
Spring Cloud Stream Reference Guide

Elmhurst.RC3

Sabby Anandan, Marius Bogoevici, Eric Bottard, Mark Fisher, Ilayaperumal Gopinathan, Gunnar
Hillert, Mark Pollack, Patrick Peralta, Glenn Renfro, Thomas Risberg, Dave Syer, David Turanski,

Janne Valkealahti, Benjamin Klein, Soby Chacko, Vinicius Carvalho, Gary Russell, Oleg Zhurakousky

Copyright © 2013-2017 Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream iii

Table of Contents

I. Spring Cloud Stream Core ... 1
1. Quick Start ... 2

1.1. Step One - Create sample Application using Spring Initilaizer 2
1.2. Step Two - Import project into the IDE .. 2
1.3. Step Three - Add message handler, build and run ... 2

2. What’s New in 2.0? .. 5
2.1. New Features and Components .. 5

Polling Consumer .. 5
Micrometer support ... 5
New Actuator Binding controls ... 5
Configurable RetryTemplate .. 5

2.2. Notable changes and enhancements .. 5
Both Actuator and Web dependencies are now optional .. 5
Content-type negotiation improvenents .. 6

2.3. Notable Deprecations ... 6
Java serialization (Java native and Kryo) ... 6
Deprecated classes and methods .. 6

3. Introducing Spring Cloud Stream ... 8
4. Main Concepts .. 10

4.1. Application Model ... 10
Fat JAR .. 10

4.2. The Binder Abstraction ... 10
4.3. Persistent Publish-Subscribe Support .. 11
4.4. Consumer Groups .. 12
4.5. Consumer Types .. 12

Durability .. 13
4.6. Partitioning Support .. 13

5. Programming Model .. 15
5.1. Declaring and Binding Producers and Consumers .. 15

Triggering Binding Via @EnableBinding .. 15
@Input and @Output .. 15

Customizing Channel Names ... 16
Source, Sink, and Processor ... 16

Accessing Bound Channels ... 17
Injecting the Bound Interfaces ... 17
Injecting Channels Directly .. 17

Producing and Consuming Messages .. 18
Native Spring Integration Support .. 18
Spring Integration Error Channel Support ... 19
Message Channel Binders and Error Channels ... 19
Using @StreamListener for Automatic Content Type Handling 19
Using @StreamListener for dispatching messages to multiple methods 20
Using Polled Consumers ... 21

Reactive Programming Support ... 22
Reactor-based handlers .. 23
Reactive Sources .. 24

Aggregation .. 25

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream iv

Configuring aggregate application .. 27
Configuring binding service properties for non self contained aggregate
application .. 27

6. Binders ... 29
6.1. Producers and Consumers ... 29
6.2. Binder SPI ... 29
6.3. Binder Detection ... 30

Classpath Detection .. 30
6.4. Multiple Binders on the Classpath ... 30
6.5. Connecting to Multiple Systems .. 31
6.6. Binding visualization and control ... 31
6.7. Binder configuration properties .. 32

7. Configuration Options .. 34
7.1. Spring Cloud Stream Properties .. 34
7.2. Binding Properties .. 35

Properties for Use of Spring Cloud Stream ... 35
Consumer properties ... 35
Producer Properties .. 36

7.3. Using dynamically bound destinations ... 38
8. Content Type negotiation .. 41

8.1. Introduction .. 41
8.2. Mechanics .. 41

Content type vs. argument type ... 42
Message Converters ... 43

8.3. Provided MessageConverters ... 43
8.4. User defined Message Converters .. 44

9. Schema evolution support ... 46
9.1. Apache Avro Message Converters .. 46
9.2. Converters with schema support ... 46
9.3. Schema Registry Support ... 47
9.4. Schema Registry Server ... 47

Schema Registry Server API ... 47
9.5. Schema Registry Client .. 49

Using Confluent’s Schema Registry ... 50
Schema Registry Client properties ... 50

9.6. Avro Schema Registry Client Message Converters ... 50
Avro Schema Registry Message Converter properties ... 51

9.7. Schema Registration and Resolution ... 51
Schema Registration Process (Serialization) ... 52
Schema Resolution Process (Deserialization) ... 52

10. Inter-Application Communication .. 53
10.1. Connecting Multiple Application Instances .. 53
10.2. Instance Index and Instance Count ... 53
10.3. Partitioning ... 53

Configuring Output Bindings for Partitioning ... 53
Configuring Input Bindings for Partitioning .. 55

11. Testing ... 56
11.1. Disabling the test binder autoconfiguration ... 57

12. Health Indicator ... 58
13. Metrics Emitter .. 59

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream v

14. Samples ... 62
14.1. Deploying Stream applications on CloudFoundry .. 62

II. Binder Implementations ... 63
15. Apache Kafka Binder .. 64

15.1. Usage .. 64
15.2. Apache Kafka Binder Overview ... 64
15.3. Configuration Options ... 64

Kafka Binder Properties ... 64
Kafka Consumer Properties ... 66
Kafka Producer Properties ... 69
Usage examples ... 70

Example: Setting autoCommitOffset false and relying on manual
acking. .. 70
Example: security configuration .. 70
Example: Pausing and Resuming the Consumer .. 72

15.4. Error Channels ... 73
15.5. Kafka Metrics ... 73
15.6. Dead-Letter Topic Processing ... 73
15.7. Partitioning with the Kafka Binder .. 75

16. Apache Kafka Streams Binder ... 77
16.1. Usage .. 77
16.2. Kafka Streams Binder Overview .. 77

Streams DSL .. 77
16.3. Configuration Options ... 78

Kafka Streams Properties .. 78
TimeWindow properties: .. 79

16.4. Multiple Input Bindings .. 80
Multiple Input Bindings as a Sink ... 80
Multiple Input Bindings as a Processor .. 80

16.5. Multiple Output Bindings (aka Branching) .. 81
16.6. Message Conversion .. 82

Outbound serialization ... 82
Inbound Deserialization ... 83

16.7. Error Handling .. 84
Handling Deserialization Exceptions ... 84
Handling Non-Deserialization Exceptions .. 85

16.8. Interactive Queries ... 86
17. RabbitMQ Binder ... 87

17.1. Usage .. 87
17.2. RabbitMQ Binder Overview ... 87
17.3. Configuration Options ... 88

RabbitMQ Binder Properties .. 88
RabbitMQ Consumer Properties .. 89
Rabbit Producer Properties .. 93

17.4. Retry With the RabbitMQ Binder ... 97
Overview .. 97
Putting it All Together ... 98

17.5. Error Channels ... 99
17.6. Dead-Letter Queue Processing ... 99

Non-Partitioned Destinations .. 100

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream vi

Partitioned Destinations ... 101
republishToDlq=false ... 101
republishToDlq=true .. 102

17.7. Partitioning with the RabbitMQ Binder ... 103
III. Appendices .. 106

A. Building .. 107
A.1. Basic Compile and Test ... 107
A.2. Documentation ... 107
A.3. Working with the code .. 107

Importing into eclipse with m2eclipse ... 107
Importing into eclipse without m2eclipse ... 108

A.4. Sign the Contributor License Agreement ... 108
A.5. Code Conventions and Housekeeping ... 108

Part I. Spring Cloud Stream Core

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 2

1. Quick Start

You can try Spring Cloud Stream in less then 5 min even before you jump into any details and the
following three-step guide will help.

We’ll create a simple Spring Cloud Stream application which receives messages coming from the
messaging middleware of your choice (more on this later) and logs received messages to the console.
We’ll call it LoggingConsumer. While not very practical it will certainly provide a good introduction to
some of the main concepts and abstractions, making it easier to digest the rest of this user guide.

So let’s get started. . .

1.1 Step One - Create sample Application using Spring
Initilaizer

Visit the Spring Initializr. This is where we’ll generate our LoggingConsumer application.

In the Dependencies start typing 'stream' and Cloud Stream option should pop up. Select it. Now start
typing either 'kafka' or 'rabbit'. Basically this is where you are choosing what messaging midleware this
application will be bound to. Choose the one you have already installed and/or feel more comfortable
with installing/running. Also, as you can see from the Initilaizer screen there are few other options you
can choose. For example, you can choose Gradle as your build tool instead of the default Maven. With
the Dependencies selected the only other thing you have to identify is the application name - logging-
consumer. Your configuration screeen should now contain the following:

Dependencies: Cloud Stream, RabbitMQ (or Kafka)

Group: com.example - default

Artifact: logging-consumer

Spring Boot Version: 2.0.0 (or above) - default

Click on Generate Project button. This will donwload the zipped version of the generated project to your
hard drive. Unzip it and you’re ready for Step Two.

1.2 Step Two - Import project into the IDE

Here you simply import the project into your IDE of choice. Please keep in mind that dependening on the
IDE you may need to follow a specific import procedures. For example depending on how the project
was generated (Maven or Gradle) you may need to follow specific import procedure (e.g., in Eclipse/
STS: File # Import # Maven # Existing Maven Project).

Ones imported the project must have no errors of any kind and src/main/java should also contain
com.example.loggingconsumer.LoggingConsumerApplication.

Technically at this point you can just run the application’s main class since it’s already a valid Spring
Boot application, but it does not do anything, so let’s add some code.

1.3 Step Three - Add message handler, build and run

Modify the com.example.loggingconsumer.LoggingConsumerApplication to look as follows:

@SpringBootApplication

@EnableBinding(Sink.class)

public class LoggingConsumerApplication {

https://start.spring.io

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 3

 public static void main(String[] args) {

 SpringApplication.run(LoggingConsumerApplication.class, args);

 }

 @StreamListener(Sink.INPUT)

 public void handle(Person person) {

 System.out.println("Received: " + person);

 }

 public static class Person {

 private String name;

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 public String toString() {

 return this.name;

 }

 }

}

As you can see from the above:

• We’ve enabled Sink binding (input-no-output) via @EnableBinding(Sink.class). This will signal
to the framework to initiate binding to the messaging middleware where it will auto-create the
destination (i.e., queue, topic) which will be bound to Sink.INPUT channel.

• We’ve added handler method to receive incoming Message as type Person. What this means is
that here youcan already observe one of the core features of the framework where it will attempt to
automatically convert incoming message’s payload to type Person.

This is it, we now have a fully functional Spring Cloud Stream application that does something. From
here for simplicity we’ll assume RabbitMQ was selected in step one. Assuming you have RabbitMQ
installed and running, start the application by simply running its main method.

You should see following output:

--- [main] c.s.b.r.p.RabbitExchangeQueueProvisioner : declaring queue for inbound:

 input.anonymous.CbMIwdkJSBO1ZoPDOtHtCg, bound to: input

--- [main] o.s.a.r.c.CachingConnectionFactory : Attempting to connect to: [localhost:5672]

--- [main] o.s.a.r.c.CachingConnectionFactory : Created new connection:

 rabbitConnectionFactory#2a3a299:0/SimpleConnection@66c83fc8. . .

. . .

--- [main] o.s.i.a.i.AmqpInboundChannelAdapter : started

 inbound.input.anonymous.CbMIwdkJSBO1ZoPDOtHtCg

. . .

--- [main] c.e.l.LoggingConsumerApplication : Started LoggingConsumerApplication in 2.531

 seconds (JVM running for 2.897)

Go to RabbitMQ management console or any other RabbitMQ client and
simply send message to input.anonymous.CbMIwdkJSBO1ZoPDOtHtCg (NOTE: the
anonymous.CbMIwdkJSBO1ZoPDOtHtCg part represents the group name and is generated and will
be different in your environment. For something more predictable you can use explicit group name via
spring.cloud.stream.bindings.input.group=hello).

The contents of the message should be JSON representation of Person class, so let’s send this:

{"name":"Turd Ferguson"}

And in your console you should see:

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 4

Received: Turd Ferguson

You can also build/package your application into a boot jar (i.e., ./mvnw clean install) and run
the built JAR using java -jar command.

That is all!

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 5

2. What’s New in 2.0?
Spring Cloud Stream introduces quite a number of new features, enhancements and changes. The
following sections outline most notable ones.

2.1 New Features and Components

Polling Consumer

Introduction of polled consumers, where the application can control message processing rates. Please
refer to the appropriate section for more details. You can also read this blog for more details spring.io/
blog/2018/02/27/spring-cloud-stream-2-0-polled-consumers

Micrometer support

Metrics has been switched to use Micrometer. MeterRegistry is also provided as a bean so custom
application can autowire it to capture custom metrics. Please refer to the appropriate section for more
details

New Actuator Binding controls

There are now new new Actuator binding controls to both visualize as well as control Bindings lifecycle.
For more details please visit Section 6.6, “Binding visualization and control”

Configurable RetryTemplate

Aside from providing properties to configure RetryTemplate we now allow you to provide your own
effectively overriding the one provided by the framework. Simply configure it as a @Bean in your
application.

2.2 Notable changes and enhancements

Both Actuator and Web dependencies are now optional

This helps to slim down the footprint of the deployed application in the event neither of the functionality
is required. It also allows one to swicth between the reactive and conventional web paradigms by adding
one of the following dependencies manually:

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

</dependency>

or

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-webflux</artifactId>

</dependency>

Actuator dependency can be added as follows:

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-actuator</artifactId>

</dependency>

https://spring.io/blog/2018/02/27/spring-cloud-stream-2-0-polled-consumers
https://spring.io/blog/2018/02/27/spring-cloud-stream-2-0-polled-consumers
https://micrometer.io/

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 6

Content-type negotiation improvenents

One of the core themes for 2.0 is improvements (both consistency and performance) around content-
type negotiation and message conversion. The following summary outlines notable changes and
improvements. Please refer to the appropriate section for more details as well as this blog spring.io/
blog/2018/02/26/spring-cloud-stream-2-0-content-type-negotiation-and-transformation.

• All message conversion is now handled only by MessageConverters.

• Introduction of @StreamMessageConverter annotation to provide custom MessageConverters.

• Introduction of the default Content Type as application/json which needs to be taken into
consideration when migrating 1.3 application and/or operating in the mixed mode (i.e., 1.3 producer

→ 2.0 consumer).

• Messages with textual payloads and contentType text/… or …/json are no longer converted
to Message<String> for cases where argument type of the provided MessageHandler can
not be determnied (i.e., public void handle(Message<?> message) or public void

handle(Object payload)). Further more, a strong argument type may not be enough to
properly convert messages, so contentType header is may be used as supplement by some
MessageConverters.

2.3 Notable Deprecations

Java serialization (Java native and Kryo)

• JavaSerializationMessageConverter and KryoMessageConverter. While these two
converters remain for now, they will be moved out of the core packages and support in the future.
The main reason for this deprecation is to signal the issue type-based language-specific serialization
couuld cause in the distributed environments, where Producers and Consumers may not only depend
on different JVM versions or have different versions of supporting libraries (i.e., Kryo), but to also draw
the attention to the fact that Consumers and Producers may and in a lot of cases are non-Java based.

Deprecated classes and methods

Following is a quick summary of notable deprecations. See corresponding javadocs fort more details.

• SharedChannelRegistry in favor of SharedBindingTargetRegistry.

• Bindings - beans qualified by it are already uniquely identified by their type. For example, provided
Source, Processor or custom bindings:

public interface Foo {

 String OUTPUT = "fooOutput";

 @Output(Foo.OUTPUT)

 MessageChannel output();

}

• HeaderMode.raw. Use none, headers or embeddedHeaders

• ProducerProperties.partitionKeyExtractorClass in favor of
partitionKeyExtractorName and ProducerProperties.partitionSelectorClass in
favor of partitionSelectorName. This is to ensure that both components are Spring configured/
managed and referenced in Spring-friendly way.

https://spring.io/blog/2018/02/26/spring-cloud-stream-2-0-content-type-negotiation-and-transformation
https://spring.io/blog/2018/02/26/spring-cloud-stream-2-0-content-type-negotiation-and-transformation

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 7

• BinderAwareRouterBeanPostProcessor - while the component exists it is no longer a Bean
Post Processor and will be renamed in the future.

• BinderProperties.setEnvironment(Properties environment) in favor of
BinderProperties.setEnvironment(Map<String, Object> environment).

This section goes into more detail about how you can work with Spring Cloud Stream. It covers topics
such as creating and running stream applications.

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 8

3. Introducing Spring Cloud Stream

Spring Cloud Stream is a framework for building message-driven microservice applications. Spring
Cloud Stream builds upon Spring Boot to create standalone, production-grade Spring applications, and
uses Spring Integration to provide connectivity to message brokers. It provides opinionated configuration
of middleware from several vendors, introducing the concepts of persistent publish-subscribe semantics,
consumer groups, and partitions.

You can add the @EnableBinding annotation to your application to get immediate connectivity to a
message broker, and you can add @StreamListener to a method to cause it to receive events for
stream processing. The following is a simple sink application which receives external messages.

@SpringBootApplication

@EnableBinding(Sink.class)

public class VoteRecordingSinkApplication {

 public static void main(String[] args) {

 SpringApplication.run(VoteRecordingSinkApplication.class, args);

 }

 @StreamListener(Sink.INPUT)

 public void processVote(Vote vote) {

 votingService.recordVote(vote);

 }

}

The @EnableBinding annotation takes one or more interfaces as parameters (in this case, the
parameter is a single Sink interface). An interface declares input and/or output channels. Spring
Cloud Stream provides the interfaces Source, Sink, and Processor; you can also define your own
interfaces.

The following is the definition of the Sink interface:

public interface Sink {

 String INPUT = "input";

 @Input(Sink.INPUT)

 SubscribableChannel input();

}

The @Input annotation identifies an input channel, through which received messages enter the
application; the @Output annotation identifies an output channel, through which published messages
leave the application. The @Input and @Output annotations can take a channel name as a parameter;
if a name is not provided, the name of the annotated method will be used.

Spring Cloud Stream will create an implementation of the interface for you. You can use this in the
application by autowiring it, as in the following example of a test case.

@RunWith(SpringJUnit4ClassRunner.class)

@SpringApplicationConfiguration(classes = VoteRecordingSinkApplication.class)

@WebAppConfiguration

@DirtiesContext

public class StreamApplicationTests {

 @Autowired

 private Sink sink;

 @Test

 public void contextLoads() {

 assertNotNull(this.sink.input());

 }

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 9

}

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 10

4. Main Concepts
Spring Cloud Stream provides a number of abstractions and primitives that simplify the writing of
message-driven microservice applications. This section gives an overview of the following:

• Spring Cloud Stream’s application model

• The Binder abstraction

• Persistent publish-subscribe support

• Consumer group support

• Partitioning support

• A pluggable Binder API

4.1 Application Model

A Spring Cloud Stream application consists of a middleware-neutral core. The application communicates
with the outside world through input and output channels injected into it by Spring Cloud Stream.
Channels are connected to external brokers through middleware-specific Binder implementations.

Figure 4.1. Spring Cloud Stream Application

Fat JAR

Spring Cloud Stream applications can be run in standalone mode from your IDE for testing. To run a
Spring Cloud Stream application in production, you can create an executable (or "fat") JAR by using the
standard Spring Boot tooling provided for Maven or Gradle.

4.2 The Binder Abstraction

Spring Cloud Stream provides Binder implementations for Kafka and Rabbit MQ. Spring Cloud Stream
also includes a TestSupportBinder, which leaves a channel unmodified so that tests can interact with

https://github.com/spring-cloud/spring-cloud-stream/tree/master/spring-cloud-stream-binders/spring-cloud-stream-binder-kafka
https://github.com/spring-cloud/spring-cloud-stream/tree/master/spring-cloud-stream-binders/spring-cloud-stream-binder-rabbit
https://github.com/spring-cloud/spring-cloud-stream/blob/master/spring-cloud-stream-test-support/src/main/java/org/springframework/cloud/stream/test/binder/TestSupportBinder.java

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 11

channels directly and reliably assert on what is received. You can use the extensible API to write your
own Binder.

Spring Cloud Stream uses Spring Boot for configuration, and the Binder abstraction makes it
possible for a Spring Cloud Stream application to be flexible in how it connects to middleware. For
example, deployers can dynamically choose, at runtime, the destinations (e.g., the Kafka topics or
RabbitMQ exchanges) to which channels connect. Such configuration can be provided through external
configuration properties and in any form supported by Spring Boot (including application arguments,
environment variables, and application.yml or application.properties files). In the sink
example from the Chapter 3, Introducing Spring Cloud Stream section, setting the application property
spring.cloud.stream.bindings.input.destination to raw-sensor-data will cause it to
read from the raw-sensor-data Kafka topic, or from a queue bound to the raw-sensor-data
RabbitMQ exchange.

Spring Cloud Stream automatically detects and uses a binder found on the classpath. You can easily use
different types of middleware with the same code: just include a different binder at build time. For more
complex use cases, you can also package multiple binders with your application and have it choose the
binder, and even whether to use different binders for different channels, at runtime.

4.3 Persistent Publish-Subscribe Support

Communication between applications follows a publish-subscribe model, where data is broadcast
through shared topics. This can be seen in the following figure, which shows a typical deployment for
a set of interacting Spring Cloud Stream applications.

Figure 4.2. Spring Cloud Stream Publish-Subscribe

Data reported by sensors to an HTTP endpoint is sent to a common destination named raw-sensor-
data. From the destination, it is independently processed by a microservice application that computes

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 12

time-windowed averages and by another microservice application that ingests the raw data into HDFS.
In order to process the data, both applications declare the topic as their input at runtime.

The publish-subscribe communication model reduces the complexity of both the producer and the
consumer, and allows new applications to be added to the topology without disruption of the existing
flow. For example, downstream from the average-calculating application, you can add an application
that calculates the highest temperature values for display and monitoring. You can then add another
application that interprets the same flow of averages for fault detection. Doing all communication through
shared topics rather than point-to-point queues reduces coupling between microservices.

While the concept of publish-subscribe messaging is not new, Spring Cloud Stream takes the extra step
of making it an opinionated choice for its application model. By using native middleware support, Spring
Cloud Stream also simplifies use of the publish-subscribe model across different platforms.

4.4 Consumer Groups

While the publish-subscribe model makes it easy to connect applications through shared topics, the
ability to scale up by creating multiple instances of a given application is equally important. When doing
this, different instances of an application are placed in a competing consumer relationship, where only
one of the instances is expected to handle a given message.

Spring Cloud Stream models this behavior through the concept of a consumer group. (Spring
Cloud Stream consumer groups are similar to and inspired by Kafka consumer groups.)
Each consumer binding can use the spring.cloud.stream.bindings.<channelName>.group
property to specify a group name. For the consumers shown in the following figure, this property
would be set as spring.cloud.stream.bindings.<channelName>.group=hdfsWrite or
spring.cloud.stream.bindings.<channelName>.group=average.

Figure 4.3. Spring Cloud Stream Consumer Groups

All groups which subscribe to a given destination receive a copy of published data, but only one
member of each group receives a given message from that destination. By default, when a group is
not specified, Spring Cloud Stream assigns the application to an anonymous and independent single-
member consumer group that is in a publish-subscribe relationship with all other consumer groups.

4.5 Consumer Types

Two types of consumer are supported:

• Message-driven (sometimes referred to as Asynchronous)

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 13

• Polled (sometimes referred to as Synchronous)

Prior to version 2.0, only asynchronous consumers were supported, where a message is delivered as
soon as it is available (and there is a thread available to process it).

You might want to use a synchronous consumer when you wish to control the rate at which messages
are processed.

Durability

Consistent with the opinionated application model of Spring Cloud Stream, consumer group
subscriptions are durable. That is, a binder implementation ensures that group subscriptions are
persistent, and ones at least one subscription for a group has been created, the group will receive
messages, even if they are sent while all applications in the group are stopped.

Note

Anonymous subscriptions are non-durable by nature. For some binder implementations (e.g.,
RabbitMQ), it is possible to have non-durable group subscriptions.

In general, it is preferable to always specify a consumer group when binding an application to a given
destination. When scaling up a Spring Cloud Stream application, you must specify a consumer group for
each of its input bindings. This prevents the application’s instances from receiving duplicate messages
(unless that behavior is desired, which is unusual).

