Spring Cloud Stream Reference Guide

Elmhurst.RC3

Sabby Anandan, Marius Bogoevici, Eric Bottard, Mark Fisher, llayaperumal Gopinathan, Gunnar
Hillert, Mark Pollack, Patrick Peralta, Glenn Renfro, Thomas Risberg, Dave Syer, David Turanski,
Janne Valkealahti, Benjamin Klein, Soby Chacko, Vinicius Carvalho, Gary Russell, Oleg Zhurakousky

Copyright © 2013-2017 Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Cloud Stream Reference Guide

Table of Contents

[. SPriNG ClOUA SrEAM COMEietiiii ettt ettt et e e et e et e e e e et e e et e e eaeaennns 1
I B Tor Q] = 2
1.1. Step One - Create sample Application using Spring Initilaizerccoocvvivvene. 2

1.2. Step Two - Import project into the IDE ... 2

1.3. Step Three - Add message handler, build and runcccoooiiiiiiiiii e, 2

2. WhAU'S NEW TN 2.07 ittt ettt e e et e e e e et r e e e et e e e e aaa e eeennen 5
2.1. New Features and COMPONENTSc.uuiiiuniiiii ittt e e e e e e e et eean e eaneees 5
POING CONSUMET ..uiieiii ettt ettt et e et e e 5
o0 g LT (=T G U] o] Lo o A 5

New Actuator Binding CONTIOISc..iiiuiiiii e 5
Configurable RetryTemMPIateccoouiiiiii e 5

2.2. Notable changes and enhanCemMENtSccuiiiiiieiiieiiii e e 5

Both Actuator and Web dependencies are now optionalcccoeeeviiiiiiiiiineennnn. 5
Content-type negotiation iMProVENENTSc..uiiiiiiiieiiiii e 6

ARG T N[0 ¢= o] [T B 1= o = Tor- 1 1o o 6
Java serialization (Java native and Kryo)ooooiiiiiiiiiiii e 6
Deprecated classes and MethodSoooiiuiiiiiiiiiiiii e 6

3. Introducing Spring Cloud STrEAMuiiiiiiii e e e e aens 8
A, IMAIN CONCEPLS ...ietiiiei ittt e et e et ettt e et e e et e e et e et aa e et et e e et e e et e aean e eanaaes 10
4.1, APPIICAtIoN MOELuniiiii e 10

FAl JAR e 10

4.2. The Binder ADSIFACLIONc..iiiiiiii e e e e 10

4.3. Persistent Publish-Subscribe SUPPOrt ..o 11

A @ T o LYW T =T S €1 0 U o 12

4.5, CONSUMET Ty PO ittt ettt ettt ettt e et e e e e e et et e et e ea e e e e e e eaaennns 12
(DN = 1o 1Y PP UPPPTTRPPPIN 13

4.6. Partitioning SUPPOI ...eeeniiii et e e e e e e e e e 13

5. Programming MOGELiiiiiiiii e 15
5.1. Declaring and Binding Producers and CONSUMENScoeeiiiinieiiiiineeieiineeeeiinnnen 15
Triggering Binding Via @nabl eBi Ndi NGccovviiiiiiii e, 15

@ NPUL ANd @DUL PUL .ottt e e et e et e e e e e eaas 15
Customizing Channel NaMESoiiiiiiiiiiii e 16

Source, Si NK, and ProCeSSOr ..o 16

Accessing Bound ChannelS ... 17

Injecting the Bound INterfacescocoiiiiiiiiiiiiiii e 17

Injecting Channels Dir€Ctlycouieiiiiiii e 17

Producing and Consuming MESSAGESciuuuiiuniiiiieeiiieeii e et e e e et e e eenaeeees 18

Native Spring Integration SUPPOITooeeuiiieiiiiiiecie e 18

Spring Integration Error Channel SUPPOrtcoooveveiiiiiiiieii e, 19

Message Channel Binders and Error Channelsccc.ocoiviiiiiiiiiinneennn. 19

Using @StreamListener for Automatic Content Type Handling 19

Using @StreamListener for dispatching messages to multiple methods 20

Using Polled CONSUMETS ... 21

Reactive Programming SUPPOITuuiiiiiieeiiiiee et ee et e e et e e et e e eeii e eeens 22
Reactor-based handlers ..o 23

REACHVE SOUICES ...ttt ea e 24

Yo o] (=To =i o] o H PP PPPPT P UPPPPTRRPPIN 25

Elmhurst.RC3 Spring Cloud Stream iii

Spring Cloud Stream Reference Guide

Configuring aggregate appliCationccooeieiiiiiiiiiiie e 27

Configuring binding service properties for non self contained aggregate
=T o] o] 110 1 1o o 27
LS =11 Lo [T PPN 29
6.1. Producers and CONSUMEBTSc.uuuiiieiii ettt e et e et e e e et e e e et e e e eea e e e eeea e eeeanns 29
B.2. BINAEE SPI ...ttt 29
(SRS T =1 [0 (=T 1= (= Tox 1T o PP 30
Classpath DELECHONciiuiiiiiiiii e e et e 30
6.4. Multiple Binders on the Classpathcccoooiiiiiiiiiii e 30
6.5. Connecting to MUltiple SYSTEMScoiiiiiiiii e 31
6.6. Binding visualization and CONIOloviiiiiiiiiii e 31
6.7. Binder configuration ProPertiESc.u.iiiiuiiiiii i e e e e e e e 32
7. Configuration OPLIONSccouuuiiiiii ettt et ettt et e e et e e e e nre e e enaans 34
7.1. Spring Cloud Stream PrOPertiESccouuuiiiiiiiiiee et eeii e 34
A = (o [T o Tl md (0] o 1=1 1 11T N 35
Properties for Use of Spring Cloud Streamccooiiiiiiiiiiiiiiii e 35
CONSUMET PIOPEILIES .uuieiiiii ettt ettt e e et e e et e e e et eeeeran s 35
[(o To [0 o= G o (0] o 1= T 1= P 36
7.3. Using dynamically bound destinationscocieuiiiiiiiiiiiieiii e 38
8. Content TYPE NEJOLIALIONiiiiii i e e eees 41
8.1, INEFOTUCTION ..ttt e e e e et et e e e e et e e enn b e e e e e eeeennees 41
8.2, MECRNANICS ..eeiiii ittt e aaas 41
Content type VS. arguUmMENT tYPEoeuuiiiieiii e 42
MESSAGE CONVEITEIS ..uuiiiiiiiiii et eae e e 43
8.3. Provided MeSSagECONVEITEISciiiiiieeiiii et e et e et e et e e et e e eeni e eees 43
8.4. User defined MeSSage CONVEIEIScccuuuuiiiiiiiieeeeii et e e eaai e 44
9. Schema eVOIULION SUPPOITiiii e e e e e e e e e e e e e e e et e et e e et e e et e eanaee 46
9.1. Apache AVIo MeSSage CONVEITEISuuiiiiiiiieeiiii ettt 46
9.2. Converters With SChEMa SUPPOIcoovuniiiiiiiie e 46
9.3. Schema REQISIIY SUPPOITuiiiiiieii e e e e e e e e e et eeaaeees 47
9.4. SChemMa REQISITY SEIVELuuiiiiiiiieii e a7
Schema Registry Server AP ... e 47
9.5. Schema ReQIStry ClENTcovuiiii e e eaaes 49
Using Confluent’'s Schema RegiSIIYovviiiiiiiiiiiiece e 50
Schema Registry Client Properties ..o 50
9.6. Avro Schema Registry Client Message CONVEIEIScccccuueeviiieiiiieeiieeeiiieeeieeannnns 50
Avro Schema Registry Message Converter propertiescccevveveevnneveninnenennnn 51
9.7. Schema Registration and ReSOIULIONc.uiiiiiiiiiiiiii e 51
Schema Registration Process (Serialization)cc.cccoveviiiiiiiiiiiiiieii e, 52
Schema Resolution Process (Deserialization)coeuviiiiiiiiinieiiiiineciieeeenennn 52
10. Inter-Application COMMUNICALIONoiiiiiieiiiiie e 53
10.1. Connecting Multiple Application INSTANCESccviiiiiieiiii i 53
10.2. Instance Index and INStaNCe COUNTccouuuiiiiiiiieiiiii e 53
10.3. PArtfIONING oevnieeiii e 53
Configuring Output Bindings for Partitioningccceeveiiiiiiiiiiin e, 53
Configuring Input Bindings for Partitioningccooeiiiiiiiiineiiieie, 55
SO = (] T PRSPPI 56
11.1. Disabling the test binder autoconfigurationccccciieiiiiiiiiiicii e 57
12. Health INAICALONcuuieiiiei et et e et e e et e e et e e e eeenns 58
R TR V1 ot =t o 71 (= P 59

Elmhurst.RC3 Spring Cloud Stream iv

Spring Cloud Stream Reference Guide

LA, SAMPIES ..ot e et ettt et et et et e e e e e e ena e aee 62
14.1. Deploying Stream applications on CloudFoundrycoocoviiieiiiiinieeiiiineeecinn. 62
[I. Binder IMpPIEMENTALIONSuiiiiiiii e e e e e e e e e e e et s e e e e e e et e e ean e eenaas 63
15. Apache Kafka BINAEIcoouuuiiiiiiiieeiii ettt 64
ST I U7 T [TR 64
15.2. Apache Kafka BINAEr OVEIVIEWcc.uiiiiiiiiiieeiiiiee e eeie e e e e e et e e e e eeaanes 64
15.3. Configuration OPLIONSc.uuuiieiiieieii ettt e e 64
Kafka BINAEr PrOPEITIESccouuuiiiiiii et 64
Kafka CONSUMET PIOPEITIESccuuiiiiiiiiiieeii e et e e e e e e e e e e e e 66
Kafka ProducCer PrOPEITIESiiiiiiiieiiiii ettt ettt 69
USAQE EXAMPIES .o 70

Example: Setting aut oCommi t Of f set false and relying on manual
BCKING. ettt 70
Example: security configurationccooeiiiiiiiiiiiii 70
Example: Pausing and Resuming the CONSUMErccccveveiiiieiiineeiinnennnnn. 72
15.4. Error CRANNEIS ...t e e e e e e 73
TR T - 11 - WY/ [T o 73
15.6. Dead-Letter TOPIC PrOCESSING ...ccvuuiiiieiiiieeiiiee e e e e e e e e e e e e e et e e e e eanaeees 73
15.7. Partitioning with the Kafka BINAercccouuiiiiiiiiiiii e 75
16. Apache Kafka Streams BINGErocouuniiiiiiiii e 77
G 0t R - T [PP 77
16.2. Kafka Streams Binder OVEIVIEWcccuiiiiiiiiiiieii et 77
SHIEAIMS DS .o et 77
16.3. Configuration OPLIONSc.uuiiiiiiiiiie e e e e e e e e e et e e e e e e e e et e eeanaanes 78
Kafka Streams Propertieso...ii oot 78
TIMEWINAOW PrOPEITIES: ..ottt eeeens 79
16.4. Multiple INPUE BINAINGScovniiiiii e e e e e e 80
Multiple Input BindiNgS S @ SINKcocouuiiiiiiiiiei e 80
Multiple Input Bindings @S @ PrOCESSONccccuuuiiiiiiiieiiii et 80
16.5. Multiple Output Bindings (aka Branching)cccooviiiiiiiiiiii e 81
16.6. MESSAQGE CONVEISIONceiiiiieiiiti ettt e et ettt e et e et e e e et eeeena e 82
Outbound SerialiZationcoocuiiii i 82
INbouNd DESEMAlIZALIONccevviiiii e 83
16.7. Error HandIiNgoooeeieii ettt 84
Handling Deserialization EXCEPLONScccuuiiiiiiiiiiiiiiii e 84
Handling Non-Deserialization EXCEPLIONScc.veviiiiiiiiiiiiieecie e eee e, 85
16.8. INtEracCtive QUEIIESuiiiieii e e e et e e et e e et e e e e eeanas 86
A 3=] o117 [I = 11 o =T 87
0t R £ T [PP 87
17.2. RabbitMQ BiNAEr OVEIVIEWieiiiiiiiiii et e e e e eees 87
17.3. Configuration OPLIONSc.uuuiiiiiiiieiiii et 88
RabbitMQ Binder ProPertiesccuviiiiiiiiiii e e e 88
RabbitMQ ConsSuMEr PrOPeItIESccuuuiiiiiiiieeeei e 89
Rabbit Producer Propertieso i 93
17.4. Retry With the RabbitMQ BiNAErcccouiiiiiiiii e 97
L@ YT T P 97
PUtting it All TOGEINET ... e 98
17.5. Error ChanNEISoouuniiiiieii e e 99
17.6. Dead-Letter QUEUE PrOCESSING ...ccevvtuiiieiiieeiiii ettt e ettt e et e et eeeai e eens 99
Non-Partitioned DestinatioNSccuoviiiiiiiiie e e e 100

Elmhurst.RC3 Spring Cloud Stream \

Spring Cloud Stream Reference Guide

Partitioned DeSHINALIONSviiiiiiieiiiii e 101
republiShTODIG=FalSEuiiiiii e 101
repUblIShTODIGTIIUE «.cvveii e 102

17.7. Partitioning with the RabbitMQ Bindercocoiiiiiiiiiii e 103

1N o] o 1T oo o = PSPPSR 106
N = U] T 11T S 107

A.1. BasiC COMPIlE ANA TESE ...cieiiiiiiiiiii e 107

YN B Lo T 0 1 1= o1 7= 11T o I PSP 107

A.3. Working With the COOEiiieiii e 107

Importing into eclipse with M2eClipSe ... 107

Importing into eclipse without M2eclipSecoouiiiiiiiiii e 108

A.4. Sign the Contributor License AQreementceeiuiiiiiiiiiii e 108

A.5. Code Conventions and HOUSEKEEPINGuiiiiiiiiiiiiiiiieceii e 108

Elmhurst.RC3 Spring Cloud Stream Vi

Part I. Spring Cloud Stream Core

Spring Cloud Stream Reference Guide

1. Quick Start

You can try Spring Cloud Stream in less then 5 min even before you jump into any details and the
following three-step guide will help.

We'll create a simple Spring Cloud Stream application which receives messages coming from the
messaging middleware of your choice (more on this later) and logs received messages to the console.
We'll call it LoggingConsumer. While not very practical it will certainly provide a good introduction to
some of the main concepts and abstractions, making it easier to digest the rest of this user guide.

So let's get started. . .

1.1 Step One - Create sample Application using Spring
Initilaizer

Visit the Spring Initializr. This is where we’ll generate our LoggingConsumer application.

In the Dependencies start typing 'stream' and Cloud Stream option should pop up. Select it. Now start
typing either 'kafka' or ‘rabbit’. Basically this is where you are choosing what messaging midleware this
application will be bound to. Choose the one you have already installed and/or feel more comfortable
with installing/running. Also, as you can see from the Initilaizer screen there are few other options you
can choose. For example, you can choose Gradle as your build tool instead of the default Maven. With
the Dependencies selected the only other thing you have to identify is the application name - logging-
consumer. Your configuration screeen should now contain the following:

Dependenci es: C oud Stream RabbitMQ (or Kafka)
Group: com exanple - default

Artifact: |ogging-consuner

Spring Boot Version: 2.0.0 (or above) - default

Click on Generate Project button. This will donwload the zipped version of the generated project to your
hard drive. Unzip it and you're ready for Step Two.

1.2 Step Two - Import project into the IDE

Here you simply import the project into your IDE of choice. Please keep in mind that dependening on the
IDE you may need to follow a specific import procedures. For example depending on how the project
was generated (Maven or Gradle) you may need to follow specific import procedure (e.g., in Eclipse/
STS:File # Inport # Maven # Existing Maven Project).

Ones imported the project must have no errors of any kind and sr ¢/ mai n/ j ava should also contain
com exanpl e. | oggi ngconsumer . Loggi ngConsuner Appl i cati on.

Technically at this point you can just run the application’s main class since it's already a valid Spring
Boot application, but it does not do anything, so let's add some code.

1.3 Step Three - Add message handler, build and run

Modify the com exanpl e. | oggi ngconsuner . Loggi ngConsuner Appl i cat i on to look as follows:

@pr i ngBoot Appl i cati on
@nabl eBi ndi ng(Si nk. cl ass)
public class Loggi ngConsuner Application {

Elmhurst.RC3 Spring Cloud Stream 2

https://start.spring.io

Spring Cloud Stream Reference Guide

public static void main(String[] args) {
Spri ngAppl i cation. run(Loggi ngConsurer Appl i cation. cl ass, args);
}

@t r eanli st ener (Si nk. | NPUT)
public void handl e(Person person) {
System out. println("Received: " + person);

}

public static class Person {
private String nane;
public String getNanme() {
return name;
}
public void setNane(String nane) {
thi s. name = nane;
}
public String toString() {
return this. nang;
}
}
}

As you can see from the above:

» We've enabled Si nk binding (input-no-output) via @nabl eBi ndi ng(Si nk. cl ass) . This will signal
to the framework to initiate binding to the messaging middleware where it will auto-create the
destination (i.e., queue, topic) which will be bound to Si nk. | NPUT channel.

