

 Michael Minella, Glenn Renfro, Jay Bryant

Spring Cloud Task Reference Guide

 © 2009-2020 VMware, Inc. All rights reserved.

Copies of this document may be made for your own use and for distribution to
others, provided that you do not charge any fee for such copies and further
provided that each copy contains this Copyright Notice, whether distributed in
print or electronically.

1. Preface

 This section provides a brief overview of the Spring Cloud Task reference documentation.
Think of it as a map for the rest of the document. You can read this reference guide in a
linear fashion or you can skip sections if something does not interest you.

1.1. About the documentation

 The Spring Cloud Task reference guide is available in html
and pdf,
epub . The
latest copy is available at docs.spring.io/spring-cloud-task/docs/current-SNAPSHOT/reference/html/.

Copies of this document may be made for your own use and for distribution to others,
provided that you do not charge any fee for such copies and further provided that each
copy contains this Copyright Notice, whether distributed in print or electronically.

1.2. Getting help

 Having trouble with Spring Cloud Task? We would like to help!

	
Ask a question. We monitor stackoverflow.com for questions
tagged with spring-cloud-task.

	
Report bugs with Spring Cloud Task at
github.com/spring-cloud/spring-cloud-task/issues.

All of Spring Cloud Task is open source, including the documentation. If you find
a problem with the docs or if you just want to improve them, please get
involved.

1.3. First Steps

 If you are just getting started with Spring Cloud Task or with 'Spring' in general, we
suggesting reading the Getting started chapter.

To get started from scratch, read the following sections:

	
Introducing Spring Cloud Task

	
System Requirements

To follow the tutorial, read
Developing Your First Spring Cloud Task Application

To run your example, read
Running the Example

2. Getting started

If you are just getting started with Spring Cloud Task, you should read this section.
Here, we answer the basic “what?”, “how?”, and “why?” questions. We start with a
gentle introduction to Spring Cloud Task. We then build a Spring Cloud Task application,
discussing some core principles as we go.

2.1. Introducing Spring Cloud Task

 Spring Cloud Task makes it easy to create short-lived microservices. It provides
capabilities that let short lived JVM processes be executed on demand in a production
environment.

2.2. System Requirements

 You need to have Java installed (Java 8 or better). To build, you need to have Maven
installed as well.

2.2.1. Database Requirements

 Spring Cloud Task uses a relational database to store the results of an executed task.
While you can begin developing a task without a database (the status of the task is logged
as part of the task repository’s updates), for production environments, you want to
use a supported database. Spring Cloud Task currently supports the following databases:

	
DB2

	
H2

	
HSQLDB

	
MySql

	
Oracle

	
Postgres

	
SqlServer

2.3. Developing Your First Spring Cloud Task Application

 A good place to start is with a simple “Hello, World!” application, so we create the
Spring Cloud Task equivalent to highlight the features of the framework. Most IDEs have
good support for Apache Maven, so we use it as the build tool for this project.

The spring.io web site contains many “Getting Started” that use Spring Boot. If you need to solve a specific problem, check there first.
You can shortcut the following steps by going to the
Spring Initializr and creating a new project. Doing so
automatically generates a new project structure so that you can start coding right away.
We recommend experimenting with the Spring Initializr to become familiar with it.

2.3.1. Creating the Spring Task Project using Spring Initializr

 Now we can create and test an application that prints Hello, World! to the console.

To do so:

	
Visit the Spring Initialzr site.

	
Create a new Maven project with a Group name of io.spring.demo and an Artifact name of helloworld.

	
In the Dependencies text box, type task and then select the Cloud Task dependency.

	
In the Dependencies text box, type jdbc and then select the JDBC dependency.

	
In the Dependencies text box, type h2 and then select the H2. (or your favorite database)

	
Click the Generate Project button

	
Unzip the helloworld.zip file and import the project into your favorite IDE.

2.3.2. Writing the Code

 To finish our application, we need to update the generated HelloworldApplication with the following contents so that it launches a Task.

 package io.spring.demo.helloworld;

import org.springframework.boot.CommandLineRunner;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

@SpringBootApplication
@EnableTask
public class HelloworldApplication {

 @Bean
 public CommandLineRunner commandLineRunner() {
 return new HelloWorldCommandLineRunner();
 }

 public static void main(String[] args) {
 SpringApplication.run(HelloworldApplication.class, args);
 }

 public static class HelloWorldCommandLineRunner implements CommandLineRunner {

 @Override
 public void run(String... strings) throws Exception {
 System.out.println("Hello, World!");
 }
 }
}

While it may seem small, quite a bit is going on. For more about Spring
Boot specifics, see the
Spring Boot reference documentation.

Now we can open the application.properties file in src/main/resources.
We need to configure two properties in application.properties:

	
application.name: To set the application name (which is translated to the task name)

	
logging.level: To set the logging for Spring Cloud Task to DEBUG in order to
get a view of what is going on.

The following example shows how to do both:

 logging.level.org.springframework.cloud.task=DEBUG
spring.application.name=helloWorld

Task Auto Configuration

 When including Spring Cloud Task Starter dependency, Task auto configures all beans to bootstrap it’s functionality.
Part of this configuration registers the TaskRepository and the infrastructure for its use.

In our demo, the TaskRepository uses an embedded H2 database to record the results
of a task. This H2 embedded database is not a practical solution for a production environment, since
the H2 DB goes away once the task ends. However, for a quick getting-started
experience, we can use this in our example as well as echoing to the logs what is being updated
in that repository. In the Configuration section (later in this
documentation), we cover how to customize the configuration of the pieces provided by
Spring Cloud Task.

When our sample application runs, Spring Boot launches our HelloWorldCommandLineRunner
and outputs our “Hello, World!” message to standard out. The TaskLifecycleListener
records the start of the task and the end of the task in the repository.

The main method

 The main method serves as the entry point to any java application. Our main method
delegates to Spring Boot’s SpringApplication class.

The CommandLineRunner

 Spring includes many ways to bootstrap an application’s logic. Spring Boot provides
a convenient method of doing so in an organized manner through its *Runner interfaces
(CommandLineRunner or ApplicationRunner). A well behaved task can bootstrap any
logic by using one of these two runners.

The lifecycle of a task is considered from before the *Runner#run methods are executed
to once they are all complete. Spring Boot lets an application use multiple
*Runner implementations, as does Spring Cloud Task.

Any processing bootstrapped from mechanisms other than a CommandLineRunner or
ApplicationRunner (by using InitializingBean#afterPropertiesSet for example) is not
 recorded by Spring Cloud Task.

2.3.3. Running the Example

 At this point, our application should work. Since this application is Spring Boot-based,
we can run it from the command line by using $ mvn spring-boot:run from the root
of our application, as shown (with its output) in the following example:

 $ mvn clean spring-boot:run
....... . . .
....... . . . (Maven log output here)
....... . . .

