Spring Cloud

Table of Contents

1. Features
2. Release Train Versions
Spring Cloud Build
1. Building and Deploying
2. Contributing
2.1. Sign the Contributor License Agreement
2.2. Code of Conduct
2.3. Code Conventions and Housekeeping
2.4. Checkstyle
2.5. IDE setup
2.6. Duplicate Finder
3. Flattening the POMs
4. Reusing the documentation
5. Updating the guides
Spring Cloud Bus
1. Quick Start
2. Bus Endpoints
2.1. Bus Refresh Endpoint
2.2. Bus Env Endpoint
3. Addressing an Instance
4. Addressing All Instances of a Service
5. Service ID Must Be Unique
6. Customizing the Message Broker
7. Tracing Bus Events
8. Broadcasting Your Own Events
8.1. Registering events in custom packages
9. Configuration properties
Spring Cloud Circuit Breaker
1. Usage Documentation
1.1. Configuring Resilience4] Circuit Breakers
1.2. Configuring Spring Retry Circuit Breakers
2. Building
2.1. Basic Compile and Test
2.2. Documentation
2.3. Working with the code
3. Contributing

15
15
16
18
18
19
19
19
19
22
25
26
27
30
31
31
32
32
32
33
33
33
34
34
35
36
37
37
37
37
42
44
44
45
45
46

3.1. Sign the Contributor License Agreement
3.2. Code of Conduct
3.3. Code Conventions and Housekeeping
3.4. Checkstyle
3.5. IDE setup
3.6. Duplicate Finder
Spring Boot Cloud CLI
1. Installation
2. Running Spring Cloud Services in Development
2.1. Adding Additional Applications
3. Writing Groovy Scripts and Running Applications
4. Encryption and Decryption
Spring Cloud for Cloud Foundry
1. Discovery
2. Single Sign On
3. Configuration
Cloud Native Applications
1. Spring Cloud Context: Application Context Services
1.1. The Bootstrap Application Context
1.2. Application Context Hierarchies
1.3. Changing the Location of Bootstrap Properties
1.4. Overriding the Values of Remote Properties
1.5. Customizing the Bootstrap Configuration
1.6. Customizing the Bootstrap Property Sources
1.7. Logging Configuration
1.8. Environment Changes
1.9. Refresh Scope
1.10. Encryption and Decryption
1.11. Endpoints
2. Spring Cloud Commons: Common Abstractions
2.1. The eEnableDiscoveryClient Annotation
2.2. ServiceRegistry
2.3. Spring RestTemplate as a Load Balancer Client
2.4. Spring WebClient as a Load Balancer Client
2.5. Multiple RestTemplate Objects
2.6. Multiple WebClient Objects

2.7. Spring WebFlux WebClient as a Load Balancer Client

2.8. Ignore Network Interfaces

2.9. HTTP Client Factories

2.10. Enabled Features

2.11. Spring Cloud Compatibility Verification

46
46
46
47
49
52
53
54
54
56
57
58
58
39
59
60
60
60
61
61
62
62
63
63
64
64
65
66
66
67
67
68
70
71
74
75
76
78
79
79
80

3. Spring Cloud LoadBalancer
3.1. Switching between the load-balancing algorithms
3.2. Spring Cloud LoadBalancer integrations
3.3. Spring Cloud LoadBalancer Caching
3.4. Zone-Based Load-Balancing
3.5. Instance Health-Check for LoadBalancer
3.6. Same instance preference for LoadBalancer
3.7. Request-based Sticky Session for LoadBalancer
3.8. Spring Cloud LoadBalancer Hints
3.9. Hint-Based Load-Balancing
3.10. Transform the load-balanced HTTP request
3.11. Spring Cloud LoadBalancer Starter
3.12. Passing Your Own Spring Cloud LoadBalancer Configuration
3.13. Spring Cloud LoadBalancer Lifecycle
3.14. Spring Cloud LoadBalancer Statistics
3.15. Configuring Individual LoadBalancerClients
4. Spring Cloud Circuit Breaker
4.1. Introduction
4.2. Core Concepts
4.3. Configuration
5. CachedRandomPropertySource
6. Security
6.1. Single Sign On
7. Configuration Properties
Spring Cloud Config
1. Quick Start
1.1. Client Side Usage
2. Spring Cloud Config Server
2.1. Environment Repository
2.2. Health Indicator
2.3. Security
2.4. Actuator and Security
2.5. Encryption and Decryption
2.6. Key Management
2.7. Creating a Key Store for Testing
2.8. Using Multiple Keys and Key Rotation
2.9. Serving Encrypted Properties
3. Serving Alternative Formats
4. Serving Plain Text
4.1. Git, SVN, and Native Backends
4.2. AWS S3

81
82
82
82
83
84
86
87
87
88
88
89
90
91
92
92
93
93
94
95
96
96
96
97
98
98
100
103
104
132
132
133
133
135
135
136
137
137
137
138
139

4.3. Decrypting Plain Text
5. Embedding the Config Server
6. Push Notifications and Spring Cloud Bus
7. Spring Cloud Config Client
7.1. Spring Boot Config Data Import
7.2. Config First Bootstrap
7.3. Config Client Fail Fast
7.4. Config Client Retry
7.5. Config Client Retry with spring.config.import
7.6. Locating Remote Configuration Resources
7.7. Specifying Multiple Urls for the Config Server
7.8. Configuring Timeouts
7.9. Security
7.10. Nested Keys In Vault
Spring Cloud Consul
1. Quick Start
1.1. Discovery Client Usage
1.2. Distributed Configuration Usage
2. Install Consul
3. Consul Agent
4. Service Discovery with Consul
4.1. How to activate
4.2. Registering with Consul
4.3. Looking up services
4.4. Consul Catalog Watch
5. Distributed Configuration with Consul
5.1. How to activate
5.2. Spring Boot Config Data Import
5.3. Customizing
5.4. Config Watch
5.5. YAML or Properties with Config
5.6. git2consul with Config
5.7. Fail Fast
6. Consul Retry
7. Spring Cloud Bus with Consul
7.1. How to activate
8. Circuit Breaker with Hystrix
9. Hystrix metrics aggregation with Turbine and Consul
10. Configuration Properties
Spring Cloud Contract Reference Documentation

Spring Cloud Function

139
140
140
141
141
142
143
143
143
144
144
145
145
147
148
148
148
151
154
154
154
154
154
160
161
161
162
162
163
163
164
164
165
165
166
166
166
166
167
167
168

1. Introduction
2. Getting Started
3. Programming model
3.1. Function Catalog and Flexible Function Signatures
3.2.Java 8 function support
3.3. Function Composition
3.4. Function Routing and Filtering
3.5. Input/Output Enrichment
3.6. Function Arity
3.7. Input Header propagation
3.8. Type conversion (Content-Type negotiation)
3.9. Kotlin Lambda support
3.10. Function Component Scan
4. Standalone Web Applications
4.2. Function Mapping rules
4.3. Function Filtering rules
5. Standalone Streaming Applications
6. Deploying a Packaged Function
6.1. Supported Packaging Scenarios
7. Functional Bean Definitions
7.1. Comparing Functional with Traditional Bean Definitions
7.2. Limitations of Functional Bean Declaration
8. Function visualization and control
9. Testing Functional Applications
10. Serverless Platform Adapters
10.1. AWS Lambda
10.2. Microsoft Azure
10.3. Google Cloud Functions
Spring Cloud Gateway
1. How to Include Spring Cloud Gateway
2. Glossary
3. How It Works
4. Configuring Route Predicate Factories and Gateway Filter Factories
4.1. Shortcut Configuration
4.2. Fully Expanded Arguments
5. Route Predicate Factories
5.1. The After Route Predicate Factory
5.2. The Before Route Predicate Factory
5.3. The Between Route Predicate Factory
5.4. The Cookie Route Predicate Factory
5.5. The Header Route Predicate Factory

168
169
170
170
170
172
172
176
179
179
180
184
184
184
186
186
187
187
189
191
191
194
194
195
198
198
205
208
214
214
214
214
215
215
215
216
216
216
217
217
218

5.6. The Host Route Predicate Factory i 218

5.7. The Method Route Predicate Factory i 219
5.8. The Path Route Predicate Factory i 219
5.9. The Query Route Predicate Factory......... i 220
5.10. The RemoteAddr Route Predicate Factory................... i, 221
5.11. The Weight Route Predicate Factory....... 223
5.12. The XForwarded Remote Addr Route Predicate Factory.......................... ... 223
6. GatewayFilter FACtOTIES 224
6.1. The AddRequestHeader GatewayFilter Factory....... 224
6.2. The AddRequestParameter GatewayFilter Factory......... 225
6.3. The AddResponseHeader GatewayFilter Factory........... 226
6.4. The DedupeResponseHeader GatewayFilter Factory.......... 227
6.5. Spring Cloud CircuitBreaker GatewayFilter Factory........... 228
6.6. The FallbackHeaders GatewayFilter Factory. 231
6.7. The MapRequestHeader GatewayFilter Factory....... 232
6.8. The PrefixPath GatewayFilter Factory....... 233
6.9. The PreserveHostHeader GatewayFilter Factory......... 233
6.10. The RequestRateLimiter GatewayFilter Factory......... 234
6.11. The RedirectTo GatewayFilter Factory....... i, 237
6.12. The RemoveRequestHeader GatewayFilter Factory 237
6.13. RemoveResponseHeader GatewayFilter Factory............. 238
6.14. The RemoveRequestParameter GatewayFilter Factory........... 238
6.15. RequestHeaderSize GatewayFilter Factory. 239
6.16. The RewritePath GatewayFilter Factory. i, 239
6.17. RewritelLocationResponseHeader GatewayFilter Factory.............. 240
6.18. The RewriteResponseHeader GatewayFilter Factory........ 241
6.19. The SaveSession GatewayFilter Factory............. i, 241
6.20. The SecureHeaders GatewayFilter Factory......... i 242
6.21. The SetPath GatewayFilter Factory i 243
6.22. The SetRequestHeader GatewayFilter Factory........... 243
6.23. The SetResponseHeader GatewayFilter Factory.......... 244
6.24. The SetStatus GatewayFilter Factory i 245
6.25. The StripPrefix GatewayFilter Factory. i i, 246
6.26. The Retry GatewayFilter Factory 247
6.27. The RequestSize GatewayFilter Factory........... i, 249
6.28. The SetRequestHostHeader GatewayFilter Factory......... 250
6.29. Modify a Request Body GatewayFilter Factory........... 251
6.30. Modify a Response Body GatewayFilter Factory.......... 252
6.31. Token Relay GatewayFilter Factory i 253
6.32. The CacheRequestBody GatewayFilter Factory........... 254

6.33. Default Filters 255

7. Global Filters
7.1. Combined Global Filter and GatewayFilter Ordering
7.2. Forward Routing Filter
7.3. The ReactiveloadBalancerClientFilter
7.4. The Netty Routing Filter
7.5. The Netty Write Response Filter
7.6. The RouteToRequestUr1 Filter
7.7. The Websocket Routing Filter
7.8. The Gateway Metrics Filter
7.9. Marking An Exchange As Routed
8. HttpHeadersFilters
8.1. Forwarded Headers Filter
8.2. RemoveHopByHop Headers Filter
8.3. XForwarded Headers Filter
9. TLS and SSL
9.1. TLS Handshake
10. Configuration
10.1. RouteDefinition Metrics
11. Route Metadata Configuration
12. Http timeouts configuration
12.1. Global timeouts
12.2. Per-route timeouts
12.3. Fluent Java Routes API
12.4. The Discovery(Client Route Definition Locator
13. Reactor Netty Access Logs
14. CORS Configuration
15. Actuator API
15.1. Verbose Actuator Format
15.2. Retrieving Route Filters
15.3. Refreshing the Route Cache
15.4. Retrieving the Routes Defined in the Gateway
15.5. Retrieving Information about a Particular Route
15.6. Creating and Deleting a Particular Route
15.7. Recap: The List of All endpoints
15.8. Sharing Routes between multiple Gateway instances
16. Troubleshooting
16.1. Log Levels
16.2. Wiretap
17. Developer Guide
17.1. Writing Custom Route Predicate Factories

17.2. Writing Custom GatewayFilter Factories

256
256
257
257
258
258
259
259
259
260
260
260
261
261
262
263
263
264
264
265
265
266
267
267
268
269
270
270
271
272
272
273
274
274
275
275
275
275
276
276
276

17.3. Writing Custom Global Filters

18. Building a Simple Gateway by Using Spring MVC or Webflux
19. Configuration properties

Spring Cloud Kubernetes
1. Why do you need Spring Cloud Kubernetes?
2. Starters
3. DiscoveryClient for Kubernetes

4. Kubernetes native service discovery

5. Kubernetes PropertySource implementations
5.1. Using a ConfigMap PropertySource
5.2. Secrets PropertySource
5.3. Namespace resolution
5.4. PropertySource Reload

6. Kubernetes Ecosystem Awareness
6.1. Kubernetes Profile Autoconfiguration
6.2. Istio Awareness

7. Pod Health Indicator

8. Info Contributor

9. Leader Election

10. LoadBalancer for Kubernetes

11. Security Configurations Inside Kubernetes
11.1. Namespace
11.2. Service Account

12. Service Registry Implementation

13. Spring Cloud Kubernetes Configuration Watcher
13.1. Deployment YAML
13.2. Monitoring ConfigMaps and Secrets
13.3. HTTP Implementation
13.4. Messaging Implementation
13.5. Configuring RabbitMQ
13.6. Configuring Kafka

14. Spring Cloud Kubernetes Config Server
14.1. Configuration
14.2. Deployment Yaml

15. Spring Cloud Kubernetes Discovery Server
15.1. Permissions
15.2. Endpoints
15.3. Deployment YAML

16. Examples

17. Other Resources

18. Configuration properties

278
279
281
281
281
281
283
285
286
286
296
301
302
304
305
305
305
306
306
306
307
307
308
309
309
310
312
313
313
313
314
314
314
315
317
317
318
321
323
324
324

19. Building
19.1. Basic Compile and Test
19.2. Documentation
19.3. Working with the code

20. Contributing
20.1. Sign the Contributor License Agreement
20.2. Code of Conduct
20.3. Code Conventions and Housekeeping
20.4. Checkstyle
20.5. IDE setup
20.6. Duplicate Finder

Spring Cloud Netflix

1. Service Discovery: Eureka Clients
1.1. How to Include Eureka Client
1.2. Registering with Eureka
1.3. Authenticating with the Eureka Server
1.4. Status Page and Health Indicator
1.5. Registering a Secure Application
1.6. Eureka’s Health Checks
1.7. Eureka Metadata for Instances and Clients
1.8. Using the EurekaClient
1.9. Alternatives to the Native Netflix EurekaClient
1.10. Why Is It so Slow to Register a Service?
1.11. Zones
1.12. Refreshing Eureka Clients
1.13. Using Eureka with Spring Cloud LoadBalancer

2. Service Discovery: Eureka Server
2.1. How to Include Eureka Server
2.2. How to Run a Eureka Server
2.3. defaultOpenForTrafficCount and its effect on EurekaServer warmup time
2.4. High Availability, Zones and Regions
2.5. Standalone Mode
2.6. Peer Awareness
2.7. When to Prefer IP Address
2.8. Securing The Eureka Server
2.9. JDK 11 Support

3. Configuration properties

Spring Cloud OpenFeign

1. Declarative REST Client: Feign
1.1. How to Include Feign
1.2. Overriding Feign Defaults

324
324
325
325
326
326
326
326
327
329
332
333
334
334
334
335
336
337
337
338
339
340
341
341
342
342
342
342
343
343
344
344
344
346
346
347
347
347
347
348
349

2.

1.3. Timeout Handling

1.4. Creating Feign Clients Manually

1.5. Feign Spring Cloud CircuitBreaker Support
1.6. Configuring CircuitBreakers With Configuration Properties
1.7. Feign Spring Cloud CircuitBreaker Fallbacks
1.8. Feign and @Primary

1.9. Feign Inheritance Support

1.10. Feign request/response compression

1.11. Feign logging

1.12. Feign Capability support

1.13. Feign metrics

1.14. Feign Caching

1.15. Feign @QueryMap support

1.16. HATEOAS support

1.17. Spring @MatrixVariable Support

1.18. Feign CollectionFormat support

1.19. Reactive Support

1.20. Spring Data Support

1.21. Spring @RefreshScope Support

1.22. OAuth2 Support

Configuration properties

Spring Cloud Sleuth Reference Documentation

1.

2.
3.
4.
3.

6.

Preface

1.1. A Brief History of Spring’s Data Integration Journey
1.2. Quick Start

Notable Deprecations

Spring Expression Language (SpEL) in the context of Streaming data
Introducing Spring Cloud Stream

Main Concepts

5.1. Application Model

5.2. The Binder Abstraction

5.3. Persistent Publish-Subscribe Support

5.4. Consumer Groups

5.5. Consumer Types

5.6. Partitioning Support

Programming Model

6.1. Destination Binders

6.2. Bindings

6.3. Producing and Consuming Messages

6.4. Event Routing

6.5. Error Handling

354
354
355
356
357
359
360
360
361
361
362
363
363
364
364
365
365
366
366
366
367
367
367
367
368
371
372
373
374
374
374
375
375
376
376
377
377
378
381
402
407

7. Binders 410

7.1. Producers and Consumers 411
7.2. Binder SPI 411
7.3. Binder Detection 412
7.4. Multiple Binders on the Classpath 412
7.5. Connecting to Multiple Systems 413
7.6. Customizing binders in multi binder applications 415
7.7. Binding visualization and control 415
7.8. Binder Configuration Properties 417
7.9. Implementing Custom Binders 418

8. Configuration Options 423
8.1. Binding Service Properties 423
8.2. Binding Properties 424

9. Content Type Negotiation 430
9.1. Mechanics 431
9.2. Provided MessageConverters 433
9.3. User-defined Message Converters 434
10. Inter-Application Communication 435
10.1. Connecting Multiple Application Instances 435
10.2. Instance Index and Instance Count 436
10.3. Partitioning 436
11. Testing 439
11.1. Spring Integration Test Binder 439
12. Health Indicator 445
13. Samples 446
13.1. Deploying Stream Applications on CloudFoundry 446
14. Binder Implementations 446
Spring Cloud Task Reference Guide 447
Preface 447
1. About the documentation 447
2. Getting help 447
3. First Steps 448
Getting started 448
1. Introducing Spring Cloud Task 448
2. System Requirements 448
2.1. Database Requirements 448

3. Developing Your First Spring Cloud Task Application 449
3.1. Creating the Spring Task Project using Spring Initializr 449
3.2. Writing the Code 449
3.3. Running the Example 451

Features 453

1. The lifecycle of a Spring Cloud Task
1.1. The TaskExecution
1.2. Mapping Exit Codes
2. Configuration
2.1. DataSource
2.2. Table Prefix
2.3. Enable/Disable table initialization
2.4. Externally Generated Task ID
2.5. External Task Id
2.6. Parent Task Id
2.7. TaskConfigurer
2.8. Task Name
2.9. Task Execution Listener
2.10. Restricting Spring Cloud Task Instances
2.11. Disabling Spring Cloud Task Auto Configuration
2.12. Closing the Context
Batch
1. Associating a Job Execution to the Task in which It Was Executed
1.1. Overriding the TaskBatchExecutionListener
2. Remote Partitioning
2.1. Notes on Developing a Batch-partitioned application for the Kubernetes Platform
2.2. Notes on Developing a Batch-partitioned Application for the Cloud Foundry Platform
3. Batch Informational Messages
4. Batch Job Exit Codes
Single Step Batch Job Starter
1. Defining a Job
1.1. Properties
2. Autoconfiguration for ItemReader Implementations
2.1. AmqpltemReader
2.2. FlatFileIltemReader
2.3.JdbcCursorItemReader
2.4. KafkaltemReader
3. ItemProcessor Configuration
4. Autoconfiguration for ItemWriter implementations
4.1. AmgpltemWriter
4.2. FlatFileItemWriter
4.3. JdbcBatchItemWriter
4.4. KafkaltemWriter
Spring Cloud Stream Integration
1. Launching a Task from a Spring Cloud Stream

1.1. Spring Cloud Data Flow

453
454
455
455
455
455
456
456
456
456
457
457
458
459
460
460
461
461
461
461
463
463
465
465
465
466
466
466
466
467
469
470
471
471
471
472
474
474
475
475
476

2. Spring Cloud Task Events 476

2.1. Disabling Specific Task Events 477

3. Spring Batch Events 477
3.1. Sending Batch Events to Different Channels 478
3.2. Disabling Batch Events 478
3.3. Emit Order for Batch Events 479
Appendices 479
1. Task Repository Schema 479
1.1. Table Information 479
1.2. SQL Server 482

2. Building This Documentation 482
3. Running a Task App on Cloud Foundry 483
Spring Cloud Vault 483
1. New & Noteworthy 483
1.1. New in Spring Cloud Vault 3.0 483

2. Quick Start 483
3. Client Side Usage 486
3.1. Authentication 489

4. ConfigData API 489
4.1. ConfigData Locations 490
4.2. Conditionally enable/disable Vault Configuration 491
4.3. Infrastructure Customization 491

5. Authentication methods 492
5.1. Token authentication 492
5.2. Vault Agent authentication 493
5.3. Appld authentication 493
5.4. AppRole authentication 495
5.5. AWS-EC2 authentication 497
5.6. AWS-IAM authentication 498
5.7. Azure MSI authentication 499
5.8. TLS certificate authentication 500
5.9. Cubbyhole authentication 501
5.10. GCP-GCE authentication 502
5.11. GCP-IAM authentication 503
5.12. Kubernetes authentication 504
5.13. Pivotal CloudFoundry authentication 505

6. ACL Requirements 506
6.1. Authentication 506
6.2. KeyValue Mount Discovery 506
6.3. SecretLeaseContainer 506

6.4. Session Management 506

7. Secret Backends
7.1. Key-Value Backend
7.2. Consul
7.3. RabbitMQ
7.4. AWS

8. Database backends
8.1. Database
8.2. Multiple Databases
8.3. Apache Cassandra
8.4. Couchbase Database
8.5. Elasticsearch
8.6. MongoDB
8.7. MySQL
8.8. PostgreSQL

9. Customize which secret backends to expose as PropertySource

10. Custom Secret Backend Implementations
11. Service Registry Configuration

12. Vault Client Fail Fast

13. Vault Enterprise Namespace Support

14. Vault Client SSL configuration

15. Lease lifecycle management (renewal and revocation)

16. Session token lifecycle management (renewal, re-login and revocation)

Appendix A: Common application properties
Spring Cloud Zookeeper
1. Quick Start
1.1. Discovery Client Usage
1.2. Distributed Configuration Usage
2. Install Zookeeper
3. Service Discovery with Zookeeper
3.1. Activating
3.2. Registering with Zookeeper
3.3. Using the DiscoveryClient
4. Using Spring Cloud Zookeeper with Spring Cloud Components
4.1. Spring Cloud LoadBalancer with Zookeeper
5. Spring Cloud Zookeeper and Service Registry
5.1. Instance Status
6. Zookeeper Dependencies
6.1. Using the Zookeeper Dependencies
6.2. Activating Zookeeper Dependencies
6.3. Setting up Zookeeper Dependencies

6.4. Configuring Spring Cloud Zookeeper Dependencies

507
507
508
509
510
512
513
513
514
515
516
516
517
518
519
519
520
520
521
521
522
523
523
532
532
532
535
538
539
539
539
540
541
541
541
542
542
542
543
543
546

7. Spring Cloud Zookeeper Dependency Watcher 546

7.1. Activating 546

7.2. Registering a Listener 546

7.3. Using the Presence Checker 547

8. Distributed Configuration with Zookeeper 547
8.1. Activating 548

8.2. Spring Boot Config Data Import 548

8.3. Customizing 549

8.4. Access Control Lists (ACLs) 549
Appendix: Compendium of Configuration Properties 550

Spring Cloud provides tools for developers to quickly build some of the common
patterns in distributed systems (e.g. configuration management, service
discovery, circuit breakers, intelligent routing, micro-proxy, control bus).
Coordination of distributed systems leads to boiler plate patterns, and using
Spring Cloud developers can quickly stand up services and applications that
implement those patterns. They will work well in any distributed environment,
including the developer’s own laptop, bare metal data centres, and managed
platforms such as Cloud Foundry.

Release Train Version: 2021.0.3

Supported Boot Version: 2.6.8

1. Features

Spring Cloud focuses on providing good out of box experience for typical use cases and extensibility
mechanism to cover others.

* Distributed/versioned configuration

» Service registration and discovery

* Routing

* Service-to-service calls

Load balancing

e Circuit Breakers

Distributed messaging

2. Release Train Versions

Table 1. Release Train Project Versions

Project Name Project Version

spring-boot 2.6.8
spring-cloud-build 3.1.3
spring-cloud-bus 3.1.2
spring-cloud-circuitbreaker 2.1.3
spring-cloud-cli 311
spring-cloud-cloudfoundry 3.1.2
spring-cloud-commons 3.1.3
spring-cloud-config 3.1.3
spring-cloud-consul 311
spring-cloud-contract 3.1.3
spring-cloud-function 3.2.5
spring-cloud-gateway 3.1.3
spring-cloud-kubernetes 2.1.3
spring-cloud-netflix 3.1.3
spring-cloud-openfeign 3.1.3
spring-cloud-sleuth 3.1.3
spring-cloud-stream 3.24
spring-cloud-task 2.4.3
spring-cloud-vault 311
spring-cloud-zookeeper 3.1.2

Spring Cloud Build

[Build] |

https://github.com/spring-cloud/spring-cloud-

build/workflows/Build/badge.svg?branch=main&style=svg

Spring Cloud Build is a common utility project for Spring Cloud to use for plugin and dependency
management.

1. Building and Deploying

To install locally:
$ mvn install -s .settings.xml
and to deploy snapshots to repo.spring.io:

$ mvn deploy
-DaltSnapshotDeploymentRepository=repo.spring.io::default::https://repo.spring.io/snap
shot

for a RELEASE build use

$ mvn deploy
-DaltReleaseDeploymentRepository=repo.spring.io::default::https://repo.spring.io/relea
se

and for jcenter use

$ mvn deploy
-DaltReleaseDeploymentRepository=bintray::default::https://api.bintray.com/maven/sprin
g/jars/org.springframework.cloud:build

and for Maven Central use

$ mvn deploy -P central -DaltReleaseDeploymentRepository=sonatype-nexus
-staging::default::https://oss.sonatype.org/service/local/staging/deploy/maven2

(the "central" profile is available for all projects in Spring Cloud and it sets up the gpg jar signing,
and the repository has to be specified separately for this project because it is a parent of the starter
parent which users in turn have as their own parent).

2. Contributing

Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard
Github development process, using Github tracker for issues and merging pull requests into master.
If you want to contribute even something trivial please do not hesitate, but follow the guidelines

below.

2.1. Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the Contributor
License Agreement. Signing the contributor’s agreement does not grant anyone commit rights to
the main repository, but it does mean that we can accept your contributions, and you will get an
author credit if we do. Active contributors might be asked to join the core team, and given the
ability to merge pull requests.

2.2. Code of Conduct

This project adheres to the Contributor Covenant code of conduct. By participating, you are
expected to wuphold this code. Please report unacceptable behavior to spring-code-of-
conduct@pivotal.io.

2.3. Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help. They can also be added after the
original pull request but before a merge.

* Use the Spring Framework code format conventions. If you use Eclipse you can import
formatter settings using the eclipse-code-formatter.xml file from the Spring Cloud Build project.
If using Intelli], you can use the Eclipse Code Formatter Plugin to import the same file.

» Make sure all new .java files to have a simple Javadoc class comment with at least an @author
tag identifying you, and preferably at least a paragraph on what the class is for.

* Add the ASF license header comment to all new .java files (copy from existing files in the
project)

* Add yourself as an @author to the .java files that you modify substantially (more than cosmetic
changes).

* Add some Javadocs and, if you change the namespace, some XSD doc elements.
* A few unit tests would help a lot as well — someone has to do it.

* If no-one else is using your branch, please rebase it against the current master (or other target
branch in the main project).

* When writing a commit message please follow these conventions, if you are fixing an existing
issue please add Fixes gh-XXXX at the end of the commit message (where XXXX is the issue
number).

2.4. Checkstyle

Spring Cloud Build comes with a set of checkstyle rules. You can find them in the spring-cloud-
build-tools module. The most notable files under the module are:

https://cla.pivotal.io/sign/spring
https://cla.pivotal.io/sign/spring
https://github.com/spring-cloud/spring-cloud-build/blob/master/docs/src/main/asciidoc/code-of-conduct.adoc
mailto:spring-code-of-conduct@pivotal.io
mailto:spring-code-of-conduct@pivotal.io
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-dependencies-parent/eclipse-code-formatter.xml
https://plugins.jetbrains.com/plugin/6546
https://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

spring-cloud-build-tools/

L—— sre

—— checkstyle

| L—— checkstyle-suppressions.xml ®
L—— main

L—— resources

—— checkstyle-header.txt @
L—— checkstyle.xml @

@ Default Checkstyle rules
@ File header setup

® Default suppression rules

2.4.1. Checkstyle configuration

Checkstyle rules are disabled by default. To add checkstyle to your project just define the
following properties and plugins.

pom.xml

<properties>

<maven-checkstyle-plugin.failsOnError>true</maven-checkstyle-plugin.failsOnError> @
<maven-checkstyle-plugin.failsOnViolation>true
</maven-checkstyle-plugin.failsOnViolation> @
<maven-checkstyle-plugin.includeTestSourceDirectory>true
</maven-checkstyle-plugin.includeTestSourceDirectory> @

</properties>

<build>
<plugins>
<plugin> @
<groupld>io.spring.javaformat</groupld>
<artifactId>spring-javaformat-maven-plugin</artifactId>
</plugin>
<plugin> ®
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-checkstyle-plugin</artifactId>
</plugin>
</plugins>

<reporting>
<plugins>
<plugin> ®
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-checkstyle-plugin</artifactId>
</plugin>
</plugins>
</reporting>
</build>

@ Fails the build upon Checkstyle errors
@ Fails the build upon Checkstyle violations
® Checkstyle analyzes also the test sources

@ Add the Spring Java Format plugin that will reformat your code to pass most of the Checkstyle
formatting rules

® Add checkstyle plugin to your build and reporting phases
If you need to suppress some rules (e.g. line length needs to be longer), then it’s enough for you to

define a file under ${project.root}/src/checkstyle/checkstyle-suppressions.xml with your
suppressions. Example:

projectRoot/src/checkstyle/checkstyle-suppresions.xml

<?xml version="1.0"?>
<!DOCTYPE suppressions PUBLIC
"-//Puppy Crawl//DTD Suppressions 1.1//EN"
"https://www.puppycrawl.com/dtds/suppressions_1_1.dtd">
<suppressions>
<suppress files=".*ConfigServerApplication\.java"
checks="HideUtilityClassConstructor"/>
<suppress files=".*ConfigClientWatch\.java" checks="LineLengthCheck"/>
</suppressions>

It’'s advisable to copy the ${spring-cloud-build.rootFolder}/.editorconfig and ${spring-cloud-
build.rootFolder}/.springformat to your project. That way, some default formatting rules will be
applied. You can do so by running this script:

$ curl https://raw.githubusercontent.com/spring-cloud/spring-cloud-
build/master/.editorconfig -o .editorconfig
$ touch .springformat

2.5. IDE setup

2.5.1. Intellij IDEA

In order to setup Intellij you should import our coding conventions, inspection profiles and set up
the checkstyle plugin. The following files can be found in the Spring Cloud Build project.

spring-cloud-build-tools/

L—— sre

—— checkstyle

| L—— checkstyle-suppressions.xml ®
L—— main

L—— resources
—— checkstyle-header.txt @
—— checkstyle.xml @
—— intellij
—— Intellij_Project_Defaults.xml @
L—— Intellij_Spring_Boot_Java_Conventions.xml ®

@ Default Checkstyle rules

@ File header setup

® Default suppression rules

@ Project defaults for Intellij that apply most of Checkstyle rules

® Project style conventions for Intellij that apply most of Checkstyle rules

https://github.com/spring-cloud/spring-cloud-build/tree/master/spring-cloud-build-tools

-

Settings

Q- Editor » Code Style
Appearance & Behavior Scheme: | 5pring Boot Java Conventions ~ €1
Keymap Copy to Project...
Editor General Formatter Control Duplicate...
Rename...
General)
Line separator: | System-Dependent Delete...
Font

.) Export...
Applied to new files

Color Scheme

s 2

Intellij IDEA code style XML

Import Scheme
S =R CheckStyle Configuration

Inspections visual guides: Optional columns Eclipse XML Frofile
) JSCS config file
File and Code Templates Specify one guide (80) or several (80, 120)
File Encodings T .
Live Templates e . -
o Detect and use existing file indents for editing
File Types
Copyright EditorConfig
Emmet i
Enable EditorConfig support Export

D EditorConfig may override the IDE code style settings
Images
Intentions
Language Injections
Spelling
TODO
Plugins
Version Control
Build, Execution, Deployment

I annuanacs £ Eramawnrbc

Figure 1. Code style

Go to File — Settings — Editor — Code style. There click on the icon next to the Scheme section.
There, click on the Import Scheme value and pick the Intellij IDEA code style XML option. Import
the spring-cloud-build-
tools/src/main/resources/intellij/Intellij_Spring_Boot_Java_Conventions.xml file.

-

Q- Editor » Inspections For current project

Appearance & Behavior Profile: = Project Default 1DE v o
Keymap Copy to Project...
Editor Q- | Duplicate... |
Rename...
General - Angular I
Angular CLI Add Dependency Add Description...
Font Empty Event Handler Restore Defaults
Color Scheme Ant Delete...
AQP
Code Style Export...

Advice parameters (argNames, returni 2ncy che
: Around advice style inspection
File and Code Templates Introductions (declare parents) errors

File Encgdings Pointcut method St}"E
Live T | Application Servers
ive Templates Geronimo
File Types GlassFish
, JBoss
S WebLogic
Emmet AsciiDoc
: BashSupport
GUID o .
esigner Add missing shebang line to file
Images Change to a built-in shell variable

Convert backquote to subshell commands
Convert simple brackets to double brackets
Language Injections Convert subshell to backquote command
Convert to a quoted or unguoted string

Intentions

Spelling : . -
Duplicate function definition
TODO Evaluate arithmetic expression
Plugins E_w—zluate expansion
. Fix unusal Shebang
Version Control Function name is not in lower snake case

Cunctimn svneridoe intarnsl cammmand

e [] Disable new inspections by default

| anananae & Cramawnarle

Figure 2. Inspection profiles

Go to File — Settings — Editor — Inspections. There click on the icon next to the Profile section.
There, click on the Import Profile and import the spring-cloud-build-
tools/src/main/resources/intellij/Intellij_Project_Defaults.xml file.

Checkstyle

To have Intellij work with Checkstyle, you have to install the Checkstyle plugin. It’s advisable to also
install the Assertions2Assertj to automatically convert the JUnit assertions

Q- OtherSettings) Checkstyle For current project

Edi Checkstyle version: | §.16 - Ezaniule: All sources (including tests) ~ l

itor
File and Code Templates
File Encodings 1] Treat Checkstyle errors as warnings [Copy libraries from project directory (requires restart)

Live Templates Configuration File
File Types Active | Description | File -
Copyright [suncChecks (bundled)

Copyright Profiles [Google Checks (bundled)

Formatting

Emmet
GUI Designer

Images

Intentions

checkstyle header file home /mar ing-cloud pring-cloud-build:
checkstyle suppressionsfile g-cloud pring-cloud-build

Language Injections

Spelling
TODO

Plugins

Version Control

Build, Execution, Deployment

L S e e |

Languages & Frameworks
Tools

Other Settings

Lombok plugin

Protobuf Support

| W ¥ Request bod EIEN [oo |

15 * 1111 nnt+ ha BEF3RaA ©A AT AR TF Ra SRAITAa FA AT rarF I amhad 3+ 1A 3 TGN FAR

Goto File — Settings — Other settings — Checkstyle. There click on the + icon in the Configuration
file section. There, you’ll have to define where the checkstyle rules should be picked from. In the
image above, we’ve picked the rules from the cloned Spring Cloud Build repository. However, you

can point to the Spring Cloud Build’s GitHub repository (e.g. for the checkstyle.xml
raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/

main/resources/checkstyle.xml). We need to provide the following variables:

» checkstyle.header.file - please point it to the Spring Cloud Build’s, spring-cloud-build-

tools/src/main/resources/checkstyle-header.txt file either in your cloned repo or via the
raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/

src/main/resources/checkstyle-header.txt URL.

» checkstyle.suppressions.file - default suppressions. Please point it to the Spring Cloud Build’s,
spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml file either in your cloned
repo or via the raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-
cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml URL.

* checkstyle.additional.suppressions.file - this variable corresponds to suppressions in your
local project. E.g. you're working on spring-cloud-contract. Then point to the project-
root/src/checkstyle/checkstyle-suppressions.xml folder. Example for spring-cloud-contract
would be: /home/username/spring-cloud-contract/src/checkstyle/checkstyle-suppressions.xml.

o Remember to set the Scan Scope to All sources since we apply checkstyle rules for
production and test sources.

2.6. Duplicate Finder

Spring Cloud Build brings along the basepom:duplicate-finder-maven-plugin, that enables flagging
duplicate and conflicting classes and resources on the java classpath.

2.6.1. Duplicate Finder configuration

Duplicate finder is enabled by default and will run in the verify phase of your Maven build, but it
will only take effect in your project if you add the duplicate-finder-maven-plugin to the build
section of the projecst’s pom.xml.

https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml

pom.xml

<build>
<plugins>
<plugin>
<groupId>org.basepom.maven</groupIld>
<artifactId>duplicate-finder-maven-plugin</artifactId>
</plugin>
</plugins>
</build>

For other properties, we have set defaults as listed in the plugin documentation.

You can easily override them but setting the value of the selected property prefixed with duplicate-
finder-maven-plugin. For example, set duplicate-finder-maven-plugin.skip to true in order to skip
duplicates check in your build.

If you need to add ignoredClassPatterns or ignoredResourcePatterns to your setup, make sure to add
them in the plugin configuration section of your project:

<build>
<plugins>
<plugin>
<groupId>org.basepom.maven</groupld>
<artifactId>duplicate-finder-maven-plugin</artifactId>
<confiquration>
<ignoredClassPatterns>

<ignoredClassPattern>org.joda.time.base.BaseDateTime</ignoredClassPattern>
<ignored(ClassPattern>.*module-info</ignoredClassPattern>
</ignoredClassPatterns>
<ignoredResourcePatterns>
<ignoredResourcePattern>changelog.txt</ignoredResourcePattern>
</ignoredResourcePatterns>
</configuration>
</plugin>
</plugins>
</build>

3. Flattening the POMs

To avoid propagating build setup that is required to build a Spring Cloud project, we’re using the
maven flatten plugin. It has the advantage of letting you use whatever features you need while
publishing "clean" pom to the repository.

In order to add it, add the org.codehaus.mojo:flatten-maven-plugin to your pom.xml.

https://github.com/basepom/duplicate-finder-maven-plugin/wiki

<build>
<plugins>
<plugin>
<groupld>org.codehaus.mojo</groupId>
<artifactId>flatten-maven-plugin</artifactId>
</plugin>
</plugins>
</build>

4. Reusing the documentation

Spring Cloud Build publishes its spring-cloud-build-docs module that contains helpful scripts (e.g.
README generation ruby script) and css, xslt and images for the Spring Cloud documentation. If
you want to follow the same convention approach of generating documentation just add these
plugins to your docs module

<properties>
<upload-docs-zip.phase>deploy</upload-docs-zip.phase> ®
</properties>
<profiles>
<profile>
<id>docs</id>
<build>
<plugins>
<plugin>
<groupId>pl.project13.maven</groupld>
<artifactId>git-commit-id-plugin</artifactId> @®
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-dependency-plugin</artifactId> @
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-resources-plugin</artifactId> @
</plugin>
<plugin>
<groupId>org.codehaus.mojo</groupIld>
<artifactId>exec-maven-plugin</artifactld> @
</plugin>
<plugin>
<groupIld>org.asciidoctor</groupId>
<artifactId>asciidoctor-maven-plugin</artifactId> ®
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-antrun-plugin</artifactId> ®
</plugin>
<plugin>
<artifactId>maven-deploy-plugin</artifactId> @
</plugin>
</plugins>
</build>
</profile>
</profiles>

@ This plugin downloads sets up all the git information of the project

@ This plugin downloads the resources of the spring-cloud-build-docs module

® This plugin unpacks the resources of the spring-cloud-build-docs module

@ This plugin generates an adoc file with all the configuration properties from the classpath
® This plugin is required to parse the Asciidoctor documentation

® This plugin is required to copy resources into proper final destinations and to generate main
README.adoc and to assert that no files use unresolved links

@ This plugin ensures that the generated zip docs will get published

This property turns on the "deploy" phase for <7>
o The order of plugin declaration is important!

In order for the build to generate the adoc file with all your configuration properties, your docs
module should contain all the dependencies on the classpath, that you would want to scan for
configuration properties. The file will be output to
${docsModule}/src/main/asciidoc/_configprops.adoc file (configurable via the configprops.path
property).

If you want to modify which of the configuration properties are put in the table, you can tweak the
configprops.inclusionPattern pattern to include only a subset of the properties (e.g.
<configprops.inclusionPattern>spring.sleuth.*</configprops.inclusionPattern>).

Spring Cloud Build Docs comes with a set of attributes for asciidoctor that you can reuse.

<attributes>
<docinfo>shared</docinfo>
<allow-uri-read>true</allow-uri-read>
<nofooter/>
<toc>left</toc>
<toc-levels>4</toc-levels>
<sectlinks>true</sectlinks>
<sources-root>${project.basedir}/srce</sources-root>
<asciidoc-sources-root>${project.basedir}/src/main/asciidoc@</asciidoc-sources-
root>
<generated-resources-root>${project.basedir}/target/generated-resources@
</generated-resources-root>
<!-- Use this attribute the reference code from another module -->
<!-- Note the @ at the end, lowering the precedence of the attribute -->
<project-root>${maven.multiModuleProjectDirectory}@</project-root>
<!-- It's mandatory for you to pass the docs.main property -->
<github-repo>${docs.main}@</github-repo>
<github-project>https://github.com/spring-cloud/${docs.main}@</github-project>
<github-raw>
https://raw.githubusercontent.com/spring-cloud/${docs.main}/${github-tag}e
</github-raw>
<github-code>https://github.com/spring-cloud/${docs.main}/tree/${qgithub-tag}e
</github-code>
<github-issues>https://github.com/spring-cloud/${docs.main}/issues/@</qithub-
issues>
<github-wiki>https://github.com/spring-cloud/${docs.main}/wiki@</github-wiki>
<github-master-code>https://github.com/spring-cloud/${docs.main}/tree/master@
</github-master-code>
<index-1ink>${index-1ink}@</index-1ink>

<!-- Spring Cloud specific -->
<!-- for backward compatibility -->
<spring-cloud-version>${project.version}@</spring-cloud-version>
<project-version>${project.version}@</project-version>
<github-tag>${qgithub-tag}e</github-tag>
<version-type>${version-type}@</version-type>
<docs-url>https://docs.spring.io/${docs.main}/docs/${project.version}@</docs-url>
<raw-docs-ur1>${qgithub-raw}e</raw-docs-url>
<project-version>${project.version}@</project-version>
<project-name>${docs.main}@e</project-name>

</attributes>

5. Updating the guides

We assume that your project contains guides under the guides folder.

L—— guides
F—— gs-quidel
—— gs-gquide2

L—— gs-quide3

This means that the project contains 3 guides that would correspond to the following guides in
Spring Guides org.

 github.com/spring-guides/gs-guidel

 github.com/spring-guides/gs-guide2

» github.com/spring-guides/gs-guide3

If you deploy your project with the -Pquides profile like this
$./mvnw clean deploy -Pguides

what will happen is that for GA project versions, we will clone gs-quidel, gs-quide2 and gs-guide3
and update their contents with the ones being under your guides project.

You can skip this by either not adding the guides profile, or passing the -DskipGuides system
property when the profile is turned on.

You can configure the project version passed to guides via the guides-project.version (defaults to
${project.version}). The phase at which guides get updated can be configured by guides-
update.phase (defaults to deploy).

Spring Cloud Bus

Spring Cloud Bus links the nodes of a distributed system with a lightweight message broker. This
broker can then be used to broadcast state changes (such as configuration changes) or other
management instructions. A key idea is that the bus is like a distributed actuator for a Spring Boot
application that is scaled out. However, it can also be used as a communication channel between
apps. This project provides starters for either an AMQP broker or Kafka as the transport.

Spring Cloud is released under the non-restrictive Apache 2.0 license. If you would
o like to contribute to this section of the documentation or if you find an error,
please find the source code and issue trackers in the project at github.

1. Quick Start

Spring Cloud Bus works by adding Spring Boot autconfiguration if it detects itself on the classpath.
To enable the bus, add spring-cloud-starter-bus-amgp or spring-cloud-starter-bus-kafka to your
dependency management. Spring Cloud takes care of the rest. Make sure the broker (RabbitMQ or

https://github.com/spring-guides/gs-guide1
https://github.com/spring-guides/gs-guide2
https://github.com/spring-guides/gs-guide3
https://github.com/spring-cloud/spring-cloud

Kafka) is available and configured. When running on localhost, you need not do anything. If you
run remotely, use Spring Cloud Connectors or Spring Boot conventions to define the broker
credentials, as shown in the following example for Rabbit:

application.yml

spring:
rabbitmq:
host: mybroker.com
port: 5672
username: user
password: secret

The bus currently supports sending messages to all nodes listening or all nodes for a particular
service (as defined by Eureka). The /bus/* actuator namespace has some HTTP endpoints.
Currently, two are implemented. The first, /bus/env, sends key/value pairs to update each node’s
Spring Environment. The second, /bus/refresh, reloads each application’s configuration, as though
they had all been pinged on their /refresh endpoint.

The Spring Cloud Bus starters cover Rabbit and Kafka, because those are the two
most common implementations. However, Spring Cloud Stream is quite flexible,
and the binder works with spring-cloud-bus.

2. Bus Endpoints

Spring Cloud Bus provides two endpoints, /actuator/busrefresh and /actuator/busenv that
correspond to individual actuator endpoints in Spring Cloud Commons, /actuator/refresh and
/actuator/env respectively.

2.1. Bus Refresh Endpoint

The /actuator/busrefresh endpoint clears the RefreshScope cache and rebinds
@ConfigurationProperties. See the Refresh Scope documentation for more information.

To expose the /actuator/busrefresh endpoint, you need to add following configuration to your

application:

management.endpoints.web.exposure.include=busrefresh

2.2. Bus Env Endpoint

The /actuator/busenv endpoint updates each instances environment with the specified key/value
pair across multiple instances.

To expose the /actuator/busenv endpoint, you need to add following configuration to your
application:

management.endpoints.web.exposure.include=busenv

The /actuator/busenv endpoint accepts POST requests with the following shape:

"name": "key1",
"value": "valuel"

3. Addressing an Instance

Each instance of the application has a service ID, whose value can be set with spring.cloud.bus.id
and whose value is expected to be a colon-separated list of identifiers, in order from least specific to
most specific. The default value is constructed from the environment as a combination of the
spring.application.name and server.port (or spring.application.index, if set). The default value of
the ID is constructed in the form of app:index:id, where:

 appis the vcap.application.name, if it exists, or spring.application.name

* index is the vcap.application.instance_index, if it exists, spring.application.index,
local.server.port, server.port, or 0 (in that order).

e idisthe vcap.application.instance_id, if it exists, or a random value.

The HTTP endpoints accept a “destination” path parameter, such as /busrefresh/customers:9000,
where destination is a service ID. If the ID is owned by an instance on the bus, it processes the
message, and all other instances ignore it.

4. Addressing All Instances of a Service

The “destination” parameter is used in a Spring PathMatcher (with the path separator as a colon—:)
to determine if an instance processes the message. Using the example from earlier,
/busenv/customers:** targets all instances of the “customers” service regardless of the rest of the
service ID.

5. Service ID Must Be Unique

The bus tries twice to eliminate processing an event— once from the original ApplicationEvent and
once from the queue. To do so, it checks the sending service ID against the current service ID. If
multiple instances of a service have the same ID, events are not processed. When running on a local
machine, each service is on a different port, and that port is part of the ID. Cloud Foundry supplies
an index to differentiate. To ensure that the ID is unique outside Cloud Foundry, set
spring.application.index to something unique for each instance of a service.

6. Customizing the Message Broker

Spring Cloud Bus uses Spring Cloud Stream to broadcast the messages. So, to get messages to flow,
you need only include the binder implementation of your choice in the classpath. There are
convenient starters for the bus with AMQP (RabbitMQ) and Kafka (spring-cloud-starter-bus-
[amqp|kafka]). Generally speaking, Spring Cloud Stream relies on Spring Boot autoconfiguration
conventions for configuring middleware. For instance, the AMQP broker address can be changed
with spring.rabbitmg.* configuration properties. Spring Cloud Bus has a handful of native
configuration properties in spring.cloud.bus.* (for example, spring.cloud.bus.destination is the
name of the topic to use as the external middleware). Normally, the defaults suffice.

To learn more about how to customize the message broker settings, consult the Spring Cloud
Stream documentation.

7. Tracing Bus Events

Bus events (subclasses of RemoteApplicationEvent) can be traced by setting
spring.cloud.bus.trace.enabled=true. If you do so, the Spring Boot TraceRepository (if it is present)
shows each event sent and all the acks from each service instance. The following example comes
from the /trace endpoint:

https://cloud.spring.io/spring-cloud-stream

"timestamp": "2015-11-26T10:24:44.411+0000",
"info": {
"signal": "spring.cloud.bus.ack",
"type": "RefreshRemoteApplicationEvent",
"id": "c4d374b7-58ea-4928-a312-31984def293b",
"origin": "stores:8081",
"destination": "*;¥*"

}
I
{
"timestamp": "2015-11-26T710:24:41.864+0000",
"info": {
"signal": "spring.cloud.bus.sent",
"type": "RefreshRemoteApplicationEvent",
"id": "c4d374b7-58ea-4928-3312-31984def293b",

"origin": "customers:9000",
"destination": "*:**"

}

}I

{

"timestamp": "2015-11-26T10:24:41.862+0000",
"info": {

"signal": "spring.cloud.bus.ack",

"type": "RefreshRemoteApplicationEvent",
"id": "c4d374b7-58ea-4928-3312-31984def293b",
"origin": "customers:9000",

"destination": "*;**"

The preceding trace shows that a RefreshRemoteApplicationEvent was sent from customers:9000,
broadcast to all services, and received (acked) by customers:9000 and stores:8081.

To handle the ack signals yourself, you could add an @EventListener for the
AckRemoteApplicationEvent and SentApplicationEvent types to your app (and enable tracing).
Alternatively, you could tap into the TraceRepository and mine the data from there.

Any Bus application can trace acks. However, sometimes, it is useful to do this in a
o central service that can do more complex queries on the data or forward it to a
specialized tracing service.

8. Broadcasting Your Own Events

The Bus can carry any event of type RemoteApplicationEvent. The default transport is JSON, and the
deserializer needs to know which types are going to be used ahead of time. To register a new type,
you must put it in a subpackage of org.springframework.cloud.bus.event.

To customise the event name, you can use @JsonTypeName on your custom class or rely on the default
strategy, which is to use the simple name of the class.

o Both the producer and the consumer need access to the class definition.

8.1. Registering events in custom packages

If you cannot or do not want to use a subpackage of org.springframework.cloud.bus.event for your
custom events, you must specify which packages to scan for events of type RemoteApplicationEvent
by using the @RemoteApplicationEventScan annotation. Packages specified with
@RemoteApplicationEventScan include subpackages.

For example, consider the following custom event, called MyEvent:

package com.acme;
public class MyEvent extends RemoteApplicationEvent {

}

You can register that event with the deserializer in the following way:

package com.acme;

@Configuration
@RemoteApplicationEventScan
public class BusConfiguration {

}

Without specifying a value, the package of the class where @RemoteApplicationEventScan is used is
registered. In this example, com.acme is registered by using the package of BusConfiguration.

You can also explicitly specify the packages to scan by using the value, basePackages or
basePackage(lasses properties on @RemoteApplicationEventScan, as shown in the following example:

package com.acme;

@Configuration

//@RemoteApplicationEventScan({"com.acme", "foo.bar"})
//@RemoteApplicationEventScan(basePackages = {"com.acme", "foo.bar", "fizz.buzz"})
@RemoteApplicationEventScan(basePackageClasses = BusConfiguration.class)

public class BusConfiguration {

}

All of the preceding examples of @RemoteApplicationEventScan are equivalent, in that the com.acme
package is registered by explicitly specifying the packages on @RemoteApplicationEventScan.

o You can specify multiple base packages to scan.

9. Configuration properties

To see the list of all Bus related configuration properties please check the Appendix page.

Spring Cloud Circuit Breaker

2021.0.3

1. Usage Documentation

The Spring Cloud CircuitBreaker project contains implementations for Resilience4] and Spring
Retry. The APIs implemented in Spring Cloud CircuitBreaker live in Spring Cloud Commons. The
usage documentation for these APIs are located in the Spring Cloud Commons documentation.

1.1. Configuring Resilience4] Circuit Breakers

1.1.1. Starters

There are two starters for the Resilience4] implementations, one for reactive applications and one
for non-reactive applications.

* org.springframework.cloud:spring-cloud-starter-circuitbreaker-resilience4j - non-reactive
applications

* org.springframework.cloud:spring-cloud-starter-circuitbreaker-reactor-resilience4j - reactive
applications

1.1.2. Auto-Configuration

You can disable the Resilience4] auto-configuration by setting
spring.cloud.circuitbreaker.resilience4j.enabled to false.

1.1.3. Default Configuration

To provide a default configuration for all of your circuit breakers create a Customize bean that is
passed a Resilience4]CircuitBreakerFactory or ReactiveResilience4]CircuitBreakerFactory. The
configureDefault method can be used to provide a default configuration.

appendix.html
https://docs.spring.io/spring-cloud-commons/docs/current/reference/html/#spring-cloud-circuit-breaker

@Bean

public Customizer<Resilience4JCircuitBreakerFactory> defaultCustomizer() {
return factory -> factory.configureDefault(id -> new
Resilience4]ConfigBuilder(id)

.timeLimiterConfig(TimeLimiterConfig.custom().timeoutDuration(Duration.ofSeconds(4

)).build())

.circuitBreakerConfig(CircuitBreakerConfig.ofDefaults())
.build());

Reactive Example

@Bean

public Customizer<ReactiveResilience4]CircuitBreakerFactory> defaultCustomizer() {
return factory -> factory.configureDefault(id -> new
Resilience4]ConfigBuilder(id)

.circuitBreakerConfig(CircuitBreakerConfig.ofDefaults())

.timeLimiterConfig(TimeLimiterConfig.custom().timeoutDuration(Duration.ofSeconds(4
)).build()).build());

}

1.1.4. Specific Circuit Breaker Configuration

Similarly to providing a default configuration, you can create a Customize bean this is passed a
Resilience4]CircuitBreakerFactory or ReactiveResilience4]CircuitBreakerFactory.

@Bean

public Customizer<Resilience4]JCircuitBreakerFactory> slowCustomizer() {
return factory -> factory.configure(builder ->

builder.circuitBreakerConfig(CircuitBreakerConfig.ofDefaults())

.timeLimiterConfig(TimeLimiterConfig.custom().timeoutDuration(Duration.ofSeconds(2
)).build()), "slow");

}

In addition to configuring the circuit breaker that is created you can also customize the circuit
breaker after it has been created but before it is returned to the caller. To do this you can use the

addCircuitBreakerCustomizer method. This can be useful for adding event handlers to Resilience4]
circuit breakers.

©Bean

public Customizer<Resilience4JCircuitBreakerFactory> slowCustomizer() {
return factory -> factory.addCircuitBreakerCustomizer(circuitBreaker ->

circuitBreaker.getEventPublisher()
.onError(normalFluxErrorConsumer).onSuccess(normalFluxSuccessConsumer),

"normalflux");

}

Reactive Example

@Bean
public Customizer<ReactiveResilience4]CircuitBreakerFactory> slowCustomizer() {
return factory -> {
factory.configure(builder -> builder

.timeLimiterConfig(TimeLimiterConfig.custom().timeoutDuration(Duration.ofSeconds(2

)).build())

.circuitBreakerConfig(CircuitBreakerConfig.ofDefaults()), "slow",
"slowflux");

factory.addCircuitBreakerCustomizer(circuitBreaker ->
circuitBreaker.getEventPublisher()

.onError(normalFluxErrorConsumer).onSuccess(normalFluxSuccessConsumer),
"normalflux");

I
}

1.1.5. Circuit Breaker Properties Configuration

You can configure CircuitBreaker and TimelLimiter instances in your application’s configuration
properties file. Property configuration has higher priority than Java Customizer configuration.

resilience4j.circuitbreaker:
instances:
backendA:
registerHealthIndicator: true
slidingWindowSize: 100
backendB:
registerHealthIndicator: true
slidingWindowSize: 10
permittedNumberOfCallsInHalfOpenState: 3
slidingWindowType: TIME_BASED
recordFailurePredicate: io.github.robwin.exception.RecordFailurePredicate

resilience4j.timelimiter:
instances:
backendA:
timeoutDuration: 2s
cancelRunningFuture: true
backendB:
timeoutDuration: 1s
cancelRunningFuture: false

For more information on Resilience4j property configuration, see Resilience4] Spring Boot 2
Configuration.