» We've added handler method to receive incoming Message as type Per son. What this means is
that here youcan already observe one of the core features of the framework where it will attempt to
automatically convert incoming message’s payload to type Per son.

This is it, we now have a fully functional Spring Cloud Stream application that does something. From
here for simplicity we’ll assume RabbitMQ was selected in step one. Assuming you have RabbitMQ
installed and running, start the application by simply running its mai n method.

You should see following output:

--- [main] c.s.b.r.p.Rabbi t ExchangeQueueProvi si oner : declaring queue for inbound:

i nput . anonynous. CbM wdkJSBOLZoPDCt Ht Cg, bound to: i nput
--- [main] o.s.a.r.c.CachingConnectionFactory : Attenpting to connect to: [|ocal host:5672]
--- [main] o.s.a.r.c.CachingConnectionFactory : Created new connection:

r abbi t Connect i onFact or y#2a3a299: 0/ Si npl eConnect i on@6c83f c8.

--- [main] o.s.i.a.i.Ampl nboundChannel Adapt er : started
i nbound. i nput . anonynous. CbM wdkJSBOLZoPDCt Ht Cg

--- [main] c.e.l.Loggi ngConsunerApplication : Started Loggi ngConsuner Application in 2. 531
seconds (JVM running for 2.897)

Go to RabbitMQ management console or any other RabbitMQ client and
simply send message to input.anonynmous. CoM wdkJSBO1ZoPDOX Ht Cg (NOTE: the
anonynous. CoM wdkJSBOLZoPDQt Ht Cg part represents the group name and is generated and will
be different in your environment. For something more predictable you can use explicit group hame via
spring. cl oud. st ream bi ndi ngs. i nput . gr oup=hel | 0).

The contents of the message should be JSON representation of Per son class, so let's send this:

{"nane":"Turd Ferguson"}

And in your console you should see:

Elmhurst.RC3 Spring Cloud Stream 3

Spring Cloud Stream Reference Guide

Recei ved: Turd Ferguson

You can also build/package your application into a boot jar (i.e., . /mvnw cl ean install)and run
the built JAR using j ava -j ar command.

That is all!

Elmhurst.RC3 Spring Cloud Stream 4

Spring Cloud Stream Reference Guide

2. What’'s New in 2.0?

Spring Cloud Stream introduces quite a number of new features, enhancements and changes. The
following sections outline most notable ones.

2.1 New Features and Components

Polling Consumer

Introduction of polled consumers, where the application can control message processing rates. Please
refer to the appropriate section for more details. You can also read this blog for more details spring.io/
blog/2018/02/27/spring-cloud-stream-2-0-polled-consumers

Micrometer support

Metrics has been switched to use Micrometer. Met er Regi st ry is also provided as a bean so custom
application can autowire it to capture custom metrics. Please refer to the appropriate section for more
details

New Actuator Binding controls

There are now new new Actuator binding controls to both visualize as well as control Bindings lifecycle.
For more details please visit Section 6.6, “Binding visualization and control”

Configurable RetryTemplate

Aside from providing properties to configure Ret r yTenpl at e we now allow you to provide your own
effectively overriding the one provided by the framework. Simply configure it as a @ean in your
application.

2.2 Notable changes and enhancements

Both Actuator and Web dependencies are now optional

This helps to slim down the footprint of the deployed application in the event neither of the functionality
is required. It also allows one to swicth between the reactive and conventional web paradigms by adding
one of the following dependencies manually:

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-web</artifactld>
</ dependency>

or

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifact!|d>spring-boot-starter-webflux</artifactld>
</ dependency>

Actuator dependency can be added as follows:

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-actuator</artifactld>
</ dependency>

Elmhurst.RC3 Spring Cloud Stream 5

https://spring.io/blog/2018/02/27/spring-cloud-stream-2-0-polled-consumers
https://spring.io/blog/2018/02/27/spring-cloud-stream-2-0-polled-consumers
https://micrometer.io/

Spring Cloud Stream Reference Guide

Content-type negotiation improvenents

One of the core themes for 2.0 is improvements (both consistency and performance) around content-
type negotiation and message conversion. The following summary outlines notable changes and
improvements. Please refer to the appropriate section for more details as well as this blog spring.io/
blog/2018/02/26/spring-cloud-stream-2-0-content-type-negotiation-and-transformation.

2

All message conversion is now handled only by MessageConvert ers.
Introduction of @t r eanvessageConvert er annotation to provide custom MessageConverters.

Introduction of the default Content Type as appli cati on/j son which needs to be taken into
consideration when migrating 1.3 application and/or operating in the mixed mode (i.e., 1.3 producer
_, 2.0 consumer).

Messages with textual payloads and contentType text/...or ..[j son are no longer converted
to Message<Stri ng> for cases where argument type of the provided MessageHandl er can
not be determnied (i.e., public void handl e(Message<?> nessage) or public void
handl e(Obj ect payl oad)). Further more, a strong argument type may not be enough to
properly convert messages, so cont ent Type header is may be used as supplement by some
MessageConverters.

.3 Notable Deprecations

Java serialization (Java native and Kryo)

JavaSeri al i zati onMessageConverter and KryoMessageConverter. While these two
converters remain for now, they will be moved out of the core packages and support in the future.
The main reason for this deprecation is to signal the issue type-based language-specific serialization
couuld cause in the distributed environments, where Producers and Consumers may not only depend
on different JVM versions or have different versions of supporting libraries (i.e., Kryo), but to also draw
the attention to the fact that Consumers and Producers may and in a lot of cases are non-Java based.

Deprecated classes and methods

Following is a quick summary of notable deprecations. See corresponding javadocs fort more details.

Shar edChannel Regi st ry in favor of Shar edBi ndi ngTar get Regi stry.

Bi ndi ngs - beans qualified by it are already uniquely identified by their type. For example, provided
Sour ce, Processor or custom bindings:

public interface Foo {

}

String OUTPUT = "fooQut put”;

@ut put (Foo. QUTPUT)
MessageChannel out put();

Header Mode. r aw. Use none, header s or enbeddedHeader s

Producer Properties.partitionKeyExtractord ass in favor of
partitionKeyExtractorNane and ProducerProperties.partitionSelectorC ass in
favor of partiti onSel ect or Nane. This is to ensure that both components are Spring configured/
managed and referenced in Spring-friendly way.

Elmhurst.RC3 Spring Cloud Stream 6

https://spring.io/blog/2018/02/26/spring-cloud-stream-2-0-content-type-negotiation-and-transformation
https://spring.io/blog/2018/02/26/spring-cloud-stream-2-0-content-type-negotiation-and-transformation

Spring Cloud Stream Reference Guide

» Bi nder Awar eRout er BeanPost Pr ocessor - while the component exists it is no longer a Bean
Post Processor and will be renamed in the future.

* Bi nder Properties. set Environment (Properties envi ronnent) in favor of
Bi nder Properti es. set Envi ronnent (Map<Stri ng, Cbject> environnent).

This section goes into more detail about how you can work with Spring Cloud Stream. It covers topics
such as creating and running stream applications.

Elmhurst.RC3 Spring Cloud Stream 7

Spring Cloud Stream Reference Guide

3. Introducing Spring Cloud Stream

Spring Cloud Stream is a framework for building message-driven microservice applications. Spring
Cloud Stream builds upon Spring Boot to create standalone, production-grade Spring applications, and
uses Spring Integration to provide connectivity to message brokers. It provides opinionated configuration
of middleware from several vendors, introducing the concepts of persistent publish-subscribe semantics,
consumer groups, and partitions.

You can add the @nabl eBi ndi ng annotation to your application to get immediate connectivity to a
message broker, and you can add @5t r eanLi st ener to a method to cause it to receive events for
stream processing. The following is a simple sink application which receives external messages.

@pr i ngBoot Appl i cati on
@nabl eBi ndi ng(Si nk. cl ass)
public class VoteRecordi ngSi nkApplication {

public static void main(String[] args) {
SpringAppl i cation. run(Vot eRecor di ngSi nkAppl i cati on. cl ass, args);

}

@5t r eanli st ener (Si nk. | NPUT)
public void processVote(Vote vote) {
voti ngService. recordVote(vote);
}
}

The @tnabl eBi ndi ng annotation takes one or more interfaces as parameters (in this case, the
parameter is a single Si nk interface). An interface declares input and/or output channels. Spring
Cloud Stream provides the interfaces Sour ce, Si nk, and Pr ocessor ; you can also define your own
interfaces.

The following is the definition of the Si nk interface:

public interface Sink {
String INPUT = "input";

@ nput (Si nk. I NPUT)
Subscri babl eChannel input();
}

The @ nput annotation identifies an input channel, through which received messages enter the
application; the @ut put annotation identifies an output channel, through which published messages
leave the application. The @ nput and @ut put annotations can take a channel name as a parameter;
if a name is not provided, the name of the annotated method will be used.

Spring Cloud Stream will create an implementation of the interface for you. You can use this in the
application by autowiring it, as in the following example of a test case.

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)

@pringAppl i cationConfiguration(classes = VoteRecordi ngSi nkAppl i cati on. cl ass)
@\ebAppConfi guration

@i rtiesCont ext

public class StreamApplicationTests {

@\ut owi r ed
private Sink sink;

@est

public void contextLoads() {
assertNot Nul | (this.sink.input());

}

Elmhurst.RC3 Spring Cloud Stream 8

Spring Cloud Stream Reference Guide

}

Elmhurst.RC3 Spring Cloud Stream

Spring Cloud Stream Reference Guide

4. Main Concepts

Spring Cloud Stream provides a number of abstractions and primitives that simplify the writing of
message-driven microservice applications. This section gives an overview of the following:

» Spring Cloud Stream’s application model

* The Binder abstraction

Persistent publish-subscribe support

« Consumer group support

Partitioning support

A pluggable Binder API

4.1 Application Model

A Spring Cloud Stream application consists of a middleware-neutral core. The application communicates
with the outside world through input and output channels injected into it by Spring Cloud Stream.
Channels are connected to external brokers through middleware-specific Binder implementations.

Spring Cloud Stream Application

Application Core

inputs outputs

Binder

Middleware

., A

Figure 4.1. Spring Cloud Stream Application
Fat JAR

Spring Cloud Stream applications can be run in standalone mode from your IDE for testing. To run a
Spring Cloud Stream application in production, you can create an executable (or “fat") JAR by using the
standard Spring Boot tooling provided for Maven or Gradle.

4.2 The Binder Abstraction

Spring Cloud Stream provides Binder implementations for Kafka and Rabbit MQ. Spring Cloud Stream
also includes a TestSupportBinder, which leaves a channel unmodified so that tests can interact with

Elmhurst.RC3 Spring Cloud Stream 10

https://github.com/spring-cloud/spring-cloud-stream/tree/master/spring-cloud-stream-binders/spring-cloud-stream-binder-kafka
https://github.com/spring-cloud/spring-cloud-stream/tree/master/spring-cloud-stream-binders/spring-cloud-stream-binder-rabbit
https://github.com/spring-cloud/spring-cloud-stream/blob/master/spring-cloud-stream-test-support/src/main/java/org/springframework/cloud/stream/test/binder/TestSupportBinder.java

Spring Cloud Stream Reference Guide

channels directly and reliably assert on what is received. You can use the extensible API to write your
own Binder.

Spring Cloud Stream uses Spring Boot for configuration, and the Binder abstraction makes it
possible for a Spring Cloud Stream application to be flexible in how it connects to middleware. For
example, deployers can dynamically choose, at runtime, the destinations (e.g., the Kafka topics or
RabbitMQ exchanges) to which channels connect. Such configuration can be provided through external
configuration properties and in any form supported by Spring Boot (including application arguments,
environment variables, and appl i cati on.ynl or application. properties files). In the sink
example from the Chapter 3, Introducing Spring Cloud Stream section, setting the application property
spring. cl oud. st ream bi ndi ngs. i nput . desti nati on to r aw sensor - dat a will cause it to
read from the r aw sensor - dat a Kafka topic, or from a queue bound to the r aw sensor - dat a
RabbitMQ exchange.

Spring Cloud Stream automatically detects and uses a binder found on the classpath. You can easily use
different types of middleware with the same code: just include a different binder at build time. For more
complex use cases, you can also package multiple binders with your application and have it choose the
binder, and even whether to use different binders for different channels, at runtime.

4.3 Persistent Publish-Subscribe Support

Communication between applications follows a publish-subscribe model, where data is broadcast
through shared topics. This can be seen in the following figure, which shows a typical deployment for
a set of interacting Spring Cloud Stream applications.

HTTP
v
raw-sensor-data
A - yr
' Ty 5
Ingest
Averages HDFS
v
averages
i " ™
TopN Fault Detection
¥
hottest

Figure 4.2. Spring Cloud Stream Publish-Subscribe

Data reported by sensors to an HTTP endpoint is sent to a common destination named r aw sensor -
dat a. From the destination, it is independently processed by a microservice application that computes

Elmhurst.RC3 Spring Cloud Stream 11

Spring Cloud Stream Reference Guide

time-windowed averages and by another microservice application that ingests the raw data into HDFS.
In order to process the data, both applications declare the topic as their input at runtime.

The publish-subscribe communication model reduces the complexity of both the producer and the
consumer, and allows new applications to be added to the topology without disruption of the existing
flow. For example, downstream from the average-calculating application, you can add an application
that calculates the highest temperature values for display and monitoring. You can then add another
application that interprets the same flow of averages for fault detection. Doing all communication through
shared topics rather than point-to-point queues reduces coupling between microservices.

While the concept of publish-subscribe messaging is not new, Spring Cloud Stream takes the extra step
of making it an opinionated choice for its application model. By using native middleware support, Spring
Cloud Stream also simplifies use of the publish-subscribe model across different platforms.

4.4 Consumer Groups

While the publish-subscribe model makes it easy to connect applications through shared topics, the
ability to scale up by creating multiple instances of a given application is equally important. When doing
this, different instances of an application are placed in a competing consumer relationship, where only
one of the instances is expected to handle a given message.

Spring Cloud Stream models this behavior through the concept of a consumer group. (Spring
Cloud Stream consumer groups are similar to and inspired by Kafka consumer groups.)
Each consumer binding can use the spri ng. cl oud. st ream bi ndi ngs. <channel Nane>. gr oup
property to specify a group name. For the consumers shown in the following figure, this property
would be set as spring.cloud. stream bi ndi ngs. <channel Nane>. gr oup=hdf sWite or
spring. cl oud. st ream bi ndi ngs. <channel Name>. gr oup=aver age.

HTTP

L
‘ raw-sensor-data |

- n

*° Y
HDFS HDFS Average Average
Write Write Calculator Calculator
1 2 1 2
group=hdfsWrite group=average

Figure 4.3. Spring Cloud Stream Consumer Groups

All groups which subscribe to a given destination receive a copy of published data, but only one
member of each group receives a given message from that destination. By default, when a group is
not specified, Spring Cloud Stream assigns the application to an anonymous and independent single-
member consumer group that is in a publish-subscribe relationship with all other consumer groups.

4.5 Consumer Types

Two types of consumer are supported:

* Message-driven (sometimes referred to as Asynchronous)

Elmhurst.RC3 Spring Cloud Stream 12

Spring Cloud Stream Reference Guide

» Polled (sometimes referred to as Synchronous)

Prior to version 2.0, only asynchronous consumers were supported, where a message is delivered as
soon as it is available (and there is a thread available to process it).

You might want to use a synchronous consumer when you wish to control the rate at which messages
are processed.

Durability

Consistent with the opinionated application model of Spring Cloud Stream, consumer group
subscriptions are durable. That is, a binder implementation ensures that group subscriptions are
persistent, and ones at least one subscription for a group has been created, the group will receive
messages, even if they are sent while all applications in the group are stopped.

@ Note

Anonymous subscriptions are non-durable by nature. For some binder implementations (e.g.,
RabbitMQ), it is possible to have non-durable group subscriptions.

In general, it is preferable to always specify a consumer group when binding an application to a given
destination. When scaling up a Spring Cloud Stream application, you must specify a consumer group for
each of its input bindings. This prevents the application’s instances from receiving duplicate messages
(unless that behavior is desired, which is unusual).

4.6 Partitioning Support

Spring Cloud Stream provides support for partitioning data between multiple instances of a given
application. In a partitioned scenario, the physical communication medium (e.g., the broker topic)
is viewed as being structured into multiple partitions. One or more producer application instances
send data to multiple consumer application instances and ensure that data identified by common
characteristics are processed by the same consumer instance.