 . ____ _ __ _ _
 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \
(()___ | '_ | '_| | '_ \/ _` | \ \ \ \
 \\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, | / / / /
 =========|_|==============|___/=/_/_/_/
 :: Spring Boot :: (v2.0.3.RELEASE)

2018-07-23 17:44:34.426 INFO 1978 --- [main] i.s.d.helloworld.HelloworldApplication : Starting HelloworldApplication on Glenns-MBP-2.attlocal.net with PID 1978 (/Users/glennrenfro/project/helloworld/target/classes started by glennrenfro in /Users/glennrenfro/project/helloworld)
2018-07-23 17:44:34.430 INFO 1978 --- [main] i.s.d.helloworld.HelloworldApplication : No active profile set, falling back to default profiles: default
2018-07-23 17:44:34.472 INFO 1978 --- [main] s.c.a.AnnotationConfigApplicationContext : Refreshing org.springframework.context.annotation.AnnotationConfigApplicationContext@1d24f32d: startup date [Mon Jul 23 17:44:34 EDT 2018]; root of context hierarchy
2018-07-23 17:44:35.280 INFO 1978 --- [main] com.zaxxer.hikari.HikariDataSource : HikariPool-1 - Starting...
2018-07-23 17:44:35.410 INFO 1978 --- [main] com.zaxxer.hikari.HikariDataSource : HikariPool-1 - Start completed.
2018-07-23 17:44:35.419 DEBUG 1978 --- [main] o.s.c.t.c.SimpleTaskConfiguration : Using org.springframework.cloud.task.configuration.DefaultTaskConfigurer TaskConfigurer
2018-07-23 17:44:35.420 DEBUG 1978 --- [main] o.s.c.t.c.DefaultTaskConfigurer : No EntityManager was found, using DataSourceTransactionManager
2018-07-23 17:44:35.522 DEBUG 1978 --- [main] o.s.c.t.r.s.TaskRepositoryInitializer : Initializing task schema for h2 database
2018-07-23 17:44:35.525 INFO 1978 --- [main] o.s.jdbc.datasource.init.ScriptUtils : Executing SQL script from class path resource [org/springframework/cloud/task/schema-h2.sql]
2018-07-23 17:44:35.558 INFO 1978 --- [main] o.s.jdbc.datasource.init.ScriptUtils : Executed SQL script from class path resource [org/springframework/cloud/task/schema-h2.sql] in 33 ms.
2018-07-23 17:44:35.728 INFO 1978 --- [main] o.s.j.e.a.AnnotationMBeanExporter : Registering beans for JMX exposure on startup
2018-07-23 17:44:35.730 INFO 1978 --- [main] o.s.j.e.a.AnnotationMBeanExporter : Bean with name 'dataSource' has been autodetected for JMX exposure
2018-07-23 17:44:35.733 INFO 1978 --- [main] o.s.j.e.a.AnnotationMBeanExporter : Located MBean 'dataSource': registering with JMX server as MBean [com.zaxxer.hikari:name=dataSource,type=HikariDataSource]
2018-07-23 17:44:35.738 INFO 1978 --- [main] o.s.c.support.DefaultLifecycleProcessor : Starting beans in phase 0
2018-07-23 17:44:35.762 DEBUG 1978 --- [main] o.s.c.t.r.support.SimpleTaskRepository : Creating: TaskExecution{executionId=0, parentExecutionId=null, exitCode=null, taskName='application', startTime=Mon Jul 23 17:44:35 EDT 2018, endTime=null, exitMessage='null', externalExecutionId='null', errorMessage='null', arguments=[]}
2018-07-23 17:44:35.772 INFO 1978 --- [main] i.s.d.helloworld.HelloworldApplication : Started HelloworldApplication in 1.625 seconds (JVM running for 4.764)
Hello, World!
2018-07-23 17:44:35.782 DEBUG 1978 --- [main] o.s.c.t.r.support.SimpleTaskRepository : Updating: TaskExecution with executionId=1 with the following {exitCode=0, endTime=Mon Jul 23 17:44:35 EDT 2018, exitMessage='null', errorMessage='null'}

The preceding output has three lines that of interest to us here:

	
SimpleTaskRepository logged the creation of the entry in the TaskRepository.

	
The execution of our CommandLineRunner, demonstrated by the “Hello, World!” output.

	
SimpleTaskRepository logs the completion of the task in the TaskRepository.

A simple task application can be found in the samples module of the Spring Cloud
Task Project
here.

3. Features

This section goes into more detail about Spring Cloud Task, including how to use it, how
to configure it, and the appropriate extension points.

3.1. The lifecycle of a Spring Cloud Task

 In most cases, the modern cloud environment is designed around the execution of processes
that are not expected to end. If they do end, they are typically restarted. While most
platforms do have some way to run a process that is not restarted when it ends, the
results of that run are typically not maintained in a consumable way. Spring Cloud
Task offers the ability to execute short-lived processes in an environment and record the
results. Doing so allows for a microservices architecture around short-lived processes as
well as longer running services through the integration of tasks by messages.

While this functionality is useful in a cloud environment, the same issues can arise in a
traditional deployment model as well. When running Spring Boot applications with a
scheduler such as cron, it can be useful to be able to monitor the results of the
application after its completion.

Spring Cloud Task takes the approach that a Spring Boot application can have a start and
an end and still be successful. Batch applications are one example of how processes that
are expected to end (and that are often short-lived) can be helpful.

Spring Cloud Task records the lifecycle events of a given task. Most long-running
processes, typified by most web applications, do not save their lifecycle events. The
tasks at the heart of Spring Cloud Task do.

The lifecycle consists of a single task execution. This is a physical execution of a
Spring Boot application configured to be a task (that is, it has the Sprint Cloud Task dependencies).

At the beginning of a task, before any CommandLineRunner or ApplicationRunner
implementations have been run, an entry in the TaskRepository that records the start
event is created. This event is triggered through SmartLifecycle#start being triggered
by the Spring Framework. This indicates to the system that all beans are ready for use and
comes before running any of the CommandLineRunner or ApplicationRunner implementations
provided by Spring Boot.

The recording of a task only occurs upon the successful bootstrapping of an
ApplicationContext. If the context fails to bootstrap at all, the task’s run is not
recorded.

Upon completion of all of the *Runner#run calls from Spring Boot or the failure of an
ApplicationContext (indicated by an ApplicationFailedEvent), the task execution is
updated in the repository with the results.

If the application requires the ApplicationContext to be closed at the
completion of a task (all *Runner#run methods have been called and the task
repository has been updated), set the property spring.cloud.task.closecontextEnabled
to true.

3.1.1. The TaskExecution

 The information stored in the TaskRepository is modeled in the TaskExecution class and
consists of the following information:

	Field
	Description

	executionid

	The unique ID for the task’s run.

	exitCode

	The exit code generated from an ExitCodeExceptionMapper implementation. If there is no
exit code generated but an ApplicationFailedEvent is thrown, 1 is set. Otherwise, it is
assumed to be 0.

	taskName

	The name for the task, as determined by the configured TaskNameResolver.

	startTime

	The time the task was started, as indicated by the SmartLifecycle#start call.

	endTime

	The time the task was completed, as indicated by the ApplicationReadyEvent.

	exitMessage

	Any information available at the time of exit. This can programmatically be set by a
TaskExecutionListener.

	errorMessage

	If an exception is the cause of the end of the task (as indicated by an
ApplicationFailedEvent), the stack trace for that exception is stored here.

	arguments

	A List of the string command line arguments as they were passed into the executable
boot application.

3.1.2. Mapping Exit Codes

 When a task completes, it tries to return an exit code to the OS. If we take a look
at our original example, we can see that we are
not controlling that aspect of our application. So, if an exception is thrown, the JVM
returns a code that may or may not be of any use to you in debugging.

Consequently, Spring Boot provides an interface, ExitCodeExceptionMapper, that lets you
map uncaught exceptions to exit codes. Doing so lets you indicate, at the level of exit
codes, what went wrong. Also, by mapping exit codes in this manner, Spring Cloud Task
records the returned exit code.

If the task terminates with a SIG-INT or a SIG-TERM, the exit code is zero unless
otherwise specified within the code.

While the task is running, the exit code is stored as a null in the repository.
Once the task completes, the appropriate exit code is stored based on the guidelines described
earlier in this section.

3.2. Configuration

 Spring Cloud Task provides a ready-to-use configuration, as defined in the
DefaultTaskConfigurer and SimpleTaskConfiguration classes. This section walks through
the defaults and how to customize Spring Cloud Task for your needs.

3.2.1. DataSource

 Spring Cloud Task uses a datasource for storing the results of task executions. By
default, we provide an in-memory instance of H2 to provide a simple method of
bootstrapping development. However, in a production environment, you probably want to
configure your own DataSource.

If your application uses only a single DataSource and that serves as both your business
schema and the task repository, all you need to do is provide any DataSource (the
easiest way to do so is through Spring Boot’s configuration conventions). This
DataSource is automatically used by Spring Cloud Task for the repository.

If your application uses more than one DataSource, you need to configure the task
repository with the appropriate DataSource. This customization can be done through an
implementation of TaskConfigurer.

