
Spring Cloud

Table of Contents
1. Features . 16

2. Release Train Versions . 16

Spring Cloud Build . 17

1. Building and Deploying . 19

2. Contributing . 19

2.1. Sign the Contributor License Agreement . 20

2.2. Code of Conduct . 20

2.3. Code Conventions and Housekeeping. 20

2.4. Checkstyle . 20

2.5. IDE setup . 23

2.6. Duplicate Finder. 26

3. Flattening the POMs . 27

4. Reusing the documentation . 28

5. Updating the guides. 31

Spring Cloud Bus. 32

1. Quick Start . 32

2. Bus Endpoints . 33

2.1. Bus Refresh Endpoint . 33

2.2. Bus Env Endpoint. 33

3. Addressing an Instance . 34

4. Addressing All Instances of a Service . 34

5. Service ID Must Be Unique . 34

6. Customizing the Message Broker . 35

7. Tracing Bus Events . 35

8. Broadcasting Your Own Events . 36

8.1. Registering events in custom packages . 37

9. Configuration properties . 38

Spring Cloud Circuit Breaker. 38

1. Usage Documentation. 38

1.1. Configuring Resilience4J Circuit Breakers . 38

1.2. Configuring Spring Retry Circuit Breakers . 46

2. Building . 47

2.1. Basic Compile and Test . 47

2.2. Documentation . 48

2.3. Working with the code . 48

3. Contributing . 49

3.1. Sign the Contributor License Agreement . 49

3.2. Code of Conduct . 49

3.3. Code Conventions and Housekeeping. 49

3.4. Checkstyle . 50

3.5. IDE setup . 52

3.6. Duplicate Finder. 55

Cloud Native Applications . 56

1. Spring Cloud Context: Application Context Services. 57

1.1. The Bootstrap Application Context . 57

1.2. Application Context Hierarchies . 58

1.3. Changing the Location of Bootstrap Properties . 59

1.4. Overriding the Values of Remote Properties . 59

1.5. Customizing the Bootstrap Configuration . 60

1.6. Customizing the Bootstrap Property Sources . 60

1.7. Logging Configuration . 61

1.8. Environment Changes. 61

1.9. Refresh Scope . 62

1.10. Encryption and Decryption . 63

1.11. Endpoints . 63

2. Spring Cloud Commons: Common Abstractions. 64

2.1. The @EnableDiscoveryClient Annotation. 64

2.2. ServiceRegistry . 65

2.3. Spring RestTemplate as a Load Balancer Client . 67

2.4. Spring WebClient as a Load Balancer Client . 68

2.5. Multiple RestTemplate Objects . 71

2.6. Multiple WebClient Objects . 72

2.7. Spring WebFlux WebClient as a Load Balancer Client . 73

2.8. Ignore Network Interfaces. 75

2.9. HTTP Client Factories . 76

2.10. Enabled Features . 76

2.11. Spring Cloud Compatibility Verification. 77

3. Spring Cloud LoadBalancer. 78

3.1. Eager loading of LoadBalancer contexts . 79

3.2. Switching between the load-balancing algorithms . 79

3.3. Spring Cloud LoadBalancer integrations . 79

3.4. Spring Cloud LoadBalancer Caching . 80

3.5. Weighted Load-Balancing . 81

3.6. Zone-Based Load-Balancing. 82

3.7. Instance Health-Check for LoadBalancer. 82

3.8. Same instance preference for LoadBalancer . 84

3.9. Request-based Sticky Session for LoadBalancer. 85

3.10. Spring Cloud LoadBalancer Hints . 86

3.11. Hint-Based Load-Balancing . 86

3.12. Transform the load-balanced HTTP request . 87

3.13. Spring Cloud LoadBalancer Starter . 88

3.14. Passing Your Own Spring Cloud LoadBalancer Configuration . 88

3.15. Spring Cloud LoadBalancer Lifecycle . 89

3.16. Spring Cloud LoadBalancer Statistics . 90

3.17. Configuring Individual LoadBalancerClients . 91

3.18. AOT and Native Image Support . 92

4. Spring Cloud Circuit Breaker . 92

4.1. Introduction . 92

4.2. Core Concepts . 92

4.3. Configuration . 94

5. CachedRandomPropertySource . 95

6. Security . 95

6.1. Single Sign On . 95

7. Configuration Properties . 96

Spring Cloud Config . 97

1. Quick Start . 97

1.1. Client Side Usage . 99

2. Spring Cloud Config Server . 102

2.1. Environment Repository . 103

2.2. Health Indicator . 134

2.3. Security. 134

2.4. Actuator and Security . 135

2.5. Encryption and Decryption . 135

2.6. Key Management . 137

2.7. Creating a Key Store for Testing . 138

2.8. Using Multiple Keys and Key Rotation . 138

2.9. Serving Encrypted Properties . 139

2.10. Serving Alternative Formats . 139

2.11. Serving Plain Text . 139

2.12. Serving Binary Files . 140

2.13. Embedding the Config Server . 142

2.14. Push Notifications and Spring Cloud Bus. 143

2.15. AOT and Native Image Support . 143

3. Spring Cloud Config Client. 143

3.1. Spring Boot Config Data Import . 143

3.2. Config First Bootstrap . 144

3.3. Config Client Fail Fast . 145

3.4. Config Client Retry. 145

3.5. Config Client Retry with spring.config.import . 146

3.6. Locating Remote Configuration Resources . 146

3.7. Specifying Multiple URLs for the Config Server . 147

3.8. Configuring Timeouts . 147

3.9. Security. 147

3.10. Nested Keys In Vault . 151

3.11. AOT and Native Image Support . 151

Spring Cloud Consul. 152

1. Quick Start. 152

1.1. Discovery Client Usage . 152

1.2. Distributed Configuration Usage . 155

2. Install Consul . 158

3. Consul Agent . 158

4. Service Discovery with Consul . 158

4.1. How to activate. 158

4.2. Registering with Consul . 158

4.3. Looking up services. 165

4.4. Consul Catalog Watch . 167

5. Distributed Configuration with Consul . 167

5.1. How to activate. 167

5.2. Spring Boot Config Data Import . 168

5.3. Customizing. 168

5.4. Config Watch . 169

5.5. YAML or Properties with Config. 169

5.6. git2consul with Config . 170

5.7. Fail Fast. 171

6. Consul Retry . 171

7. Spring Cloud Bus with Consul . 171

7.1. How to activate. 172

8. Circuit Breaker with Hystrix. 172

9. Hystrix metrics aggregation with Turbine and Consul . 172

10. Configuration Properties . 173

Spring Cloud Contract Reference Documentation . 173

Spring Cloud Function . 174

1. Introduction . 174

2. Getting Started . 175

3. Programming model . 176

3.1. Function Catalog and Flexible Function Signatures . 176

3.2. Java 8 function support . 176

3.3. Function Composition. 179

3.4. Function Routing and Filtering . 180

3.5. Input/Output Enrichment . 185

3.6. Function Arity. 187

3.7. Input Header propagation. 188

3.8. Type conversion (Content-Type negotiation) . 188

3.9. Kotlin Lambda support. 192

3.10. Function Component Scan. 193

4. Standalone Web Applications. 193

4.2. Function Mapping rules . 194

4.3. Function Filtering rules . 195

4.4. CRUD REST with Spring Cloud Function . 195

5. Standalone Streaming Applications . 196

6. Deploying a Packaged Function . 196

6.1. Supported Packaging Scenarios . 198

7. Functional Bean Definitions . 200

7.1. Comparing Functional with Traditional Bean Definitions . 200

7.2. Limitations of Functional Bean Declaration . 203

8. Function visualization and control . 203

9. Testing Functional Applications. 204

10. Serverless Platform Adapters . 207

10.1. AWS Lambda. 207

10.2. Microsoft Azure Functions . 215

10.3. Azure Adapter . 215

10.4. Azure Web Adapter . 224

10.5. Usage. 225

10.6. FunctionInvoker (deprecated) . 227

10.7. Relevant Links . 228

Google Cloud Functions . 228

Spring Cloud Gateway. 235

1. How to Include Spring Cloud Gateway. 235

2. Glossary . 235

3. How It Works . 235

4. Configuring Route Predicate Factories and Gateway Filter Factories . 236

4.1. Shortcut Configuration . 236

4.2. Fully Expanded Arguments . 236

5. Route Predicate Factories . 237

5.1. The After Route Predicate Factory. 237

5.2. The Before Route Predicate Factory . 237

5.3. The Between Route Predicate Factory . 238

5.4. The Cookie Route Predicate Factory . 238

5.5. The Header Route Predicate Factory. 239

5.6. The Host Route Predicate Factory . 239

5.7. The Method Route Predicate Factory . 240

5.8. The Path Route Predicate Factory . 240

5.9. The Query Route Predicate Factory. 241

5.10. The RemoteAddr Route Predicate Factory. 242

5.11. The Weight Route Predicate Factory . 244

5.12. The XForwarded Remote Addr Route Predicate Factory . 244

6. GatewayFilter Factories . 245

6.1. The AddRequestHeader GatewayFilter Factory. 245

6.2. The AddRequestHeadersIfNotPresent GatewayFilter Factory . 246

6.3. The AddRequestParameter GatewayFilter Factory . 247

6.4. The AddResponseHeader GatewayFilter Factory. 248

6.5. The CircuitBreaker GatewayFilter Factory. 249

6.6. The CacheRequestBody GatewayFilter Factory. 253

6.7. The DedupeResponseHeader GatewayFilter Factory . 254

6.8. The FallbackHeaders GatewayFilter Factory. 255

6.9. The JsonToGrpc GatewayFilter Factory. 256

6.10. The LocalResponseCache GatewayFilter Factory. 258

6.11. The MapRequestHeader GatewayFilter Factory. 259

6.12. The ModifyRequestBody GatewayFilter Factory. 260

6.13. The ModifyResponseBody GatewayFilter Factory. 261

6.14. The PrefixPath GatewayFilter Factory. 262

6.15. The PreserveHostHeader GatewayFilter Factory. 262

6.16. The RedirectTo GatewayFilter Factory. 263

6.17. RemoveJsonAttributesResponseBody GatewayFilter Factory . 263

6.18. The RemoveRequestHeader GatewayFilter Factory . 264

6.19. The RemoveRequestParameter GatewayFilter Factory. 265

6.20. The RemoveResponseHeader GatewayFilter Factory. 265

6.21. The RequestHeaderSize GatewayFilter Factory. 266

6.22. The RequestRateLimiter GatewayFilter Factory. 266

6.23. The RewriteLocationResponseHeader GatewayFilter Factory . 269

6.24. The RewritePath GatewayFilter Factory. 270

6.25. The RewriteResponseHeader GatewayFilter Factory. 270

6.26. The SaveSession GatewayFilter Factory. 271

6.27. The SecureHeaders GatewayFilter Factory. 271

6.28. The SetPath GatewayFilter Factory . 272

6.29. The SetRequestHeader GatewayFilter Factory. 273

6.30. The SetResponseHeader GatewayFilter Factory. 273

6.31. The SetStatus GatewayFilter Factory . 274

6.32. The StripPrefix GatewayFilter Factory. 275

6.33. The Retry GatewayFilter Factory . 276

6.34. The RequestSize GatewayFilter Factory. 278

6.35. The SetRequestHostHeader GatewayFilter Factory. 279

6.36. The TokenRelay GatewayFilter Factory. 280

6.37. Default Filters . 281

7. Global Filters. 282

7.1. Combined Global Filter and GatewayFilter Ordering . 282

7.2. The Gateway Metrics Filter . 283

7.3. The Local Response Cache Filter . 284

7.4. Forward Routing Filter . 285

7.5. The Netty Routing Filter . 285

7.6. The Netty Write Response Filter . 285

7.7. The ReactiveLoadBalancerClientFilter . 285

7.8. The RouteToRequestUrl Filter . 286

7.9. The Websocket Routing Filter . 286

7.10. Marking An Exchange As Routed. 287

8. HttpHeadersFilters . 287

8.1. Forwarded Headers Filter . 287

8.2. RemoveHopByHop Headers Filter . 288

8.3. XForwarded Headers Filter . 288

9. TLS and SSL. 289

9.1. TLS Handshake. 290

10. Configuration . 290

10.1. RouteDefinition Metrics . 291

11. Route Metadata Configuration . 291

12. Http timeouts configuration . 292

12.1. Global timeouts . 292

12.2. Per-route timeouts. 293

13. Fluent Java Routes API . 294

14. The DiscoveryClient Route Definition Locator. 294

14.1. Configuring Predicates and Filters For DiscoveryClient Routes. 295

15. Reactor Netty Access Logs . 295

16. CORS Configuration . 296

16.1. Global CORS Configuration . 296

16.2. Route CORS Configuration. 297

17. Actuator API . 297

17.1. Verbose Actuator Format . 297

17.2. Retrieving Route Filters . 298

17.3. Refreshing the Route Cache. 300

17.4. Retrieving the Routes Defined in the Gateway. 300

17.5. Retrieving Information about a Particular Route . 301

17.6. Creating and Deleting a Particular Route Definition . 302

17.7. Creating multiple Route Definitions . 302

17.8. Recap: The List of All endpoints. 303

17.9. Sharing Routes between multiple Gateway instances . 303

18. Troubleshooting. 303

18.1. Log Levels . 303

18.2. Wiretap . 304

19. Developer Guide . 304

19.1. Writing Custom Route Predicate Factories . 304

19.2. Writing Custom GatewayFilter Factories. 305

19.3. Writing Custom Global Filters . 307

20. Building a Simple Gateway by Using Spring MVC or Webflux . 308

21. AOT and Native Image Support . 310

22. Configuration properties . 310

Spring Cloud Kubernetes . 310

1. Why do you need Spring Cloud Kubernetes? . 310

2. Starters . 311

3. DiscoveryClient for Kubernetes . 312

4. Kubernetes native service discovery . 316

5. Kubernetes PropertySource implementations . 317

5.1. Using a ConfigMap PropertySource . 317

5.2. Secrets PropertySource . 331

5.3. Namespace resolution . 336

5.4. Order of ConfigMaps and Secrets. 336

5.5. PropertySource Reload. 337

5.6. Reload namespace and label filtering. 339

6. Kubernetes Ecosystem Awareness . 341

6.1. Breaking Changes In 3.0.x . 341

6.2. Kubernetes Profile Autoconfiguration . 342

6.3. Istio Awareness . 342

7. Pod Health Indicator. 342

8. Info Contributor. 342

9. Leader Election . 342

10. LoadBalancer for Kubernetes . 343

11. Security Configurations Inside Kubernetes . 344

11.1. Namespace . 344

11.2. Service Account . 345

12. Service Registry Implementation . 346

13. Spring Cloud Kubernetes Configuration Watcher . 346

13.1. Deployment YAML. 347

13.2. Monitoring ConfigMaps and Secrets . 349

13.3. HTTP Implementation . 350

13.4. Messaging Implementation. 351

13.5. Configuring RabbitMQ . 351

13.6. Configuring Kafka . 351

14. Spring Cloud Kubernetes Config Server. 352

14.1. Configuration . 352

14.2. Deployment Yaml. 353

15. Spring Cloud Kubernetes Discovery Server . 355

15.1. Permissions . 355

15.2. Endpoints. 356

15.3. Deployment YAML. 359

16. Examples . 361

17. Other Resources. 362

18. Configuration properties . 362

19. Building . 362

19.1. Basic Compile and Test . 362

19.2. Documentation. 363

19.3. Working with the code . 363

19.4. Building Docker Images On ARM64 . 364

20. Contributing . 364

20.1. Sign the Contributor License Agreement. 364

20.2. Code of Conduct . 364

20.3. Code Conventions and Housekeeping. 364

20.4. Checkstyle . 365

20.5. IDE setup . 367

20.6. Duplicate Finder . 370

21. AOT and native image support. 371

Spring Cloud Netflix. 372

1. Service Discovery: Eureka Clients . 372

1.1. How to Include Eureka Client . 372

1.2. Registering with Eureka. 372

1.3. Authenticating with the Eureka Server . 374

1.4. Status Page and Health Indicator. 375

1.5. Registering a Secure Application . 375

1.6. Eureka’s Health Checks . 376

1.7. Eureka Metadata for Instances and Clients. 377

1.8. Using the EurekaClient . 378

1.9. Alternatives to the Native Netflix EurekaClient . 379

1.10. Why Is It so Slow to Register a Service? . 380

1.11. Zones. 380

1.12. Refreshing Eureka Clients . 381

1.13. Using Eureka with Spring Cloud LoadBalancer . 381

1.14. AOT and Native Image Support . 381

2. Service Discovery: Eureka Server . 381

2.1. How to Include Eureka Server . 381

2.2. How to Run a Eureka Server. 382

2.3. defaultOpenForTrafficCount and its effect on EurekaServer warmup time. 383

2.4. High Availability, Zones and Regions . 383

2.5. Standalone Mode . 383

2.6. Peer Awareness . 384

2.7. When to Prefer IP Address . 385

2.8. Securing The Eureka Server . 386

2.9. JDK 11 Support . 386

2.10. AOT and Native Image Support . 386

3. Configuration properties . 387

Spring Cloud OpenFeign . 387

1. Declarative REST Client: Feign . 387

1.1. How to Include Feign . 387

1.2. Overriding Feign Defaults . 389

1.3. Timeout Handling . 394

1.4. Creating Feign Clients Manually . 394

1.5. Feign Spring Cloud CircuitBreaker Support . 395

1.6. Configuring CircuitBreakers With Configuration Properties . 396

1.7. Feign Spring Cloud CircuitBreaker Fallbacks . 397

1.8. Feign and @Primary . 399

1.9. Feign Inheritance Support . 400

1.10. Feign request/response compression . 400

1.11. Feign logging . 401

1.12. Feign Capability support . 402

1.13. Micrometer Support . 402

1.14. Feign Caching . 403

1.15. Feign @QueryMap support . 404

1.16. HATEOAS support . 404

1.17. Spring @MatrixVariable Support. 405

1.18. Feign CollectionFormat support . 405

1.19. Reactive Support . 406

1.20. Spring Data Support . 406

1.21. Spring @RefreshScope Support . 406

1.22. OAuth2 Support . 407

1.23. Transform the load-balanced HTTP request . 407

1.24. X-Forwarded Headers Support. 408

1.25. Supported Ways To Provide URL To A Feign Client. 408

1.26. AOT and Native Image Support . 409

2. Configuration properties . 409

3. Preface . 410

3.1. A Brief History of Spring’s Data Integration Journey . 410

3.2. Quick Start . 410

4. Spring Expression Language (SpEL) in the context of Streaming data . 413

5. Introducing Spring Cloud Stream . 414

6. Main Concepts . 415

6.1. Application Model . 416

6.2. The Binder Abstraction. 416

6.3. Persistent Publish-Subscribe Support. 417

6.4. Consumer Groups . 417

6.5. Consumer Types. 418

6.6. Partitioning Support . 418

7. Programming Model . 419

7.1. Destination Binders. 419

7.2. Bindings . 419

7.3. Producing and Consuming Messages . 423

7.4. Event Routing . 445

7.5. Post processing (after sending message) . 449

7.6. Error Handling . 450

8. Binders . 455

8.1. Producers and Consumers. 455

8.2. Binder SPI . 456

8.3. Binder Detection . 457

8.4. Multiple Binders on the Classpath . 457

8.5. Connecting to Multiple Systems . 458

8.6. Customizing binders in multi binder applications . 460

8.7. Binding visualization and control . 460

8.8. Binder Configuration Properties . 462

8.9. Implementing Custom Binders. 463

9. Configuration Options . 468

9.1. Binding Service Properties . 468

9.2. Binding Properties. 469

10. Content Type Negotiation . 475

10.1. Mechanics . 476

10.2. Provided MessageConverters . 478

10.3. User-defined Message Converters . 479

11. Inter-Application Communication . 480

11.1. Connecting Multiple Application Instances. 480

11.2. Instance Index and Instance Count. 481

11.3. Partitioning . 481

12. Testing . 484

12.1. Spring Integration Test Binder . 484

13. Health Indicator. 490

14. Samples . 491

14.1. Deploying Stream Applications on CloudFoundry . 492

15. Binder Implementations . 492

Spring Cloud Task Reference Guide. 492

Preface . 492

1. About the documentation . 493

2. Getting help. 493

3. First Steps . 493

Getting started. 493

1. Introducing Spring Cloud Task. 493

2. System Requirements . 494

2.1. Database Requirements . 494

3. Developing Your First Spring Cloud Task Application . 494

3.1. Creating the Spring Task Project using Spring Initializr . 494

3.2. Writing the Code . 495

3.3. Running the Example . 497

Features . 498

1. The lifecycle of a Spring Cloud Task . 498

1.1. The TaskExecution. 499

1.2. Mapping Exit Codes . 500

2. Configuration . 500

2.1. DataSource. 501

2.2. Table Prefix . 501

2.3. Enable/Disable table initialization. 501

2.4. Externally Generated Task ID . 501

2.5. External Task Id . 502

2.6. Parent Task Id . 502

2.7. TaskConfigurer . 502

2.8. Task Execution Listener . 503

2.9. Restricting Spring Cloud Task Instances . 505

2.10. Enabling Observations for ApplicationRunner and CommandLineRunner 506

2.11. Disabling Spring Cloud Task Auto Configuration. 506

2.12. Closing the Context . 506

2.13. Enable Task Metrics . 507

2.14. Spring Task and Spring Cloud Task Properties. 507

Batch . 507

1. Associating a Job Execution to the Task in which It Was Executed. 507

1.1. Overriding the TaskBatchExecutionListener . 508

2. Remote Partitioning . 508

2.1. Asynchronously launch remote batch partitions. 510

2.2. Notes on Developing a Batch-partitioned application for the Kubernetes Platform. 511

3. Batch Informational Messages . 511

4. Batch Job Exit Codes . 511

Single Step Batch Job Starter . 512

1. Defining a Job . 512

1.1. Properties. 512

2. Autoconfiguration for ItemReader Implementations. 513

2.1. AmqpItemReader. 513

2.2. FlatFileItemReader . 513

2.3. JdbcCursorItemReader . 515

2.4. KafkaItemReader . 517

2.5. Native Compilation . 518

3. ItemProcessor Configuration . 519

4. Autoconfiguration for ItemWriter implementations . 519

4.1. AmqpItemWriter . 519

4.2. FlatFileItemWriter. 519

4.3. JdbcBatchItemWriter . 521

4.4. KafkaItemWriter . 522

4.5. Spring AOT. 523

Spring Cloud Stream Integration . 523

1. Launching a Task from a Spring Cloud Stream . 524

1.1. Spring Cloud Data Flow . 525

2. Spring Cloud Task Events . 525

2.1. Disabling Specific Task Events . 526

3. Spring Batch Events . 526

3.1. Sending Batch Events to Different Channels. 527

3.2. Disabling Batch Events . 527

3.3. Emit Order for Batch Events . 528

Appendices. 528

1. Task Repository Schema . 528

1.1. Table Information . 528

1.2. SQL Server . 531

2. Building This Documentation. 531

Spring Cloud Vault . 531

1. New & Noteworthy . 531

1.1. New in Spring Cloud Vault 3.0 . 531

2. Quick Start. 532

3. Client Side Usage . 534

3.1. Authentication . 537

4. ConfigData API . 537

4.1. ConfigData Locations . 538

4.2. Conditionally enable/disable Vault Configuration . 539

4.3. Infrastructure Customization . 539

5. Authentication methods. 540

5.1. Token authentication . 540

5.2. Vault Agent authentication . 541

5.3. AppId authentication . 541

5.4. AppRole authentication . 543

5.5. AWS-EC2 authentication. 545

5.6. AWS-IAM authentication . 547

5.7. Azure MSI authentication . 548

5.8. TLS certificate authentication. 549

5.9. Cubbyhole authentication . 549

5.10. GCP-GCE authentication. 550

5.11. GCP-IAM authentication. 551

5.12. Kubernetes authentication . 553

5.13. Pivotal CloudFoundry authentication. 553

6. ACL Requirements. 554

6.1. Authentication . 555

6.2. KeyValue Mount Discovery . 555

6.3. SecretLeaseContainer . 555

6.4. Session Management. 555

7. Secret Backends . 555

7.1. Key-Value Backend . 555

7.2. Consul . 557

7.3. RabbitMQ . 558

7.4. AWS . 559

8. Database backends . 560

8.1. Database. 561

8.2. Multiple Databases . 562

8.3. Apache Cassandra . 563

8.4. Couchbase Database . 564

8.5. Elasticsearch . 564

8.6. MongoDB . 565

8.7. MySQL. 566

8.8. PostgreSQL. 566

9. Customize which secret backends to expose as PropertySource . 567

10. Custom Secret Backend Implementations. 568

11. Service Registry Configuration. 568

12. Vault Client Fail Fast . 569

13. Vault Enterprise Namespace Support. 569

Spring Cloud provides tools for developers to quickly build some of the common
patterns in distributed systems (e.g. configuration management, service
discovery, circuit breakers, intelligent routing, micro-proxy, control bus).
Coordination of distributed systems leads to boiler plate patterns, and using
Spring Cloud developers can quickly stand up services and applications that
implement those patterns. They will work well in any distributed environment,
including the developer’s own laptop, bare metal data centres, and managed
platforms such as Cloud Foundry.

14. Vault Client SSL configuration . 570

15. Lease lifecycle management (renewal and revocation) . 570

16. Session token lifecycle management (renewal, re-login and revocation) 571

Appendix A: Common application properties . 572

Spring Cloud Zookeeper . 581

1. Quick Start. 581

1.1. Discovery Client Usage . 581

1.2. Distributed Configuration Usage . 584

2. Install Zookeeper . 587

3. Service Discovery with Zookeeper . 588

3.1. Activating. 588

3.2. Registering with Zookeeper. 588

3.3. Using the DiscoveryClient . 589

4. Using Spring Cloud Zookeeper with Spring Cloud Components . 590

4.1. Spring Cloud LoadBalancer with Zookeeper. 590

5. Spring Cloud Zookeeper and Service Registry . 590

5.1. Instance Status . 591

6. Zookeeper Dependencies. 591

6.1. Using the Zookeeper Dependencies. 591

6.2. Activating Zookeeper Dependencies . 592

6.3. Setting up Zookeeper Dependencies . 592

6.4. Configuring Spring Cloud Zookeeper Dependencies. 595

7. Spring Cloud Zookeeper Dependency Watcher . 595

7.1. Activating. 595

7.2. Registering a Listener . 595

7.3. Using the Presence Checker. 596

8. Distributed Configuration with Zookeeper . 596

8.1. Activating. 597

8.2. Spring Boot Config Data Import . 597

8.3. Customizing. 598

8.4. Access Control Lists (ACLs) . 598

Appendix: Compendium of Configuration Properties. 599

Release Train Version: 2022.0.4

Supported Boot Version: 3.0.9

1. Features
Spring Cloud focuses on providing good out of box experience for typical use cases and extensibility
mechanism to cover others.

• Distributed/versioned configuration

• Service registration and discovery

• Routing

• Service-to-service calls

• Load balancing

• Circuit Breakers

• Distributed messaging

2. Release Train Versions
Table 1. Release Train Project Versions

Project Name Project Version

spring-boot 3.0.9

spring-cloud-build 4.0.5

spring-cloud-bus 4.0.1

spring-cloud-circuitbreaker 3.0.3

spring-cloud-commons 4.0.4

spring-cloud-config 4.0.4

spring-cloud-consul 4.0.3

spring-cloud-contract 4.0.4

spring-cloud-function 4.0.5

spring-cloud-gateway 4.0.7

spring-cloud-kubernetes 3.0.4

spring-cloud-netflix 4.0.3

spring-cloud-openfeign 4.0.4

spring-cloud-stream 4.0.4

spring-cloud-task 3.0.3

spring-cloud-vault 4.0.1

Project Name Project Version

spring-cloud-zookeeper 4.0.1

Spring Cloud Build
[Build] |

https://github.com/spring-cloud/spring-cloud-

build/workflows/Build/badge.svg?branch=main&style=svg

Spring Cloud Build is a common utility project for Spring Cloud to use for plugin and dependency
management.

1. Building and Deploying
To install locally:

$ mvn install -s .settings.xml

and to deploy snapshots to repo.spring.io:

$ mvn deploy
-DaltSnapshotDeploymentRepository=repo.spring.io::default::https://repo.spring.io/snap
shot

for a RELEASE build use

$ mvn deploy
-DaltReleaseDeploymentRepository=repo.spring.io::default::https://repo.spring.io/relea
se

and for jcenter use

$ mvn deploy
-DaltReleaseDeploymentRepository=bintray::default::https://api.bintray.com/maven/sprin
g/jars/org.springframework.cloud:build

and for Maven Central use

$ mvn deploy -P central -DaltReleaseDeploymentRepository=sonatype-nexus
-staging::default::https://oss.sonatype.org/service/local/staging/deploy/maven2

(the "central" profile is available for all projects in Spring Cloud and it sets up the gpg jar signing,
and the repository has to be specified separately for this project because it is a parent of the starter
parent which users in turn have as their own parent).

2. Contributing
Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard
Github development process, using Github tracker for issues and merging pull requests into master.
If you want to contribute even something trivial please do not hesitate, but follow the guidelines

below.

2.1. Sign the Contributor License Agreement
Before we accept a non-trivial patch or pull request we will need you to sign the Contributor
License Agreement. Signing the contributor’s agreement does not grant anyone commit rights to
the main repository, but it does mean that we can accept your contributions, and you will get an
author credit if we do. Active contributors might be asked to join the core team, and given the
ability to merge pull requests.

2.2. Code of Conduct
This project adheres to the Contributor Covenant code of conduct. By participating, you are
expected to uphold this code. Please report unacceptable behavior to spring-code-of-
conduct@pivotal.io.

2.3. Code Conventions and Housekeeping
None of these is essential for a pull request, but they will all help. They can also be added after the
original pull request but before a merge.

• Use the Spring Framework code format conventions. If you use Eclipse you can import
formatter settings using the eclipse-code-formatter.xml file from the Spring Cloud Build project.
If using IntelliJ, you can use the Eclipse Code Formatter Plugin to import the same file.

• Make sure all new .java files to have a simple Javadoc class comment with at least an @author
tag identifying you, and preferably at least a paragraph on what the class is for.

• Add the ASF license header comment to all new .java files (copy from existing files in the
project)

• Add yourself as an @author to the .java files that you modify substantially (more than cosmetic
changes).

• Add some Javadocs and, if you change the namespace, some XSD doc elements.

• A few unit tests would help a lot as well — someone has to do it.

• If no-one else is using your branch, please rebase it against the current master (or other target
branch in the main project).

• When writing a commit message please follow these conventions, if you are fixing an existing
issue please add Fixes gh-XXXX at the end of the commit message (where XXXX is the issue
number).

2.4. Checkstyle
Spring Cloud Build comes with a set of checkstyle rules. You can find them in the spring-cloud-
build-tools module. The most notable files under the module are:

https://cla.pivotal.io/sign/spring
https://cla.pivotal.io/sign/spring
https://github.com/spring-cloud/spring-cloud-build/blob/master/docs/src/main/asciidoc/code-of-conduct.adoc
mailto:spring-code-of-conduct@pivotal.io
mailto:spring-code-of-conduct@pivotal.io
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-dependencies-parent/eclipse-code-formatter.xml
https://plugins.jetbrains.com/plugin/6546
https://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

spring-cloud-build-tools/

└── src
 ├── checkstyle
 │ └── checkstyle-suppressions.xml ③
 └── main
 └── resources
 ├── checkstyle-header.txt ②
 └── checkstyle.xml ①

① Default Checkstyle rules

② File header setup

③ Default suppression rules

2.4.1. Checkstyle configuration

Checkstyle rules are disabled by default. To add checkstyle to your project just define the
following properties and plugins.

pom.xml

<properties>
<maven-checkstyle-plugin.failsOnError>true</maven-checkstyle-plugin.failsOnError> ①
 <maven-checkstyle-plugin.failsOnViolation>true
 </maven-checkstyle-plugin.failsOnViolation> ②
 <maven-checkstyle-plugin.includeTestSourceDirectory>true
 </maven-checkstyle-plugin.includeTestSourceDirectory> ③
</properties>

<build>
 <plugins>
 <plugin> ④
 <groupId>io.spring.javaformat</groupId>
 <artifactId>spring-javaformat-maven-plugin</artifactId>
 </plugin>
 <plugin> ⑤
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-checkstyle-plugin</artifactId>
 </plugin>
 </plugins>

 <reporting>
 <plugins>
 <plugin> ⑤
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-checkstyle-plugin</artifactId>
 </plugin>
 </plugins>
 </reporting>
</build>

① Fails the build upon Checkstyle errors

② Fails the build upon Checkstyle violations

③ Checkstyle analyzes also the test sources

④ Add the Spring Java Format plugin that will reformat your code to pass most of the Checkstyle
formatting rules

⑤ Add checkstyle plugin to your build and reporting phases

If you need to suppress some rules (e.g. line length needs to be longer), then it’s enough for you to
define a file under ${project.root}/src/checkstyle/checkstyle-suppressions.xml with your
suppressions. Example:

projectRoot/src/checkstyle/checkstyle-suppresions.xml

<?xml version="1.0"?>
<!DOCTYPE suppressions PUBLIC
 "-//Puppy Crawl//DTD Suppressions 1.1//EN"
 "https://www.puppycrawl.com/dtds/suppressions_1_1.dtd">
<suppressions>
 <suppress files=".*ConfigServerApplication\.java"
checks="HideUtilityClassConstructor"/>
 <suppress files=".*ConfigClientWatch\.java" checks="LineLengthCheck"/>
</suppressions>

It’s advisable to copy the ${spring-cloud-build.rootFolder}/.editorconfig and ${spring-cloud-
build.rootFolder}/.springformat to your project. That way, some default formatting rules will be
applied. You can do so by running this script:

$ curl https://raw.githubusercontent.com/spring-cloud/spring-cloud-
build/master/.editorconfig -o .editorconfig
$ touch .springformat

2.5. IDE setup

2.5.1. Intellij IDEA

In order to setup Intellij you should import our coding conventions, inspection profiles and set up
the checkstyle plugin. The following files can be found in the Spring Cloud Build project.

spring-cloud-build-tools/

└── src
 ├── checkstyle
 │ └── checkstyle-suppressions.xml ③
 └── main
 └── resources
 ├── checkstyle-header.txt ②
 ├── checkstyle.xml ①
 └── intellij
 ├── Intellij_Project_Defaults.xml ④
 └── Intellij_Spring_Boot_Java_Conventions.xml ⑤

① Default Checkstyle rules

② File header setup

③ Default suppression rules

④ Project defaults for Intellij that apply most of Checkstyle rules

⑤ Project style conventions for Intellij that apply most of Checkstyle rules

https://github.com/spring-cloud/spring-cloud-build/tree/master/spring-cloud-build-tools

Figure 1. Code style

Go to File → Settings → Editor → Code style. There click on the icon next to the Scheme section.
There, click on the Import Scheme value and pick the Intellij IDEA code style XML option. Import
the spring-cloud-build-
tools/src/main/resources/intellij/Intellij_Spring_Boot_Java_Conventions.xml file.