1.1.6. Bulkhead pattern supporting

If resilience4j-bulkhead is on the classpath, Spring Cloud CircuitBreaker will wrap all methods with
a Resilience4j Bulkhead. You can disable the Resilience4j Bulkhead by setting
spring.cloud.circuitbreaker.bulkhead.resilience4j.enabled to false.

Spring Cloud CircuitBreaker Resilience4j provides two implementation of bulkhead pattern:

* a SemaphoreBulkhead which uses Semaphores

* a FixedThreadPoolBulkhead which uses a bounded queue and a fixed thread pool.

By default, Spring Cloud CircuitBreaker Resilience4j uses FixedThreadPoolBulkhead. To modify the
default behavior to use SemaphoreBulkhead set the property
spring.cloud.circuitbreaker.resilience4j.enableSemaphoreDefaultBulkhead to true.

For more information on implementation of Bulkhead patterns see the Resilience4j Bulkhead.

The Customizer<Resilience4jBulkheadProvider> can be used to provide a default Bulkhead and
ThreadPoolBulkhead configuration.

https://resilience4j.readme.io/docs/getting-started-3#configuration
https://resilience4j.readme.io/docs/getting-started-3#configuration
https://resilience4j.readme.io/docs/bulkhead

©Bean
public Customizer<Resilience4jBulkheadProvider> defaultBulkheadCustomizer() {
return provider -> provider.confiqgureDefault(id -> new
Resilience4jBulkheadConfigurationBuilder()
.bulkheadConfig(BulkheadConfig.custom().maxConcurrentCalls(4).build())

.threadPoo1BulkheadConfig(ThreadPoolBulkheadConfig.custom().coreThreadPoolSize(1).
maxThreadPoolSize(1).build())
.build()
E
}

1.1.7. Specific Bulkhead Configuration

Similarly to proving a default 'Bulkhead' or 'ThreadPoolBulkhead' configuration, you can create a
Customize bean this is passed a Resilience4jBulkheadProvider.

@Bean
public Customizer<Resilience4jBulkheadProvider> slowBulkheadProviderCustomizer() {
return provider -> provider.confiqgure(builder -> builder
.bulkheadConfig(BulkheadConfig.custom().maxConcurrentCalls(1).build())
.threadPoolBulkheadConfig(ThreadPoolBulkheadConfig.ofDefaults()),
"slowBulkhead");

}

In addition to configuring the Bulkhead that is created you can also customize the bulkhead and
thread pool bulkhead after they have been created but before they are returned to caller. To do this
you can use the addBulkheadCustomizer and addThreadPoolBulkheadCustomizer methods.

Bulkhead Example

@Bean
public Customizer<Resilience4jBulkheadProvider> customizer() {
return provider -> provider.addBulkheadCustomizer(bulkhead ->
bulkhead.getEventPublisher()
.onCallRejected(slowRejectedConsumer)
.onCallFinished(slowFinishedConsumer), "slowBulkhead");

Thread Pool Bulkhead Example

@Bean
public Customizer<Resilience4jBulkheadProvider> slowThreadPoolBulkheadCustomizer()

{
return provider -> provider.addThreadPoolBulkheadCustomizer(threadPoolBulkhead
-> threadPoolBulkhead.getEventPublisher()
.onCallRejected(slowThreadPoolRejectedConsumer)
.onCallFinished(slowThreadPoolFinishedConsumer),
"slowThreadPoolBulkhead");
}

1.1.8. Bulkhead Properties Configuration

You can configure ThreadPoolBulkhead and SemaphoreBulkhead instances in your application’s
configuration properties file. Property configuration has higher priority than Java Customizer
configuration.

resilience4j.thread-pool-bulkhead:
instances:
backendA:
maxThreadPoolSize: 1
coreThreadPoolSize: 1
resilience4j.bulkhead:
instances:
backendB:
maxConcurrentCalls: 10

For more inforamtion on the Resilience4j property configuration, see Resilience4] Spring Boot 2
Configuration.

1.1.9. Collecting Metrics

Spring Cloud Circuit Breaker Resilience4j includes auto-configuration to setup metrics collection as
long as the right dependencies are on the classpath. To enable metric collection you must include
org.springframework.boot:spring-boot-starter-actuator, and io.github.resilience4j:resilience4j-
micrometer. For more information on the metrics that get produced when these dependencies are
present, see the Resilience4j documentation.

o You don’t have to include micrometer-core directly as it is brought in by spring-
boot-starter-actuator

1.2. Configuring Spring Retry Circuit Breakers

Spring Retry provides declarative retry support for Spring applications. A subset of the project

https://resilience4j.readme.io/docs/getting-started-3#configuration
https://resilience4j.readme.io/docs/getting-started-3#configuration
https://resilience4j.readme.io/docs/micrometer

includes the ability to implement circuit breaker functionality. Spring Retry provides a circuit
breaker implementation via a combination of it’s CircuitBreakerRetryPolicy and a stateful retry. All
circuit breakers created using Spring Retry will be created using the CircuitBreakerRetryPolicy and
a DefaultRetryState. Both of these classes can be configured using SpringRetryConfigBuilder.

1.2.1. Default Configuration

To provide a default configuration for all of your circuit breakers create a Customize bean that is
passed a SpringRetryCircuitBreakerFactory. The configureDefault method can be used to provide a
default configuration.

©Bean
public Customizer<SpringRetryCircuitBreakerFactory> defaultCustomizer() {
return factory -> factory.configureDefault(id -> new
SpringRetryConfigBuilder(id)
.retryPolicy(new TimeoutRetryPolicy()).build());
}

1.2.2. Specific Circuit Breaker Configuration

Similarly to providing a default configuration, you can create a Customize bean this is passed a
SpringRetryCircuitBreakerFactory.

@Bean

public Customizer<SpringRetryCircuitBreakerFactory> slowCustomizer() {
return factory -> factory.configure(builder -> builder.retryPolicy(new

SimpleRetryPolicy(1)).build(), "slow");

}

In addition to configuring the circuit breaker that is created you can also customize the circuit
breaker after it has been created but before it is returned to the caller. To do this you can use the
addRetryTemplateCustomizers method. This can be useful for adding event handlers to the
RetryTemplate.

https://github.com/spring-projects/spring-retry/blob/master/src/main/java/org/springframework/retry/policy/CircuitBreakerRetryPolicy.java
https://github.com/spring-projects/spring-retry#stateful-retry
https://github.com/spring-projects/spring-retry/blob/master/src/main/java/org/springframework/retry/support/DefaultRetryState.java

@Bean

public Customizer<SpringRetryCircuitBreakerFactory> slowCustomizer() {
return factory -> factory.addRetryTemplateCustomizers(retryTemplate ->

retryTemplate.registerListener(new RetrylListener() {

@override
public <T, E extends Throwable> boolean open(RetryContext context,
RetryCallback<T, E> callback) {
return false;

}
@0verride

public <T, E extends Throwable> void close(RetryContext context,
RetryCallback<T, E> callback, Throwable throwable) {

}

@override
public <T, E extends Throwable> void onError(RetryContext context,
RetryCallback<T, E> callback, Throwable throwable) {

}
)i

2. Building

2.1. Basic Compile and Test

To build the source you will need to install JDK 17.

Spring Cloud uses Maven for most build-related activities, and you should be able to get off the
ground quite quickly by cloning the project you are interested in and typing

$./mvnw install

You can also install Maven (>=3.3.3) yourself and run the mvn command in place of

o ./mvnw in the examples below. If you do that you also might need to add -P spring
if your local Maven settings do not contain repository declarations for spring pre-
release artifacts.

Be aware that you might need to increase the amount of memory available to
Maven by setting a MAVEN_OPTS environment variable with a value like -Xmx512m

o -XX:MaxPermSize=128m. We try to cover this in the .mvn configuration, so if you find
you have to do it to make a build succeed, please raise a ticket to get the settings
added to source control.

The projects that require middleware (i.e. Redis) for testing generally require that a local instance
of [Docker](www.docker.com/get-started) is installed and running.

2.2. Documentation

The spring-cloud-build module has a "docs" profile, and if you switch that on it will try to build
asciidoc sources from src/main/asciidoc. As part of that process it will look for a README.adoc and
process it by loading all the includes, but not parsing or rendering it, just copying it to
${main.basedir} (defaults to $/home/marcin/repo/spring-cloud-release/train-docs/target/unpacked-
docs, i.e. the root of the project). If there are any changes in the README it will then show up after a
Maven build as a modified file in the correct place. Just commit it and push the change.

2.3. Working with the code

If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or
Eclipse when working with the code. We use the m2eclipse eclipse plugin for maven support. Other
IDEs and tools should also work without issue as long as they use Maven 3.3.3 or better.

2.3.1. Activate the Spring Maven profile

Spring Cloud projects require the 'spring’ Maven profile to be activated to resolve the spring
milestone and snapshot repositories. Use your preferred IDE to set this profile to be active, or you
may experience build errors.

2.3.2. Importing into eclipse with m2eclipse

We recommend the m2eclipse eclipse plugin when working with eclipse. If you don’t already have
m2eclipse installed it is available from the "eclipse marketplace".

Older versions of m2e do not support Maven 3.3, so once the projects are imported
into Eclipse you will also need to tell m2eclipse to use the right profile for the

o projects. If you see many different errors related to the POMs in the projects, check
that you have an up to date installation. If you can’t upgrade m2e, add the "spring"
profile to your settings.xml. Alternatively you can copy the repository settings
from the "spring" profile of the parent pom into your settings.xml.

2.3.3. Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following
command:

https://www.docker.com/get-started
https://www.springsource.com/developer/sts
https://eclipse.org
https://eclipse.org/m2e/
https://eclipse.org/m2e/

$./mvnw eclipse:eclipse

The generated eclipse projects can be imported by selecting import existing projects from the file
menu.

3. Contributing

Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard
Github development process, using Github tracker for issues and merging pull requests into master.
If you want to contribute even something trivial please do not hesitate, but follow the guidelines
below.

3.1. Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the Contributor
License Agreement. Signing the contributor’s agreement does not grant anyone commit rights to
the main repository, but it does mean that we can accept your contributions, and you will get an
author credit if we do. Active contributors might be asked to join the core team, and given the
ability to merge pull requests.

3.2. Code of Conduct

This project adheres to the Contributor Covenant code of conduct. By participating, you are
expected to wuphold this code. Please report unacceptable behavior to spring-code-of-
conduct@pivotal.io.

3.3. Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help. They can also be added after the
original pull request but before a merge.

* Use the Spring Framework code format conventions. If you use Eclipse you can import
formatter settings using the eclipse-code-formatter.xml file from the Spring Cloud Build project.
If using Intelli], you can use the Eclipse Code Formatter Plugin to import the same file.

* Make sure all new .java files to have a simple Javadoc class comment with at least an @author
tag identifying you, and preferably at least a paragraph on what the class is for.

* Add the ASF license header comment to all new .java files (copy from existing files in the
project)

* Add yourself as an @author to the .java files that you modify substantially (more than cosmetic
changes).

* Add some Javadocs and, if you change the namespace, some XSD doc elements.
» A few unit tests would help a lot as well — someone has to do it.

* If no-one else is using your branch, please rebase it against the current master (or other target

https://cla.pivotal.io/sign/spring
https://cla.pivotal.io/sign/spring
https://github.com/spring-cloud/spring-cloud-build/blob/master/docs/src/main/asciidoc/code-of-conduct.adoc
mailto:spring-code-of-conduct@pivotal.io
mailto:spring-code-of-conduct@pivotal.io
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-dependencies-parent/eclipse-code-formatter.xml
https://plugins.jetbrains.com/plugin/6546

branch in the main project).

* When writing a commit message please follow these conventions, if you are fixing an existing
issue please add Fixes gh-XXXX at the end of the commit message (where XXXX is the issue
number).

3.4. Checkstyle

Spring Cloud Build comes with a set of checkstyle rules. You can find them in the spring-cloud-
build-tools module. The most notable files under the module are:

spring-cloud-build-tools/

L—— src

—— checkstyle

| L—— checkstyle-suppressions.xml ®
L—— main

L—— resources

—— checkstyle-header.txt @
L—— checkstyle.xml @

@ Default Checkstyle rules
@ File header setup

® Default suppression rules

3.4.1. Checkstyle configuration

Checkstyle rules are disabled by default. To add checkstyle to your project just define the
following properties and plugins.

https://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

pom.xml

<properties>

<maven-checkstyle-plugin.failsOnError>true</maven-checkstyle-plugin.failsOnError> @
<maven-checkstyle-plugin.failsOnViolation>true
</maven-checkstyle-plugin.failsOnViolation> @
<maven-checkstyle-plugin.includeTestSourceDirectory>true
</maven-checkstyle-plugin.includeTestSourceDirectory> @

</properties>

<build>
<plugins>
<plugin> @
<groupld>io.spring.javaformat</groupld>
<artifactId>spring-javaformat-maven-plugin</artifactId>
</plugin>
<plugin> ®
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-checkstyle-plugin</artifactId>
</plugin>
</plugins>

<reporting>
<plugins>
<plugin> ®
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-checkstyle-plugin</artifactId>
</plugin>
</plugins>
</reporting>
</build>

@ Fails the build upon Checkstyle errors
@ Fails the build upon Checkstyle violations
® Checkstyle analyzes also the test sources

@ Add the Spring Java Format plugin that will reformat your code to pass most of the Checkstyle
formatting rules

® Add checkstyle plugin to your build and reporting phases
If you need to suppress some rules (e.g. line length needs to be longer), then it’s enough for you to

define a file under ${project.root}/src/checkstyle/checkstyle-suppressions.xml with your
suppressions. Example:

projectRoot/src/checkstyle/checkstyle-suppresions.xml

<?xml version="1.0"?>
<!DOCTYPE suppressions PUBLIC
"-//Puppy Crawl//DTD Suppressions 1.1//EN"
"https://www.puppycrawl.com/dtds/suppressions_1_1.dtd">
<suppressions>
<suppress files=".*ConfigServerApplication\.java"
checks="HideUtilityClassConstructor"/>
<suppress files=".*ConfigClientWatch\.java" checks="LineLengthCheck"/>
</suppressions>

It’'s advisable to copy the ${spring-cloud-build.rootFolder}/.editorconfig and ${spring-cloud-
build.rootFolder}/.springformat to your project. That way, some default formatting rules will be
applied. You can do so by running this script:

$ curl https://raw.githubusercontent.com/spring-cloud/spring-cloud-
build/master/.editorconfig -o .editorconfig
$ touch .springformat

3.5. IDE setup

3.5.1. Intellij IDEA

In order to setup Intellij you should import our coding conventions, inspection profiles and set up
the checkstyle plugin. The following files can be found in the Spring Cloud Build project.

spring-cloud-build-tools/

L—— sre

—— checkstyle

| L—— checkstyle-suppressions.xml ®
L—— main

L—— resources
—— checkstyle-header.txt @
—— checkstyle.xml @
—— intellij
—— Intellij_Project_Defaults.xml @
L—— Intellij_Spring_Boot_Java_Conventions.xml ®

@ Default Checkstyle rules

@ File header setup

® Default suppression rules

@ Project defaults for Intellij that apply most of Checkstyle rules

® Project style conventions for Intellij that apply most of Checkstyle rules

https://github.com/spring-cloud/spring-cloud-build/tree/master/spring-cloud-build-tools

-

Settings

Q- Editor » Code Style
Appearance & Behavior Scheme: | 5pring Boot Java Conventions ~ €1
Keymap Copy to Project...
Editor General Formatter Control Duplicate...
Rename...
General)
Line separator: | System-Dependent Delete...
Font

.) Export...
Applied to new files

Color Scheme

s 2

Intellij IDEA code style XML

Import Scheme
S =R CheckStyle Configuration

Inspections visual guides: Optional columns Eclipse XML Frofile
) JSCS config file
File and Code Templates Specify one guide (80) or several (80, 120)
File Encodings T .
Live Templates e . -
o Detect and use existing file indents for editing
File Types
Copyright EditorConfig
Emmet i
Enable EditorConfig support Export

D EditorConfig may override the IDE code style settings
Images
Intentions
Language Injections
Spelling
TODO
Plugins
Version Control
Build, Execution, Deployment

I annuanacs £ Eramawnrbc

Figure 3. Code style

Go to File — Settings — Editor — Code style. There click on the icon next to the Scheme section.
There, click on the Import Scheme value and pick the Intellij IDEA code style XML option. Import
the spring-cloud-build-
tools/src/main/resources/intellij/Intellij_Spring_Boot_Java_Conventions.xml file.

-

Q- Editor » Inspections For current project

Appearance & Behavior Profile: = Project Default 1DE v o
Keymap Copy to Project...
Editor Q- | Duplicate... |
Rename...
General - Angular I
Angular CLI Add Dependency Add Description...
Font Empty Event Handler Restore Defaults
Color Scheme Ant Delete...
AQP
Code Style Export...

Advice parameters (argNames, returni 2ncy che
: Around advice style inspection
File and Code Templates Introductions (declare parents) errors

File Encgdings Pointcut method St}"E
Live T | Application Servers
ive Templates Geronimo
File Types GlassFish
, JBoss
S WebLogic
Emmet AsciiDoc
: BashSupport
GUID o .
esigner Add missing shebang line to file
Images Change to a built-in shell variable

Convert backquote to subshell commands
Convert simple brackets to double brackets
Language Injections Convert subshell to backquote command
Convert to a quoted or unguoted string

Intentions

Spelling : . -
Duplicate function definition
TODO Evaluate arithmetic expression
Plugins E_w—zluate expansion
. Fix unusal Shebang
Version Control Function name is not in lower snake case

Cunctimn svneridoe intarnsl cammmand

e [] Disable new inspections by default

| anananae & Cramawnarle

Figure 4. Inspection profiles

Go to File — Settings — Editor — Inspections. There click on the icon next to the Profile section.
There, click on the Import Profile and import the spring-cloud-build-
tools/src/main/resources/intellij/Intellij_Project_Defaults.xml file.

Checkstyle

To have Intellij work with Checkstyle, you have to install the Checkstyle plugin. It’s advisable to also
install the Assertions2Assertj to automatically convert the JUnit assertions

Q- OtherSettings) Checkstyle For current project

Edi Checkstyle version: | §.16 - Ezaniule: All sources (including tests) ~ l

itor
File and Code Templates
File Encodings 1] Treat Checkstyle errors as warnings [Copy libraries from project directory (requires restart)

Live Templates Configuration File
File Types Active | Description | File -
Copyright [suncChecks (bundled)

Copyright Profiles [Google Checks (bundled)

Formatting

Emmet
GUI Designer

Images

Intentions

checkstyle header file home /mar ing-cloud pring-cloud-build:
checkstyle suppressionsfile g-cloud pring-cloud-build

Language Injections

Spelling
TODO

Plugins

Version Control

Build, Execution, Deployment

L S e e |

Languages & Frameworks
Tools

Other Settings

Lombok plugin

Protobuf Support

| W ¥ Request bod EIEN [oo |

15 * 1111 nnt+ ha BEF3RaA ©A AT AR TF Ra SRAITAa FA AT rarF I amhad 3+ 1A 3 TGN FAR

Goto File — Settings — Other settings — Checkstyle. There click on the + icon in the Configuration
file section. There, you’ll have to define where the checkstyle rules should be picked from. In the
image above, we’ve picked the rules from the cloned Spring Cloud Build repository. However, you

can point to the Spring Cloud Build’s GitHub repository (e.g. for the checkstyle.xml
raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/

main/resources/checkstyle.xml). We need to provide the following variables:

» checkstyle.header.file - please point it to the Spring Cloud Build’s, spring-cloud-build-

tools/src/main/resources/checkstyle-header.txt file either in your cloned repo or via the
raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/

src/main/resources/checkstyle-header.txt URL.

» checkstyle.suppressions.file - default suppressions. Please point it to the Spring Cloud Build’s,
spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml file either in your cloned
repo or via the raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-
cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml URL.

* checkstyle.additional.suppressions.file - this variable corresponds to suppressions in your
local project. E.g. you're working on spring-cloud-contract. Then point to the project-
root/src/checkstyle/checkstyle-suppressions.xml folder. Example for spring-cloud-contract
would be: /home/username/spring-cloud-contract/src/checkstyle/checkstyle-suppressions.xml.

o Remember to set the Scan Scope to All sources since we apply checkstyle rules for
production and test sources.

3.6. Duplicate Finder

Spring Cloud Build brings along the basepom:duplicate-finder-maven-plugin, that enables flagging
duplicate and conflicting classes and resources on the java classpath.

3.6.1. Duplicate Finder configuration

Duplicate finder is enabled by default and will run in the verify phase of your Maven build, but it
will only take effect in your project if you add the duplicate-finder-maven-plugin to the build
section of the projecst’s pom.xml.

https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml

pom.xml

<build>
<plugins>
<plugin>
<groupId>org.basepom.maven</groupIld>
<artifactId>duplicate-finder-maven-plugin</artifactId>
</plugin>
</plugins>
</build>

For other properties, we have set defaults as listed in the plugin documentation.

You can easily override them but setting the value of the selected property prefixed with duplicate-
finder-maven-plugin. For example, set duplicate-finder-maven-plugin.skip to true in order to skip
duplicates check in your build.

If you need to add ignoredClassPatterns or ignoredResourcePatterns to your setup, make sure to add
them in the plugin configuration section of your project:

<build>
<plugins>
<plugin>
<groupId>org.basepom.maven</groupld>
<artifactId>duplicate-finder-maven-plugin</artifactId>
<confiquration>
<ignoredClassPatterns>

<ignoredClassPattern>org.joda.time.base.BaseDateTime</ignoredClassPattern>
<ignored(ClassPattern>.*module-info</ignoredClassPattern>
</ignoredClassPatterns>
<ignoredResourcePatterns>
<ignoredResourcePattern>changelog.txt</ignoredResourcePattern>
</ignoredResourcePatterns>
</configuration>
</plugin>
</plugins>
</build>

Spring Boot Cloud CLI

Spring Boot CLI provides Spring Boot command line features for Spring Cloud. You can write
Groovy scripts to run Spring Cloud component applications (e.g. @EnableEurekaServer). You can also
easily do things like encryption and decryption to support Spring Cloud Config clients with secret
configuration values. With the Launcher CLI you can launch services like Eureka, Zipkin, Config
Server conveniently all at once from the command line (very useful at development time).

https://github.com/basepom/duplicate-finder-maven-plugin/wiki
https://projects.spring.io/spring-boot
https://github.com/spring-cloud

Spring Cloud is released under the non-restrictive Apache 2.0 license. If you would
like to contribute to this section of the documentation or if you find an error,
please find the source code and issue trackers in the project at github.

1. Installation

To install, make sure you have Spring Boot CLI (2.0.0 or better):

$ spring version
Spring CLI v2.2.3.RELEASE

E.g. for SDKMan users

$ sdk install springboot 2.2.3.RELEASE
$ sdk use springboot 2.2.3.RELEASE

and install the Spring Cloud plugin

$ mvn install
$ spring install org.springframework.cloud:spring-cloud-cli:2.2.0.RELEASE

Prerequisites: to use the encryption and decryption features you need the full-
strength JCE installed in your JVM (it’s not there by default). You can download the
o "Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files"
from Oracle, and follow instructions for installation (essentially replace the 2
policy files in the JRE lib/security directory with the ones that you downloaded).

2. Running Spring Cloud Services in
Development

The Launcher CLI can be used to run common services like Eureka, Config Server etc. from the
command line. To list the available services you can do spring cloud --1list, and to launch a default
set of services just spring cloud. To choose the services to deploy, just list them on the command
line, e.g.

$ spring cloud eureka configserver h2 kafka stubrunner zipkin

Summary of supported deployables:

https://github.com/spring-cloud/spring-cloud
https://github.com/spring-projects/spring-boot

Service

eureka

configserver

h2

kafka

dataflow

zipkin

Name

Eureka Server

Config Server

H2 Database

Kafka Broker

Dataflow Server

Zipkin Server

Address
localhost:8761

localhost:8888

localhost:9095
(console),
jdbc:h2:tep://localhost:9
096/{data}

localhost:9091 (actuator
endpoints),
localhost:9092

localhost:9393

localhost:9411

Description

Eureka server for
service registration and
discovery. All the other
services show up in its
catalog by default.

Spring Cloud Config
Server running in the
"native" profile and
serving configuration
from the local directory
Jlauncher

Relation database
service. Use a file path
for {data} (e.g.
./target/test) when
you connect.
Remember that you can
add ;MODE=MYSQL or
;MODE=POSTGRESQL to
connect with
compatibility to other
server types.

Spring Cloud Dataflow
server with UI at
/admin-ui. Connect the
Dataflow shell to target
at root path.

Zipkin Server with Ul
for visualizing traces.
Stores span data in
memory and accepts
them via HTTP POST of
JSON data.

http://localhost:8761
http://localhost:8888
http://localhost:9095
http://localhost:9091
http://localhost:9393
http://localhost:9411

Service Name Address Description

stubrunner Stub Runner Boot localhost:8750 Downloads WireMock
stubs, starts WireMock
and feeds the started
servers with stored
stubs. Pass
stubrunner.ids to pass
stub coordinates and
then go to
localhost:8750/stubs.

Each of these apps can be configured using a local YAML file with the same name (in the current
working directory or a subdirectory called "config" or in ~/.spring-cloud). E.g. in configserver.yml
you might want to do something like this to locate a local git repository for the backend:

configserver.yml

spring:
profiles:
active: git
cloud:
config:
server:
git:
uri: file://${user.home}/dev/demo/config-repo

E.g. in Stub Runner app you could fetch stubs from your local .m2 in the following way.

stubrunner.yml

stubrunner:
workOffline: true
ids:
- com.example:beer-api-producer:+:9876

2.1. Adding Additional Applications

Additional applications can be added to ./config/cloud.yml (not ./config.yml because that would
replace the defaults), e.g. with

http://localhost:8750
http://localhost:8750/stubs

config/cloud.yml

spring:
cloud:
launcher:
deployables:
source:
coordinates: maven://com.example:source:0.0.1-SNAPSHOT
port: 7000
sink:
coordinates: maven://com.example:sink:0.0.1-SNAPSHOT
port: 7001

when you list the apps:

$ spring cloud --list
source sink configserver dataflow eureka h2 kafka stubrunner zipkin

(notice the additional apps at the start of the list).

3. Writing Groovy Scripts and Running
Applications

Spring Cloud CLI has support for most of the Spring Cloud declarative features, such as the @Enable*
class of annotations. For example, here is a fully functional Eureka server

app.groovy

@EnableEurekaServer
class Eureka {}

which you can run from the command line like this
$ spring run app.groovy

To include additional dependencies, often it suffices just to add the appropriate feature-enabling
annotation, e.g. @EnableConfigServer, @Enable0Auth2Sso or @EnableEurekaClient. To manually include
a dependency you can use a @Grab with the special "Spring Boot" short style artifact co-ordinates, i.e.
with just the artifact ID (no need for group or version information), e.g. to set up a client app to
listen on AMQP for management events from the Spring CLoud Bus:

app.groovy

@Grab('spring-cloud-starter-bus-amgp")
@ORestController
class Service {
@RequestMapping('/")
def home() { [message: 'Hello'] }
}

4. Encryption and Decryption

The Spring Cloud CLI comes with an "encrypt" and a "decrypt" command. Both accept arguments in
the same form with a key specified as a mandatory "--key", e.g.

$ spring encrypt mysecret --key foo
682bc583f4641835fa2db009355293665d2647dade3375c0ee201de2a49f7bda
$ spring decrypt --key foo
682bc583f4641835fa2db009355293665d2647dade3375c0ee201de2a49f7bda
mysecret

To use a key in a file (e.g. an RSA public key for encyption) prepend the key value with "@" and
provide the file path, e.g.

$ spring encrypt mysecret --key @${HOME}/.ssh/id_rsa.pub
AQAjPgt3eFZQXwt8tsHAVv/QHiY5sI2dRcR+. ..

Spring Cloud for Cloud Foundry

Spring Cloud for Cloudfoundry makes it easy to run Spring Cloud apps in Cloud Foundry (the
Platform as a Service). Cloud Foundry has the notion of a "service", which is middlware that you
"bind" to an app, essentially providing it with an environment variable containing credentials (e.g.
the location and username to use for the service).

The spring-cloud-cloudfoundry-commons module configures the Reactor-based Cloud Foundry Java
client, v 3.0, and can be used standalone.

The spring-cloud-cloudfoundry-web project provides basic support for some enhanced features of
webapps in Cloud Foundry: binding automatically to single-sign-on services and optionally
enabling sticky routing for discovery.

The spring-cloud-cloudfoundry-discovery project provides an implementation of Spring Cloud
Commons DiscoveryClient so you can @EnableDiscoveryClient and provide your credentials as
spring.cloud.cloudfoundry.discovery.[username,password] (also *.url if you are not connecting to
Pivotal Web Services) and then you can use the DiscoveryClient directly or via a LoadBalancer(Client.

https://github.com/spring-cloud
https://github.com/cloudfoundry
https://run.pivotal.io

The first time you use it the discovery client might be slow owing to the fact that it has to get an
access token from Cloud Foundry.

1. Discovery

Here’s a Spring Cloud app with Cloud Foundry discovery:
app.groovy

@Grab('org.springframework.cloud:spring-cloud-cloudfoundry")
@RestController

@EnableDiscovery(Client

class Application {

@Autowired
DiscoveryClient client

@RequestMapping('/")
String home() {
'Hello from ' + client.getlLocalServicelnstance()

}

If you run it without any service bindings:

$ spring jar app.jar app.groovy
$ cf push -p app.jar

It will show its app name in the home page.

The DiscoveryClient can lists all the apps in a space, according to the credentials it is authenticated
with, where the space defaults to the one the client is running in (if any). If neither org nor space
are configured, they default per the user’s profile in Cloud Foundry.

2. Single Sign On

o All of the OAuth2 SSO and resource server features moved to Spring Boot in
version 1.3. You can find documentation in the Spring Boot user guide.

This project provides automatic binding from CloudFoundry service credentials to the Spring Boot
features. If you have a CloudFoundry service called "sso", for instance, with credentials containing
"client_id", "client_secret" and "auth_domain", it will bind automatically to the Spring OAuth2 client
that you enable with @EnableOAuth2Sso (from Spring Boot). The name of the service can be
parameterized using spring.oauth2.sso.serviceld.

https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/

3. Configuration

To see the list of all Spring Cloud Sloud Foundry related configuration properties please check the
Appendix page.

Cloud Native Applications

Cloud Native is a style of application development that encourages easy adoption of best practices
in the areas of continuous delivery and value-driven development. A related discipline is that of
building 12-factor Applications, in which development practices are aligned with delivery and
operations goals—for instance, by using declarative programming and management and
monitoring. Spring Cloud facilitates these styles of development in a number of specific ways. The
starting point is a set of features to which all components in a distributed system need easy access.

Many of those features are covered by Spring Boot, on which Spring Cloud builds. Some more
features are delivered by Spring Cloud as two libraries: Spring Cloud Context and Spring Cloud
Commons. Spring Cloud Context provides utilities and special services for the ApplicationContext of
a Spring Cloud application (bootstrap context, encryption, refresh scope, and environment
endpoints). Spring Cloud Commons is a set of abstractions and common classes used in different
Spring Cloud implementations (such as Spring Cloud Netflix and Spring Cloud Consul).

If you get an exception due to "Illegal key size" and you use Sun’s JDK, you need to install the Java
Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files. See the following links
for more information:

* Java 6 JCE

» Java 7 JCE

* Java 8 JCE

Extract the files into the JDK/jre/lib/security folder for whichever version of JRE/JDK x64/x86 you
use.

Spring Cloud is released under the non-restrictive Apache 2.0 license. If you would
o like to contribute to this section of the documentation or if you find an error, you
can find the source code and issue trackers for the project at github.

1. Spring Cloud Context: Application Context
Services

Spring Boot has an opinionated view of how to build an application with Spring. For instance, it has
conventional locations for common configuration files and has endpoints for common
management and monitoring tasks. Spring Cloud builds on top of that and adds a few features that
many components in a system would use or occasionally need.

appendix.html
appendix.html
https://pivotal.io/platform-as-a-service/migrating-to-cloud-native-application-architectures-ebook
https://12factor.net/
https://projects.spring.io/spring-boot
https://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html
https://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html
https://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
https://github.com/spring-cloud/spring-cloud-cli/tree/master/docs/src/main/asciidoc

1.1. The Bootstrap Application Context

A Spring Cloud application operates by creating a “bootstrap” context, which is a parent context for
the main application. This context is responsible for loading configuration properties from the
external sources and for decrypting properties in the local external configuration files. The two
contexts share an Environment, which is the source of external properties for any Spring application.
By default, bootstrap properties (not bootstrap.properties but properties that are loaded during the
bootstrap phase) are added with high precedence, so they cannot be overridden by local
configuration.

The bootstrap context uses a different convention for locating external configuration than the main
application context. Instead of application.yml (or .properties), you can use bootstrap.yml, keeping
the external configuration for bootstrap and main context nicely separate. The following listing
shows an example:

Example 1. bootstrap.yml

spring:
application:
name: foo
cloud:
config:
uri: ${SPRING_CONFIG_URI:http://localhost:8888%}

If your application needs any application-specific configuration from the server, it is a good idea to
set the spring.application.name (in bootstrap.yml or application.yml). For the property
spring.application.name to be used as the application’s context ID, you must set it in
bootstrap.[properties | yml].

If you want to retrieve specific profile configuration, you should also set spring.profiles.active in
bootstrap.[properties | yml].

You can disable the bootstrap process completely by setting spring.cloud.bootstrap.enabled=false
(for example, in system properties).

1.2. Application Context Hierarchies

If you build an application context from SpringApplication or SpringApplicationBuilder, the
Bootstrap context is added as a parent to that context. It is a feature of Spring that child contexts
inherit property sources and profiles from their parent, so the “main” application context contains
additional property sources, compared to building the same context without Spring Cloud Config.
The additional property sources are:

* “bootstrap”: If any PropertySourcelLocators are found in the bootstrap context and if they have
non-empty properties, an optional CompositePropertySource appears with high priority. An
example would be properties from the Spring Cloud Config Server. See “Customizing the
Bootstrap Property Sources” for how to customize the contents of this property source.

» “applicationConfig: [classpath:bootstrap.yml]” (and related files if Spring profiles are active): If
you have a bootstrap.yml (or .properties), those properties are used to configure the bootstrap
context. Then they get added to the child context when its parent is set. They have lower
precedence than the application.yml (or .properties) and any other property sources that are
added to the child as a normal part of the process of creating a Spring Boot application. See
“Changing the Location of Bootstrap Properties” for how to customize the contents of these
property sources.

Because of the ordering rules of property sources, the “bootstrap” entries take precedence.
However, note that these do not contain any data from bootstrap.yml, which has very low
precedence but can be used to set defaults.

You can extend the context hierarchy by setting the parent context of any ApplicationContext you
create — for example, by using its own interface or with the SpringApplicationBuilder convenience
methods (parent(), child() and sibling()). The bootstrap context is the parent of the most senior
ancestor that you create yourself. Every context in the hierarchy has its own “bootstrap” (possibly
empty) property source to avoid promoting values inadvertently from parents down to their
descendants. If there is a config server, every context in the hierarchy can also (in principle) have a
different spring.application.name and, hence, a different remote property source. Normal Spring
application context behavior rules apply to property resolution: properties from a child context
override those in the parent, by name and also by property source name. (If the child has a
property source with the same name as the parent, the value from the parent is not included in the
child).

Note that the SpringApplicationBuilder lets you share an Environment amongst the whole hierarchy,
but that is not the default. Thus, sibling contexts (in particular) do not need to have the same
profiles or property sources, even though they may share common values with their parent.

1.3. Changing the Location of Bootstrap Properties

The bootstrap.yml (or .properties) location can be specified by setting spring.cloud.bootstrap.name
(default: bootstrap), spring.cloud.bootstrap.location (default: empty) or
spring.cloud.bootstrap.additional-location (default: empty) — for example, in System properties.

Those properties behave like the spring.config.* variants with the same name. With
spring.cloud.bootstrap.location the default locations are replaced and only the specified ones are
used. To add locations to the list of default ones, spring.cloud.bootstrap.additional-location could
be used. In fact, they are used to set up the bootstrap ApplicationContext by setting those properties
in its Environment. If there is an active profile (from spring.profiles.active or through the
Environment API in the context you are building), properties in that profile get loaded as well, the
same as in a regular Spring Boot app — for example, from bootstrap-development.properties for a
development profile.

1.4. Overriding the Values of Remote Properties

The property sources that are added to your application by the bootstrap context are often
“remote” (from example, from Spring Cloud Config Server). By default, they cannot be overridden
locally. If you want to let your applications override the remote properties with their own system

properties or config files, the remote property source has to grant it permission by setting
spring.cloud.config.allowOverride=true (it does not work to set this locally). Once that flag is set,
two finer-grained settings control the location of the remote properties in relation to system
properties and the application’s local configuration:

* spring.cloud.config.overrideNone=true: Override from any local property source.

* spring.cloud.config.overrideSystemProperties=false: Only system properties, command line
arguments, and environment variables (but not the local config files) should override the
remote settings.

1.5. Customizing the Bootstrap Configuration

The bootstrap context can be set to do anything you like by adding entries to /META-
INF/spring.factories under a key named
org.springframework.cloud.bootstrap.BootstrapConfiguration. This holds a comma-separated list of
Spring @Configuration classes that are used to create the context. Any beans that you want to be
available to the main application context for autowiring can be created here. There is a special
contract for @Beans of type ApplicationContextInitializer. If you want to control the startup
sequence, you can mark classes with the @0rder annotation (the default order is last).

When adding custom BootstrapConfiguration, be careful that the classes you add
are not @ComponentScanned by mistake into your “main” application context, where

A they might not be needed. Use a separate package name for boot configuration
classes and make sure that name is not already covered by your @ComponentScan or
@SpringBootApplication annotated configuration classes.

The bootstrap process ends by injecting initializers into the main SpringApplication instance (which
is the normal Spring Boot startup sequence, whether it runs as a standalone application or is
deployed in an application server). First, a bootstrap context is created from the classes found in
spring.factories. Then, all @Beans of type ApplicationContextInitializer are added to the main
SpringApplication before it is started.

1.6. Customizing the Bootstrap Property Sources

The default property source for external configuration added by the bootstrap process is the Spring
Cloud Config Server, but you can add additional sources by adding beans of type
PropertySourcelocator to the bootstrap context (through spring.factories). For instance, you can
insert additional properties from a different server or from a database.

As an example, consider the following custom locator:

@Configuration
public class CustomPropertySourcelocator implements PropertySourcelocator {

@0verride
public PropertySource<?> locate(Environment environment) {
return new MapPropertySource("customProperty",
Collections.<String,
Object>singletonMap("property.from.sample.custom.source", "worked as intended"));

}

The Environment that is passed in is the one for the ApplicationContext about to be created —in
other words, the one for which we supply additional property sources. It already has its normal
Spring Boot-provided property sources, so you can use those to locate a property source specific to
this Environment (for example, by keying it on spring.application.name, as is done in the default
Spring Cloud Config Server property source locator).

If you create a jar with this class in it and then add a META-INF/spring.factories containing the
following setting, the customProperty PropertySource appears in any application that includes that
jar on its classpath:

org.springframework.cloud.bootstrap.BootstrapConfiguration=sample.custom.CustomPro
pertySourcelocator

1.7. Logging Configuration

If you use Spring Boot to configure log settings, you should place this configuration in
bootstrap.[yml | properties] if you would like it to apply to all events.

For Spring Cloud to initialize logging configuration properly, you cannot use a
custom prefix. For example, using custom.loggin.logpath is not recognized by
Spring Cloud when initializing the logging system.

1.8. Environment Changes

The application listens for an EnvironmentChangeEvent and reacts to the change in a couple of
standard ways (additional ApplicationListeners can be added as @Beans in the normal way). When
an EnvironmentChangeEvent is observed, it has a list of key values that have changed, and the
application uses those to:

* Re-bind any @ConfigurationProperties beans in the context.

» Set the logger levels for any properties in logging. level.*.

Note that the Spring Cloud Config Client does not, by default, poll for changes in the Environment.
Generally, we would not recommend that approach for detecting changes (although you could set it
up with a @Scheduled annotation). If you have a scaled-out client application, it is better to broadcast
the EnvironmentChangeEvent to all the instances instead of having them polling for changes (for
example, by using the Spring Cloud Bus).

The EnvironmentChangeEvent covers a large class of refresh use cases, as long as you can actually
make a change to the Environment and publish the event. Note that those APIs are public and part of
core Spring). You can verify that the changes are bound to @ConfigurationProperties beans by
visiting the /configprops endpoint (a standard Spring Boot Actuator feature). For instance, a
DataSource can have its maxPoolSize changed at runtime (the default DataSource created by Spring
Boot is a @ConfigurationProperties bean) and grow capacity dynamically. Re-binding
@ConfigurationProperties does not cover another large class of use cases, where you need more
control over the refresh and where you need a change to be atomic over the whole
ApplicationContext. To address those concerns, we have @RefreshScope.

1.9. Refresh Scope

When there is a configuration change, a Spring @Bean that is marked as @RefreshScope gets special
treatment. This feature addresses the problem of stateful beans that get their configuration injected
only when they are initialized. For instance, if a DataSource has open connections when the
database URL is changed through the Environment, you probably want the holders of those
connections to be able to complete what they are doing. Then, the next time something borrows a
connection from the pool, it gets one with the new URL.

Sometimes, it might even be mandatory to apply the @RefreshScope annotation on some beans that
can be only initialized once. If a bean is “immutable”, you have to either annotate the bean with
@RefreshScope or specify the classname under the property Kkey: spring.cloud.refresh.extra-
refreshable.

If you hava a DataSource bean that is a HikariDataSource, it can not be refreshed. It
A is the default value for spring.cloud.refresh.never-refreshable. Choose a different
DataSource implementation if you need it to be refreshed.

Refresh scope beans are lazy proxies that initialize when they are used (that is, when a method is
called), and the scope acts as a cache of initialized values. To force a bean to re-initialize on the next
method call, you must invalidate its cache entry.

The RefreshScope is a bean in the context and has a public refreshAl1() method to refresh all beans
in the scope by clearing the target cache. The /refresh endpoint exposes this functionality (over
HTTP or JMX). To refresh an individual bean by name, there is also a refresh(String) method.

To expose the /refresh endpoint, you need to add following configuration to your application:

https://github.com/spring-cloud/spring-cloud-bus

management:
endpoints:
web:
exposure:
include: refresh

@RefreshScope works (technically) on a @Configuration class, but it might lead to
surprising behavior. For example, it does not mean that all the @Beans defined in
that class are themselves in @RefreshScope. Specifically, anything that depends on

o those beans cannot rely on them being updated when a refresh is initiated, unless
it is itself in @RefreshScope. In that case, it is rebuilt on a refresh and its
dependencies are re-injected. At that point, they are re-initialized from the
refreshed @Configuration).

1.10. Encryption and Decryption

Spring Cloud has an Environment pre-processor for decrypting property values locally. It follows the
same rules as the Spring Cloud Config Server and has the same external configuration through
encrypt.*. Thus, you can use encrypted values in the form of {cipher}*, and, as long as there is a
valid key, they are decrypted before the main application context gets the Environment settings. To
use the encryption features in an application, you need to include Spring Security RSA in your
classpath (Maven co-ordinates: org.springframework.security:spring-security-rsa), and you also
need the full strength JCE extensions in your JVM.

If you get an exception due to "Illegal key size" and you use Sun’s JDK, you need to install the Java
Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files. See the following links
for more information:

* Java 6 JCE

* Java 7 JCE

* Java 8 JCE

Extract the files into the JDK/jre/lib/security folder for whichever version of JRE/JDK x64/x86 you
use.

1.11. Endpoints

For a Spring Boot Actuator application, some additional management endpoints are available. You
can use:

» POST to /actuator/env to update the Environment and rebind @ConfigurationProperties and log
levels. To enabled this endpoint you must set management.endpoint.env.post.enabled=true.
» /actuator/refresh to re-load the boot strap context and refresh the @RefreshScope beans.

» /actuator/restart to close the ApplicationContext and restart it (disabled by default).

https://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html
https://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html
https://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

» /actuator/pause and /actuator/resume for calling the Lifecycle methods (stop() and start() on
the ApplicationContext).

If you disable the /actuator/restart endpoint then the /actuator/pause and
o /actuator/resume endpoints will also be disabled since they are just a special case
of /actuator/restart.

2. Spring Cloud Commons: Common
Abstractions

Patterns such as service discovery, load balancing, and circuit breakers lend themselves to a
common abstraction layer that can be consumed by all Spring Cloud clients, independent of the
implementation (for example, discovery with Eureka or Consul).

2.1. The @EnableDiscoveryClient Annotation

Spring Cloud Commons provides the @EnableDiscoveryClient annotation. This looks for
implementations of the DiscoveryClient and ReactiveDiscoveryClient interfaces with META-
INF/spring.factories. Implementations of the discovery client add a configuration class to
spring.factories under the org.springframework.cloud.client.discovery.EnableDiscoveryClient key.
Examples of Discovery(Client implementations include Spring Cloud Netflix Eureka, Spring Cloud
Consul Discovery, and Spring Cloud Zookeeper Discovery.

Spring Cloud will provide both the blocking and reactive service discovery clients by default. You
can disable the blocking and/or reactive clients easily by setting
spring.cloud.discovery.blocking.enabled=false or spring.cloud.discovery.reactive.enabled=false.
To completely disable service discovery you just need to set spring.cloud.discovery.enabled=false.

By default, implementations of Discovery(Client auto-register the local Spring Boot server with the
remote discovery server. This behavior can be disabled by setting autoRegister=false in
@EnableDiscoveryClient.

@EnableDiscoveryClient is no longer required. You can put a DiscoveryClient
o implementation on the classpath to cause the Spring Boot application to register
with the service discovery server.

2.1.1. Health Indicators

Commons auto-configures the following Spring Boot health indicators.
DiscoveryClientHealthIndicator
This health indicator is based on the currently registered DiscoveryClient implementation.

» To disable entirely, set spring.cloud.discovery.client.health-indicator.enabled=false.

* To disable the description field, set spring.cloud.discovery.client.health-indicator.include-

https://cloud.spring.io/spring-cloud-netflix/
https://cloud.spring.io/spring-cloud-consul/
https://cloud.spring.io/spring-cloud-consul/
https://cloud.spring.io/spring-cloud-zookeeper/

description=false. Otherwise, it can bubble up as the description of the rolled up
HealthIndicator.

* To disable service retrieval, set spring.cloud.discovery.client.health-indicator.use-services-
query=false. By default, the indicator invokes the client’s getServices method. In deployments
with many registered services it may too costly to retrieve all services during every check. This
will skip the service retrieval and instead use the client’s probe method.

DiscoveryCompositeHealthContributor

This composite health indicator is based on all registered DiscoveryHealthIndicator beans. To
disable, set spring.cloud.discovery.client.composite-indicator.enabled=false.

2.1.2. Ordering DiscoveryClient instances

Discovery(Client interface extends Ordered. This is useful when using multiple discovery clients, as it
allows you to define the order of the returned discovery clients, similar to how you can order the
beans loaded by a Spring application. By default, the order of any DiscoveryClient is set to 0. If you
want to set a different order for your custom DiscoveryClient implementations, you just need to
override the getOrder() method so that it returns the value that is suitable for your setup. Apart
from this, you can use properties to set the order of the DiscoveryClient implementations provided
by Spring Cloud, among others ConsulDiscoveryClient, EurekaDiscoveryClient and
ZookeeperDiscoveryClient. In order to do it, you just need to set the
spring.cloud.{clientIdentifier}.discovery.order (or eureka.client.order for Eureka) property to
the desired value.

2.1.3. SimpleDiscoveryClient

If there is no Service-Registry-backed DiscoveryClient in the classpath, SimpleDiscoveryClient
instance, that uses properties to get information on service and instances, will be used.

The information about the available instances should be passed to via properties in the following
format: spring.cloud.discovery.client.simple.instances.servicel[@].uri=http://s11:8080, where
spring.cloud.discovery.client.simple.instances is the common prefix, then servicel stands for the
ID of the service in question, while [0] indicates the index number of the instance (as visible in the
example, indexes start with 0), and then the value of uri is the actual URI under which the instance
is available.

2.2. ServiceRegistry

Commons now provides a ServiceRegistry interface that provides methods such as
register(Registration) and deregister(Registration), which let you provide custom registered
services. Registration is a marker interface.

The following example shows the ServiceRegistry in use:

@Configuration
@EnableDiscoveryClient(autoRegister=false)
public class MyConfiguration {

private ServiceRegistry registry;

public MyConfiguration(ServiceRegistry registry) {
this.registry = registry;
}

// called through some external process, such as an event or a custom actuator
endpoint
public void register() {
Registration registration = constructRegistration();
this.registry.register(registration);

Each ServiceRegistry implementation has its own Registry implementation.

* ZookeeperRegistration used with ZookeeperServiceRegistry
* EurekaRegistration used with EurekaServiceRegistry
» ConsulRegistration used with ConsulServiceRegistry

If you are using the ServiceRegistry interface, you are going to need to pass the correct Registry
implementation for the ServiceRegistry implementation you are using.

2.2.1. ServiceRegistry Auto-Registration

By default, the ServiceRegistry implementation auto-registers the running service. To disable that
behavior, you can set: * @EnableDiscoveryClient(autoRegister=false) to permanently disable auto-
registration. * spring.cloud.service-registry.auto-registration.enabled=false to disable the
behavior through configuration.

ServiceRegistry Auto-Registration Events

There are two events that will be fired when a service auto-registers. The first event, called
InstancePreRegisteredEvent, is fired before the service is registered. The second event, called
InstanceRegisteredEvent, is fired after the service is registered. You can register an
ApplicationListener(s) to listen to and react to these events.

o These events will not be fired if the spring.cloud.service-registry.auto-
registration.enabled property is set to false

2.2.2. Service Registry Actuator Endpoint

Spring Cloud Commons provides a /service-registry actuator endpoint. This endpoint relies on a

Registration bean in the Spring Application Context. Calling /service-registry with GET returns the
status of the Registration. Using POST to the same endpoint with a JSON body changes the status of
the current Registration to the new value. The JSON body has to include the status field with the
preferred value. Please see the documentation of the ServiceRegistry implementation you use for
the allowed values when updating the status and the values returned for the status. For instance,
Eureka’s supported statuses are UP, DOWN, OUT_OF _SERVICE, and UNKNOWN.

2.3. Spring RestTemplate as a Load Balancer Client

You can configure a RestTemplate to use a Load-balancer client. To create a load-balanced
RestTemplate, create a RestTemplate @Bean and use the @LoadBalanced qualifier, as the following
example shows:

@Configuration
public class MyConfiguration {

@LoadBalanced

@Bean

RestTemplate restTemplate() {
return new RestTemplate();

}
}

public class MyClass {
@Autowired
private RestTemplate restTemplate;

public String doOtherStuff() {
String results = restTemplate.getForObject("http://stores/stores"”,
String.class);
return results;

}

o A RestTemplate bean is no longer created through auto-configuration. Individual
applications must create it.

The URI needs to use a virtual host name (that is, a service name, not a host name). The
BlockingLoadBalancerClient is used to create a full physical address.

To use a load-balanced RestTemplate, you need to have a load-balancer
o implementation in your classpath. Add Spring Cloud LoadBalancer starter to your
project in order to use it.

2.4. Spring WebClient as a Load Balancer Client

You can configure WebClient to automatically use a load-balancer client. To create a load-balanced
WebClient, create a WebClient.Builder @Bean and use the @LoadBalanced qualifier, as follows:

@Configuration
public class MyConfiguration {

@Bean
@LoadBalanced
public WebClient.Builder loadBalancedWebClientBuilder() {
return WebClient.builder();
}
+

public class MyClass {
@Autowired
private WebClient.Builder webClientBuilder;

public Mono<String> doOtherStuff() {
return webClientBuilder.build().get().uri("http://stores/stores")
.retrieve().bodyToMono(String.class);

The URI needs to use a virtual host name (that is, a service name, not a host name). The Spring
Cloud LoadBalancer is used to create a full physical address.

If you want to use a @LoadBalanced WebClient.Builder, you need to have a load

o balancer implementation in the classpath. We recommend that you add the Spring
Cloud LoadBalancer starter to your project. Then, ReactivelLoadBalancer is used
underneath.

2.4.1. Retrying Failed Requests

A load-balanced RestTemplate can be configured to retry failed requests. By default, this logic is
disabled. For the non-reactive version (with RestTemplate), you can enable it by adding Spring Retry
to your application’s classpath. For the reactive version (with WebTestClient), you need to set
‘spring.cloud.loadbalancer.retry.enabled=true.

If you would like to disable the retry logic with Spring Retry or Reactive Retry on the classpath, you
can set spring.cloud.loadbalancer.retry.enabled=false.

For the non-reactive implementation, if you would like to implement a BackOffPolicy in your
retries, you need to create a bean of type LoadBalancedRetryFactory and override the
createBackOffPolicy() method.

https://github.com/spring-projects/spring-retry

For the reactive implementation, you just need to enable it by setting
spring.cloud.loadbalancer.retry.backoff.enabled to false.

You can set:

* spring.cloud.loadbalancer.retry.maxRetriesOnSameServicelnstance - indicates how many times a
request should be retried on the same ServiceInstance (counted separately for every selected
instance)

* spring.cloud.loadbalancer.retry.maxRetriesOnNextServiceInstance - indicates how many times a
request should be retried a newly selected ServiceInstance

* spring.cloud.loadbalancer.retry.retryableStatusCodes - the status codes on which to always
retry a failed request.

For the reactive implementation, you can additionally set: -
spring.cloud.loadbalancer.retry.backoff.minBackoff - Sets the minimum backoff duration (by
default, 5 milliseconds) - spring.cloud.loadbalancer.retry.backoff.maxBackoff - Sets the maximum
backoff duration (by default, max long value of milliseconds) -
spring.cloud.loadbalancer.retry.backoff.jitter - Sets the jitter used for calculationg the actual
backoff duration for each call (by default, 0.5).

For the reactive implementation, you can also implement your own LoadBalancerRetryPolicy to
have more detailed control over the load-balanced call retries.

Individual Loadbalancer clients may be configured individually with the same

o properties as above except the prefix is
spring.cloud.loadbalancer.clients.<clientId>.* where clientlId is the name of the
loadbalancer.

For load-balanced retries, by default, we wrap the ServiceInstancelistSupplier
bean with RetryAwareServicelnstancelistSupplier to select a different instance

o from the one previously chosen, if available. You can disable this behavior by
setting the value of spring.cloud.loadbalancer.retry.avoidPreviousInstance to
false.

@Configuration
public class MyConfiguration {
@Bean
LoadBalancedRetryFactory retryFactory() {
return new LoadBalancedRetryFactory() {
@0verride
public BackOffPolicy createBackOffPolicy(String service) {
return new ExponentialBackOffPolicy();
}
}i

If you want to add one or more RetrylListener implementations to your retry functionality, you need
to create a bean of type LoadBalancedRetrylListenerFactory and return the RetrylListener array you
would like to use for a given service, as the following example shows:

@Configuration
public class MyConfiguration {
@Bean
LoadBalancedRetrylListenerFactory retrylListenerFactory() {
return new LoadBalancedRetrylListenerFactory() {
@0verride
public RetrylListener[] createRetrylListeners(String service) {
return new RetryListener[]{new RetryListener() {
@0verride
public <T, E extends Throwable> boolean open(RetryContext
context, RetryCallback<T, E> callback) {
//T0D0 Do you business...
return true;

}

@0verride
public <T, E extends Throwable> void close(RetryContext
context, RetryCallback<T, E> callback, Throwable throwable) {
//T0D0 Do you business...
}

@0verride
public <T, E extends Throwable> void onError(RetryContext
context, RetryCallback<T, E> callback, Throwable throwable) {
//T0D0 Do you business...
}
M

2.5. Multiple RestTemplate Objects

If you want a RestTemplate that is not load-balanced, create a RestTemplate bean and inject it. To
access the load-balanced RestTemplate, use the @LoadBalanced qualifier when you create your @Bean,
as the following example shows:

@Configuration
public class MyConfiguration {

}

@LoadBalanced
@Bean
RestTemplate loadBalanced() {

return new RestTemplate();

@Primary
@Bean
RestTemplate restTemplate() {

return new RestTemplate();

public class MyClass {
@Autowired
private RestTemplate restTemplate;

!
Q

@Autowired
@LoadBalanced
private RestTemplate loadBalanced;

public String doOtherStuff() {

return loadBalanced.getForObject("http://stores/stores", String.class);

public String doStuff() {

return restTemplate.getForObject("http://example.com", String.class);

Notice the use of the @Primary annotation on the plain RestTemplate declaration in
the preceding example to disambiguate the unqualified @Autowired injection.