4.6 Partitioning Support

Spring Cloud Stream provides support for partitioning data between multiple instances of a given
application. In a partitioned scenario, the physical communication medium (e.g., the broker topic)
is viewed as being structured into multiple partitions. One or more producer application instances
send data to multiple consumer application instances and ensure that data identified by common
characteristics are processed by the same consumer instance.

Spring Cloud Stream provides a common abstraction for implementing partitioned processing use cases
in a uniform fashion. Partitioning can thus be used whether the broker itself is naturally partitioned (e.g.,
Kafka) or not (e.g., RabbitMQ).

Figure 4.4. Spring Cloud Stream Partitioning

Partitioning is a critical concept in stateful processing, where it is critical, for either performance or
consistency reasons, to ensure that all related data is processed together. For example, in the time-

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 14

windowed average calculation example, it is important that all measurements from any given sensor
are processed by the same application instance.

Note

To set up a partitioned processing scenario, you must configure both the data-producing and
the data-consuming ends.

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 15

5. Programming Model
This section describes Spring Cloud Stream’s programming model. Spring Cloud Stream provides a
number of predefined annotations for declaring bound input and output channels as well as how to listen
to channels.

5.1 Declaring and Binding Producers and Consumers

Triggering Binding Via @EnableBinding

You can turn a Spring application into a Spring Cloud Stream application by applying the
@EnableBinding annotation to one of the application’s configuration classes. The @EnableBinding
annotation itself is meta-annotated with @Configuration and triggers the configuration of Spring
Cloud Stream infrastructure:

...

@Import(...)

@Configuration

@EnableIntegration

public @interface EnableBinding {

 ...

 Class<?>[] value() default {};

}

The @EnableBinding annotation can take as parameters one or more interface classes that contain
methods which represent bindable components (typically message channels).

Note

The @EnableBinding annotation is only required on your Configuration

classes, you can provide as many binding interfaces as you need, for instance:
@EnableBinding(value={Orders.class, Payment.class}. Where both Order and
Payment interfaces would declare @Input and @Output channels.

@Input and @Output

A Spring Cloud Stream application can have an arbitrary number of input and output channels defined
in an interface as @Input and @Output methods:

public interface Barista {

 @Input

 SubscribableChannel orders();

 @Output

 MessageChannel hotDrinks();

 @Output

 MessageChannel coldDrinks();

}

Using this interface as a parameter to @EnableBinding will trigger the creation of three bound
channels named orders, hotDrinks, and coldDrinks, respectively.

@EnableBinding(Barista.class)

public class CafeConfiguration {

 ...

}

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 16

Note

In Spring Cloud Stream, the bindable MessageChannel components are the Spring Messaging
MessageChannel (for outbound) and its extension SubscribableChannel (for inbound).
Using the same mechanism, other bindable components can be supported. KStream support
in Spring Cloud Stream Kafka binder is one such example where KStream is used as inbound/
outbound bindable components. Also, as discussed below, a PollableMessageSource
can be bound to an inbound destination. In this documentation, we will continue to refer to
MessageChannels as the bindable components.

Starting with version 2.0, you can now bind a pollable consumer as follows:

public interface PolledBarista {

 @Input

 PollableMessageSource orders();

 @Output

 MessageChannel hotDrinks();

 @Output

 MessageChannel coldDrinks();

}

In this case, an implementation of PollableMessageSource is bound to the orders "channel".

Customizing Channel Names

Using the @Input and @Output annotations, you can specify a customized channel name for the
channel, as shown in the following example:

public interface Barista {

 ...

 @Input("inboundOrders")

 SubscribableChannel orders();

}

In this example, the created bound channel will be named inboundOrders.

Source, Sink, and Processor

For easy addressing of the most common use cases, which involve either an input channel, an output
channel, or both, Spring Cloud Stream provides three predefined interfaces out of the box.

Source can be used for an application which has a single outbound channel.

public interface Source {

 String OUTPUT = "output";

 @Output(Source.OUTPUT)

 MessageChannel output();

}

Sink can be used for an application which has a single inbound channel.

public interface Sink {

 String INPUT = "input";

 @Input(Sink.INPUT)

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 17

 SubscribableChannel input();

}

Processor can be used for an application which has both an inbound channel and an outbound
channel.

public interface Processor extends Source, Sink {

}

Spring Cloud Stream provides no special handling for any of these interfaces; they are only provided
out of the box.

Accessing Bound Channels

Injecting the Bound Interfaces

For each bound interface, Spring Cloud Stream will generate a bean that implements the interface.
Invoking a @Input-annotated or @Output-annotated method of one of these beans will return the
relevant bound channel.

The bean in the following example sends a message on the output channel when its hello method is
invoked. It invokes output() on the injected Source bean to retrieve the target channel.

@Component

public class SendingBean {

 private Source source;

 @Autowired

 public SendingBean(Source source) {

 this.source = source;

 }

 public void sayHello(String name) {

 source.output().send(MessageBuilder.withPayload(name).build());

 }

}

Injecting Channels Directly

Bound channels can be also injected directly:

@Component

public class SendingBean {

 private MessageChannel output;

 @Autowired

 public SendingBean(MessageChannel output) {

 this.output = output;

 }

 public void sayHello(String name) {

 output.send(MessageBuilder.withPayload(name).build());

 }

}

If the name of the channel is customized on the declaring annotation, that name should be used instead
of the method name. Given the following declaration:

public interface CustomSource {

 ...

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 18

 @Output("customOutput")

 MessageChannel output();

}

The channel will be injected as shown in the following example:

@Component

public class SendingBean {

 private MessageChannel output;

 @Autowired

 public SendingBean(@Qualifier("customOutput") MessageChannel output) {

 this.output = output;

 }

 public void sayHello(String name) {

 this.output.send(MessageBuilder.withPayload(name).build());

 }

}

Producing and Consuming Messages

You can write a Spring Cloud Stream application using either Spring Integration annotations
or Spring Cloud Stream’s @StreamListener annotation. The @StreamListener annotation is
modeled after other Spring Messaging annotations (such as @MessageMapping, @JmsListener,
@RabbitListener, etc.) but adds content type management and type coercion features.

Native Spring Integration Support

Because Spring Cloud Stream is based on Spring Integration, Stream completely inherits Integration’s
foundation and infrastructure as well as the component itself. For example, you can attach the output
channel of a Source to a MessageSource:

@EnableBinding(Source.class)

public class TimerSource {

 @Value("${format}")

 private String format;

 @Bean

 @InboundChannelAdapter(value = Source.OUTPUT, poller = @Poller(fixedDelay = "${fixedDelay}",

 maxMessagesPerPoll = "1"))

 public MessageSource<String> timerMessageSource() {

 return () -> new GenericMessage<>(new SimpleDateFormat(format).format(new Date()));

 }

}

Or you can use a processor’s channels in a transformer:

@EnableBinding(Processor.class)

public class TransformProcessor {

 @Transformer(inputChannel = Processor.INPUT, outputChannel = Processor.OUTPUT)

 public Object transform(String message) {

 return message.toUpperCase();

 }

}

Note

It’s important to understant that when you consume from the same binding using
@StreamListener a pubsub model is used, where each method annotated with
@StreamListener receives it’s own copy of the message, each one has its own consumer

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 19

group. However, if you share a bindable channel as an input for @Aggregator, @Transformer
or @ServiceActivator, those will consume in a competing model, no individual consumer
group is created for each subscription.

Spring Integration Error Channel Support

Spring Cloud Stream supports publishing error messages received by the Spring Integration global
error channel. Error messages sent to the errorChannel can be published to a specific destination
at the broker by configuring a binding for the outbound target named error. For example, to
publish error messages to a broker destination named "myErrors", provide the following property:
spring.cloud.stream.bindings.error.destination=myErrors.

Message Channel Binders and Error Channels

Starting with version 1.3, some MessageChannel - based binders publish errors to a discrete
error channel for each destination. In addition, these error channels are bridged to the global
Spring Integration errorChannel mentioned above. You can therefore consume errors for specific
destinations and/or for all destinations, using a standard Spring Integration flow (IntegrationFlow,
@ServiceActivator, etc.).

On the consumer side, the listener thread catches any exceptions and forwards an ErrorMessage
to the destination’s error channel. The payload of the message is a MessagingException with the
normal failedMessage and cause properties. Usually, the raw data received from the broker is
included in a header. For binders that support (and are configured with) a dead letter destination; a
MessagePublishingErrorHandler is subscribed to the channel, and the raw data is forwarded to
the dead letter destination.

On the producer side; for binders that support some kind of async result after publishing
messages (e.g. RabbitMQ, Kafka), you can enable an error channel by setting the …

producer.errorChannelEnabled to true. The payload of the ErrorMessage depends on the
binder implementation but will be a MessagingException with the normal failedMessage property,
as well as additional properties about the failure. Refer to the binder documentation for complete details.

Using @StreamListener for Automatic Content Type Handling

Complementary to its Spring Integration support, Spring Cloud Stream provides its own
@StreamListener annotation, modeled after other Spring Messaging annotations (e.g.
@MessageMapping, @JmsListener, @RabbitListener, etc.). The @StreamListener annotation
provides a simpler model for handling inbound messages, especially when dealing with use cases that
involve content type management and type coercion.

Spring Cloud Stream provides an extensible MessageConverter mechanism for handling data
conversion by bound channels and for, in this case, dispatching to methods annotated with
@StreamListener. The following is an example of an application which processes external Vote
events:

@EnableBinding(Sink.class)

public class VoteHandler {

 @Autowired

 VotingService votingService;

 @StreamListener(Sink.INPUT)

 public void handle(Vote vote) {

 votingService.record(vote);

 }

}

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 20

The distinction between @StreamListener and a Spring Integration @ServiceActivator is seen
when considering an inbound Message that has a String payload and a contentType header of
application/json. In the case of @StreamListener, the MessageConverter mechanism will
use the contentType header to parse the String payload into a Vote object.

As with other Spring Messaging methods, method arguments can be annotated with @Payload,
@Headers and @Header.

Note

For methods which return data, you must use the @SendTo annotation to specify the output
binding destination for data returned by the method:

@EnableBinding(Processor.class)

public class TransformProcessor {

 @Autowired

 VotingService votingService;

 @StreamListener(Processor.INPUT)

 @SendTo(Processor.OUTPUT)

 public VoteResult handle(Vote vote) {

 return votingService.record(vote);

 }

}

Using @StreamListener for dispatching messages to multiple methods

Since version 1.2, Spring Cloud Stream supports dispatching messages to multiple @StreamListener
methods registered on an input channel, based on a condition.

In order to be eligible to support conditional dispatching, a method must satisfy the follow conditions:

• it must not return a value

• it must be an individual message handling method (reactive API methods are not supported)

The condition is specified via a SpEL expression in the condition attribute of the annotation and is
evaluated for each message. All the handlers that match the condition will be invoked in the same thread
and no assumption must be made about the order in which the invocations take place.

An example of using @StreamListener with dispatching conditions can be seen below. In this
example, all the messages bearing a header type with the value foo will be dispatched to the
receiveFoo method, and all the messages bearing a header type with the value bar will be
dispatched to the receiveBar method.

@EnableBinding(Sink.class)

@EnableAutoConfiguration

public static class TestPojoWithAnnotatedArguments {

 @StreamListener(target = Sink.INPUT, condition = "headers['type']=='foo'")

 public void receiveFoo(@Payload FooPojo fooPojo) {

 // handle the message

 }

 @StreamListener(target = Sink.INPUT, condition = "headers['type']=='bar'")

 public void receiveBar(@Payload BarPojo barPojo) {

 // handle the message

 }

}

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 21

Note

Dispatching via @StreamListener conditions is only supported for handlers of individual
messages, and not for reactive programming support (described below).

Using Polled Consumers

When using polled consumers, you poll the PollableMessageSource on demand. For example,
given…

public interface PolledConsumer {

 @Input

 PollableMessageSource destIn();

 @Output

 MessageChannel destOut();

}

…you might use that consumer as follows:

@Bean

public ApplicationRunner poller(PollableMessageSource destIn, MessageChannel destOut) {

 return args -> {

 while (someCondition()) {

 try {

 if (!destIn.poll(m -> {

 String newPayload = ((String) m.getPayload()).toUpperCase();

 destOut.send(new GenericMessage<>(newPayload));

 })) {

 Thread.sleep(1000);

 }

 }

 catch (Exception e) {

 // handle failure (throw an exception to reject the message);

 }

 }

 };

}

The PollableMessageSource.poll() method takes a MessageHandler argument (often a
lambda expression as shown here). It returns true if the message was received and successfully
processed.

As with message-driven consumers, if the MessageHandler throws an exception, messages are
published to error channels as discussed in the section called “Message Channel Binders and Error
Channels”.

Normally, the poll() method will acknowledge the message when the MessageHandler exits. If the
method exits abnormally, the message is rejected (not requeued). You can override that behavior, by
taking responsibility for the acknowledgment, as follows:

@Bean

public ApplicationRunner poller(PollableMessageSource dest1In, MessageChannel dest2Out) {

 return args -> {

 while (someCondition()) {

 if (!dest1In.poll(m -> {

 StaticMessageHeaderAccessor.getAcknowledgmentCallback(m).noAutoAck();

 // e.g. hand off to another thread which can perform the ack

 // or acknowledge(Status.REQUEUE)

 })) {

 Thread.sleep(1000);

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 22

 }

 }

 };

}

Important

You must ack (or nack) the message at some point, to avoid resource leaks.

Important

Some messaging systems (such as Apache Kafka) maintain a simple
offset in a log, if a delivery fails and is requeued with
StaticMessageHeaderAccessor.getAcknowledgmentCallback(m).acknowledge(Status.REQUEUE);,
any later successfully ack’d messages will be redelivered.

There is also an overloaded poll method:

poll(MessageHandler handler, ParameterizedTypeReference<?> type)

The type is a conversion hint allowing the incoming message payload to be converted:

boolean result = pollableSource.poll(received -> {

 Map<String, Foo> payload = (Map<String, Foo>) received.getPayload();

 ...

 }, new ParameterizedTypeReference<Map<String, Foo>>() {});

Reactive Programming Support

Spring Cloud Stream also supports the use of reactive APIs where incoming and outgoing data is
handled as continuous data flows. Support for reactive APIs is available via the spring-cloud-
stream-reactive, which needs to be added explicitly to your project.

The programming model with reactive APIs is declarative, where instead of specifying how each
individual message should be handled, you can use operators that describe functional transformations
from inbound to outbound data flows.

Spring Cloud Stream supports the following reactive APIs:

• Reactor

In the future, it is intended to support a more generic model based on Reactive Streams.

The reactive programming model is also using the @StreamListener annotation for setting up reactive
handlers. The differences are that:

• the @StreamListener annotation must not specify an input or output, as they are provided as
arguments and return values from the method;

• the arguments of the method must be annotated with @Input and @Output indicating which input
or output will the incoming and respectively outgoing data flows connect to;

• the return value of the method, if any, will be annotated with @Output, indicating the input where
data shall be sent.

Note

Reactive programming support requires Java 1.8.

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 23

Note

As of Spring Cloud Stream 1.1.1 and later (starting with release train Brooklyn.SR2),
reactive programming support requires the use of Reactor 3.0.4.RELEASE and higher.
Earlier Reactor versions (including 3.0.1.RELEASE, 3.0.2.RELEASE and 3.0.3.RELEASE)
are not supported. spring-cloud-stream-reactive will transitively retrieve the proper
version, but it is possible for the project structure to manage the version of the
io.projectreactor:reactor-core to an earlier release, especially when using Maven.
This is the case for projects generated via Spring Initializr with Spring Boot 1.x, which will
override the Reactor version to 2.0.8.RELEASE. In such cases you must ensure that the
proper version of the artifact is released. This can be simply achieved by adding a direct
dependency on io.projectreactor:reactor-core with a version of 3.0.4.RELEASE or
later to your project.

Note

The use of term reactive is currently referring to the reactive APIs being used and not to the
execution model being reactive (i.e. the bound endpoints are still using a 'push' rather than 'pull'
model). While some backpressure support is provided by the use of Reactor, we do intend on
the long run to support entirely reactive pipelines by the use of native reactive clients for the
connected middleware.

Reactor-based handlers

A Reactor based handler can have the following argument types:

• For arguments annotated with @Input, it supports the Reactor type Flux. The parameterization of
the inbound Flux follows the same rules as in the case of individual message handling: it can be the
entire Message, a POJO which can be the Message payload, or a POJO which is the result of a
transformation based on the Message content-type header. Multiple inputs are provided;

• For arguments annotated with Output, it supports the type FluxSender which connects a Flux
produced by the method with an output. Generally speaking, specifying outputs as arguments is only
recommended when the method can have multiple outputs;

A Reactor based handler supports a return type of Flux, case in which it must be annotated with
@Output. We recommend using the return value of the method when a single output flux is available.

Here is an example of a simple Reactor-based Processor.

@EnableBinding(Processor.class)

@EnableAutoConfiguration

public static class UppercaseTransformer {

 @StreamListener

 @Output(Processor.OUTPUT)

 public Flux<String> receive(@Input(Processor.INPUT) Flux<String> input) {

 return input.map(s -> s.toUpperCase());

 }

}

The same processor using output arguments looks like this:

@EnableBinding(Processor.class)

@EnableAutoConfiguration

public static class UppercaseTransformer {

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 24

 @StreamListener

 public void receive(@Input(Processor.INPUT) Flux<String> input,

 @Output(Processor.OUTPUT) FluxSender output) {

 output.send(input.map(s -> s.toUpperCase()));

 }

}

Reactive Sources

Spring Cloud Stream reactive support also provides the ability for creating reactive sources through the
StreamEmitter annotation. Using StreamEmitter annotation, a regular source may be converted to a
reactive one. StreamEmitter is a method level annotation that marks a method to be an emitter to outputs
declared via EnableBinding. It is not allowed to use the Input annotation along with StreamEmitter, as
the methods marked with this annotation are not listening from any input, rather generating to an output.
Following the same programming model used in StreamListener, StreamEmitter also allows flexible
ways of using the Output annotation depending on whether the method has any arguments, return type
etc.

Here are some examples of using StreamEmitter in various styles.

The following example will emit the "Hello World" message every millisecond and publish to a Flux. In
this case, the resulting messages in Flux will be sent to the output channel of the Source.

@EnableBinding(Source.class)

@EnableAutoConfiguration

public static class HelloWorldEmitter {

 @StreamEmitter

 @Output(Source.OUTPUT)

 public Flux<String> emit() {

 return Flux.intervalMillis(1)

 .map(l -> "Hello World");

 }

}

Following is another flavor of the same sample as above. Instead of returning a Flux, this method uses
a FluxSender to programmatically send Flux from a source.

@EnableBinding(Source.class)

@EnableAutoConfiguration

public static class HelloWorldEmitter {

 @StreamEmitter

 @Output(Source.OUTPUT)

 public void emit(FluxSender output) {

 output.send(Flux.intervalMillis(1)

 .map(l -> "Hello World"));

 }

}

Following is exactly same as the above snippet in functionality and style. However, instead of using an
explicit Output annotation at the method level, it is used as the method parameter level.

@EnableBinding(Source.class)

@EnableAutoConfiguration

public static class HelloWorldEmitter {

 @StreamEmitter

 public void emit(@Output(Source.OUTPUT) FluxSender output) {

 output.send(Flux.intervalMillis(1)

 .map(l -> "Hello World"));

 }

}

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 25

Here is yet another flavor of writing reacting sources using the Reactive Streams Publisher API and
the support for it in the Spring Integration Java DSL. The Publisher is still using Reactor Flux under
the hood, but from an application perspective, that is transparent to the user and only needs Reactive
Streams and Java DSL for Spring Integration.

@EnableBinding(Source.class)

@EnableAutoConfiguration

public static class HelloWorldEmitter {

 @StreamEmitter

 @Output(Source.OUTPUT)

 @Bean

 public Publisher<Message<String>> emit() {

 return IntegrationFlows.from(() ->

 new GenericMessage<>("Hello World"),

 e -> e.poller(p -> p.fixedDelay(1)))

 .toReactivePublisher();

 }

}

Aggregation

Spring Cloud Stream provides support for aggregating multiple applications together, connecting their
input and output channels directly and avoiding the additional cost of exchanging messages via a broker.
As of version 1.0 of Spring Cloud Stream, aggregation is supported only for the following types of
applications:

• sources - applications with a single output channel named output, typically having a single binding
of the type org.springframework.cloud.stream.messaging.Source

• sinks - applications with a single input channel named input, typically having a single binding of the
type org.springframework.cloud.stream.messaging.Sink

• processors - applications with a single input channel named input and a single
output channel named output, typically having a single binding of the type
org.springframework.cloud.stream.messaging.Processor.

They can be aggregated together by creating a sequence of interconnected applications, in which the
output channel of an element in the sequence is connected to the input channel of the next element, if
it exists. A sequence can start with either a source or a processor, it can contain an arbitrary number
of processors and must end with either a processor or a sink.

Depending on the nature of the starting and ending element, the sequence may have one or more
bindable channels, as follows:

• if the sequence starts with a source and ends with a sink, all communication between the applications
is direct and no channels will be bound

• if the sequence starts with a processor, then its input channel will become the input channel of the
aggregate and will be bound accordingly

• if the sequence ends with a processor, then its output channel will become the output channel of
the aggregate and will be bound accordingly

Aggregation is performed using the AggregateApplicationBuilder utility class, as in the following
example. Let’s consider a project in which we have source, processor and a sink, which may be defined
in the project, or may be contained in one of the project’s dependencies.

https://github.com/spring-projects/spring-integration-java-dsl/wiki/Spring-Integration-Java-DSL-Reference

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 26

Note

Each component (source, sink or processor) in an aggregate application must be provided
in a separate package if the configuration classes use @SpringBootApplication. This is
required to avoid cross-talk between applications, due to the classpath scanning performed
by @SpringBootApplication on the configuration classes inside the same package.
In the example below, it can be seen that the Source, Processor and Sink application
classes are grouped in separate packages. A possible alternative is to provide the source,
sink or processor configuration in a separate @Configuration class, avoid the use of
@SpringBootApplication/@ComponentScan and use those for aggregation.

package com.app.mysink;

// Imports omitted

@SpringBootApplication

@EnableBinding(Sink.class)

public class SinkApplication {

 private static Logger logger = LoggerFactory.getLogger(SinkApplication.class);

 @ServiceActivator(inputChannel=Sink.INPUT)

 public void loggerSink(Object payload) {

 logger.info("Received: " + payload);

 }

}

package com.app.myprocessor;

// Imports omitted

@SpringBootApplication

@EnableBinding(Processor.class)

public class ProcessorApplication {

 @Transformer(inputChannel = Processor.INPUT, outputChannel = Processor.OUTPUT)

 public String loggerSink(String payload) {

 return payload.toUpperCase();

 }

}

package com.app.mysource;

// Imports omitted

@SpringBootApplication

@EnableBinding(Source.class)

public class SourceApplication {

 @InboundChannelAdapter(value = Source.OUTPUT)

 public String timerMessageSource() {

 return new SimpleDateFormat().format(new Date());

 }

}

Each configuration can be used for running a separate component, but in this case they can be
aggregated together as follows:

package com.app;

// Imports omitted

@SpringBootApplication

public class SampleAggregateApplication {

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 27

 public static void main(String[] args) {

 new AggregateApplicationBuilder()

 .from(SourceApplication.class).args("--fixedDelay=5000")

 .via(ProcessorApplication.class)

 .to(SinkApplication.class).args("--debug=true").run(args);

 }

}

The starting component of the sequence is provided as argument to the from() method. The ending
component of the sequence is provided as argument to the to() method. Intermediate processors
are provided as argument to the via() method. Multiple processors of the same type can be chained
together (e.g. for pipelining transformations with different configurations). For each component, the
builder can provide runtime arguments for Spring Boot configuration.