Figure 2. Inspection profiles

Go to File → Settings → Editor → Inspections. There click on the icon next to the Profile section.
There, click on the Import Profile and import the spring-cloud-build-
tools/src/main/resources/intellij/Intellij_Project_Defaults.xml file.

Checkstyle

To have Intellij work with Checkstyle, you have to install the Checkstyle plugin. It’s advisable to also
install the Assertions2Assertj to automatically convert the JUnit assertions

Go to File → Settings → Other settings → Checkstyle. There click on the + icon in the Configuration
file section. There, you’ll have to define where the checkstyle rules should be picked from. In the
image above, we’ve picked the rules from the cloned Spring Cloud Build repository. However, you
can point to the Spring Cloud Build’s GitHub repository (e.g. for the checkstyle.xml :
raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/
main/resources/checkstyle.xml). We need to provide the following variables:

• checkstyle.header.file - please point it to the Spring Cloud Build’s, spring-cloud-build-
tools/src/main/resources/checkstyle-header.txt file either in your cloned repo or via the
raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/
src/main/resources/checkstyle-header.txt URL.

• checkstyle.suppressions.file - default suppressions. Please point it to the Spring Cloud Build’s,
spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml file either in your cloned
repo or via the raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-
cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml URL.

• checkstyle.additional.suppressions.file - this variable corresponds to suppressions in your
local project. E.g. you’re working on spring-cloud-contract. Then point to the project-
root/src/checkstyle/checkstyle-suppressions.xml folder. Example for spring-cloud-contract
would be: /home/username/spring-cloud-contract/src/checkstyle/checkstyle-suppressions.xml.

Remember to set the Scan Scope to All sources since we apply checkstyle rules for
production and test sources.

2.6. Duplicate Finder
Spring Cloud Build brings along the basepom:duplicate-finder-maven-plugin, that enables flagging
duplicate and conflicting classes and resources on the java classpath.

2.6.1. Duplicate Finder configuration

Duplicate finder is enabled by default and will run in the verify phase of your Maven build, but it
will only take effect in your project if you add the duplicate-finder-maven-plugin to the build
section of the projecst’s pom.xml.

https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml

pom.xml

<build>
 <plugins>
 <plugin>
 <groupId>org.basepom.maven</groupId>
 <artifactId>duplicate-finder-maven-plugin</artifactId>
 </plugin>
 </plugins>
</build>

For other properties, we have set defaults as listed in the plugin documentation.

You can easily override them but setting the value of the selected property prefixed with duplicate-
finder-maven-plugin. For example, set duplicate-finder-maven-plugin.skip to true in order to skip
duplicates check in your build.

If you need to add ignoredClassPatterns or ignoredResourcePatterns to your setup, make sure to add
them in the plugin configuration section of your project:

<build>
 <plugins>
 <plugin>
 <groupId>org.basepom.maven</groupId>
 <artifactId>duplicate-finder-maven-plugin</artifactId>
 <configuration>
 <ignoredClassPatterns>

<ignoredClassPattern>org.joda.time.base.BaseDateTime</ignoredClassPattern>
 <ignoredClassPattern>.*module-info</ignoredClassPattern>
 </ignoredClassPatterns>
 <ignoredResourcePatterns>
 <ignoredResourcePattern>changelog.txt</ignoredResourcePattern>
 </ignoredResourcePatterns>
 </configuration>
 </plugin>
 </plugins>
</build>

3. Flattening the POMs
To avoid propagating build setup that is required to build a Spring Cloud project, we’re using the
maven flatten plugin. It has the advantage of letting you use whatever features you need while
publishing "clean" pom to the repository.

In order to add it, add the org.codehaus.mojo:flatten-maven-plugin to your pom.xml.

https://github.com/basepom/duplicate-finder-maven-plugin/wiki

<build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>flatten-maven-plugin</artifactId>
 </plugin>
 </plugins>
</build>

4. Reusing the documentation
Spring Cloud Build publishes its spring-cloud-build-docs module that contains helpful scripts (e.g.
README generation ruby script) and css, xslt and images for the Spring Cloud documentation. If
you want to follow the same convention approach of generating documentation just add these
plugins to your docs module

<properties>
 <upload-docs-zip.phase>deploy</upload-docs-zip.phase> ⑧
</properties>
<profiles>
 <profile>
 <id>docs</id>
 <build>
 <plugins>
 <plugin>
 <groupId>pl.project13.maven</groupId>
 <artifactId>git-commit-id-plugin</artifactId> ①
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-dependency-plugin</artifactId> ②
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-resources-plugin</artifactId> ③
 </plugin>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>exec-maven-plugin</artifactId> ④
 </plugin>
 <plugin>
 <groupId>org.asciidoctor</groupId>
 <artifactId>asciidoctor-maven-plugin</artifactId> ⑤
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-antrun-plugin</artifactId> ⑥
 </plugin>
 <plugin>
 <artifactId>maven-deploy-plugin</artifactId> ⑦
 </plugin>
 </plugins>
 </build>
 </profile>
</profiles>

① This plugin downloads sets up all the git information of the project

② This plugin downloads the resources of the spring-cloud-build-docs module

③ This plugin unpacks the resources of the spring-cloud-build-docs module

④ This plugin generates an adoc file with all the configuration properties from the classpath

⑤ This plugin is required to parse the Asciidoctor documentation

⑥ This plugin is required to copy resources into proper final destinations and to generate main
README.adoc and to assert that no files use unresolved links

⑦ This plugin ensures that the generated zip docs will get published

⑧ This property turns on the "deploy" phase for <7>

 The order of plugin declaration is important!

In order for the build to generate the adoc file with all your configuration properties, your docs
module should contain all the dependencies on the classpath, that you would want to scan for
configuration properties. The file will be output to
${docsModule}/src/main/asciidoc/_configprops.adoc file (configurable via the configprops.path
property).

If you want to modify which of the configuration properties are put in the table, you can tweak the
configprops.inclusionPattern pattern to include only a subset of the properties (e.g.
<configprops.inclusionPattern>spring.sleuth.*</configprops.inclusionPattern>).

Spring Cloud Build Docs comes with a set of attributes for asciidoctor that you can reuse.

<attributes>
 <docinfo>shared</docinfo>
 <allow-uri-read>true</allow-uri-read>
 <nofooter/>
 <toc>left</toc>
 <toc-levels>4</toc-levels>
 <sectlinks>true</sectlinks>
 <sources-root>${project.basedir}/src@</sources-root>
 <asciidoc-sources-root>${project.basedir}/src/main/asciidoc@</asciidoc-sources-
root>
 <generated-resources-root>${project.basedir}/target/generated-resources@
 </generated-resources-root>
 <!-- Use this attribute the reference code from another module -->
 <!-- Note the @ at the end, lowering the precedence of the attribute -->
 <project-root>${maven.multiModuleProjectDirectory}@</project-root>
 <!-- It's mandatory for you to pass the docs.main property -->
 <github-repo>${docs.main}@</github-repo>
 <github-project>https://github.com/spring-cloud/${docs.main}@</github-project>
 <github-raw>
 https://raw.githubusercontent.com/spring-cloud/${docs.main}/${github-tag}@
 </github-raw>
 <github-code>https://github.com/spring-cloud/${docs.main}/tree/${github-tag}@
 </github-code>
 <github-issues>https://github.com/spring-cloud/${docs.main}/issues/@</github-
issues>
 <github-wiki>https://github.com/spring-cloud/${docs.main}/wiki@</github-wiki>
 <github-master-code>https://github.com/spring-cloud/${docs.main}/tree/master@
 </github-master-code>
 <index-link>${index-link}@</index-link>

 <!-- Spring Cloud specific -->
 <!-- for backward compatibility -->
 <spring-cloud-version>${project.version}@</spring-cloud-version>
 <project-version>${project.version}@</project-version>
 <github-tag>${github-tag}@</github-tag>
 <version-type>${version-type}@</version-type>
 <docs-url>https://docs.spring.io/${docs.main}/docs/${project.version}@</docs-url>
 <raw-docs-url>${github-raw}@</raw-docs-url>
 <project-version>${project.version}@</project-version>
 <project-name>${docs.main}@</project-name>
 <source-highlighter>highlight.js</source-highlighter>
</attributes>

5. Updating the guides
We assume that your project contains guides under the guides folder.

.
└── guides
 ├── gs-guide1
 ├── gs-guide2
 └── gs-guide3

This means that the project contains 3 guides that would correspond to the following guides in
Spring Guides org.

• github.com/spring-guides/gs-guide1

• github.com/spring-guides/gs-guide2

• github.com/spring-guides/gs-guide3

If you deploy your project with the -Pguides profile like this

$./mvnw clean deploy -Pguides

what will happen is that for GA project versions, we will clone gs-guide1, gs-guide2 and gs-guide3
and update their contents with the ones being under your guides project.

You can skip this by either not adding the guides profile, or passing the -DskipGuides system
property when the profile is turned on.

You can configure the project version passed to guides via the guides-project.version (defaults to
${project.version}). The phase at which guides get updated can be configured by guides-
update.phase (defaults to deploy).

Spring Cloud Bus
Spring Cloud Bus links the nodes of a distributed system with a lightweight message broker. This
broker can then be used to broadcast state changes (such as configuration changes) or other
management instructions. A key idea is that the bus is like a distributed actuator for a Spring Boot
application that is scaled out. However, it can also be used as a communication channel between
apps. This project provides starters for either an AMQP broker or Kafka as the transport.

Spring Cloud is released under the non-restrictive Apache 2.0 license. If you would
like to contribute to this section of the documentation or if you find an error,
please find the source code and issue trackers in the project at github.

1. Quick Start
Spring Cloud Bus works by adding Spring Boot autconfiguration if it detects itself on the classpath.
To enable the bus, add spring-cloud-starter-bus-amqp or spring-cloud-starter-bus-kafka to your
dependency management. Spring Cloud takes care of the rest. Make sure the broker (RabbitMQ or

https://github.com/spring-guides/gs-guide1
https://github.com/spring-guides/gs-guide2
https://github.com/spring-guides/gs-guide3
https://github.com/spring-cloud/spring-cloud

Kafka) is available and configured. When running on localhost, you need not do anything. If you
run remotely, use Spring Cloud Connectors or Spring Boot conventions to define the broker
credentials, as shown in the following example for Rabbit:

application.yml

spring:
 rabbitmq:
 host: mybroker.com
 port: 5672
 username: user
 password: secret

The bus currently supports sending messages to all nodes listening or all nodes for a particular
service (as defined by Eureka). The /bus/* actuator namespace has some HTTP endpoints.
Currently, two are implemented. The first, /bus/env, sends key/value pairs to update each node’s
Spring Environment. The second, /bus/refresh, reloads each application’s configuration, as though
they had all been pinged on their /refresh endpoint.

The Spring Cloud Bus starters cover Rabbit and Kafka, because those are the two
most common implementations. However, Spring Cloud Stream is quite flexible,
and the binder works with spring-cloud-bus.

2. Bus Endpoints
Spring Cloud Bus provides two endpoints, /actuator/busrefresh and /actuator/busenv that
correspond to individual actuator endpoints in Spring Cloud Commons, /actuator/refresh and
/actuator/env respectively.

2.1. Bus Refresh Endpoint
The /actuator/busrefresh endpoint clears the RefreshScope cache and rebinds
@ConfigurationProperties. See the Refresh Scope documentation for more information.

To expose the /actuator/busrefresh endpoint, you need to add following configuration to your
application:

management.endpoints.web.exposure.include=busrefresh

2.2. Bus Env Endpoint
The /actuator/busenv endpoint updates each instances environment with the specified key/value
pair across multiple instances.

To expose the /actuator/busenv endpoint, you need to add following configuration to your
application:

management.endpoints.web.exposure.include=busenv

The /actuator/busenv endpoint accepts POST requests with the following shape:

{
 "name": "key1",
 "value": "value1"
}

3. Addressing an Instance
Each instance of the application has a service ID, whose value can be set with spring.cloud.bus.id
and whose value is expected to be a colon-separated list of identifiers, in order from least specific to
most specific. The default value is constructed from the environment as a combination of the
spring.application.name and server.port (or spring.application.index, if set). The default value of
the ID is constructed in the form of app:index:id, where:

• app is the vcap.application.name, if it exists, or spring.application.name

• index is the vcap.application.instance_index, if it exists, spring.application.index,
local.server.port, server.port, or 0 (in that order).

• id is the vcap.application.instance_id, if it exists, or a random value.

The HTTP endpoints accept a “destination” path parameter, such as /busrefresh/customers:9000,
where destination is a service ID. If the ID is owned by an instance on the bus, it processes the
message, and all other instances ignore it.

4. Addressing All Instances of a Service
The “destination” parameter is used in a Spring PathMatcher (with the path separator as a colon — :)
to determine if an instance processes the message. Using the example from earlier,
/busenv/customers:** targets all instances of the “customers” service regardless of the rest of the
service ID.

5. Service ID Must Be Unique
The bus tries twice to eliminate processing an event — once from the original ApplicationEvent and
once from the queue. To do so, it checks the sending service ID against the current service ID. If
multiple instances of a service have the same ID, events are not processed. When running on a local
machine, each service is on a different port, and that port is part of the ID. Cloud Foundry supplies
an index to differentiate. To ensure that the ID is unique outside Cloud Foundry, set
spring.application.index to something unique for each instance of a service.

6. Customizing the Message Broker
Spring Cloud Bus uses Spring Cloud Stream to broadcast the messages. So, to get messages to flow,
you need only include the binder implementation of your choice in the classpath. There are
convenient starters for the bus with AMQP (RabbitMQ) and Kafka (spring-cloud-starter-bus-
[amqp|kafka]). Generally speaking, Spring Cloud Stream relies on Spring Boot autoconfiguration
conventions for configuring middleware. For instance, the AMQP broker address can be changed
with spring.rabbitmq.* configuration properties. Spring Cloud Bus has a handful of native
configuration properties in spring.cloud.bus.* (for example, spring.cloud.bus.destination is the
name of the topic to use as the external middleware). Normally, the defaults suffice.

To learn more about how to customize the message broker settings, consult the Spring Cloud
Stream documentation.

7. Tracing Bus Events
Bus events (subclasses of RemoteApplicationEvent) can be traced by setting
spring.cloud.bus.trace.enabled=true. If you do so, the Spring Boot TraceRepository (if it is present)
shows each event sent and all the acks from each service instance. The following example comes
from the /trace endpoint:

https://cloud.spring.io/spring-cloud-stream

{
 "timestamp": "2015-11-26T10:24:44.411+0000",
 "info": {
 "signal": "spring.cloud.bus.ack",
 "type": "RefreshRemoteApplicationEvent",
 "id": "c4d374b7-58ea-4928-a312-31984def293b",
 "origin": "stores:8081",
 "destination": "*:**"
 }
 },
 {
 "timestamp": "2015-11-26T10:24:41.864+0000",
 "info": {
 "signal": "spring.cloud.bus.sent",
 "type": "RefreshRemoteApplicationEvent",
 "id": "c4d374b7-58ea-4928-a312-31984def293b",
 "origin": "customers:9000",
 "destination": "*:**"
 }
 },
 {
 "timestamp": "2015-11-26T10:24:41.862+0000",
 "info": {
 "signal": "spring.cloud.bus.ack",
 "type": "RefreshRemoteApplicationEvent",
 "id": "c4d374b7-58ea-4928-a312-31984def293b",
 "origin": "customers:9000",
 "destination": "*:**"
 }
}

The preceding trace shows that a RefreshRemoteApplicationEvent was sent from customers:9000,
broadcast to all services, and received (acked) by customers:9000 and stores:8081.

To handle the ack signals yourself, you could add an @EventListener for the
AckRemoteApplicationEvent and SentApplicationEvent types to your app (and enable tracing).
Alternatively, you could tap into the TraceRepository and mine the data from there.

Any Bus application can trace acks. However, sometimes, it is useful to do this in a
central service that can do more complex queries on the data or forward it to a
specialized tracing service.

8. Broadcasting Your Own Events
The Bus can carry any event of type RemoteApplicationEvent. The default transport is JSON, and the
deserializer needs to know which types are going to be used ahead of time. To register a new type,
you must put it in a subpackage of org.springframework.cloud.bus.event.

To customise the event name, you can use @JsonTypeName on your custom class or rely on the default
strategy, which is to use the simple name of the class.

 Both the producer and the consumer need access to the class definition.

8.1. Registering events in custom packages
If you cannot or do not want to use a subpackage of org.springframework.cloud.bus.event for your
custom events, you must specify which packages to scan for events of type RemoteApplicationEvent
by using the @RemoteApplicationEventScan annotation. Packages specified with
@RemoteApplicationEventScan include subpackages.

For example, consider the following custom event, called MyEvent:

package com.acme;

public class MyEvent extends RemoteApplicationEvent {
 ...
}

You can register that event with the deserializer in the following way:

package com.acme;

@Configuration
@RemoteApplicationEventScan
public class BusConfiguration {
 ...
}

Without specifying a value, the package of the class where @RemoteApplicationEventScan is used is
registered. In this example, com.acme is registered by using the package of BusConfiguration.

You can also explicitly specify the packages to scan by using the value, basePackages or
basePackageClasses properties on @RemoteApplicationEventScan, as shown in the following example:

package com.acme;

@Configuration
//@RemoteApplicationEventScan({"com.acme", "foo.bar"})
//@RemoteApplicationEventScan(basePackages = {"com.acme", "foo.bar", "fizz.buzz"})
@RemoteApplicationEventScan(basePackageClasses = BusConfiguration.class)
public class BusConfiguration {
 ...
}

All of the preceding examples of @RemoteApplicationEventScan are equivalent, in that the com.acme
package is registered by explicitly specifying the packages on @RemoteApplicationEventScan.

 You can specify multiple base packages to scan.

9. Configuration properties
To see the list of all Bus related configuration properties please check the Appendix page.

Spring Cloud Circuit Breaker
2022.0.4

1. Usage Documentation
The Spring Cloud CircuitBreaker project contains implementations for Resilience4J and Spring
Retry. The APIs implemented in Spring Cloud CircuitBreaker live in Spring Cloud Commons. The
usage documentation for these APIs are located in the Spring Cloud Commons documentation.

1.1. Configuring Resilience4J Circuit Breakers

1.1.1. Starters

There are two starters for the Resilience4J implementations, one for reactive applications and one
for non-reactive applications.

• org.springframework.cloud:spring-cloud-starter-circuitbreaker-resilience4j - non-reactive
applications

• org.springframework.cloud:spring-cloud-starter-circuitbreaker-reactor-resilience4j - reactive
applications

1.1.2. Auto-Configuration

You can disable the Resilience4J auto-configuration by setting
spring.cloud.circuitbreaker.resilience4j.enabled to false.

1.1.3. Default Configuration

To provide a default configuration for all of your circuit breakers create a Customizer bean that is
passed a Resilience4JCircuitBreakerFactory or ReactiveResilience4JCircuitBreakerFactory. The
configureDefault method can be used to provide a default configuration.

appendix.html
https://docs.spring.io/spring-cloud-commons/docs/current/reference/html/#spring-cloud-circuit-breaker

@Bean
public Customizer<Resilience4JCircuitBreakerFactory> defaultCustomizer() {
 return factory -> factory.configureDefault(id -> new
Resilience4JConfigBuilder(id)

.timeLimiterConfig(TimeLimiterConfig.custom().timeoutDuration(Duration.ofSeconds(4
)).build())
 .circuitBreakerConfig(CircuitBreakerConfig.ofDefaults())
 .build());
}

Reactive Example

@Bean
public Customizer<ReactiveResilience4JCircuitBreakerFactory> defaultCustomizer() {
 return factory -> factory.configureDefault(id -> new
Resilience4JConfigBuilder(id)
 .circuitBreakerConfig(CircuitBreakerConfig.ofDefaults())

.timeLimiterConfig(TimeLimiterConfig.custom().timeoutDuration(Duration.ofSeconds(4
)).build()).build());
}

Customizing The ExecutorService

If you would like to configure the ExecutorService which executes the circuit breaker you can do so
using the Resilience4JCircuitBreakerFactory.

For example if you would like to use a context aware ExecutorService you could do the following.

@Bean
public Customizer<ReactiveResilience4JCircuitBreakerFactory> defaultCustomizer() {
 return factory -> {
 ContextAwareScheduledThreadPoolExecutor executor =
ContextAwareScheduledThreadPoolExecutor.newScheduledThreadPool().corePoolSize(5)
 .build();
 factory.configureExecutorService(executor);
 };
}

1.1.4. Specific Circuit Breaker Configuration

Similarly to providing a default configuration, you can create a Customizer bean this is passed a
Resilience4JCircuitBreakerFactory or ReactiveResilience4JCircuitBreakerFactory.

@Bean
public Customizer<Resilience4JCircuitBreakerFactory> slowCustomizer() {
 return factory -> factory.configure(builder ->
builder.circuitBreakerConfig(CircuitBreakerConfig.ofDefaults())

.timeLimiterConfig(TimeLimiterConfig.custom().timeoutDuration(Duration.ofSeconds(2
)).build()), "slow");
}

In addition to configuring the circuit breaker that is created you can also customize the circuit
breaker after it has been created but before it is returned to the caller. To do this you can use the
addCircuitBreakerCustomizer method. This can be useful for adding event handlers to Resilience4J
circuit breakers.

@Bean
public Customizer<Resilience4JCircuitBreakerFactory> slowCustomizer() {
 return factory -> factory.addCircuitBreakerCustomizer(circuitBreaker ->
circuitBreaker.getEventPublisher()
 .onError(normalFluxErrorConsumer).onSuccess(normalFluxSuccessConsumer),
"normalflux");
}

Reactive Example

@Bean
public Customizer<ReactiveResilience4JCircuitBreakerFactory> slowCustomizer() {
 return factory -> {
 factory.configure(builder -> builder

.timeLimiterConfig(TimeLimiterConfig.custom().timeoutDuration(Duration.ofSeconds(2
)).build())
 .circuitBreakerConfig(CircuitBreakerConfig.ofDefaults()), "slow",
"slowflux");
 factory.addCircuitBreakerCustomizer(circuitBreaker ->
circuitBreaker.getEventPublisher()

.onError(normalFluxErrorConsumer).onSuccess(normalFluxSuccessConsumer),
"normalflux");
 };
}

1.1.5. Circuit Breaker Properties Configuration

You can configure CircuitBreaker and TimeLimiter configs or instances in your application’s
configuration properties file. Property configuration has higher priority than Java Customizer
configuration.

Descending priority from top to bottom.

• Method(id) config - on specific method or operation

• Service(group) config - on specific application service or operations

• Global default config

ReactiveResilience4JCircuitBreakerFactory.create(String id, String groupName)
Resilience4JCircuitBreakerFactory.create(String id, String groupName)

Global Default Properties Configuration

resilience4j.circuitbreaker:
 configs:
 default:
 registerHealthIndicator: true
 slidingWindowSize: 50

resilience4j.timelimiter:
 configs:
 default:
 timeoutDuration: 5s
 cancelRunningFuture: true

Configs Properties Configuration

resilience4j.circuitbreaker:
 configs:
 groupA:
 registerHealthIndicator: true
 slidingWindowSize: 200

resilience4j.timelimiter:
 configs:
 groupC:
 timeoutDuration: 3s
 cancelRunningFuture: true

Instances Properties Configuration

resilience4j.circuitbreaker:
 instances:
 backendA:
 registerHealthIndicator: true
 slidingWindowSize: 100
 backendB:
 registerHealthIndicator: true
 slidingWindowSize: 10
 permittedNumberOfCallsInHalfOpenState: 3
 slidingWindowType: TIME_BASED
 recordFailurePredicate: io.github.robwin.exception.RecordFailurePredicate

resilience4j.timelimiter:
 instances:
 backendA:
 timeoutDuration: 2s
 cancelRunningFuture: true
 backendB:
 timeoutDuration: 1s
 cancelRunningFuture: false

• ReactiveResilience4JCircuitBreakerFactory.create("backendA") or
Resilience4JCircuitBreakerFactory.create("backendA") will apply instances backendA properties

• ReactiveResilience4JCircuitBreakerFactory.create("backendA", "groupA") or
Resilience4JCircuitBreakerFactory.create("backendA", "groupA") will apply instances backendA
properties

• ReactiveResilience4JCircuitBreakerFactory.create("backendC") or
Resilience4JCircuitBreakerFactory.create("backendC") will apply global default properties

• ReactiveResilience4JCircuitBreakerFactory.create("backendC", "groupC") or
Resilience4JCircuitBreakerFactory.create("backendC", "groupC") will apply global default
CircuitBreaker properties and config groupC TimeLimiter properties

For more information on Resilience4j property configuration, see Resilience4J Spring Boot 2
Configuration.

1.1.6. Bulkhead pattern supporting

If resilience4j-bulkhead is on the classpath, Spring Cloud CircuitBreaker will wrap all methods with
a Resilience4j Bulkhead. You can disable the Resilience4j Bulkhead by setting
spring.cloud.circuitbreaker.bulkhead.resilience4j.enabled to false.

Spring Cloud CircuitBreaker Resilience4j provides two implementation of bulkhead pattern:

• a SemaphoreBulkhead which uses Semaphores

• a FixedThreadPoolBulkhead which uses a bounded queue and a fixed thread pool.

https://resilience4j.readme.io/docs/getting-started-3#configuration
https://resilience4j.readme.io/docs/getting-started-3#configuration

By default, Spring Cloud CircuitBreaker Resilience4j uses FixedThreadPoolBulkhead. To modify the
default behavior to use SemaphoreBulkhead set the property
spring.cloud.circuitbreaker.resilience4j.enableSemaphoreDefaultBulkhead to true.

For more information on implementation of Bulkhead patterns see the Resilience4j Bulkhead.

The Customizer<Resilience4jBulkheadProvider> can be used to provide a default Bulkhead and
ThreadPoolBulkhead configuration.

@Bean
public Customizer<Resilience4jBulkheadProvider> defaultBulkheadCustomizer() {
 return provider -> provider.configureDefault(id -> new
Resilience4jBulkheadConfigurationBuilder()
 .bulkheadConfig(BulkheadConfig.custom().maxConcurrentCalls(4).build())

.threadPoolBulkheadConfig(ThreadPoolBulkheadConfig.custom().coreThreadPoolSize(1).
maxThreadPoolSize(1).build())
 .build()
);
}

1.1.7. Specific Bulkhead Configuration

Similarly to proving a default 'Bulkhead' or 'ThreadPoolBulkhead' configuration, you can create a
Customizer bean this is passed a Resilience4jBulkheadProvider.

@Bean
public Customizer<Resilience4jBulkheadProvider> slowBulkheadProviderCustomizer() {
 return provider -> provider.configure(builder -> builder
 .bulkheadConfig(BulkheadConfig.custom().maxConcurrentCalls(1).build())
 .threadPoolBulkheadConfig(ThreadPoolBulkheadConfig.ofDefaults()),
"slowBulkhead");
}

In addition to configuring the Bulkhead that is created you can also customize the bulkhead and
thread pool bulkhead after they have been created but before they are returned to caller. To do this
you can use the addBulkheadCustomizer and addThreadPoolBulkheadCustomizer methods.

Bulkhead Example

https://resilience4j.readme.io/docs/bulkhead

@Bean
public Customizer<Resilience4jBulkheadProvider> customizer() {
 return provider -> provider.addBulkheadCustomizer(bulkhead ->
bulkhead.getEventPublisher()
 .onCallRejected(slowRejectedConsumer)
 .onCallFinished(slowFinishedConsumer), "slowBulkhead");
}

Thread Pool Bulkhead Example

@Bean
public Customizer<Resilience4jBulkheadProvider> slowThreadPoolBulkheadCustomizer()
{
 return provider -> provider.addThreadPoolBulkheadCustomizer(threadPoolBulkhead
-> threadPoolBulkhead.getEventPublisher()
 .onCallRejected(slowThreadPoolRejectedConsumer)
 .onCallFinished(slowThreadPoolFinishedConsumer),
"slowThreadPoolBulkhead");
}

1.1.8. Bulkhead Properties Configuration

You can configure ThreadPoolBulkhead and SemaphoreBulkhead instances in your application’s
configuration properties file. Property configuration has higher priority than Java Customizer
configuration.

resilience4j.thread-pool-bulkhead:
 instances:
 backendA:
 maxThreadPoolSize: 1
 coreThreadPoolSize: 1
resilience4j.bulkhead:
 instances:
 backendB:
 maxConcurrentCalls: 10

For more inforamtion on the Resilience4j property configuration, see Resilience4J Spring Boot 2
Configuration.

https://resilience4j.readme.io/docs/getting-started-3#configuration
https://resilience4j.readme.io/docs/getting-started-3#configuration

1.1.9. Collecting Metrics

Spring Cloud Circuit Breaker Resilience4j includes auto-configuration to setup metrics collection as
long as the right dependencies are on the classpath. To enable metric collection you must include
org.springframework.boot:spring-boot-starter-actuator, and io.github.resilience4j:resilience4j-
micrometer. For more information on the metrics that get produced when these dependencies are
present, see the Resilience4j documentation.

You don’t have to include micrometer-core directly as it is brought in by spring-
boot-starter-actuator

1.2. Configuring Spring Retry Circuit Breakers
Spring Retry provides declarative retry support for Spring applications. A subset of the project
includes the ability to implement circuit breaker functionality. Spring Retry provides a circuit
breaker implementation via a combination of it’s CircuitBreakerRetryPolicy and a stateful retry. All
circuit breakers created using Spring Retry will be created using the CircuitBreakerRetryPolicy and
a DefaultRetryState. Both of these classes can be configured using SpringRetryConfigBuilder.

1.2.1. Default Configuration

To provide a default configuration for all of your circuit breakers create a Customizer bean that is
passed a SpringRetryCircuitBreakerFactory. The configureDefault method can be used to provide a
default configuration.

@Bean
public Customizer<SpringRetryCircuitBreakerFactory> defaultCustomizer() {
 return factory -> factory.configureDefault(id -> new
SpringRetryConfigBuilder(id)
 .retryPolicy(new TimeoutRetryPolicy()).build());
}

1.2.2. Specific Circuit Breaker Configuration

Similarly to providing a default configuration, you can create a Customizer bean this is passed a
SpringRetryCircuitBreakerFactory.

@Bean
public Customizer<SpringRetryCircuitBreakerFactory> slowCustomizer() {
 return factory -> factory.configure(builder -> builder.retryPolicy(new
SimpleRetryPolicy(1)).build(), "slow");
}

https://resilience4j.readme.io/docs/micrometer
https://github.com/spring-projects/spring-retry/blob/master/src/main/java/org/springframework/retry/policy/CircuitBreakerRetryPolicy.java
https://github.com/spring-projects/spring-retry#stateful-retry
https://github.com/spring-projects/spring-retry/blob/master/src/main/java/org/springframework/retry/support/DefaultRetryState.java

In addition to configuring the circuit breaker that is created you can also customize the circuit
breaker after it has been created but before it is returned to the caller. To do this you can use the
addRetryTemplateCustomizers method. This can be useful for adding event handlers to the
RetryTemplate.

@Bean
public Customizer<SpringRetryCircuitBreakerFactory> slowCustomizer() {
 return factory -> factory.addRetryTemplateCustomizers(retryTemplate ->
retryTemplate.registerListener(new RetryListener() {

 @Override
 public <T, E extends Throwable> boolean open(RetryContext context,
RetryCallback<T, E> callback) {
 return false;
 }

 @Override
 public <T, E extends Throwable> void close(RetryContext context,
RetryCallback<T, E> callback, Throwable throwable) {

 }

 @Override
 public <T, E extends Throwable> void onError(RetryContext context,
RetryCallback<T, E> callback, Throwable throwable) {

 }
 }));
}

2. Building

2.1. Basic Compile and Test
To build the source you will need to install JDK 17.

Spring Cloud uses Maven for most build-related activities, and you should be able to get off the
ground quite quickly by cloning the project you are interested in and typing

$./mvnw install

You can also install Maven (>=3.3.3) yourself and run the mvn command in place of
./mvnw in the examples below. If you do that you also might need to add -P spring
if your local Maven settings do not contain repository declarations for spring pre-
release artifacts.

Be aware that you might need to increase the amount of memory available to
Maven by setting a MAVEN_OPTS environment variable with a value like -Xmx512m
-XX:MaxPermSize=128m. We try to cover this in the .mvn configuration, so if you find
you have to do it to make a build succeed, please raise a ticket to get the settings
added to source control.

The projects that require middleware (i.e. Redis) for testing generally require that a local instance
of [Docker](www.docker.com/get-started) is installed and running.

2.2. Documentation
The spring-cloud-build module has a "docs" profile, and if you switch that on it will try to build
asciidoc sources from src/main/asciidoc. As part of that process it will look for a README.adoc and
process it by loading all the includes, but not parsing or rendering it, just copying it to
${main.basedir} (defaults to $/Users/ryanjbaxter/git-repos/spring-cloud/spring-cloud-
release/train-docs/target/unpacked-docs, i.e. the root of the project). If there are any changes in the
README it will then show up after a Maven build as a modified file in the correct place. Just
commit it and push the change.

2.3. Working with the code
If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or
Eclipse when working with the code. We use the m2eclipse eclipse plugin for maven support. Other
IDEs and tools should also work without issue as long as they use Maven 3.3.3 or better.

2.3.1. Activate the Spring Maven profile

Spring Cloud projects require the 'spring' Maven profile to be activated to resolve the spring
milestone and snapshot repositories. Use your preferred IDE to set this profile to be active, or you
may experience build errors.

