
Spring Cloud Task Reference Guide

© 2009-2020 VMware, Inc. All rights reserved.

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

Table of Contents
1. Preface . 2

1.1. About the documentation . 2

1.2. Getting help . 2

1.3. First Steps . 2

2. Getting started. 2

2.1. Introducing Spring Cloud Task . 3

2.2. System Requirements . 3

2.3. Developing Your First Spring Cloud Task Application. 3

3. Features . 7

3.1. The lifecycle of a Spring Cloud Task. 7

3.2. Configuration. 9

4. Batch . 15

4.1. Associating a Job Execution to the Task in which It Was Executed . 15

4.2. Remote Partitioning . 16

4.3. Batch Informational Messages . 18

4.4. Batch Job Exit Codes. 18

5. Single Step Batch Job Starter . 19

5.1. Defining a Job . 19

5.2. Autoconfiguration for ItemReader Implementations . 20

5.3. ItemProcessor Configuration. 25

5.4. Autoconfiguration for ItemWriter implementations. 25

6. Spring Cloud Stream Integration . 28

6.1. Launching a Task from a Spring Cloud Stream. 28

6.2. Spring Cloud Task Events . 30

6.3. Spring Batch Events . 31

7. Appendices. 32

7.1. Task Repository Schema . 32

7.2. Building This Documentation . 35

1. Preface
This section provides a brief overview of the Spring Cloud Task reference documentation. Think of
it as a map for the rest of the document. You can read this reference guide in a linear fashion or you
can skip sections if something does not interest you.

1.1. About the documentation
The Spring Cloud Task reference guide is available in html and pdf, epub . The latest copy is
available at docs.spring.io/spring-cloud-task/docs/current-SNAPSHOT/reference/html/.

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

1.2. Getting help
Having trouble with Spring Cloud Task? We would like to help!

• Ask a question. We monitor stackoverflow.com for questions tagged with spring-cloud-task.

• Report bugs with Spring Cloud Task at github.com/spring-cloud/spring-cloud-task/issues.

All of Spring Cloud Task is open source, including the documentation. If you find a
problem with the docs or if you just want to improve them, please get involved.

1.3. First Steps
If you are just getting started with Spring Cloud Task or with 'Spring' in general, we suggesting
reading the Getting started chapter.

To get started from scratch, read the following sections:

• Introducing Spring Cloud Task

• System Requirements

To follow the tutorial, read Developing Your First Spring Cloud Task Application
To run your example, read Running the Example

2. Getting started
If you are just getting started with Spring Cloud Task, you should read this section. Here, we answer
the basic “what?”, “how?”, and “why?” questions. We start with a gentle introduction to Spring
Cloud Task. We then build a Spring Cloud Task application, discussing some core principles as we
go.

https://docs.spring.io/spring-cloud-task/docs/current/reference
https://docs.spring.io/spring-cloud-task/docs/current/reference/index.pdf
https://docs.spring.io/spring-cloud-task/docs/current/reference/index.epub
https://docs.spring.io/spring-cloud-task/docs/current-SNAPSHOT/reference/html/
https://stackoverflow.com
https://stackoverflow.com/tags/spring-cloud-task
https://github.com/spring-cloud/spring-cloud-task/issues
https://github.com/spring-cloud/spring-cloud-task/tree/master

2.1. Introducing Spring Cloud Task
Spring Cloud Task makes it easy to create short-lived microservices. It provides capabilities that let
short lived JVM processes be executed on demand in a production environment.

2.2. System Requirements
You need to have Java installed (Java 8 or better). To build, you need to have Maven installed as
well.

2.2.1. Database Requirements

Spring Cloud Task uses a relational database to store the results of an executed task. While you can
begin developing a task without a database (the status of the task is logged as part of the task
repository’s updates), for production environments, you want to use a supported database. Spring
Cloud Task currently supports the following databases:

• DB2

• H2

• HSQLDB

• MySql

• Oracle

• Postgres

• SqlServer

2.3. Developing Your First Spring Cloud Task
Application
A good place to start is with a simple “Hello, World!” application, so we create the Spring Cloud Task
equivalent to highlight the features of the framework. Most IDEs have good support for Apache
Maven, so we use it as the build tool for this project.

The spring.io web site contains many “Getting Started” guides that use Spring
Boot. If you need to solve a specific problem, check there first. You can shortcut the
following steps by going to the Spring Initializr and creating a new project. Doing
so automatically generates a new project structure so that you can start coding
right away. We recommend experimenting with the Spring Initializr to become
familiar with it.

2.3.1. Creating the Spring Task Project using Spring Initializr

Now we can create and test an application that prints Hello, World! to the console.

To do so:

https://spring.io/guides
https://spring.io/guides
https://spring.io/guides
https://start.spring.io/

1. Visit the Spring Initialzr site.

a. Create a new Maven project with a Group name of io.spring.demo and an Artifact name of
helloworld.

b. In the Dependencies text box, type task and then select the Cloud Task dependency.

c. In the Dependencies text box, type jdbc and then select the JDBC dependency.

d. In the Dependencies text box, type h2 and then select the H2. (or your favorite database)

e. Click the Generate Project button

2. Unzip the helloworld.zip file and import the project into your favorite IDE.

2.3.2. Writing the Code

To finish our application, we need to update the generated HelloworldApplication with the following
contents so that it launches a Task.

package io.spring.demo.helloworld;

import org.springframework.boot.CommandLineRunner;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

@SpringBootApplication
@EnableTask
public class HelloworldApplication {

 @Bean
 public CommandLineRunner commandLineRunner() {
 return new HelloWorldCommandLineRunner();
 }

 public static void main(String[] args) {
 SpringApplication.run(HelloworldApplication.class, args);
 }

 public static class HelloWorldCommandLineRunner implements CommandLineRunner {

 @Override
 public void run(String... strings) throws Exception {
 System.out.println("Hello, World!");
 }
 }
}

While it may seem small, quite a bit is going on. For more about Spring Boot specifics, see the
Spring Boot reference documentation.

Now we can open the application.properties file in src/main/resources. We need to configure two

https://start.spring.io/
https://docs.spring.io/spring-boot/docs/current/reference/html/

properties in application.properties:

• application.name: To set the application name (which is translated to the task name)

• logging.level: To set the logging for Spring Cloud Task to DEBUG in order to get a view of what is
going on.

The following example shows how to do both:

logging.level.org.springframework.cloud.task=DEBUG
spring.application.name=helloWorld

Task Auto Configuration

When including Spring Cloud Task Starter dependency, Task auto configures all beans to bootstrap
it’s functionality. Part of this configuration registers the TaskRepository and the infrastructure for its
use.

In our demo, the TaskRepository uses an embedded H2 database to record the results of a task. This
H2 embedded database is not a practical solution for a production environment, since the H2 DB
goes away once the task ends. However, for a quick getting-started experience, we can use this in
our example as well as echoing to the logs what is being updated in that repository. In the
Configuration section (later in this documentation), we cover how to customize the configuration of
the pieces provided by Spring Cloud Task.

When our sample application runs, Spring Boot launches our HelloWorldCommandLineRunner and
outputs our “Hello, World!” message to standard out. The TaskLifecycleListener records the start of
the task and the end of the task in the repository.

The main method

The main method serves as the entry point to any java application. Our main method delegates to
Spring Boot’s SpringApplication class.

The CommandLineRunner

Spring includes many ways to bootstrap an application’s logic. Spring Boot provides a convenient
method of doing so in an organized manner through its *Runner interfaces (CommandLineRunner or
ApplicationRunner). A well behaved task can bootstrap any logic by using one of these two runners.

The lifecycle of a task is considered from before the *Runner#run methods are executed to once they
are all complete. Spring Boot lets an application use multiple *Runner implementations, as does
Spring Cloud Task.

Any processing bootstrapped from mechanisms other than a CommandLineRunner or
ApplicationRunner (by using InitializingBean#afterPropertiesSet for example) is
not recorded by Spring Cloud Task.