Spring Cloud Stream provides a common abstraction for implementing partitioned processing use cases
in a uniform fashion. Partitioning can thus be used whether the broker itself is naturally partitioned (e.qg.,
Kafka) or not (e.g., RabbitMQ).

HTTP
1 n . Average
- el ®| Processor
I i
HTTP
IO e Average
e CRULET || 7| Processor
HTTP
Topic

Figure 4.4. Spring Cloud Stream Partitioning

Partitioning is a critical concept in stateful processing, where it is critical, for either performance or
consistency reasons, to ensure that all related data is processed together. For example, in the time-

Elmhurst.RC3 Spring Cloud Stream 13

Spring Cloud Stream Reference Guide

windowed average calculation example, it is important that all measurements from any given sensor
are processed by the same application instance.

@ Note

To set up a partitioned processing scenario, you must configure both the data-producing and
the data-consuming ends.

Elmhurst.RC3 Spring Cloud Stream 14

Spring Cloud Stream Reference Guide

5. Programming Model

This section describes Spring Cloud Stream’s programming model. Spring Cloud Stream provides a
number of predefined annotations for declaring bound input and output channels as well as how to listen
to channels.

5.1 Declaring and Binding Producers and Consumers

Triggering Binding Via @nabl eBi ndi ng

You can turn a Spring application into a Spring Cloud Stream application by applying the
@nabl eBi ndi ng annotation to one of the application’s configuration classes. The @nabl eBi ndi ng
annotation itself is meta-annotated with @Conf i gur ati on and triggers the configuration of Spring
Cloud Stream infrastructure:

@nmport(...)

@confi guration

@nabl el nt egration

public @nterface Enabl eBinding {

a;elss<?>[] val ue() default {};

}

The @nabl eBi ndi ng annotation can take as parameters one or more interface classes that contain
methods which represent bindable components (typically message channels).

@ Note

The @Enabl eBi ndi ng annotation is only required on your Configuration
classes, you can provide as many binding interfaces as you need, for instance:
@nabl eBi ndi ng(val ue={ Orders. cl ass, Paynent.cl ass}. Where both Or der and
Paymnent interfaces would declare @ nput and @ut put channels.

@ nput and @ut put

A Spring Cloud Stream application can have an arbitrary number of input and output channels defined
in an interface as @ nput and @ut put methods:

public interface Barista {

@ nput
Subscri babl eChannel orders();

@ut put
MessageChannel hot Dri nks();

@ut put
MessageChannel col dDri nks();
}

Using this interface as a parameter to @nabl eBi ndi ng will trigger the creation of three bound
channels named or der s, hot Dri nks, and col dDr i nks, respectively.

@Enabl eBi ndi ng(Bari st a. cl ass)
public class CafeConfiguration {

Elmhurst.RC3 Spring Cloud Stream 15

Spring Cloud Stream Reference Guide

@ Note

In Spring Cloud Stream, the bindable MessageChannel components are the Spring Messaging
MessageChannel (for outbound) and its extension Subscri babl eChannel (for inbound).
Using the same mechanism, other bindable components can be supported. KSt r eamsupport
in Spring Cloud Stream Kafka binder is one such example where KStream is used as inbound/
outbound bi ndabl e components. Also, as discussed below, a Pol | abl eMessageSour ce
can be bound to an inbound destination. In this documentation, we will continue to refer to
MessageChannels as the bi ndabl e components.

Starting with version 2.0, you can now bind a pollable consumer as follows:

public interface PolledBarista {

@ nput
Pol | abl eMessageSour ce orders();

@ut put
MessageChannel hot Dri nks();

@ut put
MessageChannel col dDri nks();

In this case, an implementation of Pol | abl eMessageSour ce is bound to the or der s "channel".
Customizing Channel Names

Using the @ nput and @but put annotations, you can specify a customized channel name for the
channel, as shown in the following example:

public interface Barista {

@ nput ("i nboundOr ders")
Subscri babl eChannel orders();

In this example, the created bound channel will be named i nboundOr der s.
Sour ce, Si nk, and Processor

For easy addressing of the most common use cases, which involve either an input channel, an output
channel, or both, Spring Cloud Stream provides three predefined interfaces out of the box.

Sour ce can be used for an application which has a single outbound channel.

public interface Source {
String OUTPUT = "output"”;

@ut put (Sour ce. QUTPUT)
MessageChannel output ();

Si nk can be used for an application which has a single inbound channel.
public interface Sink {
String INPUT = "input";

@ nput (Si nk. | NPUT)

Elmhurst.RC3 Spring Cloud Stream 16

Spring Cloud Stream Reference Guide

Subscri babl eChannel input();

Processor can be used for an application which has both an inbound channel and an outbound
channel.

public interface Processor extends Source, Sink {

}

Spring Cloud Stream provides no special handling for any of these interfaces; they are only provided
out of the box.

Accessing Bound Channels

Injecting the Bound Interfaces

For each bound interface, Spring Cloud Stream will generate a bean that implements the interface.
Invoking a @ nput -annotated or @ut put -annotated method of one of these beans will return the
relevant bound channel.

The bean in the following example sends a message on the output channel when its hel | o method is
invoked. It invokes out put () on the injected Sour ce bean to retrieve the target channel.

@onponent
public class Sendi ngBean {

private Source source;

@\ut owi r ed
publ i ¢ Sendi ngBean(Source source) {
this.source = source;

}

public void sayHello(String nane) {
sour ce. out put (). send(MessageBui | der. wi t hPayl oad(nane) . bui l d());

}

Injecting Channels Directly
Bound channels can be also injected directly:

@onponent
public class Sendi ngBean {

private MessageChannel output;

@\ut owi red
publ i ¢ Sendi ngBean(MessageChannel output) {
t hi s. output = output;

}

public void sayHello(String nane) {
out put . send(MessageBui | der. wi t hPayl oad(nane) . bui l d());

}

If the name of the channel is customized on the declaring annotation, that name should be used instead
of the method name. Given the following declaration:

public interface CustonSource {

Elmhurst.RC3 Spring Cloud Stream 17

Spring Cloud Stream Reference Guide

@ut put (" cust onut put ")
MessageChannel output();

The channel will be injected as shown in the following example:

@Conponent
public class Sendi ngBean {

private MessageChannel output;

@\ut owi r ed
publ i c Sendi ngBean(@ual i fier("custonfutput") MessageChannel output) {
this.output = output;

}

public void sayHello(String nane) {
t hi s. out put.send(MessageBui | der. wi t hPayl oad(nane) . buil d());
}

Producing and Consuming Messages

You can write a Spring Cloud Stream application using either Spring Integration annotations
or Spring Cloud Stream’s @bt r eanli st ener annotation. The @bt r eanli st ener annotation is
modeled after other Spring Messaging annotations (such as @/kssageMappi ng, @nsLi st ener,
@rabbi t Li st ener, etc.) but adds content type management and type coercion features.

Native Spring Integration Support

Because Spring Cloud Stream is based on Spring Integration, Stream completely inherits Integration’s
foundation and infrastructure as well as the component itself. For example, you can attach the output
channel of a Sour ce to a MessageSour ce:

@Enabl eBi ndi ng(Sour ce. cl ass)
public class TinmerSource {

@al ue("${format}")
private String fornat;

@Bean
@ nboundChannel Adapt er (val ue = Source. OQUTPUT, poller = @ol |l er(fixedDelay = "${fixedDel ay}",
maxMessagesPer Pol | = "1"))
publ i c MessageSource<String> tinmer MessageSource() {
return () -> new GenericMessage<>(new Si npl eDat eFor mat (format) . format (new Date()));
}
}

Or you can use a processor’s channels in a transformer:

@Enabl eBi ndi ng(Processor. cl ass)
public class TransfornProcessor {
@r ansf or ner (i nput Channel = Processor. | NPUT, output Channel = Processor. QUTPUT)
public Object transforn(String nessage) {
return nessage.toUpper Case();

}

}

@ Note

It's important to understant that when you consume from the same binding using
@t reanLi stener a pubsub model is used, where each method annotated with
@5t r eanLi st ener receives it's own copy of the message, each one has its own consumer

Elmhurst.RC3 Spring Cloud Stream 18

Spring Cloud Stream Reference Guide

group. However, if you share a bindable channel as an input for @GAggr egat or , @tr ansf or ner
or @er vi ceActi vat or, those will consume in a competing model, no individual consumer
group is created for each subscription.

Spring Integration Error Channel Support

Spring Cloud Stream supports publishing error messages received by the Spring Integration global
error channel. Error messages sent to the er r or Channel can be published to a specific destination
at the broker by configuring a binding for the outbound target named error. For example, to
publish error messages to a broker destination named "myErrors”, provide the following property:
spring. cl oud. st ream bi ndi ngs. error. destinati on=nyErrors.

Message Channel Binders and Error Channels

Starting with version 1.3, some MessageChannel - based binders publish errors to a discrete
error channel for each destination. In addition, these error channels are bridged to the global
Spring Integration er r or Channel mentioned above. You can therefore consume errors for specific
destinations and/or for all destinations, using a standard Spring Integration flow (I nt egr ati onFl ow,
@ber vi ceActi vat or, etc.).

On the consumer side, the listener thread catches any exceptions and forwards an Er r or Message
to the destination’s error channel. The payload of the message is a Messagi ngExcept i on with the
normal f ai | edMessage and cause properties. Usually, the raw data received from the broker is
included in a header. For binders that support (and are configured with) a dead letter destination; a
MessagePubl i shi ngEr r or Handl er is subscribed to the channel, and the raw data is forwarded to
the dead letter destination.

On the producer side; for binders that support some kind of async result after publishing
messages (e.g. RabbitMQ, Kafka), you can enable an error channel by setting the

producer. err or Channel Enabl ed to tr ue. The payload of the Err or Message depends on the
binder implementation but will be a Messagi ngExcept i on with the normal f ai | edMessage property,
as well as additional properties about the failure. Refer to the binder documentation for complete details.

Using @StreamListener for Automatic Content Type Handling

Complementary to its Spring Integration support, Spring Cloud Stream provides its own
@bt reanLi st ener annotation, modeled after other Spring Messaging annotations (e.g.
@kssageMappi ng, @nsLi st ener, @Rabbi t Li st ener, etc.). The @t r eanLi st ener annotation
provides a simpler model for handling inbound messages, especially when dealing with use cases that
involve content type management and type coercion.

Spring Cloud Stream provides an extensible MessageConverter mechanism for handling data
conversion by bound channels and for, in this case, dispatching to methods annotated with
@&t r eanLi st ener . The following is an example of an application which processes external Vot e
events:

@Enabl eBi ndi ng(Si nk. cl ass)
public class VoteHandl er {

@\ut owi r ed
Vot i ngServi ce votingService;

@t r eanli st ener (Si nk. | NPUT)
public void handl e(Vote vote) {
votingService.record(vote);
}
}

Elmhurst.RC3 Spring Cloud Stream 19

Spring Cloud Stream Reference Guide

The distinction between @5t r eanli st ener and a Spring Integration @ser vi ceAct i vat or is seen
when considering an inbound Message that has a St ri ng payload and a cont ent Type header of
application/json. In the case of @t reanli st ener, the MessageConvert er mechanism will
use the cont ent Type header to parse the St ri ng payload into a Vot e object.

As with other Spring Messaging methods, method arguments can be annotated with @ayl oad,
@Header s and @Header .

@ Note

For methods which return data, you must use the @endTo annotation to specify the output
binding destination for data returned by the method:

@nabl eBi ndi ng(Processor . cl ass)
public class TransfornProcessor {

@\ut owi red
Vot i ngServi ce votingService;

@t r eanli st ener (Processor . | NPUT)
@endTo(Processor . OUTPUT)
public VoteResult handl e(Vote vote) {
return votingService.record(vote);
}
}

Using @StreamListener for dispatching messages to multiple methods

Since version 1.2, Spring Cloud Stream supports dispatching messages to multiple @t r eanli st ener
methods registered on an input channel, based on a condition.

In order to be eligible to support conditional dispatching, a method must satisfy the follow conditions:
* it must not return a value
* it must be an individual message handling method (reactive API methods are not supported)

The condition is specified via a SpEL expression in the condi ti on attribute of the annotation and is
evaluated for each message. All the handlers that match the condition will be invoked in the same thread
and no assumption must be made about the order in which the invocations take place.

An example of using @bt r eanlLi st ener with dispatching conditions can be seen below. In this
example, all the messages bearing a header t ype with the value f oo will be dispatched to the
recei veFoo method, and all the messages bearing a header t ype with the value bar will be
dispatched to the r ecei veBar method.

@nabl eBi ndi ng(Si nk. cl ass)
@Enabl eAut oConfi guration
public static class TestPoj oW thAnnot at edAr gunents {

@t reanli stener(target = Sink.|NPUT, condition = "headers['type']=="fo0"")
public void recei veFoo(@ayl oad FooPojo fooPojo) {
/1 handl e the nessage

}

@t reanli stener (target = Sink.|NPUT, condition = "headers['type']=="bar"'")
public void receiveBar (@ayl oad BarPojo barPojo) {
/'l handl e the nessage

}

Elmhurst.RC3 Spring Cloud Stream 20

Spring Cloud Stream Reference Guide

@ Note

Dispatching via @5t r eanLi st ener conditions is only supported for handlers of individual
messages, and not for reactive programming support (described below).

Using Polled Consumers

When using polled consumers, you poll the Pol | abl eMessageSour ce on demand. For example,
given...

public interface PolledConsuner {

@ nput
Pol | abl eMessageSour ce destIn();

@out put
MessageChannel destQut ();

...you might use that consumer as follows:

@Bean
public ApplicationRunner poller(Pollabl eMessageSource destln, MessageChannel destQut) {
return args -> {
whi l e (sonmeCondition()) {
try {
if (!destin.poll(m-> {
String newPayl oad = ((String) m getPayl oad()).toUpperCase();
dest Qut . send(new Generi cMessage<>(newPayl oad)) ;
) A
Thr ead. sl eep(1000) ;
}

}
catch (Exception e) {

/1 handle failure (throw an exception to reject the nessage);

}

The Pol | abl eMessageSour ce. pol | () method takes a MessageHandl er argument (often a
lambda expression as shown here). It returns t r ue if the message was received and successfully
processed.

As with message-driven consumers, if the MessageHandl er throws an exception, messages are
published to error channels as discussed in the section called “Message Channel Binders and Error
Channels”.

Normally, the pol | () method will acknowledge the message when the MessageHandl| er exits. If the
method exits abnormally, the message is rejected (not requeued). You can override that behavior, by
taking responsibility for the acknowledgment, as follows:

@Bean
publ i c ApplicationRunner poller(Poll abl eMessageSource dest 1l n, MessageChannel dest2Qut) {
return args -> {
whil e (soneCondition()) {
if (tdestlln.poll(m-> {
St at i cMessageHeader Accessor . get Acknow edgrent Cal | back(n) . noAut oAck() ;
/1 e.g. hand off to another thread which can performthe ack
/1 or acknow edge(St at us. REQUEUE)

) A
Thr ead. sl eep(1000) ;

Elmhurst.RC3 Spring Cloud Stream 21

Spring Cloud Stream Reference Guide

@ Important

You must ack (or nack) the message at some point, to avoid resource leaks.

@ Important

Some messaging systems (such as Apache Kafka) maintain a simple

offset in a log, if a delivery fails and is requeued with

St ati cMessageHeader Accessor . get Acknow edgnent Cal | back(n) . acknow edge(St at us. REQUE
any later successfully ack'd messages will be redelivered.

There is also an overloaded pol | method:

pol | (MessageHandl er handl er, ParaneterizedTypeRef erence<?> type)

The t ype is a conversion hint allowing the incoming message payload to be converted:

bool ean result = pol | abl eSource. pol | (received -> {
Map<String, Foo> payload = (Map<String, Foo>) received. getPayl oad();

}, new Paranet eri zedTypeRef erence<Map<String, Foo>>() {});

Reactive Programming Support

Spring Cloud Stream also supports the use of reactive APIs where incoming and outgoing data is
handled as continuous data flows. Support for reactive APIs is available via the spri ng- cl oud-
st ream r eact i ve, which needs to be added explicitly to your project.

The programming model with reactive APIs is declarative, where instead of specifying how each
individual message should be handled, you can use operators that describe functional transformations
from inbound to outbound data flows.

Spring Cloud Stream supports the following reactive APIs:
* Reactor
In the future, it is intended to support a more generic model based on Reactive Streams.

The reactive programming model is also using the @5t r eanLi st ener annotation for setting up reactive
handlers. The differences are that:

» the @5t r eanlLi st ener annotation must not specify an input or output, as they are provided as
arguments and return values from the method;

» the arguments of the method must be annotated with @ nput and @ut put indicating which input
or output will the incoming and respectively outgoing data flows connect to;

* the return value of the method, if any, will be annotated with @ut put , indicating the input where
data shall be sent.

