
Spring Cloud Task App Starters Reference Guide

Dearborn.RELEASE

Copyright © 2013-2018Pivotal Software, Inc.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Cloud Task App Starters Reference Guide

Dearborn.RELEASE Spring Cloud Data Flow ii

Table of Contents

I. Reference Guide ... 1
1. Spring Cloud Task Starters ... 2

1.1. Introduction .. 2
1.2. Starters and pre-built applications ... 2

Maven and Docker accesss .. 2
Building the artifacts ... 3

1.3. Creating custom artifacts .. 3
Creating your own applications .. 3

Using generic Spring Cloud Task applications .. 3
Using the starters to create custom components .. 4

1.4. Contributing Task Application Starters ... 4
II. Tasks ... 8

2. Timestamp Task ... 9
2.1. Options .. 9
2.2. Building with Maven ... 9
2.3. Example .. 9
2.4. Contributing ... 9

3. Composed Task Runner .. 10
3.1. Overview .. 10
3.2. Graph DSL .. 10
3.3. Traversing the graph .. 10

Sequences .. 10
Transitions .. 11

Wildcard ... 12
Splits .. 12

3.4. Options .. 13
3.5. Building with Maven ... 15
3.6. Example ... 15
3.7. Contributing .. 15

4. Timestamp Batch Task .. 16
4.1. Options .. 16
4.2. Building with Maven ... 16
4.3. Example ... 16
4.4. Contributing .. 16

III. Appendices .. 17
A. Building .. 18

A.1. Basic Compile and Test ... 18
A.2. Documentation ... 18
A.3. Working with the code ... 18

Importing into eclipse with m2eclipse ... 18
Importing into eclipse without m2eclipse ... 19

B. Contributing .. 20
B.1. Sign the Contributor License Agreement ... 20
B.2. Code Conventions and Housekeeping .. 20

Part I. Reference Guide

Spring Cloud Task App Starters Reference Guide

Dearborn.RELEASE Spring Cloud Data Flow 2

1. Spring Cloud Task Starters
This section goes into more detail about how you can work with Spring Cloud Task Starters as
standalone applications or with Spring Cloud Data Flow. It assumes familiarity with general Spring Cloud
Task concepts, which can be found in the Spring Cloud Task reference documentation.

1.1 Introduction

Spring Cloud Task Application Starters provide you with predefined Spring Cloud Task applications that
you can run independently or with Spring Cloud Data Flow. You can also use the starters as a basis
for creating your own applications. They include commonly used tasks that can run as is or be modified
to your needs.

1.2 Starters and pre-built applications

As a user of Spring Cloud Task Application Starters you have access to two types of artifacts.

Starters are libraries that contain the complete configuration of a Spring Cloud Task application with a
specific role (e.g. an JDBC HDFS that migrates data from a JDBC Repository via sql query to a file on
hdfs). Starters are not executable applications, and are intended to be included in other Spring Boot
applications.

Prebuilt applications are Spring Boot applications that include the starters. Prebuilt applications are
uberjars and include minimal code required to execute standalone.

Note

Only starters are present in the source code of the project. Prebuilt applications are generated
according to the Maven plugin configuration.

Maven and Docker accesss

Starters are available as Maven artifacts in the Spring repositories. You can add them as dependencies
to your application, as follows:

<dependency>

 <group>org.springframework.cloud.task.app</group>

 <artifactId>spring-cloud-starter-task-timestamp</artifactId>

 <version>1.0.0.BUILD-SNAPSHOT</version>

</dependency>

From this, you can infer the coordinates for other starters found in this guide. While the version may vary,
the group will always remain org.springframework.cloud.task.app and the artifact id follows
the naming convention spring-cloud-starter-task-<functionality>.

Prebuilt applications are available as Maven artifacts too. It is not encouraged to use them
directly as dependencies, as starters should be used instead. Following the typical Maven
<group>:<artifactId>:<version> convention, they can be referenced for example as:

org.springframework.cloud.task.app:timestamp-task:1.0.0.BUILD-SNAPSHOT

Just as with the starters, you can infer the coordinates for other prebuilt applications found in the guide.
The group will be always org.springframework.cloud.task.app. The version may vary. The
artifact id follows the format <functionality>-task.

http://docs.spring.io/spring-cloud-task/current-SNAPSHOT/reference/htmlsingle/
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/#getting-started-first-application-executable-jar
https://github.com/spring-projects/spring-framework/wiki/Spring-repository-FAQ

Spring Cloud Task App Starters Reference Guide

Dearborn.RELEASE Spring Cloud Data Flow 3

Docker

The Docker versions of the applications are available in Docker Hub, at hub.docker.com/r/
springcloudtask/. Naming and versioning follows the same general conventions as Maven, e.g.

docker pull springcloudtask/timestamp-task will pull the latest Docker image of the
timestamp task.