Configuring aggregate application

Spring Cloud Stream supports passing properties for the individual applications inside the aggregate
application using 'namespace' as prefix.

The namespace can be set for applications as follows:

@SpringBootApplication

public class SampleAggregateApplication {

 public static void main(String[] args) {

 new AggregateApplicationBuilder()

 .from(SourceApplication.class).namespace("source").args("--fixedDelay=5000")

 .via(ProcessorApplication.class).namespace("processor1")

 .to(SinkApplication.class).namespace("sink").args("--debug=true").run(args);

 }

}

Ones the 'namespace' is set for the individual applications, the application properties with the
namespace as prefix can be passed to the aggregate application using any supported property source
(commandline, environment properties etc.).

For instance, to override the default fixedDelay and debug properties of 'source' and 'sink'
applications:

java -jar target/MyAggregateApplication-0.0.1-SNAPSHOT.jar --source.fixedDelay=10000 --sink.debug=false

Configuring binding service properties for non self contained aggregate application

The non self-contained aggregate application is bound to external broker via either or both the inbound/
outbound components (typically, message channels) of the aggregate application while the applications
inside the aggregate application are directly bound. For example: a source application’s output and a
processor application’s input are directly bound while the processor’s output channel is bound to an
external destination at the broker. When passing the binding service properties for non-self contained
aggregate application, it is required to pass the binding service properties to the aggregate application
instead of setting them as 'args' to individual child application. For instance,

@SpringBootApplication

public class SampleAggregateApplication {

 public static void main(String[] args) {

 new AggregateApplicationBuilder()

 .from(SourceApplication.class).namespace("source").args("--fixedDelay=5000")

 .via(ProcessorApplication.class).namespace("processor1").args("--debug=true").run(args);

 }

}

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 28

The binding properties like --

spring.cloud.stream.bindings.output.destination=processor-output need to be
specified as one of the external configuration properties (cmdline arg etc.).

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 29

6. Binders
Spring Cloud Stream provides a Binder abstraction for use in connecting to physical destinations at the
external middleware. This section provides information about the main concepts behind the Binder SPI,
its main components, and implementation-specific details.

6.1 Producers and Consumers

Figure 6.1. Producers and Consumers

A producer is any component that sends messages to a channel. The channel can be bound
to an external message broker via a Binder implementation for that broker. When invoking the
bindProducer() method, the first parameter is the name of the destination within the broker, the
second parameter is the local channel instance to which the producer will send messages, and the third
parameter contains properties (such as a partition key expression) to be used within the adapter that
is created for that channel.

A consumer is any component that receives messages from a channel. As with a producer,
the consumer’s channel can be bound to an external message broker. When invoking the
bindConsumer() method, the first parameter is the destination name, and a second parameter
provides the name of a logical group of consumers. Each group that is represented by consumer
bindings for a given destination receives a copy of each message that a producer sends to that
destination (i.e., publish-subscribe semantics). If there are multiple consumer instances bound using
the same group name, then messages will be load-balanced across those consumer instances so that
each message sent by a producer is consumed by only a single consumer instance within each group
(i.e., queueing semantics).

6.2 Binder SPI

The Binder SPI consists of a number of interfaces, out-of-the box utility classes and discovery strategies
that provide a pluggable mechanism for connecting to external middleware.

The key point of the SPI is the Binder interface which is a strategy for connecting inputs and outputs
to external middleware.

public interface Binder<T, C extends ConsumerProperties, P extends ProducerProperties> {

 Binding<T> bindConsumer(String name, String group, T inboundBindTarget, C consumerProperties);

 Binding<T> bindProducer(String name, T outboundBindTarget, P producerProperties);

}

The interface is parameterized, offering a number of extension points:

• input and output bind targets - as of version 1.0, only MessageChannel is supported, but this is
intended to be used as an extension point in the future;

• extended consumer and producer properties - allowing specific Binder implementations to add
supplemental properties which can be supported in a type-safe manner.

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 30

A typical binder implementation consists of the following

• a class that implements the Binder interface;

• a Spring @Configuration class that creates a bean of the type above along with the middleware
connection infrastructure;

• a META-INF/spring.binders file found on the classpath containing one or more binder definitions,
e.g.

kafka:\

org.springframework.cloud.stream.binder.kafka.config.KafkaBinderConfiguration

6.3 Binder Detection

Spring Cloud Stream relies on implementations of the Binder SPI to perform the task of connecting
channels to message brokers. Each Binder implementation typically connects to one type of messaging
system.

Classpath Detection

By default, Spring Cloud Stream relies on Spring Boot’s auto-configuration to configure the binding
process. If a single Binder implementation is found on the classpath, Spring Cloud Stream will use it
automatically. For example, a Spring Cloud Stream project that aims to bind only to RabbitMQ can
simply add the following dependency:

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-stream-binder-rabbit</artifactId>

</dependency>

For the specific maven coordinates of other binder dependencies, please refer to the documentation
of that binder implementation.

6.4 Multiple Binders on the Classpath

When multiple binders are present on the classpath, the application must indicate which binder is to be
used for each channel binding. Each binder configuration contains a META-INF/spring.binders,
which is a simple properties file:

rabbit:\

org.springframework.cloud.stream.binder.rabbit.config.RabbitServiceAutoConfiguration

Similar files exist for the other provided binder implementations (e.g., Kafka), and custom
binder implementations are expected to provide them, as well. The key represents an
identifying name for the binder implementation, whereas the value is a comma-separated
list of configuration classes that each contain one and only one bean definition of type
org.springframework.cloud.stream.binder.Binder.

Binder selection can either be performed globally, using the
spring.cloud.stream.defaultBinder property (e.g.,
spring.cloud.stream.defaultBinder=rabbit) or individually, by configuring the binder on
each channel binding. For instance, a processor application (that has channels with the names input
and output for read/write respectively) which reads from Kafka and writes to RabbitMQ can specify
the following configuration:

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 31

spring.cloud.stream.bindings.input.binder=kafka

spring.cloud.stream.bindings.output.binder=rabbit

6.5 Connecting to Multiple Systems

By default, binders share the application’s Spring Boot auto-configuration, so that one instance of each
binder found on the classpath will be created. If your application should connect to more than one
broker of the same type, you can specify multiple binder configurations, each with different environment
settings.

Note

Turning on explicit binder configuration will disable the default binder configuration process
altogether. If you do this, all binders in use must be included in the configuration. Frameworks
that intend to use Spring Cloud Stream transparently may create binder configurations that
can be referenced by name, but will not affect the default binder configuration. In order
to do so, a binder configuration may have its defaultCandidate flag set to false, e.g.
spring.cloud.stream.binders.<configurationName>.defaultCandidate=false.
This denotes a configuration that will exist independently of the default binder configuration
process.

For example, this is the typical configuration for a processor application which connects to two RabbitMQ
broker instances:

spring:

 cloud:

 stream:

 bindings:

 input:

 destination: foo

 binder: rabbit1

 output:

 destination: bar

 binder: rabbit2

 binders:

 rabbit1:

 type: rabbit

 environment:

 spring:

 rabbitmq:

 host: <host1>

 rabbit2:

 type: rabbit

 environment:

 spring:

 rabbitmq:

 host: <host2>

6.6 Binding visualization and control

Since version 2.0 Spring Cloud Stream supports visualization and control of the Bindings via Actuator
endpoints.

Note

Given that starting with version 2.0 actuator and web are optional, one must first add one of the
web dependencies as well as the actuator dependency manually.

<dependency>

 <groupId>org.springframework.boot</groupId>

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 32

 <artifactId>spring-boot-starter-web</artifactId>

</dependency>

or

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-webflux</artifactId>

</dependency>

Actuator dependency can be added as follows:

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-actuator</artifactId>

</dependency>

You must also enable bindings actuator endpoints with the following property --
management.endpoints.web.exposure.include=bindings.

Once the above prerequisites are satisfied you should see the following in the logs when application
is started:

: Mapped "{[/actuator/bindings/{name}],methods=[POST]. . .

: Mapped "{[/actuator/bindings],methods=[GET]. . .

: Mapped "{[/actuator/bindings/{name}],methods=[GET]. . .

To visualize current bindings simply access the following URL:

http://<host>:<port>/actuator/bindings

or

http://<host>:<port>/actuator/bindings/myBindingName

…if you want to visualize a single binding named 'myBindingName'

You can also stop, start, pause and resume individual binding by posting to the same URL while
providing state argument as JSON.

For example,

curl -d '{"state":"STOPPED"}' -H "Content-Type: application/json" -X POST http://<host>:<port>/actuator/

bindings/myBindingName

curl -d '{"state":"STARTED"}' -H "Content-Type: application/json" -X POST http://<host>:<port>/actuator/

bindings/myBindingName

curl -d '{"state":"PAUSED"}' -H "Content-Type: application/json" -X POST http://<host>:<port>/actuator/

bindings/myBindingName

curl -d '{"state":"RESUMED"}' -H "Content-Type: application/json" -X POST http://<host>:<port>/actuator/

bindings/myBindingName

Note

PAUSED and RESUMED are only effective if corresponding binder and its underlyig technology
supports it, otherwise you’ll see the warning message in the logs. Currently only Kafka binder
supports PAUSED and RESUMED state.

6.7 Binder configuration properties

The following properties are available when creating custom binder configurations. They must be
prefixed with spring.cloud.stream.binders.<configurationName>.

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 33

type
The binder type. It typically references one of the binders found on the classpath, in particular a key
in a META-INF/spring.binders file.

By default, it has the same value as the configuration name.

inheritEnvironment
Whether the configuration will inherit the environment of the application itself.

Default true.

environment
Root for a set of properties that can be used to customize the environment of the binder. When
this is configured, the context in which the binder is being created is not a child of the application
context. This allows for complete separation between the binder components and the application
components.

Default empty.

defaultCandidate
Whether the binder configuration is a candidate for being considered a default binder, or can be
used only when explicitly referenced. This allows adding binder configurations without interfering
with the default processing.

Default true.

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 34

7. Configuration Options

Spring Cloud Stream supports general configuration options as well as configuration for bindings and
binders. Some binders allow additional binding properties to support middleware-specific features.

Configuration options can be provided to Spring Cloud Stream applications via any mechanism
supported by Spring Boot. This includes application arguments, environment variables, and YAML
or .properties files.

7.1 Spring Cloud Stream Properties

spring.cloud.stream.instanceCount
The number of deployed instances of an application. Must be set for partitioning on
the producer side, and on the consumer side if using RabbitMQ and with Kafka if
autoRebalanceEnabled=false.

Default: 1.

spring.cloud.stream.instanceIndex
The instance index of the application: a number from 0 to instanceCount-1. Used for partitioning
with RabbitMQ and with Kafka if autoRebalanceEnabled=false. Automatically set in Cloud
Foundry to match the application’s instance index.

spring.cloud.stream.dynamicDestinations
A list of destinations that can be bound dynamically (for example, in a dynamic routing scenario).
If set, only listed destinations can be bound.

Default: empty (allowing any destination to be bound).

spring.cloud.stream.defaultBinder
The default binder to use, if multiple binders are configured. See Multiple Binders on the Classpath.

Default: empty.

spring.cloud.stream.overrideCloudConnectors
This property is only applicable when the cloud profile is active and Spring Cloud Connectors are
provided with the application. If the property is false (the default), the binder will detect a suitable
bound service (e.g. a RabbitMQ service bound in Cloud Foundry for the RabbitMQ binder) and
will use it for creating connections (usually via Spring Cloud Connectors). When set to true, this
property instructs binders to completely ignore the bound services and rely on Spring Boot properties
(e.g. relying on the spring.rabbitmq.* properties provided in the environment for the RabbitMQ
binder). The typical usage of this property is to be nested in a customized environment when
connecting to multiple systems.

Default: false.

spring.cloud.stream.bindingRetryInterval
The interval (seconds) between retrying binding creation when, for example, the binder doesn’t
support late binding and the broker is down (e.g. Apache Kafka). Set to zero to treat such conditions
as fatal, preventing the application from starting.

Default: 30

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 35

7.2 Binding Properties

Binding properties are supplied using the format
spring.cloud.stream.bindings.<channelName>.<property>=<value>. The
<channelName> represents the name of the channel being configured (e.g., output for a Source).

To avoid repetition, Spring Cloud Stream supports setting values for all channels, in the format
spring.cloud.stream.default.<property>=<value>.

In what follows, we indicate where we have omitted the
spring.cloud.stream.bindings.<channelName>. prefix and focus just on the property name,
with the understanding that the prefix will be included at runtime.

Properties for Use of Spring Cloud Stream

The following binding properties are available for both input and output bindings
and must be prefixed with spring.cloud.stream.bindings.<channelName>., e.g.
spring.cloud.stream.bindings.input.destination=ticktock.

Default values can be set by using the prefix spring.cloud.stream.default, e.g.
spring.cloud.stream.default.contentType=application/json.

destination
The target destination of a channel on the bound middleware (e.g., the RabbitMQ exchange or
Kafka topic). If the channel is bound as a consumer, it could be bound to multiple destinations and
the destination names can be specified as comma separated String values. If not set, the channel
name is used instead. The default value of this property cannot be overridden.

group
The consumer group of the channel. Applies only to inbound bindings. See Consumer Groups.

Default: null (indicating an anonymous consumer).

contentType
The content type of the channel.

Default: null (so that no type coercion is performed).

binder
The binder used by this binding. See Section 6.4, “Multiple Binders on the Classpath” for details.

Default: null (the default binder will be used, if one exists).

Consumer properties

The following binding properties are available for input bindings only and must
be prefixed with spring.cloud.stream.bindings.<channelName>.consumer., e.g.
spring.cloud.stream.bindings.input.consumer.concurrency=3.

Default values can be set by using the prefix spring.cloud.stream.default.consumer, e.g.
spring.cloud.stream.default.consumer.headerMode=none.

concurrency
The concurrency of the inbound consumer.

Default: 1.

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 36

partitioned
Whether the consumer receives data from a partitioned producer.

Default: false.

headerMode
When set to none, disables header parsing on input. Effective only for messaging middleware that
does not support message headers natively and requires header embedding. This option is useful
when consuming data from non-Spring Cloud Stream applications when native headers are not
supported. When set to headers, uses the middleware’s native header mechanism. When set to
embeddedHeaders, embeds headers into the message payload.

Default: depends on binder implementation.

maxAttempts
If processing fails, the number of attempts to process the message (including the first). Set to 1
to disable retry.

Default: 3.

backOffInitialInterval
The backoff initial interval on retry.

Default: 1000.

backOffMaxInterval
The maximum backoff interval.

Default: 10000.

backOffMultiplier
The backoff multiplier.

Default: 2.0.

instanceIndex
When set to a value greater than equal to zero, allows customizing the instance index of this
consumer (if different from spring.cloud.stream.instanceIndex). When set to a negative
value, it will default to spring.cloud.stream.instanceIndex. See that property for more
information.

Default: -1.

instanceCount
When set to a value greater than equal to zero, allows customizing the instance count of this
consumer (if different from spring.cloud.stream.instanceCount). When set to a negative
value, it will default to spring.cloud.stream.instanceCount. See that property for more
information.

Default: -1.

Producer Properties

The following binding properties are available for output bindings only and must
be prefixed with spring.cloud.stream.bindings.<channelName>.producer., e.g.
spring.cloud.stream.bindings.input.producer.partitionKeyExpression=payload.id.

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 37

Default values can be set by using the prefix spring.cloud.stream.default.producer, e.g.
spring.cloud.stream.default.producer.partitionKeyExpression=payload.id.

partitionKeyExpression
A SpEL expression that determines how to partition outbound data. If set, or if
partitionKeyExtractorClass is set, outbound data on this channel will be partitioned, and
partitionCount must be set to a value greater than 1 to be effective. The two options are mutually
exclusive. See Section 4.6, “Partitioning Support”.

Default: null.

partitionKeyExtractorClass
A PartitionKeyExtractorStrategy implementation. If set, or if partitionKeyExpression
is set, outbound data on this channel will be partitioned, and partitionCount must be set to
a value greater than 1 to be effective. The two options are mutually exclusive. See Section 4.6,
“Partitioning Support”.

Default: null.

partitionSelectorClass
A PartitionSelectorStrategy implementation. Mutually exclusive with
partitionSelectorExpression. If neither is set, the partition will be selected as
the hashCode(key) % partitionCount, where key is computed via either
partitionKeyExpression or partitionKeyExtractorClass.

Default: null.

partitionSelectorExpression
A SpEL expression for customizing partition selection. Mutually exclusive with
partitionSelectorClass. If neither is set, the partition will be selected as the hashCode(key)
% partitionCount, where key is computed via either partitionKeyExpression or
partitionKeyExtractorClass.

Default: null.

partitionCount
The number of target partitions for the data, if partitioning is enabled. Must be set to a value greater
than 1 if the producer is partitioned. On Kafka, interpreted as a hint; the larger of this and the partition
count of the target topic is used instead.

Default: 1.

requiredGroups
A comma-separated list of groups to which the producer must ensure message delivery even if they
start after it has been created (e.g., by pre-creating durable queues in RabbitMQ).

headerMode
When set to none, disables header embedding on output. Effective only for messaging middleware
that does not support message headers natively and requires header embedding. This option is
useful when producing data for non-Spring Cloud Stream applications when native headers are not
supported. When set to headers, uses the middleware’s native header mechanism. When set to
embeddedHeaders, embeds headers into the message payload.

Default: Depends on binder implementation.

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 38

useNativeEncoding
When set to true, the outbound message is serialized directly by client library, which must be
configured correspondingly (e.g. setting an appropriate Kafka producer value serializer). When this
configuration is being used, the outbound message marshalling is not based on the contentType
of the binding. When native encoding is used, it is the responsibility of the consumer to use
appropriate decoder (ex: Kafka consumer value de-serializer) to deserialize the inbound message.
Also, when native encoding/decoding is used the headerMode=embeddedHeaders property is
ignored and headers will not be embedded into the message.

Default: false.

errorChannelEnabled
When set to true, if the binder supports async send results; send failures will be sent to an error
channel for the destination. See the section called “Message Channel Binders and Error Channels”
for more information.

Default: false.

7.3 Using dynamically bound destinations

Besides the channels defined via @EnableBinding, Spring Cloud Stream allows applications
to send messages to dynamically bound destinations. This is useful, for example, when
the target destination needs to be determined at runtime. Applications can do so by using
the BinderAwareChannelResolver bean, registered automatically by the @EnableBinding
annotation.

The property 'spring.cloud.stream.dynamicDestinations' can be used for restricting the dynamic
destination names to a set known beforehand (whitelisting). If the property is not set, any destination
can be bound dynamically.

The BinderAwareChannelResolver can be used directly as in the following example, in which a
REST controller uses a path variable to decide the target channel.

@EnableBinding

@Controller

public class SourceWithDynamicDestination {

 @Autowired

 private BinderAwareChannelResolver resolver;

 @RequestMapping(path = "/{target}", method = POST, consumes = "*/*")

 @ResponseStatus(HttpStatus.ACCEPTED)

 public void handleRequest(@RequestBody String body, @PathVariable("target") target,

 @RequestHeader(HttpHeaders.CONTENT_TYPE) Object contentType) {

 sendMessage(body, target, contentType);

 }

 private void sendMessage(String body, String target, Object contentType) {

 resolver.resolveDestination(target).send(MessageBuilder.createMessage(body,

 new MessageHeaders(Collections.singletonMap(MessageHeaders.CONTENT_TYPE,

 contentType))));

 }

}

After starting the application on the default port 8080, when sending the following data:

curl -H "Content-Type: application/json" -X POST -d "customer-1" http://localhost:8080/customers

curl -H "Content-Type: application/json" -X POST -d "order-1" http://localhost:8080/orders

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 39

The destinations 'customers' and 'orders' are created in the broker (for example: exchange in case of
Rabbit or topic in case of Kafka) with the names 'customers' and 'orders', and the data is published to
the appropriate destinations.

The BinderAwareChannelResolver is a general purpose Spring Integration
DestinationResolver and can be injected in other components. For example, in a router using a
SpEL expression based on the target field of an incoming JSON message.

@EnableBinding

@Controller

public class SourceWithDynamicDestination {

 @Autowired

 private BinderAwareChannelResolver resolver;

 @RequestMapping(path = "/", method = POST, consumes = "application/json")

 @ResponseStatus(HttpStatus.ACCEPTED)

 public void handleRequest(@RequestBody String body, @RequestHeader(HttpHeaders.CONTENT_TYPE) Object

 contentType) {

 sendMessage(body, contentType);

 }

 private void sendMessage(Object body, Object contentType) {

 routerChannel().send(MessageBuilder.createMessage(body,

 new MessageHeaders(Collections.singletonMap(MessageHeaders.CONTENT_TYPE,

 contentType))));

 }

 @Bean(name = "routerChannel")

 public MessageChannel routerChannel() {

 return new DirectChannel();

 }

 @Bean

 @ServiceActivator(inputChannel = "routerChannel")

 public ExpressionEvaluatingRouter router() {

 ExpressionEvaluatingRouter router =

 new ExpressionEvaluatingRouter(new

 SpelExpressionParser().parseExpression("payload.target"));

 router.setDefaultOutputChannelName("default-output");

 router.setChannelResolver(resolver);

 return router;

 }

}

The Router Sink Application uses this technique to create the destinations on-demand.

If the channel names are known in advance, you can configure the producer properties as with any
other destination. Alternatively, if you register a NewBindingCallback<> bean, it will be invoked just
before the binding is created. The callback takes the generic type of the extended producer properties
used by the binder; it has one method:

void configure(String channelName, MessageChannel channel, ProducerProperties producerProperties,

 T extendedProducerProperties);

The following is an example using the RabbitMQ binder:

@Bean

public NewBindingCallback<RabbitProducerProperties> dynamicConfigurer() {

 return (name, channel, props, extended) -> {

 props.setRequiredGroups("bindThisQueue");

 extended.setQueueNameGroupOnly(true);

 extended.setAutoBindDlq(true);

 extended.setDeadLetterQueueName("myDLQ");

https://github.com/spring-cloud-stream-app-starters/router

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 40

 };

}

Note

If you need to support dynamic destinations with multiple binder types, use Object for the
generic type and cast the extended argument as needed.

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 41

8. Content Type negotiation

8.1 Introduction

Data transformation is one of the core features of any message-driven microservice architecture. Given
that in Spring Cloud Stream, such data is represented as a Spring Message, such message may have to
be transformed to a desired shape/size before reaching its destination. This is required for two reasons:

1. To convert the contents of the incoming message to match the signature of the application-provided
handler.

2. To convert the contents of the outgoing message to the wire format.

The wire format is typically byte[] (i.e., Kafka and Rabbit binders), but is governed by the binder
implementation.

In Spring Cloud Stream, message transformation is accomplished with a
org.springframework.messaging.converter.MessageConverter.

Note

As a supplement to the details to follow you may also want to read the following blog

8.2 Mechanics

To better understand the mechanics and the necessity behind content-type negotiation let’s look at the
very simple use case using the following message handler as an example. Also let’s assume that this
is the only handler in the application (no internal pipeline) for simplicity.

@StreamListener(Processor.INPUT)

@SendTo(Processor.OUTPUT)

public String handle(Person person) {..}

The above handler expects Person type as an argument and will produce String type as an output.
In order for the framework to succeed in passing the incoming Message as an argument to this handler
it has to somehow transform the payload of the Message from the wire format to Person type. In other
words the framework must locate and apply the appropriate MessageConverter. To accomplish that
the framework needs some instructions from the user. One of these instructions is already provided by
the signature of the handler method itself (Person type), so in theory, that should and in some cases
is enough, but for the majority of the use cases in order to select the appropriate MessageConverter
the framework needs an additional piece of information. That missing piece is contentType.