3.2.2. Table Prefix

 One modifiable property of TaskRepository is the table prefix for the task tables. By
default, they are all prefaced with TASK_. TASK_EXECUTION and TASK_EXECUTION_PARAMS
are two examples. However, there are potential reasons to modify this prefix. If the
schema name needs to be prepended to the table names or if more than one set of task
tables is needed within the same schema, you must change the table prefix. You can do so
by setting the spring.cloud.task.tablePrefix to the prefix you need, as follows:

spring.cloud.task.tablePrefix=yourPrefix

By using the spring.cloud.task.tablePrefix, a user assumes the responsibility to
create the task tables that meet both the criteria for the task table schema but
with modifications that are required for a user’s business needs.
You can utilize the Spring Cloud Task Schema DDL as a guide when creating your own Task DDL as seen
here.

3.2.3. Enable/Disable table initialization

 In cases where you are creating the task tables and do not wish for Spring Cloud Task to
create them at task startup, set the spring.cloud.task.initialize-enabled property to
false, as follows:

spring.cloud.task.initialize-enabled=false

It defaults to true.

The property spring.cloud.task.initialize.enable has been deprecated.

3.2.4. Externally Generated Task ID

 In some cases, you may want to allow for the time difference between when a task is
requested and when the infrastructure actually launches it. Spring Cloud Task lets you
create a TaskExecution when the task is requested. Then pass the execution ID of the
generated TaskExecution to the task so that it can update the TaskExecution through
the task’s lifecycle.

A TaskExecution can be created by calling the createTaskExecution method on an
implementation of the TaskRepository that references the datastore that holds
the TaskExecution objects.

In order to configure your Task to use a generated TaskExecutionId, add the
following property:

spring.cloud.task.executionid=yourtaskId

3.2.5. External Task Id

 Spring Cloud Task lets you store an external task ID for each
TaskExecution. An example of this would be a task ID provided by
Cloud Foundry when a task is launched on the platform.
In order to configure your Task to use a generated TaskExecutionId, add the
following property:

spring.cloud.task.external-execution-id=<externalTaskId>

3.2.6. Parent Task Id

 Spring Cloud Task lets you store a parent task ID for each TaskExecution. An example of
this would be a task that executes another task or tasks and you want to record which task
launched each of the child tasks. In order to configure your Task to set a parent
TaskExecutionId add the following property on the child task:

spring.cloud.task.parent-execution-id=<parentExecutionTaskId>

3.2.7. TaskConfigurer

 The TaskConfigurer is a strategy interface that lets you customize the way components of
Spring Cloud Task are configured. By default, we provide the DefaultTaskConfigurer that
provides logical defaults: Map-based in-memory components (useful for development if no
DataSource is provided) and JDBC based components (useful if there is a DataSource
available).

The TaskConfigurer lets you configure three main components:

	Component
	Description
	Default (provided by DefaultTaskConfigurer)

	TaskRepository

	The implementation of the TaskRepository to be used.

	SimpleTaskRepository

	TaskExplorer

	The implementation of the TaskExplorer (a component for read-only access to the task
repository) to be used.

	SimpleTaskExplorer

	PlatformTransactionManager

	A transaction manager to be used when running updates for tasks.

	DataSourceTransactionManager if a DataSource is used.
ResourcelessTransactionManager if it is not.

You can customize any of the components described in the preceding table by creating a
custom implementation of the TaskConfigurer interface. Typically, extending the
DefaultTaskConfigurer (which is provided if a TaskConfigurer is not found) and
overriding the required getter is sufficient. However, implementing your own from scratch
may be required.

Users should not directly use getter methods from a TaskConfigurer directly
unless they are using it to supply implementations to be exposed as Spring Beans.

3.2.8. Task Name

 In most cases, the name of the task is the application name as configured in Spring
Boot. However, there are some cases where you may want to map the run of a task to a
different name. Spring Cloud Data Flow is an example of this (because you probably want
the task to be run with the name of the task definition). Because of this, we offer the
ability to customize how the task is named, through the TaskNameResolver interface.

By default, Spring Cloud Task provides the SimpleTaskNameResolver, which uses the
following options (in order of precedence):

	
A Spring Boot property (configured in any of the ways Spring Boot allows) called
spring.cloud.task.name.

	
The application name as resolved using Spring Boot’s rules (obtained through
ApplicationContext#getId).

3.2.9. Task Execution Listener

 TaskExecutionListener lets you register listeners for specific events that occur during
the task lifecycle. To do so, create a class that implements the
TaskExecutionListener interface. The class that implements the TaskExecutionListener
interface is notified of the following events:

	
onTaskStartup: Prior to storing the TaskExecution into the TaskRepository.

	
onTaskEnd: Prior to updating the TaskExecution entry in the TaskRepository and
marking the final state of the task.

	
onTaskFailed: Prior to the onTaskEnd method being invoked when an unhandled
exception is thrown by the task.

Spring Cloud Task also lets you add TaskExecution Listeners to methods within a bean
by using the following method annotations:

	
@BeforeTask: Prior to the storing the TaskExecution into the TaskRepository

	
@AfterTask: Prior to the updating of the TaskExecution entry in the TaskRepository
marking the final state of the task.

	
@FailedTask: Prior to the @AfterTask method being invoked when an unhandled
exception is thrown by the task.

The following example shows the three annotations in use:

 public class MyBean {

 @BeforeTask
 public void methodA(TaskExecution taskExecution) {
 }

 @AfterTask
 public void methodB(TaskExecution taskExecution) {
 }

 @FailedTask
 public void methodC(TaskExecution taskExecution, Throwable throwable) {
 }
}

Inserting an ApplicationListener earlier in the chain than TaskLifecycleListener exists may cause unexpected effects.

Exceptions Thrown by Task Execution Listener

 If an exception is thrown by a TaskExecutionListener event handler, all listener
processing for that event handler stops. For example, if three onTaskStartup listeners
have started and the first onTaskStartup event handler throws an exception, the other
two onTaskStartup methods are not called. However, the other event handlers (onTaskEnd
and onTaskFailed) for the TaskExecutionListeners are called.

The exit code returned when a exception is thrown by a TaskExecutionListener
event handler is the exit code that was reported by the
ExitCodeEvent.
If no ExitCodeEvent is emitted, the Exception thrown is evaluated to see
if it is of type
ExitCodeGenerator.
If so, it returns the exit code from the ExitCodeGenerator. Otherwise, 1
is returned.

In the case that an exception is thrown in an onTaskStartup method, the exit code for the application will be 1.
If an exception is thrown in either a onTaskEnd or onTaskFailed
method, the exit code for the application will be the one established using the rules enumerated above.

In the case of an exception being thrown in a onTaskStartup, onTaskEnd, or onTaskFailed
you can not override the exit code for the application using ExitCodeExceptionMapper.

Exit Messages

 You can set the exit message for a task programmatically by using a
TaskExecutionListener. This is done by setting the TaskExecution’s exitMessage,
which then gets passed into the TaskExecutionListener. The following example shows
a method that is annotated with the @AfterTask ExecutionListener :

 @AfterTask
public void afterMe(TaskExecution taskExecution) {
 taskExecution.setExitMessage("AFTER EXIT MESSAGE");
}

An ExitMessage can be set at any of the listener events (onTaskStartup,
onTaskFailed, and onTaskEnd). The order of precedence for the three listeners follows:

	
onTaskEnd

	
onTaskFailed

	
onTaskStartup

For example, if you set an exitMessage for the onTaskStartup and onTaskFailed
listeners and the task ends without failing, the exitMessage from the onTaskStartup
is stored in the repository. Otherwise, if a failure occurs, the exitMessage from
the onTaskFailed is stored. Also if you set the exitMessage with an
onTaskEnd listener, the exitMessage from the onTaskEnd supersedes
the exit messages from both the onTaskStartup and onTaskFailed.