2.3.2. Importing into eclipse with m2eclipse

We recommend the m2eclipse eclipse plugin when working with eclipse. If you don’t already have
m2eclipse installed it is available from the "eclipse marketplace".

https://www.docker.com/get-started
https://www.springsource.com/developer/sts
https://eclipse.org
https://eclipse.org/m2e/
https://eclipse.org/m2e/

Older versions of m2e do not support Maven 3.3, so once the projects are imported
into Eclipse you will also need to tell m2eclipse to use the right profile for the
projects. If you see many different errors related to the POMs in the projects, check
that you have an up to date installation. If you can’t upgrade m2e, add the "spring"
profile to your settings.xml. Alternatively you can copy the repository settings
from the "spring" profile of the parent pom into your settings.xml.

2.3.3. Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following
command:

$./mvnw eclipse:eclipse

The generated eclipse projects can be imported by selecting import existing projects from the file
menu.

3. Contributing
Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard
Github development process, using Github tracker for issues and merging pull requests into master.
If you want to contribute even something trivial please do not hesitate, but follow the guidelines
below.

3.1. Sign the Contributor License Agreement
Before we accept a non-trivial patch or pull request we will need you to sign the Contributor
License Agreement. Signing the contributor’s agreement does not grant anyone commit rights to
the main repository, but it does mean that we can accept your contributions, and you will get an
author credit if we do. Active contributors might be asked to join the core team, and given the
ability to merge pull requests.

3.2. Code of Conduct
This project adheres to the Contributor Covenant code of conduct. By participating, you are
expected to uphold this code. Please report unacceptable behavior to spring-code-of-
conduct@pivotal.io.

3.3. Code Conventions and Housekeeping
None of these is essential for a pull request, but they will all help. They can also be added after the
original pull request but before a merge.

• Use the Spring Framework code format conventions. If you use Eclipse you can import
formatter settings using the eclipse-code-formatter.xml file from the Spring Cloud Build project.

https://cla.pivotal.io/sign/spring
https://cla.pivotal.io/sign/spring
https://github.com/spring-cloud/spring-cloud-build/blob/master/docs/src/main/asciidoc/code-of-conduct.adoc
mailto:spring-code-of-conduct@pivotal.io
mailto:spring-code-of-conduct@pivotal.io
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-dependencies-parent/eclipse-code-formatter.xml

If using IntelliJ, you can use the Eclipse Code Formatter Plugin to import the same file.

• Make sure all new .java files to have a simple Javadoc class comment with at least an @author
tag identifying you, and preferably at least a paragraph on what the class is for.

• Add the ASF license header comment to all new .java files (copy from existing files in the
project)

• Add yourself as an @author to the .java files that you modify substantially (more than cosmetic
changes).

• Add some Javadocs and, if you change the namespace, some XSD doc elements.

• A few unit tests would help a lot as well — someone has to do it.

• If no-one else is using your branch, please rebase it against the current master (or other target
branch in the main project).

• When writing a commit message please follow these conventions, if you are fixing an existing
issue please add Fixes gh-XXXX at the end of the commit message (where XXXX is the issue
number).

3.4. Checkstyle
Spring Cloud Build comes with a set of checkstyle rules. You can find them in the spring-cloud-
build-tools module. The most notable files under the module are:

spring-cloud-build-tools/

└── src
 ├── checkstyle
 │ └── checkstyle-suppressions.xml ③
 └── main
 └── resources
 ├── checkstyle-header.txt ②
 └── checkstyle.xml ①

① Default Checkstyle rules

② File header setup

③ Default suppression rules

3.4.1. Checkstyle configuration

Checkstyle rules are disabled by default. To add checkstyle to your project just define the
following properties and plugins.

https://plugins.jetbrains.com/plugin/6546
https://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

pom.xml

<properties>
<maven-checkstyle-plugin.failsOnError>true</maven-checkstyle-plugin.failsOnError> ①
 <maven-checkstyle-plugin.failsOnViolation>true
 </maven-checkstyle-plugin.failsOnViolation> ②
 <maven-checkstyle-plugin.includeTestSourceDirectory>true
 </maven-checkstyle-plugin.includeTestSourceDirectory> ③
</properties>

<build>
 <plugins>
 <plugin> ④
 <groupId>io.spring.javaformat</groupId>
 <artifactId>spring-javaformat-maven-plugin</artifactId>
 </plugin>
 <plugin> ⑤
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-checkstyle-plugin</artifactId>
 </plugin>
 </plugins>

 <reporting>
 <plugins>
 <plugin> ⑤
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-checkstyle-plugin</artifactId>
 </plugin>
 </plugins>
 </reporting>
</build>

① Fails the build upon Checkstyle errors

② Fails the build upon Checkstyle violations

③ Checkstyle analyzes also the test sources

④ Add the Spring Java Format plugin that will reformat your code to pass most of the Checkstyle
formatting rules

⑤ Add checkstyle plugin to your build and reporting phases

If you need to suppress some rules (e.g. line length needs to be longer), then it’s enough for you to
define a file under ${project.root}/src/checkstyle/checkstyle-suppressions.xml with your
suppressions. Example:

projectRoot/src/checkstyle/checkstyle-suppresions.xml

<?xml version="1.0"?>
<!DOCTYPE suppressions PUBLIC
 "-//Puppy Crawl//DTD Suppressions 1.1//EN"
 "https://www.puppycrawl.com/dtds/suppressions_1_1.dtd">
<suppressions>
 <suppress files=".*ConfigServerApplication\.java"
checks="HideUtilityClassConstructor"/>
 <suppress files=".*ConfigClientWatch\.java" checks="LineLengthCheck"/>
</suppressions>

It’s advisable to copy the ${spring-cloud-build.rootFolder}/.editorconfig and ${spring-cloud-
build.rootFolder}/.springformat to your project. That way, some default formatting rules will be
applied. You can do so by running this script:

$ curl https://raw.githubusercontent.com/spring-cloud/spring-cloud-
build/master/.editorconfig -o .editorconfig
$ touch .springformat

3.5. IDE setup

3.5.1. Intellij IDEA

In order to setup Intellij you should import our coding conventions, inspection profiles and set up
the checkstyle plugin. The following files can be found in the Spring Cloud Build project.

spring-cloud-build-tools/

└── src
 ├── checkstyle
 │ └── checkstyle-suppressions.xml ③
 └── main
 └── resources
 ├── checkstyle-header.txt ②
 ├── checkstyle.xml ①
 └── intellij
 ├── Intellij_Project_Defaults.xml ④
 └── Intellij_Spring_Boot_Java_Conventions.xml ⑤

① Default Checkstyle rules

② File header setup

③ Default suppression rules

④ Project defaults for Intellij that apply most of Checkstyle rules

⑤ Project style conventions for Intellij that apply most of Checkstyle rules

https://github.com/spring-cloud/spring-cloud-build/tree/master/spring-cloud-build-tools

Figure 3. Code style

Go to File → Settings → Editor → Code style. There click on the icon next to the Scheme section.
There, click on the Import Scheme value and pick the Intellij IDEA code style XML option. Import
the spring-cloud-build-
tools/src/main/resources/intellij/Intellij_Spring_Boot_Java_Conventions.xml file.

Figure 4. Inspection profiles

Go to File → Settings → Editor → Inspections. There click on the icon next to the Profile section.
There, click on the Import Profile and import the spring-cloud-build-
tools/src/main/resources/intellij/Intellij_Project_Defaults.xml file.

Checkstyle

To have Intellij work with Checkstyle, you have to install the Checkstyle plugin. It’s advisable to also
install the Assertions2Assertj to automatically convert the JUnit assertions

Go to File → Settings → Other settings → Checkstyle. There click on the + icon in the Configuration
file section. There, you’ll have to define where the checkstyle rules should be picked from. In the
image above, we’ve picked the rules from the cloned Spring Cloud Build repository. However, you
can point to the Spring Cloud Build’s GitHub repository (e.g. for the checkstyle.xml :
raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/
main/resources/checkstyle.xml). We need to provide the following variables:

• checkstyle.header.file - please point it to the Spring Cloud Build’s, spring-cloud-build-
tools/src/main/resources/checkstyle-header.txt file either in your cloned repo or via the
raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/
src/main/resources/checkstyle-header.txt URL.

• checkstyle.suppressions.file - default suppressions. Please point it to the Spring Cloud Build’s,
spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml file either in your cloned
repo or via the raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-
cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml URL.

• checkstyle.additional.suppressions.file - this variable corresponds to suppressions in your
local project. E.g. you’re working on spring-cloud-contract. Then point to the project-
root/src/checkstyle/checkstyle-suppressions.xml folder. Example for spring-cloud-contract
would be: /home/username/spring-cloud-contract/src/checkstyle/checkstyle-suppressions.xml.

Remember to set the Scan Scope to All sources since we apply checkstyle rules for
production and test sources.

3.6. Duplicate Finder
Spring Cloud Build brings along the basepom:duplicate-finder-maven-plugin, that enables flagging
duplicate and conflicting classes and resources on the java classpath.

3.6.1. Duplicate Finder configuration

Duplicate finder is enabled by default and will run in the verify phase of your Maven build, but it
will only take effect in your project if you add the duplicate-finder-maven-plugin to the build
section of the projecst’s pom.xml.

https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml

pom.xml

<build>
 <plugins>
 <plugin>
 <groupId>org.basepom.maven</groupId>
 <artifactId>duplicate-finder-maven-plugin</artifactId>
 </plugin>
 </plugins>
</build>

For other properties, we have set defaults as listed in the plugin documentation.

You can easily override them but setting the value of the selected property prefixed with duplicate-
finder-maven-plugin. For example, set duplicate-finder-maven-plugin.skip to true in order to skip
duplicates check in your build.

If you need to add ignoredClassPatterns or ignoredResourcePatterns to your setup, make sure to add
them in the plugin configuration section of your project:

<build>
 <plugins>
 <plugin>
 <groupId>org.basepom.maven</groupId>
 <artifactId>duplicate-finder-maven-plugin</artifactId>
 <configuration>
 <ignoredClassPatterns>

<ignoredClassPattern>org.joda.time.base.BaseDateTime</ignoredClassPattern>
 <ignoredClassPattern>.*module-info</ignoredClassPattern>
 </ignoredClassPatterns>
 <ignoredResourcePatterns>
 <ignoredResourcePattern>changelog.txt</ignoredResourcePattern>
 </ignoredResourcePatterns>
 </configuration>
 </plugin>
 </plugins>
</build>

Cloud Native Applications
Cloud Native is a style of application development that encourages easy adoption of best practices
in the areas of continuous delivery and value-driven development. A related discipline is that of
building 12-factor Applications, in which development practices are aligned with delivery and
operations goals — for instance, by using declarative programming and management and
monitoring. Spring Cloud facilitates these styles of development in a number of specific ways. The
starting point is a set of features to which all components in a distributed system need easy access.

https://github.com/basepom/duplicate-finder-maven-plugin/wiki
https://pivotal.io/platform-as-a-service/migrating-to-cloud-native-application-architectures-ebook
https://12factor.net/

Many of those features are covered by Spring Boot, on which Spring Cloud builds. Some more
features are delivered by Spring Cloud as two libraries: Spring Cloud Context and Spring Cloud
Commons. Spring Cloud Context provides utilities and special services for the ApplicationContext of
a Spring Cloud application (bootstrap context, encryption, refresh scope, and environment
endpoints). Spring Cloud Commons is a set of abstractions and common classes used in different
Spring Cloud implementations (such as Spring Cloud Netflix and Spring Cloud Consul).

If you get an exception due to "Illegal key size" and you use Sun’s JDK, you need to install the Java
Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files. See the following links
for more information:

• Java 6 JCE

• Java 7 JCE

• Java 8 JCE

Extract the files into the JDK/jre/lib/security folder for whichever version of JRE/JDK x64/x86 you
use.

Spring Cloud is released under the non-restrictive Apache 2.0 license. If you would
like to contribute to this section of the documentation or if you find an error, you
can find the source code and issue trackers for the project at {docslink}[github].

1. Spring Cloud Context: Application Context
Services
Spring Boot has an opinionated view of how to build an application with Spring. For instance, it has
conventional locations for common configuration files and has endpoints for common
management and monitoring tasks. Spring Cloud builds on top of that and adds a few features that
many components in a system would use or occasionally need.

1.1. The Bootstrap Application Context
A Spring Cloud application operates by creating a “bootstrap” context, which is a parent context for
the main application. This context is responsible for loading configuration properties from the
external sources and for decrypting properties in the local external configuration files. The two
contexts share an Environment, which is the source of external properties for any Spring application.
By default, bootstrap properties (not bootstrap.properties but properties that are loaded during the
bootstrap phase) are added with high precedence, so they cannot be overridden by local
configuration.

The bootstrap context uses a different convention for locating external configuration than the main
application context. Instead of application.yml (or .properties), you can use bootstrap.yml, keeping
the external configuration for bootstrap and main context nicely separate. The following listing
shows an example:

https://projects.spring.io/spring-boot
https://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html
https://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html
https://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

Example 1. bootstrap.yml

spring:
 application:
 name: foo
 cloud:
 config:
 uri: ${SPRING_CONFIG_URI:http://localhost:8888}

If your application needs any application-specific configuration from the server, it is a good idea to
set the spring.application.name (in bootstrap.yml or application.yml). For the property
spring.application.name to be used as the application’s context ID, you must set it in
bootstrap.[properties | yml].

If you want to retrieve specific profile configuration, you should also set spring.profiles.active in
bootstrap.[properties | yml].

You can disable the bootstrap process completely by setting spring.cloud.bootstrap.enabled=false
(for example, in system properties).

1.2. Application Context Hierarchies
If you build an application context from SpringApplication or SpringApplicationBuilder, the
Bootstrap context is added as a parent to that context. It is a feature of Spring that child contexts
inherit property sources and profiles from their parent, so the “main” application context contains
additional property sources, compared to building the same context without Spring Cloud Config.
The additional property sources are:

• “bootstrap”: If any PropertySourceLocators are found in the bootstrap context and if they have
non-empty properties, an optional CompositePropertySource appears with high priority. An
example would be properties from the Spring Cloud Config Server. See “Customizing the
Bootstrap Property Sources” for how to customize the contents of this property source.

Prior to Spring Cloud 2022.0.3 PropertySourceLocators (including the ones for
Spring Cloud Config) were run during the main application context and not in the
Bootstrap context. You can force PropertySourceLocators to be run during the
Bootstrap context by setting spring.cloud.config.initialize-on-context-
refresh=true in bootstrap.[properties | yaml].

• “applicationConfig: [classpath:bootstrap.yml]” (and related files if Spring profiles are active): If
you have a bootstrap.yml (or .properties), those properties are used to configure the bootstrap
context. Then they get added to the child context when its parent is set. They have lower
precedence than the application.yml (or .properties) and any other property sources that are
added to the child as a normal part of the process of creating a Spring Boot application. See
“Changing the Location of Bootstrap Properties” for how to customize the contents of these
property sources.

Because of the ordering rules of property sources, the “bootstrap” entries take precedence.
However, note that these do not contain any data from bootstrap.yml, which has very low
precedence but can be used to set defaults.

You can extend the context hierarchy by setting the parent context of any ApplicationContext you
create — for example, by using its own interface or with the SpringApplicationBuilder convenience
methods (parent(), child() and sibling()). The bootstrap context is the parent of the most senior
ancestor that you create yourself. Every context in the hierarchy has its own “bootstrap” (possibly
empty) property source to avoid promoting values inadvertently from parents down to their
descendants. If there is a config server, every context in the hierarchy can also (in principle) have a
different spring.application.name and, hence, a different remote property source. Normal Spring
application context behavior rules apply to property resolution: properties from a child context
override those in the parent, by name and also by property source name. (If the child has a
property source with the same name as the parent, the value from the parent is not included in the
child).

Note that the SpringApplicationBuilder lets you share an Environment amongst the whole hierarchy,
but that is not the default. Thus, sibling contexts (in particular) do not need to have the same
profiles or property sources, even though they may share common values with their parent.

1.3. Changing the Location of Bootstrap Properties
The bootstrap.yml (or .properties) location can be specified by setting spring.cloud.bootstrap.name
(default: bootstrap), spring.cloud.bootstrap.location (default: empty) or
spring.cloud.bootstrap.additional-location (default: empty) — for example, in System properties.

Those properties behave like the spring.config.* variants with the same name. With
spring.cloud.bootstrap.location the default locations are replaced and only the specified ones are
used. To add locations to the list of default ones, spring.cloud.bootstrap.additional-location can be
used. In fact, they are used to set up the bootstrap ApplicationContext by setting those properties in
its Environment. If there is an active profile (from spring.profiles.active or through the Environment
API in the context you are building), properties in that profile get loaded as well, the same as in a
regular Spring Boot app — for example, from bootstrap-development.properties for a development
profile.

1.4. Overriding the Values of Remote Properties
The property sources that are added to your application by the bootstrap context are often
“remote” (from example, from Spring Cloud Config Server). By default, they cannot be overridden
locally. If you want to let your applications override the remote properties with their own system
properties or config files, the remote property source has to grant it permission by setting
spring.cloud.config.allowOverride=true (it does not work to set this locally). Once that flag is set,
two finer-grained settings control the location of the remote properties in relation to system
properties and the application’s local configuration:

• spring.cloud.config.overrideNone=true: Override from any local property source.

• spring.cloud.config.overrideSystemProperties=false: Only system properties, command line
arguments, and environment variables (but not the local config files) should override the

remote settings.

1.5. Customizing the Bootstrap Configuration
The bootstrap context can be set to do anything you like by adding entries to /META-
INF/spring.factories under a key named
org.springframework.cloud.bootstrap.BootstrapConfiguration. This holds a comma-separated list of
Spring @Configuration classes that are used to create the context. Any beans that you want to be
available to the main application context for autowiring can be created here. There is a special
contract for @Beans of type ApplicationContextInitializer. If you want to control the startup
sequence, you can mark classes with the @Order annotation (the default order is last).

When adding custom BootstrapConfiguration, be careful that the classes you add
are not @ComponentScanned by mistake into your “main” application context, where
they might not be needed. Use a separate package name for boot configuration
classes and make sure that name is not already covered by your @ComponentScan or
@SpringBootApplication annotated configuration classes.

The bootstrap process ends by injecting initializers into the main SpringApplication instance (which
is the normal Spring Boot startup sequence, whether it runs as a standalone application or is
deployed in an application server). First, a bootstrap context is created from the classes found in
spring.factories. Then, all @Beans of type ApplicationContextInitializer are added to the main
SpringApplication before it is started.

1.6. Customizing the Bootstrap Property Sources
The default property source for external configuration added by the bootstrap process is the Spring
Cloud Config Server, but you can add additional sources by adding beans of type
PropertySourceLocator to the bootstrap context (through spring.factories). For instance, you can
insert additional properties from a different server or from a database.

As an example, consider the following custom locator:

@Configuration
public class CustomPropertySourceLocator implements PropertySourceLocator {

 @Override
 public PropertySource<?> locate(Environment environment) {
 return new MapPropertySource("customProperty",
 Collections.<String,
Object>singletonMap("property.from.sample.custom.source", "worked as intended"));
 }

}

The Environment that is passed in is the one for the ApplicationContext about to be created — in

other words, the one for which we supply additional property sources. It already has its normal
Spring Boot-provided property sources, so you can use those to locate a property source specific to
this Environment (for example, by keying it on spring.application.name, as is done in the default
Spring Cloud Config Server property source locator).

If you create a jar with this class in it and then add a META-INF/spring.factories containing the
following setting, the customProperty PropertySource appears in any application that includes that
jar on its classpath:

org.springframework.cloud.bootstrap.BootstrapConfiguration=sample.custom.CustomPro
pertySourceLocator

As of Spring Cloud 2022.0.3, Spring Cloud will now call PropertySourceLocators twice. The first fetch
will retrieve any property sources without any profiles. These property sources will have the
opportunity to activate profiles using spring.profiles.active. After the main application context
starts PropertySourceLocators will be called a second time, this time with any active profiles
allowing PropertySourceLocators to locate any additional PropertySources with profiles.

1.7. Logging Configuration
If you use Spring Boot to configure log settings, you should place this configuration in
bootstrap.[yml | properties] if you would like it to apply to all events.

For Spring Cloud to initialize logging configuration properly, you cannot use a
custom prefix. For example, using custom.loggin.logpath is not recognized by
Spring Cloud when initializing the logging system.

1.8. Environment Changes
The application listens for an EnvironmentChangeEvent and reacts to the change in a couple of
standard ways (additional ApplicationListeners can be added as @Beans in the normal way). When
an EnvironmentChangeEvent is observed, it has a list of key values that have changed, and the
application uses those to:

• Re-bind any @ConfigurationProperties beans in the context.

• Set the logger levels for any properties in logging.level.*.

Note that the Spring Cloud Config Client does not, by default, poll for changes in the Environment.
Generally, we would not recommend that approach for detecting changes (although you can set it
up with a @Scheduled annotation). If you have a scaled-out client application, it is better to broadcast
the EnvironmentChangeEvent to all the instances instead of having them polling for changes (for
example, by using the Spring Cloud Bus).

The EnvironmentChangeEvent covers a large class of refresh use cases, as long as you can actually
make a change to the Environment and publish the event. Note that those APIs are public and part of

https://github.com/spring-cloud/spring-cloud-bus

core Spring). You can verify that the changes are bound to @ConfigurationProperties beans by
visiting the /configprops endpoint (a standard Spring Boot Actuator feature). For instance, a
DataSource can have its maxPoolSize changed at runtime (the default DataSource created by Spring
Boot is a @ConfigurationProperties bean) and grow capacity dynamically. Re-binding
@ConfigurationProperties does not cover another large class of use cases, where you need more
control over the refresh and where you need a change to be atomic over the whole
ApplicationContext. To address those concerns, we have @RefreshScope.

1.9. Refresh Scope
When there is a configuration change, a Spring @Bean that is marked as @RefreshScope gets special
treatment. This feature addresses the problem of stateful beans that get their configuration injected
only when they are initialized. For instance, if a DataSource has open connections when the
database URL is changed through the Environment, you probably want the holders of those
connections to be able to complete what they are doing. Then, the next time something borrows a
connection from the pool, it gets one with the new URL.

Sometimes, it might even be mandatory to apply the @RefreshScope annotation on some beans that
can be only initialized once. If a bean is “immutable”, you have to either annotate the bean with
@RefreshScope or specify the classname under the property key: spring.cloud.refresh.extra-
refreshable.

If you hava a DataSource bean that is a HikariDataSource, it can not be refreshed. It
is the default value for spring.cloud.refresh.never-refreshable. Choose a different
DataSource implementation if you need it to be refreshed.

Refresh scope beans are lazy proxies that initialize when they are used (that is, when a method is
called), and the scope acts as a cache of initialized values. To force a bean to re-initialize on the next
method call, you must invalidate its cache entry.

The RefreshScope is a bean in the context and has a public refreshAll() method to refresh all beans
in the scope by clearing the target cache. The /refresh endpoint exposes this functionality (over
HTTP or JMX). To refresh an individual bean by name, there is also a refresh(String) method.

To expose the /refresh endpoint, you need to add following configuration to your application:

management:
 endpoints:
 web:
 exposure:
 include: refresh

@RefreshScope works (technically) on a @Configuration class, but it might lead to
surprising behavior. For example, it does not mean that all the @Beans defined in
that class are themselves in @RefreshScope. Specifically, anything that depends on
those beans cannot rely on them being updated when a refresh is initiated, unless
it is itself in @RefreshScope. In that case, it is rebuilt on a refresh and its
dependencies are re-injected. At that point, they are re-initialized from the
refreshed @Configuration).

Removing a configuration value and then performing a refresh will not update the
presence of the configuration value. The configuration property must be present in
order to update the value after a refresh. If you are relying on the presence of a
value in your application you might want to switch your logic to rely on its
absence instead. Another option would be to rely on the value changing rather
than not being present in the application’s configuration.

1.10. Encryption and Decryption
Spring Cloud has an Environment pre-processor for decrypting property values locally. It follows the
same rules as the Spring Cloud Config Server and has the same external configuration through
encrypt.*. Thus, you can use encrypted values in the form of {cipher}*, and, as long as there is a
valid key, they are decrypted before the main application context gets the Environment settings. To
use the encryption features in an application, you need to include Spring Security RSA in your
classpath (Maven co-ordinates: org.springframework.security:spring-security-rsa), and you also
need the full strength JCE extensions in your JVM.

If you get an exception due to "Illegal key size" and you use Sun’s JDK, you need to install the Java
Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files. See the following links
for more information:

• Java 6 JCE

• Java 7 JCE

• Java 8 JCE

Extract the files into the JDK/jre/lib/security folder for whichever version of JRE/JDK x64/x86 you
use.

1.11. Endpoints
For a Spring Boot Actuator application, some additional management endpoints are available. You
can use:

• POST to /actuator/env to update the Environment and rebind @ConfigurationProperties and log
levels. To enabled this endpoint you must set management.endpoint.env.post.enabled=true.

• /actuator/refresh to re-load the boot strap context and refresh the @RefreshScope beans.

• /actuator/restart to close the ApplicationContext and restart it (disabled by default).

https://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html
https://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html
https://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

• /actuator/pause and /actuator/resume for calling the Lifecycle methods (stop() and start() on
the ApplicationContext).

While enabling the POST method for /actuator/env endpoint can provide flexibility
and convenience in managing your application environment variables, it’s critical
to ensure that the endpoint is secured and monitored to prevent potential security
risks. Add a spring-boot-starter-security dependency to configure access control
for the actuator’s endpoint.

If you disable the /actuator/restart endpoint then the /actuator/pause and
/actuator/resume endpoints will also be disabled since they are just a special case
of /actuator/restart.

2. Spring Cloud Commons: Common
Abstractions
Patterns such as service discovery, load balancing, and circuit breakers lend themselves to a
common abstraction layer that can be consumed by all Spring Cloud clients, independent of the
implementation (for example, discovery with Eureka or Consul).

2.1. The @EnableDiscoveryClient Annotation
Spring Cloud Commons provides the @EnableDiscoveryClient annotation. This looks for
implementations of the DiscoveryClient and ReactiveDiscoveryClient interfaces with META-
INF/spring.factories. Implementations of the discovery client add a configuration class to
spring.factories under the org.springframework.cloud.client.discovery.EnableDiscoveryClient key.
Examples of DiscoveryClient implementations include Spring Cloud Netflix Eureka, Spring Cloud
Consul Discovery, and Spring Cloud Zookeeper Discovery.

Spring Cloud will provide both the blocking and reactive service discovery clients by default. You
can disable the blocking and/or reactive clients easily by setting
spring.cloud.discovery.blocking.enabled=false or spring.cloud.discovery.reactive.enabled=false.
To completely disable service discovery you just need to set spring.cloud.discovery.enabled=false.

By default, implementations of DiscoveryClient auto-register the local Spring Boot server with the
remote discovery server. This behavior can be disabled by setting autoRegister=false in
@EnableDiscoveryClient.

@EnableDiscoveryClient is no longer required. You can put a DiscoveryClient
implementation on the classpath to cause the Spring Boot application to register
with the service discovery server.

2.1.1. Health Indicators

Commons auto-configures the following Spring Boot health indicators.

https://cloud.spring.io/spring-cloud-netflix/
https://cloud.spring.io/spring-cloud-consul/
https://cloud.spring.io/spring-cloud-consul/
https://cloud.spring.io/spring-cloud-zookeeper/

DiscoveryClientHealthIndicator

This health indicator is based on the currently registered DiscoveryClient implementation.

• To disable entirely, set spring.cloud.discovery.client.health-indicator.enabled=false.

• To disable the description field, set spring.cloud.discovery.client.health-indicator.include-
description=false. Otherwise, it can bubble up as the description of the rolled up
HealthIndicator.

• To disable service retrieval, set spring.cloud.discovery.client.health-indicator.use-services-
query=false. By default, the indicator invokes the client’s getServices method. In deployments
with many registered services it may too costly to retrieve all services during every check. This
will skip the service retrieval and instead use the client’s probe method.

DiscoveryCompositeHealthContributor

This composite health indicator is based on all registered DiscoveryHealthIndicator beans. To
disable, set spring.cloud.discovery.client.composite-indicator.enabled=false.

2.1.2. Ordering DiscoveryClient instances

DiscoveryClient interface extends Ordered. This is useful when using multiple discovery clients, as it
allows you to define the order of the returned discovery clients, similar to how you can order the
beans loaded by a Spring application. By default, the order of any DiscoveryClient is set to 0. If you
want to set a different order for your custom DiscoveryClient implementations, you just need to
override the getOrder() method so that it returns the value that is suitable for your setup. Apart
from this, you can use properties to set the order of the DiscoveryClient implementations provided
by Spring Cloud, among others ConsulDiscoveryClient, EurekaDiscoveryClient and
ZookeeperDiscoveryClient. In order to do it, you just need to set the
spring.cloud.{clientIdentifier}.discovery.order (or eureka.client.order for Eureka) property to
the desired value.

2.1.3. SimpleDiscoveryClient

If there is no Service-Registry-backed DiscoveryClient in the classpath, SimpleDiscoveryClient
instance, that uses properties to get information on service and instances, will be used.

The information about the available instances should be passed to via properties in the following
format: spring.cloud.discovery.client.simple.instances.service1[0].uri=http://s11:8080, where
spring.cloud.discovery.client.simple.instances is the common prefix, then service1 stands for the
ID of the service in question, while [0] indicates the index number of the instance (as visible in the
example, indexes start with 0), and then the value of uri is the actual URI under which the instance
is available.

2.2. ServiceRegistry
Commons now provides a ServiceRegistry interface that provides methods such as
register(Registration) and deregister(Registration), which let you provide custom registered
services. Registration is a marker interface.

The following example shows the ServiceRegistry in use:

@Configuration
@EnableDiscoveryClient(autoRegister=false)
public class MyConfiguration {
 private ServiceRegistry registry;

 public MyConfiguration(ServiceRegistry registry) {
 this.registry = registry;
 }

 // called through some external process, such as an event or a custom actuator
endpoint
 public void register() {
 Registration registration = constructRegistration();
 this.registry.register(registration);
 }
}

Each ServiceRegistry implementation has its own Registry implementation.

• ZookeeperRegistration used with ZookeeperServiceRegistry

• EurekaRegistration used with EurekaServiceRegistry

• ConsulRegistration used with ConsulServiceRegistry

If you are using the ServiceRegistry interface, you are going to need to pass the correct Registry
implementation for the ServiceRegistry implementation you are using.

2.2.1. ServiceRegistry Auto-Registration

By default, the ServiceRegistry implementation auto-registers the running service. To disable that
behavior, you can set: * @EnableDiscoveryClient(autoRegister=false) to permanently disable auto-
registration. * spring.cloud.service-registry.auto-registration.enabled=false to disable the
behavior through configuration.

ServiceRegistry Auto-Registration Events

There are two events that will be fired when a service auto-registers. The first event, called
InstancePreRegisteredEvent, is fired before the service is registered. The second event, called
InstanceRegisteredEvent, is fired after the service is registered. You can register an
ApplicationListener(s) to listen to and react to these events.

These events will not be fired if the spring.cloud.service-registry.auto-
registration.enabled property is set to false.

2.2.2. Service Registry Actuator Endpoint

Spring Cloud Commons provides a /service-registry actuator endpoint. This endpoint relies on a
Registration bean in the Spring Application Context. Calling /service-registry with GET returns the
status of the Registration. Using POST to the same endpoint with a JSON body changes the status of
the current Registration to the new value. The JSON body has to include the status field with the
preferred value. Please see the documentation of the ServiceRegistry implementation you use for
the allowed values when updating the status and the values returned for the status. For instance,
Eureka’s supported statuses are UP, DOWN, OUT_OF_SERVICE, and UNKNOWN.

2.3. Spring RestTemplate as a Load Balancer Client
You can configure a RestTemplate to use a Load-balancer client. To create a load-balanced
RestTemplate, create a RestTemplate @Bean and use the @LoadBalanced qualifier, as the following
example shows:

@Configuration
public class MyConfiguration {

 @LoadBalanced
 @Bean
 RestTemplate restTemplate() {
 return new RestTemplate();
 }
}

public class MyClass {
 @Autowired
 private RestTemplate restTemplate;

 public String doOtherStuff() {
 String results = restTemplate.getForObject("http://stores/stores",
String.class);
 return results;
 }
}

A RestTemplate bean is no longer created through auto-configuration. Individual
applications must create it.

The URI needs to use a virtual host name (that is, a service name, not a host name). The
BlockingLoadBalancerClient is used to create a full physical address.

To use a load-balanced RestTemplate, you need to have a load-balancer
implementation in your classpath. Add Spring Cloud LoadBalancer starter to your
project in order to use it.

2.4. Spring WebClient as a Load Balancer Client
You can configure WebClient to automatically use a load-balancer client. To create a load-balanced
WebClient, create a WebClient.Builder @Bean and use the @LoadBalanced qualifier, as follows:

@Configuration
public class MyConfiguration {

 @Bean
 @LoadBalanced
 public WebClient.Builder loadBalancedWebClientBuilder() {
 return WebClient.builder();
 }
}

public class MyClass {
 @Autowired
 private WebClient.Builder webClientBuilder;

 public Mono<String> doOtherStuff() {
 return webClientBuilder.build().get().uri("http://stores/stores")
 .retrieve().bodyToMono(String.class);
 }
}

The URI needs to use a virtual host name (that is, a service name, not a host name). The Spring
Cloud LoadBalancer is used to create a full physical address.

If you want to use a @LoadBalanced WebClient.Builder, you need to have a load
balancer implementation in the classpath. We recommend that you add the Spring
Cloud LoadBalancer starter to your project. Then, ReactiveLoadBalancer is used
underneath.

2.4.1. Retrying Failed Requests

A load-balanced RestTemplate can be configured to retry failed requests. By default, this logic is
disabled. For the non-reactive version (with RestTemplate), you can enable it by adding Spring Retry
to your application’s classpath. For the reactive version (with WebTestClient), you need to set
spring.cloud.loadbalancer.retry.enabled=true.

If you would like to disable the retry logic with Spring Retry or Reactive Retry on the classpath, you
can set spring.cloud.loadbalancer.retry.enabled=false.