Spring Cloud Stream provides three simple mechanisms to define contentType and they all come
with precedence order:

1. HEADER - the contentType can be communicated through the Message itself. By simply providing
contentType header you are declaring the content type to use to locate and apply the appropriate
MessageConverter.

2. BINDING - the contentType can be set per destination binding via
spring.cloud.stream.bindings.input.content-type property. NOTE: the segment input
in the property name corresponds to the actual name of the destination which is “input” in our case. This

https://spring.io/blog/2018/02/26/spring-cloud-stream-2-0-content-type-negotiation-and-transformation

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 42

approach allows one to declare per-binding the content type to use to locate and apply the appropriate
MessageConverter.

3. DEFAULT - in the event contentType is not present in the Message header and/or binding,
the default application/json content type will be used to locate and apply the appropriate
MessageConverter.

As mentioned, the above also demonstrates the order of precedence in the event there is a tie. For
example, header provided content type takes precedence over any other content type. The same applies
for content type set per binding which essentially allows one to override the default content type. But it
also provides a sensible default which was determined from the community feedback.

Another reason for making application/json the default stems from the interoperability
requirements driven by distributed microservices architectures where producer and consumer not only
run in different JVMs, but can also run on different non-JVM platforms.

Once the non-void handler method returns and unless the return value is already
a Message, the new Message is constructed with return vlaue as the payload
while inheriting headers from the input Message less the ones defined/filtered by
SpringIntegrationProperties.messageHandlerNotPropagatedHeaders. By default, there
is only one header set there - contentType. This means that the new Message will not have
contentType header set, thus ensuring that the contentType can evolve. You can always opt out
to returning a Message from the handler method where you can inject any header you wish.

If there is an internal pipeline the Message is sent to the next handler going through the same process
of conversion, or if there is no internal pipeline or you’ve reached the end of it the Message is sent back
to the output destination.

Content type vs. argument type

As it was mentioned, for the framework to select the appropriate MessageConverter it requires
argument type and optionally content type information. The logic for selecting the appropriate
MessageConverter resides with the argument resolvers (HandlerMethodArgumentResolvers),
right before the invocation of the user defined handler method (that is when the actual argument type
is known to the framework). If argument type does NOT match the type of the current payload the
framework delegates to the stack of the pre-configured MessageConverters to see if any one of
them can convert the payload. As you can see the Object fromMessage(Message<?> message,
Class<?> targetClass); operation of the MessageConverter takes targetClass as one of its
arguments. The framework also ensures that the provided Message always contains contentType
header in the event one was not there already (injects the default one or the one set per binding).
That is the mechanism by which framework determines if message can be converted to a target type
- contentType and argumenyt type. If no appropriate MessageConverter is found the exception is
thrown at which time you can add custom MessageConverter (more on this later).

But what if the payload type matches the target type declared by the handler method? In this cases
there is obviously nothing to convert and the payload will be passed unmodified. While this sounds pretty
straight forward and logical, keep in mind handler methods that take Message<?> and/or Object as
an argument. By doing so you are essentially forfeiting the conversion process by declaring the target
type to be Object which is an instanceof everything in Java.

In other words:

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 43

Note

Do NOT expect Message to be converted into some type based on the contentType only.
Remember that the contentType is complimentary to the target type. A hint if you wish which
MessageConverter may or may not take into consideration.

Message Converters

MessageConverters define two methods:

Object fromMessage(Message<?> message, Class<?> targetClass);

Message<?> toMessage(Object payload, @Nullable MessageHeaders headers);

It is important to understand the contract of these methods and their usage specifically in the context
of Spring Cloud Stream.

The fromMessage method converts incoming Message to an argument type. The payload of the
Message could be any type and it’s up to the actual implementation of the MessageConverter to
support multiple types. For example, some JSON converter may support the payload type as byte[]
and String etc. This is important when application contains an internal pipeline (i.e., input # handler1
handler2 #. . . # output) and the output of the upstream handler results in a Message which may not
be in the initial wire format.

However. . .

The toMessage method has a more strict contract and must always convert Message to the wire format
- byte[].

So for all intents and purposes (and especially when implementing your own converter) you might as
well look at them as:

Object fromMessage(Message<?> message, Class<?> targetClass);

Message<byte[]> toMessage(Object payload, @Nullable MessageHeaders headers);

8.3 Provided MessageConverters

As it was mentioned earlier the framework already provides a stack of MessageConverters to handle
most common use cases. Below is the ordered list of provided MessageConverters.

Note

It is important to understand the importance of the order since the mechanism by which the
framework locates the appropriate MessageConverter is by iterating through each and asking
if it can convert using the first one that can convert.

1. ApplicationJsonMessageMarshallingConverter - variation of the
org.springframework.messaging.converter.MappingJackson2MessageConverter.
Supports conversion of the payload of the Message from String or byte[].

2. TupleJsonMessageConverter - [DEPRECATED] Supports conversion of the payload of the
Message from org.springframework.tuple.Tuple.

3. ByteArrayMessageConverter - Supports conversion of the payload of the Message from
byte[] to byte[] for cases when contentType is set to application/octet-stream.
Essentially a pass through and exists primarily for backward compatibility.

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 44

4. ObjectStringMessageConverter - Supports conversion of any type to a String, when
contentType is text/plain. Invokes Object’s toString() method or if payload is byte[] then
new String(byte[]).

5. JavaSerializationMessageConverter - [DEPRECATED] Supports conversion based on java
serialization when contentType is application/x-java-serialized-object.

6. KryoMessageConverter - [DEPRECATED] Supports conversion based on kryo serialization when
contentType is application/x-java-object.

7. JsonUnmarshallingConverter - Similar to the
ApplicationJsonMessageMarshallingConverter. Supports conversion of any type when
contentType is application/x-java-object. Expects the actual type information
to be embedded in the contentType as an attribute (e.g., application/x-java-

object;type=foo.bar.Baz).

In the event no appropriate converter is found the framework will throw an exception at which point
you should check your code and configfuration and ensure you didn’t miss anything (i.e., provide
contentType via binding or header). However, most likely you are dealing with some uncommon case
(custom contentType perhaps) and the current stack of provided MessageConverters doesn’t know
how to convert. And if that’s the case you can add custom MessageConverter.

8.4 User defined Message Converters

Spring Cloud Stream exposes a mechanism to define and register
additional MessageConverters. All you need to do is implement
org.springframework.messaging.converter.MessageConverter, confiure it as @Bean and
annotate it with @StreamMessageConverter and it will be added to the existing stack of
MessageConverters. The @StreamMessageConverter qualifier annotation is to avoid picking up
other converters that may be present on the Application Context.

Note

It is important to undetrstand that custom MessageConverters are added to the head of the
existing stack. This allows custom MessageConverters to take precedence over the existing
ones, thus supporting not only addition, but the override of the existing ones.

Here is an example of creating a message converter bean to support new content type application/
bar:

@EnableBinding(Sink.class)

@SpringBootApplication

public static class SinkApplication {

 ...

 @Bean

 @StreamConverter

 public MessageConverter customMessageConverter() {

 return new MyCustomMessageConverter();

 }

}

public class MyCustomMessageConverter extends AbstractMessageConverter {

 public MyCustomMessageConverter() {

 super(new MimeType("application", "bar"));

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 45

 }

 @Override

 protected boolean supports(Class<?> clazz) {

 return (Bar.class.equals(clazz));

 }

 @Override

 protected Object convertFromInternal(Message<?> message, Class<?> targetClass, Object

 conversionHint) {

 Object payload = message.getPayload();

 return (payload instanceof Bar ? payload : new Bar((byte[]) payload));

 }

}

Spring Cloud Stream also provides support for Avro-based converters and schema evolution. See the
specific section for details.

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 46

9. Schema evolution support

Spring Cloud Stream provides support for schema-based message converters through its spring-
cloud-stream-schema module. Currently, the only serialization format supported out of the box for
schema-based message converters is Apache Avro, with more formats to be added in future versions.

9.1 Apache Avro Message Converters

The spring-cloud-stream-schema module contains two types of message converters that can be
used for Apache Avro serialization:

• converters using the class information of the serialized/deserialized objects, or a schema with a
location known at startup;

• converters using a schema registry - they locate the schemas at runtime, as well as dynamically
registering new schemas as domain objects evolve.

9.2 Converters with schema support

The AvroSchemaMessageConverter supports serializing and deserializing messages either using
a predefined schema or by using the schema information available in the class (either reflectively, or
contained in the SpecificRecord). If the target type of the conversion is a GenericRecord, then
a schema must be set.

For using it, you can simply add it to the application context, optionally specifying one ore more
MimeTypes to associate it with. The default MimeType is application/avro.

Here is an example of configuring it in a sink application registering the Apache Avro
MessageConverter, without a predefined schema:

@EnableBinding(Sink.class)

@SpringBootApplication

public static class SinkApplication {

 ...

 @Bean

 public MessageConverter userMessageConverter() {

 return new AvroSchemaMessageConverter(MimeType.valueOf("avro/bytes"));

 }

}

Conversely, here is an application that registers a converter with a predefined schema, to be found on
the classpath:

@EnableBinding(Sink.class)

@SpringBootApplication

public static class SinkApplication {

 ...

 @Bean

 public MessageConverter userMessageConverter() {

 AvroSchemaMessageConverter converter = new AvroSchemaMessageConverter(MimeType.valueOf("avro/

bytes"));

 converter.setSchemaLocation(new ClassPathResource("schemas/User.avro"));

 return converter;

 }

}

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 47

In order to understand the schema registry client converter, we will describe the schema registry support
first.

9.3 Schema Registry Support

Most serialization models, especially the ones that aim for portability across different platforms and
languages, rely on a schema that describes how the data is serialized in the binary payload. In order to
serialize the data and then to interpret it, both the sending and receiving sides must have access to a
schema that describes the binary format. In certain cases, the schema can be inferred from the payload
type on serialization, or from the target type on deserialization, but in a lot of cases applications benefit
from having access to an explicit schema that describes the binary data format. A schema registry
allows you to store schema information in a textual format (typically JSON) and makes that information
accessible to various applications that need it to receive and send data in binary format. A schema is
referenceable as a tuple consisting of:

• a subject that is the logical name of the schema;

• the schema version;

• the schema format which describes the binary format of the data.

9.4 Schema Registry Server

Spring Cloud Stream provides a schema registry server implementation. In order to use it,
you can simply add the spring-cloud-stream-schema-server artifact to your project and
use the @EnableSchemaRegistryServer annotation, adding the schema registry server REST
controller to your application. This annotation is intended to be used with Spring Boot web
applications, and the listening port of the server is controlled by the server.port setting.
The spring.cloud.stream.schema.server.path setting can be used to control the root
path of the schema server (especially when it is embedded in other applications). The
spring.cloud.stream.schema.server.allowSchemaDeletion boolean setting enables the
deletion of schema. By default this is disabled.

The schema registry server uses a relational database to store the schemas. By default, it uses an
embedded database. You can customize the schema storage using the Spring Boot SQL database and
JDBC configuration options.

A Spring Boot application enabling the schema registry looks as follows:

@SpringBootApplication

@EnableSchemaRegistryServer

public class SchemaRegistryServerApplication {

 public static void main(String[] args) {

 SpringApplication.run(SchemaRegistryServerApplication.class, args);

 }

}

Schema Registry Server API

The Schema Registry Server API consists of the following operations:

POST /

Register a new schema.

http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#boot-features-sql
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#boot-features-sql

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 48

Accepts JSON payload with the following fields:

• subject the schema subject;

• format the schema format;

• definition the schema definition.

Response is a schema object in JSON format, with the following fields:

• id the schema id;

• subject the schema subject;

• format the schema format;

• version the schema version;

• definition the schema definition.

GET /{subject}/{format}/{version}

Retrieve an existing schema by its subject, format and version.

Response is a schema object in JSON format, with the following fields:

• id the schema id;

• subject the schema subject;

• format the schema format;

• version the schema version;

• definition the schema definition.

GET /{subject}/{format}

Retrieve a list of existing schema by its subject and format.

Response is a list of schemas with each schema object in JSON format, with the following fields:

• id the schema id;

• subject the schema subject;

• format the schema format;

• version the schema version;

• definition the schema definition.

GET /schemas/{id}

Retrieve an existing schema by its id.

Response is a schema object in JSON format, with the following fields:

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 49

• id the schema id;

• subject the schema subject;

• format the schema format;

• version the schema version;

• definition the schema definition.

DELETE /{subject}/{format}/{version}

Delete an existing schema by its subject, format and version.

DELETE /schemas/{id}

Delete an existing schema by its id.

DELETE /{subject}

Delete existing schemas by their subject.

Note

This note applies to users of Spring Cloud Stream 1.1.0.RELEASE only. Spring Cloud Stream
1.1.0.RELEASE used the table name schema for storing Schema objects, which is a keyword
in a number of database implementations. To avoid any conflicts in the future, starting with
1.1.1.RELEASE we have opted for the name SCHEMA_REPOSITORY for the storage table. Any
Spring Cloud Stream 1.1.0.RELEASE users that are upgrading are advised to migrate their
existing schemas to the new table before upgrading.

9.5 Schema Registry Client

The client-side abstraction for interacting with schema registry servers is the SchemaRegistryClient
interface, with the following structure:

public interface SchemaRegistryClient {

 SchemaRegistrationResponse register(String subject, String format, String schema);

 String fetch(SchemaReference schemaReference);

 String fetch(Integer id);

}

Spring Cloud Stream provides out of the box implementations for interacting with its own schema server,
as well as for interacting with the Confluent Schema Registry.

A client for the Spring Cloud Stream schema registry can be configured using the
@EnableSchemaRegistryClient as follows:

 @EnableBinding(Sink.class)

 @SpringBootApplication

 @EnableSchemaRegistryClient

 public static class AvroSinkApplication {

 ...

 }

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 50

Note

The default converter is optimized to cache not only the schemas from the remote
server but also the parse() and toString() methods that are quite expensive.
Because of this, it uses a DefaultSchemaRegistryClient that does not caches
responses. If you intend to use the client directly on your code, you can request a
bean that also caches responses to be created. To do that, just add the property
spring.cloud.stream.schemaRegistryClient.cached=true to your application
properties.

Using Confluent’s Schema Registry

The default configuration will create a DefaultSchemaRegistryClient bean. If you want to use the
Confluent schema registry, you need to create a bean of type ConfluentSchemaRegistryClient,
which will supersede the one configured by default by the framework.

@Bean

public SchemaRegistryClient

 schemaRegistryClient(@Value("${spring.cloud.stream.schemaRegistryClient.endpoint}") String endpoint){

 ConfluentSchemaRegistryClient client = new ConfluentSchemaRegistryClient();

 client.setEndpoint(endpoint);

 return client;

}

Note

The ConfluentSchemaRegistryClient is tested against Confluent platform version 3.2.2.

Schema Registry Client properties

The Schema Registry Client supports the following properties:

spring.cloud.stream.schemaRegistryClient.endpoint
The location of the schema-server. Use a full URL when setting this, including protocol (http or
https) , port and context path.

Default
localhost:8990/

spring.cloud.stream.schemaRegistryClient.cached
Whether the client should cache schema server responses. Normally set to false, as the caching
happens in the message converter. Clients using the schema registry client should set this to true.

Default
true

9.6 Avro Schema Registry Client Message Converters

For Spring Boot applications that have a SchemaRegistryClient bean registered with the application
context, Spring Cloud Stream will auto-configure an Apache Avro message converter that uses the
schema registry client for schema management. This eases schema evolution, as applications that
receive messages can get easy access to a writer schema that can be reconciled with their own reader
schema.

For outbound messages, the MessageConverter will be activated if the content type of the channel
is set to application/*+avro, e.g.:

http://localhost:8990/

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 51

spring.cloud.stream.bindings.output.contentType=application/*+avro

During the outbound conversion, the message converter will try to infer the schemas of the outbound
messages based on their type and register them to a subject based on the payload type using the
SchemaRegistryClient. If an identical schema is already found, then a reference to it will be
retrieved. If not, the schema will be registered and a new version number will be provided. The
message will be sent with a contentType header using the scheme application/[prefix].
[subject].v[version]+avro, where prefix is configurable and subject is deduced from the
payload type.

For example, a message of the type User may be sent as a binary payload with a content type of
application/vnd.user.v2+avro, where user is the subject and 2 is the version number.

When receiving messages, the converter will infer the schema reference from the header of the incoming
message and will try to retrieve it. The schema will be used as the writer schema in the deserialization
process.

Avro Schema Registry Message Converter properties

If you have enabled Avro based schema registry client by setting
spring.cloud.stream.bindings.output.contentType=application/*+avro you can
customize the behavior of the registration with the following properties.

spring.cloud.stream.schema.avro.dynamicSchemaGenerationEnabled
Enable if you want the converter to use reflection to infer a Schema from a POJO.

Default
false

spring.cloud.stream.schema.avro.readerSchema
Avro compares schema versions by looking at a writer schema (origin payload) and a reader schema
(your application payload), check Avro documentation for more information. If set, this overrides
any lookups at the schema server and uses the local schema as the reader schema.

Default
null

spring.cloud.stream.schema.avro.schemaLocations
Register any .avsc files listed in this property with the Schema Server.

Default
empty

spring.cloud.stream.schema.avro.prefix
The prefix to be used on the Content-Type header.

Default
vnd

9.7 Schema Registration and Resolution

To better understand how Spring Cloud Stream registers and resolves new schemas, as well as its
use of Avro schema comparison features, we will provide two separate subsections below: one for the
registration, and one for the resolution of schemas.

https://avro.apache.org/docs/1.7.6/spec.html

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 52

Schema Registration Process (Serialization)

The first part of the registration process is extracting a schema from the payload that is being sent over a
channel. Avro types such as SpecificRecord or GenericRecord already contain a schema, which
can be retrieved immediately from the instance. In the case of POJOs a schema will be inferred if the
property spring.cloud.stream.schema.avro.dynamicSchemaGenerationEnabled is set to
true (the default).

Figure 9.1. Schema Writer Resolution Process

Ones a schema is obtained, the converter will then load its metadata (version) from the remote server.
First it queries a local cache, and if not found it then submits the data to the server that will reply with
versioning information. The converter will always cache the results to avoid the overhead of querying
the Schema Server for every new message that needs to be serialized.

Figure 9.2. Schema Registration Process

With the schema version information, the converter sets the contentType header of the message to
carry the version information such as application/vnd.user.v1+avro

Schema Resolution Process (Deserialization)

When reading messages that contain version information (i.e. a contentType header with a scheme
like above), the converter will query the Schema server to fetch the writer schema of the message.
Ones it has found the correct schema of the incoming message, it then retrieves the reader schema and
using Avro’s schema resolution support reads it into the reader definition (setting defaults and missing
properties).

Figure 9.3. Schema Reading Resolution Process

Note

It’s important to understand the difference between a writer schema (the application that wrote
the message) and a reader schema (the receiving application). Please take a moment to
read the Avro terminology and understand the process. Spring Cloud Stream will always fetch
the writer schema to determine how to read a message. If you want to get Avro’s schema
evolution support working you need to make sure that a readerSchema was properly set for
your application.

https://avro.apache.org/docs/1.7.6/spec.html

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 53

10. Inter-Application Communication

10.1 Connecting Multiple Application Instances

While Spring Cloud Stream makes it easy for individual Spring Boot applications to connect to
messaging systems, the typical scenario for Spring Cloud Stream is the creation of multi-application
pipelines, where microservice applications send data to each other. You can achieve this scenario by
correlating the input and output destinations of adjacent applications.

Supposing that a design calls for the Time Source application to send data to the Log Sink application,
you can use a common destination named ticktock for bindings within both applications.

Time Source (that has the channel name output) will set the following property:

spring.cloud.stream.bindings.output.destination=ticktock

Log Sink (that has the channel name input) will set the following property:

spring.cloud.stream.bindings.input.destination=ticktock

10.2 Instance Index and Instance Count

When scaling up Spring Cloud Stream applications, each instance can receive information about
how many other instances of the same application exist and what its own instance index
is. Spring Cloud Stream does this through the spring.cloud.stream.instanceCount and
spring.cloud.stream.instanceIndex properties. For example, if there are three instances of a
HDFS sink application, all three instances will have spring.cloud.stream.instanceCount set to
3, and the individual applications will have spring.cloud.stream.instanceIndex set to 0, 1, and
2, respectively.

When Spring Cloud Stream applications are deployed via Spring Cloud Data Flow, these properties are
configured automatically; when Spring Cloud Stream applications are launched independently, these
properties must be set correctly. By default, spring.cloud.stream.instanceCount is 1, and
spring.cloud.stream.instanceIndex is 0.

In a scaled-up scenario, correct configuration of these two properties is important for addressing
partitioning behavior (see below) in general, and the two properties are always required by certain
binders (e.g., the Kafka binder) in order to ensure that data are split correctly across multiple consumer
instances.

10.3 Partitioning

Configuring Output Bindings for Partitioning

An output binding is configured to send partitioned data by setting one and only one of its
partitionKeyExpression or partitionKeyExtractorName (see next paragraph) properties, as
well as its partitionCount property.

For example, the following is a valid and typical configuration:

spring.cloud.stream.bindings.output.producer.partitionKeyExpression=payload.id

spring.cloud.stream.bindings.output.producer.partitionCount=5

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 54

Based on the above example configuration, data will be sent to the target partition using the following
logic.

A partition key’s value is calculated for each message sent to a partitioned output channel based on
the partitionKeyExpression. The partitionKeyExpression is a SpEL expression which is
evaluated against the outbound message for extracting the partitioning key.

If a SpEL expression is not sufficient for your needs, you can
instead calculate the partition key value by providing implementation
of org.springframework.cloud.stream.binder.PartitionKeyExtractorStrategy and
configuring it as a bean (i.e., @Bean). In the event you have more then one bean
of type org.springframework.cloud.stream.binder.PartitionKeyExtractorStrategy
available in the Application Context you can further filter it by specifying its name via
partitionKeyExtractorName property:

--spring.cloud.stream.bindings.output.producer.partitionKeyExtractorName=customPartitionKeyExtractor

--spring.cloud.stream.bindings.output.producer.partitionCount=5

. . .

@Bean

public CustomPartitionKeyExtractorClass customPartitionKeyExtractor() {

 return new CustomPartitionKeyExtractorClass();

}

Note

In previous versions of Spring Cloud Stream you could specify the implementation of
org.springframework.cloud.stream.binder.PartitionKeyExtractorStrategy

as
spring.cloud.stream.bindings.output.producer.partitionKeyExtractorClass

property. Since version 2.0 this property is deprecated and support for it will be removed in a
future version.

Ones the message key is calculated, the partition selection process will determine the target
partition as a value between 0 and partitionCount - 1. The default calculation, applicable
in most scenarios, is based on the formula key.hashCode() % partitionCount. This can
be customized on the binding, either by setting a SpEL expression to be evaluated against the
'key' (via the partitionSelectorExpression property) or by configuring an implementation
of org.springframework.cloud.stream.binder.PartitionSelectorStrategy as a bean
(i.e., @Bean). And similarly to the PartitionKeyExtractorStrategy you can further filter it using
spring.cloud.stream.bindings.output.producer.partitionSelectorName property in
the event there are more then one bean of this type is available in the Application Context.

--spring.cloud.stream.bindings.output.producer.partitionSelectorName=customPartitionSelector

. . .

@Bean

public CustomPartitionSelectorClass customPartitionSelector() {

 return new CustomPartitionSelectorClass();

}

Note

In previous versions of Spring Cloud Stream you could specify the implementation
of org.springframework.cloud.stream.binder.PartitionSelectorStrategy

as spring.cloud.stream.bindings.output.producer.partitionSelectorClass
property. Since version 2.0 this property is deprecated and support for it will be removed in a
future version.