Building the artifacts

You can also build the project and generate the artifacts (including the prebuilt applications) on your
own. This is useful if you want to deploy the artifacts locally, for example for adding a new starter.

First, you need to generate the prebuilt applications. There is a maven profile available do do this.

./mvnw clean install -PgenerateApps

Then build the applications:

cd apps

mvn clean install

Each of the generated applications will contain:

• pom.xml file with the required dependencies

• a class that contains the main method of the application and imports the predefined configuration

• generated integration test code that exercises the component.

1.3 Creating custom artifacts

In this section we will describe how to create your own application.

Creating your own applications

Spring Cloud Task Application Starters consist of regular Spring Cloud Task applications with some
additional conventions that facilitate generating prebuilt applications. Sometimes, your solution may
require additional applications that are not in the scope of Spring Cloud Task Application Starters, or
require additional tweaks and enhancements. In this section we will show you how to create custom
applications that can be part of your solution, along with Spring Cloud Task application starters. You
have the following options:

• create new Spring Cloud Task applications;

• use the starters to create customized versions;

Using generic Spring Cloud Task applications

If you want to add your own custom applications to your solution, you can simply create a new Spring
Cloud Task project and run it the same way as the applications provided by Spring Cloud Task
Application Starters, independently or via Spring Cloud Data Flow. The process is described in the
Getting Started Guide of Spring Cloud Task.

https://hub.docker.com/r/springcloudtask/
https://hub.docker.com/r/springcloudtask/
http://docs.spring.io/spring-cloud-task/current-SNAPSHOT/reference/htmlsingle/#getting-started#_getting_started

Spring Cloud Task App Starters Reference Guide

Dearborn.RELEASE Spring Cloud Data Flow 4

Using the starters to create custom components

You can also reuse the starters provided by Spring Cloud Task Application Starters to create custom
components, enriching the behavior of the application. For example, you can add a special behavior
to your jdbc hdfs task, to do some post processing following the migration of the data. As a reminder,
this involves:

• adding the starter to your project for example:

<dependencies>

 <!- other dependencies -->

 <dependencies>

 <dependency>

 <groupId>org.springframework.cloud.task.app</groupId>

 <artifactId>spring-cloud-starter-task-timestamp</artifactId>

 </dependency>

</dependencies>

• adding the main class and importing the starter configuration for example:

package org.springframework.cloud.task.app.timestamp;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;

import org.springframework.context.annotation.Import;

@SpringBootApplication

@Import(org.springframework.cloud.task.app.timestamp.TimestampTaskConfiguration.class)

public class TimestampTaskApplication {

 public static void main(String[] args) {

 SpringApplication.run(TimestampTaskApplication.class, args);

 }

}

After doing so, you can simply add the additional configuration for the extra features of your application.

1.4 Contributing Task Application Starters

In this section, we will explain how to develop a custom task application and then generate maven and
docker artifacts for it using the existing tooling provided by the spring cloud task app starter infrastructure.
For explanation purposes, we will assume that we are creating a new task application for a technology
named foobar.

• Create a new top level module named spring-cloud-starter-task-foobar (preferably in a new empty
directory)

Have this module inherit from the task-app-starters-build in the official spring cloud task app
starters.

Please look into the existing starters for how to design and structure a new one. Ensure that you name
the main @Configuration class of your starter as FoobarTaskConfiguration as this is the default
convention used by the app generation later. The default package for the class with @Configuration
is org.springfamework.cloud.task.app.foobar. If you have a different class/package name,
see below for how to override that in the app generator. The technology name for which the app starter
is created can be a hyphenated stream of strings such as in timestamp-batch This starter module
for this needs to be spring-cloud-starter-task-timestamp-batch.