@ Note

Reactive programming support requires Java 1.8.

Elmhurst.RC3 Spring Cloud Stream 22

Spring Cloud Stream Reference Guide

Note

As of Spring Cloud Stream 1.1.1 and later (starting with release train Brooklyn.SR2),
reactive programming support requires the use of Reactor 3.0.4.RELEASE and higher.
Earlier Reactor versions (including 3.0.1.RELEASE, 3.0.2.RELEASE and 3.0.3.RELEASE)
are not supported. spri ng-cl oud- st reamreacti ve will transitively retrieve the proper
version, but it is possible for the project structure to manage the version of the
i 0. proj ectreactor:reactor-core to an earlier release, especially when using Maven.
This is the case for projects generated via Spring Initializr with Spring Boot 1.x, which will
override the Reactor version to 2. 0. 8. RELEASE. In such cases you must ensure that the
proper version of the artifact is released. This can be simply achieved by adding a direct
dependency oni 0. proj ectreact or: r eact or - cor e with a version of 3. 0. 4. RELEASE or
later to your project.

Note

The use of term r eact i ve is currently referring to the reactive APIs being used and not to the
execution model being reactive (i.e. the bound endpoints are still using a 'push’ rather than "pull’
model). While some backpressure support is provided by the use of Reactor, we do intend on
the long run to support entirely reactive pipelines by the use of native reactive clients for the
connected middleware.

Reactor-based handlers

A Reactor based handler can have the following argument types:

» For arguments annotated with @ nput , it supports the Reactor type Fl ux. The parameterization of
the inbound Flux follows the same rules as in the case of individual message handling: it can be the
entire Message, a POJO which can be the Message payload, or a POJO which is the result of a
transformation based on the Message content-type header. Multiple inputs are provided;

» For arguments annotated with Qut put , it supports the type Fl uxSender which connects a Fl ux
produced by the method with an output. Generally speaking, specifying outputs as arguments is only
recommended when the method can have multiple outputs;

A Reactor based handler supports a return type of Fl ux, case in which it must be annotated with
@ut put . We recommend using the return value of the method when a single output flux is available.

Here is an example of a simple Reactor-based Processor.

}
}

@nabl eBi ndi ng(Processor. cl ass)
@Enabl eAut oConfi gurati on
public static class UppercaseTransforner {

@bt r eanii st ener

@ut put (Processor . QUTPUT)

public Flux<String> receive(@nput(Processor.|NPUT) Flux<String> input) {
return input.map(s -> s.toUpperCase());

The same processor using output arguments looks like this:

@Enabl eBi ndi ng(Processor. cl ass)
@Enabl eAut oConfi gurati on
public static class UppercaseTransforner {

Elmhurst.RC3 Spring Cloud Stream 23

Spring Cloud Stream Reference Guide

@5t r eanli st ener

public void receive(@ nput(Processor. | NPUT) Flux<String> input,
@ut put (Processor. QUTPUT) Fl uxSender output) {
out put . send(i nput. map(s -> s.toUpperCase()));

Reactive Sources

Spring Cloud Stream reactive support also provides the ability for creating reactive sources through the
StreamEmitter annotation. Using StreamEmitter annotation, a regular source may be converted to a
reactive one. StreamEmitter is a method level annotation that marks a method to be an emitter to outputs
declared via EnableBinding. It is not allowed to use the Input annotation along with StreamEmitter, as
the methods marked with this annotation are not listening from any input, rather generating to an output.
Following the same programming model used in StreamListener, StreamEmitter also allows flexible
ways of using the Output annotation depending on whether the method has any arguments, return type
etc.

Here are some examples of using StreamEmitter in various styles.

The following example will emit the "Hello World" message every millisecond and publish to a Flux. In
this case, the resulting messages in Flux will be sent to the output channel of the Source.

@nabl eBi ndi ng(Sour ce. cl ass)
@nabl eAut oConf i gurati on
public static class Hell owrldEmtter {

@t reanEni tter
@ut put (Sour ce. QUTPUT)
public Flux<String> emt() {
return Flux.interval MI11is(1)
.map(l -> "Hello World");

Following is another flavor of the same sample as above. Instead of returning a Flux, this method uses
a FluxSender to programmatically send Flux from a source.

@nabl eBi ndi ng(Sour ce. cl ass)
@nabl eAut oConf i gurati on
public static class HellowrldEnmtter {

@t reanEni tter
@out put (Sour ce. QUTPUT)
public void emt(FluxSender output) {
out put.send(Flux.interval MI1is(1)
.map(l -> "Hello World"));

Following is exactly same as the above snippet in functionality and style. However, instead of using an
explicit Output annotation at the method level, it is used as the method parameter level.

@nabl eBi ndi ng(Sour ce. cl ass)
@nabl eAut oConf i guration
public static class HellowrldEmtter {

@t reanEni tter
public void emt(@utput(Source. OUTPUT) Fl uxSender output) {
out put.send(Flux.interval MI1lis(1)
.map(l -> "Hello World"));

Elmhurst.RC3 Spring Cloud Stream 24

Spring Cloud Stream Reference Guide

Here is yet another flavor of writing reacting sources using the Reactive Streams Publisher API and
the support for it in the Spring Integration Java DSL. The Publisher is still using Reactor Flux under
the hood, but from an application perspective, that is transparent to the user and only needs Reactive
Streams and Java DSL for Spring Integration.

@Enabl eBi ndi ng(Sour ce. cl ass)
@Enabl eAut oConfi gurati on
public static class Hell owrldEmtter {

@treaneEnm tter

@ut put (Sour ce. QUTPUT)

@Bean

publ i c Publisher<Message<String>> emt() {

return IntegrationFlows.fron(() ->
new Generi cMessage<>("Hello World"),

e ->e.poller(p -> p.fixedDelay(1)))
.toReact i vePubl i sher();

Aggregation

Spring Cloud Stream provides support for aggregating multiple applications together, connecting their
input and output channels directly and avoiding the additional cost of exchanging messages via a broker.
As of version 1.0 of Spring Cloud Stream, aggregation is supported only for the following types of
applications:

» sources - applications with a single output channel named out put , typically having a single binding
of the type or g. spri ngf ranmewor k. cl oud. stream nessagi ng. Sour ce

* sinks - applications with a single input channel named i nput , typically having a single binding of the
type or g. spri ngf ranewor k. cl oud. st ream nessagi ng. Si nk

e processors - applications with a single input channel named input and a single
output channel named output, typically having a single binding of the type
org. spri ngframewor k. cl oud. st ream nessagi ng. Processor.

They can be aggregated together by creating a sequence of interconnected applications, in which the
output channel of an element in the sequence is connected to the input channel of the next element, if
it exists. A sequence can start with either a source or a processor, it can contain an arbitrary number
of processors and must end with either a processor or a sink.

Depending on the nature of the starting and ending element, the sequence may have one or more
bindable channels, as follows:

« if the sequence starts with a source and ends with a sink, all communication between the applications
is direct and no channels will be bound

« if the sequence starts with a processor, then its input channel will become the i nput channel of the
aggregate and will be bound accordingly

- if the sequence ends with a processor, then its output channel will become the out put channel of
the aggregate and will be bound accordingly

Aggregation is performed using the Aggr egat eAppl i cat i onBui | der utility class, as in the following
example. Let's consider a project in which we have source, processor and a sink, which may be defined
in the project, or may be contained in one of the project’s dependencies.

Elmhurst.RC3 Spring Cloud Stream 25

https://github.com/spring-projects/spring-integration-java-dsl/wiki/Spring-Integration-Java-DSL-Reference

Spring Cloud Stream Reference Guide

@ Note

Each component (source, sink or processor) in an aggregate application must be provided
in a separate package if the configuration classes use @spri ngBoot Appl i cati on. This is
required to avoid cross-talk between applications, due to the classpath scanning performed
by @bpri ngBoot Appl i cati on on the configuration classes inside the same package.
In the example below, it can be seen that the Source, Processor and Sink application
classes are grouped in separate packages. A possible alternative is to provide the source,
sink or processor configuration in a separate @onfi gurati on class, avoid the use of
@Bpr i ngBoot Appl i cat i on/@onponent Scan and use those for aggregation.

package com app. nysi nk;

/1 Inports omtted

@pr i ngBoot Appl i cati on

@Enabl eBi ndi ng(Si nk. cl ass)

public class SinkApplication {
private static Logger |ogger = LoggerFactory. getLogger (Si nkApplication.class);
@er vi ceAct i vat or (i nput Channel =Si nk. | NPUT)
public void | ogger Si nk(Qbj ect payl oad) {

| ogger.info("Received: " + payload);
}

package com app. nyprocessor;
/1l Inports omtted

@Bpr i ngBoot Appl i cati on
@Enabl eBi ndi ng(Processor . cl ass)
public class ProcessorApplication {

@r ansf or ner (i nput Channel = Processor. | NPUT, out put Channel = Processor. QUTPUT)
public String |oggerSink(String payl oad) {

return payl oad.t oUpper Case();
}

package com app. nysource;
/1l Inports omtted

@Bpr i ngBoot Appl i cati on
@Enabl eBi ndi ng(Sour ce. cl ass)
public class SourceApplication {

@ nboundChannel Adapt er (val ue = Sour ce. OUTPUT)
public String tinmerMessageSource() {
return new Si npl eDat eFor mat (). format (new Date());

}

Each configuration can be used for running a separate component, but in this case they can be
aggregated together as follows:

package com app;
/1 Inports onmitted

@pr i ngBoot Appl i cati on
public class Sanpl eAggregat eApplication {

Elmhurst.RC3 Spring Cloud Stream 26

Spring Cloud Stream Reference Guide

public static void main(String[] args) {
new Aggr egat eAppl i cati onBui |l der ()
.from(SourceApplication.class).args("--fixedDel ay=5000")
. vi a(Processor Appl i cati on. cl ass)
.to(Si nkApplication.class).args("--debug=true").run(args);

The starting component of the sequence is provided as argument to the f r on{) method. The ending
component of the sequence is provided as argument to the t o() method. Intermediate processors
are provided as argument to the vi a() method. Multiple processors of the same type can be chained
together (e.g. for pipelining transformations with different configurations). For each component, the
builder can provide runtime arguments for Spring Boot configuration.

Configuring aggregate application

Spring Cloud Stream supports passing properties for the individual applications inside the aggregate
application using 'namespace’ as prefix.

The namespace can be set for applications as follows:

@pr i ngBoot Appl i cati on
public class Sanpl eAggr egat eApplication {

public static void main(String[] args) {
new Aggr egat eAppl i cati onBui |l der ()
.from(Sour ceApplication. class).namespace("source").args("--fixedDel ay=5000")
.Vvi a(Processor Appl i cati on. cl ass) . nanespace(" processor1")
.to(Si nkAppl i cation. cl ass). nanespace("si nk").args("--debug=true").run(args);

Ones the 'namespace' is set for the individual applications, the application properties with the
nanespace as prefix can be passed to the aggregate application using any supported property source
(commandline, environment properties etc.).

For instance, to override the default fi xedDel ay and debug properties of 'source' and 'sink’
applications:

java -jar target/M/Aggregat eApplication-0.0.1- SNAPSHOT. j ar --source. fixedDel ay=10000 - -si nk. debug=f al se

Configuring binding service properties for non self contained aggregate application

The non self-contained aggregate application is bound to external broker via either or both the inbound/
outbound components (typically, message channels) of the aggregate application while the applications
inside the aggregate application are directly bound. For example: a source application’s output and a
processor application’s input are directly bound while the processor’s output channel is bound to an
external destination at the broker. When passing the binding service properties for non-self contained
aggregate application, it is required to pass the binding service properties to the aggregate application
instead of setting them as 'args' to individual child application. For instance,

@pr i ngBoot Appl i cati on
public class Sanpl eAggregat eApplication {

public static void main(String[] args) {
new Aggr egat eAppl i cati onBui | der ()
.from(Sour ceApplication.class).namespace("source").args("--fixedDel ay=5000")
.vi a(Processor Appl i cati on. cl ass) . nanespace(" processor1"). args("--debug=true").run(args);

Elmhurst.RC3 Spring Cloud Stream 27

Spring Cloud Stream Reference Guide

The binding properties like --
spring. cl oud. st ream bi ndi ngs. out put . desti nati on=processor-output need to be
specified as one of the external configuration properties (cmdline arg etc.).

Elmhurst.RC3 Spring Cloud Stream 28

Spring Cloud Stream Reference Guide

6. Binders

Spring Cloud Stream provides a Binder abstraction for use in connecting to physical destinations at the
external middleware. This section provides information about the main concepts behind the Binder SPI,
its main components, and implementation-specific details.

6.1 Producers and Consumers

bindConsumer (“foo™,
“default”,
inputChannel,
properties);

bindProducer(“foo™,

outputchannel, ‘I

properties);

Broker

Figure 6.1. Producers and Consumers

A producer is any component that sends messages to a channel. The channel can be bound
to an external message broker via a Binder implementation for that broker. When invoking the
bi ndPr oducer () method, the first parameter is the name of the destination within the broker, the
second parameter is the local channel instance to which the producer will send messages, and the third
parameter contains properties (such as a partition key expression) to be used within the adapter that
is created for that channel.

A consumer is any component that receives messages from a channel. As with a producer,
the consumer's channel can be bound to an external message broker. When invoking the
bi ndConsumer () method, the first parameter is the destination name, and a second parameter
provides the name of a logical group of consumers. Each group that is represented by consumer
bindings for a given destination receives a copy of each message that a producer sends to that
destination (i.e., publish-subscribe semantics). If there are multiple consumer instances bound using
the same group name, then messages will be load-balanced across those consumer instances so that
each message sent by a producer is consumed by only a single consumer instance within each group
(i.e., queueing semantics).

6.2 Binder SPI

The Binder SPI consists of a number of interfaces, out-of-the box utility classes and discovery strategies
that provide a pluggable mechanism for connecting to external middleware.

The key point of the SPI is the Bi nder interface which is a strategy for connecting inputs and outputs
to external middleware.

public interface Binder<T, C extends ConsunerProperties, P extends ProducerProperties> {
Bi ndi ng<T> bi ndConsuner (String nane, String group, T inboundBindTarget, C consunerProperties);

Bi ndi ng<T> bi ndProducer (String nane, T outboundBi ndTarget, P producerProperties);

}

The interface is parameterized, offering a number of extension points:

 input and output bind targets - as of version 1.0, only MessageChannel is supported, but this is
intended to be used as an extension point in the future;

» extended consumer and producer properties - allowing specific Binder implementations to add
supplemental properties which can be supported in a type-safe manner.

Elmhurst.RC3 Spring Cloud Stream 29

Spring Cloud Stream Reference Guide

A typical binder implementation consists of the following
» aclass that implements the Bi nder interface;

e a Spring @onf i gur ati on class that creates a bean of the type above along with the middleware
connection infrastructure;

* alMETA- I NF/ spri ng. bi nder s file found on the classpath containing one or more binder definitions,
e.g.

kaf ka: \
or g. spri ngf ramewor k. cl oud. stream bi nder. kaf ka. conf i g. Kaf kaBi nder Confi gurati on

6.3 Binder Detection

Spring Cloud Stream relies on implementations of the Binder SPI to perform the task of connecting
channels to message brokers. Each Binder implementation typically connects to one type of messaging
system.

Classpath Detection

By default, Spring Cloud Stream relies on Spring Boot’'s auto-configuration to configure the binding
process. If a single Binder implementation is found on the classpath, Spring Cloud Stream will use it
automatically. For example, a Spring Cloud Stream project that aims to bind only to RabbitMQ can
simply add the following dependency:

<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cloud-streambinder-rabbit</artifactld>

</ dependency>

For the specific maven coordinates of other binder dependencies, please refer to the documentation
of that binder implementation.

6.4 Multiple Binders on the Classpath

When multiple binders are present on the classpath, the application must indicate which binder is to be
used for each channel binding. Each binder configuration contains a META- | NF/ spri ng. bi nder s,
which is a simple properties file:

rabbit:\
org. springfranmewor k. cl oud. st ream bi nder. rabbi t. confi g. Rabbi t Servi ceAut oConfi gurati on

Similar files exist for the other provided binder implementations (e.g., Kafka), and custom
binder implementations are expected to provide them, as well. The key represents an
identifying name for the binder implementation, whereas the value is a comma-separated
list of configuration classes that each contain one and only one bean definition of type
org. spri ngfranmewor k. cl oud. st ream bi nder. Bi nder.