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-spring-application.html

2.3.3. Running the Example

At this point, our application should work. Since this application is Spring Boot-based, we can run it
from the command line by using $ mvn spring-boot:run from the root of our application, as shown
(with its output) in the following example:

$ mvn clean spring-boot:run
....... . . .
....... . . . (Maven log output here)
....... . . .

 . ____ _ __ _ _
 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \
(()___ | '_ | '_| | '_ \/ _` | \ \ \ \
 \\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, | / / / /
 =========|_|==============|___/=/_/_/_/
 :: Spring Boot :: (v2.0.3.RELEASE)

2018-07-23 17:44:34.426 INFO 1978 --- [main]
i.s.d.helloworld.HelloworldApplication : Starting HelloworldApplication on Glenns-
MBP-2.attlocal.net with PID 1978 (/Users/glennrenfro/project/helloworld/target/classes
started by glennrenfro in /Users/glennrenfro/project/helloworld)
2018-07-23 17:44:34.430 INFO 1978 --- [main]
i.s.d.helloworld.HelloworldApplication : No active profile set, falling back to
default profiles: default
2018-07-23 17:44:34.472 INFO 1978 --- [main]
s.c.a.AnnotationConfigApplicationContext : Refreshing
org.springframework.context.annotation.AnnotationConfigApplicationContext@1d24f32d:
startup date [Mon Jul 23 17:44:34 EDT 2018]; root of context hierarchy
2018-07-23 17:44:35.280 INFO 1978 --- [main]
com.zaxxer.hikari.HikariDataSource : HikariPool-1 - Starting...
2018-07-23 17:44:35.410 INFO 1978 --- [main]
com.zaxxer.hikari.HikariDataSource : HikariPool-1 - Start completed.
2018-07-23 17:44:35.419 DEBUG 1978 --- [main]
o.s.c.t.c.SimpleTaskConfiguration : Using
org.springframework.cloud.task.configuration.DefaultTaskConfigurer TaskConfigurer
2018-07-23 17:44:35.420 DEBUG 1978 --- [main]
o.s.c.t.c.DefaultTaskConfigurer : No EntityManager was found, using
DataSourceTransactionManager
2018-07-23 17:44:35.522 DEBUG 1978 --- [main]
o.s.c.t.r.s.TaskRepositoryInitializer : Initializing task schema for h2 database
2018-07-23 17:44:35.525 INFO 1978 --- [main]
o.s.jdbc.datasource.init.ScriptUtils : Executing SQL script from class path
resource [org/springframework/cloud/task/schema-h2.sql]
2018-07-23 17:44:35.558 INFO 1978 --- [main]
o.s.jdbc.datasource.init.ScriptUtils : Executed SQL script from class path
resource [org/springframework/cloud/task/schema-h2.sql] in 33 ms.
2018-07-23 17:44:35.728 INFO 1978 --- [main]
o.s.j.e.a.AnnotationMBeanExporter : Registering beans for JMX exposure on

startup
2018-07-23 17:44:35.730 INFO 1978 --- [main]
o.s.j.e.a.AnnotationMBeanExporter : Bean with name 'dataSource' has been
autodetected for JMX exposure
2018-07-23 17:44:35.733 INFO 1978 --- [main]
o.s.j.e.a.AnnotationMBeanExporter : Located MBean 'dataSource': registering
with JMX server as MBean [com.zaxxer.hikari:name=dataSource,type=HikariDataSource]
2018-07-23 17:44:35.738 INFO 1978 --- [main]
o.s.c.support.DefaultLifecycleProcessor : Starting beans in phase 0
2018-07-23 17:44:35.762 DEBUG 1978 --- [main]
o.s.c.t.r.support.SimpleTaskRepository : Creating: TaskExecution{executionId=0,
parentExecutionId=null, exitCode=null, taskName='application', startTime=Mon Jul 23
17:44:35 EDT 2018, endTime=null, exitMessage='null', externalExecutionId='null',
errorMessage='null', arguments=[]}
2018-07-23 17:44:35.772 INFO 1978 --- [main]
i.s.d.helloworld.HelloworldApplication : Started HelloworldApplication in 1.625
seconds (JVM running for 4.764)
Hello, World!
2018-07-23 17:44:35.782 DEBUG 1978 --- [main]
o.s.c.t.r.support.SimpleTaskRepository : Updating: TaskExecution with executionId=1
with the following {exitCode=0, endTime=Mon Jul 23 17:44:35 EDT 2018,
exitMessage='null', errorMessage='null'}

The preceding output has three lines that of interest to us here:

• SimpleTaskRepository logged the creation of the entry in the TaskRepository.

• The execution of our CommandLineRunner, demonstrated by the “Hello, World!” output.

• SimpleTaskRepository logs the completion of the task in the TaskRepository.

A simple task application can be found in the samples module of the Spring Cloud
Task Project here.

3. Features
This section goes into more detail about Spring Cloud Task, including how to use it, how to
configure it, and the appropriate extension points.

3.1. The lifecycle of a Spring Cloud Task
In most cases, the modern cloud environment is designed around the execution of processes that
are not expected to end. If they do end, they are typically restarted. While most platforms do have
some way to run a process that is not restarted when it ends, the results of that run are typically not
maintained in a consumable way. Spring Cloud Task offers the ability to execute short-lived
processes in an environment and record the results. Doing so allows for a microservices
architecture around short-lived processes as well as longer running services through the
integration of tasks by messages.

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples/timestamp

While this functionality is useful in a cloud environment, the same issues can arise in a traditional
deployment model as well. When running Spring Boot applications with a scheduler such as cron, it
can be useful to be able to monitor the results of the application after its completion.

Spring Cloud Task takes the approach that a Spring Boot application can have a start and an end
and still be successful. Batch applications are one example of how processes that are expected to
end (and that are often short-lived) can be helpful.

Spring Cloud Task records the lifecycle events of a given task. Most long-running processes, typified
by most web applications, do not save their lifecycle events. The tasks at the heart of Spring Cloud
Task do.

The lifecycle consists of a single task execution. This is a physical execution of a Spring Boot
application configured to be a task (that is, it has the Sprint Cloud Task dependencies).

At the beginning of a task, before any CommandLineRunner or ApplicationRunner implementations have
been run, an entry in the TaskRepository that records the start event is created. This event is
triggered through SmartLifecycle#start being triggered by the Spring Framework. This indicates to
the system that all beans are ready for use and comes before running any of the CommandLineRunner
or ApplicationRunner implementations provided by Spring Boot.

The recording of a task only occurs upon the successful bootstrapping of an
ApplicationContext. If the context fails to bootstrap at all, the task’s run is not
recorded.

Upon completion of all of the *Runner#run calls from Spring Boot or the failure of an
ApplicationContext (indicated by an ApplicationFailedEvent), the task execution is updated in the
repository with the results.

If the application requires the ApplicationContext to be closed at the completion of
a task (all *Runner#run methods have been called and the task repository has been
updated), set the property spring.cloud.task.closecontextEnabled to true.

3.1.1. The TaskExecution

The information stored in the TaskRepository is modeled in the TaskExecution class and consists of
the following information:

Field Description

executionid The unique ID for the task’s run.

exitCode The exit code generated from an
ExitCodeExceptionMapper implementation. If
there is no exit code generated but an
ApplicationFailedEvent is thrown, 1 is set.
Otherwise, it is assumed to be 0.

taskName The name for the task, as determined by the
configured TaskNameResolver.

Field Description

startTime The time the task was started, as indicated by
the SmartLifecycle#start call.

endTime The time the task was completed, as indicated by
the ApplicationReadyEvent.

exitMessage Any information available at the time of exit.
This can programmatically be set by a
TaskExecutionListener.

errorMessage If an exception is the cause of the end of the task
(as indicated by an ApplicationFailedEvent), the
stack trace for that exception is stored here.

arguments A List of the string command line arguments as
they were passed into the executable boot
application.

3.1.2. Mapping Exit Codes

When a task completes, it tries to return an exit code to the OS. If we take a look at our original
example, we can see that we are not controlling that aspect of our application. So, if an exception is
thrown, the JVM returns a code that may or may not be of any use to you in debugging.