Spring Cloud Task App Starters Reference Guide

Dearborn.RELEASE Spring Cloud Data Flow 5

The starters in spring-cloud-task-app-starters are slightly different from the other starters in
spring-boot and spring-cloud in that here we don’t provide a way to auto configure any configuration
through spring factories mechanism. Rather, we delegate this responsibility to the maven plugin that is
generating the binder based apps. Therefore, you don’t have to provide a spring.factories file that lists
all your configuration classes.

• Add the new foobar task starter module to the root pom.xml

• You need to add the new starter dependency to a bill of material (BOM) called foobar-task-app-
dependencies in the dependency management section. For example,

<dependencyManagement>

...

...

 <dependency>

 <groupId>org.springframework.cloud.task.app</groupId>

 <artifactId>spring-cloud-starter-task-foobar</artifactId>

 <version>1.0.0.BUILD-SNAPSHOT</version>

 </dependency>

...

...

• Please ensure that the bom inherits from spring-cloud-dependencies-parent

• Add the BOM to the root pom.xml

• Please add the following xml snippet to the pom.xml file of spring-cloud-starter-task-foobar.

<build>

 <plugins>

 <plugin>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-app-starter-doc-maven-plugin</artifactId>

 </plugin>

 <plugin>

 <groupId>org.springframework.cloud.stream.app.plugin</groupId>

 <artifactId>spring-cloud-stream-app-maven-plugin</artifactId>

 <configuration>

 <generatedProjectHome>${session.executionRootDirectory}/apps</generatedProjectHome>

 <generatedProjectVersion>${project.version}</generatedProjectVersion>

 <bom>

 <name>scs-bom</name>

 <groupId>org.springframework.cloud.task.app</groupId>

 <artifactId>foobar-task-app-dependencies</artifactId>

 <version>${project.version}</version>

 </bom>

 <generatedApps>

 <foobar-task/>

 </generatedApps>

 </configuration>

 </plugin>

 </plugins>

 </build>

More information about the maven plugin used above can be found here.

If you did not follow the default convention expected by the plugin
of where it is looking for the main configuration class, which is
org.springfamework.cloud.task.app.foobar.FoobarTaskConfiguration, you can
override that in the configuration for the plugin. For example, if your main configuration class is
foo.bar.SpecialFooBarTaskConfiguration.class, this is how you can tell the plugin to
override the default.

https://github.com/spring-cloud/spring-cloud-app-starters-maven-plugins/tree/master/spring-cloud-stream-app-maven-plugin

Spring Cloud Task App Starters Reference Guide

Dearborn.RELEASE Spring Cloud Data Flow 6

<foobar-task>

 <autoConfigClass>foo.bar.SpecialFooBarTaskConfiguration.class</autoConfigClass>

</foobar-task>

• At this point, you can build the project and generate the apps.

mvn clean install -PgenerateApps

This will generate the foobar task app in a directory named apps at the root of the project. If you want
to change the location where the apps are generated, for instance /tmp/task-apps, you can do it in the
configuration section of the plugin.

<configuration>

 ...

 <generatedProjectHome>/tmp/task-apps</generatedProjectHome>

 ...

</configuration

If you have an artifact that is only available through a private internal maven repository (may be an
enterprise wide Nexus repo that you use globally across teams), and you need that for your app, you
can define that as part of the maven plugin configuration.

For example,

<configuration>

...

 <extraRepositories>

 <repository>

 <id>private-internal-nexus</id>

 <url>.../</url>

 <name>...</name>

 <snapshotEnabled>...</snapshotEnabled>

 </repository>

 </extraRepositories>

</configuration>

Then you can define this as part of your app tag:

<foobar-task>

 <extraRepositories>

 <private-internal-nexus />

 </extraRepositories>

</foobar-task>

• cd into the directory where you generated the apps (apps at the root of the repository by default,
unless you changed it elsewhere as described above).

Here you will see foobar-task along with all the other out of the box apps that is generated.

If you only care about the foobar-task apps and nothing else, you can cd into that directory and import it
directly into your IDE of choice. Each of them is a self contained spring boot application project. For all
the generated apps, the parent is spring-boot-starter-parent as is required by Spring Initializr,
the library used under the hood to generate the apps.

You can cd into these custom foobar-task directories and do the following to build the apps:

cd foobar-task

mvn clean install

This will install the foobar-task into your local maven cache (~/.m2 by default).