3.2.10. Restricting Spring Cloud Task Instances

 Spring Cloud Task lets you establish that only one task with a given task name can be run
at a time. To do so, you need to establish the task name and set
spring.cloud.task.single-instance-enabled=true for each task execution. While the first
task execution is running, any other time you try to run a task with the same
task name and`spring.cloud.task.single-instance-enabled=true`, the
task fails with the following error message: Task with name "application" is already
running. The default value for spring.cloud.task.single-instance-enabled is false. The
following example shows how to set spring.cloud.task.single-instance-enabled to true:

spring.cloud.task.single-instance-enabled=true or false

To use this feature, you must add the following Spring Integration dependencies to your
application:

 <dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-core</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-jdbc</artifactId>
</dependency>

The exit code for the application will be 1 if the task fails because this feature
is enabled and another task is running with the same task name.

3.2.11. Disabling Spring Cloud Task Auto Configuration

 In cases where Spring Cloud Task should not be auto configured for an implementation, you can disable Task’s auto configuration.
This can be done either by adding the following annotation to your Task application:

 @EnableAutoConfiguration(exclude={SimpleTaskAutoConfiguration.class})

You may also disable Task auto configuration by setting the spring.cloud.task.autoconfiguration.enabled property to false.

3.2.12. Closing the Context

 If the application requires the ApplicationContext to be closed at the
completion of a task (all *Runner#run methods have been called and the task
repository has been updated), set the property spring.cloud.task.closecontextEnabled
to true.

Another case to close the context is when the Task Execution completes however the application does not terminate.
In these cases the context is held open because a thread has been allocated
(for example: if you are using a TaskExecutor). In these cases
set the spring.cloud.task.closecontextEnabled property to true when launching your task.
This will close the application’s context once the task is complete.
Thus allowing the application to terminate.

4. Batch

This section goes into more detail about Spring Cloud Task’s integration with Spring
Batch. Tracking the association between a job execution and the task in which it was
executed as well as remote partitioning through Spring Cloud Deployer are covered in
this section.

4.1. Associating a Job Execution to the Task in which It Was Executed

 Spring Boot provides facilities for the execution of batch jobs within an über-jar.
Spring Boot’s support of this functionality lets a developer execute multiple batch jobs
within that execution. Spring Cloud Task provides the ability to associate the execution
of a job (a job execution) with a task’s execution so that one can be traced back to the
other.

Spring Cloud Task achieves this functionality by using the TaskBatchExecutionListener.
By default,
this listener is auto configured in any context that has both a Spring Batch Job
configured (by having a bean of type Job defined in the context) and the
spring-cloud-task-batch jar on the classpath. The listener is injected into all jobs
that meet those conditions.

4.1.1. Overriding the TaskBatchExecutionListener

 To prevent the listener from being injected into any batch jobs within the current
context, you can disable the autoconfiguration by using standard Spring Boot mechanisms.

To only have the listener injected into particular jobs within the context, override the
batchTaskExecutionListenerBeanPostProcessor and provide a list of job bean IDs, as shown
in the following example:

 public TaskBatchExecutionListenerBeanPostProcessor batchTaskExecutionListenerBeanPostProcessor() {
 TaskBatchExecutionListenerBeanPostProcessor postProcessor =
 new TaskBatchExecutionListenerBeanPostProcessor();

 postProcessor.setJobNames(Arrays.asList(new String[] {"job1", "job2"}));

 return postProcessor;
}

You can find a sample batch application in the samples module of the Spring Cloud
Task Project,
here.

4.2. Remote Partitioning

 Spring Cloud Deployer provides facilities for launching Spring Boot-based applications on
most cloud infrastructures. The DeployerPartitionHandler and
DeployerStepExecutionHandler delegate the launching of worker step executions to Spring
Cloud Deployer.

To configure the DeployerStepExecutionHandler, you must provide a Resource
representing the Spring Boot über-jar to be executed, a TaskLauncher, and a
JobExplorer. You can configure any environment properties as well as the max number of
workers to be executing at once, the interval to poll for the results (defaults to 10
seconds), and a timeout (defaults to -1 or no timeout). The following example shows how
configuring this PartitionHandler might look:

 @Bean
public PartitionHandler partitionHandler(TaskLauncher taskLauncher,
 JobExplorer jobExplorer) throws Exception {

 MavenProperties mavenProperties = new MavenProperties();
 mavenProperties.setRemoteRepositories(new HashMap<>(Collections.singletonMap("springRepo",
 new MavenProperties.RemoteRepository(repository))));

 Resource resource =
 MavenResource.parse(String.format("%s:%s:%s",
 "io.spring.cloud",
 "partitioned-batch-job",
 "1.1.0.RELEASE"), mavenProperties);

 DeployerPartitionHandler partitionHandler =
 new DeployerPartitionHandler(taskLauncher, jobExplorer, resource, "workerStep");

 List<String> commandLineArgs = new ArrayList<>(3);
 commandLineArgs.add("--spring.profiles.active=worker");
 commandLineArgs.add("--spring.cloud.task.initialize.enable=false");
 commandLineArgs.add("--spring.batch.initializer.enabled=false");

 partitionHandler.setCommandLineArgsProvider(
 new PassThroughCommandLineArgsProvider(commandLineArgs));
 partitionHandler.setEnvironmentVariablesProvider(new NoOpEnvironmentVariablesProvider());
 partitionHandler.setMaxWorkers(2);
 partitionHandler.setApplicationName("PartitionedBatchJobTask");

 return partitionHandler;
}

When passing environment variables to partitions, each partition may
be on a different machine with different environment settings.
Consequently, you should pass only those environment variables that are required.

Notice in the example above that we have set the maximum number of workers to 2.
Setting the maximum of workers establishes the maximum number of
partitions that should be running at one time.

The Resource to be executed is expected to be a Spring Boot über-jar with a
DeployerStepExecutionHandler configured as a CommandLineRunner in the current context.
The repository enumerated in the preceding example should be the remote repository in
which the über-jar is located. Both the manager and worker are expected to have visibility
into the same data store being used as the job repository and task repository. Once the
underlying infrastructure has bootstrapped the Spring Boot jar and Spring Boot has
launched the DeployerStepExecutionHandler, the step handler executes the requested
Step. The following example shows how to configure the DeployerStepExecutionHandler:

 @Bean
public DeployerStepExecutionHandler stepExecutionHandler(JobExplorer jobExplorer) {
 DeployerStepExecutionHandler handler =
 new DeployerStepExecutionHandler(this.context, jobExplorer, this.jobRepository);

 return handler;
}

You can find a sample remote partition application in the samples module of the
Spring Cloud Task project,
here.

4.2.1. Notes on Developing a Batch-partitioned application for the Kubernetes Platform

	
When deploying partitioned apps on the Kubernetes platform, you must use the following
dependency for the Spring Cloud Kubernetes Deployer:

 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-deployer-kubernetes</artifactId>
</dependency>

	
The application name for the task application and its partitions need to follow
the following regex pattern: [a-z0-9]([-a-z0-9]*[a-z0-9]).
Otherwise, an exception is thrown.