If you see errors such as java.lang.IllegalArgumentException: Can not set
org.springframework.web.client.RestTemplate field com.my.app.Foo.restTemplate

to com.sun.proxy.$Proxy89, try injecting RestOperations or setting
spring.aop.proxyTargetClass=true.

2.6. Multiple WebhClient Objects

If you want a WebClient that is not load-balanced, create a WebClient bean and inject it. To access the
load-balanced WebClient, use the @LoadBalanced qualifier when you create your @Bean, as the
following example shows:

@Configuration
public class MyConfiguration {

@LoadBalanced

@Bean

WebClient.Builder loadBalanced() {
return WebClient.builder();

}

@Primary

@Bean

WebClient.Builder webClient() {
return WebClient.builder();

}
}

public class MyClass {
@Autowired
private WebClient.Builder webClientBuilder;

@Autowired
@LoadBalanced
private WebClient.Builder loadBalanced;

public Mono<String> doOtherStuff() {
return loadBalanced.build().get().uri("http://stores/stores")
.retrieve().bodyToMono(String.class);

}

public Mono<String> doStuff() {
return webClientBuilder.build().qget().uri("http://example.com")
.retrieve().bodyToMono(String.class);

2.7. Spring WebFlux Web(Client as a Load Balancer
Client

The Spring WebFlux can work with both reactive and non-reactive WebClient configurations, as the
topics describe:

» Spring WebFlux WebClient with ReactorLoadBalancerExchangeFilterFunction

* [load-balancer-exchange-filter-functionload-balancer-exchange-filter-function]

2.7.1. Spring WebFlux WebClient with
ReactorLoadBalancerExchangeFilterFunction

You can configure WebClient to use the ReactivelLoadBalancer. If you add Spring Cloud LoadBalancer
starter ~ to your project and if spring-webflux is on the classpath,
ReactorLoadBalancerExchangeFilterFunction is auto-configured. The following example shows how
to configure a WebClient to use reactive load-balancer:

public class MyClass {
@Autowired
private ReactorLoadBalancerExchangeFilterFunction 1bFunction;

public Mono<String> doOtherStuff() {
return WebClient.builder().baseUr1("http://stores")

.filter(1bFunction)
.build()
.get()
.uri("/stores")
.retrieve()
.bodyToMono(String.class);

The URI needs to use a virtual host name (that is, a service name, not a host name). The
ReactorLoadBalancer is used to create a full physical address.

2.7.2. Spring WebFlux WebClient with a Non-reactive Load Balancer Client

If spring-webflux is on the classpath, LoadBalancerExchangeFilterFunction is auto-configured. Note,
however, that this uses a non-reactive client under the hood. The following example shows how to
configure a WebClient to use load-balancer:

public class MyClass {
@Autowired
private LoadBalancerExchangeFilterFunction 1bFunction;

public Mono<String> doOtherStuff() {
return WebClient.builder().baseUr1("http://stores")

.filter(1bFunction)
.build()
.get()
.uri("/stores")
.retrieve()
.bodyToMono(String.class);

The URI needs to use a virtual host name (that is, a service name, not a host name). The
LoadBalancer(lient is used to create a full physical address.

WARN: This approach is now deprecated. We suggest that you use WebFlux with reactive Load-
Balancer instead.

2.8. Ignore Network Interfaces

Sometimes, it is useful to ignore certain named network interfaces so that they can be excluded
from Service Discovery registration (for example, when running in a Docker container). A list of
regular expressions can be set to cause the desired network interfaces to be ignored. The following
configuration ignores the docker® interface and all interfaces that start with veth:

Example 2. application.yml

spring:
cloud:
inetutils:
ignoredInterfaces:
- docker®@
- veth.*

You can also force the use of only specified network addresses by using a list of regular expressions,
as the following example shows:

Example 3. bootstrap.yml

spring:
cloud:
inetutils:
preferredNetworks:
- 192.168
- 10.0

You can also force the use of only site-local addresses, as the following example shows:

Example 4. application.yml

spring:
cloud:
inetutils:
useOnlySitelocallnterfaces: true

See Inet4Address.html.isSiteLocalAddress() for more details about what constitutes a site-local
address.

2.9. HTTP Client Factories

Spring Cloud Commons provides beans for creating both Apache HTTP clients
(ApacheHttpClientFactory) and OK HTTP clients (OkHttpClientFactory). The OkHttpClientFactory bean
is created only if the OK HTTP jar is on the classpath. In addition, Spring Cloud Commons provides
beans for creating the connection managers used by both clients:
ApacheHttpClientConnectionManagerFactory for the Apache HTTP client and
OkHttpClientConnectionPoolFactory for the OK HTTP client. If you would like to customize how the
HTTP clients are created in downstream projects, you can provide your own implementation of
these beans. In addition, if you provide a bean of type HttpClientBuilder or OkHttpClient.Builder,
the default factories use these builders as the basis for the builders returned to downstream
projects. You can also disable the <creation of these beans by setting
spring.cloud.httpclientfactories.apache.enabled or spring.cloud.httpclientfactories.ok.enabled
to false.

2.10. Enabled Features

Spring Cloud Commons provides a /features actuator endpoint. This endpoint returns features
available on the classpath and whether they are enabled. The information returned includes the
feature type, name, version, and vendor.

https://docs.oracle.com/javase/8/docs/api/java/net/Inet4Address.html#isSiteLocalAddress--

2.10.1. Feature types
There are two types of 'features': abstract and named.

Abstract features are features where an interface or abstract class is defined and that an
implementation the creates, such as DiscoveryClient, LoadBalancerClient, or LockService. The
abstract class or interface is used to find a bean of that type in the context. The version displayed is
bean.get(Class().getPackage().getImplementationVersion().

Named features are features that do not have a particular class they implement. These features
include “Circuit Breaker”, “API Gateway”, “Spring Cloud Bus”, and others. These features require a
name and a bean type.

2.10.2. Declaring features

Any module can declare any number of HasFeature beans, as the following examples show:

©Bean
public HasFeatures commonsFeatures() {

return HasFeatures.abstractFeatures(DiscoveryClient.class,
LoadBalancerClient.class);

}

@Bean
public HasFeatures consulFeatures() {
return HasFeatures.namedFeatures(
new NamedFeature("Spring Cloud Bus", ConsulBusAutoConfiguration.class),
new NamedFeature("Circuit Breaker", HystrixCommandAspect.class));

@Bean
HasFeatures localFeatures() {
return HasFeatures.builder()
.abstractFeature(Something.class)
.namedFeature(new NamedFeature("Some Other Feature", Someother.class))
.abstractFeature(Somethingelse.class)
.build();

Each of these beans should go in an appropriately guarded @Configuration.

2.11. Spring Cloud Compatibility Verification

Due to the fact that some users have problem with setting up Spring Cloud application, we’ve
decided to add a compatibility verification mechanism. It will break if your current setup is not
compatible with Spring Cloud requirements, together with a report, showing what exactly went
wrong.

At the moment we verify which version of Spring Boot is added to your classpath.

Example of a report

kkkkkkhkhkkhkhkkhkhkkhkkhkhkhkhhkkrkkk

APPLICATION FAILED TO START

kkkkhkkhhhkhhkkhhkkhhkhkhhhkhhkkrrkk

Description:
Your project setup is incompatible with our requirements due to following reasons:

- Spring Boot [2.1.0.RELEASE] is not compatible with this Spring Cloud release
train

Action:
Consider applying the following actions:

- Change Spring Boot version to one of the following versions [1.2.x, 1.3.x] .
You can find the latest Spring Boot versions here
[https://spring.io/projects/spring-boot#learn].

If you want to learn more about the Spring Cloud Release train compatibility, you
can visit this page [https://spring.io/projects/spring-cloudfoverview] and check
the [Release Trains] section.

In order to disable this feature, set spring.cloud.compatibility-verifier.enabled to false. If you
want to override the compatible Spring Boot versions, just set the spring.cloud.compatibility-
verifier.compatible-boot-versions property with a comma separated list of compatible Spring Boot
versions.

3. Spring Cloud LoadBalancer

Spring Cloud provides its own client-side load-balancer abstraction and implementation. For the
load-balancing mechanism, ReactiveloadBalancer interface has been added and a Round-Robin-
based and Random implementations have been provided for it. In order to get instances to select
from reactive ServiceInstancelistSupplier is used. Currently we support a service-discovery-based
implementation of ServiceInstancelistSupplier that retrieves available instances from Service
Discovery using a Discovery Client available in the classpath.

G It is possible to disable Spring Cloud LoadBalancer by setting the value of
- spring.cloud.loadbalancer.enabled to false.

3.1. Switching between the load-balancing algorithms

The ReactiveloadBalancer implementation that is used by default is RoundRobinLoadBalancer. To
switch to a different implementation, either for selected services or all of them, you can use the
custom LoadBalancer configurations mechanism.

For example, the following configuration can be passed via @LoadBalancerClient annotation to
switch to using the RandomLoadBalancer:

public class CustomLoadBalancerConfiguration {

@Bean
ReactorLoadBalancer<ServiceInstance> randomLoadBalancer (Environment environment,
LoadBalancerClientFactory loadBalancerClientFactory) {
String name =
environment.getProperty(LoadBalancerClientFactory.PROPERTY_NAME);
return new RandomLoadBalancer(loadBalancer(ClientFactory
.getlazyProvider(name, ServiceInstancelistSupplier.class),
name);

The classes you pass as @LoadBalancerClient or @LoadBalancerClients configuration
o arguments should either not be annotated with @Configuration or be outside
component scan scope.

3.2. Spring Cloud LoadBalancer integrations

In order to make it easy to wuse Spring Cloud LoadBalancer, we provide
ReactorLoadBalancerExchangeFilterFunction that can be used with WebClient and
BlockinglLoadBalancerClient that works with RestTemplate. You can see more information and
examples of usage in the following sections:

* Spring RestTemplate as a Load Balancer Client

» Spring WebClient as a Load Balancer Client

* Spring WebFlux WebClient with ReactorLoadBalancerExchangeFilterFunction

3.3. Spring Cloud LoadBalancer Caching

Apart from the basic ServiceInstancelistSupplier implementation that retrieves instances via
Discovery(Client each time it has to choose an instance, we provide two caching implementations.

3.3.1. Caffeine-backed LoadBalancer Cache Implementation

If you have com.github.ben-manes.caffeine:caffeine in the classpath, Caffeine-based
implementation will be used. See the LoadBalancerCacheConfiguration section for information on

https://github.com/ben-manes/caffeine

how to configure it.

If you are using Caffeine, you can also override the default Caffeine Cache setup for the
LoadBalancer by passing your own Caffeine Specification in the
spring.cloud.loadbalancer.cache.caffeine.spec property.

WARN: Passing your own Caffeine specification will override any other LoadBalancerCache
settings, including General LoadBalancer Cache Configuration fields, such as tt1 and capacity.

3.3.2. Default LoadBalancer Cache Implementation

If you do not have Caffeine in the classpath, the DefaultlLoadBalancerCache, which comes
automatically with spring-cloud-starter-loadbalancer, will be used. See the
LoadBalancerCacheConfiguration section for information on how to configure it.

@ To wuse Caffeine instead of the default cache, add the com.github.ben-
- manes.caffeine:caffeine dependency to classpath.

3.3.3. LoadBalancer Cache Configuration

You can set your own ttl value (the time after write after which entries should be expired),
expressed as Duration, by passing a String compliant with the Spring Boot String to Duration
converter syntax. as the value of the spring.cloud.loadbalancer.cache.ttl property. You can also set
your own LoadBalancer cache initial capacity by setting the value of the
spring.cloud.loadbalancer.cache.capacity property.

The default setup includes tt1 set to 35 seconds and the default initialCapacity is 256.

You can also altogether disable loadBalancer caching by setting the value of
spring.cloud.loadbalancer.cache.enabled to false.

Although the basic, non-cached, implementation is useful for prototyping and
testing, it’s much less efficient than the cached versions, so we recommend always

A using the cached version in production. If the caching is already done by the
DiscoveryClient implementation, for example EurekaDiscovery(Client, the load-
balancer caching should be disabled to prevent double caching.

3.4. Zone-Based Load-Balancing

To enable zone-based load-balancing, we provide the ZonePreferenceServiceInstancelistSupplier.
We use DiscoveryClient-specific zone configuration (for example, eureka.instance.metadata-
map.zone) to pick the zone that the client tries to filter available service instances for.

o You can also override DiscoveryClient-specific zone setup by setting the value of
spring.cloud.loadbalancer.zone property.

https://static.javadoc.io/com.github.ben-manes.caffeine/caffeine/2.2.2/com/github/benmanes/caffeine/cache/CaffeineSpec.html
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-external-config-conversion-duration
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-external-config-conversion-duration
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-external-config-conversion-duration
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-external-config-conversion-duration
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-external-config-conversion-duration
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-external-config-conversion-duration

For the time being, only Eureka Discovery Client is instrumented to set the
A LoadBalancer Zone. For other discovery client, set the
spring.cloud.loadbalancer.zone property. More instrumentations coming shortly.

o To determine the zone of a retrieved ServiceInstance, we check the value under
the "zone" key in its metadata map.

The ZonePreferenceServiceInstancelistSupplier filters retrieved instances and only returns the ones
within the same zone. If the zone is null or there are no instances within the same zone, it returns
all the retrieved instances.

In order to use the zone-based load-balancing approach, you will have to instantiate a
ZonePreferenceServiceInstancelistSupplier bean in a custom configuration.

We use delegates to work with ServicelnstancelistSupplier beans. We suggest passing a
DiscoveryClientServiceInstancelistSupplier delegate in the constructor of
ZonePreferenceServiceInstancelistSupplier and, in turn, wrapping the latter with a
CachingServiceInstancelistSupplier to leverage LoadBalancer caching mechanism.

You could use this sample configuration to set it up:

public class CustomLoadBalancerConfiguration {

@Bean
public ServiceInstancelistSupplier discoveryClientServiceInstancelistSupplier(
ConfigurableApplicationContext context) {
return ServiceInstancelistSupplier.builder()

.withDiscoveryClient()
.withZonePreference()
.withCaching()
.build(context);

3.5. Instance Health-Check for LoadBalancer

It is possible to enable a scheduled HealthCheck for the LoadBalancer. The
HealthCheckServiceInstancelListSupplier is provided for that. It regularly verifies if the instances
provided by a delegate ServicelnstancelListSupplier are still alive and only returns the healthy
instances, unless there are none - then it returns all the retrieved instances.

This mechanism is particularly helpful while using the SimpleDiscoveryClient. For
(r) the clients backed by an actual Service Registry, it’s not necessary to use, as we
et already get healthy instances after querying the external ServiceDiscovery.

(r') This supplier is also recommended for setups with a small number of instances
- per service in order to avoid retrying calls on a failing instance.

If using any of the Service Discovery-backed suppliers, adding this health-check
A mechanism is usually not necessary, as we retrieve the health state of the instances
directly from the Service Registry.

The HealthCheckServicelnstancelistSupplier relies on having updated instances
provided by a delegate flux. In the rare cases when you want to use a delegate that
does not refresh the instances, even though the list of instances may change (such
as the Discovery(ClientServiceInstancelistSupplier provided by us), you can set
spring.cloud.loadbalancer.health-check.refetch-instances to true to have the
@ instance list refreshed by the HealthCheckServiceInstancelistSupplier. You can

v then also adjust the refretch intervals by modifying the value of
spring.cloud.loadbalancer.health-check.refetch-instances-interval and opt to
disable the additional healthcheck repetitions by setting
spring.cloud.loadbalancer.health-check.repeat-health-check to false as every
instances refetch will also trigger a healthcheck.

HealthCheckServiceInstancelistSupplier uses properties prefixed with

spring.cloud.loadbalancer.health-check. You can set the initialDelay and interval for the
scheduler. You can set the default path for the healthcheck URL by setting the value of the
spring.cloud.loadbalancer.health-check.path.default property. You can also set a specific value for
any given service by setting the value of the spring.cloud.loadbalancer.health-
check.path.[SERVICE_ID] property, substituting [SERVICE_ID] with the correct ID of your service. If
the [SERVICE_ID] is not specified, /actuator/health is used by default. If the [SERVICE_ID] is set to
null or empty as a value, then the health check will not be executed. You can also set a custom port
for health-check requests by setting the value of spring.cloud.loadbalancer.health-check.port. If
none is set, the port under which the requested service is available at the service instance.

If you rely on the default path (/actuator/health), make sure you add spring-boot-
(r) starter-actuator to your collaborator’s dependencies, unless you are planning to
et add such an endpoint on your own.

In order to use the health-check scheduler approach, you will have to instantiate a
HealthCheckServiceInstancelistSupplier bean in a custom configuration.

We use delegates to work with ServicelnstancelistSupplier beans. We suggest passing a
Discovery(ClientServiceInstancelistSupplier delegate in the constructor of
HealthCheckServiceInstancelistSupplier.

You could use this sample configuration to set it up:

public class CustomLoadBalancerConfiguration {

@Bean
public ServiceInstancelistSupplier discoveryClientServiceInstancelistSupplier(
ConfigurableApplicationContext context) {
return ServiceInstancelistSupplier.builder()
.withDiscoveryClient()
.withHealthChecks()
.build(context);

For the non-reactive stack, create this supplier with the
(;) withBlockingHealthChecks(). You can also pass your own WebClient or RestTemplate
instance to be used for the checks.

HealthCheckServiceInstancelistSupplier has its own caching mechanism based on
A Reactor Flux replay(). Therefore, if it’s being used, you may want to skip wrapping
that supplier with CachingServiceInstancelistSupplier.

3.6. Same instance preference for LoadBalancer

You can set up the LoadBalancer in such a way that it prefers the instance that was previously
selected, if that instance is available.

For that, you need to use SameInstancePreferenceServicelnstancelistSupplier. You can configure it
either by setting the value of spring.cloud.loadbalancer.configurations to same-instance-preference
or by providing your own ServiceInstancelistSupplier bean — for example:

public class CustomLoadBalancerConfiguration {

@Bean
public ServiceInstancelistSupplier discoveryClientServiceInstancelistSupplier(
ConfigurableApplicationContext context) {
return ServiceInstancelistSupplier.builder()
.withDiscoveryClient()
.withSameInstancePreference()
.build(context);

@ This is also a replacement for Zookeeper StickyRule.

3.7. Request-based Sticky Session for LoadBalancer

You can set up the LoadBalancer in such a way that it prefers the instance with instanceld provided
in a request cookie. We currently support this if the request is being passed to the LoadBalancer
through either ClientRequestContext or ServerHttpRequestContext, which are used by the SC
LoadBalancer exchange filter functions and filters.

For that, you need to use the RequestBasedStickySessionServiceInstancelistSupplier. You can
configure it either by setting the value of spring.cloud.loadbalancer.configurations to request-
based-sticky-session or by providing your own ServicelInstancelistSupplier bean — for example:

public class CustomLoadBalancerConfiguration {

@Bean
public ServicelInstancelistSupplier discoveryClientServiceInstancelistSupplier(
ConfigurableApplicationContext context) {
return ServiceInstancelistSupplier.builder()
.withDiscoveryClient()
.withRequestBasedStickySession()
.build(context);

For that functionality, it is useful to have the selected service instance (which can be different from
the one in the original request cookie if that one is not available) to be updated before sending the
request forward. To do that, set the value of spring.cloud.loadbalancer.sticky-session.add-
service-instance-cookie to true.

By default, the name of the cookie is sc-1b-instance-id. You can modify it by changing the value of
the spring.cloud.loadbalancer.instance-id-cookie-name property.

o This feature is currently supported for WebClient-backed load-balancing.

3.8. Spring Cloud LoadBalancer Hints

Spring Cloud LoadBalancer lets you set String hints that are passed to the LoadBalancer within the
Request object and that can later be used in ReactivelLoadBalancer implementations that can handle
them.

You can set a default hint for all services by setting the value of the
spring.cloud.loadbalancer.hint.default property. You can also set a specific value for any given
service by setting the value of the spring.cloud.loadbalancer.hint.[SERVICE_ID] property,
substituting [SERVICE_ID] with the correct ID of your service. If the hint is not set by the user,
default is used.

3.9. Hint-Based Load-Balancing

We also provide a HintBasedServiceInstancelistSupplier, which is a ServicelnstancelistSupplier
implementation for hint-based instance selection.

HintBasedServiceInstancelistSupplier checks for a hint request header (the default header-name is
X-SC-LB-Hint, but you can modify it by changing the value of the spring.cloud.loadbalancer.hint-
header-name property) and, if it finds a hint request header, uses the hint value passed in the header
to filter service instances.

If no hint header has been added, HintBasedServiceInstancelistSupplier uses hint values from
properties to filter service instances.

If no hint is set, either by the header or by properties, all service instances provided by the delegate
are returned.

While filtering, HintBasedServicelInstancelistSupplier looks for service instances that have a
matching value set under the hint key in their metadataMap. If no matching instances are found, all
instances provided by the delegate are returned.

You could use the following sample configuration to set it up:

public class CustomLoadBalancerConfiguration {

@Bean
public ServicelnstancelistSupplier discoveryClientServicelnstancelistSupplier(
ConfigurableApplicationContext context) {
return ServiceInstancelistSupplier.builder()

.withDiscoveryClient()
withHints()
.withCaching()
.build(context);

3.10. Transform the load-balanced HTTP request

You can use the selected ServiceInstance to transform the load-balanced HTTP Request.

For RestTemplate, you need to implement and define LoadBalancerRequestTransformer as follows:

©Bean
public LoadBalancerRequestTransformer transformer() {
return new LoadBalancerRequestTransformer() {
@verride
public HttpRequest transformRequest(HttpRequest request, Servicelnstance
instance) {
return new HttpRequestWrapper(request) {
@lverride
public HttpHeaders getHeaders() {
HttpHeaders headers = new HttpHeaders();
headers.putAll(super.getHeaders());
headers.add("X-InstanceId", instance.getInstanceld());
return headers;

+

For Web(Client, you need to implement and define LoadBalancerClientRequestTransformer as follows:

©Bean
public LoadBalancerClientRequestTransformer transformer() {
return new LoadBalancerClientRequestTransformer() {
@verride
public ClientRequest transformRequest(ClientRequest request, Servicelnstance
instance) {
return ClientRequest.from(request)
.header ("X-Instanceld", instance.getInstanceld())
.build();

If multiple transformers are defined, they are applied in the order in which Beans are defined.
Alternatively, you can use LoadBalancerRequestTransformer.DEFAULT_ORDER or
LoadBalancerClientRequestTransformer.DEFAULT_ORDER to specify the order.

3.11. Spring Cloud LoadBalancer Starter

We also provide a starter that allows you to easily add Spring Cloud LoadBalancer in a Spring Boot
app. In order to use it, just add org.springframework.cloud:spring-cloud-starter-loadbalancer to
your Spring Cloud dependencies in your build file.

e Spring Cloud LoadBalancer starter includes Spring Boot Caching and Evictor.

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-caching.html
https://github.com/stoyanr/Evictor

3.12. Passing Your Own Spring Cloud LoadBalancer
Configuration

You can also use the @LoadBalancer(lient annotation to pass your own load-balancer client
configuration, passing the name of the load-balancer client and the configuration class, as follows:

@Configuration

@LoadBalancer(Client(value = "stores", configuration =
CustomLoadBalancerConfiguration.class)

public class MyConfiguration {

@Bean

@LoadBalanced

public WebClient.Builder loadBalancedWebClientBuilder() {
return WebClient.builder();

}

TIP

In order to make working on your own LoadBalancer configuration easier, we have added
a builder () method to the ServiceInstancelListSupplier class.

TIP

You can also use our alternative predefined configurations in place of the default ones by
setting the value of spring.cloud.loadbalancer.configurations property to zone-preference
to use ZonePreferenceServiceInstancelistSupplier with caching or to health-check to use
HealthCheckServiceInstancelistSupplier with caching.

You can use this feature to instantiate different implementations of ServiceInstancelListSupplier or
ReactorLoadBalancer, either written by you, or provided by us as alternatives (for example
ZonePreferenceServiceInstancelistSupplier) to override the default setup.

You can see an example of a custom configuration here.

The annotation value arguments (stores in the example above) specifies the
o service id of the service that we should send the requests to with the given custom
configuration.

You can also pass multiple configurations (for more than one load-balancer client) through the
@LoadBalancer(Clients annotation, as the following example shows:

@Configuration

@LoadBalancer(Clients({@LoadBalancerClient(value = "stores", configuration =
StoreslLoadBalancerClientConfiguration.class), @LoadBalancerClient(value =
"customers", configuration = CustomersLoadBalancerClientConfiguration.class)})
public class MyConfiguration {

@Bean

@LoadBalanced

public WebClient.Builder loadBalancedWebClientBuilder() {
return WebClient.builder();

}

The classes you pass as @LoadBalancerClient or @LoadBalancerClients
o configuration arguments should either not be annotated with @Configuration
or be outside component scan scope.

3.13. Spring Cloud LoadBalancer Lifecycle

One type of bean that it may be useful to register using Custom LoadBalancer configuration is
LoadBalancerLifecycle.

The LoadBalancerLifecycle beans provide callback methods, named onStart(Request<RC> request),
onStartRequest(Request<RC> request, Response<T> 1bResponse) and
onComplete(CompletionContext<RES, T, RC> completionContext), that you should implement to
specify what actions should take place before and after load-balancing.

onStart(Request<RC> request) takes a Request object as a parameter. It contains data that is used to
select an appropriate instance, including the downstream client request and hint. onStartRequest
also takes the Request object and, additionally, the Response<T> object as parameters. On the other
hand, a CompletionContext object is provided to the onComplete(CompletionContext<RES, T, RC>
completionContext) method. It contains the LoadBalancer Response, including the selected service
instance, the Status of the request executed against that service instance and (if available) the
response returned to the downstream client, and (if an exception has occurred) the corresponding
Throwable.

The supports(Class requestContextClass, Class response(Class, (Class serverType(Class) method can
be used to determine whether the processor in question handles objects of provided types. If not
overridden by the user, it returns true.

o In the preceding method calls, RC means RequestContext type, RES means client
response type, and T means returned server type.

If you are using custom HTTP status codes, you will be getting exceptions. In order
to prevent this, you can set the value of spring.cloud.loadbalancer.use-raw-status-

A code-in-response-data. It will cause raw status codes to be used instead of
HttpStatus enums. The httpStatus field in ResponseData will then be used, but you’ll
be able to get the raw status code from the rawHttpStatus field.

3.14. Spring Cloud LoadBalancer Statistics

We provide a LoadBalancerLifecycle bean called MicrometerStatsLoadBalancerLifecycle, which uses
Micrometer to provide statistics for load-balanced calls.

In order to get this bean added to your application context, set the value of the
spring.cloud.loadbalancer.stats.micrometer.enabled to true and have a MeterRegistry available (for
example, by adding Spring Boot Actuator to your project).

MicrometerStatsLoadBalancerLifecycle registers the following meters in MeterRegistry:

* loadbalancer.requests.active: A gauge that allows you to monitor the number of currently
active requests for any service instance (service instance data available via tags);

* loadbalancer.requests.success: A timer that measures the time of execution of any load-
balanced requests that have ended in passing a response on to the underlying client;

* loadbalancer.requests.failed: A timer that measures the time of execution of any load-balanced
requests that have ended with an exception;

 loadbalancer.requests.discard: A counter that measures the number of discarded load-balanced
requests, i.e. requests where a service instance to run the request on has not been retrieved by
the LoadBalancer.

Additional information regarding the service instances, request data, and response data is added to
metrics via tags whenever available.

For some implementations, such as BlockinglLoadBalancerClient, request and
response data might not be available, as we establish generic types from
arguments and might not be able to determine the types and read the data.

given meter.

You can further configure the behavior of those metrics (for example, add

o The meters are registered in the registry when at least one record is added for a
@,
- publishing percentiles and histograms) by adding MeterFilters.

3.15. Configuring Individual LoadBalancerClients

Individual Loadbalancer clients may be configured individually with a different prefix
spring.cloud.loadbalancer.clients.<clientId>. where clientId is the name of the loadbalancer.

Default configuration values may be set in the spring.cloud.loadbalancer. namespace and will
be merged with the client specific values taking precedence

https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-features.html
https://micrometer.io/docs/concepts#_histograms_and_percentiles
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-features.html#production-ready-metrics-per-meter-properties
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-features.html#production-ready-metrics-per-meter-properties

Example 5. application.yml

spring:
cloud:
loadbalancer:
health-check:
initial-delay: 1s
clients:
myclient:
health-check:
interval: 30s

The above example will result in a merged health-check @ConfigurationProperties object with
initial-delay=1s and interval=30s.

The per-client configuration properties work for most of the properties, apart from the following
global ones:

* spring.cloud.loadbalancer.enabled - globally enables or disables load-balancing

* spring.cloud.loadbalancer.retry.enabled - globally enables or disables load-balanced retries. If
you enable it globally, you can still disable retries for specific clients using the client-prefixed
properties, but not the other way round

* spring.cloud.loadbalancer.cache.enabled - globally enables or disables LoadBalancer caching. If
you enable it globally, you can still disable caching for specific clients by creating a custom
configuration that does not include the CachingServiceInstancelistSupplier in the
ServicelInstancelistSupplier delegates hierarchy, but not the other way round.

* spring.cloud.loadbalancer.stats.micrometer.enabled - globally enables or disables
LoadBalancer Micrometer metrics

For the properties where maps where already used, where you could specify a

o different value per-client without using the clients keyword (for example, hints,
health-check.path), we have kept that behaviour in order to keep the library
backwards compatible. It will be modified in the next major release.

4. Spring Cloud Circuit Breaker

4.1. Introduction

Spring Cloud Circuit breaker provides an abstraction across different circuit breaker
implementations. It provides a consistent API to use in your applications, letting you, the developer,
choose the circuit breaker implementation that best fits your needs for your application.

4.1.1. Supported Implementations
Spring Cloud supports the following circuit-breaker implementations:

* Resilience4]
» Sentinel

* Spring Retry

4.2. Core Concepts

To create a circuit breaker in your code, you can use the CircuitBreakerFactory API. When you
include a Spring Cloud Circuit Breaker starter on your classpath, a bean that implements this API is
automatically created for you. The following example shows a simple example of how to use this
APIL:

@Service

public static class DemoControllerService {
private RestTemplate rest;
private CircuitBreakerFactory cbFactory;

public DemoControllerService(RestTemplate rest, CircuitBreakerFactory
cbFactory) {
this.rest = rest;
this.cbFactory = cbFactory;
}

public String slow() {
return cbFactory.create("slow").run(() -> rest.getForObject("/slow",
String.class), throwable -> "fallback");

}

The CircuitBreakerFactory.create API creates an instance of a class called CircuitBreaker. The run
method takes a Supplier and a Function. The Supplier is the code that you are going to wrap in a
circuit breaker. The Function is the fallback that is run if the circuit breaker is tripped. The function
is passed the Throwable that caused the fallback to be triggered. You can optionally exclude the
fallback if you do not want to provide one.

4.2.1. Circuit Breakers In Reactive Code

If Project Reactor is on the class path, you can also use ReactiveCircuitBreakerFactory for your
reactive code. The following example shows how to do so:

https://github.com/resilience4j/resilience4j
https://github.com/alibaba/Sentinel
https://github.com/spring-projects/spring-retry

@Service

public static class DemoControllerService {
private ReactiveCircuitBreakerFactory cbFactory;
private WebClient webClient;

public DemoControllerService(WebClient webClient,
ReactiveCircuitBreakerFactory cbFactory) {
this.webClient = webClient;
this.cbFactory = cbFactory;

public Mono<String> slow() {
return
webClient.get().uri("/slow").retrieve().bodyToMono(String.class).transform(
it -> cbFactory.create("slow").run(it, throwable -> return
Mono.just("fallback")));

}
}

The ReactiveCircuitBreakerFactory.create API creates an instance of a class called
ReactiveCircuitBreaker. The run method takes a Mono or a Flux and wraps it in a circuit breaker. You
can optionally profile a fallback Function, which will be called if the circuit breaker is tripped and is
passed the Throwable that caused the failure

4.3. Configuration

You can configure your circuit breakers by creating beans of type Customizer. The Customizer
interface has a single method (called customize) that takes the Object to customize.

For detailed information on how to customize a given implementation see the following
documentation:

* Resilience4]

e Sentinel

* Spring Retry
Some CircuitBreaker implementations such as Resilience4]CircuitBreaker call customize method
every time CircuitBreaker#run is called. It can be inefficient. In that case, you can use

CircuitBreakerf#fonce method. It is useful where calling customize many times doesn’t make sense,
for example, in case of consuming Resilience4j’s events.

The following example shows the way for each
io.github.resilience4j.circuitbreaker.CircuitBreaker to consume events.

../../../../spring-cloud-circuitbreaker/current/reference/html/spring-cloud-circuitbreaker.html#configuring-resilience4j-circuit-breakers
https://github.com/alibaba/spring-cloud-alibaba/blob/master/spring-cloud-alibaba-docs/src/main/asciidoc/circuitbreaker-sentinel.adoc#circuit-breaker-spring-cloud-circuit-breaker-with-sentinel—​configuring-sentinel-circuit-breakers
../../../../../spring-cloud-circuitbreaker/docs/current/reference/html/spring-cloud-circuitbreaker.html#configuring-spring-retry-circuit-breakers
https://resilience4j.readme.io/docs/circuitbreaker#section-consume-emitted-circuitbreakerevents

Customizer.once(circuitBreaker -> {
circuitBreaker.getEventPublisher()
.onStateTransition(event -> log.info("{}: {}", event.getCircuitBreakerName(),
event.getStateTransition()));
}, CircuitBreaker::getName)

5. CachedRandomPropertySource

Spring Cloud Context provides a PropertySource that caches random values based on a key. Outside
of the caching functionality it works the same as Spring Boot’s RandomValuePropertySource. This
random value might be useful in the case where you want a random value that is consistent even
after the Spring Application context restarts. The property value takes the form of
cachedrandom. [yourkey].[type] where yourkey is the key in the cache. The type value can be any type
supported by Spring Boot’s RandomValuePropertySource.

myrandom=${cachedrandom.appname.value}

6. Security

6.1. Single Sign On

o All of the OAuth2 SSO and resource server features moved to Spring Boot in
version 1.3. You can find documentation in the Spring Boot user guide.

6.1.1. Client Token Relay

If your app is a user facing OAuth2 client (i.e. has declared @Enable0Auth2Sso or @EnableOAuth2(Client)
then it has an OAuth2ClientContext in request scope from Spring Boot. You can create your own
OAuth2RestTemplate from this context and an autowired OAuth2ProtectedResourceDetails, and then
the context will always forward the access token downstream, also refreshing the access token
automatically if it expires. (These are features of Spring Security and Spring Boot.)

6.1.2. Resource Server Token Relay

If your app has @EnableResourceServer you might want to relay the incoming token downstream to
other services. If you use a RestTemplate to contact the downstream services then this is just a
matter of how to create the template with the right context.

If your service uses UserInfoTokenServices to authenticate incoming tokens (i.e. it is using the
security.oauth2.user-info-uri configuration), then you can simply create an OAuth2RestTemplate
using an autowired 0Auth2(ClientContext (it will be populated by the authentication process before it

https://github.com/spring-projects/spring-boot/blob/main/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/env/RandomValuePropertySource.java
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/

hits the backend code). Equivalently (with Spring Boot 1.4), you could inject a
UserInfoRestTemplateFactory and grab its OAuth2RestTemplate in your configuration. For example:

MyConfiguration.java

@Bean

public OAuth2RestTemplate restTemplate(UserInfoRestTemplateFactory factory) {
return factory.getUserInfoRestTemplate();

}

This rest template will then have the same 0Auth2(ClientContext (request-scoped) that is used by the
authentication filter, so you can use it to send requests with the same access token.

If your app is not using UserInfoTokenServices but is still a client (i.e. it declares @EnableOAuth2Client
or @EnableOAuth2Sso), then with Spring Security Cloud any OAuth2RestOperations that the user
creates from an @Autowired OAuth2Context will also forward tokens. This feature is implemented by
default as an MVC handler interceptor, so it only works in Spring MVC. If you are not using MVC
you could use a custom filter or AOP interceptor wrapping an AccessTokenContextRelay to provide
the same feature.

Here’s a basic example showing the use of an autowired rest template created elsewhere ("foo.com"
is a Resource Server accepting the same tokens as the surrounding app):

MyController.java

@Autowired
private OAuth2RestOperations restTemplate;

@RequestMapping("/relay")
public String relay() {
ResponseEntity<String> response =
restTemplate.getForEntity("https://foo.com/bar", String.class);
return "Success! (" + response.getBody() + ")";

If you don’t want to forward tokens (and that is a valid choice, since you might want to act as
yourself, rather than the client that sent you the token), then you only need to create your own
OAuth2Context instead of autowiring the default one.

Feign clients will also pick up an interceptor that uses the OAuth2(ClientContext if it is available, so
they should also do a token relay anywhere where a RestTemplate would.

7. Configuration Properties

To see the list of all Spring Cloud Commons related configuration properties please check the
Appendix page.

appendix.html
appendix.html

Spring Cloud Config

2021.0.3

Spring Cloud Config provides server-side and client-side support for externalized configuration in a
distributed system. With the Config Server, you have a central place to manage external properties
for applications across all environments. The concepts on both client and server map identically to
the Spring Environment and PropertySource abstractions, so they fit very well with Spring
applications but can be used with any application running in any language. As an application
moves through the deployment pipeline from dev to test and into production, you can manage the
configuration between those environments and be certain that applications have everything they
need to run when they migrate. The default implementation of the server storage backend uses git,
so it easily supports labelled versions of configuration environments as well as being accessible to a
wide range of tooling for managing the content. It is easy to add alternative implementations and
plug them in with Spring configuration.

1. Quick Start

This quick start walks through using both the server and the client of Spring Cloud Config Server.

First, start the server, as follows:

$ cd spring-cloud-config-server
$../mvnw spring-boot:run

The server is a Spring Boot application, so you can run it from your IDE if you prefer to do so (the
main class is ConfigServerApplication).

Next try out a client, as follows:

$ curl localhost:8888/foo/development

"name": "foo",
"profiles": [
"development”

]

"propertySources": [
{
"name": "https://github.com/spring-cloud-samples/config-repo/foo-
development.properties"”,
"source": {
"bar": "spam",
"foo": "from foo development"

}
1
{
"name": "https://github.com/spring-cloud-samples/config-repo/foo.properties”,
"source": {
"foo": "from foo props",
"democonfigclient.message”: "hello spring io"
¥
}

The default strategy for locating property sources is to clone a git repository (at
spring.cloud.config.server.git.uri) and use it to initialize a mini SpringApplication. The mini-
application’s Environment is used to enumerate property sources and publish them at a JSON
endpoint.

The HTTP service has resources in the following form:

/{application}/{profile}[/{label}]
/{application}-{profile}.yml
/{1abel}/{application}-{profile}.yml
/{application}-{profile}.properties
/{label}/{application}-{profile}.properties

For example:

curl localhost:8888/foo/development

curl localhost:8888/foo/development/master
curl localhost:8888/foo/development,db/master
curl localhost:8888/foo-development.yml

curl localhost:8888/foo-db.properties

curl localhost:8888/master/foo-db.properties

where application is injected as the spring.config.name in the SpringApplication (what is normally
application in a regular Spring Boot app), profile is an active profile (or comma-separated list of
properties), and label is an optional git label (defaults to master.)

Spring Cloud Config Server pulls configuration for remote clients from various sources. The
following example gets configuration from a git repository (which must be provided), as shown in
the following example:

spring:
cloud:
config:
server:
git:
uri: https://github.com/spring-cloud-samples/config-repo

Other sources are any JDBC compatible database, Subversion, Hashicorp Vault, Credhub and local
filesystems.

1.1. Client Side Usage

To use these features in an application, you can build it as a Spring Boot application that depends
on spring-cloud-config-client (for an example, see the test cases for the config-client or the sample
application). The most convenient way to add the dependency is with a Spring Boot starter
org.springframework.cloud:spring-cloud-starter-config. There is also a parent pom and BOM
(spring-cloud-starter-parent) for Maven users and a Spring IO version management properties file
for Gradle and Spring CLI users. The following example shows a typical Maven configuration:

pom.xml

<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>{spring-boot-docs-version}</version>
<relativePath /> <!-- lookup parent from repository -->
</parent>

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>{spring-cloud-version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-config</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>

<build>
<plugins>
<plugin>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>

<!-- repositories also needed for snapshots and milestones -->

Now you can create a standard Spring Boot application, such as the following HTTP server:

@SpringBootApplication
@RestController
public class Application {

@RequestMapping("/")
public String home() {

return "Hello World!";
}

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

When this HTTP server runs, it picks up the external configuration from the default local config
server (if it is running) on port 8888. To modify the startup behavior, you can change the location of
the config server by using application.properties as shown in the following example:

spring.config.import=optional:configserver:http://myconfigserver.com

By default, if no application name is set, application will be used. To modify the name, the following
property can be added to the application.properties file:

spring.application.name: myapp

When setting the property ${spring.application.name} do not prefix your app
o name with the reserved word application- to prevent issues resolving the correct
property source.

The Config Server properties show up in the /env endpoint as a high-priority property source, as
shown in the following example.

$ curl localhost:8080/env
{
"activeProfiles": [],
{
"name": "servletContextInitParams",
"properties": {}
¥
{
"name": "configserver:https://github.com/spring-cloud-samples/config-
repo/foo.properties",
"properties": {
"foo": {
"value": "bar",
"origin": "Config Server https://github.com/spring-cloud-samples/config-
repo/foo.properties:2:12"
}
}
¥

A property source called configserver:<URL of remote repository>/<file name> contains the foo
property with a value of bar.

o The URL in the property source name is the git repository, not the config server
URL.

If you use Spring Cloud Config Client, you need to set the spring.config.import
A property in order to bind to Config Server. You can read more about it in the
Spring Cloud Config Reference Guide.

2. Spring Cloud Config Server

Spring Cloud Config Server provides an HTTP resource-based API for external configuration (name-
value pairs or equivalent YAML content). The server is embeddable in a Spring Boot application, by
using the @EnableConfigServer annotation. Consequently, the following application is a config
server:

ConfigServer.java

@SpringBootApplication
@EnableConfigServer
public class ConfigServer {
public static void main(String[] args) {
SpringApplication.run(ConfigServer.class, args);
}
}

https://docs.spring.io/spring-cloud-config/docs/current/reference/html/#config-data-import
https://docs.spring.io/spring-cloud-config/docs/current/reference/html/#config-data-import

Like all Spring Boot applications, it runs on port 8080 by default, but you can switch it to the more
conventional port 8888 in various ways. The easiest, which also sets a default configuration
repository, is by launching it with spring.config.name=configserver (there is a configserver.yml in
the Config Server jar). Another is to use your own application.properties, as shown in the
following example:

application.properties

server.port: 8888
spring.cloud.config.server.git.uri: file://${user.home}/config-repo

where ${user.home}/config-repo is a git repository containing YAML and properties files.

o On Windows, you need an extra "/" in the file URL if it is absolute with a drive
prefix (for example,/${user.home}/config-repo).

The following listing shows a recipe for creating the git repository in the preceding
example:

$ cd $HOME
(r) $ mkdir config-repo
- $ cd config-repo
$ git init .
$ echo info.foo: bar > application.properties
$ git add -A .
$ git commit -m "Add application.properties"

g Using the local filesystem for your git repository is intended for testing only. You
should use a server to host your configuration repositories in production.

The initial clone of your configuration repository can be quick and efficient if you

A keep only text files in it. If you store binary files, especially large ones, you may
experience delays on the first request for configuration or encounter out of
memory errors in the server.

2.1. Environment Repository

Where should you store the configuration data for the Config Server? The strategy that governs this
behaviour is the EnvironmentRepository, serving Environment objects. This Environment is a shallow
copy of the domain from the Spring Environment (including propertySources as the main feature).
The Environment resources are parametrized by three variables:

» {application}, which maps to spring.application.name on the client side.

» {profile}, which maps to spring.profiles.active on the client (comma-separated list).

» {1label}, which is a server side feature labelling a "versioned" set of config files.

file:///${user.home}/config-repo

Repository implementations generally behave like a Spring Boot application, loading configuration
files from a spring.config.name equal to the {application} parameter, and spring.profiles.active
equal to the {profiles} parameter. Precedence rules for profiles are also the same as in a regular
Spring Boot application: Active profiles take precedence over defaults, and, if there are multiple
profiles, the last one wins (similar to adding entries to a Map).

The following sample client application has this bootstrap configuration:

spring:
application:
name: foo
profiles:
active: dev,mysql

(As usual with a Spring Boot application, these properties could also be set by environment
variables or command line arguments).

If the repository is file-based, the server creates an Environment from application.yml (shared
between all clients) and foo.yml (with foo.yml taking precedence). If the YAML files have documents
inside them that point to Spring profiles, those are applied with higher precedence (in order of the
profiles listed). If there are profile-specific YAML (or properties) files, these are also applied with
higher precedence than the defaults. Higher precedence translates to a PropertySource listed earlier
in the Environment. (These same rules apply in a standalone Spring Boot application.)

You can set spring.cloud.config.server.accept-empty to false so that Server would return a HTTP 404
status, if the application is not found.By default, this flag is set to true.

2.1.1. Git Backend

The default implementation of EnvironmentRepository uses a Git backend, which is very convenient
for managing upgrades and physical environments and for auditing changes. To change the
location of the repository, you can set the spring.cloud.config.server.git.uri configuration
property in the Config Server (for example in application.yml). If you set it with a file: prefix, it
should work from a local repository so that you can get started quickly and easily without a server.
However, in that case, the server operates directly on the local repository without cloning it (it does
not matter if it is not bare because the Config Server never makes changes to the "remote"
repository). To scale the Config Server up and make it highly available, you need to have all
instances of the server pointing to the same repository, so only a shared file system would work.
Even in that case, it is better to use the ssh: protocol for a shared filesystem repository, so that the
server can clone it and use a local working copy as a cache.

This repository implementation maps the {label} parameter of the HTTP resource to a git label
(commit id, branch name, or tag). If the git branch or tag name contains a slash (/), then the label in
the HTTP URL should instead be specified with the special string (_) (to avoid ambiguity with other
URL paths). For example, if the label is foo/bar, replacing the slash would result in the following
label: foo(_)bar. The inclusion of the special string (_) can also be applied to the {application}
parameter. If you use a command-line client such as curl, be careful with the brackets in the
URL —you should escape them from the shell with single quotes (*).

Skipping SSL Certificate Validation

The configuration server’s validation of the Git server’s SSL certificate can be disabled by setting
the git.skipSs1Validation property to true (default is false).

spring:
cloud:
config:
server:
git:
uri: https://example.com/my/repo
skipSs1lValidation: true

Setting HTTP Connection Timeout

You can configure the time, in seconds, that the configuration server will wait to acquire an HTTP
connection. Use the git.timeout property.

spring:
cloud:
config:
server:
git:
uri: https://example.com/my/repo
timeout: 4

Placeholders in Git URI

Spring Cloud Config Server supports a git repository URL with placeholders for the {application}
and {profile} (and {label} if you need it, but remember that the label is applied as a git label

anyway). So you can support a “one repository per application” policy by using a structure similar
to the following:

spring:
cloud:
config:
server:
git:
uri: https://github.com/myorg/{application}

You can also support a “one repository per profile” policy by using a similar pattern but with
{profile}.

Additionally, using the special string "()" within your {application} parameters can enable support
for multiple organizations, as shown in the following example:

spring:
cloud:
config:
server:
git:
uri: https://github.com/{application}

where {application} is provided at request time in the following format:
organization(_)application.

Pattern Matching and Multiple Repositories

Spring Cloud Config also includes support for more complex requirements with pattern matching
on the application and profile name. The pattern format is a comma-separated list of
{application}/{profile} names with wildcards (note that a pattern beginning with a wildcard may
need to be quoted), as shown in the following example:

spring:
cloud:
config:
server:
git:
uri: https://github.com/spring-cloud-samples/config-repo
repos:
simple: https://github.com/simple/config-repo
special:

pattern: special*/dev*,*special*/dev*

uri: https://github.com/special/config-repo
local:

pattern: local*

uri: file:/home/configsve/config-repo

If {application}/{profile} does not match any of the patterns, it uses the default URI defined under
spring.cloud.config.server.git.uri. In the above example, for the “simple” repository, the pattern
is simple/* (it only matches one application named simple in all profiles). The “local” repository
matches all application names beginning with local in all profiles (the /* suffix is added
automatically to any pattern that does not have a profile matcher).

The “one-liner” short cut used in the “simple” example can be used only if the only
o property to be set is the URL If you need to set anything else (credentials, pattern,
and so on) you need to use the full form.

The pattern property in the repo is actually an array, so you can use a YAML array (or [0], [1], etc.
suffixes in properties files) to bind to multiple patterns. You may need to do so if you are going to
run apps with multiple profiles, as shown in the following example:

spring:
cloud:
config:
server:
git:
uri: https://github.com/spring-cloud-samples/config-repo
repos:
development:
pattern:
- '*/development’
- '*/staging'
uri: https://qgithub.com/development/config-repo
staging:
pattern:
- '*/qa’
- '"*/production’
uri: https://github.com/staging/config-repo

Spring Cloud guesses that a pattern containing a profile that does not end in *
implies that you actually want to match a list of profiles starting with this pattern

o (so */staging is a shortcut for ["*/staging", "*/staging,*"], and so on). This is
common where, for instance, you need to run applications in the “development”
profile locally but also the “cloud” profile remotely.

Every repository can also optionally store config files in sub-directories, and patterns to search for
those directories can be specified as search-paths. The following example shows a config file at the
top level:

spring:
cloud:
config:
server:
git:
uri: https://github.com/spring-cloud-samples/config-repo
search-paths:
- foo
- bar*

In the preceding example, the server searches for config files in the top level and in the foo/ sub-
directory and also any sub-directory whose name begins with bar.

By default, the server clones remote repositories when configuration is first requested. The server
can be configured to clone the repositories at startup, as shown in the following top-level example:

spring:
cloud:
config:
server:
git:
uri: https://git/common/config-repo.git
repos:
team-a:
pattern: team-a-*
cloneOnStart: true
uri: https://git/team-a/config-repo.git
team-b:
pattern: team-b-*
cloneOnStart: false
uri: https://git/team-b/config-repo.git
team-c:
pattern: team-c-*
uri: https://git/team-a/config-repo.git

In the preceding example, the server clones team-a’s config-repo on startup, before it accepts any
requests. All other repositories are not cloned until configuration from the repository is requested.

Setting a repository to be cloned when the Config Server starts up can help to
identify a misconfigured configuration source (such as an invalid repository URI)

o quickly, while the Config Server is starting up. With cloneOnStart not enabled for a
configuration source, the Config Server may start successfully with a
misconfigured or invalid configuration source and not detect an error until an
application requests configuration from that configuration source.

Authentication

To use HTTP basic authentication on the remote repository, add the username and password
properties separately (not in the URL), as shown in the following example:

spring:
cloud:
config:
server:
git:
uri: https://github.com/spring-cloud-samples/config-repo
username: trolley
password: strongpassword

If you do not use HTTPS and user credentials, SSH should also work out of the box when you store
keys in the default directories (~/.ssh) and the URI points to an SSH location, such as
git@github.com:configuration/cloud-configuration. It is important that an entry for the Git server
be present in the ~/.ssh/known_hosts file and that it is in ssh-rsa format. Other formats (such as

ecdsa-sha2-nistp256) are not supported. To avoid surprises, you should ensure that only one entry
is present in the known_hosts file for the Git server and that it matches the URL you provided to the
config server. If you use a hostname in the URL, you want to have exactly that (not the IP) in the
known_hosts file. The repository is accessed by using JGit, so any documentation you find on that
should be applicable. HTTPS proxy settings can be set in ~/.git/config or (in the same way as for
any other JVM process) with system properties (-Dhttps.proxyHost and -Dhttps.proxyPort).

(r) If you do not know where your ~/.git directory is, use git config --global to
- manipulate the settings (for example, git config --global http.sslVerify false).

JGit requires RSA keys in PEM format. Below is an example ssh-keygen (from openssh) command
that will generate a key in the corect format:

ssh-keygen -m PEM -t rsa -b 4096 -f ~/config_server_deploy_key.rsa

Warning: When working with SSH keys, the expected ssh private-key must begin with ----- BEGIN
RSA PRIVATE KEY----- . If the key starts with ----- BEGIN OPENSSH PRIVATE KEY----- then the RSA key
will not load when spring-cloud-config server is started. The error looks like:

- Error in object 'spring.cloud.config.server.git': codes
[PrivateKeyIsValid.spring.cloud.config.server.git,PrivateKeyIsValid]; arguments
[org.springframework.context.support.DefaultMessageSourceResolvable: codes
[spring.cloud.config.server.qgit.,]; arquments []; default message []]; default message
[Property 'spring.cloud.config.server.git.privateKey' is not a valid private key]

To correct the above error the RSA key must be converted to PEM format. An example using
openssh is provided above for generating a new key in the appropriate format.

Authentication with AWS CodeCommit

Spring Cloud Config Server also supports AWS CodeCommit authentication. AWS CodeCommit uses
an authentication helper when using Git from the command line. This helper is not used with the
JGit library, so a JGit CredentialProvider for AWS CodeCommit is created if the Git URI matches the
AWS CodeCommit pattern. AWS CodeCommit URIs follow this pattern:

https//git-codecommit.${AWS_REGION}.amazonaws.com/v1/repos/${repo}.

If you provide a username and password with an AWS CodeCommit URI, they must be the AWS
accessKeyld and secretAccessKey that provide access to the repository. If you do not specify a
username and password, the accessKeyld and secretAccessKey are retrieved by using the AWS
Default Credential Provider Chain.

If your Git URI matches the CodeCommit URI pattern (shown earlier), you must provide valid AWS
credentials in the username and password or in one of the locations supported by the default
credential provider chain. AWS EC2 instances may use IAM Roles for EC2 Instances.

https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/AWSCredentials.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/AWSCredentials.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/credentials.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/credentials.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

The aws-java-sdk-core jar is an optional dependency. If the aws-java-sdk-core jar is
o not on your classpath, the AWS Code Commit credential provider is not created,
regardless of the git server URL

Authentication with Google Cloud Source

Spring Cloud Config Server also supports authenticating against Google Cloud Source repositories.

If your Git URI wuses the http or https protocol and the domain name is
source.developers.google.com, the Google Cloud Source credentials provider will be used. A Google
Cloud Source repository URI has the format source.developers.google.com/p/${GCP_PROJECT}/r/
${REPO}. To obtain the URI for your repository, click on "Clone" in the Google Cloud Source Ul, and
select "Manually generated credentials". Do not generate any credentials, simply copy the displayed
URL

The Google Cloud Source credentials provider will use Google Cloud Platform application default
credentials. See Google Cloud SDK documentation on how to create application default credentials
for a system. This approach will work for user accounts in dev environments and for service
accounts in production environments.

com.google.auth:google-auth-library-oauth2-http is an optional dependency. If the
o google-auth-library-oauth2-http jar is not on your classpath, the Google Cloud
Source credential provider is not created, regardless of the git server URIL.