Spring Cloud Task App Starters Reference Guide

Dearborn.RELEASE Spring Cloud Data Flow 7

The app generation phase adds an integration test to the app project that ensures all the spring
components and contexts are loaded properly. However, these tests are not run by default when you
do a mvn install. You can force the running of these tests by doing the following:

mvn clean install -DskipTests=false

• Now that you built the applications, they are available under the target directories of the respective
apps and also as maven artifacts in your local maven repository. Go to the target directory and
run the following:

java -jar foobar-task.jar

It should start the application up.

• The generated apps also support the creation of docker images. You can cd into one of the foobar-
task app and do the following:

mvn clean package docker:build

This creates the docker image under the target/docker/springcloudtask directory. Please
ensure that the Docker container is up and running and DOCKER_HOST environment variable is
properly set before you try docker:build.

All the generated apps from the repository are uploaded to Docker Hub

However, for a custom app that you build, this won’t be uploaded to docker hub under
springcloudtask repository. If you think that there is a general need for this app, you should
contribute this starter to the main repository and upon review, this app then can be uploaded to the
above location in docker hub.

If you still need to push this to docker hub under a different repository you can take the following steps.

Go to the pom.xml of the generated app [example - foobar-task/pom.xml] Search for
springcloudtask. Replace with your repository name.

Then do this:

mvn clean package docker:build docker:push -Ddocker.username=[provide your

username] -Ddocker.password=[provide password]

This will upload the docker image to the docker hub in your custom repository.

https://hub.docker.com/u/springcloudtask/

Part II. Tasks

Spring Cloud Task App Starters Reference Guide

Dearborn.RELEASE Spring Cloud Data Flow 9

2. Timestamp Task

A task that prints a timestamp to stdout. Intended to primarily be used for testing.

2.1 Options

The timestamp task has the following options:

timestamp.format
The timestamp format, "yyyy-MM-dd HH:mm:ss.SSS" by default. (String, default: yyyy-MM-dd
HH:mm:ss.SSS)

2.2 Building with Maven

$./mvnw clean install -PgenerateApps

$ cd apps/timestamp-task

$./mvnw clean package

2.3 Example

java -jar timestamp-task-<version>.jar

2.4 Contributing

We welcome contributions! Follow this link for more information on how to contribute.

https://github.com/spring-cloud-task-app-starters/app-starters-release/blob/master/spring-cloud-task-app-starters-docs/src/main/asciidoc/contributing.adoc

Spring Cloud Task App Starters Reference Guide

Dearborn.RELEASE Spring Cloud Data Flow 10

3. Composed Task Runner

A task that executes a tasks in a directed graph as specified by a DSL that is passed in via the --
graph command line argument.

3.1 Overview

The Composed Task Runner parses the graph DSL and for each node in the graph it will execute a
restful call against a specified Spring Cloud Data Flow instance to launch the associated task definition.
For each task definition that is executed the Composed Task Runner will poll the database to verify that
the task completed. Once complete the Composed Task Runner will either continue to the next task in
the graph or fail based on how the DSL specified the sequence of tasks should be executed.

3.2 Graph DSL

The Graph DSL is comprised of Task Definitions that have been defined within the Spring Cloud Data
Flow server referenced by the data-flow-uri (default: localhost:9393). These definitions can be placed
into a derived graph based on a DSL through the use of sequences, transitions, splits, or a combination
therein.

3.3 Traversing the graph

Composed Task Runner is built using Spring Batch to execute the directed graph. As such
each node in the graph is a Step. As discussed in the overview, each step in the graph will
post a request to a Spring Cloud Data Flow Server to execute a task definition. If the task
launched by the step fails to complete within the time specified by the maxWaitTime property,
a org.springframework.cloud.task.app.composedtaskrunner.support.TimeoutException will be thrown.
Once task launched by the step completes, the ComposedTaskRunner will set the ExitStatus of that
step based on the following rules:

• If the TaskExecution has an ExitMessage that will be used as the ExitStatus

• If no ExitMessage is present and the ExitCode is set to 0 then the ExitStatus for the step will
be COMPLETED.

• If no ExitMessage is present and the ExitCode is set to 1 then the ExitStatus for the step will
be FAILED.

If the state of any step in the graph is set to FAILED and is not handled by the DSL the Directed Graph
execution will terminate.

