Spring Cloud Stream Reference Guide

Sabby Anandan, Marius Bogoevici, Eric Bottard, Mark Fisher, llayaperumal Gopinathan, Gunnar Hillert,
Mark Pollack, Patrick Peralta, Glenn Renfro, Thomas Risberg, Dave Syer, David Turanski, Janne
Valkealahti, Benjamin Klein, Soby Chacko, Vinicius Carvalho, Gary Russell, Oleg Zhurakousky, Jay Bryant

Copyright ©

Spring Cloud Stream Reference Guide

Table of Contents

[. SPriNG ClOUA SrEAM COMEietiiii ettt ettt et e e et e et e e e e et e e et e e eaeaennns 1
1. A Brief History of Spring’s Data Integration JOUMMEYovieiiuiiieeiiiiineeiiiieeeeeiie e 2
A O V| ol Q] - o SR 3

2.1. Creating a Sample Application by Using Spring Initializrccccoooiiiiiiiiiinn, 3

2.2. Importing the Project into YOUr IDEoooiiiiiiiiii e 5

2.3. Adding a Message Handler, Building, and RUNNINGccoovviiiiiineeiiiec e, 5

3. WHAE'S NEW IN 2.0 ittt ettt ettt e et e e e e e e e e e e e e e e ennas 7
3.1. New Features and COMPONENESccuuuniiiiiiiieiiiii ettt e et e et eeaa e eenanns 7

3.2. Notable ENNANCEMENTSccoiviiiiiiiiii ettt e e s 7
Both Actuator and Web Dependencies Are Now Optionalcccoeeeiiiiiiiiiiinn. 7
Content-type Negotiation Improvementsooovvvuiiiiiiiiiniei e 8

ICTRC I N[0 ¢= o] [T B 1= o =Tor- 1 1o g 0 8
Java Serialization (Java Native and Kry0)coceuiiiiiiiiiiiiii e 8
Deprecated Classes and Methodsiiiiiiiiiiiiiiiin e 8

4. Introducing Spring Cloud STrEAIMviiiiiiei e e e e e e e 10
T Y =1 I o] g ol=T o) I S PP 12
5.1. ApPlcation MOELcoouiiiiiiii e 12

FAl JAR e 14

5.2. The Binder ADSIIACIONcccouuiiiiiiii e r e 14

5.3. Persistent Publish-Subscribe SUPPOItooiviiiiiiiiiii e 14

L B e 1 15101 1= 0] U o 16

5.5, CONSUMET TYPES ..ottt ettt e e e e e e e et e b e ea e et e e eenns 17
(DN = 1o 1Y PP UPPPTTRPPPIN 18

5.6. Partitioning SUPPOIcovuiiii e et e e e e e e e e e e et e e e e e e e et e e eanaeee 18

6. Programming MOGEI ... e 20
6.1. DeStination BINUEISciuuiiiiiieiiiee et e e e e e e e et e e et e e e e eeenaees 20

6.2. Destination BiNAINGSovuuiiiiiiii e e e e e e e e e e et e e e e aanas 20

6.3. Producing and Consuming MESSAQESccuuiiiuiiiiiiiiieeiae e e e e e e 23
Spring INtegration SUPPOITcoeiiiiieiii e et eai e 23

Using @StreamListener ANNOLAtIONoovuuiiiiiiiii e e e e 24

Using @StreamListener for Content-based routingcccocoiieiiniiiiiiiineeiee, 25

USING POIEd CONSUIMEISuiiiiiiiieeiii ettt et ettt e et e e e et e eeenae e eees 26

L0 o gl o = o {1 Vo PN 27
Application Error HaNAlNgGc..ooouniiiii e 28

System Error HaNAINGuiiiiii e 29

Drop Failed MESSAJEScvvuiiiiiieiiii et e e e e 30

DLQ - Dead Letter QUEUEcuuciiniiiiei e e e e e e e 30

Re-queue Failed MESSAJESuiiiiiiiiieiiii e 31

= 1V =Y 1] o] = P 31

6.5. Reactive Programming SUPPOITuiiuniiiiieiie e e e 32
Reactor-based HandIErsccoouiiiiiiii e e 33

REACHVE SOUICEScoiiieeiiiiie ettt e e e e e e neeens 33

T BINAEIS oo et 36
7.1. Producers and CONSUMETSccuuuiiiiiiiiee e ee e e e eae e e e et e e et s e e e eanaeeaeneeeanaeeenaaes 36

7.2, BINAEE SP ..t 36

7.3, BINAEI DEIECTHIONieiiiiiieeeeii ettt ettt e et e e e e e e e e e ennneeees 37
Classpath DEIECHIONcoeuuiiieiii e e e e e 37

please define title in your docbook file! iii

Spring Cloud Stream Reference Guide

7.4. Multiple Binders on the Classpathoooiiiiiiiiii e 37

7.5. Connecting to MUltiple SYSLEMSiiiiiiiie e 38

7.6. Binding visualization and CONtrolcoiiiiiiiiiii e 39

7.7. Binder Configuration Propertiescoouuiiiiiiiiiiiiii e 40

8. CoNnfigUration OPLIONSceeuiiieiiiii et et e et e e et e e e et e e eeaans 41
8.1. Binding SEerviCe PrOPErtiEScivuiiiiiieiii e e e e e e e e 41

8.2. BINAING PIOPEITIES ...ttt et e e e 42
Common Binding Propertiescoeeuuieiiiiieeeie e 42
CONSUMET PIOPEITIES .. ivuiiiiieiiiii e et e e e e e e e e e e e e e et e e et e e e e eaanees 42

ProduCEr PrOPEITIESiiiiti ittt ettt e e et e eeena e eees 44

8.3. Using Dynamically Bound Destinationscccuuuiiiiiiiniiiiiiin e 45

L T O] 01 1= A Y/ o LT NN [=To o) 1 7= L1 T o I 48
LS IR I Y Lo o = oo PP 48
Content Type versus Argument TYPE ..o..uiiiriiiiiieiiieeir et e e 49

MESSAGE CONVEITEIS ..uiitiiiiiiii et eaeeans 50

9.2. Provided MeSSAgECONVEITEISeiiiiii it eeiii e et e ettt e et e e eeti e e eene e eees 50

9.3. User-defined Message CONVEIELSiiiiiuiiiiiiiii et e et e et e e e e eeai e eens 51

10. Schema EVOIULtION SUPPOIT ... e e e e e e e e ees 53
10.1. Schema RegiStry ClENTco.uuiiiiiii e 53
Schema Registry Client PropertieSviiiiiiiiiiiiii e 54

10.2. Avro Schema Registry Client Message CONVEIEIScccceviveiiiieiiiieiiiieeiiieeains 54
Avro Schema Registry Message Converter Propertiescocovvevevvnieveiiinnenennnn, 54

10.3. Apache AVro MeSSAge CONVEILEIScciiuuuieeiiii e et e e et e et e et e e e eain e eens 55
10.4. Converters with Schema SUPPOITiiiiiiiiiiecii e e e 55
10.5. Schema REQISIIY SEIVEL ... oottt e e e e eees 56
Schema Registry SErver AP ... e 56
Registering a NeW SChemaooovviiiiiiiiii e, 57

Retrieving an Existing Schema by Subject, Format, and Version 57

Retrieving an Existing Schema by Subject and Formatcccooeveevinnnnnn. 57

Retrieving an Existing Schema by IDcoooiiiiiiiiiii e 58

Deleting a Schema by Subject, Format, and Versioncccocccoivveieeennnnns 58

Deleting a Schema by ID ... 58

Deleting a Schema by SUDJECEcooiviiiiii e 58

Using Confluent’'s Schema RegiSIIYovviiiiiiiiiiiiece e 58

10.6. Schema Registration and ReSOIULIONoviiiiiiiiiiiiii e 59
Schema Registration Process (Serialization)cc.cccoveviiiiiiiiiiiiiieii e, 59

Schema Resolution Process (Deserialization)coeuviieiiiiinieiiiiineceieeeenennn 59

11. Inter-Application COMMUNICALIONiiiiiiiieiiii e e 61
11.1. Connecting Multiple Application INSTANCESccviiiiiieiiii e 61
11.2. Instance Index and INStanCe COUNLc.uiiiuiiiiiiii e 61
G T =V 1T 1 o PSPPI 61
Configuring Output Bindings for Partitioningccceeveiiiiiiiiiiin e, 62
Configuring Input Bindings for Partitioningccccceoveiiiiiiiiiiiiiee e 63

D =] T S PUPPRTTRSPPIN 64
12.1. Disabling the Test Binder Autoconfigurationcccooeeviiiiiiiieiiie e, 65

RS I o 1= Y= 111 T g To [ToF= o PP 66
T ot o 1 (= 67
ST T 401 o] L= 69
15.1. Deploying Stream Applications on CloudFoundrycccooiiieiiiiinieiiiiinneeceinn. 69

[I. BInder IMPIEMENTALIONSceutiiiiiiii et e et e ettt e e et e e e et n e e e eat e e e eentnaeeeees 70

please define title in your docbook file! iv

Spring Cloud Stream Reference Guide

16. Apache Kafka BINAEIcoouuiiiiiiiieeiii et 71
G I UL To [PPSO PPPPPTIN 71
16.2. Apache Kafka BINAEr OVEIVIEWcc.uiiiiiiiiiieeiiiieeie e e e e e e e et e e e e ea e aanes 71
16.3. Configuration OPLIONSc.uuuiiiiiieieii et e e 71

Kafka BINAEr PrOPEITIESccouuuiiiiiii et 71

Kafka CONSUMET PIOPEITIESccuuiiiiiiiiiieeii e et e e e e e e e e e e e e 73

Kafka ProducCer PrOPEITIESiiiiiiiieiiiii ettt et 76

USAQE EXAMPIES .o 77
Example: Setting aut oConmmi t Of f set to f al se and Relying on Manual

ACKING ettt eee 77

Example: Security Configurationcooviiiiiiiiiiiii e 78

Example: Pausing and Resuming the CONSUMErccccveveiiiieiiineeiinnennnnn. 79

16.4. Error CRANNEISooeiiiiiie et et e e e e 80

TR T - 1 - WY/ o 80

16.6. Dead-Letter TOPIC PrOCESSING ...ccvuuiiiieiiiieeiii et e e e e e e e e e e e et e e e e eeanaees 80

16.7. Partitioning with the Kafka BINAercccouuiiiiiiiiiiiiii e 82

17. Apache Kafka Streams BiNGErccoouuiiiiiiiiii e et 85
0t R £ T [PP 85
17.2. Kafka Streams Binder OVEIVIEWcccuiiiiiiiiiieii e e 85

SHIEAIMS DS oot et 85
17.3. Configuration OPLIONSc.uuiiii i e e e e e e e e e e e et e e e e e e et e eeanaanes 86
Kafka Streams Propertieso.uuii oot 86
TIMEWINAOW PrOPEITIES: ..t eeenns 87
17.4. Multiple INPUE BiNAINGScoviiiii e e 88
Multiple Input BindiNgS S @ SINKcocouuiiiiiiiiiei e 88
Multiple Input Bindings @S @ PrOCESSONccccuuuiiiiiiiieiiii et 88
17.5. Multiple Output Bindings (aka Branching)c.cccoiviiiiiiiiiiiieie e 89
17.6. MESSAQGE CONVEISIONciiiiiieiiiti ettt e ettt e ettt e et e e et e e e et e e e eai e 90
Outbound SerialiZationooveuiiiiii e 90
INboUNd DESEMAlIZALIONc.vvviiiiii e e 91
17.7. Error HanGIiNgoeeeieee ettt 92
Handling Deserialization EXCEPLONScccuuiiiiiiiiiiiiiiii e 92
Handling Non-Deserialization EXCEPLIONScc.veviiiiiiiiiiiiieecie e eee e, 93
R T = 1 (SIS (0] £ PP P TP 94
17.9. INtEractive QUEIIES . .euuiiiiieii et e e et e et e e e e e e e e e e e et e e e s e e e e e eeannns 94

S = o] 1117 [I = 11 o =T N 96
L8, USAQE ..iiiiiiiiiiii ettt et 96
18.2. RabbitMQ BIiNAEr OVEIVIEWciiiieiieei e e e e e e e e e e e ean e eeen 96
18.3. Configuration OPLIONSc.uuiiiiiiiiiie e e e e e e e e e et e e et e e e e e e et e eeanaanes 97

RabbitMQ Binder Properti€scocoiuuiiiiiiiiee et 97
RabbitMQ CoNnsSUMEr PrOPEITIESccouuiiiiiiiiie e 98
Advanced Listener Container Configurationccooeeviiieiiiieiiii e e, 102
Rabbit Producer Propertiesoiiiiiiiiiiiiiieiee et 102
18.4. Retry With the RabbitMQ BINErcccouiiiiiiii e 106
Putting it All TOGELNET ..o 107
18.5. Error ChanNEISoeuniiiee e et e 108
18.6. Dead-Letter QUEUE PrOCESSING ...eivirinieeiiiiieeeiiiie ettt 108
Non-Partitioned DESHNALIONSiiieeeiiiiiiiiiie e ee e e e eeenenees 109
Partitioned DeStiNatiONScocuiiiiiiii e e 110
republ i shToDl g=fal Se ..., 110

please define title in your docbook file! \

Spring Cloud Stream Reference Guide

Fepubl i SATODE gt MU covei e 111

18.7. Partitioning with the RabbitMQ Bindercocoiiiiiiiiiiiii e, 112

1Y o o T=T o 1= 115
AL BUIIING o e 116
A.1. Basic ComPile @nd TESE .. ceeiuiiiiiiiii e 116

A.2. DOCUMENTALION ..eeviitiiiseeeet ittt e et ettt s e e e e e e e e s bbb s e e e e e e eennnea s 116

A.3. Working With the COOecoouuiiiii e 116
Importing into eclipse with M2ecClipSeooooiiiiiii e 116

Importing into eclipse without M2eClipSeccuiviiiiiiiiic e, 117

A.4. Sign the Contributor License Agreementc.oviiiiiiiiieiiiiin e 117

A.5. Code Conventions and HOUSEKEEPINGccuuuiiiiiiiiiiiiiiiiiece e 117

please define title in your docbook file! Vi

Part I. Spring Cloud Stream Core

Spring Cloud Stream Reference Guide

1. A Brief History of Spring’s Data Integration
Journey

Spring’s journey on Data Integration started with Spring Integration. With its programming model, it
provided a consistent developer experience to build applications that can embrace Enterprise Integration
Patterns to connect with external systems such as, databases, message brokers, and among others.

Fast forward to the cloud-era, where microservices have become prominent in the enterprise setting.
Spring Boot transformed the way how developers built Applications. With Spring’s programming model
and the runtime responsibilities handled by Spring Boot, it became seamless to develop stand-alone,
production-grade Spring-based microservices.

To extend this to Data Integration workloads, Spring Integration and Spring Boot were put together into
a new project. Spring Cloud Stream was born.

With Spring Cloud Stream, developers can: * Build, test, iterate, and deploy data-centric applications in
isolation. * Apply modern microservices architecture patterns, including composition through messaging.
* Decouple application responsibilities with event-centric thinking. An event can represent something
that has happened in time, to which the downstream consumer applications can react without knowing
where it originated or the producer’s identity. * Port the business logic onto message brokers (such as
RabbitMQ, Apache Kafka, Amazon Kinesis). * Interoperate between channel-based and non-channel-
based application binding scenarios to support stateless and stateful computations by using Project
Reactor’s Flux and Kafka Streams APIs. * Rely on the framework’s automatic content-type support for
common use-cases. Extending to different data conversion types is possible.

please define title in your docbook file! 2

https://projects.spring.io/spring-integration/
http://www.enterpriseintegrationpatterns.com/
http://www.enterpriseintegrationpatterns.com/
https://projects.spring.io/spring-boot/

Spring Cloud Stream Reference Guide

2. Quick Start

You can try Spring Cloud Stream in less then 5 min even before you jump into any details by following
this three-step guide.

We show you how to create a Spring Cloud Stream application that receives messages coming from the
messaging middleware of your choice (more on this later) and logs received messages to the console.
We call it Loggi ngConsuner . While not very practical, it provides a good introduction to some of the
main concepts and abstractions, making it easier to digest the rest of this user guide.

The three steps are as follows:

1. Section 2.1, “Creating a Sample Application by Using Spring Initializr”

2. Section 2.2, “Importing the Project into Your IDE”

3. Section 2.3, “Adding a Message Handler, Building, and Running”

2.1 Creating a Sample Application by Using Spring Initializr

To get started, visit the Spring Initializr. From there, you can generate our Loggi ngConsumner
application. To do so:

1. Inthe Dependencies section, start typing st r eam When the “Cloud Stream” option should appears,
select it.

2. Start typing either 'kafka' or 'rabbit'.
3. Select “Kafka” or “RabbitMQ".

Basically, you choose the messaging middleware to which your application binds. We recommend
using the one you have already installed or feel more comfortable with installing and running. Also, as
you can see from the Initilaizer screen, there are a few other options you can choose. For example,
you can choose Gradle as your build tool instead of Maven (the default).

4. In the Artifact field, type 'logging-consumer".

The value of the Artifact field becomes the application name. If you chose RabbitMQ for the
middleware, your Spring Initializr should now be as follows:

please define title in your docbook file! 3

https://start.spring.io

Spring Cloud Stream Reference Guide

SPRING INITIALIZR

Generate @ Mavenprojects \f

Project Metadata

Artifact coordinates

Group

com.example

Artifact

logging-consumer

Don't know what to look for? Want more options? Switch to the full vers

5. Click the Generate Project button.
Doing so downloads the zipped version of the generated project to your hard drive.
6. Unzip the file into the folder you want to use as your project directory.

0 Tip

We encourage you to explore the many possibilities available in the Spring Initializr. It lets you
create many different kinds of Spring applications.

please define title in your docbook file! 4

Spring Cloud Stream Reference Guide

2.2 Importing the Project into Your IDE

Now you can import the project into your IDE. Keep in mind that, depending on the IDE, you may need to
follow a specific import procedure. For example, depending on how the project was generated (Maven
or Gradle), you may need to follow specific import procedure (for example, in Eclipse or STS, you need
to use File _ Import _ Maven _ Existing Maven Project).

—

Once imported, the project must have no errors of any kind. Also, src¢/ mai n/ j ava should contain
com exanpl e. | oggi ngconsuner . Loggi ngConsuner Appl i cati on.

Technically, at this point, you can run the application’s main class. It is already a valid Spring Boot
application. However, it does not do anything, so we want to add some code.

2.3 Adding a Message Handler, Building, and Running

Modify the com exanpl e. | oggi ngconsuner . Loggi ngConsuner Appl i cati on class to look as
follows:

@pr i ngBoot Appl i cati on
@Enabl eBi ndi ng(Si nk. cl ass)
public class Loggi ngConsuner Application {

public static void main(String[] args) {
Spri ngAppl i cation. run(Loggi ngConsurner Appl i cation. cl ass, args);
}

@t r eanLi st ener (Si nk. | NPUT)
public void handl e(Person person) {
System out. println("Received: " + person);

}

public static class Person {
private String nane;
public String getNane() {
return name;
}
public void setNane(String nane) {
thi s. nanme = nane;
}
public String toString() {
return this.name;
}
}
}

As you can see from the preceding listing:

* We have enabled Si nk binding (input-no-output) by using @nabl eBi ndi ng(Si nk. cl ass) . Doing
so signals to the framework to initiate binding to the messaging middleware, where it automatically
creates the destination (that is, queue, topic, and others) that are bound to the Si nk. | NPUT channel.

* We have added a handl er method to receive incoming messages of type Per son. Doing so lets
you see one of the core features of the framework: It tries to automatically convert incoming message
payloads to type Per son.

You now have a fully functional Spring Cloud Stream application that does listens for messages. From
here, for simplicity, we assume you selected RabbitMQ in step one. Assuming you have RabbitMQ
installed and running, you can start the application by running its mai n method in your IDE.

You should see following output:

please define title in your docbook file! 5

Spring Cloud Stream Reference Guide

--- [main] c.s.b.r.p. Rabbi t ExchangeQueueProvi si oner : declaring queue for inbound:

i nput . anonynmous. CbM wdkJSBOLZoPDQt Ht Cg, bound to: i nput

--- [main] o.s.a.r.c.CachingConnecti onFactory : Attenpting to connect to: [local host:5672]
--- [main] o.s.a.r.c.CachingConnecti onFactory : Created new connection:

rabbi t Connect i onFact or y#2a3a299: 0/ Si npl eConnect i on@6c83f c8.

--- [main] o.s.i.a.i.Ampl nboundChannel Adapt er : started
i nbound. i nput . anonynous. CoM wdkJSBOLZoPDCt Ht Cg

--- [main] c.e.l.Loggi ngConsuner Appl i cation : Started Loggi ngConsuner Application in 2.531
seconds (JVM running for 2.897)

Go to the RabbitMQ management console or any other RabbitMQ client and send a message to
i nput . anonynous. CoM wdkJSBO1ZoPDQt Ht Cg. The anonynous. CbM wdkJSBOLZoPDCOt Ht Cg
part represents the group name and is generated, so it is bound to be different in your
environment. For something more predictable, you can use an explicit group name by setting
spring. cl oud. st ream bi ndi ngs. i nput . gr oup=hel | o (or whatever name you like).

The contents of the message should be a JSON representation of the Per son class, as follows:

{"nane": " Sam Spade"}

Then, in your console, you should see:
Recei ved: Sam Spade

You can also build and package your application into a boot jar (by using . / nvnw cl ean install)
and run the built JAR by using the j ava -j ar command.

Now you have a working (albeit very basic) Spring Cloud Stream application.

please define title in your docbook file! 6

Spring Cloud Stream Reference Guide

3. What's New in 2.0?

Spring Cloud Stream introduces a number of new features, enhancements, and changes. The following
sections outline the most notable ones:

e Section 3.1, “New Features and Components”

e Section 3.2, “Notable Enhancements”

3.1 New Features and Components

» Polling Consumers: Introduction of polled consumers, which lets the application control message
processing rates. See “the section called “Using Polled Consumers™ for more details. You can also
read this blog post for more details.

* Micrometer Support: Metrics has been switched to use Micrometer. Met er Regi stry is also
provided as a bean so that custom applications can autowire it to capture custom metrics. See
“Chapter 14, Metrics Emitter” for more details.

* New Actuator Binding Controls: New actuator binding controls let you both visualize and control
the Bindings lifecycle. For more details, see Section 7.6, “Binding visualization and control”.

» Configurable RetryTemplate: Aside from providing properties to configure Ret r yTenpl at e, we
now let you provide your own template, effectively overriding the one provided by the framework. To
use it, configure it as a @ean in your application.

3.2 Notable Enhancements

This version includes the following notable enhancements:

» the section called “Both Actuator and Web Dependencies Are Now Optional”

 the section called “Content-type Negotiation Improvements”

» Section 3.3, “Notable Deprecations”

Both Actuator and Web Dependencies Are Now Optional

This change slims down the footprint of the deployed application in the event neither actuator nor web
dependencies required. It also lets you switch between the reactive and conventional web paradigms
by manually adding one of the following dependencies.

The following listing shows how to add the conventional web framework:

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-web</artifactld>

</ dependency>

The following listing shows how to add the reactive web framework:

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-webflux</artifactld>

</ dependency>

please define title in your docbook file! 7

https://spring.io/blog/2018/02/27/spring-cloud-stream-2-0-polled-consumers
https://micrometer.io/

Spring Cloud Stream Reference Guide

The following list shows how to add the actuator dependency:

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-actuator</artifactld>
</ dependency>

Content-type Negotiation Improvements

One of the core themes for verion 2.0 is improvements (in both consistency and performance) around
content-type negotiation and message conversion. The following summary outlines the notable changes
and improvements in this area. See the “Chapter 9, Content Type Negotiation” section for more details.
Also this blog post contains more detail.

» All message conversion is now handled only by MessageConvert er objects.

« We introduced the @btreanmvessageConverter annotation to provide custom
MessageConvert er objects.

» We introduced the default Cont ent Type as appl i cati on/j son, which needs to be taken into
consideration when migrating 1.3 application or operating in the mixed mode (that is, 1.3 producer
_, 2.0 consumer).

» Messages with textual payloads and a cont ent Type oft ext/ ...or ../ j son are no longer converted
to Message<Stri ng> for cases where the argument type of the provided MessageHandl er
can not be determined (that is, public void handl e(Message<?> nessage) or public
voi d handl e(Obj ect payl oad)). Furthermore, a strong argument type may not be enough to
properly convert messages, so the cont ent Type header may be used as a supplement by some
MessageConverters.

3.3 Notable Deprecations

As of version 2.0, the following items have been deprecated:

» the section called “Java Serialization (Java Native and Kryo)”

» the section called “Deprecated Classes and Methods”

Java Serialization (Java Native and Kryo)

JavaSeri al i zati onMessageConverter and KryoMessageConverter remain for now.
However, we plan to move them out of the core packages and support in the future. The main reason
for this deprecation is to flag the issue that type-based, language-specific serialization could cause in
distributed environments, where Producers and Consumers may depend on different JVM versions or
have different versions of supporting libraries (that is, Kryo). We also wanted to draw the attention to the
fact that Consumers and Producers may not even be Java-based, so polyglot style serialization (i.e.,
JSON) is better suited.

Deprecated Classes and Methods

The following is a quick summary of notable deprecations. See the corresponding {spring-cloud-stream-
javadoc-current}[javadoc] for more details.

» Shar edChannel Regi st ry. Use Shar edBi ndi ngTar get Regi stry.

please define title in your docbook file! 8

https://spring.io/blog/2018/02/26/spring-cloud-stream-2-0-content-type-negotiation-and-transformation

Spring Cloud Stream Reference Guide

» Bi ndi ngs. Beans qualified by it are already uniquely identified by their type — for example, provided
Sour ce, Processor, or custom bindings:

public interface Sanple {
String OUTPUT = "sanpl eQut put”;

@ut put (Sanpl e. QUTPUT)
MessageChannel out put();

}

* Header Mbde. r aw. Use none, header s or enbeddedHeader s

e ProducerProperties.partitionKeyExtractord ass in favor of
partitionKeyExtractorNane and ProducerProperties.partitionSel ectord ass in
favor of partitionSel ect or Nane. This change ensures that both components are Spring
configured and managed and are referenced in a Spring-friendly way.

* Bi nder Awar eRout er BeanPost Processor. While the component remains, it is no longer a
BeanPost Pr ocessor and will be renamed in the future.

* Bi nder Properties. set Envi ronment (Properties envi ronnent) . Use
Bi nder Properti es. set Envi ronment (Map<String, Object> environnment).

This section goes into more detail about how you can work with Spring Cloud Stream. It covers topics
such as creating and running stream applications.

please define title in your docbook file! 9

Spring Cloud Stream Reference Guide

4. Introducing Spring Cloud Stream

Spring Cloud Stream is a framework for building message-driven microservice applications. Spring
Cloud Stream builds upon Spring Boot to create standalone, production-grade Spring applications and
uses Spring Integration to provide connectivity to message brokers. It provides opinionated configuration
of middleware from several vendors, introducing the concepts of persistent publish-subscribe semantics,
consumer groups, and partitions.

You can add the @nabl eBi ndi ng annotation to your application to get immediate connectivity to a
message broker, and you can add @5t r eanLi st ener to a method to cause it to receive events for
stream processing. The following example shows a sink application that receives external messages:

@pr i ngBoot Appl i cati on
@nabl eBi ndi ng(Si nk. cl ass)
public class VoteRecordi ngSi nkApplication {

public static void main(String[] args) {
SpringAppl i cation. run(Vot eRecor di ngSi nkAppl i cati on. cl ass, args);

}

@5t r eanli st ener (Si nk. | NPUT)
public void processVote(Vote vote) {
voti ngService. recordVote(vote);
}
}

The @tnabl eBi ndi ng annotation takes one or more interfaces as parameters (in this case, the
parameter is a single Si nk interface). An interface declares input and output channels. Spring Cloud
Stream provides the Sour ce, Si nk, and Processor interfaces. You can also define your own
interfaces.

The following listing shows the definition of the Si nk interface:

public interface Sink {
String INPUT = "input";

@ nput (Si nk. I NPUT)
Subscri babl eChannel input();
}

The @ nput annotation identifies an input channel, through which received messages enter the
application. The @ut put annotation identifies an output channel, through which published messages
leave the application. The @ nput and @ut put annotations can take a channel name as a parameter.
If a name is not provided, the name of the annotated method is used.

Spring Cloud Stream creates an implementation of the interface for you. You can use this in the
application by autowiring it, as shown in the following example (from a test case):

@RunW t h(Spri ngJUni t 4Cl assRunner . cl ass)

@pringAppl i cationConfiguration(classes = VoteRecordi ngSi nkAppl i cati on. cl ass)
@\ebAppConfi guration

@i rtiesCont ext

public class StreamApplicationTests {

@\ut owi r ed
private Sink sink;

@est
public void contextLoads() {
assertNot Nul | (this.sink.input());

}

please define title in your docbook file! 10

Spring Cloud Stream Reference Guide

}

please define title in your docbook file!