Consequently, Spring Boot provides an interface, ExitCodeExceptionMapper, that lets you map
uncaught exceptions to exit codes. Doing so lets you indicate, at the level of exit codes, what went
wrong. Also, by mapping exit codes in this manner, Spring Cloud Task records the returned exit
code.

If the task terminates with a SIG-INT or a SIG-TERM, the exit code is zero unless otherwise specified
within the code.

While the task is running, the exit code is stored as a null in the repository. Once
the task completes, the appropriate exit code is stored based on the guidelines
described earlier in this section.

3.2. Configuration
Spring Cloud Task provides a ready-to-use configuration, as defined in the DefaultTaskConfigurer
and SimpleTaskConfiguration classes. This section walks through the defaults and how to customize
Spring Cloud Task for your needs.

3.2.1. DataSource

Spring Cloud Task uses a datasource for storing the results of task executions. By default, we
provide an in-memory instance of H2 to provide a simple method of bootstrapping development.
However, in a production environment, you probably want to configure your own DataSource.

If your application uses only a single DataSource and that serves as both your business schema and

the task repository, all you need to do is provide any DataSource (the easiest way to do so is through
Spring Boot’s configuration conventions). This DataSource is automatically used by Spring Cloud
Task for the repository.

If your application uses more than one DataSource, you need to configure the task repository with
the appropriate DataSource. This customization can be done through an implementation of
TaskConfigurer.

3.2.2. Table Prefix

One modifiable property of TaskRepository is the table prefix for the task tables. By default, they are
all prefaced with TASK_. TASK_EXECUTION and TASK_EXECUTION_PARAMS are two examples. However,
there are potential reasons to modify this prefix. If the schema name needs to be prepended to the
table names or if more than one set of task tables is needed within the same schema, you must
change the table prefix. You can do so by setting the spring.cloud.task.tablePrefix to the prefix you
need, as follows:

spring.cloud.task.tablePrefix=yourPrefix

By using the spring.cloud.task.tablePrefix, a user assumes the responsibility to create the task
tables that meet both the criteria for the task table schema but with modifications that are required
for a user’s business needs. You can utilize the Spring Cloud Task Schema DDL as a guide when
creating your own Task DDL as seen here.

3.2.3. Enable/Disable table initialization

In cases where you are creating the task tables and do not wish for Spring Cloud Task to create
them at task startup, set the spring.cloud.task.initialize-enabled property to false, as follows:

spring.cloud.task.initialize-enabled=false

It defaults to true.

 The property spring.cloud.task.initialize.enable has been deprecated.

3.2.4. Externally Generated Task ID

In some cases, you may want to allow for the time difference between when a task is requested and
when the infrastructure actually launches it. Spring Cloud Task lets you create a TaskExecution
when the task is requested. Then pass the execution ID of the generated TaskExecution to the task so
that it can update the TaskExecution through the task’s lifecycle.

A TaskExecution can be created by calling the createTaskExecution method on an implementation of
the TaskRepository that references the datastore that holds the TaskExecution objects.

In order to configure your Task to use a generated TaskExecutionId, add the following property:

spring.cloud.task.executionid=yourtaskId

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-core/src/main/resources/org/springframework/cloud/task

3.2.5. External Task Id

Spring Cloud Task lets you store an external task ID for each TaskExecution. An example of this
would be a task ID provided by Cloud Foundry when a task is launched on the platform. In order to
configure your Task to use a generated TaskExecutionId, add the following property:

spring.cloud.task.external-execution-id=<externalTaskId>

3.2.6. Parent Task Id

Spring Cloud Task lets you store a parent task ID for each TaskExecution. An example of this would
be a task that executes another task or tasks and you want to record which task launched each of
the child tasks. In order to configure your Task to set a parent TaskExecutionId add the following
property on the child task:

spring.cloud.task.parent-execution-id=<parentExecutionTaskId>

3.2.7. TaskConfigurer

The TaskConfigurer is a strategy interface that lets you customize the way components of Spring
Cloud Task are configured. By default, we provide the DefaultTaskConfigurer that provides logical
defaults: Map-based in-memory components (useful for development if no DataSource is provided)
and JDBC based components (useful if there is a DataSource available).

The TaskConfigurer lets you configure three main components:

Component Description Default (provided by
DefaultTaskConfigurer)

TaskRepository The implementation of the
TaskRepository to be used.

SimpleTaskRepository

TaskExplorer The implementation of the
TaskExplorer (a component for
read-only access to the task
repository) to be used.

SimpleTaskExplorer

PlatformTransactionManager A transaction manager to be
used when running updates for
tasks.

DataSourceTransactionManager if
a DataSource is used.
ResourcelessTransactionManager
if it is not.

You can customize any of the components described in the preceding table by creating a custom
implementation of the TaskConfigurer interface. Typically, extending the DefaultTaskConfigurer
(which is provided if a TaskConfigurer is not found) and overriding the required getter is sufficient.
However, implementing your own from scratch may be required.

Users should not directly use getter methods from a TaskConfigurer directly unless
they are using it to supply implementations to be exposed as Spring Beans.

3.2.8. Task Name

In most cases, the name of the task is the application name as configured in Spring Boot. However,
there are some cases where you may want to map the run of a task to a different name. Spring
Cloud Data Flow is an example of this (because you probably want the task to be run with the name
of the task definition). Because of this, we offer the ability to customize how the task is named,
through the TaskNameResolver interface.

By default, Spring Cloud Task provides the SimpleTaskNameResolver, which uses the following options
(in order of precedence):

1. A Spring Boot property (configured in any of the ways Spring Boot allows) called
spring.cloud.task.name.

2. The application name as resolved using Spring Boot’s rules (obtained through
ApplicationContext#getId).

3.2.9. Task Execution Listener

TaskExecutionListener lets you register listeners for specific events that occur during the task
lifecycle. To do so, create a class that implements the TaskExecutionListener interface. The class that
implements the TaskExecutionListener interface is notified of the following events:

• onTaskStartup: Prior to storing the TaskExecution into the TaskRepository.

• onTaskEnd: Prior to updating the TaskExecution entry in the TaskRepository and marking the final
state of the task.

• onTaskFailed: Prior to the onTaskEnd method being invoked when an unhandled exception is
thrown by the task.

Spring Cloud Task also lets you add TaskExecution Listeners to methods within a bean by using the
following method annotations:

• @BeforeTask: Prior to the storing the TaskExecution into the TaskRepository

• @AfterTask: Prior to the updating of the TaskExecution entry in the TaskRepository marking the
final state of the task.

• @FailedTask: Prior to the @AfterTask method being invoked when an unhandled exception is
thrown by the task.

The following example shows the three annotations in use:

 public class MyBean {

 @BeforeTask
 public void methodA(TaskExecution taskExecution) {
 }

 @AfterTask
 public void methodB(TaskExecution taskExecution) {
 }

 @FailedTask
 public void methodC(TaskExecution taskExecution, Throwable throwable) {
 }
}

Inserting an ApplicationListener earlier in the chain than TaskLifecycleListener
exists may cause unexpected effects.

Exceptions Thrown by Task Execution Listener

If an exception is thrown by a TaskExecutionListener event handler, all listener processing for that
event handler stops. For example, if three onTaskStartup listeners have started and the first
onTaskStartup event handler throws an exception, the other two onTaskStartup methods are not
called. However, the other event handlers (onTaskEnd and onTaskFailed) for the
TaskExecutionListeners are called.

The exit code returned when a exception is thrown by a TaskExecutionListener event handler is the
exit code that was reported by the ExitCodeEvent. If no ExitCodeEvent is emitted, the Exception
thrown is evaluated to see if it is of type ExitCodeGenerator. If so, it returns the exit code from the
ExitCodeGenerator. Otherwise, 1 is returned.

In the case that an exception is thrown in an onTaskStartup method, the exit code for the application
will be 1. If an exception is thrown in either a onTaskEnd or onTaskFailed method, the exit code for
the application will be the one established using the rules enumerated above.