Sequences

The Composed Task Runner supports the ability to traverse sequences of task definitions. This is
represented by a task definition name followed by the && symbol then the next task definition to be
launched. For example if we have tasks AAA, BBB and CCC to be launched in sequence it will look
like this:

AAA && BBB && CCC

http://docs.spring.io/spring-cloud-dataflow/docs/current/reference/htmlsingle/
http://localhost:9393
http://docs.spring.io/spring-batch/reference/html/
http://docs.spring.io/spring-batch/reference/html/domain.html#domainStep

Spring Cloud Task App Starters Reference Guide

Dearborn.RELEASE Spring Cloud Data Flow 11

You can execute the same task multiple times in a sequence. For example:

AAA && AAA && AAA

If an ExitStatus 'FAILED' is returned in a sequence the Composed Task Runner will terminate. For
example if AAA && BBB && CCC composed task is executed and BBB fails. Then CCC will not be
launched.

Transitions

The Composed Task Runner supports the ability to control what tasks get executed based on the
ExitStatus of the previous task. This is done by specifying ExitStatus after the task definition
followed by the # operator and the task definition that should be launched based on the result. For
example:

AAA 'FAILED' -> BBB 'COMPLETED' -> CCC

Will launch AAA and if AAA fails then BBB will be launched. Else if AAA completes successfully then
CCC will launch.

Spring Cloud Task App Starters Reference Guide

Dearborn.RELEASE Spring Cloud Data Flow 12

You can also have a sequence that follows a transition. For example:

AAA 'FAILED' -> BBB && CCC && DDD

Will launch AAA and for any ExitStatus that is returned other than 'FAILED' then CCC && DDD will
be launched. However if AAA returns 'FAILED' then BBB will be launched, but CCC && DDD will not.

Wildcard

Wildcards are also supported in transitions. For example:

AAA 'FAILED' -> BBB '*'->CCC

In the case above AAA will launch and any ExitStatus other than FAILED will launch CCC.

Splits

Allows a user to execute tasks in parallel. For example:

<AAA || BBB || CCC>

Spring Cloud Task App Starters Reference Guide

Dearborn.RELEASE Spring Cloud Data Flow 13

Will launch AAA, BBB and CCC in parallel. When launching splits as a part of a composed task all
elements of the split must finish successfully before the next task definition can be launched for example:

<AAA || BBB || CCC> && DDD && EEE

In the case above once AAA, BBB and CCC complete sucessfully then DDD and EEE will be launched
in the sequence enumerated above. However if one of the task definitions fails in the split then DDD
and EEE will not fire. For example if BBB fails then AAA and CCC will be marked successful and BBB
will be marked a failure and DDD and EEE will not be launched.

3.4 Options

The ComposedTaskRunner task has the following options:

composed-task-arguments
The arguments to be used for each of the tasks. (String, default: <none>)

Spring Cloud Task App Starters Reference Guide

Dearborn.RELEASE Spring Cloud Data Flow 14

composed-task-properties
The properties to be used for each of the tasks as well as their deployments. (String, default:
<none>)

dataflow-server-uri
The URI for the dataflow server that will receive task launch requests. Default is http://
localhost:9393; (URI, default: <none>)

dataflow-server-username
The optional username for the dataflow server that will receive task launch requests. Used to access
the the dataflow server using Basic Authentication. (String, default: <none>)

dataflow-server-password
The optional password for the dataflow server that will receive task launch requests. Used to access
the the dataflow server using Basic Authentication. (String, default: <none>)

graph
The DSL for the composed task directed graph. (String, default: <none>)

increment-instance-enabled
Allows a single ComposedTaskRunner instance to be re-executed without changing the parameters.
Default is false which means a ComposedTaskRunner instance can only be executed once with a
given set of parameters, if true it can be re-executed. (Boolean, default: false)

interval-time-between-checks
The amount of time in millis that the ComposedTaskRunner will wait between checks of the database
to see if a task has completed. (Integer, default: 10000)

max-wait-time
The maximum amount of time in millis that a individual step can run before the execution of the
Composed task is failed. (Integer, default: 0)

split-thread-allow-core-thread-timeout
Specifies whether to allow split core threads to timeout. Default is false; (Boolean, default: false)

split-thread-core-pool-size
Split's core pool size. Default is 1; (Integer, default: 1)

split-thread-keep-alive-seconds
Split's thread keep alive seconds. Default is 60. (Integer, default: 60)

split-thread-max-pool-size
Split's maximum pool size. Default is {@code Integer.MAX_VALUE}. (Integer, default: <none>)

split-thread-queue-capacity
Capacity for Split's BlockingQueue. Default is {@code Integer.MAX_VALUE}. (Integer, default:
<none>)

split-thread-wait-for-tasks-to-complete-on-shutdown
Whether to wait for scheduled tasks to complete on shutdown, not interrupting running tasks and
executing all tasks in the queue. Default is false; (Boolean, default: false)