11

Spring Cloud Stream Reference Guide

5. Main Concepts

Spring Cloud Stream provides a number of abstractions and primitives that simplify the writing of
message-driven microservice applications. This section gives an overview of the following:

» Spring Cloud Stream’s application model

e Section 5.2, “The Binder Abstraction”

» Persistent publish-subscribe support

e Consumer group support

» Partitioning support

A pluggable Binder SPI

5.1 Application Model

A Spring Cloud Stream application consists of a middleware-neutral core. The application communicates
with the outside world through input and output channels injected into it by Spring Cloud Stream.
Channels are connected to external brokers through middleware-specific Binder implementations.

please define title in your docbook file! 12

spring Cloud Stream Application

Application Core

|
puts outp
N
Binder
Middleware

Figure 5.1. Spring Cloud Stream Application

Spring Cloud Stream Reference Guide

Fat JAR

Spring Cloud Stream applications can be run in stand-alone mode from your IDE for testing. To run a
Spring Cloud Stream application in production, you can create an executable (or “fat”) JAR by using
the standard Spring Boot tooling provided for Maven or Gradle. See the Spring Boot Reference Guide
for more details.

5.2 The Binder Abstraction

Spring Cloud Stream provides Binder implementations for Kafka and Rabbit MQ. Spring Cloud Stream
also includes a TestSupportBinder, which leaves a channel unmodified so that tests can interact with
channels directly and reliably assert on what is received. You can also use the extensible API to write
your own Binder.

Spring Cloud Stream uses Spring Boot for configuration, and the Binder abstraction makes it
possible for a Spring Cloud Stream application to be flexible in how it connects to middleware. For
example, deployers can dynamically choose, at runtime, the destinations (such as the Kafka topics
or RabbitMQ exchanges) to which channels connect. Such configuration can be provided through
external configuration properties and in any form supported by Spring Boot (including application
arguments, environment variables, and appl i cati on.ym or application. properti es files).
In the sink example from the Chapter 4, Introducing Spring Cloud Stream section, setting the
spring. cl oud. st ream bi ndi ngs. i nput. desti nati on application property to r aw sensor -
dat a causes it to read from the r aw- sensor - dat a Kafka topic or from a queue bound to the r aw
sensor - dat a RabbitMQ exchange.

Spring Cloud Stream automatically detects and uses a binder found on the classpath. You can use
different types of middleware with the same code. To do so, include a different binder at build time.
For more complex use cases, you can also package multiple binders with your application and have it
choose the binder(and even whether to use different binders for different channels) at runtime.

5.3 Persistent Publish-Subscribe Support

Communication between applications follows a publish-subscribe model, where data is broadcast
through shared topics. This can be seen in the following figure, which shows a typical deployment for
a set of interacting Spring Cloud Stream applications.

please define title in your docbook file! 14

https://docs.spring.io/spring-boot/docs/current/reference/html/howto-build.html#howto-create-an-executable-jar-with-maven
https://github.com/spring-cloud/spring-cloud-stream/tree/master/spring-cloud-stream-binders/spring-cloud-stream-binder-kafka
https://github.com/spring-cloud/spring-cloud-stream/tree/master/spring-cloud-stream-binders/spring-cloud-stream-binder-rabbit
https://github.com/spring-cloud/spring-cloud-stream/blob/master/spring-cloud-stream-test-support/src/main/java/org/springframework/cloud/stream/test/binder/TestSupportBinder.java

Spring Cloud Stream Reference Guide

HTTP
Y
raw-sensor-data
A f) A
Ingest
Averages HDFS
v '
Verages
4 T
TopN Fault Detec
Y

I+ ~ 44 ~ ~ ¥

Spring Cloud Stream Reference Guide

Data reported by sensors to an HTTP endpoint is sent to a common destination named r aw- sensor -
dat a. From the destination, it is independently processed by a microservice application that computes
time-windowed averages and by another microservice application that ingests the raw data into HDFS
(Hadoop Distributed File System). In order to process the data, both applications declare the topic as
their input at runtime.

The publish-subscribe communication model reduces the complexity of both the producer and the
consumer and lets new applications be added to the topology without disruption of the existing flow.
For example, downstream from the average-calculating application, you can add an application that
calculates the highest temperature values for display and monitoring. You can then add another
application that interprets the same flow of averages for fault detection. Doing all communication through
shared topics rather than point-to-point queues reduces coupling between microservices.

While the concept of publish-subscribe messaging is not new, Spring Cloud Stream takes the extra step
of making it an opinionated choice for its application model. By using native middleware support, Spring
Cloud Stream also simplifies use of the publish-subscribe model across different platforms.

5.4 Consumer Groups

While the publish-subscribe model makes it easy to connect applications through shared topics, the
ability to scale up by creating multiple instances of a given application is equally important. When doing
so, different instances of an application are placed in a competing consumer relationship, where only
one of the instances is expected to handle a given message.

Spring Cloud Stream models this behavior through the concept of a consumer group. (Spring
Cloud Stream consumer groups are similar to and inspired by Kafka consumer groups.)
Each consumer binding can use the spri ng. cl oud. st ream bi ndi ngs. <channel Nane>. gr oup
property to specify a group name. For the consumers shown in the following figure, this property
would be set as spring. cl oud. stream bi ndi ngs. <channel Nane>. gr oup=hdf sWite or
spring. cl oud. st ream bi ndi ngs. <channel Name>. gr oup=aver age.

please define title in your docbook file! 16

Spring Cloud Stream Reference Guide

HTTP

¥

raw-sensor-data

- L
- L
L k]

rd £

FS
rite
1

i B

HDFS Average Averl

Write Calculator Calcu
2 1 2

Ay o b Ay

jroup=hdfsWrite group=average

-

Figure 5.3. Spring Cloud Stream Consumer Groups

All groups that subscribe to a given destination receive a copy of published data, but only one member
of each group receives a given message from that destination. By default, when a group is not
specified, Spring Cloud Stream assigns the application to an anonymous and independent single-
member consumer group that is in a publish-subscribe relationship with all other consumer groups.

5.5 Consumer Types

Two types of consumer are supported:
» Message-driven (sometimes referred to as Asynchronous)
» Polled (sometimes referred to as Synchronous)

Prior to version 2.0, only asynchronous consumers were supported. A message is delivered as soon as
it is available and a thread is available to process it.

When you wish to control the rate at which messages are processed, you might want to use a
synchronous consumer.

please define title in your docbook file! 17

Spring Cloud Stream Reference Guide

Durability

Consistent with the opinionated application model of Spring Cloud Stream, consumer group
subscriptions are durable. That is, a binder implementation ensures that group subscriptions are
persistent and that, once at least one subscription for a group has been created, the group receives
messages, even if they are sent while all applications in the group are stopped.

@ Note

Anonymous subscriptions are non-durable by nature. For some binder implementations (such
as RabbitMQ), it is possible to have non-durable group subscriptions.

In general, it is preferable to always specify a consumer group when binding an application to a given
destination. When scaling up a Spring Cloud Stream application, you must specify a consumer group
for each of its input bindings. Doing so prevents the application’s instances from receiving duplicate
messages (unless that behavior is desired, which is unusual).

5.6 Partitioning Support

Spring Cloud Stream provides support for partitioning data between multiple instances of a given
application. In a partitioned scenario, the physical communication medium (such as the broker topic)
is viewed as being structured into multiple partitions. One or more producer application instances
send data to multiple consumer application instances and ensure that data identified by common
characteristics are processed by the same consumer instance.

Spring Cloud Stream provides a common abstraction for implementing partitioned processing use cases
in a uniform fashion. Partitioning can thus be used whether the broker itself is naturally partitioned (for
example, Kafka) or not (for example, RabbitMQ).

please define title in your docbook file! 18

Spring Cloud Stream Reference Guide

TP

TP

TP

1w —
Partition 1 i
L-i:’ ':.. d'i
_::;___.-.-.‘ %
Partition 2 S
-

Topic

Figure 5.4. Spring Cloud Stream Partitioning

Partitioning is a critical concept in stateful processing, where it is critical (for either performance or
consistency reasons) to ensure that all related data is processed together. For example, in the time-
windowed average calculation example, it is important that all measurements from any given sensor
are processed by the same application instance.

@ Note

To set up a partitioned processing scenario, you must configure both the data-producing and
the data-consuming ends.

please define title in your docbook file! 19

Spring Cloud Stream Reference Guide

it MQ

6. Programming Model

To understand the programming model, you should be familiar with the following core concepts:

¢ Destination Binders: Components responsible to provide integration with the external messaging
systems.

« Destination Bindings: Bridge between the external messaging systems and application provided
Producers and Consumers of messages (created by the Destination Binders).

¢ Message: The canonical data structure used by producers and consumers to communicate with
Destination Binders (and thus other applications via external messaging systems).

4 Application

Fatreanlistener(Processor . INPUT)
>E&endTuEFm-cessnr.mr?‘_l

public String handle{5tring walwe) {
System. owt . println{"Received: " + walue);
return valwe. tolpperfase]);

Input Binding Output Binding

}

-

6.1 Destination Binders

Destination Binders are extension components of Spring Cloud Stream responsible for providing the
necessary configuration and implementation to facilitate integration with external messaging systems.
This integration is responsible for connectivity, delegation, and routing of messages to and from
producers and consumers, data type conversion, invocation of the user code, and more.

Binders handle a lot of the boiler plate responsibilities that would otherwise fall on your shoulders.
However, to accomplish that, the binder still needs some help in the form of minimalistic yet required
set of instructions from the user, which typically come in the form of some type of configuration.

While it is out of scope of this section to discuss all of the available binder and binding configuration
options (the rest of the manual covers them extensively), Destination Binding does require special
attention. The next section discusses it in detail.

6.2 Destination Bindings

As stated earlier, Destination Bindings provide a bridge between the external messaging system and
application-provided Producers and Consumers.

please define title in your docbook file! 20

Spring Cloud Stream Reference Guide

Applying the @EnableBinding annotation to one of the application’s configuration classes defines a
destination binding. The @nabl eBi ndi ng annotation itself is meta-annotated with @onf i gur ati on
and triggers the configuration of the Spring Cloud Stream infrastructure.

The following example shows a fully configured and functioning Spring Cloud Stream application that
receives the payload of the message from the | NPUT destination as a St ri ng type (see Chapter 9
Content Type Negotiation section), logs it to the console and sends it to the OUTPUT destination after
converting it to upper case.

@pr i ngBoot Appl i cati on
@nabl eBi ndi ng(Processor. cl ass)
public class MyApplication {

public static void main(String[] args) {
Spri ngApplication. run(MApplication.class, args);
}

@bt r eanli st ener (Processor . | NPUT)
@endTo(Processor . OQUTPUT)
public String handl e(String value) {
Systemout. println("Received: " + value);
return val ue. t oUpper Case();
}
}

As you can see the @nabl eBi ndi ng annotation can take one or more interface classes as
parameters. The parameters are referred to as bindings, and they contain methods representing
bindable components. These components are typically message channels (see Spring Messaging) for
channel-based binders (such as Rabbit, Kafka, and others). However other types of bindings can provide
support for the native features of the corresponding technology. For example Kafka Streams binder
(formerly known as KStream) allows native bindings directly to Kafka Streams (see Kafka Streams for
more details).

Spring Cloud Stream already provides binding interfaces for typical message exchange contracts, which
include:

» Sink: Identifies the contract for the message consumer by providing the destination from which the
message is consumed.

e Source: Identifies the contract for the message producer by providing the destination to which the
produced message is sent.

e Processor: Encapsulates both the sink and the source contracts by exposing two destinations that
allow consumption and production of messages.

public interface Sink {
String INPUT = "input";

@ nput (Si nk. | NPUT)
Subscri babl eChannel input();
}

public interface Source {
String OUTPUT = "output";

@ut put (Sour ce. QUTPUT)
MessageChannel out put ();
}

please define title in your docbook file! 21

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-messaging.html
https://docs.spring.io/autorepo/docs/spring-cloud-stream-binder-kafka-docs/1.1.0.M1/reference/htmlsingle/

Spring Cloud Stream Reference Guide

public interface Processor extends Source, Sink {}

While the preceding example satisfies the majority of cases, you can also define your own contracts by
defining your own bindings interfaces and use @ nput and @ut put annotations to identify the actual
bindable components.

For example:

public interface Barista {

@ nput
Subscri babl eChannel orders();

@ut put
MessageChannel hot Dri nks();

@ut put
MessageChannel col dDrinks();

Using the interface shown in the preceding example as a parameter to @nabl eBi ndi ng triggers the
creation of the three bound channels named or der s, hot Dri nks, and col dDr i nks, respectively.

You can provide as many binding interfaces as you need, as arguments to the @nabl eBi ndi ng
annotation, as shown in the following example:

@nabl eBi ndi ng(val ue = { Orders.class, Paynent.class })

In Spring Cloud Stream, the bindable MessageChannel components are the Spring Messaging
MessageChannel (for outbound) and its extension, Subscr i babl eChannel , (for inbound).

Pollable Destination Binding

While the previously described bindings support event-based message consumption, sometimes you
need more control, such as rate of consumption.

Starting with version 2.0, you can now bind a pollable consumer:

The following example shows how to bind a pollable consumer:

public interface PolledBarista {

@ nput
Pol | abl eMessageSour ce orders();

In this case, an implementation of Pol | abl eMessageSour ce is bound to the or der s “channel”. See
the section called “Using Polled Consumers” for more details.

Customizing Channel Names

By using the @ nput and @ut put annotations, you can specify a customized channel name for the
channel, as shown in the following example:

public interface Barista {
@ nput ("i nboundOr der s")
Subscri babl eChannel orders();

please define title in your docbook file! 22

Spring Cloud Stream Reference Guide

In the preceding example, the created bound channel is named i nboundOr der s.

Normally, you need not access individual channels or bindings directly (other then configuring them via
@nabl eBi ndi ng annotation). However there may be times, such as testing or other corner cases,
when you do.

Aside from generating channels for each binding and registering them as Spring beans, for each bound
interface, Spring Cloud Stream generates a bean that implements the interface. That means you can
have access to the interfaces representing the bindings or individual channels by auto-wiring either in
your application, as shown in the following two examples:

Autowire Binding interface

@\utow re
private Source source

public void sayHell o(String nane) {

sour ce. out put (). send(MessageBui | der. wi t hPayl oad(nane). build());
}

Autowire individual channel

@\ut owi r e
private MessageChannel output;

public void sayHello(String nane) {

out put . send(MessageBui | der. wi t hPayl oad(nane) . bui l d());
}

You can also use standard Spring’s @ual i fi er annotation for cases when channel names are
customized or in multiple-channel scenarios that require specifically named channels.

The following example shows how to use the @Qualifier annotation in this way:

@\ut owi r e
@al i fier("nmyChannel ")
private MessageChannel output;

6.3 Producing and Consuming Messages

You can write a Spring Cloud Stream application by using either Spring Integration annotations or Spring
Cloud Stream native annotation.

Spring Integration Support

Spring Cloud Stream is built on the concepts and patterns defined by Enterprise Integration Patterns and
relies in its internal implementation on an already established and popular implementation of Enterprise
Integration Patterns within the Spring portfolio of projects: Spring Integration framework.

So its only natiural for it to support the foundation, semantics, and configuration options that are already
established by Spring Integration

For example, you can attach the output channel of a Sour ce to a MessageSour ce and use the familiar
@ nboundChannel Adapt er annotation, as follows:

@nabl eBi ndi ng(Sour ce. cl ass)
public class TimerSource {

please define title in your docbook file! 23

http://www.enterpriseintegrationpatterns.com/
https://projects.spring.io/spring-integration/

Spring Cloud Stream Reference Guide

@Bean
@ nboundChannel Adapt er (val ue = Source. QUTPUT, poller = @oller(fixedDelay = "10", maxMessagesPer Pol| =
"1"))
publ i c MessageSource<String> tiner MessageSource() {
return () -> new GenericMessage<>("Hello Spring C oud Streant);
}
}

Similarly, you can use @Transformer or @ServiceActivator while providing an implementation of a
message handler method for a Processor binding contract, as shown in the following example:

@Enabl eBi ndi ng(Processor . cl ass)
public class TransfornProcessor {
@ ansf or mer (i nput Channel = Processor. | NPUT, output Channel = Processor.OUTPUT)
public Cbject transforn(String nessage) {
return nessage.t oUpper Case();
}
}

@ Note

While this may be skipping ahead a bit, it is important to understand that, when you consume
from the same binding using @t r eanLi st ener annotation, a pub-sub model is used. Each
method annotated with @bt r eanli st ener receives its own copy of a message, and each
one has its own consumer group. However, if you consume from the same binding by
using one of the Spring Integration annotation (such as @\ggr egat or, @r ansf or mer, or
@er vi ceAct i vat or), those consume in a competing model. No individual consumer group
is created for each subscription.

Using @StreamListener Annotation

Complementary to its Spring Integration support, Spring Cloud Stream provides its
own @streanli stener annotation, modeled after other Spring Messaging annotations
(@kssageMappi ng, @nsLi st ener, @abbi t Li st ener, and others) and provides conviniences,
such as content-based routing and others.

@Enabl eBi ndi ng(Si nk. cl ass)
public class VoteHandl er {

@\ut owi r ed
Vot i ngServi ce votingService;

@t r eanli st ener (Si nk. | NPUT)
public void handl e(Vote vote) {
votingService.record(vote);
}
}

As with other Spring Messaging methods, method arguments can be annotated with @ayl oad,
@Header s, and @1eader .

For methods that return data, you must use the @endTo annotation to specify the output binding
destination for data returned by the method, as shown in the following example:

@nabl eBi ndi ng(Processor . cl ass)
public class TransfornProcessor {

@\ut owi r ed
Vot i ngServi ce votingService;

@t r eanli st ener (Processor . | NPUT)

please define title in your docbook file! 24

Spring Cloud Stream Reference Guide

@endTo(Processor . QUTPUT)
public VoteResult handl e(Vote vote) {
return votingService.record(vote);

}
}

Using @StreamListener for Content-based routing

Spring Cloud Stream supports dispatching messages to multiple handler methods annotated with
@5t r eanli st ener based on conditions.

In order to be eligible to support conditional dispatching, a method must satisfy the follow conditions:
* It must not return a value.
It must be an individual message handling method (reactive APl methods are not supported).

The condition is specified by a SpEL expression in the condi ti on argument of the annotation and is
evaluated for each message. All the handlers that match the condition are invoked in the same thread,
and no assumption must be made about the order in which the invocations take place.

In the following example of a @bt r eanli st ener with dispatching conditions, all the messages bearing
a header t ype with the value bogey are dispatched to the r ecei veBogey method, and all the
messages bearing a header t ype with the value bacal | are dispatched to the r ecei veBacal |
method.

@Enabl eBi ndi ng(Si nk. cl ass)
@Enabl eAut oConfi gurati on
public static class TestPoj oW thAnnot at edAr gunents {

@t reanii stener (target = Sink.|NPUT, condition = "headers['type']=="bogey'")
public voi d recei veBogey(@ayl oad BogeyPoj o bogeyPoj 0) {
/1 handl e the nessage

}

@t reanili stener(target = Sink.|NPUT, condition = "headers['type']=="bacall"'")
public void receiveBacal | (@ayl oad Bacal | Poj o bacal | Poj o) {
/1 handl e the nessage

}

Content Type Negotiation in the Context of condi ti on

Itis important to understand some of the mechanics behind content-based routing using the condi ti on
argument of @t r eanli st ener, especially in the context of the type of the message as a whole. It may
also help if you familiarize yourself with the Chapter 9, Content Type Negotiation before you proceed.

Consider the following scenario:

@Enabl eBi ndi ng(Si nk. cl ass)
@Enabl eAut oConfi gurati on
public static class CatsAndDogs {

@t reanli stener(target = Sink.|NPUT, condition = "payl oad. cl ass. si npl eNane==" Dog"' ")
public void bark(Dog dog) {
/1 handl e the nessage

}

@t reanli stener(target = Sink.|NPUT, condition = "payl oad. cl ass. si npl eNane=="Cat"'")
public void purr(Cat cat) {
/1 handl e the nessage

}

please define title in your docbook file! 25

Spring Cloud Stream Reference Guide

‘ }

The preceding code is perfectly valid. It compiles and deploys without any issues, yet it never produces
the result you expect.

That is because you are testing something that does not yet exist in a state you expect. That is becouse
the payload of the message is not yet converted from the wire format (byt e[]) to the desired type.
In other words, it has not yet gone through the type conversion process described in the Chapter 9
Content Type Negotiation.

So, unless you use a SPelL expression that evaluates raw data (for example, the value of the
first byte in the byte array), use message header-based expressions (such as condition =
"headers['type']=="dog"").

@ Note

At the moment, dispatching through @bt r eanli st ener conditions is supported only for
channel-based binders (not for reactive programming) support.

Using Polled Consumers

When using polled consumers, you poll the Pol | abl eMessageSour ce on demand. Consider the
following example of a polled consumer:

public interface PolledConsuner {

@ nput
Pol | abl eMessageSour ce destIn();

@ut put
MessageChannel destQut ();

Given the polled consumer in the preceding example, you might use it as follows:

@Bean
public ApplicationRunner poller(Pollabl eMessageSource destln, MessageChannel destQut) {
return args -> {
whil e (soneCondition()) {
try {
if (!destin.poll(m-> {
String newPayl oad = ((String) m getPayl oad()).toUpperCase();
dest Qut . send(new Generi cMessage<>(newPayl oad)) ;
) A
Thr ead. sl eep(1000) ;
}
}
catch (Exception e) {
/1 handle failure (throw an exception to reject the nessage);

}

The Pol | abl eMessageSour ce. pol | () method takes a MessageHandl er argument (often a
lambda expression, as shown here). It returns t r ue if the message was received and successfully
processed.

As with message-driven consumers, if the MessageHandl er throws an exception, messages are
published to error channels, as discussed in “?2?2?".

please define title in your docbook file! 26

Spring Cloud Stream Reference Guide

Normally, the pol | () method acknowledges the message when the MessageHand!| er exits. If the
method exits abnormally, the message is rejected (not re-queued). You can override that behavior by
taking responsibility for the acknowledgment, as shown in the following example:

@ean
public ApplicationRunner poller(Pollabl eMessageSource destl1ln, MessageChannel dest2Cut) {
return args -> {
while (sonmeCondition()) {
if (!destllin.poll(m-> {
St ati cMessageHeader Accessor . get Acknow edgnent Cal | back(m) . noAut oAck() ;
/1 e.g. hand off to another thread which can performthe ack
/1 or acknow edge(St at us. REQUEUE)

) A
Thr ead. sl eep(1000) ;

}

@ Important

You must ack (or nack) the message at some point, to avoid resource leaks.

@ Important

Some messaging systems (such as Apache Kafka) maintain a simple

offset in a log. If a delivery fails and is re-queued with

St at i cMessageHeader Accessor . get Acknow edgnent Cal | back(m . acknow edge(St at us. REQUE
any later successfully ack'd messages are redelivered.

There is also an overloaded pol | method, for which the definition is as follows:

pol I (MessageHand!l er handl er, ParaneterizedTypeRef erence<?> type)

The t ype is a conversion hint that allows the incoming message payload to be converted, as shown
in the following example:

bool ean result = pol | abl eSource. pol | (received -> {
Map<String, Foo> payload = (Map<String, Foo>) received. getPayl oad();

}, new Paraneteri zedTypeRef erence<Map<String, Foo>>() {});

6.4 Error Handling

Errors happen, and Spring Cloud Stream provides several flexible mechanisms to handle them. The
error handling comes in two flavors:

» application: The error handling is done within the application (custom error handler).

» system: The error handling is delegated to the binder (re-queue, DL, and others). Note that the
techniques are dependent on binder implementation and the capability of the underlying messaging
middleware.

Spring Cloud Stream uses the Spring Retry library to facilitate successful message processing. See the
section called “Retry Template” for more details. However, when all fails, the exceptions thrown by the
message handlers are propagated back to the binder. At that point, binder invokes custom error handler
or communicates the error back to the messaging system (re-queue, DLQ, and others).

please define title in your docbook file! 27

https://github.com/spring-projects/spring-retry

EVENTS

Spring Cloud Stream Reference Guide

Application Error Handling

There are two types of application-level error handling. Errors can be handled at each binding
subscription or a global handler can handle all the binding subscription errors. Let’s review the details.

A Sink Application w/ Multiple
. L i Bindings and Global Error Handler
A Sink Application w/ Single
Binding and Custom Error Handler E E 0 ¢
== {-2] handleCne(..) {
E E E E i inputOne.myGroup “ ,
= > @8EEOE
handlef{..) >)}Emm }
input.myGroup irors gy ww
: 0
D v
\‘ IE E E2o o handleTwo(..) {
Err?_rr' S input.myGroup.errors w E & é; inputTwo.myGroup wrror!
) S >>qob }
oW
L error(..) {
}

Figure 6.1. A Spring Cloud Stream Sink Application with Custom and Global Error Handlers

For each input binding, Spring Cloud Stream creates a dedicated error channel with the following
semantics <dest i nati onNanme>. errors.

@ Note

The <dest i nat i onNane> consists of the name of the binding (such as i nput) and the name
of the group (such as myGr oup).

Consider the following:

spring. cl oud. stream bi ndi ngs. i nput . gr oup=nyG oup

@t reanli stener (Si nk. I NPUT) // destination nane 'input.nyG oup'
public void handl e(Person val ue) {
t hrow new Runti meExcepti on("BOOM ") ;

}

@ber vi ceAct i vat or (i nput Channel = Processor.|NPUT + ".nyG oup.errors") //channel nane
"input.nyG oup.errors'

public void error(Message<?> nessage) {
System out. println("Handl i ng ERROR " + nessage);

}

In the preceding example the destination name is i nput . nyG oup and the dedicated error channel
name isi nput. nyG oup. errors.

@ Note

The use of @StreamListener annotation is intended specifically to define bindings that bridge
internal channels and external destinations. Given that the destination specific error channel
does NOT have an associated external destination, such channel is a prerogative of Spring

please define title in your docbook file! 28

Spring Cloud Stream Reference Guide

Integration (SI). This means that the handler for such destination must be defined using one of
the SI handler annotations (i.e., @ServiceActivator, @ Transformer etc.).

@ Note

If group is not specified anonymous group is used (something like
i nput . anonynous. 2K37r b06Q6n2r 51- SPI DDQ), which is not suitable for error handling
scenarious, since you don’'t know what it's going to be until the destination is created.

Also, in the event you are binding to the existing destination such as:

spring. cl oud. stream bi ndi ngs. i nput. desti nati on=myFooDesti nati on
spring. cl oud. stream bi ndi ngs. i nput . gr oup=nyG- oup

the full destination name is nyFooDest i nat i on. myGr oup and then the dedicated error channel name
is nyFooDest i nati on. myGroup. errors.

Back to the example...

The handl e(. .) method, which subscribes to the channel named i nput , throws an exception. Given
there is also a subscriber to the error channel i nput . myGr oup. er r or s all error messages are handled
by this subscriber.

If you have multiple bindings, you may want to have a single error handler. Spring Cloud Stream
automatically provides support for a global error channel by bridging each individual error channel to
the channel named er r or Channel , allowing a single subscriber to handle all errors, as shown in the
following example:

@t reanli st ener ("error Channel ")
public void error(Message<?> nessage) {

System out. println("Handling ERROR " + nessage);
}

This may be a convenient option if error handling logic is the same regardless of which handler produced
the error.

System Error Handling

System-level error handling implies that the errors are communicated back to the messaging system
and, given that not every messaging system is the same, the capabilities may differ from binder to binder.

That said, in this section we explain the general idea behind system level error handling and use
Rabbit binder as an example. NOTE: Kafka binder provides similar support, although some configuration
properties do differ. Also, for more details and configuration options, see the individual binder's
documentation.

If no internal error handlers are configured, the errors propagate to the binders, and the binders
subsequently propagate those errors back to the messaging system. Depending on the capabilities of
the messaging system such a system may drop the message, re-queue the message for re-processing
or send the failed message to DLQ. Both Rabbit and Kafka support these concepts. However, other
binders may not, so refer to your individual binder's documentation for details on supported system-
level error-handling options.

please define title in your docbook file! 29

Spring Cloud Stream Reference Guide

Drop Failed Messages

By default, if no additional system-level configuration is provided, the messaging system drops the
failed message. While acceptable in some cases, for most cases, it is not, and we need some recovery
mechanism to avoid message loss.

DLQ - Dead Letter Queue
DLQ allows failed messages to be sent to a special destination: - Dead Letter Queue.

When configured, failed messages are sent to this destination for subsequent re-processing or auditing
and reconciliation.

For example, continuing on the previous example and to set up the DLQ with Rabbit binder, you need
to set the following property:

spring. cl oud. stream rabbi t. bi ndi ngs. i nput. consuner. aut o- bi nd-dl g=true

Keep in mind that, in the above property, i nput corresponds to the name of the input destination
binding. The consuner indicates that it is a consumer property and aut o- bi nd- dl g instructs the
binder to configure DLQ for i nput destination, which results in an additional Rabbit queue named
i nput. myG oup. dl g.

