependency:

<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cloud-streambinder-rabbit</artifactld>

</ dependency>

For the specific maven coordinates of other binder dependencies, please refer to the documentation
of that binder implementation.

4.4 Multiple Binders on the Classpath

When multiple binders are present on the classpath, the application must indicate which binder is to be
used for each channel binding. Each binder configuration contains a META- | NF/ spri ng. bi nder s,
which is a simple properties file:

rabbit:\
org. springfranmewor k. cl oud. st ream bi nder. rabbi t. confi g. Rabbi t Servi ceAut oConfi gurati on

Similar files exist for the other provided binder implementations (e.g., Kafka), and custom
binder implementations are expected to provide them, as well. The key represents an
identifying name for the binder implementation, whereas the value is a comma-separated
list of configuration classes that each contain one and only one bean definition of type
org. spri ngfranmewor k. cl oud. st ream bi nder. Bi nder.

Binder selection can either be performed globally, using the
spri ng. cl oud. st ream def aul t Bi nder property (e.q.,
spring. cl oud. st ream def aul t Bi nder =r abbi t) or individually, by configuring the binder on
each channel binding. For instance, a processor application (that has channels with the names i nput
and out put for read/write respectively) which reads from Kafka and writes to RabbitMQ can specify
the following configuration:

Ditmars.SR3 Spring Cloud Stream 22

Spring Cloud Stream Reference Guide

spring. cl oud. stream bi ndi ngs. i nput . bi nder =kaf ka
spring. cl oud. stream bi ndi ngs. out put . bi nder =r abbi t

4.5 Connecting to Multiple Systems

By default, binders share the application’s Spring Boot auto-configuration, so that one instance of each
binder found on the classpath will be created. If your application should connect to more than one
broker of the same type, you can specify multiple binder configurations, each with different environment
settings.

@ Note

Turning on explicit binder configuration will disable the default binder configuration process
altogether. If you do this, all binders in use must be included in the configuration. Frameworks
that intend to use Spring Cloud Stream transparently may create binder configurations that
can be referenced by name, but will not affect the default binder configuration. In order
to do so, a bhinder configuration may have its def aul t Candi dat e flag set to false, e.g.
spring. cl oud. st ream bi nders. <confi gurati onName>. def aul t Candi dat e=f al se.
This denotes a configuration that will exist independently of the default binder configuration
process.

For example, this is the typical configuration for a processor application which connects to two RabbitMQ
broker instances:

spring:
cl oud:
stream
bi ndi ngs:

i nput:
destination: foo
bi nder: rabbitl

out put :
destination: bar
bi nder: rabbit2

bi nders:

rabbi t 1:
type: rabbit
envi ronnent :

spring:
rabbi t mg:
host: <host 1>

rabbi t 2:
type: rabbit
envi ronnent :

spring:
rabbi t my:
host: <host 2>

4.6 Binder configuration properties

The following properties are available when creating custom binder configurations. They must be
prefixed with spri ng. cl oud. st ream bi nders. <confi gur ati onNane>.

type
The binder type. It typically references one of the binders found on the classpath, in particular a key
in a META- | NF/ spri ng. bi nder s file.

By default, it has the same value as the configuration name.

Ditmars.SR3 Spring Cloud Stream 23

Spring Cloud Stream Reference Guide

inheritEnvironment
Whether the configuration will inherit the environment of the application itself.

Default t r ue.

environment
Root for a set of properties that can be used to customize the environment of the binder. When
this is configured, the context in which the binder is being created is not a child of the application
context. This allows for complete separation between the binder components and the application
components.

Default enpt y.

defaultCandidate
Whether the binder configuration is a candidate for being considered a default binder, or can be
used only when explicitly referenced. This allows adding binder configurations without interfering
with the default processing.

Default t r ue.

Ditmars.SR3 Spring Cloud Stream 24

Spring Cloud Stream Reference Guide

5. Configuration Options

Spring Cloud Stream supports general configuration options as well as configuration for bindings and
binders. Some binders allow additional binding properties to support middleware-specific features.

Configuration options can be provided to Spring Cloud Stream applications via any mechanism
supported by Spring Boot. This includes application arguments, environment variables, and YAML
or .properties files.

5.1 Spring Cloud Stream Properties

spring.cloud.stream.instanceCount
The number of deployed instances of an application. Must be set for partitioning and if using Kafka.

Default; 1.

spring.cloud.stream.instancelndex
The instance index of the application: a number from 0 to i nst anceCount -1. Used for partitioning
and with Kafka. Automatically set in Cloud Foundry to match the application’s instance index.

spring.cloud.stream.dynamicDestinations
A list of destinations that can be bound dynamically (for example, in a dynamic routing scenario).
If set, only listed destinations can be bound.

Default: empty (allowing any destination to be bound).

spring.cloud.stream.defaultBinder
The default binder to use, if multiple binders are configured. See Multiple Binders on the Classpath.

Default: empty.

spring.cloud.stream.overrideCloudConnectors

This property is only applicable when the cl oud profile is active and Spring Cloud Connectors are
provided with the application. If the property is false (the default), the binder will detect a suitable
bound service (e.g. a RabbitMQ service bound in Cloud Foundry for the RabbitMQ binder) and
will use it for creating connections (usually via Spring Cloud Connectors). When set to true, this
property instructs binders to completely ignore the bound services and rely on Spring Boot properties
(e.g. relying onthe spri ng. r abbi t ng. * properties provided in the environment for the RabbitMQ
binder). The typical usage of this property is to be nested in a customized environment when
connecting to multiple systems.

Default; false.

5.2 Binding Properties

Binding properties are supplied using the format
spring. cl oud. st ream bi ndi ngs. <channel Name>. <pr opert y>=<val ue>. The
<channel Nanme> represents the name of the channel being configured (e.g., out put for a Sour ce).

To avoid repetition, Spring Cloud Stream supports setting values for all channels, in the format
spring. cl oud. stream def aul t. <property>=<val ue>.

Ditmars.SR3 Spring Cloud Stream 25

Spring Cloud Stream Reference Guide

In what follows, we indicate where we have omitted the
spring. cl oud. st ream bi ndi ngs. <channel Nanme>. prefix and focus just on the property name,
with the understanding that the prefix will be included at runtime.

Properties for Use of Spring Cloud Stream

The following binding properties are available for both input and output bindings
and must be prefixed with spring.cloud.stream bindi ngs. <channel Nane>., e.g.
spring. cl oud. st ream bi ndi ngs. i nput . desti nati on=ti ckt ock.

Default values can be set by using the prefix spring.cloud.streamdefault, e.g.
spring. cl oud. stream defaul t. content Type=appl i cation/json.

destination
The target destination of a channel on the bound middleware (e.g., the RabbitMQ exchange or
Kafka topic). If the channel is bound as a consumer, it could be bound to multiple destinations and
the destination names can be specified as comma separated String values. If not set, the channel
name is used instead. The default value of this property cannot be overridden.

group
The consumer group of the channel. Applies only to inbound bindings. See Consumer Groups.

Default; null (indicating an anonymous consumer).

contentType
The content type of the channel.

Default: null (so that no type coercion is performed).

binder
The binder used by this binding. See Section 4.4, “Multiple Binders on the Classpath” for details.

Default: null (the default binder will be used, if one exists).
Consumer properties

The following binding properties are available for input bindings only and must
be prefixed with spring.cloud. stream bi ndi ngs. <channel Nane>. consuner., e.g.
spring. cl oud. st ream bi ndi ngs. i nput. consun®er. concurrency=3.

Default values can be set by using the prefix spri ng. cl oud. stream def aul t. consuner, e.g.
spring. cl oud. st ream def aul t. consuner . header Mobde=r aw.

concurrency
The concurrency of the inbound consumer.

Default: 1.

partitioned
Whether the consumer receives data from a partitioned producer.

Default: f al se.

Ditmars.SR3 Spring Cloud Stream 26

Spring Cloud Stream Reference Guide

headerMode
When set to r aw, disables header parsing on input. Effective only for messaging middleware that
does not support message headers natively and requires header embedding. Useful when inbound
data is coming from outside Spring Cloud Stream applications.

Default: enbeddedHeader s.

maxAttempts
If processing fails, the number of attempts to process the message (including the first). Set to 1
to disable retry.

Default: 3.

backOfflnitiallnterval
The backoff initial interval on retry.

Default: 1000.

backOffMaxInterval
The maximum backoff interval.

Default: 10000.

backOffMultiplier
The backoff multiplier.

Default: 2. 0.

instancelndex
When set to a value greater than equal to zero, allows customizing the instance index of this
consumer (if different from spri ng. cl oud. st ream i nst ancel ndex). When set to a negative
value, it will default to spri ng. cl oud. stream i nst ancel ndex.

Default: - 1.

instanceCount
When set to a value greater than equal to zero, allows customizing the instance count of this
consumer (if different from spri ng. cl oud. st ream i nst anceCount). When set to a negative
value, it will default to spri ng. cl oud. st ream i nst anceCount .

Default: - 1.
Producer Properties

The following binding properties are available for output bindings only and must
be prefixed with spring.cloud. stream bi ndi ngs. <channel Nane>. producer., e.g.
spring. cl oud. st ream bi ndi ngs. i nput . producer. partiti onKeyExpr essi on=payl oad. i d.

Default values can be set by using the prefix spri ng. cl oud. stream def aul t. producer, e.g.
spring. cl oud. st ream def aul t. producer. partiti onKeyExpressi on=payl oad. i d.

partitionKeyExpression
A SpEL expression that determines how to partition outbound data. If set, or if
partitionKeyExtractorC ass is set, outbound data on this channel will be partitioned, and

Ditmars.SR3 Spring Cloud Stream 27

Spring Cloud Stream Reference Guide

partiti onCount mustbe setto avalue greater than 1 to be effective. The two options are mutually
exclusive. See Section 2.5, “Partitioning Support”.

Default: null.

partitionKeyExtractorClass
APartitionKeyExtractor Strategy implementation. If set, orifpartiti onKeyExpr essi on
is set, outbound data on this channel will be partitioned, and partiti onCount must be set to
a value greater than 1 to be effective. The two options are mutually exclusive. See Section 2.5
“Partitioning Support”.

Default: null.

partitionSelectorClass
A PartitionSel ectorStrategy implementation. Mutually exclusive with
partitionSel ector Expression. If neither is set, the partition will be selected as
the hashCode(key) % partitionCount, where key is computed via either
partitionKeyExpressionorpartitionKeyExtractord ass.

Default: null.

partitionSelectorExpression
A SpEL expression for customizing partition selection. Mutually exclusive with
partitionSel ectord ass. If neither is set, the partition will be selected as the hashCode(key)
% partitionCount, where key is computed via either partiti onKeyExpression or
partiti onKeyExtractordC ass.

Default: null.

partitionCount
The number of target partitions for the data, if partitioning is enabled. Must be set to a value greater
than 1 if the producer is partitioned. On Kafka, interpreted as a hint; the larger of this and the partition
count of the target topic is used instead.

Default: 1.

requiredGroups
A comma-separated list of groups to which the producer must ensure message delivery even if they
start after it has been created (e.g., by pre-creating durable queues in RabbitMQ).

headerMode
When set to r aw, disables header embedding on output. Effective only for messaging middleware
that does not support message headers natively and requires header embedding. Useful when
producing data for non-Spring Cloud Stream applications.

Default: enbeddedHeader s.

useNativeEncoding
When set to t r ue, the outbound message is serialized directly by client library, which must be
configured correspondingly (e.g. setting an appropriate Kafka producer value serializer). When this
configuration is being used, the outbound message marshalling is not based on the cont ent Type
of the binding. When native encoding is used, it is the responsibility of the consumer to use
appropriate decoder (ex: Kafka consumer value de-serializer) to deserialize the inbound message.

Ditmars.SR3 Spring Cloud Stream 28

Spring Cloud Stream Reference Guide

Also, when native encoding/decoding is used the header Mbde property is ignored and headers will
not be embedded into the message.

Default: f al se.

errorChannelEnabled
When set to t r ue, if the binder supports async send results; send failures will be sent to an error
channel for the destination. See the section called “Message Channel Binders and Error Channels”
for more information.

Default: f al se.

5.3 Using dynamically bound destinations

Besides the channels defined via @Enabl eBi ndi ng, Spring Cloud Stream allows applications
to send messages to dynamically bound destinations. This is useful, for example, when
the target destination needs to be determined at runtime. Applications can do so by using
the Bi nder Awar eChannel Resol ver bean, registered automatically by the @tnabl eBi ndi ng
annotation.

The property 'spring.cloud.stream.dynamicDestinations’ can be used for restricting the dynamic
destination names to a set known beforehand (whitelisting). If the property is not set, any destination
can be bound dynamicaly.

The Bi nder Awar eChannel Resol ver can be used directly as in the following example, in which a
REST controller uses a path variable to decide the target channel.

@nabl eBi ndi ng
@ontroller
public class SourceWthDynam cDestination {

@A\ut owi r ed
private Bi nder Awar eChannel Resol ver resol ver;

@Request Mappi ng(path = "/{target}", nmethod = POST, consunes = "*/*")
@ResponseSt at us(Htt pSt at us. ACCEPTED)
public void handl eRequest (@Request Body String body, @athVariable("target”) target,
@Request Header (Ht t pHeader s. CONTENT_TYPE) Obj ect content Type) {
sendMessage(body, target, contentType);

}

private voi d sendMessage(String body, String target, Object contentType) {
resol ver.resol veDestination(target).send(MessageBuil der. creat eMessage(body,
new MessageHeader s(Col | ecti ons. si ngl et onVap(MessageHeader s. CONTENT_TYPE, cont ent Type))));

After starting the application on the default port 8080, when sending the following data:

curl -H "Content-Type: application/json" -X POST -d "customer-1" http://| ocal host: 8080/ cust ormers

curl -H "Content-Type: application/json" -X POST -d "order-1" http://1ocal host: 8080/ or ders

The destinations 'customers' and 'orders' are created in the broker (for example: exchange in case of
Rabbit or topic in case of Kafka) with the names ‘customers' and ‘orders’, and the data is published to
the appropriate destinations.

The Bi nder Awar eChannel Resol ver is a general purpose Spring Integration
Desti nati onResol ver and can be injected in other components. For example, in a router using a
SpEL expression based on the t ar get field of an incoming JSON message.

Ditmars.SR3 Spring Cloud Stream 29

Spring Cloud Stream Reference Guide

@Enabl eBi ndi ng
@ontroll er
public class SourceWthDynam cDestination {

@A\ut owi red
private Bi nder Awar eChannel Resol ver resol ver;

@Request Mappi ng(path = "/", nethod = POST, consunes = "application/json")
@ResponseSt at us(Ht t pSt at us. ACCEPTED)
public void handl eRequest (@Request Body String body, @RequestHeader (HttpHeaders. CONTENT_TYPE) Obj ect
cont ent Type) {
sendMessage(body, contentType);

}

private voi d sendMessage(Obj ect body, Object contentType) {
rout er Channel (). send(MessageBui | der. cr eat eMessage(body,
new MessageHeader s(Col | ecti ons. si ngl et onMap(MessageHeader s. CONTENT_TYPE, content Type))));

@ean(nane = "router Channel ")
publ i c MessageChannel routerChannel () {
return new Direct Channel ();

}

@Bean
@per vi ceAct i vat or (i nput Channel = "router Channel ")
publ i c ExpressionEval uati ngRouter router() {
Expr essi onEval uat i ngRouter router =
new Expressi onEval uati ngRout er (new
Spel Expressi onPar ser (). par seExpressi on(" payl oad. target"));
rout er. set Def aul t Qut put Channel Nane(" def aul t - out put");
rout er. set Channel Resol ver (resol ver);
return router;

}
}

Ditmars.SR3 Spring Cloud Stream

30

Spring Cloud Stream Reference Guide

6. Content Type and Transformation

To allow you to propagate information about the content type of produced messages, Spring Cloud
Stream attaches, by default, a cont ent Type header to outbound messages. For middleware that
does not directly support headers, Spring Cloud Stream provides its own mechanism of automatically
wrapping outbound messages in an envelope of its own. For middleware that does support headers,
Spring Cloud Stream applications may receive messages with a given content type from non-Spring
Cloud Stream applications.