Spring Cloud Task App Starters Reference Guide

Dearborn.RELEASE Spring Cloud Data Flow 15

Note

when using the options above as environment variables, remove the - 's and
capitalize the next character. For example: increment-instance-enabled would be
incrementInstanceEnabled.

3.5 Building with Maven

$./mvnw clean install -PgenerateApps

$ cd apps/composedtaskrunner-task

$./mvnw clean package

3.6 Example

java -jar composedtaskrunner-task-{version}.jar --graph=<your graph syntax>

3.7 Contributing

We welcome contributions! Follow this link for more information on how to contribute.

https://github.com/spring-cloud-task-app-starters/app-starters-release/blob/master/spring-cloud-task-app-starters-docs/src/main/asciidoc/contributing.adoc

Spring Cloud Task App Starters Reference Guide

Dearborn.RELEASE Spring Cloud Data Flow 16

4. Timestamp Batch Task

A batch job task that executes 2 jobs each job prints out the job name and a timestamp to stdout.
Intended to primarily be used for testing.

4.1 Options

The timestamp task has the following options:

timestamp.format
The timestamp format, "yyyy-MM-dd HH:mm:ss.SSS" by default. (String, default: yyyy-MM-dd
HH:mm:ss.SSS)

4.2 Building with Maven

$./mvnw clean install -PgenerateApps

$ cd apps/timestamp-batch-task

$./mvnw clean package

4.3 Example

java -jar timestamp-batch-task-<version>.jar

4.4 Contributing

We welcome contributions! Follow this github.com/spring-cloud-task-app-starters/app-starters-release/
blob/master/spring-cloud-task-app-starters-

https://github.com/spring-cloud-task-app-starters/app-starters-release/blob/master/spring-cloud-task-app-starters-
https://github.com/spring-cloud-task-app-starters/app-starters-release/blob/master/spring-cloud-task-app-starters-

Part III. Appendices

Spring Cloud Task App Starters Reference Guide

Dearborn.RELEASE Spring Cloud Data Flow 18

Appendix A. Building
A.1 Basic Compile and Test

To build the source you will need to install JDK 1.7.

The build uses the Maven wrapper so you don’t have to install a specific version of Maven. To enable
the tests for Redis you should run the server before bulding. See below for more information on how
run Redis.

The main build command is

$./mvnw clean install

You can also add '-DskipTests' if you like, to avoid running the tests.

Note

You can also install Maven (>=3.3.3) yourself and run the mvn command in place of ./mvnw in
the examples below. If you do that you also might need to add -P spring if your local Maven
settings do not contain repository declarations for spring pre-release artifacts.

Note

Be aware that you might need to increase the amount of memory available to Maven by setting a
MAVEN_OPTS environment variable with a value like -Xmx512m -XX:MaxPermSize=128m. We
try to cover this in the .mvn configuration, so if you find you have to do it to make a build succeed,
please raise a ticket to get the settings added to source control.

The projects that require middleware generally include a docker-compose.yml, so consider using
Docker Compose to run the middeware servers in Docker containers. See the README in the scripts
demo repository for specific instructions about the common cases of mongo, rabbit and redis.

A.2 Documentation

There is a "full" profile that will generate documentation. You can build just the documentation by
executing

$./mvnw package -DskipTests=true -P full -pl spring-cloud-task-app-starters-docs -am

A.3 Working with the code

If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or Eclipse
when working with the code. We use the m2eclipe eclipse plugin for maven support. Other IDEs and
tools should also work without issue.