Once configured, all failed messages are routed to this queue with an error message similar to the
following:

delivery_node: 1

headers:

x- deat h:

count: 1

reason: rejected

queue: input.hello

tinme: 1522328151

exchange:

routing-keys: input.nyG oup
Payl oad {"nane”:"Bob"}

As you can see from the above, your original message is preserved for further actions.

However, one thing you may have noticed is that there is limited information on the original issue with
the message processing. For example, you do not see a stack trace corresponding to the original error.
To get more relevant information about the original error, you must set an additional property:

spring. cl oud. stream rabbi t. bi ndi ngs. i nput. consuner. republish-to-dl g=true

Doing so forces the internal error handler to intercept the error message and add additional information
to it before publishing it to DLQ. Once configured, you can see that the error message contains more
information relevant to the original error, as follows:

del i very_node: 2
headers:
X- ori gi nal - exchange:
X- exception-nmessage: has an error
x-original -routingKey: input.nyG oup
x- exception-stacktrace: org.springframework. messagi ng. MessageHandl i ngExcepti on: nested exception is
org. springfranmewor k. nessagi ng. Messagi ngExcepti on: has an error, failedMessage=Generi cMessage
[payl oad=byt e[15] ,
header s={ amgp_r ecei vedDel i ver yMbde=NON_PERSI STENT, anqp_r ecei vedRout i ngKey=i nput . hel | o,
anmgp_del i veryTag=1,

please define title in your docbook file! 30

Spring Cloud Stream Reference Guide

del i veryAtt enpt =3, angp_consuner Queue=i nput. hel | o, anmgp_redel i ver ed=fal se
i d=al5231e6- 3f 80- 677b- 5ad7- d4ble6le486e,

angp_consuner Tag=anyg. ct ag- skBFapi | vt ZhDsn0k3Zn1)y, content Type=application/json,
ti mest anp=1522327846136}]

at
org.spring...integ...han...Mthodl nvoki ngMessagePr ocessor. processMessage(Met hodl nvoki ngMessagePr ocessor . j ava: 107)

This effectively combines application-level and system-level error handling to further assist with
downstream troubleshooting mechanics.

Re-queue Failed Messages

As mentioned earlier, the currently supported binders (Rabbit and Kafka) rely on RetryTenpl at e to
facilitate successful message processing. See the section called “Retry Template” for details. However,
for cases when nmax- at t enpt s property is set to 1, internal reprocessing of the message is disabled.
At this point, you can facilitate message re-processing (re-tries) by instructing the messaging system to
re-queue the failed message. Once re-queued, the failed message is sent back to the original handler,
essentially creating a retry loop.

This option may be feasible for cases where the nature of the error is related to some sporadic yet short-
term unavailability of some resource.

To accomplish that, you must set the following properties:

spring. cl oud. stream bi ndi ngs. i nput. consuner. max- att enpt s=1
spring. cl oud. stream rabbi t. bi ndi ngs. i nput. consuner.requeue-rejected=true

In the preceding example, the max-attenpts set to 1 essentially disabling internal re-tries and
requeue-rej ect ed (short for requeue rejected messages) is set to t rue. Once set, the failed
message is resubmitted to the same handler and loops continuously or until the handler throws
AmgpRej ect AndDont RequeueExcept i on essentially allowing you to build your own re-try logic
within the handler itself.

Retry Template

The Ret r yTenpl at e is part of the Spring Retry library. While it is out of scope of this dcument to cover
all of the capabilities of the Ret r yTenpl at e, we will mention the following consumer properties that
are specifically related to the Ret r yTenpl at e:

maxAttempts
The number of attempts to process the message.

Default: 3.

backOfflnitiallnterval
The backoff initial interval on retry.

Default 1000 milliseconds.

backOffMaxInterval
The maximum backoff interval.

Default 10000 milliseconds.

backOffMultiplier
The backoff multiplier.

please define title in your docbook file! 31

https://github.com/spring-projects/spring-retry

Spring Cloud Stream Reference Guide

Default 2.0.

While the preceding settings are sufficient for majority of the customization requirements, they may not
satisfy certain complex requirements at, which point you may want to provide your own instance of the
Ret ryTenpl at e. To do so configure it as a @ean in your application configuration. The application
provided instance overrides the one provided by the framework.

6.5 Reactive Programming Support

Spring Cloud Stream also supports the use of reactive APIs where incoming and outgoing data is
handled as continuous data flows. Support for reactive APIs is available through spri ng- cl oud-
st ream reacti ve, which needs to be added explicitly to your project.

The programming model with reactive APIs is declarative. Instead of specifying how each individual
message should be handled, you can use operators that describe functional transformations from
inbound to outbound data flows.

At present Spring Cloud Stream supports the only the Reactor API. In the future, we intend to support
a more generic model based on Reactive Streams.

The reactive programming model also uses the @bt r eanli st ener annotation for setting up reactive
handlers. The differences are that:

e The @t reanli st ener annotation must not specify an input or output, as they are provided as
arguments and return values from the method.

e The arguments of the method must be annotated with @ nput and @ut put , indicating which input
or output the incoming and outgoing data flows connect to, respectively.

» The return value of the method, if any, is annotated with @ut put , indicating the input where data
should be sent.

@ Note

Reactive programming support requires Java 1.8.

@ Note

As of Spring Cloud Stream 1.1.1 and later (starting with release train Brooklyn.SR2), reactive
programming support requires the use of Reactor 3.0.4.RELEASE and higher. Earlier Reactor
versions (including 3.0.1.RELEASE, 3.0.2.RELEASE and 3.0.3.RELEASE) are not supported.
spring-cl oud- st ream r eact i ve transitively retrieves the proper version, but it is possible
for the project structure to manage the version of the i 0. proj ectreactor:reactor-
core to an earlier release, especially when using Maven. This is the case for projects
generated by using Spring Initializr with Spring Boot 1.x, which overrides the Reactor version
to 2. 0. 8. RELEASE. In such cases, you must ensure that the proper version of the artifact is
released. You can do so by adding a direct dependency oni o. pr oj ectreact or: react or -
cor e with a version of 3. 0. 4. RELEASE or later to your project.

@ Note

The use of term, “reactive”, currently refers to the reactive APIs being used and not to the
execution model being reactive (that is, the bound endpoints still use a 'push’ rather than a 'pull’
model). While some backpressure support is provided by the use of Reactor, we do intend, in

please define title in your docbook file! 32

https://projectreactor.io/

Spring Cloud Stream Reference Guide

a future release, to support entirely reactive pipelines by the use of native reactive clients for
the connected middleware.

Reactor-based Handlers
A Reactor-based handler can have the following argument types:

» For arguments annotated with @ nput , it supports the Reactor Fl ux type. The parameterization of
the inbound Flux follows the same rules as in the case of individual message handling: It can be
the entire Message, a POJO that can be the Message payload, or a POJO that is the result of a
transformation based on the Message content-type header. Multiple inputs are provided.

» For arguments annotated with Qut put, it supports the Fl uxSender type, which connects a Fl ux
produced by the method with an output. Generally speaking, specifying outputs as arguments is only
recommended when the method can have multiple outputs.

A Reactor-based handler supports a return type of Fl ux. In that case, it must be annotated with
@out put . We recommend using the return value of the method when a single output Fl ux is available.

The following example shows a Reactor-based Pr ocessor :

@Enabl eBi ndi ng(Processor . cl ass)
@Enabl eAut oConfi gurati on
public static class UppercaseTransforner {

@bt r eanli st ener
@out put (Processor . OUTPUT)
public Flux<String> receive(@nput (Processor.|NPUT) Flux<String> input) {
return input.map(s -> s.toUpperCase());
}
}

The same processor using output arguments looks like the following example:

@nabl eBi ndi ng(Processor. cl ass)
@nabl eAut oConf i guration
public static class UppercaseTransforner {

@t r eanli st ener

public void receive(@nput (Processor. | NPUT) Flux<String> input,
@ut put (Processor. QUTPUT) Fl uxSender out put) {
out put . send(i nput.map(s -> s.toUpperCase()));

Reactive Sources

Spring Cloud Stream reactive support also provides the ability for creating reactive sources through
the @bt reankEm tter annotation. By using the @btreanEnm tter annotation, a regular source
may be converted to a reactive one. @bt r eankni tter is a method level annotation that marks a
method to be an emitter to outputs declared with @nabl eBi ndi ng. You cannot use the @ nput
annotation along with @t r eanEni t t er, as the methods marked with this annotation are not listening
for any input. Rather, methods marked with @bt r eantEmi tt er generate output. Following the same
programming model used in @bt r eanli st ener, @t r eantmi tt er also allows flexible ways of using
the @ut put annotation, depending on whether the method has any arguments, a return type, and
other considerations.

The remainder of this section contains examples of using the @bt r eanEmi t t er annotation in various
styles.

please define title in your docbook file! 33

Spring Cloud Stream Reference Guide

The following example emits the Hel | o, Wor | d message every millisecond and publishes to a Reactor
Fl ux:

@nabl eBi ndi ng(Sour ce. cl ass)
@Enabl eAut oConfi gurati on
public static class Hell owrldEmtter {

@treanEm tter
@ut put (Sour ce. QUTPUT)
public Flux<String> emt() {
return Flux.interval M11is(1)
.map(l -> "Hello World");

In the preceding example, the resulting messages in the Fl ux are sent to the output channel of the
Sour ce.

The next example is another flavor of an @bt r eaEnmi t t er that sends a Reactor Fl ux. Instead of
returning a Fl ux, the following method uses a Fl uxSender to programmatically send a Fl ux from
a source:

@nabl eBi ndi ng(Sour ce. cl ass)
@Enabl eAut oConfi gurati on
public static class Hell owrldEmtter {

@treantm tter
@ut put (Sour ce. QUTPUT)
public void emt(Fl uxSender output) {
out put.send(Flux.interval MI1is(1)
.map(l -> "Hello World"));

The next example is exactly same as the above snippet in functionality and style. However, instead of
using an explicit @ut put annotation on the method, it uses the annotation on the method parameter.

@nabl eBi ndi ng(Sour ce. cl ass)
@Enabl eAut oConfi gurati on
public static class Hell owrldEmtter {

@treantm tter
public void emt(@utput(Source. OQUTPUT) FluxSender output) {
out put. send(Fl ux.interval MI1is(1)
.map(l -> "Hello Wrld"));

The last example in this section is yet another flavor of writing reacting sources by using the Reactive
Streams Publisher API and taking advantage of the support for it in Spring Integration Java DSL. The
Publ i sher in the following example still uses Reactor Fl ux under the hood, but, from an application
perspective, that is transparent to the user and only needs Reactive Streams and Java DSL for Spring
Integration:

@Enabl eBi ndi ng(Sour ce. cl ass)
@nabl eAut oConf i guration
public static class Hell oworldEmtter {

@t reanEni tter
@ut put (Sour ce. QUTPUT)
@Bean
public Publisher<Message<String>> emt() {
return IntegrationFlows.from(() ->
new Generi cMessage<>("Hello World"),

please define title in your docbook file! 34

https://github.com/spring-projects/spring-integration-java-dsl/wiki/Spring-Integration-Java-DSL-Reference

Spring Cloud Stream Reference Guide

e -> e.poller(p -> p.fixedDelay(1)))
.toReacti vePublisher();

please define title in your docbook file!

35

Spring Cloud Stream Reference Guide

7. Binders

Spring Cloud Stream provides a Binder abstraction for use in connecting to physical destinations at the
external middleware. This section provides information about the main concepts behind the Binder SPI,
its main components, and implementation-specific details.

7.1 Producers and Consumers

The following image shows the general relationship of producers and consumers:

4 N

Broker
N)

Figure 7.1. Producers and Consumers

A producer is any component that sends messages to a channel. The channel can be bound to
an external message broker with a Bi nder implementation for that broker. When invoking the
bi ndPr oducer () method, the first parameter is the name of the destination within the broker, the
second parameter is the local channel instance to which the producer sends messages, and the third
parameter contains properties (such as a partition key expression) to be used within the adapter that
is created for that channel.

A consumer is any component that receives messages from a channel. As with a producer,
the consumer's channel can be bound to an external message broker. When invoking the
bi ndConsurer () method, the first parameter is the destination name, and a second parameter
provides the name of a logical group of consumers. Each group that is represented by consumer
bindings for a given destination receives a copy of each message that a producer sends to that
destination (that is, it follows normal publish-subscribe semantics). If there are multiple consumer
instances bound with the same group name, then messages are load-balanced across those consumer
instances so that each message sent by a producer is consumed by only a single consumer instance
within each group (that is, it follows normal queueing semantics).

7.2 Binder SPI

The Binder SPI consists of a number of interfaces, out-of-the box utility classes, and discovery strategies
that provide a pluggable mechanism for connecting to external middleware.

The key point of the SPI is the Bi nder interface, which is a strategy for connecting inputs and outputs
to external middleware. The following listing shows the definnition of the Bi nder interface:

please define title in your docbook file! 36

bindCon
“de
ing
pro

bindCon

inp
pro

Spring Cloud Stream Reference Guide

public interface Binder<T, C extends ConsunerProperties, P extends ProducerProperties> {
Bi ndi ng<T> bi ndConsurer (String name, String group, T inboundBindTarget, C consunerProperties);

Bi ndi ng<T> bi ndProducer (String nane, T outboundBi ndTarget, P producerProperties);

The interface is parameterized, offering a number of extension points:

 Input and output bind targets. As of version 1.0, only MessageChannel is supported, but this is
intended to be used as an extension point in the future.

» Extended consumer and producer properties, allowing specific Binder implementations to add
supplemental properties that can be supported in a type-safe manner.

A typical binder implementation consists of the following:
« A class that implements the Bi nder interface;

* A Spring @onfi gur ati on class that creates a bean of type Bi nder along with the middleware
connection infrastructure.

« A META-INF/ spring. bi nders file found on the classpath containing one or more binder
definitions, as shown in the following example:

kaf ka: \
org. springframewor k. cl oud. st ream bi nder . kaf ka. conf i g. Kaf kaBi nder Conf i gur ati on

7.3 Binder Detection

Spring Cloud Stream relies on implementations of the Binder SPI to perform the task of connecting
channels to message brokers. Each Binder implementation typically connects to one type of messaging
system.

Classpath Detection

By default, Spring Cloud Stream relies on Spring Boot’'s auto-configuration to configure the binding
process. If a single Binder implementation is found on the classpath, Spring Cloud Stream automatically
uses it. For example, a Spring Cloud Stream project that aims to bind only to RabbitMQ can add the
following dependency:

<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cloud-streambinder-rabbit</artifactld>
</ dependency>

For the specific Maven coordinates of other binder dependencies, see the documentation of that binder
implementation.

7.4 Multiple Binders on the Classpath

When multiple binders are present on the classpath, the application must indicate which binder is to
be used for each channel binding. Each binder configuration contains a META- | NF/ spri ng. bi nder s
file, which is a simple properties file, as shown in the following example:

rabbit:\
or g. spri ngf ramewor k. cl oud. stream bi nder. rabbi t. confi g. Rabbi t Servi ceAut oConfi gurati on

please define title in your docbook file! 37

Spring Cloud Stream Reference Guide

Similar files exist for the other provided binder implementations (such as Kafka), and
custom binder implementations are expected to provide them as well. The key represents
an identifying name for the binder implementation, whereas the value is a comma-separated
list of configuration classes that each contain one and only one bean definition of type
org. spri ngframewor k. cl oud. st ream bi nder. Bi nder.

Binder selection can either be performed globally, using the
spring. cl oud. st ream def aul t Bi nder property (for example,
spring. cl oud. st ream def aul t Bi nder =r abbi t) or individually, by configuring the binder on
each channel binding. For instance, a processor application (that has channels named i nput and
out put for read and write respectively) that reads from Kafka and writes to RabbitMQ can specify the
following configuration:

spring. cl oud. stream bi ndi ngs. i nput . bi nder =kaf ka
spring. cl oud. st ream bi ndi ngs. out put. bi nder =r abbi t

7.5 Connecting to Multiple Systems

By default, binders share the application’s Spring Boot auto-configuration, so that one instance of each
binder found on the classpath is created. If your application should connect to more than one broker of
the same type, you can specify multiple binder configurations, each with different environment settings.

@ Note

Turning on explicit binder configuration disables the default binder configuration process
altogether. If you do so, all binders in use must be included in the configuration. Frameworks
that intend to use Spring Cloud Stream transparently may create binder configurations that can
be referenced by name, but they do not affect the default binder configuration. In order to do
so, a binder configuration may have its def aul t Candi dat e flag set to false (for example,
spring. cl oud. st ream bi nders. <confi gur ati onNanme>. def aul t Candi dat e=f al se).
This denotes a configuration that exists independently of the default binder configuration
process.

The following example shows a typical configuration for a processor application that connects to two
RabbitMQ broker instances:

spring:
cl oud:
stream
bi ndi ngs:
i nput:
destination: thingl
bi nder: rabbitl
out put :
destination: thing2
bi nder: rabbit2
bi nders:
rabbi t1:
type: rabbit
envi ronnent :
spring:
rabbi t my:
host: <host1>
rabbi t 2:
type: rabbit
envi ronnent :
spring:
rabbi t mg:
host: <host2>

please define title in your docbook file! 38

Spring Cloud Stream Reference Guide

7.6 Binding visualization and control

Since version 2.0, Spring Cloud Stream supports visualization and control of the Bindings through
Actuator endpoints.

Starting with version 2.0 actuator and web are optional, you must first add one of the web dependencies
as well as add the actuator dependency manually. The following example shows how to add the
dependency for the Web framework:

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-web</artifactld>
</ dependency>

The following example shows how to add the dependency for the WebFlux framework:

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-webflux</artifactld>
</ dependency>

You can add the Actuator dependency as follows:

<dependency>
<groupl d>or g. spri ngf ramewor k. boot </ gr oupl d>
<artifactld>spring-boot-starter-actuator</artifactld>
</ dependency>

@ Note

To run Spring Cloud Stream 2.0 apps in Cloud Foundry, you must add spri ng- boot -
starter-web and spring-boot-starter-actuator to the classpath. Otherwise, the
application will not start due to health check failures.

You must also enable the bi ndi ngs actuator endpoints by setting the following property: - -
management . endpoi nt s. web. exposur e. i ncl ude=bi ndi ngs.

Once those prerequisites are satisfied. you should see the following in the logs when application start:

: Mapped "{[/actuator/bi ndi ngs/ {nane}], net hods=[PCST] . .
: Mapped "{[/actuator/bindi ngs], net hods=[GET] . .
: Mapped "{[/actuator/bindings/{nanme}], met hods=[GET]. . .

To visualize the current bindings, access the following URL: <host >: <port >/ act uat or/ bi ndi ngs

Alternative, to see a single binding, access one of the URLs similar to the following: <host >: <por t >/
act uat or/ bi ndi ngs/ nyBi ndi ngNane

You can also stop, start, pause, and resume individual bindings by posting to the same URL while
providing a st at e argument as JSON, as shown in the following examples:

curl -d {'state™:"STOPPED"} -H "Content-Type: application/json" -X POST <host>:<port>/
actuator/bindings/myBindingName curl -d ‘{'state":"STARTED"} -H "Content-Type: application/
json" -X POST <host>:<port>/actuator/bindings/myBindingName curl -d '{"state":"PAUSED"}' -H
"Content-Type: application/json" -X POST <host>:<port>/actuator/bindings/myBindingName curl -d
{"state":"RESUMED"}' -H "Content-Type: application/json" -X POST <host>:<port>/actuator/bindings/
myBindingName

please define title in your docbook file! 39

http://<host>:<port>/actuator/bindings
http://<host>:<port>/actuator/bindings/myBindingName
http://<host>:<port>/actuator/bindings/myBindingName
http://<host>:<port>/actuator/bindings/myBindingName
http://<host>:<port>/actuator/bindings/myBindingName
http://<host>:<port>/actuator/bindings/myBindingName
http://<host>:<port>/actuator/bindings/myBindingName
http://<host>:<port>/actuator/bindings/myBindingName
http://<host>:<port>/actuator/bindings/myBindingName

Spring Cloud Stream Reference Guide

@ Note

PAUSED and RESUMED work only when the corresponding binder and its underlying technology
supports it. Otherwise, you see the warning message in the logs. Currently, only Kafka binder
supports the PAUSED and RESUVED states.

7.7 Binder Configuration Properties

The following properties are available when customizing binder configurations. These properties
exposed via or g. spri ngf ramewor k. cl oud. stream confi g. Bi nder Properti es

They must be prefixed with spri ng. cl oud. st r eam bi nder s. <conf i gur at i onNane>.

type
The binder type. It typically references one of the binders found on the classpath — in particular, a
key in a META- | NF/ spri ng. bi nder s file.

By default, it has the same value as the configuration name.

inheritEnvironment
Whether the configuration inherits the environment of the application itself.

Default: t r ue.

environment
Root for a set of properties that can be used to customize the environment of the binder. When
this property is set, the context in which the binder is being created is not a child of the application
context. This setting allows for complete separation between the binder components and the
application components.

Default: enpt y.

defaultCandidate
Whether the binder configuration is a candidate for being considered a default binder or can be used
only when explicitly referenced. This setting allows adding binder configurations without interfering
with the default processing.

Default: t r ue.

please define title in your docbook file! 40

Spring Cloud Stream Reference Guide

8. Configuration Options

Spring Cloud Stream supports general configuration options as well as configuration for bindings and
binders. Some binders let additional binding properties support middleware-specific features.

Configuration options can be provided to Spring Cloud Stream applications through any mechanism
supported by Spring Boot. This includes application arguments, environment variables, and YAML
or .properties files.

8.1 Binding Service Properties

These properties are exposed via
org. spri ngframework. cl oud. stream confi g. Bi ndi ngServi ceProperties

spring.cloud.stream.instanceCount
The number of deployed instances of an application. Must be set for partitioning on the
producer side. Must be set on the consumer side when using RabbitMQ and with Kafka if
aut oRebal anceEnabl ed=f al se.

Default: 1.

spring.cloud.stream.instancelndex
The instance index of the application: A number from 0 to i nst anceCount - 1. Used for
partitioning with RabbitMQ and with Kafka if aut oRebal anceEnabl ed=f al se. Automatically set
in Cloud Foundry to match the application’s instance index.

spring.cloud.stream.dynamicDestinations
A list of destinations that can be bound dynamically (for example, in a dynamic routing scenario).
If set, only listed destinations can be bound.

Default: empty (letting any destination be bound).

spring.cloud.stream.defaultBinder
The default binder to use, if multiple binders are configured. See Multiple Binders on the Classpath.

Default: empty.

spring.cloud.stream.overrideCloudConnectors

This property is only applicable when the cl oud profile is active and Spring Cloud Connectors
are provided with the application. If the property is f al se (the default), the binder detects a
suitable bound service (for example, a RabbitMQ service bound in Cloud Foundry for the RabbitMQ
binder) and uses it for creating connections (usually through Spring Cloud Connectors). When
set to t r ue, this property instructs binders to completely ignore the bound services and rely on
Spring Boot properties (for example, relying on the spri ng. r abbi t ng. * properties provided in
the environment for the RabbitMQ binder). The typical usage of this property is to be nested in a
customized environment when connecting to multiple systems.

Default: f al se.

spring.cloud.stream.bindingRetryInterval
The interval (in seconds) between retrying binding creation when, for example, the binder does not
support late binding and the broker (for example, Apache Kafka) is down. Set it to zero to treat such
conditions as fatal, preventing the application from starting.

please define title in your docbook file! 41

Spring Cloud Stream Reference Guide

Default: 30

8.2 Binding Properties

Binding properties are supplied by using the format of
spring. cl oud. st ream bi ndi ngs. <channel Name>. <pr opert y>=<val ue>. The
<channel Name> represents the name of the channel being configured (for example, out put for a
Sour ce).

To avoid repetition, Spring Cloud Stream supports setting values for all channels, in the format of
spring. cl oud. st ream def aul t. <pr operty>=<val ue>.

In what follows, we indicate where we have omitted the
spring. cl oud. st ream bi ndi ngs. <channel Nanme>. prefix and focus just on the property name,
with the understanding that the prefix ise included at runtime.

Common Binding Properties

These properties are exposed via
org. spri ngframewor k. cl oud. stream confi g. Bi ndi ngProperties

The following binding properties are available for both input and output bindings and
must be prefixed with spring.cl oud. st ream bi ndi ngs. <channel Nanme>. (for example,
spring. cl oud. st ream bi ndi ngs. i nput . desti nati on=ti ckt ock).

Default values can be set by using the spring.cloud.streamdefault prefix (for
example spring.cloud.stream.default.contentType=application/json’).

destination
The target destination of a channel on the bound middleware (for example, the RabbitMQ exchange
or Kafka topic). If the channel is bound as a consumer, it could be bound to multiple destinations,
and the destination names can be specified as comma-separated St ri ng values. If not set, the
channel name is used instead. The default value of this property cannot be overridden.

group
The consumer group of the channel. Applies only to inbound bindings. See Consumer Groups.

Default: nul | (indicating an anonymous consumer).

contentType
The content type of the channel. See “Chapter 9, Content Type Negotiation”.

Default: nul | (no type coercion is performed).

binder
The binder used by this binding. See “Section 7.4, “Multiple Binders on the Classpath™ for details.
Default: nul | (the default binder is used, if it exists).

Consumer Properties

These properties are exposed via

or g. spri ngframewor k. cl oud. st ream bi nder . Consumer Properti es

please define title in your docbook file! 42

Spring Cloud Stream Reference Guide

The following binding properties are available for input bindings only and must be
prefixed with spri ng. cl oud. st ream bi ndi ngs. <channel Name>. consuner. (for example,
spring. cl oud. st ream bi ndi ngs. i nput . consuner. concurrency=3).

Default values can be set by using the spri ng. cl oud. st ream def aul t. consuner prefix (for
example, spri ng. cl oud. stream def aul t. consuner . header Mode=none).

concurrency
The concurrency of the inbound consumer.

Default; 1.

partitioned
Whether the consumer receives data from a partitioned producer.

Default: f al se.

headerMode
When set to none, disables header parsing on input. Effective only for messaging middleware that
does not support message headers natively and requires header embedding. This option is useful
when consuming data from non-Spring Cloud Stream applications when native headers are not
supported. When set to header s, it uses the middleware’s native header mechanism. When set to
enbeddedHeader s, it embeds headers into the message payload.

Default: depends on the binder implementation.

maxAttempts
If processing fails, the number of attempts to process the message (including the first). Set to 1
to disable retry.

Default: 3.

backOffInitiallnterval
The backoff initial interval on retry.

Default: 1000.

backOffMaxInterval
The maximum backoff interval.

Default: 10000.

backOffMultiplier
The backoff multiplier.

Default: 2. 0.

instancelndex
When set to a value greater than equal to zero, it allows customizing the instance index of this
consumer (if different from spri ng. cl oud. stream i nst ancel ndex). When set to a negative
value, it defaults to spring. cl oud. stream i nst ancel ndex. See “Section 11.2, “Instance
Index and Instance Count™ for more information.

Default: - 1.

please define title in your docbook file! 43

Spring Cloud Stream Reference Guide

instanceCount
When set to a value greater than equal to zero, it allows customizing the instance count of this
consumer (if different from spri ng. cl oud. st ream i nst anceCount). When set to a negative
value, it defaults to spring. cl oud. stream i nst anceCount. See “Section 11.2, “Instance
Index and Instance Count™ for more information.

Default: - 1.

useNativeDecoding

When set to true, the inbound message is deserialized directly by the client library, which
must be configured correspondingly (for example, setting an appropriate Kafka producer value
deserializer). When this configuration is being used, the inbound message unmarshalling is not
based on the cont ent Type of the binding. When native decoding is used, it is the responsibility
of the producer to use an appropriate encoder (for example, the Kafka producer value serializer)
to serialize the outbound message. Also, when native encoding and decoding is used, the
header Mode=enbeddedHeader s property is ignored and headers are not embedded in the
message. See the producer property useNat i veEncodi ng.

Default: f al se.
Producer Properties

These properties are exposed via
or g. spri ngframewor k. cl oud. st ream bi nder. Producer Properti es

The following binding properties are available for output bindings only and must be
prefixed with spring. cl oud. stream bi ndi ngs. <channel Nane>. producer. (for example,
spring. cl oud. st ream bi ndi ngs. i nput. producer. partiti onKeyExpr essi on=payl oad. i

Default values can be set by using the prefix spri ng. cl oud. st ream def aul t. producer (for
example,
spring. cl oud. stream def aul t. producer. partiti onKeyExpressi on=payl oad. i d).

partitionKeyExpression
A SpEL expression that determines how to partition outbound data. If set, or if
partiti onKeyExtractorC ass is set, outbound data on this channel is partitioned.
partitionCount must be set to a value greater than 1 to be effective. Mutually exclusive with
partiti onKeyExtractorC ass. See “Section 5.6, “Partitioning Support™.

Default: null.

partitionKeyExtractorClass
APartitionKeyExtractor Strategy implementation. Ifset, orifpartiti onKeyExpr essi on
is set, outbound data on this channel is partitioned. par ti t i onCount must be setto avalue greater
than 1 to be effective. Mutually exclusive with partiti onKeyExpressi on. See “Section 5.6

“Partitioning Support™.