For the non-reactive implementation, if you would like to implement a BackOffPolicy in your
retries, you need to create a bean of type LoadBalancedRetryFactory and override the
createBackOffPolicy() method.

https://github.com/spring-projects/spring-retry

For the reactive implementation, you just need to enable it by setting
spring.cloud.loadbalancer.retry.backoff.enabled to false.

You can set:

• spring.cloud.loadbalancer.retry.maxRetriesOnSameServiceInstance - indicates how many times a
request should be retried on the same ServiceInstance (counted separately for every selected
instance)

• spring.cloud.loadbalancer.retry.maxRetriesOnNextServiceInstance - indicates how many times a
request should be retried a newly selected ServiceInstance

• spring.cloud.loadbalancer.retry.retryableStatusCodes - the status codes on which to always
retry a failed request.

For the reactive implementation, you can additionally set: -
spring.cloud.loadbalancer.retry.backoff.minBackoff - Sets the minimum backoff duration (by
default, 5 milliseconds) - spring.cloud.loadbalancer.retry.backoff.maxBackoff - Sets the maximum
backoff duration (by default, max long value of milliseconds) -
spring.cloud.loadbalancer.retry.backoff.jitter - Sets the jitter used for calculating the actual
backoff duration for each call (by default, 0.5).

For the reactive implementation, you can also implement your own LoadBalancerRetryPolicy to
have more detailed control over the load-balanced call retries.

For both implementations, you can also set the exceptions that trigger the replies by adding a list of
values under the spring.cloud.loadbalancer.[serviceId].retry.retryable-exceptions property. If
you do, we make sure to add RetryableStatusCodeExceptions to the list of exceptions provided by
you, so that we also retry on retryable status codes. If you do not specify any exceptions via
properties, the exceptions we use by default are IOException, TimeoutException and
RetryableStatusCodeException. You can also enable retrying on all exceptions by setting
spring.cloud.loadbalancer.[serviceId].retry.retry-on-all-exceptions to true.

If you use the blocking implementation with Spring Retries, if you want to keep the
behaviour from previous releases, set
spring.cloud.loadbalancer.[serviceId].retry.retry-on-all-exceptions to true as
that used to be the default mode for the blocking implementation.

Individual Loadbalancer clients may be configured individually with the same
properties as above except the prefix is
spring.cloud.loadbalancer.clients.<clientId>.* where clientId is the name of the
loadbalancer.

For load-balanced retries, by default, we wrap the ServiceInstanceListSupplier
bean with RetryAwareServiceInstanceListSupplier to select a different instance
from the one previously chosen, if available. You can disable this behavior by
setting the value of spring.cloud.loadbalancer.retry.avoidPreviousInstance to
false.

@Configuration
public class MyConfiguration {
 @Bean
 LoadBalancedRetryFactory retryFactory() {
 return new LoadBalancedRetryFactory() {
 @Override
 public BackOffPolicy createBackOffPolicy(String service) {
 return new ExponentialBackOffPolicy();
 }
 };
 }
}

If you want to add one or more RetryListener implementations to your retry functionality, you need
to create a bean of type LoadBalancedRetryListenerFactory and return the RetryListener array you
would like to use for a given service, as the following example shows:

@Configuration
public class MyConfiguration {
 @Bean
 LoadBalancedRetryListenerFactory retryListenerFactory() {
 return new LoadBalancedRetryListenerFactory() {
 @Override
 public RetryListener[] createRetryListeners(String service) {
 return new RetryListener[]{new RetryListener() {
 @Override
 public <T, E extends Throwable> boolean open(RetryContext
context, RetryCallback<T, E> callback) {
 //TODO Do you business...
 return true;
 }

 @Override
 public <T, E extends Throwable> void close(RetryContext
context, RetryCallback<T, E> callback, Throwable throwable) {
 //TODO Do you business...
 }

 @Override
 public <T, E extends Throwable> void onError(RetryContext
context, RetryCallback<T, E> callback, Throwable throwable) {
 //TODO Do you business...
 }
 }};
 }
 };
 }
}

2.5. Multiple RestTemplate Objects
If you want a RestTemplate that is not load-balanced, create a RestTemplate bean and inject it. To
access the load-balanced RestTemplate, use the @LoadBalanced qualifier when you create your @Bean,
as the following example shows:

@Configuration
public class MyConfiguration {

 @LoadBalanced
 @Bean
 RestTemplate loadBalanced() {
 return new RestTemplate();
 }

 @Primary
 @Bean
 RestTemplate restTemplate() {
 return new RestTemplate();
 }
}

public class MyClass {
 @Autowired
 private RestTemplate restTemplate;

 @Autowired
 @LoadBalanced
 private RestTemplate loadBalanced;

 public String doOtherStuff() {
 return loadBalanced.getForObject("http://stores/stores", String.class);
 }

 public String doStuff() {
 return restTemplate.getForObject("http://example.com", String.class);
 }
}

Notice the use of the @Primary annotation on the plain RestTemplate declaration in
the preceding example to disambiguate the unqualified @Autowired injection.

If you see errors such as java.lang.IllegalArgumentException: Can not set
org.springframework.web.client.RestTemplate field com.my.app.Foo.restTemplate
to com.sun.proxy.$Proxy89, try injecting RestOperations or setting
spring.aop.proxyTargetClass=true.

2.6. Multiple WebClient Objects
If you want a WebClient that is not load-balanced, create a WebClient bean and inject it. To access the
load-balanced WebClient, use the @LoadBalanced qualifier when you create your @Bean, as the
following example shows:

@Configuration
public class MyConfiguration {

 @LoadBalanced
 @Bean
 WebClient.Builder loadBalanced() {
 return WebClient.builder();
 }

 @Primary
 @Bean
 WebClient.Builder webClient() {
 return WebClient.builder();
 }
}

public class MyClass {
 @Autowired
 private WebClient.Builder webClientBuilder;

 @Autowired
 @LoadBalanced
 private WebClient.Builder loadBalanced;

 public Mono<String> doOtherStuff() {
 return loadBalanced.build().get().uri("http://stores/stores")
 .retrieve().bodyToMono(String.class);
 }

 public Mono<String> doStuff() {
 return webClientBuilder.build().get().uri("http://example.com")
 .retrieve().bodyToMono(String.class);
 }
}

2.7. Spring WebFlux WebClient as a Load Balancer
Client
The Spring WebFlux can work with both reactive and non-reactive WebClient configurations, as the
topics describe:

• Spring WebFlux WebClient with ReactorLoadBalancerExchangeFilterFunction

• Spring WebFlux WebClient with a Non-reactive Load Balancer Client

2.7.1. Spring WebFlux WebClient with
ReactorLoadBalancerExchangeFilterFunction

You can configure WebClient to use the ReactiveLoadBalancer. If you add Spring Cloud LoadBalancer
starter to your project and if spring-webflux is on the classpath,
ReactorLoadBalancerExchangeFilterFunction is auto-configured. The following example shows how
to configure a WebClient to use reactive load-balancer:

public class MyClass {
 @Autowired
 private ReactorLoadBalancerExchangeFilterFunction lbFunction;

 public Mono<String> doOtherStuff() {
 return WebClient.builder().baseUrl("http://stores")
 .filter(lbFunction)
 .build()
 .get()
 .uri("/stores")
 .retrieve()
 .bodyToMono(String.class);
 }
}

The URI needs to use a virtual host name (that is, a service name, not a host name). The
ReactorLoadBalancer is used to create a full physical address.

2.7.2. Spring WebFlux WebClient with a Non-reactive Load Balancer Client

If spring-webflux is on the classpath, LoadBalancerExchangeFilterFunction is auto-configured. Note,
however, that this uses a non-reactive client under the hood. The following example shows how to
configure a WebClient to use load-balancer:

public class MyClass {
 @Autowired
 private LoadBalancerExchangeFilterFunction lbFunction;

 public Mono<String> doOtherStuff() {
 return WebClient.builder().baseUrl("http://stores")
 .filter(lbFunction)
 .build()
 .get()
 .uri("/stores")
 .retrieve()
 .bodyToMono(String.class);
 }
}

The URI needs to use a virtual host name (that is, a service name, not a host name). The
LoadBalancerClient is used to create a full physical address.

WARN: This approach is now deprecated. We suggest that you use WebFlux with reactive Load-
Balancer instead.

2.8. Ignore Network Interfaces
Sometimes, it is useful to ignore certain named network interfaces so that they can be excluded
from Service Discovery registration (for example, when running in a Docker container). A list of
regular expressions can be set to cause the desired network interfaces to be ignored. The following
configuration ignores the docker0 interface and all interfaces that start with veth:

Example 2. application.yml

spring:
 cloud:
 inetutils:
 ignoredInterfaces:
 - docker0
 - veth.*

You can also force the use of only specified network addresses by using a list of regular expressions,
as the following example shows:

Example 3. bootstrap.yml

spring:
 cloud:
 inetutils:
 preferredNetworks:
 - 192.168
 - 10.0

You can also force the use of only site-local addresses, as the following example shows:

Example 4. application.yml

spring:
 cloud:
 inetutils:
 useOnlySiteLocalInterfaces: true

See Inet4Address.html.isSiteLocalAddress() for more details about what constitutes a site-local
address.

2.9. HTTP Client Factories
Spring Cloud Commons provides beans for creating both Apache HTTP clients
(ApacheHttpClientFactory) and OK HTTP clients (OkHttpClientFactory). The OkHttpClientFactory bean
is created only if the OK HTTP jar is on the classpath. In addition, Spring Cloud Commons provides
beans for creating the connection managers used by both clients:
ApacheHttpClientConnectionManagerFactory for the Apache HTTP client and
OkHttpClientConnectionPoolFactory for the OK HTTP client. If you would like to customize how the
HTTP clients are created in downstream projects, you can provide your own implementation of
these beans. In addition, if you provide a bean of type HttpClientBuilder or OkHttpClient.Builder,
the default factories use these builders as the basis for the builders returned to downstream
projects. You can also disable the creation of these beans by setting
spring.cloud.httpclientfactories.apache.enabled or spring.cloud.httpclientfactories.ok.enabled
to false.

2.10. Enabled Features
Spring Cloud Commons provides a /features actuator endpoint. This endpoint returns features
available on the classpath and whether they are enabled. The information returned includes the
feature type, name, version, and vendor.

https://docs.oracle.com/javase/8/docs/api/java/net/Inet4Address.html#isSiteLocalAddress--

2.10.1. Feature types

There are two types of 'features': abstract and named.

Abstract features are features where an interface or abstract class is defined and that an
implementation the creates, such as DiscoveryClient, LoadBalancerClient, or LockService. The
abstract class or interface is used to find a bean of that type in the context. The version displayed is
bean.getClass().getPackage().getImplementationVersion().

Named features are features that do not have a particular class they implement. These features
include “Circuit Breaker”, “API Gateway”, “Spring Cloud Bus”, and others. These features require a
name and a bean type.

2.10.2. Declaring features

Any module can declare any number of HasFeature beans, as the following examples show:

@Bean
public HasFeatures commonsFeatures() {
 return HasFeatures.abstractFeatures(DiscoveryClient.class,
LoadBalancerClient.class);
}

@Bean
public HasFeatures consulFeatures() {
 return HasFeatures.namedFeatures(
 new NamedFeature("Spring Cloud Bus", ConsulBusAutoConfiguration.class),
 new NamedFeature("Circuit Breaker", HystrixCommandAspect.class));
}

@Bean
HasFeatures localFeatures() {
 return HasFeatures.builder()
 .abstractFeature(Something.class)
 .namedFeature(new NamedFeature("Some Other Feature", Someother.class))
 .abstractFeature(Somethingelse.class)
 .build();
}

Each of these beans should go in an appropriately guarded @Configuration.

2.11. Spring Cloud Compatibility Verification
Due to the fact that some users have problem with setting up Spring Cloud application, we’ve
decided to add a compatibility verification mechanism. It will break if your current setup is not
compatible with Spring Cloud requirements, together with a report, showing what exactly went
wrong.

At the moment we verify which version of Spring Boot is added to your classpath.

Example of a report

APPLICATION FAILED TO START

Description:

Your project setup is incompatible with our requirements due to following reasons:

- Spring Boot [2.1.0.RELEASE] is not compatible with this Spring Cloud release
train

Action:

Consider applying the following actions:

- Change Spring Boot version to one of the following versions [1.2.x, 1.3.x] .
You can find the latest Spring Boot versions here
[https://spring.io/projects/spring-boot#learn].
If you want to learn more about the Spring Cloud Release train compatibility, you
can visit this page [https://spring.io/projects/spring-cloud#overview] and check
the [Release Trains] section.

In order to disable this feature, set spring.cloud.compatibility-verifier.enabled to false. If you
want to override the compatible Spring Boot versions, just set the spring.cloud.compatibility-
verifier.compatible-boot-versions property with a comma separated list of compatible Spring Boot
versions.

3. Spring Cloud LoadBalancer
Spring Cloud provides its own client-side load-balancer abstraction and implementation. For the
load-balancing mechanism, ReactiveLoadBalancer interface has been added and a Round-Robin-
based and Random implementations have been provided for it. In order to get instances to select
from reactive ServiceInstanceListSupplier is used. Currently we support a service-discovery-based
implementation of ServiceInstanceListSupplier that retrieves available instances from Service
Discovery using a Discovery Client available in the classpath.

It is possible to disable Spring Cloud LoadBalancer by setting the value of
spring.cloud.loadbalancer.enabled to false.

3.1. Eager loading of LoadBalancer contexts
Spring Cloud LoadBalancer creates a separate Spring child context for each service id. By default,
these contexts are initialised lazily, whenever the first request for a service id is being load-
balanced.

You can choose to load those contexts eagerly. In order to do that, specify the service ids for which
you want to do eager load using the spring.cloud-loadbalancer.eager-load.clients property.

3.2. Switching between the load-balancing algorithms
The ReactiveLoadBalancer implementation that is used by default is RoundRobinLoadBalancer. To
switch to a different implementation, either for selected services or all of them, you can use the
custom LoadBalancer configurations mechanism.

For example, the following configuration can be passed via @LoadBalancerClient annotation to
switch to using the RandomLoadBalancer:

public class CustomLoadBalancerConfiguration {

 @Bean
 ReactorLoadBalancer<ServiceInstance> randomLoadBalancer(Environment environment,
 LoadBalancerClientFactory loadBalancerClientFactory) {
 String name =
environment.getProperty(LoadBalancerClientFactory.PROPERTY_NAME);
 return new RandomLoadBalancer(loadBalancerClientFactory
 .getLazyProvider(name, ServiceInstanceListSupplier.class),
 name);
 }
}

The classes you pass as @LoadBalancerClient or @LoadBalancerClients configuration
arguments should either not be annotated with @Configuration or be outside
component scan scope.

3.3. Spring Cloud LoadBalancer integrations
In order to make it easy to use Spring Cloud LoadBalancer, we provide
ReactorLoadBalancerExchangeFilterFunction that can be used with WebClient and
BlockingLoadBalancerClient that works with RestTemplate. You can see more information and
examples of usage in the following sections:

• Spring RestTemplate as a Load Balancer Client

• Spring WebClient as a Load Balancer Client

• Spring WebFlux WebClient with ReactorLoadBalancerExchangeFilterFunction

3.4. Spring Cloud LoadBalancer Caching
Apart from the basic ServiceInstanceListSupplier implementation that retrieves instances via
DiscoveryClient each time it has to choose an instance, we provide two caching implementations.

3.4.1. Caffeine-backed LoadBalancer Cache Implementation

If you have com.github.ben-manes.caffeine:caffeine in the classpath, Caffeine-based
implementation will be used. See the LoadBalancerCacheConfiguration section for information on
how to configure it.

If you are using Caffeine, you can also override the default Caffeine Cache setup for the
LoadBalancer by passing your own Caffeine Specification in the
spring.cloud.loadbalancer.cache.caffeine.spec property.

WARN: Passing your own Caffeine specification will override any other LoadBalancerCache
settings, including General LoadBalancer Cache Configuration fields, such as ttl and capacity.

3.4.2. Default LoadBalancer Cache Implementation

If you do not have Caffeine in the classpath, the DefaultLoadBalancerCache, which comes
automatically with spring-cloud-starter-loadbalancer, will be used. See the
LoadBalancerCacheConfiguration section for information on how to configure it.

To use Caffeine instead of the default cache, add the com.github.ben-
manes.caffeine:caffeine dependency to classpath.

3.4.3. LoadBalancer Cache Configuration

You can set your own ttl value (the time after write after which entries should be expired),
expressed as Duration, by passing a String compliant with the Spring Boot String to Duration
converter syntax. as the value of the spring.cloud.loadbalancer.cache.ttl property. You can also set
your own LoadBalancer cache initial capacity by setting the value of the
spring.cloud.loadbalancer.cache.capacity property.

The default setup includes ttl set to 35 seconds and the default initialCapacity is 256.

You can also altogether disable loadBalancer caching by setting the value of
spring.cloud.loadbalancer.cache.enabled to false.

Although the basic, non-cached, implementation is useful for prototyping and
testing, it’s much less efficient than the cached versions, so we recommend always
using the cached version in production. If the caching is already done by the
DiscoveryClient implementation, for example EurekaDiscoveryClient, the load-
balancer caching should be disabled to prevent double caching.

https://github.com/ben-manes/caffeine
https://static.javadoc.io/com.github.ben-manes.caffeine/caffeine/2.2.2/com/github/benmanes/caffeine/cache/CaffeineSpec.html
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-external-config-conversion-duration
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-external-config-conversion-duration
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-external-config-conversion-duration
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-external-config-conversion-duration
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-external-config-conversion-duration
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-external-config-conversion-duration

When you create your own configuration, if you use
CachingServiceInstanceListSupplier make sure to place it in the hierarchy directly
after the supplier that retrieves the instances over the network, for example,
DiscoveryClientServiceInstanceListSupplier, before any other filtering suppliers.

3.5. Weighted Load-Balancing
To enable weighted load-balancing, we provide the WeightedServiceInstanceListSupplier. We use
WeightFunction to calculate the weight of each instance. By default, we try to read and parse the
weight from the metadata map (the key is weight).

If the weight is not specified in the metadata map, we default the weight of this instance to be 1.

You can configure it either by setting the value of spring.cloud.loadbalancer.configurations to
weighted or by providing your own ServiceInstanceListSupplier bean, for example:

public class CustomLoadBalancerConfiguration {

 @Bean
 public ServiceInstanceListSupplier discoveryClientServiceInstanceListSupplier(
 ConfigurableApplicationContext context) {
 return ServiceInstanceListSupplier.builder()
 .withDiscoveryClient()
 .withWeighted()
 .withCaching()
 .build(context);
 }
}

 You can also customize the weight calculation logic by providing WeightFunction.

You can use this sample configuration to make all instances have a random weight:

public class CustomLoadBalancerConfiguration {

 @Bean
 public ServiceInstanceListSupplier discoveryClientServiceInstanceListSupplier(
 ConfigurableApplicationContext context) {
 return ServiceInstanceListSupplier.builder()
 .withDiscoveryClient()
 .withWeighted(instance -> ThreadLocalRandom.current().nextInt(1,
101))
 .withCaching()
 .build(context);
 }
}

3.6. Zone-Based Load-Balancing
To enable zone-based load-balancing, we provide the ZonePreferenceServiceInstanceListSupplier.
We use DiscoveryClient-specific zone configuration (for example, eureka.instance.metadata-
map.zone) to pick the zone that the client tries to filter available service instances for.

You can also override DiscoveryClient-specific zone setup by setting the value of
spring.cloud.loadbalancer.zone property.

For the time being, only Eureka Discovery Client is instrumented to set the
LoadBalancer zone. For other discovery client, set the
spring.cloud.loadbalancer.zone property. More instrumentations coming shortly.

To determine the zone of a retrieved ServiceInstance, we check the value under
the "zone" key in its metadata map.

The ZonePreferenceServiceInstanceListSupplier filters retrieved instances and only returns the ones
within the same zone. If the zone is null or there are no instances within the same zone, it returns
all the retrieved instances.

In order to use the zone-based load-balancing approach, you will have to instantiate a
ZonePreferenceServiceInstanceListSupplier bean in a custom configuration.

We use delegates to work with ServiceInstanceListSupplier beans. We suggest using a
DiscoveryClientServiceInstanceListSupplier delegate, wrapping it with a
CachingServiceInstanceListSupplier to leverage LoadBalancer caching mechanism, and then
passing the resulting bean in the constructor of ZonePreferenceServiceInstanceListSupplier.

You can use this sample configuration to set it up:

public class CustomLoadBalancerConfiguration {

 @Bean
 public ServiceInstanceListSupplier discoveryClientServiceInstanceListSupplier(
 ConfigurableApplicationContext context) {
 return ServiceInstanceListSupplier.builder()
 .withDiscoveryClient()
 .withCaching()
 .withZonePreference()
 .build(context);
 }
}

3.7. Instance Health-Check for LoadBalancer
It is possible to enable a scheduled HealthCheck for the LoadBalancer. The
HealthCheckServiceInstanceListSupplier is provided for that. It regularly verifies if the instances

provided by a delegate ServiceInstanceListSupplier are still alive and only returns the healthy
instances, unless there are none - then it returns all the retrieved instances.

This mechanism is particularly helpful while using the SimpleDiscoveryClient. For
the clients backed by an actual Service Registry, it’s not necessary to use, as we
already get healthy instances after querying the external ServiceDiscovery.

This supplier is also recommended for setups with a small number of instances
per service in order to avoid retrying calls on a failing instance.

If using any of the Service Discovery-backed suppliers, adding this health-check
mechanism is usually not necessary, as we retrieve the health state of the instances
directly from the Service Registry.

The HealthCheckServiceInstanceListSupplier relies on having updated instances
provided by a delegate flux. In the rare cases when you want to use a delegate that
does not refresh the instances, even though the list of instances may change (such
as the DiscoveryClientServiceInstanceListSupplier provided by us), you can set
spring.cloud.loadbalancer.health-check.refetch-instances to true to have the
instance list refreshed by the HealthCheckServiceInstanceListSupplier. You can
then also adjust the refretch intervals by modifying the value of
spring.cloud.loadbalancer.health-check.refetch-instances-interval and opt to
disable the additional healthcheck repetitions by setting
spring.cloud.loadbalancer.health-check.repeat-health-check to false as every
instances refetch will also trigger a healthcheck.

HealthCheckServiceInstanceListSupplier uses properties prefixed with
spring.cloud.loadbalancer.health-check. You can set the initialDelay and interval for the
scheduler. You can set the default path for the healthcheck URL by setting the value of the
spring.cloud.loadbalancer.health-check.path.default property. You can also set a specific value for
any given service by setting the value of the spring.cloud.loadbalancer.health-
check.path.[SERVICE_ID] property, substituting [SERVICE_ID] with the correct ID of your service. If
the [SERVICE_ID] is not specified, /actuator/health is used by default. If the [SERVICE_ID] is set to
null or empty as a value, then the health check will not be executed. You can also set a custom port
for health-check requests by setting the value of spring.cloud.loadbalancer.health-check.port. If
none is set, the port under which the requested service is available at the service instance.

If you rely on the default path (/actuator/health), make sure you add spring-boot-
starter-actuator to your collaborator’s dependencies, unless you are planning to
add such an endpoint on your own.

By default, the healthCheckFlux will emit on each alive ServiceInstance that has
been retrieved. You can modify this behaviour by setting the value of
spring.cloud.loadbalancer.health-check.update-results-list to false. If this
property is set to false, the entire alive instances sequence is first collected into a
list and only then emitted, which ensures the flux does not emit values in between
the health-check intervals set in properties.

In order to use the health-check scheduler approach, you will have to instantiate a
HealthCheckServiceInstanceListSupplier bean in a custom configuration.

We use delegates to work with ServiceInstanceListSupplier beans. We suggest passing a
DiscoveryClientServiceInstanceListSupplier delegate in the constructor of
HealthCheckServiceInstanceListSupplier.

You can use this sample configuration to set it up:

public class CustomLoadBalancerConfiguration {

 @Bean
 public ServiceInstanceListSupplier discoveryClientServiceInstanceListSupplier(
 ConfigurableApplicationContext context) {
 return ServiceInstanceListSupplier.builder()
 .withDiscoveryClient()
 .withHealthChecks()
 .build(context);
 }
 }

For the non-reactive stack, create this supplier with the
withBlockingHealthChecks(). You can also pass your own WebClient or RestTemplate
instance to be used for the checks.

HealthCheckServiceInstanceListSupplier has its own caching mechanism based on
Reactor Flux replay(). Therefore, if it’s being used, you may want to skip wrapping
that supplier with CachingServiceInstanceListSupplier.

When you create your own configuration, HealthCheckServiceInstanceListSupplier,
make sure to place it in the hierarchy directly after the supplier that retrieves the
instances over the network, for example,
DiscoveryClientServiceInstanceListSupplier, before any other filtering suppliers.

3.8. Same instance preference for LoadBalancer
You can set up the LoadBalancer in such a way that it prefers the instance that was previously
selected, if that instance is available.

For that, you need to use SameInstancePreferenceServiceInstanceListSupplier. You can configure it
either by setting the value of spring.cloud.loadbalancer.configurations to same-instance-preference
or by providing your own ServiceInstanceListSupplier bean — for example:

public class CustomLoadBalancerConfiguration {

 @Bean
 public ServiceInstanceListSupplier discoveryClientServiceInstanceListSupplier(
 ConfigurableApplicationContext context) {
 return ServiceInstanceListSupplier.builder()
 .withDiscoveryClient()
 .withSameInstancePreference()
 .build(context);
 }
 }

 This is also a replacement for Zookeeper StickyRule.

3.9. Request-based Sticky Session for LoadBalancer
You can set up the LoadBalancer in such a way that it prefers the instance with instanceId provided
in a request cookie. We currently support this if the request is being passed to the LoadBalancer
through either ClientRequestContext or ServerHttpRequestContext, which are used by the SC
LoadBalancer exchange filter functions and filters.

For that, you need to use the RequestBasedStickySessionServiceInstanceListSupplier. You can
configure it either by setting the value of spring.cloud.loadbalancer.configurations to request-
based-sticky-session or by providing your own ServiceInstanceListSupplier bean — for example:

public class CustomLoadBalancerConfiguration {

 @Bean
 public ServiceInstanceListSupplier discoveryClientServiceInstanceListSupplier(
 ConfigurableApplicationContext context) {
 return ServiceInstanceListSupplier.builder()
 .withDiscoveryClient()
 .withRequestBasedStickySession()
 .build(context);
 }
 }

For that functionality, it is useful to have the selected service instance (which can be different from
the one in the original request cookie if that one is not available) to be updated before sending the
request forward. To do that, set the value of spring.cloud.loadbalancer.sticky-session.add-
service-instance-cookie to true.

By default, the name of the cookie is sc-lb-instance-id. You can modify it by changing the value of

the spring.cloud.loadbalancer.instance-id-cookie-name property.

 This feature is currently supported for WebClient-backed load-balancing.

3.10. Spring Cloud LoadBalancer Hints
Spring Cloud LoadBalancer lets you set String hints that are passed to the LoadBalancer within the
Request object and that can later be used in ReactiveLoadBalancer implementations that can handle
them.

You can set a default hint for all services by setting the value of the
spring.cloud.loadbalancer.hint.default property. You can also set a specific value for any given
service by setting the value of the spring.cloud.loadbalancer.hint.[SERVICE_ID] property,
substituting [SERVICE_ID] with the correct ID of your service. If the hint is not set by the user,
default is used.

3.11. Hint-Based Load-Balancing
We also provide a HintBasedServiceInstanceListSupplier, which is a ServiceInstanceListSupplier
implementation for hint-based instance selection.

HintBasedServiceInstanceListSupplier checks for a hint request header (the default header-name is
X-SC-LB-Hint, but you can modify it by changing the value of the spring.cloud.loadbalancer.hint-
header-name property) and, if it finds a hint request header, uses the hint value passed in the header
to filter service instances.

If no hint header has been added, HintBasedServiceInstanceListSupplier uses hint values from
properties to filter service instances.

If no hint is set, either by the header or by properties, all service instances provided by the delegate
are returned.

While filtering, HintBasedServiceInstanceListSupplier looks for service instances that have a
matching value set under the hint key in their metadataMap. If no matching instances are found, all
instances provided by the delegate are returned.

You can use the following sample configuration to set it up:

public class CustomLoadBalancerConfiguration {

 @Bean
 public ServiceInstanceListSupplier discoveryClientServiceInstanceListSupplier(
 ConfigurableApplicationContext context) {
 return ServiceInstanceListSupplier.builder()
 .withDiscoveryClient()
 .withCaching()
 .withHints()
 .build(context);
 }
}

3.12. Transform the load-balanced HTTP request
You can use the selected ServiceInstance to transform the load-balanced HTTP Request.

For RestTemplate, you need to implement and define LoadBalancerRequestTransformer as follows:

@Bean
public LoadBalancerRequestTransformer transformer() {
 return new LoadBalancerRequestTransformer() {
 @Override
 public HttpRequest transformRequest(HttpRequest request, ServiceInstance
instance) {
 return new HttpRequestWrapper(request) {
 @Override
 public HttpHeaders getHeaders() {
 HttpHeaders headers = new HttpHeaders();
 headers.putAll(super.getHeaders());
 headers.add("X-InstanceId", instance.getInstanceId());
 return headers;
 }
 };
 }
 };
}

For WebClient, you need to implement and define LoadBalancerClientRequestTransformer as follows:

@Bean
public LoadBalancerClientRequestTransformer transformer() {
 return new LoadBalancerClientRequestTransformer() {
 @Override
 public ClientRequest transformRequest(ClientRequest request, ServiceInstance
instance) {
 return ClientRequest.from(request)
 .header("X-InstanceId", instance.getInstanceId())
 .build();
 }
 };
}

If multiple transformers are defined, they are applied in the order in which Beans are defined.
Alternatively, you can use LoadBalancerRequestTransformer.DEFAULT_ORDER or
LoadBalancerClientRequestTransformer.DEFAULT_ORDER to specify the order.

3.13. Spring Cloud LoadBalancer Starter
We also provide a starter that allows you to easily add Spring Cloud LoadBalancer in a Spring Boot
app. In order to use it, just add org.springframework.cloud:spring-cloud-starter-loadbalancer to
your Spring Cloud dependencies in your build file.

 Spring Cloud LoadBalancer starter includes Spring Boot Caching and Evictor.

3.14. Passing Your Own Spring Cloud LoadBalancer
Configuration
You can also use the @LoadBalancerClient annotation to pass your own load-balancer client
configuration, passing the name of the load-balancer client and the configuration class, as follows:

@Configuration
@LoadBalancerClient(value = "stores", configuration =
CustomLoadBalancerConfiguration.class)
public class MyConfiguration {

 @Bean
 @LoadBalanced
 public WebClient.Builder loadBalancedWebClientBuilder() {
 return WebClient.builder();
 }
}

In order to make working on your own LoadBalancer configuration easier, we
have added a builder() method to the ServiceInstanceListSupplier class.

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-caching.html
https://github.com/stoyanr/Evictor

You can also use our alternative predefined configurations in place of the default
ones by setting the value of spring.cloud.loadbalancer.configurations property to
zone-preference to use ZonePreferenceServiceInstanceListSupplier with caching or
to health-check to use HealthCheckServiceInstanceListSupplier with caching.

You can use this feature to instantiate different implementations of ServiceInstanceListSupplier or
ReactorLoadBalancer, either written by you, or provided by us as alternatives (for example
ZonePreferenceServiceInstanceListSupplier) to override the default setup.

You can see an example of a custom configuration here.

The annotation value arguments (stores in the example above) specifies the
service id of the service that we should send the requests to with the given custom
configuration.

You can also pass multiple configurations (for more than one load-balancer client) through the
@LoadBalancerClients annotation, as the following example shows:

@Configuration
@LoadBalancerClients({@LoadBalancerClient(value = "stores", configuration =
StoresLoadBalancerClientConfiguration.class), @LoadBalancerClient(value = "customers",
configuration = CustomersLoadBalancerClientConfiguration.class)})
public class MyConfiguration {

 @Bean
 @LoadBalanced
 public WebClient.Builder loadBalancedWebClientBuilder() {
 return WebClient.builder();
 }
}

The classes you pass as @LoadBalancerClient or @LoadBalancerClients configuration
arguments should either not be annotated with @Configuration or be outside
component scan scope.

When you create your own configuration, if you use
CachingServiceInstanceListSupplier or HealthCheckServiceInstanceListSupplier,
makes sure to use one of them, not both, and make sure to place it in the hierarchy
directly after the supplier that retrieves the instances over the network, for
example, DiscoveryClientServiceInstanceListSupplier, before any other filtering
suppliers.

3.15. Spring Cloud LoadBalancer Lifecycle
One type of bean that it may be useful to register using Custom LoadBalancer configuration is
LoadBalancerLifecycle.

The LoadBalancerLifecycle beans provide callback methods, named onStart(Request<RC> request),
onStartRequest(Request<RC> request, Response<T> lbResponse) and
onComplete(CompletionContext<RES, T, RC> completionContext), that you should implement to
specify what actions should take place before and after load-balancing.

onStart(Request<RC> request) takes a Request object as a parameter. It contains data that is used to
select an appropriate instance, including the downstream client request and hint. onStartRequest
also takes the Request object and, additionally, the Response<T> object as parameters. On the other
hand, a CompletionContext object is provided to the onComplete(CompletionContext<RES, T, RC>
completionContext) method. It contains the LoadBalancer Response, including the selected service
instance, the Status of the request executed against that service instance and (if available) the
response returned to the downstream client, and (if an exception has occurred) the corresponding
Throwable.

The supports(Class requestContextClass, Class responseClass, Class serverTypeClass) method can
be used to determine whether the processor in question handles objects of provided types. If not
overridden by the user, it returns true.

In the preceding method calls, RC means RequestContext type, RES means client
response type, and T means returned server type.

3.16. Spring Cloud LoadBalancer Statistics
We provide a LoadBalancerLifecycle bean called MicrometerStatsLoadBalancerLifecycle, which uses
Micrometer to provide statistics for load-balanced calls.

In order to get this bean added to your application context, set the value of the
spring.cloud.loadbalancer.stats.micrometer.enabled to true and have a MeterRegistry available (for
example, by adding Spring Boot Actuator to your project).