Spring Cloud Stream can handle messages based on this information in two ways:
» Through its cont ent Type settings on inbound and outbound channels
» Through its argument mapping performed for methods annotated with @bt r eanli st ener

Spring Cloud Stream allows you to declaratively configure type conversion for inputs and outputs using
the spring. cl oud. stream bi ndi ngs. <channel Nane>. cont ent -t ype property of a binding.
Note that general type conversion may also be accomplished easily by using a transformer inside your
application. Currently, Spring Cloud Stream natively supports the following type conversions commonly
used in streams:

* JSON to/from POJO

JSON to/from org.springframework.tuple.Tuple

Object to/from byte[] : Either the raw bytes serialized for remote transport, bytes emitted by an
application, or converted to bytes using Java serialization(requires the object to be Serializable)

String to/from byte([]
» Object to plain text (invokes the object’s toString() method)

Where JSON represents either a byte array or String payload containing JSON. Currently, Objects may
be converted from a JSON byte array or String. Converting to JSON always produces a String.

If no cont ent -t ype property is set on an outbound channel, Spring Cloud Stream will serialize the
payload using a serializer based on the Kryo serialization framework. Deserializing messages at the
destination requires the payload class to be present on the receiver’s classpath.

6.1 MIME types

content-type values are parsed as media types, e.g., application/json or text/
pl ai n; char set =UTF- 8. MIME types are especially useful for indicating how to convert to
String or byte[] content. Spring Cloud Stream also uses MIME type format to represent
Java types, using the general type application/x-java-object with a type parameter.
For example, appl i cati on/ x-j ava- obj ect; type=java. util.Maporapplication/x-java-
obj ect ; t ype=com bar. Foo can be set as the cont ent -t ype property of an input binding. In
addition, Spring Cloud Stream provides custom MIME types, notably, appl i cati on/ x-spri ng-
t upl e to specify a Tuple.

6.2 MIME types and Java types

The type conversions Spring Cloud Stream provides out of the box are summarized in the following table:
'Source Payload' means the payload before conversion and 'Target Payload' means the 'payload' after

Ditmars.SR3 Spring Cloud Stream 31

https://github.com/spring-projects/spring-tuple/blob/master/spring-tuple/src/main/java/org/springframework/tuple/Tuple.java
https://github.com/EsotericSoftware/kryo

Spring Cloud Stream Reference Guide

conversion. The type conversion can occur either on the 'producer' side (output) or at the ‘consumer’
side (input).

Source Payload Target Payload content-type content-type Comments

header (source header (after

message) conversion)
POJO JSON String ignored application/json
Tuple JSON String ignored application/json JSON is tailored
for Tuple
POJO String (toString()) ignored text/plain,
java.lang.String
POJO byte[] (java.io ignored application/x-java-
serialized) serialized-object
JSON byte[] or POJO application/json application/x-java-
String (or none) object
byte[] or String Serializable application/x-java- application/x-java-
serialized-object object
JSON byte[] or Tuple application/json application/x-
String (or none) spring-tuple
byte[] String any text/plain, will apply any
java.lang.String Charset specified
in the content-
type header
String byte[] any application/octet- will apply any
stream Charset specified

in the content-
type header

Note

Conversion applies to payloads that require type conversion. For example, if an application
produces an XML string with outputType=application/json, the payload will not be converted
from XML to JSON. This is because the payload send to the outbound channel is already a
String so no conversion will be applied at runtime. It is also important to note that when using
the default serialization mechanism, the payload class must be shared between the sending
and receiving application, and compatible with the binary content. This can create issues when
application code changes independently in the two applications, as the binary format and code
may become incompatible.

Tip

While conversion is supported for both inbound and outbound channels, it is especially
recommended to be used for the conversion of outbound messages. For the conversion of
inbound messages, especially when the target is a POJO, the @t r eanli st ener support will
perform the conversion automatically.

Ditmars.SR3 Spring Cloud Stream 32

Spring Cloud Stream Reference Guide

6.3 Customizing message conversion

Besides the conversions that it supports out of the box, Spring Cloud Stream also
supports registering your own message conversion implementations. This allows you to
send and receive data in a variety of custom formats, including binary, and associate
them with specific content Types. Spring Cloud Stream registers all the beans of
type or g. spri ngf ramewor k. nessagi ng. convert er. MessageConvert er as custom message
converters along with the out of the box message converters.

If your message converter needs to work with a specific content-type and
target class (for both input and output), then the message converter needs to
extend org. springframewor k. messagi ng. converter. Abstract MessageConverter. For
conversion when using @BtreanListener, a message converter that implements
or g. spri ngframewor k. nessagi ng. convert er. MessageConvert er would suffice.

Here is an example of creating a message converter bean (with the content-type appl i cati on/ bar)
inside a Spring Cloud Stream application:

@nabl eBi ndi ng(Si nk. cl ass)
@pr i ngBoot Appl i cati on
public static class SinkApplication {

@Bean
publ i c MessageConverter customvessageConverter() {
return new MyCust omvessageConverter();

}

public class MyCustom\essageConverter extends Abstract MessageConverter {

publ i c MyCust omVessageConverter () {

super (new M meType("application", "bar"));
}
@verride
protected bool ean supports(C ass<?> clazz) {
return (Bar.class == clazz);
}
@verride

protected Object convertFronl nternal (Message<?> nessage, Cl ass<?> targetC ass, Object conversionH nt) {
Obj ect payl oad = nessage. get Payl oad() ;
return (payload instanceof Bar ? payload : new Bar((byte[]) payload));
}
}

Spring Cloud Stream also provides support for Avro-based converters and schema evolution. See the
specific section for details.

6.4 @t r eanLi st ener and Message Conversion

The @bt reanli st ener annotation provides a convenient way for converting incoming messages
without the need to specify the content type of an input channel. During the dispatching process to
methods annotated with @bt r eanli st ener, a conversion will be applied automatically if the argument
requires it.

For example, let's consider a message with the String content{ " greeti ng": "Hel |l o, worl d"} and
acontent -t ype header of appl i cati on/ j son is received on the input channel. Let us consider the
following application that receives it:

Ditmars.SR3 Spring Cloud Stream 33

Spring Cloud Stream Reference Guide

public class GeetingMessage {
String greeting;

public String getGeeting() {
return greeting;

}

public void setGeeting(String greeting) {
this.greeting = greeting;
}
}

@nabl eBi ndi ng(Si nk. cl ass)
@Enabl eAut oConfi gurati on
public static class GeetingSink {

@t r eanli st ener (Si nk. | NPUT)
public void receive(Geeting greeting) {
/1 handl e Geeting
}
}

The argument of the method will be populated automatically with the POJO containing the unmarshalled
form of the JSON String.

Ditmars.SR3 Spring Cloud Stream 34

Spring Cloud Stream Reference Guide

7. Schema evolution support

Spring Cloud Stream provides support for schema-based message converters through its spri ng-
cl oud- st r eam scherma module. Currently, the only serialization format supported out of the box for
schema-based message converters is Apache Avro, with more formats to be added in future versions.

7.1 Apache Avro Message Converters

The spri ng- cl oud- st r eam schena module contains two types of message converters that can be
used for Apache Avro serialization:

» converters using the class information of the serialized/deserialized objects, or a schema with a
location known at startup;

» converters using a schema registry - they locate the schemas at runtime, as well as dynamically
registering new schemas as domain objects evolve.

7.2 Converters with schema support

The Avr oSchemaMessageConvert er supports serializing and deserializing messages either using
a predefined schema or by using the schema information available in the class (either reflectively, or
contained in the Speci fi cRecor d). If the target type of the conversion is a Generi cRecor d, then
a schema must be set.

For using it, you can simply add it to the application context, optionally specifying one ore more
M nmeTypes to associate it with. The default M meType is appl i cati on/ avr o.

Here is an example of configuring it in a sink application registering the Apache Avro
MessageConvert er, without a predefined schema:

@nabl eBi ndi ng(Si nk. cl ass)
@Bpr i ngBoot Appl i cati on
public static class SinkApplication {

@Bean
publ i c MessageConverter user MessageConverter () {
return new AvroSchemaMessageConverter (M neType. val ueOf ("avro/ bytes"));
}
}

Conversely, here is an application that registers a converter with a predefined schema, to be found on
the classpath:

@nabl eBi ndi ng(Si nk. cl ass)
@pr i ngBoot Appl i cati on
public static class SinkApplication {

@Bean
publ i c MessageConverter user MessageConverter () {
Avr oSchemaMessageConverter converter = new AvroSchemaMessageConverter (M nmeType. val uef ("avro/
bytes"));
converter.set SchemaLocati on(new C assPat hResour ce("schenas/ User. avro"));
return converter;

Ditmars.SR3 Spring Cloud Stream 35

Spring Cloud Stream Reference Guide

In order to understand the schema registry client converter, we will describe the schema registry support
first.

7.3 Schema Registry Support

Most serialization models, especially the ones that aim for portability across different platforms and
languages, rely on a schema that describes how the data is serialized in the binary payload. In order to
serialize the data and then to interpret it, both the sending and receiving sides must have access to a
schema that describes the binary format. In certain cases, the schema can be inferred from the payload
type on serialization, or from the target type on deserialization, but in a lot of cases applications benefit
from having access to an explicit schema that describes the binary data format. A schema registry
allows you to store schema information in a textual format (typically JSON) and makes that information
accessible to various applications that need it to receive and send data in binary format. A schema is
referenceable as a tuple consisting of:

» a subject that is the logical name of the schema,;
» the schema version;

» the schema format which describes the binary format of the data.

7.4 Schema Registry Server

Spring Cloud Stream provides a schema registry server implementation. In order to use it,
you can simply add the spri ng-cl oud-stream schenma- server artifact to your project and
use the @nabl eSchemaRegi stryServer annotation, adding the schema registry server REST
controller to your application. This annotation is intended to be used with Spring Boot web
applications, and the listening port of the server is controlled by the server.port setting.
The spring. cloud. stream schena. server. path setting can be used to control the root
path of the schema server (especially when it is embedded in other applications). The
spring. cl oud. st ream schena. server. al | owSchemaDel eti on boolean setting enables the
deletion of schema. By default this is disabled.

The schema registry server uses a relational database to store the schemas. By default, it uses an
embedded database. You can customize the schema storage using the Spring Boot SQL database and
JDBC configuration options.

A Spring Boot application enabling the schema registry looks as follows:

@pr i ngBoot Appl i cati on
@nabl eSchemaRegi stryServer
public class SchemaRegi stryServerApplication {
public static void main(String[] args) {
SpringApplication. run(SchemaRegi stryServer Application.class, args);
}
}

Schema Registry Server API
The Schema Registry Server API consists of the following operations:
POST /

Register a new schema.

Ditmars.SR3 Spring Cloud Stream 36

http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#boot-features-sql
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#boot-features-sql

Spring Cloud Stream Reference Guide

Accepts JSON payload with the following fields:

» subj ect the schema subject;

o format the schema format;

o definition the schema definition.

Response is a schema object in JSON format, with the following fields:
* i d the schemaid;

e subj ect the schema subject;

» format the schema format;

» ver si on the schema version;

» defi ni ti on the schema definition.

GET /{subject}/{format}/{version}

Retrieve an existing schema by its subject, format and version.
Response is a schema object in JSON format, with the following fields:
* i dthe schemaid;

» subj ect the schema subject;

» fornat the schema format;

+ ver si on the schema version;

» definition the schema definition.

CGET /{subject}/{formt}

Retrieve a list of existing schema by its subject and format.

Response is a list of schemas with each schema object in JSON format, with the following fields:

* i d the schema id;

subj ect the schema subject;

f or mat the schema format;

* versi on the schema version;

» defi ni ti on the schema definition.
CGET /schenas/ {i d}

Retrieve an existing schema by its id.

Response is a schema object in JSON format, with the following fields:

Ditmars.SR3 Spring Cloud Stream 37

Spring Cloud Stream Reference Guide

e i d the schema id;

subj ect the schema subject;

f or mat the schema format;

+ versi on the schema version;

» defi ni ti on the schema definition.

DELETE /{subject}/{format}/{version}

Delete an existing schema by its subject, format and version.
DELETE / schenmas/ {i d}

Delete an existing schema by its id.

DELETE / {subj ect}

Delete existing schemas by their subject.

@ Note

This note applies to users of Spring Cloud Stream 1.1.0.RELEASE only. Spring Cloud Stream
1.1.0.RELEASE used the table name schenma for storing Schema objects, which is a keyword
in a number of database implementations. To avoid any conflicts in the future, starting with
1.1.1.RELEASE we have opted for the name SCHEMA REPCSI TORY for the storage table. Any
Spring Cloud Stream 1.1.0.RELEASE users that are upgrading are advised to migrate their
existing schemas to the new table before upgrading.

7.5 Schema Registry Client

The client-side abstraction for interacting with schema registry servers is the SchemaRegi stryC i ent
interface, with the following structure:

public interface SchemaRegi strydient {
SchemaRegi strati onResponse register(String subject, String format, String schema);
String fetch(SchemaRef erence schemaRef erence);

String fetch(lnteger id);

Spring Cloud Stream provides out of the box implementations for interacting with its own schema server,
as well as for interacting with the Confluent Schema Registry.

A client for the Spring Cloud Stream schema registry can be configured using the
@nabl eSchemaRegi stryd i ent as follows:

@Enabl eBi ndi ng(Si nk. cl ass)

@pr i ngBoot Appl i cati on

@Enabl eSchemaRegi stryd i ent

public static class AvroSi nkApplication {

}

Ditmars.SR3 Spring Cloud Stream 38

Spring Cloud Stream Reference Guide

@ Note

The default converter is optimized to cache not only the schemas from the remote
server but also the parse() and toString() methods that are quite expensive.
Because of this, it uses a Defaul t SchemaRegi stryd i ent that does not caches
responses. If you intend to use the client directly on your code, you can request a
bean that also caches responses to be created. To do that, just add the property
spring. cl oud. st ream schenmaRegi stryC i ent.cached=true to your application
properties.

Using Confluent’s Schema Registry

The default configuration will create a Def aul t SchemaRegi stryd i ent bean. If you want to use the
Confluent schema registry, you need to create a bean of type Conf | uent SchemaRegi stryC i ent,
which will supersede the one configured by default by the framework.

@Bean
publi c SchemaRegi stryd i ent
schemaRegi stryd i ent (@/al ue(" ${spring. cl oud. stream schemaRegi stryCl i ent.endpoint}") String endpoint){
Conf | uent SchemaRegi stryClient client = new Confl uent SchemaRegi stryClient();
client.set Endpoi nt (endpoint);
return client;

}

@ Note

The ConfluentSchemaRegistryClient is tested against Confluent platform version 3.2.2.
Schema Registry Client properties

The Schema Registry Client supports the following properties:

spring.cloud.stream.schemaRegistryClient.endpoint
The location of the schema-server. Use a full URL when setting this, including protocol (htt p or
ht t ps), port and context path.

Default
| ocal host : 8990/

spring.cloud.stream.schemaRegistryClient.cached
Whether the client should cache schema server responses. Normally set to f al se, as the caching
happens in the message converter. Clients using the schema registry client should set thisto t r ue.

Default
true

7.6 Avro Schema Registry Client Message Converters

For Spring Boot applications that have a SchenmaRegi st ryd i ent bean registered with the application
context, Spring Cloud Stream will auto-configure an Apache Avro message converter that uses the
schema registry client for schema management. This eases schema evolution, as applications that
receive messages can get easy access to a writer schema that can be reconciled with their own reader
schema.