Default: nul | .

partitionSelectorClass
A PartitionSel ectorStrategy implementation. Mutually exclusive with
partitionSel ector Expression. If neither is set, the partition is selected as the
hashCode(key) % partitionCount, where key is computed through either
partitionKeyExpressionorpartitionKeyExtractord ass.

please define title in your docbook file! 44

d).

Spring Cloud Stream Reference Guide

Default: nul | .

partitionSelectorExpression
A SpEL expression for customizing partition selection. Mutually exclusive with
partitionSel ectord ass. If neither is set, the partition is selected as the hashCode(key)
% partitionCount, where key is computed through either partiti onKeyExpressi on or
partiti onKeyExtractorC ass.

Default; nul | .

partitionCount
The number of target partitions for the data, if partitioning is enabled. Must be set to a value greater
than 1 if the producer is partitioned. On Kafka, it is interpreted as a hint. The larger of this and the
partition count of the target topic is used instead.

Default: 1.

requiredGroups
A comma-separated list of groups to which the producer must ensure message delivery even if they
start after it has been created (for example, by pre-creating durable queues in RabbitMQ).

headerMode
When set to none, it disables header embedding on output. It is effective only for messaging
middleware that does not support message headers natively and requires header embedding. This
option is useful when producing data for non-Spring Cloud Stream applications when native headers
are not supported. When set to header s, it uses the middleware’s native header mechanism. When
set to enbeddedHeader s, it embeds headers into the message payload.

Default: Depends on the binder implementation.

useNativeEncoding

When set to t r ue, the outbound message is serialized directly by the client library, which must be
configured correspondingly (for example, setting an appropriate Kafka producer value serializer).
When this configuration is being used, the outbound message marshalling is not based on
the cont ent Type of the binding. When native encoding is used, it is the responsibility of the
consumer to use an appropriate decoder (for example, the Kafka consumer value de-serializer)
to deserialize the inbound message. Also, when native encoding and decoding is used, the
header Mode=enbeddedHeader s property is ignored and headers are not embedded in the
message. See the consumer property useNat i veDecodi ng.

Default: f al se.

errorChannelEnabled
When set to t r ue, if the binder supports asynchroous send results, send failures are sent to an
error channel for the destination. See “???” for more information.

Default: f al se.

8.3 Using Dynamically Bound Destinations

Besides the channels defined by using @tnabl eBi ndi ng, Spring Cloud Stream lets applications
send messages to dynamically bound destinations. This is useful, for example, when the

please define title in your docbook file! 45

Spring Cloud Stream Reference Guide

target destination needs to be determined at runtime. Applications can do so by using
the Bi nder Awar eChannel Resol ver bean, registered automatically by the @tnabl eBi ndi ng
annotation.

The 'spring.cloud.stream.dynamicDestinations' property can be used for restricting the dynamic
destination names to a known set (whitelisting). If this property is not set, any destination can be bound
dynamically.

The Bi nder Awar eChannel Resol ver can be used directly, as shown in the following example of a
REST controller using a path variable to decide the target channel:

@Enabl eBi ndi ng
@ontrol | er
public class SourceWthDynam cDestination {

@\ut owi r ed
private Bi nder Anar eChannel Resol ver resol ver;

@Request Mappi ng(path = "/{target}", nethod = POST, consunes = "*/*")
@ResponseSt at us(Ht t pSt at us. ACCEPTED)
public voi d handl eRequest (@equest Body String body, @athVariable("target”) target,
@equest Header (Ho t pHeader s. CONTENT_TYPE) Cbj ect content Type) {
sendMessage(body, target, contentType);
}

private void sendMessage(String body, String target, Object contentType) {
resol ver.resol veDesti nation(target).send(MessageBui |l der. creat eMessage(body,
new MessageHeader s(Col | ecti ons. si ngl et onVap(MessageHeader s. CONTENT_TYPE,
content Type))));
}

Now consider what happens when we start the application on the default port (8080) and make the
following requests with CURL:

curl -H "Content-Type: application/json" -X POST -d "custoner-1" http://| ocal host: 8080/ cust oner s

curl -H "Content-Type: application/json" -X POST -d "order-1" http://I|ocal host: 8080/ orders

The destinations, ‘customers' and 'orders’, are created in the broker (in the exchange for Rabbit or in
the topic for Kafka) with names of 'customers' and 'orders’, and the data is published to the appropriate
destinations.

The Bi nder Awar eChannel Resol ver is a general-purpose Spring Integration
Desti nati onResol ver and can be injected in other components — for example, in a router using a
SpEL expression based on the t ar get field of an incoming JSON message. The following example
includes a router that reads SpEL expressions:

@nabl eBi ndi ng
@ontroller
public class SourceWthDynam cDestination {

@\ut owi r ed
private Bi nder Anar eChannel Resol ver resol ver;

@Request Mappi ng(path = "/", nethod = POST, consunes = "application/json")
@ResponseSt at us(Htt pSt at us. ACCEPTED)
public void handl eRequest (@Request Body String body, @Request Header (HttpHeaders. CONTENT_TYPE) Obj ect
cont ent Type) {
sendMessage(body, content Type);
}

please define title in your docbook file! 46

Spring Cloud Stream Reference Guide

private void sendMessage(Qbj ect body, Object contentType) {
rout er Channel (). send(MessageBui | der . cr eat eMessage(body,
new MessageHeader s(Col | ecti ons. si ngl et onMap(MessageHeader s. CONTENT_TYPE,
content Type))));

}

@ean(nane = "router Channel ")
publ i ¢ MessageChannel routerChannel () {
return new Direct Channel ();

}

@Bean

@er vi ceAct i vat or (i nput Channel = "rout er Channel ")

publ i ¢ ExpressionEval uati ngRouter router() {
Expr essi onEval uati ngRouter router =

new Expressi onEval uat i ngRout er (new
Spel Expr essi onPar ser (). par seExpressi on(" payl oad. target"));

rout er. set Def aul t Qut put Channel Name(" def aul t - out put");
rout er. set Channel Resol ver (resol ver);
return router;

The Router Sink Application uses this technique to create the destinations on-demand.

If the channel names are known in advance, you can configure the producer properties as with any other
destination. Alternatively, if you register a NewBi ndi ngCal | back<> bean, it is invoked just before the
binding is created. The callback takes the generic type of the extended producer properties used by
the binder. It has one method:

voi d configure(String channel Nane, MessageChannel channel, ProducerProperties producerProperties,
T ext endedPr oducer Properties);

The following example shows how to use the RabbitMQ binder:

@Bean
publ i ¢ NewBi ndi ngCal | back<Rabbi t Producer Properti es> dynam cConfigurer() {
return (name, channel, props, extended) -> {
props. set Requi r edG oups(" bi ndThi sQueue");
ext ended. set QueueNanmeG oupOnl y(true);
ext ended. set Aut oBi ndDl gq(true);
ext ended. set DeadLet t er QueueNanme(" nyDLQ") ;

@ Note

If you need to support dynamic destinations with multiple binder types, use Obj ect for the
generic type and cast the ext ended argument as needed.

please define title in your docbook file! 47

https://github.com/spring-cloud-stream-app-starters/router

Spring Cloud Stream Reference Guide

9. Content Type Negotiation

Data transformation is one of the core features of any message-driven microservice architecture. Given
that, in Spring Cloud Stream, such data is represented as a Spring Message, a message may have to be
transformed to a desired shape or size before reaching its destination. This is required for two reasons:

1. To convert the contents of the incoming message to match the signature of the application-provided
handler.

2. To convert the contents of the outgoing message to the wire format.

The wire format is typically byt e[] (that is true for the Kafka and Rabbit binders), but it is governed
by the binder implementation.

In Spring Cloud Stream, message transformation is accomplished with an
org. spri ngframewor k. nessagi ng. convert er. MessageConverter.

@ Note

As a supplement to the details to follow, you may also want to read the following blog post.

9.1 Mechanics

To better understand the mechanics and the necessity behind content-type negotiation, we take a look
at a very simple use case by using the following message handler as an example:

@5t r eanli st ener (Processor. | NPUT)
@endTo(Processor . QUTPUT)
public String handl e(Person person) {..}

@ Note

For simplicity, we assume that this is the only handler in the application (we assume there is
no internal pipeline).

The handler shown in the preceding example expects a Per son object as an argument and produces
a Stri ng type as an output. In order for the framework to succeed in passing the incoming Message
as an argument to this handler, it has to somehow transform the payload of the Message type from
the wire format to a Per son type. In other words, the framework must locate and apply the appropriate
MessageConvert er. To accomplish that, the framework needs some instructions from the user. One
of these instructions is already provided by the signature of the handler method itself (Per son type).
Consequently, in theory, that should be (and, in some cases, is) enough. However, for the majority of
use cases, in order to select the appropriate MessageConvert er, the framework needs an additional
piece of information. That missing piece is cont ent Type.

Spring Cloud Stream provides three mechanisms to define cont ent Type (in order of precedence):

1. HEADER: The cont ent Type can be communicated through the Message itself. By providing a
cont ent Type header, you declare the content type to use to locate and apply the appropriate
MessageConverter.

2. BINDING: The contentType can be set per destination binding by setting the
spring. cl oud. st ream bi ndi ngs. i nput . cont ent -t ype property.

please define title in your docbook file! 48

https://spring.io/blog/2018/02/26/spring-cloud-stream-2-0-content-type-negotiation-and-transformation

Spring Cloud Stream Reference Guide

@ Note

Thei nput segment in the property name corresponds to the actual name of the destination
(which is “input” in our case). This approach lets you declare, on a per-binding basis, the
content type to use to locate and apply the appropriate MessageConvert er.

3. DEFAULT: If cont ent Type is not present in the Message header or the binding, the default
appl i cati on/j son content type is used to locate and apply the appropriate MessageConverter.

As mentioned earlier, the preceding list also demonstrates the order of precedence in case of a tie.
For example, a header-provided content type takes precedence over any other content type. The same
applies for a content type set on a per-binding basis, which essentially lets you override the default
content type. However, it also provides a sensible default (which was determined from community
feedback).

Another reason for making application/json the default stems from the interoperability
requirements driven by distributed microservices architectures, where producer and consumer not only
run in different JVMs but can also run on different non-JVM platforms.

When the non-void handler method returns, if the the return value is already a
Message, that Message becomes the payload. However, when the return value is not
a Message, the new Message is constructed with the return value as the payload
while inheriting headers from the input Message minus the headers defined or filtered by
Springl ntegrati onProperties. nessageHandl| er Not Pr opagat edHeader s. By default, there
is only one header set there: cont ent Type. This means that the new Message does not have
cont ent Type header set, thus ensuring that the cont ent Type can evolve. You can always opt out
of returning a Message from the handler method where you can inject any header you wish.

If there is an internal pipeline, the Message is sent to the next handler by going through the same
process of conversion. However, if there is no internal pipeline or you have reached the end of it, the
Message is sent back to the output destination.

Content Type versus Argument Type

As mentioned earlier, for the framework to select the appropriate MessageConvert er, it requires
argument type and, optionally, content type information. The logic for selecting the appropriate
MessageConvert er resides with the argument resolvers (Handl er Met hodAr gunent Resol ver s),
which trigger right before the invocation of the user-defined handler method (which is when the actual
argument type is known to the framework). If the argument type does not match the type of the current
payload, the framework delegates to the stack of the pre-configured MessageConvert er s to see if
any one of them can convert the payload. As you can see, the Cbj ect fromvessage(Message<?
> message, C ass<?> targetC ass); operation of the MessageConverter takes t ar get O ass
as one of its arguments. The framework also ensures that the provided Message always contains a
cont ent Type header. When no contentType header was already present, it injects either the per-
binding cont ent Type header or the default cont ent Type header. The combination of cont ent Type
argument type is the mechanism by which framework determines if message can be converted to
a target type. If no appropriate MessageConverter is found, an exception is thrown, which you
can handle by adding a custom MessageConverter (see “Section 9.3, “User-defined Message
Converters™).

But what if the payload type matches the target type declared by the handler method? In this case, there
is nothing to convert, and the payload is passed unmodified. While this sounds pretty straightforward

please define title in your docbook file! 49

Spring Cloud Stream Reference Guide

and logical, keep in mind handler methods that take a Message<?> or Cbj ect as an argument. By
declaring the target type to be Obj ect (which is an i nst anceof everything in Java), you essentially
forfeit the conversion process.

@ Note

Do not expect Message to be converted into some other type based only on the cont ent Type.
Remember that the cont ent Type is complementary to the target type. If you wish, you can
provide a hint, which MessageConvert er may or may not take into consideration.

Message Converters

MessageConvert er s define two methods:

oj ect fromvessage(Message<?> nessage, Cl ass<?> targetC ass);

Message<?> t oMessage(Obj ect payl oad, @l | abl e MessageHeaders headers);

It is important to understand the contract of these methods and their usage, specifically in the context
of Spring Cloud Stream.

The f r omvessage method converts an incoming Message to an argument type. The payload of the
Message could be any type, and it is up to the actual implementation of the MessageConverter to
support multiple types. For example, some JSON converter may support the payload type as byt e[],
St ri ng, and others. This is important when the application contains an internal pipeline (that is, input
_, handlerl _ handler2 _ .. _ output) and the output of the upstream handler results in a Message
which may not be in the initial wire format.

However, the t oMessage method has a more strict contract and must always convert Message to the
wire format: byt e[] .

So, for all intents and purposes (and especially when implementing your own converter) you regard the
two methods as having the following signatures:

Obj ect fromVessage(Message<?> nessage, O ass<?> targetC ass);

Message<byt e[] > t oMessage(Obj ect payl oad, @l | abl e MessageHeaders headers);

9.2 Provided MessageConverters

As mentioned earlier, the framework already provides a stack of MessageConvert ers to handle
most common use cases. The following list describes the provided MessageConvert er s, in order of
precedence (the first MessageConvert er that works is used):

1. Appl i cati onJsonMessageMar shal | i ngConverter: Variation of the
org. springfranmewor k. nessagi ng. convert er. Mappi nglackson2MessageConvert er.
Supports conversion of the payload of the Message to/from POJO for cases when cont ent Type
isappl i cati on/json (DEFAULT).

2. Tupl eJsonMessageConverter: DEPRECATED Supports conversion of the payload of the
Message to/from or g. spri ngf ranewor k. t upl e. Tupl e.

3. Byt eArrayMessageConvert er : Supports conversion of the payload of the Message from byt e[]
to byt e[] for cases when cont ent Type isappl i cati on/ oct et - stream Itis essentially a pass
through and exists primarily for backward compatibility.

please define title in your docbook file! 50

Spring Cloud Stream Reference Guide

4. nj ect St ri ngMessageConverter: Supports conversion of any type to a String when
content Type is text/plain. It invokes Object's toStri ng() method or, if the payload is
byte[],anewString(byte[]).

5. JavaSeri al i zat i onMessageConvert er: DEPRECATED Supports conversion based on java
serialization when cont ent Type is appl i cati on/ x-j ava-seri al i zed- obj ect .

6. KryoMessageConvert er : DEPRECATED Supports conversion based on Kryo serialization when
cont ent Type is appl i cati on/ x-j ava- obj ect.

7. JsonUnmar shal | i ngConverter: Similar to the
Appl i cati onJsonMessageMar shal | i ngConvert er. It supports conversion of any type when
content Type is application/x-java-object. It expects the actual type information to
be embedded in the content Type as an attribute (for example, application/x-java-
obj ect ; t ype=f 0o. bar. Cat).

When no appropriate converter is found, the framework throws an exception. When that happens,
you should check your code and configuration and ensure you did not miss anything (that is, ensure
that you provided a cont ent Type by using a binding or a header). However, most likely, you found
some uncommon case (such as a custom cont ent Type perhaps) and the current stack of provided
MessageConverters does not know how to convert. If that is the case, you can add custom
MessageConvert er. See Section 9.3, “User-defined Message Converters”.

9.3 User-defined Message Converters

Spring Cloud Stream exposes a mechanism to define and register additional MessageConverters.
To use it, implement org. springframework. nessagi ng. converter. MessageConverter,
configure it as a @ean, and annotate it with @t r eanivessageConvert er. It is then apended to the
existing stack of "MessageConverter's.

@ Note

It is important to understand that custom MessageConvert er implementations are added to
the head of the existing stack. Consequently, custom MessageConvert er implementations
take precedence over the existing ones, which lets you override as well as add to the existing
converters.

The following example shows how to create a message converter bean to support a new content type
called appl i cati on/ bar:

@Enabl eBi ndi ng(Si nk. cl ass)
@pr i ngBoot Appl i cati on
public static class SinkApplication {

@Bean
@5t r eamVessageConvert er
publ i c MessageConverter customvessageConverter() {
return new MyCust omMessageConverter();
}
}

public class MyCustomvessageConverter extends Abstract MessageConverter {
public MyCust omMVessageConverter() {

super (new M meType("application", "bar"));

}

please define title in your docbook file! 51

Spring Cloud Stream Reference Guide

@verride
prot ected bool ean supports(C ass<?> clazz) {
return (Bar.class. equal s(cl azz));

}

@verride
protected Object convertFronlnternal (Message<?> nmessage, C ass<?> targetC ass, Object
conversionHint) {
Obj ect payl oad = nessage. get Payl oad() ;
return (payl oad instanceof Bar ? payload : new Bar((byte[]) payload));

Spring Cloud Stream also provides support for Avro-based converters and schema evolution. See
“Chapter 10, Schema Evolution Support” for details.

please define title in your docbook file! 52

Spring Cloud Stream Reference Guide

10. Schema Evolution Support

Spring Cloud Stream provides support for schema evolution so that the data can be evolved over time
and still work with older or newer producers and consumers and vice versa. Most serialization models,
especially the ones that aim for portability across different platforms and languages, rely on a schema
that describes how the data is serialized in the binary payload. In order to serialize the data and then
to interpret it, both the sending and receiving sides must have access to a schema that describes the
binary format. In certain cases, the schema can be inferred from the payload type on serialization or from
the target type on deserialization. However, many applications benefit from having access to an explicit
schema that describes the binary data format. A schema registry lets you store schema information in a
textual format (typically JISON) and makes that information accessible to various applications that need
it to receive and send data in binary format. A schema is referenceable as a tuple consisting of:

» A subject that is the logical name of the schema
e The schema version
» The schema format, which describes the binary format of the data

This following sections goes through the details of various components involved in schema evolution
process.

10.1 Schema Registry Client

The client-side abstraction for interacting with schema registry servers is the SchenaRegi st ryC i ent
interface, which has the following structure:

public interface SchemaRegi strydient {
SchermaRegi strati onResponse register(String subject, String format, String schema);
String fetch(SchemaRef erence schenaReference);

String fetch(lnteger id);

Spring Cloud Stream provides out-of-the-box implementations for interacting with its own schema server
and for interacting with the Confluent Schema Registry.

A client for the Spring Cloud Stream schema registry can be configured by using the
@nabl eSchemaRegi st ryd i ent, as follows:

@Enabl eBi ndi ng(Si nk. cl ass)

@pr i ngBoot Appl i cati on

@nabl eSchemaRegi stryd i ent

public static class AvroSi nkApplication {

}

@ Note

The default converter is optimized to cache not only the schemas from the remote
server but also the parse() and toString() methods, which are quite expensive.
Because of this, it uses a Defaul t SchenaRegi strydient that does not cache
responses. If you intend to change the default behavior, you can use the client directly

please define title in your docbook file! 53

Spring Cloud Stream Reference Guide

on your code and override it to the desired outcome. To do so, you have to add
the property spring. cl oud. stream schemaRegi stryd i ent. cached=true to your
application properties.

Schema Registry Client Properties

The Schema Registry Client supports the following properties:

spring. cl oud. st ream schermaRegi stryCl i ent. endpoi nt
The location of the schema-server. When setting this, use a full URL, including protocol (htt p or
ht t ps), port, and context path.

Default
| ocal host : 8990/

spring. cl oud. st ream schenaRegi stryd i ent. cached
Whether the client should cache schema server responses. Normally set to f al se, as the caching
happens in the message converter. Clients using the schema registry client should set thistot r ue.

Default
true

10.2 Avro Schema Registry Client Message Converters

For applications that have a SchemaRegistryClient bean registered with the application context, Spring
Cloud Stream auto configures an Apache Avro message converter for schema management. This eases
schema evolution, as applications that receive messages can get easy access to a writer schema that
can be reconciled with their own reader schema.

For outbound messages, if the content type of the channel is set to appl i cati on/*+avro, the
MessageConvert er is activated, as shown in the following example:

spring. cl oud. stream bi ndi ngs. out put. cont ent Type=appl i cati on/ *+avr o

During the outbound conversion, the message converter tries to infer the schema of each outbound
messages (based on its type) and register it to a subject (based on the payload type) by using
the SchemaRegi stryC i ent. If an identical schema is already found, then a reference to it is
retrieved. If not, the schema is registered, and a new version number is provided. The message
is sent with a cont ent Type header by using the following scheme: application/[prefix].
[subj ect]. v[version] +avr o, where prefi x is configurable and subj ect is deduced from the
payload type.

For example, a message of the type User might be sent as a binary payload with a content type of
appl i cation/vnd. user. v2+avr o, where user is the subject and 2 is the version number.

When receiving messages, the converter infers the schema reference from the header of the incoming
message and tries to retrieve it. The schema is used as the writer schema in the deserialization process.

Avro Schema Registry Message Converter Properties

If you have enabled Avro based schema registry client by setting
spring. cl oud. st ream bi ndi ngs. out put. cont ent Type=appl i cati on/ *+avro, you can
customize the behavior of the registration by setting the following properties.

please define title in your docbook file! 54

http://localhost:8990/

Spring Cloud Stream Reference Guide

spring.cloud.stream.schema.avro.dynamicSchemaGenerationEnabled
Enable if you want the converter to use reflection to infer a Schema from a POJO.

Default: f al se

spring.cloud.stream.schema.avro.readerSchema
Avro compares schema versions by looking at a writer schema (origin payload) and a reader schema
(your application payload). See the Avro documentation for more information. If set, this overrides
any lookups at the schema server and uses the local schema as the reader schema. Default: nul |

spring.cloud.stream.schema.avro.schemalocations
Registers any . avsc files listed in this property with the Schema Server.

Default: enpt y

spring.cloud.stream.schema.avro.prefix
The prefix to be used on the Content-Type header.

Default: vnd

10.3 Apache Avro Message Converters

Spring Cloud Stream provides support for schema-based message converters through its spri ng-
cl oud- st r eam scherma module. Currently, the only serialization format supported out of the box for
schema-based message converters is Apache Avro, with more formats to be added in future versions.

The spri ng- cl oud- st r eam schena module contains two types of message converters that can be
used for Apache Avro serialization:

» Converters that use the class information of the serialized or deserialized objects or a schema with
a location known at startup.

» Converters that use a schema registry. They locate the schemas at runtime and dynamically register
new schemas as domain objects evolve.

10.4 Converters with Schema Support

The AvroSchemaMessageConvert er supports serializing and deserializing messages either by
using a predefined schema or by using the schema information available in the class (either
reflectively or contained in the Speci fi cRecor d). If you provide a custom converter, then the default
AvroSchemaMessageConverter bean is not created. The following example shows a custom converter:

To use custom converters, you can simply add it to the application context, optionally specifying one or
more M neTypes with which to associate it. The default M meType is appl i cati on/ avro.

If the target type of the conversion is a Gener i cRecor d, a schema must be set.

The following example shows how to configure a converter in a sink application by registering the Apache
Avro MessageConvert er without a predefined schema. In this example, note that the mime type value
is avr o/ byt es, not the default appl i cati on/ avr o.

@nabl eBi ndi ng(Si nk. cl ass)
@pr i ngBoot Appl i cati on
public static class SinkApplication {

please define title in your docbook file! 55

https://avro.apache.org/docs/1.7.6/spec.html

Spring Cloud Stream Reference Guide

@Bean
publ i c MessageConverter userMessageConverter () {
return new AvroSchemaMessageConverter (M neType. val ueOf ("avro/ bytes"));
}
}

Conversely, the following application registers a converter with a predefined schema (found on the
classpath):

@knabl eBi ndi ng(Si nk. cl ass)
@pr i ngBoot Appl i cati on
public static class SinkApplication {

@Bean
publ i c MessageConverter user MessageConverter() {
Avr oSchemaMessageConverter converter = new AvroSchemaMessageConverter (M meType. val ue ("avro/
bytes"));
converter.set SchemaLocati on(new Cl assPat hResour ce("schemas/ User. avro"));
return converter;

10.5 Schema Registry Server

Spring Cloud Stream provides a schema registry server implementation. To use it, you
can add the spring-cl oud-stream schema-server artifact to your project and use the
@nabl eSchenmaRegi st rySer ver annotation, which adds the schema registry server REST
controller to your application. This annotation is intended to be used with Spring Boot web
applications, and the listening port of the server is controlled by the server. port property.
The spring. cl oud. stream schena. server. pat h property can be used to control the root
path of the schema server (especially when it is embedded in other applications). The
spring. cl oud. st ream schena. server. al | owSchenmaDel et i on boolean property enables the
deletion of a schema. By default, this is disabled.

The schema registry server uses a relational database to store the schemas. By default, it uses an
embedded database. You can customize the schema storage by using the Spring Boot SQL database
and JDBC configuration options.

The following example shows a Spring Boot application that enables the schema registry:

@pr i ngBoot Appl i cati on
@nabl eSchemaRegi stryServer
public class SchemaRegi stryServerApplication {
public static void main(String[] args) {
SpringApplication. run(SchemaRegi stryServer Application.class, args);
}

Schema Registry Server API

The Schema Registry Server API consists of the following operations:

« POST / —see “the section called “Registering a New Schema™

* 'GET Hsubject}/{format}/{version} —see “the section called “Retrieving an Existing Schema by
Subject, Format, and Version™

please define title in your docbook file! 56

http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#boot-features-sql
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#boot-features-sql

Spring Cloud Stream Reference Guide

* GET /{subject}/{fornmat} —see “the section called “Retrieving an Existing Schema by Subject

191

and Format

 GET /schenms/ {i d} —see “the section called “Retrieving an Existing Schema by ID"

o DELETE /{subject}/{format}/{version} —see “the section called “Deleting a Schema by
Subject, Format, and Version™

e DELETE /schemas/ {i d} — see “the section called “Deleting a Schema by ID™
e DELETE /{subj ect} —see “the section called “Deleting a Schema by Subject™
Registering a New Schema

To register a new schema, send a POST request to the / endpoaint.

The / accepts a JSON payload with the following fields:

» subj ect: The schema subject

» fornmat: The schema format

» definition: The schema definition

Its response is a schema object in JSON, with the following fields:

e i d: The schema ID

» subj ect: The schema subject

f or mat : The schema format

» versi on: The schema version

» definition: The schema definition

Retrieving an Existing Schema by Subject, Format, and Version

To retrieve an existing schema by subject, format, and version, send CET request to the / { subj ect }/
{format}/{version} endpoint.

Its response is a schema object in JSON, with the following fields:
* id: The schema ID

e subj ect : The schema subject

f or mat : The schema format

* versi on: The schema version

» definition: The schema definition

Retrieving an Existing Schema by Subject and Format

To retrieve an existing schema by subject and format, send a GET request to the / subj ect/ f or nat
endpoint.

please define title in your docbook file! 57

Spring Cloud Stream Reference Guide

Its response is a list of schemas with each schema object in JSON, with the following fields:
* id: The schema ID

* subj ect : The schema subject

f or mat : The schema format

» ver si on: The schema version

» definition: The schema definition

Retrieving an Existing Schema by ID

To retrieve a schema by its ID, send a GET request to the / schemas/ {i d} endpoint.
Its response is a schema object in JSON, with the following fields:

* id: The schema ID

» subj ect : The schema subject

f or mat : The schema format

e versi on: The schema version
e definition: The schema definition
Deleting a Schema by Subject, Format, and Version

To delete a schema identified by its subject, format, and version, send a DELETE request to the /
{subject}/{format}/{version} endpoint.

Deleting a Schema by ID

To delete a schema by its ID, send a DELETE request to the / schemas/ {i d} endpoint.
Deleting a Schema by Subject

DELETE / {subj ect}

Delete existing schemas by their subject.

@ Note

This note applies to users of Spring Cloud Stream 1.1.0.RELEASE only. Spring Cloud Stream
1.1.0.RELEASE used the table name, schenmm, for storing Schema objects. Schena is a
keyword in a number of database implementations. To avoid any conflicts in the future, starting
with 1.1.1.RELEASE, we have opted for the name SCHEMA REPQSI TORY for the storage table.
Any Spring Cloud Stream 1.1.0.RELEASE users who upgrade should migrate their existing
schemas to the new table before upgrading.