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 55

Configuring Input Bindings for Partitioning

An input binding (with the channel name input) is configured to receive partitioned data by setting
its partitioned property, as well as the instanceIndex and instanceCount properties on the
application itself, as in the following example:

spring.cloud.stream.bindings.input.consumer.partitioned=true

spring.cloud.stream.instanceIndex=3

spring.cloud.stream.instanceCount=5

The instanceCount value represents the total number of application instances between which the
data need to be partitioned, and the instanceIndex must be a unique value across the multiple
instances, between 0 and instanceCount - 1. The instance index helps each application instance to
identify the unique partition(s) from which it receives data. It is required by binders using technology that
doesn’t support partitioning natively, for example, with RabbitMQ, there is a queue for each partition,
with the queue name containing the instance index. With Kafka, if autoRebalanceEnabled is true
(default), Kafka will take care of distributing partitions across instances and these properties are not
required. If autoRebalanceEnabled is set to false, the instanceCount and instanceIndex are
used by the binder to determine which partition(s) the instance will subscribe to (you must have at least
as many partitions as there are instances). The binder will allocate the partitions instead of Kafka. This
might be useful if you want messages for a particular partition to always go to the same instance. When
a binder configuration that requires them, it is important to set both values correctly in order to ensure
that all of the data is consumed and that the application instances receive mutually exclusive datasets.

While a scenario which using multiple instances for partitioned data processing may be complex to set
up in a standalone case, Spring Cloud Dataflow can simplify the process significantly by populating
both the input and output values correctly as well as relying on the runtime infrastructure to provide
information about the instance index and instance count.

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 56

11. Testing

Spring Cloud Stream provides support for testing your microservice applications without connecting to
a messaging system. You can do that by using the TestSupportBinder provided by the spring-
cloud-stream-test-support library, which can be added as a test dependency to the application:

 <dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-stream-test-support</artifactId>

 <scope>test</scope>

 </dependency>

Note

The TestSupportBinder uses the Spring Boot autoconfiguration mechanism to supersede
the other binders found on the classpath. Therefore, when adding a binder as a dependency,
make sure that the test scope is being used.

The TestSupportBinder allows users to interact with the bound channels and inspect what messages
are sent and received by the application

For outbound message channels, the TestSupportBinder registers a single subscriber and retains
the messages emitted by the application in a MessageCollector. They can be retrieved during tests
and have assertions made against them.

The user can also send messages to inbound message channels, so that the consumer application can
consume the messages. The following example shows how to test both input and output channels on
a processor.

@RunWith(SpringRunner.class)

@SpringBootTest(webEnvironment= SpringBootTest.WebEnvironment.RANDOM_PORT)

public class ExampleTest {

 @Autowired

 private Processor processor;

 @Autowired

 private MessageCollector messageCollector;

 @Test

 @SuppressWarnings("unchecked")

 public void testWiring() {

 Message<String> message = new GenericMessage<>("hello");

 processor.input().send(message);

 Message<String> received = (Message<String>) messageCollector.forChannel(processor.output()).poll();

 assertThat(received.getPayload(), equalTo("hello world"));

 }

 @SpringBootApplication

 @EnableBinding(Processor.class)

 public static class MyProcessor {

 @Autowired

 private Processor channels;

 @Transformer(inputChannel = Processor.INPUT, outputChannel = Processor.OUTPUT)

 public String transform(String in) {

 return in + " world";

 }

 }

}

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 57

In the example above, we are creating an application that has an input and an output channel,
bound through the Processor interface. The bound interface is injected into the test so we can have
access to both channels. We are sending a message on the input channel and we are using the
MessageCollector provided by Spring Cloud Stream’s test support to capture the message has been
sent to the output channel as a result. Ones we have received the message, we can validate that the
component functions correctly.

11.1 Disabling the test binder autoconfiguration

The intent behind the test binder superseding all the other binders on the classpath is to make
it easy to test your applications without making changes to your production dependencies. In
some cases (e.g. integration tests) it is useful to use the actual production binders instead, and
that requires disabling the test binder autoconfiguration. In order to do so, you can exclude the
org.springframework.cloud.stream.test.binder.TestSupportBinderAutoConfiguration

class using one of the Spring Boot autoconfiguration exclusion mechanisms, as in the following example.

 @SpringBootApplication(exclude = TestSupportBinderAutoConfiguration.class)

 @EnableBinding(Processor.class)

 public static class MyProcessor {

 @Transformer(inputChannel = Processor.INPUT, outputChannel = Processor.OUTPUT)

 public String transform(String in) {

 return in + " world";

 }

 }

When autoconfiguration is disabled, the test binder is available on the classpath, and its
defaultCandidate property is set to false, so that it does not interfere with the regular user
configuration. It can be referenced under the name test e.g.:

spring.cloud.stream.defaultBinder=test

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 58

12. Health Indicator

Spring Cloud Stream provides a health indicator for binders. It is registered under the name of binders
and can be enabled or disabled by setting the management.health.binders.enabled property.

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 59

13. Metrics Emitter
Spring Cloud Stream provides a module called spring-cloud-stream-metrics that can be used
to emit any available metric from Spring Boot metrics endpoint to a named channel. This module allow
operators to collect metrics from stream applications without relying on polling their endpoints.

The module is activated when you set the destination name for metrics binding, e.g.
spring.cloud.stream.bindings.applicationMetrics.destination=<DESTINATION_NAME>.
applicationMetrics can be configured in a similar fashion to any other producer binding. The
default contentType setting of applicationMetrics is application/json.

The following properties can be used for customizing the emission of metrics:

spring.cloud.stream.metrics.key
The name of the metric being emitted. Should be an unique value per application.

Default
${spring.application.name:${vcap.application.name:

${spring.config.name:application}}}

spring.cloud.stream.metrics.prefix
Prefix string to be prepended to the metrics key.

Default: ``

spring.cloud.stream.metrics.properties
Just like the includes option, it allows white listing application properties that will be added to the
metrics payload

Default: null.

A detailed overview of the metrics export process can be found in the Spring Boot reference
documentation. Spring Cloud Stream provides a metric exporter named application that can be
configured via regular Spring Boot metrics configuration properties.

The exporter can be configured either by using the global Spring Boot configuration
settings for exporters, or by using exporter-specific properties. For using the global
configuration settings, the properties should be prefixed by spring.metric.export (e.g.
spring.metric.export.includes=integration**). These configuration options will apply
to all exporters (unless they have been configured differently). Alternatively, if it is intended
to use configuration settings that are different from the other exporters (e.g. for restricting
the number of metrics published), the Spring Cloud Stream provided metrics exporter
can be configured using the prefix spring.metrics.export.triggers.application (e.g.
spring.metrics.export.triggers.application.includes=integration**).

Note

Due to Spring Boot’s relaxed binding the value of a property being included can be slightly
different than the original value.

As a rule of thumb, the metric exporter will attempt to normalize all the properties in a consistent
format using the dot notation (e.g. JAVA_HOME becomes java.home).

The goal of normalization is to make downstream consumers of those metrics capable of
receiving property names consistently, regardless of how they are set on the monitored

https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html#production-ready-metric-writers
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html#production-ready-metric-writers
https://github.com/spring-projects/spring-boot/blob/1.5.x/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/metrics/export/TriggerProperties.java
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 60

application (--spring.application.name or SPRING_APPLICATION_NAME would always
yield spring.application.name).

Below is a sample of the data published to the channel in JSON format by the following command:

java -jar time-source.jar \

 --spring.cloud.stream.bindings.applicationMetrics.destination=someMetrics \

 --spring.cloud.stream.metrics.properties=spring.application** \

 --spring.metrics.export.includes=integration.channel.input**,integration.channel.output**

The resulting JSON is:

{

 "name":"time-source",

 "metrics":[

 {

 "name":"integration.channel.output.errorRate.mean",

 "value":0.0,

 "timestamp":"2017-04-11T16:56:35.790Z"

 },

 {

 "name":"integration.channel.output.errorRate.max",

 "value":0.0,

 "timestamp":"2017-04-11T16:56:35.790Z"

 },

 {

 "name":"integration.channel.output.errorRate.min",

 "value":0.0,

 "timestamp":"2017-04-11T16:56:35.790Z"

 },

 {

 "name":"integration.channel.output.errorRate.stdev",

 "value":0.0,

 "timestamp":"2017-04-11T16:56:35.790Z"

 },

 {

 "name":"integration.channel.output.errorRate.count",

 "value":0.0,

 "timestamp":"2017-04-11T16:56:35.790Z"

 },

 {

 "name":"integration.channel.output.sendCount",

 "value":6.0,

 "timestamp":"2017-04-11T16:56:35.790Z"

 },

 {

 "name":"integration.channel.output.sendRate.mean",

 "value":0.994885872292989,

 "timestamp":"2017-04-11T16:56:35.790Z"

 },

 {

 "name":"integration.channel.output.sendRate.max",

 "value":1.006247080013156,

 "timestamp":"2017-04-11T16:56:35.790Z"

 },

 {

 "name":"integration.channel.output.sendRate.min",

 "value":1.0012035220116378,

 "timestamp":"2017-04-11T16:56:35.790Z"

 },

 {

 "name":"integration.channel.output.sendRate.stdev",

 "value":6.505181111084848E-4,

 "timestamp":"2017-04-11T16:56:35.790Z"

 },

 {

 "name":"integration.channel.output.sendRate.count",

 "value":6.0,

 "timestamp":"2017-04-11T16:56:35.790Z"

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 61

 }

],

 "createdTime":"2017-04-11T20:56:35.790Z",

 "properties":{

 "spring.application.name":"time-source",

 "spring.application.index":"0"

 }

}

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 62

14. Samples

For Spring Cloud Stream samples, please refer to the spring-cloud-stream-samples repository on
GitHub.

14.1 Deploying Stream applications on CloudFoundry

On CloudFoundry services are usually exposed via a special environment variable called
VCAP_SERVICES.

When configuring your binder connections, you can use the values from an environment variable as
explained on the dataflow cloudfoundry server docs.

https://github.com/spring-cloud/spring-cloud-stream-samples
https://docs.cloudfoundry.org/devguide/deploy-apps/environment-variable.html#VCAP-SERVICES
http://docs.spring.io/spring-cloud-dataflow-server-cloudfoundry/docs/current-SNAPSHOT/reference/htmlsingle/#getting-started-ups

Part II. Binder Implementations

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 64

15. Apache Kafka Binder

15.1 Usage

To use Apache Kafka binder all you need is to add spring-cloud-stream-binder-kafka as a
dependency to your Spring Cloud Stream application. Below is a Maven example:

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-stream-binder-kafka</artifactId>

</dependency>

Alternatively, you can also use the Spring Cloud Stream Kafka Starter.

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-starter-stream-kafka</artifactId>

</dependency>

15.2 Apache Kafka Binder Overview

A simplified diagram of how the Apache Kafka binder operates can be seen below.

Figure 15.1. Kafka Binder

The Apache Kafka Binder implementation maps each destination to an Apache Kafka topic. The
consumer group maps directly to the same Apache Kafka concept. Partitioning also maps directly to
Apache Kafka partitions as well.

The binder currently uses the Apache Kafka kafka-clients 1.0.0 jar and is designed to be used
with a broker at least that version. This client can communicate with older brokers (refer to the Kafka
documentation), but certain features may not be available. For example, with versions earlier than
0.11.x.x, native headers are not supported. Also, 0.11.x.x does not support the autoAddPartitions
property.

15.3 Configuration Options

This section contains the configuration options used by the Apache Kafka binder.

For common configuration options and properties pertaining to binder, refer to the core documentation.

Kafka Binder Properties

spring.cloud.stream.kafka.binder.brokers
A list of brokers to which the Kafka binder will connect.

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 65

Default: localhost.

spring.cloud.stream.kafka.binder.defaultBrokerPort
brokers allows hosts specified with or without port information (e.g., host1,host2:port2). This
sets the default port when no port is configured in the broker list.

Default: 9092.

spring.cloud.stream.kafka.binder.configuration
Key/Value map of client properties (both producers and consumer) passed to all clients created by
the binder. Due to the fact that these properties will be used by both producers and consumers,
usage should be restricted to common properties, for example, security settings.

Default: Empty map.

spring.cloud.stream.kafka.binder.headers
The list of custom headers that will be transported by the binder. Only required when communicating
with older applications (⇐ 1.3.x) with a kafka-clients version < 0.11.0.0; newer versions support
headers natively.

Default: empty.

spring.cloud.stream.kafka.binder.healthTimeout
The time to wait to get partition information in seconds; default 60. Health will report as down if this
timer expires.

Default: 10.

spring.cloud.stream.kafka.binder.requiredAcks
The number of required acks on the broker. See the Kafka documentation for the producer acks
property.

Default: 1.

spring.cloud.stream.kafka.binder.minPartitionCount
Effective only if autoCreateTopics or autoAddPartitions is set. The global minimum number
of partitions that the binder will configure on topics on which it produces/consumes data. It can be
superseded by the partitionCount setting of the producer or by the value of instanceCount
* concurrency settings of the producer (if either is larger).

Default: 1.

spring.cloud.stream.kafka.binder.replicationFactor
The replication factor of auto-created topics if autoCreateTopics is active. Can be overriden on
each binding.

Default: 1.

spring.cloud.stream.kafka.binder.autoCreateTopics
If set to true, the binder will create new topics automatically. If set to false, the binder will rely on
the topics being already configured. In the latter case, if the topics do not exist, the binder will fail
to start. Of note, this setting is independent of the auto.topic.create.enable setting of the
broker and it does not influence it: if the server is set to auto-create topics, they may be created as
part of the metadata retrieval request, with default broker settings.

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 66

Default: true.

spring.cloud.stream.kafka.binder.autoAddPartitions
If set to true, the binder will create add new partitions if required. If set to false, the binder will
rely on the partition size of the topic being already configured. If the partition count of the target topic
is smaller than the expected value, the binder will fail to start.

Default: false.

spring.cloud.stream.kafka.binder.transaction.transactionIdPrefix
Enable transactions in the binder; see transaction.id in the Kafka documentation
and Transactions in the spring-kafka documentation. When transactions are
enabled, individual producer properties are ignored and all producers use the
spring.cloud.stream.kafka.binder.transaction.producer.* properties.

Default null (no transactions)

spring.cloud.stream.kafka.binder.transaction.producer.*
Global producer properties for producers in a transactional binder. See
spring.cloud.stream.kafka.binder.transaction.transactionIdPrefix and the
section called “Kafka Producer Properties” and the general producer properties supported by all
binders.

Default: See individual producer properties.

spring.cloud.stream.kafka.binder.headerMapperBeanName
The bean name of a KafkaHeaderMapper used for mapping spring-messaging headers to/
from Kafka headers. Use this, for example, if you wish to customize the trusted packages in a
DefaultKafkaHeaderMapper, which uses JSON deserialization for the headers.

Default: none.

Kafka Consumer Properties

The following properties are available for Kafka consumers only and must be prefixed with
spring.cloud.stream.kafka.bindings.<channelName>.consumer..

admin.configuration
A Map of Kafka topic properties used when provisioning topics. e.g.
spring.cloud.stream.kafka.bindings.input.consumer.admin.configuration.message.format.version=0.9.0.0

Default: none.

admin.replicas-assignment
A Map<Integer, List<Integer>> of replica assignments, with the key being the partition and value
the assignments. Used when provisioning new topics. See NewTopic javadocs in the kafka-
clients jar.

Default: none.

admin.replication-factor
The replication factor to use when provisioning topics; overrides the binder-wide setting. Ignored if
replicas-assignments is present.

Default: none (the binder-wide default of 1 is used).

https://docs.spring.io/spring-kafka/reference/html/_reference.html#transactions

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 67

autoRebalanceEnabled
When true, topic partitions will be automatically rebalanced between the
members of a consumer group. When false, each consumer will be assigned
a fixed set of partitions based on spring.cloud.stream.instanceCount

and spring.cloud.stream.instanceIndex. This requires both
spring.cloud.stream.instanceCount and spring.cloud.stream.instanceIndex

properties to be set appropriately on each launched instance. The property
spring.cloud.stream.instanceCount must typically be greater than 1 in this case.

Default: true.

ackEachRecord
When autoCommitOffset is true, whether to commit the offset after each record is
processed. By default, offsets are committed after all records in the batch of records returned
by consumer.poll() have been processed. The number of records returned by a poll can be
controlled with the max.poll.recods Kafka property, set via the consumer configuration
property. Setting this to true may cause a degradation in performance, but reduces the likelihood
of redelivered records when a failure occurs. Also see the binder requiredAcks property, which
also affects the performance of committing offsets.

Default: false.

autoCommitOffset
Whether to autocommit offsets when a message has been processed.
If set to false, a header with the key kafka_acknowledgment of
the type org.springframework.kafka.support.Acknowledgment header will be
present in the inbound message. Applications may use this header for
acknowledging messages. See the examples section for details. When this
property is set to false, Kafka binder will set the ack mode to
org.springframework.kafka.listener.AbstractMessageListenerContainer.AckMode.MANUAL

and the application is responsible for acknowledging records. Also see ackEachRecord.

Default: true.

autoCommitOnError
Effective only if autoCommitOffset is set to true. If set to false it suppresses auto-commits
for messages that result in errors, and will commit only for successful messages, allows a stream to
automatically replay from the last successfully processed message, in case of persistent failures. If
set to true, it will always auto-commit (if auto-commit is enabled). If not set (default), it effectively
has the same value as enableDlq, auto-committing erroneous messages if they are sent to a DLQ,
and not committing them otherwise.

Default: not set.

resetOffsets
Whether to reset offsets on the consumer to the value provided by startOffset.

Default: false.

startOffset
The starting offset for new groups. Allowed values: earliest, latest.
If the consumer group is set explicitly for the consumer 'binding' (via
spring.cloud.stream.bindings.<channelName>.group), then 'startOffset' is set to

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 68

earliest; otherwise it is set to latest for the anonymous consumer group. Also see
resetOffsets.

Default: null (equivalent to earliest).

enableDlq
When set to true, it will send enable DLQ behavior for the consumer. By default, messages that
result in errors will be forwarded to a topic named error.<destination>.<group>. The DLQ
topic name can be configurable via the property dlqName. This provides an alternative option to the
more common Kafka replay scenario for the case when the number of errors is relatively small and
replaying the entire original topic may be too cumbersome. See Section 15.6, “Dead-Letter Topic
Processing” processing for more information. Starting with version 2.0, messages sent to the DLQ
topic are enhanced with the following headers: x-original-topic, x-exception-message
and x-exception-stacktrace as byte[].

Default: false.

configuration
Map with a key/value pair containing generic Kafka consumer properties.

Default: Empty map.

dlqName
The name of the DLQ topic to receive the error messages.

Default: null (If not specified, messages that result in errors will be forwarded to a topic named
error.<destination>.<group>).

dlqProducerProperties
Using this, dlq specific producer properties can be set. All the properties available through kafka
producer properties can be set through this property.

Default: Default Kafka producer properties.

standardHeaders
Indicates which standard headers are populated by the inbound channel adapter. none, id,
timestamp or both. Useful if using native deserialization and the first component to receive a
message needs an id (such as an aggregator that is configured to use a JDBC message store).

Default: none

converterBeanName
The name of a bean that implements RecordMessageConverter; used in the inbound channel
adapter to replace the default MessagingMessageConverter.

Default: null

idleEventInterval
The interval, in milliseconds between events indicating that no messages have recently been
received. Use an ApplicationListener<ListenerContainerIdleEvent> to receive these
events. See the section called “Example: Pausing and Resuming the Consumer” for a usage
example.

Default: 30000

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 69

Kafka Producer Properties

The following properties are available for Kafka producers only and must be prefixed with
spring.cloud.stream.kafka.bindings.<channelName>.producer..

admin.configuration
A Map of Kafka topic properties used when provisioning new topics. e.g.
spring.cloud.stream.kafka.bindings.input.consumer.admin.configuration.message.format.version=0.9.0.0

Default: none.

admin.replicas-assignment
A Map<Integer, List<Integer>> of replica assignments, with the key being the partition and value
the assignments. Used when provisioning new topics. See NewTopic javadocs in the kafka-
clients jar.

Default: none.

admin.replication-factor
The replication factor to use when provisioning new topics; overrides the binder-wide setting.
Ignored if replicas-assignments is present.

Default: none (the binder-wide default of 1 is used).

bufferSize
Upper limit, in bytes, of how much data the Kafka producer will attempt to batch before sending.

Default: 16384.

sync
Whether the producer is synchronous.

Default: false.

batchTimeout
How long the producer will wait before sending in order to allow more messages to accumulate in
the same batch. (Normally the producer does not wait at all, and simply sends all the messages that
accumulated while the previous send was in progress.) A non-zero value may increase throughput
at the expense of latency.

Default: 0.

messageKeyExpression
A SpEL expression evaluated against the outgoing message used to populate the key of the
produced Kafka message. For example headers['myKey']; the payload cannot be used because
by the time this expression is evaluated, the payload is already in the form of a byte[].

Default: none.

headerPatterns
A comma-delimited list of simple patterns to match spring-messaging headers to be mapped to the
kafka Headers in the ProducerRecord. Patterns can begin or end with the wildcard character
(asterisk). Patterns can be negated by prefixing with !; matching stops after the first match (positive

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 70

or negative). For example !foo,fo* will pass fox but not foo. id and timestamp are never
mapped.

Default: * (all headers - except the id and timestamp)

configuration
Map with a key/value pair containing generic Kafka producer properties.

Default: Empty map.

Note

The Kafka binder will use the partitionCount setting of the producer as a hint to
create a topic with the given partition count (in conjunction with the minPartitionCount,
the maximum of the two being the value being used). Exercise caution when configuring
both minPartitionCount for a binder and partitionCount for an application, as the
larger value will be used. If a topic already exists with a smaller partition count and
autoAddPartitions is disabled (the default), then the binder will fail to start. If a topic already
exists with a smaller partition count and autoAddPartitions is enabled, new partitions will
be added. If a topic already exists with a larger number of partitions than the maximum of
(minPartitionCount and partitionCount), the existing partition count will be used.

Usage examples

In this section, we illustrate the use of the above properties for specific scenarios.

Example: Setting autoCommitOffset false and relying on manual acking.

This example illustrates how one may manually acknowledge offsets in a consumer application.

This example requires that
spring.cloud.stream.kafka.bindings.input.consumer.autoCommitOffset is set to
false. Use the corresponding input channel name for your example.

@SpringBootApplication

@EnableBinding(Sink.class)

public class ManuallyAcknowdledgingConsumer {

 public static void main(String[] args) {

 SpringApplication.run(ManuallyAcknowdledgingConsumer.class, args);

 }

 @StreamListener(Sink.INPUT)

 public void process(Message<?> message) {

 Acknowledgment acknowledgment = message.getHeaders().get(KafkaHeaders.ACKNOWLEDGMENT,

 Acknowledgment.class);

 if (acknowledgment != null) {

 System.out.println("Acknowledgment provided");

 acknowledgment.acknowledge();

 }

 }

}

Example: security configuration

Apache Kafka 0.9 supports secure connections between client and brokers. To take
advantage of this feature, follow the guidelines in the Apache Kafka Documentation as
well as the Kafka 0.9 security guidelines from the Confluent documentation. Use the

http://kafka.apache.org/090/documentation.html#security_configclients
http://docs.confluent.io/2.0.0/kafka/security.html

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 71

spring.cloud.stream.kafka.binder.configuration option to set security properties for all
clients created by the binder.

For example, for setting security.protocol to SASL_SSL, set:

spring.cloud.stream.kafka.binder.configuration.security.protocol=SASL_SSL

All the other security properties can be set in a similar manner.

When using Kerberos, follow the instructions in the reference documentation for creating and referencing
the JAAS configuration.

Spring Cloud Stream supports passing JAAS configuration information to the application using a JAAS
configuration file and using Spring Boot properties.