Git SSH configuration using properties

By default, the JGit library used by Spring Cloud Config Server uses SSH configuration files such as
~/.ssh/known_hosts and /etc/ssh/ssh_config when connecting to Git repositories by using an SSH
URL In cloud environments such as Cloud Foundry, the local filesystem may be ephemeral or not
easily accessible. For those cases, SSH configuration can be set by using Java properties. In order to
activate property-based SSH configuration, the
spring.cloud.config.server.git.ignorelLocalSshSettings property must be set to true, as shown in
the following example:

spring:
cloud:
config:
server:
git:
uri: git@gitserver.com:team/repol.git
ignorelLocalSshSettings: true
hostKey: someHostKey
hostKeyAlgorithm: ssh-rsa
privateKey: |

MIIEpgIBAAKCAQEAX4UbaDZY5xjW6hcjwNOmX33XpTDVWIWGHp5AKaRbtAC3DgX

IXFMPgw3K45jxRb93f8tvIvL3rDICUGTGv4FM+07ds7FRESSRTjv2RT/JVNICoqF

https://cloud.google.com/source-repositories/
https://source.developers.google.com/p/${GCP_PROJECT}/r/${REPO}
https://source.developers.google.com/p/${GCP_PROJECT}/r/${REPO}
https://cloud.google.com/sdk/gcloud/reference/auth/application-default/login

018+ngLqRZCyBtQN7zYByWMR1rPGoDUqdPYrj2yq+0bBBNhg5N+hOwKj jpzdj2Ud
117R+wxIgmJo1IYyy16xS8WsjyQuyCo1L456qkd5BDZ0Ag8)2X9HID5220Ln7s91
oezTipXipS7p7Jekf3YwxbabIwOmBOrX79dV4qiNcGgzATnGTPkXxqt76VhcGadW
DDVHEEYGbSQ6hIGSh@I7BQun@alRZojfE3gqHQIDAQABA0IBAQCZmGrk8BK6tXCd
fYbyTiKxFzwb38IQP0oj IUWNrq@+9Xt+NsypviLHkXfXXCKKU4zUHeIGVRg5MNIb
B056/RrcQHHO0]dUWu0V2qMqlvPUtCACPpGkD+valhfD75MxoXU7s3FK7yjxy3rsa
EmfA6tHV8/4a5umo5TqSd2YTm5B19AhRq1uUVITwTB41DjULUGIMYrnYrhzQlVvj
5MjnKT1Yu3V8PoYDfv1GmxPPhbvlpafXEeEYN8VBI7e5x3DGH; Z5UrurAmTLTd08
+AahyoKsIY612TkkQthJ1t7FJAwnCGMgYbpodzzvzICLFmmTXYi1Z/2814BX/m0Se
pZVnfRixAoGBAO6Uiwt40/PKs53mCEWNgs1SCsh90GAaLTf/XdvMns5VmuyyAyKG
t18015wqBMi4GIUzjbgUvSUt+IowIrG3f5tN85wpjQ1UGYepTn15Qo9xaSTPFScQ
xrtWZ9eNj2TsIAMp/svIsyGG301bxfnuAIpSXNQiJPwR1W31rzpGgVx/AoGBANYW
dnhshUcEHMJ13aXwR120TDnaloanVGLwLnkqlLSYUZA7ZegpKq90UAuBdcEfgdpyi
PhKpeaeIiAaNnFo8m9aoTKr+716/uMTlwrVnfrsVTZv3orxjwQV2@YIBCVRKDTuX
VhE@ozPZxwwKSPAFocpyWpGHGreGFTAIYBE9UBt jAoGBAI8bfPglpyFyMiGBj06z
FwlJc/x1FqDusrcHL7abW5qq@L4v3R+FrIw3ZYufzLTVcKfdj6GelwIJ0+8wBm+R
gTKYJItERT48duLIfTDyIpHGYMI+ITMGhh5zKuCqIhxIYr9jH10BB7kRm@rPvYY4
VAykcNgyDvtAVODP+4mb6JvhjAoGBALbtTqErKN47V@+1JpapLnF@KxGrqeGIjIRV
cYA6VAWYGr7NeIfesecf0C356PyhgPfpcVyEztwlvwTKb3RzIT1TZN8fH4YBr6Ee
KTbTjefRFhVUjQgnucAvfGi29f+90E3E19f7wA+H350cF6IvTYUSHNMIO/3gZ38N
CPjyCMa9AoGBAMhsITNe3QcbsXAbdURAAdDsIFVROzyFJ2m4014KCRM35bC/BIBs

q0TY3we+ERB40U8Z2BvU61Quwaun]2+uGadHo58VSVdggqAo@BSkH581nnKKt96]
69pcVH/4rmLbXdemNYGm6 iu+M1PQk4BUZknHSmVHIFdJOEPupVaQ8RHT

The following table describes the SSH configuration properties.

Table 2. SSH Configuration Properties

Property Name Remarks

ignoreLocalSshSettings If true, use property-based instead of file-based

SSH config. Must be set at as
spring.cloud.config.server.git.ignoreLocalSshS

ettings, not inside a repository definition.

privateKey Valid SSH private key. Must be set if
ignorelLocalSshSettings is true and Git URI is SSH
format.

hostKey Valid SSH host key. Must be set if

hostKeyAlgorithm is also set.

hostKeyAlgorithm One of ssh-dss, ssh-rsa, ecdsa-sha2-nistp256,
ecdsa-sha2-nistp384, or ecdsa-sha2-nistp521.
Must be set if hostKey is also set.

strictHostKeyChecking true or false. If false, ignore errors with host
key.

knownHostsFile Location of custom .known_hosts file.

preferredAuthentications Override server authentication method order.

This should allow for evading login prompts if
server has keyboard-interactive authentication
before the publickey method.

Placeholders in Git Search Paths

Spring Cloud Config Server also supports a search path with placeholders for the {application} and
{profile} (and {1label} if you need it), as shown in the following example:

spring:
cloud:
config:
server:
git:
uri: https://github.com/spring-cloud-samples/config-repo
search-paths: '{application}'

The preceding listing causes a search of the repository for files in the same name as the directory
(as well as the top level). Wildcards are also valid in a search path with placeholders (any matching
directory is included in the search).

Force pull in Git Repositories

As mentioned earlier, Spring Cloud Config Server makes a clone of the remote git repository in case
the local copy gets dirty (for example, folder content changes by an OS process) such that Spring
Cloud Config Server cannot update the local copy from remote repository.

To solve this issue, there is a force-pull property that makes Spring Cloud Config Server force pull

from the remote repository if the local copy is dirty, as shown in the following example:

spring:
cloud:
config:
server:
git:
uri: https://github.com/spring-cloud-samples/config-repo
force-pull: true

If you have a multiple-repositories configuration, you can configure the force-pull property per
repository, as shown in the following example:

spring:
cloud:
config:
server:
git:
uri: https://git/common/config-repo.git
force-pull: true
repos:
team-a:
pattern: team-a-*
uri: https://qit/team-a/config-repo.git
force-pull: true
team-b:
pattern: team-b-*
uri: https://git/team-b/config-repo.git
force-pull: true
team-c:
pattern: team-c-*
uri: https://git/team-a/config-repo.git

o The default value for force-pull property is false.

Deleting untracked branches in Git Repositories

As Spring Cloud Config Server has a clone of the remote git repository after check-outing branch to
local repo (e.g fetching properties by label) it will keep this branch forever or till the next server
restart (which creates new local repo). So there could be a case when remote branch is deleted but
local copy of it is still available for fetching. And if Spring Cloud Config Server client service starts
with --spring.cloud.config.label=deletedRemoteBranch,master it will fetch properties from
deletedRemoteBranch local branch, but not from master.

In order to keep local repository branches clean and up to remote - deleteUntrackedBranches
property could be set. It will make Spring Cloud Config Server force delete untracked branches
from local repository. Example:

spring:
cloud:
config:
server:
git:
uri: https://github.com/spring-cloud-samples/config-repo
deleteUntrackedBranches: true

0 The default value for deleteUntrackedBranches property is false.

Git Refresh Rate

You can control how often the config server will fetch updated configuration data from your Git
backend by using spring.cloud.config.server.git.refreshRate. The value of this property is
specified in seconds. By default the value is 0, meaning the config server will fetch updated
configuration from the Git repo every time it is requested.

Default Label

The default label used for Git is main. If you do not set spring.cloud.config.server.git.defaultLabel
and a branch named main does not exist, the config server will by default also try to checkout a
branch named master. If you would like to disable to the fallback branch behavior you can set
spring.cloud.config.server.qgit.tryMasterBranch to false.

2.1.2. Version Control Backend Filesystem Use

With VCS-based backends (git, svn), files are checked out or cloned to the local
filesystem. By default, they are put in the system temporary directory with a prefix
of config-repo-. On linux, for example, it could be /tmp/config-repo-<randomid>.
Some operating systems routinely clean out temporary directories. This can lead to

A unexpected behavior, such as missing properties. To avoid this problem, change
the directory that Config Server uses by setting
spring.cloud.config.server.git.basedir or
spring.cloud.config.server.svn.basedir to a directory that does not reside in the
system temp structure.

2.1.3. File System Backend

There is also a “native” profile in the Config Server that does not use Git but loads the config files
from the local classpath or file system (any static URL you want to point to with
spring.cloud.config.server.native.searchLocations). To use the native profile, launch the Config
Server with spring.profiles.active=native.

https://serverfault.com/questions/377348/when-does-tmp-get-cleared/377349#377349

Remember to use the file: prefix for file resources (the default without a prefix is

o usually the classpath). As with any Spring Boot configuration, you can embed ${}
-style environment placeholders, but remember that absolute paths in Windows
require an extra / (for example, /§{user.home}/config-repo).

The default value of the searchlLocations is identical to a local Spring Boot
application (that is, [classpath:/, classpath:/config, file:./, file:./config]).

A This does not expose the application.properties from the server to all clients,
because any property sources present in the server are removed before being sent
to the client.

A filesystem backend is great for getting started quickly and for testing. To use it in
(2
O production, you need to be sure that the file system is reliable and shared across
et all instances of the Config Server.

The search locations can contain placeholders for {application}, {profile}, and {label}. In this way,
you can segregate the directories in the path and choose a strategy that makes sense for you (such
as subdirectory per application or subdirectory per profile).

If you do not use placeholders in the search locations, this repository also appends the {label}
parameter of the HTTP resource to a suffix on the search path, so properties files are loaded from
each search location and a subdirectory with the same name as the label (the labelled properties
take precedence in the Spring Environment). Thus, the default behaviour with no placeholders is
the same as adding a search location ending with /{label}/. For example, file:/tmp/config is the
same as file:/tmp/config,file:/tmp/config/{1label}. This behavior can be disabled by setting
spring.cloud.config.server.native.addlLabellocations=false.

2.1.4. Vault Backend

Spring Cloud Config Server also supports Vault as a backend.

Vault is a tool for securely accessing secrets. A secret is anything that to which you want to
tightly control access, such as API keys, passwords, certificates, and other sensitive
information. Vault provides a unified interface to any secret while providing tight access
control and recording a detailed audit log.

For more information on Vault, see the Vault quick start guide.

To enable the config server to use a Vault backend, you can run your config server with the vault
profile. For example, in your config server’s application.properties, you can add
spring.profiles.active=vault.

file:///${user.home}/config-repo
https://www.vaultproject.io
https://learn.hashicorp.com/vault/?track=getting-started#getting-started

By default, Spring Cloud Config Server uses Token based Authentication to fetch config from
Vault. Vault also supports additional authentication methods like AppRole, LDAP, JWT,
CloudFoundry, Kubernetes Auth. In order to use any authentication method other than
TOKEN or the X-Config-Token header, we need to have Spring Vault Core on the classpath so
that Config Server can delegate authentication to that library. Please add the below
dependencies to your Config Server App.

Maven (pom.xml)

<dependencies>
<dependency>
<groupId>org.springframework.vault</groupId>
<artifactId>spring-vault-core</artifactId>
</dependency>
</dependencies>

Gradle (build.gradle)

dependencies {
implementation "org.springframework.vault:spring-vault-core"

}

By default, the config server assumes that your Vault server runs at 127.0.0.1:8200. It also assumes
that the name of backend is secret and the key is application. All of these defaults can be
configured in your config server’s application.properties. The following table describes
configurable Vault properties:

Name Default Value
host 127.0.0.1

port 8200

scheme http

backend secret
defaultKey application
profileSeparator)

kvVersion 1
skipSslValidation false

timeout 5

namespace null

http://127.0.0.1:8200

All of the properties in the preceding table must be prefixed with
o spring.cloud.config.server.vault or placed in the correct Vault section of a
composite configuration.

All configurable properties can be found in
org.springframework.cloud.config.server.environment.VaultEnvironmentProperties.

Vault 0.10.0 introduced a versioned key-value backend (k/v backend version 2) that
o exposes a different API than earlier versions, it now requires a data/ between the

mount path and the actual context path and wraps secrets in a data object. Setting

spring.cloud.config.server.vault.kv-version=2 will take this into account.

Optionally, there is support for the Vault Enterprise X-Vault-Namespace header. To have it sent to
Vault set the namespace property.

With your config server running, you can make HTTP requests to the server to retrieve values from
the Vault backend. To do so, you need a token for your Vault server.

First, place some data in you Vault, as shown in the following example:

$ vault kv put secret/application foo=bar baz=bam
$ vault kv put secret/myapp foo=myappsbar

Second, make an HTTP request to your config server to retrieve the values, as shown in the
following example:
$ curl -X "GET" "http://localhost:8888/myapp/default” -H "X-Config-Token: yourtoken"

You should see a response similar to the following:

"name":"myapp",

"profiles":[
"default"

I

"label":null,

"version":null,

"state":null,

"propertySources”:[

{
"name":"vault:myapp",
"source":{
"foo":"myappsbar"
}
I
{
"name":"vault:application"”,
"source":{
"baz":"bam",
"foo":"bar"
}
¥

The default way for a client to provide the necessary authentication to let Config Server talk to
Vault is to set the X-Config-Token header. However, you can instead omit the header and configure
the authentication in the server, by setting the same configuration properties as Spring Cloud Vault.
The property to set is spring.cloud.config.server.vault.authentication. It should be set to one of
the supported authentication methods. You may also need to set other properties specific to the
authentication method you use, by using the same property names as documented for
spring.cloud.vault but instead using the spring.cloud.config.server.vault prefix. See the Spring
Cloud Vault Reference Guide for more detail.

If you omit the X-Config-Token header and use a server property to set the

o authentication, the Config Server application needs an additional dependency on
Spring Vault to enable the additional authentication options. See the Spring Vault
Reference Guide for how to add that dependency.

Multiple Properties Sources

When using Vault, you can provide your applications with multiple properties sources. For
example, assume you have written data to the following paths in Vault:

https://cloud.spring.io/spring-cloud-vault/reference/html/#vault.config.authentication
https://cloud.spring.io/spring-cloud-vault/reference/html/#vault.config.authentication
https://docs.spring.io/spring-vault/docs/current/reference/html/#dependencies
https://docs.spring.io/spring-vault/docs/current/reference/html/#dependencies

secret/myApp,dev
secret/myApp
secret/application,dev
secret/application

Properties written to secret/application are available to all applications using the Config Server.
An application with the name, myApp, would have any properties written to secret/myApp and
secret/application available to it. When myApp has the dev profile enabled, properties written to all
of the above paths would be available to it, with properties in the first path in the list taking
priority over the others.

2.1.5. Accessing Backends Through a Proxy

The configuration server can access a Git or Vault backend through an HTTP or HTTPS proxy. This
behavior is controlled for either Git or Vault by settings under proxy.http and proxy.https. These
settings are per repository, so if you are using a composite environment repository you must
configure proxy settings for each backend in the composite individually. If using a network which
requires separate proxy servers for HTTP and HTTPS URLs, you can configure both the HTTP and
the HTTPS proxy settings for a single backend: in this case http access will use http proxy and https
access the https one. Also, you may specify one sole proxy that will be used for both protocols using
the proxy definition protocol between application and proxy.

The following table describes the proxy configuration properties for both HTTP and HTTPS proxies.
All of these properties must be prefixed by proxy.http or proxy.https.

Table 3. Proxy Configuration Properties

Property Name Remarks

host The host of the proxy.

port The port with which to access the proxy.
nonProxyHosts Any hosts which the configuration server should

access outside the proxy. If values are provided
for both proxy.http.nonProxyHosts and
proxy.https.nonProxyHosts, the proxy.http value
will be used.

username The username with which to authenticate to the
proxy. If values are provided for both
proxy.http.username and proxy.https.username,
the proxy.http value will be used.

password The password with which to authenticate to the
proxy. If values are provided for both
proxy.http.password and proxy.https.password,
the proxy.http value will be used.

The following configuration uses an HTTPS proxy to access a Git repository.

spring:
profiles:
active: git
cloud:
config:
server:
git:
uri: https://github.com/spring-cloud-samples/config-repo
proxy:
https:
host: my-proxy.host.io
password: myproxypassword
port: '3128'
username: myproxyusername
nonProxyHosts: example.com

2.1.6. Sharing Configuration With All Applications

Sharing configuration between all applications varies according to which approach you take, as
described in the following topics:

* File Based Repositories

* Vault Server

File Based Repositories

With file-based (git, svn, and native) repositories, resources with file names in application*
(application.properties, application.yml, application-*.properties, and so on) are shared between
all client applications. You can use resources with these file names to configure global defaults and
have them be overridden by application-specific files as necessary.

The property overrides feature can also be used for setting global defaults, with placeholders
applications allowed to override them locally.

With the “native” profile (a local file system backend) , you should use an explicit
(r) search location that is not part of the server’s own configuration. Otherwise, the
- application* resources in the default search locations get removed because they
are part of the server.

Vault Server

When using Vault as a backend, you can share configuration with all applications by placing
configuration in secret/application. For example, if you run the following Vault command, all
applications using the config server will have the properties foo and baz available to them:

$ vault write secret/application foo=bar baz=bam

CredHub Server

When using CredHub as a backend, you can share configuration with all applications by placing
configuration in /application/ or by placing it in the default profile for the application. For
example, if you run the following CredHub command, all applications using the config server will
have the properties shared.color1 and shared.color2 available to them:

credhub set --name "/application/profile/master/shared" --type=json
value: {"shared.color1": "blue", "shared.color": "red"}

credhub set --name "/my-app/default/master/more-shared"” --type=json
value: {"shared.word1": "hello", "shared.word2": "world"}

2.1.7. AWS Secrets Manager

When using AWS Secrets Manager as a backend, you can share configuration with all applications
by placing configuration in /application/ or by placing it in the default profile for the application.
For example, if you add secrets with the following keys, all application using the config server will
have the properties shared.foo and shared.bar available to them:

secret name = /secret/application-default/

secret value =

{
shared.foo: foo,
shared.bar: bar

}

or

secret name = /secret/application/

secret value =

{
shared.foo: foo,
shared.bar: bar

}

AWS Parameter Store

When using AWS Parameter Store as a backend, you can share configuration with all applications
by placing properties within the /application hierarchy.

For example, if you add parameters with the following names, all applications using the config
server will have the properties foo.bar and fred.baz available to them:

/config/application/foo.bar
/config/application-default/fred.baz

2.1.8. JDBC Backend

Spring Cloud Config Server supports JDBC (relational database) as a backend for configuration
properties. You can enable this feature by adding spring-jdbc to the classpath and using the jdbc
profile or by adding a bean of type JdbcEnvironmentRepository. If you include the right dependencies
on the classpath (see the user guide for more details on that), Spring Boot configures a data source.

You can disable autoconfiguration for JdbcEnvironmentRepository by setting the
spring.cloud.config.server.jdbc.enabled property to false.

The database needs to have a table called PROPERTIES with columns called APPLICATION, PROFILE, and
LABEL (with the usual Environment meaning), plus KEY and VALUE for the key and value pairs in
Properties style. All fields are of type String in Java, so you can make them VARCHAR of whatever
length you need. Property values behave in the same way as they would if they came from Spring
Boot properties files named {application}-{profile}.properties, including all the encryption and
decryption, which will be applied as post-processing steps (that is, not in the repository
implementation directly).

2.1.9. Redis Backend

Spring Cloud Config Server supports Redis as a backend for configuration properties. You can
enable this feature by adding a dependency to Spring Data Redis.

pom.xml

<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
</dependencies>

The following configuration uses Spring Data RedisTemplate to access a Redis. We can use
spring.redis.* properties to override default connection settings.

spring:
profiles:
active: redis
redis:
host: redis

port: 16379

https://spring.io/projects/spring-data-redis

The properties should be stored as fields in a hash. The name of hash should be the same as

spring.application.name property or conjunction of spring.application.name and
spring.profiles.active[n].

HMSET sample-app server.port "8100" sample.topic.name "test" test.propertyl
"property1”

After running the command visible above a hash should contain the following keys with values:

HGETALL sample-app

{
"server.port": "8100",
"sample.topic.name": "test",
"test.property1": "property1"
}

0 When no profile is specified default will be used.

2.1.10. AWS S3 Backend

Spring Cloud Config Server supports AWS S3 as a backend for configuration properties. You can
enable this feature by adding a dependency to the AWS Java SDK For Amazon S3.

pom.xml

<dependencies>
<dependency>
<groupId>com.amazonaws</groupld>
<artifactId>aws-java-sdk-s3</artifactId>
</dependency>
</dependencies>

The following configuration uses the AWS S3 client to access configuration files. We can use

spring.cloud.config.server.awss3.* properties to select the bucket where your configuration is
stored.

spring:
profiles:
active: awss3
cloud:
config:
server:
awss3:
region: us-east-1
bucket: bucket1

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-s3.html

It is also possible to specify an AWS URL to override the standard endpoint of your S3 service with
spring.cloud.config.server.awss3.endpoint. This allows support for beta regions of S3, and other S3
compatible storage APIs.

Credentials are found using the Default AWS Credential Provider Chain. Versioned and encrypted
buckets are supported without further configuration.

Configuration files are stored in your bucket as {application}-{profile}.properties, {application}-
{profile}.yml or {application}-{profile}.json. An optional label can be provided to specify a
directory path to the file.

0 When no profile is specified default will be used.

2.1.11. AWS Parameter Store Backend

Spring Cloud Config Server supports AWS Parameter Store as a backend for configuration
properties. You can enable this feature by adding a dependency to the AWS Java SDK for SSM.

pom.xml

<dependency>
<groupId>com.amazonaws</groupId>
<artifactId>aws-java-sdk-ssm</artifactId>
</dependency>

The following configuration uses the AWS SSM client to access parameters.

spring:
profiles:
active: awsparamstore
cloud:
config:
server:
awsparamstore:
region: eu-west-2
endpoint: https://ssm.eu-west-2.amazonaws.com
origin: aws:parameter:
prefix: /config/service
profile-separator: _
recursive: true
decrypt-values: true
max-results: 5

The following table describes the AWS Parameter Store configuration properties.

Table 4. AWS Parameter Store Configuration Properties

https://aws.amazon.com/blogs/developer/using-new-regions-and-endpoints/
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/credentials.html
https://github.com/aws/aws-sdk-java/tree/master/aws-java-sdk-ssm

Property Name Required Default Value Remarks

region no The region to be used
by the AWS Parameter
Store client. If it’s not
explicitly set, the SDK
tries to determine the
region to use by using
the Default Region
Provider Chain.

endpoint no The URL of the entry
point for the AWS SSM
client. This can be used
to specify an alternate
endpoint for the API
requests.

origin no aws:ssm:parameter: The prefix that is added
to the property source’s
name to show their
provenance.

prefix no /config Prefix indicating L1
level in the parameter
hierarchy for every
property loaded from
the AWS Parameter
Store.

profile-separator no - String that separates an
appended profile from
the context name.

recursive no true Flag to indicate the
retrieval of all AWS
parameters within a
hierarchy.

decrypt-values no true Flag to indicate the
retrieval of all AWS
parameters with their
value decrypted.

max-results no 10 The maximum number
of items to return for
an AWS Parameter
Store API call.

AWS Parameter Store API credentials are determined using the Default Credential Provider Chain.
Versioned parameters are already supported with the default behaviour of returning the latest
version.

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/java-dg-region-selection.html#default-region-provider-chain
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/java-dg-region-selection.html#default-region-provider-chain
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/credentials.html#credentials-default

* When no application is specified application is the default, and when no
profile is specified default is used.

* Valid values for awsparamstore.prefix must start with a forward slash followed
o by one or more valid path segments or be empty.

 Valid values for awsparamstore.profile-separator can only contain dots, dashes
and underscores.

* Valid values for awsparamstore.max-results must be within the [1, 10] range.

2.1.12. AWS Secrets Manager Backend

Spring Cloud Config Server supports AWS Secrets Manager as a backend for configuration
properties. You can enable this feature by adding a dependency to AWS Java SDK for Secrets
Manager.

pom.xml

<dependency>
<groupId>com.amazonaws</groupld>
<artifactId>aws-java-sdk-secretsmanager</artifactId>
</dependency>

The following configuration uses the AWS Secrets Manager client to access secrets.

spring:
profiles:
active: awssecretsmanager
cloud:
config:
server:
aws-secretsmanager:
region: us-east-1
endpoint: https://us-east-1.console.aws.amazon.com/
origin: aws:secrets:
prefix: /secret/foo
profileSeparator: _

AWS Secrets Manager API credentials are determined using Default Credential Provider Chain.

o * When no application is specified application is the default, and when no
profile is specified default is used.

2.1.13. CredHub Backend

Spring Cloud Config Server supports CredHub as a backend for configuration properties. You can
enable this feature by adding a dependency to Spring CredHub.

https://aws.amazon.com/secrets-manager/
https://github.com/aws/aws-sdk-java/tree/master/aws-java-sdk-secretsmanager
https://github.com/aws/aws-sdk-java/tree/master/aws-java-sdk-secretsmanager
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/credentials.html#credentials-default
https://docs.cloudfoundry.org/credhub
https://spring.io/projects/spring-credhub

pom.xml

<dependencies>
<dependency>
<groupId>org.springframework.credhub</groupId>
<artifactId>spring-credhub-starter</artifactId>
</dependency>
</dependencies>

The following configuration uses mutual TLS to access a CredHub:

spring:
profiles:
active: credhub
cloud:
config:
server:
credhub:
url: https://credhub:8844

The properties should be stored as JSON, such as:

credhub set --name "/demo-app/default/master/toggles” --type=json
value: {"toggle.button": "blue", "toggle.link": "red"}

credhub set --name "/demo-app/default/master/abs" --type=json
value: {"marketing.enabled": true, "external.enabled": false}

All client applications with the name spring.cloud.config.name=demo-app will have the following
properties available to them:

{
toggle.button: "blue",
toggle.link: "red",
marketing.enabled: true,
external.enabled: false
}

When no profile is specified default will be used and when no label is specified
o master will be used as a default value. NOTE: Values added to application will be
shared by all the applications.

OAuth 2.0

You can authenticate with OAuth 2.0 using UAA as a provider.

https://oauth.net/2/
https://docs.cloudfoundry.org/concepts/architecture/uaa.html

pom.xml

<dependencies>
<dependency>
<groupId>org.springframework.security</groupId>
<artifactId>spring-security-config</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.security</groupld>
<artifactId>spring-security-oauth2-client</artifactId>
</dependency>
</dependencies>

The following configuration uses OAuth 2.0 and UAA to access a CredHub:

spring:
profiles:
active: credhub
cloud:
config:
server:
credhub:
url: https://credhub:8844
oauth2:
registration-id: credhub-client
security:
oauth2:
client:
registration:
credhub-client:
provider: uaa
client-id: credhub_config_server
client-secret: asecret
authorization-grant-type: client_credentials
provider:

uaa:
token-uri: https://uaa:8443/o0auth/token

0 The used UAA client-id should have credhub.read as scope.

2.1.14. Composite Environment Repositories

In some scenarios, you may wish to pull configuration data from multiple environment
repositories. To do so, you can enable the composite profile in your configuration server’s
application properties or YAML file. If, for example, you want to pull configuration data from a
Subversion repository as well as two Git repositories, you can set the following properties for your

configuration server:

spring:
profiles:
active: composite
cloud:
config:
server:
composite:

type: svn
uri: file:///path/to/svn/repo

type: git
uri: file:///path/to/rex/git/repo

type: git
uri: file:///path/to/walter/git/repo

Using this configuration, precedence is determined by the order in which repositories are listed
under the composite key. In the above example, the Subversion repository is listed first, so a value
found in the Subversion repository will override values found for the same property in one of the
Git repositories. A value found in the rex Git repository will be used before a value found for the
same property in the walter Git repository.

If you want to pull configuration data only from repositories that are each of distinct types, you can
enable the corresponding profiles, rather than the composite profile, in your configuration server’s
application properties or YAML file. If, for example, you want to pull configuration data from a
single Git repository and a single HashiCorp Vault server, you can set the following properties for
your configuration server:

spring:
profiles:
active: git, vault
cloud:
config:
server:
git:
uri: file:///path/to/git/repo
order: 2
vault:
host: 127.0.0.1
port: 8200
order: 1

Using this configuration, precedence can be determined by an order property. You can use the order
property to specify the priority order for all your repositories. The lower the numerical value of the
order property, the higher priority it has. The priority order of a repository helps resolve any
potential conflicts between repositories that contain values for the same properties.

If your composite environment includes a Vault server as in the previous example,
you must include a Vault token in every request made to the configuration server.
See Vault Backend.

Any type of failure when retrieving values from an environment repository results
in a failure for the entire composite environment. If you would like the composite
to continue even when a repository fails you can @ set
spring.cloud.config.server.failOnCompositeError to false.

When using a composite environment, it is important that all repositories contain
the same labels. If you have an environment similar to those in the preceding
examples and you request configuration data with the master label but the
Subversion repository does not contain a branch called master, the entire request
fails.

Custom Composite Environment Repositories

In addition to using one of the environment repositories from Spring Cloud, you can also provide
your own EnvironmentRepository bean to be included as part of a composite environment. To do so,

your bean must implement the EnvironmentRepository interface. If you want to control the priority

of your custom EnvironmentRepository within the composite environment, you should also
implement the Ordered interface and override the getOrdered method. If you do not implement the
Ordered interface, your EnvironmentRepository is given the lowest priority.

2.1.15. Property Overrides

The Config Server has an “overrides” feature that lets the operator provide configuration properties
to all applications. The overridden properties cannot be accidentally changed by the application
with the normal Spring Boot hooks. To declare overrides, add a map of name-value pairs to
spring.cloud.config.server.overrides, as shown in the following example:

spring:
cloud:
config:
Server:
overrides:
foo: bar

The preceding examples causes all applications that are config clients to read foo=bar, independent
of their own configuration.

A configuration system cannot force an application to use configuration data in
any particular way. Consequently, overrides are not enforceable. However, they do
provide useful default behavior for Spring Cloud Config clients.

Normally, Spring environment placeholders with ${} can be escaped (and resolved
(;) on the client) by using backslash (\) to escape the $ or the {. For example,

v \${app.foo:bar} resolves to bar, unless the app provides its own app. foo.
In YAML, you do not need to escape the backslash itself. However, in properties
o files, you do need to escape the backslash, when you configure the overrides on

the server.

You can change the priority of all overrides in the client to be more like default values, letting
applications supply their own values in environment variables or System properties, by setting the
spring.cloud.config.overrideNone=true flag (the default is false) in the remote repository.

2.2. Health Indicator

Config Server comes with a Health Indicator that checks whether the configured
EnvironmentRepository is working. By default, it asks the EnvironmentRepository for an application
named app, the default profile, and the default label provided by the EnvironmentRepository
implementation.

You can configure the Health Indicator to check more applications along with custom profiles and
custom labels, as shown in the following example:

spring:
cloud:
config:
server:
health:
repositories:
myservice:
label: mylabel
myservice-dev:
name: myservice
profiles: development

You can disable the Health Indicator by setting management.health.config.enabled=false.

2.3. Security

You can secure your Config Server in any way that makes sense to you (from physical network
security to OAuth2 bearer tokens), because Spring Security and Spring Boot offer support for many
security arrangements.

To use the default Spring Boot-configured HTTP Basic security, include Spring Security on the
classpath (for example, through spring-boot-starter-security). The default is a username of user
and a randomly generated password. A random password is not useful in practice, so we
recommend you configure the password (by setting spring.security.user.password) and encrypt it
(see below for instructions on how to do that).

2.4. Actuator and Security

Some platforms configure health checks or something similar and point to
/actuator/health or other actuator endpoints. If actuator is not a dependency of

config server, requests to /actuator/ would match the config server API
o /{application}/{1label} possibly leaking secure information. Remember to add the
spring-boot-starter-actuator dependency in this case and configure the users

such that the user that makes calls to /actuator/ does not have access to the
config server API at /{application}/{1label}.

2.5. Encryption and Decryption

To use the encryption and decryption features you need the full-strength JCE
installed in your JVM (it is not included by default). You can download the “Java

o Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files” from
Oracle and follow the installation instructions (essentially, you need to replace the
two policy files in the JRE lib/security directory with the ones that you
downloaded).

If the remote property sources contain encrypted content (values starting with {cipher}), they are
decrypted before sending to clients over HTTP. The main advantage of this setup is that the
property values need not be in plain text when they are “at rest” (for example, in a git repository).
If a value cannot be decrypted, it is removed from the property source and an additional property
is added with the same key but prefixed with invalid and a value that means “not applicable”
(usually <n/a>). This is largely to prevent cipher text being used as a password and accidentally
leaking.

If you set up a remote config repository for config client applications, it might contain an
application.yml similar to the following:

application.yml

spring:
datasource:
username: dbuser
password: '{cipher}FKSAJDFGYOS8F7GLHAKERGFHLSA]'

Encrypted values in application.properties file must not be wrapped in quotes. Otherwise, the
value is not decrypted. The following example shows values that would work:

application.properties

spring.datasource.username: dbuser
spring.datasource.password: {cipher}FKSAJDFGYOS8F7GLHAKERGFHLSAJ

You can safely push this plain text to a shared git repository, and the secret password remains
protected.

The server also exposes /encrypt and /decrypt endpoints (on the assumption that these are secured
and only accessed by authorized agents). If you edit a remote config file, you can use the Config
Server to encrypt values by POSTing to the /encrypt endpoint, as shown in the following example:

$ curl localhost:8888/encrypt -s -d mysecret
682bc583f4641835fa2db009355293665d2647dade3375c0ee201de2a49f7bda

If you are testing with curl, then use --data-urlencode (instead of -d) and prefix the
(r) value to encrypt with = (curl requires this) or set an explicit Content-Type:
- text/plain to make sure curl encodes the data correctly when there are special
characters ('+' is particularly tricky).

Be sure not to include any of the curl command statistics in the encrypted value,
O this is why the examples use the -s option to silence them. Outputting the value to
a file can help avoid this problem.

The inverse operation is also available through /decrypt (provided the server is configured with a
symmetric key or a full key pair), as shown in the following example:

$ curl localhost:8888/decrypt -s -d
682bc58314641835fa2db009355293665d2647dade3375c0ee201de2a49f7bda
mysecret

Take the encrypted value and add the {cipher} prefix before you put it in the YAML or properties
file and before you commit and push it to a remote (potentially insecure) store.

The /encrypt and /decrypt endpoints also both accept paths in the form of
/*/{application}/{profiles}, which can be used to control cryptography on a per-application
(name) and per-profile basis when clients call into the main environment resource.

To control the cryptography in this granular way, you must also provide a @Bean of

o type TextEncryptorLocator that creates a different encryptor per name and profiles.
The one that is provided by default does not do so (all encryptions use the same
key).

The spring command line client (with Spring Cloud CLI extensions installed) can also be used to
encrypt and decrypt, as shown in the following example:

$ spring encrypt mysecret --key foo
682bc583f4641835fa2db009355293665d2647dade3375c0ee201de2a49f7bda
$ spring decrypt --key foo
682bc583f4641835fa2db009355293665d2647dade3375c0ee201de2a49f7bda
mysecret

To use a key in a file (such as an RSA public key for encryption), prepend the key value with "@"

and provide the file path, as shown in the following example:

$ spring encrypt mysecret --key @${HOME}/.ssh/id_rsa.pub
AQAjPgt3eFZQXwt8tsHAVv/QHiY5sI2dRcR+. ..

o The --key argument is mandatory (despite having a - - prefix).

2.6. Key Management

The Config Server can use a symmetric (shared) key or an asymmetric one (RSA key pair). The
asymmetric choice is superior in terms of security, but it is often more convenient to use a
symmetric key since it is a single property value to configure in the bootstrap.properties.

To configure a symmetric key, you need to set encrypt.key to a secret String (or use the ENCRYPT_KEY
environment variable to keep it out of plain-text configuration files).

0 You cannot configure an asymmetric key using encrypt.key.

To configure an asymmetric key use a keystore (e.g. as created by the keytool utility that comes with
the JDK). The keystore properties are encrypt.keyStore.* with * equal to

Property Description
encrypt.keyStore.location Contains a Resource location
encrypt.keyStore.password Holds the password that unlocks the keystore
encrypt.keyStore.alias Identifies which key in the store to use
encrypt.keyStore.type The type of KeyStore to create. Defaults to jks.

The encryption is done with the public key, and a private key is needed for decryption. Thus, in
principle, you can configure only the public key in the server if you want to only encrypt (and are
prepared to decrypt the values yourself locally with the private key). In practice, you might not
want to do decrypt locally, because it spreads the key management process around all the clients,
instead of concentrating it in the server. On the other hand, it can be a useful option if your config
server is relatively insecure and only a handful of clients need the encrypted properties.

2.7. Creating a Key Store for Testing

To create a keystore for testing, you can use a command resembling the following:

$ keytool -genkeypair -alias mytestkey -keyalg RSA \
-dname "CN=Web Server,0U=Unit,0=0rganization,L=City,S=State,C=US" \
-keypass changeme -keystore server.jks -storepass letmein

When using JDK 11 or above you may get the following warning when using the
o command above. In this case you probably want to make sure the keypass and
storepass values match.

Warning: Different store and key passwords not supported for PKCS12 KeyStores.
Ignoring user-specified -keypass value.

Put the server.jks file in the classpath (for instance) and then, in your bootstrap.yml, for the Config
Server, create the following settings:

encrypt:
keyStore:
location: classpath:/server.jks
password: letmein
alias: mytestkey
secret: changeme

2.8. Using Multiple Keys and Key Rotation

In addition to the {cipher} prefix in encrypted property values, the Config Server looks for zero or
more {name:value} prefixes before the start of the (Base64 encoded) cipher text. The keys are passed
to a TextEncryptorLocator, which can do whatever logic it needs to locate a TextEncryptor for the
cipher. If you have configured a keystore (encrypt.keystore.location), the default locator looks for
keys with aliases supplied by the key prefix, with a cipher text like resembling the following:

foo:
bar: ‘{cipher}{key:testkey}..."

The locator looks for a key named "testkey". A secret can also be supplied by using a {secret::--}
value in the prefix. However, if it is not supplied, the default is to use the keystore password (which
is what you get when you build a keystore and do not specify a secret). If you do supply a secret,
you should also encrypt the secret using a custom SecretLocator.

When the keys are being used only to encrypt a few bytes of configuration data (that is, they are not
being used elsewhere), key rotation is hardly ever necessary on cryptographic grounds. However,
you might occasionally need to change the keys (for example, in the event of a security breach). In
that case, all the clients would need to change their source config files (for example, in git) and use
a new {key: -} prefix in all the ciphers. Note that the clients need to first check that the key alias is
available in the Config Server keystore.

If you want to let the Config Server handle all encryption as well as decryption, the
(r) {name:value} prefixes can also be added as plain text posted to the /encrypt
- endpoint, .

2.9. Serving Encrypted Properties

Sometimes you want the clients to decrypt the configuration locally, instead of doing it in the
server. In that case, if you provide the encrypt.* configuration to locate a key, you can still have
/encrypt and /decrypt endpoints, but you need to explicitly switch off the decryption of outgoing
properties by placing spring.cloud.config.server.encrypt.enabled=false in
bootstrap.[yml|properties]. If you do not care about the endpoints, it should work if you do not
configure either the key or the enabled flag.

3. Serving Alternative Formats

The default JSON format from the environment endpoints is perfect for consumption by Spring
applications, because it maps directly onto the Environment abstraction. If you prefer, you can
consume the same data as YAML or Java properties by adding a suffix (".yml", ".yaml" or
".properties”) to the resource path. This can be useful for consumption by applications that do not
care about the structure of the JSON endpoints or the extra metadata they provide (for example, an
application that is not using Spring might benefit from the simplicity of this approach).

The YAML and properties representations have an additional flag (provided as a boolean query
parameter called resolvePlaceholders) to signal that placeholders in the source documents (in the
standard Spring ${--*} form) should be resolved in the output before rendering, where possible.
This is a useful feature for consumers that do not know about the Spring placeholder conventions.

There are limitations in using the YAML or properties formats, mainly in relation
to the loss of metadata. For example, the JSON is structured as an ordered list of
property sources, with names that correlate with the source. The YAML and

o properties forms are coalesced into a single map, even if the origin of the values
has multiple sources, and the names of the original source files are lost. Also, the
YAML representation is not necessarily a faithful representation of the YAML
source in a backing repository either. It is constructed from a list of flat property
sources, and assumptions have to be made about the form of the keys.

4. Serving Plain Text

Instead of using the Environment abstraction (or one of the alternative representations of it in YAML
or properties format), your applications might need generic plain-text configuration files that are
tailored to their environment. The Config Server provides these through an additional endpoint at
/{application}/{profile}/{1label}/{path}, where application, profile, and label have the same
meaning as the regular environment endpoint, but path is a path to a file name (such as log.xml).
The source files for this endpoint are located in the same way as for the environment endpoints.
The same search path is used for properties and YAML files. However, instead of aggregating all
matching resources, only the first one to match is returned.

After a resource is located, placeholders in the normal format (${::-}) are resolved by using the
effective Environment for the supplied application name, profile, and label. In this way, the resource
endpoint is tightly integrated with the environment endpoints.

As with the source files for environment configuration, the profile is used to

o resolve the file name. So, if you want a profile-specific file,
/*/development/*/logback.xml can be resolved by a file called logback-
development.xml (in preference to logback.xml).

If you do not want to supply the 1abel and let the server use the default label, you
o can supply a useDefaultLabel request parameter. Consequently, the preceding

example for the default profile could be

/sample/default/nginx.conf?useDefaultlLabel.

At present, Spring Cloud Config can serve plaintext for git, SVN, native backends, and AWS S3. The
support for git, SVN, and native backends is identical. AWS S3 works a bit differently. The following
sections show how each one works:

¢ Git, SVN, and Native Backends
« AWS S3

4.1. Git, SVN, and Native Backends

Consider the following example for a GIT or SVN repository or a native backend:

application.yml
nginx.conf

The nginx.conf might resemble the following listing:

server {

listen 80;

server_name ${nginx.server.name};
}

application.yml might resemble the following listing:

nginx:
server:
name: example.com
spring:
profiles: development
nginx:
server:
name: develop.com

The /sample/default/master/nginx.conf resource might be as follows:

server {
listen 80;
server_name example.com;
}

/sample/development/master/nginx.conf might be as follows:

server {
listen 80;
server_name develop.com;
}

4.2. AWS S3

To enable serving plain text for AWS s3, the Config Server application needs to include a
dependency on Spring Cloud AWS. For details on how to set up that dependency, see the Spring
Cloud AWS Reference Guide. Then you need to configure Spring Cloud AWS, as described in the
Spring Cloud AWS Reference Guide.

4.3. Decrypting Plain Text

By default, encrypted values in plain text files are not decrypted. In order to enable decryption for
plain text files, set spring.cloud.config.server.encrypt.enabled=true and
spring.cloud.config.server.encrypt.plainTextEncrypt=true in bootstrap.[yml|properties]

o Decrypting plain text files is only supported for YAML, JSON, and properties file
extensions.

https://cloud.spring.io/spring-cloud-static/spring-cloud-aws/2.1.3.RELEASE/single/spring-cloud-aws.html#_spring_cloud_aws_maven_dependency_management
https://cloud.spring.io/spring-cloud-static/spring-cloud-aws/2.1.3.RELEASE/single/spring-cloud-aws.html#_spring_cloud_aws_maven_dependency_management
https://cloud.spring.io/spring-cloud-static/spring-cloud-aws/2.1.3.RELEASE/single/spring-cloud-aws.html#_configuring_credentials

If this feature is enabled, and an unsupported file extention is requested, any encrypted values in
the file will not be decrypted.

5. Embedding the Config Server

The Config Server runs best as a standalone application. However, if need be, you can embed it in
another application. To do so, use the @EnableConfigServer annotation. An optional property named
spring.cloud.config.server.bootstrap can be useful in this case. It is a flag to indicate whether the
server should configure itself from its own remote repository. By default, the flag is off, because it
can delay startup. However, when embedded in another application, it makes sense to initialize the
same way as any other application. When setting spring.cloud.config.server.bootstrap to true you
must also use a composite environment repository configuration. For example

spring:
application:
name: configserver
profiles:
active: composite
cloud:
config:
server:
composite:
- type: native
search-locations: ${HOME}/Desktop/config
bootstrap: true

o If you use the bootstrap flag, the config server needs to have its name and
repository URI configured in bootstrap.yml.

To change the location of the server endpoints, you can (optionally) set
spring.cloud.config.server.prefix (for example, /config), to serve the resources under a prefix.
The prefix should start but not end with a /. It is applied to the ERequestMappings in the Config
Server (that is, underneath the Spring Boot server.servletPath and server.contextPath prefixes).

If you want to read the configuration for an application directly from the backend repository
(instead of from the config server), you basically want an embedded config server with no
endpoints. You can switch off the endpoints entirely by not using the @EnableConfigServer
annotation (set spring.cloud.config.server.bootstrap=true).

6. Push Notifications and Spring Cloud Bus

Many source code repository providers (such as Github, Gitlab, Gitea, Gitee, Gogs, or Bitbucket)
notify you of changes in a repository through a webhook. You can configure the webhook through
the provider’s user interface as a URL and a set of events in which you are interested. For instance,
Github uses a POST to the webhook with a JSON body containing a list of commits and a header (X-
Github-Event) set to push. If you add a dependency on the spring-cloud-config-monitor library and

https://developer.github.com/v3/activity/events/types/#pushevent

activate the Spring Cloud Bus in your Config Server, then a /monitor endpoint is enabled.

When the webhook is activated, the Config Server sends a RefreshRemoteApplicationEvent targeted
at the applications it thinks might have changed. The change detection can be strategized. However,
by default, it looks for changes in files that match the application name (for example,
foo.properties is targeted at the foo application, while application.properties is targeted at all
applications). The strategy to use when you want to override the behavior is
PropertyPathNotificationExtractor, which accepts the request headers and body as parameters and
returns a list of file paths that changed.

The default configuration works out of the box with Github, Gitlab, Gitea, Gitee, Gogs or Bitbucket.
In addition to the JSON notifications from Github, Gitlab, Gitee, or Bitbucket, you can trigger a
change notification by POSTing to /monitor with form-encoded body parameters in the pattern of
path={application}. Doing so broadcasts to applications matching the {application} pattern (which
can contain wildcards).

o The RefreshRemoteApplicationEvent is transmitted only if the spring-cloud-bus is
activated in both the Config Server and in the client application.

The default configuration also detects filesystem changes in local git repositories.
o In that case, the webhook is not used. However, as soon as you edit a config file, a
refresh is broadcast.

7. Spring Cloud Config Client

A Spring Boot application can take immediate advantage of the Spring Config Server (or other
external property sources provided by the application developer). It also picks up some additional
useful features related to Environment change events.

7.1. Spring Boot Config Data Import

Spring Boot 2.4 introduced a new way to import configuration data via the spring.config.import
property. This is now the default way to bind to Config Server.

To optionally connect to config server set the following in application.properties:

application.properties

spring.config.import=optional:configserver:

This will connect to the Config Server at the default location of "http://localhost:8888". Removing the
optional: prefix will cause the Config Client to fail if it is unable to connect to Config Server. To
change the location of Config Server either set spring.cloud.config.uri or add the url to the
spring.config.import statement such as,
spring.config.import=optional:configserver:http://myhost:8888. The location in the import
property has precedence over the uri property.

o A bootstrap file (properties or yaml) is not needed for the Spring Boot Config Data
method of import via spring.config.import.

7.2. Config First Bootstrap

To use the legacy bootstrap way of connecting to Config Server, bootstrap must be enabled via a
property or the spring-cloud-starter-bootstrap starter. The property is
spring.cloud.bootstrap.enabled=true. It must be set as a System Property or environment variable.
Once bootstrap has been enabled any application with Spring Cloud Config Client on the classpath
will connect to Config Server as follows: When a config client starts, it binds to the Config Server
(through the spring.cloud.config.uri bootstrap configuration property) and initializes Spring
Environment with remote property sources.

The net result of this behavior is that all client applications that want to consume the Config Server
need a bootstrap.yml (or an environment variable) with the server address set in
spring.cloud.config.uri (it defaults to "http://localhost:8888").

7.2.1. Discovery First Lookup

Unless you are using config first bootstrap, you will need to have a
A spring.config.import property in your configuration properties with an optional:
prefix. For example, spring.config.import=optional:configserver:.

If you use a DiscoveryClient implementation, such as Spring Cloud Netflix and Eureka Service
Discovery or Spring Cloud Consul, you can have the Config Server register with the Discovery
Service.

If you prefer to use DiscoveryClient to locate the Config Server, you can do so by setting
spring.cloud.config.discovery.enabled=true (the default is false). For example, with Spring Cloud
Netflix, you need to define the Eureka server address (for example, in
eureka.client.serviceUrl.defaultZone). The price for using this option is an extra network round
trip on startup, to locate the service registration. The benefit is that, as long as the Discovery Service
is a fixed point, the Config Server can change its coordinates. The default service ID is configserver,
but you can change that on the client by setting spring.cloud.config.discovery.serviceld (and on
the server, in the usual way for a service, such as by setting spring.application.name).

The discovery client implementations all support some kind of metadata map (for example, we
have eureka.instance.metadataMap for Eureka). Some additional properties of the Config Server may
need to be configured in its service registration metadata so that clients can connect correctly. If the
Config Server is secured with HTTP Basic, you can configure the credentials as user and password.
Also, if the Config Server has a context path, you can set configPath. For example, the following
YAML file is for a Config Server that is a Eureka client:

eureka:
instance:

metadataMap:
user: osufhalskjrtl
password: lviuhlszvaorhvlo5847
configPath: /config

7.2.2. Discovery First Bootstrap Using Eureka And WebClient

If you use the Eureka DiscoveryClient from Spring Cloud Netflix and also want to use WebClient
instead of Jersey or RestTemplate, you need to include WebClient on your classpath as well as set
eureka.client.webclient.enabled=true.

7.3. Config Client Fail Fast

In some cases, you may want to fail startup of a service if it cannot connect to the Config Server. If
this is the desired behavior, set the bootstrap configuration property spring.cloud.config.fail-
fast=true to make the client halt with an Exception.

o To get similar functionality using spring.config.import, simply omit the optional:
prefix.

7.4. Config Client Retry

If you expect that the config server may occasionally be unavailable when your application starts,
you can make it keep trying after a failure. First, you need to set spring.cloud.config.fail-
fast=true. Then you need to add spring-retry and spring-boot-starter-aop to your classpath. The
default behavior is to retry six times with an initial backoff interval of 1000ms and an exponential
multiplier of 1.1 for subsequent backoffs. You can configure these properties (and others) by setting
the spring.cloud.config.retry.* configuration properties.

To take full control of the retry behavior and are using legacy bootstrap, add a
O @Bean of type RetryOperationsInterceptor with an ID of
- configServerRetryInterceptor. Spring Retry has a RetryInterceptorBuilder that
supports creating one.

7.5. Config Client Retry with spring.config.import

Retry works with the Spring Boot spring.config.import statement and the normal properties work.
However, if the import statement is in a profile, such as application-prod.properties, then you need
a different way to configure retry. Configuration needs to be placed as url parameters on the import
statement.

application-prod.properties

spring.config.import=configserver:http://configserver.example.com?fail-fast=true&max-
attempts=10&max-interval=1500&multiplier=1.2&initial-interval=1100"

This sets spring.cloud.config.fail-fast=true (notice the missing prefix above) and all the available
spring.cloud.config.retry.* configuration properties.

7.6. Locating Remote Configuration Resources

The Config Service serves property sources from /{application}/{profile}/{label}, where the
default bindings in the client app are as follows:

* "application" = $§{spring.application.name}
o "profile" = ${spring.profiles.active} (actually Environment.getActiveProfiles())

¢ "label" = "master"

When setting the property ${spring.application.name} do not prefix your app
o name with the reserved word application- to prevent issues resolving the correct
property source.

You can override all of them by setting spring.cloud.config.* (where * is name, profile or label). The
label is useful for rolling back to previous versions of configuration. With the default Config Server
implementation, it can be a git label, branch name, or commit ID. Label can also be provided as a
comma-separated list. In that case, the items in the list are tried one by one until one succeeds. This
behavior can be useful when working on a feature branch. For instance, you might want to align
the config label with your branch but make it optional (in that case, use
spring.cloud.config.label=myfeature,develop).

7.7. Specifying Multiple Urls for the Config Server

To ensure high availability when you have multiple instances of Config Server deployed and expect
one or more instances to be unavailable from time to time, you can either specify multiple URLs (as
a comma-separated list under the spring.cloud.config.uri property) or have all your instances
register in a Service Registry like Eureka (if using Discovery-First Bootstrap mode). Note that doing
so ensures high availability only when the Config Server is not running (that is, when the
application has exited) or when a connection timeout has occurred. For example, if the Config
Server returns a 500 (Internal Server Error) response or the Config Client receives a 401 from the
Config Server (due to bad credentials or other causes), the Config Client does not try to fetch
properties from other URLs. An error of that kind indicates a user issue rather than an availability
problem.

If you use HTTP basic security on your Config Server, it is currently possible to support per-Config
Server auth credentials only if you embed the credentials in each URL you specify under the
spring.cloud.config.uri property. If you use any other kind of security mechanism, you cannot
(currently) support per-Config Server authentication and authorization.

7.8. Configuring Timeouts

If you want to configure timeout thresholds:

* Read timeouts can be configured by using the property spring.cloud.config.request-read-
timeout.

* Connection timeouts can be configured by using the property spring.cloud.config.request-
connect-timeout.

7.9. Security

If you use HTTP Basic security on the server, clients need to know the password (and username if it
is not the default). You can specify the username and password through the config server URI or via
separate username and password properties, as shown in the following example:

spring:
cloud:
config:
uri: https://user:secret@myconfig.mycompany.com

The following example shows an alternate way to pass the same information:

spring:
cloud:
config:
uri: https://myconfig.mycompany.com
username: user
password: secret

The spring.cloud.config.password and spring.cloud.config.username values override anything that
is provided in the URI.

If you deploy your apps on Cloud Foundry, the best way to provide the password is through service
credentials (such as in the URI, since it does not need to be in a config file). The following example
works locally and for a user-provided service on Cloud Foundry named configserver:

spring:
cloud:
config:
uri:
${vcap.services.configserver.credentials.uri:http://user:password@localhost:8888}

If config server requires client side TLS certificate, you can configure client side TLS certificate and
trust store via properties, as shown in following example:

spring:
cloud:
config:
uri: https://myconfig.myconfig.com
tls:
enabled: true
key-store: <path-of-key-store>
key-store-type: PKCS12
key-store-password: <key-store-password>
key-password: <key-password>
trust-store: <path-of-trust-store>
trust-store-type: PKCS12
trust-store-password: <trust-store-password>

The spring.cloud.config.tls.enabled needs to be true to enable config client side TLS. When
spring.cloud.config.tls.trust-store is omitted, a JVM default trust store is used. The default value
for spring.cloud.config.tls.key-store-type and spring.cloud.config.tls.trust-store-type is
PKCS12. When password properties are omitted, empty password is assumed.

If you use another form of security, you might need to provide a RestTemplate to the
ConfigServicePropertySourcelocator (for example, by grabbing it in the bootstrap context and
injecting it).

7.9.1. Health Indicator

The Config Client supplies a Spring Boot Health Indicator that attempts to load configuration from
the Config Server. The health indicator can be disabled by setting health.config.enabled=false. The
response is also cached for performance reasons. The default cache time to live is 5 minutes. To
change that value, set the health.config.time-to-1live property (in milliseconds).

7.9.2. Providing A Custom RestTemplate

In some cases, you might need to customize the requests made to the config server from the client.
Typically, doing so involves passing special Authorization headers to authenticate requests to the
server. To provide a custom RestTemplate:

1. Create a new configuration bean with an implementation of PropertySourcelLocator, as shown in
the following example:

CustomConfigServiceBootstrapConfiguration.java

@Configuration
public class CustomConfigServiceBootstrapConfiguration {
@Bean
public ConfigServicePropertySourcelocator configServicePropertySourcelocator() {
ConfigClientProperties clientProperties = configClientProperties();
ConfigServicePropertySourceLocator configServicePropertySourcelocator = new
ConfigServicePropertySourcelLocator(clientProperties);

configServicePropertySourcelocator.setRestTemplate(customRestTemplate(clientProperties

));

return configServicePropertySourcelocator;

o For a simplified approach to adding Authorization headers, the
spring.cloud.config.headers.* property can be used instead.

1. In resources/META-INF, create a file called spring.factories and specify your custom
configuration, as shown in the following example:

spring.factories

org.springframework.cloud.bootstrap.BootstrapConfiguration =
com.my.config.client.CustomConfigServiceBootstrapConfiguration

7.9.3. Vault

When using Vault as a backend to your config server, the client needs to supply a token for the
server to retrieve values from Vault. This token can be provided within the client by setting
spring.cloud.config.token in bootstrap.yml, as shown in the following example:

spring:
cloud:
config:
token: YourVaultToken

7.10. Nested Keys In Vault

Vault supports the ability to nest keys in a value stored in Vault, as shown in the following example:
echo -n "{"appA": {"secret": "appAsecret"}, "bar": "baz"}' | vault write secret/myapp -

This command writes a JSON object to your Vault. To access these values in Spring, you would use
the traditional dot(.) annotation, as shown in the following example

@Value("${appA.secret}")
String name = "World";

The preceding code would sets the value of the name variable to appAsecret.

Spring Cloud Consul

2021.0.3

This project provides Consul integrations for Spring Boot apps through autoconfiguration and
binding to the Spring Environment and other Spring programming model idioms. With a few
simple annotations you can quickly enable and configure the common patterns inside your
application and build large distributed systems with Consul based components. The patterns
provided include Service Discovery, Control Bus and Configuration. Intelligent Routing and Client
Side Load Balancing, Circuit Breaker are provided by integration with other Spring Cloud projects.

1. Quick Start

This quick start walks through using Spring Cloud Consul for Service Discovery and Distributed
Configuration.

First, run Consul Agent on your machine. Then you can access it and use it as a Service Registry and
Configuration source with Spring Cloud Consul.