Binder selection can either be performed globally, using the
spri ng. cl oud. st ream def aul t Bi nder property (e.q.,
spring. cl oud. st ream def aul t Bi nder =r abbi t) or individually, by configuring the binder on
each channel binding. For instance, a processor application (that has channels with the names i nput
and out put for read/write respectively) which reads from Kafka and writes to RabbitMQ can specify
the following configuration:

Elmhurst.RC3 Spring Cloud Stream 30

Spring Cloud Stream Reference Guide

spring. cl oud. stream bi ndi ngs. i nput . bi nder =kaf ka
spring. cl oud. stream bi ndi ngs. out put . bi nder =r abbi t

6.5 Connecting to Multiple Systems

By default, binders share the application’s Spring Boot auto-configuration, so that one instance of each
binder found on the classpath will be created. If your application should connect to more than one
broker of the same type, you can specify multiple binder configurations, each with different environment
settings.

@ Note

Turning on explicit binder configuration will disable the default binder configuration process
altogether. If you do this, all binders in use must be included in the configuration. Frameworks
that intend to use Spring Cloud Stream transparently may create binder configurations that
can be referenced by name, but will not affect the default binder configuration. In order
to do so, a binder configuration may have its def aul t Candi dat e flag set to false, e.g.
spring. cl oud. st ream bi nders. <confi gur ati onNanme>. def aul t Candi dat e=f al se.
This denotes a configuration that will exist independently of the default binder configuration
process.

For example, this is the typical configuration for a processor application which connects to two RabbitMQ
broker instances:

spring:
cl oud:
stream
bi ndi ngs:

i nput:
destination: foo
bi nder: rabbitl

out put :
destination: bar
bi nder: rabbit2

bi nders:

rabbit1:
type: rabbit
envi ronnent :

spring:
r abbi t my:
host: <host1>

rabbi t 2:
type: rabbit
envi ronnent :

spring:
r abbi t my:
host: <host 2>

6.6 Binding visualization and control

Since version 2.0 Spring Cloud Stream supports visualization and control of the Bindings via Actuator
endpoints.

@ Note

Given that starting with version 2.0 actuator and web are optional, one must first add one of the
web dependencies as well as the actuator dependency manually.

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>

Elmhurst.RC3 Spring Cloud Stream 31

Spring Cloud Stream Reference Guide

<artifactld>spring-boot-starter-web</artifactld>
</ dependency>

or

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-webflux</artifactld>
</ dependency>

Actuator dependency can be added as follows:

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-actuator</artifactld>
</ dependency>

You must also enable bi ndi ngs actuator endpoints with the following property - -
managenent . endpoi nts. web. exposur e. i ncl ude=bi ndi ngs.

Once the above prerequisites are satisfied you should see the following in the logs when application
is started:

Mapped "{[/actuator/bi ndi ngs/{nane}], met hods=[POST] .
Mapped "{[/actuat or/bi ndi ngs], net hods=[GET] .
Mapped "{[/act uat or/ bi ndi ngs/ { nane}], net hods=[GET] .

To visualize current bindings simply access the following URL:

‘ htt p: // <host >: <port >/ act uat or / bi ndi ngs

or

‘ ht t p: // <host >: <port >/ act uat or / bi ndi ngs/ nyBi ndi ngNare

...if you want to visualize a single binding named 'myBindingName'

You can also stop, start, pause and resume individual binding by posting to the same URL while
providing st at e argument as JSON.

For example,

curl -d '{"state":"STOPPED'}' -H "Content-Type: application/json" -X POST http://<host>: <port>/actuator/
bi ndi ngs/ nyBi ndi ngNane

curl -d '{"state":"STARTED'}' -H "Content-Type: application/json" -X POST http://<host>: <port>/actuator/
bi ndi ngs/ nyBi ndi ngNane

curl -d '{"state":"PAUSED'}' -H "Content-Type: application/json" -X POST http://<host>:<port>/actuator/
bi ndi ngs/ nyBi ndi ngNane

curl -d '{"state":"RESUMED'}' -H "Content-Type: application/json" -X POST http://<host>: <port>/actuator/
bi ndi ngs/ nyBi ndi ngNane

@ Note

PAUSED and RESUMED are only effective if corresponding binder and its underlyig technology
supports it, otherwise you'll see the warning message in the logs. Currently only Kafka binder
supports PAUSED and RESUMED state.

6.7 Binder configuration properties

The following properties are available when creating custom binder configurations. They must be
prefixed with spri ng. cl oud. st ream bi nders. <confi gur ati onNane>.

Elmhurst.RC3 Spring Cloud Stream 32

Spring Cloud Stream Reference Guide

type
The binder type. It typically references one of the binders found on the classpath, in particular a key
in a META- | NF/ spri ng. bi nder s file.

By default, it has the same value as the configuration name.

inheritEnvironment
Whether the configuration will inherit the environment of the application itself.

Default t r ue.

environment
Root for a set of properties that can be used to customize the environment of the binder. When
this is configured, the context in which the binder is being created is not a child of the application
context. This allows for complete separation between the binder components and the application
components.

Default enpt y.

defaultCandidate
Whether the binder configuration is a candidate for being considered a default binder, or can be
used only when explicitly referenced. This allows adding binder configurations without interfering
with the default processing.

Default t r ue.

Elmhurst.RC3 Spring Cloud Stream 33

Spring Cloud Stream Reference Guide

7. Configuration Options

Spring Cloud Stream supports general configuration options as well as configuration for bindings and
binders. Some binders allow additional binding properties to support middleware-specific features.

Configuration options can be provided to Spring Cloud Stream applications via any mechanism
supported by Spring Boot. This includes application arguments, environment variables, and YAML
or .properties files.

7.1 Spring Cloud Stream Properties

spring.cloud.stream.instanceCount
The number of deployed instances of an application. Must be set for partitioning on
the producer side, and on the consumer side if using RabbitMQ and with Kafka if
aut oRebal anceEnabl ed=f al se.

Default: 1.

spring.cloud.stream.instancelndex
The instance index of the application: a number from 0 to i nst anceCount -1. Used for partitioning
with RabbitMQ and with Kafka if aut oRebal anceEnabl ed=f al se. Automatically set in Cloud
Foundry to match the application’s instance index.

spring.cloud.stream.dynamicDestinations
A list of destinations that can be bound dynamically (for example, in a dynamic routing scenario).
If set, only listed destinations can be bound.

Default: empty (allowing any destination to be bound).

spring.cloud.stream.defaultBinder
The default binder to use, if multiple binders are configured. See Multiple Binders on the Classpath.

Default: empty.

spring.cloud.stream.overrideCloudConnectors

This property is only applicable when the cl oud profile is active and Spring Cloud Connectors are
provided with the application. If the property is false (the default), the binder will detect a suitable
bound service (e.g. a RabbitMQ service bound in Cloud Foundry for the RabbitMQ binder) and
will use it for creating connections (usually via Spring Cloud Connectors). When set to true, this
property instructs binders to completely ignore the bound services and rely on Spring Boot properties
(e.g. relying onthe spri ng. r abbi t ng. * properties provided in the environment for the RabbitMQ
binder). The typical usage of this property is to be nested in a customized environment when
connecting to multiple systems.

Default: false.

spring.cloud.stream.bindingRetryInterval
The interval (seconds) between retrying binding creation when, for example, the binder doesn’t
support late binding and the broker is down (e.g. Apache Kafka). Set to zero to treat such conditions
as fatal, preventing the application from starting.

Default: 30

Elmhurst.RC3 Spring Cloud Stream 34

Spring Cloud Stream Reference Guide

7.2 Binding Properties

Binding properties are supplied using the format
spring. cl oud. st ream bi ndi ngs. <channel Nanme>. <pr opert y>=<val ue>. The
<channel Name> represents the name of the channel being configured (e.g., out put for a Sour ce).

To avoid repetition, Spring Cloud Stream supports setting values for all channels, in the format
spring. cl oud. stream def aul t. <property>=<val ue>.

In what follows, we indicate where we have omitted the
spring. cl oud. st ream bi ndi ngs. <channel Nanme>. prefix and focus just on the property name,
with the understanding that the prefix will be included at runtime.

Properties for Use of Spring Cloud Stream

The following binding properties are available for both input and output bindings
and must be prefixed with spring.cloud.stream bindi ngs. <channel Nane>., e.g.
spring. cl oud. st ream bi ndi ngs. i nput . desti nati on=ti ckt ock.

Default values can be set by using the prefix spring.cloud.streamdefault, e.g.
spring. cl oud. st ream defaul t. content Type=appl i cation/json.

destination
The target destination of a channel on the bound middleware (e.g., the RabbitMQ exchange or
Kafka topic). If the channel is bound as a consumer, it could be bound to multiple destinations and
the destination names can be specified as comma separated String values. If not set, the channel
name is used instead. The default value of this property cannot be overridden.

group
The consumer group of the channel. Applies only to inbound bindings. See Consumer Groups.

Default: null (indicating an anonymous consumer).

contentType
The content type of the channel.

Default; null (so that no type coercion is performed).

binder
The binder used by this binding. See Section 6.4, “Multiple Binders on the Classpath” for details.

Default: null (the default binder will be used, if one exists).
Consumer properties

The following binding properties are available for input bindings only and must
be prefixed with spring.cloud. stream bi ndi ngs. <channel Name>. consuner., e.g.
spring. cl oud. st ream bi ndi ngs. i nput. consuner. concurrency=3.

Default values can be set by using the prefix spri ng. cl oud. stream def aul t. consuner, e.g.
spring. cl oud. st ream def aul t. consuner . header Mode=none.

concurrency
The concurrency of the inbound consumer.

Default: 1.

Elmhurst.RC3 Spring Cloud Stream 35

Spring Cloud Stream Reference Guide

partitioned
Whether the consumer receives data from a partitioned producer.

Default: f al se.

headerMode
When set to none, disables header parsing on input. Effective only for messaging middleware that
does not support message headers natively and requires header embedding. This option is useful
when consuming data from non-Spring Cloud Stream applications when native headers are not
supported. When set to header s, uses the middleware’s native header mechanism. When set to
enbeddedHeader s, embeds headers into the message payload.

Default: depends on binder implementation.

maxAttempts
If processing fails, the number of attempts to process the message (including the first). Set to 1
to disable retry.

Default: 3.

backOfflnitiallnterval
The backoff initial interval on retry.

Default: 1000.

backOffMaxInterval
The maximum backoff interval.

Default: 10000.

backOffMultiplier
The backoff multiplier.

Default: 2. 0.

instancelndex
When set to a value greater than equal to zero, allows customizing the instance index of this
consumer (if different from spri ng. cl oud. st ream i nst ancel ndex). When set to a negative
value, it will default to spri ng. cl oud. stream i nst ancel ndex. See that property for more
information.

Default: - 1.

instanceCount
When set to a value greater than equal to zero, allows customizing the instance count of this
consumer (if different from spri ng. cl oud. stream i nst anceCount). When set to a negative
value, it will default to spri ng. cl oud. stream i nst anceCount . See that property for more
information.

Default: - 1.
Producer Properties

The following binding properties are available for output bindings only and must
be prefixed with spring.cloud. stream bi ndi ngs. <channel Nane>. producer., e.g.
spring. cl oud. st ream bi ndi ngs. i nput . producer. partiti onKeyExpressi on=payl oad. i d.

Elmhurst.RC3 Spring Cloud Stream 36

Spring Cloud Stream Reference Guide

Default values can be set by using the prefix spri ng. cl oud. stream def aul t. producer, e.g.
spring. cl oud. stream defaul t. producer. partiti onKeyExpressi on=payl oad. i d.

partitionKeyExpression
A SpEL expression that determines how to partition outbound data. If set, or if
partiti onKeyExtractorC ass is set, outbound data on this channel will be partitioned, and
partiti onCount mustbe setto avalue greater than 1 to be effective. The two options are mutually
exclusive. See Section 4.6, “Partitioning Support”.

Default: null.

partitionKeyExtractorClass
APartitionKeyExtractorStrategy implementation. If set, orifpartiti onKeyExpr essi on
is set, outbound data on this channel will be partitioned, and partiti onCount must be set to
a value greater than 1 to be effective. The two options are mutually exclusive. See Section 4.6
“Partitioning Support”.

Default: null.

partitionSelectorClass
A PartitionSel ector Strategy implementation. Mutually exclusive with
partitionSel ector Expressi on. If neither is set, the partition will be selected as
the hashCode(key) % partitionCount, where key is computed via either
partiti onKeyExpressionorpartitionKeyExtractord ass.

Default: null.

partitionSelectorExpression
A SpEL expression for customizing partition selection. Mutually exclusive with
partitionSel ector d ass. If neither is set, the partition will be selected as the hashCode(key)
% partitionCount, where key is computed via either partiti onKeyExpression or
partitionKeyExtractorC ass.

Default: null.

partitionCount
The number of target partitions for the data, if partitioning is enabled. Must be set to a value greater
than 1 if the producer is partitioned. On Kafka, interpreted as a hint; the larger of this and the partition
count of the target topic is used instead.

Default: 1.

requiredGroups
A comma-separated list of groups to which the producer must ensure message delivery even if they
start after it has been created (e.g., by pre-creating durable queues in RabbitMQ).

headerMode
When set to none, disables header embedding on output. Effective only for messaging middleware
that does not support message headers natively and requires header embedding. This option is
useful when producing data for non-Spring Cloud Stream applications when native headers are not
supported. When set to header s, uses the middleware’s native header mechanism. When set to
enbeddedHeader s, embeds headers into the message payload.

Default: Depends on binder implementation.

Elmhurst.RC3 Spring Cloud Stream 37

Spring Cloud Stream Reference Guide

useNativeEncoding

When set to t r ue, the outbound message is serialized directly by client library, which must be
configured correspondingly (e.g. setting an appropriate Kafka producer value serializer). When this
configuration is being used, the outbound message marshalling is not based on the cont ent Type
of the binding. When native encoding is used, it is the responsibility of the consumer to use
appropriate decoder (ex: Kafka consumer value de-serializer) to deserialize the inbound message.
Also, when native encoding/decoding is used the header Mode=enbeddedHeader s property is
ignored and headers will not be embedded into the message.

Default: f al se.

errorChannelEnabled
When set to t r ue, if the binder supports async send results; send failures will be sent to an error
channel for the destination. See the section called “Message Channel Binders and Error Channels”
for more information.

Default: f al se.

7.3 Using dynamically bound destinations

Besides the channels defined via @nabl eBi ndi ng, Spring Cloud Stream allows applications
to send messages to dynamically bound destinations. This is useful, for example, when
the target destination needs to be determined at runtime. Applications can do so by using
the Bi nder Awar eChannel Resol ver bean, registered automatically by the @tnabl eBi ndi ng
annotation.

The property 'spring.cloud.stream.dynamicDestinations' can be used for restricting the dynamic
destination names to a set known beforehand (whitelisting). If the property is not set, any destination
can be bound dynamically.

The Bi nder Awar eChannel Resol ver can be used directly as in the following example, in which a
REST controller uses a path variable to decide the target channel.

@Enabl eBi ndi ng
@ontroller
public class SourceWthDynam cDestination {

@\ut owi r ed
private Bi nder Awar eChannel Resol ver resol ver;

@Request Mappi ng(path = "/{target}", method = POST, consunes = "*/*")
@ResponseSt at us(Ht t pSt at us. ACCEPTED)
public voi d handl eRequest (@equest Body String body, @athVariable("target”) target,
@equest Header (Ho t pHeader s. CONTENT_TYPE) Cbj ect content Type) {
sendMessage(body, target, contentType);
}

private void sendMessage(String body, String target, Object contentType) {
resol ver.resol veDesti nation(target).send(MessageBui |l der. creat eMessage(body,
new MessageHeader s(Col | ecti ons. si ngl et onMap(MessageHeader s. CONTENT_TYPE,
content Type))));

}

After starting the application on the default port 8080, when sending the following data:

curl -H "Content-Type: application/json" -X POST -d "customer-1" http://| ocal host: 8080/ cust ormers

curl -H "Content-Type: application/json" -X POST -d "order-1" http://] ocal host: 8080/ or der s

Elmhurst.RC3 Spring Cloud Stream 38

Spring Cloud Stream Reference Guide

The destinations 'customers' and 'orders' are created in the broker (for example: exchange in case of
Rabbit or topic in case of Kafka) with the nhames 'customers' and 'orders’, and the data is published to
the appropriate destinations.

The Bi nder Awar eChannel Resol ver is a general purpose Spring Integration
Desti nati onResol ver and can be injected in other components. For example, in a router using a
SpEL expression based on the t ar get field of an incoming JSON message.