4.2.2. Notes on Developing a Batch-partitioned Application for the Cloud Foundry Platform

	
When deploying partitioned apps on the Cloud Foundry platform, you must use the
following dependencies for the Spring Cloud Foundry Deployer:

 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-deployer-cloudfoundry</artifactId>
</dependency>
<dependency>
 <groupId>io.projectreactor</groupId>
 <artifactId>reactor-core</artifactId>
 <version>3.1.5.RELEASE</version>
</dependency>
<dependency>
 <groupId>io.projectreactor.ipc</groupId>
 <artifactId>reactor-netty</artifactId>
 <version>0.7.5.RELEASE</version>
</dependency>

	
When configuring the partition handler, Cloud Foundry Deployment
environment variables need to be established so that the partition handler
can start the partitions. The following list shows the required environment
variables:

	
spring_cloud_deployer_cloudfoundry_url

	
spring_cloud_deployer_cloudfoundry_org

	
spring_cloud_deployer_cloudfoundry_space

	
spring_cloud_deployer_cloudfoundry_domain

	
spring_cloud_deployer_cloudfoundry_username

	
spring_cloud_deployer_cloudfoundry_password

	
spring_cloud_deployer_cloudfoundry_services

	
spring_cloud_deployer_cloudfoundry_taskTimeout

An example set of deployment environment variables for a partitioned task that
uses a mysql database service might resemble the following:

 spring_cloud_deployer_cloudfoundry_url=https://api.local.pcfdev.io
spring_cloud_deployer_cloudfoundry_org=pcfdev-org
spring_cloud_deployer_cloudfoundry_space=pcfdev-space
spring_cloud_deployer_cloudfoundry_domain=local.pcfdev.io
spring_cloud_deployer_cloudfoundry_username=admin
spring_cloud_deployer_cloudfoundry_password=admin
spring_cloud_deployer_cloudfoundry_services=mysql
spring_cloud_deployer_cloudfoundry_taskTimeout=300

When using PCF-Dev, the following environment variable is also required:
spring_cloud_deployer_cloudfoundry_skipSslValidation=true

4.3. Batch Informational Messages

 Spring Cloud Task provides the ability for batch jobs to emit informational messages. The
“Spring Batch Events” section covers this feature in detail.

4.4. Batch Job Exit Codes

 As discussed earlier, Spring Cloud Task
applications support the ability to record the exit code of a task execution. However, in
cases where you run a Spring Batch Job within a task, regardless of how the Batch Job
Execution completes, the result of the task is always zero when using the default
Batch/Boot behavior. Keep in mind that a task is a boot application and that the exit code
returned from the task is the same as a boot application.
To override this behavior and allow the task to return an exit code other than zero when a
batch job returns an
BatchStatus
of FAILED, set spring.cloud.task.batch.fail-on-job-failure to true. Then the exit code
can be 1 (the default) or be based on the
specified
ExitCodeGenerator)

This functionality uses a new CommandLineRunner that replaces the one provided by Spring
Boot. By default, it is configured with the same order. However, if you want to customize
the order in which the CommandLineRunner is run, you can set its order by setting the
spring.cloud.task.batch.commandLineRunnerOrder property. To have your task return the
exit code based on the result of the batch job execution, you need to write your own
CommandLineRunner.

5. Single Step Batch Job Starter

This section goes into how to develop a Spring Batch Job with a single Step by using the
starter included in Spring Cloud Task. This starter lets you use configuration
to define an ItemReader, an ItemWriter, or a full single-step Spring Batch Job.
For more about Spring Batch and its capabilities, see the
Spring Batch documentation.

To obtain the starter for Maven, add the following to your build:

 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-single-step-batch-job</artifactId>
 <version>2.3.0</version>
</dependency>

To obtain the starter for Gradle, add the following to your build:

 compile "org.springframework.cloud:spring-cloud-starter-single-step-batch-job:2.3.0"

5.1. Defining a Job

 You can use the starter to define as little as an ItemReader or an ItemWriter or as much as a full Job.
In this section, we define which properties are required to be defined to configure a
Job.

5.1.1. Properties

 To begin, the starter provides a set of properties that let you configure the basics of a Job with one Step:

Table 1. Job Properties

	Property
	Type
	Default Value
	Description

	spring.batch.job.jobName

	String

	null

	The name of the job.

	spring.batch.job.stepName

	String

	null

	The name of the step.

	spring.batch.job.chunkSize

	Integer

	null

	The number of items to be processed per transaction.

With the above properties configured, you have a job with a single, chunk-based step.
This chunk-based step reads, processes, and writes Map<String, Object> instances as the
items. However, the step does not yet do anything. You need to configure an ItemReader, an
optional ItemProcessor, and an ItemWiter to give it something to do. To configure one
of these, you can either use properties and configure one of the options that has provided
autoconfiguration or you can configure your own with the standard Spring configuration
mechanisms.

If you configure your own, the input and output types must match the others in the step.
The ItemReader implementations and ItemWriter implementations in this starter all use
a Map<String, Object> as the input and the output item.

5.2. Autoconfiguration for ItemReader Implementations

 This starter provides autoconfiguration for four different ItemReader implementations:
AmqpItemReader, FlatFileItemReader, JdbcCursorItemReader, and KafkaItemReader.
In this section, we outline how to configure each of these by using the provided
autoconfiguration.

5.2.1. AmqpItemReader

 You can read from a queue or topic with AMQP by using the AmqpItemReader. The
autoconfiguration for this ItemReader implementation is dependent upon two sets of
configuration. The first is the configuration of an AmqpTemplate. You can either
configure this yourself or use the autoconfiguration provided by Spring Boot. See the
 Spring Boot AMQP documentation.
Once you have configured the AmqpTemplate, you can enable the batch capabilities to support it
by setting the following properties:

Table 2. AmqpItemReader Properties

	Property
	Type
	Default Value
	Description

	spring.batch.job.amqpitemreader.enabled

	boolean

	false

	If true, the autoconfiguration will execute.

	spring.batch.job.amqpitemreader.jsonConverterEnabled

	boolean

	true

	Indicates if the Jackson2JsonMessageConverter should be registered to parse messages.

For more information, see the AmqpItemReader documentation.

5.2.2. FlatFileItemReader

 FlatFileItemReader lets you read from flat files (such as CSVs
and other file formats). To read from a file, you can provide some components
yourself through normal Spring configuration (LineTokenizer, RecordSeparatorPolicy,
FieldSetMapper, LineMapper, or SkippedLinesCallback). You can also use the
following properties to configure the reader:

Table 3. FlatFileItemReader Properties

	Property
	Type
	Default Value
	Description

	spring.batch.job.flatfileitemreader.saveState

	boolean

	true

	Determines if the state should be saved for restarts.

	spring.batch.job.flatfileitemreader.name

	String

	null

	Name used to provide unique keys in the ExecutionContext.

	spring.batch.job.flatfileitemreader.maxItemcount

	int

	Integer.MAX_VALUE

	Maximum number of items to be read from the file.

	spring.batch.job.flatfileitemreader.currentItemCount

	int

	0

	Number of items that have already been read. Used on restarts.

	spring.batch.job.flatfileitemreader.comments

	List<String>

	empty List

	A list of Strings that indicate commented lines (lines to be ignored) in the file.

	spring.batch.job.flatfileitemreader.resource

	Resource

	null

	The resource to be read.

	spring.batch.job.flatfileitemreader.strict

	boolean

	true

	If set to true, the reader throws an exception if the resource is not found.

	spring.batch.job.flatfileitemreader.encoding

	String

	FlatFileItemReader.DEFAULT_CHARSET

	Encoding to be used when reading the file.

	spring.batch.job.flatfileitemreader.linesToSkip

	int

	0

	Indicates the number of lines to skip at the start of a file.

	spring.batch.job.flatfileitemreader.delimited

	boolean

	false

	Indicates whether the file is a delimited file (CSV and other formats). Only one of this property or spring.batch.job.flatfileitemreader.fixedLength can be true at the same time.

	spring.batch.job.flatfileitemreader.delimiter

	String

	DelimitedLineTokenizer.DELIMITER_COMMA

	If reading a delimited file, indicates the delimiter to parse on.

	spring.batch.job.flatfileitemreader.quoteCharacter

	char

	DelimitedLineTokenizer.DEFAULT_QUOTE_CHARACTER

	Used to determine the character used to quote values.

	spring.batch.job.flatfileitemreader.includedFields

	List<Integer>

	empty list

	A list of indices to determine which fields in a record to include in the item.

	spring.batch.job.flatfileitemreader.fixedLength

	boolean

	false

	Indicates if a file’s records are parsed by column numbers. Only one of this property or spring.batch.job.flatfileitemreader.delimited can be true at the same time.

	spring.batch.job.flatfileitemreader.ranges

	List<Range>

	empty list

	List of column ranges by which to parse a fixed width record. See the Range documentation.

	spring.batch.job.flatfileitemreader.names

	String []

	null

	List of names for each field parsed from a record. These names are the keys in the Map<String, Object> in the items returned from this ItemReader.

	spring.batch.job.flatfileitemreader.parsingStrict

	boolean

	true

	If set to true, the mapping fails if the fields cannot be mapped.