Using Confluent’'s Schema Registry

The default configuration creates a Def aul t SchemaRegi stryd i ent bean. If you want to use the
Confluent schema registry, you need to create a bean of type Conf | uent SchemaRegi stryC i ent,

please define title in your docbook file! 58

Spring Cloud Stream Reference Guide

which supersedes the one configured by default by the framework. The following example shows how
to create such a bean:

@Bean
publ i c SchemaRegi stryd i ent
schenmaRegi strydient (@al ue("${spring. cloud. stream schemaRegi stryC ient.endpoint}") String endpoint){
Conf | uent SchemaRegi stryClient client = new Confl uent SchemaRegi stryClient();
client.set Endpoi nt (endpoint);
return client;

}

@ Note

The ConfluentSchemaRegistryClient is tested against Confluent platform version 4.0.0.

10.6 Schema Registration and Resolution

To better understand how Spring Cloud Stream registers and resolves new schemas and its use of Avro
schema comparison features, we provide two separate subsections:

"

» “the section called “Schema Registration Process (Serialization)

» “the section called “Schema Resolution Process (Deserialization)™

Schema Registration Process (Serialization)

The first part of the registration process is extracting a schema from the payload that is being sent
over a channel. Avro types such as Speci fi cRecor d or Gener i cRecor d already contain a schema,
which can be retrieved immediately from the instance. In the case of POJOs, a schema is inferred if the
spring. cl oud. st ream schena. avr o. dynani cSchemaGener at i onEnabl ed property is set to
t r ue (the default).

Figure 10.1. Schema Writer Resolution Process

Ones a schema is obtained, the converter loads its metadata (version) from the remote server. First, it
gueries a local cache. If no result is found, it submits the data to the server, which replies with versioning
information. The converter always caches the results to avoid the overhead of querying the Schema
Server for every new message that needs to be serialized.

Figure 10.2. Schema Registration Process

With the schema version information, the converter sets the cont ent Type header of the message to
carry the version information — for example: appl i cat i on/ vnd. user. v1+avro.

Schema Resolution Process (Deserialization)

When reading messages that contain version information (that is, a cont ent Type header with a
scheme like the one described under “the section called “Schema Registration Process (Serialization)™),
the converter queries the Schema server to fetch the writer schema of the message. Once it has
found the correct schema of the incoming message, it retrieves the reader schema and, by using
Avro’s schema resolution support, reads it into the reader definition (setting defaults and any missing
properties).

please define title in your docbook file! 59

Spring Cloud Stream Reference Guide

Figure 10.3. Schema Reading Resolution Process

o

Note

You should understand the difference between a writer schema (the application that wrote the
message) and a reader schema (the receiving application). We suggest taking a moment to
read the Avro terminology and understand the process. Spring Cloud Stream always fetches
the writer schema to determine how to read a message. If you want to get Avro’s schema
evolution support working, you need to make sure that a r eader Schema was properly set for
your application.

please define title in your docbook file! 60

https://avro.apache.org/docs/1.7.6/spec.html

Spring Cloud Stream Reference Guide

11. Inter-Application Communication

Spring Cloud Stream enables communication between applications. Inter-application communication is
a complex issue spanning several concerns, as described in the following topics:

» “Section 11.1, “Connecting Multiple Application Instances

e “Section 11.2, “Instance Index and Instance Count

e “Section 11.3, “Partitioning

11.1 Connecting Multiple Application Instances

While Spring Cloud Stream makes it easy for individual Spring Boot applications to connect to
messaging systems, the typical scenario for Spring Cloud Stream is the creation of multi-application
pipelines, where microservice applications send data to each other. You can achieve this scenario by
correlating the input and output destinations of “adjacent” applications.

Suppose a design calls for the Time Source application to send data to the Log Sink application. You
could use a common destination named t i ckt ock for bindings within both applications.

Time Source (that has the channel name out put) would set the following property:

spring. cl oud. stream bi ndi ngs. out put . desti nati on=ti cktock

Log Sink (that has the channel name i nput) would set the following property:

spring. cl oud. stream bi ndi ngs. i nput. desti nati on=ti cktock

11.2 Instance Index and Instance Count

When scaling up Spring Cloud Stream applications, each instance can receive information about
how many other instances of the same application exist and what its own instance index
is. Spring Cloud Stream does this through the spring. cl oud. stream i nst anceCount and
spring. cl oud. st ream i nst ancel ndex properties. For example, if there are three instances of a
HDFS sink application, all three instances have spri ng. cl oud. st ream i nst anceCount set to 3,
and the individual applications have spri ng. cl oud. st ream i nst ancel ndex setto 0, 1, and 2,
respectively.

When Spring Cloud Stream applications are deployed through Spring Cloud Data Flow, these properties
are configured automatically; when Spring Cloud Stream applications are launched independently,
these properties must be set correctly. By default, spri ng. cl oud. stream i nst anceCount is 1,
and spring. cl oud. stream i nst ancel ndex is 0.

In a scaled-up scenario, correct configuration of these two properties is important for addressing
partitioning behavior (see below) in general, and the two properties are always required by certain
binders (for example, the Kafka binder) in order to ensure that data are split correctly across multiple
consumer instances.

11.3 Partitioning

Partitioning in Spring Cloud Stream consists of two tasks:

please define title in your docbook file! 61

Spring Cloud Stream Reference Guide

» “the section called “Configuring Output Bindings for Partitioning™

» “the section called “Configuring Input Bindings for Partitioning™

Configuring Output Bindings for Partitioning

You can configure an output binding to send partitioned data by setting one and only one
of its partiti onKeyExpression or partitionKeyExtractorNanme properties, as well as its
partitionCount property.

For example, the following is a valid and typical configuration:

spring. cl oud. stream bi ndi ngs. out put. producer. partiti onKeyExpr essi on=payl oad. i d
spring. cl oud. stream bi ndi ngs. out put . producer. partiti onCount =5

Based on that example configuration, data is sent to the target partition by using the following logic.

A partition key’'s value is calculated for each message sent to a partitioned output channel based
onthe partiti onKeyExpressi on. The partiti onKeyExpressi on is a SpEL expression that is
evaluated against the outbound message for extracting the partitioning key.

If a SpEL expression is not sufficient for your needs, you can
instead calculate the partition key value by providing an implementation
of org. springfranmework. cl oud. stream bi nder. Partiti onKeyExtractorStrategy and
configuring it as a bean (by using the @ean annotation). If you have more then one bean
of type org. spri ngframework. cl oud. stream bi nder. Partiti onKeyExtractor Strategy
available in the Application Context, you can further filter it by specifying its name with the
partiti onKeyExtract or Nane property, as shown in the following example:

--spring. cl oud. stream bi ndi ngs. out put. producer. partiti onKeyExtract or Name=cust onPartiti onKeyExtract or
--spring. cl oud. stream bi ndi ngs. out put. producer. partiti onCount =5

@Bean
public CustonPartitionKeyExtractorC ass custonPartiti onKeyExtractor() {
return new CustonPartiti onKeyExtractorC ass();

}

@ Note

In previous versions of Spring Cloud Stream, you could specify the implementation of
org. springfranmewor k. cl oud. stream bi nder. Partiti onKeyExtractor Strat egy
by setting the
spring. cl oud. st ream bi ndi ngs. out put . producer. partitionKeyExtractord ass
property. Since version 2.0, this property is deprecated, and support for it will be removed in

a future version.

Once the message key is calculated, the partition selection process determines the target partition
as a value between 0 and partitionCount - 1. The default calculation, applicable in most
scenarios, is based on the following formula: key. hashCode() % partitionCount. This can
be customized on the binding, either by setting a SpEL expression to be evaluated against the
'key' (through the partiti onSel ect or Expr essi on property) or by configuring an implementation
of or g. spri ngframework. cl oud. stream bi nder. PartitionSel ectorStrategy as
a bean (by using the @Bean annotation). Similar to the
Partiti onKeyExtractorStrategy, you ~can further filter it by using the
spring. cl oud. st ream bi ndi ngs. out put . producer. partitionSel ect or Nane property

please define title in your docbook file! 62

Spring Cloud Stream Reference Guide

when more than one bean of this type is available in the Application Context, as shown in the following
example:

--spring.cloud. stream bi ndi ngs. out put. producer. partiti onSel ect or Name=custonPartitionSel ector
@Bean
public CustonPartitionSel ectorC ass custonPartitionSel ector() {

return new CustonPartitionSel ectorC ass();

}

@ Note

In previous versions of Spring Cloud Stream you could specify the implementation
of or g. spri ngframewor k. cl oud. st ream bi nder. PartitionSel ector Strategy by
setting the
spring. cl oud. st ream bi ndi ngs. out put . producer. partitionSel ectord ass
property. Since version 2.0, this property is deprecated and support for it will be removed in
a future version.

Configuring Input Bindings for Partitioning

An input binding (with the channel name i nput) is configured to receive partitioned data by setting
its partiti oned property, as well as the i nst ancel ndex and i nst anceCount properties on the
application itself, as shown in the following example:

spring. cl oud. stream bi ndi ngs. i nput. consuner. partitioned=true
spring. cl oud. stream i nst ancel ndex=3
spring. cl oud. stream i nst anceCount =5

The i nst anceCount value represents the total number of application instances between which the
data should be partitioned. The i nst ancel ndex must be a unique value across the multiple instances,
with a value between 0 and i nst anceCount - 1. The instance index helps each application instance
to identify the unique partition(s) from which it receives data. It is required by binders using technology
that does not support partitioning natively. For example, with RabbitMQ, there is a queue for each
partition, with the queue name containing the instance index. With Kafka, if aut oRebal anceEnabl ed
is t r ue (default), Kafka takes care of distributing partitions across instances, and these properties are
not required. If aut oRebal anceEnabl ed is set to false, the i nst anceCount and i nst ancel ndex
are used by the binder to determine which partition(s) the instance subscribes to (you must have at least
as many partitions as there are instances). The binder allocates the partitions instead of Kafka. This
might be useful if you want messages for a particular partition to always go to the same instance. When
a binder configuration requires them, it is important to set both values correctly in order to ensure that
all of the data is consumed and that the application instances receive mutually exclusive datasets.

While a scenario in which using multiple instances for partitioned data processing may be complex to
set up in a standalone case, Spring Cloud Dataflow can simplify the process significantly by populating
both the input and output values correctly and by letting you rely on the runtime infrastructure to provide
information about the instance index and instance count.

please define title in your docbook file! 63

Spring Cloud Stream Reference Guide

12. Testing

Spring Cloud Stream provides support for testing your microservice applications without connecting to
a messaging system. You can do that by using the Test Suppor t Bi nder provided by the spri ng-
cl oud- st reamt est - support library, which can be added as a test dependency to the application,
as shown in the following example:

<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cloud-streamtest-support</artifactld>
<scope>t est </ scope>

</ dependency>

@ Note

The Test Support Bi nder uses the Spring Boot autoconfiguration mechanism to supersede
the other binders found on the classpath. Therefore, when adding a binder as a dependency,
you must make sure that the t est scope is being used.

The Test Suppor t Bi nder lets you interact with the bound channels and inspect any messages sent
and received by the application.

For outbound message channels, the Test Suppor t Bi nder registers a single subscriber and retains
the messages emitted by the application in a MessageCol | ect or . They can be retrieved during tests
and have assertions made against them.

You can also send messages to inbound message channels so that the consumer application can
consume the messages. The following example shows how to test both input and output channels on
a processor:

@RunW t h(Spri ngRunner . cl ass)
@Bpr i ngBoot Test (webEnvi ronnent = Spri ngBoot Test . WebEnvi r onnent . RANDOM_PORT)
public class Exanpl eTest {

@\ut owi r ed
private Processor processor;

@\ut owi r ed
private MessageCol | ector nessageCol | ector;

@est
@uppr essWar ni ngs("unchecked")
public void testWring() {
Message<Stri ng> nessage = new Generi cMessage<>("hello0");
processor.input().send(nmessage);
Message<String> recei ved = (Message<String>) nessageCol | ector. for Channel (processor.output()).poll();
assert That (recei ved. get Payl oad(), equal To("hello world"));

@pr i ngBoot Appl i cati on
@Enabl eBi ndi ng(Processor. cl ass)
public static class MyProcessor {

@\ut owi r ed
private Processor channels;

@ ansf or mer (i nput Channel = Processor. | NPUT, output Channel = Processor.OQUTPUT)
public String transfornm(String in) {
returnin + " world";
}
}
}

please define title in your docbook file! 64

Spring Cloud Stream Reference Guide

In the preceding example, we create an application that has an input channel and an output channel,
both bound through the Pr ocessor interface. The bound interface is injected into the test so that
we can have access to both channels. We send a message on the input channel, and we use the
MessageCol | ect or provided by Spring Cloud Stream’s test support to capture that the message has
been sent to the output channel as a result. Once we have received the message, we can validate that
the component functions correctly.

12.1 Disabling the Test Binder Autoconfiguration

The intent behind the test binder superseding all the other binders on the classpath is to make it
easy to test your applications without making changes to your production dependencies. In some
cases (for example, integration tests) it is useful to use the actual production binders instead,

and that requires disabling the test binder autoconfiguration. To do so, you can exclude the
org. springframework. cl oud. stream t est. bi nder. Test Support Bi nder Aut oConfi gurati on
class by using one of the Spring Boot autoconfiguration exclusion mechanisms, as shown in the following
example:

@vpri ngBoot Appl i cati on(excl ude = Test Support Bi nder Aut oConfi gurati on. cl ass)
@Enabl eBi ndi ng(Processor. cl ass)
public static class MyProcessor {

@r ansf or ner (i nput Channel = Processor. | NPUT, output Channel = Processor. QUTPUT)
public String transforn(String in) {
return in + " world";

}

When autoconfiguration is disabled, the test binder is available on the classpath, and its
def aul t Candi dat e property is set to fal se so that it does not interfere with the regular user
configuration. It can be referenced under the name, t est, as shown in the following example:

spring. cl oud. st ream def aul t Bi nder =t est

please define title in your docbook file! 65

Spring Cloud Stream Reference Guide

13. Health Indicator

Spring Cloud Stream provides a health indicator for binders. It is registered under the name bi nder s
and can be enabled or disabled by setting the managenent . heal t h. bi nder s. enabl ed property.

By default rmanagenent. health.binders.enabled is set to false. Setting
managenent . heal t h. bi nders. enabl ed to true enables the health indicator, allowing you to
access the / heal t h endpoint to retrieve the binder health indicators.

Health indicators are binder-specific and certain binder implementations may not necessarily provide
a health indicator.

please define title in your docbook file! 66

Spring Cloud Stream Reference Guide

14. Metrics Emitter

Spring Boot Actuator provides dependency management and auto-configuration for Micrometer, an
application metrics facade that supports numerous monitoring systems.

Spring Cloud Stream provides support for emitting any available micrometer-based metrics to a binding
destination, allowing for periodic collection of metric data from stream applications without relying on
polling individual endpoints.

Metrics Emitter is activated by defining the
spring. cl oud. st ream bi ndi ngs. appl i cati onMetrics. destination property, which
specifies the name of the binding destination used by the current binder to publish metric messages.

For example:

spring. cl oud. stream bi ndi ngs. appl i cati onMetrics. destinati on=nmyMetri cDestination

The preceding example instructs the binder to bind to myMetri cDesti nation (that is, Rabbit
exchange, Kafka topic, and others).

The following properties can be used for customizing the emission of metrics:

spring.cloud.stream.metrics.key
The name of the metric being emitted. Should be a unique value per application.

Default: ${spring. applicati on. name: ${vcap. appl i cati on. namne:
${spring. config. name: appl i cation}}}

spring.cloud.stream.metrics.properties
Allows white listing application properties that are added to the metrics payload

Default: null.

spring.cloud.stream.metrics.meter-filter
Pattern to control the 'meters’ one wants to capture. For example, specifying
spring.integration.* captures metric information for meters whose name starts with
spring.integration.

Default; all 'meters' are captured.

spring.cloud.stream.metrics.schedule-interval
Interval to control the rate of publishing metric data.

Default: 1 min

Consider the following:

java -jar tine-source.jar \
--spring.cloud. stream bi ndi ngs. appl i cati onMetri cs. destinati on=someMetrics \
--spring.cloud.streamnetrics. properti es=spring. application** \
--spring.cloud.streamnetrics.meter-filter=spring.integration.*

The following example shows the payload of the data published to the binding destination as a result
of the preceding command:

please define title in your docbook file! 67

https://micrometer.io/
https://docs.spring.io/spring-boot/docs/2.0.0.RELEASE/reference/htmlsingle/#production-ready-metrics

Spring Cloud Stream Reference Guide

{

narme": "application",
"createdTi ne": "2018-03-23T14:48:12.700Z",
"properties": {

I
"metrics": [
{
"idt {
"nane": "spring.integration.send",
"tags": [
{
"key": "exception",
"val ue": "none"
B
{
"key": "nane",
"val ue": "input"
Iz
{
"key": "result",
"val ue": "success"
}
{
"key": "type",
"val ue": "channel"
}
s
"type": "TIMER',
"description": "Send processing tinme",
"baseUnit": "mlliseconds"
B

"tinmestanp": "2018-03-23T14:48:12.697Z",
"suni': 130. 340546,

"count": 6,

"mean": 21.72342433333333,

"upper": 116.176299,

"total": 130.340546

@ Note

Given that the format of the Metric message has slightly changed after migrating to Micrometer,
the published message will also have a STREAM CLOUD STREAM VERSI ON header set to
2. x to help distinguish between Metric messages from the older versions of the Spring Cloud

Stream.

please define title in your docbook file!

68

Spring Cloud Stream Reference Guide

15. Samples

For Spring Cloud Stream samples, see the spring-cloud-stream-samples repository on GitHub.

15.1 Deploying Stream Applications on CloudFoundry

On CloudFoundry, services are usually exposed through a special environment variable called
VCAP_SERVICES.

When configuring your binder connections, you can use the values from an environment variable as
explained on the dataflow Cloud Foundry Server docs.

please define title in your docbook file! 69

https://github.com/spring-cloud/spring-cloud-stream-samples
https://docs.cloudfoundry.org/devguide/deploy-apps/environment-variable.html#VCAP-SERVICES
http://docs.spring.io/spring-cloud-dataflow-server-cloudfoundry/docs/current-SNAPSHOT/reference/htmlsingle/#getting-started-ups

Part |l. Binder Implementations

Spring Cloud Stream Reference Guide

16. Apache Kafka Binder

16.1 Usage

To use Apache Kafka binder, you need to add spri ng-cl oud- stream bi nder - kafka as a
dependency to your Spring Cloud Stream application, as shown in the following example for Maven:

<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifact|d>spring-cloud-stream bi nder-kaf ka</artifact|d>
</ dependency>

Alternatively, you can also use the Spring Cloud Stream Kafka Starter, as shown inn the following
example for Maven:

<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cloud-starter-streamkafka</artifactld>

</ dependency>

16.2 Apache Kafka Binder Overview

The following image shows a simplified diagram of how the Apache Kafka binder operates:

Figure 16.1. Kafka Binder

The Apache Kafka Binder implementation maps each destination to an Apache Kafka topic. The
consumer group maps directly to the same Apache Kafka concept. Partitioning also maps directly to
Apache Kafka partitions as well.

The binder currently uses the Apache Kafka kaf ka-cl i ents 1.0.0 jar and is designed to be used
with a broker of at least that version. This client can communicate with older brokers (see the Kafka
documentation), but certain features may not be available. For example, with versions earlier than
0.11.x.x, native headers are not supported. Also, 0.11.x.x does not support the aut oAddParti ti ons

property.
16.3 Configuration Options

This section contains the configuration options used by the Apache Kafka binder.

For common configuration options and properties pertaining to binder, see the core documentation.

Kafka Binder Properties

spring.cloud.stream.kafka.binder.brokers
A list of brokers to which the Kafka binder connects.

Default: | ocal host .

spring.cloud.stream.kafka.binder.defaultBrokerPort
brokers allows hosts specified with or without port information (for example,
host 1, host 2: port 2). This sets the default port when no port is configured in the broker list.

Default: 9092.

please define title in your docbook file! 71

Spring Cloud Stream Reference Guide

spring.cloud.stream.kafka.binder.configuration
Key/Value map of client properties (both producers and consumer) passed to all clients created
by the binder. Due to the fact that these properties are used by both producers and consumers,
usage should be restricted to common properties — for example, security settings. Properties here
supersede any properties set in boot.

Default: Empty map.

spring.cloud.stream.kafka.binder.consumerProperties
Key/Value map of arbitrary Kafka client consumer properties. Properties here supersede any
properties set in boot and in the conf i gur at i on property above.

Default: Empty map.

spring.cloud.stream.kafka.binder.headers
The list of custom headers that are transported by the binder. Only required when communicating
with older applications @ 1.3.x) withakaf ka- cl i ent s version<0.11.0.0. Newer versions support
headers natively.

Default: empty.

spring.cloud.stream.kafka.binder.healthTimeout
The time to wait to get partition information, in seconds. Health reports as down if this timer expires.

Default: 10.

spring.cloud.stream.kafka.binder.requiredAcks
The number of required acks on the broker. See the Kafka documentation for the producer acks

property.
Default: 1.

spring.cloud.stream.kafka.binder.minPartitionCount
Effective only if aut oCr eat eTopi cs oraut oAddParti ti ons is set. The global minimum number
of partitions that the binder configures on topics on which it produces or consumes data. It can be
superseded by the partiti onCount setting of the producer or by the value of i nst anceCount
* concur r ency settings of the producer (if either is larger).

Default: 1.

spring.cloud.stream.kafka.binder.producerProperties
Key/Value map of arbitrary Kafka client producer properties. Properties here supersede any
properties set in boot and in the conf i gur at i on property above.

Default: Empty map.

spring.cloud.stream.kafka.binder.replicationFactor
The replication factor of auto-created topics if aut oCr eat eTopi c¢s is active. Can be overridden
on each binding.

Default: 1.

spring.cloud.stream.kafka.binder.autoCreateTopics
If settot r ue, the binder creates new topics automatically. If set to f al se, the binder relies on the
topics being already configured. In the latter case, if the topics do not exist, the binder fails to start.

please define title in your docbook file! 72

Spring Cloud Stream Reference Guide

@ Note

This setting is independent of the aut 0. t opi c. cr eat e. enabl e setting of the broker and
does not influence it. If the server is set to auto-create topics, they may be created as part
of the metadata retrieval request, with default broker settings.

Default: t r ue.

spring.cloud.stream.kafka.binder.autoAddPartitions
If settot r ue, the binder creates new partitions if required. If set to f al se, the binder relies on the
partition size of the topic being already configured. If the partition count of the target topic is smaller
than the expected value, the binder fails to start.

Default: f al se.

spring.cloud.stream.kafka.binder.transaction.transactionldPrefix
Enables transactions in the binder. See transaction.id in the Kafka documentation
and Transactions in the spring-kafka documentation. When transactions are
enabled, individual producer properties are ignored and all producers use the
spring. cl oud. st ream kaf ka. bi nder . transacti on. producer . * properties.

Default nul | (no transactions)

spring.cloud.stream.kafka.binder.transaction.producer.*
Global producer properties for producers in a transactional binder. See
spring. cl oud. st ream kaf ka. bi nder. transacti on.transactionldPrefix and the
section called “Kafka Producer Properties” and the general producer properties supported by all
binders.

Default: See individual producer properties.

spring.cloud.stream.kafka.binder.headerMapperBeanName
The bean name of a Kaf kaHeader Mapper used for mapping spri ng- nessagi ng headers to
and from Kafka headers. Use this, for example, if you wish to customize the trusted packages in a
Def aul t Kaf kaHeader Mapper that uses JSON deserialization for the headers.

Default: none.

Kafka Consumer Properties

The following properties are available for Kafka consumers only and must be prefixed with
spring. cl oud. st ream kaf ka. bi ndi ngs. <channel Nane>. consuner. .

admin.configuration
A Mp of Kafka topic properties used when provisioning topics—for example,
spring. cl oud. st ream kaf ka. bi ndi ngs. i nput. consuner. adm n. confi guration. message. f or mat

Default: none.

admin.replicas-assignment
A Map<iInteger, List<Integer>> of replica assignments, with the key being the partition and the value
being the assignments. Used when provisioning new topics. See the NewTopi ¢ Javadocs in the
kaf ka-cl i ent s jar.

please define title in your docbook file! 73

https://docs.spring.io/spring-kafka/reference/html/_reference.html#transactions

Spring Cloud Stream Reference Guide

Default: none.

admin.replication-factor
The replication factor to use when provisioning topics. Overrides the binder-wide setting. Ignored
if repl i cas-assi gnnment s is present.

Default: none (the binder-wide default of 1 is used).

autoRebalanceEnabled

When true, topic partitions is automatically rebalanced between the members of a
consumer group. When f al se, each consumer is assigned a fixed set of partitions based
onspring.cloud. stream i nstanceCount andspri ng. cl oud. stream i nst ancel ndex.
This requires both the spring. cl oud. stream i nst anceCount and
spring. cl oud. st ream i nst ancel ndex properties to be set appropriately on each launched
instance. The value of the spri ng. cl oud. stream i nst anceCount property must typically be
greater than 1 in this case.

Default: t r ue.

ackEachRecord

When aut oConmi t OF f set is t r ue, this setting dictates whether to commit the offset after each
record is processed. By default, offsets are committed after all records in the batch of records
returned by consumer . pol | () have been processed. The number of records returned by a poll
can be controlled with the max. pol | . r ecor ds Kafka property, which is set through the consumer
confi gurati on property. Setting this to t rue may cause a degradation in performance, but
doing so reduces the likelihood of redelivered records when a failure occurs. Also, see the binder
requi r edAcks property, which also affects the performance of committing offsets.

Default: f al se.

autoCommitOffset

Whether to autocommit offsets when a message has been processed. If

set to false, a header with the key kafka_acknow edgment of the type

org. springframewor k. kaf ka. support. Acknowl edgnment header is present in the inbound

message. Applications may use this header for acknowledging messages. See the examples

section for details. When this property is set to f al se, Kafka binder sets the ack mode to

org. spri ngframewor k. kaf ka. | i st ener. Abst ract Messageli st ener Cont ai ner. AckiMbde. MANUAL
and the application is responsible for acknowledging records. Also see ackEachRecor d.

Default: t r ue.

autoCommitOnError
Effective only if aut oConmi t Of f set is settotrue. If setto f al se, it suppresses auto-commits
for messages that result in errors and commits only for successful messages. It allows a stream to
automatically replay from the last successfully processed message, in case of persistent failures. If
settot r ue, it always auto-commits (if auto-commit is enabled). If not set (the default), it effectively
has the same value as enabl eDl g, auto-committing erroneous messages if they are sentto a DLQ
and not committing them otherwise.

Default: not set.

resetOffsets
Whether to reset offsets on the consumer to the value provided by startOffset.

please define title in your docbook file! 74

Spring Cloud Stream Reference Guide

Default: f al se.

startOffset
The starting offset for new groups. Allowed values: earliest and |atest.
If the consumer group is set explicitly for the consumer ‘binding' (through
spring. cl oud. st ream bi ndi ngs. <channel Name>. gr oup), 'startOffset' issettoear| i est .
Otherwise, it is set to | at est for the anonynmous consumer group. Also see reset Of f set s
(earlier in this list).

Default: null (equivalent to ear | i est).

enableDlq
When set to true, it enables DLQ behavior for the consumer. By default, messages that result in
errors are forwarded to a topic named err or . <desti nati on>. <gr oup>. The DLQ topic hame
can be configurable by setting the dl gName property. This provides an alternative option to the
more common Kafka replay scenario for the case when the number of errors is relatively small and
replaying the entire original topic may be too cumbersome. See Section 16.6, “Dead-Letter Topic
Processing” processing for more information. Starting with version 2.0, messages sent to the DLQ
topic are enhanced with the following headers: x- ori gi nal -t opi c, x- excepti on- nessage,
and x- exception-stacktrace as byte[]. Not allowed when desti nationlsPattern is
true.

Default: f al se.

configuration
Map with a key/value pair containing generic Kafka consumer properties.

Default: Empty map.

digName
The name of the DLQ topic to receive the error messages.

Default: null (If not specified, messages that result in errors are forwarded to a topic named
error. <desti nati on>. <group>).

digProducerProperties
Using this, DLQ-specific producer properties can be set. All the properties available through kafka
producer properties can be set through this property.

Default: Default Kafka producer properties.

standardHeaders
Indicates which standard headers are populated by the inbound channel adapter. Allowed values:
none, i d, ti mest anp, or bot h. Useful if using native deserialization and the first component to
receive a message needs ani d (such as an aggregator that is configured to use a JDBC message
store).

Default: none

converterBeanName
The name of a bean that implements Recor dMessageConvert er. Used in the inbound channel
adapter to replace the default Messagi ngMessageConverter.

please define title in your docbook file! 75

Spring Cloud Stream Reference Guide

Default: nul |

idleEventinterval
The interval, in milliseconds, between events indicating that no messages have recently been
received. Use an Appl i cati onLi st ener <Li st ener Cont ai ner | dl eEvent > to receive these
events. See the section called "Example: Pausing and Resuming the Consumer” for a usage
example.

Default: 30000

destinationIsPattern
When true, the destination is treated as a regular expression Pat t er n used to match topic names
by the broker. When true, topics are not provisioned, and enabl eDl q is not allowed, because the
binder does not know the topic names during the provisioning phase. Note, the time taken to detect
new topics that match the pattern is controlled by the consumer property net adat a. nax. age. ns,
which (at the time of writing) defaults to 300,000ms (5 minutes). This can be configured using the
confi gur ati on property above.