In the case of an exception being thrown in a onTaskStartup, onTaskEnd, or
onTaskFailed you can not override the exit code for the application using
ExitCodeExceptionMapper.

Exit Messages

You can set the exit message for a task programmatically by using a TaskExecutionListener. This is
done by setting the TaskExecution’s exitMessage, which then gets passed into the
TaskExecutionListener. The following example shows a method that is annotated with the
@AfterTask ExecutionListener :

https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/ExitCodeEvent.html
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#boot-features-application-exit

@AfterTask
public void afterMe(TaskExecution taskExecution) {
 taskExecution.setExitMessage("AFTER EXIT MESSAGE");
}

An ExitMessage can be set at any of the listener events (onTaskStartup, onTaskFailed, and onTaskEnd).
The order of precedence for the three listeners follows:

1. onTaskEnd

2. onTaskFailed

3. onTaskStartup

For example, if you set an exitMessage for the onTaskStartup and onTaskFailed listeners and the task
ends without failing, the exitMessage from the onTaskStartup is stored in the repository. Otherwise, if
a failure occurs, the exitMessage from the onTaskFailed is stored. Also if you set the exitMessage with
an onTaskEnd listener, the exitMessage from the onTaskEnd supersedes the exit messages from both
the onTaskStartup and onTaskFailed.

3.2.10. Restricting Spring Cloud Task Instances

Spring Cloud Task lets you establish that only one task with a given task name can be run at a time.
To do so, you need to establish the task name and set spring.cloud.task.single-instance-
enabled=true for each task execution. While the first task execution is running, any other time you
try to run a task with the same task name and`spring.cloud.task.single-instance-enabled=true`, the
task fails with the following error message: Task with name "application" is already running. The
default value for spring.cloud.task.single-instance-enabled is false. The following example shows
how to set spring.cloud.task.single-instance-enabled to true:

spring.cloud.task.single-instance-enabled=true or false

To use this feature, you must add the following Spring Integration dependencies to your
application:

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-core</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-jdbc</artifactId>
</dependency>

The exit code for the application will be 1 if the task fails because this feature is
enabled and another task is running with the same task name.

3.2.11. Disabling Spring Cloud Task Auto Configuration

In cases where Spring Cloud Task should not be auto configured for an implementation, you can
disable Task’s auto configuration. This can be done either by adding the following annotation to
your Task application:

@EnableAutoConfiguration(exclude={SimpleTaskAutoConfiguration.class})

You may also disable Task auto configuration by setting the
spring.cloud.task.autoconfiguration.enabled property to false.

3.2.12. Closing the Context

If the application requires the ApplicationContext to be closed at the completion of a task (all
*Runner#run methods have been called and the task repository has been updated), set the property
spring.cloud.task.closecontextEnabled to true.

Another case to close the context is when the Task Execution completes however the application
does not terminate. In these cases the context is held open because a thread has been allocated (for
example: if you are using a TaskExecutor). In these cases set the
spring.cloud.task.closecontextEnabled property to true when launching your task. This will close
the application’s context once the task is complete. Thus allowing the application to terminate.

4. Batch
This section goes into more detail about Spring Cloud Task’s integration with Spring Batch. Tracking
the association between a job execution and the task in which it was executed as well as remote
partitioning through Spring Cloud Deployer are covered in this section.

4.1. Associating a Job Execution to the Task in which It
Was Executed
Spring Boot provides facilities for the execution of batch jobs within an über-jar. Spring Boot’s
support of this functionality lets a developer execute multiple batch jobs within that execution.
Spring Cloud Task provides the ability to associate the execution of a job (a job execution) with a
task’s execution so that one can be traced back to the other.

Spring Cloud Task achieves this functionality by using the TaskBatchExecutionListener. By default,
this listener is auto configured in any context that has both a Spring Batch Job configured (by
having a bean of type Job defined in the context) and the spring-cloud-task-batch jar on the
classpath. The listener is injected into all jobs that meet those conditions.

4.1.1. Overriding the TaskBatchExecutionListener

To prevent the listener from being injected into any batch jobs within the current context, you can
disable the autoconfiguration by using standard Spring Boot mechanisms.

To only have the listener injected into particular jobs within the context, override the
batchTaskExecutionListenerBeanPostProcessor and provide a list of job bean IDs, as shown in the
following example:

public TaskBatchExecutionListenerBeanPostProcessor
batchTaskExecutionListenerBeanPostProcessor() {
 TaskBatchExecutionListenerBeanPostProcessor postProcessor =
 new TaskBatchExecutionListenerBeanPostProcessor();

 postProcessor.setJobNames(Arrays.asList(new String[] {"job1", "job2"}));

 return postProcessor;
}

You can find a sample batch application in the samples module of the Spring Cloud
Task Project, here.

4.2. Remote Partitioning
Spring Cloud Deployer provides facilities for launching Spring Boot-based applications on most
cloud infrastructures. The DeployerPartitionHandler and DeployerStepExecutionHandler delegate the
launching of worker step executions to Spring Cloud Deployer.

To configure the DeployerStepExecutionHandler, you must provide a Resource representing the
Spring Boot über-jar to be executed, a TaskLauncher, and a JobExplorer. You can configure any
environment properties as well as the max number of workers to be executing at once, the interval
to poll for the results (defaults to 10 seconds), and a timeout (defaults to -1 or no timeout). The
following example shows how configuring this PartitionHandler might look:

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples/batch-job

@Bean
public PartitionHandler partitionHandler(TaskLauncher taskLauncher,
 JobExplorer jobExplorer) throws Exception {

 MavenProperties mavenProperties = new MavenProperties();
 mavenProperties.setRemoteRepositories(new
HashMap<>(Collections.singletonMap("springRepo",
 new MavenProperties.RemoteRepository(repository))));

 Resource resource =
 MavenResource.parse(String.format("%s:%s:%s",
 "io.spring.cloud",
 "partitioned-batch-job",
 "1.1.0.RELEASE"), mavenProperties);

 DeployerPartitionHandler partitionHandler =
 new DeployerPartitionHandler(taskLauncher, jobExplorer, resource,
"workerStep");

 List<String> commandLineArgs = new ArrayList<>(3);
 commandLineArgs.add("--spring.profiles.active=worker");
 commandLineArgs.add("--spring.cloud.task.initialize.enable=false");
 commandLineArgs.add("--spring.batch.initializer.enabled=false");

 partitionHandler.setCommandLineArgsProvider(
 new PassThroughCommandLineArgsProvider(commandLineArgs));
 partitionHandler.setEnvironmentVariablesProvider(new
NoOpEnvironmentVariablesProvider());
 partitionHandler.setMaxWorkers(2);
 partitionHandler.setApplicationName("PartitionedBatchJobTask");

 return partitionHandler;
}

When passing environment variables to partitions, each partition may be on a
different machine with different environment settings. Consequently, you should
pass only those environment variables that are required.

Notice in the example above that we have set the maximum number of workers to 2. Setting the
maximum of workers establishes the maximum number of partitions that should be running at one
time.

The Resource to be executed is expected to be a Spring Boot über-jar with a
DeployerStepExecutionHandler configured as a CommandLineRunner in the current context. The
repository enumerated in the preceding example should be the remote repository in which the
über-jar is located. Both the manager and worker are expected to have visibility into the same data
store being used as the job repository and task repository. Once the underlying infrastructure has
bootstrapped the Spring Boot jar and Spring Boot has launched the DeployerStepExecutionHandler,
the step handler executes the requested Step. The following example shows how to configure the

DeployerStepExecutionHandler:

@Bean
public DeployerStepExecutionHandler stepExecutionHandler(JobExplorer jobExplorer) {
 DeployerStepExecutionHandler handler =
 new DeployerStepExecutionHandler(this.context, jobExplorer,
this.jobRepository);

 return handler;
}

You can find a sample remote partition application in the samples module of the
Spring Cloud Task project, here.