@Enabl eBi ndi ng
@ontroll er
public class SourceWthDynam cDestination {

@\ut owi r ed
privat e Bi nder Awar eChannel Resol ver resol ver;

@Request Mappi ng(path = "/", method = POST, consunes = "application/json")
@ResponseSt at us(Ht t pSt at us. ACCEPTED)
public voi d handl eRequest (@equest Body String body, @RequestHeader (HttpHeaders. CONTENT_TYPE) Obj ect
content Type) {
sendMessage(body, content Type);
}

private void sendMessage(Obj ect body, Object content Type) {
rout er Channel (). send(MessageBui | der. cr eat eMessage(body,
new MessageHeader s(Col | ecti ons. si ngl et onVap(MessageHeader s. CONTENT_TYPE,
content Type))));
}

@ean(nanme = "router Channel ")
publ i c MessageChannel routerChannel () {
return new Direct Channel ();

}

@Bean

@er vi ceAct i vat or (i nput Channel = "routerChannel ")

publ i ¢ ExpressionEval uati ngRouter router() {
Expr essi onEval uati ngRouter router =

new Expressi onEval uati ngRout er (new
Spel Expr essi onPar ser () . par seExpressi on(" payl oad. target"));

rout er . set Def aul t Qut put Channel Nane(" def aul t - out put™);
rout er. set Channel Resol ver (resol ver);
return router;

The Router Sink Application uses this technique to create the destinations on-demand.

If the channel names are known in advance, you can configure the producer properties as with any
other destination. Alternatively, if you register a NewBi ndi ngCal | back<> bean, it will be invoked just
before the binding is created. The callback takes the generic type of the extended producer properties
used by the binder; it has one method:

voi d configure(String channel Nane, MessageChannel channel, ProducerProperties producerProperties,
T ext endedPr oducer Properties);

The following is an example using the RabbitMQ binder:

@Bean
publ i ¢ NewBi ndi ngCal | back<Rabbi t Producer Properti es> dynam cConfigurer() {
return (nane, channel, props, extended) -> {
props. set Requi r edG oups(" bi ndThi sQueue");
ext ended. set QueueNaneG oupOnl y(true);
ext ended. set Aut oBi ndDl q(true);
ext ended. set DeadLet t er QueueNanme(" nyDLQ") ;

Elmhurst.RC3 Spring Cloud Stream 39

https://github.com/spring-cloud-stream-app-starters/router

Spring Cloud Stream Reference Guide

}s
}

@ Note

If you need to support dynamic destinations with multiple binder types, use Obj ect for the
generic type and cast the ext ended argument as needed.

Elmhurst.RC3 Spring Cloud Stream 40

Spring Cloud Stream Reference Guide

8. Content Type negotiation

8.1 Introduction

Data transformation is one of the core features of any message-driven microservice architecture. Given
that in Spring Cloud Stream, such data is represented as a Spring Message, such message may have to
be transformed to a desired shape/size before reaching its destination. This is required for two reasons:

1. To convert the contents of the incoming message to match the signature of the application-provided
handler.

2. To convert the contents of the outgoing message to the wire format.

The wire format is typically byt e[] (i.e., Kafka and Rabbit binders), but is governed by the binder
implementation.

In Spring Cloud Stream, message transformation is accomplished with a
org. spri ngframewor k. messagi ng. converter. MessageConverter.

@ Note

As a supplement to the details to follow you may also want to read the following blog

8.2 Mechanics

To better understand the mechanics and the necessity behind content-type negotiation let’s look at the
very simple use case using the following message handler as an example. Also let's assume that this
is the only handler in the application (no internal pipeline) for simplicity.

@5t r eanli st ener (Processor. | NPUT)
@endTo(Processor . OQUTPUT)
public String handl e(Person person) {..}

The above handler expects Per son type as an argument and will produce St ri ng type as an output.
In order for the framework to succeed in passing the incoming Message as an argument to this handler
it has to somehow transform the payload of the Message from the wire format to Per son type. In other
words the framework must locate and apply the appropriate MessageConvert er. To accomplish that
the framework needs some instructions from the user. One of these instructions is already provided by
the signature of the handler method itself (Per son type), so in theory, that should and in some cases
is enough, but for the majority of the use cases in order to select the appropriate MessageConvert er
the framework needs an additional piece of information. That missing piece is cont ent Type.

Spring Cloud Stream provides three simple mechanisms to define cont ent Type and they all come
with precedence order:

1. HEADER - the cont ent Type can be communicated through the Message itself. By simply providing
cont ent Type header you are declaring the content type to use to locate and apply the appropriate
MessageConverter.

2. BINDING - the contentType <can be set per destination binding via
spring. cl oud. st ream bi ndi ngs. i nput. cont ent -t ype property. NOTE: the segment i nput
in the property name corresponds to the actual name of the destination which is “input” in our case. This

Elmhurst.RC3 Spring Cloud Stream 41

https://spring.io/blog/2018/02/26/spring-cloud-stream-2-0-content-type-negotiation-and-transformation

Spring Cloud Stream Reference Guide

approach allows one to declare per-binding the content type to use to locate and apply the appropriate
MessageConverter.

3. DEFAULT - in the event cont ent Type is not present in the Message header and/or binding,
the default application/json content type will be used to locate and apply the appropriate
MessageConverter.

As mentioned, the above also demonstrates the order of precedence in the event there is a tie. For
example, header provided content type takes precedence over any other content type. The same applies
for content type set per binding which essentially allows one to override the default content type. But it
also provides a sensible default which was determined from the community feedback.

Another reason for making application/json the default stems from the interoperability
requirements driven by distributed microservices architectures where producer and consumer not only
run in different JVMs, but can also run on different non-JVM platforms.

Once the non-void handler method returns and unless the return value is already
a Message, the new Message is constructed with return vlaue as the payload
while inheriting headers from the input Message less the ones definedffiltered by
Springl ntegrationProperties. messageHandl er Not Pr opagat edHeader s. By default, there
is only one header set there - cont ent Type. This means that the new Message will not have
cont ent Type header set, thus ensuring that the cont ent Type can evolve. You can always opt out
to returning a Message from the handler method where you can inject any header you wish.

If there is an internal pipeline the Message is sent to the next handler going through the same process
of conversion, or if there is no internal pipeline or you've reached the end of it the Message is sent back
to the output destination.

Content type vs. argument type

As it was mentioned, for the framework to select the appropriate MessageConverter it requires
argument type and optionally content type information. The logic for selecting the appropriate
MessageConvert er resides with the argument resolvers (Handl er Met hodAr gunent Resol ver s),
right before the invocation of the user defined handler method (that is when the actual argument type
is known to the framework). If argument type does NOT match the type of the current payload the
framework delegates to the stack of the pre-configured MessageConvert ers to see if any one of
them can convert the payload. As you can see the Obj ect fronvessage(Message<?> nessage,
Cl ass<?> target d ass); operation of the MessageConverter takes t ar get Cl ass as one of its
arguments. The framework also ensures that the provided Message always contains cont ent Type
header in the event one was not there already (injects the default one or the one set per binding).
That is the mechanism by which framework determines if message can be converted to a target type
- cont ent Type and argumenyt type. If no appropriate MessageConvert er is found the exception is
thrown at which time you can add custom MessageConvert er (more on this later).

But what if the payload type matches the target type declared by the handler method? In this cases
there is obviously nothing to convert and the payload will be passed unmodified. While this sounds pretty
straight forward and logical, keep in mind handler methods that take Message<?> and/or Qbj ect as
an argument. By doing so you are essentially forfeiting the conversion process by declaring the target
type to be Obj ect which is an i nst anceof everything in Java.

In other words:

Elmhurst.RC3 Spring Cloud Stream 42

Spring Cloud Stream Reference Guide

@ Note

Do NOT expect Message to be converted into some type based on the cont ent Type only.
Remember that the cont ent Type is complimentary to the target type. A hint if you wish which
MessageConvert er may or may not take into consideration.

Message Converters

MessageConvert er s define two methods:

Obj ect from\vessage(Message<?> nessage, O ass<?> targetC ass);

Message<?> t oMessage(Obj ect payl oad, @l | abl e MessageHeaders headers);

It is important to understand the contract of these methods and their usage specifically in the context
of Spring Cloud Stream.

The fromvessage method converts incoming Message to an argument type. The payload of the
Message could be any type and it's up to the actual implementation of the MessageConvert er to
support multiple types. For example, some JSON converter may support the payload type as byt e[]
and St ri ng etc. This is important when application contains an internal pipeline (i.e., input # handlerl
handler2 #. . . # output) and the output of the upstream handler results in a Message which may not
be in the initial wire format.

However. . .

The t oMessage method has a more strict contract and must always convert Message to the wire format
-byte[].

So for all intents and purposes (and especially when implementing your own converter) you might as
well look at them as:

bj ect fromvessage(Message<?> nessage, Cl ass<?> targetC ass);

Message<byt e[] > t oMessage(Obj ect payl oad, @l | abl e MessageHeaders headers);

8.3 Provided MessageConverters

As it was mentioned earlier the framework already provides a stack of MessageConvert er s to handle
most common use cases. Below is the ordered list of provided MessageConverters.

@ Note

It is important to understand the importance of the order since the mechanism by which the
framework locates the appropriate MessageConver t er is by iterating through each and asking
if it can convert using the first one that can convert.

1. Appl i cati onJsonMessageMar shal | i ngConverter - variation of the
or g. spri ngframewor k. nessagi ng. convert er. Mappi nglackson2MessageConverter.
Supports conversion of the payload of the Message from St ri ng or byte[].

2. Tupl eJsonMessageConverter - [DEPRECATED] Supports conversion of the payload of the
Message from or g. spri ngf r anmewor k. t upl e. Tupl e.

3. Byt eArrayMessageConverter - Supports conversion of the payload of the Message from
byte[] to byte[] for cases when content Type is set to application/octet-stream
Essentially a pass through and exists primarily for backward compatibility.

Elmhurst.RC3 Spring Cloud Stream 43

Spring Cloud Stream Reference Guide

4. oj ect St ri ngMessageConverter - Supports conversion of any type to a String, when
contentType is t ext / pl ai n. Invokes Object’'s t oSt ri ng() method or if payload is byt e[] then
new String(byte[]).

5. JavaSeri al i zat i onMessageConvert er -[DEPRECATED] Supports conversion based on java
serialization when cont ent Type is appl i cati on/ x-j ava-seri al i zed- obj ect .

6. KryoMessageConvert er -[DEPRECATED] Supports conversion based on kryo serialization when
content Type isappl i cati on/ x-j ava- obj ect.

7. JsonUnmar shal | i ngConvert er - Similar to the
Appl i cati onJsonMessageMar shal | i ngConverter. Supports conversion of any type when
content Type is application/x-java-object. Expects the actual type information
to be embedded in the contentType as an attribute (e.g., application/x-java-
obj ect ; t ype=f 0o. bar . Baz).

In the event no appropriate converter is found the framework will throw an exception at which point
you should check your code and configfuration and ensure you didn't miss anything (i.e., provide
cont ent Type via binding or header). However, most likely you are dealing with some uncommon case
(custom cont ent Type perhaps) and the current stack of provided MessageConvert er s doesn’t know
how to convert. And if that's the case you can add custom MessageConvert er.

8.4 User defined Message Converters

Spring Cloud Stream exposes a mechanism to define and register
additional MessageConverters. All you need to do is implement
or g. spri ngframewor k. nessagi ng. convert er. MessageConvert er, confiure it as @ean and
annotate it with @bt r eamvessageConverter and it will be added to the existing stack of
MessageConvert ers. The @t r eamvessageConvert er qualifier annotation is to avoid picking up
other converters that may be present on the Application Context.

@ Note

It is important to undetrstand that custom MessageConvert er s are added to the head of the
existing stack. This allows custom MessageConvert er s to take precedence over the existing
ones, thus supporting not only addition, but the override of the existing ones.

Here is an example of creating a message converter bean to support new content type appl i cati on/
bar:

@Enabl eBi ndi ng(Si nk. cl ass)
@pr i ngBoot Appl i cati on
public static class SinkApplication {

@Bean

@t r eanConvert er

publ i c MessageConverter customvessageConverter () {
return new MyCust omMvessageConverter();

}

public class MyCustomvessageConverter extends Abstract MessageConverter {

publ i c MyCust omvessageConverter() {
super (new M nmeType("application", "bar"));

Elmhurst.RC3 Spring Cloud Stream 44

Spring Cloud Stream Reference Guide

}

@verride
prot ected bool ean supports(C ass<?> clazz) {
return (Bar.class. equal s(cl azz));

}

@verride
protected Object convertFromnl nternal (Message<?> nessage, Cl ass<?> targetCl ass, Object
conversionHint) {
Obj ect payl oad = nessage. get Payl oad() ;
return (payl oad instanceof Bar ? payload : new Bar((byte[]) payload));

Spring Cloud Stream also provides support for Avro-based converters and schema evolution. See the
specific section for details.

Elmhurst.RC3 Spring Cloud Stream 45

Spring Cloud Stream Reference Guide

9. Schema evolution support

Spring Cloud Stream provides support for schema-based message converters through its spri ng-
cl oud- st r eam scherma module. Currently, the only serialization format supported out of the box for
schema-based message converters is Apache Avro, with more formats to be added in future versions.

9.1 Apache Avro Message Converters

The spri ng- cl oud- st r eam schena module contains two types of message converters that can be
used for Apache Avro serialization:

» converters using the class information of the serialized/deserialized objects, or a schema with a
location known at startup;

» converters using a schema registry - they locate the schemas at runtime, as well as dynamically
registering new schemas as domain objects evolve.

9.2 Converters with schema support

The Avr oSchemaMessageConvert er supports serializing and deserializing messages either using
a predefined schema or by using the schema information available in the class (either reflectively, or
contained in the Speci fi cRecor d). If the target type of the conversion is a Generi cRecor d, then
a schema must be set.

For using it, you can simply add it to the application context, optionally specifying one ore more
M nmeTypes to associate it with. The default M meType is appl i cati on/ avr o.

Here is an example of configuring it in a sink application registering the Apache Avro
MessageConvert er, without a predefined schema:

@nabl eBi ndi ng(Si nk. cl ass)
@Bpr i ngBoot Appl i cati on
public static class SinkApplication {

@Bean
publ i c MessageConverter user MessageConverter () {
return new AvroSchemaMessageConverter (M neType. val ueOf ("avro/ bytes"));
}
}

Conversely, here is an application that registers a converter with a predefined schema, to be found on
the classpath:

@nabl eBi ndi ng(Si nk. cl ass)
@pr i ngBoot Appl i cati on
public static class SinkApplication {

@Bean
publ i c MessageConverter user MessageConverter () {
Avr oSchemaMessageConverter converter = new AvroSchemaMessageConverter (M nmeType. val uef ("avro/
bytes"));
converter.set SchemaLocati on(new C assPat hResour ce("schenas/ User. avro"));
return converter;

Elmhurst.RC3 Spring Cloud Stream 46

Spring Cloud Stream Reference Guide

In order to understand the schema registry client converter, we will describe the schema registry support
first.

9.3 Schema Registry Support

Most serialization models, especially the ones that aim for portability across different platforms and
languages, rely on a schema that describes how the data is serialized in the binary payload. In order to
serialize the data and then to interpret it, both the sending and receiving sides must have access to a
schema that describes the binary format. In certain cases, the schema can be inferred from the payload
type on serialization, or from the target type on deserialization, but in a lot of cases applications benefit
from having access to an explicit schema that describes the binary data format. A schema registry
allows you to store schema information in a textual format (typically JSON) and makes that information
accessible to various applications that need it to receive and send data in binary format. A schema is
referenceable as a tuple consisting of:

» a subject that is the logical name of the schema,;
» the schema version;

» the schema format which describes the binary format of the data.

9.4 Schema Registry Server

Spring Cloud Stream provides a schema registry server implementation. In order to use it,
you can simply add the spri ng-cl oud-stream schenma- server artifact to your project and
use the @nabl eSchemaRegi stryServer annotation, adding the schema registry server REST
controller to your application. This annotation is intended to be used with Spring Boot web
applications, and the listening port of the server is controlled by the server.port setting.
The spring. cloud. stream schena. server. path setting can be used to control the root
path of the schema server (especially when it is embedded in other applications). The
spring. cl oud. st ream schena. server. al | owSchemaDel eti on boolean setting enables the
deletion of schema. By default this is disabled.

The schema registry server uses a relational database to store the schemas. By default, it uses an
embedded database. You can customize the schema storage using the Spring Boot SQL database and
JDBC configuration options.

A Spring Boot application enabling the schema registry looks as follows:

@pr i ngBoot Appl i cati on
@nabl eSchemaRegi stryServer
public class SchemaRegi stryServerApplication {
public static void main(String[] args) {
SpringApplication. run(SchemaRegi stryServer Application.class, args);

}

Schema Registry Server API
The Schema Registry Server API consists of the following operations:
POST /

Register a new schema.

Elmhurst.RC3 Spring Cloud Stream 47

http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#boot-features-sql
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#boot-features-sql

Spring Cloud Stream Reference Guide

Accepts JSON payload with the following fields:

» subj ect the schema subject;

o format the schema format;

o definition the schema definition.

Response is a schema object in JSON format, with the following fields:
* i d the schemaid;

e subj ect the schema subject;

» format the schema format;

» ver si on the schema version;

» defi ni ti on the schema definition.