For outbound messages, the MessageConvert er will be activated if the content type of the channel
is setto appl i cati on/ *+avro, e.g.:

Ditmars.SR3 Spring Cloud Stream 39

http://localhost:8990/

Spring Cloud Stream Reference Guide

spring. cl oud. stream bi ndi ngs. out put. cont ent Type=appl i cati on/ *+avro

During the outbound conversion, the message converter will try to infer the schemas of the outbound
messages based on their type and register them to a subject based on the payload type using the
SchenmaRegi stryd i ent. If an identical schema is already found, then a reference to it will be
retrieved. If not, the schema will be registered and a new version number will be provided. The
message will be sent with a cont ent Type header using the scheme appl i cation/[prefix].
[subj ect]. v[version] +avr o, where prefi x is configurable and subj ect is deduced from the
payload type.

For example, a message of the type User may be sent as a binary payload with a content type of
appl i cation/vnd. user.v2+avr o, where user is the subject and 2 is the version number.

When receiving messages, the converter will infer the schema reference from the header of the incoming
message and will try to retrieve it. The schema will be used as the writer schema in the deserialization
process.

Avro Schema Registry Message Converter properties

If you have enabled Avro based schema registry client by setting
spring. cl oud. st ream bi ndi ngs. out put. cont ent Type=appl i cati on/*+avro you can
customize the behavior of the registration with the following properties.

spring.cloud.stream.schema.avro.dynamicSchemaGenerationEnabled
Enable if you want the converter to use reflection to infer a Schema from a POJO.

Default
fal se

spring.cloud.stream.schema.avro.readerSchema
Avro compares schema versions by looking at a writer schema (origin payload) and a reader schema
(your application payload), check Avro documentation for more information. If set, this overrides
any lookups at the schema server and uses the local schema as the reader schema.

Default
nul |

spring.cloud.stream.schema.avro.schemalocations
Register any . avsc files listed in this property with the Schema Server.

Default
enpty

spring.cloud.stream.schema.avro.prefix
The prefix to be used on the Content-Type header.

Default
vnd

7.7 Schema Registration and Resolution

To better understand how Spring Cloud Stream registers and resolves new schemas, as well as its
use of Avro schema comparison features, we will provide two separate subsections below: one for the
registration, and one for the resolution of schemas.

Ditmars.SR3 Spring Cloud Stream 40

https://avro.apache.org/docs/1.7.6/spec.html

Spring Cloud Stream Reference Guide

Schema Registration Process (Serialization)

The first part of the registration process is extracting a schema from the payload that is being sent over a
channel. Avro types such as Speci fi cRecor d or Gener i cRecor d already contain a schema, which
can be retrieved immediately from the instance. In the case of POJOs a schema will be inferred if the
property spri ng. cl oud. st ream schena. avr o. dynam cSchemaGener at i onEnabl ed is set to
t r ue (the default).

Figure 7.1. Schema Writer Resolution Process

Once a schema is obtained, the converter will then load its metadata (version) from the remote server.
First it queries a local cache, and if not found it then submits the data to the server that will reply with
versioning information. The converter will always cache the results to avoid the overhead of querying
the Schema Server for every new message that needs to be serialized.

Figure 7.2. Schema Registration Process

With the schema version information, the converter sets the cont ent Type header of the message to
carry the version information such as appl i cati on/ vnd. user. vl+avro

Schema Resolution Process (Deserialization)

When reading messages that contain version information (i.e. a cont ent Type header with a scheme
like above), the converter will query the Schema server to fetch the writer schema of the message.
Once it has found the correct schema of the incoming message, it then retrieves the reader schema and
using Avro’s schema resolution support reads it into the reader definition (setting defaults and missing
properties).

Figure 7.3. Schema Reading Resolution Process

@ Note

It's important to understand the difference between a writer schema (the application that wrote
the message) and a reader schema (the receiving application). Please take a moment to
read the Avro terminology and understand the process. Spring Cloud Stream will always fetch
the writer schema to determine how to read a message. If you want to get Avro’s schema
evolution support working you need to make sure that a readerSchema was properly set for
your application.

Ditmars.SR3 Spring Cloud Stream 41

https://avro.apache.org/docs/1.7.6/spec.html

Spring Cloud Stream Reference Guide

8. Inter-Application Communication

8.1 Connecting Multiple Application Instances

While Spring Cloud Stream makes it easy for individual Spring Boot applications to connect to
messaging systems, the typical scenario for Spring Cloud Stream is the creation of multi-application
pipelines, where microservice applications send data to each other. You can achieve this scenario by
correlating the input and output destinations of adjacent applications.

Supposing that a design calls for the Time Source application to send data to the Log Sink application,
you can use a common destination named t i ckt ock for bindings within both applications.

Time Source (that has the channel name out put) will set the following property:

spring. cl oud. stream bi ndi ngs. out put . desti nati on=ti cktock

Log Sink (that has the channel name i nput) will set the following property:

spring. cl oud. stream bi ndi ngs. i nput. desti nati on=ti cktock

8.2 Instance Index and Instance Count

When scaling up Spring Cloud Stream applications, each instance can receive information about
how many other instances of the same application exist and what its own instance index
is. Spring Cloud Stream does this through the spring. cl oud. stream i nst anceCount and
spring. cl oud. st ream i nst ancel ndex properties. For example, if there are three instances of a
HDFS sink application, all three instances will have spri ng. cl oud. stream i nst anceCount setto
3, and the individual applications will have spri ng. cl oud. stream i nst ancel ndex setto 0, 1, and
2, respectively.

When Spring Cloud Stream applications are deployed via Spring Cloud Data Flow, these properties are
configured automatically; when Spring Cloud Stream applications are launched independently, these
properties must be set correctly. By default, spri ng. cl oud. stream i nst anceCount is 1, and
spring. cl oud. st ream i nstancel ndex is 0.

In a scaled-up scenario, correct configuration of these two properties is important for addressing
partitioning behavior (see below) in general, and the two properties are always required by certain
binders (e.g., the Kafka binder) in order to ensure that data are split correctly across multiple consumer
instances.

8.3 Partitioning

Configuring Output Bindings for Partitioning

An output binding is configured to send partitioned data by setting one and only one of
its partitionKeyExpression or partiti onKeyExtractorC ass properties, as well as its
partitionCount property. For example, the following is a valid and typical configuration:

spring. cl oud. stream bi ndi ngs. out put . producer. partiti onKeyExpr essi on=payl oad. i d
spring. cl oud. st ream bi ndi ngs. out put . producer . partitionCount =5

Based on the above example configuration, data will be sent to the target partition using the following
logic.

Ditmars.SR3 Spring Cloud Stream 42

Spring Cloud Stream Reference Guide

A partition key’s value is calculated for each message sent to a partitioned output channel based on
the partiti onKeyExpression. The partiti onKeyExpressi on is a SpEL expression which is
evaluated against the outbound message for extracting the partitioning key.

If a SpEL expression is not sufficient for your needs, you can instead calculate the partition
key value by setting the property partiti onKeyExtractorC ass to a class which implements
the or g. spri ngframewor k. cl oud. stream bi nder. Partiti onKeyExtractor Strat egy
interface. While the SpEL expression should usually suffice, more complex cases may use the custom
implementation strategy. In that case, the property 'partitionKeyExtractorClass' can be set as follows:

spring. cl oud. stream bi ndi ngs. out put. producer. partiti onKeyExtractor G ass=com exanpl e. MyKeyExt r act or
spring. cl oud. stream bi ndi ngs. out put . producer . partitionCount =5

Once the message key is calculated, the partition selection process will determine the
target partition as a value between 0 and partitionCount - 1. The default
calculation, applicable in most scenarios, is based on the formula key. hashCode() %
partitionCount. This can be customized on the binding, either by setting a SpEL expression
to be evaluated against the 'key' (via the partitionSel ector Expressi on property) or
by setting a org. spri ngfranmework. cl oud. stream bi nder. PartitionSel ector Strategy
implementation (via the partiti onSel ect or G ass property).

The binding level properties for 'partitionSelectorExpression' and 'partitionSelectorClass' can be
specified similar to the way 'partitionKeyExpression' and 'partitionKeyExtractorClass' properties are
specified in the above examples. Additional properties can be configured for more advanced scenarios,
as described in the following section.

Spring-managed custom Parti ti onKeyExtract or G ass implementations

In the example above, a custom strategy such as MyKeyExt r act or is instantiated by the Spring Cloud
Stream directly. In some cases, it is necessary for such a custom strategy implementation to be created
as a Spring bean, for being able to be managed by Spring, so that it can perform dependency injection,
property binding, etc. This can be done by configuring it as a @Bean in the application context and
using the fully qualified class hame as the bean’s name, as in the following example.

@Bean(nane="com exanpl e. M\yKeyExt ract or")
public MyKeyExtractor extractor() {
return new MyKeyExtractor();

}

As a Spring bean, the custom strategy benefits from the full lifecycle of a Spring bean. For
example, if the implementation need access to the application context directly, it can make implement
'‘ApplicationContextAware'.

Configuring Input Bindings for Partitioning

An input binding (with the channel name i nput) is configured to receive partitioned data by setting
its partiti oned property, as well as the i nst ancel ndex and i nst anceCount properties on the
application itself, as in the following example:

spring. cl oud. stream bi ndi ngs. i nput. consuner. partitioned=true
spring. cl oud. stream i nst ancel ndex=3
spring. cl oud. stream i nst anceCount =5

The i nst anceCount value represents the total number of application instances between which the
data need to be partitioned, and the i nst ancel ndex must be a unique value across the multiple

Ditmars.SR3 Spring Cloud Stream 43

Spring Cloud Stream Reference Guide

instances, between 0 and i nst anceCount - 1. The instance index helps each application instance
to identify the unique partition (or, in the case of Kafka, the partition set) from which it receives data. It
is important to set both values correctly in order to ensure that all of the data is consumed and that the
application instances receive mutually exclusive datasets.

While a scenario which using multiple instances for partitioned data processing may be complex to set
up in a standalone case, Spring Cloud Dataflow can simplify the process significantly by populating
both the input and output values correctly as well as relying on the runtime infrastructure to provide
information about the instance index and instance count.

Ditmars.SR3 Spring Cloud Stream 44

Spring Cloud Stream Reference Guide

9. Testing

Spring Cloud Stream provides support for testing your microservice applications without connecting to
a messaging system. You can do that by using the Test Support Bi nder provided by the spri ng-
cl oud- st reamt est - support library, which can be added as a test dependency to the application:

<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cloud-streamtest-support</artifactld>
<scope>t est </ scope>

</ dependency>

@ Note

The Test Support Bi nder uses the Spring Boot autoconfiguration mechanism to supersede
the other binders found on the classpath. Therefore, when adding a binder as a dependency,
make sure that the t est scope is being used.

The Test Suppor t Bi nder allows users to interact with the bound channels and inspect what messages
are sent and received by the application

For outbound message channels, the Test Suppor t Bi nder registers a single subscriber and retains
the messages emitted by the application in a MessageCol | ect or . They can be retrieved during tests
and have assertions made against them.

The user can also send messages to inbound message channels, so that the consumer application can
consume the messages. The following example shows how to test both input and output channels on
a processor.

@unW t h(Spri ngRunner . cl ass)
@pr i ngBoot Test (webEnvi ronnent = Spri ngBoot Test . WebEnvi r onment . RANDOM_PORT)
public class Exanpl eTest {

@\ut owi r ed
private Processor processor;

@\ut owi red
private MessageCol | ect or nessageCol | ector;

@est
@uppr essWar ni ngs("unchecked")
public void testWring() {
Message<String> nmessage = new Generi cMessage<>("hell0");
processor. i nput().send(nmessage);
Message<String> received = (Message<String>) nessageCol | ector. forChannel (processor.output()).poll();
assert That (recei ved. get Payl oad(), equal To("hello world"));

@pr i ngBoot Appl i cati on
@nabl eBi ndi ng(Processor. cl ass)
public static class M/Processor {

@\ut owi r ed
private Processor channels;

@r ansf orner (i nput Channel = Processor. | NPUT, out put Channel = Processor. QUTPUT)
public String transfornm(String in) {
returnin + " world";
}
}

}

Ditmars.SR3 Spring Cloud Stream 45

Spring Cloud Stream Reference Guide

In the example above, we are creating an application that has an input and an output channel,
bound through the Pr ocessor interface. The bound interface is injected into the test so we can have
access to both channels. We are sending a message on the input channel and we are using the
MessageCol | ect or provided by Spring Cloud Stream’s test support to capture the message has been
sent to the output channel as a result. Once we have received the message, we can validate that the
component functions correctly.

9.1 Disabling the test binder autoconfiguration

The intent behind the test binder superseding all the other binders on the classpath is to make
it easy to test your applications without making changes to your production dependencies. In
some cases (e.g. integration tests) it is useful to use the actual production binders instead, and
that requires disabling the test binder autoconfiguration. In order to do so, you can exclude the
org. springframework. cl oud. stream t est. bi nder. Test Support Bi nder Aut oConfi gurati on
class using one of the Spring Boot autoconfiguration exclusion mechanisms, as in the following example.

@pr i ngBoot Appl i cati on(excl ude = Test Support Bi nder Aut oConfi gurati on. cl ass)
@nabl eBi ndi ng(Processor. cl ass)
public static class MyProcessor {

@r ansformer (i nput Channel = Processor. | NPUT, output Channel = Processor. QUTPUT)
public String transforn(String in) {
return in + " world";
}
}

When autoconfiguration is disabled, the test binder is available on the classpath, and its
def aul t Candi dat e property is set to fal se, so that it does not interfere with the regular user
configuration. It can be referenced under the name t est e.g.:

spring. cl oud. stream def aul t Bi nder =t est

Ditmars.SR3 Spring Cloud Stream 46

Spring Cloud Stream Reference Guide

10. Health Indicator

Spring Cloud Stream provides a health indicator for binders. It is registered under the name of bi nder s
and can be enabled or disabled by setting the managenent . heal t h. bi nder s. enabl ed property.

Ditmars.SR3 Spring Cloud Stream 47

Spring Cloud Stream Reference Guide

11. Metrics Emitter

Spring Cloud Stream provides a module called spri ng- cl oud- stream netri cs that can be used
to emit any available metric from Spring Boot metrics endpoint to a hamed channel. This module allow
operators to collect metrics from stream applications without relying on polling their endpoints.

The module is activated when you set the destination name for metrics binding, e.g.
spring. cl oud. st ream bi ndi ngs. appl i cati onMetri cs. desti nati on=<DESTI NATI ON_NAME>.
applicationMetrics can be configured in a similar fashion to any other producer binding. The
default cont ent Type setting of appl i cati onMetri cs isapplication/json.

The following properties can be used for customizing the emission of metrics:

spring.cloud.stream.metrics.key
The name of the metric being emitted. Should be an unique value per application.

Default
${spring. application. name: ${vcap. appl i cati on. nane:
${spring. config. name: application}}}

spring.cloud.stream.metrics.prefix
Prefix string to be prepended to the metrics key.

Default: ™

spring.cloud.stream.metrics.properties
Just like the i ncl udes option, it allows white listing application properties that will be added to the
metrics payload

Default: null.

A detailed overview of the metrics export process can be found in the Spring Boot reference
documentation. Spring Cloud Stream provides a metric exporter named appl i cati on that can be
configured via regular Spring Boot metrics configuration properties.

The exporter can be configured either by using the global Spring Boot configuration
settings for exporters, or by using exporter-specific properties. For using the global
configuration settings, the properties should be prefixed by spring.metric.export (e.g.
spring. nmetric.export.includes=integration**). These configuration options will apply
to all exporters (unless they have been configured differently). Alternatively, if it is intended
to use configuration settings that are different from the other exporters (e.g. for restricting
the number of metrics published), the Spring Cloud Stream provided metrics exporter
can be configured using the prefix spring. metrics.export.triggers.application (e.g.
spring. metrics.export.triggers.application.includes=integration**).