MicrometerStatsLoadBalancerLifecycle registers the following meters in MeterRegistry:

• loadbalancer.requests.active: A gauge that allows you to monitor the number of currently
active requests for any service instance (service instance data available via tags);

• loadbalancer.requests.success: A timer that measures the time of execution of any load-
balanced requests that have ended in passing a response on to the underlying client;

• loadbalancer.requests.failed: A timer that measures the time of execution of any load-balanced
requests that have ended with an exception;

• loadbalancer.requests.discard: A counter that measures the number of discarded load-balanced
requests, i.e. requests where a service instance to run the request on has not been retrieved by
the LoadBalancer.

Additional information regarding the service instances, request data, and response data is added to
metrics via tags whenever available.

https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-features.html

For some implementations, such as BlockingLoadBalancerClient, request and
response data might not be available, as we establish generic types from
arguments and might not be able to determine the types and read the data.

The meters are registered in the registry when at least one record is added for a
given meter.

You can further configure the behavior of those metrics (for example, add
publishing percentiles and histograms) by adding MeterFilters.

3.17. Configuring Individual LoadBalancerClients
Individual Loadbalancer clients may be configured individually with a different prefix
spring.cloud.loadbalancer.clients.<clientId>. where clientId is the name of the loadbalancer.
Default configuration values may be set in the spring.cloud.loadbalancer. namespace and will
be merged with the client specific values taking precedence

Example 5. application.yml

spring:
 cloud:
 loadbalancer:
 health-check:
 initial-delay: 1s
 clients:
 myclient:
 health-check:
 interval: 30s

The above example will result in a merged health-check @ConfigurationProperties object with
initial-delay=1s and interval=30s.

The per-client configuration properties work for most of the properties, apart from the following
global ones:

• spring.cloud.loadbalancer.enabled - globally enables or disables load-balancing

• spring.cloud.loadbalancer.retry.enabled - globally enables or disables load-balanced retries. If
you enable it globally, you can still disable retries for specific clients using the client-prefixed
properties, but not the other way round

• spring.cloud.loadbalancer.cache.enabled - globally enables or disables LoadBalancer caching. If
you enable it globally, you can still disable caching for specific clients by creating a custom
configuration that does not include the CachingServiceInstanceListSupplier in the
ServiceInstanceListSupplier delegates hierarchy, but not the other way round.

• spring.cloud.loadbalancer.stats.micrometer.enabled - globally enables or disables
LoadBalancer Micrometer metrics

https://micrometer.io/docs/concepts#_histograms_and_percentiles
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-features.html#production-ready-metrics-per-meter-properties
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-features.html#production-ready-metrics-per-meter-properties

For the properties where maps where already used, where you can specify a
different value per-client without using the clients keyword (for example, hints,
health-check.path), we have kept that behaviour in order to keep the library
backwards compatible. It will be modified in the next major release.

Starting with 4.0.4, we have introduced the callGetWithRequestOnDelegates flag in
LoadBalancerProperties. If this flag is set to true,
ServiceInstanceListSupplier#get(Request request) method will be implemented to
call delegate.get(request) in classes assignable from
DelegatingServiceInstanceListSupplier that don’t already implement that method,
with the exclusion of CachingServiceInstanceListSupplier and
HealthCheckServiceInstanceListSupplier, which should be placed in the instance
supplier hierarchy directly after the supplier performing instance retrieval over
the network, before any request-based filtering is done. For 4.0.x the flag is set to
false by default, however, since 4.1.0 it’s going to be set to true by default.

3.18. AOT and Native Image Support
Since 4.0.0, Spring Cloud LoadBalancer supports Spring AOT transformations and native images.
However, to use this feature, you need to explicitly define your LoadBalancerClient service IDs. You
can do so by using the value or name attributes of the @LoadBalancerClient annotation or as values of
the spring.cloud.loadbalancer.eager-load.clients property.

4. Spring Cloud Circuit Breaker

4.1. Introduction
Spring Cloud Circuit breaker provides an abstraction across different circuit breaker
implementations. It provides a consistent API to use in your applications, letting you, the developer,
choose the circuit breaker implementation that best fits your needs for your application.

4.1.1. Supported Implementations

Spring Cloud supports the following circuit-breaker implementations:

• Resilience4J

• Sentinel

• Spring Retry

4.2. Core Concepts
To create a circuit breaker in your code, you can use the CircuitBreakerFactory API. When you
include a Spring Cloud Circuit Breaker starter on your classpath, a bean that implements this API is
automatically created for you. The following example shows a simple example of how to use this
API:

https://github.com/resilience4j/resilience4j
https://github.com/alibaba/Sentinel
https://github.com/spring-projects/spring-retry

@Service
public static class DemoControllerService {
 private RestTemplate rest;
 private CircuitBreakerFactory cbFactory;

 public DemoControllerService(RestTemplate rest, CircuitBreakerFactory
cbFactory) {
 this.rest = rest;
 this.cbFactory = cbFactory;
 }

 public String slow() {
 return cbFactory.create("slow").run(() -> rest.getForObject("/slow",
String.class), throwable -> "fallback");
 }

}

The CircuitBreakerFactory.create API creates an instance of a class called CircuitBreaker. The run
method takes a Supplier and a Function. The Supplier is the code that you are going to wrap in a
circuit breaker. The Function is the fallback that is run if the circuit breaker is tripped. The function
is passed the Throwable that caused the fallback to be triggered. You can optionally exclude the
fallback if you do not want to provide one.

4.2.1. Circuit Breakers In Reactive Code

If Project Reactor is on the class path, you can also use ReactiveCircuitBreakerFactory for your
reactive code. The following example shows how to do so:

@Service
public static class DemoControllerService {
 private ReactiveCircuitBreakerFactory cbFactory;
 private WebClient webClient;

 public DemoControllerService(WebClient webClient,
ReactiveCircuitBreakerFactory cbFactory) {
 this.webClient = webClient;
 this.cbFactory = cbFactory;
 }

 public Mono<String> slow() {
 return
webClient.get().uri("/slow").retrieve().bodyToMono(String.class).transform(
 it -> cbFactory.create("slow").run(it, throwable -> return
Mono.just("fallback")));
 }
}

The ReactiveCircuitBreakerFactory.create API creates an instance of a class called
ReactiveCircuitBreaker. The run method takes a Mono or a Flux and wraps it in a circuit breaker. You
can optionally profile a fallback Function, which will be called if the circuit breaker is tripped and is
passed the Throwable that caused the failure.

4.3. Configuration
You can configure your circuit breakers by creating beans of type Customizer. The Customizer
interface has a single method (called customize) that takes the Object to customize.

For detailed information on how to customize a given implementation see the following
documentation:

• Resilience4J

• Sentinel

• Spring Retry

Some CircuitBreaker implementations such as Resilience4JCircuitBreaker call customize method
every time CircuitBreaker#run is called. It can be inefficient. In that case, you can use
CircuitBreaker#once method. It is useful where calling customize many times doesn’t make sense,
for example, in case of consuming Resilience4j’s events.

The following example shows the way for each
io.github.resilience4j.circuitbreaker.CircuitBreaker to consume events.

../../../../spring-cloud-circuitbreaker/current/reference/html/spring-cloud-circuitbreaker.html#configuring-resilience4j-circuit-breakers
https://github.com/alibaba/spring-cloud-alibaba/blob/master/spring-cloud-alibaba-docs/src/main/asciidoc/circuitbreaker-sentinel.adoc#circuit-breaker-spring-cloud-circuit-breaker-with-sentinel—configuring-sentinel-circuit-breakers
../../../../../spring-cloud-circuitbreaker/docs/current/reference/html/spring-cloud-circuitbreaker.html#configuring-spring-retry-circuit-breakers
https://resilience4j.readme.io/docs/circuitbreaker#section-consume-emitted-circuitbreakerevents

Customizer.once(circuitBreaker -> {
 circuitBreaker.getEventPublisher()
 .onStateTransition(event -> log.info("{}: {}", event.getCircuitBreakerName(),
event.getStateTransition()));
}, CircuitBreaker::getName)

5. CachedRandomPropertySource
Spring Cloud Context provides a PropertySource that caches random values based on a key. Outside
of the caching functionality it works the same as Spring Boot’s RandomValuePropertySource. This
random value might be useful in the case where you want a random value that is consistent even
after the Spring Application context restarts. The property value takes the form of
cachedrandom.[yourkey].[type] where yourkey is the key in the cache. The type value can be any type
supported by Spring Boot’s RandomValuePropertySource.

myrandom=${cachedrandom.appname.value}

6. Security

6.1. Single Sign On

All of the OAuth2 SSO and resource server features moved to Spring Boot in
version 1.3. You can find documentation in the Spring Boot user guide.

6.1.1. Client Token Relay

If your app is a user facing OAuth2 client (i.e. has declared @EnableOAuth2Sso or @EnableOAuth2Client)
then it has an OAuth2ClientContext in request scope from Spring Boot. You can create your own
OAuth2RestTemplate from this context and an autowired OAuth2ProtectedResourceDetails, and then
the context will always forward the access token downstream, also refreshing the access token
automatically if it expires. (These are features of Spring Security and Spring Boot.)

6.1.2. Resource Server Token Relay

If your app has @EnableResourceServer you might want to relay the incoming token downstream to
other services. If you use a RestTemplate to contact the downstream services then this is just a
matter of how to create the template with the right context.

If your service uses UserInfoTokenServices to authenticate incoming tokens (i.e. it is using the
security.oauth2.user-info-uri configuration), then you can simply create an OAuth2RestTemplate
using an autowired OAuth2ClientContext (it will be populated by the authentication process before it

https://github.com/spring-projects/spring-boot/blob/main/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/env/RandomValuePropertySource.java
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/

hits the backend code). Equivalently (with Spring Boot 1.4), you can inject a
UserInfoRestTemplateFactory and grab its OAuth2RestTemplate in your configuration. For example:

MyConfiguration.java

@Bean
public OAuth2RestTemplate restTemplate(UserInfoRestTemplateFactory factory) {
 return factory.getUserInfoRestTemplate();
}

This rest template will then have the same OAuth2ClientContext (request-scoped) that is used by the
authentication filter, so you can use it to send requests with the same access token.

If your app is not using UserInfoTokenServices but is still a client (i.e. it declares @EnableOAuth2Client
or @EnableOAuth2Sso), then with Spring Security Cloud any OAuth2RestOperations that the user
creates from an @Autowired OAuth2Context will also forward tokens. This feature is implemented by
default as an MVC handler interceptor, so it only works in Spring MVC. If you are not using MVC
you can use a custom filter or AOP interceptor wrapping an AccessTokenContextRelay to provide the
same feature.

Here’s a basic example showing the use of an autowired rest template created elsewhere ("foo.com"
is a Resource Server accepting the same tokens as the surrounding app):

MyController.java

@Autowired
private OAuth2RestOperations restTemplate;

@RequestMapping("/relay")
public String relay() {
 ResponseEntity<String> response =
 restTemplate.getForEntity("https://foo.com/bar", String.class);
 return "Success! (" + response.getBody() + ")";
}

If you don’t want to forward tokens (and that is a valid choice, since you might want to act as
yourself, rather than the client that sent you the token), then you only need to create your own
OAuth2Context instead of autowiring the default one.

Feign clients will also pick up an interceptor that uses the OAuth2ClientContext if it is available, so
they should also do a token relay anywhere where a RestTemplate would.

7. Configuration Properties
To see the list of all Spring Cloud Commons related configuration properties please check the
Appendix page.

appendix.html
appendix.html

Spring Cloud Config
2022.0.4

Spring Cloud Config provides server-side and client-side support for externalized configuration in a
distributed system. With the Config Server, you have a central place to manage external properties
for applications across all environments. The concepts on both client and server map identically to
the Spring Environment and PropertySource abstractions, so they fit very well with Spring
applications but can be used with any application running in any language. As an application
moves through the deployment pipeline from dev to test and into production, you can manage the
configuration between those environments and be certain that applications have everything they
need to run when they migrate. The default implementation of the server storage backend uses git,
so it easily supports labelled versions of configuration environments as well as being accessible to a
wide range of tooling for managing the content. It is easy to add alternative implementations and
plug them in with Spring configuration.

1. Quick Start
This quick start walks through using both the server and the client of Spring Cloud Config Server.

First, start the server, as follows:

$ cd spring-cloud-config-server
$../mvnw spring-boot:run

The server is a Spring Boot application, so you can run it from your IDE if you prefer to do so (the
main class is ConfigServerApplication).

Next try out a client, as follows:

$ curl localhost:8888/foo/development
{
 "name": "foo",
 "profiles": [
 "development"
]

 "propertySources": [
 {
 "name": "https://github.com/spring-cloud-samples/config-repo/foo-
development.properties",
 "source": {
 "bar": "spam",
 "foo": "from foo development"
 }
 },
 {
 "name": "https://github.com/spring-cloud-samples/config-repo/foo.properties",
 "source": {
 "foo": "from foo props",
 "democonfigclient.message": "hello spring io"
 }
 },

The default strategy for locating property sources is to clone a git repository (at
spring.cloud.config.server.git.uri) and use it to initialize a mini SpringApplication. The mini-
application’s Environment is used to enumerate property sources and publish them at a JSON
endpoint.

The HTTP service has resources in the following form:

/{application}/{profile}[/{label}]
/{application}-{profile}.yml
/{label}/{application}-{profile}.yml
/{application}-{profile}.properties
/{label}/{application}-{profile}.properties

For example:

curl localhost:8888/foo/development
curl localhost:8888/foo/development/master
curl localhost:8888/foo/development,db/master
curl localhost:8888/foo-development.yml
curl localhost:8888/foo-db.properties
curl localhost:8888/master/foo-db.properties

where application is injected as the spring.config.name in the SpringApplication (what is normally
application in a regular Spring Boot app), profile is an active profile (or comma-separated list of
properties), and label is an optional git label (defaults to master.)

Spring Cloud Config Server pulls configuration for remote clients from various sources. The
following example gets configuration from a git repository (which must be provided), as shown in
the following example:

spring:
 cloud:
 config:
 server:
 git:
 uri: https://github.com/spring-cloud-samples/config-repo

Other sources are any JDBC compatible database, Subversion, Hashicorp Vault, Credhub and local
filesystems.

1.1. Client Side Usage
To use these features in an application, you can build it as a Spring Boot application that depends
on spring-cloud-config-client (for an example, see the test cases for the config-client or the sample
application). The most convenient way to add the dependency is with a Spring Boot starter
org.springframework.cloud:spring-cloud-starter-config. There is also a parent pom and BOM
(spring-cloud-starter-parent) for Maven users and a Spring IO version management properties file
for Gradle and Spring CLI users. The following example shows a typical Maven configuration:

pom.xml

<parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>{spring-boot-docs-version}</version>
 <relativePath /> <!-- lookup parent from repository -->
</parent>

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>{spring-cloud-version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

<dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-config</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
</dependencies>

<build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
</build>

<!-- repositories also needed for snapshots and milestones -->

Now you can create a standard Spring Boot application, such as the following HTTP server:

@SpringBootApplication
@RestController
public class Application {

 @RequestMapping("/")
 public String home() {
 return "Hello World!";
 }

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }

}

When this HTTP server runs, it picks up the external configuration from the default local config
server (if it is running) on port 8888. To modify the startup behavior, you can change the location of
the config server by using application.properties as shown in the following example:

spring.config.import=optional:configserver:http://myconfigserver.com

By default, if no application name is set, application will be used. To modify the name, the following
property can be added to the application.properties file:

spring.application.name: myapp

When setting the property ${spring.application.name} do not prefix your app
name with the reserved word application- to prevent issues resolving the correct
property source.

The Config Server properties show up in the /env endpoint as a high-priority property source, as
shown in the following example.

$ curl localhost:8080/env
{
 "activeProfiles": [],
 {
 "name": "servletContextInitParams",
 "properties": {}
 },
 {
 "name": "configserver:https://github.com/spring-cloud-samples/config-
repo/foo.properties",
 "properties": {
 "foo": {
 "value": "bar",
 "origin": "Config Server https://github.com/spring-cloud-samples/config-
repo/foo.properties:2:12"
 }
 }
 },
 ...
}

A property source called configserver:<URL of remote repository>/<file name> contains the foo
property with a value of bar.

The URL in the property source name is the git repository, not the config server
URL.

If you use Spring Cloud Config Client, you need to set the spring.config.import
property in order to bind to Config Server. You can read more about it in the
Spring Cloud Config Reference Guide.

2. Spring Cloud Config Server
Spring Cloud Config Server provides an HTTP resource-based API for external configuration (name-
value pairs or equivalent YAML content). The server is embeddable in a Spring Boot application, by
using the @EnableConfigServer annotation. Consequently, the following application is a config
server:

ConfigServer.java

@SpringBootApplication
@EnableConfigServer
public class ConfigServer {
 public static void main(String[] args) {
 SpringApplication.run(ConfigServer.class, args);
 }
}

https://docs.spring.io/spring-cloud-config/docs/current/reference/html/#config-data-import
https://docs.spring.io/spring-cloud-config/docs/current/reference/html/#config-data-import

Like all Spring Boot applications, it runs on port 8080 by default, but you can switch it to the more
conventional port 8888 in various ways. The easiest, which also sets a default configuration
repository, is by launching it with spring.config.name=configserver (there is a configserver.yml in
the Config Server jar). Another is to use your own application.properties, as shown in the
following example:

application.properties

server.port: 8888
spring.cloud.config.server.git.uri: file://${user.home}/config-repo

where ${user.home}/config-repo is a git repository containing YAML and properties files.

On Windows, you need an extra "/" in the file URL if it is absolute with a drive
prefix (for example,/${user.home}/config-repo).

The following listing shows a recipe for creating the git repository in the preceding
example:

$ cd $HOME
$ mkdir config-repo
$ cd config-repo
$ git init .
$ echo info.foo: bar > application.properties
$ git add -A .
$ git commit -m "Add application.properties"

Using the local filesystem for your git repository is intended for testing only. You
should use a server to host your configuration repositories in production.

The initial clone of your configuration repository can be quick and efficient if you
keep only text files in it. If you store binary files, especially large ones, you may
experience delays on the first request for configuration or encounter out of
memory errors in the server.

2.1. Environment Repository
Where should you store the configuration data for the Config Server? The strategy that governs this
behaviour is the EnvironmentRepository, serving Environment objects. This Environment is a shallow
copy of the domain from the Spring Environment (including propertySources as the main feature).
The Environment resources are parametrized by three variables:

• {application}, which maps to spring.application.name on the client side.

• {profile}, which maps to spring.profiles.active on the client (comma-separated list).

• {label}, which is a server side feature labelling a "versioned" set of config files.

file:///${user.home}/config-repo

Repository implementations generally behave like a Spring Boot application, loading configuration
files from a spring.config.name equal to the {application} parameter, and spring.profiles.active
equal to the {profiles} parameter. Precedence rules for profiles are also the same as in a regular
Spring Boot application: Active profiles take precedence over defaults, and, if there are multiple
profiles, the last one wins (similar to adding entries to a Map).

The following sample client application has this bootstrap configuration:

spring:
 application:
 name: foo
 profiles:
 active: dev,mysql

(As usual with a Spring Boot application, these properties could also be set by environment
variables or command line arguments).

If the repository is file-based, the server creates an Environment from application.yml (shared
between all clients) and foo.yml (with foo.yml taking precedence). If the YAML files have documents
inside them that point to Spring profiles, those are applied with higher precedence (in order of the
profiles listed). If there are profile-specific YAML (or properties) files, these are also applied with
higher precedence than the defaults. Higher precedence translates to a PropertySource listed earlier
in the Environment. (These same rules apply in a standalone Spring Boot application.)

You can set spring.cloud.config.server.accept-empty to false so that Server would return a HTTP
404 status, if the application is not found. By default, this flag is set to true.

You cannot place spring.main.* properties in a remote EnvironmentRepository.
These properties are used as part of the application initialization.

2.1.1. Git Backend

The default implementation of EnvironmentRepository uses a Git backend, which is very convenient
for managing upgrades and physical environments and for auditing changes. To change the
location of the repository, you can set the spring.cloud.config.server.git.uri configuration
property in the Config Server (for example in application.yml). If you set it with a file: prefix, it
should work from a local repository so that you can get started quickly and easily without a server.
However, in that case, the server operates directly on the local repository without cloning it (it does
not matter if it is not bare because the Config Server never makes changes to the "remote"
repository). To scale the Config Server up and make it highly available, you need to have all
instances of the server pointing to the same repository, so only a shared file system would work.
Even in that case, it is better to use the ssh: protocol for a shared filesystem repository, so that the
server can clone it and use a local working copy as a cache.

This repository implementation maps the {label} parameter of the HTTP resource to a git label
(commit id, branch name, or tag). If the git branch or tag name contains a slash (/), then the label in
the HTTP URL should instead be specified with the special string (_) (to avoid ambiguity with other
URL paths). For example, if the label is foo/bar, replacing the slash would result in the following

label: foo(_)bar. The inclusion of the special string (_) can also be applied to the {application}
parameter. If you use a command-line client such as curl, be careful with the brackets in the
URL — you should escape them from the shell with single quotes ('').

Skipping SSL Certificate Validation

The configuration server’s validation of the Git server’s SSL certificate can be disabled by setting
the git.skipSslValidation property to true (default is false).

spring:
 cloud:
 config:
 server:
 git:
 uri: https://example.com/my/repo
 skipSslValidation: true

Setting HTTP Connection Timeout

You can configure the time, in seconds, that the configuration server will wait to acquire an HTTP
connection. Use the git.timeout property (default is 5).

spring:
 cloud:
 config:
 server:
 git:
 uri: https://example.com/my/repo
 timeout: 4

Placeholders in Git URI

Spring Cloud Config Server supports a git repository URL with placeholders for the {application}
and {profile} (and {label} if you need it, but remember that the label is applied as a git label
anyway). So you can support a “one repository per application” policy by using a structure similar
to the following:

spring:
 cloud:
 config:
 server:
 git:
 uri: https://github.com/myorg/{application}

You can also support a “one repository per profile” policy by using a similar pattern but with
{profile}.

Additionally, using the special string "(_)" within your {application} parameters can enable support
for multiple organizations, as shown in the following example:

spring:
 cloud:
 config:
 server:
 git:
 uri: https://github.com/{application}

where {application} is provided at request time in the following format:
organization(_)application.

Pattern Matching and Multiple Repositories

Spring Cloud Config also includes support for more complex requirements with pattern matching
on the application and profile name. The pattern format is a comma-separated list of
{application}/{profile} names with wildcards (note that a pattern beginning with a wildcard may
need to be quoted), as shown in the following example:

spring:
 cloud:
 config:
 server:
 git:
 uri: https://github.com/spring-cloud-samples/config-repo
 repos:
 simple: https://github.com/simple/config-repo
 special:
 pattern: special*/dev*,*special*/dev*
 uri: https://github.com/special/config-repo
 local:
 pattern: local*
 uri: file:/home/configsvc/config-repo

If {application}/{profile} does not match any of the patterns, it uses the default URI defined under
spring.cloud.config.server.git.uri. In the above example, for the “simple” repository, the pattern
is simple/* (it only matches one application named simple in all profiles). The “local” repository
matches all application names beginning with local in all profiles (the /* suffix is added
automatically to any pattern that does not have a profile matcher).

The “one-liner” short cut used in the “simple” example can be used only if the only
property to be set is the URI. If you need to set anything else (credentials, pattern,
and so on) you need to use the full form.

The pattern property in the repo is actually an array, so you can use a YAML array (or [0], [1], etc.
suffixes in properties files) to bind to multiple patterns. You may need to do so if you are going to

run apps with multiple profiles, as shown in the following example:

spring:
 cloud:
 config:
 server:
 git:
 uri: https://github.com/spring-cloud-samples/config-repo
 repos:
 development:
 pattern:
 - '*/development'
 - '*/staging'
 uri: https://github.com/development/config-repo
 staging:
 pattern:
 - '*/qa'
 - '*/production'
 uri: https://github.com/staging/config-repo

Spring Cloud guesses that a pattern containing a profile that does not end in *
implies that you actually want to match a list of profiles starting with this pattern
(so */staging is a shortcut for ["*/staging", "*/staging,*"], and so on). This is
common where, for instance, you need to run applications in the “development”
profile locally but also the “cloud” profile remotely.

Every repository can also optionally store config files in sub-directories, and patterns to search for
those directories can be specified as search-paths. The following example shows a config file at the
top level:

spring:
 cloud:
 config:
 server:
 git:
 uri: https://github.com/spring-cloud-samples/config-repo
 search-paths:
 - foo
 - bar*

In the preceding example, the server searches for config files in the top level and in the foo/ sub-
directory and also any sub-directory whose name begins with bar.

By default, the server clones remote repositories when configuration is first requested. The server
can be configured to clone the repositories at startup, as shown in the following top-level example:

spring:
 cloud:
 config:
 server:
 git:
 uri: https://git/common/config-repo.git
 repos:
 team-a:
 pattern: team-a-*
 cloneOnStart: true
 uri: https://git/team-a/config-repo.git
 team-b:
 pattern: team-b-*
 cloneOnStart: false
 uri: https://git/team-b/config-repo.git
 team-c:
 pattern: team-c-*
 uri: https://git/team-a/config-repo.git

In the preceding example, the server clones team-a’s config-repo on startup, before it accepts any
requests. All other repositories are not cloned until configuration from the repository is requested.

Setting a repository to be cloned when the Config Server starts up can help to
identify a misconfigured configuration source (such as an invalid repository URI)
quickly, while the Config Server is starting up. With cloneOnStart not enabled for a
configuration source, the Config Server may start successfully with a
misconfigured or invalid configuration source and not detect an error until an
application requests configuration from that configuration source.

Authentication

To use HTTP basic authentication on the remote repository, add the username and password
properties separately (not in the URL), as shown in the following example:

spring:
 cloud:
 config:
 server:
 git:
 uri: https://github.com/spring-cloud-samples/config-repo
 username: trolley
 password: strongpassword

If you do not use HTTPS and user credentials, SSH should also work out of the box when you store
keys in the default directories (~/.ssh) and the URI points to an SSH location, such as
git@github.com:configuration/cloud-configuration. It is important that an entry for the Git server
be present in the ~/.ssh/known_hosts file and that it is in ssh-rsa format. Other formats (such as

ecdsa-sha2-nistp256) are not supported. To avoid surprises, you should ensure that only one entry
is present in the known_hosts file for the Git server and that it matches the URL you provided to the
config server. If you use a hostname in the URL, you want to have exactly that (not the IP) in the
known_hosts file. The repository is accessed by using JGit, so any documentation you find on that
should be applicable. HTTPS proxy settings can be set in ~/.git/config or (in the same way as for
any other JVM process) with system properties (-Dhttps.proxyHost and -Dhttps.proxyPort).

If you do not know where your ~/.git directory is, use git config --global to
manipulate the settings (for example, git config --global http.sslVerify false).

JGit requires RSA keys in PEM format. Below is an example ssh-keygen (from openssh) command
that will generate a key in the corect format:

ssh-keygen -m PEM -t rsa -b 4096 -f ~/config_server_deploy_key.rsa

Warning: When working with SSH keys, the expected ssh private-key must begin with -----BEGIN
RSA PRIVATE KEY-----. If the key starts with -----BEGIN OPENSSH PRIVATE KEY----- then the RSA key
will not load when spring-cloud-config server is started. The error looks like:

- Error in object 'spring.cloud.config.server.git': codes
[PrivateKeyIsValid.spring.cloud.config.server.git,PrivateKeyIsValid]; arguments
[org.springframework.context.support.DefaultMessageSourceResolvable: codes
[spring.cloud.config.server.git.,]; arguments []; default message []]; default message
[Property 'spring.cloud.config.server.git.privateKey' is not a valid private key]

To correct the above error the RSA key must be converted to PEM format. An example using
openssh is provided above for generating a new key in the appropriate format.

Authentication with AWS CodeCommit

Spring Cloud Config Server also supports AWS CodeCommit authentication. AWS CodeCommit uses
an authentication helper when using Git from the command line. This helper is not used with the
JGit library, so a JGit CredentialProvider for AWS CodeCommit is created if the Git URI matches the
AWS CodeCommit pattern. AWS CodeCommit URIs follow this pattern:

https://git-codecommit.${AWS_REGION}.amazonaws.com/v1/repos/${repo}

If you provide a username and password with an AWS CodeCommit URI, they must be the AWS
accessKeyId and secretAccessKey that provide access to the repository. If you do not specify a
username and password, the accessKeyId and secretAccessKey are retrieved by using the Default
Credential Provider Chain.

If your Git URI matches the CodeCommit URI pattern (shown earlier), you must provide valid AWS
credentials in the username and password or in one of the locations supported by the default
credential provider chain. AWS EC2 instances may use IAM Roles for EC2 Instances.

https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/AWSCredentials.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/AWSCredentials.html
https://docs.aws.amazon.com/sdk-for-java/v2/developer-guide/credentials.html
https://docs.aws.amazon.com/sdk-for-java/v2/developer-guide/credentials.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

The software.amazon.awssdk:auth jar is an optional dependency. If the
software.amazon.awssdk:auth jar is not on your classpath, the AWS Code Commit
credential provider is not created, regardless of the git server URI.

Authentication with Google Cloud Source

Spring Cloud Config Server also supports authenticating against Google Cloud Source repositories.

If your Git URI uses the http or https protocol and the domain name is
source.developers.google.com, the Google Cloud Source credentials provider will be used. A Google
Cloud Source repository URI has the format source.developers.google.com/p/${GCP_PROJECT}/r/
${REPO}. To obtain the URI for your repository, click on "Clone" in the Google Cloud Source UI, and
select "Manually generated credentials". Do not generate any credentials, simply copy the displayed
URI.

The Google Cloud Source credentials provider will use Google Cloud Platform application default
credentials. See Google Cloud SDK documentation on how to create application default credentials
for a system. This approach will work for user accounts in dev environments and for service
accounts in production environments.

com.google.auth:google-auth-library-oauth2-http is an optional dependency. If the
google-auth-library-oauth2-http jar is not on your classpath, the Google Cloud
Source credential provider is not created, regardless of the git server URI.

Git SSH configuration using properties

By default, the JGit library used by Spring Cloud Config Server uses SSH configuration files such as
~/.ssh/known_hosts and /etc/ssh/ssh_config when connecting to Git repositories by using an SSH
URI. In cloud environments such as Cloud Foundry, the local filesystem may be ephemeral or not
easily accessible. For those cases, SSH configuration can be set by using Java properties. In order to
activate property-based SSH configuration, the
spring.cloud.config.server.git.ignoreLocalSshSettings property must be set to true, as shown in
the following example:

 spring:
 cloud:
 config:
 server:
 git:
 uri: git@gitserver.com:team/repo1.git
 ignoreLocalSshSettings: true
 hostKey: someHostKey
 hostKeyAlgorithm: ssh-rsa
 privateKey: |
 -----BEGIN RSA PRIVATE KEY-----

MIIEpgIBAAKCAQEAx4UbaDzY5xjW6hc9jwN0mX33XpTDVW9WqHp5AKaRbtAC3DqX

IXFMPgw3K45jxRb93f8tv9vL3rD9CUG1Gv4FM+o7ds7FRES5RTjv2RT/JVNJCoqF

https://cloud.google.com/source-repositories/
https://source.developers.google.com/p/${GCP_PROJECT}/r/${REPO}
https://source.developers.google.com/p/${GCP_PROJECT}/r/${REPO}
https://cloud.google.com/sdk/gcloud/reference/auth/application-default/login

ol8+ngLqRZCyBtQN7zYByWMRirPGoDUqdPYrj2yq+ObBBNhg5N+hOwKjjpzdj2Ud

1l7R+wxIqmJo1IYyy16xS8WsjyQuyC0lL456qkd5BDZ0Ag8j2X9H9D5220Ln7s9i

oezTipXipS7p7Jekf3Ywx6abJwOmB0rX79dV4qiNcGgzATnG1PkXxqt76VhcGa0W

DDVHEEYGbSQ6hIGSh0I7BQun0aLRZojfE3gqHQIDAQABAoIBAQCZmGrk8BK6tXCd

fY6yTiKxFzwb38IQP0ojIUWNrq0+9Xt+NsypviLHkXfXXCKKU4zUHeIGVRq5MN9b

BO56/RrcQHHOoJdUWuOV2qMqJvPUtC0CpGkD+valhfD75MxoXU7s3FK7yjxy3rsG

EmfA6tHV8/4a5umo5TqSd2YTm5B19AhRqiuUVI1wTB41DjULUGiMYrnYrhzQlVvj

5MjnKTlYu3V8PoYDfv1GmxPPh6vlpafXEeEYN8VB97e5x3DGHjZ5UrurAmTLTdO8

+AahyoKsIY612TkkQthJlt7FJAwnCGMgY6podzzvzICLFmmTXYiZ/28I4BX/mOSe

pZVnfRixAoGBAO6Uiwt40/PKs53mCEWngslSCsh9oGAaLTf/XdvMns5VmuyyAyKG

ti8Ol5wqBMi4GIUzjbgUvSUt+IowIrG3f5tN85wpjQ1UGVcpTnl5Qo9xaS1PFScQ

xrtWZ9eNj2TsIAMp/svJsyGG3OibxfnuAIpSXNQiJPwRlW3irzpGgVx/AoGBANYW

dnhshUcEHMJi3aXwR12OTDnaLoanVGLwLnkqLSYUZA7ZegpKq90UAuBdcEfgdpyi

PhKpeaeIiAaNnFo8m9aoTKr+7I6/uMTlwrVnfrsVTZv3orxjwQV20YIBCVRKD1uX

VhE0ozPZxwwKSPAFocpyWpGHGreGF1AIYBE9UBtjAoGBAI8bfPgJpyFyMiGBjO6z

FwlJc/xlFqDusrcHL7abW5qq0L4v3R+FrJw3ZYufzLTVcKfdj6GelwJJO+8wBm+R

gTKYJItEhT48duLIfTDyIpHGVm9+I1MGhh5zKuCqIhxIYr9jHloBB7kRm0rPvYY4

VAykcNgyDvtAVODP+4m6JvhjAoGBALbtTqErKN47V0+JJpapLnF0KxGrqeGIjIRV

cYA6V4WYGr7NeIfesecfOC356PyhgPfpcVyEztwlvwTKb3RzIT1TZN8fH4YBr6Ee

KTbTjefRFhVUjQqnucAvfGi29f+9oE3Ei9f7wA+H35ocF6JvTYUsHNMIO/3gZ38N

CPjyCMa9AoGBAMhsITNe3QcbsXAbdUR00dDsIFVROzyFJ2m40i4KCRM35bC/BIBs

q0TY3we+ERB40U8Z2BvU61QuwaunJ2+uGadHo58VSVdggqAo0BSkH58innKKt96J
 69pcVH/4rmLbXdcmNYGm6iu+MlPQk4BUZknHSmVHIFdJ0EPupVaQ8RHT
 -----END RSA PRIVATE KEY-----

The following table describes the SSH configuration properties.