1.1. Discovery Client Usage

To use these features in an application, you can build it as a Spring Boot application that depends
on spring-cloud-consul-core. The most convenient way to add the dependency is with a Spring Boot
starter: org.springframework.cloud:spring-cloud-starter-consul-discovery. We recommend using
dependency management and spring-boot-starter-parent. The following example shows a typical
Maven configuration:

pom.xml

<project>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>{spring-boot-version}</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>

<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-consul-discovery</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>${spring-cloud.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>
</project>

The following example shows a typical Gradle setup:

build.gradle

plugins {
id 'org.springframework.boot' version ${spring-boot-version}
id 'io.spring.dependency-management' version ${spring-dependency-management-version}
id 'java'

}

repositories {
mavenCentral()

}

dependencies {
implementation 'org.springframework.cloud:spring-cloud-starter-consul-discovery'
testImplementation 'org.springframework.boot:spring-boot-starter-test’
¥
dependencyManagement {
imports {
mavenBom "org.springframework.cloud:spring-cloud-
dependencies:${springCloudVersion}"
}
}

Now you can create a standard Spring Boot application, such as the following HTTP server:

@SpringBootApplication
@RestController
public class Application {

@GetMapping("/")

public String home() {
return "Hello World!";

}

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

When this HTTP server runs, it connects to Consul Agent running at the default local 8500 port. To
modify the startup behavior, you can change the location of Consul Agent by using
application.properties, as shown in the following example:

spring:

cloud:
consul:
host: localhost
port: 8500

You can now use DiscoveryClient, @LoadBalanced RestTemplate, or @LoadBalanced WebClient.Builder
to retrieve services and instances data from Consul, as shown in the following example:

@Autowired
private DiscoveryClient discoveryClient;

public String serviceUrl() {
List<ServiceInstance> list = discoveryClient.getInstances("STORES");
if (list !'= null && list.size() > 0) {
return list.get(0).getUri().toString();
}

return null;

1.2. Distributed Configuration Usage

To use these features in an application, you can build it as a Spring Boot application that depends
on spring-cloud-consul-core and spring-cloud-consul-config. The most convenient way to add the
dependency is with a Spring Boot starter: org.springframework.cloud:spring-cloud-starter-consul-
config. We recommend using dependency management and spring-boot-starter-parent. The
following example shows a typical Maven configuration:

pom.xml

<project>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>{spring-boot-version}</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>

<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-consul-config</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>${spring-cloud.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>
</project>

The following example shows a typical Gradle setup:

build.gradle

plugins {
id 'org.springframework.boot' version ${spring-boot-version}
id 'io.spring.dependency-management' version ${spring-dependency-management-version}
id 'java'

}

repositories {
mavenCentral()

}

dependencies {
implementation 'org.springframework.cloud:spring-cloud-starter-consul-config’
testImplementation 'org.springframework.boot:spring-boot-starter-test’
¥
dependencyManagement {
imports {
mavenBom "org.springframework.cloud:spring-cloud-
dependencies:${springCloudVersion}"
}
}

Now you can create a standard Spring Boot application, such as the following HTTP server:

@SpringBootApplication
@RestController
public class Application {

@GetMapping("/")

public String home() {
return "Hello World!";

}

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

The application retrieves configuration data from Consul.

If you use Spring Cloud Consul Config, you need to set the spring.config.import
A property in order to bind to Consul. You can read more about it in the Spring Boot
Config Data Import section.

2. Install Consul

Please see the installation documentation for instructions on how to install Consul.

3. Consul Agent

A Consul Agent client must be available to all Spring Cloud Consul applications. By default, the
Agent client is expected to be at localhost:8500. See the Agent documentation for specifics on how
to start an Agent client and how to connect to a cluster of Consul Agent Servers. For development,
after you have installed consul, you may start a Consul Agent using the following command:

./src/main/bash/local_run_consul.sh

This will start an agent in server mode on port 8500, with the ui available at localhost:8500

4. Service Discovery with Consul

Service Discovery is one of the key tenets of a microservice based architecture. Trying to hand
configure each client or some form of convention can be very difficult to do and can be very brittle.
Consul provides Service Discovery services via an HTTP API and DNS. Spring Cloud Consul
leverages the HTTP API for service registration and discovery. This does not prevent non-Spring
Cloud applications from leveraging the DNS interface. Consul Agents servers are run in a cluster
that communicates via a gossip protocol and uses the Raft consensus protocol.

4.1. How to activate

To activate Consul Service Discovery use the starter with group org.springframework.cloud and
artifact id spring-cloud-starter-consul-discovery. See the Spring Cloud Project page for details on
setting up your build system with the current Spring Cloud Release Train.

4.2. Registering with Consul

When a client registers with Consul, it provides meta-data about itself such as host and port, id,
name and tags. An HTTP Check is created by default that Consul hits the /actuator/health endpoint
every 10 seconds. If the health check fails, the service instance is marked as critical.

Example Consul client:

https://www.consul.io/intro/getting-started/install.html
https://consul.io/docs/agent/basics.html
http://localhost:8500
https://www.consul.io/docs/agent/http.html
https://www.consul.io/docs/agent/dns.html
https://www.consul.io/docs/internals/architecture.html
https://www.consul.io/docs/internals/gossip.html
https://www.consul.io/docs/internals/consensus.html
https://projects.spring.io/spring-cloud/
https://www.consul.io/docs/agent/checks.html

@SpringBootApplication
@RestController
public class Application {

@RequestMapping("/")
public String home() {
return "Hello world";

}

public static void main(String[] args) {
new SpringApplicationBuilder(Application.class).web(true).run(args);
}

(i.e. utterly normal Spring Boot app). If the Consul client is located somewhere other than
localhost:8500, the configuration is required to locate the client. Example:

application.yml
spring:
cloud:
consul:
host: localhost
port: 8500

If you wuse Spring Cloud Consul Config, and you have set

o spring.cloud.bootstrap.enabled=true or spring.config.use-legacy-processing=true
or use spring-cloud-starter-bootstrap, then the above values will need to be
placed in bootstrap.yml instead of application.yml.

The default service name, instance id and port, taken from the Environment, are
${spring.application.name}, the Spring Context ID and ${server.port} respectively.

To disable the Consul Discovery Client you can set spring.cloud.consul.discovery.enabled to false.
Consul Discovery Client will also be disabled when spring.cloud.discovery.enabled is set to false.

To disable the service registration you can set spring.cloud.consul.discovery.register to false.

4.2.1. Registering Management as a Separate Service

When management server port is set to something different than the application port, by setting
management.server.port property, management service will be registered as a separate service than
the application service. For example:

application.yml

spring:
application:
name: myApp
management:
server:
port: 4452

Above configuration will register following 2 services:

* Application Service:

ID: myApp
Name: myApp

* Management Service:

ID: myApp-management
Name: myApp-management

Management service will inherit its instanceId and serviceName from the application service. For
example:

application.yml

spring:
application:
name: myApp
management:
server:
port: 4452
spring:
cloud:
consul:
discovery:
instance-id: custom-service-id
serviceName: myprefix-${spring.application.name}

Above configuration will register following 2 services:

» Application Service:

ID: custom-service-1id
Name: myprefix-myApp

» Management Service:

ID: custom-service-id-management
Name: myprefix-myApp-management

Further customization is possible via following properties:

/** Port to register the management service under (defaults to management port) */
spring.cloud.consul.discovery.management-port

/** Suffix to use when registering management service (defaults to "management" */
spring.cloud.consul.discovery.management-suffix

/** Tags to use when registering management service (defaults to "management” */
spring.cloud.consul.discovery.management-tags

4.2.2. HTTP Health Check

The health check for a Consul instance defaults to "/actuator/health", which is the default location of
the health endpoint in a Spring Boot Actuator application. You need to change this, even for an
Actuator application, if you wuse a non-default context path or servlet path (e.g.
server.servletPath=/foo) or management endpoint path (e.g. management.server.servlet.context-
path=/admin).

The interval that Consul uses to check the health endpoint may also be configured. "10s" and "1m"
represent 10 seconds and 1 minute respectively.

This example illustrates the above (see the spring.cloud.consul.discovery.health-check-*
properties in the appendix page for more options).

application.yml

spring:
cloud:
consul:
discovery:
healthCheckPath: ${management.server.servlet.context-path}/actuator/health
healthCheckInterval: 15s

You can disable the HTTP health check entirely by setting spring.cloud.consul.discovery.register-
health-check=false.

Applying Headers

Headers can be applied to health check requests. For example, if you’re trying to register a Spring
Cloud Config server that uses Vault Backend:

appendix.html
https://cloud.spring.io/spring-cloud-config/
https://cloud.spring.io/spring-cloud-config/
https://github.com/spring-cloud/spring-cloud-config/blob/master/docs/src/main/asciidoc/spring-cloud-config.adoc#vault-backend

application.yml

spring:
cloud:
consul:
discovery:
health-check-headers:
X-Config-Token: 6442e58b-d1ea-182e-cfa5-cf9cddefd722

According to the HTTP standard, each header can have more than one values, in which case, an
array can be supplied:

application.yml

spring:
cloud:
consul:
discovery:
health-check-headers:
X-Config-Token:
- "6442e58b-d1ea-182e-cfab-cf9cddef0722"
- "Some other value"

4.2.3. Actuator Health Indicator(s)

If the service instance is a Spring Boot Actuator application, it may be provided the following
Actuator health indicators.

DiscoveryClientHealthIndicator

When Consul Service Discovery is active, a DiscoverClientHealthIndicator is configured and made
available to the Actuator health endpoint. See here for configuration options.

ConsulHealthIndicator

An indicator is configured that verifies the health of the ConsulClient.

By default, it retrieves the Consul leader node status and all registered services. In deployments
that have many registered services it may be costly to retrieve all services on every health check. To
skip the service retrieval and only check the leader node status set spring.cloud.consul.health-
indicator.include-services-query=false

To disable the indicator set management.health.consul.enabled=false.

When the application runs in bootstrap context mode (the default), this indicator is
loaded into the bootstrap context and is not made available to the Actuator health
endpoint.

https://cloud.spring.io/spring-cloud-commons/2.2.x/reference/html/#health-indicator
https://cloud.spring.io/spring-cloud-commons/2.2.x/reference/html/#health-indicator
https://cloud.spring.io/spring-cloud-commons/2.2.x/reference/html/#the-bootstrap-application-context

4.2.4. Metadata

Consul supports metadata on services. Spring Cloud’s ServiceInstance has a Map<String, String>
metadata field which is populated from a services meta field. To populate the meta field set values on
spring.cloud.consul.discovery.metadata or spring.cloud.consul.discovery.management-metadata
properties.

application.yml

spring:
cloud:
consul:
discovery:
metadata:
myfield: myvalue
anotherfield: anothervalue

The above configuration will result in a service who’s meta field contains myfield»myvalue and
anotherfield»anothervalue.

Generated Metadata
The Consul Auto Registration will generate a few entries automatically.

Table 5. Auto Generated Metadata
Key Value

'group’ Property
spring.cloud.consul.discovery.instance-group.
This values is only generated if instance-group is
not empty.'

'secure’ True if property
spring.cloud.consul.discovery.scheme equals
'https', otherwise false.

Property Property

spring.cloud.consul.discovery.default-zone- spring.cloud.consul.discovery.instance-zone.

metadata-name, defaults to 'zone’ This values is only generated if instance-zone is
not empty.'

Older versions of Spring Cloud Consul populated the

A ServicelInstance.getMetadata() method from Spring Cloud Commons by parsing the
spring.cloud.consul.discovery.tags property. This is no longer supported, please
migrate to using the spring.cloud.consul.discovery.metadata map.

4.2.5. Making the Consul Instance ID Unique

By default a consul instance is registered with an ID that is equal to its Spring Application Context
ID. By default, the Spring Application Context ID is

${spring.application.name}:comma,separated,profiles:${server.port}. For most cases, this will
allow multiple instances of one service to run on one machine. If further uniqueness is required,
Using Spring Cloud you can override this by providing a wunique identifier in
spring.cloud.consul.discovery.instanceld. For example:

application.yml

spring:
cloud:
consul:
discovery:
instanceld:
${spring.application.name}:${vcap.application.instance_id:${spring.application.instanc
e_id:${random.value}}}

With this metadata, and multiple service instances deployed on localhost, the random value will
kick in there to make the instance unique. In Cloudfoundry the vcap.application.instance_id will
be populated automatically in a Spring Boot application, so the random value will not be needed.

4.3. Looking up services

4.3.1. Using Load-balancer

Spring Cloud has support for Feign (a REST client builder) and also Spring RestTemplate for looking
up services using the logical service names/ids instead of physical URLs. Both Feign and the
discovery-aware RestTemplate utilize Spring Cloud LoadBalancer for client-side load balancing.

If you want to access service STORES using the RestTemplate simply declare:

@LoadBalanced

©Bean

public RestTemplate loadbalancedRestTemplate() {
return new RestTemplate();

}

and use it like this (notice how we use the STORES service name/id from Consul instead of a fully
qualified domainname):

@Autowired
RestTemplate restTemplate;

public String getFirstProduct() {
return this.restTemplate.getForObject("https://STORES/products/1", String.class);
}

If you have Consul clusters in multiple datacenters and you want to access a service in another
datacenter a service name/id alone is not enough. In that case you use property

https://github.com/spring-cloud/spring-cloud-netflix/blob/master/docs/src/main/asciidoc/spring-cloud-netflix.adoc#spring-cloud-feign
https://docs.spring.io/spring-cloud-commons/docs/current/reference/html/#rest-template-loadbalancer-client
https://docs.spring.io/spring-cloud-commons/docs/current/reference/html/#rest-template-loadbalancer-client
https://docs.spring.io/spring-cloud-commons/docs/current/reference/html/#spring-cloud-loadbalancer

spring.cloud.consul.discovery.datacenters.STORES=dc-west where STORES is the service name/id and
dc-west is the datacenter where the STORES service lives.

@ Spring Cloud now also offers support for Spring Cloud LoadBalancer.
w

4.3.2. Using the DiscoveryClient

You can also use the org.springframework.cloud.client.discovery.DiscoveryClient which provides a
simple API for discovery clients that is not specific to Netflix, e.g.

@Autowired
private DiscoveryClient discoveryClient;

public String serviceUrl() {
List<ServiceInstance> list = discoveryClient.getInstances("STORES");
if (list != null && list.size() > 0) {
return list.qget(0).getUri();
}

return null;

4.4. Consul Catalog Watch

The Consul Catalog Watch takes advantage of the ability of consul to watch services. The Catalog
Watch makes a blocking Consul HTTP API call to determine if any services have changed. If there is
new service data a Heartbeat Event is published.

To change the frequency of when the Config Watch is called change
spring.cloud.consul.config.discovery.catalog-services-watch-delay. The default value is 1000,
which is in milliseconds. The delay is the amount of time after the end of the previous invocation
and the start of the next.

To disable the Catalog Watch set
spring.cloud.consul.discovery.catalogServicesWatch.enabled=false.

The watch uses a Spring TaskScheduler to schedule the call to consul. By default it is a
ThreadPoolTaskScheduler with a poolSize of 1. To change the TaskScheduler, create a bean of type
TaskScheduler named with the
ConsulDiscoveryClientConfiguration.CATALOG_WATCH_TASK_SCHEDULER_NAME constant.

5. Distributed Configuration with Consul

Consul provides a Key/Value Store for storing configuration and other metadata. Spring Cloud
Consul Config is an alternative to the Config Server and Client. Configuration is loaded into the
Spring Environment during the special "bootstrap" phase. Configuration is stored in the /config
folder by default. Multiple PropertySource instances are created based on the application’s name
and the active profiles that mimics the Spring Cloud Config order of resolving properties. For

https://cloud.spring.io/spring-cloud-commons/reference/html/#_spring_resttemplate_as_a_load_balancer_client
https://www.consul.io/docs/agent/watches.html#services
https://consul.io/docs/agent/http/kv.html
https://github.com/spring-cloud/spring-cloud-config

example, an application with the name "testApp" and with the "dev" profile will have the following
property sources created:

config/testApp,dev/
config/testApp/
config/application,dev/
config/application/

The most specific property source is at the top, with the least specific at the bottom. Properties in
the config/application folder are applicable to all applications using consul for configuration.
Properties in the config/testApp folder are only available to the instances of the service named
"testApp".

Configuration is currently read on startup of the application. Sending a HTTP POST to /refresh will
cause the configuration to be reloaded. Config Watch will also automatically detect changes and
reload the application context.

5.1. How to activate

To get started with Consul Configuration use the starter with group org.springframework.cloud and
artifact id spring-cloud-starter-consul-config. See the Spring Cloud Project page for details on
setting up your build system with the current Spring Cloud Release Train.

5.2. Spring Boot Config Data Import

Spring Boot 2.4 introduced a new way to import configuration data via the spring.config.import
property. This is now the default way to get configuration from Consul.

To optionally connect to Consul set the following in application.properties:

application.properties

spring.config.import=optional:consul:

This will connect to the Consul Agent at the default location of "http://localhost:8500". Removing the
optional: prefix will cause Consul Config to fail if it is unable to connect to Consul. To change the
connection properties of Consul Config either set spring.cloud.consul.host and
spring.cloud.consul.port or add the host/port pair to the spring.config.import statement such as,
spring.config.import=optional:consul:myhost:8500. The location in the import property has
precedence over the host and port propertie.

Consul Config will try to load values from four automatic contexts based on
spring.cloud.consul.config.name (which defaults to the value of the spring.application.name
property) and spring.cloud.consul.config.default-context (which defaults to application). If you
want to specify the contexts rather than using the computed ones, you can add that information to
the spring.config.import statement.

https://projects.spring.io/spring-cloud/

application.properties

spring.config.import=optional:consul:myhost:8500/contextone;/context/two

This will optionally load configuration only from /contextone and /context/two.

o A bootstrap file (properties or yaml) is not needed for the Spring Boot Config Data
method of import via spring.config.import.

5.3. Customizing

Consul Config may be customized using the following properties:

spring:
cloud:
consul:
config:

enabled: true
prefix: configuration
defaultContext: apps
profileSeparator: "::'

If you have set spring.cloud.bootstrap.enabled=true or spring.config.use-legacy-
o processing=true, or included spring-cloud-starter-bootstrap, then the above
values will need to be placed in bootstrap.yml instead of application.yml.

* enabled setting this value to "false" disables Consul Config

» prefix sets the base folder for configuration values

defaultContext sets the folder name used by all applications

profileSeparator sets the value of the separator used to separate the profile name in property
sources with profiles

5.4. Config Watch

The Consul Config Watch takes advantage of the ability of consul to watch a key prefix. The Config
Watch makes a blocking Consul HTTP API call to determine if any relevant configuration data has
changed for the current application. If there is new configuration data a Refresh Event is published.
This is equivalent to calling the /refresh actuator endpoint.

To change the frequency of when the Config Watch is called change
spring.cloud.consul.config.watch.delay. The default value is 1000, which is in milliseconds. The
delay is the amount of time after the end of the previous invocation and the start of the next.

To disable the Config Watch set spring.cloud.consul.config.watch.enabled=false.

https://www.consul.io/docs/agent/watches.html#keyprefix

The watch uses a Spring TaskScheduler to schedule the call to consul. By default it is a
ThreadPoolTaskScheduler with a poolSize of 1. To change the TaskScheduler, create a bean of type
TaskScheduler named with the ConsulConfigAutoConfiguration.CONFIG_WATCH_TASK_SCHEDULER_NAME
constant.

5.5. YAML or Properties with Config

It may be more convenient to store a blob of properties in YAML or Properties format as opposed to
individual key/value pairs. Set the spring.cloud.consul.config.format property to YAML or
PROPERTIES. For example to use YAML:

spring:
cloud:
consul:
config:
format: YAML

If you have set spring.cloud.bootstrap.enabled=true or spring.config.use-legacy-
o processing=true, or included spring-cloud-starter-bootstrap, then the above
values will need to be placed in bootstrap.yml instead of application.yml.

YAML must be set in the appropriate data key in consul. Using the defaults above the keys would
look like:

config/testApp,dev/data
config/testApp/data
config/application,dev/data
config/application/data

You could store a YAML document in any of the keys listed above.

You can change the data key using spring.cloud.consul.config.data-key.

5.6. git2consul with Config

git2consul is a Consul community project that loads files from a git repository to individual keys
into Consul. By default the names of the keys are names of the files. YAML and Properties files are
supported with file extensions of .yml and .properties respectively. Set the
spring.cloud.consul.config.format property to FILES. For example:

bootstrap.yml

spring:
cloud:
consul:
config:
format: FILES

Given the following keys in /config, the development profile and an application name of foo:

.gitignore

application.yml
bar.properties
foo-development.properties
foo-production.yml
foo.properties

master.ref

the following property sources would be created:

config/foo-development.properties
config/foo.properties
config/application.yml

The value of each key needs to be a properly formatted YAML or Properties file.

5.7. Fail Fast

It may be convenient in certain circumstances (like local development or certain test scenarios) to
not fail if consul isn’t available for configuration. Setting spring.cloud.consul.config.fail-
fast=false will cause the configuration module to log a warning rather than throw an exception.
This will allow the application to continue startup normally.

If you have set spring.cloud.bootstrap.enabled=true or spring.config.use-legacy-
o processing=true, or included spring-cloud-starter-bootstrap, then the above
values will need to be placed in bootstrap.yml instead of application.yml.

6. Consul Retry

If you expect that the consul agent may occasionally be unavailable when your app starts, you can
ask it to keep trying after a failure. You need to add spring-retry and spring-boot-starter-aop to
your classpath. The default behaviour is to retry 6 times with an initial backoff interval of 1000ms
and an exponential multiplier of 1.1 for subsequent backoffs. You can configure these properties
(and others) using spring.cloud.consul.retry.* configuration properties. This works with both
Spring Cloud Consul Config and Discovery registration.

To take full control of the retry add a @Bean of type RetryOperationsInterceptor with
(;) id "consulRetryInterceptor”. Spring Retry has a RetryInterceptorBuilder that
v makes it easy to create one.

7. Spring Cloud Bus with Consul

7.1. How to activate

To get started with the Consul Bus use the starter with group org.springframework.cloud and artifact
id spring-cloud-starter-consul-bus. See the Spring Cloud Project page for details on setting up your
build system with the current Spring Cloud Release Train.

See the Spring Cloud Bus documentation for the available actuator endpoints and howto send
custom messages.

8. Circuit Breaker with Hystrix

Applications can use the Hystrix Circuit Breaker provided by the Spring Cloud Netflix project by
including this starter in the projects pom.xml: spring-cloud-starter-hystrix. Hystrix doesn’t
depend on the Netflix Discovery Client. The @EnableHystrix annotation should be placed on a
configuration class (usually the main class). Then methods can be annotated with @HystrixCommand
to be protected by a circuit breaker. See the documentation for more details.

9. Hystrix metrics aggregation with Turbine
and Consul

Turbine (provided by the Spring Cloud Netflix project), aggregates multiple instances Hystrix
metrics streams, so the dashboard can display an aggregate view. Turbine uses the DiscoveryClient
interface to lookup relevant instances. To use Turbine with Spring Cloud Consul, configure the
Turbine application in a manner similar to the following examples:

pom.xml

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-netflix-turbine</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-consul-discovery</artifactId>
</dependency>

Notice that the Turbine dependency is not a starter. The turbine starter includes support for Netflix
Eureka.

https://projects.spring.io/spring-cloud/
https://cloud.spring.io/spring-cloud-bus/
https://projects.spring.io/spring-cloud/spring-cloud.html#_circuit_breaker_hystrix_clients

application.yml

spring.application.name: turbine
applications: consulhystrixclient
turbine:
aggregator:
clusterConfig: ${applications}
appConfig: ${applications}

The clusterConfig and appConfig sections must match, so it’s useful to put the comma-separated list
of service ID’s into a separate configuration property.

Turbine.java

@EnableTurbine
@SpringBootApplication
public class Turbine {
public static void main(String[] args) {
SpringApplication.run(DemoturbinecommonsApplication.class, args);

}

10. Configuration Properties

To see the list of all Consul related configuration properties please check the Appendix page.

Spring Cloud Contract Reference
Documentation

Adam Dudczak, Mathias Dusterhoft, Marcin Grzejszczak, Dennis Kieselhorst, Jakub Kubrynski,
Karol Lassak, Olga Maciaszek-Sharma, Mariusz Smykula, Dave Syer, Jay Bryant

The reference documentation consists of the following sections:

Legal Legal information.

Documentation Overview About the Documentation, Getting Help, First Steps, and
more.

Getting Started Introducing Spring Cloud Contract, Developing Your First

Spring Cloud Contract-based Application

Using Spring Cloud Contract Spring Cloud Contract usage examples and workflows.

appendix.html
legal.pdf#legal-information
documentation-overview.pdf#contract-documentation
getting-started.pdf#getting-started
using.pdf#using

Spring Cloud Contract Features Contract DSL, Messaging, Spring Cloud Contract Stub
Runner, and Spring Cloud Contract WireMock.

Build Tools Maven Plugin, Gradle Plugin, and Docker.

“How-to” Guides Stubs versioning, Pact integration, Debugging, and more.

Appendices Properties, Metadata, Configuration, Dependencies, and
more.

Spring Cloud Function

Mark Fisher, Dave Syer, Oleg Zhurakousky, Anshul Mehra, Dan Dobrin

3.2.5

1. Introduction

Spring Cloud Function is a project with the following high-level goals:

* Promote the implementation of business logic via functions.

* Decouple the development lifecycle of business logic from any specific runtime target so that
the same code can run as a web endpoint, a stream processor, or a task.

* Support a uniform programming model across serverless providers, as well as the ability to run
standalone (locally or in a PaaS).

* Enable Spring Boot features (auto-configuration, dependency injection, metrics) on serverless

providers.

It abstracts away all of the transport details and infrastructure, allowing the developer to keep all
the familiar tools and processes, and focus firmly on business logic.

Here’s a complete, executable, testable Spring Boot application (implementing a simple string
manipulation):

project-features.pdf#features
project-features.pdf#features-build-tools
howto.pdf#howto
appendix.pdf#appendix

@SpringBootApplication
public class Application {

@Bean
public Function<Flux<String>, Flux<String>> uppercase() {
return flux -> flux.map(value -> value.toUpperCase());

}

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}
}

It’s just a Spring Boot application, so it can be built, run and tested, locally and in a CI build, the
same way as any other Spring Boot application. The Function is from java.util and Flux is a
Reactive Streams Publisher from Project Reactor. The function can be accessed over HTTP or
messaging.

Spring Cloud Function has 4 main features:

In the nutshell Spring Cloud Function provides the following features: 1. Wrappers for @Beans of
type Function, Consumer and Supplier, exposing them to the outside world as either HTTP endpoints
and/or message stream listeners/publishers with RabbitMQ, Kafka etc.

* Choice of programming styles - reactive, imperative or hybrid.

* Function composition and adaptation (e.g., composing imperative functions with reactive).

» Support for reactive function with multiple inputs and outputs allowing merging, joining and
other complex streaming operation to be handled by functions.

* Transparent type conversion of inputs and outputs.

Packaging functions for deployments, specific to the target platform (e.g., Project Riff, AWS
Lambda and more)

» Adapters to expose function to the outside world as HTTP endpoints etc.

* Deploying a JAR file containing such an application context with an isolated classloader, so that
you can pack them together in a single JVM.

* Adapters for AWS Lambda, Azure, Google Cloud Functions, Apache OpenWhisk and possibly other
"serverless" service providers.

Spring Cloud is released under the non-restrictive Apache 2.0 license. If you would

like to contribute to this section of the documentation or if you find an error,
please find the source code and issue trackers in the project at github.

2. Getting Started

Build from the command line (and "install" the samples):

https://www.reactive-streams.org/
https://projectreactor.io/
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-adapters/spring-cloud-function-adapter-aws
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-adapters/spring-cloud-function-adapter-azure
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-adapters/spring-cloud-function-adapter-gcp
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-adapters/spring-cloud-function-adapter-openwhisk
https://github.com/spring-cloud/spring-cloud

$./mvnw clean install

(If you like to YOLO add -DskipTests.)

Run one of the samples, e.g.
$ java -jar spring-cloud-function-samples/function-sample/target/*.jar

This runs the app and exposes its functions over HTTP, so you can convert a string to uppercase,
like this:

$ curl -H "Content-Type: text/plain" localhost:8080/uppercase -d Hello
HELLO

You can convert multiple strings (a Flux<String>) by separating them with new lines

$ curl -H "Content-Type: text/plain" localhost:8080/uppercase -d 'Hello
> World'
HELLOWORLD

(You can use ‘J in a terminal to insert a new line in a literal string like that.)

3. Programming model

3.1. Function Catalog and Flexible Function Signatures

One of the main features of Spring Cloud Function is to adapt and support a range of type
signatures for user-defined functions, while providing a consistent execution model. That’s why all
user defined functions are transformed into a canonical representation by FunctionCatalog.

While users don’t normally have to care about the FunctionCatalog at all, it is useful to know what
kind of functions are supported in user code.

It is also important to understand that Spring Cloud Function provides first class support for
reactive API provided by Project Reactor allowing reactive primitives such as Mono and Flux to be
used as types in user defined functions providing greater flexibility when choosing programming
model for your function implementation. Reactive programming model also enables functional
support for features that would be otherwise difficult to impossible to implement using imperative
programming style. For more on this please read Function Arity section.

3.2. Java 8 function support

Spring Cloud Function embraces and builds on top of the 3 core functional interfaces defined by

https://projectreactor.io/

Java and available to us since Java 8.

* Supplier<O>
e Function<I, O>

¢ Consumer<I>

3.2.1. Supplier

Supplier can be reactive - Supplier<Flux<T>> or imperative - Supplier<T>. From the invocation
standpoint this should make no difference to the implementor of such Supplier. However, when
used within frameworks (e.g., Spring Cloud Stream), Suppliers, especially reactive, often used to
represent the source of the stream, therefore they are invoked once to get the stream (e.g., Flux) to
which consumers can subscribe to. In other words such suppliers represent an equivalent of an
infinite stream. However, the same reactive suppliers can also represent finite stream(s) (e.g., result
set on the polled JDBC data). In those cases such reactive suppliers must be hooked up to some
polling mechanism of the underlying framework.

To assist with that Spring Cloud Function provides a marker annotation
org.springframework.cloud.function.context.PollableSupplier to signal that such supplier produces
a finite stream and may need to be polled again. That said, it is important to understand that Spring
Cloud Function itself provides no behavior for this annotation.

In addition PollableSupplier annotation exposes a splittable attribute to signal that produced
stream needs to be split (see Splitter EIP)

Here is the example:
@PollableSupplier(splittable = true)

public Supplier<Flux<String>> someSupplier() {
return () -> {

String v1 = String.valueOf(System.nanoTime());
String v2 = String.valueOf(System.nanoTime());
String v3 = String.valueOf(System.nanoTime());

return Flux.just(v1l, v2, v3);

3.2.2. Function

Function can also be written in imperative or reactive way, yet unlike Supplier and Consumer there
are no special considerations for the implementor other then understanding that when used within
frameworks such as Spring Cloud Stream and others, reactive function is invoked only once to pass
a reference to the stream (Flux or Mono) and imperative is invoked once per event.

3.2.3. Consumer

Consumer is a little bit special because it has a void return type, which implies blocking, at least
potentially. Most likely you will not need to write Consumer<Flux<?>>, but if you do need to do that,

https://spring.io/projects/spring-cloud-stream
https://www.enterpriseintegrationpatterns.com/patterns/messaging/Sequencer.html
https://spring.io/projects/spring-cloud-stream

remember to subscribe to the input flux.

3.3. Function Composition

Function Composition is a feature that allows one to compose several functions into one. The core
support is based on function composition feature available with Function.andThen(..) support
available since Java 8. However on top of it, we provide few additional features.

3.3.1. Declarative Function Composition

This feature allows you to provide composition instruction in a declarative way using | (pipe) or ,
(comma) delimiter when providing spring.cloud.function.definition property.

For example
--spring.cloud.function.definition=uppercase|reverse

Here we effectively provided a definition of a single function which itself is a composition of
function uppercase and function reverse. In fact that is one of the reasons why the property name is
definition and not name, since the definition of a function can be a composition of several named
functions. And as mentioned you can use , instead of pipe (such as
definition=uppercase,reverse).

3.3.2. Composing non-Functions

Spring Cloud Function also supports composing Supplier with Consumer or Function as well as
Function with Consumer. What’s important here is to understand the end product of such definitions.
Composing Supplier with Function still results in Supplier while composing Supplier with
Consumer will effectively render Runnable. Following the same logic composing Function with
Consumer will result in Consumer.

And of course you can’t compose uncomposable such as Consumer and Function, Consumer and
Supplier etc.

3.4. Function Routing and Filtering

Since version 2.2 Spring Cloud Function provides routing feature allowing you to invoke a single
function which acts as a router to an actual function you wish to invoke This feature is very useful
in certain FAAS environments where maintaining configurations for several functions could be
cumbersome or exposing more then one function is not possible.

The RoutingFunction is registered in FunctionCatalog under the name functionRouter. For simplicity
and consistency you can also refer to RoutingFunction.FUNCTION_NAME constant.

This function has the following signature:

https://docs.oracle.com/javase/8/docs/api/java/util/function/Function.html#andThen-java.util.function.Function-

public class RoutingFunction implements Function<Object, Object> {

}

The routing instructions could be communicated in several ways. We support providing
instructions via Message headers, System properties as well as pluggable strategy. So let’s look at
some of the details

3.4.1. MessageRoutingCallback

The MessageRoutingCallback is a strategy to assist with determining the name of the route-to
function definition.

public interface MessageRoutingCallback {
FunctionRoutingResult routingResult(Message<?> message);

All you need to do is implement and register it as a bean to be picked up by the RoutingFunction. For
example:

©Bean
public MessageRoutingCallback customRouter() {
return new MessageRoutingCallback() {
@override
FunctionRoutingResult routingResult(Message<?> message) {
return new FunctionRoutingResult((String)
message.getHeaders().get("func_name"));

}
};

In the preceding example you can see a very simple implementation of MessageRoutingCallback
which determines the function definition from func_name Message header of the incoming Message
and returns the instance of FunctionRoutingResult containing the definition of function to invoke.

Additionally, the FunctionRoutingResult provides another constructor allowing you to provide an
instance of Message as second argument to be used down stream. This is primarily for runtime
optimizations. To better understand this case let’s look at the following scenario. You need to route
based on the payoload type. However, an input Message typically comes in as let’s say JSON payload
(as byte[]) . In order to determine the route-to function definition you need to first process such
JSON and potentially create an instance of the target type. Once that determination is done you can
pass it to RoutingFunction which still has a reference to the original Message with un-processed
payload This means that somewhere downstream, type conversion/transformation would need to
be repeated.

Allowing you to create a new Message with converted payload as part of the FunctionRoutingResult
will instruct RoutingFunction to use such Message downstream. So effectively you letting the
framework to benefit from the work you already did.

Message Headers

If the input argument is of type Message<?>, you can communicate routing instruction by setting one
of spring.cloud.function.definition or spring.cloud.function.routing-expression Message headers.
For more static cases you can use spring.cloud.function.definition header which allows you to
provide the name of a single function (e.g., ---definition=foo) or a composition instruction (e.g., -*
definition=foo|bar|baz). For more dynamic cases you can use spring.cloud.function.routing-
expression header which allows you to use Spring Expression Language (SpEL) and provide SpEL
expression that should resolve into definition of a function (as described above).

SpEL evaluation context’s root object is the actual input argument, so in the case of
o Message<?> you can construct expression that has access to both payload and
headers (e.g., spring.cloud.function.routing-expression=headers.function_name).

In specific execution environments/models the adapters are responsible to translate and
communicate spring.cloud.function.definition and/or spring.cloud.function.routing-expression
via Message header. For example, when using spring-cloud-function-web you can provide
spring.cloud.function.definition as an HTTP header and the framework will propagate it as well
as other HTTP headers as Message headers.

Application Properties

Routing instruction can also be communicated via spring.cloud.function.definition or
spring.cloud.function.routing-expression as application properties. The rules described in the
previous section apply here as well. The only difference is you provide these instructions as
application properties (e.g., --spring.cloud.function.definition=foo).

It is important to understand that providing spring.cloud.function.definition or
spring.cloud.function.routing-expression as Message headers will only work for
imperative functions (e.g., Function<Foo, Bar>). That is to say that we can only
route per-message with imperative functions. With reactive functions we can not

o route per-message. Therefore you can only provide your routing instructions as
Application Properties. It’s all about unit-of-work. In imperative function unit of
work is Message so we can route based on such unit-of-work. With reactive
function unit-of-work is the entire stream, so we’ll act only on the instruction
provided via application properties and route the entire stream.

Order of priority for routing instructions

Given that we have several mechanisms of providing routing instructions it is important to
understand the priorities for conflict resolutions in the event multiple mechanisms are used at the
same time, so here is the order:

1. MessageRoutingCallback (If function is imperative will take over regardless if anything else is
defined)

2. Message Headers (If function is imperative and no MessageRoutingCallback provided)

3. Application Properties (Any function)

3.4.2. Function Filtering

Filtering is the type of routing where there are only two paths - 'go' or 'discard’. In terms of
functions it mean you only want to invoke a certain function if some condition returns 'true’,
otherwise you want to discard input. However, when it comes to discarding input there are many
interpretation of what it could mean in the context of your application. For example, you may want
to log it, or you may want to maintain the counter of discarded messages. you may also want to do
nothing at all. Because of these different paths, we do not provide a general configuration option
for how to deal with discarded messages. Instead we simply recommend to define a simple
Consumer which would signify the 'discard’ path:

©Bean
public Consumer<?> devNull() {
// log, count or whatever

Now you can have routing expression that really only has two paths effectively becoming a filter.
For example:

--spring.cloud.function.routing
-expression=headers.contentType.toString().equals('text/plain') ? 'echo' : 'devNull'

Every message that does not fit criteria to go to 'echo’ function will go to 'devNull' where you can
simply do nothing with it. The signature Consumer<?> will also ensure that no type conversion will
be attempted resulting in almost no execution overhead.

When dealing with reactive inputs (e.g., Publisher), routing instructions must only
be provided via Function properties. This is due to the nature of the reactive

o functions which are invoked only once to pass a Publisher and the rest is handled
by the reactor, hence we can not access and/or rely on the routing instructions
communicated via individual values (e.g., Message).

3.4.3. Multiple Routers

By default the framework will always have a single routing function configured as described in
previous sections. However, there are times when you may need more then one routing function.
In that case you can create your own instance of the RoutingFunction bean in addition to the
existing one as long as you give it a name other than functionRouter.

You can pass spring.cloud.function.routing-expression or spring.cloud.function.definition to
RoutinFunction as key/value pairs in the map.

Here is a simple example

@Configuration
protected static class MultipleRouterConfiguration {

@Bean
RoutingFunction mySpecialRouter (FunctionCatalog functionCatalog, BeanFactory
beanFactory, @Nullable MessageRoutingCallback routingCallback) {
Map<String, String> propertiesMap = new HashMap<>();
propertiesMap.put(FunctionProperties.PREFIX + ".routing-expression”,
"'reverse'");
return new RoutingFunction(functionCatalog, propertiesMap, new
BeanFactoryResolver(beanFactory), routingCallback);

}

@Bean
public Function<String, String> reverse() {
return v -> new StringBuilder(v).reverse().toString();

}

@Bean
public Function<String, String> uppercase() {
return String::toUpperCase;

}

and a test that demonstrates how it works

@Test
public void testMultipleRouters() {
System.setProperty(FunctionProperties.PREFIX +
""uppercase'");
FunctionCatalog functionCatalog =
this.configureCatalog(MultipleRouterConfiguration.class);
Function function = functionCatalog.lookup(RoutingFunction.FUNCTION_NAME);
assertThat(function).isNotNull();
Message<String> message = MessageBuilder.withPayload("hello").build();
assertThat(function.apply(message)).isEqualTo("HELLO");

‘.routing-expression",

function = functionCatalog.lookup("mySpecialRouter");
assertThat(function).isNotNull();

message = MessageBuilder.withPayload("hello").build();
assertThat(function.apply(message)).isEqualTo("olleh");

3.5. Input/Output Enrichment

There are often times when you need to modify or refine an incoming or outgoing Message and to

keep your code clean of non-functional concerns. You don’t want to do it inside of your business
logic.

You can always accomplish it via Function Composition. Such approach provides several benefits:

* It allows you to isolate this non-functional concern into a separate function which you can
compose with the business function as function definition.

* It provides you with complete freedom (and danger) as to what you can modify before incoming
message reaches the actual business function.

@Bean
public Function<Message<?>, Message<?>> enrich() {

return message -> MessageBuilder.fromMessage(message).setHeader("foo",
"bar").build();

}

@Bean
public Function<Message<?>, Message<?>> myBusinessFunction() {
// do whatever

And then compose your function by providing the following function definition
enrich|myBusinessFunction.

While the described approach is the most flexible, it is also the most involved as it requires you to
write some code, make it a bean or manually register it as a function before you can compose it
with the business function as you can see from the preceding example.

But what if modifications (enrichments) you are trying to make are trivial as they are in the
preceding example? Is there a simpler and more dynamic and configurable mechanism to
accomplish the same?

Since version 3.1.3, the framework allows you to provide SpEL expression to enrich individual
message headers for both input going into function and and output coming out of it. Let’s look at
one of the tests as the example.

@Test
public void testMixedInputOutputHeaderMapping() throws Exception {
try (ConfigurableApplicationContext context = new SpringApplicationBuilder(
SampleFunctionConfiguration.class).web(WebApplicationType.NONE).run(
"--logging.level.org.springframework.cloud.function=DEBUG",
"--spring.main.lazy-initialization=true",
"--spring.cloud.function.configuration.split.output-header-
mapping-expression.keyOut1="hello1"",
"--spring.cloud.function.configuration.split.output-header-
mapping-expression.keyQut2=headers.contentType",
"--spring.cloud.function.configuration.split.input-header-mapping-
expression.keyl=headers.path.split('/')[0]",
"--spring.cloud.function.configuration.split.input-header-mapping-
expression.key2=headers.path.split('/")[1]",
"--spring.cloud.function.configuration.split.input-header-mapping-
expression.key3=headers.path")) {

FunctionCatalog functionCatalog = context.getBean(FunctionCatalog.class);
FunctionInvocationWrapper function = functionCatalog.lookup("split");
Message<byte[]> result = (Message<byte[]>)
function.apply(MessageBuilder.withPayload("helo")

.setHeader (MessageHeaders.CONTENT_TYPE, "application/json")

.setHeader ("path", "foo/bar/baz").build());
assertThat(result.getHeaders().containsKey("keyOut1")).isTrue();
assertThat(result.getHeaders().get("keyOut1")).isEqualTo("hello1");
assertThat(result.getHeaders().containsKey("keyOut2")).isTrue();
assertThat(result.getHeaders().get("keyOut2")).isEqualTo("application/json");

Here you see a properties called input-header-mapping-expression and output-header-mapping-
expression preceded by the name of the function (i.e., split) and followed by the name of the
message header key you want to set and the value as SpEL expression. The first expression (for
'keyOut1') is literal SpEL expressions enclosed in single quotes, effectively setting 'keyOutl' to value
hellol. The keyOut? is set to the value of existing 'contentType' header.

You can also observe some interesting features in the input header mapping where we actually
splitting a value of the existing header 'path’, setting individual values of keyl and key2 to the

values of split elements based on the index.

if for whatever reason the provided expression evaluation fails, the execution of
the function will proceed as if nothing ever happen. However you will see the
WARN message in your logs informing you about it

o.s.c.f.context.catalog.InputEnricher : Failed while evaluating expression "hello1"
on incoming message. . .

In the event you are dealing with functions that have multiple inputs (next section), you can use

index immediately after input-header-mapping-expression

--spring.cloud.function.configuration.echo.input-header-mapping
-expression[0].key1=0hello1’
--spring.cloud.function.configuration.echo.input-header-mapping
-expression[1].key2="hello2'

3.6. Function Arity

There are times when a stream of data needs to be categorized and organized. For example,
consider a classic big-data use case of dealing with unorganized data containing, let’s say, ‘orders’
and ‘invoices’, and you want each to go into a separate data store. This is where function arity
(functions with multiple inputs and outputs) support comes to play.

Let’s look at an example of such a function (full implementation details are available here),

@Bean
public Function<Flux<Integer>, Tuple2<Flux<String>, Flux<String>>> organise() {
return flux -> ...;

}

Given that Project Reactor is a core dependency of SCF, we are using its Tuple library. Tuples give us
a unique advantage by communicating to us both cardinality and type information. Both are
extremely important in the context of SCSt. Cardinality lets us know how many input and output
bindings need to be created and bound to the corresponding inputs and outputs of a function.
Awareness of the type information ensures proper type conversion.

Also, this is where the ‘index’ part of the naming convention for binding names comes into play,
since, in this function, the two output binding names are organise-out-0 and organise-out-1.

IMPORTANT: At the moment, function arity is only supported for reactive

o functions (Function<TupleN<Flux<?>:+->, TupleN<Flux<?>::->>) centered on Complex
event processing where evaluation and computation on confluence of events
typically requires view into a stream of events rather than single event.

3.7. Input Header propagation

In a typical scenario input Message headers are not propagated to output and rightfully so, since
the output of a function may be an input to something else requiring it’s own set of Message
headers. However, there are times when such propagation may be necessary so Spring Cloud
Function provides several mechanisms to accomplish this.

First you can always copy headers manually. For example, if you have a Function with the
signature that takes Message and returns Message (i.e., Function<Message, Message>), you can simply
and selectively copy headers yourselves. Remember, if your function returns Message, the
framework will not do anything to it other then properly converting its payload. However, such

https://github.com/spring-cloud/spring-cloud-stream/blob/master/spring-cloud-stream/src/test/java/org/springframework/cloud/stream/function/MultipleInputOutputFunctionTests.java#L342

approach may prove to be a bit tedious, especially in cases when you simply want to copy all
headers. To assist with cases like this we provide a simple property that would allow you to set a
boolean flag on a function where you want input headers to be propagated. The property is copy-
input-headers.

For example, let’s assume you have the following configuration:

@EnableAutoConfiguration
@Configuration
protected static class InputHeaderPropagationConfiguration {

@Bean
public Function<String, String> uppercase() {
return x -> x.toUpperCase();

}

As you know you can still invoke this function by sending a Message to it (framework will take care
of type conversion and payload extraction)

By simply setting spring.cloud.function.configuration.uppercase.copy-input-headers to true, the
following assertion will be true as well

Function<Message<String>, Message<byte[]>> uppercase = catalog.lookup("uppercase",
"application/json");

Message<byte[]> result =
uppercase.apply(MessageBuilder.withPayload("bob").setHeader("foo", "bar").build());
assertThat(result.getHeaders()).containsKey("foo");

3.8. Type conversion (Content-Type negotiation)

Content-Type negotiation is one of the core features of Spring Cloud Function as it allows to not
only transform the incoming data to the types declared by the function signature, but to do the
same transformation during function composition making otherwise un-composable (by type)
functions composable.

To better understand the mechanics and the necessity behind content-type negotiation, we take a
look at a very simple use case by using the following function as an example:

@Bean
public Function<Person, String> personFunction {..}

The function shown in the preceding example expects a Person object as an argument and produces
a String type as an output. If such function is invoked with the type Person, than all works fine. But
typically function plays a role of a handler for the incoming data which most often comes in the
raw format such as byte[], JSON String etc. In order for the framework to succeed in passing the

incoming data as an argument to this function, it has to somehow transform the incoming data to a
Person type.

Spring Cloud Function relies on two native to Spring mechanisms to accomplish that.

1. MessageConverter - to convert from incoming Message data to a type declared by the function.

2. ConversionService - to convert from incoming non-Message data to a type declared by the
function.

This means that depending on the type of the raw data (Message or non-Message) Spring Cloud
Function will apply one or the other mechanisms.

For most cases when dealing with functions that are invoked as part of some other request (e.g.,
HTTP, Messaging etc) the framework relies on MessageConverters, since such requests already
converted to Spring Message. In other words, the framework locates and applies the appropriate
MessageConverter. To accomplish that, the framework needs some instructions from the user. One of
these instructions is already provided by the signature of the function itself (Person type).
Consequently, in theory, that should be (and, in some cases, is) enough. However, for the majority of
use cases, in order to select the appropriate MessageConverter, the framework needs an additional
piece of information. That missing piece is contentType header.

Such header usually comes as part of the Message where it is injected by the corresponding adapter
that created such Message in the first place. For example, HTTP POST request will have its content-
type HTTP header copied to contentType header of the Message.

For cases when such header does not exist framework relies on the default content type as
application/json.

3.8.1. Content Type versus Argument Type

As mentioned earlier, for the framework to select the appropriate MessageConverter, it requires
argument type and, optionally, content type information. The logic for selecting the appropriate
MessageConverter resides with the argument resolvers which trigger right before the invocation of
the user-defined function (which is when the actual argument type is known to the framework). If
the argument type does not match the type of the current payload, the framework delegates to the
stack of the pre-configured MessageConverters to see if any one of them can convert the payload.

The combination of contentType and argument type is the mechanism by which framework
determines if message can be converted to a target type by locating the appropriate
MessageConverter. If no appropriate MessageConverter is found, an exception is thrown, which you
can handle by adding a custom MessageConverter (see User-defined Message Converters).

Do not expect Message to be converted into some other type based only on the
o contentType. Remember that the contentType is complementary to the target type. It
is a hint, which MessageConverter may or may not take into consideration.

3.8.2. Message Converters

MessageConverters define two methods:

Object fromMessage(Message<?> message, Class<?> target(lass);

Message<?> toMessage(Object payload, @Nullable MessageHeaders headers);

It is important to understand the contract of these methods and their usage, specifically in the
context of Spring Cloud Stream.

The fromMessage method converts an incoming Message to an argument type. The payload of the
Message could be any type, and it is up to the actual implementation of the MessageConverter to
support multiple types.

3.8.3. Provided MessageConverters

As mentioned earlier, the framework already provides a stack of MessageConverters to handle most
common use cases. The following list describes the provided MessageConverters, in order of
precedence (the first MessageConverter that works is used):

1. JsonMessageConverter: Supports conversion of the payload of the Message to/from POJO for cases
when contentType is application/json using Jackson or Gson libraries (DEFAULT).

2. ByteArrayMessageConverter: Supports conversion of the payload of the Message from byte[] to
byte[] for cases when contentType is application/octet-stream. It is essentially a pass through
and exists primarily for backward compatibility.

3. StringMessageConverter: Supports conversion of any type to a String when contentType is
text/plain.

When no appropriate converter is found, the framework throws an exception. When that happens,
you should check your code and configuration and ensure you did not miss anything (that is,
ensure that you provided a contentType by using a binding or a header). However, most likely, you
found some uncommon case (such as a custom contentType perhaps) and the current stack of
provided MessageConverters does not know how to convert. If that is the case, you can add custom
MessageConverter. See User-defined Message Converters.

3.8.4. User-defined Message Converters

Spring Cloud Function exposes a mechanism to define and register additional MessageConverters. To
use it, implement org.springframework.messaging.converter.MessageConverter, configure it as a
@Bean. It is then appended to the existing stack of "MessageConverter s.

It is important to understand that custom MessageConverter implementations are

o added to the head of the existing stack. Consequently, custom MessageConverter
implementations take precedence over the existing ones, which lets you override
as well as add to the existing converters.

The following example shows how to create a message converter bean to support a new content
type called application/bar:

@SpringBootApplication
public static class SinkApplication {

@Bean
public MessageConverter customMessageConverter() {
return new MyCustomMessageConverter();

}
}

public class MyCustomMessageConverter extends AbstractMessageConverter {

public MyCustomMessageConverter() {
super(new MimeType("application”, "bar"));

}

@0verride
protected boolean supports(Class<?> clazz) {
return (Bar.class.equals(clazz));

}

@0verride
protected Object convertFromInternal(Message<?> message, (Class<?> target(lass,
Object conversionHint) {
Object payload = message.getPayload();
return (payload instanceof Bar ? payload : new Bar((byte[]) payload));

3.8.5. Note on JSON options

In Spring Cloud Function we support Jackson and Gson mechanisms to deal with JSON. And for
your benefit have abstracted it under org.springframework.cloud.function.json.JsonMapper which
itself is aware of two mechanisms and will use the one selected by you or following the default rule.
The default rules are as follows:

* Whichever library is on the classpath that is the mechanism that is going to be used. So if you
have com.fasterxml.jackson.* to the classpath, Jackson is going to be used and if you have
com.google.code.gson, then Gson will be used.

* If you have both, then Gson will be the default, or you can set spring.cloud.function.preferred-
json-mapper property with either of two values: gson or jackson.

That said, the type conversion is usually transparent to the developer, however given that
org.springframework.cloud.function.json.JsonMapper is also registered as a bean you can easily
inject it into your code if needed.

3.9. Kotlin Lambda support

We also provide support for Kotlin lambdas (since v2.0). Consider the following:

@Bean

open fun kotlinSupplier(): () -> String {
return { "Hello from Kotlin" }

+

@Bean

open fun kotlinFunction(): (String) -> String {
return { it.toUpperCase() }

+

@Bean

open fun kotlinConsumer(): (String) -> Unit {
return { println(it) }

+

The above represents Kotlin lambdas configured as Spring beans. The signature of each maps to a
Java equivalent of Supplier, Function and Consumer, and thus supported/recognized signatures by the
framework. While mechanics of Kotlin-to-Java mapping are outside of the scope of this
documentation, it is important to understand that the same rules for signature transformation
outlined in "Java 8 function support" section are applied here as well.

To enable Kotlin support all you need is to add Kotlin SDK libraries on the classpath which will
trigger appropriate autoconfiguration and supporting classes.

3.10. Function Component Scan

Spring Cloud Function will scan for implementations of Function, Consumer and Supplier in a
package called functions if it exists. Using this feature you can write functions that have no
dependencies on Spring - not even the @Component annotation is needed. If you want to use a
different package, you can set spring.cloud.function.scan.packages. You can also wuse
spring.cloud.function.scan.enabled=false to switch off the scan completely.

4. Standalone Web Applications

Functions could be automatically exported as HTTP endpoints.

The spring-cloud-function-web module has autoconfiguration that activates when it is included in a
Spring Boot web application (with MVC support). There is also a spring-cloud-starter-function-web
to collect all the optional dependencies in case you just want a simple getting started experience.

With the web configurations activated your app will have an MVC endpoint (on "/" by default, but
configurable with spring.cloud.function.web.path) that can be used to access the functions in the
application context where function name becomes part of the URL path. The supported content

types are plain text and JSON.

Method Path Request Response Status

GET [{supplier} - Items from the 200 OK
named supplier

POST /{consumer} JSON object or text Mirrors input and 202 Accepted
pushes request
body into
consumer

POST /{consumer} JSON array or text Mirrors input and 202 Accepted
with new lines pushes body into
consumer one by
one

POST /{function} JSON object or text The result of 200 OK
applying the
named function

POST [{function} JSON array or text The result of 200 OK
with new lines applying the
named function

GET [function}/{item} - Convert the item 200 OK
into an object and
return the result
of applying the
function

As the table above shows the behaviour of the endpoint depends on the method and also the type of
incoming request data. When the incoming data is single valued, and the target function is declared
as obviously single valued (i.e. not returning a collection or Flux), then the response will also
contain a single value. For multi-valued responses the client can ask for a server-sent event stream
by sending " Accept: text/event-stream".

Functions and consumers that are declared with input and output in Message<?> will see the request
headers on the input messages, and the output message headers will be converted to HTTP headers.

When POSTing text the response format might be different with Spring Boot 2.0 and older versions,
depending on the content negotiation (provide content type and accept headers for the best
results).

See Testing Functional Applications to see the details and example on how to test such application.

4.1. HTTP Request Parameters

As you have noticed from the previous table, you can pass an argument to a function as path
variable (i.e., /{function}/{item}). For example, localhost:8080/uppercase/foo will result in calling
uppercase function with its input parameter being foo.

While this is the recommended approach and the one that fits most use cases cases, there are times

http://localhost:8080/uppercase/foo

when you have to deal with HTTP request parameters. The framework will treat HTTP request
parameters similar to the HTTP headers by storing them in Message headers under the header key
http_request_param with its value being a Map of request parameters, so in order to access them your
function input signature should accept Message type (e.g., Function<Message<String>, String>). For
convenience we provide HeaderUtils.HTTP_REQUEST_PARAM constant.

4.2. Function Mapping rules

If there is only a single function (consumer etc.) in the catalog, the name in the path is optional. In
other words, providing you only have uppercase function in catalog curl -H "Content-Type:
text/plain” 1localhost:8080/uppercase -d hello and curl -H "Content-Type: text/plain”
localhost:8080/ -d hello calls are identical.

Composite functions can be addressed using pipes or commas to separate function names (pipes
are legal in URL paths, but a bit awkward to type on the command line). For example, curl -H
"Content-Type: text/plain" localhost:8080/uppercase,reverse -d hello.

For cases where there is more then a single function in catalog, each function will be exported and
mapped with function name being part of the path (e.g., localhost:8080/uppercase). In this scenario
you can still map specific function or function composition to the root path by providing
spring.cloud.function.definition property

For example,
--spring.cloud.function.definition=foo|bar

The above property will compose 'foo' and 'bar' function and map the composed function to the "/"
path.

The same property will also work for cases where function can not be resolved via URL. For
example, your URL may be localhost:8080/uppercase, but there is no uppercase function. However
there are function foo and bar. So, in this case localhost:8080/uppercase will resolve to foo|bar. This
could be useful especially for cases when URL is used to communicate certain information since
there will be Message header called uri with the value of the actual URL, giving user ability to use it
for evaluation and computation.