Using JAAS configuration files

The JAAS, and (optionally) krb5 file locations can be set for Spring Cloud Stream applications by using
system properties. Here is an example of launching a Spring Cloud Stream application with SASL and
Kerberos using a JAAS configuration file:

 java -Djava.security.auth.login.config=/path.to/kafka_client_jaas.conf -jar log.jar \

 --spring.cloud.stream.kafka.binder.brokers=secure.server:9092 \

 --spring.cloud.stream.bindings.input.destination=stream.ticktock \

 --spring.cloud.stream.kafka.binder.configuration.security.protocol=SASL_PLAINTEXT

Using Spring Boot properties

As an alternative to having a JAAS configuration file, Spring Cloud Stream provides a mechanism for
setting up the JAAS configuration for Spring Cloud Stream applications using Spring Boot properties.

The following properties can be used for configuring the login context of the Kafka client.

spring.cloud.stream.kafka.binder.jaas.loginModule
The login module name. Not necessary to be set in normal cases.

Default: com.sun.security.auth.module.Krb5LoginModule.

spring.cloud.stream.kafka.binder.jaas.controlFlag
The control flag of the login module.

Default: required.

spring.cloud.stream.kafka.binder.jaas.options
Map with a key/value pair containing the login module options.

Default: Empty map.

Here is an example of launching a Spring Cloud Stream application with SASL and Kerberos using
Spring Boot configuration properties:

 java --spring.cloud.stream.kafka.binder.brokers=secure.server:9092 \

 --spring.cloud.stream.bindings.input.destination=stream.ticktock \

 --spring.cloud.stream.kafka.binder.autoCreateTopics=false \

 --spring.cloud.stream.kafka.binder.configuration.security.protocol=SASL_PLAINTEXT \

 --spring.cloud.stream.kafka.binder.jaas.options.useKeyTab=true \

 --spring.cloud.stream.kafka.binder.jaas.options.storeKey=true \

 --spring.cloud.stream.kafka.binder.jaas.options.keyTab=/etc/security/keytabs/kafka_client.keytab \

 --spring.cloud.stream.kafka.binder.jaas.options.principal=kafka-client-1@EXAMPLE.COM

http://kafka.apache.org/090/documentation.html#security_sasl_clientconfig

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 72

This represents the equivalent of the following JAAS file:

KafkaClient {

 com.sun.security.auth.module.Krb5LoginModule required

 useKeyTab=true

 storeKey=true

 keyTab="/etc/security/keytabs/kafka_client.keytab"

 principal="kafka-client-1@EXAMPLE.COM";

};

If the topics required already exist on the broker, or will be created by an administrator, autocreation
can be turned off and only client JAAS properties need to be sent.

Note

Do not mix JAAS configuration files and Spring Boot properties in the same application. If the
-Djava.security.auth.login.config system property is already present, Spring Cloud
Stream will ignore the Spring Boot properties.

Note

Exercise caution when using the autoCreateTopics and autoAddPartitions if using
Kerberos. Usually applications may use principals that do not have administrative rights in Kafka
and Zookeeper, and relying on Spring Cloud Stream to create/modify topics may fail. In secure
environments, we strongly recommend creating topics and managing ACLs administratively
using Kafka tooling.

Example: Pausing and Resuming the Consumer

If you wish to suspend consumption, but not cause a partition rebalance, you can pause and resume the
consumer. This is facilitated by adding the Consumer as a parameter to your @StreamListener. To
resume, you need an ApplicationListener for ListenerContainerIdleEvent s; the frequency
at which events are published is controlled by the idleEventInterval property. Since the consumer
is not thread-safe, you must call these methods on the calling thread.

The following simple application shows how to pause and resume.

@SpringBootApplication

@EnableBinding(Sink.class)

public class Application {

 public static void main(String[] args) {

 SpringApplication.run(Application.class, args);

 }

 @StreamListener(Sink.INPUT)

 public void in(String in, @Header(KafkaHeaders.CONSUMER) Consumer<?, ?> consumer) {

 System.out.println(in);

 consumer.pause(Collections.singleton(new TopicPartition("myTopic", 0)));

 }

 @Bean

 public ApplicationListener<ListenerContainerIdleEvent> idleListener() {

 return event -> {

 System.out.println(event);

 if (event.getConsumer().paused().size() > 0) {

 event.getConsumer().resume(event.getConsumer().paused());

 }

 };

 }

}

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 73

15.4 Error Channels

Starting with version 1.3, the binder unconditionally sends exceptions to an error channel for each
consumer destination, and can be configured to send async producer send failures to an error channel
too. See the section called “Message Channel Binders and Error Channels” for more information.

The payload of the ErrorMessage for a send failure is a KafkaSendFailureException with
properties:

• failedMessage - the spring-messaging Message<?> that failed to be sent.

• record - the raw ProducerRecord that was created from the failedMessage

There is no automatic handling of producer exceptions (such as sending to a Dead-Letter queue); you
can consume these exceptions with your own Spring Integration flow.

15.5 Kafka Metrics

Kafka binder module exposes the following metrics:

spring.cloud.stream.binder.kafka.someGroup.someTopic.lag - this metric indicates
how many messages have not been yet consumed from given binder’s
topic by given consumer group. For example if the value of the metric
spring.cloud.stream.binder.kafka.myGroup.myTopic.lag is 1000, then consumer group
myGroup has 1000 messages to waiting to be consumed from topic myTopic. This metric is particularly
useful to provide auto-scaling feedback to PaaS platform of your choice.

15.6 Dead-Letter Topic Processing

Because it can’t be anticipated how users would want to dispose of dead-lettered messages, the
framework does not provide any standard mechanism to handle them. If the reason for the dead-lettering
is transient, you may wish to route the messages back to the original topic. However, if the problem
is a permanent issue, that could cause an infinite loop. The following spring-boot application is an
example of how to route those messages back to the original topic, but moves them to a third "parking
lot" topic after three attempts. The application is simply another spring-cloud-stream application that
reads from the dead-letter topic. It terminates when no messages are received for 5 seconds.

The examples assume the original destination is so8400out and the consumer group is so8400.

There are several considerations.

• Consider only running the rerouting when the main application is not running. Otherwise, the retries
for transient errors will be used up very quickly.

• Alternatively, use a two-stage approach - use this application to route to a third topic, and another to
route from there back to the main topic.

• Since this technique uses a message header to keep track of retries, it won’t work with
headerMode=raw. In that case, consider adding some data to the payload (that can be ignored by
the main application).

• x-retries has to be added to the headers property
spring.cloud.stream.kafka.binder.headers=x-retries on both this, and the main
application so that the header is transported between the applications.

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 74

• Since kafka is publish/subscribe, replayed messages will be sent to each consumer group, even those
that successfully processed a message the first time around.

application.properties.

spring.cloud.stream.bindings.input.group=so8400replay

spring.cloud.stream.bindings.input.destination=error.so8400out.so8400

spring.cloud.stream.bindings.output.destination=so8400out

spring.cloud.stream.bindings.output.producer.partitioned=true

spring.cloud.stream.bindings.parkingLot.destination=so8400in.parkingLot

spring.cloud.stream.bindings.parkingLot.producer.partitioned=true

spring.cloud.stream.kafka.binder.configuration.auto.offset.reset=earliest

spring.cloud.stream.kafka.binder.headers=x-retries

Application.

@SpringBootApplication

@EnableBinding(TwoOutputProcessor.class)

public class ReRouteDlqKApplication implements CommandLineRunner {

 private static final String X_RETRIES_HEADER = "x-retries";

 public static void main(String[] args) {

 SpringApplication.run(ReRouteDlqKApplication.class, args).close();

 }

 private final AtomicInteger processed = new AtomicInteger();

 @Autowired

 private MessageChannel parkingLot;

 @StreamListener(Processor.INPUT)

 @SendTo(Processor.OUTPUT)

 public Message<?> reRoute(Message<?> failed) {

 processed.incrementAndGet();

 Integer retries = failed.getHeaders().get(X_RETRIES_HEADER, Integer.class);

 if (retries == null) {

 System.out.println("First retry for " + failed);

 return MessageBuilder.fromMessage(failed)

 .setHeader(X_RETRIES_HEADER, new Integer(1))

 .setHeader(BinderHeaders.PARTITION_OVERRIDE,

 failed.getHeaders().get(KafkaHeaders.RECEIVED_PARTITION_ID))

 .build();

 }

 else if (retries.intValue() < 3) {

 System.out.println("Another retry for " + failed);

 return MessageBuilder.fromMessage(failed)

 .setHeader(X_RETRIES_HEADER, new Integer(retries.intValue() + 1))

 .setHeader(BinderHeaders.PARTITION_OVERRIDE,

 failed.getHeaders().get(KafkaHeaders.RECEIVED_PARTITION_ID))

 .build();

 }

 else {

 System.out.println("Retries exhausted for " + failed);

 parkingLot.send(MessageBuilder.fromMessage(failed)

 .setHeader(BinderHeaders.PARTITION_OVERRIDE,

 failed.getHeaders().get(KafkaHeaders.RECEIVED_PARTITION_ID))

 .build());

 }

 return null;

 }

 @Override

 public void run(String... args) throws Exception {

 while (true) {

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 75

 int count = this.processed.get();

 Thread.sleep(5000);

 if (count == this.processed.get()) {

 System.out.println("Idle, terminating");

 return;

 }

 }

 }

 public interface TwoOutputProcessor extends Processor {

 @Output("parkingLot")

 MessageChannel parkingLot();

 }

}

15.7 Partitioning with the Kafka Binder

Apache Kafka supports topic partitioning natively.

Sometimes it is advantageous to send data to specific partitions, for example when you want to strictly
order message processing - all messages for a particular customer should go to the same partition.

The following illustrates how to configure the producer and consumer side:

@SpringBootApplication

@EnableBinding(Source.class)

public class KafkaPartitionProducerApplication {

 private static final Random RANDOM = new Random(System.currentTimeMillis());

 private static final String[] data = new String[] {

 "foo1", "bar1", "qux1",

 "foo2", "bar2", "qux2",

 "foo3", "bar3", "qux3",

 "foo4", "bar4", "qux4",

 };

 public static void main(String[] args) {

 new SpringApplicationBuilder(KafkaPartitionProducerApplication.class)

 .web(false)

 .run(args);

 }

 @InboundChannelAdapter(channel = Source.OUTPUT, poller = @Poller(fixedRate = "5000"))

 public Message<?> generate() {

 String value = data[RANDOM.nextInt(data.length)];

 System.out.println("Sending: " + value);

 return MessageBuilder.withPayload(value)

 .setHeader("partitionKey", value)

 .build();

 }

}

application.yml.

spring:

 cloud:

 stream:

 bindings:

 output:

 destination: partitioned.topic

 producer:

 partitioned: true

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 76

 partition-key-expression: headers['partitionKey']

 partition-count: 12

Important

The topic must be provisioned to have enough partitions to achieve the desired concurrency for
all consumer groups. The above configuration will support up to 12 consumer instances (or 6 if
their concurrency is 2, etc.). It is generally best to "over provision" the partitions to allow for
future increases in consumers and/or concurrency.

Note

The above configuration uses the default partitioning (key.hashCode() %

partitionCount). This may or may not provide a suitably balanced algorithm, depending on
the key values; you can override this default by using the partitionSelectorExpression
or partitionSelectorClass properties.

Since partitions are natively handled by Kafka, no special configuration is needed on the consumer side.
Kafka will allocate partitions across the instances.

@SpringBootApplication

@EnableBinding(Sink.class)

public class KafkaPartitionConsumerApplication {

 public static void main(String[] args) {

 new SpringApplicationBuilder(KafkaPartitionConsumerApplication.class)

 .web(false)

 .run(args);

 }

 @StreamListener(Sink.INPUT)

 public void listen(@Payload String in, @Header(KafkaHeaders.RECEIVED_PARTITION_ID) int partition) {

 System.out.println(in + " received from partition " + partition);

 }

}

application.yml.

spring:

 cloud:

 stream:

 bindings:

 input:

 destination: partitioned.topic

 group: myGroup

You can add instances as needed; Kafka will rebalance the partition allocations. If the instance count (or
instance count * concurrency) exceeds the number of partitions, some consumers will be idle.

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 77

16. Apache Kafka Streams Binder

16.1 Usage

For using the Kafka Streams binder, you just need to add it to your Spring Cloud Stream application,
using the following Maven coordinates:

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-stream-binder-kafka-streams</artifactId>

</dependency>

16.2 Kafka Streams Binder Overview

Spring Cloud Stream’s Apache Kafka support also includes a binder implementation designed explicitly
for Apache Kafka Streams binding. With this native integration, a Spring Cloud Stream "processor"
application can directly use the Apache Kafka Streams APIs in the core business logic.

Kafka Streams binder implementation builds on the foundation provided by the Kafka Streams in Spring
Kafka project.

As part of this native integration, the high-level Streams DSL provided by the Kafka Streams API is
available for use in the business logic, too.

An early version of the Processor API support is available as well.

As noted early-on, Kafka Streams support in Spring Cloud Stream strictly only available for use in the
Processor model. A model in which the messages read from an inbound topic, business processing can
be applied, and the transformed messages can be written to an outbound topic. It can also be used in
Processor applications with a no-outbound destination.

Streams DSL

This application consumes data from a Kafka topic (e.g., words), computes word count for each unique
word in a 5 seconds time window, and the computed results are sent to a downstream topic (e.g.,
counts) for further processing.

@SpringBootApplication

@EnableBinding(KStreamProcessor.class)

public class WordCountProcessorApplication {

 @StreamListener("input")

 @SendTo("output")

 public KStream<?, WordCount> process(KStream<?, String> input) {

 return input

 .flatMapValues(value -> Arrays.asList(value.toLowerCase().split("\\W+")))

 .groupBy((key, value) -> value)

 .windowedBy(TimeWindows.of(5000))

 .count(Materialized.as("WordCounts-multi"))

 .toStream()

 .map((key, value) -> new KeyValue<>(null, new WordCount(key.key(), value, new

 Date(key.window().start()), new Date(key.window().end()))));

 }

 public static void main(String[] args) {

 SpringApplication.run(WordCountProcessorApplication.class, args);

 }

https://kafka.apache.org/documentation/streams/developer-guide
http://docs.spring.io/spring-kafka/reference/html/_reference.html#kafka-streams
http://docs.spring.io/spring-kafka/reference/html/_reference.html#kafka-streams
https://docs.confluent.io/current/streams/developer-guide/dsl-api.html
https://docs.confluent.io/current/streams/developer-guide/processor-api.html

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 78

Once built as a uber-jar (e.g., wordcount-processor.jar), you can run the above example like the
following.

java -jar wordcount-processor.jar --spring.cloud.stream.bindings.input.destination=words --

spring.cloud.stream.bindings.output.destination=counts

This application will consume messages from the Kafka topic words and the computed results are
published to an output topic counts.

Spring Cloud Stream will ensure that the messages from both the incoming and outgoing topics are
automatically bound as KStream objects. As a developer, you can exclusively focus on the business
aspects of the code, i.e. writing the logic required in the processor. Setting up the Streams DSL specific
configuration required by the Kafka Streams infrastructure is automatically handled by the framework.

16.3 Configuration Options

This section contains the configuration options used by the Kafka Streams binder.

For common configuration options and properties pertaining to binder, refer to the core documentation.

Kafka Streams Properties

The following properties are available at the binder level and must be prefixed with
spring.cloud.stream.kafka.binder. literal.

configuration
Map with a key/value pair containing properties pertaining to Apache Kafka Streams API. This
property must be prefixed with spring.cloud.stream.kafka.streams.binder.. Following
are some examples of using this property.

spring.cloud.stream.kafka.streams.binder.configuration.default.key.serde=org.apache.kafka.common.serialization.Serdes

$StringSerde

spring.cloud.stream.kafka.streams.binder.configuration.default.value.serde=org.apache.kafka.common.serialization.Serdes

$StringSerde

spring.cloud.stream.kafka.streams.binder.configuration.commit.interval.ms=1000

For more information about all the properties that may go into streams configuration, see StreamsConfig
JavaDocs in Apache Kafka Streams docs.

brokers
Broker URL

Default: localhost

zkNodes
Zookeeper URL

Default: localhost

serdeError
Deserialization error handler type. Possible values are - logAndContinue, logAndFail or
sendToDlq

Default: logAndFail

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 79

applicationId
Application ID for all the stream configurations in the current application context. You can override
the application id for an individual StreamListener method using the group property on the
binding. You have to ensure that you are using the same group name for all input bindings in the
case of multiple inputs on the same methods.

Default: default

The following properties are only available for Kafka Streams producers and must be prefixed with
spring.cloud.stream.kafka.streams.bindings.<binding name>.producer. literal.

keySerde
key serde to use

Default: none.

valueSerde
value serde to use

Default: none.

useNativeEncoding
flag to enable native encoding

Default: false.

The following properties are only available for Kafka Streams consumers and must be prefixed with
spring.cloud.stream.kafka.streams.bindings.<binding name>.consumer. literal.

keySerde
key serde to use

Default: none.

valueSerde
value serde to use

Default: none.

materializedAs
state store to materialize when using incoming KTable types

Default: none.

useNativeDecoding
flag to enable native decoding

Default: false.

dlqName
DLQ topic name.

Default: none.

TimeWindow properties:

Windowing is an important concept in stream processing applications. Following properties are available
to configure time-window computations.

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 80

spring.cloud.stream.kafka.streams.timeWindow.length
When this property is given, you can autowire a TimeWindows bean into the application. The value
is expressed in milliseconds.

Default: none.

spring.cloud.stream.kstream.timeWindow.advanceBy
Value is given in milliseconds.

Default: none.

16.4 Multiple Input Bindings

For use cases that requires multiple incoming KStream objects or a combination of KStream and KTable
objects, the Kafka Streams binder provides multiple bindings support.

Let’s see it in action.

Multiple Input Bindings as a Sink

@EnableBinding(KStreamKTableBinding.class)

.....

.....

@StreamListener

public void process(@Input("inputStream") KStream<String, PlayEvent> playEvents,

 @Input("inputTable") KTable<Long, Song> songTable) {

}

interface KStreamKTableBinding {

 @Input("inputStream")

 KStream<?, ?> inputStream();

 @Input("inputTable")

 KTable<?, ?> inputTable();

}

In the above example, the application is written as a sink, i.e. there are no output bindings and the
application has to decide concerning downstream processing. When you write applications in this style,
you might want to send the information downstream or store them in a state store (See below for
Queryable State Stores).

In the case of incoming KTable, if you want to materialize the computations to a state store, you have
to express it through the following property.

spring.cloud.stream.kafka.streams.bindings.inputTable.consumer.materializedAs: all-songs

Multiple Input Bindings as a Processor

@EnableBinding(KStreamKTableBinding.class)

....

....

@StreamListener

@SendTo("output")

public KStream<String, Long> process(@Input("input") KStream<String, Long> userClicksStream,

 @Input("inputTable") KTable<String, String> userRegionsTable) {

....

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 81

....

}

interface KStreamKTableBinding extends KafkaStreamsProcessor {

 @Input("inputX")

 KTable<?, ?> inputTable();

}

16.5 Multiple Output Bindings (aka Branching)

Kafka Streams allow outbound data to be split into multiple topics based on some predicates. The Kafka
Streams binder provides support for this feature without compromising the programming model exposed
through StreamListener in the end user application.

You can write the application in the usual way as demonstrated above in the word count example.
However, when using the branching feature, you are required to do a few things. First, you need to
make sure that your return type is KStream[] instead of a regular KStream. Second, you need to use
the SendTo annotation containing the output bindings in the order (see example below). For each of
these output bindings, you need to configure destination, content-type etc., complying with the standard
Spring Cloud Stream expectations.

Here is an example:

@EnableBinding(KStreamProcessorWithBranches.class)

@EnableAutoConfiguration

public static class WordCountProcessorApplication {

 @Autowired

 private TimeWindows timeWindows;

 @StreamListener("input")

 @SendTo({"output1","output2","output3})

 public KStream<?, WordCount>[] process(KStream<Object, String> input) {

 Predicate<Object, WordCount> isEnglish = (k, v) -> v.word.equals("english");

 Predicate<Object, WordCount> isFrench = (k, v) -> v.word.equals("french");

 Predicate<Object, WordCount> isSpanish = (k, v) -> v.word.equals("spanish");

 return input

 .flatMapValues(value -> Arrays.asList(value.toLowerCase().split("\\W+")))

 .groupBy((key, value) -> value)

 .windowedBy(timeWindows)

 .count(Materialized.as("WordCounts-1"))

 .toStream()

 .map((key, value) -> new KeyValue<>(null, new WordCount(key.key(), value, new

 Date(key.window().start()), new Date(key.window().end()))))

 .branch(isEnglish, isFrench, isSpanish);

 }

 interface KStreamProcessorWithBranches {

 @Input("input")

 KStream<?, ?> input();

 @Output("output1")

 KStream<?, ?> output1();

 @Output("output2")

 KStream<?, ?> output2();

 @Output("output3")

 KStream<?, ?> output3();

 }

}

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 82

Properties:

spring.cloud.stream.bindings.output1.contentType: application/json

spring.cloud.stream.bindings.output2.contentType: application/json

spring.cloud.stream.bindings.output3.contentType: application/json

spring.cloud.stream.kafka.streams.binder.configuration.commit.interval.ms: 1000

spring.cloud.stream.kafka.streams.binder.configuration:

 default.key.serde: org.apache.kafka.common.serialization.Serdes$StringSerde

 default.value.serde: org.apache.kafka.common.serialization.Serdes$StringSerde

spring.cloud.stream.bindings.output1:

 destination: foo

 producer:

 headerMode: raw

spring.cloud.stream.bindings.output2:

 destination: bar

 producer:

 headerMode: raw

spring.cloud.stream.bindings.output3:

 destination: fox

 producer:

 headerMode: raw

spring.cloud.stream.bindings.input:

 destination: words

 consumer:

 headerMode: raw

16.6 Message Conversion

Similar to message-channel based binder applications, the Kafka Streams binder adapts to the out-of-
the-box content-type conversions without any compromise.

It is typical for Kafka Streams operations to know the type of SerDe’s used to transform the key and
value correctly. Therefore, it may be more natural to rely on the SerDe facilities provided by the Apache
Kafka Streams library itself at the inbound and outbound conversions rather than using the content-
type conversions offered by the framework. On the other hand, you might be already familiar with the
content-type conversion patterns provided by the framework, and that, you’d like to continue using for
inbound and outbound conversions.

Both the options are supported in the Kafka Streams binder implementation.

Outbound serialization

If native encoding is disabled (which is the default), then the framework will convert the message using
the contentType set by the user (otherwise, the default application/json will be applied). It will
ignore any SerDe set on the outbound in this case for outbound serialization.

Here is the property to set the contentType on the outbound.

spring.cloud.stream.bindings.output.contentType: application/json

Here is the property to enable native encoding.

spring.cloud.stream.bindings.output.nativeEncoding: true

If native encoding is enabled on the output binding (user has to enable it as above explicitly), then the
framework will skip any form of automatic message conversion on the outbound. In that case, it will
switch to the Serde set by the user. The valueSerde property set on the actual output binding will be
used. Here is an example.

spring.cloud.stream.kafka.streams.bindings.output.producer.valueSerde:

 org.apache.kafka.common.serialization.Serdes$StringSerde

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 83

If this property is not set, then it will use the "default" SerDe:
spring.cloud.stream.kafka.streams.binder.configuration.default.value.serde.

It is worth to mention that Kafka Streams binder does not serialize the keys on outbound - it simply relies
on Kafka itself. Therefore, you either have to specify the keySerde property on the binding or it will
default to the application-wide common keySerde.