GET /{subject}/{format}/{version}

Retrieve an existing schema by its subject, format and version.
Response is a schema object in JSON format, with the following fields:
* i dthe schemaid;

» subj ect the schema subject;

» fornat the schema format;

+ ver si on the schema version;

» definition the schema definition.

CGET /{subject}/{formt}

Retrieve a list of existing schema by its subject and format.

Response is a list of schemas with each schema object in JSON format, with the following fields:

* i d the schema id;

subj ect the schema subject;

f or mat the schema format;

* versi on the schema version;

» defi ni ti on the schema definition.
CGET /schenas/ {i d}

Retrieve an existing schema by its id.

Response is a schema object in JSON format, with the following fields:

Elmhurst.RC3 Spring Cloud Stream 48

Spring Cloud Stream Reference Guide

e i d the schema id;

subj ect the schema subject;

f or mat the schema format;

+ versi on the schema version;

» defi ni ti on the schema definition.

DELETE /{subject}/{format}/{version}

Delete an existing schema by its subject, format and version.
DELETE / schenmas/ {i d}

Delete an existing schema by its id.

DELETE / {subj ect}

Delete existing schemas by their subject.

@ Note

This note applies to users of Spring Cloud Stream 1.1.0.RELEASE only. Spring Cloud Stream
1.1.0.RELEASE used the table name schenma for storing Schema objects, which is a keyword
in a number of database implementations. To avoid any conflicts in the future, starting with
1.1.1.RELEASE we have opted for the name SCHEMA REPCSI TORY for the storage table. Any
Spring Cloud Stream 1.1.0.RELEASE users that are upgrading are advised to migrate their
existing schemas to the new table before upgrading.

9.5 Schema Registry Client

The client-side abstraction for interacting with schema registry servers is the SchemaRegi stryC i ent
interface, with the following structure:

public interface SchemaRegi strydient {
SchemaRegi strati onResponse register(String subject, String format, String schemm);
String fetch(SchemaRef erence schemaRef erence);

String fetch(Integer id);

Spring Cloud Stream provides out of the box implementations for interacting with its own schema server,
as well as for interacting with the Confluent Schema Registry.

A client for the Spring Cloud Stream schema registry can be configured using the
@nabl eSchemaRegi stryd i ent as follows:

@Enabl eBi ndi ng(Si nk. cl ass)

@pr i ngBoot Appl i cati on

@Enabl eSchemaRegi stryd i ent

public static class AvroSi nkApplication {

}

Elmhurst.RC3 Spring Cloud Stream 49

Spring Cloud Stream Reference Guide

@ Note

The default converter is optimized to cache not only the schemas from the remote
server but also the parse() and toString() methods that are quite expensive.
Because of this, it uses a Defaul t SchemaRegi stryd i ent that does not caches
responses. If you intend to use the client directly on your code, you can request a
bean that also caches responses to be created. To do that, just add the property
spring. cl oud. st ream schenmaRegi stryC i ent.cached=true to your application
properties.

Using Confluent’s Schema Registry

The default configuration will create a Def aul t SchemaRegi stryd i ent bean. If you want to use the
Confluent schema registry, you need to create a bean of type Conf | uent SchemaRegi stryC i ent,
which will supersede the one configured by default by the framework.

@Bean
publi c SchemaRegi stryd i ent
schemaRegi stryd i ent (@/al ue(" ${spring. cl oud. stream schemaRegi stryCl i ent.endpoint}") String endpoint){
Conf | uent SchemaRegi stryClient client = new Confl uent SchemaRegi stryClient();
client.set Endpoi nt (endpoint);
return client;

}

@ Note

The ConfluentSchemaRegistryClient is tested against Confluent platform version 3.2.2.
Schema Registry Client properties

The Schema Registry Client supports the following properties:

spring.cloud.stream.schemaRegistryClient.endpoint
The location of the schema-server. Use a full URL when setting this, including protocol (htt p or
ht t ps), port and context path.

Default
| ocal host : 8990/

spring.cloud.stream.schemaRegistryClient.cached
Whether the client should cache schema server responses. Normally set to f al se, as the caching
happens in the message converter. Clients using the schema registry client should set thisto t r ue.

Default
true

9.6 Avro Schema Registry Client Message Converters

For Spring Boot applications that have a SchenmaRegi st ryd i ent bean registered with the application
context, Spring Cloud Stream will auto-configure an Apache Avro message converter that uses the
schema registry client for schema management. This eases schema evolution, as applications that
receive messages can get easy access to a writer schema that can be reconciled with their own reader
schema.

For outbound messages, the MessageConvert er will be activated if the content type of the channel
is setto appl i cati on/ *+avro, e.g.:

Elmhurst.RC3 Spring Cloud Stream 50

http://localhost:8990/

Spring Cloud Stream Reference Guide

spring. cl oud. stream bi ndi ngs. out put. cont ent Type=appl i cati on/ *+avro

During the outbound conversion, the message converter will try to infer the schemas of the outbound
messages based on their type and register them to a subject based on the payload type using the
SchenmaRegi stryd i ent. If an identical schema is already found, then a reference to it will be
retrieved. If not, the schema will be registered and a new version number will be provided. The
message will be sent with a cont ent Type header using the scheme appl i cation/[prefix].
[subj ect]. v[version] +avr o, where prefi x is configurable and subj ect is deduced from the
payload type.

For example, a message of the type User may be sent as a binary payload with a content type of
appl i cation/vnd. user.v2+avr o, where user is the subject and 2 is the version number.

When receiving messages, the converter will infer the schema reference from the header of the incoming
message and will try to retrieve it. The schema will be used as the writer schema in the deserialization
process.

Avro Schema Registry Message Converter properties

If you have enabled Avro based schema registry client by setting
spring. cl oud. st ream bi ndi ngs. out put. cont ent Type=appl i cati on/*+avro you can
customize the behavior of the registration with the following properties.

spring.cloud.stream.schema.avro.dynamicSchemaGenerationEnabled
Enable if you want the converter to use reflection to infer a Schema from a POJO.

Default
fal se

spring.cloud.stream.schema.avro.readerSchema
Avro compares schema versions by looking at a writer schema (origin payload) and a reader schema
(your application payload), check Avro documentation for more information. If set, this overrides
any lookups at the schema server and uses the local schema as the reader schema.

Default
nul |

spring.cloud.stream.schema.avro.schemalocations
Register any . avsc files listed in this property with the Schema Server.

Default
enpty

spring.cloud.stream.schema.avro.prefix
The prefix to be used on the Content-Type header.

Default
vnd

9.7 Schema Registration and Resolution

To better understand how Spring Cloud Stream registers and resolves new schemas, as well as its
use of Avro schema comparison features, we will provide two separate subsections below: one for the
registration, and one for the resolution of schemas.

Elmhurst.RC3 Spring Cloud Stream 51

https://avro.apache.org/docs/1.7.6/spec.html

Spring Cloud Stream Reference Guide

Schema Registration Process (Serialization)

The first part of the registration process is extracting a schema from the payload that is being sent over a
channel. Avro types such as Speci fi cRecor d or Gener i cRecor d already contain a schema, which
can be retrieved immediately from the instance. In the case of POJOs a schema will be inferred if the
property spri ng. cl oud. st ream schena. avr o. dynam cSchemaGener at i onEnabl ed is set to
t r ue (the default).

Figure 9.1. Schema Writer Resolution Process

Ones a schema is obtained, the converter will then load its metadata (version) from the remote server.
First it queries a local cache, and if not found it then submits the data to the server that will reply with
versioning information. The converter will always cache the results to avoid the overhead of querying
the Schema Server for every new message that needs to be serialized.

Figure 9.2. Schema Registration Process

With the schema version information, the converter sets the cont ent Type header of the message to
carry the version information such as appl i cati on/ vnd. user. vl+avro

Schema Resolution Process (Deserialization)

When reading messages that contain version information (i.e. a cont ent Type header with a scheme
like above), the converter will query the Schema server to fetch the writer schema of the message.
Ones it has found the correct schema of the incoming message, it then retrieves the reader schema and
using Avro’s schema resolution support reads it into the reader definition (setting defaults and missing
properties).

Figure 9.3. Schema Reading Resolution Process

@ Note

It's important to understand the difference between a writer schema (the application that wrote
the message) and a reader schema (the receiving application). Please take a moment to
read the Avro terminology and understand the process. Spring Cloud Stream will always fetch
the writer schema to determine how to read a message. If you want to get Avro’s schema
evolution support working you need to make sure that a readerSchema was properly set for
your application.

Elmhurst.RC3 Spring Cloud Stream 52

https://avro.apache.org/docs/1.7.6/spec.html

Spring Cloud Stream Reference Guide

10. Inter-Application Communication

10.1 Connecting Multiple Application Instances

While Spring Cloud Stream makes it easy for individual Spring Boot applications to connect to
messaging systems, the typical scenario for Spring Cloud Stream is the creation of multi-application
pipelines, where microservice applications send data to each other. You can achieve this scenario by
correlating the input and output destinations of adjacent applications.

Supposing that a design calls for the Time Source application to send data to the Log Sink application,
you can use a common destination named t i ckt ock for bindings within both applications.

Time Source (that has the channel name out put) will set the following property:

spring. cl oud. stream bi ndi ngs. out put . desti nati on=ti ckt ock

Log Sink (that has the channel name i nput) will set the following property:

spring. cl oud. stream bi ndi ngs. i nput. destinati on=ti cktock

10.2 Instance Index and Instance Count

When scaling up Spring Cloud Stream applications, each instance can receive information about
how many other instances of the same application exist and what its own instance index
is. Spring Cloud Stream does this through the spring. cl oud. stream i nst anceCount and
spring. cl oud. st ream i nst ancel ndex properties. For example, if there are three instances of a
HDFS sink application, all three instances will have spri ng. cl oud. stream i nst anceCount setto
3, and the individual applications will have spri ng. cl oud. stream i nst ancel ndex setto 0, 1, and
2, respectively.

When Spring Cloud Stream applications are deployed via Spring Cloud Data Flow, these properties are
configured automatically; when Spring Cloud Stream applications are launched independently, these
properties must be set correctly. By default, spri ng. cl oud. stream i nst anceCount is 1, and
spring. cl oud. stream i nst ancel ndex is 0.

In a scaled-up scenario, correct configuration of these two properties is important for addressing
partitioning behavior (see below) in general, and the two properties are always required by certain
binders (e.g., the Kafka binder) in order to ensure that data are split correctly across multiple consumer
instances.

10.3 Partitioning

Configuring Output Bindings for Partitioning

An output binding is configured to send partitioned data by setting one and only one of its
partiti onKeyExpressi onorpartitionKeyExtractor Nanme (see next paragraph) properties, as
well as its parti ti onCount property.

For example, the following is a valid and typical configuration:

spring. cl oud. stream bi ndi ngs. out put . producer. partitionKeyExpressi on=payl oad. i d
spring. cl oud. stream bi ndi ngs. out put. producer. partiti onCount =5

Elmhurst.RC3 Spring Cloud Stream 53

Spring Cloud Stream Reference Guide

Based on the above example configuration, data will be sent to the target partition using the following
logic.

A partition key’s value is calculated for each message sent to a partitioned output channel based on
the partiti onKeyExpression. The partiti onKeyExpressi on is a SpEL expression which is
evaluated against the outbound message for extracting the partitioning key.

If a SpEL expression is not sufficient for your needs, you can
instead calculate the partition key value by providing implementation
of org. springfranmework. cl oud. stream bi nder. Partiti onKeyExtractorStrategy and
configuring it as a bean (i.e., @ean). In the event you have more then one bean
of type org. spri ngfranmework. cl oud. stream bi nder. Partiti onKeyExtractor Strategy
available in the Application Context you can further filter it by specifying its name via
partiti onKeyExtract or Nane property:

--spring. cl oud. stream bi ndi ngs. out put. producer. partiti onKeyExtract or Name=cust onPartiti onKeyExtract or
--spring.cloud. stream bi ndi ngs. out put. producer. partiti onCount =5

@Bean
public CustonPartitionKeyExtractorC ass custonPartitionKeyExtractor() {
return new CustonPartiti onKeyExtractord ass();

}

@ Note

In previous versions of Spring Cloud Stream you could specify the implementation of
or g. spri ngframework. cl oud. stream bi nder. Partiti onKeyExtractor Strategy
as

spring. cl oud. st ream bi ndi ngs. out put . producer. partitionKeyExtractord ass
property. Since version 2.0 this property is deprecated and support for it will be removed in a
future version.

Ones the message key is calculated, the partition selection process will determine the target
partition as a value between 0 and partitionCount - 1. The default calculation, applicable
in most scenarios, is based on the formula key. hashCode() % partitionCount. This can
be customized on the binding, either by setting a SpEL expression to be evaluated against the
'key' (via the partitionSel ector Expressi on property) or by configuring an implementation
of org. spri ngf ranewor k. cl oud. stream bi nder. Partiti onSel ector Strategy as a bean
(i.e., @Bean). And similarly to the Par ti ti onKeyExt r act or St r at egy you can further filter it using
spring. cl oud. st ream bi ndi ngs. out put . producer. partiti onSel ect or Nane property in
the event there are more then one bean of this type is available in the Application Context.

--spring.cloud. stream bi ndi ngs. out put. producer. partiti onSel ect or Name=custonPartitionSel ector

@Bean
public CustonPartitionSel ectorC ass custonPartitionSel ector() {
return new CustonPartitionSel ectorC ass();

}

@ Note

In previous versions of Spring Cloud Stream you could specify the implementation
of org.springfranework. cl oud. stream bi nder. PartitionSel ectorStrategy
as spring. cl oud. stream bi ndi ngs. out put. producer. partitionSel ectorC ass
property. Since version 2.0 this property is deprecated and support for it will be removed in a
future version.

Elmhurst.RC3 Spring Cloud Stream 54

Spring Cloud Stream Reference Guide

Configuring Input Bindings for Partitioning

An input binding (with the channel name i nput) is configured to receive partitioned data by setting
its partiti oned property, as well as the i nst ancel ndex and i nst anceCount properties on the
application itself, as in the following example:

spring. cl oud. stream bi ndi ngs. i nput. consuner. partitioned=true
spring. cl oud. stream i nstancel ndex=3
spring. cl oud. stream i nst anceCount =5

The i nst anceCount value represents the total number of application instances between which the
data need to be partitioned, and the i nst ancel ndex must be a unique value across the multiple
instances, between 0 and i nst anceCount - 1. The instance index helps each application instance to
identify the unique partition(s) from which it receives data. It is required by binders using technology that
doesn’t support partitioning natively, for example, with RabbitMQ, there is a queue for each partition,
with the queue name containing the instance index. With Kafka, if aut oRebal anceEnabl ed istrue
(default), Kafka will take care of distributing partitions across instances and these properties are not
required. If aut oRebal anceEnabl ed is set to false, the i nst anceCount and i nst ancel ndex are
used by the binder to determine which partition(s) the instance will subscribe to (you must have at least
as many partitions as there are instances). The binder will allocate the partitions instead of Kafka. This
might be useful if you want messages for a particular partition to always go to the same instance. When
a binder configuration that requires them, it is important to set both values correctly in order to ensure
that all of the data is consumed and that the application instances receive mutually exclusive datasets.

While a scenario which using multiple instances for partitioned data processing may be complex to set
up in a standalone case, Spring Cloud Dataflow can simplify the process significantly by populating
both the input and output values correctly as well as relying on the runtime infrastructure to provide
information about the instance index and instance count.

Elmhurst.RC3 Spring Cloud Stream 55

Spring Cloud Stream Reference Guide

11. Testing

Spring Cloud Stream provides support for testing your microservice applications without connecting to
a messaging system. You can do that by using the Test Support Bi nder provided by the spri ng-
cl oud- st reamt est - support library, which can be added as a test dependency to the application:

<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cloud-streamtest-support</artifactld>
<scope>t est </ scope>

</ dependency>

@ Note

The Test Support Bi nder uses the Spring Boot autoconfiguration mechanism to supersede
the other binders found on the classpath. Therefore, when adding a binder as a dependency,
make sure that the t est scope is being used.

The Test Suppor t Bi nder allows users to interact with the bound channels and inspect what messages
are sent and received by the application

For outbound message channels, the Test Suppor t Bi nder registers a single subscriber and retains
the messages emitted by the application in a MessageCol | ect or . They can be retrieved during tests
and have assertions made against them.

The user can also send messages to inbound message channels, so that the consumer application can
consume the messages. The following example shows how to test both input and output channels on
a processor.