4.3. Function Filtering rules

In situations where there are more then one function in catalog there may be a need to only export
certain functions or function compositions. In that case you can use the same
spring.cloud.function.definition property listing functions you intend to export delimited by ;.
Note that in this case nothing will be mapped to the root path and functions that are not listed
(including compositions) are not going to be exported

For example,

--spring.cloud.function.definition=foo;bar

This will only export function foo and function bar regardless how many functions are available in
catalog (e.g., localhost:8080/fo0).

--spring.cloud. function.definition=foo|bar;baz

This will only export function composition foo|bar and function baz regardless how many functions
are available in catalog (e.g., localhost:8080/foo,bar).

5. Standalone Streaming Applications

To send or receive messages from a broker (such as RabbitMQ or Kafka) you can leverage spring-
cloud-stream project and it’s integration with Spring Cloud Function. Please refer to Spring Cloud
Function section of the Spring Cloud Stream reference manual for more details and examples.

6. Deploying a Packaged Function

Spring Cloud Function provides a "deployer" library that allows you to launch a jar file (or exploded
archive, or set of jar files) with an isolated class loader and expose the functions defined in it. This
is quite a powerful tool that would allow you to, for instance, adapt a function to a range of
different input-output adapters without changing the target jar file. Serverless platforms often have
this kind of feature built in, so you could see it as a building block for a function invoker in such a
platform (indeed the Riff Java function invoker uses this library).

The standard entry point is to add spring-cloud-function-deployer to the classpath, the deployer
kicks in and looks for some configuration to tell it where to find the function jar.

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-function-deployer</artifactId>
<version>${spring.cloud.function.version}</version>
</dependency>

At a minimum the user has to provide a spring.cloud.function.location which is a URL or resource
location for the archive containing the functions. It can optionally use a maven: prefix to locate the
artifact via a dependency lookup (see FunctionProperties for complete details). A Spring Boot
application is bootstrapped from the jar file, using the MANIFEST.MF to locate a start class, so that a
standard Spring Boot fat jar works well, for example. If the target jar can be launched successfully
then the result is a function registered in the main application’s FunctionCatalog. The registered
function can be applied by code in the main application, even though it was created in an isolated
class loader (by deault).

Here is the example of deploying a JAR which contains an 'uppercase’ function and invoking it .

https://cloud.spring.io/spring-cloud-static/spring-cloud-stream/current/reference/html/spring-cloud-stream.html#spring_cloud_function
https://cloud.spring.io/spring-cloud-static/spring-cloud-stream/current/reference/html/spring-cloud-stream.html#spring_cloud_function
https://projectriff.io

@SpringBootApplication
public class DeployFunctionDemo {

public static void main(String[] args) {
ApplicationContext context = SpringApplication.run(DeployFunctionDemo.class,

"--spring.cloud.function.location=..../target/uppercase-0.0.1-
SNAPSHOT. jar",

"--spring.cloud.function.definition=uppercase");

FunctionCatalog catalog = context.getBean(FunctionCatalog.class);
Function<String, String> function = catalog.lookup("uppercase");
System.out.println(function.apply("hello"));

And here is the example using Maven URI (taken from one of the tests in FunctionDeployerTests):

@SpringBootApplication
public class DeployFunctionDemo {

public static void main(String[] args) {
String[] args = new String[] {
"--spring.cloud.function.location=maven://0z.demo:demo-
uppercase:0.0.1-SNAPSHOT",

"--spring.cloud.function.function-class=0z.demo.uppercase.MyFunction"

b
ApplicationContext context = SpringApplication.run(DeployerApplication.class,

args);
FunctionCatalog catalog = context.getBean(FunctionCatalog.class);
Function<String, String> function = catalog.lookup("myFunction");
assertThat(function.apply("bob")).isEqualTo("BOB");

}
}

Keep in mind that Maven resource such as local and remote repositories, user, password and more
are resolved using default MavenProperties which effectively use local defaults and will work for
majority of cases. However if you need to customize you can simply provide a bean of type
MavenProperties where you can set additional properties (see example below).

@Bean

public MavenProperties mavenProperties() {
MavenProperties properties = new MavenProperties();
properties.setlLocalRepository("target/it/");
return properties;

6.1. Supported Packaging Scenarios

Currently Spring Cloud Function supports several packaging scenarios to give you the most
flexibility when it comes to deploying functions.

6.1.1. Simple JAR

This packaging option implies no dependency on anything related to Spring. For example; Consider
that such JAR contains the following class:

package function.example;

public class UpperCaseFunction implements Function<String, String> {
@0verride
public String apply(String value) {
return value.toUpperCase();

}

All you need to do is specify location and function-class properties when deploying such package:

--spring.cloud.function.location=target/it/simplestjar/target/simplestjar
-1.0.0.RELEASE. jar
--spring.cloud.function.function-class=function.example.UpperCaseFunction

It’s conceivable in some cases that you might want to package multiple functions together. For such
scenarios you can use spring.cloud.function.function-class property to list several classes
delimiting them by ;.

For example,

--spring.cloud.function.function
-class=function.example.UpperCaseFunction; function.example.ReverseFunction

Here we are identifying two functions to deploy, which we can now access in function catalog by
name (e.g., catalog.lookup("reverseFunction");).

For more details please reference the complete sample available here. You can also find a
corresponding test in FunctionDeployerTests.

* Component Scanning *

Since version 3.1.4 you can simplify your configuration thru component scanning feature described
in Function Component Scan. If you place your functional class in package named functions, you
can omit spring.cloud.function.function-class property as framework will auto-discover
functional classes loading them in function catalog. Keep in mind the naming convention to follow
when doing function lookup. For example function class functions.UpperCaseFunction will be

https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-deployer/src/it/simplestjar
https://github.com/spring-cloud/spring-cloud-function/blob/master/spring-cloud-function-deployer/src/test/java/org/springframework/cloud/function/deployer/FunctionDeployerTests.java#L70

available in FunctionCatalog under the name upperCaseFunction.

6.1.2. Spring Boot JAR

This packaging option implies there is a dependency on Spring Boot and that the JAR was generated
as Spring Boot JAR. That said, given that the deployed JAR runs in the isolated class loader, there
will not be any version conflict with the Spring Boot version used by the actual deployer. For
example; Consider that such JAR contains the following class (which could have some additional
Spring dependencies providing Spring/Spring Boot is on the classpath):

package function.example;

public class UpperCaseFunction implements Function<String, String> {
@0verride
public String apply(String value) {
return value.toUpperCase();

}

As before all you need to do is specify location and function-class properties when deploying such
package:

--spring.cloud.function.location=target/it/simplestjar/target/simplestjar
-1.0.0.RELEASE. jar
--spring.cloud. function.function-class=function.example.UpperCaseFunction

For more details please reference the complete sample available here. You can also find a
corresponding test in FunctionDeployerTests.

6.1.3. Spring Boot Application

This packaging option implies your JAR is complete stand alone Spring Boot application with
functions as managed Spring beans. As before there is an obvious assumption that there is a
dependency on Spring Boot and that the JAR was generated as Spring Boot JAR. That said, given that
the deployed JAR runs in the isolated class loader, there will not be any version conflict with the
Spring Boot version used by the actual deployer. For example; Consider that such JAR contains the
following class:

https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-deployer/src/it/bootjar
https://github.com/spring-cloud/spring-cloud-function/blob/master/spring-cloud-function-deployer/src/test/java/org/springframework/cloud/function/deployer/FunctionDeployerTests.java#L50

package function.example;

@SpringBootApplication
public class SimpleFunctionAppApplication {

public static void main(String[] args) {
SpringApplication.run(SimpleFunctionAppApplication.class, args);

}

@Bean
public Function<String, String> uppercase() {
return value -> value.toUpperCase();

}

Given that we’re effectively dealing with another Spring Application context and that functions are
spring managed beans, in addition to the location property we also specify definition property
instead of function-class.

--spring.cloud.function.location=target/it/bootapp/target/bootapp-1.0.0.RELEASE
-exec.jar
--spring.cloud. function.definition=uppercase

For more details please reference the complete sample available here. You can also find a
corresponding test in FunctionDeployerTests.

o This particular deployment option may or may not have Spring Cloud Function on
it’s classpath. From the deployer perspective this doesn’t matter.

7. Functional Bean Definitions

Spring Cloud Function supports a "functional” style of bean declarations for small apps where you
need fast startup. The functional style of bean declaration was a feature of Spring Framework 5.0
with significant enhancements in 5.1.

7.1. Comparing Functional with Traditional Bean
Definitions

Here’s a vanilla Spring Cloud Function application from with the familiar @Configuration and @Bean
declaration style:

https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-deployer/src/it/bootapp
https://github.com/spring-cloud/spring-cloud-function/blob/master/spring-cloud-function-deployer/src/test/java/org/springframework/cloud/function/deployer/FunctionDeployerTests.java#L164

@SpringBootApplication
public class DemoApplication {

@Bean
public Function<String, String> uppercase() {
return value -> value.toUpperCase();

}

public static void main(String[] args) {
SpringApplication.run(DemoApplication.class, args);

}

Now for the functional beans: the user application code can be recast into "functional" form, like
this:

@SpringBootConfiguration
public class DemoApplication implements
ApplicationContextInitializer<GenericApplicationContext> {

public static void main(String[] args) {
FunctionalSpringApplication.run(DemoApplication.class, args);

}

public Function<String, String> uppercase() {
return value -> value.toUpperCase();

}

@0verride
public void initialize(GenericApplicationContext context) {
context.registerBean("demo", FunctionRegistration.class,
() -> new FunctionRegistration<>(uppercase())
.type(FunctionTypeUtils.functionType(String.class, String.class)));

The main differences are:

* The main class is an ApplicationContextInitializer.
» The @Bean methods have been converted to calls to context.registerBean()

» The @SpringBootApplication has been replaced with @SpringBootConfiguration to signify that we
are not enabling Spring Boot autoconfiguration, and yet still marking the class as an "entry
point".

» The SpringApplication from Spring Boot has been replaced with a FunctionalSpringApplication
from Spring Cloud Function (it’s a subclass).

The business logic beans that you register in a Spring Cloud Function app are of type
FunctionRegistration. This is a wrapper that contains both the function and information about the
input and output types. In the @Bean form of the application that information can be derived
reflectively, but in a functional bean registration some of it is lost unless we use a
FunctionRegistration.

An alternative to using an ApplicationContextInitializer and FunctionRegistration is to make the
application itself implement Function (or Consumer or Supplier). Example (equivalent to the above):

@SpringBootConfiguration
public class DemoApplication implements Function<String, String> {

public static void main(String[] args) {
FunctionalSpringApplication.run(DemoApplication.class, args);

}

@0verride
public String apply(String value) {
return value.toUpperCase();

}

It would also work if you add a separate, standalone class of type Function and register it with the
SpringApplication using an alternative form of the run() method. The main thing is that the generic
type information is available at runtime through the class declaration.

Suppose you have

@Component
public class CustomFunction implements Function<Flux<Foo>, Flux<Bar>> {
@0verride
public Flux<Bar> apply(Flux<Foo> flux) {
return flux.map(foo -> new Bar("This is a Bar object from Foo value: " +
foo.getValue()));
}

You register it as such:

@0verride
public void initialize(GenericApplicationContext context) {
context.registerBean("function", FunctionRegistration.class,
() -> new FunctionRegistration<>(new
CustomFunction()).type(CustomFunction.class));

}

7.2. Limitations of Functional Bean Declaration

Most Spring Cloud Function apps have a relatively small scope compared to the whole of Spring
Boot, so we are able to adapt it to these functional bean definitions easily. If you step outside that
limited scope, you can extend your Spring Cloud Function app by switching back to @Bean style
configuration, or by using a hybrid approach. If you want to take advantage of Spring Boot
autoconfiguration for integrations with external datastores, for example, you will need to use
@EnableAutoConfiguration. Your functions can still be defined using the functional declarations if
you want (i.e. the "hybrid" style), but in that case you will need to explicitly switch off the "full
functional mode" using spring.functional.enabled=false so that Spring Boot can take back control.

8. Function visualization and control

Spring Cloud Function supports visualization of functions available in FunctionCatalog through
Actuator endpoints as well as programmatic way.

Programmatic way

To see function available within your application context programmatically all you need is access to
FunctionCatalog. There you can finds methods to get the size of the catalog, lookup functions as well
as list the names of all the available functions.

For example,

FunctionCatalog functionCatalog = context.getBean(FunctionCatalog.class);

int size = functionCatalog.size(); // will tell you how many functions available in
catalog

Set<String> names = functionCatalog.getNames(null); will list the names of all the
Function, Suppliers and Consumers available in catalog

Actuator

Since actuator and web are optional, you must first add one of the web dependencies as well as add
the actuator dependency manually. The following example shows how to add the dependency for
the Web framework:

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>

The following example shows how to add the dependency for the WebFlux framework:

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-webflux</artifactId>
</dependency>

You can add the Actuator dependency as follows:

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-actuator</artifactId>
</dependency>

You must also enable the functions actuator endpoints by setting the following property:
--management.endpoints.web.exposure.include=functions.

Access the following URL to see the functions in FunctionCatalog: <host>:<port>/actuator/functions

For example,
curl http://localhost:80806/actuator/functions
Your output should look something like this:

{"charCounter":
{"type":"FUNCTION", "input-type":"string", "output-type":"integer"},

"logger":

{"type" :"CONSUMER", "input-type":"string"},
“functionRouter":

{"type":"FUNCTION", "input-type":"object", "output-type":"object"},
"words":

{"type":"SUPPLIER", "output-type":"string"}. . .

9. Testing Functional Applications

Spring Cloud Function also has some utilities for integration testing that will be very familiar to
Spring Boot users.

Suppose this is your application:

http://<host>:<port>/actuator/functions

@SpringBootApplication
public class SampleFunctionApplication {

public static void main(String[] args) {
SpringApplication.run(SampleFunctionApplication.class, args);

}

@Bean
public Function<String, String> uppercase() {
return v -> v.toUpperCase();

}

Here is an integration test for the HTTP server wrapping this application:

@SpringBootTest(classes = SampleFunctionApplication.class,
webEnvironment = WebEnvironment.RANDOM PORT)
public class WebFunctionTests {

@Autowired
private TestRestTemplate rest;

@Test
public void test() throws Exception {
ResponseEntity<String> result = this.rest.exchange(
RequestEntity.post(new URI("/uppercase")).body("hello"), String.class);
System.out.println(result.getBody());

or when function bean definition style is used:

@FunctionalSpringBootTest
public class WebFunctionTests {

@Autowired
private TestRestTemplate rest;

@Test
public void test() throws Exception {
ResponseEntity<String> result = this.rest.exchange(
RequestEntity.post(new URI("/uppercase")).body("hello"), String.class);
System.out.println(result.getBody());

This test is almost identical to the one you would write for the @Bean version of the same app - the

only difference is the @FunctionalSpringBootTest annotation, instead of the regular @SpringBootTest.
All the other pieces, like the @Autowired TestRestTemplate, are standard Spring Boot features.

And to help with correct dependencies here is the excerpt from POM

<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.6.8</version>
<relativePath/> <!-- lookup parent from repository -->

</parent>

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-function-web</artifactId>
<version>3.2.5</version>

</dependency>

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter</artifactId>

</dependency>

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
<scope>test</scope>

</dependency>

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>

</dependency>

Or you could write a test for a non-HTTP app using just the FunctionCatalog. For example:

@FunctionalSpringBootTest
public class FunctionalTests {

@Autowired
private FunctionCatalog catalog;

@Test
public void words() {
Function<String, String> function = catalog.lookup(Function.class,
"uppercase");
assertThat(function.apply("hello")).isEqualTo("HELLO");

10. Serverless Platform Adapters

As well as being able to run as a standalone process, a Spring Cloud Function application can be
adapted to run one of the existing serverless platforms. In the project there are adapters for AWS
Lambda, Azure, and Apache OpenWhisk. The Oracle Fn platform has its own Spring Cloud Function
adapter. And Riff supports Java functions and its Java Function Invoker acts natively is an adapter
for Spring Cloud Function jars.

10.1. AWS Lambda

The AWS adapter takes a Spring Cloud Function app and converts it to a form that can run in AWS
Lambda.

The details of how to get stared with AWS Lambda is out of scope of this document, so the
expectation is that user has some familiarity with AWS and AWS Lambda and wants to learn what
additional value spring provides.

10.1.1. Getting Started

One of the goals of Spring Cloud Function framework is to provide necessary infrastructure
elements to enable a simple function application to interact in a certain way in a particular
environment. A simple function application (in context or Spring) is an application that contains
beans of type Supplier, Function or Consumer. So, with AWS it means that a simple function bean
should somehow be recognised and executed in AWS Lambda environment.

Let’s look at the example:

@SpringBootApplication
public class FunctionConfiguration {

public static void main(String[] args) {
SpringApplication.run(FunctionConfiguration.class, args);

}

@Bean
public Function<String, String> uppercase() {
return value -> value.toUpperCase();

}

It shows a complete Spring Boot application with a function bean defined in it. What’s interesting is
that on the surface this is just another boot app, but in the context of AWS Adapter it is also a
perfectly valid AWS Lambda application. No other code or configuration is required. All you need to
do is package it and deploy it, so let’s look how we can do that.

To make things simpler we’ve provided a sample project ready to be built and deployed and you
can access it here.

https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-adapters/spring-cloud-function-adapter-aws
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-adapters/spring-cloud-function-adapter-aws
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-adapters/spring-cloud-function-adapter-azure
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-adapters/spring-cloud-function-adapter-openwhisk
https://github.com/fnproject/fn
https://projectriff.io
https://github.com/projectriff/java-function-invoker
https://aws.amazon.com/
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-samples/function-sample-aws

You simply execute ./mvnw clean package to generate JAR file. All the necessary maven plugins have
already been setup to generate appropriate AWS deployable JAR file. (You can read more details
about JAR layout in Notes on JAR Layout).

Then you have to upload the JAR file (via AWS dashboard or AWS CLI) to AWS.

When ask about handler you specify
org.springframework.cloud.function.adapter.aws.FunctionInvoker::handleRequest which is a generic
request handler.

[AWS deploy] | https://raw.githubusercontent.com/spring-cloud/spring-

cloud/a331ef4c182a2cdf6a745de93d5a234f4e7875b7/docs/src/main/asciidoc/images/AWS-deploy.png

That is all. Save and execute the function with some sample data which for this function is expected
to be a String which function will uppercase and return back.

While org.springframework.cloud.function.adapter.aws.FunctionInvoker is a general purpose AWS’s
RequestHandler implementation aimed at completely isolating you from the specifics of AWS
Lambda API, for some cases you may want to specify which specific AWS’s RequestHandler you want
to use. The next section will explain you how you can accomplish just that.

10.1.2. AWS Request Handlers

The adapter has a couple of generic request handlers that you can use. The most generic is (and the
one we used in the Getting Started section) is
org.springframework.cloud.function.adapter.aws.FunctionInvoker which is the implementation of
AWS’s RequestStreamHandler. User doesn’t need to do anything other then specify it as 'handler' on
AWS dashboard when deploying function. It will handle most of the case including Kinesis,
streaming etc. .

If your app has more than one @Bean of type Function etc. then you can choose the one to use by
configuring spring.cloud.function.definition property or environment variable. The functions are
extracted from the Spring Cloud FunctionCatalog. In the event you don’t specify
spring.cloud. function.definition the framework will attempt to find a default following the search
order where it searches first for Function then Consumer and finally Supplier).

10.1.3. AWS Function Routing

One of the core features of Spring Cloud Function is routing - an ability to have one special function
to delegate to other functions based on the user provided routing instructions.

In AWS Lambda environment this feature provides one additional benefit, as it allows you to bind a
single function (Routing Function) as AWS Lambda and thus a single HTTP endpoint for API
Gateway. So in the end you only manage one function and one endpoint, while benefiting from
many function that can be part of your application.

More details are available in the provided sample, yet few general things worth mentioning.

Routing capabilities will be enabled by default whenever there is more then one function in your
application as org.springframework.cloud.function.adapter.aws.FunctionInvoker can not determine
which function to bind as AWS Lambda, so it defaults to RoutingFunction. This means that all you
need to do is provide routing instructions which you can do using several mechanisms (see sample
for more details).

Also, note that since AWS does not allow dots . and/or hyphens - in the name of the environment
variable, you can benefit from boot support and simply substitute dots with underscores and
hyphens with camel case. So for example spring.cloud.function.definition becomes
spring_cloud_function_definition and spring.cloud.function.routing-expression becomes
spring_cloud_function_routingExpression.

https://docs.spring.io/spring-cloud-function/docs/3.2.5/reference/html/spring-cloud-function.html#_function_routing_and_filtering
https://github.com/spring-cloud/spring-cloud-function/tree/main/spring-cloud-function-samples/function-sample-aws-routing
https://docs.spring.io/spring-cloud-function/docs/3.2.5/reference/html/spring-cloud-function.html#_function_routing_and_filtering
https://github.com/spring-cloud/spring-cloud-function/tree/main/spring-cloud-function-samples/function-sample-aws-routing

AWS Function Routing with Custom Runtime

When using [Custom Runtime] Function Routing works the same way. All you need is to specify
functionRouter as AWS Handler the same way you would use the name of the function as handler.

10.1.4. Notes on JAR Layout

You don’t need the Spring Cloud Function Web or Stream adapter at runtime in Lambda, so you
might need to exclude those before you create the JAR you send to AWS. A Lambda application has
to be shaded, but a Spring Boot standalone application does not, so you can run the same app using
2 separate jars (as per the sample). The sample app creates 2 jar files, one with an aws classifier for
deploying in Lambda, and one executable (thin) jar that includes spring-cloud-function-web at
runtime. Spring Cloud Function will try and locate a "main class" for you from the JAR file manifest,
using the Start-Class attribute (which will be added for you by the Spring Boot tooling if you use
the starter parent). If there is no Start-Class in your manifest you can use an environment variable
or system property MAIN_CLASS when you deploy the function to AWS.

If you are not using the functional bean definitions but relying on Spring Boot’s auto-configuration,
then additional transformers must be configured as part of the maven-shade-plugin execution.

<plugin>
<groupId>org.apache.maven.plugins</groupld>
<artifactId>maven-shade-plugin</artifactId>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</dependency>
</dependencies>
<configuration>
<createDependencyReducedPom>false</createDependencyReducedPom>
<shadedArtifactAttached>true</shadedArtifactAttached>
<shaded(ClassifierName>aws</shadedClassifierName>
<transformers>
<transformer
implementation="org.apache.maven.plugins.shade.resource.AppendingTransformer">
<resource>META-INF/spring.handlers</resource>
</transformer>
<transformer
implementation="org.springframework.boot.maven.PropertiesMergingResourceTransformer">
<resource>META-INF/spring.factories</resource>
</transformer>
<transformer
implementation="org.apache.maven.plugins.shade.resource.AppendingTransformer">
<resource>META-INF/spring.schemas</resource>
</transformer>
</transformers>
</configuration>
</plugin>

10.1.5. Build file setup

In order to run Spring Cloud Function applications on AWS Lambda, you can leverage Maven or
Gradle plugins offered by the cloud platform provider.

Maven

In order to use the adapter plugin for Maven, add the plugin dependency to your pom.xml file:

<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-function-adapter-aws</artifactId>
</dependency>
</dependencies>

As pointed out in the Notes on JAR Layout, you will need a shaded jar in order to upload it to AWS
Lambda. You can use the Maven Shade Plugin for that. The example of the setup can be found
above.

You can use theSpring Boot Maven Plugin to generate the thin jar.

<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<dependencies>
<dependency>
<groupId>org.springframework.boot.experimental</groupIld>
<artifactId>spring-boot-thin-layout</artifactId>
<version>${wrapper.version}</version>
</dependency>
</dependencies>
</plugin>

You can find the entire sample pom. xml file for deploying Spring Cloud Function applications to AWS
Lambda with Maven here.

Gradle
In order to use the adapter plugin for Gradle, add the dependency to your build.gradle file:

dependencies {
compile("org.springframework.cloud:spring-cloud-function-adapter-aws:${version}")

}

As pointed out in Notes on JAR Layout, you will need a shaded jar in order to upload it to AWS
Lambda. You can use the Gradle Shadow Plugin for that:

https://maven.apache.org/plugins/maven-shade-plugin/
https://github.com/spring-cloud/spring-cloud-function/blob/master/spring-cloud-function-samples/function-sample-aws/pom.xml
https://plugins.gradle.org/plugin/com.github.johnrengelman.shadow/

buildscript {
dependencies {
classpath "com.github.jengelman.gradle.plugins:shadow:${shadowPluginVersion}"
}
}

apply plugin: 'com.github.johnrengelman.shadow'
assemble.dependsOn = [shadow]ar]
import com.github.jengelman.gradle.plugins.shadow.transformers.*

shadowl]ar {
classifier = 'aws'
dependencies {
exclude(
dependency("org.springframework.cloud:spring-cloud-function-
web:${springCloudFunctionVersion}"))
}
// Required for Spring
mergeServiceFiles()
append 'META-INF/spring.handlers’
append 'META-INF/spring.schemas’
append 'META-INF/spring.tooling'
transform(PropertiesFileTransformer) {
paths = ["META-INF/spring.factories’]
mergeStrategy = "append"

You can use the Spring Boot Gradle Plugin and Spring Boot Thin Gradle Plugin to generate the thin
jar.

buildscript {
dependencies {
classpath("org.springframework.boot.experimental:spring-boot-thin-gradle-
plugin:${wrapperVersion}")
classpath("org.springframework.boot:spring-boot-gradle-
plugin: ${springBootVersion}")
}
}
apply plugin: 'org.springframework.boot'
apply plugin: 'org.springframework.boot.experimental.thin-launcher'
assemble.dependsOn = [thinJar]

You can find the entire sample build.gradle file for deploying Spring Cloud Function applications to
AWS Lambda with Gradle here.

https://github.com/spring-cloud/spring-cloud-function/blob/master/spring-cloud-function-samples/function-sample-aws/build.gradle

10.1.6. Upload

Build the sample under spring-cloud-function-samples/function-sample-aws and upload the -aws jar
file to Lambda. The handler can be example.Handler or
org.springframework.cloud.function.adapter.aws.SpringBootStreamHandler (FQN of the class, not a
method reference, although Lambda does accept method references).

./mvnw -U clean package
Using the AWS command line tools it looks like this:

aws lambda create-function --function-name Uppercase --role
arn:aws:iam::[USERID]:role/service-role/[ROLE] --zip-file fileb://function-sample-
aws/target/function-sample-aws-2.0.0.BUILD-SNAPSHOT-aws.jar --handler
org.springframework.cloud.function.adapter.aws.SpringBootStreamHandler --description
"Spring Cloud Function Adapter Example" --runtime java8 --region us-east-1 --timeout
30 --memory-size 1024 --publish

The input type for the function in the AWS sample is a Foo with a single property called "value". So
you would need this to test it:

"value": "test"

The AWS sample app 1is written in the "functional" style (as an

o ApplicationContextInitializer). This is much faster on startup in Lambda than the
traditional @Bean style, so if you don’t need @Beans (or @EnableAutoConfiguration) it’s
a good choice. Warm starts are not affected.

10.1.7. Type Conversion

Spring Cloud Function will attempt to transparently handle type conversion between the raw input
stream and types declared by your function.

For example, if your function signature is as such Function<Foo, Bar> we will attempt to convert
incoming stream event to an instance of Foo.

In the event type is not known or can not be determined (e.g., Function<?, 7>) we will attempt to
convert an incoming stream event to a generic Map.

Raw Input

There are times when you may want to have access to a raw input. In this case all you need is to
declare your function signature to accept InputStream. For example, Function<InputStream, ?7>. In
this case we will not attempt any conversion and will pass the raw input directly to a function.

10.2. Microsoft Azure

The Azure adapter bootstraps a Spring Cloud Function context and channels function calls from the
Azure framework into the user functions, using Spring Boot configuration where necessary. Azure
Functions has quite a unique and invasive programming model, involving annotations in user code
that are specific to the Azure platform. However, it is important to understand that because of the
style of integration provided by Spring Cloud Function, specifically
org.springframework.cloud.function.adapter.azure.FunctionInvoker, this annotation-based
programming model is simply a type-safe way to configure your simple java function (function that
has no awareness of Azure) to be recognized as Azure function. All you need to do is create a
handler that extends FunctionInvoker, define and configure your function handler method and
make a callback to handleRequest(..) method. This handler method provides input and output types
as annotated method parameters (enabling Azure to inspect the class and create JSON bindings).

public class UppercaseHandler extends FunctionInvoker<Message<String>, String> {

@FunctionName("uppercase")
public String execute(@HttpTrigger(name = "req", methods = {HttpMethod.GET,
HttpMethod.POST}, authLevel = AuthorizationLevel.ANONYMOUS)
HttpRequestMessage<Optional<String>> request,

ExecutionContext context) {

Message<String> message =
MessageBuilder.withPayload(request.getBody().get()).copyHeaders(request.getHeaders()).
build();

return handleRequest(message, context);

}

Note that aside form providing configuration via Azure annotation we create an instance of Message
inside the body of this handler method and make a callback to handleRequest(..) method returning
its result.

The actual user function you’re delagating to looks like this

@Bean
public Function<String, String> uppercase() {
return payload -> payload.toUpperCase();

}

OR

@Bean
public Function<Message<String>, String> uppercase() {
return message -> message.getPayload().toUpperCase();

}

Note that when creating a Message you can copy HTTP headers effectively making them available

https://azure.microsoft.com

to you if necessary.

The org.springframework.cloud.function.adapter.azure.FunctionInvoker class has two useful
methods (handleRequest and handleOutput) to which you can delegate the actual function call, so
mostly the function will only ever have one line.

The function name (definition) will be retrieved from Azure’s ExecutionContext.getFunctionName()
method, effectively supporting multiple function in the application context.

10.2.1. Accessing Azure ExecutionContext

Some time there is a need to access the target execution context provided by the Azure runtime in
the form of com.microsoft.azure.functions.ExecutionContext. For example one of such needs is
logging, so it can appear in the Azure console.

For that purpose the FunctionInvoker will add an instance of the ExecutionContext as a Message
header so you can retrieve it via executionContext key.

@Bean
public Function<Message<String>, String> uppercase(JsonMapper mapper) {
return message -> {
String value = message.getPayload();
ExecutionContext context = (ExecutionContext)
message.getHeaders().get("executionContext");

}

10.2.2. Notes on JAR Layout

You don’t need the Spring Cloud Function Web at runtime in Azure, so you can exclude this before
you create the JAR you deploy to Azure, but it won’t be used if you include it, so it doesn’t hurt to
leave it in. A function application on Azure is an archive generated by the Maven plugin. The
function lives in the JAR file generated by this project. The sample creates it as an executable jar,
using the thin layout, so that Azure can find the handler classes. If you prefer you can just use a
regular flat JAR file. The dependencies should not be included.

10.2.3. Build file setup

In order to run Spring Cloud Function applications on Microsoft Azure, you can leverage the Maven
plugin offered by the cloud platform provider.

In order to use the adapter plugin for Maven, add the plugin dependency to your pom.xml file:

<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-function-adapter-azure</artifactId>
</dependency>
</dependencies>

Then, configure the plugin. You will need to provide Azure-specific configuration for your
application, specifying the resourceGroup, appName and other optional properties, and add the package
goal execution so that the function.json file required by Azure is generated for you. Full plugin
documentation can be found in the plugin repository.

<plugin>
<groupId>com.microsoft.azure</groupld>
<artifactId>azure-functions-maven-plugin</artifactId>
<configuration>
<resourceGroup>${functionResourceGroup}</resourceGroup>
<appName>${functionAppName}</appName>
</confiquration>
<executions>
<execution>
<id>package-functions</id>
<goals>
<goal>package</goal>
</goals>
</execution>
</executions>
</plugin>

You will also have to ensure that the files to be scanned by the plugin can be found in the Azure
functions staging directory (see the plugin repository for more details on the staging directory and
it’s default location).

You can find the entire sample pom.xml file for deploying Spring Cloud Function applications to
Microsoft Azure with Maven here.

o As of yet, only Maven plugin is available. Gradle plugin has not been created by the
cloud platform provider.

10.2.4. Build

./mvnw -U clean package

10.2.5. Running the sample

You can run the sample locally, just like the other Spring Cloud Function samples:

https://github.com/microsoft/azure-maven-plugins
https://github.com/microsoft/azure-maven-plugins
https://github.com/spring-cloud/spring-cloud-function/blob/master/spring-cloud-function-samples/function-sample-azure/pom.xml

and curl -H "Content-Type: text/plain" 1localhost:8080/api/uppercase -d '{"value": "hello
foobar"}'.

You will need the az CLI app (see docs.microsoft.com/en-us/azure/azure-functions/functions-create-
first-java-maven for more detail). To deploy the function on Azure runtime:

$ az login
$ mvn azure-functions:deploy

On another terminal try this: curl <azure-function-url-from-the-log>/api/uppercase -d '{"value":
"hello foobar!"}'. Please ensure that you use the right URL for the function above. Alternatively
you can test the function in the Azure Dashboard UI (click on the function name, go to the right
hand side and click "Test" and to the bottom right, "Run").

The input type for the function in the Azure sample is a Foo with a single property called "value". So
you need this to test it with something like below:

{

"value": "foobar"

The Azure sample app is written in the "non-functional" style (using @Bean). The
functional style (with just Function or ApplicationContextInitializer) is much

o faster on startup in Azure than the traditional @Bean style, so if you don’t need
@Beans (or @EnableAutoConfiguration) it’s a good choice. Warm starts are not
affected. :branch: master

10.3. Google Cloud Functions

The Google Cloud Functions adapter enables Spring Cloud Function apps to run on the Google
Cloud Functions serverless platform. You can either run the function locally using the open source
Google Functions Framework for Java or on GCP.

10.3.1. Project Dependencies

Start by adding the spring-cloud-function-adapter-gcp dependency to your project.

<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-function-adapter-gcp</artifactId>
</dependency>

</dependencies>

https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-java-maven
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-java-maven
https://<azure-function-url-from-the-log>/api/uppercase
https://cloud.google.com/functions
https://cloud.google.com/functions
https://github.com/GoogleCloudPlatform/functions-framework-java

In addition, add the spring-boot-maven-plugin which will build the JAR of the function to deploy.

Notice that we also reference spring-cloud-function-adapter-gcp as a dependency

o of the spring-boot-maven-plugin. This is necessary because it modifies the plugin to
package your function in the correct JAR format for deployment on Google Cloud
Functions.
<plugin>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<configuration>
<outputDirectory>target/deploy</outputDirectory>
</configuration>
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-function-adapter-gcp</artifactId>
</dependency>
</dependencies>
</plugin>

Finally, add the Maven plugin provided as part of the Google Functions Framework for Java. This
allows you to test your functions locally via mvn function:run.

The function target should always be set to

o org.springframework.cloud.function.adapter.gcp.GefJarLauncher; this is an adapter
class which acts as the entry point to your Spring Cloud Function from the Google
Cloud Functions platform.

<plugin>
<groupId>com.google.cloud.functions</groupIld>
<artifactId>function-maven-plugin</artifactId>
<version>0.9.1</version>
<configuration>

<functionTarget>org.springframework.cloud.function.adapter.gcp.GefJarLauncher</functio
nTarget>
<port>8080</port>
</confiquration>
</plugin>

A full example of a working pom.xml can be found in the Spring Cloud Functions GCP sample.

10.3.2. HTTP Functions

Google Cloud Functions supports deploying HTTP Functions, which are functions that are invoked
by HTTP request. The sections below describe instructions for deploying a Spring Cloud Function as

https://github.com/spring-cloud/spring-cloud-function/blob/master/spring-cloud-function-samples/function-sample-gcp-http/pom.xml
https://cloud.google.com/functions/docs/writing/http

an HTTP Function.

Getting Started

Let’s start with a simple Spring Cloud Function example:

@SpringBootApplication
public class CloudFunctionMain {

public static void main(String[] args) {

SpringApplication.run(CloudFunctionMain.class, args);

}

@Bean
public Function<String, String> uppercase() {
return value -> value.toUpperCase();

}

Specify your configuration main class in resources/META-INF/MANIFEST.MF.

Main-Class: com.example.CloudFunctionMain

Then run the function locally. This is provided by the Google Cloud Functions function-maven-plugin
described in the project dependencies section.

mvn function:run

Invoke the HTTP function:

curl http://localhost:8080/ -d "hello"

Deploy to GCP

Start by packaging your application.

mvn package

If you added the custom spring-boot-maven-plugin plugin defined above, you should see the
resulting JAR in target/deploy directory. This JAR is correctly formatted for deployment to Google
Cloud Functions.

Next, make sure that you have the Cloud SDK CLI installed.

From the project base directory run the following command to deploy.

https://cloud.google.com/sdk/install

gcloud functions deploy function-sample-gcp-http \

--entry-point org.springframework.cloud.function.adapter.gcp.GecfJarLauncher \
--runtime javall \

--trigger-http \

--source target/deploy \

--memory 512MB

Invoke the HTTP function:

curl https://REGION-PROJECT_ID.cloudfunctions.net/function-sample-gcp-http -d "hello"

10.3.3. Background Functions

Google Cloud Functions also supports deploying Background Functions which are invoked
indirectly in response to an event, such as a message on a Cloud Pub/Sub topic, a change in a Cloud
Storage bucket, or a Firebase event.

The spring-cloud-function-adapter-gcp allows for functions to be deployed as background functions
as well.

The sections below describe the process for writing a Cloud Pub/Sub topic background function.
However, there are a number of different event types that can trigger a background function to
execute which are not discussed here; these are described in the Background Function triggers
documentation.

Getting Started

Let’s start with a simple Spring Cloud Function which will run as a GCF background function:

@SpringBootApplication
public class BackgroundFunctionMain {

public static void main(String[] args) {
SpringApplication.run(BackgroundFunctionMain.class, args);

}

@Bean
public Consumer<PubSubMessage> pubSubFunction() {
return message -> System.out.println("The Pub/Sub message data:
message.getData());

}

+

}

In addition, create PubSubMessage class in the project with the below definition. This class represents
the Pub/Sub event structure which gets passed to your function on a Pub/Sub topic event.

https://cloud.google.com/functions/docs/writing/background
https://cloud.google.com/pubsub
https://cloud.google.com/storage
https://cloud.google.com/storage
https://firebase.google.com/
https://cloud.google.com/functions/docs/calling
https://cloud.google.com/functions/docs/calling
https://cloud.google.com/functions/docs/calling/pubsub#event_structure

public class PubSubMessage {
private String data;
private Map<String, String> attributes;
private String messageld;
private String publishTime;

public String getData() {
return data;

}

public void setData(String data) {
this.data = data;
}

public Map<String, String> getAttributes() {
return attributes;

}

public void setAttributes(Map<String, String> attributes) {
this.attributes = attributes;

}

public String getMessageId() {
return messageld;

}

public void setMessageId(String messageld) {
this.messageld = messageld;

}

public String getPublishTime() {
return publishTime;

}

public void setPublishTime(String publishTime) {
this.publishTime = publishTime;
}

Specify your configuration main class in resources/META-INF/MANIFEST.MF.

Main-Class: com.example.BackgroundFunctionMain

Then run the function locally. This is provided by the Google Cloud Functions function-maven-plugin
described in the project dependencies section.

mvn function:run
Invoke the HTTP function:
curl localhost:8080 -H "Content-Type: application/json" -d '{"data":"hello"}'

Verify that the function was invoked by viewing the logs.

Deploy to GCP

In order to deploy your background function to GCP, first package your application.
mvn package

If you added the custom spring-boot-maven-plugin plugin defined above, you should see the
resulting JAR in target/deploy directory. This JAR is correctly formatted for deployment to Google
Cloud Functions.

Next, make sure that you have the Cloud SDK CLI installed.

From the project base directory run the following command to deploy.

gcloud functions deploy function-sample-gcp-background \

--entry-point org.springframework.cloud.function.adapter.gcp.GefJarLauncher \
--runtime javall \

--trigger-topic my-functions-topic \

--source target/deploy \

--memory 512MB

Google Cloud Function will now invoke the function every time a message is published to the topic
specified by --trigger-topic.

For a walkthrough on testing and verifying your background function, see the instructions for
running the GCF Background Function sample.

10.3.4. Sample Functions
The project provides the following sample functions as reference:

* The function-sample-gcp-http is an HTTP Function which you can test locally and try deploying.

* The function-sample-gcp-background shows an example of a background function that is
triggered by a message being published to a specified Pub/Sub topic.

https://cloud.google.com/sdk/install
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-samples/function-sample-gcp-background/
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-samples/function-sample-gcp-http/
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-samples/function-sample-gcp-background/

Spring Cloud Gateway

2021.0.3

This project provides an API Gateway built on top of the Spring Ecosystem, including: Spring 5,
Spring Boot 2 and Project Reactor. Spring Cloud Gateway aims to provide a simple, yet effective way
to route to APIs and provide cross cutting concerns to them such as: security, monitoring/metrics,
and resiliency.

1. How to Include Spring Cloud Gateway

To include Spring Cloud Gateway in your project, use the starter with a group ID of
org.springframework.cloud and an artifact ID of spring-cloud-starter-gateway. See the Spring Cloud
Project page for details on setting up your build system with the current Spring Cloud Release
Train.

If you include the starter, but you do not want the gateway to be enabled, set
spring.cloud.gateway.enabled=false.

Spring Cloud Gateway is built on Spring Boot 2.x, Spring WebFlux, and Project
Reactor. As a consequence, many of the familiar synchronous libraries (Spring

o Data and Spring Security, for example) and patterns you know may not apply
when you use Spring Cloud Gateway. If you are unfamiliar with these projects, we
suggest you begin by reading their documentation to familiarize yourself with
some of the new concepts before working with Spring Cloud Gateway.

Spring Cloud Gateway requires the Netty runtime provided by Spring Boot and
o Spring Webflux. It does not work in a traditional Servlet Container or when built
as a WAR.

2. Glossary

* Route: The basic building block of the gateway. It is defined by an ID, a destination URI, a
collection of predicates, and a collection of filters. A route is matched if the aggregate predicate
is true.

* Predicate: This is a Java 8 Function Predicate. The input type is a Spring Framework
ServerlWlebExchange. This lets you match on anything from the HTTP request, such as headers or
parameters.

* Filter: These are instances of GatewayFilter that have been constructed with a specific factory.
Here, you can modify requests and responses before or after sending the downstream request.

3. How It Works

The following diagram provides a high-level overview of how Spring Cloud Gateway works:

https://projects.spring.io/spring-cloud/
https://projects.spring.io/spring-cloud/
https://spring.io/projects/spring-boot#learn
https://docs.spring.io/spring/docs/current/spring-framework-reference/web-reactive.html
https://projectreactor.io/docs
https://projectreactor.io/docs
https://docs.oracle.com/javase/8/docs/api/java/util/function/Predicate.html
https://docs.spring.io/spring/docs/5.0.x/javadoc-api/org/springframework/web/server/ServerWebExchange.html
https://docs.spring.io/spring/docs/5.0.x/javadoc-api/org/springframework/web/server/ServerWebExchange.html
https://github.com/spring-cloud/spring-cloud/tree/a331ef4c182a2cdf6a745de93d5a234f4e7875b7/spring-cloud-gateway-server/src/main/java/org/springframework/cloud/gateway/filter/GatewayFilter.java

[Spring Cloud Gateway Diagram] | spring cloud_gateway_diagram.png

Clients make requests to Spring Cloud Gateway. If the Gateway Handler Mapping determines that a
request matches a route, it is sent to the Gateway Web Handler. This handler runs the request
through a filter chain that is specific to the request. The reason the filters are divided by the dotted
line is that filters can run logic both before and after the proxy request is sent. All “pre” filter logic
is executed. Then the proxy request is made. After the proxy request is made, the “post” filter logic
is run.

o URIs defined in routes without a port get default port values of 80 and 443 for the
HTTP and HTTPS URIs, respectively.

4. Configuring Route Predicate Factories and
Gateway Filter Factories

There are two ways to configure predicates and filters: shortcuts and fully expanded arguments.
Most examples below use the shortcut way.

The name and argument names will be listed as code in the first sentance or two of the each section.
The arguments are typically listed in the order that would be needed for the shortcut configuration.

4.1. Shortcut Configuration

Shortcut configuration is recognized by the filter name, followed by an equals sign (=), followed by
argument values separated by commas (,).

application.yml

spring:
cloud:
gateway:
routes:
- id: after_route
uri: https://example.org
predicates:
- Cookie=mycookie,mycookievalue

The previous sample defines the Cookie Route Predicate Factory with two arguments, the cookie
name, mycookie and the value to match mycookievalue.

4.2. Fully Expanded Arguments

Fully expanded arguments appear more like standard yaml configuration with name/value pairs.
Typically, there will be a name key and an args key. The args key is a map of key value pairs to
configure the predicate or filter.

application.yml

spring:
cloud:
gateway:
routes:
- id: after_route
uri: https://example.org
predicates:
- name: Cookie
args:
name: mycookie
regexp: mycookievalue

This is the full configuration of the shortcut configuration of the Cookie predicate shown above.

5. Route Predicate Factories

Spring Cloud Gateway matches routes as part of the Spring WebFlux HandlerMapping infrastructure.
Spring Cloud Gateway includes many built-in route predicate factories. All of these predicates
match on different attributes of the HTTP request. You can combine multiple route predicate
factories with logical and statements.

5.1. The After Route Predicate Factory

The After route predicate factory takes one parameter, a datetime (which is a java ZonedDateTime).
This predicate matches requests that happen after the specified datetime. The following example
configures an after route predicate:

Example 6. application.yml

spring:
cloud:
gateway:
routes:
- id: after_route
uri: https://example.org
predicates:
- After=2017-01-20T17:42:47.789-07:00[America/Denver]

This route matches any request made after Jan 20, 2017 17:42 Mountain Time (Denver).

5.2. The Before Route Predicate Factory

The Before route predicate factory takes one parameter, a datetime (which is a java ZonedDateTime).
This predicate matches requests that happen before the specified datetime. The following example

configures a before route predicate:

Example 7. application.yml

spring:
cloud:
gateway:
routes:
- id: before_route
uri: https://example.org
predicates:
- Before=2017-01-20T17:42:47.789-07:00[America/Denver]

This route matches any request made before Jan 20, 2017 17:42 Mountain Time (Denver).

5.3. The Between Route Predicate Factory

The Between route predicate factory takes two parameters, datetimel and datetime2 which are java
ZonedDateTime objects. This predicate matches requests that happen after datetimel and before
datetime2. The datetime2 parameter must be after datetimel. The following example configures a
between route predicate:

Example 8. application.yml

spring:
cloud:
gateway:
routes:
- id: between_route
uri: https://example.org
predicates:
- Between=2017-01-20T17:42:47.789-07:00[America/Denver], 2017-01-
21T17:42:47.789-07:00[America/Denver]

This route matches any request made after Jan 20, 2017 17:42 Mountain Time (Denver) and before
Jan 21, 2017 17:42 Mountain Time (Denver). This could be useful for maintenance windows.

5.4. The Cookie Route Predicate Factory

The Cookie route predicate factory takes two parameters, the cookie name and a regexp (which is a
Java regular expression). This predicate matches cookies that have the given name and whose
values match the regular expression. The following example configures a cookie route predicate
factory:

Example 9. application.yml

spring:
cloud:
gateway:
routes:
- id: cookie_route
uri: https://example.org
predicates:
- Cookie=chocolate, ch.p

This route matches requests that have a cookie named chocolate whose value matches the ch.p
regular expression.

5.5. The Header Route Predicate Factory

The Header route predicate factory takes two parameters, the header and a regexp (which is a Java
regular expression). This predicate matches with a header that has the given name whose value
matches the regular expression. The following example configures a header route predicate:

Example 10. application.yml

spring:
cloud:
gateway:
routes:
- id: header_route
uri: https://example.org
predicates:
- Header=X-Request-Id, \d+

This route matches if the request has a header named X-Request-Id whose value matches the \d+
regular expression (that is, it has a value of one or more digits).

5.6. The Host Route Predicate Factory

The Host route predicate factory takes one parameter: a list of host name patterns. The pattern is an
Ant-style pattern with . as the separator. This predicates matches the Host header that matches the
pattern. The following example configures a host route predicate:

Example 11. application.yml

spring:
cloud:
gateway:
routes:
- id: host_route
uri: https://example.org
predicates:
- Host=**.somehost.org,**.anotherhost.org

URI template variables (such as {sub}.myhost.org) are supported as well.

This route matches if the request has a Host header with a value of www.somehost.org or
beta.somehost.org or www.anotherhost.org

This predicate extracts the URI template variables (such as sub, defined in the preceding example)
as a map of names and values and places it in the ServerWebExchange.getAttributes() with a key
defined in ServerWebExchangeUtils.URI_TEMPLATE_VARIABLES_ATTRIBUTE. Those values are then
available for use by GatewayFilter factories

5.7. The Method Route Predicate Factory

The Method Route Predicate Factory takes a methods argument which is one or more parameters: the
HTTP methods to match. The following example configures a method route predicate:

Example 12. application.yml

spring:
cloud:
gateway:
routes:
- id: method route
uri: https://example.org
predicates:
- Method=GET, POST

This route matches if the request method was a GET or a POST.

5.8. The Path Route Predicate Factory

The Path Route Predicate Factory takes two parameters: a list of Spring PathMatcher patterns and an
optional flag called matchTrailingSlash (defaults to true). The following example configures a path
route predicate:

Example 13. application.yml

spring:
cloud:
gateway:
routes:
- id: path_route
uri: https://example.org
predicates:
- Path=/red/{segment},/blue/{segment}

This route matches if the request path was, for example: /red/1 or /red/1/ or /red/blue or
/blue/green.

If matchTrailingSlash is set to false, then request path /red/1/ will not be matched.

This predicate extracts the URI template variables (such as segment, defined in the preceding
example) as a map of names and values and places it in the ServerWebExchange.getAttributes() with
a key defined in ServerWebExchangeUtils.URI_TEMPLATE_VARIABLES_ATTRIBUTE. Those values are then
available for use by GatewayFilter factories

A utility method (called get) is available to make access to these variables easier. The following
example shows how to use the get method:

Map<String, String> uriVariables =
ServerWebExchangeUtils.getPathPredicateVariables(exchange);

String segment = uriVariables.get("segment");

5.9. The Query Route Predicate Factory

The Query route predicate factory takes two parameters: a required param and an optional regexp
(which is a Java regular expression). The following example configures a query route predicate:

Example 14. application.yml

spring:
cloud:
gateway:
routes:
- id: query_route
uri: https://example.org
predicates:
- Query=green

The preceding route matches if the request contained a green query parameter.

application.yml

spring:
cloud:
gateway:
routes:
- id: query_route
uri: https://example.org
predicates:
- Query=red, gree.

The preceding route matches if the request contained a red query parameter whose value matched
the gree. regexp, so green and greet would match.

5.10. The RemoteAddr Route Predicate Factory

The RemoteAddr route predicate factory takes a list (min size 1) of sources, which are CIDR-notation
(IPv4 or IPv6) strings, such as 192.168.0.1/16 (where 192.168.0.1 is an IP address and 16 is a subnet
mask). The following example configures a RemoteAddr route predicate:

Example 15. application.yml

spring:
cloud:
gateway:
routes:
- id: remoteaddr_route
uri: https://example.org
predicates:
- RemoteAddr=192.168.1.1/24

This route matches if the remote address of the request was, for example, 192.168.1.10.

5.10.1. Modifying the Way Remote Addresses Are Resolved

By default, the RemoteAddr route predicate factory uses the remote address from the incoming
request. This may not match the actual client IP address if Spring Cloud Gateway sits behind a
proxy layer.

You can customize the way that the remote address is resolved by setting a custom
RemoteAddressResolver. Spring Cloud Gateway comes with one non-default remote address resolver
that is based off of the X-Forwarded-For header, XForwardedRemoteAddressResolver.

XForwardedRemoteAddressResolver has two static constructor methods, which take different
approaches to security:

» XForwardedRemoteAddressResolver::trustAll returns a RemoteAddressResolver that always takes
the first IP address found in the X-Forwarded-For header. This approach is vulnerable to
spoofing, as a malicious client could set an initial value for the X-Forwarded-For, which would be
accepted by the resolver.

» XForwardedRemoteAddressResolver::maxTrustedIndex takes an index that correlates to the number
of trusted infrastructure running in front of Spring Cloud Gateway. If Spring Cloud Gateway is,
for example only accessible through HAProxy, then a value of 1 should be used. If two hops of
trusted infrastructure are required before Spring Cloud Gateway is accessible, then a value of 2
should be used.

Consider the following header value:

X-Forwarded-For: 0.0.0.1, 0.0.0.2, 0.0.0.3

The following maxTrustedIndex values yield the following remote addresses:

maxTrustedIndex result

[Integer.MIN_VALUE,O] (invalid, I1legalArgumentException during
initialization)

1 0.0.0.3

2 0.0.0.2

3 0.0.0.1

[4, Integer.MAX_VALUE] 0.0.0.1

The following example shows how to achieve the same configuration with Java:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Forwarded-For

Example 16. GatewayConfig.java

RemoteAddressResolver resolver = XForwardedRemoteAddressResolver
.maxTrustedIndex(1);

.route("direct-route",
r -> r.remoteAddr("10.1.7.1", "10.10.1.1/24")
.uri("https://downstream1™)
.route("proxied-route",
r -> r.remoteAddr(resolver, "10.10.1.1", "10.10.1.1/24")
.uri("https://downstream2")

5.11. The Weight Route Predicate Factory

The Weight route predicate factory takes two arguments: group and weight (an int). The weights are
calculated per group. The following example configures a weight route predicate:

Example 17. application.yml

spring:
cloud:
gateway:
routes:
- id: weight_high
uri: https://weighthigh.org
predicates:
- Weight=group1, 8
- id: weight_low
uri: https://weightlow.org
predicates:
- Weight=group1, 2

This route would forward ~80% of traffic to weighthigh.org and ~20% of traffic to weighlow.org

5.12. The XForwarded Remote Addr Route Predicate
Factory

The XForwarded Remote Addr route predicate factory takes a list (min size 1) of sources, which are
CIDR-notation (IPv4 or IPv6) strings, such as 192.168.0.1/16 (where 192.168.0.1 is an IP address and
16 is a subnet mask).

https://weighthigh.org
https://weighlow.org

This route predicate allows requests to be filtered based on the X-Forwarded-For HTTP header.

This can be used with reverse proxies such as load balancers or web application firewalls where
the request should only be allowed if it comes from a trusted list of IP addresses used by those
reverse proxies.

The following example configures a XForwardedRemoteAddr route predicate:

Example 18. application.yml

spring:
cloud:
gateway:
routes:
- id: xforwarded_remoteaddr_route
uri: https://example.org
predicates:
- XForwardedRemoteAddr=192.168.1.1/24

This route matches if the X-Forwarded-For header contains, for example, 192.168.1.10.

6. GatewayFilter Factories

Route filters allow the modification of the incoming HTTP request or outgoing HTTP response in
some manner. Route filters are scoped to a particular route. Spring Cloud Gateway includes many
built-in GatewayFilter Factories.

o For more detailed examples of how to use any of the following filters, take a look
at the unit tests.

6.1. The AddRequestHeader GatewayFilter Factory

The AddRequestHeader GatewayFilter factory takes a name and value parameter. The following
example configures an AddRequestHeader GatewayFilter:

https://github.com/spring-cloud/spring-cloud-gateway/tree/master/spring-cloud-gateway-server/src/test/java/org/springframework/cloud/gateway/filter/factory

Example 19. application.yml

spring:
cloud:
gateway:
routes:
- id: add_request_header_route
uri: https://example.org
filters:
- AddRequestHeader=X-Request-red, blue

This listing adds X-Request-red:blue header to the downstream request’s headers for all matching
requests.

AddRequestHeader is aware of the URI variables used to match a path or host. URI variables may be
used in the value and are expanded at runtime. The following example configures an
AddRequestHeader GatewayFilter that uses a variable:

Example 20. application.yml

spring:
cloud:
gateway:
routes:
- id: add_request_header_route
uri: https://example.org
predicates:
- Path=/red/{segment}
filters:
- AddRequestHeader=X-Request-Red, Blue-{segment}

6.2. The AddRequestParameter GatewayFilter Factory

The AddRequestParameter GatewayFilter Factory takes a name and value parameter. The following
example configures an AddRequestParameter GatewayFilter:

Example 21. application.yml

spring:
cloud:
gateway:

routes:

- id: add_request_parameter_route
uri: https://example.org
filters:

- AddRequestParameter=red, blue

This will add red=blue to the downstream request’s query string for all matching requests.

AddRequestParameter is aware of the URI variables used to match a path or host. URI variables may
be used in the value and are expanded at runtime. The following example configures an
AddRequestParameter GatewayFilter that uses a variable:

Example 22. application.yml

spring:
cloud:
gateway:
routes:
- id: add_request_parameter_route
uri: https://example.org
predicates:
- Host: {segment}.myhost.org
filters:
- AddRequestParameter=foo, bar-{segment}

6.3. The AddResponseHeader GatewayFilter Factory

The AddResponseHeader GatewayFilter Factory takes a name and value parameter. The following
example configures an AddResponseHeader GatewayFilter:

Example 23. application.yml

spring:
cloud:
gateway:
routes:
- id: add_response_header_route
uri: https://example.org
filters:
- AddResponseHeader=X-Response-Red, Blue

This adds X-Response-Red:Blue header to the downstream response’s headers for all matching
requests.