Binding level key serde:

spring.cloud.stream.kafka.streams.bindings.output.producer.keySerde

Common Key serde:

spring.cloud.stream.kafka.streams.binder.configuration.default.key.serde

If branching is used, then you need to use multiple output bindings. For example,

interface KStreamProcessorWithBranches {

 @Input("input")

 KStream<?, ?> input();

 @Output("output1")

 KStream<?, ?> output1();

 @Output("output2")

 KStream<?, ?> output2();

 @Output("output3")

 KStream<?, ?> output3();

 }

If nativeEncoding is set, then you can set different SerDe’s on individual output bindings as below.

spring.cloud.stream.kstream.bindings.output1.producer.valueSerde=IntegerSerde

spring.cloud.stream.kstream.bindings.output2.producer.valueSerde=StringSerde

spring.cloud.stream.kstream.bindings.output3.producer.valueSerde=JsonSerde

Then if you have SendTo like this, @SendTo({"output1", "output2", "output3"}), the KStream[] from
the branches are applied with proper SerDe objects as defined above. If you are not enabling
nativeEncoding, you can then set different contentType values on the output bindings as below. In
that case, the framework will use the appropriate message converter to convert the messages before
sending to Kafka.

spring.cloud.stream.bindings.output1.contentType: application/json

spring.cloud.stream.bindings.output2.contentType: application/java-serialzied-object

spring.cloud.stream.bindings.output3.contentType: application/octet-stream

Inbound Deserialization

Similar rules apply to data deserialization on the inbound.

If native decoding is disabled (which is the default), then the framework will convert the message using
the contentType set by the user (otherwise, the default application/json will be applied). It will
ignore any SerDe set on the inbound in this case for inbound deserialization.

Here is the property to set the contentType on the inbound.

spring.cloud.stream.bindings.input.contentType: application/json

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 84

Here is the property to enable native decoding.

spring.cloud.stream.bindings.input.nativeDecoding: true

If native decoding is enabled on the input binding (user has to enable it as above explicitly), then the
framework will skip doing any message conversion on the inbound. In that case, it will switch to the
SerDe set by the user. The valueSerde property set on the actual output binding will be used. Here
is an example.

spring.cloud.stream.kafka.streams.bindings.input.consumer.valueSerde:

 org.apache.kafka.common.serialization.Serdes$StringSerde

If this property is not set, it will use the default SerDe:
spring.cloud.stream.kafka.streams.binder.configuration.default.value.serde.

It is worth to mention that Kafka Streams binder does not deserialize the keys on inbound - it simply
relies on Kafka itself. Therefore, you either have to specify the keySerde property on the binding or it
will default to the application-wide common keySerde.

Binding level key serde:

spring.cloud.stream.kafka.streams.bindings.input.consumer.keySerde

Common Key serde:

spring.cloud.stream.kafka.streams.binder.configuration.default.key.serde

As in the case of KStream branching on the outbound, the benefit of setting value SerDe per binding is
that if you have multiple input bindings (multiple KStreams object) and they all require separate value
SerDe’s, then you can configure them individually. If you use the common configuration approach, then
this feature won’t be applicable.

16.7 Error Handling

Apache Kafka Streams provide the capability for natively handling exceptions from deserialization
errors. For details on this support, please see this Out of the box, Apache Kafka Streams provide
two kinds of deserialization exception handlers - logAndContinue and logAndFail. As the name
indicates, the former will log the error and continue processing the next records and the latter will log
the error and fail. LogAndFail is the default deserialization exception handler.

Handling Deserialization Exceptions

Kafka Streams binder supports a selection of exception handlers through the following properties.

spring.cloud.stream.kafka.streams.binder.serdeError: logAndContinue

In addition to the above two deserialization exception handlers, the binder also provides a third one for
sending the erroneous records (poison pills) to a DLQ topic. Here is how you enable this DLQ exception
handler.

spring.cloud.stream.kafka.streams.binder.serdeError: sendToDlq

When the above property is set, all the deserialization error records are automatically sent to the DLQ
topic.

spring.cloud.stream.kafka.streams.bindings.input.consumer.dlqName: foo-dlq

https://cwiki.apache.org/confluence/display/KAFKA/KIP-161%3A+streams+deserialization+exception+handlers

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 85

If this is set, then the error records are sent to the topic foo-dlq. If this is not set, then it will create a
DLQ topic with the name error.<input-topic-name>.<group-name>.

A couple of things to keep in mind when using the exception handling feature in Kafka Streams binder.

• The property spring.cloud.stream.kafka.streams.binder.serdeError is applicable for
the entire application. This implies that if there are multiple StreamListener methods in the same
application, this property is applied to all of them.

• The exception handling for deserialization works consistently with native deserialization and
framework provided message conversion.

Handling Non-Deserialization Exceptions

For general error handling in Kafka Streams binder, it is up to the end user applications to handle
application level errors. As a side effect of providing a DLQ for deserialization exception handlers, Kafka
Streams binder provides a way to get access to the DLQ sending bean directly from your application.
Once you get access to that bean, you can programmatically send any exception records from your
application to the DLQ.

It continues to remain hard to robust error handling using the high-level DSL; Kafka Streams doesn’t
natively support error handling yet.

However, when you use the low-level Processor API in your application, there are options to control
this behavior. See below.

@Autowired

private SendToDlqAndContinue dlqHandler;

@StreamListener("input")

@SendTo("output")

public KStream<?, WordCount> process(KStream<Object, String> input) {

 input.process(() -> new Processor() {

 ProcessorContext context;

 @Override

 public void init(ProcessorContext context) {

 this.context = context;

 }

 @Override

 public void process(Object o, Object o2) {

 try {

 }

 catch(Exception e) {

 //explicitly provide the kafka topic corresponding to the input binding as the first

 argument.

 //DLQ handler will correctly map to the dlq topic from the actual incoming

 destination.

 dlqHandler.sendToDlq("topic-name", (byte[]) o1, (byte[]) o2,

 context.partition());

 }

 }

 });

}

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 86

16.8 Interactive Queries

As part of the public Kafka Streams binder API, we expose a class called QueryableStoreRegistry.
You can access this as a Spring bean in your application. An easy way to get access to this bean from
your application is to "autowire" the bean in your application.

@Autowired

private QueryableStoreRegistry queryableStoreRegistry;

Once you gain access to this bean, then you can query for the particular state-store that you are
interested. See below.

ReadOnlyKeyValueStore<Object, Object> keyValueStore =

 queryableStoreRegistry.getQueryableStoreType("my-store", QueryableStoreTypes.keyValueStore());

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 87

17. RabbitMQ Binder

17.1 Usage

For using the RabbitMQ binder, you just need to add it to your Spring Cloud Stream application, using
the following Maven coordinates:

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-stream-binder-rabbit</artifactId>

</dependency>

Alternatively, you can also use the Spring Cloud Stream RabbitMQ Starter.

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-starter-stream-rabbit</artifactId>

</dependency>

17.2 RabbitMQ Binder Overview

A simplified diagram of how the RabbitMQ binder operates can be seen below.

Figure 17.1. RabbitMQ Binder

The RabbitMQ Binder implementation maps each destination to a TopicExchange (by default). For
each consumer group, a Queue will be bound to that TopicExchange. Each consumer instance
have a corresponding RabbitMQ Consumer instance for its group’s Queue. For partitioned producers/
consumers the queues are suffixed with the partition index and use the partition index as routing key. For
anonymous consumers (no group property) an auto-delete queue is used, with a randomized unique
name.

Using the optional autoBindDlq option, you can configure the binder to create and configure dead-
letter queues (DLQs) (and a dead-letter exchange DLX as well as routing infrastructure). By default,
the dead letter queue has the name of the destination, appended with .dlq. If retry is enabled
(maxAttempts > 1) failed messages will be delivered to the DLQ after retries are exhausted. If retry
is disabled (maxAttempts = 1), you should set requeueRejected to false (default) so that a
failed message will be routed to the DLQ, instead of being requeued. In addition, republishToDlq
causes the binder to publish a failed message to the DLQ (instead of rejecting it); this enables additional
information to be added to the message in headers, such as the stack trace in the x-exception-

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 88

stacktrace header. This option does not need retry enabled; you can republish a failed message
after just one attempt. Starting with version 1.2, you can configure the delivery mode of republished
messages; see property republishDeliveryMode.

Important

Setting requeueRejected to true (with republishToDlq=false) will cause the message
to be requeued and redelivered continually, which is likely not what you want unless the reason
for the failure is transient. In general, it’s better to enable retry within the binder by setting
maxAttempts to greater than one, or set republishToDlq to true.

See the section called “RabbitMQ Binder Properties” for more information about these properties.

The framework does not provide any standard mechanism to consume dead-letter messages (or to
re-route them back to the primary queue). Some options are described in Section 17.6, “Dead-Letter
Queue Processing”.

Note

When multiple RabbitMQ binders are used in a Spring Cloud Stream application, it
is important to disable 'RabbitAutoConfiguration' to avoid the same configuration from
RabbitAutoConfiguration being applied to the two binders. Exclude the class using the
@SpringBootApplication annotation.

Starting with version 2.0, the RabbitMessageChannelBinder sets the
RabbitTemplate.userPublisherConnection property to true so that the non-transactional
producers will avoid dead locks on consumers which can happen if cached connections are blocked
because of Memory Alarm on Broker.

17.3 Configuration Options

This section contains settings specific to the RabbitMQ Binder and bound channels.

For general binding configuration options and properties, please refer to the Spring Cloud Stream core
documentation.

RabbitMQ Binder Properties

By default, the RabbitMQ binder uses Spring Boot’s ConnectionFactory, and it therefore supports all
Spring Boot configuration options for RabbitMQ. (For reference, consult the Spring Boot documentation).
RabbitMQ configuration options use the spring.rabbitmq prefix.

In addition to Spring Boot options, the RabbitMQ binder supports the following properties:

spring.cloud.stream.rabbit.binder.adminAddresses
A comma-separated list of RabbitMQ management plugin URLs. Only used when nodes
contains more than one entry. Each entry in this list must have a corresponding entry in
spring.rabbitmq.addresses. Only needed if you are using a RabbitMQ cluster and
wish to consume from the node that hosts the queue. See Queue Affinity and the
LocalizedQueueConnectionFactory for more information.

Default: empty.

https://www.rabbitmq.com/memory.html
https://github.com/spring-cloud/spring-cloud-stream/blob/master/spring-cloud-stream-core-docs/src/main/asciidoc/spring-cloud-stream-overview.adoc#configuration-options
https://github.com/spring-cloud/spring-cloud-stream/blob/master/spring-cloud-stream-core-docs/src/main/asciidoc/spring-cloud-stream-overview.adoc#configuration-options
http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#common-application-properties
https://docs.spring.io/spring-amqp/reference/html/_reference.html#queue-affinity
https://docs.spring.io/spring-amqp/reference/html/_reference.html#queue-affinity

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 89

spring.cloud.stream.rabbit.binder.nodes
A comma-separated list of RabbitMQ node names. When more than one entry, used to locate
the server address where a queue is located. Each entry in this list must have a corresponding
entry in spring.rabbitmq.addresses. Only needed if you are using a RabbitMQ cluster
and wish to consume from the node that hosts the queue. See Queue Affinity and the
LocalizedQueueConnectionFactory for more information.

Default: empty.

spring.cloud.stream.rabbit.binder.compressionLevel
Compression level for compressed bindings. See java.util.zip.Deflater.

Default: 1 (BEST_LEVEL).

spring.cloud.stream.binder.connection-name-prefix
A connection name prefix used to name the connection(s) created by this binder. The name will be
this prefix followed by #n, where n increments each time a new connection is opened.

Default: none (Spring AMQP default).

RabbitMQ Consumer Properties

The following properties are available for Rabbit consumers only and must be prefixed with
spring.cloud.stream.rabbit.bindings.<channelName>.consumer..

acknowledgeMode
The acknowledge mode.

Default: AUTO.

autoBindDlq
Whether to automatically declare the DLQ and bind it to the binder DLX.

Default: false.

bindingRoutingKey
The routing key with which to bind the queue to the exchange (if bindQueue is true). for partitioned
destinations -<instanceIndex> will be appended.

Default: #.

bindQueue
Whether to bind the queue to the destination exchange; set to false if you have set up your own
infrastructure and have previously created/bound the queue.

Default: true.

deadLetterQueueName
name of the DLQ

Default: prefix+destination.dlq

deadLetterExchange
a DLX to assign to the queue; if autoBindDlq is true

https://docs.spring.io/spring-amqp/reference/html/_reference.html#queue-affinity
https://docs.spring.io/spring-amqp/reference/html/_reference.html#queue-affinity

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 90

Default: 'prefix+DLX'

deadLetterRoutingKey
a dead letter routing key to assign to the queue; if autoBindDlq is true

Default: destination

declareExchange
Whether to declare the exchange for the destination.

Default: true.

delayedExchange
Whether to declare the exchange as a Delayed Message Exchange - requires the
delayed message exchange plugin on the broker. The x-delayed-type argument is set to the
exchangeType.

Default: false.

dlqDeadLetterExchange
if a DLQ is declared, a DLX to assign to that queue

Default: none

dlqDeadLetterRoutingKey
if a DLQ is declared, a dead letter routing key to assign to that queue; default none

Default: none

dlqExpires
how long before an unused dead letter queue is deleted (ms)

Default: no expiration

dlqLazy
Declare the dead letter queue with the x-queue-mode=lazy argument. See Lazy Queues.
Consider using a policy instead of this setting because using a policy allows changing the setting
without deleting the queue.

Default: false.

dlqMaxLength
maximum number of messages in the dead letter queue

Default: no limit

dlqMaxLengthBytes
maximum number of total bytes in the dead letter queue from all messages

Default: no limit

dlqMaxPriority
maximum priority of messages in the dead letter queue (0-255)

Default: none

https://www.rabbitmq.com/lazy-queues.html

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 91

dlqTtl
default time to live to apply to the dead letter queue when declared (ms)

Default: no limit

durableSubscription
Whether subscription should be durable. Only effective if group is also set.

Default: true.

exchangeAutoDelete
If declareExchange is true, whether the exchange should be auto-delete (removed after the last
queue is removed).

Default: true.

exchangeDurable
If declareExchange is true, whether the exchange should be durable (survives broker restart).

Default: true.

exchangeType
The exchange type; direct, fanout or topic for non-partitioned destinations; direct or topic
for partitioned destinations.

Default: topic.

exclusive
Create an exclusive consumer; concurrency should be 1 when this is true; often used when
strict ordering is required but enabling a hot standby instance to take over after a failure. See
recoveryInterval, which controls how often a standby instance will attempt to consume.

Default: false.

expires
how long before an unused queue is deleted (ms)

Default: no expiration

failedDeclarationRetryInterval
The interval (ms) between attempts to consume from a queue if it is missing.

Default: 5000

headerPatterns
Patterns for headers to be mapped from inbound messages.

Default: ['*'] (all headers).

lazy
Declare the queue with the x-queue-mode=lazy argument. See Lazy Queues. Consider using
a policy instead of this setting because using a policy allows changing the setting without deleting
the queue.

Default: false.

https://www.rabbitmq.com/lazy-queues.html

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 92

maxConcurrency
the maximum number of consumers

Default: 1.

maxLength
maximum number of messages in the queue

Default: no limit

maxLengthBytes
maximum number of total bytes in the queue from all messages

Default: no limit

maxPriority
maximum priority of messages in the queue (0-255)

Default: none

missingQueuesFatal
If the queue cannot be found, treat the condition as fatal and stop the listener container. Defaults
to false so that the container keeps trying to consume from the queue, for example when using
a cluster and the node hosting a non HA queue is down.

Default: false

prefetch
Prefetch count.

Default: 1.

prefix
A prefix to be added to the name of the destination and queues.

Default: "".

queueDeclarationRetries
The number of times to retry consuming from a queue if it is missing. Only relevant if
missingQueuesFatal is true; otherwise the container keeps retrying indefinitely.

Default: 3

queueNameGroupOnly
When true, consume from a queue with a name equal to the group; otherwise the queue name is
destination.group. This is useful, for example, when using Spring Cloud Stream to consume
from an existing RabbitMQ queue.

Default: false.

recoveryInterval
The interval between connection recovery attempts, in milliseconds.

Default: 5000.

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 93

requeueRejected
Whether delivery failures should be requeued when retry is disabled or republishToDlq is false.

Default: false.

republishDeliveryMode
When republishToDlq is true, specify the delivery mode of the republished message.

Default: DeliveryMode.PERSISTENT

republishToDlq
By default, messages which fail after retries are exhausted are rejected. If a dead-letter queue (DLQ)
is configured, RabbitMQ will route the failed message (unchanged) to the DLQ. If set to true, the
binder will republish failed messages to the DLQ with additional headers, including the exception
message and stack trace from the cause of the final failure.

Default: false

transacted
Whether to use transacted channels.

Default: false.

ttl
default time to live to apply to the queue when declared (ms)

Default: no limit

txSize
The number of deliveries between acks.

Default: 1.

Rabbit Producer Properties

The following properties are available for Rabbit producers only and must be prefixed with
spring.cloud.stream.rabbit.bindings.<channelName>.producer..

autoBindDlq
Whether to automatically declare the DLQ and bind it to the binder DLX.

Default: false.

batchingEnabled
Whether to enable message batching by producers. Messages are batched into one message
according to the following properties. Refer to Batching for more information.

Default: false.

batchSize
The number of messages to buffer when batching is enabled.

Default: 100.

https://docs.spring.io/spring-amqp//reference/html/_reference.html#template-batching

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 94

batchBufferLimit
The maximum buffer size when batching is enabled.

Default: `10000`.

batchTimeout
The batch timeout when batching is enabled.

Default: `5000`.

bindingRoutingKey
The routing key with which to bind the queue to the exchange (if bindQueue is true). Only applies
to non-partitioned destinations. Only applies if requiredGroups are provided and then only to
those groups.

Default: #.

bindQueue
Whether to bind the queue to the destination exchange; set to false if you have set up your own
infrastructure and have previously created/bound the queue. Only applies if requiredGroups are
provided and then only to those groups.

Default: true.

compress
Whether data should be compressed when sent.

Default: false.

deadLetterQueueName
name of the DLQ Only applies if requiredGroups are provided and then only to those groups.

Default: prefix+destination.dlq

deadLetterExchange
a DLX to assign to the queue; if autoBindDlq is true Only applies if requiredGroups are provided
and then only to those groups.

Default: 'prefix+DLX'

deadLetterRoutingKey
a dead letter routing key to assign to the queue; if autoBindDlq is true Only applies if
requiredGroups are provided and then only to those groups.

Default: destination

declareExchange
Whether to declare the exchange for the destination.

Default: true.

delayExpression
A SpEL expression to evaluate the delay to apply to the message (x-delay header) - has no effect
if the exchange is not a delayed message exchange.

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 95

Default: No x-delay header is set.

delayedExchange
Whether to declare the exchange as a Delayed Message Exchange - requires the
delayed message exchange plugin on the broker. The x-delayed-type argument is set to the
exchangeType.

Default: false.

deliveryMode
Delivery mode.

Default: PERSISTENT.

dlqDeadLetterExchange
if a DLQ is declared, a DLX to assign to that queue Only applies if requiredGroups are provided
and then only to those groups.

Default: none

dlqDeadLetterRoutingKey
if a DLQ is declared, a dead letter routing key to assign to that queue; default none Only applies if
requiredGroups are provided and then only to those groups.

Default: none

dlqExpires
how long before an unused dead letter queue is deleted (ms) Only applies if requiredGroups are
provided and then only to those groups.

Default: no expiration

dlqLazy
Declare the dead letter queue with the x-queue-mode=lazy argument. See Lazy Queues.
Consider using a policy instead of this setting because using a policy allows changing the setting
without deleting the queue. Only applies if requiredGroups are provided and then only to those
groups.

dlqMaxLength
maximum number of messages in the dead letter queue Only applies if requiredGroups are
provided and then only to those groups.

Default: no limit

dlqMaxLengthBytes
maximum number of total bytes in the dead letter queue from all messages Only applies if
requiredGroups are provided and then only to those groups.

Default: no limit

dlqMaxPriority
maximum priority of messages in the dead letter queue (0-255) Only applies if requiredGroups
are provided and then only to those groups.

https://www.rabbitmq.com/lazy-queues.html

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 96

Default: none

dlqTtl
default time to live to apply to the dead letter queue when declared (ms) Only applies if
requiredGroups are provided and then only to those groups.

Default: no limit

exchangeAutoDelete
If declareExchange is true, whether the exchange should be auto-delete (removed after the last
queue is removed).

Default: true.

exchangeDurable
If declareExchange is true, whether the exchange should be durable (survives broker restart).

Default: true.

exchangeType
The exchange type; direct, fanout or topic for non-partitioned destinations; direct or topic
for partitioned destinations.

Default: topic.

expires
how long before an unused queue is deleted (ms) Only applies if requiredGroups are provided
and then only to those groups.

Default: no expiration

headerPatterns
Patterns for headers to be mapped to outbound messages.

Default: ['*'] (all headers).

lazy
Declare the queue with the x-queue-mode=lazy argument. See Lazy Queues. Consider using a
policy instead of this setting because using a policy allows changing the setting without deleting the
queue. Only applies if requiredGroups are provided and then only to those groups.

Default: false.

maxLength
maximum number of messages in the queue Only applies if requiredGroups are provided and
then only to those groups.

Default: no limit

maxLengthBytes
maximum number of total bytes in the queue from all messages Only applies if requiredGroups
are provided and then only to those groups.

Default: no limit

https://www.rabbitmq.com/lazy-queues.html

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 97

maxPriority
maximum priority of messages in the queue (0-255) Only applies if requiredGroups are provided
and then only to those groups.

Default: none

prefix
A prefix to be added to the name of the destination exchange.

Default: "".

queueNameGroupOnly
When true, consume from a queue with a name equal to the group; otherwise the queue name is
destination.group. This is useful, for example, when using Spring Cloud Stream to consume
from an existing RabbitMQ queue. Only applies if requiredGroups are provided and then only
to those groups.

Default: false.

routingKeyExpression
A SpEL expression to determine the routing key to use when publishing messages. For a fixed
routing key, use a literal expression, e.g. routingKeyExpression='my.routingKey' in a
properties file, or routingKeyExpression: '''my.routingKey''' in a YAML file.

Default: destination or destination-<partition> for partitioned destinations.

transacted
Whether to use transacted channels.

Default: false.

ttl
default time to live to apply to the queue when declared (ms) Only applies if requiredGroups are
provided and then only to those groups.

Default: no limit

Note

In the case of RabbitMQ, content type headers can be set by external applications. Spring Cloud
Stream supports them as part of an extended internal protocol used for any type of transport
(including transports, such as Kafka (prior to 0.11), that do not natively support headers).

17.4 Retry With the RabbitMQ Binder

Overview

When retry is enabled within the binder, the listener container thread is suspended for any back off
periods that are configured. This might be important when strict ordering is required with a single
consumer but for other use cases it prevents other messages from being processed on that thread.
An alternative to using binder retry is to set up dead lettering with time to live on the dead-letter queue
(DLQ), as well as dead-letter configuration on the DLQ itself. See the section called “RabbitMQ Binder
Properties” for more information about the properties discussed here. Example configuration to enable
this feature:

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 98

• Set autoBindDlq to true - the binder will create a DLQ; you can optionally specify a name in
deadLetterQueueName

• Set dlqTtl to the back off time you want to wait between redeliveries

• Set the dlqDeadLetterExchange to the default exchange - expired messages from the DLQ will
be routed to the original queue since the default deadLetterRoutingKey is the queue name
(destination.group) - setting to the default exchange is achieved by setting the property with no
value, as is shown in the example below

To force a message to be dead-lettered, either throw an AmqpRejectAndDontRequeueException,
or set requeueRejected to true (default) and throw any exception.

The loop will continue without end, which is fine for transient problems but you may want to give up after
some number of attempts. Fortunately, RabbitMQ provides the x-death header which allows you to
determine how many cycles have occurred.

To acknowledge a message after giving up, throw an ImmediateAcknowledgeAmqpException.