@unW t h(Spri ngRunner . cl ass)
@pr i ngBoot Test (webEnvi ronnent = Spri ngBoot Test . WebEnvi r onment . RANDOM_PORT)
public class Exanpl eTest {

@\ut owi r ed
private Processor processor;

@\ut owi red
private MessageCol | ect or nessageCol | ector;

@est
@uppr essWar ni ngs("unchecked")
public void testWring() {
Message<String> nmessage = new Generi cMessage<>("hell0");
processor. i nput().send(nmessage);
Message<String> received = (Message<String>) nessageCol | ector. forChannel (processor.output()).poll();
assert That (recei ved. get Payl oad(), equal To("hello world"));

@pr i ngBoot Appl i cati on
@nabl eBi ndi ng(Processor. cl ass)
public static class M/Processor {

@\ut owi r ed
private Processor channels;

@r ansf orner (i nput Channel = Processor. | NPUT, out put Channel = Processor. QUTPUT)
public String transfornm(String in) {
returnin + " world";
}
}

}

Elmhurst.RC3 Spring Cloud Stream 56

Spring Cloud Stream Reference Guide

In the example above, we are creating an application that has an input and an output channel,
bound through the Pr ocessor interface. The bound interface is injected into the test so we can have
access to both channels. We are sending a message on the input channel and we are using the
MessageCol | ect or provided by Spring Cloud Stream’s test support to capture the message has been
sent to the output channel as a result. Ones we have received the message, we can validate that the
component functions correctly.

11.1 Disabling the test binder autoconfiguration

The intent behind the test binder superseding all the other binders on the classpath is to make
it easy to test your applications without making changes to your production dependencies. In
some cases (e.g. integration tests) it is useful to use the actual production binders instead, and
that requires disabling the test binder autoconfiguration. In order to do so, you can exclude the
org. springframework. cl oud. stream t est. bi nder. Test Support Bi nder Aut oConfi gurati on
class using one of the Spring Boot autoconfiguration exclusion mechanisms, as in the following example.

@Bpr i ngBoot Appl i cati on(excl ude = Test Support Bi nder Aut oConfi gur ati on. cl ass)
@nabl eBi ndi ng(Processor. cl ass)
public static class M/Processor {

@r ansf ormer (i nput Channel = Processor. | NPUT, output Channel = Processor. QUTPUT)
public String transforn(String in) {
returnin + " world";

}

When autoconfiguration is disabled, the test binder is available on the classpath, and its
def aul t Candi dat e property is set to fal se, so that it does not interfere with the regular user
configuration. It can be referenced under the name t est e.g.:

spring. cl oud. stream def aul t Bi nder =t est

Elmhurst.RC3 Spring Cloud Stream 57

Spring Cloud Stream Reference Guide

12. Health Indicator

Spring Cloud Stream provides a health indicator for binders. It is registered under the name of bi nder s
and can be enabled or disabled by setting the managenent . heal t h. bi nder s. enabl ed property.

Elmhurst.RC3 Spring Cloud Stream 58

Spring Cloud Stream Reference Guide

13. Metrics Emitter

Spring Cloud Stream provides a module called spri ng- cl oud- stream netri cs that can be used
to emit any available metric from Spring Boot metrics endpoint to a hamed channel. This module allow
operators to collect metrics from stream applications without relying on polling their endpoints.

The module is activated when you set the destination name for metrics binding, e.g.
spring. cl oud. st ream bi ndi ngs. appl i cati onMetri cs. desti nati on=<DESTI NATI ON_NAME>.
applicationMetrics can be configured in a similar fashion to any other producer binding. The
default cont ent Type setting of appl i cati onMetri cs isapplication/json.

The following properties can be used for customizing the emission of metrics:

spring.cloud.stream.metrics.key
The name of the metric being emitted. Should be an unique value per application.

Default
${spring. application. name: ${vcap. appl i cati on. nane:
${spring. config. name: application}}}

spring.cloud.stream.metrics.prefix
Prefix string to be prepended to the metrics key.

Default: ™

spring.cloud.stream.metrics.properties
Just like the i ncl udes option, it allows white listing application properties that will be added to the
metrics payload

Default: null.

A detailed overview of the metrics export process can be found in the Spring Boot reference
documentation. Spring Cloud Stream provides a metric exporter named appl i cati on that can be
configured via regular Spring Boot metrics configuration properties.

The exporter can be configured either by using the global Spring Boot configuration
settings for exporters, or by using exporter-specific properties. For using the global
configuration settings, the properties should be prefixed by spring.metric.export (e.g.
spring. nmetric.export.includes=integration**). These configuration options will apply
to all exporters (unless they have been configured differently). Alternatively, if it is intended
to use configuration settings that are different from the other exporters (e.g. for restricting
the number of metrics published), the Spring Cloud Stream provided metrics exporter
can be configured using the prefix spring. metrics.export.triggers.application (e.g.
spring. metrics.export.triggers.application.includes=integration**).

@ Note

Due to Spring Boot’s relaxed binding the value of a property being included can be slightly
different than the original value.

As a rule of thumb, the metric exporter will attempt to normalize all the properties in a consistent
format using the dot notation (e.g. JAVA_HOME becomes j ava. hone).

The goal of normalization is to make downstream consumers of those metrics capable of
receiving property names consistently, regardless of how they are set on the monitored

Elmhurst.RC3 Spring Cloud Stream 59

https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html#production-ready-metric-writers
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html#production-ready-metric-writers
https://github.com/spring-projects/spring-boot/blob/1.5.x/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/metrics/export/TriggerProperties.java
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding

Spring Cloud Stream Reference Guide

application (- - spri ng. appl i cati on. name or SPRI NG_APPLI CATI ON_NAME would always
yield spri ng. appl i cati on. nane).

Below is a sample of the data published to the channel in JSON format by the following command:

java -jar tine-source.jar \
--spring.cloud. stream bi ndi ngs. appl i cati onMetri cs. destinati on=someMetrics \
--spring.cloud.streamnetrics. properti es=spring. application** \
--spring.metrics.export.includes=integration.channel.input**, integration.channel.output**

The resulting JSON is:

{
"nane":"tine-source",
"metrics":[

{
“name":"integration.channel . output.errorRate.mean",
"val ue": 0.0,
"tinmestanp":"2017-04-11T16: 56: 35. 790Z2"

bo

{
"nanme":"integration.channel . out put.errorRate. max",
“val ue": 0.0,
"timestanp":"2017-04-11T16: 56: 35. 790Z"

Bo

{
"nanme":"integration.channel.output.errorRate. mn",
"val ue": 0.0,
"timestanp":"2017-04-11T16: 56: 35. 7902"

B

{
"nanme":"integration.channel . output.errorRate.stdev",
"val ue": 0.0,
"timestanp":"2017-04-11T16: 56: 35. 790Z2"

I

{
"nane":"integration.channel . out put.errorRate.count",
"val ue": 0.0,
"timestanp":"2017-04-11T16: 56: 35. 790Z2"

}.

{
"nane":"integration.channel . out put. sendCount",
"val ue": 6.0,
"tinmestanp":"2017-04-11T16: 56: 35. 790Z2"

Bo

{
“nanme":"integration.channel . out put.sendRat e. nean",
"val ue": 0. 994885872292989,
"tinmestanp":"2017-04-11T16: 56: 35. 790Z2"

bo

{
"nanme":"integration.channel . out put.sendRat e. max",
"val ue":1.006247080013156,
"timestanp":"2017-04-11T16: 56: 35. 790Z"

Bo

{
"nanme":"integration.channel . out put.sendRate. m n",
“val ue":1.0012035220116378,
"timestanp":"2017-04-11T16: 56: 35. 7902"

B

{
"name":"integration.channel . out put.sendRat e. st dev",
"val ue": 6.505181111084848E- 4,
"timestanp":"2017-04-11T16: 56: 35. 790Z2"

I

{
"nane":"integration. channel . out put. sendRate. count ",
"val ue": 6.0,
"timestanp":"2017-04-11T16: 56: 35. 790Z2"

Elmhurst.RC3 Spring Cloud Stream 60

Spring Cloud Stream Reference Guide

}

IE

"createdTi ne":"2017- 04- 11T20: 56: 35. 790Z",

"properties":{
"spring.application.nanme":"tinme-source",
"spring.application.index":"0"

Elmhurst.RC3 Spring Cloud Stream

61

Spring Cloud Stream Reference Guide

14. Samples

For Spring Cloud Stream samples, please refer to the spring-cloud-stream-samples repository on
GitHub.

14.1 Deploying Stream applications on CloudFoundry

On CloudFoundry services are usually exposed via a special environment variable called
VCAP_SERVICES.

When configuring your binder connections, you can use the values from an environment variable as
explained on the dataflow cloudfoundry server docs.

Elmhurst.RC3 Spring Cloud Stream 62

https://github.com/spring-cloud/spring-cloud-stream-samples
https://docs.cloudfoundry.org/devguide/deploy-apps/environment-variable.html#VCAP-SERVICES
http://docs.spring.io/spring-cloud-dataflow-server-cloudfoundry/docs/current-SNAPSHOT/reference/htmlsingle/#getting-started-ups

Part |l. Binder Implementations

Spring Cloud Stream Reference Guide

15. Apache Kafka Binder
15.1 Usage

To use Apache Kafka binder all you need is to add spri ng- cl oud- st r eam bi nder - kaf ka as a
dependency to your Spring Cloud Stream application. Below is a Maven example:

<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cloud-stream bi nder-kaf ka</artifact|d>
</ dependency>

Alternatively, you can also use the Spring Cloud Stream Kafka Starter.

<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cloud-starter-streamkafka</artifact!d>
</ dependency>

15.2 Apache Kafka Binder Overview

A simplified diagram of how the Apache Kafka binder operates can be seen below.

|

Figure 15.1. Kafka Binder

The Apache Kafka Binder implementation maps each destination to an Apache Kafka topic. The
consumer group maps directly to the same Apache Kafka concept. Partitioning also maps directly to
Apache Kafka partitions as well.

The binder currently uses the Apache Kafka kaf ka-cl i ents 1.0.0 jar and is designed to be used
with a broker at least that version. This client can communicate with older brokers (refer to the Kafka
documentation), but certain features may not be available. For example, with versions earlier than
0.11.x.x, native headers are not supported. Also, 0.11.x.x does not support the aut oAddParti ti ons

property.
15.3 Configuration Options

This section contains the configuration options used by the Apache Kafka binder.

For common configuration options and properties pertaining to binder, refer to the core documentation.

Kafka Binder Properties

spring.cloud.stream.kafka.binder.brokers
A list of brokers to which the Kafka binder will connect.

Elmhurst.RC3 Spring Cloud Stream 64

Spring Cloud Stream Reference Guide

Default: | ocal host .

spring.cloud.stream.kafka.binder.defaultBrokerPort
br oker s allows hosts specified with or without port information (e.g., host 1, host 2: port 2). This
sets the default port when no port is configured in the broker list.

Default: 9092.

spring.cloud.stream.kafka.binder.configuration
Key/Value map of client properties (both producers and consumer) passed to all clients created by
the binder. Due to the fact that these properties will be used by both producers and consumers,
usage should be restricted to common properties, for example, security settings.

Default: Empty map.

spring.cloud.stream.kafka.binder.headers
The list of custom headers that will be transported by the binder. Only required when communicating
with older applications (@ 1.3.x) withakaf ka- cl i ent s version <0.11.0.0; newer versions support
headers natively.

Default: empty.

spring.cloud.stream.kafka.binder.healthTimeout
The time to wait to get partition information in seconds; default 60. Health will report as down if this
timer expires.

Default: 10.

spring.cloud.stream.kafka.binder.requiredAcks
The number of required acks on the broker. See the Kafka documentation for the producer acks

property.
Default: 1.

spring.cloud.stream.kafka.binder.minPartitionCount
Effective only if aut oCr eat eTopi ¢s oraut oAddPar ti ti ons is set. The global minimum number
of partitions that the binder will configure on topics on which it produces/consumes data. It can be
superseded by the partiti onCount setting of the producer or by the value of i nst anceCount
* concur r ency settings of the producer (if either is larger).

Default: 1.

spring.cloud.stream.kafka.binder.replicationFactor
The replication factor of auto-created topics if aut oCr eat eTopi cs is active. Can be overriden on
each binding.

Default: 1.

spring.cloud.stream.kafka.binder.autoCreateTopics
If setto t r ue, the binder will create new topics automatically. If setto f al se, the binder will rely on
the topics being already configured. In the latter case, if the topics do not exist, the binder will fail
to start. Of note, this setting is independent of the aut 0. t opi c. cr eat e. enabl e setting of the
broker and it does not influence it: if the server is set to auto-create topics, they may be created as
part of the metadata retrieval request, with default broker settings.

Elmhurst.RC3 Spring Cloud Stream 65

Spring Cloud Stream Reference Guide

Default: t r ue.

spring.cloud.stream.kafka.binder.autoAddPartitions
If set to t r ue, the binder will create add new partitions if required. If set to f al se, the binder will
rely on the partition size of the topic being already configured. If the partition count of the target topic
is smaller than the expected value, the binder will fail to start.

Default: f al se.

spring.cloud.stream.kafka.binder.transaction.transactionldPrefix
Enable transactions in the binder; see transaction.id in the Kafka documentation
and Transactions in the spring-kafka documentation. When transactions are
enabled, individual producer properties are ignored and all producers use the
spring. cl oud. st ream kaf ka. bi nder. transacti on. producer . * properties.

Default nul | (no transactions)

spring.cloud.stream.kafka.binder.transaction.producer.*
Global producer properties for producers in a transactional binder. See
spring. cl oud. st ream kaf ka. bi nder.transaction.transactionldPrefix and the
section called “Kafka Producer Properties” and the general producer properties supported by all
binders.

Default: See individual producer properties.

spring.cloud.stream.kafka.binder.headerMapperBeanName
The bean name of a Kaf kaHeader Mapper used for mapping spri ng- messagi ng headers to/
from Kafka headers. Use this, for example, if you wish to customize the trusted packages in a
Def aul t Kaf kaHeader Mapper , which uses JSON deserialization for the headers.

Default: none.
Kafka Consumer Properties

The following properties are available for Kafka consumers only and must be prefixed with
spring. cl oud. st ream kaf ka. bi ndi ngs. <channel Nane>. consuner. .

admin.configuration
A Mp of Kafka topic properties used when provisioning topics. e.g.
spring. cl oud. st ream kaf ka. bi ndi ngs. i nput. consuner. adm n. confi guration. message. f or mat

Default: none.

admin.replicas-assignment
A Map<integer, List<Integer>> of replica assignments, with the key being the partition and value
the assignments. Used when provisioning new topics. See NewTopi ¢ javadocs in the kaf ka-
clients jar.

Default: none.

admin.replication-factor
The replication factor to use when provisioning topics; overrides the binder-wide setting. Ignored if
repl i cas-assi gnnent s is present.

Default: none (the binder-wide default of 1 is used).

Elmhurst.RC3 Spring Cloud Stream 66

https://docs.spring.io/spring-kafka/reference/html/_reference.html#transactions

Spring Cloud Stream Reference Guide

autoRebalanceEnabled

When true, topic partitions will be automatically rebalanced between the
members of a consumer group. When false, each consumer will be assigned
a fixed set of partitions based on spring.cloud.streaminstanceCount
and spring. cl oud. stream i nstancel ndex. This requires both
spring. cl oud. stream i nstanceCount and spring.cloud. stream i nstancel ndex
properties to be set appropriately on each launched instance. The property
spring. cl oud. st ream i nst anceCount must typically be greater than 1 in this case.

Default: t r ue.

ackEachRecord

When aut oConmi t Of f set is true, whether to commit the offset after each record is
processed. By default, offsets are committed after all records in the batch of records returned
by consuner . pol | () have been processed. The number of records returned by a poll can be
controlled with the max. pol I . recods Kafka property, set via the consumer confi gurati on
property. Setting this to true may cause a degradation in performance, but reduces the likelihood
of redelivered records when a failure occurs. Also see the binder r equi r edAcks property, which
also affects the performance of committing offsets.

Default: f al se.

autoCommitOffset

Whether to autocommit offsets when a message has been processed.

If set to false, a header with the key kafka_acknow edgnent of

the type org.springfranmework. kaf ka. support. Acknow edgnment header will be

present in the inbound message. Applications may wuse this header for
acknowledging messages. See the examples section for details. When this

property is set to false, Kafka binder will set the ack mode to

org. springframewor k. kaf ka. | i st ener. Abst ract Messageli st ener Cont ai ner . AckiMbde. MANUAL
and the application is responsible for acknowledging records. Also see ackEachRecor d.

Default: t r ue.

autoCommitOnError
Effective only if aut oComi t Of f set is setto true. If set to f al se it suppresses auto-commits
for messages that result in errors, and will commit only for successful messages, allows a stream to
automatically replay from the last successfully processed message, in case of persistent failures. If
settot rue, it will always auto-commit (if auto-commit is enabled). If not set (default), it effectively
has the same value as enabl eDl g, auto-committing erroneous messages i