Importing into eclipse with m2eclipse

We recommend the m2eclipe eclipse plugin when working with eclipse. If you don’t already have
m2eclipse installed it is available from the "eclipse marketplace".

http://compose.docker.io/
https://github.com/spring-cloud-samples/scripts
https://github.com/spring-cloud-samples/scripts
http://www.springsource.com/developer/sts
http://eclipse.org
http://eclipse.org/m2e/
http://eclipse.org/m2e/

Spring Cloud Task App Starters Reference Guide

Dearborn.RELEASE Spring Cloud Data Flow 19

Unfortunately m2e does not yet support Maven 3.3, so once the projects are imported into Eclipse you
will also need to tell m2eclipse to use the .settings.xml file for the projects. If you do not do this
you may see many different errors related to the POMs in the projects. Open your Eclipse preferences,
expand the Maven preferences, and select User Settings. In the User Settings field click Browse and
navigate to the Spring Cloud project you imported selecting the .settings.xml file in that project.
Click Apply and then OK to save the preference changes.

Note

Alternatively you can copy the repository settings from .settings.xml into your own ~/.m2/
settings.xml.

Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following
command:

$./mvnw eclipse:eclipse

The generated eclipse projects can be imported by selecting import existing projects from the
file menu.

https://github.com/spring-cloud/spring-cloud-build/blob/master/.settings.xml

Spring Cloud Task App Starters Reference Guide

Dearborn.RELEASE Spring Cloud Data Flow 20

Appendix B. Contributing
Spring Cloud is released under the non-restrictive Apache 2.0 license and follows a very standard Github
development process, using Github tracker for issues and merging pull requests into master. If you want
to contribute even something trivial, please do not hesitate, but follow the guidelines below.

B.1 Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request, we need you to sign the contributor’s agreement.
Signing the contributor’s agreement does not grant anyone commit rights to the main repository, but
it does mean that we can accept your contributions, and you will get an author credit if we do. Active
contributors might be asked to join the core team and be given the ability to merge pull requests.

B.2 Code Conventions and Housekeeping

None of the following guidelines is essential for a pull request, but they all help your fellow developers
understand and work with your code. They can also be added after the original pull request but before
a merge.

• Use the Spring Framework code format conventions. If you use Eclipse, you can import formatter
settings by using the eclipse-code-formatter.xml file from the Spring Cloud Build project. If
using IntelliJ, you can use the Eclipse Code Formatter Plugin to import the same file.

• Make sure all new .java files have a simple Javadoc class comment with at least an @author tag
identifying you, and preferably at least a paragraph describing the class’s purpose.

• Add the ASF license header comment to all new .java files (to do so, copy from existing files in
the project).

• Add yourself as an @author to the .java files that you modify substantially (more than cosmetic
changes).

• Add some Javadocs and, if you change the namespace, some XSD doc elements.

• A few unit tests would help a lot as well. Someone has to do it, and your fellow developers appreciate
the effort.

• If no one else uses your branch, rebase it against the current master (or other target branch in the
main project).

• When writing a commit message, follow these conventions. If you fix an existing issue, add Fixes
gh-XXXX (where XXXX is the issue number) at the end of the commit message.

https://cla.pivotal.io
https://github.com/spring-cloud/spring-cloud-build/blob/master/spring-cloud-dependencies-parent/eclipse-code-formatter.xml
http://plugins.jetbrains.com/plugin/6546
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

	Spring Cloud Task App Starters Reference Guide
	Table of Contents
	Part I. Reference Guide
	1. Spring Cloud Task Starters
	1.1 Introduction
	1.2 Starters and pre-built applications
	Maven and Docker accesss
	Building the artifacts

	1.3 Creating custom artifacts
	Creating your own applications
	Using generic Spring Cloud Task applications
	Using the starters to create custom components

	1.4 Contributing Task Application Starters

	Part II. Tasks
	2. Timestamp Task
	2.1 Options
	2.2 Building with Maven
	2.3 Example
	2.4 Contributing

	3. Composed Task Runner
	3.1 Overview
	3.2 Graph DSL
	3.3 Traversing the graph
	Sequences
	Transitions
	Wildcard

	Splits

	3.4 Options
	3.5 Building with Maven
	3.6 Example
	3.7 Contributing

	4. Timestamp Batch Task
	4.1 Options
	4.2 Building with Maven
	4.3 Example
	4.4 Contributing

	Part III. Appendices
	Appendix A. Building
	A.1 Basic Compile and Test
	A.2 Documentation
	A.3 Working with the code
	Importing into eclipse with m2eclipse
	Importing into eclipse without m2eclipse

	Appendix B. Contributing
	B.1 Sign the Contributor License Agreement
	B.2 Code Conventions and Housekeeping