Putting it All Together

spring.cloud.stream.bindings.input.destination=myDestination

spring.cloud.stream.bindings.input.group=consumerGroup

#disable binder retries

spring.cloud.stream.bindings.input.consumer.max-attempts=1

#dlx/dlq setup

spring.cloud.stream.rabbit.bindings.input.consumer.auto-bind-dlq=true

spring.cloud.stream.rabbit.bindings.input.consumer.dlq-ttl=5000

spring.cloud.stream.rabbit.bindings.input.consumer.dlq-dead-letter-exchange=

This configuration creates an exchange myDestination with queue
myDestination.consumerGroup bound to a topic exchange with a wildcard routing key #. It creates
a DLQ bound to a direct exchange DLX with routing key myDestination.consumerGroup. When
messages are rejected, they are routed to the DLQ. After 5 seconds, the message expires and is routed
to the original queue using the queue name as the routing key.

Spring Boot application.

@SpringBootApplication

@EnableBinding(Sink.class)

public class XDeathApplication {

 public static void main(String[] args) {

 SpringApplication.run(XDeathApplication.class, args);

 }

 @StreamListener(Sink.INPUT)

 public void listen(String in, @Header(name = "x-death", required = false) Map<?,?> death) {

 if (death != null && death.get("count").equals(3L)) {

 // giving up - don't send to DLX

 throw new ImmediateAcknowledgeAmqpException("Failed after 4 attempts");

 }

 throw new AmqpRejectAndDontRequeueException("failed");

 }

}

Notice that the count property in the x-death header is a Long.

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 99

17.5 Error Channels

Starting with version 1.3, the binder unconditionally sends exceptions to an error channel for each
consumer destination, and can be configured to send async producer send failures to an error channel
too. See the section called “Message Channel Binders and Error Channels” for more information.

With rabbitmq, there are two types of send failures:

• returned messages

• negatively acknowledged Publisher Confirms

The latter is rare; quoting the RabbitMQ documentation "[A nack] will only be delivered if an internal
error occurs in the Erlang process responsible for a queue.".

As well as enabling producer error channels as described in the section called “Message Channel
Binders and Error Channels”, the RabbitMQ binder will only send messages to the channels if the
connection factory is appropriately configured:

• ccf.setPublisherConfirms(true);

• ccf.setPublisherReturns(true);

When using spring boot configuration for the connection factory, set properties:

• spring.rabbitmq.publisher-confirms

• spring.rabbitmq.publisher-returns

The payload of the ErrorMessage for a returned message is a ReturnedAmqpMessageException
with properties:

• failedMessage - the spring-messaging Message<?> that failed to be sent.

• amqpMessage - the raw spring-amqp Message

• replyCode - an integer value indicating the reason for the failure (e.g. 312 - No route)

• replyText - a text value indicating the reason for the failure e.g. NO_ROUTE.

• exchange - the exchange to which the message was published.

• routingKey - the routing key used when the message was published.

For negatively acknowledged confirms, the payload is a NackedAmqpMessageException with
properties:

• failedMessage - the spring-messaging Message<?> that failed to be sent.

• nackReason - a reason (if available; you may need to examine the broker logs for more information).

There is no automatic handling of these exceptions (such as sending to a Dead-Letter queue); you can
consume these exceptions with your own Spring Integration flow.

17.6 Dead-Letter Queue Processing

Because it can’t be anticipated how users would want to dispose of dead-lettered messages, the
framework does not provide any standard mechanism to handle them. If the reason for the dead-lettering

https://www.rabbitmq.com/confirms.html

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 100

is transient, you may wish to route the messages back to the original queue. However, if the problem
is a permanent issue, that could cause an infinite loop. The following spring-boot application is an
example of how to route those messages back to the original queue, but moves them to a third "parking
lot" queue after three attempts. The second example utilizes the RabbitMQ Delayed Message Exchange
to introduce a delay to the requeued message. In this example, the delay increases for each attempt.
These examples use a @RabbitListener to receive messages from the DLQ, you could also use
RabbitTemplate.receive() in a batch process.

The examples assume the original destination is so8400in and the consumer group is so8400.

Non-Partitioned Destinations

The first two examples are when the destination is not partitioned.

@SpringBootApplication

public class ReRouteDlqApplication {

 private static final String ORIGINAL_QUEUE = "so8400in.so8400";

 private static final String DLQ = ORIGINAL_QUEUE + ".dlq";

 private static final String PARKING_LOT = ORIGINAL_QUEUE + ".parkingLot";

 private static final String X_RETRIES_HEADER = "x-retries";

 public static void main(String[] args) throws Exception {

 ConfigurableApplicationContext context = SpringApplication.run(ReRouteDlqApplication.class,

 args);

 System.out.println("Hit enter to terminate");

 System.in.read();

 context.close();

 }

 @Autowired

 private RabbitTemplate rabbitTemplate;

 @RabbitListener(queues = DLQ)

 public void rePublish(Message failedMessage) {

 Integer retriesHeader = (Integer)

 failedMessage.getMessageProperties().getHeaders().get(X_RETRIES_HEADER);

 if (retriesHeader == null) {

 retriesHeader = Integer.valueOf(0);

 }

 if (retriesHeader < 3) {

 failedMessage.getMessageProperties().getHeaders().put(X_RETRIES_HEADER, retriesHeader + 1);

 this.rabbitTemplate.send(ORIGINAL_QUEUE, failedMessage);

 }

 else {

 this.rabbitTemplate.send(PARKING_LOT, failedMessage);

 }

 }

 @Bean

 public Queue parkingLot() {

 return new Queue(PARKING_LOT);

 }

}

@SpringBootApplication

public class ReRouteDlqApplication {

 private static final String ORIGINAL_QUEUE = "so8400in.so8400";

 private static final String DLQ = ORIGINAL_QUEUE + ".dlq";

https://www.rabbitmq.com/blog/2015/04/16/scheduling-messages-with-rabbitmq/

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 101

 private static final String PARKING_LOT = ORIGINAL_QUEUE + ".parkingLot";

 private static final String X_RETRIES_HEADER = "x-retries";

 private static final String DELAY_EXCHANGE = "dlqReRouter";

 public static void main(String[] args) throws Exception {

 ConfigurableApplicationContext context = SpringApplication.run(ReRouteDlqApplication.class,

 args);

 System.out.println("Hit enter to terminate");

 System.in.read();

 context.close();

 }

 @Autowired

 private RabbitTemplate rabbitTemplate;

 @RabbitListener(queues = DLQ)

 public void rePublish(Message failedMessage) {

 Map<String, Object> headers = failedMessage.getMessageProperties().getHeaders();

 Integer retriesHeader = (Integer) headers.get(X_RETRIES_HEADER);

 if (retriesHeader == null) {

 retriesHeader = Integer.valueOf(0);

 }

 if (retriesHeader < 3) {

 headers.put(X_RETRIES_HEADER, retriesHeader + 1);

 headers.put("x-delay", 5000 * retriesHeader);

 this.rabbitTemplate.send(DELAY_EXCHANGE, ORIGINAL_QUEUE, failedMessage);

 }

 else {

 this.rabbitTemplate.send(PARKING_LOT, failedMessage);

 }

 }

 @Bean

 public DirectExchange delayExchange() {

 DirectExchange exchange = new DirectExchange(DELAY_EXCHANGE);

 exchange.setDelayed(true);

 return exchange;

 }

 @Bean

 public Binding bindOriginalToDelay() {

 return BindingBuilder.bind(new Queue(ORIGINAL_QUEUE)).to(delayExchange()).with(ORIGINAL_QUEUE);

 }

 @Bean

 public Queue parkingLot() {

 return new Queue(PARKING_LOT);

 }

}

Partitioned Destinations

With partitioned destinations, there is one DLQ for all partitions and we determine the original queue
from the headers.

republishToDlq=false

When republishToDlq is false, RabbitMQ publishes the message to the DLX/DLQ with an x-
death header containing information about the original destination.

@SpringBootApplication

public class ReRouteDlqApplication {

 private static final String ORIGINAL_QUEUE = "so8400in.so8400";

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 102

 private static final String DLQ = ORIGINAL_QUEUE + ".dlq";

 private static final String PARKING_LOT = ORIGINAL_QUEUE + ".parkingLot";

 private static final String X_DEATH_HEADER = "x-death";

 private static final String X_RETRIES_HEADER = "x-retries";

 public static void main(String[] args) throws Exception {

 ConfigurableApplicationContext context = SpringApplication.run(ReRouteDlqApplication.class, args);

 System.out.println("Hit enter to terminate");

 System.in.read();

 context.close();

 }

 @Autowired

 private RabbitTemplate rabbitTemplate;

 @SuppressWarnings("unchecked")

 @RabbitListener(queues = DLQ)

 public void rePublish(Message failedMessage) {

 Map<String, Object> headers = failedMessage.getMessageProperties().getHeaders();

 Integer retriesHeader = (Integer) headers.get(X_RETRIES_HEADER);

 if (retriesHeader == null) {

 retriesHeader = Integer.valueOf(0);

 }

 if (retriesHeader < 3) {

 headers.put(X_RETRIES_HEADER, retriesHeader + 1);

 List<Map<String, ?>> xDeath = (List<Map<String, ?>>) headers.get(X_DEATH_HEADER);

 String exchange = (String) xDeath.get(0).get("exchange");

 List<String> routingKeys = (List<String>) xDeath.get(0).get("routing-keys");

 this.rabbitTemplate.send(exchange, routingKeys.get(0), failedMessage);

 }

 else {

 this.rabbitTemplate.send(PARKING_LOT, failedMessage);

 }

 }

 @Bean

 public Queue parkingLot() {

 return new Queue(PARKING_LOT);

 }

}

republishToDlq=true

When republishToDlq is true, the republishing recoverer adds the original exchange and routing
key to headers.

@SpringBootApplication

public class ReRouteDlqApplication {

 private static final String ORIGINAL_QUEUE = "so8400in.so8400";

 private static final String DLQ = ORIGINAL_QUEUE + ".dlq";

 private static final String PARKING_LOT = ORIGINAL_QUEUE + ".parkingLot";

 private static final String X_RETRIES_HEADER = "x-retries";

 private static final String X_ORIGINAL_EXCHANGE_HEADER = RepublishMessageRecoverer.X_ORIGINAL_EXCHANGE;

 private static final String X_ORIGINAL_ROUTING_KEY_HEADER =

 RepublishMessageRecoverer.X_ORIGINAL_ROUTING_KEY;

 public static void main(String[] args) throws Exception {

 ConfigurableApplicationContext context = SpringApplication.run(ReRouteDlqApplication.class, args);

 System.out.println("Hit enter to terminate");

 System.in.read();

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 103

 context.close();

 }

 @Autowired

 private RabbitTemplate rabbitTemplate;

 @RabbitListener(queues = DLQ)

 public void rePublish(Message failedMessage) {

 Map<String, Object> headers = failedMessage.getMessageProperties().getHeaders();

 Integer retriesHeader = (Integer) headers.get(X_RETRIES_HEADER);

 if (retriesHeader == null) {

 retriesHeader = Integer.valueOf(0);

 }

 if (retriesHeader < 3) {

 headers.put(X_RETRIES_HEADER, retriesHeader + 1);

 String exchange = (String) headers.get(X_ORIGINAL_EXCHANGE_HEADER);

 String originalRoutingKey = (String) headers.get(X_ORIGINAL_ROUTING_KEY_HEADER);

 this.rabbitTemplate.send(exchange, originalRoutingKey, failedMessage);

 }

 else {

 this.rabbitTemplate.send(PARKING_LOT, failedMessage);

 }

 }

 @Bean

 public Queue parkingLot() {

 return new Queue(PARKING_LOT);

 }

}

17.7 Partitioning with the RabbitMQ Binder

RabbitMQ does not support partitioning natively.

Sometimes it is advantageous to send data to specific partitions, for example when you want to strictly
order message processing - all messages for a particular customer should go to the same partition.

The RabbitMessageChannelBinder provides partitioning by binding a queue for each partition to
the destination exchange.

The following illustrates how to configure the producer and consumer side:

Producer.

@SpringBootApplication

@EnableBinding(Source.class)

public class RabbitPartitionProducerApplication {

 private static final Random RANDOM = new Random(System.currentTimeMillis());

 private static final String[] data = new String[] {

 "foo1", "bar1", "qux1",

 "foo2", "bar2", "qux2",

 "foo3", "bar3", "qux3",

 "foo4", "bar4", "qux4",

 };

 public static void main(String[] args) {

 new SpringApplicationBuilder(RabbitPartitionProducerApplication.class)

 .web(false)

 .run(args);

 }

 @InboundChannelAdapter(channel = Source.OUTPUT, poller = @Poller(fixedRate = "5000"))

 public Message<?> generate() {

 String value = data[RANDOM.nextInt(data.length)];

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 104

 System.out.println("Sending: " + value);

 return MessageBuilder.withPayload(value)

 .setHeader("partitionKey", value)

 .build();

 }

}

application.yml.

 spring:

 cloud:

 stream:

 bindings:

 output:

 destination: partitioned.destination

 producer:

 partitioned: true

 partition-key-expression: headers['partitionKey']

 partition-count: 2

 required-groups:

 - myGroup

Note

The above configuration uses the default partitioning (key.hashCode() %

partitionCount). This may or may not provide a suitably balanced algorithm, depending on
the key values; you can override this default by using the partitionSelectorExpression
or partitionSelectorClass properties.

The required-groups property is only required if you need the consumer queues to be
provisioned when the producer is deployed. Otherwise, any messages sent to a partition will be
lost until the corresponding consumer is deployed.

This configuration provisions a topic exchange:

and these queues bound to that exchange:

with these bindings:

Consumer.

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 105

@SpringBootApplication

@EnableBinding(Sink.class)

public class RabbitPartitionConsumerApplication {

 public static void main(String[] args) {

 new SpringApplicationBuilder(RabbitPartitionConsumerApplication.class)

 .web(false)

 .run(args);

 }

 @StreamListener(Sink.INPUT)

 public void listen(@Payload String in, @Header(AmqpHeaders.CONSUMER_QUEUE) String queue) {

 System.out.println(in + " received from queue " + queue);

 }

}

application.yml.

 spring:

 cloud:

 stream:

 bindings:

 input:

 destination: partitioned.destination

 group: myGroup

 consumer:

 partitioned: true

 instance-index: 0

Important

The RabbitMessageChannelBinder does not support dynamic scaling; there must be at
least one consumer per partition. The consumer’s instanceIndex is used to indicate which
partition will be consumed. On platforms such as Cloud Foundry there can only be one instance
with an instanceIndex.

Part III. Appendices

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 107

Appendix A. Building
A.1 Basic Compile and Test

To build the source you will need to install JDK 1.7.

The build uses the Maven wrapper so you don’t have to install a specific version of Maven. To enable
the tests for Redis, Rabbit, and Kafka bindings you should have those servers running before building.
See below for more information on running the servers.

The main build command is

$./mvnw clean install

You can also add '-DskipTests' if you like, to avoid running the tests.

Note

You can also install Maven (>=3.3.3) yourself and run the mvn command in place of ./mvnw in
the examples below. If you do that you also might need to add -P spring if your local Maven
settings do not contain repository declarations for spring pre-release artifacts.

Note

Be aware that you might need to increase the amount of memory available to Maven by setting
a MAVEN_OPTS environment variable with a value like -Xmx512m -XX:MaxPermSize=128m.
We try to cover this in the .mvn configuration, so if you find you have to do it to make a build
succeed, please raise a ticket to get the settings added to source control.

The projects that require middleware generally include a docker-compose.yml, so consider using
Docker Compose to run the middeware servers in Docker containers. See the README in the scripts
demo repository for specific instructions about the common cases of mongo, rabbit and redis.

A.2 Documentation

There is a "full" profile that will generate documentation.

A.3 Working with the code

If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or Eclipse
when working with the code. We use the m2eclipe eclipse plugin for maven support. Other IDEs and
tools should also work without issue.

Importing into eclipse with m2eclipse

We recommend the m2eclipe eclipse plugin when working with eclipse. If you don’t already have
m2eclipse installed it is available from the "eclipse marketplace".

Unfortunately m2e does not yet support Maven 3.3, so once the projects are imported into Eclipse you
will also need to tell m2eclipse to use the .settings.xml file for the projects. If you do not do this
you may see many different errors related to the POMs in the projects. Open your Eclipse preferences,
expand the Maven preferences, and select User Settings. In the User Settings field click Browse and

http://compose.docker.io/
https://github.com/spring-cloud-samples/scripts
https://github.com/spring-cloud-samples/scripts
http://www.springsource.com/developer/sts
http://eclipse.org
http://eclipse.org/m2e/
http://eclipse.org/m2e/

Spring Cloud Stream Reference Guide

Elmhurst.RC3 Spring Cloud Stream 108

navigate to the Spring Cloud project you imported selecting the .settings.xml file in that project.
Click Apply and then OK to save the preference changes.

Note

Alternatively you can copy the repository settings from .settings.xml into your own ~/.m2/
settings.xml.

Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following
command:

$./mvnw eclipse:eclipse

The generated eclipse projects can be imported by selecting import existing projects from the
file menu. [[contributing] == Contributing

Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard
Github development process, using Github tracker for issues and merging pull requests into master. If
you want to contribute even something trivial please do not hesitate, but follow the guidelines below.

A.4 Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the contributor’s agreement.
Signing the contributor’s agreement does not grant anyone commit rights to the main repository, but
it does mean that we can accept your contributions, and you will get an author credit if we do. Active
contributors might be asked to join the core team, and given the ability to merge pull requests.

A.5 Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help. They can also be added after the
original pull request but before a merge.

• Use the Spring Framework code format conventions. If you use Eclipse you can import formatter
settings using the eclipse-code-formatter.xml file from the Spring Cloud Build project. If using
IntelliJ, you can use the Eclipse Code Formatter Plugin to import the same file.

• Make sure all new .java files to have a simple Javadoc class comment with at least an @author
tag identifying you, and preferably at least a paragraph on what the class is for.

• Add the ASF license header comment to all new .java files (copy from existing files in the project)

• Add yourself as an @author to the .java files that you modify substantially (more than cosmetic
changes).

• Add some Javadocs and, if you change the namespace, some XSD doc elements.

• A few unit tests would help a lot as well — someone has to do it.

• If no-one else is using your branch, please rebase it against the current master (or other target branch
in the main project).

• When writing a commit message please follow these conventions, if you are fixing an existing issue
please add Fixes gh-XXXX at the end of the commit message (where XXXX is the issue number).

https://github.com/spring-cloud/spring-cloud-build/blob/master/.settings.xml
https://support.springsource.com/spring_committer_signup
https://github.com/spring-cloud/build/tree/master/eclipse-coding-conventions.xml
http://plugins.jetbrains.com/plugin/6546
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

	Spring Cloud Stream Reference Guide
	Table of Contents
	Part I. Spring Cloud Stream Core
	1. Quick Start
	1.1 Step One - Create sample Application using Spring Initilaizer
	1.2 Step Two - Import project into the IDE
	1.3 Step Three - Add message handler, build and run

	2. What’s New in 2.0?
	2.1 New Features and Components
	Polling Consumer
	Micrometer support
	New Actuator Binding controls
	Configurable RetryTemplate

	2.2 Notable changes and enhancements
	Both Actuator and Web dependencies are now optional
	Content-type negotiation improvenents

	2.3 Notable Deprecations
	Java serialization (Java native and Kryo)
	Deprecated classes and methods

	3. Introducing Spring Cloud Stream
	4. Main Concepts
	4.1 Application Model
	Fat JAR

	4.2 The Binder Abstraction
	4.3 Persistent Publish-Subscribe Support
	4.4 Consumer Groups
	4.5 Consumer Types
	Durability

	4.6 Partitioning Support

	5. Programming Model
	5.1 Declaring and Binding Producers and Consumers
	Triggering Binding Via @EnableBinding
	@Input and @Output
	Customizing Channel Names
	Source, Sink, and Processor

	Accessing Bound Channels
	Injecting the Bound Interfaces
	Injecting Channels Directly

	Producing and Consuming Messages
	Native Spring Integration Support
	Spring Integration Error Channel Support
	Message Channel Binders and Error Channels
	Using @StreamListener for Automatic Content Type Handling
	Using @StreamListener for dispatching messages to multiple methods
	Using Polled Consumers

	Reactive Programming Support
	Reactor-based handlers
	Reactive Sources

	Aggregation
	Configuring aggregate application
	Configuring binding service properties for non self contained aggregate application

	6. Binders
	6.1 Producers and Consumers
	6.2 Binder SPI
	6.3 Binder Detection
	Classpath Detection

	6.4 Multiple Binders on the Classpath
	6.5 Connecting to Multiple Systems
	6.6 Binding visualization and control
	6.7 Binder configuration properties

	7. Configuration Options
	7.1 Spring Cloud Stream Properties
	7.2 Binding Properties
	Properties for Use of Spring Cloud Stream
	Consumer properties
	Producer Properties

	7.3 Using dynamically bound destinations

	8. Content Type negotiation
	8.1 Introduction
	8.2 Mechanics
	Content type vs. argument type
	Message Converters

	8.3 Provided MessageConverters
	8.4 User defined Message Converters

	9. Schema evolution support
	9.1 Apache Avro Message Converters
	9.2 Converters with schema support
	9.3 Schema Registry Support
	9.4 Schema Registry Server
	Schema Registry Server API

	9.5 Schema Registry Client
	Using Confluent’s Schema Registry
	Schema Registry Client properties

	9.6 Avro Schema Registry Client Message Converters
	Avro Schema Registry Message Converter properties

	9.7 Schema Registration and Resolution
	Schema Registration Process (Serialization)
	Schema Resolution Process (Deserialization)

	10. Inter-Application Communication
	10.1 Connecting Multiple Application Instances
	10.2 Instance Index and Instance Count
	10.3 Partitioning
	Configuring Output Bindings for Partitioning
	Configuring Input Bindings for Partitioning

	11. Testing
	11.1 Disabling the test binder autoconfiguration

	12. Health Indicator
	13. Metrics Emitter
	14. Samples
	14.1 Deploying Stream applications on CloudFoundry

	Part II. Binder Implementations
	15. Apache Kafka Binder
	15.1 Usage
	15.2 Apache Kafka Binder Overview
	15.3 Configuration Options
	Kafka Binder Properties
	Kafka Consumer Properties
	Kafka Producer Properties
	Usage examples
	Example: Setting autoCommitOffset false and relying on manual acking.
	Example: security configuration
	Using JAAS configuration files
	Using Spring Boot properties

	Example: Pausing and Resuming the Consumer

	15.4 Error Channels
	15.5 Kafka Metrics
	15.6 Dead-Letter Topic Processing
	15.7 Partitioning with the Kafka Binder

	16. Apache Kafka Streams Binder
	16.1 Usage
	16.2 Kafka Streams Binder Overview
	Streams DSL

	16.3 Configuration Options
	Kafka Streams Properties
	TimeWindow properties:

	16.4 Multiple Input Bindings
	Multiple Input Bindings as a Sink
	Multiple Input Bindings as a Processor

	16.5 Multiple Output Bindings (aka Branching)
	16.6 Message Conversion
	Outbound serialization
	Inbound Deserialization

	16.7 Error Handling
	Handling Deserialization Exceptions
	Handling Non-Deserialization Exceptions

	16.8 Interactive Queries

	17. RabbitMQ Binder
	17.1 Usage
	17.2 RabbitMQ Binder Overview
	17.3 Configuration Options
	RabbitMQ Binder Properties
	RabbitMQ Consumer Properties
	Rabbit Producer Properties

	17.4 Retry With the RabbitMQ Binder
	Overview
	Putting it All Together

	17.5 Error Channels
	17.6 Dead-Letter Queue Processing
	Non-Partitioned Destinations
	Partitioned Destinations
	republishToDlq=false
	republishToDlq=true

	17.7 Partitioning with the RabbitMQ Binder

	Part III. Appendices
	Appendix A. Building
	A.1 Basic Compile and Test
	A.2 Documentation
	A.3 Working with the code
	Importing into eclipse with m2eclipse
	Importing into eclipse without m2eclipse

	A.4 Sign the Contributor License Agreement
	A.5 Code Conventions and Housekeeping