See the FlatFileItemReader documentation.

5.2.3. JdbcCursorItemReader

 The JdbcCursorItemReader runs a query against a relational database and iterates over
the resulting cursor (ResultSet) to provide the resulting items. This autoconfiguration
lets you provide a PreparedStatementSetter, a RowMapper, or both. You
can also use the following properties to configure a JdbcCursorItemReader:

Table 4. JdbcCursorItemReader Properties

	Property
	Type
	Default Value
	Description

	spring.batch.job.jdbccursoritemreader.saveState

	boolean

	true

	Determines whether the state should be saved for restarts.

	spring.batch.job.jdbccursoritemreader.name

	String

	null

	Name used to provide unique keys in the ExecutionContext.

	spring.batch.job.jdbccursoritemreader.maxItemcount

	int

	Integer.MAX_VALUE

	Maximum number of items to be read from the file.

	spring.batch.job.jdbccursoritemreader.currentItemCount

	int

	0

	Number of items that have already been read. Used on restarts.

	spring.batch.job.jdbccursoritemreader.fetchSize

	int

	
	A hint to the driver to indicate how many records to retrieve per call to the database system. For best performance, you usually want to set it to match the chunk size.

	spring.batch.job.jdbccursoritemreader.maxRows

	int

	
	Maximum number of items to read from the database.

	spring.batch.job.jdbccursoritemreader.queryTimeout

	int

	
	Number of milliseconds for the query to timeout.

	spring.batch.job.jdbccursoritemreader.ignoreWarnings

	boolean

	true

	Determines whether the reader should ignore SQL warnings when processing.

	spring.batch.job.jdbccursoritemreader.verifyCursorPosition

	boolean

	true

	Indicates whether the cursor’s position should be verified after each read to verify that the RowMapper did not advance the cursor.

	spring.batch.job.jdbccursoritemreader.driverSupportsAbsolute

	boolean

	false

	Indicates whether the driver supports absolute positioning of a cursor.

	spring.batch.job.jdbccursoritemreader.useSharedExtendedConnection

	boolean

	false

	Indicates whether the connection is shared with other processing (and is therefore part of a transaction).

	spring.batch.job.jdbccursoritemreader.sql

	String

	null

	SQL query from which to read.

See the JdbcCursorItemReader documentation.

5.2.4. KafkaItemReader

 Ingesting a partition of data from a Kafka topic is useful and exactly what the
KafkaItemReader can do. To configure a KafkaItemReader, two pieces
of configuration are required. First, configuring Kafka with Spring Boot’s Kafka
autoconfiguration is required (see the
Spring Boot Kafka documentation).
Once you have configured the Kafka properties from Spring Boot, you can configure the KafkaItemReader
itself by setting the following properties:

Table 5. KafkaItemReader Properties

	Property
	Type
	Default Value
	Description

	spring.batch.job.kafkaitemreader.name

	String

	null

	Name used to provide unique keys in the ExecutionContext.

	spring.batch.job.kafkaitemreader.topic

	String

	null

	Name of the topic from which to read.

	spring.batch.job.kafkaitemreader.partitions

	List<Integer>

	empty list

	List of partition indices from which to read.

	spring.batch.job.kafkaitemreader.pollTimeOutInSeconds

	long

	30

	Timeout for the poll() operations.

	spring.batch.job.kafkaitemreader.saveState

	boolean

	true

	Determines whether the state should be saved for restarts.

See the KafkaItemReader documentation.

5.3. ItemProcessor Configuration

 The single-step batch job autoconfiguration accepts an ItemProcessor if one
is available within the ApplicationContext. If one is found of the correct type
(ItemProcessor<Map<String, Object>, Map<String, Object>>), it is autowired
into the step.

5.4. Autoconfiguration for ItemWriter implementations

 This starter provides autoconfiguration for ItemWriter implementations that
match the supported ItemReader implementations: AmqpItemWriter,
FlatFileItemWriter, JdbcItemWriter, and KafkaItemWriter. This section
covers how to use autoconfiguration to configure a supported ItemWriter.

5.4.1. AmqpItemWriter

 To write to a RabbitMQ queue, you need two sets of configuration. First, you need an
AmqpTemplate. The easiest way to get this is by using Spring Boot’s
RabbitMQ autoconfiguration. See the Spring Boot RabbitMQ documentation.
Once you have configured the AmqpTemplate, you can configure the AmqpItemWriter by setting the
following properties:

Table 6. AmqpItemWriter Properties

	Property
	Type
	Default Value
	Description

	spring.batch.job.amqpitemwriter.enabled

	boolean

	false

	If true, the autoconfiguration runs.

	spring.batch.job.amqpitemwriter.jsonConverterEnabled

	boolean

	true

	Indicates whether Jackson2JsonMessageConverter should be registered to convert messages.

5.4.2. FlatFileItemWriter

 To write a file as the output of the step, you can configure FlatFileItemWriter.
Autoconfiguration accepts components that have been explicitly configured (such as LineAggregator,
FieldExtractor, FlatFileHeaderCallback, or a FlatFileFooterCallback) and
components that have been configured by setting the following properties specified:

Table 7. FlatFileItemWriter Properties

	Property
	Type
	Default Value
	Description

	spring.batch.job.flatfileitemwriter.resource

	Resource

	null

	The resource to be read.

	spring.batch.job.flatfileitemwriter.delimited

	boolean

	false

	Indicates whether the output file is a delimited file. If true, spring.batch.job.flatfileitemwriter.formatted must be false.

	spring.batch.job.flatfileitemwriter.formatted

	boolean

	false

	Indicates whether the output file a formatted file. If true, spring.batch.job.flatfileitemwriter.delimited must be false.

	spring.batch.job.flatfileitemwriter.format

	String

	null

	The format used to generate the output for a formatted file. The formatting is performed by using String.format.

	spring.batch.job.flatfileitemwriter.locale

	Locale

	Locale.getDefault()

	The Locale to be used when generating the file.

	spring.batch.job.flatfileitemwriter.maximumLength

	int

	0

	Max length of the record. If 0, the size is unbounded.

	spring.batch.job.flatfileitemwriter.minimumLength

	int

	0

	The minimum record length.

	spring.batch.job.flatfileitemwriter.delimiter

	String

	,

	The String used to delimit fields in a delimited file.

	spring.batch.job.flatfileitemwriter.encoding

	String

	FlatFileItemReader.DEFAULT_CHARSET

	Encoding to use when writing the file.

	spring.batch.job.flatfileitemwriter.forceSync

	boolean

	false

	Indicates whether a file should be force-synced to the disk on flush.

	spring.batch.job.flatfileitemwriter.names

	String []

	null

	List of names for each field parsed from a record. These names are the keys in the Map<String, Object> for the items received by this ItemWriter.

	spring.batch.job.flatfileitemwriter.append

	boolean

	false

	Indicates whether a file should be appended to if the output file is found.

	spring.batch.job.flatfileitemwriter.lineSeparator

	String

	FlatFileItemWriter.DEFAULT_LINE_SEPARATOR

	What String to use to separate lines in the output file.

	spring.batch.job.flatfileitemwriter.name

	String

	null

	Name used to provide unique keys in the ExecutionContext.

	spring.batch.job.flatfileitemwriter.saveState

	boolean

	true

	Determines whether the state should be saved for restarts.

	spring.batch.job.flatfileitemwriter.shouldDeleteIfEmpty

	boolean

	false

	If set to true, an empty file (there is no output) is deleted when the job completes.

	spring.batch.job.flatfileitemwriter.shouldDeleteIfExists

	boolean

	true

	If set to true and a file is found where the output file should be, it is deleted before the step begins.

	spring.batch.job.flatfileitemwriter.transactional

	boolean

	FlatFileItemWriter.DEFAULT_TRANSACTIONAL

	Indicates whether the reader is a transactional queue (indicating that the items read are returned to the queue upon a failure).