4.2.1. Notes on Developing a Batch-partitioned application for the
Kubernetes Platform

• When deploying partitioned apps on the Kubernetes platform, you must use the following
dependency for the Spring Cloud Kubernetes Deployer:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-deployer-kubernetes</artifactId>
</dependency>

• The application name for the task application and its partitions need to follow the following
regex pattern: [a-z0-9]([-a-z0-9]*[a-z0-9]). Otherwise, an exception is thrown.

4.3. Batch Informational Messages
Spring Cloud Task provides the ability for batch jobs to emit informational messages. The “Spring
Batch Events” section covers this feature in detail.

4.4. Batch Job Exit Codes
As discussed earlier, Spring Cloud Task applications support the ability to record the exit code of a
task execution. However, in cases where you run a Spring Batch Job within a task, regardless of
how the Batch Job Execution completes, the result of the task is always zero when using the default
Batch/Boot behavior. Keep in mind that a task is a boot application and that the exit code returned
from the task is the same as a boot application. To override this behavior and allow the task to
return an exit code other than zero when a batch job returns an BatchStatus of FAILED, set
spring.cloud.task.batch.fail-on-job-failure to true. Then the exit code can be 1 (the default) or be
based on the specified ExitCodeGenerator)

This functionality uses a new CommandLineRunner that replaces the one provided by Spring Boot. By
default, it is configured with the same order. However, if you want to customize the order in which

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples/partitioned-batch-job
https://docs.spring.io/spring-batch/4.0.x/reference/html/step.html#batchStatusVsExitStatus
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-spring-application.html#boot-features-application-exit
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-spring-application.html#boot-features-application-exit

the CommandLineRunner is run, you can set its order by setting the
spring.cloud.task.batch.commandLineRunnerOrder property. To have your task return the exit code
based on the result of the batch job execution, you need to write your own CommandLineRunner.

5. Single Step Batch Job Starter
This section goes into how to develop a Spring Batch Job with a single Step by using the starter
included in Spring Cloud Task. This starter lets you use configuration to define an ItemReader, an
ItemWriter, or a full single-step Spring Batch Job. For more about Spring Batch and its capabilities,
see the Spring Batch documentation.

To obtain the starter for Maven, add the following to your build:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-single-step-batch-job</artifactId>
 <version>2.3.0</version>
</dependency>

To obtain the starter for Gradle, add the following to your build:

compile "org.springframework.cloud:spring-cloud-starter-single-step-batch-
job:2.3.0"

5.1. Defining a Job
You can use the starter to define as little as an ItemReader or an ItemWriter or as much as a full Job.
In this section, we define which properties are required to be defined to configure a Job.

5.1.1. Properties

To begin, the starter provides a set of properties that let you configure the basics of a Job with one
Step:

Table 1. Job Properties

Property Type Default Value Description

spring.batch.job.jobNa
me

String null The name of the job.

spring.batch.job.stepN
ame

String null The name of the step.

https://spring.io/projects/spring-batch

Property Type Default Value Description

spring.batch.job.chunk
Size

Integer null The number of items to
be processed per
transaction.

With the above properties configured, you have a job with a single, chunk-based step. This chunk-
based step reads, processes, and writes Map<String, Object> instances as the items. However, the
step does not yet do anything. You need to configure an ItemReader, an optional ItemProcessor, and
an ItemWriter to give it something to do. To configure one of these, you can either use properties
and configure one of the options that has provided autoconfiguration or you can configure your
own with the standard Spring configuration mechanisms.

If you configure your own, the input and output types must match the others in
the step. The ItemReader implementations and ItemWriter implementations in this
starter all use a Map<String, Object> as the input and the output item.

5.2. Autoconfiguration for ItemReader
Implementations
This starter provides autoconfiguration for four different ItemReader implementations:
AmqpItemReader, FlatFileItemReader, JdbcCursorItemReader, and KafkaItemReader. In this section, we
outline how to configure each of these by using the provided autoconfiguration.

5.2.1. AmqpItemReader

You can read from a queue or topic with AMQP by using the AmqpItemReader. The autoconfiguration
for this ItemReader implementation is dependent upon two sets of configuration. The first is the
configuration of an AmqpTemplate. You can either configure this yourself or use the
autoconfiguration provided by Spring Boot. See the Spring Boot AMQP documentation. Once you
have configured the AmqpTemplate, you can enable the batch capabilities to support it by setting the
following properties:

Table 2. AmqpItemReader Properties

Property Type Default Value Description

spring.batch.job.amqpi
temreader.enabled

boolean false If true, the
autoconfiguration will
execute.

spring.batch.job.amqpi
temreader.jsonConverte
rEnabled

boolean true Indicates if the
Jackson2JsonMessageCon
verter should be
registered to parse
messages.

For more information, see the AmqpItemReader documentation.

https://docs.spring.io/spring-boot/docs/2.4.x/reference/htmlsingle/#boot-features-amqp
https://docs.spring.io/spring-batch/docs/4.3.x/api/org/springframework/batch/item/amqp/AmqpItemReader.html
https://docs.spring.io/spring-batch/docs/4.3.x/api/org/springframework/batch/item/amqp/AmqpItemReader.html

5.2.2. FlatFileItemReader

FlatFileItemReader lets you read from flat files (such as CSVs and other file formats). To read from a
file, you can provide some components yourself through normal Spring configuration
(LineTokenizer, RecordSeparatorPolicy, FieldSetMapper, LineMapper, or SkippedLinesCallback). You can
also use the following properties to configure the reader:

Table 3. FlatFileItemReader Properties

Property Type Default Value Description

spring.batch.job.flatf
ileitemreader.saveStat
e

boolean true Determines if the state
should be saved for
restarts.

spring.batch.job.flatf
ileitemreader.name

String null Name used to provide
unique keys in the
ExecutionContext.

spring.batch.job.flatf
ileitemreader.maxItemc
ount

int Integer.MAX_VALUE Maximum number of
items to be read from
the file.

spring.batch.job.flatf
ileitemreader.currentI
temCount

int 0 Number of items that
have already been
read. Used on restarts.

spring.batch.job.flatf
ileitemreader.comments

List<String> empty List A list of Strings that
indicate commented
lines (lines to be
ignored) in the file.

spring.batch.job.flatf
ileitemreader.resource

Resource null The resource to be
read.

spring.batch.job.flatf
ileitemreader.strict

boolean true If set to true, the reader
throws an exception if
the resource is not
found.

spring.batch.job.flatf
ileitemreader.encoding

String FlatFileItemReader.DEF
AULT_CHARSET

Encoding to be used
when reading the file.

spring.batch.job.flatf
ileitemreader.linesToS
kip

int 0 Indicates the number
of lines to skip at the
start of a file.

Property Type Default Value Description

spring.batch.job.flatf
ileitemreader.delimite
d

boolean false Indicates whether the
file is a delimited file
(CSV and other
formats). Only one of
this property or
spring.batch.job.flatf
ileitemreader.fixedLen
gth can be true at the
same time.

spring.batch.job.flatf
ileitemreader.delimite
r

String DelimitedLineTokenizer
.DELIMITER_COMMA

If reading a delimited
file, indicates the
delimiter to parse on.

spring.batch.job.flatf
ileitemreader.quoteCha
racter

char DelimitedLineTokenizer
.DEFAULT_QUOTE_CHARACT
ER

Used to determine the
character used to quote
values.

spring.batch.job.flatf
ileitemreader.included
Fields

List<Integer> empty list A list of indices to
determine which fields
in a record to include
in the item.

spring.batch.job.flatf
ileitemreader.fixedLen
gth

boolean false Indicates if a file’s
records are parsed by
column numbers. Only
one of this property or
spring.batch.job.flatf
ileitemreader.delimite
d can be true at the
same time.

spring.batch.job.flatf
ileitemreader.ranges

List<Range> empty list List of column ranges
by which to parse a
fixed width record. See
the Range
documentation.

spring.batch.job.flatf
ileitemreader.names

String [] null List of names for each
field parsed from a
record. These names
are the keys in the
Map<String, Object> in
the items returned
from this ItemReader.

spring.batch.job.flatf
ileitemreader.parsingS
trict

boolean true If set to true, the
mapping fails if the
fields cannot be
mapped.

https://docs.spring.io/spring-batch/docs/4.3.x/api/org/springframework/batch/item/file/transform/Range.html
https://docs.spring.io/spring-batch/docs/4.3.x/api/org/springframework/batch/item/file/transform/Range.html

See the FlatFileItemReader documentation.