AddResponseHeader is aware of URI variables used to match a path or host. URI variables may be used
in the value and are expanded at runtime. The following example configures an AddResponseHeader
GatewayFilter that uses a variable:

Example 24. application.yml

spring:
cloud:
gateway:
routes:
- id: add_response_header_route
uri: https://example.org
predicates:
- Host: {segment}.myhost.org
filters:
- AddResponseHeader=foo, bar-{segment}

6.4. The DedupeResponseHeader GatewayFilter Factory

The DedupeResponseHeader GatewayFilter factory takes a name parameter and an optional strategy
parameter. name can contain a space-separated list of header names. The following example
configures a DedupeResponseHeader GatewayFilter:

Example 25. application.yml

spring:
cloud:
gateway:
routes:
- id: dedupe_response_header_route
uri: https://example.org
filters:
- DedupeResponseHeader=Access-Control-Allow-Credentials Access-Control-
Allow-0Origin

This removes duplicate values of Access-Control-Allow-Credentials and Access-Control-Allow-
Origin response headers in cases when both the gateway CORS logic and the downstream logic add
them.

The DedupeResponseHeader filter also accepts an optional strategy parameter. The accepted values
are RETAIN_FIRST (default), RETAIN_LAST, and RETAIN_UNIQUE.

6.5. Spring Cloud CircuitBreaker GatewayFilter
Factory

The Spring Cloud CircuitBreaker GatewayFilter factory uses the Spring Cloud CircuitBreaker APIs to
wrap Gateway routes in a circuit breaker. Spring Cloud CircuitBreaker supports multiple libraries
that can be used with Spring Cloud Gateway. Spring Cloud supports Resilience4] out of the box.

To enable the Spring Cloud CircuitBreaker filter, you need to place spring-cloud-starter-
circuitbreaker-reactor-resilience4j on the classpath. The following example configures a Spring
Cloud CircuitBreaker GatewayFilter:

Example 26. application.yml

spring:
cloud:
gateway:
routes:
- id: circuitbreaker_route
uri: https://example.org
filters:
- CircuitBreaker=myCircuitBreaker

To configure the circuit breaker, see the configuration for the underlying circuit breaker
implementation you are using.

* Resilience4] Documentation

https://cloud.spring.io/spring-cloud-circuitbreaker/reference/html/spring-cloud-circuitbreaker.html

The Spring Cloud CircuitBreaker filter can also accept an optional fallbackUri parameter. Currently,
only forward: schemed URIs are supported. If the fallback is called, the request is forwarded to the
controller matched by the URI. The following example configures such a fallback:

Example 27. application.yml

spring:
cloud:
gateway:
routes:
- id: circuitbreaker_route
uri: 1b://backing-service:8088
predicates:
- Path=/consumingServiceEndpoint
filters:
- name: CircuitBreaker
args:
name: myCircuitBreaker
fallbackUri: forward:/inCaseOfFailureUseThis
- RewritePath=/consumingServiceEndpoint, /backingServiceEndpoint

The following listing does the same thing in Java:

Example 28. Application.java

@Bean
public Routelocator routes(RoutelocatorBuilder builder) {
return builder.routes()
.route("circuitbreaker_route", r -> r.path("/consumingServiceEndpoint")
.filters(f -> f.circuitBreaker(c ->
c.name("myCircuitBreaker").fallbackUri("forward:/inCaseOfFailureUseThis"))
.rewritePath("/consumingServiceEndpoint",
"/backingServiceEndpoint")).uri("1b://backing-service:8088")
.build();
}

This example forwards to the /inCaseofFailureUseThis URI when the circuit breaker fallback is
called. Note that this example also demonstrates the (optional) Spring Cloud LoadBalancer load-
balancing (defined by the 1b prefix on the destination URI).

The primary scenario is to use the fallbackUri to define an internal controller or handler within the
gateway application. However, you can also reroute the request to a controller or handler in an
external application, as follows:

Example 29. application.yml

spring:
cloud:
gateway:
routes:
- id: ingredients
uri: 1b://ingredients
predicates:
- Path=//ingredients/**
filters:
- name: CircuitBreaker
args:
name: fetchIngredients
fallbackUri: forward:/fallback
- id: ingredients-fallback
uri: http://localhost:9994
predicates:
- Path=/fallback

In this example, there is no fallback endpoint or handler in the gateway application. However,
there is one in another application, registered under localhost:9994.

In case of the request being forwarded to fallback, the Spring Cloud CircuitBreaker Gateway filter
also provides the Throwable that has caused it. It is added to the ServerWebExchange as the
ServerWebExchangeUtils.CIRCUITBREAKER_EXECUTION_EXCEPTION_ATTR attribute that can be used when
handling the fallback within the gateway application.

For the external controller/handler scenario, headers can be added with exception details. You can
find more information on doing so in the FallbackHeaders GatewayFilter Factory section.

6.5.1. Tripping The Circuit Breaker On Status Codes

In some cases you might want to trip a circuit breaker based on the status code returned from the
route it wraps. The circuit breaker config object takes a list of status codes that if returned will
cause the the circuit breaker to be tripped. When setting the status codes you want to trip the
circuit breaker you can either use a integer with the status code value or the String representation
of the HttpStatus enumeration.

http://localhost:9994

Example 30. application.yml

spring:
cloud:
gateway:
routes:
- id: circuitbreaker_route
uri: 1b://backing-service:8088
predicates:
- Path=/consumingServiceEndpoint
filters:
- name: CircuitBreaker
args:
name: myCircuitBreaker
fallbackUri: forward:/inCaseOfFailureUseThis
statusCodes:
- 500
- "NOT_FOUND"

Example 31. Application.java

@Bean
public Routelocator routes(RoutelLocatorBuilder builder) {
return builder.routes()
.route("circuitbreaker_route", r -> r.path("/consumingServiceEndpoint")
.filters(f -> f.circuitBreaker(c ->
c.name("myCircuitBreaker").fallbackUri("forward:/inCaseOfFailureUseThis").addStatu
sCode("INTERNAL_SERVER_ERROR"))
.rewritePath("/consumingServiceEndpoint",

"/backingServiceEndpoint")).uri("1b://backing-service:8088")

.build();
+

6.6. The FallbackHeaders GatewayFilter Factory

The FallbackHeaders factory lets you add Spring Cloud CircuitBreaker execution exception details in
the headers of a request forwarded to a fallbackUri in an external application, as in the following
scenario:

Example 32. application.yml

spring:
cloud:
gateway:
routes:
- id: ingredients
uri: 1b://ingredients
predicates:
- Path=//ingredients/**
filters:
- name: CircuitBreaker
args:
name: fetchIngredients
fallbackUri: forward:/fallback
- id: ingredients-fallback
uri: http://localhost:9994
predicates:
- Path=/fallback
filters:
- name: FallbackHeaders
args:
executionExceptionTypeHeaderName: Test-Header

In this example, after an execution exception occurs while running the circuit breaker, the request
is forwarded to the fallback endpoint or handler in an application running on localhost:9994. The
headers with the exception type, message and (if available) root cause exception type and message
are added to that request by the FallbackHeaders filter.

You can overwrite the names of the headers in the configuration by setting the values of the
following arguments (shown with their default values):
e executionExceptionTypeHeaderName ("Execution-Exception-Type")
» executionExceptionMessageHeaderName ("Execution-Exception-Message")
 rootCauseExceptionTypeHeaderName ("Root-Cause-Exception-Type")
* rootCauseExceptionMessageHeaderName ("Root-Cause-Exception-Message")

For more information on circuit breakers and the gateway see the Spring Cloud CircuitBreaker
Factory section.

6.7. The MapRequestHeader GatewayFilter Factory

The MapRequestHeader GatewayFilter factory takes fromHeader and toHeader parameters. It creates a
new named header (toHeader), and the value is extracted out of an existing named header
(fromHeader) from the incoming http request. If the input header does not exist, the filter has no
impact. If the new named header already exists, its values are augmented with the new values. The

following example configures a MapRequestHeader:

Example 33. application.yml

spring:
cloud:
gateway:
routes:
- id: map_request_header_route
uri: https://example.org
filters:
- MapRequestHeader=Blue, X-Request-Red

This adds X-Request-Red:<values> header to the downstream request with updated values from the
incoming HTTP request’s Blue header.

6.8. The PrefixPath GatewayFilter Factory

The PrefixPath GatewayFilter factory takes a single prefix parameter. The following example
configures a PrefixPath GatewayFilter:

Example 34. application.yml

spring:
cloud:
gateway:

routes:

- id: prefixpath_route
uri: https://example.org
filters:

- PrefixPath=/mypath

This will prefix /mypath to the path of all matching requests. So a request to /hello would be sent to
/mypath/hello.

6.9. The PreserveHostHeader GatewayFilter Factory

The PreserveHostHeader GatewayFilter factory has no parameters. This filter sets a request attribute
that the routing filter inspects to determine if the original host header should be sent, rather than
the host header determined by the HTTP client. The following example configures a
PreserveHostHeader GatewayFilter:

Example 35. application.yml

spring:
cloud:
gateway:

routes:

- id: preserve_host_route
uri: https://example.org
filters:

- PreserveHostHeader

6.10. The RequestRatelLimiter GatewayFilter Factory

The RequestRatelimiter GatewayFilter factory uses a RatelLimiter implementation to determine if the
current request is allowed to proceed. If it is not, a status of HTTP 429 - Too Many Requests (by
default) is returned.

This filter takes an optional keyResolver parameter and parameters specific to the rate limiter
(described later in this section).

keyResolver is a bean that implements the KeyResolver interface. In configuration, reference the
bean by name using SpEL. #{@myKeyResolver} is a SpEL expression that references a bean named
myKeyResolver. The following listing shows the KeyResolver interface:

Example 36. KeyResolver.java

public interface KeyResolver {
Mono<String> resolve(ServerWebExchange exchange);

}

The KeyResolver interface lets pluggable strategies derive the key for limiting requests. In future
milestone releases, there will be some KeyResolver implementations.

The default implementation of KeyResolver is the PrincipalNameKeyResolver, which retrieves the
Principal from the ServerWebExchange and calls Principal.getName().

By default, if the KeyResolver does not find a key, requests are denied. You can adjust this behavior
by setting the spring.cloud.gateway.filter.request-rate-limiter.deny-empty-key (true or false) and
spring.cloud.gateway.filter.request-rate-limiter.empty-key-status-code properties.

The RequestRateLimiter is not configurable with the "shortcut" notation. The
following example below is invalid:

Example 37. application.properties

INVALID SHORTCUT CONFIGURATION
spring.cloud.gateway.routes[0].filters[0]=RequestRateLimiter=2, 2,
#{ouserkeyresolver}

6.10.1. The Redis RatelLimiter

The Redis implementation is based off of work done at Stripe. It requires the use of the spring-boot-
starter-data-redis-reactive Spring Boot starter.

The algorithm used is the Token Bucket Algorithm.

The redis-rate-limiter.replenishRate property is how many requests per second you want a user
to be allowed to do, without any dropped requests. This is the rate at which the token bucket is
filled.

The redis-rate-limiter.burstCapacity property is the maximum number of requests a user is
allowed to do in a single second. This is the number of tokens the token bucket can hold. Setting this
value to zero blocks all requests.

The redis-rate-limiter.requestedTokens property is how many tokens a request costs. This is the
number of tokens taken from the bucket for each request and defaults to 1.

A steady rate is accomplished by setting the same value in replenishRate and burstCapacity.
Temporary bursts can be allowed by setting burstCapacity higher than replenishRate. In this case,
the rate limiter needs to be allowed some time between bursts (according to replenishRate), as two
consecutive bursts will result in dropped requests (HTTP 429 - Too Many Requests). The following
listing configures a redis-rate-limiter:

Rate limits bellow 1 request/s are accomplished by setting replenishRate to the wanted number of
requests, requestedTokens to the timespan in seconds and burstCapacity to the product of
replenishRate and requestedTokens, e.g. setting replenishRate=1, requestedTokens=60 and
burstCapacity=60 will result in a limit of 1 request/min.

https://stripe.com/blog/rate-limiters
https://en.wikipedia.org/wiki/Token_bucket

Example 38. application.yml

spring:
cloud:
gateway:
routes:
- id: requestratelimiter_route
uri: https://example.org
filters:
- name: RequestRatelLimiter
args:
redis-rate-limiter.replenishRate: 10
redis-rate-limiter.burstCapacity: 20
redis-rate-limiter.requestedTokens: 1

The following example configures a KeyResolver in Java:

Example 39. Config.java

@Bean
KeyResolver userKeyResolver() {

return exchange ->
Mono.just(exchange.getRequest().getQueryParams().getFirst("user"));
}

This defines a request rate limit of 10 per user. A burst of 20 is allowed, but, in the next second, only
10 requests are available. The KeyResolver is a simple one that gets the user request parameter (note
that this is not recommended for production).

You can also define a rate limiter as a bean that implements the Ratelimiter interface. In
configuration, you can reference the bean by name using SpEL. #{@myRatelLimiter} is a SpEL
expression that references a bean with named myRatelLimiter. The following listing defines a rate
limiter that uses the KeyResolver defined in the previous listing:

Example 40. application.yml

spring:
cloud:
gateway:
routes:
- id: requestratelimiter_route
uri: https://example.org
filters:
- name: RequestRatelLimiter
args:
rate-limiter: "#{@myRateLimiter}"
key-resolver: "#{@userKeyResolver}"

6.11. The RedirectTo GatewayFilter Factory

The RedirectTo GatewayFilter factory takes two parameters, status and url. The status parameter
should be a 300 series redirect HTTP code, such as 301. The url parameter should be a valid URL.
This is the value of the Location header. For relative redirects, you should use uri: no://op as the
uri of your route definition. The following listing configures a RedirectTo GatewayFilter:

Example 41. application.yml

spring:
cloud:
gateway:
routes:
- id: prefixpath_route
uri: https://example.org
filters:
- RedirectTo=302, https://acme.org

This will send a status 302 with a Location:https://acme.org header to perform a redirect.

6.12. The RemoveRequestHeader GatewayFilter Factory

The RemoveRequestHeader GatewayFilter factory takes a name parameter. It is the name of the header
to be removed. The following listing configures a RemoveRequestHeader GatewayFilter:

Example 42. application.yml

spring:
cloud:
gateway:
routes:
- id: removerequestheader_route
uri: https://example.org
filters:
- RemoveRequestHeader=X-Request-Foo

This removes the X-Request-Foo header before it is sent downstream.

6.13. RemoveResponseHeader GatewayFilter Factory

The RemoveResponseHeader GatewayFilter factory takes a name parameter. It is the name of the header
to be removed. The following listing configures a RemoveResponseHeader GatewayFilter:

Example 43. application.yml

spring:
cloud:
gateway:
routes:
- id: removeresponseheader_route
uri: https://example.org
filters:
- RemoveResponseHeader=X-Response-Foo

This will remove the X-Response-Foo header from the response before it is returned to the gateway
client.

To remove any kind of sensitive header, you should configure this filter for any routes for which
you may want to do so. In addition, you can configure this filter once by using
spring.cloud.gateway.default-filters and have it applied to all routes.

6.14. The RemoveRequestParameter GatewayFilter Factory

The RemoveRequestParameter GatewayFilter factory takes a name parameter. It is the name of the
query parameter to be removed. The following example configures a RemoveRequestParameter
GatewayFilter:

Example 44. application.yml

spring:
cloud:
gateway:

routes:

- id: removerequestparameter_route
uri: https://example.org
filters:

- RemoveRequestParameter=red

This will remove the red parameter before it is sent downstream.

6.15. RequestHeaderSize GatewayFilter Factory

The RequestHeaderSize GatewayFilter factory takes maxSize and errorHeaderName parameters. The
maxSize parameter is the maximum data size allowed of the request header (incuding key and
value). The errorHeaderName parameter sets the name of the response header containing an error
message, by default it is "errorMessage". The following listing configures a RequestHeaderSize
GatewayFilter:

Example 45. application.yml

spring:
cloud:
gateway:

routes:

- id: requestheadersize_route
uri: https://example.org
filters:

- RequestHeaderSize=10008

This will send a status 431 if size of any request header is greater than 1000 Bytes.

6.16. The RewritePath GatewayFilter Factory

The RewritePath GatewayFilter factory takes a path regexp parameter and a replacement parameter.
This uses Java regular expressions for a flexible way to rewrite the request path. The following
listing configures a RewritePath GatewayFilter:

Example 46. application.yml

spring:
cloud:
gateway:
routes:
- id: rewritepath_route
uri: https://example.org
predicates:
- Path=/red/**
filters:
- RewritePath=/red/?(?<segment>.*), /$\{segment}

For a request path of /red/blue, this sets the path to /blue before making the downstream request.
Note that the § should be replaced with $\ because of the YAML specification.

6.17. RewritelLocationResponseHeader GatewayFilter
Factory

The RewritelocationResponseHeader GatewayFilter factory modifies the value of the Location
response header, usually to get rid of backend-specific details. It takes stripVersionMode,
locationHeaderName, hostValue, and protocolsRegex parameters. The following listing configures a
RewritelocationResponseHeader GatewayFilter:

Example 47. application.yml

spring:
cloud:
gateway:
routes:
- id: rewritelocationresponseheader_route
uri: http://example.org
filters:
- RewritelocationResponseHeader=AS_IN_REQUEST, Location, ,

For example, for a request of POST api.example.com/some/object/name, the Location response header
value of object-service.prod.example.net/v2/some/object/id is rewritten as api.example.com/some/
object/1id.

The stripVersionMode parameter has the following possible values: NEVER_STRIP, AS_IN_REQUEST
(default), and ALWAYS_STRIP.

» NEVER_STRIP: The version is not stripped, even if the original request path contains no version.

» AS_IN_REQUEST The version is stripped only if the original request path contains no version.

https://api.example.com/some/object/name
https://object-service.prod.example.net/v2/some/object/id
https://api.example.com/some/object/id
https://api.example.com/some/object/id

» ALWAYS_STRIP The version is always stripped, even if the original request path contains version.

The hostValue parameter, if provided, is used to replace the host:port portion of the response
Location header. If it is not provided, the value of the Host request header is used.

The protocolsRegex parameter must be a valid regex String, against which the protocol name is
matched. If it is not matched, the filter does nothing. The default is http|https|ftp|ftps.

6.18. The RewriteResponseHeader GatewayFilter Factory

The RewriteResponseHeader GatewayFilter factory takes name, regexp, and replacement parameters. It
uses Java regular expressions for a flexible way to rewrite the response header value. The following
example configures a RewriteResponseHeader GatewayFilter:

Example 48. application.yml

spring:
cloud:
gateway:
routes:
- id: rewriteresponseheader_route
uri: https://example.org
filters:
- RewriteResponseHeader=X-Response-Red, , password=["&]+, password=***

For a header wvalue of /427user=ford&password=omg!what&flag=true, it is set to
/42?user=ford&password=***&flag=true after making the downstream request. You must use $\ to
mean $ because of the YAML specification.

6.19. The SaveSession GatewayFilter Factory

The SaveSession GatewayFilter factory forces a WebSession::save operation before forwarding the
call downstream. This is of particular use when using something like Spring Session with a lazy
data store and you need to ensure the session state has been saved before making the forwarded
call. The following example configures a SaveSession GatewayFilter:

https://projects.spring.io/spring-session/

Example 49. application.yml

spring:
cloud:
gateway:
routes:
- id: save_session
uri: https://example.org
predicates:
- Path=/foo/**
filters:
- SaveSession

If you integrate Spring Security with Spring Session and want to ensure security details have been
forwarded to the remote process, this is critical.

6.20. The SecureHeaders GatewayFilter Factory

The SecureHeaders GatewayFilter factory adds a number of headers to the response, per the
recommendation made in this blog post.

The following headers (shown with their default values) are added:

e X-Xss-Protection:1 (mode=block)

o Strict-Transport-Security (max-age=631138519)

* X-Frame-Options (DENY)

e X-Content-Type-Options (nosniff)

» Referrer-Policy (no-referrer)

» Content-Security-Policy (default-src 'self' https:; font-src 'self' https: data:; img-src
"self' https: data:; object-src 'none'; script-src https:; style-src 'self' https: 'unsafe-
inline)'

* X-Download-Options (noopen)

e X-Permitted-Cross-Domain-Policies (none)

To change the default values, set the appropriate property in the
spring.cloud.gateway.filter.secure-headers namespace. The following properties are available:

* xss-protection-header

e strict-transport-security

» x-frame-options

* x-content-type-options

» referrer-policy

* content-security-policy

https://projects.spring.io/spring-security/
https://blog.appcanary.com/2017/http-security-headers.html

* x-download-options

e x-permitted-cross-domain-policies

To disable the default values set the spring.cloud.gateway.filter.secure-headers.disable property
with comma-separated values. The following example shows how to do so:

spring.cloud.gateway.filter.secure-headers.disable=x-frame-options,strict-
transport-security

o The lowercase full name of the secure header needs to be used to disable it..

6.21. The SetPath GatewayFilter Factory

The SetPath GatewayFilter factory takes a path template parameter. It offers a simple way to
manipulate the request path by allowing templated segments of the path. This uses the URI
templates from Spring Framework. Multiple matching segments are allowed. The following
example configures a SetPath GatewayFilter:

Example 50. application.yml

spring:
cloud:
gateway:
routes:
- id: setpath_route
uri: https://example.org
predicates:
- Path=/red/{segment}
filters:
- SetPath=/{segment}

For a request path of /red/blue, this sets the path to /blue before making the downstream request.

6.22. The SetRequestHeader GatewayFilter Factory

The SetRequestHeader GatewayFilter factory takes name and value parameters. The following listing
configures a SetRequestHeader GatewayFilter:

Example 51. application.yml

spring:
cloud:
gateway:
routes:
- id: setrequestheader_route
uri: https://example.org
filters:
- SetRequestHeader=X-Request-Red, Blue

This GatewayFilter replaces (rather than adding) all headers with the given name. So, if the
downstream server responded with a X-Request-Red: 1234, this would be replaced with X-Request-
Red:Blue, which is what the downstream service would receive.

SetRequestHeader is aware of URI variables used to match a path or host. URI variables may be used
in the value and are expanded at runtime. The following example configures an SetRequestHeader
GatewayFilter that uses a variable:

Example 52. application.yml

spring:
cloud:
gateway:
routes:
- id: setrequestheader_route
uri: https://example.org
predicates:
- Host: {segment}.myhost.org
filters:
- SetRequestHeader=foo, bar-{segment}

6.23. The SetResponseHeader GatewayFilter Factory

The SetResponseHeader GatewayFilter factory takes name and value parameters. The following listing
configures a SetResponseHeader GatewayFilter:

Example 53. application.yml

spring:
cloud:
gateway:
routes:
- id: setresponseheader_route
uri: https://example.org
filters:
- SetResponseHeader=X-Response-Red, Blue

This GatewayFilter replaces (rather than adding) all headers with the given name. So, if the
downstream server responded with a X-Response-Red:1234, this is replaced with X-Response-
Red:Blue, which is what the gateway client would receive.

SetResponseHeader is aware of URI variables used to match a path or host. URI variables may be used
in the value and will be expanded at runtime. The following example configures an
SetResponseHeader GatewayFilter that uses a variable:

Example 54. application.yml

spring:
cloud:
gateway:
routes:
- id: setresponseheader_route
uri: https://example.org
predicates:
- Host: {segment}.myhost.org
filters:
- SetResponseHeader=foo, bar-{segment}

6.24. The SetStatus GatewayFilter Factory

The SetStatus GatewayFilter factory takes a single parameter, status. It must be a valid Spring
HttpStatus. It may be the integer value 404 or the string representation of the enumeration:
NOT_FOUND. The following listing configures a SetStatus GatewayFilter:

Example 55. application.yml

spring:
cloud:
gateway:

routes:

- id: setstatusstring_route
uri: https://example.org
filters:

- SetStatus=UNAUTHORIZED

- id: setstatusint_route
uri: https://example.org
filters:

- SetStatus=401

In either case, the HTTP status of the response is set to 401.

You can configure the SetStatus GatewayFilter to return the original HTTP status code from the
proxied request in a header in the response. The header is added to the response if configured with
the following property:

Example 56. application.yml

spring:
cloud:
gateway:
set-status:
original-status-header-name: original-http-status

6.25. The StripPrefix GatewayFilter Factory

The StripPrefix GatewayFilter factory takes one parameter, parts. The parts parameter indicates
the number of parts in the path to strip from the request before sending it downstream. The
following listing configures a StripPrefix GatewayFilter:

Example 57. application.yml

spring:
cloud:
gateway:
routes:
- id: nameRoot
uri: https://nameservice
predicates:
- Path=/name/**
filters:
- StripPrefix=2

When a request is made through the gateway to /name/blue/red, the request made to nameservice
looks like nameservice/red.

6.26. The Retry GatewayFilter Factory

The Retry GatewayFilter factory supports the following parameters:

retries: The number of retries that should be attempted.

statuses: The HTTP status codes that should be retried, represented by using
org.springframework.http.HttpStatus.

methods: The HTTP methods that should be retried, represented by using
org.springframework.http.HttpMethod.

series: The series of status codes to be retried, represented by using
org.springframework.http.HttpStatus.Series.

exceptions: A list of thrown exceptions that should be retried.

backoff: The configured exponential backoff for the retries. Retries are performed after a
backoff interval of firstBackoff * (factor A n), where n is the iteration. If maxBackoff is
configured, the maximum backoff applied is limited to maxBackoff. If basedOnPreviousValue is
true, the backoff is calculated byusing prevBackoff * factor.

The following defaults are configured for Retry filter, if enabled:

retries: Three times

series: 5XX series

methods: GET method

exceptions: I0Exception and TimeoutException

backoff: disabled

The following listing configures a Retry GatewayFilter:

https://nameservice/red

Example 58. application.yml

spring:
cloud:
gateway:
routes:
- id: retry_test
uri: http://localhost:8080/flakey
predicates:
- Host=*.retry.com
filters:
- name: Retry
args:
retries: 3
statuses: BAD_GATEWAY
methods: GET,POST
backoff:
firstBackoff: 10ms
maxBackoff: 50ms
factor: 2
basedOnPreviousValue: false

When using the retry filter with a forward: prefixed URL, the target endpoint
should be written carefully so that, in case of an error, it does not do anything that
could result in a response being sent to the client and committed. For example, if

o the target endpoint is an annotated controller, the target controller method should
not return ResponseEntity with an error status code. Instead, it should throw an
Exception or signal an error (for example, through a Mono.error(ex) return value),
which the retry filter can be configured to handle by retrying.

When using the retry filter with any HTTP method with a body, the body will be

A cached and the gateway will become memory constrained. The body is cached in a
request attribute defined by ServerWebExchangeUtils.CACHED_REQUEST_BODY_ATTR. The
type of the object is a org.springframework.core.io.buffer.DataBuffer.

A simplified "shortcut" notation can be added with a single status and method.

The following two examples are equivalent:

Example 59. application.yml

spring:
cloud:
gateway:
routes:
- id: retry_route
uri: https://example.org
filters:
- name: Retry
args:
retries: 3
statuses: INTERNAL_SERVER_ERROR
methods: GET
backoff:
firstBackoff: 10ms
maxBackoff: 50ms
factor: 2
basedOnPreviousValue: false

- id: retryshortcut_route
uri: https://example.org
filters:
- Retry=3,INTERNAL_SERVER_ERROR,GET,10ms,50ms, 2, false

6.27. The RequestSize GatewayFilter Factory

When the request size is greater than the permissible limit, the RequestSize GatewayFilter factory
can restrict a request from reaching the downstream service. The filter takes a maxSize parameter.
The maxSize is a DataSize type, so values can be defined as a number followed by an optional
DataUnit suffix such as 'KB' or 'MB'. The default is 'B' for bytes. It is the permissible size limit of the
request defined in bytes. The following listing configures a RequestSize GatewayFilter:

Example 60. application.yml

spring:
cloud:
gateway:

routes:

- id: request_size_route
uri: http://localhost:8080/upload
predicates:

- Path=/upload
filters:
- name: RequestSize
args:
maxSize: 5000000

The RequestSize GatewayFilter factory sets the response status as 413 Payload Too Large with an
additional header errorMessage when the request is rejected due to size. The following example
shows such an errorMessage:

errorMessage : Request size is larger than permissible limit. Request size is 6.0
MB where permissible limit is 5.0 MB

o The default request size is set to five MB if not provided as a filter argument in the
route definition.

6.28. The SetRequestHostHeader GatewayFilter Factory

There are certain situation when the host header may need to be overridden. In this situation, the
SetRequestHostHeader GatewayFilter factory can replace the existing host header with a specified
vaue. The filter takes a host parameter. The following listing configures a SetRequestHostHeader
GatewayFilter:

Example 61. application.yml

spring:
cloud:
gateway:

routes:

- id: set_request_host_header_route
uri: http://localhost:8080/headers
predicates:

- Path=/headers
filters:
- name: SetRequestHostHeader
args:
host: example.org

The SetRequestHostHeader GatewayFilter factory replaces the value of the host header with
example.org.

6.29. Modify a Request Body GatewayFilter Factory

You can use the ModifyRequestBody filter filter to modify the request body before it is sent
downstream by the gateway.

e This filter can be configured only by using the Java DSL.

The following listing shows how to modify a request body GatewayFilter:

©Bean
public Routelocator routes(RoutelLocatorBuilder builder) {
return builder.routes()
.route("rewrite_request_obj", r -> r.host("*.rewriterequestobj.org")
.filters(f -> f.prefixPath("/httpbin")
.modifyRequestBody(String.class, Hello.class,
MediaType.APPLICATION_JSON_VALUE,
(exchange, s) -> return Mono.just(new

Hello(s.toUpperCase())))).uri(uri))

.build();
}

static class Hello {
String message;

public Hello() { }

public Hello(String message) {
this.message = message;

}

public String getMessage() {
return message;

}

public void setMessage(String message) {
this.message = message;

}

o if the request has no body, the RewriteFilter will be passed null. Mono.empty()
should be returned to assign a missing body in the request.

6.30. Modify a Response Body GatewayFilter Factory

You can use the ModifyResponseBody filter to modify the response body before it is sent back to the
client.

e This filter can be configured only by using the Java DSL.

The following listing shows how to modify a response body GatewayFilter:

@Bean
public Routelocator routes(RoutelLocatorBuilder builder) {

return builder.routes()
.route("rewrite_response_upper", r -> r.host("*.rewriteresponseupper.org")
.filters(f -> f.prefixPath("/httpbin")
.modifyResponseBody(String.class, String.class,
(exchange, s) -> Mono.just(s.toUpperCase()))).uri(uri))

.build();

o if the response has no body, the RewriteFilter will be passed null.
Mono.empty() should be returned to assign a missing body in the response.

6.31. Token Relay GatewayFilter Factory

A Token Relay is where an OAuth2 consumer acts as a Client and forwards the incoming token to
outgoing resource requests. The consumer can be a pure Client (like an SSO application) or a

Resource Server.

Spring Cloud Gateway can forward OAuth2 access tokens downstream to the services it is proxying.
To add this functionlity to gateway you need to add the TokenRelayGatewayFilterFactory like this:

App.java

©Bean
public Routelocator customRoutelLocator(RoutelLocatorBuilder builder) {
return builder.routes()
.route("resource", r -> r.path("/resource")
.filters(f -> f.tokenRelay())
.uri("http://localhost:9000"))
.build();

or this

application.yaml

spring:
cloud:
gateway:
routes:
- id: resource
uri: http://localhost:9000
predicates:
- Path=/resource
filters:
- TokenRelay=

and it will (in addition to logging the user in and grabbing a token) pass the authentication token
downstream to the services (in this case /resource).
To enable this for Spring Cloud Gateway add the following dependencies

* org.springframework.boot:spring-boot-starter-oauth2-client

How does it work? The filter extracts an access token from the currently authenticated user, and
puts it in a request header for the downstream requests.

For a full working sample see this project.

A TokenRelayGatewayFilterFactory bean will only be created if the proper
o spring.security.oauth2.client.* properties are set which will trigger creation of a
ReactiveClientRegistrationRepository bean.

The default implementation of ReactiveOAuth2AuthorizedClientService used by

o TokenRelayGatewayFilterFactory uses an in-memory data store. You will need to
provide your own implementation ReactiveOAuth2AuthorizedClientService if you
need a more robust solution.

6.32. The CacheRequestBody GatewayFilter Factory

There are certain situation need to read body.Since the request body stream can only be read once,
we need to cache the request body. You can use the CacheRequestBody filter to cache request body
before it send to the downstream and get body from exchagne attribute.

The following listing shows how to cache the request body GatewayFilter:

https://github.com/spring-cloud/spring-cloud-function/tree/master/src/main/java/org/springframework/cloud/gateway/security/TokenRelayGatewayFilterFactory.java
https://github.com/spring-cloud-samples/sample-gateway-oauth2login

©Bean
public Routelocator routes(RoutelLocatorBuilder builder) {
return builder.routes()
.route("cache_request_body_route", r -> r.path("/downstream/**")
.filters(f -> f.prefixPath("/httpbin")
.cacheRequestBody(String.class).uri(uri))
.build();

Example 62. application.yml

spring:
cloud:
gateway:

routes:

- id: cache_request_body_route
uri: 1b://downstream
predicates:

- Path=/downstream/**
filters:
- name: CacheRequestBody
args:
bodyClass: java.lang.String

CacheRequestBody will extract request body and conver it to body class (such as java.lang.String,
defined in the preceding example). then places it in the ServerWebExchange.getAttributes() with a
key defined in ServerWebExchangeUtils.CACHED_REQUEST_BODY_ATTR

e This filter only works with http request (including https).

6.33. Default Filters

To add a filter and apply it to all routes, you can use spring.cloud.gateway.default-filters. This
property takes a list of filters. The following listing defines a set of default filters:

Example 63. application.yml

spring:
cloud:
gateway:
default-filters:
- AddResponseHeader=X-Response-Default-Red, Default-Blue
- PrefixPath=/httpbin

7. Global Filters

The GlobalFilter interface has the same signature as GatewayFilter. These are special filters that
are conditionally applied to all routes.

o This interface and its usage are subject to change in future milestone releases.

7.1. Combined Global Filter and GatewayFilter Ordering

When a request matches a route, the filtering web handler adds all instances of GlobalFilter and all
route-specific instances of GatewayFilter to a filter chain. This combined filter chain is sorted by the
org.springframework.core.Ordered interface, which you can set by implementing the getOrder()
method.

As Spring Cloud Gateway distinguishes between “pre” and “post” phases for filter logic execution
(see How it Works), the filter with the highest precedence is the first in the “pre”-phase and the last
in the “post”-phase.

The following listing configures a filter chain:

Example 64. ExampleConfiguration.java

@Bean
public GlobalFilter customFilter() {
return new CustomGlobalFilter();

}

public class CustomGlobalFilter implements GlobalFilter, Ordered {

@verride
public Mono<Void> filter(ServerWebExchange exchange, GatewayFilterChain chain)
{
log.info("custom global filter");
return chain.filter(exchange);
}
@verride
public int getOrder() {
return -1;
}
}

7.2. Forward Routing Filter

The ForwardRoutingFilter looks for a URI in the exchange attribute
ServerWebExchangeUtils.GATEWAY_REQUEST_URL_ATTR. If the URL has a forward scheme (such as
forward:///localendpoint), it uses the Spring DispatcherHandler to handle the request. The path part
of the request URL is overridden with the path in the forward URL. The unmodified original URL is
appended to the list in the ServerWebExchangeUtils.GATEWAY_ORIGINAL_REQUEST_URL_ATTR attribute.

7.3. The ReactiveloadBalancerClientFilter

The ReactiveloadBalancerClientFilter looks for a URI in the exchange attribute named
ServerWebExchangeUtils.GATEWAY_REQUEST_URL_ATTR. If the URL has a 1b scheme (such as
1b://myservice), it uses the Spring Cloud ReactorlLoadBalancer to resolve the name (myservice in this
example) to an actual host and port and replaces the URI in the same attribute. The unmodified
original URL is appended to the list in the
ServerWebExchangeUtils.GATEWAY_ORIGINAL_REQUEST_URL_ATTR attribute. The filter also looks in the
ServerWebExchangeUtils.GATEWAY_SCHEME_PREFIX_ATTR attribute to see if it equals 1b. If so, the same
rules apply. The following listing configures a ReactiveloadBalancerClientFilter:

Example 65. application.yml

spring:
cloud:
gateway:
routes:
- id: myRoute
uri: 1b://service
predicates:
- Path=/service/**

By default, when a service instance cannot be found by the ReactorLoadBalancer, a
o 503 is returned. You can configure the gateway to return a 404 by setting
spring.cloud.gateway.loadbalancer.use404=true.

The isSecure value of the Servicelnstance returned from the
ReactiveloadBalancerClientFilter overrides the scheme specified in the request
made to the Gateway. For example, if the request comes into the Gateway over

o HTTPS but the Servicelnstance indicates it is not secure, the downstream request is
made over HTTP. The opposite situation can also apply. However, if
GATEWAY_SCHEME _PREFIX_ATTR is specified for the route in the Gateway configuration,
the prefix is stripped and the resulting scheme from the route URL overrides the
ServicelInstance configuration.

(r') Gateway supports all the LoadBalancer features. You can read more about them in
- the Spring Cloud Commons documentation.

7.4. The Netty Routing Filter

The Netty routing filter runs if the URL located in the
ServerWebExchangeUtils.GATEWAY_REQUEST_URL_ATTR exchange attribute has a http or https scheme. It
uses the Netty HttpClient to make the downstream proxy request. The response is put in the
ServerWebExchangeUtils.CLIENT_RESPONSE_ATTR exchange attribute for use in a later filter. (There is
also an experimental WebClientHttpRoutingFilter that performs the same function but does not
require Netty.)

7.5. The Netty Write Response Filter

The NettyWriteResponseFilter runs if there 1is a Netty HttpClientResponse in the
ServerWebExchangeUtils.CLIENT_RESPONSE_ATTR exchange attribute. It runs after all other filters have
completed and writes the proxy response back to the gateway client response. (There is also an
experimental WebClientWriteResponseFilter that performs the same function but does not require
Netty.)

https://docs.spring.io/spring-cloud-commons/docs/current/reference/html/#spring-cloud-loadbalancer

7.6. The RouteToRequestUr1 Filter

If there is a Route object in the ServerWebExchangeUtils.GATEWAY_ROUTE_ATTR exchange attribute, the
RouteToRequestUrlFilter runs. It creates a new URI, based off of the request URI but updated with
the URI attribute of the Route objectt The new URI is placed in the
ServerWebExchangeUtils.GATEWAY_REQUEST_URL_ATTR exchange attribute.

If the URI has a scheme prefix, such as 1b:ws://serviceid, the 1b scheme is stripped from the URI
and placed in the ServerWebExchangeUtils.GATEWAY_SCHEME_PREFIX_ATTR for use later in the filter
chain.

7.7. The Websocket Routing Filter

If the URL located in the ServerWebExchangeUtils.GATEWAY_REQUEST_URL_ATTR exchange attribute has a
ws or wss scheme, the websocket routing filter runs. It uses the Spring WebSocket infrastructure to
forward the websocket request downstream.

You can load-balance websockets by prefixing the URI with 1b, such as 1b:ws://serviceid.

o If you use Sock]S as a fallback over normal HTTP, you should configure a normal
HTTP route as well as the websocket Route.

The following listing configures a websocket routing filter:

Example 66. application.yml

spring:
cloud:
gateway:
routes:
Sock]S route
- id: websocket_sockjs_route
uri: http://localhost:3001
predicates:
- Path=/websocket/info/**
Normal Websocket route
- id: websocket_route
uri: ws://localhost:3001
predicates:
- Path=/websocket/**

7.8. The Gateway Metrics Filter

To enable gateway metrics, add spring-boot-starter-actuator as a project dependency. Then, by
default, the gateway metrics filter runs as long as the property
spring.cloud.gateway.metrics.enabled is not set to false. This filter adds a timer metric named

https://github.com/sockjs

spring.cloud.gateway.requests with the following tags:

e routeld: The route ID.
e routelri: The URI to which the API is routed.
 outcome: The outcome, as classified by HttpStatus.Series.

» status: The HTTP status of the request returned to the client.

httpStatusCode: The HTTP Status of the request returned to the client.

httpMethod: The HTTP method used for the request.

In addition, through the property spring.cloud.gateway.metrics.tags.path.enabled (by default, set
to false), you can activate an extra metric with the tag:

* path: Path of the request.

These metrics are then available to be scraped from
/actuator/metrics/spring.cloud.gateway.requests and can be easily integrated with Prometheus to
create a Grafana dashboard.

o To enable the prometheus endpoint, add micrometer-registry-prometheus as a
project dependency.

7.9. Marking An Exchange As Routed

After the gateway has routed a ServerWebExchange, it marks that exchange as “routed” by adding
gatewayAlreadyRouted to the exchange attributes. Once a request has been marked as routed, other
routing filters will not route the request again, essentially skipping the filter. There are convenience
methods that you can use to mark an exchange as routed or check if an exchange has already been
routed.

* ServerWebExchangeUtils.isAlreadyRouted takes a ServerlWlebExchange object and checks if it has
been “routed”.

» ServerlWlebExchangeUtils.setAlreadyRouted takes a ServerWebExchange object and marks it as
“routed”.

8. HttpHeadersFilters

HttpHeadersFilters are applied to requests before sending them downstream, such as in the
NettyRoutingFilter.

8.1. Forwarded Headers Filter

The Forwarded Headers Filter creates a Forwarded header to send to the downstream service. It adds
the Host header, scheme and port of the current request to any existing Forwarded header.

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/http/HttpStatus.Series.html
images/gateway-grafana-dashboard.jpeg
gateway-grafana-dashboard.json

8.2. RemoveHopByHop Headers Filter

The RemoveHopByHop Headers Filter removes headers from forwarded requests. The default list of
headers that is removed comes from the IETF.

The default removed headers are:

* Connection

* Keep-Alive

* Proxy-Authenticate
* Proxy-Authorization
* TE

¢ Trailer

* Transfer-Encoding
» Upgrade

To change this, set the spring.cloud.gateway.filter.remove-hop-by-hop.headers property to the list
of header names to remove.

8.3. XForwarded Headers Filter

The XForwarded Headers Filter creates various a X-Forwarded-* headers to send to the downstream
service. It users the Host header, scheme, port and path of the current request to create the various
headers.

Creating of individual headers can be controlled by the following boolean properties (defaults to
true):

* spring.cloud.gateway.x-forwarded.for-enabled

* spring.cloud.gateway.x-forwarded.host-enabled

* spring.cloud.gateway.x-forwarded.port-enabled

* spring.cloud.gateway.x-forwarded.proto-enabled

* spring.cloud.gateway.x-forwarded.prefix-enabled
Appending multiple headers can be controlled by the following boolean properties (defaults to
true):

* spring.cloud.gateway.x-forwarded.for-append

* spring.cloud.gateway.x-forwarded.host-append

* spring.cloud.gateway.x-forwarded.port-append

* spring.cloud.gateway.x-forwarded.proto-append

* spring.cloud.qgateway.x-forwarded.prefix-append

https://tools.ietf.org/html/draft-ietf-httpbis-p1-messaging-14#section-7.1.3

9. TLS and SSL

The gateway can listen for requests on HTTPS by following the usual Spring server configuration.
The following example shows how to do so:

Example 67. application.yml

server:
ssl:
enabled: true
key-alias: scg
key-store-password: scgl1234
key-store: classpath:scg-keystore.p12
key-store-type: PK(CS12

You can route gateway routes to both HTTP and HTTPS backends. If you are routing to an HTTPS
backend, you can configure the gateway to trust all downstream certificates with the following
configuration:

Example 68. application.yml

spring:
cloud:
gateway:
httpclient:
ssl:
uselnsecureTrustManager: true

Using an insecure trust manager is not suitable for production. For a production deployment, you
can configure the gateway with a set of known certificates that it can trust with the following
configuration:

Example 69. application.yml

spring:
cloud:
gateway:
httpclient:
ssl:
trustedX509Certificates:
- certl.pem
- cert2.pem

If the Spring Cloud Gateway is not provisioned with trusted certificates, the default trust store is
used (which you can override by setting the javax.net.ssl.trustStore system property).

9.1. TLS Handshake

The gateway maintains a client pool that it uses to route to backends. When communicating over
HTTPS, the client initiates a TLS handshake. A number of timeouts are associated with this
handshake. You can configure these timeouts can be configured (defaults shown) as follows:

Example 70. application.yml

spring:
cloud:
gateway:
httpclient:
ssl:
handshake-timeout-millis: 10000
close-notify-flush-timeout-millis: 3000
close-notify-read-timeout-millis: @

10. Configuration

Configuration for Spring Cloud Gateway is driven by a collection of RouteDefinitionlLocator
instances. The following listing shows the definition of the RouteDefinitionLocator interface:

Example 71. RouteDefinitionLocator.java

public interface RouteDefinitionlLocator {
Flux<RouteDefinition> getRouteDefinitions();

}

By default, a PropertiesRouteDefinitionLocator loads properties by using Spring Boot’s
@ConfigurationProperties mechanism.

The earlier configuration examples all use a shortcut notation that uses positional arguments
rather than named ones. The following two examples are equivalent:

Example 72. application.yml

spring:
cloud:
gateway:
routes:
- id: setstatus_route
uri: https://example.org

filters:
- name: SetStatus
args:
status: 401

- id: setstatusshortcut_route
uri: https://example.org
filters:

- SetStatus=401

For some usages of the gateway, properties are adequate, but some production use cases benefit
from loading configuration from an external source, such as a database. Future milestone versions
will have RouteDefinitionLocator implementations based off of Spring Data Repositories, such as
Redis, MongoDB, and Cassandra.

10.1. RouteDefinition Metrics

To enable RouteDefinition metrics, add spring-boot-starter-actuator as a project dependency. Then,
by default, the metrics will be available as long as the property
spring.cloud.gateway.metrics.enabled is set to true. A gauge metric named
spring.cloud.gateway.routes.count will be added, whose value is the number of RouteDefinitions.
This metric will be available from /actuator/metrics/spring.cloud.gateway.routes.count.

11. Route Metadata Configuration

You can configure additional parameters for each route by using metadata, as follows:

Example 73. application.yml

spring:
cloud:
gateway:
routes:
- id: route_with_metadata
uri: https://example.org

metadata:
optionName: "OptionValue"
compositeObject:

name: "value"
iAmNumber: 1

You could acquire all metadata properties from an exchange, as follows:

Route route = exchange.getAttribute(GATEWAY_ROUTE_ATTR);
// get all metadata properties

route.getMetadata();

// get a single metadata property
route.getMetadata(someKey);

12. Http timeouts configuration

Http timeouts (response and connect) can be configured for all routes and overridden for each
specific route.

12.1. Global timeouts

To configure Global http timeouts:
connect-timeout must be specified in milliseconds.
response-timeout must be specified as a java.time.Duration

global http timeouts example

spring:
cloud:
gateway:
httpclient:
connect-timeout: 1000
response-timeout: 5s

12.2. Per-route timeouts

To configure per-route timeouts:
connect-timeout must be specified in milliseconds.
response-timeout must be specified in milliseconds.

per-route http timeouts configuration via configuration

- id: per_route_timeouts
uri: https://example.org
predicates:
- name: Path
args:
pattern: /delay/{timeout}
metadata:
response-timeout: 200
connect-timeout: 200

per-route timeouts configuration using Java DSL

import static
org.springframework.cloud.gateway.support.RouteMetadataltils.CONNECT_TIMEOUT_ATTR;

import static
org.springframework.cloud.gateway.support.RouteMetadataltils.RESPONSE_TIMEOUT_ATTR;

@Bean
public Routelocator customRoutelocator(RoutelocatorBuilder routeBuilder){
return routeBuilder.routes()
.route("test1", r -> {
return r.host("*.somehost.org").and().path("/somepath")
.filters(f -> f.addRequestHeader("header1", "header-value-1"))
.uri("http://someuri")
.metadata(RESPONSE_TIMEOUT_ATTR, 200)
.metadata(CONNECT _TIMEOUT ATTR, 200);

})
.build();

A per-route response-timeout with a negative value will disable the global response-timeout value.

- id: per_route_timeouts
uri: https://example.org
predicates:
- name: Path
args:
pattern: /delay/{timeout}
metadata:
response-timeout: -1

12.3. Fluent Java Routes API

To allow for simple configuration in Java, the RoutelLocatorBuilder bean includes a fluent APIL. The
following listing shows how it works:

Example 74. GatewaySampleApplication.java

// static imports from GatewayFilters and RoutePredicates
©Bean
public Routelocator customRoutelLocator(RoutelLocatorBuilder builder,
ThrottleGatewayFilterFactory throttle) {
return builder.routes()

.route(r -> r.host("**.abc.org").and().path("/image/png")

filters(f ->
f.addResponseHeader ("X-TestHeader", "foobar"))
.uri("http://httpbin.org:80")

)

.route(r -> r.path("/image/webp")
filters(f ->

f.addResponseHeader ("X-AnotherHeader", "baz"))
.uri("http://httpbin.org:80")
.metadata("key", "value")

)

.route(r -> r.order(-1)
.host("**.throttle.org").and().path("/get")
filters(f -> f.filter(throttle.apply(1,

1,
10,
TimeUnit.SECONDS)))
.uri("http://httpbin.org:80")
.metadata("key", "value")
)
.build();

This style also allows for more custom predicate assertions. The predicates defined by
RouteDefinitionLocator beans are combined using logical and. By using the fluent Java API, you can
use the and(), or(), and negate() operators on the Predicate class.

12.4. The DiscoveryClient Route Definition Locator

You can configure the gateway to create routes based on services registered with a DiscoveryClient
compatible service registry.

To enable this, set spring.cloud.gateway.discovery.locator.enabled=true and make sure a
Discovery(Client implementation (such as Netflix Eureka, Consul, or Zookeeper) is on the classpath
and enabled.

12.4.1. Configuring Predicates and Filters For DiscoveryClient Routes

By default, the gateway defines a single predicate and filter for routes created with a
Discovery(Client.

The default predicate is a path predicate defined with the pattern /serviceId/**, where serviceld is
the ID of the service from the DiscoveryClient.

The default filter is a rewrite path filter with the regex /serviceld/?(?<remaining>.*) and the
replacement /${remaining}. This strips the service ID from the path before the request is sent
downstream.

If you want to customize the predicates or filters used by the Discovery(Client routes, set
spring.cloud.gateway.discovery.locator.predicates[x] and
spring.cloud.gateway.discovery.locator.filters[y]. When doing so, you need to make sure to
include the default predicate and filter shown earlier, if you want to retain that functionality. The
following example shows what this looks like:

Example 75. application.properties

spring.cloud.gateway.discovery.locator.predicates[0].name: Path
spring.cloud.gateway.discovery.locator.predicates[0].args[pattern]:
"'/'+serviceld+' /**""

spring.cloud.gateway.discovery.locator.predicates[1].name: Host
spring.cloud.gateway.discovery.locator.predicates[1].args[pattern]: "'**.foo.com"
spring.cloud.gateway.discovery.locator.filters[@].name: CircuitBreaker
spring.cloud.qgateway.discovery.locator.filters[@].args[name]: serviceld
spring.cloud.gateway.discovery.locator.filters[1].name: RewritePath
spring.cloud.qgateway.discovery.locator.filters[1].args[regexp]: "'/' + serviceld +
"/?(?<remaining>.*)""
spring.cloud.gateway.discovery.locator.filters[1].args[replacement]:
"'/${remaining}""

13. Reactor Netty Access Logs

To enable Reactor Netty access logs, set -Dreactor.netty.http.server.accessLogEnabled=true.
o It must be a Java System Property, not a Spring Boot property.

You can configure the logging system to have a separate access log file. The following example
creates a Logback configuration:

Example 76. logback.xml

<appender name="accesslLog" class="ch.qos.logback.core.FileAppender">
<file>access_log.log</file>
<encoder>
<pattern>%msg%n</pattern>
</encoder>
</appender>
<appender name="async" class="ch.qos.logback.classic.AsyncAppender">
<appender-ref ref="accesslLog" />
</appender>

<logger name="reactor.netty.http.server.AccessLog" level="INF0"
additivity="false">
<appender-ref ref="async"/>
</logger>

14. CORS Configuration

You can configure the gateway to control CORS behavior. The “global” CORS configuration is a map
of URL patterns to Spring Framework CorsConfiguration. The following example configures CORS:

Example 77. application.yml

spring:
cloud:
gateway:
globalcors:
cors-configurations:
N VA
allowedOrigins: "https://docs.spring.io"
allowedMethods:
- GET

In the preceding example, CORS requests are allowed from requests that originate from
docs.spring.io for all GET requested paths.

To provide the same CORS configuration to requests that are not handled by some gateway route
predicate, set the spring.cloud.gateway.globalcors.add-to-simple-url-handler-mapping property to
true. This is useful when you try to support CORS preflight requests and your route predicate does
not evalute to true because the HTTP method is options.

https://docs.spring.io/spring/docs/5.0.x/javadoc-api/org/springframework/web/cors/CorsConfiguration.html
https://docs.spring.io/spring/docs/5.0.x/javadoc-api/org/springframework/web/cors/CorsConfiguration.html

15. Actuator API

The /gateway actuator endpoint lets you monitor and interact with a Spring Cloud Gateway
application. To be remotely accessible, the endpoint has to be enabled and exposed over HTTP or
JMX in the application properties. The following listing shows how to do so:

Example 78. application.properties

management.endpoint.gateway.enabled=true # default value
management.endpoints.web.exposure.include=gateway

15.1. Verbose Actuator Format

A new, more verbose format has been added to Spring Cloud Gateway. It adds more detail to each
route, letting you view the predicates and filters associated with each route along with any
configuration that is available. The following example configures /actuator/gateway/routes:

[

{
"predicate"”: "(Hosts: [**.addrequestheader.org] && Paths: [/headers], match

trailing slash: true)",
"route_id": "add_request_header_test",
"filters": [
"[[AddResponseHeader X-Response-Default-Foo = 'Default-Bar'], order = 1]",
"[[AddRequestHeader X-Request-Foo = 'Bar'], order = 1]",
"[[PrefixPath prefix = '/httpbin'], order = 2]"
.
"uri": "1b://testservice",
"order": @
}
]

This feature is enabled by default. To disable it, set the following property:

Example 79. application.properties

spring.cloud.gateway.actuator.verbose.enabled=false

This will default to true in a future release.

https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html#production-ready-endpoints-enabling-endpoints
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html#production-ready-endpoints-exposing-endpoints
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html#production-ready-endpoints-exposing-endpoints

15.2. Retrieving Route Filters

This section details how to retrieve route filters, including:

* Global Filters

* [gateway-route-filters]

15.2.1. Global Filters

To retrieve the global filters applied to all routes, make a GET request
/actuator/qgateway/globalfilters. The resulting response is similar to the following:

{

"org.springframework.cloud.gateway.filter.ReactiveloadBalancerClientFilter@77856cc
5": 10100,

"org.springframework.cloud.gateway.filter.RouteToRequestUrlFilter@4f6fd101":
10000,

"org.springframework.cloud.gateway.filter.NettyWriteResponseFilter@32d22650":
-1,

"org.springframework.cloud.gateway.filter.ForwardRoutingFilter@106459d9":
2147483647,

"org.springframework.cloud.gateway.filter.NettyRoutingFilter@1fbd5e0":
2147483647,

"org.springframework.cloud.gateway.filter.ForwardPathFilter@33a71d23": 0,

"org.springframework.cloud.gateway.filter.AdaptCachedBodyGlobalFilter@135064ea":
2147483637,

"org.springframework.cloud.gateway.filter.WebsocketRoutingFilter@23c05889":
2147483646

}

to

The response contains the details of the global filters that are in place. For each global filter, there is
a string representation of the filter object (for example,

org.springframework.cloud.gateway.filter.ReactivelLoadBalancerClientFilter@77856cc5) and
corresponding order in the filter chain.}

15.2.2. Route Filters

the

To retrieve the GatewayFilter factories applied to routes, make a GET request to

/actuator/gateway/routefilters. The resulting response is similar to the following:

{
"[AddRequestHeaderGatewayFilterFactory@570ed9c configClass =

AbstractNameValueGatewayFilterFactory.NameValueConfig]": null,
"[SecureHeadersGatewayFilterFactory@fceab5d configClass = Object]": null,
"[SaveSessionGatewayFilterFactory@4449b273 configClass = Object]": null

}

The response contains the details of the GatewayFilter factories applied to any particular route. For
each factory there is a string representation of the corresponding object (for example,
[SecureHeadersGatewayFilterFactory@fceab5d configClass = Object]). Note that the null value is due
to an incomplete implementation of the endpoint controller, because it tries to set the order of the
object in the filter chain, which does not apply to a GatewayFilter factory object.

15.3. Refreshing the Route Cache

To clear the routes cache, make a POST request to /actuator/gateway/refresh. The request returns a
200 without a response body.