Default: f al se
Kafka Producer Properties

The following properties are available for Kafka producers only and must be prefixed with
spring. cl oud. st r eam kaf ka. bi ndi ngs. <channel Nane>. pr oducer. .

admin.configuration
A Map of Kafka topic properties used when provisioning new topics—for example,
spring. cl oud. st ream kaf ka. bi ndi ngs. i nput. consumner. adm n. confi gurati on. message. f or mat.

Default: none.

admin.replicas-assignment
A Map<integer, List<Integer>> of replica assignments, with the key being the partition and the value
being the assignments. Used when provisioning new topics. See NewTopi ¢ javadocs in the kaf ka-
clients jar.

Default: none.

admin.replication-factor
The replication factor to use when provisioning new topics. Overrides the binder-wide setting.
Ignored if r epl i cas- assi gnnent s is present.

Default: none (the binder-wide default of 1 is used).

bufferSize
Upper limit, in bytes, of how much data the Kafka producer attempts to batch before sending.

Default: 16384.

sync
Whether the producer is synchronous.

Default: f al se.

please define title in your docbook file! 76

Spring Cloud Stream Reference Guide

batchTimeout

How long the producer waits to allow more messages to accumulate in the same batch before
sending the messages. (Normally, the producer does not wait at all and simply sends all the
messages that accumulated while the previous send was in progress.) A non-zero value may
increase throughput at the expense of latency.

Default: O.

messageKeyExpression

A SpEL expression evaluated against the outgoing message used to populate the key of the
produced Kafka message —for example, header s[' myKey']. The payload cannot be used
because, by the time this expression is evaluated, the payload is already in the form of a byt e[] .

Default: none.

headerPatterns

A comma-delimited list of simple patterns to match Spring messaging headers to be mapped to the
Kafka Header s in the Pr oducer Recor d. Patterns can begin or end with the wildcard character
(asterisk). Patterns can be negated by prefixing with ! . Matching stops after the first match (positive
or negative). For example ! ask, as* will pass ash but not ask. i d and ti mest anp are never
mapped.

Default: * (all headers - except the i d and ti nest anp)

configuration

o

Map with a key/value pair containing generic Kafka producer properties.
Default: Empty map.
Note

The Kafka binder uses the partiti onCount setting of the producer as a hint to create
a topic with the given partition count (in conjunction with the m nPartiti onCount, the
maximum of the two being the value being used). Exercise caution when configuring both
m nPartitionCount for a binder and partiti onCount for an application, as the larger
value is used. If a topic already exists with a smaller partition count and aut oAddPar ti ti ons
is disabled (the default), the binder fails to start. If a topic already exists with a smaller partition
count and aut oAddPartiti ons is enabled, new partitions are added. If a topic already
exists with a larger number of partitions than the maximum of (m nPartiti onCount or
partitionCount), the existing partition count is used.

Usage examples

In this section, we show the use of the preceding properties for specific scenarios.

Exal

mple: Setting aut oConmmi t Of f set to f al se and Relying on Manual Acking

This example illustrates how one may manually acknowledge offsets in a consumer application.

This example requires that

spr

i ng. cl oud. stream kaf ka. bi ndi ngs. i nput. consuner. autoComm t O f set be set to

f al se. Use the corresponding input channel name for your example.

please define title in your docbook file! 77

Spring Cloud Stream Reference Guide

@ppr i ngBoot Appl i cati on
@nabl eBi ndi ng(Si nk. cl ass)
public class Manual | yAcknowdl edgi ngConsuner {

public static void main(String[] args) {
Spri ngAppl i cation. run(Manual | yAcknowdl edgi ngConsuner . cl ass, args);

}

@Bt r eanli st ener (Si nk. | NPUT)
public void process(Message<?> nessage) {
Acknowl edgnent acknow edgnent = nessage. get Header s() . get (Kaf kaHeader s. ACKNOALEDGVENT,
Acknowl edgnent . cl ass) ;
if (acknow edgnent != null) {
System out. printl n("Acknow edgnent provided");
acknow edgnent . acknow edge() ;

Example: Security Configuration

Apache Kafka 0.9 supports secure connections between client and brokers. To take
advantage of this feature, follow the guidelines in the Apache Kafka Documentation as
well as the Kafka 0.9 security guidelines from the Confluent documentation. Use the
spring. cl oud. st ream kaf ka. bi nder. confi gurati on option to set security properties for all
clients created by the binder.

For example, to set security. prot ocol to SASL_SSL, set the following property:

spring. cl oud. stream kaf ka. bi nder. confi guration. security. protocol =SASL_SSL

All the other security properties can be set in a similar manner.

When using Kerberos, follow the instructions in the reference documentation for creating and referencing
the JAAS configuration.

Spring Cloud Stream supports passing JAAS configuration information to the application by using a
JAAS configuration file and using Spring Boot properties.

Using JAAS Configuration Files

The JAAS and (optionally) krb5 file locations can be set for Spring Cloud Stream applications by using
system properties. The following example shows how to launch a Spring Cloud Stream application with
SASL and Kerberos by using a JAAS configuration file:

java -D ava. security. auth.login.config=/path.to/kafka_client_jaas.conf -jar log.jar \
--spring. cl oud. stream kaf ka. bi nder . br oker s=secur e. server: 9092 \
--spring.cloud. stream bi ndi ngs. i nput . desti nati on=stream ticktock \
--spring. cloud. stream kaf ka. bi nder. confi guration. security. protocol =SASL_PLAI NTEXT

Using Spring Boot Properties

As an alternative to having a JAAS configuration file, Spring Cloud Stream provides a mechanism for
setting up the JAAS configuration for Spring Cloud Stream applications by using Spring Boot properties.

The following properties can be used to configure the login context of the Kafka client:

spring.cloud.stream.kafka.binder.jaas.loginModule
The login module name. Not necessary to be set in normal cases.

Default: com sun. securi ty. aut h. nodul e. Kr b5Logi nModul e.

please define title in your docbook file! 78

http://kafka.apache.org/090/documentation.html#security_configclients
http://docs.confluent.io/2.0.0/kafka/security.html
http://kafka.apache.org/090/documentation.html#security_sasl_clientconfig

Spring Cloud Stream Reference Guide

spring.cloud.stream.kafka.binder.jaas.controlFlag
The control flag of the login module.

Default: r equi r ed.

spring.cloud.stream.kafka.binder.jaas.options
Map with a key/value pair containing the login module options.

Default: Empty map.

The following example shows how to launch a Spring Cloud Stream application with SASL and Kerberos
by using Spring Boot configuration properties:

java --spring.cloud. stream kaf ka. bi nder. br oker s=secure. server: 9092 \
--spring.cl oud. stream bi ndi ngs. i nput. desti nati on=stream ti cktock \
--spring.cl oud. stream kaf ka. bi nder. aut oCr eat eTopi cs=f al se \
--spring.cl oud. stream kaf ka. bi nder. confi gurati on. security. protocol =SASL_PLAI NTEXT \
--spring. cloud. stream kaf ka. bi nder . j aas. opti ons. useKeyTab=true \
--spring. cloud. stream kaf ka. bi nder . j aas. opti ons. st or eKey=true \
--spring.cl oud. stream kaf ka. bi nder. j aas. opti ons. keyTab=/ et c/ securi ty/ keyt abs/ kaf ka_cl i ent. keytab \
--spring.cl oud. stream kaf ka. bi nder . j aas. opti ons. pri nci pal =kaf ka- cl i ent - 1@XAMPLE. COM

The preceding example represents the equivalent of the following JAAS file:

Kaf kad i ent {
com sun. securi ty. aut h. rodul e. Kr b5Logi nModul e requi red
useKeyTab=t r ue
st or eKey=t rue
keyTab="/etc/ security/keytabs/ kafka_client.keytab"
princi pal ="kaf ka- cl i ent - 1@XAMPLE. COM';

b

If the topics required already exist on the broker or will be created by an administrator, autocreation can
be turned off and only client JAAS properties need to be sent.

@ Note

Do not mix JAAS configuration files and Spring Boot properties in the same application. If the
-Dj ava. security. aut h. | ogi n. confi g system property is already present, Spring Cloud
Stream ignores the Spring Boot properties.

@ Note

Be careful when using the aut oCr eat eTopi ¢cs and aut oAddParti ti ons with Kerberos.
Usually, applications may use principals that do not have administrative rights in Kafka
and Zookeeper. Consequently, relying on Spring Cloud Stream to create/modify topics may
fail. In secure environments, we strongly recommend creating topics and managing ACLs
administratively by using Kafka tooling.

Example: Pausing and Resuming the Consumer

If you wish to suspend consumption but not cause a partition rebalance, you can pause and resume the
consumer. This is facilitated by adding the Consuner as a parameter to your @bt r eanii st ener. To
resume, you need an Appl i cati onLi st ener for Li st ener Cont ai ner | dl eEvent instances. The
frequency at which events are published is controlled by the i dl eEvent | nt er val property. Since the
consumer is not thread-safe, you must call these methods on the calling thread.

The following simple application shows how to pause and resume:

please define title in your docbook file! 79

Spring Cloud Stream Reference Guide

@pr i ngBoot Appl i cati on
@nabl eBi ndi ng(Si nk. cl ass)
public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);

}

@t r eanli st ener (Si nk. | NPUT)

public void in(String in, @eader(KafkaHeaders. CONSUVER) Consuner<?, ?> consuner) {
System out. println(in);
consuner . pause(Col | ecti ons. si ngl et on(new Topi cPartition("nmyTopic", 0)));

}

@ean
public ApplicationListener<ListenerContainerldl eEvent> idleListener() {
return event -> {
System out. println(event);
if (event.getConsuner().paused().size() > 0) {
event . get Consuner (). resunme(event. get Consumner (). paused());
}
ba
}

16.4 Error Channels

Starting with version 1.3, the binder unconditionally sends exceptions to an error channel for each
consumer destination and can also be configured to send async producer send failures to an error
channel. See Section 6.4, “Error Handling” for more information.

The payload of the Error Message for a send failure is a Kaf kaSendFai | ur eExcepti on with
properties:

» fail edMessage: The Spring Messaging Message<?> that failed to be sent.
e record: The raw Producer Recor d that was created from the f ai | edMessage

There is no automatic handling of producer exceptions (such as sending to a Dead-Letter queue). You
can consume these exceptions with your own Spring Integration flow.

16.5 Kafka Metrics

Kafka binder module exposes the following metrics:

spring. cl oud. st ream bi nder . kaf ka. soneG oup. soneTopi c. | ag: This metric indicates
how many messages have not been yet consumed from a given binder's
topic by a given consumer group. For example, if the value of the metric
spring. cl oud. st ream bi nder . kaf ka. myGroup. myTopi c. | ag is 1000, the consumer group
named ny G oup has 1000 messages waiting to be consumed from the topic calle myTopi c¢. This metric
is particularly useful for providing auto-scaling feedback to a PaaS platform.

16.6 Dead-Letter Topic Processing

Because you cannot anticipate how users would want to dispose of dead-lettered messages, the
framework does not provide any standard mechanism to handle them. If the reason for the dead-lettering
is transient, you may wish to route the messages back to the original topic. However, if the problem
is a permanent issue, that could cause an infinite loop. The sample Spring Boot application within this
topic is an example of how to route those messages back to the original topic, but it moves them to a

please define title in your docbook file! 80

Spring Cloud Stream Reference Guide

“parking lot” topic after three attempts. The application is another spring-cloud-stream application that
reads from the dead-letter topic. It terminates when no messages are received for 5 seconds.

The examples assume the original destination is s084000out and the consumer group is s08400.
There are a couple of strategies to consider:

» Consider running the rerouting only when the main application is not running. Otherwise, the retries
for transient errors are used up very quickly.

» Alternatively, use a two-stage approach: Use this application to route to a third topic and another to
route from there back to the main topic.

The following code listings show the sample application:

application.properties.

spring. cl oud. stream bi ndi ngs. i nput . gr oup=s08400r epl ay
spring. cl oud. stream bi ndi ngs. i nput . desti nati on=error.so84000ut . so8400

spring. cl oud. stream bi ndi ngs. out put .. desti nati on=s084000ut
spring. cl oud. stream bi ndi ngs. out put. producer. partiti oned=true

spring. cl oud. stream bi ndi ngs. par ki ngLot . desti nati on=s08400i n. par ki ngLot
spring. cl oud. stream bi ndi ngs. par ki ngLot . producer. partiti oned=true

spring. cl oud. stream kaf ka. bi nder. confi gurati on. aut o. of f set.reset=earl i est

spring. cl oud. stream kaf ka. bi nder. headers=x-retries

Application.

@pr i ngBoot Appl i cati on
@nabl eBi ndi ng(TwoQut put Processor . cl ass)
public class ReRouteD gKApplication inplenents ComrandLi neRunner {

private static final String X RETRI ES HEADER = "x-retries";

public static void main(String[] args) {
Spri ngApplication. run(ReRout eDl gKAppl i cation. cl ass, args).close();
}

private final Atom clnteger processed = new Atom clnteger();

@\ut owi r ed
private MessageChannel parkinglLot;

@t r eanli st ener (Processor . | NPUT)
@endTo(Processor . QUTPUT)
publ i c Message<?> reRout e(Message<?> failed) {
processed. i ncrenment AndGet () ;
Integer retries = fail ed. get Header s() . get (X_RETRI ES_HEADER, | nteger.cl ass);
if (retries == null) {
Systemout.println("First retry for " + failed);
return MessageBui |l der. fromvessage(fail ed)
. set Header (X_RETRI ES_HEADER, new | nteger (1))
. set Header (Bi nder Header s. PARTI TI ON_OVERRI DE,
f ai |l ed. get Header s() . get (Kaf kaHeader s. RECEI VED_PARTI TI ON_I D))
Lbuild();
}
else if (retries.intValue() < 3) {
Systemout. println("Another retry for " + failed);
return MessageBuil der. fronMessage(fail ed)
. set Header (X_RETRI ES_HEADER, new I nteger(retries.intValue() + 1))
. set Header (Bi nder Header s. PARTI TI ON_OVERRI DE,
fail ed. get Header s() . get (Kaf kaHeader s. RECEI VED_PARTI TI ON_I D))

please define title in your docbook file! 81

Spring Cloud Stream Reference Guide

Lbuild();
}
el se {
Systemout.println("Retries exhausted for " + failed);
par ki ngLot . send(MessageBui | der. fromvessage(fai |l ed)
. set Header (Bi nder Header s. PARTI TI ON_OVERRI DE,
fail ed. get Header s() . get (Kaf kaHeader s. RECEI VED_PARTI TI ON_I D))
Lbuild());
}
return null;
}
@verride

public void run(String... args) throws Exception {
while (true) {
int count = this.processed.get();
Thr ead. sl eep(5000) ;

if (count == this.processed.get()) {
Systemout.printin("ldle, termnating");
return;

}

public interface TwoQut put Processor extends Processor {

@ut put (" par ki ngLot ")
MessageChannel parki ngLot () ;

16.7 Partitioning with the Kafka Binder

Apache Kafka supports topic partitioning natively.

Sometimes it is advantageous to send data to specific partitions — for example, when you want to strictly
order message processing (all messages for a particular customer should go to the same partition).

The following example shows how to configure the producer and consumer side:

@Bpr i ngBoot Appl i cati on
@Enabl eBi ndi ng(Sour ce. cl ass)
public class KafkaPartitionProducerApplication {

private static final Random RANDOM = new Randon{SystemcurrentTimeM | lis());

private static final String[] data = new String[] {
"fool", "barl", "quxl",
"foo2", "bar2", "qux2",
"foo3", "bar3", "qux3",
"foo4", "bar4", "qux4",
b

public static void main(String[] args) {
new Spri ngAppl i cati onBui | der (Kaf kaPartiti onProducer Appli cation. cl ass)
.web(fal se)
.run(args);

}

@ nboundChannel Adapt er (channel = Source. OQUTPUT, poller = @Poller(fixedRate = "5000"))
public Message<?> generate() {
String val ue = data[RANDOM next | nt(data.length)];
Systemout. println("Sending: " + value);
return MessageBui |l der. wi t hPayl oad(val ue)
. set Header ("partitionKey", value)
Lbuild();

please define title in your docbook file! 82

Spring Cloud Stream Reference Guide

application.yml.

spring:
cl oud:
stream
bi ndi ngs:
out put :
destination: partitioned.topic
pr oducer :
partitioned: true
partition-key-expression: headers['partitionKey']
partition-count: 12

@ Important

The topic must be provisioned to have enough partitions to achieve the desired concurrency for
all consumer groups. The above configuration supports up to 12 consumer instances (6 if their
concurrency is 2, 4 if their concurrency is 3, and so on). Itis generally best to “over-provision”
the partitions to allow for future increases in consumers or concurrency.

@ Note

The preceding configuration uses the default partitioning (key. hashCode() %
partitionCount). This may or may not provide a suitably balanced algorithm, depending on
the key values. You can override this default by using the parti ti onSel ect or Expr essi on
orpartitionSel ectord ass properties.

Since partitions are natively handled by Kafka, no special configuration is needed on the consumer side.
Kafka allocates partitions across the instances.

The following Spring Boot application listens to a Kafka stream and prints (to the console) the partition
ID to which each message goes:

@pr i ngBoot Appl i cati on
@nabl eBi ndi ng(Si nk. cl ass)
public class KafkaPartitionConsunerApplication {

public static void main(String[] args) {
new Spri ngAppl i cati onBui | der (Kaf kaPartiti onConsuner Appl i cati on. cl ass)
.web(false)
.run(args);

}

@t r eanli st ener (Si nk. | NPUT)
public void |listen(@Payl oad String in, @deader(KafkaHeaders. RECEI VED PARTI TION_ID) int partition) {
Systemout.println(in + " received frompartition " + partition);

}

application.yml.

spring:
cl oud:
stream
bi ndi ngs:
i nput :
destination: partitioned.topic
group: nyG oup

please define title in your docbook file! 83

Spring Cloud Stream Reference Guide

You can add instances as needed. Kafka rebalances the partition allocations. If the instance count (or
i nstance count * concurrency) exceeds the number of partitions, some consumers are idle.

please define title in your docbook file! 84

Spring Cloud Stream Reference Guide

17. Apache Kafka Streams Binder

17.1 Usage

For using the Kafka Streams binder, you just need to add it to your Spring Cloud Stream application,
using the following Maven coordinates:

<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cloud-stream bi nder-kaf ka-streans</artifact|d>
</ dependency>

17.2 Kafka Streams Binder Overview

Spring Cloud Stream’s Apache Kafka support also includes a binder implementation designed explicitly
for Apache Kafka Streams binding. With this native integration, a Spring Cloud Stream "processor"
application can directly use the Apache Kafka Streams APIs in the core business logic.

Kafka Streams binder implementation builds on the foundation provided by the Kafka Streams in Spring
Kafka project.

As part of this native integration, the high-level Streams DSL provided by the Kafka Streams API is
available for use in the business logic, too.

An early version of the Processor API support is available as well.

As noted early-on, Kafka Streams support in Spring Cloud Stream strictly only available for use in the
Processor model. A model in which the messages read from an inbound topic, business processing can
be applied, and the transformed messages can be written to an outbound topic. It can also be used in
Processor applications with a no-outbound destination.

Streams DSL

This application consumes data from a Kafka topic (e.g., wor ds), computes word count for each unique
word in a 5 seconds time window, and the computed results are sent to a downstream topic (e.g.,
count s) for further processing.

@vpri ngBoot Appl i cati on
@Enabl eBi ndi ng(KSt r eanPr ocessor . cl ass)
public class WordCount Processor Application {

@bt reanli stener ("input")

@endTo(" out put ")

public KStreanx?, WordCount> process(KStreanx?, String> input) {

return input

.fl at MapVal ues(val ue -> Arrays. asLi st (val ue. toLower Case().split("\\W")))
.groupBy((key, value) -> value)
. wi ndowedBy(Ti meW ndows. of (5000))
.count (Materialized. as("WrdCounts-multi"))
.toStream()
.map((key, value) -> new KeyVal ue<>(null, new WrdCount (key. key(), value, new

Dat e(key. wi ndow().start()), new Date(key.w ndow).end()))));

}

public static void main(String[] args) {
Spri ngAppl i cation. run(WrdCount Processor Appl i cation.class, args);

}

please define title in your docbook file! 85

https://kafka.apache.org/documentation/streams/developer-guide
http://docs.spring.io/spring-kafka/reference/html/_reference.html#kafka-streams
http://docs.spring.io/spring-kafka/reference/html/_reference.html#kafka-streams
https://docs.confluent.io/current/streams/developer-guide/dsl-api.html
https://docs.confluent.io/current/streams/developer-guide/processor-api.html

Spring Cloud Stream Reference Guide

Once built as a uber-jar (e.g., wor dcount - processor . j ar), you can run the above example like the
following.

java -jar wordcount-processor.jar --spring.cloud.stream bindings.input.destination=words --
spring. cl oud. stream bi ndi ngs. out put . desti nati on=count s

This application will consume messages from the Kafka topic wor ds and the computed results are
published to an output topic count s.

Spring Cloud Stream will ensure that the messages from both the incoming and outgoing topics are
automatically bound as KStream objects. As a developer, you can exclusively focus on the business
aspects of the code, i.e. writing the logic required in the processor. Setting up the Streams DSL specific
configuration required by the Kafka Streams infrastructure is automatically handled by the framework.

17.3 Configuration Options

This section contains the configuration options used by the Kafka Streams binder.

For common configuration options and properties pertaining to binder, refer to the core documentation.

Kafka Streams Properties

The following properties are available at the binder level and must be prefixed with
spring. cl oud. st ream kaf ka. st r eans. bi nder . literal.

configuration
Map with a key/value pair containing properties pertaining to Apache Kafka Streams API. This
property must be prefixed with spri ng. cl oud. stream kaf ka. st reans. bi nder. . Following
are some examples of using this property.

spring. cl oud. stream kaf ka. streans. bi nder. confi gurati on. def aul t. key. ser de=or g. apache. kaf ka. conmon. seri al i zati on. Ser des
$Stri ngSerde

spring. cl oud. stream kaf ka. st reans. bi nder. confi guration. def aul t. val ue. serde=or g. apache. kaf ka. conmon. seri al i zati on. Ser des
$StringSerde

spring. cl oud. st ream kaf ka. st reans. bi nder. confi gurati on. conmi t.interval.nms=1000

For more information about all the properties that may go into streams configuration, see StreamsConfig
JavaDocs in Apache Kafka Streams docs.

brokers
Broker URL

Default: | ocal host

zkNodes
Zookeeper URL

Default: | ocal host

serdeError
Deserialization error handler type. Possible values are - | ogAndCont i nue, | ogAndFail or
sendToDl q

Default: | ogAndFai |

please define title in your docbook file! 86

Spring Cloud Stream Reference Guide

applicationld
Application ID for all the stream configurations in the current application context. You can override
the application id for an individual St r eanii st ener method using the gr oup property on the
binding. You have to ensure that you are using the same group name for all input bindings in the
case of multiple inputs on the same methods.

Default: def aul t

The following properties are only available for Kafka Streams producers and must be prefixed with
spring. cl oud. st ream kaf ka. st r eans. bi ndi ngs. <bi ndi ng nanme>. producer. literal.

keySerde
key serde to use

Default: none.

valueSerde
value serde to use

Default: none.

useNativeEncoding
flag to enable native encoding

Default: f al se.

The following properties are only available for Kafka Streams consumers and must be prefixed with
spring. cl oud. st ream kaf ka. st reans. bi ndi ngs. <bi ndi ng nane>. consuner . literal.

keySerde
key serde to use

Default: none.

valueSerde
value serde to use

Default: none.

materializedAs
state store to materialize when using incoming KTable types

Default: none.

useNativeDecoding
flag to enable native decoding

Default: f al se.

digName
DLQ topic name.

Default: none.
TimeWindow properties:

Windowing is an important concept in stream processing applications. Following properties are available
to configure time-window computations.

please define title in your docbook file! 87

Spring Cloud Stream Reference Guide

spring.cloud.stream.kafka.streams.timeWindow.length
When this property is given, you can autowire a Ti mreW ndows bean into the application. The value
is expressed in milliseconds.

Default: none.

spring.cloud.stream.kafka.streams.timeWindow.advanceBy
Value is given in milliseconds.

Default: none.

17.4 Multiple Input Bindings

For use cases that requires multiple incoming KStream objects or a combination of KStream and KTable
objects, the Kafka Streams binder provides multiple bindings support.

Let's see it in action.

Multiple Input Bindings as a Sink

@Enabl eBi ndi ng(KSt r eanKTabl eBi ndi ng. cl ass)

@t reantLi st ener
public void process(@nput ("inputStrean') KStreanxString, PlayEvent> playEvents,
@ nput ("i nput Tabl e") KTabl e<Long, Song> songTabl e) {

}
interface KStreanKTabl eBi ndi ng {

@ nput ("i nput St reant')
KStreanx?, ?> inputStrean();

@ nput ("i nput Tabl e")
KTabl e<?, ?> inputTabl e();

In the above example, the application is written as a sink, i.e. there are no output bindings and the
application has to decide concerning downstream processing. When you write applications in this style,
you might want to send the information downstream or store them in a state store (See below for
Queryable State Stores).

In the case of incoming KTable, if you want to materialize the computations to a state store, you have
to express it through the following property.

spring. cl oud. stream kaf ka. st reans. bi ndi ngs. i nput Tabl e. consuner. materi al i zedAs: all-songs

Multiple Input Bindings as a Processor

@Enabl eBi ndi ng(KSt r eanKTabl eBi ndi ng. cl ass)

@t r eanli st ener
@endTo(" out put")
public KStreankString, Long> process(@nput("input") KStreankString, Long> userCicksStream
@ nput ("i nput Tabl e") KTabl e<String, String> userRegionsTable) {

please define title in your docbook file! 88

Spring Cloud Stream Reference Guide

}

interface KStreanKTabl eBi ndi ng extends Kaf kaStreansProcessor {

@ nput ("i nput X*)
KTabl e<?, ?> inputTabl e();

17.5 Multiple Output Bindings (aka Branching)

Kafka Streams allow outbound data to be split into multiple topics based on some predicates. The Kafka
Streams binder provides support for this feature without compromising the programming model exposed

through St r eanLi st ener in the end user application.

You can write the application in the usual way as demonstrated above in the word count example.
However, when using the branching feature, you are required to do a few things. First, you need to
make sure that your return type is KSt r eani] instead of a regular KSt r eam Second, you need to use
the SendTo annotation containing the output bindings in the order (see example below). For each of
these output bindings, you need to configure destination, content-type etc., complying with the standard

Spring Cloud Stream expectations.

Here is an example:

@Enabl eBi ndi ng(KSt r eanPr ocessor Wt hBr anches. cl ass)
@Enabl eAut oConfi gurati on
public static class WrdCount Processor Application {

@\t owi r ed
private Ti meW ndows ti meW ndows;

@t reanti stener ("input")
@endTo({" out put 1", "out put 2", "out put 3})
public KStreank?, WrdCount>[] process(KStreankObject, String> input) {

Predi cat e<Obj ect, WordCount> isEnglish = (k, v) -> v.word. equal s("english");
Predi cat e<Obj ect, WordCount> isFrench = (k, v) -> v.word. equal s("french");
Predi cat e<Obj ect, WordCount> isSpanish = (k, v) -> v.word. equal s("spani sh");

return input
.fl at MapVal ues(val ue -> Arrays. asLi st (val ue. t oLower Case().split("\\W")))
. groupBy((key, value) -> val ue)
. Wi ndowedBy(ti neW ndows)
.count(Materialized.as("WrdCounts-1"))
.toStream()
.map((key, value) -> new KeyVal ue<>(null, new WordCount (key. key(), val ue,
Dat e(key. wi ndow().start()), new Date(key.w ndow().end()))))
.branch(i seéngli sh, isFrench, isSpanish);

}

interface KStreanProcessor WthBranches {

@ nput ("i nput ")
KSt reanx?, ?> input();

@out put (" out put1")
KStreanx?, ?> outputl();

@out put (" out put 2")
KSt reanx?, ?> output2();

@out put (" out put 3")
KStreanx?, ?> output3();

please define title in your docbook file!

89

Spring Cloud Stream Reference Guide

Properties:

spring. cl oud. stream bi ndi ngs. out put 1. cont ent Type: application/json
spring. cl oud. stream bi ndi ngs. out put 2. cont ent Type: application/json
spring. cl oud. st ream bi ndi ngs. out put 3. cont ent Type: application/json
spring. cl oud. stream kaf ka. streans. bi nder. configuration.comit.interval.ns: 1000
spring. cl oud. stream kaf ka. st reans. bi nder. confi gurati on:
defaul t. key. serde: org.apache. kaf ka. conmon. seri al i zati on. Serdes$St ri ngSer de
defaul t.val ue. serde: org. apache. kaf ka. cormon. seri al i zati on. Ser des$St ri ngSer de
spring. cl oud. stream bi ndi ngs. out put 1:
destination: foo
producer:
header Mbde: raw
spring. cl oud. st ream bi ndi ngs. out put 2:
destination: bar
producer:
header Mbde: raw
spring. cl oud. stream bi ndi ngs. out put 3:
destination: fox
producer:
header Mbde: raw
spring. cl oud. stream bi ndi ngs. i nput:
destination: words
consurmer :
header Mbde: raw

17.6 Message Conversion

Similar to message-channel based binder applications, the Kafka Streams binder adapts to the out-of-
the-box content-type conversions without any compromise.