Table 2. SSH Configuration Properties

Property Name Remarks

ignoreLocalSshSettings If true, use property-based instead of file-based
SSH config. Must be set at as
spring.cloud.config.server.git.ignoreLocalSshS
ettings, not inside a repository definition.

privateKey Valid SSH private key. Must be set if
ignoreLocalSshSettings is true and Git URI is SSH
format.

hostKey Valid SSH host key. Must be set if
hostKeyAlgorithm is also set.

hostKeyAlgorithm One of ssh-dss, ssh-rsa, ssh-ed25519, ecdsa-
sha2-nistp256, ecdsa-sha2-nistp384, or ecdsa-
sha2-nistp521. Must be set if hostKey is also set.

strictHostKeyChecking true or false. If false, ignore errors with host
key.

knownHostsFile Location of custom .known_hosts file.

preferredAuthentications Override server authentication method order.
This should allow for evading login prompts if
server has keyboard-interactive authentication
before the publickey method.

Placeholders in Git Search Paths

Spring Cloud Config Server also supports a search path with placeholders for the {application} and
{profile} (and {label} if you need it), as shown in the following example:

spring:
 cloud:
 config:
 server:
 git:
 uri: https://github.com/spring-cloud-samples/config-repo
 search-paths: '{application}'

The preceding listing causes a search of the repository for files in the same name as the directory
(as well as the top level). Wildcards are also valid in a search path with placeholders (any matching
directory is included in the search).

Force pull in Git Repositories

As mentioned earlier, Spring Cloud Config Server makes a clone of the remote git repository in case
the local copy gets dirty (for example, folder content changes by an OS process) such that Spring
Cloud Config Server cannot update the local copy from remote repository.

To solve this issue, there is a force-pull property that makes Spring Cloud Config Server force pull

from the remote repository if the local copy is dirty, as shown in the following example:

spring:
 cloud:
 config:
 server:
 git:
 uri: https://github.com/spring-cloud-samples/config-repo
 force-pull: true

If you have a multiple-repositories configuration, you can configure the force-pull property per
repository, as shown in the following example:

spring:
 cloud:
 config:
 server:
 git:
 uri: https://git/common/config-repo.git
 force-pull: true
 repos:
 team-a:
 pattern: team-a-*
 uri: https://git/team-a/config-repo.git
 force-pull: true
 team-b:
 pattern: team-b-*
 uri: https://git/team-b/config-repo.git
 force-pull: true
 team-c:
 pattern: team-c-*
 uri: https://git/team-a/config-repo.git

 The default value for force-pull property is false.

Deleting untracked branches in Git Repositories

As Spring Cloud Config Server has a clone of the remote git repository after check-outing branch to
local repo (e.g fetching properties by label) it will keep this branch forever or till the next server
restart (which creates new local repo). So there could be a case when remote branch is deleted but
local copy of it is still available for fetching. And if Spring Cloud Config Server client service starts
with --spring.cloud.config.label=deletedRemoteBranch,master it will fetch properties from
deletedRemoteBranch local branch, but not from master.

In order to keep local repository branches clean and up to remote - deleteUntrackedBranches
property could be set. It will make Spring Cloud Config Server force delete untracked branches
from local repository. Example:

spring:
 cloud:
 config:
 server:
 git:
 uri: https://github.com/spring-cloud-samples/config-repo
 deleteUntrackedBranches: true

 The default value for deleteUntrackedBranches property is false.

Git Refresh Rate

You can control how often the config server will fetch updated configuration data from your Git
backend by using spring.cloud.config.server.git.refreshRate. The value of this property is
specified in seconds. By default the value is 0, meaning the config server will fetch updated
configuration from the Git repo every time it is requested.

Default Label

The default label used for Git is main. If you do not set spring.cloud.config.server.git.defaultLabel
and a branch named main does not exist, the config server will by default also try to checkout a
branch named master. If you would like to disable to the fallback branch behavior you can set
spring.cloud.config.server.git.tryMasterBranch to false.

2.1.2. Version Control Backend Filesystem Use

With VCS-based backends (git, svn), files are checked out or cloned to the local
filesystem. By default, they are put in the system temporary directory with a prefix
of config-repo-. On linux, for example, it could be /tmp/config-repo-<randomid>.
Some operating systems routinely clean out temporary directories. This can lead to
unexpected behavior, such as missing properties. To avoid this problem, change
the directory that Config Server uses by setting
spring.cloud.config.server.git.basedir or
spring.cloud.config.server.svn.basedir to a directory that does not reside in the
system temp structure.

2.1.3. File System Backend

There is also a “native” profile in the Config Server that does not use Git but loads the config files
from the local classpath or file system (any static URL you want to point to with
spring.cloud.config.server.native.searchLocations). To use the native profile, launch the Config
Server with spring.profiles.active=native.

https://serverfault.com/questions/377348/when-does-tmp-get-cleared/377349#377349

Remember to use the file: prefix for file resources (the default without a prefix is
usually the classpath). As with any Spring Boot configuration, you can embed ${}
-style environment placeholders, but remember that absolute paths in Windows
require an extra / (for example, /${user.home}/config-repo).

The default value of the searchLocations is identical to a local Spring Boot
application (that is, [classpath:/, classpath:/config, file:./, file:./config]).
This does not expose the application.properties from the server to all clients,
because any property sources present in the server are removed before being sent
to the client.

A filesystem backend is great for getting started quickly and for testing. To use it in
production, you need to be sure that the file system is reliable and shared across
all instances of the Config Server.

The search locations can contain placeholders for {application}, {profile}, and {label}. In this way,
you can segregate the directories in the path and choose a strategy that makes sense for you (such
as subdirectory per application or subdirectory per profile).

If you do not use placeholders in the search locations, this repository also appends the {label}
parameter of the HTTP resource to a suffix on the search path, so properties files are loaded from
each search location and a subdirectory with the same name as the label (the labelled properties
take precedence in the Spring Environment). Thus, the default behaviour with no placeholders is
the same as adding a search location ending with /{label}/. For example, file:/tmp/config is the
same as file:/tmp/config,file:/tmp/config/{label}. This behavior can be disabled by setting
spring.cloud.config.server.native.addLabelLocations=false.

2.1.4. Vault Backend

Spring Cloud Config Server also supports Vault as a backend.

Vault is a tool for securely accessing secrets. A secret is anything that to which you want to
tightly control access, such as API keys, passwords, certificates, and other sensitive
information. Vault provides a unified interface to any secret while providing tight access
control and recording a detailed audit log.

For more information on Vault, see the Vault quick start guide.

To enable the config server to use a Vault backend, you can run your config server with the vault
profile. For example, in your config server’s application.properties, you can add
spring.profiles.active=vault.

file:///${user.home}/config-repo
https://www.vaultproject.io
https://learn.hashicorp.com/vault/?track=getting-started#getting-started

By default, Spring Cloud Config Server uses Token based Authentication to fetch config from
Vault. Vault also supports additional authentication methods like AppRole, LDAP, JWT,
CloudFoundry, Kubernetes Auth. In order to use any authentication method other than
TOKEN or the X-Config-Token header, we need to have Spring Vault Core on the classpath so
that Config Server can delegate authentication to that library. Please add the below
dependencies to your Config Server App.

Maven (pom.xml)

<dependencies>
 <dependency>
 <groupId>org.springframework.vault</groupId>
 <artifactId>spring-vault-core</artifactId>
 </dependency>
</dependencies>

Gradle (build.gradle)

dependencies {
 implementation "org.springframework.vault:spring-vault-core"
}

By default, the config server assumes that your Vault server runs at 127.0.0.1:8200. It also assumes
that the name of backend is secret and the key is application. All of these defaults can be
configured in your config server’s application.properties. The following table describes
configurable Vault properties:

Name Default Value

host 127.0.0.1

port 8200

scheme http

backend secret

defaultKey application

profileSeparator ,

kvVersion 1

skipSslValidation false

timeout 5

namespace null

http://127.0.0.1:8200

All of the properties in the preceding table must be prefixed with
spring.cloud.config.server.vault or placed in the correct Vault section of a
composite configuration.

All configurable properties can be found in
org.springframework.cloud.config.server.environment.VaultEnvironmentProperties.

Vault 0.10.0 introduced a versioned key-value backend (k/v backend version 2) that
exposes a different API than earlier versions, it now requires a data/ between the
mount path and the actual context path and wraps secrets in a data object. Setting
spring.cloud.config.server.vault.kv-version=2 will take this into account.

Optionally, there is support for the Vault Enterprise X-Vault-Namespace header. To have it sent to
Vault set the namespace property.

With your config server running, you can make HTTP requests to the server to retrieve values from
the Vault backend. To do so, you need a token for your Vault server.

First, place some data in you Vault, as shown in the following example:

$ vault kv put secret/application foo=bar baz=bam
$ vault kv put secret/myapp foo=myappsbar

Second, make an HTTP request to your config server to retrieve the values, as shown in the
following example:

$ curl -X "GET" "http://localhost:8888/myapp/default" -H "X-Config-Token: yourtoken"

You should see a response similar to the following:

{
 "name":"myapp",
 "profiles":[
 "default"
],
 "label":null,
 "version":null,
 "state":null,
 "propertySources":[
 {
 "name":"vault:myapp",
 "source":{
 "foo":"myappsbar"
 }
 },
 {
 "name":"vault:application",
 "source":{
 "baz":"bam",
 "foo":"bar"
 }
 }
]
}

The default way for a client to provide the necessary authentication to let Config Server talk to
Vault is to set the X-Config-Token header. However, you can instead omit the header and configure
the authentication in the server, by setting the same configuration properties as Spring Cloud Vault.
The property to set is spring.cloud.config.server.vault.authentication. It should be set to one of
the supported authentication methods. You may also need to set other properties specific to the
authentication method you use, by using the same property names as documented for
spring.cloud.vault but instead using the spring.cloud.config.server.vault prefix. See the Spring
Cloud Vault Reference Guide for more detail.

If you omit the X-Config-Token header and use a server property to set the
authentication, the Config Server application needs an additional dependency on
Spring Vault to enable the additional authentication options. See the Spring Vault
Reference Guide for how to add that dependency.

Multiple Properties Sources

When using Vault, you can provide your applications with multiple properties sources. For
example, assume you have written data to the following paths in Vault:

https://cloud.spring.io/spring-cloud-vault/reference/html/#vault.config.authentication
https://cloud.spring.io/spring-cloud-vault/reference/html/#vault.config.authentication
https://docs.spring.io/spring-vault/docs/current/reference/html/#dependencies
https://docs.spring.io/spring-vault/docs/current/reference/html/#dependencies

secret/myApp,dev
secret/myApp
secret/application,dev
secret/application

Properties written to secret/application are available to all applications using the Config Server.
An application with the name, myApp, would have any properties written to secret/myApp and
secret/application available to it. When myApp has the dev profile enabled, properties written to all
of the above paths would be available to it, with properties in the first path in the list taking
priority over the others.

2.1.5. Accessing Backends Through a Proxy

The configuration server can access a Git or Vault backend through an HTTP or HTTPS proxy. This
behavior is controlled for either Git or Vault by settings under proxy.http and proxy.https. These
settings are per repository, so if you are using a composite environment repository you must
configure proxy settings for each backend in the composite individually. If using a network which
requires separate proxy servers for HTTP and HTTPS URLs, you can configure both the HTTP and
the HTTPS proxy settings for a single backend: in this case http access will use http proxy and https
access the https one. Also, you may specify one sole proxy that will be used for both protocols using
the proxy definition protocol between application and proxy.

The following table describes the proxy configuration properties for both HTTP and HTTPS proxies.
All of these properties must be prefixed by proxy.http or proxy.https.

Table 3. Proxy Configuration Properties

Property Name Remarks

host The host of the proxy.

port The port with which to access the proxy.

nonProxyHosts Any hosts which the configuration server should
access outside the proxy. If values are provided
for both proxy.http.nonProxyHosts and
proxy.https.nonProxyHosts, the proxy.http value
will be used.

username The username with which to authenticate to the
proxy. If values are provided for both
proxy.http.username and proxy.https.username,
the proxy.http value will be used.

password The password with which to authenticate to the
proxy. If values are provided for both
proxy.http.password and proxy.https.password,
the proxy.http value will be used.

The following configuration uses an HTTPS proxy to access a Git repository.

spring:
 profiles:
 active: git
 cloud:
 config:
 server:
 git:
 uri: https://github.com/spring-cloud-samples/config-repo
 proxy:
 https:
 host: my-proxy.host.io
 password: myproxypassword
 port: '3128'
 username: myproxyusername
 nonProxyHosts: example.com

2.1.6. Sharing Configuration With All Applications

Sharing configuration between all applications varies according to which approach you take, as
described in the following topics:

• File Based Repositories

• Vault Server

File Based Repositories

With file-based (git, svn, and native) repositories, resources with file names in application*
(application.properties, application.yml, application-*.properties, and so on) are shared between
all client applications. You can use resources with these file names to configure global defaults and
have them be overridden by application-specific files as necessary.

The property overrides feature can also be used for setting global defaults, with placeholders
applications allowed to override them locally.

With the “native” profile (a local file system backend) , you should use an explicit
search location that is not part of the server’s own configuration. Otherwise, the
application* resources in the default search locations get removed because they
are part of the server.

Vault Server

When using Vault as a backend, you can share configuration with all applications by placing
configuration in secret/application. For example, if you run the following Vault command, all
applications using the config server will have the properties foo and baz available to them:

$ vault write secret/application foo=bar baz=bam

CredHub Server

When using CredHub as a backend, you can share configuration with all applications by placing
configuration in /application/ or by placing it in the default profile for the application. For
example, if you run the following CredHub command, all applications using the config server will
have the properties shared.color1 and shared.color2 available to them:

credhub set --name "/application/profile/master/shared" --type=json
value: {"shared.color1": "blue", "shared.color": "red"}

credhub set --name "/my-app/default/master/more-shared" --type=json
value: {"shared.word1": "hello", "shared.word2": "world"}

2.1.7. AWS Secrets Manager

When using AWS Secrets Manager as a backend, you can share configuration with all applications
by placing configuration in /application/ or by placing it in the default profile for the application.
For example, if you add secrets with the following keys, all application using the config server will
have the properties shared.foo and shared.bar available to them:

secret name = /secret/application-default/

secret value =
{
 shared.foo: foo,
 shared.bar: bar
}

or

secret name = /secret/application/

secret value =
{
 shared.foo: foo,
 shared.bar: bar
}

Labelled Versions

AWS Secrets Manager repository allows to keep labelled versions of the configuration
environments the same way Git backend does.

The repository implementation maps the {label} parameter of the HTTP resource to AWS Secrets
Manager secret’s staging label. To create a labelled secret, create a secret or update its content and
define a staging label for it (sometimes it’s called version stage in the AWS documentation). For
example:

$ aws secretsmanager create-secret \
 --name /secret/test/ \
 --secret-string '{"version":"1"}'
{
 "ARN": "arn:aws:secretsmanager:us-east-1:123456789012:secret:/secret/test/-
a1b2c3",
 "Name": "/secret/test/",
 "VersionId": "cd291674-de2f-41de-8f3b-37dbf4880d69"
}

$ aws secretsmanager update-secret-version-stage \
 --secret-id /secret/test/ \
 --version-stage 1.0.0 \
 --move-to-version-id cd291674-de2f-41de-8f3b-37dbf4880d69

{
 "ARN": "arn:aws:secretsmanager:us-east-1:123456789012:secret:/secret/test/-
a1b2c3",
 "Name": "/secret/test/",
}

Use spring.cloud.config.server.aws-secretsmanager.default-label property to set the default label.
If the property is not defined, the backend uses AWSCURRENT as a staging label.

spring:
 profiles:
 active: aws-secretsmanager
 cloud:
 config:
 server:
 aws-secretsmanager:
 region: us-east-1
 default-label: 1.0.0

Note that if the default label is not set and a request does not define a label, the repository will use
secrets as if labelled version support is disabled. Also, the default label will be used only if the
labelled support is enabled. Otherwise, defining this property is pointless.

Note that if the staging label contains a slash (/), then the label in the HTTP URL should instead be
specified with the special string (_) (to avoid ambiguity with other URL paths) the same way Git
backend’s section describes it.

https://docs.aws.amazon.com/secretsmanager/latest/userguide/getting-started.html#term_version
https://docs.aws.amazon.com/secretsmanager/latest/userguide/getting-started.html#term_version

2.1.8. AWS Parameter Store

When using AWS Parameter Store as a backend, you can share configuration with all applications
by placing properties within the /application hierarchy.

For example, if you add parameters with the following names, all applications using the config
server will have the properties foo.bar and fred.baz available to them:

/config/application/foo.bar
/config/application-default/fred.baz

2.1.9. JDBC Backend

Spring Cloud Config Server supports JDBC (relational database) as a backend for configuration
properties. You can enable this feature by adding spring-boot-starter-data-jdbc to the classpath
and using the jdbc profile or by adding a bean of type JdbcEnvironmentRepository. If you include the
right dependencies on the classpath (see the user guide for more details on that), Spring Boot
configures a data source.

You can disable autoconfiguration for JdbcEnvironmentRepository by setting the
spring.cloud.config.server.jdbc.enabled property to false.

The database needs to have a table called PROPERTIES with columns called APPLICATION, PROFILE, and
LABEL (with the usual Environment meaning), plus KEY and VALUE for the key and value pairs in
Properties style. All fields are of type String in Java, so you can make them VARCHAR of whatever
length you need. Property values behave in the same way as they would if they came from Spring
Boot properties files named {application}-{profile}.properties, including all the encryption and
decryption, which will be applied as post-processing steps (that is, not in the repository
implementation directly).

The default label used for JDBC is master. You can change that by setting
spring.cloud.config.server.jdbc.defaultLabel.

2.1.10. Redis Backend

Spring Cloud Config Server supports Redis as a backend for configuration properties. You can
enable this feature by adding a dependency to Spring Data Redis.

pom.xml

<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-redis</artifactId>
 </dependency>
</dependencies>

The following configuration uses Spring Data RedisTemplate to access a Redis. We can use

https://spring.io/projects/spring-data-redis

spring.redis.* properties to override default connection settings.

spring:
 profiles:
 active: redis
 redis:
 host: redis
 port: 16379

The properties should be stored as fields in a hash. The name of hash should be the same as
spring.application.name property or conjunction of spring.application.name and
spring.profiles.active[n].

HMSET sample-app server.port "8100" sample.topic.name "test" test.property1
"property1"

After running the command visible above a hash should contain the following keys with values:

HGETALL sample-app
{
 "server.port": "8100",
 "sample.topic.name": "test",
 "test.property1": "property1"
}

 When no profile is specified default will be used.

2.1.11. AWS S3 Backend

Spring Cloud Config Server supports AWS S3 as a backend for configuration properties. You can
enable this feature by adding a dependency to the AWS Java SDK For Amazon S3.

pom.xml

<dependencies>
 <dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>s3</artifactId>
 </dependency>
</dependencies>

The following configuration uses the AWS S3 client to access configuration files. We can use
spring.cloud.config.server.awss3.* properties to select the bucket where your configuration is
stored.

https://docs.aws.amazon.com/sdk-for-java/v2/developer-guide/examples-s3.html

spring:
 profiles:
 active: awss3
 cloud:
 config:
 server:
 awss3:
 region: us-east-1
 bucket: bucket1

It is also possible to specify an AWS URL to override the standard endpoint of your S3 service with
spring.cloud.config.server.awss3.endpoint. This allows support for beta regions of S3, and other S3
compatible storage APIs.

Credentials are found using the Default Credential Provider Chain. Versioned and encrypted
buckets are supported without further configuration.

Configuration files are stored in your bucket as {application}-{profile}.properties, {application}-
{profile}.yml or {application}-{profile}.json. An optional label can be provided to specify a
directory path to the file.

 When no profile is specified default will be used.

2.1.12. AWS Parameter Store Backend

Spring Cloud Config Server supports AWS Parameter Store as a backend for configuration
properties. You can enable this feature by adding a dependency to the AWS Java SDK for SSM.

pom.xml

<dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>ssm</artifactId>
</dependency>

The following configuration uses the AWS SSM client to access parameters.

https://aws.amazon.com/blogs/developer/using-new-regions-and-endpoints/
https://docs.aws.amazon.com/sdk-for-java/v2/developer-guide/credentials.html
https://docs.aws.amazon.com/sdk-for-java/v2/developer-guide/examples-ssm.html

spring:
 profiles:
 active: awsparamstore
 cloud:
 config:
 server:
 awsparamstore:
 region: eu-west-2
 endpoint: https://ssm.eu-west-2.amazonaws.com
 origin: aws:parameter:
 prefix: /config/service
 profile-separator: _
 recursive: true
 decrypt-values: true
 max-results: 5

The following table describes the AWS Parameter Store configuration properties.

Table 4. AWS Parameter Store Configuration Properties

Property Name Required Default Value Remarks

region no The region to be used
by the AWS Parameter
Store client. If it’s not
explicitly set, the SDK
tries to determine the
region to use by using
the Default Region
Provider Chain.

endpoint no The URL of the entry
point for the AWS SSM
client. This can be used
to specify an alternate
endpoint for the API
requests.

origin no aws:ssm:parameter: The prefix that is added
to the property source’s
name to show their
provenance.

prefix no /config Prefix indicating L1
level in the parameter
hierarchy for every
property loaded from
the AWS Parameter
Store.

https://docs.aws.amazon.com/sdk-for-java/v2/developer-guide/region-selection.html#default-region-provider-chain
https://docs.aws.amazon.com/sdk-for-java/v2/developer-guide/region-selection.html#default-region-provider-chain

Property Name Required Default Value Remarks

profile-separator no - String that separates an
appended profile from
the context name.

recursive no true Flag to indicate the
retrieval of all AWS
parameters within a
hierarchy.

decrypt-values no true Flag to indicate the
retrieval of all AWS
parameters with their
value decrypted.

max-results no 10 The maximum number
of items to return for
an AWS Parameter
Store API call.

AWS Parameter Store API credentials are determined using the Default Credential Provider Chain.
Versioned parameters are already supported with the default behaviour of returning the latest
version.

• When no application is specified application is the default, and when no
profile is specified default is used.

• Valid values for awsparamstore.prefix must start with a forward slash followed
by one or more valid path segments or be empty.

• Valid values for awsparamstore.profile-separator can only contain dots, dashes
and underscores.

• Valid values for awsparamstore.max-results must be within the [1, 10] range.

2.1.13. AWS Secrets Manager Backend

Spring Cloud Config Server supports AWS Secrets Manager as a backend for configuration
properties. You can enable this feature by adding a dependency to AWS Java SDK for Secrets
Manager.

pom.xml

<dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>secretsmanager</artifactId>
</dependency>

The following configuration uses the AWS Secrets Manager client to access secrets.

https://docs.aws.amazon.com/sdk-for-java/v2/developer-guide/credentials.html#credentials-default
https://aws.amazon.com/secrets-manager/
https://docs.aws.amazon.com/sdk-for-java/v2/developer-guide/examples-secretsmanager.html
https://docs.aws.amazon.com/sdk-for-java/v2/developer-guide/examples-secretsmanager.html

spring:
 profiles:
 active: awssecretsmanager
 cloud:
 config:
 server:
 aws-secretsmanager:
 region: us-east-1
 endpoint: https://us-east-1.console.aws.amazon.com/
 origin: aws:secrets:
 prefix: /secret/foo
 profileSeparator: _

AWS Secrets Manager API credentials are determined using Default Credential Provider Chain.

• When no application is specified application is the default, and when no

profile is specified default is used.

2.1.14. CredHub Backend

Spring Cloud Config Server supports CredHub as a backend for configuration properties. You can
enable this feature by adding a dependency to Spring CredHub.

pom.xml

<dependencies>
 <dependency>
 <groupId>org.springframework.credhub</groupId>
 <artifactId>spring-credhub-starter</artifactId>
 </dependency>
</dependencies>

The following configuration uses mutual TLS to access a CredHub:

spring:
 profiles:
 active: credhub
 cloud:
 config:
 server:
 credhub:
 url: https://credhub:8844

The properties should be stored as JSON, such as:

https://docs.aws.amazon.com/sdk-for-java/v2/developer-guide/credentials.html#credentials-default
https://docs.cloudfoundry.org/credhub
https://spring.io/projects/spring-credhub

credhub set --name "/demo-app/default/master/toggles" --type=json
value: {"toggle.button": "blue", "toggle.link": "red"}

credhub set --name "/demo-app/default/master/abs" --type=json
value: {"marketing.enabled": true, "external.enabled": false}

All client applications with the name spring.cloud.config.name=demo-app will have the following
properties available to them:

{
 toggle.button: "blue",
 toggle.link: "red",
 marketing.enabled: true,
 external.enabled: false
}

When no profile is specified default will be used and when no label is specified
master will be used as a default value. NOTE: Values added to application will be
shared by all the applications.

OAuth 2.0

You can authenticate with OAuth 2.0 using UAA as a provider.

pom.xml

<dependencies>
 <dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-config</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-oauth2-client</artifactId>
 </dependency>
</dependencies>

The following configuration uses OAuth 2.0 and UAA to access a CredHub:

https://oauth.net/2/
https://docs.cloudfoundry.org/concepts/architecture/uaa.html

spring:
 profiles:
 active: credhub
 cloud:
 config:
 server:
 credhub:
 url: https://credhub:8844
 oauth2:
 registration-id: credhub-client
 security:
 oauth2:
 client:
 registration:
 credhub-client:
 provider: uaa
 client-id: credhub_config_server
 client-secret: asecret
 authorization-grant-type: client_credentials
 provider:
 uaa:
 token-uri: https://uaa:8443/oauth/token

 The used UAA client-id should have credhub.read as scope.

2.1.15. Composite Environment Repositories

In some scenarios, you may wish to pull configuration data from multiple environment
repositories. To do so, you can enable the composite profile in your configuration server’s
application properties or YAML file. If, for example, you want to pull configuration data from a
Subversion repository as well as two Git repositories, you can set the following properties for your
configuration server:

spring:
 profiles:
 active: composite
 cloud:
 config:
 server:
 composite:
 -
 type: svn
 uri: file:///path/to/svn/repo
 -
 type: git
 uri: file:///path/to/rex/git/repo
 -
 type: git
 uri: file:///path/to/walter/git/repo

Using this configuration, precedence is determined by the order in which repositories are listed
under the composite key. In the above example, the Subversion repository is listed first, so a value
found in the Subversion repository will override values found for the same property in one of the
Git repositories. A value found in the rex Git repository will be used before a value found for the
same property in the walter Git repository.

If you want to pull configuration data only from repositories that are each of distinct types, you can
enable the corresponding profiles, rather than the composite profile, in your configuration server’s
application properties or YAML file. If, for example, you want to pull configuration data from a
single Git repository and a single HashiCorp Vault server, you can set the following properties for
your configuration server:

spring:
 profiles:
 active: git, vault
 cloud:
 config:
 server:
 git:
 uri: file:///path/to/git/repo
 order: 2
 vault:
 host: 127.0.0.1
 port: 8200
 order: 1

Using this configuration, precedence can be determined by an order property. You can use the order
property to specify the priority order for all your repositories. The lower the numerical value of the
order property, the higher priority it has. The priority order of a repository helps resolve any
potential conflicts between repositories that contain values for the same properties.

If your composite environment includes a Vault server as in the previous example,
you must include a Vault token in every request made to the configuration server.
See Vault Backend.

Any type of failure when retrieving values from an environment repository results
in a failure for the entire composite environment. If you would like the composite
to continue even when a repository fails you can set
spring.cloud.config.server.failOnCompositeError to false.

When using a composite environment, it is important that all repositories contain
the same labels. If you have an environment similar to those in the preceding
examples and you request configuration data with the master label but the
Subversion repository does not contain a branch called master, the entire request
fails.

Custom Composite Environment Repositories

In addition to using one of the environment repositories from Spring Cloud, you can also provide
your own EnvironmentRepository bean to be included as part of a composite environment. To do so,
your bean must implement the EnvironmentRepository interface. If you want to control the priority
of your custom EnvironmentRepository within the composite environment, you should also
implement the Ordered interface and override the getOrdered method. If you do not implement the
Ordered interface, your EnvironmentRepository is given the lowest priority.

2.1.16. Property Overrides

The Config Server has an “overrides” feature that lets the operator provide configuration properties
to all applications. The overridden properties cannot be accidentally changed by the application
with the normal Spring Boot hooks. To declare overrides, add a map of name-value pairs to
spring.cloud.config.server.overrides, as shown in the following example:

spring:
 cloud:
 config:
 server:
 overrides:
 foo: bar

The preceding examples causes all applications that are config clients to read foo=bar, independent
of their own configuration.

A configuration system cannot force an application to use configuration data in
any particular way. Consequently, overrides are not enforceable. However, they do
provide useful default behavior for Spring Cloud Config clients.

Normally, Spring environment placeholders with ${} can be escaped (and resolved
on the client) by using backslash (\) to escape the $ or the {. For example,
\${app.foo:bar} resolves to bar, unless the app provides its own app.foo.

In YAML, you do not need to escape the backslash itself. However, in properties
files, you do need to escape the backslash, when you configure the overrides on
the server.

You can change the priority of all overrides in the client to be more like default values, letting
applications supply their own values in environment variables or System properties, by setting the
spring.cloud.config.overrideNone=true flag (the default is false) in the remote repository.

2.1.17. Using Bootstrap To Override Properties

If you enable config first bootstrap, you can allow client applications to override configuration from
the config server by placing two properties within the applications configuration coming from the
config server.

spring.cloud.config.allowOverride=true
spring.cloud.config.overrideNone=true

With Bootstrap enabled and these two properties set to true you will be able to override
configuration from the config server within the clients application configuration.

2.1.18. Overriding Properties Using Placeholders

A cleaner way to override properties without enabling config first bootstrap is to use property
placeholders in the configuration coming from the config server.

For example if the configuration coming from the config server contains the following property

hello=${app.hello:Hello From Config Server!}

You can override the value of hello coming from the config server by setting app.hello in your local
application configuration

app.hello=Hello From Application!

2.1.19. Overriding Properties Using Profiles

The final way to override properties coming from the config server is to specify them in profile
specific configuration file within the client application.

For example, if you have the following configuration from the config server

hello="Hello From Config Server!"

You can override the value of hello in the client application by setting hello in a profile specific
configuration file and then enabling that profile.

application-overrides.properties

hello="Hello From Application!"

In the above example you would have to enable the overrides profile.

2.2. Health Indicator
Config Server comes with a Health Indicator that checks whether the configured
EnvironmentRepository is working. By default, it asks the EnvironmentRepository for an application
named app, the default profile, and the default label provided by the EnvironmentRepository
implementation.

You can configure the Health Indicator to check more applications along with custom profiles and
custom labels, as shown in the following example:

spring:
 cloud:
 config:
 server:
 health:
 repositories:
 myservice:
 label: mylabel
 myservice-dev:
 name: myservice
 profiles: development

You can disable the Health Indicator by setting management.health.config.enabled=false.

Also, you can provide a custom down status of your own by setting property
spring.cloud.config.server.health.down-health-status (valued to "DOWN' by default).

2.3. Security
You can secure your Config Server in any way that makes sense to you (from physical network
security to OAuth2 bearer tokens), because Spring Security and Spring Boot offer support for many
security arrangements.

To use the default Spring Boot-configured HTTP Basic security, include Spring Security on the
classpath (for example, through spring-boot-starter-security). The default is a username of user

and a randomly generated password. A random password is not useful in practice, so we
recommend you configure the password (by setting spring.security.user.password) and encrypt it
(see below for instructions on how to do that).

2.4. Actuator and Security

Some platforms configure health checks or something similar and point to
/actuator/health or other actuator endpoints. If actuator is not a dependency of
config server, requests to /actuator/ would match the config server API
/{application}/{label} possibly leaking secure information. Remember to add the
spring-boot-starter-actuator dependency in this case and configure the users
such that the user that makes calls to /actuator/ does not have access to the
config server API at /{application}/{label}.

2.5. Encryption and Decryption

To use the encryption and decryption features you need the full-strength JCE
installed in your JVM (it is not included by default). You can download the “Java
Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files” from
Oracle and follow the installation instructions (essentially, you need to replace the
two policy files in the JRE lib/security directory with the ones that you
downloaded).

If the remote property sources contain encrypted content (values starting with {cipher}), they are
decrypted before sending to clients over HTTP. The main advantage of this setup is that the
property values need not be in plain text when they are “at rest” (for example, in a git repository).
If a value cannot be decrypted, it is removed from the property source and an additional property
is added with the same key but prefixed with invalid and a value that means “not applicable”
(usually <n/a>). This is largely to prevent cipher text being used as a password and accidentally
leaking.

If you set up a remote config repository for config client applications, it might contain an
application.yml similar to the following:

application.yml

spring:
 datasource:
 username: dbuser
 password: '{cipher}FKSAJDFGYOS8F7GLHAKERGFHLSAJ'

Encrypted values in application.properties file must not be wrapped in quotes. Otherwise, the
value is not decrypted. The following example shows values that would work:

application.properties

spring.datasource.username: dbuser
spring.datasource.password: {cipher}FKSAJDFGYOS8F7GLHAKERGFHLSAJ

You can safely push this plain text to a shared git repository, and the secret password remains
protected.

The server also exposes /encrypt and /decrypt endpoints (on the assumption that these are secured
and only accessed by authorized agents). If you edit a remote config file, you can use the Config
Server to encrypt values by POSTing to the /encrypt endpoint, as shown in the following example:

$ curl localhost:8888/encrypt -s -d mysecret
682bc583f4641835fa2db009355293665d2647dade3375c0ee201de2a49f7bda

If you are testing with curl, then use --data-urlencode (instead of -d) and prefix the
value to encrypt with = (curl requires this) or set an explicit Content-Type:
text/plain to make sure curl encodes the data correctly when there are special
characters ('+' is particularly tricky).