5.2.3. JdbcCursorItemReader

The JdbcCursorItemReader runs a query against a relational database and iterates over the resulting
cursor (ResultSet) to provide the resulting items. This autoconfiguration lets you provide a
PreparedStatementSetter, a RowMapper, or both. You can also use the following properties to configure
a JdbcCursorItemReader:

Table 4. JdbcCursorItemReader Properties

Property Type Default Value Description

spring.batch.job.jdbcc
ursoritemreader.saveSt
ate

boolean true Determines whether
the state should be
saved for restarts.

spring.batch.job.jdbcc
ursoritemreader.name

String null Name used to provide
unique keys in the
ExecutionContext.

spring.batch.job.jdbcc
ursoritemreader.maxIte
mcount

int Integer.MAX_VALUE Maximum number of
items to be read from
the file.

spring.batch.job.jdbcc
ursoritemreader.curren
tItemCount

int 0 Number of items that
have already been
read. Used on restarts.

spring.batch.job.jdbcc
ursoritemreader.fetchS
ize

int A hint to the driver to
indicate how many
records to retrieve per
call to the database
system. For best
performance, you
usually want to set it to
match the chunk size.

spring.batch.job.jdbcc
ursoritemreader.maxRow
s

int Maximum number of
items to read from the
database.

spring.batch.job.jdbcc
ursoritemreader.queryT
imeout

int Number of milliseconds
for the query to
timeout.

spring.batch.job.jdbcc
ursoritemreader.ignore
Warnings

boolean true Determines whether
the reader should
ignore SQL warnings
when processing.

https://docs.spring.io/spring-batch/docs/4.3.x/api/org/springframework/batch/item/file/FlatFileItemReader.html
https://docs.spring.io/spring-batch/docs/4.3.x/api/org/springframework/batch/item/file/FlatFileItemReader.html

Property Type Default Value Description

spring.batch.job.jdbcc
ursoritemreader.verify
CursorPosition

boolean true Indicates whether the
cursor’s position
should be verified after
each read to verify that
the RowMapper did not
advance the cursor.

spring.batch.job.jdbcc
ursoritemreader.driver
SupportsAbsolute

boolean false Indicates whether the
driver supports
absolute positioning of
a cursor.

spring.batch.job.jdbcc
ursoritemreader.useSha
redExtendedConnection

boolean false Indicates whether the
connection is shared
with other processing
(and is therefore part of
a transaction).

spring.batch.job.jdbcc
ursoritemreader.sql

String null SQL query from which
to read.

See the JdbcCursorItemReader documentation.

5.2.4. KafkaItemReader

Ingesting a partition of data from a Kafka topic is useful and exactly what the KafkaItemReader can
do. To configure a KafkaItemReader, two pieces of configuration are required. First, configuring
Kafka with Spring Boot’s Kafka autoconfiguration is required (see the Spring Boot Kafka
documentation). Once you have configured the Kafka properties from Spring Boot, you can
configure the KafkaItemReader itself by setting the following properties:

Table 5. KafkaItemReader Properties

Property Type Default Value Description

spring.batch.job.kafka
itemreader.name

String null Name used to provide
unique keys in the
ExecutionContext.

spring.batch.job.kafka
itemreader.topic

String null Name of the topic from
which to read.

spring.batch.job.kafka
itemreader.partitions

List<Integer> empty list List of partition indices
from which to read.

spring.batch.job.kafka
itemreader.pollTimeOut
InSeconds

long 30 Timeout for the poll()
operations.

spring.batch.job.kafka
itemreader.saveState

boolean true Determines whether
the state should be
saved for restarts.

https://docs.spring.io/spring-batch/docs/4.3.x/api/org/springframework/batch/item/database/JdbcCursorItemReader.html
https://docs.spring.io/spring-batch/docs/4.3.x/api/org/springframework/batch/item/database/JdbcCursorItemReader.html
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#messaging.kafka.additional-properties
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#messaging.kafka.additional-properties

See the KafkaItemReader documentation.

5.3. ItemProcessor Configuration
The single-step batch job autoconfiguration accepts an ItemProcessor if one is available within the
ApplicationContext. If one is found of the correct type (ItemProcessor<Map<String, Object>,
Map<String, Object>>), it is autowired into the step.

5.4. Autoconfiguration for ItemWriter
implementations
This starter provides autoconfiguration for ItemWriter implementations that match the supported
ItemReader implementations: AmqpItemWriter, FlatFileItemWriter, JdbcItemWriter, and
KafkaItemWriter. This section covers how to use autoconfiguration to configure a supported
ItemWriter.

5.4.1. AmqpItemWriter

To write to a RabbitMQ queue, you need two sets of configuration. First, you need an AmqpTemplate.
The easiest way to get this is by using Spring Boot’s RabbitMQ autoconfiguration. See the Spring
Boot RabbitMQ documentation. Once you have configured the AmqpTemplate, you can configure the
AmqpItemWriter by setting the following properties:

Table 6. AmqpItemWriter Properties

Property Type Default Value Description

spring.batch.job.amqpi
temwriter.enabled

boolean false If true, the
autoconfiguration runs.

spring.batch.job.amqpi
temwriter.jsonConverte
rEnabled

boolean true Indicates whether
Jackson2JsonMessageCon
verter should be
registered to convert
messages.

5.4.2. FlatFileItemWriter

To write a file as the output of the step, you can configure FlatFileItemWriter. Autoconfiguration
accepts components that have been explicitly configured (such as LineAggregator, FieldExtractor,
FlatFileHeaderCallback, or a FlatFileFooterCallback) and components that have been configured by
setting the following properties specified:

Table 7. FlatFileItemWriter Properties

Property Type Default Value Description

spring.batch.job.flatf
ileitemwriter.resource

Resource null The resource to be
read.

https://docs.spring.io/spring-batch/docs/4.3.x/api/org/springframework/batch/item/kafka/KafkaItemReader.html
https://docs.spring.io/spring-batch/docs/4.3.x/api/org/springframework/batch/item/kafka/KafkaItemReader.html
https://docs.spring.io/spring-boot/docs/2.4.x/reference/htmlsingle/#boot-features-amqp
https://docs.spring.io/spring-boot/docs/2.4.x/reference/htmlsingle/#boot-features-amqp

Property Type Default Value Description

spring.batch.job.flatf
ileitemwriter.delimite
d

boolean false Indicates whether the
output file is a
delimited file. If true,
spring.batch.job.flatf
ileitemwriter.formatte
d must be false.

spring.batch.job.flatf
ileitemwriter.formatte
d

boolean false Indicates whether the
output file a formatted
file. If true,
spring.batch.job.flatf
ileitemwriter.delimite
d must be false.

spring.batch.job.flatf
ileitemwriter.format

String null The format used to
generate the output for
a formatted file. The
formatting is
performed by using
String.format.

spring.batch.job.flatf
ileitemwriter.locale

Locale Locale.getDefault() The Locale to be used
when generating the
file.

spring.batch.job.flatf
ileitemwriter.maximumL
ength

int 0 Max length of the
record. If 0, the size is
unbounded.

spring.batch.job.flatf
ileitemwriter.minimumL
ength

int 0 The minimum record
length.

spring.batch.job.flatf
ileitemwriter.delimite
r

String , The String used to
delimit fields in a
delimited file.

spring.batch.job.flatf
ileitemwriter.encoding

String FlatFileItemReader.DEF
AULT_CHARSET

Encoding to use when
writing the file.

spring.batch.job.flatf
ileitemwriter.forceSyn
c

boolean false Indicates whether a file
should be force-synced
to the disk on flush.

spring.batch.job.flatf
ileitemwriter.names

String [] null List of names for each
field parsed from a
record. These names
are the keys in the
Map<String, Object> for
the items received by
this ItemWriter.