@ Note

Due to Spring Boot’s relaxed binding the value of a property being included can be slightly
different than the original value.

As a rule of thumb, the metric exporter will attempt to normalize all the properties in a consistent
format using the dot notation (e.g. JAVA_HOME becomes j ava. hone).

The goal of normalization is to make downstream consumers of those metrics capable of
receiving property names consistently, regardless of how they are set on the monitored

Ditmars.SR3 Spring Cloud Stream 48

https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html#production-ready-metric-writers
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html#production-ready-metric-writers
https://github.com/spring-projects/spring-boot/blob/1.5.x/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/metrics/export/TriggerProperties.java
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding

Spring Cloud Stream Reference Guide

application (- - spri ng. appl i cati on. name or SPRI NG_APPLI CATI ON_NAME would always
yield spri ng. appl i cati on. nane).

Below is a sample of the data published to the channel in JSON format by the following command:

java -jar tine-source.jar \
--spring.cloud. stream bi ndi ngs. appl i cati onMetri cs. destinati on=someMetrics \
--spring.cloud.streamnetrics. properti es=spring. application** \
--spring.metrics.export.includes=integration.channel.input**, integration.channel.output**

The resulting JSON is:

{
"nane":"tine-source",
"metrics":[

{
“name":"integration.channel . output.errorRate.mean",
"val ue": 0.0,
"tinmestanp":"2017-04-11T16: 56: 35. 790Z2"

bo

{
"nanme":"integration.channel . out put.errorRate. max",
“val ue": 0.0,
"timestanp":"2017-04-11T16: 56: 35. 790Z"

Bo

{
"nanme":"integration.channel.output.errorRate. mn",
"val ue": 0.0,
"timestanp":"2017-04-11T16: 56: 35. 7902"

B

{
"nanme":"integration.channel . output.errorRate.stdev",
"val ue": 0.0,
"timestanp":"2017-04-11T16: 56: 35. 790Z2"

I

{
"nane":"integration.channel . out put.errorRate.count",
"val ue": 0.0,
"timestanp":"2017-04-11T16: 56: 35. 790Z2"

}.

{
"nane":"integration.channel . out put. sendCount",
"val ue": 6.0,
"tinmestanp":"2017-04-11T16: 56: 35. 790Z2"

Bo

{
“nanme":"integration.channel . out put.sendRat e. nean",
"val ue": 0. 994885872292989,
"tinmestanp":"2017-04-11T16: 56: 35. 790Z2"

bo

{
"nanme":"integration.channel . out put.sendRat e. max",
"val ue":1.006247080013156,
"timestanp":"2017-04-11T16: 56: 35. 790Z"

Bo

{
"nanme":"integration.channel . out put.sendRate. m n",
“val ue":1.0012035220116378,
"timestanp":"2017-04-11T16: 56: 35. 7902"

B

{
"name":"integration.channel . out put.sendRat e. st dev",
"val ue": 6.505181111084848E- 4,
"timestanp":"2017-04-11T16: 56: 35. 790Z2"

I

{
"nane":"integration. channel . out put. sendRate. count ",
"val ue": 6.0,
"timestanp":"2017-04-11T16: 56: 35. 790Z2"

Ditmars.SR3 Spring Cloud Stream 49

Spring Cloud Stream Reference Guide

}

IE

"createdTi ne":"2017- 04- 11T20: 56: 35. 790Z",

"properties":{
"spring.application.nanme":"tinme-source",
"spring.application.index":"0"

Ditmars.SR3 Spring Cloud Stream

50

Spring Cloud Stream Reference Guide

12. Samples

For Spring Cloud Stream samples, please refer to the spring-cloud-stream-samples repository on
GitHub.

Ditmars.SR3 Spring Cloud Stream 51

https://github.com/spring-cloud/spring-cloud-stream-samples

Spring Cloud Stream Reference Guide

13. Getting Started

To get started with creating Spring Cloud Stream applications, visit the Spring Initializr and create a
new Maven project named "GreetingSource". Select Spring Boot {supported-spring-boot-version} in the
dropdown. In the Search for dependencies text box type St r eam Rabbi t or St r eam Kaf ka depending
on what binder you want to use.

Next, create a new class, GeetingSource, in the same package as the
Greeti ngSour ceAppl i cati on class. Give it the following code:

i nport org.springfranework. cl oud. stream annot at i on. Enabl eBi ndi ng;
i mport org.springfranework. cl oud. stream nessagi ng. Sour ce;
i nport org.springframework.integration.annotation.|nboundChannel Adapt er;

@nabl eBi ndi ng(Sour ce. cl ass)
public class G eetingSource {

@ nboundChannel Adapt er (Sour ce. QUTPUT)
public String greet() {
return "hello world " + SystemcurrentTimeMIlis();

}

The @Enabl eBi ndi ng annotation is what triggers the creation of Spring Integration infrastructure
components. Specifically, it will create a Kafka connection factory, a Kafka outbound channel adapter,
and the message channel defined inside the Source interface:

public interface Source {
String OUTPUT = "output";

@ut put (Sour ce. QUTPUT)
MessageChannel output();

The auto-configuration also creates a default poller, so that the greet () method will be invoked
once per second. The standard Spring Integration @ nboundChannel Adapt er annotation sends a
message to the source’s output channel, using the return value as the payload of the message.

To test-drive this setup, run a Kafka message broker. An easy way to do this is to use a Docker image:

On OS X
$ docker run -p 2181:2181 -p 9092: 9092 --env ADVERTI SED_HOST="docker - nachi ne i p \ docker-machi ne active

\"" --env ADVERTI SED_PORT=9092 spoti fy/ kaf ka

On Li nux
$ docker run -p 2181:2181 -p 9092: 9092 --env ADVERTI SED_HOST=l ocal host --env ADVERTI SED_PORT=9092

spoti fy/ kaf ka

Build the application:

./ mvnw cl ean package

The consumer application is coded in a similar manner. Go back to Initializr and create another project,
named LoggingSink. Then create a new class, Loggi ngSi nk, in the same package as the class
Loggi ngSi nkAppl i cati on and with the following code:

i nport org.springframework. cl oud. stream annot ati on. Enabl eBi ndi ng;
i nport org.springframework. cl oud. stream annot ati on. StreanlLi st ener;
i nport org.springfranework. cl oud. stream nessagi ng. Si nk;

Ditmars.SR3 Spring Cloud Stream 52

https://start.spring.io

Spring Cloud Stream Reference Guide

@nabl eBi ndi ng(Si nk. cl ass)
public class Loggi ngSink {

@t r eanli st ener (Si nk. | NPUT)
public void log(String nessage) {
System out. printl n(nessage);

}

Build the application:

./ mvnw cl ean package

To connect the GreetingSource application to the LoggingSink application, each application must share
the same destination name. Starting up both applications as shown below, you will see the consumer
application printing "hello world" and a timestamp to the console:

cd GreetingSource
java -jar target/ G eetingSource-0.0.1- SNAPSHOT. j ar --
spring. cl oud. stream bi ndi ngs. out put .. desti nati on=nydest

cd Loggi ngSi nk
java -jar target/Loggi ngSi nk-0.0. 1- SNAPSHOT. j ar --server. port=8090 --
spring. cl oud. stream bi ndi ngs. i nput. desti nati on=nydest

(The different server port prevents collisions of the HTTP port used to service the Spring Boot Actuator
endpoints in the two applications.)

The output of the LoggingSink application will look something like the following:

[main] s.b.c.e.t. Toncat EnbeddedSer vl et Contai ner : Tontat started on port(s): 8090 (http)
[mai n] com exanpl e. Loggi ngSi nkAppl i cati on : Started Loggi ngSi nkApplication in 6.828
seconds (JVM running for 7.371)

hel l o world 1458595076731

hell o world 1458595077732

hell o world 1458595078733

hell o world 1458595079734

hel l o world 1458595080735

13.1 Deploying Stream applications on CloudFoundry

On CloudFoundry services are usually exposed via a special environment variable called
VCAP_SERVICES.

When configuring your binder connections, you can use the values from an environment variable as
explained on the dataflow cloudfoundry server docs.

Ditmars.SR3 Spring Cloud Stream 53

https://docs.cloudfoundry.org/devguide/deploy-apps/environment-variable.html#VCAP-SERVICES
http://docs.spring.io/spring-cloud-dataflow-server-cloudfoundry/docs/current-SNAPSHOT/reference/htmlsingle/#getting-started-ups

Part |l. Binder Implementations

Spring Cloud Stream Reference Guide

14. Apache Kafka Binder

14.1 Usage

For using the Apache Kafka binder, you just need to add it to your Spring Cloud Stream application,
using the following Maven coordinates:

<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cloud-stream binder-kaf ka</artifact|d>
</ dependency>

Alternatively, you can also use the Spring Cloud Stream Kafka Starter.

<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cloud-starter-streamkaf ka</artifact!d>
</ dependency>

14.2 Apache Kafka Binder Overview

A simplified diagram of how the Apache Kafka binder operates can be seen below.

Figure 14.1. Kafka Binder

The Apache Kafka Binder implementation maps each destination to an Apache Kafka topic. The
consumer group maps directly to the same Apache Kafka concept. Partitioning also maps directly to
Apache Kafka partitions as well.

14.3 Configuration Options

This section contains the configuration options used by the Apache Kafka binder.

For common configuration options and properties pertaining to binder, refer to the core documentation.

Kafka Binder Properties

spring.cloud.stream.kafka.binder.brokers
A list of brokers to which the Kafka binder will connect.

Default: | ocal host .

spring.cloud.stream.kafka.binder.defaultBrokerPort
br oker s allows hosts specified with or without port information (e.g., host 1, host 2: port 2). This
sets the default port when no port is configured in the broker list.

Ditmars.SR3 Spring Cloud Stream 55

Spring Cloud Stream Reference Guide

Default: 9092.

spring.cloud.stream.kafka.binder.zkNodes
A list of ZooKeeper nodes to which the Kafka binder can connect.

Default: | ocal host .

spring.cloud.stream.kafka.binder.defaultzkPort
zkNodes allows hosts specified with or without port information (e.g., host 1, host 2: port 2). This
sets the default port when no port is configured in the node list.

Default: 2181.

spring.cloud.stream.kafka.binder.configuration
Key/Value map of client properties (both producers and consumer) passed to all clients created by
the binder. Due to the fact that these properties will be used by both producers and consumers,
usage should be restricted to common properties, especially security settings.

Default: Empty map.

spring.cloud.stream.kafka.binder.headers
The list of custom headers that will be transported by the binder.

Default: empty.

spring.cloud.stream.kafka.binder.healthTimeout
The time to wait to get partition information in seconds; default 60. Health will report as down if this
timer expires.

Default: 10.

spring.cloud.stream.kafka.binder.offsetUpdate TimeWindow
The frequency, in milliseconds, with which offsets are saved. Ignored if 0.

Default: 10000.

spring.cloud.stream.kafka.binder.offsetUpdateCount
The frequency, in number of updates, which which consumed offsets are persisted. Ignored if 0.
Mutually exclusive with of f set Updat eTi mneW ndow.

Default: O.

spring.cloud.stream.kafka.binder.requiredAcks
The number of required acks on the broker.

Default: 1.

spring.cloud.stream.kafka.binder.minPartitionCount
Effective only if aut oCr eat eTopi cs oraut oAddParti ti ons is set. The global minimum number
of partitions that the binder will configure on topics on which it produces/consumes data. It can be
superseded by the partiti onCount setting of the producer or by the value of i nst anceCount
* concur r ency settings of the producer (if either is larger).

Default: 1.

spring.cloud.stream.kafka.binder.replicationFactor
The replication factor of auto-created topics if aut oCr eat eTopi cs is active.

Ditmars.SR3 Spring Cloud Stream 56

Spring Cloud Stream Reference Guide

Default: 1.

spring.cloud.stream.kafka.binder.autoCreateTopics
If settot r ue, the binder will create new topics automatically. If setto f al se, the binder will rely on
the topics being already configured. In the latter case, if the topics do not exist, the binder will fail
to start. Of note, this setting is independent of the aut 0. t opi c. cr eat e. enabl e setting of the
broker and it does not influence it: if the server is set to auto-create topics, they may be created as
part of the metadata retrieval request, with default broker settings.

Default: t r ue.

spring.cloud.stream.kafka.binder.autoAddPartitions
If set to t r ue, the binder will create add new partitions if required. If set to f al se, the binder will
rely on the partition size of the topic being already configured. If the partition count of the target topic
is smaller than the expected value, the binder will fail to start.

Default: f al se.

spring.cloud.stream.kafka.binder.socketBufferSize
Size (in bytes) of the socket buffer to be used by the Kafka consumers.

Default: 2097152.

Kafka Consumer Properties

The following properties are available for Kafka consumers only and must be prefixed with
spring. cl oud. st ream kaf ka. bi ndi ngs. <channel Nane>. consuner. .

autoRebalanceEnabled

When true, topic partitions will be automatically rebalanced between the
members of a consumer group. When false, each consumer will be assigned
a fixed set of partitions based on spring.cloud.streaminstanceCount
and spring. cl oud. stream i nstancel ndex. This requires both
spring. cl oud. stream i nstanceCount and spring.cloud. streaminstancel ndex
properties to be set appropriately on each launched instance. The property
spring. cl oud. st ream i nst anceCount must typically be greater than 1 in this case.

Default: t r ue.

autoCommitOffset
Whether to autocommit offsets when a message has been processed.
If set to false, a header with the key kafka_acknow edgnent of
the type org.springfranmework. kaf ka. support. Acknow edgnent header will be
present in the inbound message. Applications may wuse this header for
acknowledging messages. See the examples section for details. When this
property is set to false, Kafka binder wil set the ack mode to
org. springframework. kaf ka. | i st ener. Abst ract MessagelLi st ener Cont ai ner . AckMbde. MANUAL.

Default: t r ue.

autoCommitOnError
Effective only if aut oComi t Of f set is setto true. If set to f al se it suppresses auto-commits
for messages that result in errors, and will commit only for successful messages, allows a stream to
automatically replay from the last successfully processed message, in case of persistent failures. If

Ditmars.SR3 Spring Cloud Stream 57

Spring Cloud Stream Reference Guide

settot rue, it will always auto-commit (if auto-commit is enabled). If not set (default), it effectively
has the same value as enabl eDl g, auto-committing erroneous messages if they are sentto a DLQ,
and not committing them otherwise.

Default: not set.

recoverylnterval
The interval between connection recovery attempts, in milliseconds.

Default: 5000.

startOffset
The starting offset for new groups. Allowed \values: earliest, |atest.
If the consumer group is set explicitty for the consumer ‘'binding' (via
spring. cl oud. st ream bi ndi ngs. <channel Nane>. gr oup), then ’startOffset’ is set to
ear |l i est; otherwise itis setto | at est for the anonynous consumer group.

Default: null (equivalentto ear |l i est).

enableDlq
When set to true, it will send enable DLQ behavior for the consumer. By default, messages that
result in errors will be forwarded to a topic named er r or . <dest i nati on>. <gr oup>. The DLQ
topic name can be configurable via the property dl gNane. This provides an alternative option to
the more common Kafka replay scenario for the case when the number of errors is relatively small
and replaying the entire original topic may be too cumbersome.

Default: f al se.

configuration
Map with a key/value pair containing generic Kafka consumer properties.

Default: Empty map.

digName
The name of the DLQ topic to receive the error messages.

Default: null (If not specified, messages that result in errors will be forwarded to a topic named
error. <destination>. <group>).