It is typical for Kafka Streams operations to know the type of SerDe’s used to transform the key and
value correctly. Therefore, it may be more natural to rely on the SerDe facilities provided by the Apache
Kafka Streams library itself at the inbound and outbound conversions rather than using the content-
type conversions offered by the framework. On the other hand, you might be already familiar with the
content-type conversion patterns provided by the framework, and that, you'd like to continue using for
inbound and outbound conversions.

Both the options are supported in the Kafka Streams binder implementation.
Outbound serialization

If native encoding is disabled (which is the default), then the framework will convert the message using
the contentType set by the user (otherwise, the default appl i cati on/j son will be applied). It will
ignore any SerDe set on the outbound in this case for outbound serialization.

Here is the property to set the contentType on the outbound.

spring. cl oud. stream bi ndi ngs. out put. cont ent Type: application/json

Here is the property to enable native encoding.

spring. cl oud. stream bi ndi ngs. out put . nati veEncodi ng: true

If native encoding is enabled on the output binding (user has to enable it as above explicitly), then the
framework will skip any form of automatic message conversion on the outbound. In that case, it will
switch to the Serde set by the user. The val ueSer de property set on the actual output binding will be
used. Here is an example.

spring. cl oud. st ream kaf ka. st reans. bi ndi ngs. out put . producer. val ueSer de:
or g. apache. kaf ka. cormon. seri al i zati on. Ser des$St ri ngSer de

please define title in your docbook file! 20

Spring Cloud Stream Reference Guide

If this property is not set, then it will use the "default” SerDe:
spring. cl oud. st ream kaf ka. st reamns. bi nder. confi gurati on. defaul t. val ue. serde.

Itis worth to mention that Kafka Streams binder does not serialize the keys on outbound - it simply relies
on Kafka itself. Therefore, you either have to specify the keySer de property on the binding or it will
default to the application-wide common key Ser de.

Binding level key serde:

spring. cl oud. stream kaf ka. st reans. bi ndi ngs. out put . producer . keySer de

Common Key serde:

spring. cl oud. stream kaf ka. st reans. bi nder. confi guration. def aul t. key. serde

If branching is used, then you need to use multiple output bindings. For example,
interface KStreanProcessor WthBranches {

@ nput ("i nput ")
KStreanx?, ?> input();

@@ut put (" out put 1")
KSt reanx?, ?> outputl();

@out put (" out put 2")
KStreanx?, ?> output2();

@@ut put (" out put 3")
KSt reanx?, ?> output3();

If nat i veEncodi ng is set, then you can set different SerDe’s on individual output bindings as below.

spring. cl oud. stream kaf ka. st reans. bi ndi ngs. out put 1. pr oducer . val ueSer de=I nt eger Ser de
spring. cl oud. st ream kaf ka. st reans. bi ndi ngs. out put 2. producer. val ueSer de=St ri ngSer de
spring. cl oud. st ream kaf ka. st reans. bi ndi ngs. out put 3. producer. val ueSer de=JsonSer de

Then if you have SendTo like this, @SendTo({"outputl”, "output2", "output3"}), the KSt rean{] from
the branches are applied with proper SerDe objects as defined above. If you are not enabling
nat i veEncodi ng, you can then set different contentType values on the output bindings as below. In
that case, the framework will use the appropriate message converter to convert the messages before
sending to Kafka.

spring. cl oud. stream bi ndi ngs. out put 1. cont ent Type: application/json
spring. cl oud. stream bi ndi ngs. out put 2. cont ent Type: application/java-seri al zi ed- obj ect
spring. cl oud. stream bi ndi ngs. out put 3. cont ent Type: application/octet-stream

Inbound Deserialization
Similar rules apply to data deserialization on the inbound.

If native decoding is disabled (which is the default), then the framework will convert the message using
the contentType set by the user (otherwise, the default appl i cati on/j son will be applied). It will
ignore any SerDe set on the inbound in this case for inbound deserialization.

Here is the property to set the contentType on the inbound.

spring. cl oud. stream bi ndi ngs. i nput. content Type: application/json

please define title in your docbook file! 91

Spring Cloud Stream Reference Guide

Here is the property to enable native decoding.

spring. cl oud. stream bi ndi ngs. i nput. nati veDecodi ng: true

If native decoding is enabled on the input binding (user has to enable it as above explicitly), then the
framework will skip doing any message conversion on the inbound. In that case, it will switch to the
SerDe set by the user. The val ueSer de property set on the actual output binding will be used. Here
is an example.

spring. cl oud. stream kaf ka. streans. bi ndi ngs. i nput. consuner . val ueSer de:
or g. apache. kaf ka. cormon. seri al i zati on. Ser des$St ri ngSer de

If this property is not set, it will use the default SerDe:
spring. cl oud. st ream kaf ka. st reans. bi nder. confi gurati on. defaul t. val ue. serde.

It is worth to mention that Kafka Streams binder does not deserialize the keys on inbound - it simply
relies on Kafka itself. Therefore, you either have to specify the key Ser de property on the binding or it
will default to the application-wide common key Ser de.

Binding level key serde:

spring. cl oud. st ream kaf ka. st reans. bi ndi ngs. i nput. consuner. keySer de

Common Key serde:

spring. cl oud. stream kaf ka. st reans. bi nder. confi guration. defaul t. key. serde

As in the case of KStream branching on the outbound, the benefit of setting value SerDe per binding is
that if you have multiple input bindings (multiple KStreams object) and they all require separate value
SerDe’s, then you can configure them individually. If you use the common configuration approach, then
this feature won't be applicable.

17.7 Error Handling

Apache Kafka Streams provide the capability for natively handling exceptions from deserialization
errors. For details on this support, please see this Out of the box, Apache Kafka Streams provide
two kinds of deserialization exception handlers - | ogAndCont i nue and | ogAndFai | . As the name
indicates, the former will log the error and continue processing the next records and the latter will log
the error and fail. LogAndFai | is the default deserialization exception handler.

Handling Deserialization Exceptions

Kafka Streams binder supports a selection of exception handlers through the following properties.

spring. cl oud. stream kaf ka. streans. bi nder. serdeError: | ogAndConti nue

In addition to the above two deserialization exception handlers, the binder also provides a third one for
sending the erroneous records (poison pills) to a DLQ topic. Here is how you enable this DLQ exception
handler.

spring. cl oud. stream kaf ka. st reans. bi nder. serdeError: sendToDl q

When the above property is set, all the deserialization error records are automatically sent to the DLQ
topic.

spring. cl oud. stream kaf ka. st reans. bi ndi ngs. i nput. consuner. dl gNane: foo-dl g

please define title in your docbook file! 92

https://cwiki.apache.org/confluence/display/KAFKA/KIP-161%3A+streams+deserialization+exception+handlers

Spring Cloud Stream Reference Guide

If this is set, then the error records are sent to the topic f oo- dl g. If this is not set, then it will create a
DLQ topic with the name er r or . <i nput - t opi c- hame>. <gr oup- name>.

A couple of things to keep in mind when using the exception handling feature in Kafka Streams binder.

e The property spri ng. cl oud. st ream kaf ka. st reans. bi nder. ser deErr or is applicable for
the entire application. This implies that if there are multiple St r eanli st ener methods in the same
application, this property is applied to all of them.

» The exception handling for deserialization works consistently with native deserialization and
framework provided message conversion.

Handling Non-Deserialization Exceptions

For general error handling in Kafka Streams binder, it is up to the end user applications to handle
application level errors. As a side effect of providing a DLQ for deserialization exception handlers, Kafka
Streams binder provides a way to get access to the DLQ sending bean directly from your application.
Once you get access to that bean, you can programmatically send any exception records from your
application to the DLQ.

It continues to remain hard to robust error handling using the high-level DSL; Kafka Streams doesn’t
natively support error handling yet.

However, when you use the low-level Processor API in your application, there are options to control
this behavior. See below.

@\ut owi r ed
private SendToD gAndConti nue dl gHandl er;

@t reanti stener ("input")
@endTo(" out put™)
public KStreank?, WrdCount> process(KStreankObject, String> input) {

input.process(() -> new Processor() {
Processor Cont ext cont ext;

@verride
public void init(ProcessorContext context) {
this.context = context;

}

@verride
public void process(Object o, Object 02) {

catch(Exception e) {
/lexplicitly provide the kafka topic corresponding to the input binding as the first
ar gunent .
//DLQ handler will correctly map to the dlq topic fromthe actual inconing
destination.
dl gHandl er . sendToDl q("t opi c-name", (byte[]) ol, (byte[]) 02,
context.partition());

please define title in your docbook file! 93

Spring Cloud Stream Reference Guide

17.8 State Store

State store is created automatically by Kafka Streams when the DSL is used. When processor
APl is used, you need to register a state store manually. In order to do so, you can use
Kaf kaSt r eans St at eSt or e annotation. You can specify the name and type of the store, flags to
control log and disabling cache, etc. Once the store is created by the binder during the bootstrapping
phase, you can access this state store through the processor API. Below are some primitives for doing
this.

Creating a state store:

@Kaf kaSt reans St at eSt or e(nane="nystate", type= Kaf kaStreansSt at eSt or eProperties. St or eType. W NDOW
| engt hMs=300000)
public void process(KStrean<Object, Product> input) {

}

Accessing the state store:

Processor <Obj ect, Product>() {

W ndowSt or e<Chj ect, String> state;

@verride
public void init(ProcessorContext processorContext) {
state = (W ndowSt ore) processor Cont ext. get StateStore("nystate");

}

17.9 Interactive Queries

As part of the public Kafka Streams binder API, we expose a class called
I nteractiveQueryServi ce. Youcan access this as a Spring bean in your application. An easy way
to get access to this bean from your application is to "autowire" the bean.

@\ut owi r ed
private InteractiveQueryService interactiveQueryService;

Once you gain access to this bean, then you can query for the particular state-store that you are
interested. See below.

ReadOnl yKeyVal ueSt or e<Obj ect, Obj ect> keyVal ueStore =
interactiveQueryService. get Queryabl eSt oreType("nmy-store", Queryabl eStoreTypes. keyVal ueStore());

If there are multiple instances of the kafka streams application running, then before you
can query them interactively, you need to identify which application instance hosts the key.
I nteracti veQueryServi ce API provides methods for identifying the host information.

In order for this to work, you must configure the property appl i cati on. server as below:

spring. cl oud. stream kaf ka. streans. bi nder. confi gurati on. application.server: <server>:<port>

Here are some code snippets:

or g. apache. kaf ka. streans. state. Host I nfo hostInfo = interactiveQueryService. getHostInfo("store-nanme",
key, keySerializer);

if (interactiveQueryService.getCurrentHostlnfo().equals(hostlinfo)) {

please define title in your docbook file! 94

Spring Cloud Stream Reference Guide

//query fromthe store that is locally avail able

}
el se {

//query fromthe renote host
}

please define title in your docbook file!

95

Spring Cloud Stream Reference Guide

18. RabbitMQ Binder

18.1 Usage

To use the RabbitMQ binder, you can add it to your Spring Cloud Stream application, by using the
following Maven coordinates:

<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifact|d>spring-cloud-streambinder-rabbit</artifact!d>

</ dependency>

Alternatively, you can use the Spring Cloud Stream RabbitMQ Starter, as follows:

<dependency>
<groupl d>or g. spri ngf ramewor k. cl oud</ gr oupl d>
<artifactld>spring-cloud-starter-streamrabbit</artifactld>

</ dependency>

18.2 RabbitMQ Binder Overview

The following simplified diagram shows how the RabbitMQ binder operates:

(« N

Topic
Exchange

RabbitMQ

A\

Figure 18.1. RabbitMQ Binder

4

By default, the RabbitMQ Binder implementation maps each destination to a Topi cExchange. For
each consumer group, a Queue is bound to that Topi cExchange. Each consumer instance has a
corresponding RabbitMQ Consuner instance for its group’s Queue. For partitioned producers and
consumers, the queues are suffixed with the partition index and use the partition index as the routing key.
For anonymous consumers (those with no gr oup property), an auto-delete queue (with a randomized
unigue name) is used.

By using the optional aut oBi ndDl g option, you can configure the binder to create and configure
dead-letter queues (DLQs) (and a dead-letter exchange DLX, as well as routing infrastructure). By
default, the dead letter queue has the name of the destination, appended with . dl g. If retry is enabled
(maxAttempts > 1), failed messages are delivered to the DLQ after retries are exhausted. If retry
is disabled (maxAttenpts = 1), you should set r equeueRej ect ed to f al se (the default) so that
failed messages are routed to the DLQ, instead of being re-queued. In addition, r epubl i shToDl g
causes the binder to publish a failed message to the DLQ (instead of rejecting it). This feature lets
additional information (such as the stack trace in the x- except i on- st ackt r ace header) be added to
the message in headers. This option does not need retry enabled. You can republish a failed message

please define title in your docbook file! 96

Spring Cloud Stream Reference Guide

after just one attempt. Starting with version 1.2, you can configure the delivery mode of republished
messages. See the r epubl i shDel i ver yMbde property.

@ Important

Settingr equeueRej ect edtot r ue (withr epubl i shToDl g=f al se) causes the message to
be re-queued and redelivered continually, which is likely not what you want unless the reason
for the failure is transient. In general, you should enable retry within the binder by setting
maxAt t enpt s to greater than one or by setting r epubl i shToDl qtotrue.

See the section called “RabbitMQ Binder Properties” for more information about these properties.

The framework does not provide any standard mechanism to consume dead-letter messages (or to
re-route them back to the primary queue). Some options are described in Section 18.6, “Dead-Letter
Queue Processing”.

@ Note

When multiple RabbitMQ binders are used in a Spring Cloud Stream application, it
is important to disable 'RabbitAutoConfiguration’ to avoid the same configuration from
Rabbi t Aut oConf i gur ati on being applied to the two binders. You can exclude the class by
using the @spr i ngBoot Appl i cat i on annotation.

Starting with version 2.0, the Rabbi t MessageChannel Bi nder sets the
Rabbi t Tenpl at e. user Publ i sher Connecti on property to true so that the non-transactional
producers avoid deadlocks on consumers, which can happen if cached connections are blocked
because of a memory alarm on the broker.

@ Note

Currently, a nul ti pl ex consumer (a single consumer listening to multiple queues) is only
supported for message-driven conssumers; polled consumers can only retrieve messages from
a single queue.

18.3 Configuration Options

This section contains settings specific to the RabbitMQ Binder and bound channels.

For general binding configuration options and properties, see the Spring Cloud Stream core
documentation.

RabbitMQ Binder Properties

By default, the RabbitMQ binder uses Spring Boot’'s Connect i onFact or y. Conseugently, it supports
all Spring Boot configuration options for RabbitMQ. (For reference, see the Spring Boot documentation).
RabbitMQ configuration options use the spri ng. r abbi t g prefix.

In addition to Spring Boot options, the RabbitMQ binder supports the following properties:

spring.cloud.stream.rabbit.binder.adminAddresses
A comma-separated list of RabbitMQ management plugin URLs. Only used when nodes
contains more than one entry. Each entry in this list must have a corresponding entry in
spring. rabbi t ng. addr esses. Only needed if you use a RabbitMQ cluster and wish to consume
from the node that hosts the queue. See Queue Affinity and the LocalizedQueueConnectionFactory
for more information.

please define title in your docbook file! 97

https://www.rabbitmq.com/memory.html
https://github.com/spring-cloud/spring-cloud-stream/blob/master/spring-cloud-stream-core-docs/src/main/asciidoc/spring-cloud-stream-overview.adoc#configuration-options
https://github.com/spring-cloud/spring-cloud-stream/blob/master/spring-cloud-stream-core-docs/src/main/asciidoc/spring-cloud-stream-overview.adoc#configuration-options
http://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#common-application-properties
https://docs.spring.io/spring-amqp/reference/html/_reference.html#queue-affinity

Spring Cloud Stream Reference Guide

Default: empty.

spring.cloud.stream.rabbit.binder.nodes
A comma-separated list of RabbitMQ node names. When more than one entry, used to locate the
server address where a queue is located. Each entry in this list must have a corresponding entry in
spring. rabbi t ng. addr esses. Only needed if you use a RabbitMQ cluster and wish to consume
from the node that hosts the queue. See Queue Affinity and the LocalizedQueueConnectionFactory
for more information.

Default: empty.

spring.cloud.stream.rabbit.binder.compressionLevel
The compression level for compressed bindings. See j ava. util . zi p. Def | at er.

Default: 1 (BEST_LEVEL).

spring.cloud.stream.binder.connection-name-prefix
A connection name prefix used to name the connection(s) created by this binder. The name is this
prefix followed by #n, where n increments each time a new connection is opened.

Default: none (Spring AMQP default).
RabbitMQ Consumer Properties

The following properties are available for Rabbit consumers only and must be prefixed with
spring. cl oud. st ream r abbi t. bi ndi ngs. <channel Name>. consurmer. .

acknowledgeMode
The acknowledge mode.

Default; AUTO.

autoBindDlq
Whether to automatically declare the DLQ and bind it to the binder DLX.

Default: f al se.

bindingRoutingKey
The routing key with which to bind the queue to the exchange (if bi ndQueue is true). For
partitioned destinations, - <i nst ancel ndex> is appended.

Default: #.

bindQueue
Whether to bind the queue to the destination exchange. Setitto f al se if you have set up your own
infrastructure and have previously created and bound the queue.

Default: t r ue.

deadLetterQueueName
The name of the DLQ

Default: pref i x+destination. dl q

deadLetterExchange
A DLX to assign to the queue. Relevant only if aut oBi ndDl qistrue.

Default: 'prefix+DLX'

please define title in your docbook file! 98

https://docs.spring.io/spring-amqp/reference/html/_reference.html#queue-affinity

Spring Cloud Stream Reference Guide

deadLetterRoutingKey
A dead letter routing key to assign to the queue. Relevant only if aut oBi ndDl g istr ue.

Default: dest i nati on

declareExchange
Whether to declare the exchange for the destination.

Default: t r ue.

delayedExchange
Whether to declare the exchange as a Del ayed Message Exchange. Requires the delayed
message exchange plugin on the broker. The x-del ayed-type argument is set to the
exchangeType.

Default: f al se.

digDeadLetterExchange
If a DLQ is declared, a DLX to assign to that queue.

Default: none

digDeadLetterRoutingKey
If a DLQ is declared, a dead letter routing key to assign to that queue.

Default: none

digExpires
How long before an unused dead letter queue is deleted (in milliseconds).

Default: no expiration

digLazy
Declare the dead letter queue with the x- queue- node=l azy argument. See “Lazy Queues”.
Consider using a policy instead of this setting, because using a policy allows changing the setting
without deleting the queue.

Default: f al se.

dlgMaxLength
Maximum number of messages in the dead letter queue.

Default: no limt

dlgMaxLengthBytes
Maximum number of total bytes in the dead letter queue from all messages.

Default: no [imt

digMaxPriority
Maximum priority of messages in the dead letter queue (0-255).

Default: none

digOverflowBehavior
Action to take when dl gMaxLengt h or dl gMaxLengt hByt es is exceeded; currently dr op- head
orrej ect - publ i sh but refer to the RabbitMQ documentation.

please define title in your docbook file! 99

https://www.rabbitmq.com/lazy-queues.html

Spring Cloud Stream Reference Guide

Default: none

digTtl
Default time to live to apply to the dead letter queue when declared (in milliseconds).

Default: no limt

durableSubscription
Whether the subscription should be durable. Only effective if gr oup is also set.

Default: t r ue.

exchangeAutoDelete
If decl ar eExchange is true, whether the exchange should be auto-deleted (that is, removed after
the last queue is removed).

Default: t r ue.

exchangeDurable
If decl ar eExchange is true, whether the exchange should be durable (that is, it survives broker
restart).

Default: t r ue.

exchangeType
The exchange type: di rect, f anout or t opi ¢ for non-partitioned destinations and di r ect or
t opi c for partitioned destinations.

Default: t opi c.

exclusive
Whether to create an exclusive consumer. Concurrency should be 1 when this is t r ue. Often used
when strict ordering is required but enabling a hot standby instance to take over after a failure. See
recoveryl nt erval , which controls how often a standby instance attempts to consume.

Default: f al se.

expires
How long before an unused queue is deleted (in milliseconds).

Default: no expiration

failedDeclarationRetryInterval
The interval (in milliseconds) between attempts to consume from a queue if it is missing.

Default: 5000

headerPatterns
Patterns for headers to be mapped from inbound messages.

Default: [' *'] (all headers).

lazy
Declare the queue with the x- queue- node=I azy argument. See “Lazy Queues”. Consider using
a policy instead of this setting, because using a policy allows changing the setting without deleting
the queue.

Default: f al se.

please define title in your docbook file! 100

https://www.rabbitmq.com/lazy-queues.html

Spring Cloud Stream Reference Guide

maxConcurrency
The maximum number of consumers.

Default: 1.

maxLength
The maximum number of messages in the queue.

Default: no limt

maxLengthBytes
The maximum number of total bytes in the queue from all messages.

Default: no limt

maxPriority
The maximum priority of messages in the queue (0-255).

Default: none

missingQueuesFatal
When the queue cannot be found, whether to treat the condition as fatal and stop the listener
container. Defaults to f al se so that the container keeps trying to consume from the queue — for
example, when using a cluster and the node hosting a non-HA queue is down.

Default: f al se

overflowBehavior
Action to take when nmaxLengt h or maxLengt hByt es is exceeded; currently dr op- head or
rej ect - publ i sh but refer to the RabbitMQ documentation.

Default: none

prefetch
Prefetch count.

Default: 1.

prefix
A prefix to be added to the name of the dest i nati on and queues.

Default: "".

gueueDeclarationRetries
The number of times to retry consuming from a queue if it is missing. Relevant only when
m ssi ngQueuesFat al is true. Otherwise, the container keeps retrying indefinitely.

Default: 3

gueueNameGroupOnly
When true, consume from a queue with a name equal to the gr oup. Otherwise the queue name is
desti nati on. group. This is useful, for example, when using Spring Cloud Stream to consume
from an existing RabbitMQ queue.

Default; false.

recoverylnterval
The interval between connection recovery attempts, in milliseconds.

please define title in your docbook file! 101

Spring Cloud Stream Reference Guide

Default: 5000.

requeueRejected
Whether delivery failures should be re-queued when retry is disabled or r epubl i shToDl q is
fal se.

Default: f al se.

republishDeliveryMode
When r epubl i shToDl q is t r ue, specifies the delivery mode of the republished message.

Default: Del i ver yMbde. PERSI STENT

republishToDlIq
By default, messages that fail after retries are exhausted are rejected. If a dead-letter queue (DLQ) is
configured, RabbitMQ routes the failed message (unchanged) to the DLQ. If setto t r ue, the binder
republishs failed messages to the DLQ with additional headers, including the exception message
and stack trace from the cause of the final failure.

Default: false

transacted
Whether to use transacted channels.

Default: f al se.

ttl
Default time to live to apply to the queue when declared (in milliseconds).

Default: no limt

txSize
The number of deliveries between acks.

Default: 1.
Advanced Listener Container Configuration

To set listener container properties that are not exposed as binder or binding properties, add a single
bean of type Li st ener Cont ai ner Cust om zer to the application context. The binder and binding
properties will be set and then the customizer will be called. The customizer (confi gur e() method)
is provided with the queue name as well as the consumer group as arguments.

Rabbit Producer Properties

The following properties are available for Rabbit producers only and must be prefixed with
spring. cl oud. st ream r abbi t. bi ndi ngs. <channel Nanme>. pr oducer. .

autoBindDlq
Whether to automatically declare the DLQ and bind it to the binder DLX.

Default: f al se.

batchingEnabled
Whether to enable message batching by producers. Messages are batched into one message
according to the following properties (described in the next three entries in this list): 'batchSize’,
bat chBuf f er Li ni t, and bat chTi nmeout . See Batching for more information.

please define title in your docbook file! 102

https://docs.spring.io/spring-amqp//reference/html/_reference.html#template-batching

Spring Cloud Stream Reference Guide

Default: f al se.

batchSize
The number of messages to buffer when batching is enabled.

Default: 100.

batchBufferLimit
The maximum buffer size when batching is enabled.

Default: 10000.

batchTimeout
The batch timeout when batching is enabled.

Default: 5000.

bindingRoutingKey
The routing key with which to bind the queue to the exchange (if bi ndQueue ist r ue). Only applies
to non-partitioned destinations. Only applies if r equi r edG oups are provided and then only to
those groups.

Default: #.

bindQueue
Whether to bind the queue to the destination exchange. Set it to f al se if you have set up your own
infrastructure and have previously created and bound the queue. Only appliesifr equi r edG oups
are provided and then only to those groups.

Default: t r ue.

compress
Whether data should be compressed when sent.

Default: f al se.

deadLetterQueueName
The name of the DLQ Only applies ifr equi r edGr oups are provided and then only to those groups.

Default: pref i x+destination.dl q

deadLetterExchange
A DLX to assign to the queue. Relevant only when aut oBi ndDl q is t r ue. Applies only when
requi redG oups are provided and then only to those groups.

Default: 'prefix+DLX'

deadLetterRoutingKey
A dead letter routing key to assign to the queue. Relevant only when aut oBi ndDl g ist r ue. Applies
only when r equi r edGr oups are provided and then only to those groups.

Default: desti nati on

declareExchange
Whether to declare the exchange for the destination.

please define title in your docbook file! 103

Spring Cloud Stream Reference Guide

Default: t r ue.

delayExpression
A SpEL expression to evaluate the delay to apply to the message (x- del ay header). It has no
effect if the exchange is not a delayed message exchange.

Default: No x- del ay header is set.

delayedExchange
Whether to declare the exchange as a Del ayed Message Exchange. Requires the delayed
message exchange plugin on the broker. The x-del ayed-type argument is set to the
exchangeType.

Default: f al se.

deliveryMode
The delivery mode.

Default;: PERSI STENT.

digDeadLetterExchange
When a DLQ is declared, a DLX to assign to that queue. Applies only if r equi r edG oups are
provided and then only to those groups.

Default: none

digDeadLetterRoutingKey
When a DLQ is declared, a dead letter routing key to assign to that queue. Applies only when
requi redG oups are provided and then only to those groups.

Default: none

digExpires
How long (in milliseconds) before an unused dead letter queue is deleted. Applies only when
requi redG oups are provided and then only to those groups.

Default: no expiration

digLazy
Declare the dead letter queue with the x- queue- node=l azy argument. See “Lazy Queues”.
Consider using a policy instead of this setting, because using a policy allows changing the setting
without deleting the queue. Applies only when r equi r edG oups are provided and then only to
those groups.

digMaxLength
Maximum number of messages in the dead letter queue. Applies only if r equi r edGr oups are
provided and then only to those groups.

Default: no limt

dlgMaxLengthBytes
Maximum number of total bytes in the dead letter queue from all messages. Applies only when
requi redG oups are provided and then only to those groups.

Default: no limt

please define title in your docbook file! 104

https://www.rabbitmq.com/lazy-queues.html

Spring Cloud Stream Reference Guide

digMaxPriority
Maximum priority of messages in the dead letter queue (0-255) Applies only when
requi r edG oups are provided and then only to those groups.

Default: none

digTtl
Default time (in milliseconds) to live to apply to the dead letter queue when declared. Applies only
when r equi r edG oups are provided and then only to those groups.

Default: no [imt

exchangeAutoDelete
If decl ar eExchange is t r ue, whether the exchange should be auto-delete (it is removed after
the last queue is removed).

Default: t r ue.

exchangeDurable
If decl ar eExchange ist r ue, whether the exchange should be durable (survives broker restart).

Default: t r ue.

exchangeType
The exchange type: di rect, f anout or t opi ¢ for non-partitioned destinations and di r ect or
t opi c for partitioned destinations.

Default: t opi c.

expires
How long (in milliseconds) before an unused queue is deleted. Applies only when
requi redG oups are provided and then only to those groups.

Default: no expiration

headerPatterns
Patterns for headers to be mapped to outbound messages.

Default: [' *'] (all headers).

lazy
Declare the queue with the x- queue- node=l azy argument. See “Lazy Queues”. Consider using
a policy instead of this setting, because using a policy allows changing the setting without deleting
the queue. Applies only when r equi r edGr oups are provided and then only to those groups.

Default: f al se.

maxLength
Maximum number of messages in the queue. Applies only when r equi r edG oups are provided
and then only to those groups.

Default: no [imt

maxLengthBytes
Maximum number of total bytes in the queue from all messages. Only applies if r equi r edG oups
are provided and then only to those groups.

please define title in your docbook file! 105

https://www.rabbitmq.com/lazy-queues.html

Spring Cloud Stream Reference Guide

Default: no limt

maxPriority
Maximum priority of messages in the queue (0-255). Only applies if r equi r edG oups are provided
and then only to those groups.