Property Type Default Value Description

spring.batch.job.flatf
ileitemwriter.append

boolean false Indicates whether a file
should be appended to
if the output file is
found.

spring.batch.job.flatf
ileitemwriter.lineSepa
rator

String FlatFileItemWriter.DEF
AULT_LINE_SEPARATOR

What String to use to
separate lines in the
output file.

spring.batch.job.flatf
ileitemwriter.name

String null Name used to provide
unique keys in the
ExecutionContext.

spring.batch.job.flatf
ileitemwriter.saveStat
e

boolean true Determines whether
the state should be
saved for restarts.

spring.batch.job.flatf
ileitemwriter.shouldDe
leteIfEmpty

boolean false If set to true, an empty
file (there is no output)
is deleted when the job
completes.

spring.batch.job.flatf
ileitemwriter.shouldDe
leteIfExists

boolean true If set to true and a file
is found where the
output file should be, it
is deleted before the
step begins.

spring.batch.job.flatf
ileitemwriter.transact
ional

boolean FlatFileItemWriter.DEF
AULT_TRANSACTIONAL

Indicates whether the
reader is a
transactional queue
(indicating that the
items read are returned
to the queue upon a
failure).

See the FlatFileItemWriter documentation.

5.4.3. JdbcBatchItemWriter

To write the output of a step to a relational database, this starter provides the ability to
autoconfigure a JdbcBatchItemWriter. The autoconfiguration lets you provide your own
ItemPreparedStatementSetter or ItemSqlParameterSourceProvider and configuration options by
setting the following properties:

Table 8. JdbcBatchItemWriter Properties

https://docs.spring.io/spring-batch/docs/4.3.x/api/org/springframework/batch/item/file/FlatFileItemWriter.html
https://docs.spring.io/spring-batch/docs/4.3.x/api/org/springframework/batch/item/file/FlatFileItemWriter.html

Property Type Default Value Description

spring.batch.job.jdbcb
atchitemwriter.name

String null Name used to provide
unique keys in the
ExecutionContext.

spring.batch.job.jdbcb
atchitemwriter.sql

String null The SQL used to insert
each item.

spring.batch.job.jdbcb
atchitemwriter.assertU
pdates

boolean true Whether to verify that
every insert results in
the update of at least
one record.

See the JdbcBatchItemWriter documentation.

5.4.4. KafkaItemWriter

To write step output to a Kafka topic, you need KafkaItemWriter. This starter provides
autoconfiguration for a KafkaItemWriter by using facilities from two places. The first is Spring Boot’s
Kafka autoconfiguration. (See the Spring Boot Kafka documentation.) Second, this starter lets you
configure two properties on the writer.

Table 9. KafkaItemWriter Properties

Property Type Default Value Description

spring.batch.job.kafka
itemwriter.topic

String null The Kafka topic to
which to write.

spring.batch.job.kafka
itemwriter.delete

boolean false Whether the items
being passed to the
writer are all to be sent
as delete events to the
topic.

For more about the configuration options for the KafkaItemWriter, see the KafkaItemWiter
documentation.

6. Spring Cloud Stream Integration
A task by itself can be useful, but integration of a task into a larger ecosystem lets it be useful for
more complex processing and orchestration. This section covers the integration options for Spring
Cloud Task with Spring Cloud Stream.

6.1. Launching a Task from a Spring Cloud Stream
You can launch tasks from a stream. To do so, create a sink that listens for a message that contains a
TaskLaunchRequest as its payload. The TaskLaunchRequest contains:

• uri: To the task artifact that is to be executed.

https://docs.spring.io/spring-batch/docs/4.3.x/api/org/springframework/batch/item/database/JdbcBatchItemWriter.html
https://docs.spring.io/spring-batch/docs/4.3.x/api/org/springframework/batch/item/database/JdbcBatchItemWriter.html
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#messaging.kafka.additional-properties
https://docs.spring.io/spring-batch/docs/4.3.x/api/org/springframework/batch/item/kafka/KafkaItemWriter.html
https://docs.spring.io/spring-batch/docs/4.3.x/api/org/springframework/batch/item/kafka/KafkaItemWriter.html
https://docs.spring.io/spring-batch/docs/4.3.x/api/org/springframework/batch/item/kafka/KafkaItemWriter.html

• applicationName: The name that is associated with the task. If no applicationName is set, the
TaskLaunchRequest generates a task name comprised of the following: Task-<UUID>.

• commandLineArguments: A list containing the command line arguments for the task.

• environmentProperties: A map containing the environment variables to be used by the task.

• deploymentProperties: A map containing the properties that are used by the deployer to deploy
the task.

 If the payload is of a different type, the sink throws an exception.

For example, a stream can be created that has a processor that takes in data from an HTTP source
and creates a GenericMessage that contains the TaskLaunchRequest and sends the message to its
output channel. The task sink would then receive the message from its input channel and then
launch the task.

To create a taskSink, you need only create a Spring Boot application that includes the
EnableTaskLauncher annotation, as shown in the following example:

@SpringBootApplication
@EnableTaskLauncher
public class TaskSinkApplication {
 public static void main(String[] args) {
 SpringApplication.run(TaskSinkApplication.class, args);
 }
}

The samples module of the Spring Cloud Task project contains a sample Sink and Processor. To
install these samples into your local maven repository, run a maven build from the spring-cloud-
task-samples directory with the skipInstall property set to false, as shown in the following
example:

mvn clean install

The maven.remoteRepositories.springRepo.url property must be set to the location
of the remote repository in which the über-jar is located. If not set, there is no
remote repository, so it relies upon the local repository only.

6.1.1. Spring Cloud Data Flow

To create a stream in Spring Cloud Data Flow, you must first register the Task Sink Application we
created. In the following example, we are registering the Processor and Sink sample applications by
using the Spring Cloud Data Flow shell:

app register --name taskSink --type sink --uri
maven://io.spring.cloud:tasksink:<version>
app register --name taskProcessor --type processor --uri
maven:io.spring.cloud:taskprocessor:<version>

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples

The following example shows how to create a stream from the Spring Cloud Data Flow shell:

stream create foo --definition "http --server.port=9000|taskProcessor|taskSink"
--deploy

6.2. Spring Cloud Task Events
Spring Cloud Task provides the ability to emit events through a Spring Cloud Stream channel when
the task is run through a Spring Cloud Stream channel. A task listener is used to publish the
TaskExecution on a message channel named task-events. This feature is autowired into any task that
has spring-cloud-stream, spring-cloud-stream-<binder>, and a defined task on its classpath.

To disable the event emitting listener, set the spring.cloud.task.events.enabled
property to false.

With the appropriate classpath defined, the following task emits the TaskExecution as an event on
the task-events channel (at both the start and the end of the task):

@SpringBootApplication
public class TaskEventsApplication {

 public static void main(String[] args) {
 SpringApplication.run(TaskEventsApplication.class, args);
 }

 @Configuration
 public static class TaskConfiguration {

 @Bean
 public ApplicationRunner applicationRunner() {
 return new ApplicationRunner() {
 @Override
 public void run(ApplicationArguments args) {
 System.out.println("The ApplicationRunner was executed");
 }
 };
 }
 }
}

 A binder implementation is also required to be on the classpath.

A sample task event application can be found in the samples module of the Spring
Cloud Task Project, here.

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples/task-events

6.2.1. Disabling Specific Task Events

To disable task events, you can set the spring.cloud.task.events.enabled property to false.

6.3. Spring Batch Events
When executing a Spring Batch job through a task, Spring Cloud Task can be configured to emit
informational messages based on the Spring Batch listeners available in Spring Batch. Specifically,
the following Spring Batch listeners are autoconfigured into each batch job and emit messages on
the associated Spring Cloud Stream channels when run through Spring Cloud Task:

• JobExecutionListener listens for job-execution-events

• StepExecutionListener listens for step-execution-events

• ChunkListener listens for chunk-events

• ItemReadListener listens for item-read-events

• ItemProcessListener listens for item-process-events

• ItemWriteListener listens for item-write-events

• SkipListener listens for skip-events

These listeners are autoconfigured into any AbstractJob when the appropriate beans (a Job and a
TaskLifecycleListener) exist in the context. Configuration to listen to these events is handled the
same way binding to any other Spring Cloud Stream channel is done. Our task (the one running the
batch job) serves as a Source, with the listening applications serving as either a Processor or a Sink.