See the FlatFileItemWriter documentation.

5.4.3. JdbcBatchItemWriter

 To write the output of a step to a relational database, this starter provides the ability
to autoconfigure a JdbcBatchItemWriter. The autoconfiguration lets you provide your
own ItemPreparedStatementSetter or ItemSqlParameterSourceProvider and
configuration options by setting the following properties:

Table 8. JdbcBatchItemWriter Properties

	Property
	Type
	Default Value
	Description

	spring.batch.job.jdbcbatchitemwriter.name

	String

	null

	Name used to provide unique keys in the ExecutionContext.

	spring.batch.job.jdbcbatchitemwriter.sql

	String

	null

	The SQL used to insert each item.

	spring.batch.job.jdbcbatchitemwriter.assertUpdates

	boolean

	true

	Whether to verify that every insert results in the update of at least one record.

See the JdbcBatchItemWriter documentation.

5.4.4. KafkaItemWriter

 To write step output to a Kafka topic, you need KafkaItemWriter. This starter
provides autoconfiguration for a KafkaItemWriter by using facilities from two places.
The first is Spring Boot’s Kafka autoconfiguration. (See the Spring Boot Kafka documentation.)
Second, this starter lets you configure two properties on the writer.

Table 9. KafkaItemWriter Properties

	Property
	Type
	Default Value
	Description

	spring.batch.job.kafkaitemwriter.topic

	String

	null

	The Kafka topic to which to write.

	spring.batch.job.kafkaitemwriter.delete

	boolean

	false

	Whether the items being passed to the writer are all to be sent as delete events to the topic.

For more about the configuration options for the KafkaItemWiter, see the KafkaItemWiter documentation.

6. Spring Cloud Stream Integration

A task by itself can be useful, but integration of a task into a larger ecosystem lets it
be useful for more complex processing and orchestration. This section
covers the integration options for Spring Cloud Task with Spring Cloud Stream.

6.1. Launching a Task from a Spring Cloud Stream

 You can launch tasks from a stream. To do so, create a sink that listens for a message
that contains a TaskLaunchRequest as its payload. The TaskLaunchRequest contains:

	
uri: To the task artifact that is to be executed.

	
applicationName: The name that is associated with the task. If no
applicationName is set, the TaskLaunchRequest generates a task name
comprised of the following: Task-<UUID>.

	
commandLineArguments: A list containing the command line arguments for the task.

	
environmentProperties: A map containing the environment variables to be used by the
task.

	
deploymentProperties: A map containing the properties that are used by the deployer to
deploy the task.

If the payload is of a different type, the sink throws an exception.

For example, a stream can be created that has a processor that takes in data from an
HTTP source and creates a GenericMessage that contains the TaskLaunchRequest and sends
the message to its output channel. The task sink would then receive the message from its
input channnel and then launch the task.

To create a taskSink, you need only create a Spring Boot application that includes the
EnableTaskLauncher annotation, as shown in the following example:

 @SpringBootApplication
@EnableTaskLauncher
public class TaskSinkApplication {
 public static void main(String[] args) {
 SpringApplication.run(TaskSinkApplication.class, args);
 }
}

The samples
module of the Spring Cloud Task project contains a sample Sink and Processor. To install
these samples into your local maven repository, run a maven build from the
spring-cloud-task-samples directory with the skipInstall property set to false, as
shown in the following example:

mvn clean install

The maven.remoteRepositories.springRepo.url property must be set to the location
of the remote repository in which the über-jar is located. If not set, there is no remote
repository, so it relies upon the local repository only.

6.1.1. Spring Cloud Data Flow

 To create a stream in Spring Cloud Data Flow, you must first register the Task Sink
Application we created. In the following example, we are registering the Processor and
Sink sample applications by using the Spring Cloud Data Flow shell:

 app register --name taskSink --type sink --uri maven://io.spring.cloud:tasksink:<version>
app register --name taskProcessor --type processor --uri maven:io.spring.cloud:taskprocessor:<version>

The following example shows how to create a stream from the Spring Cloud Data Flow shell:

 stream create foo --definition "http --server.port=9000|taskProcessor|taskSink" --deploy

6.2. Spring Cloud Task Events

 Spring Cloud Task provides the ability to emit events through a Spring Cloud Stream
channel when the task is run through a Spring Cloud Stream channel. A task listener is
used to publish the TaskExecution on a message channel named task-events. This feature
is autowired into any task that has spring-cloud-stream, spring-cloud-stream-<binder>,
and a defined task on its classpath.

To disable the event emitting listener, set the spring.cloud.task.events.enabled
property to false.

With the appropriate classpath defined, the following task emits the TaskExecution as an
event on the task-events channel (at both the start and the end of the task):

 @SpringBootApplication
public class TaskEventsApplication {

 public static void main(String[] args) {
 SpringApplication.run(TaskEventsApplication.class, args);
 }

 @Configuration
 public static class TaskConfiguration {

 @Bean
 public CommandLineRunner commandLineRunner() {
 return new CommandLineRunner() {
 @Override
 public void run(String... args) throws Exception {
 System.out.println("The CommandLineRunner was executed");
 }
 };
 }
 }
}

A binder implementation is also required to be on the classpath.

A sample task event application can be found in the samples module
of the Spring Cloud Task Project,
here.

6.2.1. Disabling Specific Task Events

 To disable task events, you can set the spring.cloud.task.events.enabled property to
false.

6.3. Spring Batch Events

 When executing a Spring Batch job through a task, Spring Cloud Task can be configured to
emit informational messages based on the Spring Batch listeners available in Spring Batch.
Specifically, the following Spring Batch listeners are autoconfigured into each batch job
and emit messages on the associated Spring Cloud Stream channels when run through Spring
Cloud Task:

	
JobExecutionListener listens for job-execution-events

	
StepExecutionListener listens for step-execution-events

	
ChunkListener listens for chunk-events

	
ItemReadListener listens for item-read-events

	
ItemProcessListener listens for item-process-events

	
ItemWriteListener listens for item-write-events

	
SkipListener listens for skip-events

These listeners are autoconfigured into any AbstractJob when the appropriate
beans (a Job and a TaskLifecycleListener) exist in the context. Configuration to
listen to these events is handled the same way binding to any other Spring
Cloud Stream channel is done. Our task (the one running the batch job) serves as a
Source, with the listening applications serving as either a Processor or a Sink.

An example could be to have an application listening to the job-execution-events channel
for the start and stop of a job. To configure the listening application, you would
configure the input to be job-execution-events as follows:

spring.cloud.stream.bindings.input.destination=job-execution-events

A binder implementation is also required to be on the classpath.

A sample batch event application can be found in the samples module
of the Spring Cloud Task Project,
here.

6.3.1. Sending Batch Events to Different Channels

 One of the options that Spring Cloud Task offers for batch events is the ability to alter
the channel to which a specific listener can emit its messages. To do so, use the
following configuration:
spring.cloud.stream.bindings.<the channel>.destination=<new destination>. For example,
if StepExecutionListener needs to emit its messages to another channel called
my-step-execution-events instead of the default step-execution-events, you can add the
following configuration:

spring.cloud.stream.bindings.step-execution-events.destination=my-step-execution-events

6.3.2. Disabling Batch Events

 To disable the listener functionality for all batch events, use the following
configuration:

spring.cloud.task.batch.events.enabled=false

To disable a specific batch event, use the following configuration:

spring.cloud.task.batch.events.<batch event listener>.enabled=false:

The following listing shows individual listeners that you can disable:

 spring.cloud.task.batch.events.job-execution.enabled=false
spring.cloud.task.batch.events.step-execution.enabled=false
spring.cloud.task.batch.events.chunk.enabled=false
spring.cloud.task.batch.events.item-read.enabled=false
spring.cloud.task.batch.events.item-process.enabled=false
spring.cloud.task.batch.events.item-write.enabled=false
spring.cloud.task.batch.events.skip.enabled=false

6.3.3. Emit Order for Batch Events

 By default, batch events have Ordered.LOWEST_PRECEDENCE. To change this value (for
example, to 5), use the following configuration:

 spring.cloud.task.batch.events.job-execution-order=5
spring.cloud.task.batch.events.step-execution-order=5
spring.cloud.task.batch.events.chunk-order=5
spring.cloud.task.batch.events.item-read-order=5
spring.cloud.task.batch.events.item-process-order=5
spring.cloud.task.batch.events.item-write-order=5
spring.cloud.task.batch.events.skip-order=5

7. Appendices

7.1. Task Repository Schema

This appendix provides an ERD for the database schema used in the task repository.