Kafka Producer Properties

The following properties are available for Kafka producers only and must be prefixed with
spring. cl oud. st ream kaf ka. bi ndi ngs. <channel Nane>. pr oducer. .

bufferSize
Upper limit, in bytes, of how much data the Kafka producer will attempt to batch before sending.

Default: 16384.

sync
Whether the producer is synchronous.

Default: f al se.

batchTimeout
How long the producer will wait before sending in order to allow more messages to accumulate in
the same batch. (Normally the producer does not wait at all, and simply sends all the messages that

Ditmars.SR3 Spring Cloud Stream 58

Spring Cloud Stream Reference Guide

accumulated while the previous send was in progress.) A non-zero value may increase throughput
at the expense of latency.

Default: 0.

messageKeyExpression
A SpEL expression evaluated against the outgoing message used to populate the key of the
produced Kafka message. For example header s. key or payl oad. nyKey.

Default: none.

configuration
Map with a key/value pair containing generic Kafka producer properties.

Default: Empty map.

@ Note

The Kafka binder will use the partiti onCount setting of the producer as a hint to
create a topic with the given partition count (in conjunction with the mi nPartiti onCount,
the maximum of the two being the value being used). Exercise caution when configuring
both m nPartiti onCount for a binder and partiti onCount for an application, as the
larger value will be used. If a topic already exists with a smaller partition count and
aut oAddPartiti ons is disabled (the default), then the binder will fail to start. If a topic already
exists with a smaller partition count and aut oAddParti ti ons is enabled, new partitions will
be added. If a topic already exists with a larger number of partitions than the maximum of
(mi nPartitionCount and partitionCount), the existing partition count will be used.

Usage examples

In this section, we illustrate the use of the above properties for specific scenarios.

Example: Setting aut oConmi t O f set false and relying on manual acking.

This example illustrates how one may manually acknowledge offsets in a consumer application.

This example requires that
spring. cl oud. st ream kaf ka. bi ndi ngs. i nput. consuner. autoCommit Of fset is set to
false. Use the corresponding input channel name for your example.

@Bpr i ngBoot Appl i cati on
@Enabl eBi ndi ng(Si nk. cl ass)
public class Manual | yAcknowdl edgi ngConsurner {

public static void main(String[] args) {
Spri ngAppl i cati on. run(Manual | yAcknowdl edgi ngConsuner . cl ass, args);
}

@bt r eanli st ener (Si nk. | NPUT)
public void process(Message<?> nessage) {
Acknowl edgnent acknow edgnent = nessage. get Header s() . get (Kaf kaHeader s. ACKNOALEDGVENT,
Acknowl edgnent . cl ass) ;
if (acknow edgnment != null) {
System out. println("Acknow edgnment provided");
acknow edgnent . acknow edge();

Ditmars.SR3 Spring Cloud Stream 59

Spring Cloud Stream Reference Guide

Example: security configuration

Apache Kafka 0.9 supports secure connections between client and brokers. To take
advantage of this feature, follow the guidelines in the Apache Kafka Documentation as
well as the Kafka 0.9 security guidelines from the Confluent documentation. Use the
spring. cl oud. st ream kaf ka. bi nder . confi gur ati on option to set security properties for all
clients created by the binder.

For example, for setting security. protocol to SASL_SSL, set:
spring. cl oud. stream kaf ka. bi nder. confi guration. security. protocol =SASL_SSL
All the other security properties can be set in a similar manner.

When using Kerberos, follow the instructions in the reference documentation for creating and referencing
the JAAS configuration.

Spring Cloud Stream supports passing JAAS configuration information to the application using a JAAS
configuration file and using Spring Boot properties.

Using JAAS configuration files

The JAAS, and (optionally) krb5 file locations can be set for Spring Cloud Stream applications by using
system properties. Here is an example of launching a Spring Cloud Stream application with SASL and
Kerberos using a JAAS configuration file:

java -D ava. security. auth.login.config=/path.to/kafka_client_jaas.conf -jar log.jar \
--spring.cl oud. stream kaf ka. bi nder . br oker s=secure. server: 9092 \
--spring.cl oud. stream kaf ka. bi nder. zkNodes=secur e. zookeeper: 2181 \
--spring. cloud. stream bi ndi ngs. i nput . desti nati on=stream ticktock \
--spring. cloud. stream kaf ka. bi nder. confi guration. security. protocol =SASL_PLAI NTEXT

Using Spring Boot properties

As an alternative to having a JAAS configuration file, Spring Cloud Stream provides a mechanism for
setting up the JAAS configuration for Spring Cloud Stream applications using Spring Boot properties.

The following properties can be used for configuring the login context of the Kafka client.

spring.cloud.stream.kafka.binder.jaas.loginModule
The login module name. Not necessary to be set in normal cases.

Default: com sun. securi ty. aut h. nodul e. Kr b5Logi nModul e.

spring.cloud.stream.kafka.binder.jaas.controlFlag
The control flag of the login module.

Default: r equi r ed.

spring.cloud.stream.kafka.binder.jaas.options
Map with a key/value pair containing the login module options.

Default: Empty map.

Here is an example of launching a Spring Cloud Stream application with SASL and Kerberos using
Spring Boot configuration properties:

Ditmars.SR3 Spring Cloud Stream 60

http://kafka.apache.org/090/documentation.html#security_configclients
http://docs.confluent.io/2.0.0/kafka/security.html
http://kafka.apache.org/090/documentation.html#security_sasl_clientconfig

Spring Cloud Stream Reference Guide

java --spring.cloud. stream kaf ka. bi nder . br oker s=secur e. server: 9092 \
--spring. cloud. stream kaf ka. bi nder . zkNodes=secur e. zookeeper: 2181 \
--spring.cl oud. stream bi ndi ngs. i nput. desti nati on=stream ti cktock \
--spring.cl oud. stream kaf ka. bi nder . aut oCr eat eTopi cs=f al se \
--spring.cl oud. stream kaf ka. bi nder. confi gurati on. security. protocol =SASL_PLAI NTEXT \
--spring.cl oud. stream kaf ka. bi nder. j aas. opti ons. useKeyTab=true \
--spring. cl oud. stream kaf ka. bi nder . j aas. opti ons. st or eKey=true \
--spring. cloud. stream kaf ka. bi nder . j aas. opti ons. keyTab=/ et c/ securi ty/ keyt abs/ kaf ka_cl i ent. keytab \
--spring. cloud. stream kaf ka. bi nder . j aas. opti ons. pri nci pal =kaf ka- cl i ent - 1@XAWMPLE. COM

This represents the equivalent of the following JAAS file:

Kaf kad i ent {
com sun. security. aut h. rodul e. Krb5Logi nModul e required
useKeyTab=t r ue
st or eKey=t rue
keyTab="/et c/ security/ keyt abs/ kaf ka_cl i ent. keyt ab"
princi pal ="kaf ka- cl i ent - 1@XAMPLE. COM';

If the topics required already exist on the broker, or will be created by an administrator, autocreation
can be turned off and only client JAAS properties need to be sent. As an alternative to setting
spring. cl oud. st ream kaf ka. bi nder . aut oCr eat eTopi ¢s you can simply remove the broker
dependency from the application. See the section called “Excluding Kafka broker jar from the classpath
of the binder based application” for details.

@ Note

Do not mix JAAS configuration files and Spring Boot properties in the same application. If the
-Dj ava. security. auth. | ogi n. confi g system property is already present, Spring Cloud
Stream will ignore the Spring Boot properties.

@ Note

Exercise caution when using the aut oCr eat eTopi cs and aut oAddParti ti ons if using
Kerberos. Usually applications may use principals that do not have administrative rights in Kafka
and Zookeeper, and relying on Spring Cloud Stream to create/modify topics may fail. In secure
environments, we strongly recommend creating topics and managing ACLs administratively
using Kafka tooling.

Using the binder with Apache Kafka 0.10

The default Kafka support in Spring Cloud Stream Kafka binder is for Kafka version 0.10.1.1. The
binder also supports connecting to other 0.10 based versions and 0.9 clients. In order to do this, when
you create the project that contains your application, include spri ng-cl oud-starter-stream
kaf ka as you normally would do for the default binder. Then add these dependencies at the top of the
<dependenci es> section in the pom.xml file to override the dependencies.

Here is an example for downgrading your application to 0.10.0.1. Since it is still on the 0.10 line, the
default spri ng- kaf ka and spri ng-i nt egr ati on- kaf ka versions can be retained.

<dependency>
<groupl d>or g. apache. kaf ka</ gr oupl d>
<artifactld>kaf ka_2.11</artifactld>
<ver si on>0. 10. 0. 1</ ver si on>
<excl usi ons>
<excl usi on>
<gr oupl d>or g. sl f 4j </ gr oupl d>
<artifactld>slf4j-1og4j12</artifactld>
</ excl usi on>

Ditmars.SR3 Spring Cloud Stream 61

Spring Cloud Stream Reference Guide

</ excl usi ons>

</ dependency>

<dependency>
<groupl d>or g. apache. kaf ka</ gr oupl d>
<artifactld>kaf ka-clients</artifactld>
<ver si on>0. 10. 0. 1</ ver si on>

</ dependency>

Here is another example of using 0.9.0.1 version.

<dependency>
<groupl d>or g. spri ngf ramewor k. kaf ka</ gr oupl d>
<artifactld>spring-kafka</artifactld>
<ver si on>1. 0. 5. RELEASE</ ver si on>
</ dependency>
<dependency>
<groupl d>org. spri ngframework. i ntegration</groupld>
<artifactld>spring-integration-kafka</artifactld>
<version>2.0.1. RELEASE</ versi on>
</ dependency>
<dependency>
<groupl d>or g. apache. kaf ka</ gr oupl d>
<artifactld>kafka_2.11</artifactld>
<versi on>0. 9. 0. 1</ ver si on>
<excl usi ons>
<excl usi on>
<gr oupl d>or g. sl f 4j </ gr oupl d>
<artifactld>slf4j-1og4jl12</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>
<dependency>
<groupl d>or g. apache. kaf ka</ gr oupl d>
<artifactld>kafka-clients</artifactld>
<ver si on>0. 9. 0. 1</ ver si on>
</ dependency>

@ Note

The versions above are provided only for the sake of the example. For best results, we
recommend using the most recent 0.10-compatible versions of the projects.

Excluding Kafka broker jar from the classpath of the binder based application

The Apache Kafka Binder uses the administrative utilities which are part of the Apache Kafka server
library to create and reconfigure topics. If the inclusion of the Apache Kafka server library and its
dependencies is not necessary at runtime because the application will rely on the topics being configured
administratively, the Kafka binder allows for Apache Kafka server dependency to be excluded from the
application.

If you use non default versions for Kafka dependencies as advised above, all you have to do is not to
include the kafka broker dependency. If you use the default Kafka version, then ensure that you exclude
the kafka broker jar from the spri ng- cl oud- st art er - st r eam kaf ka dependency as following.

<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cloud-starter-streamkafka</artifactld>
<excl usi ons>
<excl usi on>
<groupl d>or g. apache. kaf ka</ gr oup! d>
<artifactld>kafka_2.11</artifactld>
</ excl usi on>
</ excl usi ons>
</ dependency>

Ditmars.SR3 Spring Cloud Stream 62

Spring Cloud Stream Reference Guide

If you exclude the Apache Kafka server dependency and the topic is not present on the server, then the
Apache Kafka broker will create the topic if auto topic creation is enabled on the server. Please keep in
mind that if you are relying on this, then the Kafka server will use the default number of partitions and
replication factors. On the other hand, if auto topic creation is disabled on the server, then care must be
taken before running the application to create the topic with the desired number of partitions.

If you want to have full control over how partitions are allocated, then Ileave the
default settings as they are, i.e. do not exclude the kafka broker jar and ensure that
spring. cl oud. st ream kaf ka. bi nder. aut oCr eat eTopi cs is settot r ue, which is the default.

14.4 Kafka Streams Binding Capabilities of Spring Cloud
Stream
Spring Cloud Stream Kafka support also includes a binder specifically designed for Kafka Streams

binding. Using this binder, applications can be written that leverage the Kafka Streams API. For more
information on Kafka Streams, see Kafka Streams API Developer Manual

Kafka Streams support in Spring Cloud Stream is based on the foundations provided by the Spring
Kafka project. For details on that support, see Kafaka Streams Support in Spring Kafka.

Here are the maven coordinates for the Spring Cloud Stream KStream binder artifact.

<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cl oud-stream bi nder-kstream</artifact!d>
</ dependency>

In addition to leveraging the Spring Cloud Stream programming model which is based on Spring Boot,
one of the main other benefits that the KStream binder provides is the fact that it avoids the boilerplate
configuration that one needs to write when using the Kafka Streams API directly. High level streams
DSL provided through the Kafka Streams API can be used through Spring Cloud Stream in the current
support.

Usage example of high level streams DSL

This application will listen from a Kafka topic and write the word count for each unique word that it sees
in a 5 seconds time window.

@Bpr i ngBoot Appl i cati on
@Enabl eBi ndi ng(KSt r eanPr ocessor . cl ass)
public class WordCount Processor Application {

@bt reanli stener ("input")

@endTo(" out put ")

public KStreanx?, String> process(KStreanx?, String> input) {

return input

. fl at MapVal ues(val ue -> Arrays. asLi st (val ue. t oLower Case().split("\\W")))
.map((key, word) -> new KeyVal ue<>(word, word))
. groupByKey(Serdes. String(), Serdes.String())
.count (Ti mreW ndows. of (5000), "store-nane")
.toStream()
.map((w, c) -> new KeyVal ue<>(null, "Count for " + wkey() +": " +¢c));

}

public static void main(String[] args) {
Spri ngAppl i cation. run(WrdCount Processor Appl i cation. cl ass, args);

}

Ditmars.SR3 Spring Cloud Stream 63

https://kafka.apache.org/documentation/streams/developer-guide
http://docs.spring.io/spring-kafka/reference/html/_reference.html#kafka-streams

Spring Cloud Stream Reference Guide

If you build it as Spring Boot runnable fat jar, you can run the above example in the following way:

java -jar uber.jar --spring.cloud.stream bindi ngs.input.destination=words --
spring. cl oud. stream bi ndi ngs. out put . desti nati on=count s

This means that the application will listen from the incoming Kafka topic words and write to the output
topic counts.

Spring Cloud Stream will ensure that the messages from both the incoming and outgoing topics are
bound as KStream objects. As one may observe, the developer can exclusively focus on the business
aspects of the code, i.e. writing the logic required in the processor rather than setting up the streams
specific configuration required by the Kafka Streams infrastructure. All those boilerplate is handled by
Spring Cloud Stream behind the scenes.

Support for interactive queries

If access to the Kaf kaSt r eans is needed for interactive queries, the internal Kaf kaSt r eans instance
can be accessed via KStreanBui |l der Fact or yBean. get Kaf kaStreans(). You can autowire
the KSt r eanBui | der Fact or yBean instance provided by the KStream binder. Then you can get
Kaf kaSt r eans instance from it and retrieve the underlying store, execute queries on it, etc.

Kafka Streams properties

configuration
Map with a key/value pair containing properties pertaining to Kafka Streams API. This property must
be prefixed with spri ng. cl oud. st ream kst ream bi nder. .

Fol | owi ng are some exanples of using this property.

spring. cl oud. stream kstream bi nder. confi guration. key. serde=or g. apache. kaf ka. cormon. seri al i zati on. Ser des
$Stri ngSer de

spring. cl oud. stream kstream bi nder. confi gurati on. val ue. ser de=or g. apache. kaf ka. conmon. seri al i zati on. Ser des
$Stri ngSerde

spring. cl oud. stream kstream bi nder. confi gurati on.comm t.interval.nms=1000

For nore information about all the properties that may go into streans configuration, see StreansConfig
JavaDocs.

There can also be binding specific properties.