Default: none

prefix
A prefix to be added to the name of the dest i nati on exchange.

Default: ™.

gueueNameGroupOnly
Whent r ue, consume from a queue with a name equal to the gr oup. Otherwise the queue name is
desti nati on. group. This is useful, for example, when using Spring Cloud Stream to consume
from an existing RabbitMQ queue. Applies only when r equi r edG oups are provided and then
only to those groups.

Default: false.

routingKeyExpression
A SpEL expression to determine the routing key to use when publishing messages. For a fixed
routing key, use a literal expression, such as r out i ngKeyExpr essi on=' nry. r out i ngKey' ina
properties file or r out i ngKeyExpression: '''ny.routingKey''' ina YAML file.

Default: desti nati on ordesti nati on-<partition> for partitioned destinations.

transacted
Whether to use transacted channels.

Default: f al se.

ttl
Default time (in milliseconds) to live to apply to the queue when declared. Applies only when
requi redG oups are provided and then only to those groups.

Default: no limt

@ Note

In the case of RabbitMQ, content type headers can be set by external applications. Spring
Cloud Stream supports them as part of an extended internal protocol used for any type of
transport — including transports, such as Kafka (prior to 0.11), that do not natively support
headers.

18.4 Retry With the RabbitMQ Binder

When retry is enabled within the binder, the listener container thread is suspended for any back off
periods that are configured. This might be important when strict ordering is required with a single
consumer. However, for other use cases, it prevents other messages from being processed on that
thread. An alternative to using binder retry is to set up dead lettering with time to live on the dead-letter
gueue (DLQ) as well as dead-letter configuration on the DLQ itself. See “the section called “RabbitMQ
Binder Properties™ for more information about the properties discussed here. You can use the following
example configuration to enable this feature:

please define title in your docbook file! 106

Spring Cloud Stream Reference Guide

* Set aut oBi ndDl g to true. The binder create a DLQ. Optionally, you can specify a name in
deadLet t er QueueNare.

» Setdl qTt| to the back off time you want to wait between redeliveries.

» Set the dl gDeadLet t er Exchange to the default exchange. Expired messages from the DLQ are
routed to the original queue, because the default deadLett er Rout i ngKey is the queue name
(dest i nati on. gr oup). Setting to the default exchange is achieved by setting the property with no
value, as shown in the next example.

To force a message to be dead-lettered, either throw an AngpRej ect AndDont RequeueExcepti on
or setr equeueRej ect ed to t r ue (the default) and throw any exception.

The loop continue without end, which is fine for transient problems, but you may want to give up
after some number of attempts. Fortunately, RabbitMQ provides the x- deat h header, which lets you
determine how many cycles have occurred.

To acknowledge a message after giving up, throw an | nredi at eAcknowl edgeAnmgpExcepti on.
Putting it All Together

The following configuration creates an exchange rmyDestination with queue
nyDesti nati on. consuner G oup bound to a topic exchange with a wildcard routing key #:

spring. cl oud. stream bi ndi ngs. i nput. desti nati on=nyDesti nati on

spring. cl oud. stream bi ndi ngs. i nput . gr oup=consuner & oup

#di sabl e binder retries

spring. cl oud. stream bi ndi ngs. i nput. consurer. nax- att enpt s=1

#dl x/ dl q setup

spring. cl oud. stream rabbi t. bi ndi ngs. i nput. consuner. aut o- bi nd-dl g=true
spring. cl oud. stream rabbi t. bi ndi ngs. i nput.consuner.dl g-ttl=5000

spring. cl oud. stream rabbi t. bi ndi ngs. i nput. consuner. dl g-dead- | etter-exchange=

This configuration creates a DLQ bound to a direct exchange (DLX) with a routing key of
nmyDest i nati on. consumer G oup. When messages are rejected, they are routed to the DLQ. After
5 seconds, the message expires and is routed to the original queue by using the queue name as the
routing key, as shown in the following example:

Spring Boot application.

@pr i ngBoot Appl i cati on
@nabl eBi ndi ng(Si nk. cl ass)
public class XDeat hApplication {

public static void main(String[] args) {
SpringApplication. run(XDeat hApplication. cl ass, args);
}

@5t r eanli st ener (Si nk. | NPUT)
public void listen(String in, @eader(nanme = "x-death", required = fal se) Map<?, ?> death) {
if (death !'= null && death.get("count").equal s(3L)) {
// giving up - don't send to DLX
t hrow new | nmedi at eAcknowl edgeAngpException("Failed after 4 attenpts");

}
throw new AngpRej ect AndDont RequeueException("failed");

Notice that the count property in the x- deat h header is a Long.

please define title in your docbook file! 107

Spring Cloud Stream Reference Guide

18.5 Error Channels

Starting with version 1.3, the binder unconditionally sends exceptions to an error channel for each
consumer destination and can also be configured to send async producer send failures to an error
channel. See “???" for more information.

RabbitMQ has two types of send failures:
» Returned messages,

» Negatively acknowledged Publisher Confirms.

The latter is rare. According to the RabbitMQ documentation "[A nack] will only be delivered if an internal
error occurs in the Erlang process responsible for a queue.".

As well as enabling producer error channels (as described in “???"), the RabbitMQ binder only sends
messages to the channels if the connection factory is appropriately configured, as follows:

e ccf.setPublisherConfirns(true);

» ccf.setPublisherReturns(true);

When using Spring Boot configuration for the connection factory, set the following properties:
e spring. rabbitnyg. publisher-confirns

e spring.rabbitnyg. publisher-returns

The payload of the Er r or Message for a returned message is a Ret ur nedAngpMessageExcepti on
with the following properties:

« fai |l edMessage: The spring-messaging Message<?> that failed to be sent.

» angpMessage: The raw spring-amqgp Message.

» repl yCode: An integer value indicating the reason for the failure (for example, 312 - No route).
* repl yText : A text value indicating the reason for the failure (for example, NO_ROUTE).

» exchange: The exchange to which the message was published.

e routi ngKey: The routing key used when the message was published.

For negatively acknowledged confirmations, the payload is a NackedAngpMessageExcept i on with
the following properties:

« fail edMessage: The spring-messaging Message<?> that failed to be sent.

» nackReason: A reason (if available—you may need to examine the broker logs for more
information).

There is no automatic handling of these exceptions (such as sending to a dead-letter queue). You can
consume these exceptions with your own Spring Integration flow.

18.6 Dead-Letter Queue Processing

Because you cannot anticipate how users would want to dispose of dead-lettered messages, the
framework does not provide any standard mechanism to handle them. If the reason for the dead-lettering

please define title in your docbook file! 108

https://www.rabbitmq.com/confirms.html

Spring Cloud Stream Reference Guide

is transient, you may wish to route the messages back to the original queue. However, if the problem
is a permanent issue, that could cause an infinite loop. The following Spring Boot application shows an
example of how to route those messages back to the original queue but moves them to a third “parking
lot” queue after three attempts. The second example uses the RabbitMQ Delayed Message Exchange
to introduce a delay to the re-queued message. In this example, the delay increases for each attempt.
These examples use a @Rabbi t Li st ener to receive messages from the DLQ. You could also use
Rabbi t Tenpl at e. recei ve() in a batch process.

The examples assume the original destination is s08400i n and the consumer group is s08400.
Non-Partitioned Destinations

The first two examples are for when the destination is not partitioned:

@pr i ngBoot Appl i cati on
public class ReRouteDl gApplication {

private static final String ORI G NAL_QUEUE = "s08400i n. so8400";

private static final String DLQ = ORIG NAL_QUEUE + ".dlq";

private static final String PARKING LOT = ORI G NAL_QUEUE + ".parki ngLot";
private static final String X RETRI ES _HEADER = "x-retries";

public static void main(String[] args) throws Exception {
Confi gur abl eAppl i cati onCont ext context = SpringApplication. run(ReRouteD gApplication.class,

args);
Systemout.printin("Ht enter to termnate");
Systemin.read();
context.close();
}
@\ut owi r ed

private RabbitTenpl ate rabbit Tenpl ate;

@Rabbi t Li st ener (queues = DLQ
public void rePublish(Message fail edMessage) {
I nteger retriesHeader = (Integer)
fai |l edMessage. get MessageProperti es() . get Header s() . get (X_RETRI ES_HEADER) ;
if (retriesHeader == null) {
retri esHeader = | nteger.val ued (0);
}
if (retriesHeader < 3) {
fai | edMessage. get MessageProperti es(). get Headers(). put (X_RETRI ES_HEADER, retriesHeader + 1);
t hi s. rabbitTenpl at e. send(ORI G NAL_QUEUE, f ai |l edMessage);

}
el se {
this.rabbitTenpl ate. send(PARKI NG LOT, failedMessage);
}
}
@ean

publ i c Queue parkinglLot () {
return new Queue(PARKI NG LOT);
}

@Bpr i ngBoot Appl i cati on
public class ReRouteDl gApplication {

private static final String ORI G NAL_QUEUE = "s08400i n. so8400";

private static final String DLQ = ORIG NAL_QUEUE + ".dlq";

please define title in your docbook file! 109

https://www.rabbitmq.com/blog/2015/04/16/scheduling-messages-with-rabbitmq/

Spring Cloud Stream Reference Guide

private static final String PARKING LOT = ORI G NAL_QUEUE + ". parkingLot";
private static final String X RETRIES HEADER = "x-retries";
private static final String DELAY_EXCHANGE = "dl gReRout er";

public static void main(String[] args) throws Exception {
Conf i gur abl eAppl i cati onCont ext context = SpringApplication.run(ReRouteD gApplication.class,

args);
Systemout.println("Ht enter to termnate");
Systemin.read();
cont ext.cl ose();
}
@\ut owi r ed

private RabbitTenpl ate rabbit Tenpl ate;

@Rabbi t Li st ener (queues = DLQ
public void rePublish(Message fail edMessage) {
Map<String, Object> headers = fail edMessage. get MessageProperties().get Headers();
Integer retriesHeader = (Integer) headers. get (X RETRI ES_HEADER) ;
if (retriesHeader == null) {
retri esHeader = |nteger.val ued (0);
}
if (retriesHeader < 3) {
headers. put (X_RETRI ES_HEADER, retriesHeader + 1);
header s. put (" x-del ay", 5000 * retriesHeader);
t hi s. rabbit Tenpl at e. send(DELAY_EXCHANGE, ORI G NAL_QUEUE, fail edMessage);

}
el se {
this.rabbitTenpl ate. send(PARKI NG LOT, failedMessage);
}
}
@Bean

public Direct Exchange del ayExchange() {
Di rect Exchange exchange = new Direct Exchange(DELAY_EXCHANGE) ;
exchange. set Del ayed(true);
return exchange;

}

@Bean
public Binding bindOiginal ToDel ay() {

return Bi ndi ngBui | der. bi nd(new Queue(ORI G NAL_QUEUE)) . t o(del ayExchange()).w t h(ORI G NAL_QUEUE) ;
}

@Bean
publ i c Queue parkinglLot () {

return new Queue(PARKI NG LOT);
}

Partitioned Destinations

With partitioned destinations, there is one DLQ for all partitions. We determine the original queue from
the headers.

republ i shToDl g=f al se

When r epubl i shToDl g is f al se, RabbitMQ publishes the message to the DLX/DLQ with an x-
deat h header containing information about the original destination, as shown in the following example:

@pr i ngBoot Appl i cati on
public class ReRouteD gApplication {

private static final String ORI G NAL_QUEUE = "s08400i n. so8400";

please define title in your docbook file! 110

Spring Cloud Stream Reference Guide

private static final
private static final
private static final

private static final

Systemin.read();
cont ext. cl ose();

}

@A\ut owi red

}

}

el se {

}
}

@Bean

}

String
String
String

String

nul |)

if (retriesHeader < 3) {
headers. put (X_RETRI ES_HEADER, retriesHeader + 1);
Li st <Map<String, ?>> xDeath = (List<Map<String, ?>>) headers. get (X DEATH HEADER);
String exchange = (String) xDeath.get(0).get("exchange");
Li st<String> routingKeys = (List<String>) xDeath.get(0).get("routing-keys");
thi s. rabbit Tenpl at e. send(exchange, routingKeys. get(0), failedMessage);

publ i c Queue parkingLot () {
return new Queue(PARKI NG LOT);

DLQ = ORIGI NAL_QUELE + ".dlq";
PARKI NG LOT = ORI Gl NAL_QUEUE + ". par ki ngLot";
X_DEATH_HEADER = "x- deat h";

X _RETRI ES_HEADER = "x-retries";

public static void main(String[] args) throws Exception {
Confi gur abl eAppl i cati onCont ext context = SpringApplication.run(ReRouteD gApplication.class, args);

Systemout.printin("Ht enter to termnate");

private RabbitTenpl ate rabbit Tenpl at e;

@uppr ess\War ni ngs(" unchecked")
@Rabbi t Li st ener (queues = DLQ
public void rePublish(Message fail edMessage) {
Map<String, Object> headers = fail edMessage. get MessageProperties().get Headers();
Integer retriesHeader = (Integer) headers. get (X RETRI ES_HEADER) ;
if (retriesHeader ==
retri esHeader = Integer.val ued (0);

{

thi s. rabbitTenpl at e. send(PARKI NG_LOT, fail edMessage);

republ i shToDl g=t rue

When r epubl i shToDl q is t r ue, the republishing recoverer adds the original exchange and routing
key to headers, as shown in the following example:

private static final

private static final

private static final

private static final

private static final

private static final

Systemin.read();

@Bpr i ngBoot Appl i cati on
public class ReRouteDl gApplication {

String
String
String
String
String

String

ORI G NAL_QUEUE = "s08400i n. so8400";

DLQ = ORI G NAL_QUEUE + ".dl g";

PARKI NG_LOT = ORI Gl NAL_QUEUE + ". parki ngLot";

X_RETRI ES_HEADER = "x-retries";

X_ORI G NAL_EXCHANGE_HEADER = Republ i shMessageRecover er. X ORI G NAL_EXCHANGE;

X_ORI Gl NAL_ROUTI NG KEY_HEADER =

Republ i shMessageRecover er. X_ORl G NAL_ROUTI NG_KEY;

public static void main(String[] args) throws Exception {
Conf i gur abl eAppl i cati onCont ext context = SpringApplication.run(ReRouteD gApplication.class, args);

Systemout.printiln("Ht enter to termnate");

please define title in your docbook file! 111

Spring Cloud Stream Reference Guide

cont ext. cl ose();

}

@A\ut owi red
private RabbitTenpl ate rabbit Tenpl ate;

@Rrabbi t Li st ener (queues = DLQ)
public void rePublish(Message fail edMessage) {
Map<String, Object> headers = fail edMessage. get MessageProperties(). get Headers();
Integer retriesHeader = (Integer) headers. get (X RETRI ES HEADER) ;
if (retriesHeader == null) {
retri esHeader = |nteger.val ued (0);
}
if (retriesHeader < 3) {
headers. put (X_RETRI ES_HEADER, retri esHeader + 1);
String exchange = (String) headers. get (X ORI G NAL_EXCHANGE_HEADER) ;
String original Routi ngkey = (String) headers. get (X_OR G NAL_ROUTI NG_KEY_HEADER) ;
t hi s. rabbit Tenpl at e. send(exchange, ori gi nal Routi ngKey, fail edMessage);
}
el se {
t hi s. rabbit Tenpl at e. send(PARKI NG_LOT, fail edMessage);
}
}

@Bean
public Queue parkingLot() {
return new Queue(PARKI NG LOT);

}

18.7 Partitioning with the RabbitMQ Binder

RabbitMQ does not support partitioning natively.

Sometimes, it is advantageous to send data to specific partitions — for example, when you want to
strictly order message processing, all messages for a particular customer should go to the same
partition.

The Rabbi t MessageChannel Bi nder provides partitioning by binding a queue for each partition to
the destination exchange.

The following Java and YAML examples show how to configure the producer:

Producer.

@Bpr i ngBoot Appl i cati on
@Enabl eBi ndi ng(Sour ce. cl ass)
public class RabbitPartitionProducerApplication {

private static final Random RANDOM = new Randon(SystemcurrentTimeM | lis());

private static final String[] data = new String[] {
"abcl", "def1", "quxl",
"abc2", "def2", "qux2",
"abc3", "def3", "qux3",
"abc4", "def4", "qux4",

b

public static void main(String[] args) {
new Spri ngAppl i cati onBui |l der (Rabbi t Partiti onProducer Appli cati on. cl ass)
.web(fal se)
.run(args);

}

@ nboundChannel Adapt er (channel = Source. OUTPUT, poller = @Poller(fixedRate = "5000"))

please define title in your docbook file! 112

Spring Cloud Stream Reference Guide

publ ic Message<?> generate() {
String value = data[RANDOM nextInt(data.length)];
System out. println("Sending: " + value);
return MessageBui |l der. wi t hPayl oad(val ue)
. set Header ("partitionKey", val ue)

Lbuild();
}
}
application.yml.
spring:
cl oud:
stream
bi ndi ngs:
out put :
destination: partitioned. destination
producer:

partitioned: true

partition-key-expression: headers[' partitionKey']
partition-count: 2

requi red- groups:

- myG oup

@ Note

The configuration in the prececing example uses the default partitioning (key. hashCode() %
partiti onCount). This may or may not provide a suitably balanced algorithm, depending on
the key values. You can override this default by using the parti ti onSel ect or Expr essi on
orpartitionSel ectord ass properties.

The requi r ed- gr oups property is required only if you need the consumer queues to be
provisioned when the producer is deployed. Otherwise, any messages sent to a partition are
lost until the corresponding consumer is deployed.

The following configuration provisions a topic exchange:

partitioned.destination topic D

The following queues are bound to that exchange:

partitioned.destination.myGroup-0 D

partitioned.destination.myGroup-1 D

The following bindings associate the queues to the exchange:

Bindings

This exchange

To Routing key Arguments
partitioned.destination-0 i
‘ partitioned.destination.myGroup-0 Unbind
partitioned.destination-1 Unbind

‘ partitioned.destination.myGroup-1

The following Java and YAML examples continue the previous examples and show how to configure
the consumer:

please define title in your docbook file! 113

Spring Cloud Stream Reference Guide

Consumer.

@Bpr i ngBoot Appl i cati on
@Enabl eBi ndi ng(Si nk. cl ass)
public class RabbitPartitionConsunerApplication {

public static void main(String[] args) {
new Spri ngApplicationBuil der (RabbitPartiti onConsunerApplication.cl ass)
.web(fal se)
.run(args);

}

@5t r eanli st ener (Si nk. | NPUT)
public void listen(@uayload String in, @leader(AnmpHeaders. CONSUVER QUEUE) String queue) {
Systemout.printin(in + " received fromqueue " + queue);

}

application.yml.

spring:
cl oud:
stream
bi ndi ngs:
i nput :

destination: partitioned. destination

group: nmyG oup

consumer :
partitioned: true
i nstance-index: 0

@ Important

The Rabbi t MessageChannel Bi nder does not support dynamic scaling. There must be at
least one consumer per partition. The consumer’s i nst ancel ndex is used to indicate which
partition is consumed. Platforms such as Cloud Foundry can have only one instance with an
i nst ancel ndex.

please define title in your docbook file! 114

Part Ill. Appendices

Spring Cloud Stream Reference Guide

Appendix A. Building

A.1 Basic Compile and Test

To build the source you will need to install JDK 1.7.

The build uses the Maven wrapper so you don't have to install a specific version of Maven. To enable
the tests for Redis, Rabbit, and Kafka bindings you should have those servers running before building.
See below for more information on running the servers.

The main build command is

‘$./ mvnw cl ean install

You can also add '-DskipTests' if you like, to avoid running the tests.

@ Note

You can also install Maven (>=3.3.3) yourself and run the nvn command in place of . / mvnwin
the examples below. If you do that you also might need to add - P spri ng if your local Maven
settings do not contain repository declarations for spring pre-release artifacts.

@ Note

Be aware that you might need to increase the amount of memory available to Maven by setting
a MAVEN_OPTS environment variable with a value like - Xnx512m - XX: MaxPer n5i ze=128m
We try to cover this in the . nvn configuration, so if you find you have to do it to make a build
succeed, please raise a ticket to get the settings added to source control.

The projects that require middleware generally include a docker - conpose. ym , so consider using
Docker Compose to run the middeware servers in Docker containers. See the README in the scripts
demo repository for specific instructions about the common cases of mongo, rabbit and redis.

A.2 Documentation

There is a "full" profile that will generate documentation.

A.3 Working with the code

If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or Eclipse
when working with the code. We use the m2eclipe eclipse plugin for maven support. Other IDEs and
tools should also work without issue.

Importing into eclipse with m2eclipse

We recommend the m2eclipe eclipse plugin when working with eclipse. If you don't already have
m2eclipse installed it is available from the "eclipse marketplace".

Unfortunately m2e does not yet support Maven 3.3, so once the projects are imported into Eclipse you
will also need to tell m2eclipse to use the . setti ngs. xm file for the projects. If you do not do this
you may see many different errors related to the POMs in the projects. Open your Eclipse preferences,
expand the Maven preferences, and select User Settings. In the User Settings field click Browse and

please define title in your docbook file! 116

http://compose.docker.io/
https://github.com/spring-cloud-samples/scripts
https://github.com/spring-cloud-samples/scripts
http://www.springsource.com/developer/sts
http://eclipse.org
http://eclipse.org/m2e/
http://eclipse.org/m2e/

Spring Cloud Stream Reference Guide

navigate to the Spring Cloud project you imported selecting the . setti ngs. xm file in that project.
Click Apply and then OK to save the preference changes.

@ Note

Alternatively you can copy the repository settings from . set t i ngs. xm into your own ~/ . n2/
settings. xm.

Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following
command:

$./ munw eclipse: eclipse

The generated eclipse projects can be imported by selecting i nport exi sting projects fromthe
fi | e menu. [[contributing] == Contributing

Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard
Github development process, using Github tracker for issues and merging pull requests into master. If
you want to contribute even something trivial please do not hesitate, but follow the guidelines below.

A.4 Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the contributor’s agreement.
Signing the contributor’'s agreement does not grant anyone commit rights to the main repository, but
it does mean that we can accept your contributions, and you will get an author credit if we do. Active
contributors might be asked to join the core team, and given the ability to merge pull requests.

A.5 Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help. They can also be added after the
original pull request but before a merge.

» Use the Spring Framework code format conventions. If you use Eclipse you can import formatter
settings using the ecl i pse- code-formatter. xm file from the Spring Cloud Build project. If using
Intellid, you can use the Eclipse Code Formatter Plugin to import the same file.

» Make sure all new . j ava files to have a simple Javadoc class comment with at least an @ut hor
tag identifying you, and preferably at least a paragraph on what the class is for.

» Add the ASF license header comment to all new . j ava files (copy from existing files in the project)

» Add yourself as an @ut hor to the .java files that you modify substantially (more than cosmetic
changes).

» Add some Javadocs and, if you change the namespace, some XSD doc elements.
» A few unit tests would help a lot as well — someone has to do it.

« If no-one else is using your branch, please rebase it against the current master (or other target branch
in the main project).

» When writing a commit message please follow these conventions, if you are fixing an existing issue
please add Fi xes gh- XXXX at the end of the commit message (where XXXX is the issue number).

please define title in your docbook file! 117

https://github.com/spring-cloud/spring-cloud-build/blob/master/.settings.xml
https://support.springsource.com/spring_committer_signup
https://github.com/spring-cloud/build/tree/master/eclipse-coding-conventions.xml
http://plugins.jetbrains.com/plugin/6546
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

	Spring Cloud Stream Reference Guide
	Table of Contents
	Part I. Spring Cloud Stream Core
	1. A Brief History of Spring’s Data Integration Journey
	2. Quick Start
	2.1 Creating a Sample Application by Using Spring Initializr
	2.2 Importing the Project into Your IDE
	2.3 Adding a Message Handler, Building, and Running

	3. What’s New in 2.0?
	3.1 New Features and Components
	3.2 Notable Enhancements
	Both Actuator and Web Dependencies Are Now Optional
	Content-type Negotiation Improvements

	3.3 Notable Deprecations
	Java Serialization (Java Native and Kryo)
	Deprecated Classes and Methods

	4. Introducing Spring Cloud Stream
	5. Main Concepts
	5.1 Application Model
	Fat JAR

	5.2 The Binder Abstraction
	5.3 Persistent Publish-Subscribe Support
	5.4 Consumer Groups
	5.5 Consumer Types
	Durability

	5.6 Partitioning Support

	6. Programming Model
	6.1 Destination Binders
	6.2 Destination Bindings
	6.3 Producing and Consuming Messages
	Spring Integration Support
	Using @StreamListener Annotation
	Using @StreamListener for Content-based routing
	Using Polled Consumers

	6.4 Error Handling
	Application Error Handling
	System Error Handling
	Drop Failed Messages
	DLQ - Dead Letter Queue
	Re-queue Failed Messages

	Retry Template

	6.5 Reactive Programming Support
	Reactor-based Handlers
	Reactive Sources

	7. Binders
	7.1 Producers and Consumers
	7.2 Binder SPI
	7.3 Binder Detection
	Classpath Detection

	7.4 Multiple Binders on the Classpath
	7.5 Connecting to Multiple Systems
	7.6 Binding visualization and control
	7.7 Binder Configuration Properties

	8. Configuration Options
	8.1 Binding Service Properties
	8.2 Binding Properties
	Common Binding Properties
	Consumer Properties
	Producer Properties

	8.3 Using Dynamically Bound Destinations

	9. Content Type Negotiation
	9.1 Mechanics
	Content Type versus Argument Type
	Message Converters

	9.2 Provided MessageConverters
	9.3 User-defined Message Converters

	10. Schema Evolution Support
	10.1 Schema Registry Client
	Schema Registry Client Properties

	10.2 Avro Schema Registry Client Message Converters
	Avro Schema Registry Message Converter Properties

	10.3 Apache Avro Message Converters
	10.4 Converters with Schema Support
	10.5 Schema Registry Server
	Schema Registry Server API
	Registering a New Schema
	Retrieving an Existing Schema by Subject, Format, and Version
	Retrieving an Existing Schema by Subject and Format
	Retrieving an Existing Schema by ID
	Deleting a Schema by Subject, Format, and Version
	Deleting a Schema by ID
	Deleting a Schema by Subject

	Using Confluent’s Schema Registry

	10.6 Schema Registration and Resolution
	Schema Registration Process (Serialization)
	Schema Resolution Process (Deserialization)

	11. Inter-Application Communication
	11.1 Connecting Multiple Application Instances
	11.2 Instance Index and Instance Count
	11.3 Partitioning
	Configuring Output Bindings for Partitioning
	Configuring Input Bindings for Partitioning

	12. Testing
	12.1 Disabling the Test Binder Autoconfiguration

	13. Health Indicator
	14. Metrics Emitter
	15. Samples
	15.1 Deploying Stream Applications on CloudFoundry

	Part II. Binder Implementations
	16. Apache Kafka Binder
	16.1 Usage
	16.2 Apache Kafka Binder Overview
	16.3 Configuration Options
	Kafka Binder Properties
	Kafka Consumer Properties
	Kafka Producer Properties
	Usage examples
	Example: Setting autoCommitOffset to false and Relying on Manual Acking
	Example: Security Configuration
	Using JAAS Configuration Files
	Using Spring Boot Properties

	Example: Pausing and Resuming the Consumer

	16.4 Error Channels
	16.5 Kafka Metrics
	16.6 Dead-Letter Topic Processing
	16.7 Partitioning with the Kafka Binder

	17. Apache Kafka Streams Binder
	17.1 Usage
	17.2 Kafka Streams Binder Overview
	Streams DSL

	17.3 Configuration Options
	Kafka Streams Properties
	TimeWindow properties:

	17.4 Multiple Input Bindings
	Multiple Input Bindings as a Sink
	Multiple Input Bindings as a Processor

	17.5 Multiple Output Bindings (aka Branching)
	17.6 Message Conversion
	Outbound serialization
	Inbound Deserialization

	17.7 Error Handling
	Handling Deserialization Exceptions
	Handling Non-Deserialization Exceptions

	17.8 State Store
	17.9 Interactive Queries

	18. RabbitMQ Binder
	18.1 Usage
	18.2 RabbitMQ Binder Overview
	18.3 Configuration Options
	RabbitMQ Binder Properties
	RabbitMQ Consumer Properties
	Advanced Listener Container Configuration
	Rabbit Producer Properties

	18.4 Retry With the RabbitMQ Binder
	Putting it All Together

	18.5 Error Channels
	18.6 Dead-Letter Queue Processing
	Non-Partitioned Destinations
	Partitioned Destinations
	republishToDlq=false
	republishToDlq=true

	18.7 Partitioning with the RabbitMQ Binder

	Part III. Appendices
	Appendix A. Building
	A.1 Basic Compile and Test
	A.2 Documentation
	A.3 Working with the code
	Importing into eclipse with m2eclipse
	Importing into eclipse without m2eclipse

	A.4 Sign the Contributor License Agreement
	A.5 Code Conventions and Housekeeping