Be sure not to include any of the curl command statistics in the encrypted value,
this is why the examples use the -s option to silence them. Outputting the value to
a file can help avoid this problem.

The inverse operation is also available through /decrypt (provided the server is configured with a
symmetric key or a full key pair), as shown in the following example:

$ curl localhost:8888/decrypt -s -d
682bc583f4641835fa2db009355293665d2647dade3375c0ee201de2a49f7bda
mysecret

Take the encrypted value and add the {cipher} prefix before you put it in the YAML or properties
file and before you commit and push it to a remote (potentially insecure) store.

The /encrypt and /decrypt endpoints also both accept paths in the form of
/*/{application}/{profiles}, which can be used to control cryptography on a per-application
(name) and per-profile basis when clients call into the main environment resource.

To control the cryptography in this granular way, you must also provide a @Bean of
type TextEncryptorLocator that creates a different encryptor per name and profiles.
The one that is provided by default does not do so (all encryptions use the same
key).

The spring command line client (with Spring Cloud CLI extensions installed) can also be used to
encrypt and decrypt, as shown in the following example:

$ spring encrypt mysecret --key foo
682bc583f4641835fa2db009355293665d2647dade3375c0ee201de2a49f7bda
$ spring decrypt --key foo
682bc583f4641835fa2db009355293665d2647dade3375c0ee201de2a49f7bda
mysecret

To use a key in a file (such as an RSA public key for encryption), prepend the key value with "@"
and provide the file path, as shown in the following example:

$ spring encrypt mysecret --key @${HOME}/.ssh/id_rsa.pub
AQAjPgt3eFZQXwt8tsHAVv/QHiY5sI2dRcR+...

 The --key argument is mandatory (despite having a -- prefix).

2.6. Key Management
The Config Server can use a symmetric (shared) key or an asymmetric one (RSA key pair). The
asymmetric choice is superior in terms of security, but it is often more convenient to use a
symmetric key since it is a single property value to configure in the application.properties.

To configure a symmetric key, you need to set encrypt.key to a secret String (or use the ENCRYPT_KEY
environment variable to keep it out of plain-text configuration files).

If you include spring-cloud-starter-bootstrap on the classpath or set
spring.cloud.bootstrap.enabled=true as a system property, you will need to set
encrypt.key in bootstrap.properties.

 You cannot configure an asymmetric key using encrypt.key.

To configure an asymmetric key use a keystore (e.g. as created by the keytool utility that comes with
the JDK). The keystore properties are encrypt.keyStore.* with * equal to

Property Description

encrypt.keyStore.location Contains a Resource location

encrypt.keyStore.password Holds the password that unlocks the keystore

encrypt.keyStore.alias Identifies which key in the store to use

encrypt.keyStore.type The type of KeyStore to create. Defaults to jks.

The encryption is done with the public key, and a private key is needed for decryption. Thus, in
principle, you can configure only the public key in the server if you want to only encrypt (and are
prepared to decrypt the values yourself locally with the private key). In practice, you might not
want to do decrypt locally, because it spreads the key management process around all the clients,
instead of concentrating it in the server. On the other hand, it can be a useful option if your config
server is relatively insecure and only a handful of clients need the encrypted properties.

2.7. Creating a Key Store for Testing
To create a keystore for testing, you can use a command resembling the following:

$ keytool -genkeypair -alias mytestkey -keyalg RSA \
 -dname "CN=Web Server,OU=Unit,O=Organization,L=City,S=State,C=US" \
 -keypass changeme -keystore server.jks -storepass letmein

When using JDK 11 or above you may get the following warning when using the
command above. In this case you probably want to make sure the keypass and
storepass values match.

Warning: Different store and key passwords not supported for PKCS12 KeyStores.
Ignoring user-specified -keypass value.

Put the server.jks file in the classpath (for instance) and then, in your bootstrap.yml, for the Config
Server, create the following settings:

encrypt:
 keyStore:
 location: classpath:/server.jks
 password: letmein
 alias: mytestkey
 secret: changeme

2.8. Using Multiple Keys and Key Rotation
In addition to the {cipher} prefix in encrypted property values, the Config Server looks for zero or
more {name:value} prefixes before the start of the (Base64 encoded) cipher text. The keys are passed
to a TextEncryptorLocator, which can do whatever logic it needs to locate a TextEncryptor for the
cipher. If you have configured a keystore (encrypt.keystore.location), the default locator looks for
keys with aliases supplied by the key prefix, with a cipher text like resembling the following:

foo:
 bar: `{cipher}{key:testkey}...`

The locator looks for a key named "testkey". A secret can also be supplied by using a {secret:…}
value in the prefix. However, if it is not supplied, the default is to use the keystore password (which
is what you get when you build a keystore and do not specify a secret). If you do supply a secret,
you should also encrypt the secret using a custom SecretLocator.

When the keys are being used only to encrypt a few bytes of configuration data (that is, they are not
being used elsewhere), key rotation is hardly ever necessary on cryptographic grounds. However,
you might occasionally need to change the keys (for example, in the event of a security breach). In

that case, all the clients would need to change their source config files (for example, in git) and use
a new {key:…} prefix in all the ciphers. Note that the clients need to first check that the key alias is
available in the Config Server keystore.

If you want to let the Config Server handle all encryption as well as decryption, the
{name:value} prefixes can also be added as plain text posted to the /encrypt
endpoint.

2.9. Serving Encrypted Properties
Sometimes you want the clients to decrypt the configuration locally, instead of doing it in the
server. In that case, if you provide the encrypt.* configuration to locate a key, you can still have
/encrypt and /decrypt endpoints, but you need to explicitly switch off the decryption of outgoing
properties by placing spring.cloud.config.server.encrypt.enabled=false in
bootstrap.[yml|properties]. If you do not care about the endpoints, it should work if you do not
configure either the key or the enabled flag.

2.10. Serving Alternative Formats
The default JSON format from the environment endpoints is perfect for consumption by Spring
applications, because it maps directly onto the Environment abstraction. If you prefer, you can
consume the same data as YAML or Java properties by adding a suffix (".yml", ".yaml" or
".properties") to the resource path. This can be useful for consumption by applications that do not
care about the structure of the JSON endpoints or the extra metadata they provide (for example, an
application that is not using Spring might benefit from the simplicity of this approach).

The YAML and properties representations have an additional flag (provided as a boolean query
parameter called resolvePlaceholders) to signal that placeholders in the source documents (in the
standard Spring ${…} form) should be resolved in the output before rendering, where possible.
This is a useful feature for consumers that do not know about the Spring placeholder conventions.

There are limitations in using the YAML or properties formats, mainly in relation
to the loss of metadata. For example, the JSON is structured as an ordered list of
property sources, with names that correlate with the source. The YAML and
properties forms are coalesced into a single map, even if the origin of the values
has multiple sources, and the names of the original source files are lost. Also, the
YAML representation is not necessarily a faithful representation of the YAML
source in a backing repository either. It is constructed from a list of flat property
sources, and assumptions have to be made about the form of the keys.

2.11. Serving Plain Text
Instead of using the Environment abstraction (or one of the alternative representations of it in YAML
or properties format), your applications might need generic plain-text configuration files that are
tailored to their environment. The Config Server provides these through an additional endpoint at
/{application}/{profile}/{label}/{path}, where application, profile, and label have the same

meaning as the regular environment endpoint, but path is a path to a file name (such as log.xml).
The source files for this endpoint are located in the same way as for the environment endpoints.
The same search path is used for properties and YAML files. However, instead of aggregating all
matching resources, only the first one to match is returned.

After a resource is located, placeholders in the normal format (${…}) are resolved by using the
effective Environment for the supplied application name, profile, and label. In this way, the resource
endpoint is tightly integrated with the environment endpoints.

As with the source files for environment configuration, the profile is used to
resolve the file name. So, if you want a profile-specific file,
/*/development/*/logback.xml can be resolved by a file called logback-
development.xml (in preference to logback.xml).

If you do not want to supply the label and let the server use the default label, you
can supply a useDefaultLabel request parameter. Consequently, the preceding
example for the default profile could be
/sample/default/nginx.conf?useDefaultLabel.

At present, Spring Cloud Config can serve plaintext for git, SVN, native backends, and AWS S3. The
support for git, SVN, and native backends is identical. AWS S3 works a bit differently. The following
sections show how each one works:

• Git, SVN, and Native Backends

• AWS S3

2.12. Serving Binary Files
In order to serve binary files from the config server you will need to send an Accept header of
application/octet-stream.

2.12.1. Git, SVN, and Native Backends

Consider the following example for a GIT or SVN repository or a native backend:

application.yml
nginx.conf

The nginx.conf might resemble the following listing:

server {
 listen 80;
 server_name ${nginx.server.name};
}

application.yml might resemble the following listing:

nginx:
 server:
 name: example.com

spring:
 profiles: development
nginx:
 server:
 name: develop.com

The /sample/default/master/nginx.conf resource might be as follows:

server {
 listen 80;
 server_name example.com;
}

/sample/development/master/nginx.conf might be as follows:

server {
 listen 80;
 server_name develop.com;
}

2.12.2. AWS S3

To enable serving plain text for AWS s3, the Config Server application needs to include a
dependency on io.awspring.cloud:spring-cloud-aws-context. For details on how to set up that
dependency, see the Spring Cloud AWS Reference Guide. In addition, when using Spring Cloud AWS
with Spring Boot it is useful to include the auto-configuration dependency. Then you need to
configure Spring Cloud AWS, as described in the Spring Cloud AWS Reference Guide.

https://docs.awspring.io/spring-cloud-aws/docs/2.4.3/reference/html/index.html#spring-cloud-aws-maven-dependency-management
https://docs.awspring.io/spring-cloud-aws/docs/2.4.3/reference/html/index.html#spring-boot-auto-configuration
https://docs.awspring.io/spring-cloud-aws/docs/2.4.3/reference/html/index.html#configuring-credentials

2.12.3. Decrypting Plain Text

By default, encrypted values in plain text files are not decrypted. In order to enable decryption for
plain text files, set spring.cloud.config.server.encrypt.enabled=true and
spring.cloud.config.server.encrypt.plainTextEncrypt=true in bootstrap.[yml|properties]

Decrypting plain text files is only supported for YAML, JSON, and properties file
extensions.

If this feature is enabled, and an unsupported file extention is requested, any encrypted values in
the file will not be decrypted.

2.13. Embedding the Config Server
The Config Server runs best as a standalone application. However, if need be, you can embed it in
another application. To do so, use the @EnableConfigServer annotation. An optional property named
spring.cloud.config.server.bootstrap can be useful in this case. It is a flag to indicate whether the
server should configure itself from its own remote repository. By default, the flag is off, because it
can delay startup. However, when embedded in another application, it makes sense to initialize the
same way as any other application. When setting spring.cloud.config.server.bootstrap to true you
must also use a composite environment repository configuration. For example

spring:
 application:
 name: configserver
 profiles:
 active: composite
 cloud:
 config:
 server:
 composite:
 - type: native
 search-locations: ${HOME}/Desktop/config
 bootstrap: true

If you use the bootstrap flag, the config server needs to have its name and
repository URI configured in bootstrap.yml.

To change the location of the server endpoints, you can (optionally) set
spring.cloud.config.server.prefix (for example, /config), to serve the resources under a prefix.
The prefix should start but not end with a /. It is applied to the @RequestMappings in the Config
Server (that is, underneath the Spring Boot server.servletPath and server.contextPath prefixes).

If you want to read the configuration for an application directly from the backend repository
(instead of from the config server), you basically want an embedded config server with no
endpoints. You can switch off the endpoints entirely by not using the @EnableConfigServer
annotation (set spring.cloud.config.server.bootstrap=true).

2.14. Push Notifications and Spring Cloud Bus
Many source code repository providers (such as Github, Gitlab, Gitea, Gitee, Gogs, or Bitbucket)
notify you of changes in a repository through a webhook. You can configure the webhook through
the provider’s user interface as a URL and a set of events in which you are interested. For instance,
Github uses a POST to the webhook with a JSON body containing a list of commits and a header (X-
Github-Event) set to push. If you add a dependency on the spring-cloud-config-monitor library and
activate the Spring Cloud Bus in your Config Server, then a /monitor endpoint is enabled.

When the webhook is activated, the Config Server sends a RefreshRemoteApplicationEvent targeted
at the applications it thinks might have changed. The change detection can be strategized. However,
by default, it looks for changes in files that match the application name (for example,
foo.properties is targeted at the foo application, while application.properties is targeted at all
applications). The strategy to use when you want to override the behavior is
PropertyPathNotificationExtractor, which accepts the request headers and body as parameters and
returns a list of file paths that changed.

The default configuration works out of the box with Github, Gitlab, Gitea, Gitee, Gogs or Bitbucket.
In addition to the JSON notifications from Github, Gitlab, Gitee, or Bitbucket, you can trigger a
change notification by POSTing to /monitor with form-encoded body parameters in the pattern of
path={application}. Doing so broadcasts to applications matching the {application} pattern (which
can contain wildcards).

The RefreshRemoteApplicationEvent is transmitted only if the spring-cloud-bus is
activated in both the Config Server and in the client application.

The default configuration also detects filesystem changes in local git repositories.
In that case, the webhook is not used. However, as soon as you edit a config file, a
refresh is broadcast.

2.15. AOT and Native Image Support
Since 4.0.0, Spring Cloud Config Server supports Spring AOT transformations. However, for the
time being, GraalVM native images are not supported. Implementing native image support is
blocked by graal#5134 and will likely require the completion of the work on
https://github.com/graalvm/taming-build-time-initialization to be fixed.

3. Spring Cloud Config Client
A Spring Boot application can take immediate advantage of the Spring Config Server (or other
external property sources provided by the application developer). It also picks up some additional
useful features related to Environment change events.

3.1. Spring Boot Config Data Import
Spring Boot 2.4 introduced a new way to import configuration data via the spring.config.import

https://developer.github.com/v3/activity/events/types/#pushevent
https://github.com/oracle/graal/issues/5134
https://github.com/graalvm/taming-build-time-initialization

property. This is now the default way to bind to Config Server.

To optionally connect to config server set the following in application.properties:

application.properties

spring.config.import=optional:configserver:

This will connect to the Config Server at the default location of "http://localhost:8888". Removing the
optional: prefix will cause the Config Client to fail if it is unable to connect to Config Server. To
change the location of Config Server either set spring.cloud.config.uri or add the url to the
spring.config.import statement such as,
spring.config.import=optional:configserver:http://myhost:8888. The location in the import
property has precedence over the uri property.

Spring Boot Config Data resolves configuration in a two step process. First it loads all configuration
using the default profile. This allows Spring Boot to gather all configuration which may activate any
additional profiles. After it has gathered all activated profiles it will load any additional
configuration for the active profiles. Due to this you may see multiple requests being made to the
Spring Cloud Config Server to fetch configuration. This is normal and is a side effect of how Spring
Boot loads configuration when using spring.config.import. In previous versions of Spring Cloud
Config there was only a single request made but this meant you could not activate profiles from
configuration coming from the Config Server. The additional request with just the 'default` profile
now makes this possible.

A bootstrap file (properties or yaml) is not needed for the Spring Boot Config Data
method of import via spring.config.import.

3.2. Config First Bootstrap
To use the legacy bootstrap way of connecting to Config Server, bootstrap must be enabled via a
property or the spring-cloud-starter-bootstrap starter. The property is
spring.cloud.bootstrap.enabled=true. It must be set as a System Property or environment variable.
Once bootstrap has been enabled any application with Spring Cloud Config Client on the classpath
will connect to Config Server as follows: When a config client starts, it binds to the Config Server
(through the spring.cloud.config.uri bootstrap configuration property) and initializes Spring
Environment with remote property sources.

The net result of this behavior is that all client applications that want to consume the Config Server
need a bootstrap.yml (or an environment variable) with the server address set in
spring.cloud.config.uri (it defaults to "http://localhost:8888").

3.2.1. Discovery First Lookup

Unless you are using config first bootstrap, you will need to have a
spring.config.import property in your configuration properties with an optional:
prefix. For example, spring.config.import=optional:configserver:.

If you use a DiscoveryClient implementation, such as Spring Cloud Netflix and Eureka Service
Discovery or Spring Cloud Consul, you can have the Config Server register with the Discovery
Service.

If you prefer to use DiscoveryClient to locate the Config Server, you can do so by setting
spring.cloud.config.discovery.enabled=true (the default is false). For example, with Spring Cloud
Netflix, you need to define the Eureka server address (for example, in
eureka.client.serviceUrl.defaultZone). The price for using this option is an extra network round
trip on startup, to locate the service registration. The benefit is that, as long as the Discovery Service
is a fixed point, the Config Server can change its coordinates. The default service ID is configserver,
but you can change that on the client by setting spring.cloud.config.discovery.serviceId (and on
the server, in the usual way for a service, such as by setting spring.application.name).

The discovery client implementations all support some kind of metadata map (for example, we
have eureka.instance.metadataMap for Eureka). Some additional properties of the Config Server may
need to be configured in its service registration metadata so that clients can connect correctly. If the
Config Server is secured with HTTP Basic, you can configure the credentials as user and password.
Also, if the Config Server has a context path, you can set configPath. For example, the following
YAML file is for a Config Server that is a Eureka client:

eureka:
 instance:
 ...
 metadataMap:
 user: osufhalskjrtl
 password: lviuhlszvaorhvlo5847
 configPath: /config

3.2.2. Discovery First Bootstrap Using Eureka And WebClient

If you use the Eureka DiscoveryClient from Spring Cloud Netflix and also want to use WebClient
instead of Jersey or RestTemplate, you need to include WebClient on your classpath as well as set
eureka.client.webclient.enabled=true.

3.3. Config Client Fail Fast
In some cases, you may want to fail startup of a service if it cannot connect to the Config Server. If
this is the desired behavior, set the bootstrap configuration property spring.cloud.config.fail-
fast=true to make the client halt with an Exception.

To get similar functionality using spring.config.import, simply omit the optional:
prefix.

3.4. Config Client Retry
If you expect that the config server may occasionally be unavailable when your application starts,
you can make it keep trying after a failure. First, you need to set spring.cloud.config.fail-

fast=true. Then you need to add spring-retry and spring-boot-starter-aop to your classpath. The
default behavior is to retry six times with an initial backoff interval of 1000ms and an exponential
multiplier of 1.1 for subsequent backoffs. You can configure these properties (and others) by setting
the spring.cloud.config.retry.* configuration properties.

To take full control of the retry behavior and are using legacy bootstrap, add a
@Bean of type RetryOperationsInterceptor with an ID of
configServerRetryInterceptor. Spring Retry has a RetryInterceptorBuilder that
supports creating one.

3.5. Config Client Retry with spring.config.import
Retry works with the Spring Boot spring.config.import statement and the normal properties work.
However, if the import statement is in a profile, such as application-prod.properties, then you need
a different way to configure retry. Configuration needs to be placed as url parameters on the import
statement.

application-prod.properties

spring.config.import=configserver:http://configserver.example.com?fail-fast=true&max-
attempts=10&max-interval=1500&multiplier=1.2&initial-interval=1100"

This sets spring.cloud.config.fail-fast=true (notice the missing prefix above) and all the available
spring.cloud.config.retry.* configuration properties.

3.6. Locating Remote Configuration Resources
The Config Service serves property sources from /{application}/{profile}/{label}, where the
default bindings in the client app are as follows:

• "application" = ${spring.application.name}

• "profile" = ${spring.profiles.active} (actually Environment.getActiveProfiles())

• "label" = "master"

When setting the property ${spring.application.name} do not prefix your app
name with the reserved word application- to prevent issues resolving the correct
property source.

You can override all of them by setting spring.cloud.config.* (where * is name, profile or label). The
label is useful for rolling back to previous versions of configuration. With the default Config Server
implementation, it can be a git label, branch name, or commit ID. Label can also be provided as a
comma-separated list. In that case, the items in the list are tried one by one until one succeeds. This
behavior can be useful when working on a feature branch. For instance, you might want to align
the config label with your branch but make it optional (in that case, use
spring.cloud.config.label=myfeature,develop).

3.7. Specifying Multiple URLs for the Config Server
To ensure high availability when you have multiple instances of Config Server deployed and expect
one or more instances to be unavailable or unable to honor requests from time to time (such as if
the Git server is down), you can either specify multiple URLs (as a comma-separated list under the
spring.cloud.config.uri property) or have all your instances register in a Service Registry like
Eureka (if using Discovery-First Bootstrap mode).

The URLs listed under spring.cloud.config.uri are tried in the order listed. By default, the Config
Client will try to fetch properties from each URL until an attempt is successful to ensure high
availability.

However, if you want to ensure high availability only when the Config Server is not running (that
is, when the application has exited) or when a connection timeout has occurred, set
spring.cloud.config.multiple-uri-strategy to connection-timeout-only. (The default value of
spring.cloud.config.multiple-uri-strategy is always.) For example, if the Config Server returns a
500 (Internal Server Error) response or the Config Client receives a 401 from the Config Server (due
to bad credentials or other causes), the Config Client does not try to fetch properties from other
URLs. A 400 error (except possibly 404) indicates a user issue rather than an availability problem.
Note that if the Config Server is set to use a Git server and the call to Git server fails, a 404 error
may occur.

Several locations can be specified under a single spring.config.import key instead of
spring.cloud.config.uri. Locations will be processed in the order that they are defined, with later
imports taking precedence. However, if spring.cloud.config.fail-fast is true, the Config Client will
fail if the first Config Server call is unsuccessful for any reason. If fail-fast is false, it will try all
URLs until one call is successful, regardless of the reason for failure. (The
spring.cloud.config.multiple-uri-strategy does not apply when specifying URLs under
spring.config.import.)

If you use HTTP basic security on your Config Server, it is currently possible to support per-Config
Server auth credentials only if you embed the credentials in each URL you specify under the
spring.cloud.config.uri property. If you use any other kind of security mechanism, you cannot
(currently) support per-Config Server authentication and authorization.

3.8. Configuring Timeouts
If you want to configure timeout thresholds:

• Read timeouts can be configured by using the property spring.cloud.config.request-read-
timeout.

• Connection timeouts can be configured by using the property spring.cloud.config.request-
connect-timeout.

3.9. Security
If you use HTTP Basic security on the server, clients need to know the password (and username if it
is not the default). You can specify the username and password through the config server URI or via

separate username and password properties, as shown in the following example:

spring:
 cloud:
 config:
 uri: https://user:secret@myconfig.mycompany.com

The following example shows an alternate way to pass the same information:

spring:
 cloud:
 config:
 uri: https://myconfig.mycompany.com
 username: user
 password: secret

The spring.cloud.config.password and spring.cloud.config.username values override anything that
is provided in the URI.

If you deploy your apps on Cloud Foundry, the best way to provide the password is through service
credentials (such as in the URI, since it does not need to be in a config file). The following example
works locally and for a user-provided service on Cloud Foundry named configserver:

spring:
 cloud:
 config:
 uri:
${vcap.services.configserver.credentials.uri:http://user:password@localhost:8888}

If config server requires client side TLS certificate, you can configure client side TLS certificate and
trust store via properties, as shown in following example:

spring:
 cloud:
 config:
 uri: https://myconfig.myconfig.com
 tls:
 enabled: true
 key-store: <path-of-key-store>
 key-store-type: PKCS12
 key-store-password: <key-store-password>
 key-password: <key-password>
 trust-store: <path-of-trust-store>
 trust-store-type: PKCS12
 trust-store-password: <trust-store-password>

The spring.cloud.config.tls.enabled needs to be true to enable config client side TLS. When
spring.cloud.config.tls.trust-store is omitted, a JVM default trust store is used. The default value
for spring.cloud.config.tls.key-store-type and spring.cloud.config.tls.trust-store-type is
PKCS12. When password properties are omitted, empty password is assumed.

If you use another form of security, you might need to provide a RestTemplate to the
ConfigServicePropertySourceLocator (for example, by grabbing it in the bootstrap context and
injecting it).

3.9.1. Health Indicator

The Config Client supplies a Spring Boot Health Indicator that attempts to load configuration from
the Config Server. The health indicator can be disabled by setting health.config.enabled=false. The
response is also cached for performance reasons. The default cache time to live is 5 minutes. To
change that value, set the health.config.time-to-live property (in milliseconds).

3.9.2. Providing A Custom RestTemplate

In some cases, you might need to customize the requests made to the config server from the client.
Typically, doing so involves passing special Authorization headers to authenticate requests to the
server.

Providing A Custom RestTemplate Using Config Data

To provide a custom RestTemplate when using Config Data:

1. Create a class which implements BootstrapRegistryInitializer

CustomBootstrapRegistryInitializer.java

public class CustomBootstrapRegistryInitializer implements
BootstrapRegistryInitializer {

 @Override
 public void initialize(BootstrapRegistry registry) {
 registry.register(RestTemplate.class, context -> {
 RestTemplate restTemplate = new RestTemplate();
 // Customize RestTemplate here
 return restTemplate;
 });
 }

}

2. In resources/META-INF, create a file called spring.factories and specify your custom
configuration, as shown in the following example:

spring.factories

org.springframework.boot.BootstrapRegistryInitializer=com.my.config.client.CustomBo
otstrapRegistryInitializer

Providing A Custom RestTemplate Using Bootstrap

To provide a custom RestTemplate when using Bootstrap:

1. Create a new configuration bean with an implementation of PropertySourceLocator, as shown in
the following example:

CustomConfigServiceBootstrapConfiguration.java

@Configuration
public class CustomConfigServiceBootstrapConfiguration {
 @Bean
 public ConfigServicePropertySourceLocator configServicePropertySourceLocator()
{
 ConfigClientProperties clientProperties = configClientProperties();
 ConfigServicePropertySourceLocator configServicePropertySourceLocator = new
ConfigServicePropertySourceLocator(clientProperties);

configServicePropertySourceLocator.setRestTemplate(customRestTemplate(clientPropert
ies));
 return configServicePropertySourceLocator;
 }
}

For a simplified approach to adding Authorization headers, the
spring.cloud.config.headers.* property can be used instead.

2. In resources/META-INF, create a file called spring.factories and specify your custom
configuration, as shown in the following example:

spring.factories

org.springframework.cloud.bootstrap.BootstrapConfiguration =
com.my.config.client.CustomConfigServiceBootstrapConfiguration

3.9.3. Vault

When using Vault as a backend to your config server, the client needs to supply a token for the
server to retrieve values from Vault. This token can be provided within the client by setting
spring.cloud.config.token in bootstrap.yml, as shown in the following example:

spring:
 cloud:
 config:
 token: YourVaultToken

3.10. Nested Keys In Vault
Vault supports the ability to nest keys in a value stored in Vault, as shown in the following example:

echo -n '{"appA": {"secret": "appAsecret"}, "bar": "baz"}' | vault write secret/myapp -

This command writes a JSON object to your Vault. To access these values in Spring, you would use
the traditional dot(.) annotation, as shown in the following example

@Value("${appA.secret}")
String name = "World";

The preceding code would sets the value of the name variable to appAsecret.

3.11. AOT and Native Image Support
Since 4.0.0, Spring Cloud Config Client supports Spring AOT transformations and GraalVM native
images.

AOT and native image support is not available for config first bootstrap (with
spring.config.use-legacy-processing=true).

Refresh scope is not supported with native images. If you are going to run your
config client application as a native image, make sure to set
spring.cloud.refresh.enabled property to false.

While building a project that contains Spring Cloud Config Client, you must make
sure that the configuration data source that it connects to (such as, Spring Cloud
Config Server, Consul, Zookeeper, Vault, and others) is available. For example, if
you retrieve configuration data from Spring Cloud Config Server, make sure you
have its instance running and available at the port indicated in the Config Client
setup. This is necessary because the application context is being optimized at build
time and requires the target environment to be resolved.

Since in AOT and native mode, configuration is being processed and the context is
being optimised at build time, any properties that would influence bean creation
(such as the ones used within bootstrap context) should be set to the same values
at build time and runtime to avoid unexpected behaviour.

Since Config Client connects to a running data source (such as Config Server) while
starting up from native image, the quick startup time will be slowed down by the
time required for this network communication to take place.

Spring Cloud Consul
2022.0.4

This project provides Consul integrations for Spring Boot apps through autoconfiguration and
binding to the Spring Environment and other Spring programming model idioms. With a few
simple annotations you can quickly enable and configure the common patterns inside your
application and build large distributed systems with Consul based components. The patterns
provided include Service Discovery, Control Bus and Configuration. Intelligent Routing and Client
Side Load Balancing, Circuit Breaker are provided by integration with other Spring Cloud projects.

1. Quick Start
This quick start walks through using Spring Cloud Consul for Service Discovery and Distributed
Configuration.

First, run Consul Agent on your machine. Then you can access it and use it as a Service Registry and
Configuration source with Spring Cloud Consul.

1.1. Discovery Client Usage
To use these features in an application, you can build it as a Spring Boot application that depends
on spring-cloud-consul-core. The most convenient way to add the dependency is with a Spring Boot
starter: org.springframework.cloud:spring-cloud-starter-consul-discovery. We recommend using
dependency management and spring-boot-starter-parent. The following example shows a typical
Maven configuration:

pom.xml

<project>
<parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>{spring-boot-version}</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>

 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-consul-discovery</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>
 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>${spring-cloud.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>
</project>

The following example shows a typical Gradle setup:

build.gradle

plugins {
 id 'org.springframework.boot' version ${spring-boot-version}
 id 'io.spring.dependency-management' version ${spring-dependency-management-version}
 id 'java'
}

repositories {
 mavenCentral()
}

dependencies {
 implementation 'org.springframework.cloud:spring-cloud-starter-consul-discovery'
 testImplementation 'org.springframework.boot:spring-boot-starter-test'
}
dependencyManagement {
 imports {
 mavenBom "org.springframework.cloud:spring-cloud-
dependencies:${springCloudVersion}"
 }
}

Now you can create a standard Spring Boot application, such as the following HTTP server:

@SpringBootApplication
@RestController
public class Application {

 @GetMapping("/")
 public String home() {
 return "Hello World!";
 }

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }

}

When this HTTP server runs, it connects to Consul Agent running at the default local 8500 port. To
modify the startup behavior, you can change the location of Consul Agent by using
application.properties, as shown in the following example:

spring:
 cloud:
 consul:
 host: localhost
 port: 8500

You can now use DiscoveryClient, @LoadBalanced RestTemplate, or @LoadBalanced WebClient.Builder
to retrieve services and instances data from Consul, as shown in the following example:

@Autowired
private DiscoveryClient discoveryClient;

public String serviceUrl() {
 List<ServiceInstance> list = discoveryClient.getInstances("STORES");
 if (list != null && list.size() > 0) {
 return list.get(0).getUri().toString();
 }
 return null;
}

1.2. Distributed Configuration Usage
To use these features in an application, you can build it as a Spring Boot application that depends
on spring-cloud-consul-core and spring-cloud-consul-config. The most convenient way to add the
dependency is with a Spring Boot starter: org.springframework.cloud:spring-cloud-starter-consul-
config. We recommend using dependency management and spring-boot-starter-parent. The
following example shows a typical Maven configuration:

pom.xml

<project>
<parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>{spring-boot-version}</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>

 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-consul-config</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>
 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>${spring-cloud.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>
</project>

The following example shows a typical Gradle setup:

build.gradle

plugins {
 id 'org.springframework.boot' version ${spring-boot-version}
 id 'io.spring.dependency-management' version ${spring-dependency-management-version}
 id 'java'
}

repositories {
 mavenCentral()
}

dependencies {
 implementation 'org.springframework.cloud:spring-cloud-starter-consul-config'
 testImplementation 'org.springframework.boot:spring-boot-starter-test'
}
dependencyManagement {
 imports {
 mavenBom "org.springframework.cloud:spring-cloud-
dependencies:${springCloudVersion}"
 }
}

Now you can create a standard Spring Boot application, such as the following HTTP server:

@SpringBootApplication
@RestController
public class Application {

 @GetMapping("/")
 public String home() {
 return "Hello World!";
 }

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }

}

The application retrieves configuration data from Consul.

If you use Spring Cloud Consul Config, you need to set the spring.config.import
property in order to bind to Consul. You can read more about it in the Spring Boot
Config Data Import section.

2. Install Consul
Please see the installation documentation for instructions on how to install Consul.

3. Consul Agent
A Consul Agent client must be available to all Spring Cloud Consul applications. By default, the
Agent client is expected to be at localhost:8500. See the Agent documentation for specifics on how
to start an Agent client and how to connect to a cluster of Consul Agent Servers. For development,
after you have installed consul, you may start a Consul Agent using the following command:

./src/main/bash/local_run_consul.sh

This will start an agent in server mode on port 8500, with the ui available at localhost:8500

4. Service Discovery with Consul
Service Discovery is one of the key tenets of a microservice based architecture. Trying to hand
configure each client or some form of convention can be very difficult to do and can be very brittle.
Consul provides Service Discovery services via an HTTP API and DNS. Spring Cloud Consul
leverages the HTTP API for service registration and discovery. This does not prevent non-Spring
Cloud applications from leveraging the DNS interface. Consul Agents servers are run in a cluster
that communicates via a gossip protocol and uses the Raft consensus protocol.

4.1. How to activate
To activate Consul Service Discovery use the starter with group org.springframework.cloud and
artifact id spring-cloud-starter-consul-discovery. See the Spring Cloud Project page for details on
setting up your build system with the current Spring Cloud Release Train.

4.2. Registering with Consul
When a client registers with Consul, it provides meta-data about itself such as host and port, id,
name and tags. An HTTP Check is created by default that Consul hits the /actuator/health endpoint
every 10 seconds. If the health check fails, the service instance is marked as critical.