For instance, you can use a different Serde for your input or output destination.

spring. cl oud. stream kstream bi ndi ngs. out put . producer. keySer de=or g. apache. kaf ka. cormon. seri al i zati on. Ser des
$1 nt eger Ser de

spring. cl oud. stream kst ream bi ndi ngs. out put . producer . val ueSer de=or g. apache. kaf ka. conmon. seri al i zati on. Ser des
$LongSer de

timewindow.length
Many streaming applications written using Kafka Streams involve windowning operations. If
you specify this property, there is a or g. apache. kaf ka. st reans. kst ream Ti mreW ndows
bean automatically provided that can be autowired in applications. This property
must be prefixed with spring.cloud.streamkstream. A bean of type
or g. apache. kaf ka. streans. kst ream Ti mreW ndows is created only if this property is
provided.

Foll owing is an exanple of using this property.
Val ues are provided in milliseconds.

Ditmars.SR3 Spring Cloud Stream 64

Spring Cloud Stream Reference Guide

spring. cl oud. stream kstream ti meW ndow. | engt h=5000

timewindow.advanceBy
This property goes hand in hand with t i newi ndow. | engt h and has no effect on its own. If you
provide this property, the generated or g. apache. kaf ka. st r eans. kst ream Ti meW ndows
bean will automatically conatin this information. This property must be prefixed with
spring. cl oud. st ream kstream .

Foll owing is an exanpl e of using this property.
Val ues are provided in nmilliseconds.

spring. cl oud. stream kstream ti meW ndow. advanceBy=1000

14.5 Error Channels

Starting with version 1.3, the binder unconditionally sends exceptions to an error channel for each
consumer destination, and can be configured to send async producer send failures to an error channel
too. See the section called “Message Channel Binders and Error Channels” for more information.

The payload of the Err or Message for a send failure is a Kaf kaSendFai | ur eExcepti on with
properties:

» fail edMessage - the spring-messaging Message<?> that failed to be sent.
» record - the raw Pr oducer Recor d that was created from the f ai | edMessage

There is no automatic handling of these exceptions (such as sending to a Dead-Letter queue); you can
consume these exceptions with your own Spring Integration flow.

14.6 Kafka Metrics

Kafka binder module exposes the following metrics:

spring. cl oud. st ream bi nder . kaf ka. soneG oup. soneTopi c. | ag - this metric indicates
how many messages have not been yet consumed from given binder's
topic by given consumer group. For example if the wvalue of the metric
spring. cl oud. st ream bi nder . kaf ka. myGroup. myTopi c. | ag is 1000, then consumer group
ny Gr oup has 1000 messages to waiting to be consumed from topic my Topi c. This metric is particularly
useful to provide auto-scaling feedback to PaaS platform of your choice.

14.7 Dead-Letter Topic Processing

Because it can't be anticipated how users would want to dispose of dead-lettered messages, the
framework does not provide any standard mechanism to handle them. If the reason for the dead-lettering
is transient, you may wish to route the messages back to the original topic. However, if the problem
is a permanent issue, that could cause an infinite loop. The following spri ng- boot application is an
example of how to route those messages back to the original topic, but moves them to a third "parking
lot" topic after three attempts. The application is simply another spring-cloud-stream application that
reads from the dead-letter topic. It terminates when no messages are received for 5 seconds.

The examples assume the original destination is s08400out and the consumer group is so8400.

There are several considerations.

Ditmars.SR3 Spring Cloud Stream 65

Spring Cloud Stream Reference Guide

» Consider only running the rerouting when the main application is not running. Otherwise, the retries
for transient errors will be used up very quickly.

» Alternatively, use a two-stage approach - use this application to route to a third topic, and another to
route from there back to the main topic.

» Since this technique uses a message header to keep track of retries, it won't work with
header Mode=r aw. In that case, consider adding some data to the payload (that can be ignored by
the main application).

* X-retries has to be added to the header s property
spring. cl oud. st ream kaf ka. bi nder. header s=x-retri es on both this, and the main
application so that the header is transported between the applications.

 Since kafka is publish/subscribe, replayed messages will be sent to each consumer group, even those
that successfully processed a message the first time around.

application.properties.

spring. cl oud. stream bi ndi ngs. i nput. gr oup=s08400r epl ay
spring. cl oud. stream bi ndi ngs. i nput. desti nati on=error.so84000ut.so08400

spring. cl oud. stream bi ndi ngs. out put . desti nati on=s084000ut
spring. cl oud. stream bi ndi ngs. out put. producer. partiti oned=true

spring. cl oud. st ream bi ndi ngs. par ki ngLot . desti nati on=s08400i n. par ki ngLot
spring. cl oud. stream bi ndi ngs. par ki ngLot . producer. partiti oned=true

spring. cl oud. stream kaf ka. bi nder. confi gurati on. auto. of f set.reset=earl i est

spring. cl oud. stream kaf ka. bi nder . headers=x-retries

Application.

@Bpr i ngBoot Appl i cati on
@Enabl eBi ndi ng(TwoCQut put Processor . cl ass)
public class ReRouteDl gKApplication inplenents CommandLi neRunner {

private static final String X RETRIES HEADER = "x-retries";

public static void main(String[] args) {
SpringAppl i cation. run(ReRout eDl gKAppl i cati on. cl ass, args).close();
}

private final Atom clnteger processed = new Atom clnteger();

@\ut owi r ed
private MessageChannel parkinglLot;

@5t r eanli st ener (Processor. | NPUT)
@endTo(Processor . QUTPUT)
publ i c Message<?> reRout e(Message<?> failed) {
processed. i ncrenment AndGet () ;
Integer retries = fail ed. get Headers() . get (X_RETRI ES_HEADER, | nteger.cl ass);
if (retries == null) {
Systemout.printin("First retry for " + failed);
return MessageBuil der. fronMessage(fail ed)
. set Header (X_RETRI ES_HEADER, new I nteger (1))
. set Header (Bi nder Header s. PARTI TI ON_OVERRI DE,
fail ed. get Header s() . get (Kaf kaHeader s. RECEI VED_PARTI TI ON_I D))
Lbuild();
}
else if (retries.intValue() < 3) {
Systemout. println("Another retry for " + failed);
return MessageBuil der.fronmMessage(fail ed)

Ditmars.SR3 Spring Cloud Stream 66

Spring Cloud Stream Reference Guide

. set Header (X_RETRI ES_HEADER, new Integer(retries.intValue() + 1))
. set Header (Bi nder Header s. PARTI TI ON_OVERRI DE,
fail ed. get Header s() . get (Kaf kaHeader s. RECEI VED_PARTI TI ON_I D))

Lbuild();
}
el se {
Systemout.println("Retries exhausted for " + failed);
par ki ngLot . send(MessageBui | der. fromMvessage(fai | ed)
. set Header (Bi nder Header s. PARTI TI ON_OVERRI DE,
fail ed. get Header s() . get (Kaf kaHeader s. RECEI VED_PARTI TI ON_I D))
Lbuild());
}
return null;
}
@verride

public void run(String... args) throws Exception {
while (true) {
int count = this.processed.get();
Thr ead. sl eep(5000) ;

if (count == this.processed.get()) {
Systemout.println("ldl e, termnating");
return;

}

public interface TwoQut put Processor extends Processor {

@ut put (" par ki ngLot")
MessageChannel parki ngLot();

Ditmars.SR3 Spring Cloud Stream

67

Spring Cloud Stream Reference Guide

15. RabbitMQ Binder

15.1 Usage

For using the RabbitMQ binder, you just need to add it to your Spring Cloud Stream application, using
the following Maven coordinates:

<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cloud-streambinder-rabbit</artifactld>

</ dependency>

Alternatively, you can also use the Spring Cloud Stream RabbitMQ Starter.

<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifact|d>spring-cloud-starter-streamrabbit</artifact!d>

</ dependency>

15.2 RabbitMQ Binder Overview

A simplified diagram of how the RabbitMQ binder operates can be seen below.

€ N

Topic
Exchange

RabbitMQ
A 4

Figure 15.1. RabbitMQ Binder

The RabbitMQ Binder implementation maps each destination to a Topi cExchange. For each consumer
group, a Queue will be bound to that Topi cExchange. Each consumer instance have a corresponding
RabbitMQ Consuner instance for its group’s Queue. For partitioned producers/consumers the queues
are suffixed with the partition index and use the partition index as routing key.

Using the aut oBi ndDl g option, you can optionally configure the binder to create and configure dead-
letter queues (DLQs) (and a dead-letter exchange DLX). The dead letter queue has the name of the
destination, appended with . dl g. If retry is enabled (maxAttenpts > 1) failed messages will be
delivered to the DLQ. If retry is disabled (maxAttenpts = 1), you should set r equeueRej ect ed
to f al se (default) so that a failed message will be routed to the DLQ, instead of being requeued.
In addition, r epubl i shToDl q causes the binder to publish a failed message to the DLQ (instead of
rejecting it); this enables additional information to be added to the message in headers, such as the
stack trace in the x- excepti on- st ackt r ace header. This option does not need retry enabled; you
can republish a failed message after just one attempt. Starting with version 1.2, you can configure the
delivery mode of republished messages; see property r epubl i shDel i ver yMode.

Ditmars.SR3 Spring Cloud Stream 68

Spring Cloud Stream Reference Guide

@ Important

Setting r equeueRej ect ed to t r ue will cause the message to be requeued and redelivered
continually, which is likely not what you want unless the failure issue is transient. In general,
it's better to enable retry within the binder by setting maxAt t enpt s to greater than one, or set
republ i shToDigtotrue.

See the section called “RabbitMQ Binder Properties” for more information about these properties.

The framework does not provide any standard mechanism to consume dead-letter messages (or to
re-route them back to the primary queue). Some options are described in Section 15.6, “Dead-Letter
Queue Processing”.

@ Note

When multiple RabbitMQ binders are used in a Spring Cloud Stream application, it
is important to disable 'RabbitAutoConfiguration' to avoid the same configuration from
Rabbi t Aut oConfi gur ati on being applied to the two binders.

Starting with version 1.3, the RabbitMessageChannel Bi nder creates an internal
Connect i onFact ory copy for the non-transactional producers to avoid dead locks on consumers
when shared, cached connections are blocked because of Memory Alarm on Broker.

15.3 Configuration Options

This section contains settings specific to the RabbitMQ Binder and bound channels.

For general binding configuration options and properties, please refer to the Spring Cloud Stream core
documentation.

RabbitMQ Binder Properties

By default, the RabbitMQ binder uses Spring Boot's Connect i onFact or y, and it therefore supports all
Spring Boot configuration options for RabbitMQ. (For reference, consult the Spring Boot documentation.)
RabbitMQ configuration options use the spri ng. r abbi t ng prefix.

In addition to Spring Boot options, the RabbitMQ binder supports the following properties:

spring.cloud.stream.rabbit.binder.adminAddresses
A comma-separated list of RabbitMQ management plugin URLs. Only used when nodes
contains more than one entry. Each entry in this list must have a corresponding entry in
spring. rabbi t ng. addr esses.

Default: empty.

spring.cloud.stream.rabbit.binder.nodes
A comma-separated list of RabbitMQ node names. When more than one entry, used to locate the
server address where a queue is located. Each entry in this list must have a corresponding entry
inspring. rabbitng. addresses.

Default: empty.

spring.cloud.stream.rabbit.binder.compressionLevel
Compression level for compressed bindings. See j ava. util . zi p. Defl ater.

Default: 1 (BEST_LEVEL).

Ditmars.SR3 Spring Cloud Stream 69

https://www.rabbitmq.com/memory.html
https://github.com/spring-cloud/spring-cloud-stream/blob/master/spring-cloud-stream-core-docs/src/main/asciidoc/spring-cloud-stream-overview.adoc#configuration-options
https://github.com/spring-cloud/spring-cloud-stream/blob/master/spring-cloud-stream-core-docs/src/main/asciidoc/spring-cloud-stream-overview.adoc#configuration-options
http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#common-application-properties

Spring Cloud Stream Reference Guide

RabbitMQ Consumer Properties

The following properties are available for Rabbit consumers only and must be prefixed with
spring. cl oud. st ream r abbi t. bi ndi ngs. <channel Name>. consurmer. .

acknowledgeMode
The acknowledge mode.

Default: AUTO.

autoBindDlq
Whether to automatically declare the DLQ and bind it to the binder DLX.

Default: f al se.

bindingRoutingKey
The routing key with which to bind the queue to the exchange (if bi ndQueue ist r ue). for partitioned
destinations - <i nst ancel ndex> will be appended.

Default: #.

bindQueue
Whether to bind the queue to the destination exchange; set to f al se if you have set up your own
infrastructure and have previously created/bound the queue.

Default: t r ue.

deadLetterQueueName
name of the DLQ

Default: pref i x+destination. dl q

deadLetterExchange
a DLX to assign to the queue; if autoBindDlq is true

Default: 'prefix+DLX'

deadLetterRoutingKey
a dead letter routing key to assign to the queue; if autoBindDlq is true

Default: dest i nati on

declareExchange
Whether to declare the exchange for the destination.

Default: t r ue.

delayedExchange
Whether to declare the exchange as a Del ayed Message Exchange - requires the
delayed message exchange plugin on the broker. The x- del ayed-t ype argument is set to the
exchangeType.

Default: f al se.

digDeadLetterExchange
if a DLQ is declared, a DLX to assign to that queue

Default: none

Ditmars.SR3 Spring Cloud Stream 70

Spring Cloud Stream Reference Guide

digDeadLetterRoutingKey
if a DLQ is declared, a dead letter routing key to assign to that queue; default none

Default: none

digExpires
how long before an unused dead letter queue is deleted (ms)

Default: no expiration

digLazy
Declare the dead letter queue with the x- queue- nbde=l azy argument. See Lazy Queues.
Consider using a policy instead of this setting because using a policy allows changing the setting
without deleting the queue.

Default: f al se.

dlgMaxLength
maximum number of messages in the dead letter queue

Default: no limt

digMaxLengthBytes
maximum number of total bytes in the dead letter queue from all messages

Default: no limt

digMaxPriority
maximum priority of messages in the dead letter queue (0-255)

Default: none

digTtl
default time to live to apply to the dead letter queue when declared (ms)

Default: no limt

durableSubscription
Whether subscription should be durable. Only effective if gr oup is also set.

Default: t r ue.

exchangeAutoDelete
If decl ar eExchange is true, whether the exchange should be auto-delete (removed after the last
gueue is removed).

Default: t r ue.

exchangeDurable
If decl ar eExchange is true, whether the exchange should be durable (survives broker restart).

Default: t r ue.

exchangeType
The exchange type; di r ect , f anout ort opi ¢ for non-partitioned destinations; di r ect ort opi ¢
for partitioned destinations.

Default: t opi c.

Ditmars.SR3 Spring Cloud Stream 71

https://www.rabbitmq.com/lazy-queues.html

Spring Cloud Stream Reference Guide

exclusive
Create an exclusive consumer; concurrency should be 1 when this is true; often used when
strict ordering is required but enabling a hot standby instance to take over after a failure. See
recoveryl nt er val , which controls how often a standby instance will attempt to consume.

Default: f al se.

expires
how long before an unused queue is deleted (ms)

Default: no expiration

failedDeclarationRetryInterval
The interval (ms) between attempts to consume from a queue if it is missing.

Default: 5000

headerPatterns
Patterns for headers to be mapped from inbound messages.

Default: [' *'] (all headers).

lazy
Declare the queue with the x- queue- node=l azy argument. See Lazy Queues. Consider using
a policy instead of this setting because using a policy allows changing the setting without deleting
the queue.