15.4. Retrieving the Routes Defined in the Gateway

To retrieve the routes defined in the gateway, make a GET request to /actuator/gateway/routes. The
resulting response is similar to the following:

[{
"route_id": "first_route",
“route_object": {

"predicate”:
"org.springframework.cloud.gateway.handler.predicate.PathRoutePredicateFactory$$La
mbda$432/1736826640@1e9d7e7d",

“filters": [

"OrderedGatewayFilter{delegate=org.springframework.cloud.gateway.filter.factory.Pr
eserveHostHeaderGatewayFilterFactory$$Lambda$436/67448027506631ef72, order=0}"

]

},
"order": 0
3
{
"route_id": "second route",
"route_object": {

"predicate":
"org.springframework.cloud.gateway.handler.predicate.PathRoutePredicateFactory$$La
mbda$432/17368266400cd8d298",

"filters": []

¥
"order": 0

}

The response contains the details of all the routes defined in the gateway. The following table
describes the structure of each element (each is a route) of the response:

Path Type Description

route_id String The route ID.

route_object.predicate Object The route predicate.

route_object.filters Array The GatewayFilter factories applied to the
route.

order Number The route order.

15.5. Retrieving Information about a Particular Route

To retrieve information about a single route, make a GET request to /actuator/gateway/routes/{id}
(for example, /actuator/gateway/routes/first_route). The resulting response is similar to the
following:

"id": "first_route",
"predicates": [{

"name": "Path",

"args": {"_genkey_0":"/first"}
H,
"filters": [],

"uri": "https://www.uri-destination.org",

"order": 0

The following table describes the structure of the response:

Path Type

id String
predicates Array
filters Array
ur String
order Number

Description
The route ID.

The collection of route predicates. Each
item defines the name and the arguments
of a given predicate.

The collection of filters applied to the
route.

The destination URI of the route.

The route order.

15.6. Creating and Deleting a Particular Route

To create a route, make a POST request to /gateway/routes/{id_route_to_create} with a JSON body
that specifies the fields of the route (see Retrieving Information about a Particular Route).

To delete a route, make a DELETE request to /gateway/routes/{id_route_to_delete}.

15.7. Recap: The List of All endpoints

The folloiwng table below summarizes the Spring Cloud Gateway actuator endpoints (note that
each endpoint has /actuator/gateway as the base-path):

ID HTTP Method
globalfilters GET
routefilters GET

refresh POST

routes GET

Description
Displays the list of global filters applied to the routes.

Displays the list of GatewayFilter factories applied to a
particular route.

Clears the routes cache.

Displays the list of routes defined in the gateway.

ID HTTP Method Description

routes/{id} GET Displays information about a particular route.
routes/{id} POST Adds a new route to the gateway.
routes/{id} DELETE Removes an existing route from the gateway.

15.8. Sharing Routes between multiple Gateway
instances

Spring Cloud Gateway offers two RouteDefinitionRepository implementations. The first one is the
InMemoryRouteDefinitionRepository which only lives within the memory of one Gateway instance.
This type of Repository is not suited to populate Routes across multiple Gateway instances.

In order to share Routes across a cluster of Spring Cloud Gateway instances,
RedisRouteDefinitionRepository can be used. To enable this kind of repository, the following
property has to set to true: spring.cloud.gateway.redis-route-definition-repository.enabled
Likewise to the RedisRateLimiter Filter Factory it requires the use of the spring-boot-starter-data-
redis-reactive Spring Boot starter.

16. Troubleshooting

This section covers common problems that may arise when you use Spring Cloud Gateway.

16.1. Log Levels

The following loggers may contain valuable troubleshooting information at the DEBUG and TRACE
levels:

* org.springframework.cloud.gateway

e org.springframework.http.server.reactive

* org.springframework.web.reactive

* org.springframework.boot.autoconfigure.web

* reactor.netty

e redisratelimiter

16.2. Wiretap

The Reactor Netty HttpClient and HttpServer can have wiretap enabled. When combined with
setting the reactor.netty log level to DEBUG or TRACE, it enables the logging of information, such as
headers and bodies sent and received across the wire. To enable wiretap, set
spring.cloud.gateway.httpserver.wiretap=true or spring.cloud.gateway.httpclient.wiretap=true for
the HttpServer and HttpClient, respectively.

17. Developer Guide

These are basic guides to writing some custom components of the gateway.

17.1. Writing Custom Route Predicate Factories

In order to write a Route Predicate you will need to implement RoutePredicateFactory as a bean.
There is an abstract class called AbstractRoutePredicateFactory which you can extend.

MyRoutePredicateFactory.java

@Component
public class MyRoutePredicateFactory extends
AbstractRoutePredicateFactory<MyRoutePredicateFactory.Config> {

public MyRoutePredicateFactory() {
super(Config.class);

}

@0verride
public Predicate<ServerWebExchange> apply(Config config) {
// grab configuration from Config object
return exchange -> {
//grab the request
ServerHttpRequest request = exchange.getRequest();
//take information from the request to see if it
//matches configuration.
return matches(config, request);
h
}

public static class Config {
//Put the configuration properties for your filter here

}

17.2. Writing Custom GatewayFilter Factories

To write a GatewayFilter, you must implement GatewayFilterFactory as a bean. You can extend an
abstract class called AbstractGatewayFilterFactory. The following examples show how to do so:

Example 80. PreGatewayfFilterFactory.java

@Component
public class PreGatewayFilterFactory extends
AbstractGatewayFilterFactory<PreGatewayFilterFactory.Config> {

public PreGatewayFilterFactory() {
super(Config.class);

}

@0verride
public GatewayFilter apply(Config config) {
// grab configuration from Config object
return (exchange, chain) -> {
//1f you want to build a "pre" filter you need to manipulate the
//request before calling chain.filter
ServerHttpRequest.Builder builder = exchange.getRequest().mutate();
//use builder to manipulate the request
return
chain.filter(exchange.mutate().request(builder.build()).build());
}i
}

public static class Config {
//Put the confiquration properties for your filter here

}

PostGatewayFilterFactory.java

@Component
public class PostGatewayFilterFactory extends
AbstractGatewayFilterFactory<PostGatewayFilterFactory.Config> {

public PostGatewayFilterFactory() {
super(Config.class);

}

@0verride
public GatewayFilter apply(Config config) {
// grab configuration from Config object
return (exchange, chain) -> {
return chain.filter(exchange).then(Mono.fromRunnable(() -> {
ServerHttpResponse response = exchange.getResponse();
//Manipulate the response in some way
1)
i
}

public static class Config {
//Put the configuration properties for your filter here

}

17.2.1. Naming Custom Filters And References In Configuration
Custom filters class names should end in GatewayFilterFactory.

For example, to reference a filter named Something in configuration files, the filter must be in a class
named SomethingGatewayFilterFactory.

It is possible to create a gateway filter named without the GatewayFilterFactory
A suffix, such as class AnotherThing. This filter could be referenced as AnotherThing

in configuration files. This is not a supported naming convention and this syntax

may be removed in future releases. Please update the filter name to be compliant.

17.3. Writing Custom Global Filters

To write a custom global filter, you must implement GlobalFilter interface as a bean. This applies
the filter to all requests.

The following examples show how to set up global pre and post filters, respectively:

©Bean
public GlobalFilter customGlobalFilter() {
return (exchange, chain) -> exchange.getPrincipal()
.map(Principal::getName)
.defaultIfEmpty("Default User")
.map(userName -> {
//adds header to proxied request
exchange.getRequest().mutate().header ("CUSTOM-REQUEST-HEADER",
userName).build();
return exchange;
1))
.flatMap(chain::filter);

}

@Bean
public GlobalFilter customGlobalPostFilter() {
return (exchange, chain) -> chain.filter(exchange)
.then(Mono. just(exchange))
.map(serverWebExchange -> {
//adds header to response
serverWebExchange.getResponse().getHeaders().set("CUSTOM-RESPONSE-
HEADER",

HttpStatus.0K.equals(serverWebExchange.getResponse().getStatusCode()) ? "It
worked": "It did not work");
return serverWebExchange;

)
.then();

18. Building a Simple Gateway by Using
Spring MVC or Webflux

ﬁ The following describes an alternative style gateway. None of the prior
documentation applies to what follows.

Spring Cloud Gateway provides a utility object called ProxyExchange. You can use it inside a regular
Spring web handler as a method parameter. It supports basic downstream HTTP exchanges
through methods that mirror the HTTP verbs. With MVC, it also supports forwarding to a local
handler through the forward() method. To use the ProxyExchange, include the right module in your
classpath (either spring-cloud-gateway-mvc or spring-cloud-gateway-webflux).

The following MVC example proxies a request to /test downstream to a remote server:

@RestController
@SpringBootApplication
public class GatewaySampleApplication {

@Value("${remote.home}")
private URI home;

@GetMapping("/test")
public ResponseEntity<?> proxy(ProxyExchange<byte[]> proxy) throws Exception {
return proxy.uri(home.toString() + "/image/png").get();

}

The following example does the same thing with Webflux:

@RestController
@SpringBootApplication
public class GatewaySampleApplication {

@Value("${remote.home}")
private URI home;

@GetMapping("/test")
public Mono<ResponseEntity<?>> proxy(ProxyExchange<byte[]> proxy) throws
Exception {
return proxy.uri(home.toString() + "/image/png").get();
}

Convenience methods on the ProxyExchange enable the handler method to discover and enhance the
URI path of the incoming request. For example, you might want to extract the trailing elements of a
path to pass them downstream:

@GetMapping("/proxy/path/**")

public ResponseEntity<?> proxyPath(ProxyExchange<byte[]> proxy) throws Exception {
String path = proxy.path("/proxy/path/");
return proxy.uri(home.toString() + "/foos/" + path).get();

¥

All the features of Spring MVC and Webflux are available to gateway handler methods. As a result,

you can inject request headers and query parameters, for instance, and you can constrain the
incoming requests with declarations in the mapping annotation. See the documentation for
@RequestMapping in Spring MVC for more details of those features.

You can add headers to the downstream response by using the header () methods on ProxyExchange.

You can also manipulate response headers (and anything else you like in the response) by adding a
mapper to the get() method (and other methods). The mapper is a Function that takes the incoming
ResponseEntity and converts it to an outgoing one.

First-class support is provided for “sensitive” headers (by default, cookie and authorization), which
are not passed downstream, and for “proxy” (x-forwarded-*) headers.

19. Configuration properties

To see the list of all Spring Cloud Gateway related configuration properties, see the appendix.

Spring Cloud Kubernetes

This reference guide covers how to use Spring Cloud Kubernetes.

1. Why do you need Spring Cloud
Kubernetes?

Spring Cloud Kubernetes provides implementations of well known Spring Cloud interfaces allowing
developers to build and run Spring Cloud applications on Kubernetes. While this project may be
useful to you when building a cloud native application, it is also not a requirement in order to
deploy a Spring Boot app on Kubernetes. If you are just getting started in your journey to running
your Spring Boot app on Kubernetes you can accomplish a lot with nothing more than a basic
Spring Boot app and Kubernetes itself. To learn more, you can get started by reading the Spring
Boot reference documentation for deploying to Kubernetes and also working through the
workshop material Spring and Kubernetes.

2. Starters

Starters are convenient dependency descriptors you can include in your application. Include a
starter to get the dependencies and Spring Boot auto-configuration for a feature set. Starters that
begin with spring-cloud-starter-kubernetes-fabric8 provide implementations using the Fabric8
Kubernetes Java Client. Starters that begin with spring-cloud-starter-kubernetes-client provide
implementations using the Kubernetes Java Client.

appendix.html
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#cloud-deployment-kubernetes
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#cloud-deployment-kubernetes
https://hackmd.io/@ryanjbaxter/spring-on-k8s-workshop
https://github.com/fabric8io/kubernetes-client
https://github.com/fabric8io/kubernetes-client
https://github.com/kubernetes-client/java

Starter Features

Fabric8 Dependency Discovery Client implementation that resolves

service names to Kubernetes Services.
<dependency>

<groupId>org.springframework.cloud</grou
pld>

<artifactId>spring-cloud-starter-
kubernetes-fabric8</artifactId>
</dependency>

Kubernetes Client Dependency
<dependency>

<groupId>org.springframework.cloud</grou
pld>

<artifactId>spring-cloud-starter-
kubernetes-client</artifactId>

</dependency>
Fabric8 Dependency Load application properties from Kubernetes
ConfigMaps and Secrets. Reload application
<dependency> properties when a ConfigMap or Secret changes.

<groupId>org.springframework.cloud</grou
pld>

<artifactId>spring-cloud-starter-
kubernetes-fabric8-config</artifactId>
</dependency>

Kubernetes Client Dependency
<dependency>

<groupId>org.springframework.cloud</grou
pld>

<artifactId>spring-cloud-starter-
kubernetes-client-config</artifactId>
</dependency>

Starter Features

Fabric8 Dependency All Spring Cloud Kubernetes features.
<dependency>

<groupId>org.springframework.cloud</grou
pld>

<artifactId>spring-cloud-starter-
kubernetes-fabric8-all</artifactId>
</dependency>

Kubernetes Client Dependency
<dependency>

<groupId>org.springframework.cloud</grou
pld>

<artifactId>spring-cloud-starter-
kubernetes-client-all</artifactId>
</dependency>

3. DiscoveryClient for Kubernetes

This project provides an implementation of Discovery Client for Kubernetes. This client lets you
query Kubernetes endpoints (see services) by name. A service is typically exposed by the
Kubernetes API server as a collection of endpoints that represent http and https addresses and that
a client can access from a Spring Boot application running as a pod.

This is something that you get for free by adding the following dependency inside your project:
HTTP Based DiscoveryClient

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-kubernetes-discoveryclient</artifactId>

</dependency>
o spring-cloud-starter-kubernetes-discoveryclient is designed to be used with the
Spring Cloud Kubernetes DiscoveryServer.

https://github.com/spring-cloud/spring-cloud-commons/blob/master/spring-cloud-commons/src/main/java/org/springframework/cloud/client/discovery/DiscoveryClient.java
https://kubernetes.io
https://kubernetes.io/docs/user-guide/services/

Fabric8 Kubernetes Client

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-kubernetes-fabric8</artifactId>
</dependency>

Kubernetes Java Client

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-kubernetes-client</artifactId>
</dependency>

To enable loading of the DiscoveryClient, add @EnableDiscoveryClient to the according configuration
or application class, as the following example shows:

@SpringBootApplication
@EnableDiscoveryClient
public class Application {
public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}
}

Then you can inject the client in your code simply by autowiring it, as the following example shows:

@Autowired
private DiscoveryClient discoveryClient;

You can choose to enable DiscoveryClient from all namespaces by setting the following property in
application.properties:

spring.cloud.kubernetes.discovery.all-namespaces=true

To discover service endpoint addresses that are not marked as "ready" by the kubernetes api
server, you can set the following property in application.properties (default: false):

spring.cloud.kubernetes.discovery.include-not-ready-addresses=true

o This might be useful when discovering services for monitoring purposes, and
would enable inspecting the /health endpoint of not-ready service instances.

If your service exposes multiple ports, you will need to specify which port the DiscoveryClient
should use. The DiscoveryClient will choose the port using the following logic.

1. If the service has a label primary-port-name it will use the port with the name specified in the
label’s value.

2. If no label is present, then the port name specified in
spring.cloud.kubernetes.discovery.primary-port-name will be used.

3. If neither of the above are specified it will use the port named https.
4. If none of the above conditions are met it will use the port named http.

5. As alast resort it wil pick the first port in the list of ports.

ﬁ The last option may result in non-deterministic behaviour. Please make sure to
configure your service and/or application accordingly.

By default all of the ports and their names will be added to the metadata of the ServiceInstance.

If, for any reason, you need to disable the Discovery(Client, you can set the following property in
application.properties:

spring.cloud.kubernetes.discovery.enabled=false

Some Spring Cloud components use the DiscoveryClient in order to obtain information about the
local service instance. For this to work, you need to align the Kubernetes service name with the
spring.application.name property.

o spring.application.name has no effect as far as the name registered for the
application within Kubernetes

Spring Cloud Kubernetes can also watch the Kubernetes service catalog for changes and update the

Discovery(Client implementation accordingly. In order to enable this functionality you need to add
@EnableScheduling on a configuration class in your application.

4. Kubernetes native service discovery

Kubernetes itself is capable of (server side) service discovery (see: kubernetes.io/docs/concepts/
services-networking/service/#discovering-services). Using native kubernetes service discovery

https://kubernetes.io/docs/concepts/services-networking/service/#discovering-services
https://kubernetes.io/docs/concepts/services-networking/service/#discovering-services

ensures compatibility with additional tooling, such as Istio (istio.io), a service mesh that is capable
of load balancing, circuit breaker, failover, and much more.

The caller service then need only refer to names resolvable in a particular Kubernetes cluster. A
simple implementation might use a spring RestTemplate that refers to a fully qualified domain name
(FQDN), such as {service-name}.{namespace}.svc.{cluster}.local:{service-port}.

Additionally, you can use Hystrix for:

* Circuit breaker implementation on the caller side, by annotating the spring boot application
class with @EnableCircuitBreaker

 Fallback functionality, by annotating the respective method with
@HystrixCommand(fallbackMethod=

5. Kubernetes PropertySource
implementations

The most common approach to configuring your Spring Boot application is to create an
application.properties or application.yaml or an application-profile.properties or application-
profile.yaml file that contains key-value pairs that provide customization values to your
application or Spring Boot starters. You can override these properties by specifying system
properties or environment variables.

5.1. Using a ConfigMap PropertySource

Kubernetes provides a resource named ConfigMap to externalize the parameters to pass to your
application in the form of key-value pairs or embedded application.properties or application.yaml
files. The Spring Cloud Kubernetes Config project makes Kubernetes ConfigMap instances available
during application bootstrapping and triggers hot reloading of beans or Spring context when
changes are detected on observed ConfigMap instances.

The default behavior is to create a Fabric8ConfigMapPropertySource based on a Kubernetes ConfigMap
that has a metadata.name value of either the name of your Spring application (as defined by its
spring.application.name property) or a custom name defined within the bootstrap.properties file
under the following key: spring.cloud.kubernetes.config.name.

However, more advanced configuration is possible where you can use multiple ConfigMap instances.
The spring.cloud.kubernetes.config.sources list makes this possible. For example, you could define
the following ConfigMap instances:

https://istio.io
https://{service-name}.{namespace}.svc.{cluster}.local:{service-port}
https://kubernetes.io/docs/user-guide/configmap/
https://github.com/spring-cloud/spring-cloud-kubernetes/tree/master/spring-cloud-kubernetes-fabric8-config

spring:
application:
name: cloud-k8s-app
cloud:
kubernetes:
config:
name: default-name
namespace: default-namespace
sources:
Spring Cloud Kubernetes looks up a ConfigMap named c1 in namespace
default-namespace
- name: c1
Spring Cloud Kubernetes looks up a ConfigMap named default-name in
whatever namespace n2
- namespace: n2
Spring Cloud Kubernetes looks up a ConfigMap named c3 in namespace n3
- namespace: n3
name: c3

In the preceding example, if spring.cloud.kubernetes.config.namespace had not been set, the
ConfigMap named c1 would be looked up in the namespace that the application runs. See Namespace
resolution to get a better understanding of how the namespace of the application is resolved.

Any matching ConfigMap that is found is processed as follows:

* Apply individual configuration properties.

* Apply as yaml the content of any property named application.yaml.

* Apply as a properties file the content of any property named application.properties.
The single exception to the aforementioned flow is when the ConfigMap contains a single key that
indicates the file is a YAML or properties file. In that case, the name of the key does NOT have to be
application.yaml or application.properties (it can be anything) and the value of the property is

treated correctly. This features facilitates the use case where the ConfigMap was created by using
something like the following:

kubectl create configmap game-config --from-file=/path/to/app-config.yaml

Assume that we have a Spring Boot application named demo that uses the following properties to
read its thread pool configuration.

* pool.size.core

* pool.size.maximum

This can be externalized to config map in yaml format as follows:

kind: ConfigMap
apiVersion: v1
metadata:
name: demo
data:
pool.size.core: 1
pool.size.max: 16

Individual properties work fine for most cases. However, sometimes, embedded yaml is more
convenient. In this case, we use a single property named application.yaml to embed our yaml, as
follows:

kind: ConfigMap
apiVersion: v
metadata:
name: demo
data:
application.yaml: |-
pool:
size:
core: 1
max:16

The following example also works:

kind: ConfigMap
apiVersion: v1
metadata:
name: demo
data:
custom-name.yaml: |-
pool:
size:
core: 1
max:16

You can also configure Spring Boot applications differently depending on active profiles that are
merged together when the ConfigMap is read. You can provide different property values for different
profiles by using an application.properties or application.yaml property, specifying profile-specific
values, each in their own document (indicated by the --- sequence), as follows:

kind: ConfigMap
apiVersion: v1

metadata:
name: demo
data:
application.yml: |-
greeting:
message: Say Hello to the World
farewell:

message: Say Goodbye

spring:

profiles: development
greeting:

message: Say Hello to the Developers
farewell:

message: Say Goodbye to the Developers
spring:

profiles: production
greeting:

message: Say Hello to the Ops

In the preceding case, the configuration loaded into your Spring Application with the development
profile is as follows:

greeting:

message: Say Hello to the Developers
farewell:

message: Say Goodbye to the Developers

However, if the production profile is active, the configuration becomes:

greeting:

message: Say Hello to the Ops
farewell:

message: Say Goodbye

If both profiles are active, the property that appears last within the ConfigMap overwrites any
preceding values.

Another option is to create a different config map per profile and spring boot will automatically

fetch it based on active profiles

kind: ConfigMap
apiVersion: v1
metadata:
name: demo
data:
application.yml: |-
greeting:
message: Say Hello to the World
farewell:
message: Say Goodbye

kind: ConfigMap
apiVersion: v1

metadata:
name: demo-development
data:
application.yml: |-
spring:
profiles: development
greeting:
message: Say Hello to the Developers
farewell:

message: Say Goodbye to the Developers

kind: ConfigMap
apiVersion: v1

metadata:
name: demo-production
data:
application.yml: |-
spring:
profiles: production
greeting:
message: Say Hello to the Ops
farewell:

message: Say Goodbye

To tell Spring Boot which profile should be enabled at bootstrap, you can pass
SPRING_PROFILES_ACTIVE environment variable. To do so, you can launch your Spring Boot
application with an environment variable that you can define it in the PodSpec at the container

specification. Deployment resource file, as follows:

apiVersion: apps/v1
kind: Deployment
metadata:
name: deployment-name
labels:
app: deployment-name
spec:
replicas: 1
selector:
matchlLabels:
app: deployment-name
template:
metadata:
labels:

app: deployment-name

spec:

containers:

- name: container-name
image: your-image
env:

- name: SPRING_PROFILES_ACTIVE
value: "development"

You could run into a situation where there are multiple configs maps that have the same property
names. For example:

kind: ConfigMap
apiVersion: v1

metadata:
name: config-map-one
data:
application.yml: |-
greeting:

message: Say Hello from one

and

kind: ConfigMap
apiVersion: v1

metadata:
name: config-map-two
data:
application.yml: |-
greeting:

message: Say Hello from two

Depending on the order in which you place these in bootstrap.yaml|properties, you might end up
with an un-expected result (the last config map wins). For example:

spring:
application:
name: cloud-k8s-app
cloud:
kubernetes:
config:
namespace: default-namespace
sources:
- name: config-map-two
- name: config-map-one

will result in property greetings.message being Say Hello from one.

There is a way to change this default configuration by specifying useNameAsPrefix. For example:

spring:
application:
name: with-prefix
cloud:
kubernetes:
config:
useNameAsPrefix: true
namespace: default-namespace
sources:
- name: config-map-one
useNameAsPrefix: false
- name: config-map-two

Such a configuration will result in two properties being generated:

* greetings.message equal to Say Hello from one.

» config-map-two.greetings.message equal to Say Hello from two

Notice that spring.cloud.kubernetes.config.useNameAsPrefix has a lower priority than
spring.cloud.kubernetes.config.sources.useNameAsPrefix. This allows you to set a "default" strategy
for all sources, at the same time allowing to override only a few.

If using the config map name is not an option, you can specify a different strategy, called :
explicitPrefix. Since this is an explicit prefix that you select, it can only be supplied to the sources
level. At the same time it has a higher priority than useNameAsPrefix. Let’s suppose we have a third
config map with these entries:

kind: ConfigMap
apiVersion: v1

metadata:
name: config-map-three
data:
application.yml: |-
greeting:

message: Say Hello from three

A configuration like the one below:

spring:
application:
name: with-prefix
cloud:
kubernetes:
config:
useNameAsPrefix: true
namespace: default-namespace
sources:
- name: config-map-one
useNameAsPrefix: false
- name: config-map-two
explicitPrefix: two
- name: config-map-three

will result in three properties being generated:

* greetings.message equal to Say Hello from one.
* two.greetings.message equal to Say Hello from two

» config-map-three.greetings.message equal to Say Hello from three.

By default, besides reading the config map that is specified in the sources configuration, Spring will
also try to read all properties from "profile aware" sources. The easiest way to explain this is via an
example. Let’s suppose your application enables a profile called "dev" and you have a configuration
like the one below:

spring:
application:
name: spring-k8s
cloud:
kubernetes:
config:
namespace: default-namespace
sources:
- name: config-map-one

Besides reading the config-map-one, Spring will also try to read config-map-one-dev; in this particular
order. Each active profile generates such a profile aware config map.

Though your application should not be impacted by such a config map, it can be disabled if needed:

spring:
application:
name: spring-k8s
cloud:
kubernetes:
config:
includeProfileSpecificSources: false
namespace: default-namespace
sources:
- name: config-map-one
includeProfileSpecificSources: false

Notice that just like before, there are two levels where you can specify this property: for all config
maps or for individual ones; the latter having a higher priority.

You should check the security configuration section. To access config maps from
inside a pod you need to have the correct Kubernetes service accounts, roles and
role bindings.

Another option for using ConfigMap instances is to mount them into the Pod by running the Spring
Cloud Kubernetes application and having Spring Cloud Kubernetes read them from the file system.
This behavior is controlled by the spring.cloud.kubernetes.config.paths property. You can use it in
addition to or instead of the mechanism described earlier. You can specify multiple (exact) file
paths in spring.cloud.kubernetes.config.paths by using the , delimiter.

o You have to provide the full exact path to each property file, because directories
are not being recursively parsed.

If you use spring.cloud.kubernetes.config.paths or

o spring.cloud.kubernetes.secrets.path the automatic reload functionality will not
work. You will need to make a POST request to the /actuator/refresh endpoint or
restart/redeploy the application.

In some cases, your application may be unable to load some of your ConfigMaps using the
Kubernetes API. If you want your application to fail the start-up process in such cases, you can set
spring.cloud.kubernetes.config.fail-fast=true to make the application start-up fail with an
Exception.

You can also make your application retry loading ConfigMap property sources on a failure. First, you
need to set spring.cloud.kubernetes.config.fail-fast=true. Then you need to add spring-retry and
spring-boot-starter-aop to your classpath. You can configure retry properties such as the
maximum number of attempts, backoff options like initial interval, multiplier, max interval by
setting the spring.cloud.kubernetes.config.retry.* properties.

If you already have spring-retry and spring-boot-starter-aop on the classpath for
o some reason and want to enable fail-fast, but do not want retry to be enabled; you

can disable retry for ConfigMap PropertySources by setting

spring.cloud.kubernetes.config.retry.enabled=false.

Table 6. Properties:

Name Type Default Description
spring.cloud.kubernete Boolean true Enable ConfigMaps
s.config.enabled PropertySource
spring.cloud.kubernete String ${spring.application.n Setsthe name of
s.config.name ame} ConfigMap to look up
spring.cloud.kubernete String Client namespace Sets the Kubernetes
s.config.namespace namespace where to
lookup
spring.cloud.kubernete List null Sets the paths where

s.config.paths ConfigMap instances are

mounted

spring.cloud.kubernete Boolean true Enable or disable

s.config.enableApi consuming ConfigMap

instances through APIs

spring.cloud.kubernete Boolean false Enable or disable

s.config.fail-fast failing the application

start-up when an error
occurred while loading
a ConfigMap

Name Type Default Description

spring.cloud.kubernete Boolean true Enable or disable
s.config.retry.enabled config retry.
spring.cloud.kubernete Long 1000 Initial retry interval in
s.config.retry.initial milliseconds
-interval '
spring.cloud.kubernete Integer b Maximum number of
s.config.retry.max- attempts

attempts '
spring.cloud.kubernete Long 2000 Maximum interval for
s.config.retry.max- backoff

interval .
spring.cloud.kubernete Double 1.1 Multiplier for next
1§(.;onf1g.retry.mu1t1p1 interval.

5.2. Secrets PropertySource

Kubernetes has the notion of Secrets for storing sensitive data such as passwords, OAuth tokens,
and so on. This project provides integration with Secrets to make secrets accessible by Spring Boot
applications. You can explicitly enable or disable This feature by setting the
spring.cloud.kubernetes.secrets.enabled property.

When enabled, the Fabric8SecretsPropertySource looks up Kubernetes for Secrets from the
following sources:

1. Reading recursively from secrets mounts

2. Named after the application (as defined by spring.application.name)

3. Matching some labels
Note:

By default, consuming Secrets through the API (points 2 and 3 above) is not enabled for security
reasons. The permission 'list' on secrets allows clients to inspect secrets values in the specified
namespace. Further, we recommend that containers share secrets through mounted volumes.

If you enable consuming Secrets through the API, we recommend that you limit access to Secrets by
using an authorization policy, such as RBAC. For more information about risks and best practices
when consuming Secrets through the API refer to this doc.

If the secrets are found, their data is made available to the application.

Assume that we have a spring boot application named demo that uses properties to read its database
configuration. We can create a Kubernetes secret by using the following command:

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/#best-practices

kubectl create secret generic db-secret --from-literal=username=user --from
-literal=password=p455w0rd

The preceding command would create the following secret (which you can see by using kubectl get
secrets db-secret -o yaml):

apiVersion: v1
data:
password: cDQ1NXcwemQ=
username: dXNlcg==
kind: Secret
metadata:
creationTimestamp: 2017-07-04709:15:577
name: db-secret
namespace: default
resourceVersion: "357496"
selflLink: /api/v1/namespaces/default/secrets/db-secret
uid: 63c89263-6099-11e7-b3da-76d6186905a8
type: Opaque

Note that the data contains Base64-encoded versions of the literal provided by the create command.

Your application can then use this secret— for example, by exporting the secret’s value as
environment variables:

apiVersion: v1
kind: Deployment
metadata:
name: ${project.artifactId}
spec:
template:
spec:
containers:
- env:
- name: DB_USERNAME
valueFrom:
secretKeyRef:
name: db-secret
key: username
- name: DB_PASSWORD
valueFrom:
secretKeyRef:
name: db-secret
key: password

You can select the Secrets to consume in a number of ways:

1. By listing the directories where secrets are mapped:

-Dspring.cloud.kubernetes.secrets.paths=/etc/secrets/db

-secret,etc/secrets/postgresql

If you have all the secrets mapped to a common root, you can set them like:

-Dspring.cloud.kubernetes.secrets.paths=/etc/secrets

2. By setting a named secret:

-Dspring.cloud.kubernetes.secrets.name=db-secret

3. By defining a list of labels:

-Dspring.cloud.kubernetes.secrets.labels.broker=activemg
-Dspring.cloud.kubernetes.secrets.labels.db=postgresql

As the case with ConfigMap, more advanced configuration is also possible where you can use
multiple Secret instances. The spring.cloud.kubernetes.secrets.sources list makes this possible. For
example, you could define the following Secret instances:

spring:
application:
name: cloud-k8s-app
cloud:
kubernetes:
secrets:
name: default-name
namespace: default-namespace
sources:
Spring Cloud Kubernetes looks up a Secret named s1 in namespace
default-namespace
- name: s1
Spring Cloud Kubernetes looks up a Secret named default-name in
namespace n2
- namespace: n2
Spring Cloud Kubernetes looks up a Secret named s3 in namespace n3
- namespace: n3
name: s3

In the preceding example, if spring.cloud.kubernetes.secrets.namespace had not been set, the Secret
named s1 would be looked up in the namespace that the application runs. See namespace-
resolution to get a better understanding of how the namespace of the application is resolved.

Similar to the ConfigMaps; if you want your application to fail to start when it is unable to load
Secrets property sources, you can set spring.cloud.kubernetes.secrets.fail-fast=true.

It is also possible to enable retry for Secret property sources like the ConfigMaps. As with the
ConfigMap property sources, first you need to set spring.cloud.kubernetes.secrets.fail-fast=true.
Then you need to add spring-retry and spring-boot-starter-aop to your classpath. Retry behavior
of the Secret property sources can be configured by setting the
spring.cloud.kubernetes.secrets.retry.* properties.

If you already have spring-retry and spring-boot-starter-aop on the classpath for
o some reason and want to enable fail-fast, but do not want retry to be enabled; you

can disable retry for Secrets PropertySources by setting

spring.cloud.kubernetes.secrets.retry.enabled=false.

Table 7. Properties:

Name

spring.cloud.kubernete
s.secrets.enabled

spring.cloud.kubernete
s.secrets.name

spring.cloud.kubernete
s.secrets.namespace

spring.cloud.kubernete
s.secrets.labels

spring.cloud.kubernete
s.secrets.paths

spring.cloud.kubernete
s.secrets.enableApi

spring.cloud.kubernete
s.secrets.fail-fast

spring.cloud.kubernete
s.secrets.retry.enable
d

spring.cloud.kubernete
s.secrets.retry.initia
1-interval

spring.cloud.kubernete
s.secrets.retry.max-
attempts

spring.cloud.kubernete
s.secrets.retry.max-
interval

spring.cloud.kubernete
s.secrets.retry.multip
lier

Notes:

Type

Boolean

String

String

Map

List

Boolean

Boolean

Boolean

Long

Integer

Long

Double

Default

true

${spring.application.n
ame}

Client namespace

null

null

false

false

true

1000

2000

a1

Description

Enable Secrets
PropertySource

Sets the name of the
secret to look up

Sets the Kubernetes
namespace where to
look up

Sets the labels used to
lookup secrets

Sets the paths where
secrets are mounted
(example 1)

Enables or disables
consuming secrets
through APIs (examples
2 and 3)

Enable or disable
failing the application
start-up when an error
occurred while loading
a Secret

Enable or disable
secrets retry.

Initial retry interval in
milliseconds.

Maximum number of
attempts.

Maximum interval for
backoff.

Multiplier for next
interval.

* The spring.cloud.kubernetes.secrets.labels property behaves as defined by Map-based

binding.

* The spring.cloud.kubernetes.secrets.paths property behaves as defined by Collection-based

binding.

https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-Configuration-Binding#map-based-binding
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-Configuration-Binding#map-based-binding
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-Configuration-Binding#collection-based-binding
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-Configuration-Binding#collection-based-binding

» Access to secrets through the API may be restricted for security reasons. The preferred way is to
mount secrets to the Pod.

You can find an example of an application that uses secrets (though it has not been updated to use
the new spring-cloud-kubernetes project) at spring-boot-camel-config

5.3. Namespace resolution

Finding an application namespace happens on a best-effort basis. There are some steps that we
iterate in order to find it. The easiest and most common one, is to specify it in the proper
configuration, for example:

spring:
application:
name: app
cloud:
kubernetes:
secrets:
name: secret
namespace: default
sources:
Spring Cloud Kubernetes looks up a Secret named 'a
"default’

in namespace

- name: a
Spring Cloud Kubernetes looks up a Secret named 'secret' in namespace

- namespace: b
Spring Cloud Kubernetes looks up a Secret named 'd' in namespace 'c'
- namespace:

name: d

Remember that the same can be done for config maps. If such a namespace is not specified, it will
be read (in this order):

1. from property spring.cloud.kubernetes.client.namespace

2. from a String residing in a file denoted by
spring.cloud.kubernetes.client.serviceAccountNamespacePath property

3. from a String residing in /var/run/secrets/kubernetes.io/serviceaccount/namespace file
(kubernetes default namespace path)

4. from a designated client method call (for example fabric8’s : KubernetesClient::getNamespace), if
the client provides such a method. This, in turn, could be configured via environment
properties. For example fabric8 client can be configured via "KUBERNETES_NAMESPACE"
property; consult the client documentation for exact details.

Failure to find a namespace from the above steps will result in an Exception being raised.

https://github.com/fabric8-quickstarts/spring-boot-camel-config

5.4. PropertySource Reload

This functionality has been deprecated in the 2020.0 release. Please see the Spring
A Cloud Kubernetes Configuration Watcher controller for an alternative way to
achieve the same functionality.

Some applications may need to detect changes on external property sources and update their
internal status to reflect the new configuration. The reload feature of Spring Cloud Kubernetes is
able to trigger an application reload when a related ConfigMap or Secret changes.

By default, this feature is disabled. You can enable it by using the
spring.cloud.kubernetes.reload.enabled=true configuration property (for example, in the
application.properties file).

The following levels of reload are supported (by setting the
spring.cloud.kubernetes.reload.strategy property):

* refresh (default): Only configuration beans annotated with @ConfigurationProperties or
@RefreshScope are reloaded. This reload level leverages the refresh feature of Spring Cloud
Context.

» restart_context: the whole Spring ApplicationContext is gracefully restarted. Beans are
recreated with the new configuration. In order for the restart context functionality to work
properly you must enable and expose the restart actuator endpoint

management:
endpoint:
restart:
enabled: true
endpoints:
web:
exposure:
include: restart

* shutdown: the Spring ApplicationContext is shut down to activate a restart of the container. When
you use this level, make sure that the lifecycle of all non-daemon threads is bound to the
ApplicationContext and that a replication controller or replica set is configured to restart the
pod.

Assuming that the reload feature is enabled with default settings (refresh mode), the following
bean is refreshed when the config map changes:

@Configuration
@ConfigurationProperties(prefix = "bean")
public class MyConfig {

private String message = "a message that can be changed live";

// getter and setters

To see that changes effectively happen, you can create another bean that prints the message
periodically, as follows

@Component
public class MyBean {

@Autowired
private MyConfig config;

@Scheduled(fixedDelay = 5000)
public void hello() {
System.out.println("The message is: " + config.getMessage());

}

You can change the message printed by the application by using a ConfigMap, as follows:

apiVersion: v
kind: ConfigMap
metadata:
name: reload-example
data:
application.properties: |-
bean.message=Hello World!

Any change to the property named bean.message in the ConfigMap associated with the pod is reflected
in the output. More generally speaking, changes associated to properties prefixed with the value
defined by the prefix field of the @ConfigurationProperties annotation are detected and reflected in
the application. Associating a ConfigMap with a pod is explained earlier in this chapter.

The full example is available in spring-cloud-kubernetes-reload-example.

https://github.com/spring-cloud/spring-cloud-kubernetes/tree/main/spring-cloud-kubernetes-examples/kubernetes-reload-example

The reload feature supports two operating modes: * Event (default): Watches for changes in config
maps or secrets by using the Kubernetes API (web socket). Any event produces a re-check on the
configuration and, in case of changes, a reload. The view role on the service account is required in
order to listen for config map changes. A higher level role (such as edit) is required for secrets (by
default, secrets are not monitored). * Polling: Periodically re-creates the configuration from config
maps and secrets to see if it has changed. You can configure the polling period by using the
spring.cloud.kubernetes.reload.period property and defaults to 15 seconds. It requires the same
role as the monitored property source. This means, for example, that using polling on file-mounted
secret sources does not require particular privileges.

Table 8. Properties:

Name Type Default Description

spring.cloud.kubernete Boolean false Enables monitoring of

s.reload.enabled property sources and

configuration reload

spring.cloud.kubernete Boolean true Allow monitoring
s.reload.monitoring-

changes in config maps
config-maps & g map

spring.cloud.kubernete Boolean false Allow monitoring

s.reload.monitoring- changes in secrets
secrets

spring.cloud.kubernete Enum refresh The strategy to use

s.reload.strategy when firing a reload

(refresh,
restart_context, or
shutdown)

spring.cloud.kubernete Enum event Specifies how to listen

s.reload.mode for changes in property
sources (event or
polling)

spring.cloud.kubernete Duration 15s The period for

s.reload.period verifying changes when

using the polling
strategy

Notes: * You should not use properties under spring.cloud.kubernetes.reload in config maps or
secrets. Changing such properties at runtime may lead to unexpected results. * Deleting a property
or the whole config map does not restore the original state of the beans when you use the refresh
level.

6. Kubernetes Ecosystem Awareness

All of the features described earlier in this guide work equally well, regardless of whether your
application is running inside Kubernetes. This is really helpful for development and
troubleshooting. From a development point of view, this lets you start your Spring Boot application
and debug one of the modules that is part of this project. You need not deploy it in Kubernetes, as

the code of the project relies on the Fabric8 Kubernetes Java client, which is a fluent DSL that can
communicate by using http protocol to the REST API of the Kubernetes Server.

To disable the integration with Kubernetes you can set spring.cloud.kubernetes.enabled to false.
Please be aware that when spring-cloud-kubernetes-config is on the classpath,
spring.cloud.kubernetes.enabled should be set in bootstrap.{properties|yml} (or the profile specific
one), otherwise it should be in application.{properties|yml} (or the profile specific one). Because of
the way we set up a specific EnvironmentPostProcessor in spring-cloud-kubernetes-config, you also
need to disable that processor via a system property (or an environment variable), for example you
could start your application via -DSPRING_CLOUD_KUBERNETES_ENABLED=false (any form of relaxed
binding will work too). Also note that these properties: spring.cloud.kubernetes.config.enabled and
spring.cloud.kubernetes.secrets.enabled only take effect when set in bootstrap.{properties|yml}

6.1. Kubernetes Profile Autoconfiguration

When the application runs as a pod inside Kubernetes, a Spring profile named kubernetes
automatically gets activated. This lets you customize the configuration, to define beans that are
applied when the Spring Boot application is deployed within the Kubernetes platform (for example,
different development and production configuration).

6.2. Istio Awareness

When you include the spring-cloud-kubernetes-fabric8-istio module in the application classpath, a
new profile is added to the application, provided the application is running inside a Kubernetes
Cluster with Istio installed. You can then use spring @Profile("istio") annotations in your Beans
and @Configuration classes.

The Istio awareness module uses me.snowdrop:istio-client to interact with Istio APIs, letting us
discover traffic rules, circuit breakers, and so on, making it easy for our Spring Boot applications to
consume this data to dynamically configure themselves according to the environment.

7. Pod Health Indicator

Spring Boot uses HealthIndicator to expose info about the health of an application. That makes it
really useful for exposing health-related information to the user and makes it a good fit for use as
readiness probes.

The Kubernetes health indicator (which is part of the core module) exposes the following info:

* Pod name, IP address, namespace, service account, node name, and its IP address

» A flag that indicates whether the Spring Boot application is internal or external to Kubernetes

You can disable this HealthContributor by setting management.health.kubernetes.enabled to false in
application.[properties | yaml].

https://github.com/fabric8io/kubernetes-client
https://istio.io
https://github.com/spring-projects/spring-boot/blob/master/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/HealthEndpoint.java
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/

8. Info Contributor

Spring Cloud Kubernetes includes an InfoContributor which adds Pod information to Spring Boot’s
/info Acturator endpoint.

You can disable this InfoContributor by setting management.info.kubernetes.enabled to false in
application.[properties | yaml].

9. Leader Election

The Spring Cloud Kubernetes leader election mechanism implements the leader election API of
Spring Integration using a Kubernetes ConfigMap.

Multiple application instances compete for leadership, but leadership will only be granted to one.
When granted leadership, a leader application receives an OnGrantedEvent application event with
leadership Context. Applications periodically attempt to gain leadership, with leadership granted to
the first caller. A leader will remain a leader until either it is removed from the cluster, or it yields
its leadership. When leadership removal occurs, the previous leader receives OnRevokedEvent
application event. After removal, any instances in the cluster may become the new leader,
including the old leader.

To include it in your project, add the following dependency.
Fabric8 Leader Implementation

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-kubernetes-fabric8-leader</artifactId>
</dependency>

To specify the name of the configmap used for leader election use the following property.

spring.cloud.kubernetes.leader.config-map-name=1eader

10. LoadBalancer for Kubernetes

This project includes Spring Cloud Load Balancer for load balancing based on Kubernetes
Endpoints and provides implementation of load balancer based on Kubernetes Service. To include
it to your project add the following dependency.

Fabric8 Implementation

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-kubernetes-fabric8-loadbalancer</artifactId>
</dependency>

Kubernetes Java Client Implementation

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-kubernetes-client-loadbalancer</artifactId>
</dependency>

To enable load balancing based on Kubernetes Service name use the following property. Then load

balancer would try to call application wusing address, for example service-
a.default.svc.cluster.local

spring.cloud.kubernetes.loadbalancer.mode=SERVICE

To enabled load balancing across all namespaces use the following property. Property from spring-
cloud-kubernetes-discovery module is respected.

spring.cloud.kubernetes.discovery.all-namespaces=true

If a service needs to be accessed over HTTPS you need to add a label or annotation to your service
definition with the name secured and the value true and the load balancer will then use HTTPS to
make requests to the service.

11. Security Configurations Inside
Kubernetes

11.1. Namespace

Most of the components provided in this project need to know the namespace. For Kubernetes
(1.3+), the namespace is made available to the pod as part of the service account secret and is
automatically detected by the client. For earlier versions, it needs to be specified as an environment

variable to the pod. A quick way to do this is as follows:

env:
- name: "KUBERNETES_NAMESPACE"
valueFrom:

fieldRef:
fieldPath: "metadata.namespace”

11.2. Service Account

For distributions of Kubernetes that support more fine-grained role-based access within the cluster,
you need to make sure a pod that runs with spring-cloud-kubernetes has access to the Kubernetes
API For any service accounts you assign to a deployment or pod, you need to make sure they have
the correct roles.

Depending on the requirements, you’ll need get, list and watch permission on the following
resources:

Table 9. Kubernetes Resource Permissions

Dependency Resources
spring-cloud-starter-kubernetes-fabric8 pods, services, endpoints
spring-cloud-starter-kubernetes-fabric8-config configmaps, secrets
spring-cloud-starter-kubernetes-client pods, services, endpoints

spring-cloud-starter-kubernetes-client-config configmaps, secrets

For development purposes, you can add cluster-reader permissions to your default service
account. On a production system youw’ll likely want to provide more granular permissions.

The following Role and RoleBinding are an example for namespaced permissions for the default
account:

kind: Role
apiVersion: rbac.authorization.k8s.i0/v1
metadata:
namespace: YOUR-NAME-SPACE
name: namespace-reader
rules:
- apiGroups: [""]
resources: ["configmaps", "pods", "services", "endpoints", "secrets"]
verbs: ["get", "list", "watch"]

kind: RoleBinding
apiVersion: rbac.authorization.k8s.i0/v1
metadata:
name: namespace-reader-binding
namespace: YOUR-NAME-SPACE
subjects:
- kind: ServiceAccount
name: default
apiGroup: ""
roleRef:
kind: Role
name: namespace-reader
apiGroup: ""

12. Service Registry Implementation

In Kubernetes service registration is controlled by the platform, the application itself does not
control registration as it may do in other platforms. For this reason using spring.cloud.service-
registry.auto-registration.enabled or setting @EnableDiscoveryClient(autoRegister=false) will
have no effect in Spring Cloud Kubernetes.

13. Spring Cloud Kubernetes Configuration
Watcher

Kubernetes provides the ability to mount a ConfigMap or Secret as a volume in the container of
your application. When the contents of the ConfigMap or Secret changes, the mounted volume will
be updated with those changes.

However, Spring Boot will not automatically update those changes unless you restart the
application. Spring Cloud provides the ability refresh the application context without restarting the
application by either hitting the actuator endpoint /refresh or via publishing a
RefreshRemoteApplicationEvent using Spring Cloud Bus.

https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#add-configmap-data-to-a-volume
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#mounted-configmaps-are-updated-automatically
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#mounted-configmaps-are-updated-automatically

To achieve this configuration refresh of a Spring Cloud app running on Kubernetes, you can deploy
the Spring Cloud Kubernetes Configuration Watcher controller into your Kubernetes cluster.

The application is published as a container and is available on Docker Hub.

Spring Cloud Kubernetes Configuration Watcher can send refresh notifications to applications in
two ways.

1. Over HTTP in which case the application being notified must of the /refresh actuator endpoint
exposed and accessible from within the cluster

2. Using Spring Cloud Bus, in which case you will need a message broker deployed to your custer
for the application to use.

13.1. Deployment YAML

Below is a sample deployment YAML you can use to deploy the Kubernetes Configuration Watcher
to Kubernetes.

https://hub.docker.com/r/springcloud/spring-cloud-kubernetes-configuration-watcher

apiVersion: v1
kind: List
items:
- apiVersion: vi
kind: Service
metadata:
labels:
app: spring-cloud-kubernetes-configuration-watcher
name: spring-cloud-kubernetes-configuration-watcher
spec:
ports:
- name: http
port: 8888
targetPort: 8888
selector:
app: spring-cloud-kubernetes-configuration-watcher
type: ClusterIP
- apiVersion: vi
kind: ServiceAccount
metadata:
labels:
app: spring-cloud-kubernetes-configuration-watcher
name: spring-cloud-kubernetes-configuration-watcher
- apiVersion: rbac.authorization.k8s.i0/v1
kind: RoleBinding
metadata:
labels:
app: spring-cloud-kubernetes-configuration-watcher
name: spring-cloud-kubernetes-configuration-watcher:view
roleRef:
kind: Role
apiGroup: rbac.authorization.k8s.1i0
name: namespace-reader
subjects:
- kind: ServiceAccount
name: spring-cloud-kubernetes-configuration-watcher
- apiVersion: rbac.authorization.k8s.i0/v1
kind: Role
metadata:
namespace: default
name: namespace-reader
rules:
- apiGroups: ["", "extensions", "apps"]
resources: ["configmaps", "pods", "services", "endpoints", "secrets"]
verbs: ["get", "list", "watch"]
- apiVersion: apps/vi
kind: Deployment
metadata:

name: spring-cloud-kubernetes-confiqguration-watcher-deployment
spec:
selector:
matchlLabels:
app: spring-cloud-kubernetes-configuration-watcher
template:
metadata:
labels:
app: spring-cloud-kubernetes-configuration-watcher
spec:
serviceAccount: spring-cloud-kubernetes-configuration-watcher
containers:
- name: spring-cloud-kubernetes-configuration-watcher
image: springcloud/spring-cloud-kubernetes-configuration-
watcher:2.0.1-SNAPSHOT
imagePullPolicy: IfNotPresent
readinessProbe:
httpGet:
port: 8888
path: /actuator/health/readiness
livenessProbe:
httpGet:
port: 8888
path: /actuator/health/liveness
ports:
- containerPort: 8888

The Service Account and associated Role Binding is important for Spring Cloud Kubernetes
Configuration to work properly. The controller needs access to read data about ConfigMaps, Pods,
Services, Endpoints and Secrets in the Kubernetes cluster.

13.2. Monitoring ConfigMaps and Secrets

Spring Cloud Kubernetes Configuration Watcher will react to changes in ConfigMaps with a label of
spring.cloud.kubernetes.config with the wvalue true or any Secret with a label of
spring.cloud.kubernetes.secret with the value true. If the ConfigMap or Secret does not have either
of those labels or the values of those labels is not true then any changes will be ignored.

The labels Spring Cloud Kubernetes Configuration Watcher looks for on ConfigMaps and Secrets
can be changed by setting spring.cloud.kubernetes.configuration.watcher.configlabel and
spring.cloud.kubernetes.configuration.watcher.secretlLabel respectively.

If a change is made to a ConfigMap or Secret with valid labels then Spring Cloud Kubernetes
Configuration Watcher will take the name of the ConfigMap or Secret and send a notification to the
application with that name.

13.3. HTTP Implementation

The HTTP implementation is what is used by default. When this implementation is used Spring
Cloud Kubernetes Configuration Watcher and a change to a ConfigMap or Secret occurs then the
HTTP implementation will use the Spring Cloud Kubernetes Discovery Client to fetch all instances
of the application which match the name of the ConfigMap or Secret and send an HTTP POST
request to the application’s actuator /refresh endpoint. By default it will send the post request to
/actuator/refresh using the port registered in the discovery client.

13.3.1. Non-Default Management Port and Actuator Path

If the application is using a non-default actuator path and/or using a different port for the
management endpoints, the Kubernetes service for the application can add an annotation called
boot.spring.io/actuator and set its value to the path and port used by the application. For example

apiVersion: v1
kind: Service
metadata:
labels:
app: config-map-demo
name: config-map-demo

annotations:
boot.spring.io/actuator: http://:9090/myactuator/home
spec:
ports:
- name: http
port: 8080
targetPort: 8080
selector:

app: config-map-demo

Another way you can choose to configure the actuator path and/or management port is by setting
spring.cloud.kubernetes.configuration.watcher.actuatorPath and
spring.cloud.kubernetes.configuration.watcher.actuatorPort.

13.4. Messaging Implementation

The messaging implementation can be enabled by setting profile to either bus-amqp (RabbitMQ) or
bus-kafka (Kafka) when the Spring Cloud Kubernetes Configuration Watcher application is deployed
to Kubernetes.

13.5. Configuring RabbitMQ

When the bus-amqp profile is enabled you will need to configure Spring RabbitMQ to point it to the
location of the RabbitMQ instance you would like to use as well as any credentials necessary to

authenticate. This can be done by setting the standard Spring RabbitMQ properties, for example

spring:
rabbitmq:
username: user
password: password
host: rabbitmg

13.6. Configuring Kafka

When the bus-kafka profile is enabled you will need to configure Spring Kafka to point it to the
location of the Kafka Broker instance you would like to use. This can be done by setting the
standard Spring Kafka properties, for example

spring:
kafka:
producer:
bootstrap-servers: localhost:9092

14. Spring Cloud Kubernetes Config Server

The Spring Cloud Kubernetes Config Server, is based on Spring Cloud Config Server and adds an
environment repository for Kubernetes Config Maps and Secrets.

This is component is completely optional. However, it allows you to continue to leverage
configuration you may have stored in existing environment repositories (Git, SVN, Vault, etc) with
applications that you are running on Kubernetes.

A default image is located on Docker Hub which will allow you to easily get a Config Server
deployed on Kubernetes without building the code and image yourself. However, if you need to
customize the config server behavior you can easily build your own image from the source code on
GitHub and use that.

14.1. Configuration

14.1.1. Enabling The Kubernetes Environment Repository

To enable the Kubernetes environment repository the kubernetes profile must be included in the list
of active profiles. You may activate other profiles as well to use other environment repository
implementations.

https://spring.io/projects/spring-cloud-config
https://docs.spring.io/spring-cloud-config/docs/current/reference/html/#_environment_repository
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/secret/
https://hub.docker.com/r/springcloud/spring-cloud-kubernetes-configserver

14.1.2. Config Map and Secret PropertySources

By default, only Config Map data will be fetched. To enable Secrets as well you will need to set
spring.cloud.kubernetes.secrets.enableApi=true. You can disable the Config Map PropertySource by
setting spring.cloud.kubernetes.config.enableApi=false.

14.1.3. Fetching Config Map and Secret Data From Additional Namespaces

By default, the Kubernetes environment repository will only fetch Config Map and Secrets from the
namespace in which it is deployed. If you want to include data from other namespaces you can set
spring.cloud.kubernetes.configserver.config-map-namespaces and/or
spring.cloud.kubernetes.configserver.secrets-namespaces to a comma separated list of namespace
values.

If you set spring.cloud.kubernetes.configserver.config-map-namespaces and/or

o spring.cloud.kubernetes.configserver.secrets-namespaces you will need to include
the namespace in which the Config Server is deployed in order to continue to fetch
Config Map and Secret data from that namespace.

14.1.4. Kubernetes Access Controls

The Kubernetes Config Server uses the Kubernetes API server to fetch Config Map and Secret data.
In order for it to do that it needs ability to get and list Config Map and Secrets (depending on what
you enable/disable).

14.2. Deployment Yaml

Below is a sample deployment, service and permissions configuration you can use to deploy a basic
Config Server to Kubernetes.

apiVersion: v1
kind: List
items:
- apiVersion: vi
kind: Service
metadata:

labels:
app: spring-cloud-kubernetes-configserver

name: spring-cloud-kubernetes-configserver

spec:

ports:

- name: http
port: 8888
targetPort: 8888

selector:
app: spring-cloud-kubernetes-configserver

type: ClusterIP

- apiVersion: vi
kind: ServiceAccount
metadata:

labels:
app: spring-cloud-kubernetes-configserver

name: spring-cloud-kubernetes-configserver

- apiVersion: rbac.authorization.k8s.i0/v1
kind: RoleBinding
metadata:

labels:
app: spring-cloud-kubernetes-configserver

name: spring-cloud-kubernetes-configserver:view

roleRef:

kind: Role

apiGroup: rbac.authorization.k8s.1i0

name: namespace-reader

subjects:
- kind: ServiceAccount
name: spring-cloud-kubernetes-configserver
- apiVersion: rbac.authorization.k8s.i0/v1
kind: Role
metadata:
namespace: default
name: namespace-reader
rules:

- apiGroups: ["", "extensions", "apps"]
resources: ["configmaps", "secrets"]
verbs: ["get", "list"]

- apiVersion: apps/vi