[image: task schema]

7.1.1. Table Information

 TASK_EXECUTION. Stores the task execution information.

	Column Name
	Required
	Type
	Field Length
	Notes

	TASK_EXECUTION_ID

	TRUE

	BIGINT

	X

	Spring Cloud Task Framework at app startup establishes the next available id as obtained from the TASK_SEQ. Or if the record is created outside of task then the value must be populated at record creation time.

	START_TIME

	FALSE

	DATETIME

	X

	Spring Cloud Task Framework at app startup establishes the value.

	END_TIME

	FALSE

	DATETIME

	X

	Spring Cloud Task Framework at app exit establishes the value.

	TASK_NAME

	FALSE

	VARCHAR

	100

	Spring Cloud Task Framework at app startup will set this to "Application" unless user establish the name using the spring.cloud.task.name as discussed here

	EXIT_CODE

	FALSE

	INTEGER

	X

	Follows Spring Boot defaults unless overridden by the user as discussed here.

	EXIT_MESSAGE

	FALSE

	VARCHAR

	2500

	User Defined as discussed here.

	ERROR_MESSAGE

	FALSE

	VARCHAR

	2500

	Spring Cloud Task Framework at app exit establishes the value.

	LAST_UPDATED

	TRUE

	DATETIME

	X

	Spring Cloud Task Framework at app startup establishes the value. Or if the record is created outside of task then the value must be populated at record creation time.

	EXTERNAL_EXECUTION_ID

	FALSE

	VARCHAR

	250

	If the spring.cloud.task.external-execution-id property is set then Spring Cloud Task Framework at app startup will set this to the value specified. More information can be found here

	PARENT_TASK_EXECUTION_ID

	FALSE

	BIGINT

	X

	If the spring.cloud.task.parent-execution-id property is set then Spring Cloud Task Framework at app startup will set this to the value specified. More information can be found here

TASK_EXECUTION_PARAMS. Stores the parameters used for a task execution

	Column Name
	Required
	Type
	Field Length

	TASK_EXECUTION_ID

	TRUE

	BIGINT

	X

	TASK_PARAM

	FALSE

	VARCHAR

	2500

TASK_TASK_BATCH. Used to link the task execution to the batch execution.

	Column Name
	Required
	Type
	Field Length

	TASK_EXECUTION_ID

	TRUE

	BIGINT

	X

	JOB_EXECUTION_ID

	TRUE

	BIGINT

	X

TASK_LOCK. Used for the single-instance-enabled feature discussed here.

	Column Name
	Required
	Type
	Field Length
	Notes

	LOCK_KEY

	TRUE

	CHAR

	36

	UUID for the this lock

	REGION

	TRUE

	VARCHAR

	100

	User can establish a group of locks using this field.

	CLIENT_ID

	TRUE

	CHAR

	36

	The task execution id that contains the name of the app to lock.

	CREATED_DATE

	TRUE

	DATETIME

	X

	The date that the entry was created

The DDL for setting up tables for each database type can be found here.

7.1.2. SQL Server

 By default Spring Cloud Task uses a sequence table for determining the TASK_EXECUTION_ID for the TASK_EXECUTION table.
However, when launching multiple tasks simultaneously while using SQL Server, this can cause a deadlock to occur on the TASK_SEQ table.
The resolution is to drop the TASK_EXECUTION_SEQ table and create a sequence using the same name. For example:

 DROP TABLE TASK_SEQ;

CREATE SEQUENCE [DBO].[TASK_SEQ] AS BIGINT
 START WITH 1
 INCREMENT BY 1;

Set the START WITH to a higher value than your current execution id.

7.2. Building This Documentation

 This project uses Maven to generate this documentation. To generate it for yourself,
run the following command: $./mvnw clean package -P full.

7.3. Running a Task App on Cloud Foundry

 The simplest way to launch a Spring Cloud Task application as a task on Cloud Foundry
is to use Spring Cloud Data Flow. Via Spring Cloud Data Flow you can register your task application,
create a definition for it and then launch it. You then can track the task execution(s)
via a RESTful API, the Spring Cloud Data Flow Shell, or the UI. To learn out to get started installing Data Flow
follow the instructions in the
Getting Started
section of the reference documentation. For info on how to register and launch tasks, see the Lifecycle of a Task documentation.

EPUB/nav.xhtml

Spring Cloud Task Reference Guide

Table of Contents

		Spring Cloud Task Reference Guide

		1. Preface

		1.1. About the documentation

		1.2. Getting help

		1.3. First Steps

		2. Getting started

		2.1. Introducing Spring Cloud Task

		2.2. System Requirements

		2.2.1. Database Requirements

		2.3. Developing Your First Spring Cloud Task Application

		2.3.1. Creating the Spring Task Project using Spring Initializr

		2.3.2. Writing the Code

		Task Auto Configuration

		The main method

		The CommandLineRunner

		2.3.3. Running the Example

		3. Features

		3.1. The lifecycle of a Spring Cloud Task

		3.1.1. The TaskExecution

		3.1.2. Mapping Exit Codes

		3.2. Configuration

		3.2.1. DataSource

		3.2.2. Table Prefix

		3.2.3. Enable/Disable table initialization

		3.2.4. Externally Generated Task ID

		3.2.5. External Task Id

		3.2.6. Parent Task Id

		3.2.7. TaskConfigurer

		3.2.8. Task Name

		3.2.9. Task Execution Listener

		Exceptions Thrown by Task Execution Listener

		Exit Messages

		3.2.10. Restricting Spring Cloud Task Instances

		3.2.11. Disabling Spring Cloud Task Auto Configuration

		3.2.12. Closing the Context

		4. Batch

		4.1. Associating a Job Execution to the Task in which It Was Executed

		4.1.1. Overriding the TaskBatchExecutionListener

		4.2. Remote Partitioning

		4.2.1. Notes on Developing a Batch-partitioned application for the Kubernetes Platform

		4.2.2. Notes on Developing a Batch-partitioned Application for the Cloud Foundry Platform

		4.3. Batch Informational Messages

		4.4. Batch Job Exit Codes

		5. Single Step Batch Job Starter

		5.1. Defining a Job

		5.1.1. Properties

		5.2. Autoconfiguration for ItemReader Implementations

		5.2.1. AmqpItemReader

		5.2.2. FlatFileItemReader

		5.2.3. JdbcCursorItemReader

		5.2.4. KafkaItemReader

		5.3. ItemProcessor Configuration

		5.4. Autoconfiguration for ItemWriter implementations

		5.4.1. AmqpItemWriter

		5.4.2. FlatFileItemWriter

		5.4.3. JdbcBatchItemWriter

		5.4.4. KafkaItemWriter

		6. Spring Cloud Stream Integration

		6.1. Launching a Task from a Spring Cloud Stream

		6.1.1. Spring Cloud Data Flow

		6.2. Spring Cloud Task Events

		6.2.1. Disabling Specific Task Events

		6.3. Spring Batch Events

		6.3.1. Sending Batch Events to Different Channels

		6.3.2. Disabling Batch Events

		6.3.3. Emit Order for Batch Events

		7. Appendices

		7.1. Task Repository Schema

		7.1.1. Table Information

		7.1.2. SQL Server

		7.2. Building This Documentation

		7.3. Running a Task App on Cloud Foundry

EPUB/avatars/default.jpg

EPUB/headshots/default.jpg