Default: f al se.

maxConcurrency
the maximum number of consumers

Default: 1.

maxLength
maximum number of messages in the queue

Default: no linmt

maxLengthBytes
maximum number of total bytes in the queue from all messages

Default: no limt

maxPriority
maximum priority of messages in the queue (0-255)

Default
none

missingQueuesFatal
If the queue cannot be found, treat the condition as fatal and stop the listener container. Defaults
to f al se so that the container keeps trying to consume from the queue, for example when using
a cluster and the node hosting a non HA queue is down.

Default
fal se

Ditmars.SR3 Spring Cloud Stream 72

https://www.rabbitmq.com/lazy-queues.html

Spring Cloud Stream Reference Guide

prefetch
Prefetch count.

Default: 1.

prefix
A prefix to be added to the name of the dest i nati on and queues.

Default: "

gueueDeclarationRetries
The number of times to retry consuming from a queue if it is missing. Only relevant if
m ssi ngQueuesFat al istr ue; otherwise the container keeps retrying indefinitely.

Default
3

gueueNameGroupOnly
When true, consume from a queue with a name equal to the gr oup; otherwise the queue name is
desti nati on. gr oup. This is useful, for example, when using Spring Cloud Stream to consume
from an existing RabbitMQ queue.

Default: false.

recoverylnterval
The interval between connection recovery attempts, in milliseconds.

Default: 5000.

requeueRejected
Whether delivery failures should be requeued when retry is disabled or republishToDlq is false.

Default: f al se.

republishDeliveryMode
When r epubl i shToDl qistrue, specify the delivery mode of the republished message.

Default: Del i ver yMbde. PERSI STENT

republishToDlIq
By default, messages which fail after retries are exhausted are rejected. If a dead-letter queue (DLQ)
is configured, RabbitMQ will route the failed message (unchanged) to the DLQ. If setto t r ue, the
binder will republish failed messages to the DLQ with additional headers, including the exception
message and stack trace from the cause of the final failure.

Default; false

transacted
Whether to use transacted channels.

Default: f al se.

ttl
default time to live to apply to the queue when declared (ms)

Default: no [imt

Ditmars.SR3 Spring Cloud Stream 73

Spring Cloud Stream Reference Guide

txSize
The number of deliveries between acks.

Default: 1.

Rabbit Producer Properties

The following properties are available for Rabbit producers only and must be prefixed with
spring. cl oud. st ream rabbi t. bi ndi ngs. <channel Nanme>. pr oducer . .

autoBindDlq
Whether to automatically declare the DLQ and bind it to the binder DLX.

Default: f al se.

batchingEnabled
Whether to enable message batching by producers.

Default: f al se.

batchSize
The number of messages to buffer when batching is enabled.

Default: 100.

batchBufferLimit
Default: 10000.

batchTimeout
Default: 5000.

bindingRoutingKey
The routing key with which to bind the queue to the exchange (if bi ndQueue ist r ue). Only applies
to non-partitioned destinations. Only applies if r equi r edG oups are provided and then only to
those groups.

Default: #.

bindQueue
Whether to bind the queue to the destination exchange; set to f al se if you have set up your own
infrastructure and have previously created/bound the queue. Only applies if r equi r edG oups are
provided and then only to those groups.

Default: t r ue.

compress
Whether data should be compressed when sent.

Default: f al se.

deadLetterQueueName
name of the DLQ Only applies if r equi r edGr oups are provided and then only to those groups.

Default: prefi x+desti nation. dl q

deadLetterExchange
a DLX to assign to the queue; if autoBindDIq is true Only applies if r equi r edG oups are provided
and then only to those groups.

Ditmars.SR3 Spring Cloud Stream 74

Spring Cloud Stream Reference Guide

Default: 'prefix+DLX'

deadLetterRoutingKey
a dead letter routing key to assign to the queue; if autoBindDIlg is true Only applies if
requi r edG oups are provided and then only to those groups.

Default: dest i nati on

declareExchange
Whether to declare the exchange for the destination.

Default: t r ue.

delay
A SpEL expression to evaluate the delay to apply to the message (x- del ay header) - has no effect
if the exchange is not a delayed message exchange.

Default: No x- del ay header is set.

delayedExchange
Whether to declare the exchange as a Del ayed Message Exchange - requires the
delayed message exchange plugin on the broker. The x- del ayed-t ype argument is set to the
exchangeType.

Default: f al se.

deliveryMode
Delivery mode.

Default: PERSI STENT.

digDeadLetterExchange
if a DLQ is declared, a DLX to assign to that queue Only applies if r equi r edGr oups are provided
and then only to those groups.

Default: none

dlgDeadLetterRoutingKey
if a DLQ is declared, a dead letter routing key to assign to that queue; default none Only applies if
requi redG oups are provided and then only to those groups.

Default: none

digExpires
how long before an unused dead letter queue is deleted (ms) Only appliesifr equi r edGr oups are
provided and then only to those groups.

Default: no expiration

digLazy
Declare the dead letter queue with the x- queue- node=| azy argument. See Lazy Queues.
Consider using a policy instead of this setting because using a policy allows changing the setting
without deleting the queue. Only applies if r equi r edG oups are provided and then only to those
groups.

Ditmars.SR3 Spring Cloud Stream 75

https://www.rabbitmq.com/lazy-queues.html

Spring Cloud Stream Reference Guide

digMaxLength
maximum number of messages in the dead letter queue Only applies if r equi r edG oups are
provided and then only to those groups.

Default: no limt

dlgMaxLengthBytes
maximum number of total bytes in the dead letter queue from all messages Only applies if
requi r edG oups are provided and then only to those groups.

Default: no [imt

digMaxPriority
maximum priority of messages in the dead letter queue (0-255) Only applies if r equi r edG oups
are provided and then only to those groups.

Default; none

digTtl
default time to live to apply to the dead letter queue when declared (ms) Only applies if
requi redG oups are provided and then only to those groups.

Default: no limt

exchangeAutoDelete
If decl ar eExchange is true, whether the exchange should be auto-delete (removed after the last
gueue is removed).

Default: t r ue.

exchangeDurable
If decl ar eExchange is true, whether the exchange should be durable (survives broker restart).

Default: t r ue.

exchangeType
The exchange type; di r ect , f anout ort opi ¢ for non-partitioned destinations; di r ect ort opi ¢
for partitioned destinations.

Default: t opi c.

expires
how long before an unused queue is deleted (ms) Only applies if r equi r edGr oups are provided
and then only to those groups.

Default: no expiration

headerPatterns
Patterns for headers to be mapped to outbound messages.

Default: [*'] (all headers).

lazy
Declare the queue with the x- queue- node=I azy argument. See Lazy Queues. Consider using a
policy instead of this setting because using a policy allows changing the setting without deleting the
gueue. Only applies if r equi r edG oups are provided and then only to those groups.

Ditmars.SR3 Spring Cloud Stream 76

https://www.rabbitmq.com/lazy-queues.html

Spring Cloud Stream Reference Guide

Default: f al se.

maxLength
maximum number of messages in the queue Only applies if r equi r edG oups are provided and
then only to those groups.

Default: no limt

maxLengthBytes
maximum number of total bytes in the queue from all messages Only applies if r equi r edG oups
are provided and then only to those groups.

Default: no limt

maxPriority
maximum priority of messages in the queue (0-255) Only applies if r equi r edG oups are provided
and then only to those groups.

Default
none

prefix
A prefix to be added to the name of the dest i nati on exchange.

Default: ™.

gueueNameGroupOnly
When true, consume from a queue with a name equal to the gr oup; otherwise the queue name is
desti nati on. gr oup. This is useful, for example, when using Spring Cloud Stream to consume
from an existing RabbitMQ queue. Only applies if r equi r edGr oups are provided and then only
to those groups.

Default: false.

routingKeyExpression
A SpEL expression to determine the routing key to use when publishing messages. For a fixed
routing key, use a literal expression, e.g. rout i ngKeyExpr essi on="my. routi ngKey' in a
properties file, or r out i ngKeyExpression: '''ny.routingKey''' ina YAML file.

Default: desti nati on or desti nati on-<partiti on> for partitioned destinations.

transacted
Whether to use transacted channels.

Default: f al se.

ttl
default time to live to apply to the queue when declared (ms) Only applies if r equi r edG oups are
provided and then only to those groups.

Default: no limt

@ Note

In the case of RabbitMQ, content type headers can be set by external applications. Spring Cloud
Stream supports them as part of an extended internal protocol used for any type of transport
(including transports, such as Kafka, that do not normally support headers).

Ditmars.SR3 Spring Cloud Stream 77

Spring Cloud Stream Reference Guide

15.4 Retry With the RabbitMQ Binder

Overview

When retry is enabled within the binder, the listener container thread is suspended for any back off
periods that are configured. This might be important when strict ordering is required with a single
consumer but for other use cases it prevents other messages from being processed on that thread.
An alternative to using binder retry is to set up dead lettering with time to live on the dead-letter queue
(DLQ), as well as dead-letter configuration on the DLQ itself. See the section called “RabbitMQ Binder
Properties” for more information about the properties discussed here. Example configuration to enable
this feature:

e Set aut oBi ndDl g to true - the binder will create a DLQ; you can optionally specify a name in
deadLet t er QueueNane

» Setdl qTt| to the back off time you want to wait between redeliveries

» Set the dl gDeadLet t er Exchange to the default exchange - expired messages from the DLQ will
be routed to the original queue since the default deadLet t er Rout i ngKey is the queue name
(desti nati on. group)

To force a message to be dead-lettered, either throw an AnrgpRej ect AndDont RequeueExcepti on,
or setrequeueRej ect ed to t r ue and throw any exception.

The loop will continue without end, which is fine for transient problems but you may want to give up after
some number of attempts. Fortunately, RabbitMQ provides the x- deat h header which allows you to
determine how many cycles have occurred.

To acknowledge a message after giving up, throw an | nredi at eAcknowl edgeAnmgpExcepti on.

Putting it All Together

spring. cl oud. stream bi ndi ngs. i nput . desti nati on=nyDesti nati on

spring. cl oud. stream bi ndi ngs. i nput. gr oup=consuner G oup

#di sabl e binder retries

spring. cl oud. stream bi ndi ngs. i nput. consuner. max- attenpt s=1

#dl x/ dl g setup

spring. cl oud. stream rabbi t. bi ndi ngs. i nput. consuner. aut o- bi nd-dl g=true
spring. cl oud. stream rabbi t. bi ndi ngs. i nput.consuner.dl g-ttl=5000

spring. cl oud. stream rabbi t. bi ndi ngs. i nput.consuner. dl g-dead-1| etter-exchange=

This configuration creates an exchange nyDest i nati on with queue
nyDest i nati on. consuner G oup bound to a topic exchange with a wildcard routing key #. It creates
a DLQ bound to a direct exchange DLX with routing key myDest i nat i on. consuner G oup. When
messages are rejected, they are routed to the DLQ. After 5 seconds, the message expires and is routed
to the original queue using the queue name as the routing key.

Spring Boot application.

@pr i ngBoot Appl i cati on
@Enabl eBi ndi ng(Si nk. cl ass)
public class XDeat hApplication {

public static void main(String[] args) {
Spri ngAppl i cati on. run(XDeat hAppl i cation.cl ass, args);
}

Ditmars.SR3 Spring Cloud Stream 78

Spring Cloud Stream Reference Guide

@t r eanii st ener (Si nk. | NPUT)
public void listen(String in, @ieader(nane = "x-death", required = fal se) Map<?, ?> death) {
if (death !'= null && death.get("count").equals(3L)) {
/1 giving up - don't send to DLX
t hrow new | mmedi at eAcknowl edgeAngpExcepti on("Failed after 4 attenpts");

}
throw new AngpRej ect AndDont RequeueException(“failed");

}

Notice that the count property in the x- deat h header is a Long.

15.5 Error Channels

Starting with version 1.3, the binder unconditionally sends exceptions to an error channel for each
consumer destination, and can be configured to send async producer send failures to an error channel
too. See the section called “Message Channel Binders and Error Channels” for more information.

With rabbitmq, there are two types of send failures:
* returned messages

» negatively acknowledged Publisher Confirms

The latter is rare; quoting the RabbitMQ documentation "[A nack] will only be delivered if an internal
error occurs in the Erlang process responsible for a queue.".

As well as enabling producer error channels as described in the section called “Message Channel
Binders and Error Channels”, the RabbitMQ binder will only send messages to the channels if the
connection factory is appropriately configured:

» ccf.setPublisherConfirnms(true);

e ccf.setPublisherReturns(true);

When using spring boot configuration for the connection factory, set properties:
e spring. rabbitnyg. publisher-confirns

e spring. rabbitny. publisher-returns

The payload of the Er r or Message for a returned message is a Ret ur nedAngpMessageExcepti on
with properties:

» fai |l edMessage - the spring-messaging Message<?> that failed to be sent.

» amgpMessage - the raw spring-amqgp Message

» repl yCode - an integer value indicating the reason for the failure (e.g. 312 - No route)
» repl yText - atextvalue indicating the reason for the failure e.g. NO_ROUTE.

» exchange - the exchange to which the message was published.

* routi ngKey - the routing key used when the message was published.

For negatively acknowledged confirms, the payload is a NackedAngpMessageExcepti on with
properties:

» fai |l edMessage - the spring-messaging Message<?> that failed to be sent.

Ditmars.SR3 Spring Cloud Stream 79

https://www.rabbitmq.com/confirms.html

Spring Cloud Stream Reference Guide

» nackReason - areason (if available; you may need to examine the broker logs for more information).

There is no automatic handling of these exceptions (such as sending to a Dead-Letter queue); you can
consume these exceptions with your own Spring Integration flow.

15.6 Dead-Letter Queue Processing

Because it can't be anticipated how users would want to dispose of dead-lettered messages, the
framework does not provide any standard mechanism to handle them. If the reason for the dead-lettering
is transient, you may wish to route the messages back to the original queue. However, if the problem
is a permanent issue, that could cause an infinite loop. The following spri ng- boot application is an
example of how to route those messages back to the original queue, but moves them to a third "parking
lot" queue after three attempts. The second example utilizes the RabbitMQ Delayed Message Exchange
to introduce a delay to the requeued message. In this example, the delay increases for each attempt.
These examples use a @Rabbi t Li st ener to receive messages from the DLQ, you could also use
Rabbi t Tenpl at e. recei ve() in a batch process.

The examples assume the original destination is s08400i n and the consumer group is s08400.
Non-Partitioned Destinations

The first two examples are when the destination is not partitioned.