An example could be to have an application listening to the job-execution-events channel for the
start and stop of a job. To configure the listening application, you would configure the input to be
job-execution-events as follows:

spring.cloud.stream.bindings.input.destination=job-execution-events

 A binder implementation is also required to be on the classpath.

A sample batch event application can be found in the samples module of the
Spring Cloud Task Project, here.

6.3.1. Sending Batch Events to Different Channels

One of the options that Spring Cloud Task offers for batch events is the ability to alter the channel to
which a specific listener can emit its messages. To do so, use the following configuration:
spring.cloud.stream.bindings.<the channel>.destination=<new destination>. For example, if
StepExecutionListener needs to emit its messages to another channel called my-step-execution-
events instead of the default step-execution-events, you can add the following configuration:

spring.cloud.task.batch.events.step-execution-events-binding-name=my-step-execution-events

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples/batch-events

6.3.2. Disabling Batch Events

To disable the listener functionality for all batch events, use the following configuration:

spring.cloud.task.batch.events.enabled=false

To disable a specific batch event, use the following configuration:

spring.cloud.task.batch.events.<batch event listener>.enabled=false:

The following listing shows individual listeners that you can disable:

spring.cloud.task.batch.events.job-execution.enabled=false
spring.cloud.task.batch.events.step-execution.enabled=false
spring.cloud.task.batch.events.chunk.enabled=false
spring.cloud.task.batch.events.item-read.enabled=false
spring.cloud.task.batch.events.item-process.enabled=false
spring.cloud.task.batch.events.item-write.enabled=false
spring.cloud.task.batch.events.skip.enabled=false

6.3.3. Emit Order for Batch Events

By default, batch events have Ordered.LOWEST_PRECEDENCE. To change this value (for example, to 5),
use the following configuration:

spring.cloud.task.batch.events.job-execution-order=5
spring.cloud.task.batch.events.step-execution-order=5
spring.cloud.task.batch.events.chunk-order=5
spring.cloud.task.batch.events.item-read-order=5
spring.cloud.task.batch.events.item-process-order=5
spring.cloud.task.batch.events.item-write-order=5
spring.cloud.task.batch.events.skip-order=5

7. Appendices

7.1. Task Repository Schema
This appendix provides an ERD for the database schema used in the task repository.

[task schema] | task_schema.png

7.1.1. Table Information

TASK_EXECUTION

Stores the task execution information.

Col
um
n
Na
me

Req
uire
d

Typ
e

Fiel
d
Len
gth

Notes

TAS
K_E
XEC
UTI
ON_
ID

TRU
E

BIGI
NT

X Spring Cloud Task Framework at app startup
establishes the next available id as obtained from the
TASK_SEQ. Or if the record is created outside of task then
the value must be populated at record creation time.

STA
RT_
TIM
E

FAL
SE

DAT
ETI
ME

X Spring Cloud Task Framework at app startup
establishes the value.

END
_TI
ME

FAL
SE

DAT
ETI
ME

X Spring Cloud Task Framework at app exit establishes
the value.

TAS
K_N
AM
E

FAL
SE

VAR
CHA
R

100 Spring Cloud Task Framework at app startup will set
this to "Application" unless user establish the name
using the spring.cloud.task.name as discussed here

EXI
T_C
ODE

FAL
SE

INT
EGE
R

X Follows Spring Boot defaults unless overridden by the
user as discussed here.

EXI
T_M
ESS
AGE

FAL
SE

VAR
CHA
R

2500 User Defined as discussed here.

ERR
OR_
MES
SAG
E

FAL
SE

VAR
CHA
R

2500 Spring Cloud Task Framework at app exit establishes
the value.

LAS
T_U
PDA
TED

TRU
E

DAT
ETI
ME

X Spring Cloud Task Framework at app startup
establishes the value. Or if the record is created outside
of task then the value must be populated at record
creation time.

https://docs.spring.io/spring-cloud-task/docs/current/reference/#features-lifecycle-exit-codes
https://docs.spring.io/spring-cloud-task/docs/current/reference/#features-task-execution-listener-exit-messages

Col
um
n
Na
me

Req
uire
d

Typ
e

Fiel
d
Len
gth

Notes

EXT
ERN
AL_
EXE
CUT
ION
_ID

FAL
SE

VAR
CHA
R

250 If the spring.cloud.task.external-execution-id
property is set then Spring Cloud Task Framework at
app startup will set this to the value specified. More
information can be found here

PAR
ENT
_TA
SK_
EXE
CUT
ION
_ID

FAL
SE

BIGI
NT

X If the spring.cloud.task.parent-execution-id property
is set then Spring Cloud Task Framework at app startup
will set this to the value specified. More information
can be found here

TASK_EXECUTION_PARAMS

Stores the parameters used for a task execution

Column Name Required Type Field Length

TASK_EXECUTION
_ID

TRUE BIGINT X

TASK_PARAM FALSE VARCHAR 2500

TASK_TASK_BATCH

Used to link the task execution to the batch execution.

Column Name Required Type Field Length

TASK_EXECUTION
_ID

TRUE BIGINT X

JOB_EXECUTION_I
D

TRUE BIGINT X

TASK_LOCK

Used for the single-instance-enabled feature discussed here.

Col
um
n
Na
me

Req
uire
d

Typ
e

Fiel
d
Len
gth

Notes

LOC
K_K
EY

TRU
E

CHA
R

36 UUID for the this lock

REG
ION

TRU
E

VAR
CHA
R

100 User can establish a group of locks using this field.

CLIE
NT_I
D

TRU
E

CHA
R

36 The task execution id that contains the name of the app
to lock.

CRE
ATE
D_D
ATE

TRU
E

DAT
ETI
ME

X The date that the entry was created

 The DDL for setting up tables for each database type can be found here.

7.1.2. SQL Server

By default Spring Cloud Task uses a sequence table for determining the TASK_EXECUTION_ID for the
TASK_EXECUTION table. However, when launching multiple tasks simultaneously while using SQL
Server, this can cause a deadlock to occur on the TASK_SEQ table. The resolution is to drop the
TASK_EXECUTION_SEQ table and create a sequence using the same name. For example:

DROP TABLE TASK_SEQ;

CREATE SEQUENCE [DBO].[TASK_SEQ] AS BIGINT
 START WITH 1
 INCREMENT BY 1;

 Set the START WITH to a higher value than your current execution id.

7.2. Building This Documentation
This project uses Maven to generate this documentation. To generate it for yourself, run the
following command: $ mvn clean install -DskipTests -P docs.

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-core/src/main/resources/org/springframework/cloud/task

	Spring Cloud Task Reference Guide
	Table of Contents
	1. Preface
	1.1. About the documentation
	1.2. Getting help
	1.3. First Steps

	2. Getting started
	2.1. Introducing Spring Cloud Task
	2.2. System Requirements
	2.3. Developing Your First Spring Cloud Task Application

	3. Features
	3.1. The lifecycle of a Spring Cloud Task
	3.2. Configuration

	4. Batch
	4.1. Associating a Job Execution to the Task in which It Was Executed
	4.2. Remote Partitioning
	4.3. Batch Informational Messages
	4.4. Batch Job Exit Codes

	5. Single Step Batch Job Starter
	5.1. Defining a Job
	5.2. Autoconfiguration for ItemReader Implementations
	5.3. ItemProcessor Configuration
	5.4. Autoconfiguration for ItemWriter implementations

	6. Spring Cloud Stream Integration
	6.1. Launching a Task from a Spring Cloud Stream
	6.2. Spring Cloud Task Events
	6.3. Spring Batch Events

	7. Appendices
	7.1. Task Repository Schema
	7.2. Building This Documentation