@spr i ngBoot Appl i cati on
public class ReRouteD gApplication {

private static final String ORI G NAL_QUEUE = "s08400i n. so8400";

private static final String DLQ = ORI G NAL_QUEUE + ".dlq";

private static final String PARKING LOT = ORI G NAL_QUEUE + ". parki ngLot";
private static final String X RETRIES HEADER = "x-retries";

public static void main(String[] args) throws Exception {
Conf i gur abl eAppl i cati onCont ext context = SpringApplication.run(ReRouteD gApplication.class,
args);
Systemout.printin("Ht enter to termnate");
Systemin.read();
cont ext.cl ose();

}

@\ut owi r ed
private RabbitTenpl ate rabbitTenpl ate;

@Rabbi t Li st ener (queues = DLQ)
public void rePublish(Message fail edMessage) {
I nteger retriesHeader = (Integer)
fai | edMessage. get MessageProperti es() . get Header s() . get (X _RETRI ES_HEADER) ;
if (retriesHeader == null) {
retri esHeader = I|nteger.val ueX(0);
}
if (retriesHeader < 3) {
fai |l edMessage. get MessageProperti es(). get Header s(). put (X_RETRI ES_HEADER, retriesHeader + 1);
t hi s. rabbit Tenpl at e. send(ORI G NAL_QUEUE, f ai |l edMessage);
}
el se {
t hi s. rabbit Tenpl at e. send(PARKI NG _LOT, fail edMessage);
}
}

@Bean
publ i c Queue parkinglLot () {

Ditmars.SR3 Spring Cloud Stream 80

https://www.rabbitmq.com/blog/2015/04/16/scheduling-messages-with-rabbitmq/

Spring Cloud Stream Reference Guide

return new Queue(PARKI NG LOT);

@pr i ngBoot Appl i cati on
public class ReRouteDl gApplication {

private static final String ORI G NAL_QUEUE = "s08400i n. so8400";

private static final String DLQ = ORIG NAL_QUEUE + ".dlq";

private static final String PARKING LOT = ORI G NAL_QUEUE + ". parki ngLot";
private static final String X RETRI ES HEADER = "x-retries";

private static final String DELAY_EXCHANGE = "dl gReRouter";

public static void main(String[] args) throws Exception {
Confi gur abl eAppl i cati onCont ext context = SpringApplication. run(ReRouteD gApplication.class,

args);
Systemout.println("Ht enter to termnate");
Systemin.read();
cont ext. cl ose();
}
@\ut owi r ed

private RabbitTenpl ate rabbitTenpl ate;

@Rabbi t Li st ener (queues = DLQ
public void rePublish(Message fail edMessage) {
Map<String, Object> headers = fail edMessage. get MessageProperties().get Headers();
Integer retriesHeader = (Integer) headers. get (X RETRI ES_HEADER) ;
if (retriesHeader == null) {
retri esHeader = | nteger.val ueX (0);
}
if (retriesHeader < 3) {
header s. put (X_RETRI ES_HEADER, retriesHeader + 1);
headers. put ("x- del ay", 5000 * retriesHeader);
this.rabbitTenpl at e. send(DELAY_EXCHANGE, ORI G NAL_QUEUE, fail edMessage);

}
el se {
t hi s. rabbit Tenpl at e. send(PARKI NG _LOT, fail edMessage);
}
}
@Bean

public Direct Exchange del ayExchange() {
Di r ect Exchange exchange = new Dir ect Exchange(DELAY_EXCHANGE) ;
exchange. set Del ayed(true);
return exchange;

}

@Bean
publi ¢ Bi ndi ng bi ndOri gi nal ToDel ay() {
return Bi ndi ngBui | der. bi nd(new Queue(ORI G NAL_QUEUE)) . t o(del ayExchange()).w t h(ORI G NAL_QUEUE) ;

}

@Bean
publ i c Queue parkingLot () {
return new Queue(PARKI NG LOT);

Partitioned Destinations

With partitioned destinations, there is one DLQ for all partitions and we determine the original queue
from the headers.

Ditmars.SR3 Spring Cloud Stream 81

Spring Cloud Stream Reference Guide

republishToDIg=false

When r epubl i shToDl g is f al se, RabbitMQ publishes the message to the DLX/DLQ with an x-
deat h header containing information about the original destination.

@Bpr i ngBoot Appl i cati on
public class ReRouteDl gApplication {

private static final String OR G NAL_QUEUE = "s08400i n. s0o8400";

private static final String DLQ = ORIG NAL_QUEUE + ".dl q";

private static final String PARKING LOT = ORI G NAL_QUEUE + ". parki ngLot";
private static final String X DEATH HEADER = "x-death";

private static final String X RETRIES HEADER = "x-retries";

public static void main(String[] args) throws Exception {
Confi gur abl eAppl i cati onCont ext context = SpringApplication. run(ReRouteD gApplication.class, args);
Systemout.printin("Ht enter to termnate");
Systemin.read();
context.close();

}

@A\ut owi r ed
private RabbitTenpl ate rabbit Tenpl ate;

@uppr essWar ni ngs("unchecked")
@Rabbi t Li st ener (queues = DLQ
public void rePublish(Message fail edMessage) {
Map<String, Object> headers = fail edMessage. get MessageProperties().get Headers();
Integer retriesHeader = (Integer) headers. get (X RETRI ES _HEADER) ;
if (retriesHeader == null) {
retri esHeader = Integer.val ued (0);
}
if (retriesHeader < 3) {
header s. put (X_RETRI ES_HEADER, retriesHeader + 1);
Li st<Map<String, ?>> xDeath = (List<Map<String, ?>>) headers. get (X DEATH HEADER);
String exchange = (String) xDeath. get(0).get("exchange");
Li st<String> routingKeys = (List<String>) xDeath.get(0).get("routing-keys");
t hi s. rabbit Tenpl at e. send(exchange, routingKeys.get(0), failedMessage);
}
el se {
this. rabbitTenpl at e. send(PARKI NG_LOT, fail edMessage);
}
}

@Bean

publ i c Queue parkingLot () {
return new Queue(PARKI NG LOT);

}

republishToDIg=true

When r epubl i shToDl q is t r ue, the republishing recoverer adds the original exchange and routing
key to headers.

@Bpr i ngBoot Appl i cati on
public class ReRouteD gApplication {

private static final String OR G NAL_QUEUE = "s08400i n. s08400";

private static final String DLQ = ORIG NAL_QUEUE + ".dl q";

private static final String PARKING LOT = ORI G NAL_QUEUE + ". parki ngLot";

Ditmars.SR3 Spring Cloud Stream 82

Spring Cloud Stream Reference Guide

private static final String X RETRIES HEADER = "x-retries";
private static final String X ORl G NAL_EXCHANGE HEADER = Republ i shMessageRecover er. X ORI G NAL_EXCHANGE;

private static final String X ORl G NAL_ROUTI NG KEY_HEADER =
Republ i shMessageRecover er. X_ORl G NAL_RQOUTI NG_KEY;

public static void main(String[] args) throws Exception {
Confi gur abl eAppl i cati onCont ext context = SpringApplication.run(ReRouteD gApplication.class, args);
Systemout.printin("Ht enter to termnate");
Systemin.read();
context.close();

}

@A\ut owi red
private RabbitTenpl ate rabbit Tenpl at e;

@Rrabbi t Li st ener (queues = DLQ)
public void rePublish(Message fail edMessage) {
Map<String, Object> headers = fail edMessage. get MessageProperties().get Headers();
Integer retriesHeader = (Integer) headers. get (X RETRI ES HEADER) ;
if (retriesHeader == null) {
retri esHeader = |nteger.valueO (0);
}
if (retriesHeader < 3) {
headers. put (X_RETRI ES_HEADER, retriesHeader + 1);
String exchange = (String) headers. get (X ORI G NAL_EXCHANGE_HEADER) ;
String original Routi ngkey = (String) headers. get (X_ORl G NAL_RQOUTI NG_KEY_HEADER) ;
t hi s. rabbit Tenpl at e. send(exchange, ori gi nal Routi ngKey, fail edMessage);
}
el se {
t hi s. rabbitTenpl at e. send(PARKI NG_LOT, fail edMessage);
}
}

@Bean

public Queue parkingLot() {
return new Queue(PARKI NG LOT);

}

Ditmars.SR3 Spring Cloud Stream

83

Part Ill. Appendices

Spring Cloud Stream Reference Guide

Appendix A. Building

A.1 Basic Compile and Test

To build the source you will need to install JDK 1.7.

The build uses the Maven wrapper so you don't have to install a specific version of Maven. To enable
the tests for Redis, Rabbit, and Kafka bindings you should have those servers running before building.
See below for more information on running the servers.

The main build command is

‘$./ mvnw cl ean install

You can also add '-DskipTests' if you like, to avoid running the tests.

@ Note

You can also install Maven (>=3.3.3) yourself and run the nvn command in place of . / mvnwin
the examples below. If you do that you also might need to add - P spri ng if your local Maven
settings do not contain repository declarations for spring pre-release artifacts.

@ Note

Be aware that you might need to increase the amount of memory available to Maven by setting
a MAVEN_OPTS environment variable with a value like - Xnx512m - XX: MaxPer n5i ze=128m
We try to cover this in the . nvn configuration, so if you find you have to do it to make a build
succeed, please raise a ticket to get the settings added to source control.

The projects that require middleware generally include a docker - conpose. ym , so consider using
Docker Compose to run the middeware servers in Docker containers. See the README in the scripts
demo repository for specific instructions about the common cases of mongo, rabbit and redis.

A.2 Documentation

There is a "full" profile that will generate documentation.

A.3 Working with the code

If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or Eclipse
when working with the code. We use the m2eclipe eclipse plugin for maven support. Other IDEs and
tools should also work without issue.

Importing into eclipse with m2eclipse

We recommend the m2eclipe eclipse plugin when working with eclipse. If you don't already have
m2eclipse installed it is available from the "eclipse marketplace".

Unfortunately m2e does not yet support Maven 3.3, so once the projects are imported into Eclipse you
will also need to tell m2eclipse to use the . setti ngs. xm file for the projects. If you do not do this
you may see many different errors related to the POMs in the projects. Open your Eclipse preferences,
expand the Maven preferences, and select User Settings. In the User Settings field click Browse and

Ditmars.SR3 Spring Cloud Stream 85

http://compose.docker.io/
https://github.com/spring-cloud-samples/scripts
https://github.com/spring-cloud-samples/scripts
http://www.springsource.com/developer/sts
http://eclipse.org
http://eclipse.org/m2e/
http://eclipse.org/m2e/

Spring Cloud Stream Reference Guide

navigate to the Spring Cloud project you imported selecting the . setti ngs. xm file in that project.
Click Apply and then OK to save the preference changes.

@ Note

Alternatively you can copy the repository settings from . set t i ngs. xm into your own ~/ . n2/
settings. xm.

Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following
command:

$./ munw eclipse: eclipse

The generated eclipse projects can be imported by selecting i nport exi sting projects fromthe
fi | e menu. [[contributing] == Contributing

Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard
Github development process, using Github tracker for issues and merging pull requests into master. If
you want to contribute even something trivial please do not hesitate, but follow the guidelines below.

A.4 Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the contributor’s agreement.
Signing the contributor’'s agreement does not grant anyone commit rights to the main repository, but
it does mean that we can accept your contributions, and you will get an author credit if we do. Active
contributors might be asked to join the core team, and given the ability to merge pull requests.

A.5 Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help. They can also be added after the
original pull request but before a merge.

» Use the Spring Framework code format conventions. If you use Eclipse you can import formatter
settings using the ecl i pse- code-formatter. xm file from the Spring Cloud Build project. If using
Intellid, you can use the Eclipse Code Formatter Plugin to import the same file.

» Make sure all new . j ava files to have a simple Javadoc class comment with at least an @ut hor
tag identifying you, and preferably at least a paragraph on what the class is for.

» Add the ASF license header comment to all new . j ava files (copy from existing files in the project)

» Add yourself as an @ut hor to the .java files that you modify substantially (more than cosmetic
changes).

» Add some Javadocs and, if you change the namespace, some XSD doc elements.
» A few unit tests would help a lot as well — someone has to do it.

« If no-one else is using your branch, please rebase it against the current master (or other target branch
in the main project).

» When writing a commit message please follow these conventions, if you are fixing an existing issue
please add Fi xes gh- XXXX at the end of the commit message (where XXXX is the issue number).

Ditmars.SR3 Spring Cloud Stream 86

https://github.com/spring-cloud/spring-cloud-build/blob/master/.settings.xml
https://support.springsource.com/spring_committer_signup
https://github.com/spring-cloud/build/tree/master/eclipse-coding-conventions.xml
http://plugins.jetbrains.com/plugin/6546
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

	Spring Cloud Stream Reference Guide
	Table of Contents
	Part I. Spring Cloud Stream Core
	1. Introducing Spring Cloud Stream
	2. Main Concepts
	2.1 Application Model
	Fat JAR

	2.2 The Binder Abstraction
	2.3 Persistent Publish-Subscribe Support
	2.4 Consumer Groups
	Durability

	2.5 Partitioning Support

	3. Programming Model
	3.1 Declaring and Binding Channels
	Triggering Binding Via @EnableBinding
	@Input and @Output
	Customizing Channel Names
	Source, Sink, and Processor

	Accessing Bound Channels
	Injecting the Bound Interfaces
	Injecting Channels Directly

	Producing and Consuming Messages
	Native Spring Integration Support
	Spring Integration Error Channel Support
	Message Channel Binders and Error Channels
	Using @StreamListener for Automatic Content Type Handling
	Using @StreamListener for dispatching messages to multiple methods

	Reactive Programming Support
	Reactor-based handlers
	RxJava 1.x support
	Reactive Sources

	Aggregation
	Configuring aggregate application
	Configuring binding service properties for non self contained aggregate application

	4. Binders
	4.1 Producers and Consumers
	4.2 Binder SPI
	4.3 Binder Detection
	Classpath Detection

	4.4 Multiple Binders on the Classpath
	4.5 Connecting to Multiple Systems
	4.6 Binder configuration properties

	5. Configuration Options
	5.1 Spring Cloud Stream Properties
	5.2 Binding Properties
	Properties for Use of Spring Cloud Stream
	Consumer properties
	Producer Properties

	5.3 Using dynamically bound destinations

	6. Content Type and Transformation
	6.1 MIME types
	6.2 MIME types and Java types
	6.3 Customizing message conversion
	6.4 @StreamListener and Message Conversion

	7. Schema evolution support
	7.1 Apache Avro Message Converters
	7.2 Converters with schema support
	7.3 Schema Registry Support
	7.4 Schema Registry Server
	Schema Registry Server API
	POST /
	GET /{subject}/{format}/{version}
	GET /{subject}/{format}
	GET /schemas/{id}
	DELETE /{subject}/{format}/{version}
	DELETE /schemas/{id}
	DELETE /{subject}

	7.5 Schema Registry Client
	Using Confluent’s Schema Registry
	Schema Registry Client properties

	7.6 Avro Schema Registry Client Message Converters
	Avro Schema Registry Message Converter properties

	7.7 Schema Registration and Resolution
	Schema Registration Process (Serialization)
	Schema Resolution Process (Deserialization)

	8. Inter-Application Communication
	8.1 Connecting Multiple Application Instances
	8.2 Instance Index and Instance Count
	8.3 Partitioning
	Configuring Output Bindings for Partitioning
	Spring-managed custom PartitionKeyExtractorClass implementations
	Configuring Input Bindings for Partitioning

	9. Testing
	9.1 Disabling the test binder autoconfiguration

	10. Health Indicator
	11. Metrics Emitter
	12. Samples
	13. Getting Started
	13.1 Deploying Stream applications on CloudFoundry

	Part II. Binder Implementations
	14. Apache Kafka Binder
	14.1 Usage
	14.2 Apache Kafka Binder Overview
	14.3 Configuration Options
	Kafka Binder Properties
	Kafka Consumer Properties
	Kafka Producer Properties
	Usage examples
	Example: Setting autoCommitOffset false and relying on manual acking.
	Example: security configuration
	Using JAAS configuration files
	Using Spring Boot properties

	Using the binder with Apache Kafka 0.10
	Excluding Kafka broker jar from the classpath of the binder based application

	14.4 Kafka Streams Binding Capabilities of Spring Cloud Stream
	Usage example of high level streams DSL
	Support for interactive queries
	Kafka Streams properties

	14.5 Error Channels
	14.6 Kafka Metrics
	14.7 Dead-Letter Topic Processing

	15. RabbitMQ Binder
	15.1 Usage
	15.2 RabbitMQ Binder Overview
	15.3 Configuration Options
	RabbitMQ Binder Properties
	RabbitMQ Consumer Properties
	Rabbit Producer Properties

	15.4 Retry With the RabbitMQ Binder
	Overview
	Putting it All Together

	15.5 Error Channels
	15.6 Dead-Letter Queue Processing
	Non-Partitioned Destinations
	Partitioned Destinations
	republishToDlq=false
	republishToDlq=true

	Part III. Appendices
	Appendix A. Building
	A.1 Basic Compile and Test
	A.2 Documentation
	A.3 Working with the code
	Importing into eclipse with m2eclipse
	Importing into eclipse without m2eclipse

	A.4 Sign the Contributor License Agreement
	A.5 Code Conventions and Housekeeping