Example Consul client:

https://www.consul.io/intro/getting-started/install.html
https://consul.io/docs/agent/basics.html
http://localhost:8500
https://www.consul.io/docs/agent/http.html
https://www.consul.io/docs/agent/dns.html
https://www.consul.io/docs/internals/architecture.html
https://www.consul.io/docs/internals/gossip.html
https://www.consul.io/docs/internals/consensus.html
https://projects.spring.io/spring-cloud/
https://www.consul.io/docs/discovery/checks#http-interval

@SpringBootApplication
@RestController
public class Application {

 @RequestMapping("/")
 public String home() {
 return "Hello world";
 }

 public static void main(String[] args) {
 new SpringApplicationBuilder(Application.class).web(true).run(args);
 }

}

(i.e. utterly normal Spring Boot app). If the Consul client is located somewhere other than
localhost:8500, the configuration is required to locate the client. Example:

application.yml

spring:
 cloud:
 consul:
 host: localhost
 port: 8500

If you use Spring Cloud Consul Config, and you have set
spring.cloud.bootstrap.enabled=true or spring.config.use-legacy-processing=true
or use spring-cloud-starter-bootstrap, then the above values will need to be
placed in bootstrap.yml instead of application.yml.

The default service name, instance id and port, taken from the Environment, are
${spring.application.name}, the Spring Context ID and ${server.port} respectively.

To disable the Consul Discovery Client you can set spring.cloud.consul.discovery.enabled to false.
Consul Discovery Client will also be disabled when spring.cloud.discovery.enabled is set to false.

To disable the service registration you can set spring.cloud.consul.discovery.register to false.

4.2.1. Registering Management as a Separate Service

When management server port is set to something different than the application port, by setting
management.server.port property, management service will be registered as a separate service than
the application service. For example:

application.yml

spring:
 application:
 name: myApp
management:
 server:
 port: 4452

Above configuration will register following 2 services:

• Application Service:

ID: myApp
Name: myApp

• Management Service:

ID: myApp-management
Name: myApp-management

Management service will inherit its instanceId and serviceName from the application service. For
example:

application.yml

spring:
 application:
 name: myApp
management:
 server:
 port: 4452
spring:
 cloud:
 consul:
 discovery:
 instance-id: custom-service-id
 serviceName: myprefix-${spring.application.name}

Above configuration will register following 2 services:

• Application Service:

ID: custom-service-id
Name: myprefix-myApp

• Management Service:

ID: custom-service-id-management
Name: myprefix-myApp-management

Further customization is possible via following properties:

/** Port to register the management service under (defaults to management port) */
spring.cloud.consul.discovery.management-port

/** Suffix to use when registering management service (defaults to "management") */
spring.cloud.consul.discovery.management-suffix

/** Tags to use when registering management service (defaults to "management") */
spring.cloud.consul.discovery.management-tags

4.2.2. HTTP Health Check

The health check for a Consul instance defaults to "/actuator/health", which is the default location of
the health endpoint in a Spring Boot Actuator application. You need to change this, even for an
Actuator application, if you use a non-default context path or servlet path (e.g.
server.servletPath=/foo) or management endpoint path (e.g. management.server.servlet.context-
path=/admin).

The interval that Consul uses to check the health endpoint may also be configured. "10s" and "1m"
represent 10 seconds and 1 minute respectively.

This example illustrates the above (see the spring.cloud.consul.discovery.health-check-*
properties in the appendix page for more options).

application.yml

spring:
 cloud:
 consul:
 discovery:
 healthCheckPath: ${management.server.servlet.context-path}/actuator/health
 healthCheckInterval: 15s

You can disable the HTTP health check entirely by setting spring.cloud.consul.discovery.register-
health-check=false.

Applying Headers

Headers can be applied to health check requests. For example, if you’re trying to register a Spring
Cloud Config server that uses Vault Backend:

appendix.html
https://cloud.spring.io/spring-cloud-config/
https://cloud.spring.io/spring-cloud-config/
https://github.com/spring-cloud/spring-cloud-config/blob/master/docs/src/main/asciidoc/spring-cloud-config.adoc#vault-backend

application.yml

spring:
 cloud:
 consul:
 discovery:
 health-check-headers:
 X-Config-Token: 6442e58b-d1ea-182e-cfa5-cf9cddef0722

According to the HTTP standard, each header can have more than one values, in which case, an
array can be supplied:

application.yml

spring:
 cloud:
 consul:
 discovery:
 health-check-headers:
 X-Config-Token:
 - "6442e58b-d1ea-182e-cfa5-cf9cddef0722"
 - "Some other value"

4.2.3. TTL Health Check

A Consul TTL Check can be used instead of the default configured HTTP check. The main difference
is that the application sends a heartbeat signal to the Consul agent rather than the Consul agent
sending a request to the application.

The interval the application uses to send the ping may also be configured. "10s" and "1m" represent
10 seconds and 1 minute respectively. The default is 30 seconds.

This example illustrates the above (see the spring.cloud.consul.discovery.heartbeat.* properties in
the appendix page for more options).

application.yml

spring:
 cloud:
 consul:
 discovery:
 heartbeat:
 enabled: true
 ttl: 10s

TTL Application Status

For a Spring Boot Actuator application the status is determined from its available health endpoint.
When the health endpoint is not available (either disabled or not a Spring Boot Actuator

https://www.consul.io/docs/discovery/checks#ttl
appendix.html

application) it assumes the application is in good health.

When querying the health endpoint, the root health group is used by default. A different health
group can be used by setting the following property:

application.yml

spring:
 cloud:
 consul:
 discovery:
 heartbeat:
 actuator-health-group: <your-custom-group-goes-here>

You can disable the use of the health endpoint entirely by setting the following property:

application.yml

spring:
 cloud:
 consul:
 discovery:
 heartbeat:
 use-actuator-health: false

Custom TTL Application Status

If you want to configure your own application status mechanism, simply implement the
ApplicationStatusProvider interface

MyCustomApplicationStatusProvider.java

@Bean
public class MyCustomApplicationStatusProvider implements ApplicationStatusProvider {
 public CheckStatus currentStatus() {
 return yourMethodToDetermineAppStatusGoesHere();
 }
}

and make it available to the application context:

@Bean
public CustomApplicationStatusProvider customAppStatusProvider() {
 return new MyCustomApplicationStatusProvider();
}

https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#production-ready-health-groups

4.2.4. Actuator Health Indicator(s)

If the service instance is a Spring Boot Actuator application, it may be provided the following
Actuator health indicators.

DiscoveryClientHealthIndicator

When Consul Service Discovery is active, a DiscoverClientHealthIndicator is configured and made
available to the Actuator health endpoint. See here for configuration options.

ConsulHealthIndicator

An indicator is configured that verifies the health of the ConsulClient.

By default, it retrieves the Consul leader node status and all registered services. In deployments
that have many registered services it may be costly to retrieve all services on every health check. To
skip the service retrieval and only check the leader node status set spring.cloud.consul.health-
indicator.include-services-query=false.

To disable the indicator set management.health.consul.enabled=false.

When the application runs in bootstrap context mode (the default), this indicator is
loaded into the bootstrap context and is not made available to the Actuator health
endpoint.

4.2.5. Metadata

Consul supports metadata on services. Spring Cloud’s ServiceInstance has a Map<String, String>
metadata field which is populated from a services meta field. To populate the meta field set values on
spring.cloud.consul.discovery.metadata or spring.cloud.consul.discovery.management-metadata
properties.

application.yml

spring:
 cloud:
 consul:
 discovery:
 metadata:
 myfield: myvalue
 anotherfield: anothervalue

The above configuration will result in a service who’s meta field contains myfield→myvalue and
anotherfield→anothervalue.

Generated Metadata

The Consul Auto Registration will generate a few entries automatically.

Table 5. Auto Generated Metadata

https://cloud.spring.io/spring-cloud-commons/2.2.x/reference/html/#health-indicator
https://cloud.spring.io/spring-cloud-commons/2.2.x/reference/html/#health-indicator
https://cloud.spring.io/spring-cloud-commons/2.2.x/reference/html/#the-bootstrap-application-context

Key Value

'group' Property
spring.cloud.consul.discovery.instance-group.
This values is only generated if instance-group is
not empty.'

'secure' True if property
spring.cloud.consul.discovery.scheme equals
'https', otherwise false.

Property
spring.cloud.consul.discovery.default-zone-
metadata-name, defaults to 'zone'

Property
spring.cloud.consul.discovery.instance-zone.
This values is only generated if instance-zone is
not empty.'

Older versions of Spring Cloud Consul populated the
ServiceInstance.getMetadata() method from Spring Cloud Commons by parsing the
spring.cloud.consul.discovery.tags property. This is no longer supported, please
migrate to using the spring.cloud.consul.discovery.metadata map.

4.2.6. Making the Consul Instance ID Unique

By default a consul instance is registered with an ID that is equal to its Spring Application Context
ID. By default, the Spring Application Context ID is
${spring.application.name}:comma,separated,profiles:${server.port}. For most cases, this will
allow multiple instances of one service to run on one machine. If further uniqueness is required,
Using Spring Cloud you can override this by providing a unique identifier in
spring.cloud.consul.discovery.instanceId. For example:

application.yml

spring:
 cloud:
 consul:
 discovery:
 instanceId:
${spring.application.name}:${vcap.application.instance_id:${spring.application.instanc
e_id:${random.value}}}

With this metadata, and multiple service instances deployed on localhost, the random value will
kick in there to make the instance unique. In Cloudfoundry the vcap.application.instance_id will
be populated automatically in a Spring Boot application, so the random value will not be needed.

4.3. Looking up services

4.3.1. Using Load-balancer

Spring Cloud has support for Feign (a REST client builder) and also Spring RestTemplate for looking

https://github.com/spring-cloud/spring-cloud-netflix/blob/master/docs/src/main/asciidoc/spring-cloud-netflix.adoc#spring-cloud-feign
https://docs.spring.io/spring-cloud-commons/docs/current/reference/html/#rest-template-loadbalancer-client
https://docs.spring.io/spring-cloud-commons/docs/current/reference/html/#rest-template-loadbalancer-client

up services using the logical service names/ids instead of physical URLs. Both Feign and the
discovery-aware RestTemplate utilize Spring Cloud LoadBalancer for client-side load balancing.

If you want to access service STORES using the RestTemplate simply declare:

@LoadBalanced
@Bean
public RestTemplate loadbalancedRestTemplate() {
 return new RestTemplate();
}

and use it like this (notice how we use the STORES service name/id from Consul instead of a fully
qualified domainname):

@Autowired
RestTemplate restTemplate;

public String getFirstProduct() {
 return this.restTemplate.getForObject("https://STORES/products/1", String.class);
}

If you have Consul clusters in multiple datacenters and you want to access a service in another
datacenter a service name/id alone is not enough. In that case you use property
spring.cloud.consul.discovery.datacenters.STORES=dc-west where STORES is the service name/id and
dc-west is the datacenter where the STORES service lives.

 Spring Cloud now also offers support for Spring Cloud LoadBalancer.

4.3.2. Using the DiscoveryClient

You can also use the org.springframework.cloud.client.discovery.DiscoveryClient which provides a
simple API for discovery clients that is not specific to Netflix, e.g.

@Autowired
private DiscoveryClient discoveryClient;

public String serviceUrl() {
 List<ServiceInstance> list = discoveryClient.getInstances("STORES");
 if (list != null && list.size() > 0) {
 return list.get(0).getUri();
 }
 return null;
}

https://docs.spring.io/spring-cloud-commons/docs/current/reference/html/#spring-cloud-loadbalancer
https://cloud.spring.io/spring-cloud-commons/reference/html/#_spring_resttemplate_as_a_load_balancer_client

4.4. Consul Catalog Watch
The Consul Catalog Watch takes advantage of the ability of consul to watch services. The Catalog
Watch makes a blocking Consul HTTP API call to determine if any services have changed. If there is
new service data a Heartbeat Event is published.

To change the frequency of when the Config Watch is called change
spring.cloud.consul.config.discovery.catalog-services-watch-delay. The default value is 1000,
which is in milliseconds. The delay is the amount of time after the end of the previous invocation
and the start of the next.

To disable the Catalog Watch set
spring.cloud.consul.discovery.catalogServicesWatch.enabled=false.

The watch uses a Spring TaskScheduler to schedule the call to consul. By default it is a
ThreadPoolTaskScheduler with a poolSize of 1. To change the TaskScheduler, create a bean of type
TaskScheduler named with the
ConsulDiscoveryClientConfiguration.CATALOG_WATCH_TASK_SCHEDULER_NAME constant.

5. Distributed Configuration with Consul
Consul provides a Key/Value Store for storing configuration and other metadata. Spring Cloud
Consul Config is an alternative to the Config Server and Client. Configuration is loaded into the
Spring Environment during the special "bootstrap" phase. Configuration is stored in the /config
folder by default. Multiple PropertySource instances are created based on the application’s name
and the active profiles that mimics the Spring Cloud Config order of resolving properties. For
example, an application with the name "testApp" and with the "dev" profile will have the following
property sources created:

config/testApp,dev/
config/testApp/
config/application,dev/
config/application/

The most specific property source is at the top, with the least specific at the bottom. Properties in
the config/application folder are applicable to all applications using consul for configuration.
Properties in the config/testApp folder are only available to the instances of the service named
"testApp".

Configuration is currently read on startup of the application. Sending a HTTP POST to /refresh will
cause the configuration to be reloaded. Config Watch will also automatically detect changes and
reload the application context.

5.1. How to activate
To get started with Consul Configuration use the starter with group org.springframework.cloud and
artifact id spring-cloud-starter-consul-config. See the Spring Cloud Project page for details on

https://www.consul.io/docs/agent/watches.html#services
https://consul.io/docs/agent/http/kv.html
https://github.com/spring-cloud/spring-cloud-config
https://projects.spring.io/spring-cloud/

setting up your build system with the current Spring Cloud Release Train.

5.2. Spring Boot Config Data Import
Spring Boot 2.4 introduced a new way to import configuration data via the spring.config.import
property. This is now the default way to get configuration from Consul.

To optionally connect to Consul set the following in application.properties:

application.properties

spring.config.import=optional:consul:

This will connect to the Consul Agent at the default location of "http://localhost:8500". Removing the
optional: prefix will cause Consul Config to fail if it is unable to connect to Consul. To change the
connection properties of Consul Config either set spring.cloud.consul.host and
spring.cloud.consul.port or add the host/port pair to the spring.config.import statement such as,
spring.config.import=optional:consul:myhost:8500. The location in the import property has
precedence over the host and port propertie.

Consul Config will try to load values from four automatic contexts based on
spring.cloud.consul.config.name (which defaults to the value of the spring.application.name
property) and spring.cloud.consul.config.default-context (which defaults to application). If you
want to specify the contexts rather than using the computed ones, you can add that information to
the spring.config.import statement.

application.properties

spring.config.import=optional:consul:myhost:8500/contextone;/context/two

This will optionally load configuration only from /contextone and /context/two.

A bootstrap file (properties or yaml) is not needed for the Spring Boot Config Data
method of import via spring.config.import.

5.3. Customizing
Consul Config may be customized using the following properties:

spring:
 cloud:
 consul:
 config:
 enabled: true
 prefix: configuration
 defaultContext: apps
 profileSeparator: '::'

If you have set spring.cloud.bootstrap.enabled=true or spring.config.use-legacy-
processing=true, or included spring-cloud-starter-bootstrap, then the above
values will need to be placed in bootstrap.yml instead of application.yml.

• enabled setting this value to "false" disables Consul Config

• prefix sets the base folder for configuration values

• defaultContext sets the folder name used by all applications

• profileSeparator sets the value of the separator used to separate the profile name in property
sources with profiles

5.4. Config Watch
The Consul Config Watch takes advantage of the ability of consul to watch a key prefix. The Config
Watch makes a blocking Consul HTTP API call to determine if any relevant configuration data has
changed for the current application. If there is new configuration data a Refresh Event is published.
This is equivalent to calling the /refresh actuator endpoint.

To change the frequency of when the Config Watch is called change
spring.cloud.consul.config.watch.delay. The default value is 1000, which is in milliseconds. The
delay is the amount of time after the end of the previous invocation and the start of the next.

To disable the Config Watch set spring.cloud.consul.config.watch.enabled=false.

The watch uses a Spring TaskScheduler to schedule the call to consul. By default it is a
ThreadPoolTaskScheduler with a poolSize of 1. To change the TaskScheduler, create a bean of type
TaskScheduler named with the ConsulConfigAutoConfiguration.CONFIG_WATCH_TASK_SCHEDULER_NAME
constant.

5.5. YAML or Properties with Config
It may be more convenient to store a blob of properties in YAML or Properties format as opposed to
individual key/value pairs. Set the spring.cloud.consul.config.format property to YAML or
PROPERTIES. For example to use YAML:

https://www.consul.io/docs/agent/watches.html#keyprefix

spring:
 cloud:
 consul:
 config:
 format: YAML

If you have set spring.cloud.bootstrap.enabled=true or spring.config.use-legacy-
processing=true, or included spring-cloud-starter-bootstrap, then the above
values will need to be placed in bootstrap.yml instead of application.yml.

YAML must be set in the appropriate data key in consul. Using the defaults above the keys would
look like:

config/testApp,dev/data
config/testApp/data
config/application,dev/data
config/application/data

You could store a YAML document in any of the keys listed above.

You can change the data key using spring.cloud.consul.config.data-key.

5.6. git2consul with Config
git2consul is a Consul community project that loads files from a git repository to individual keys
into Consul. By default the names of the keys are names of the files. YAML and Properties files are
supported with file extensions of .yml and .properties respectively. Set the
spring.cloud.consul.config.format property to FILES. For example:

bootstrap.yml

spring:
 cloud:
 consul:
 config:
 format: FILES

Given the following keys in /config, the development profile and an application name of foo:

.gitignore
application.yml
bar.properties
foo-development.properties
foo-production.yml
foo.properties
master.ref

the following property sources would be created:

config/foo-development.properties
config/foo.properties
config/application.yml

The value of each key needs to be a properly formatted YAML or Properties file.

5.7. Fail Fast
It may be convenient in certain circumstances (like local development or certain test scenarios) to
not fail if consul isn’t available for configuration. Setting spring.cloud.consul.config.fail-
fast=false will cause the configuration module to log a warning rather than throw an exception.
This will allow the application to continue startup normally.

If you have set spring.cloud.bootstrap.enabled=true or spring.config.use-legacy-
processing=true, or included spring-cloud-starter-bootstrap, then the above
values will need to be placed in bootstrap.yml instead of application.yml.

6. Consul Retry
If you expect that the consul agent may occasionally be unavailable when your app starts, you can
ask it to keep trying after a failure. You need to add spring-retry and spring-boot-starter-aop to
your classpath. The default behaviour is to retry 6 times with an initial backoff interval of 1000ms
and an exponential multiplier of 1.1 for subsequent backoffs. You can configure these properties
(and others) using spring.cloud.consul.retry.* configuration properties. This works with both
Spring Cloud Consul Config and Discovery registration.

To take full control of the retry add a @Bean of type RetryOperationsInterceptor with
id "consulRetryInterceptor". Spring Retry has a RetryInterceptorBuilder that
makes it easy to create one.

7. Spring Cloud Bus with Consul

7.1. How to activate
To get started with the Consul Bus use the starter with group org.springframework.cloud and artifact
id spring-cloud-starter-consul-bus. See the Spring Cloud Project page for details on setting up your
build system with the current Spring Cloud Release Train.

See the Spring Cloud Bus documentation for the available actuator endpoints and howto send
custom messages.

8. Circuit Breaker with Hystrix
Applications can use the Hystrix Circuit Breaker provided by the Spring Cloud Netflix project by
including this starter in the projects pom.xml: spring-cloud-starter-hystrix. Hystrix doesn’t
depend on the Netflix Discovery Client. The @EnableHystrix annotation should be placed on a
configuration class (usually the main class). Then methods can be annotated with @HystrixCommand
to be protected by a circuit breaker. See the documentation for more details.

9. Hystrix metrics aggregation with Turbine
and Consul
Turbine (provided by the Spring Cloud Netflix project), aggregates multiple instances Hystrix
metrics streams, so the dashboard can display an aggregate view. Turbine uses the DiscoveryClient
interface to lookup relevant instances. To use Turbine with Spring Cloud Consul, configure the
Turbine application in a manner similar to the following examples:

pom.xml

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-netflix-turbine</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-consul-discovery</artifactId>
</dependency>

Notice that the Turbine dependency is not a starter. The turbine starter includes support for Netflix
Eureka.

https://projects.spring.io/spring-cloud/
https://cloud.spring.io/spring-cloud-bus/
https://projects.spring.io/spring-cloud/spring-cloud.html#_circuit_breaker_hystrix_clients

application.yml

spring.application.name: turbine
applications: consulhystrixclient
turbine:
 aggregator:
 clusterConfig: ${applications}
 appConfig: ${applications}

The clusterConfig and appConfig sections must match, so it’s useful to put the comma-separated list
of service ID’s into a separate configuration property.

Turbine.java

@EnableTurbine
@SpringBootApplication
public class Turbine {
 public static void main(String[] args) {
 SpringApplication.run(DemoturbinecommonsApplication.class, args);
 }
}

10. Configuration Properties
To see the list of all Consul related configuration properties please check the Appendix page.

Spring Cloud Contract Reference
Documentation
Adam Dudczak, Mathias Düsterhöft, Marcin Grzejszczak, Dennis Kieselhorst, Jakub Kubryński,
Karol Lassak, Olga Maciaszek-Sharma, Mariusz Smykuła, Dave Syer, Jay Bryant

The reference documentation consists of the following sections:

Legal Legal information.

Documentation Overview About the Documentation, Getting Help, First Steps, and
more.

Getting Started Introducing Spring Cloud Contract, Developing Your First
Spring Cloud Contract-based Application

Using Spring Cloud Contract Spring Cloud Contract usage examples and workflows.

appendix.html
legal.pdf#legal-information
documentation-overview.pdf#contract-documentation
getting-started.pdf#getting-started
using.pdf#using

Spring Cloud Contract Features Contract DSL, Messaging, Spring Cloud Contract Stub
Runner, and Spring Cloud Contract WireMock.

Build Tools Maven Plugin, Gradle Plugin, and Docker.

“How-to” Guides Stubs versioning, Debugging, and more.

Appendices Properties, Metadata, Configuration, Dependencies, and
more.

Spring Cloud Function
Mark Fisher, Dave Syer, Oleg Zhurakousky, Anshul Mehra, Dan Dobrin

4.0.5

1. Introduction
Spring Cloud Function is a project with the following high-level goals:

• Promote the implementation of business logic via functions.

• Decouple the development lifecycle of business logic from any specific runtime target so that
the same code can run as a web endpoint, a stream processor, or a task.

• Support a uniform programming model across serverless providers, as well as the ability to run
standalone (locally or in a PaaS).

• Enable Spring Boot features (auto-configuration, dependency injection, metrics) on serverless
providers.

It abstracts away all of the transport details and infrastructure, allowing the developer to keep all
the familiar tools and processes, and focus firmly on business logic.

Here’s a complete, executable, testable Spring Boot application (implementing a simple string
manipulation):

project-features.pdf#features
project-features.pdf#features-build-tools
howto.pdf#howto
appendix.pdf#appendix

@SpringBootApplication
public class Application {

 @Bean
 public Function<String, String> uppercase() {
 return value -> value.toUpperCase();
 }

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }
}

It’s just a Spring Boot application, so it can be built, run and tested, locally and in a CI build, the
same way as any other Spring Boot application. The Function is from java.util and Flux is a
Reactive Streams Publisher from Project Reactor. The function can be accessed over HTTP or
messaging.

Spring Cloud Function has the following features:

• Choice of programming styles - reactive, imperative or hybrid.

• Function composition and adaptation (e.g., composing imperative functions with reactive).

• Support for reactive function with multiple inputs and outputs allowing merging, joining and
other complex streaming operation to be handled by functions.

• Transparent type conversion of inputs and outputs.

• Packaging functions for deployments, specific to the target platform (e.g., Project Riff, AWS
Lambda and more)

• Adapters to expose function to the outside world as HTTP endpoints etc.

• Deploying a JAR file containing such an application context with an isolated classloader, so that
you can pack them together in a single JVM.

• Adapters for AWS Lambda, Azure, Google Cloud Functions, and possibly other "serverless" service
providers.

Spring Cloud is released under the non-restrictive Apache 2.0 license. If you would
like to contribute to this section of the documentation or if you find an error,
please find the source code and issue trackers in the project at github.

2. Getting Started
Build from the command line (and "install" the samples):

$./mvnw clean install

https://www.reactive-streams.org/
https://projectreactor.io/
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-adapters/spring-cloud-function-adapter-aws
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-adapters/spring-cloud-function-adapter-azure
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-adapters/spring-cloud-function-adapter-gcp
https://github.com/spring-cloud/spring-cloud

(If you like to YOLO add -DskipTests.)

Run one of the samples, e.g.

$ java -jar spring-cloud-function-samples/function-sample/target/*.jar

This runs the app and exposes its functions over HTTP, so you can convert a string to uppercase,
like this:

$ curl -H "Content-Type: text/plain" localhost:8080/uppercase -d Hello
HELLO

You can convert multiple strings (a Flux<String>) by separating them with new lines

$ curl -H "Content-Type: text/plain" localhost:8080/uppercase -d 'Hello
> World'
HELLOWORLD

(You can use QJ in a terminal to insert a new line in a literal string like that.)

3. Programming model

3.1. Function Catalog and Flexible Function Signatures
One of the main features of Spring Cloud Function is to adapt and support a range of type
signatures for user-defined functions, while providing a consistent execution model. That’s why all
user defined functions are transformed into a canonical representation by FunctionCatalog.

While users don’t normally have to care about the FunctionCatalog at all, it is useful to know what
kind of functions are supported in user code.

It is also important to understand that Spring Cloud Function provides first class support for
reactive API provided by Project Reactor allowing reactive primitives such as Mono and Flux to be
used as types in user defined functions providing greater flexibility when choosing programming
model for your function implementation. Reactive programming model also enables functional
support for features that would be otherwise difficult to impossible to implement using imperative
programming style. For more on this please read Function Arity section.

3.2. Java 8 function support
Spring Cloud Function embraces and builds on top of the 3 core functional interfaces defined by
Java and available to us since Java 8.

• Supplier<O>

https://projectreactor.io/

• Function<I, O>

• Consumer<I>

To avoid constantly mentioning Supplier, Function and Consumer we’ll refer to them a Functional
beans for the rest of this manual where appropriate.

In a nutshell, any bean in your Application Context that is Functional bean will lazily be registered
with FunctionCatalog. This means that it could benefit from all of the additional features described
in this reference manual.

In a simplest of application all you need to do is to declare @Bean of type Supplier, Function or
Consumer in your application configuration. Then you can access FunctionCatalog and lookup a
particular function based on its name.

For example:

@Bean
public Function<String, String> uppercase() {
 return value -> value.toUpperCase();
}

. . .

FunctionCatalog catalog = applicationContext.getBean(FunctionCatalog.class);
Function uppercase = catalog.lookup(“uppercase”);

Important to understand that given that uppercase is a bean, you can certainly get it form the
ApplicationContext directly, but all you will get is just your bean as you declared it without any
extra features provided by SCF. When you do lookup of a function via FunctionCatalog, the instance
you will receive is wrapped (instrumented) with additional features (i.e., type conversion,
composition etc.) described in this manual. Also, it is important to understand that a typical user
does not use Spring Cloud Function directly. Instead a typical user implements Java
Function/Supplier/Consumer with the idea of using it in different execution contexts without
additional work. For example the same java function could be represented as REST endpoint or
Streaming message handler or AWS Lambda and more via Spring Cloud Function provided adapters
as well as other frameworks using Spring Cloud Function as the core programming model (e.g.,
Spring Cloud Stream) So in summary Spring Cloud Function instruments java functions with
additional features to be utilised in variety of execution contexts.

3.2.1. Function definition

While the previous example shows you how to lookup function in FunctionCatalog
programmatically, in a typical integration case where Spring Cloud Function used as programming
model by another framework (e.fg. Spring Cloud Stream), you declare which functions to use via
spring.cloud.function.definition property. Knowing that it is important to understand some
default behaviour when it comes to discovering functions in FunctionCatalog. For example, if you
only have one Functional bean in your ApplicationContext, the spring.cloud.function.definition
property typically will not be required, since a single function in FunctionCatalog can be looked up

https://spring.io/projects/spring-cloud-stream

by an empty name or any name. For example, assuming that uppercase is the only function in your
catalog, it can be looked up as catalog.lookup(null), catalog.lookup(“”), catalog.lookup(“foo”) That
said, for cases where you are using framework such as Spring Cloud Stream which uses
spring.cloud.function.definition it is best practice and recommended to always use
spring.cloud.function.definition property.

For example,

spring.cloud.function.definition=uppercase

3.2.2. Filtering ineligible functions

A typical Application Context may include beans that are valid java functions, but not intended to
be candidates to be registered with FunctionCatalog. Such beans could be auto-configurations from
other projects or any other beans that qualify to be Java functions. The framework provides default
filtering of known beans that should not be candidates for registration with function catalog. You
can also add to this list additional beans by providing coma delimited list of bean definition names
using spring.cloud.function.ineligible-definitions property.

For example,

spring.cloud.function.ineligible-definitions=foo,bar

3.2.3. Supplier

Supplier can be reactive - Supplier<Flux<T>> or imperative - Supplier<T>. From the invocation
standpoint this should make no difference to the implementor of such Supplier. However, when
used within frameworks (e.g., Spring Cloud Stream), Suppliers, especially reactive, often used to
represent the source of the stream, therefore they are invoked once to get the stream (e.g., Flux) to
which consumers can subscribe to. In other words such suppliers represent an equivalent of an
infinite stream. However, the same reactive suppliers can also represent finite stream(s) (e.g., result
set on the polled JDBC data). In those cases such reactive suppliers must be hooked up to some
polling mechanism of the underlying framework.

To assist with that Spring Cloud Function provides a marker annotation
org.springframework.cloud.function.context.PollableBean to signal that such supplier produces a
finite stream and may need to be polled again. That said, it is important to understand that Spring
Cloud Function itself provides no behavior for this annotation.

In addition PollableBean annotation exposes a splittable attribute to signal that produced stream
needs to be split (see Splitter EIP)

Here is the example:

https://spring.io/projects/spring-cloud-stream
https://www.enterpriseintegrationpatterns.com/patterns/messaging/Sequencer.html

@PollableBean(splittable = true)
public Supplier<Flux<String>> someSupplier() {
 return () -> {
 String v1 = String.valueOf(System.nanoTime());
 String v2 = String.valueOf(System.nanoTime());
 String v3 = String.valueOf(System.nanoTime());
 return Flux.just(v1, v2, v3);
 };
}

3.2.4. Function

Function can also be written in imperative or reactive way, yet unlike Supplier and Consumer there
are no special considerations for the implementor other then understanding that when used within
frameworks such as Spring Cloud Stream and others, reactive function is invoked only once to pass
a reference to the stream (Flux or Mono) and imperative is invoked once per event.

3.2.5. Consumer

Consumer is a little bit special because it has a void return type, which implies blocking, at least
potentially. Most likely you will not need to write Consumer<Flux<?>>, but if you do need to do that,
remember to subscribe to the input flux.

3.3. Function Composition
Function Composition is a feature that allows one to compose several functions into one. The core
support is based on function composition feature available with Function.andThen(..) support
available since Java 8. However on top of it, we provide few additional features.

3.3.1. Declarative Function Composition

This feature allows you to provide composition instruction in a declarative way using | (pipe) or ,
(comma) delimiter when providing spring.cloud.function.definition property.

For example

--spring.cloud.function.definition=uppercase|reverse

Here we effectively provided a definition of a single function which itself is a composition of
function uppercase and function reverse. In fact that is one of the reasons why the property name is
definition and not name, since the definition of a function can be a composition of several named
functions. And as mentioned you can use , instead of pipe (such as …
definition=uppercase,reverse).

https://spring.io/projects/spring-cloud-stream
https://docs.oracle.com/javase/8/docs/api/java/util/function/Function.html#andThen-java.util.function.Function-

3.3.2. Composing non-Functions

Spring Cloud Function also supports composing Supplier with Consumer or Function as well as
Function with Consumer. What’s important here is to understand the end product of such definitions.
Composing Supplier with Function still results in Supplier while composing Supplier with
Consumer will effectively render Runnable. Following the same logic composing Function with
Consumer will result in Consumer.

And of course you can’t compose uncomposable such as Consumer and Function, Consumer and
Supplier etc.

3.4. Function Routing and Filtering
Since version 2.2 Spring Cloud Function provides routing feature allowing you to invoke a single
function which acts as a router to an actual function you wish to invoke This feature is very useful
in certain FAAS environments where maintaining configurations for several functions could be
cumbersome or exposing more than one function is not possible.

The RoutingFunction is registered in FunctionCatalog under the name functionRouter. For simplicity
and consistency you can also refer to RoutingFunction.FUNCTION_NAME constant.

This function has the following signature:

public class RoutingFunction implements Function<Object, Object> {
. . .
}

The routing instructions could be communicated in several ways. We support providing
instructions via Message headers, System properties as well as pluggable strategy. So let’s look at
some of the details

3.4.1. MessageRoutingCallback

The MessageRoutingCallback is a strategy to assist with determining the name of the route-to
function definition.

public interface MessageRoutingCallback {
 FunctionRoutingResult routingResult(Message<?> message);
 . . .
}

All you need to do is implement and register it as a bean to be picked up by the RoutingFunction. For
example:

@Bean
public MessageRoutingCallback customRouter() {
 return new MessageRoutingCallback() {
 @Override
 public FunctionRoutingResult routingResult(Message<?> message) {
 return new FunctionRoutingResult((String)
message.getHeaders().get("func_name"));
 }
 };
}

In the preceding example you can see a very simple implementation of MessageRoutingCallback
which determines the function definition from func_name Message header of the incoming Message
and returns the instance of FunctionRoutingResult containing the definition of function to invoke.

Message Headers

If the input argument is of type Message<?>, you can communicate routing instruction by setting one
of spring.cloud.function.definition or spring.cloud.function.routing-expression Message headers.
As the name of the property suggests spring.cloud.function.routing-expression relies on Spring
Expression Language (SpEL). For more static cases you can use spring.cloud.function.definition
header which allows you to provide the name of a single function (e.g., …definition=foo) or a
composition instruction (e.g., …definition=foo|bar|baz). For more dynamic cases you can use
spring.cloud.function.routing-expression header and provide SpEL expression that should resolve
into definition of a function (as described above).

SpEL evaluation context’s root object is the actual input argument, so in the case of
Message<?> you can construct expression that has access to both payload and
headers (e.g., spring.cloud.function.routing-expression=headers.function_name).

SpEL allows user to provide string representation of Java code to be executed.
Given that the spring.cloud.function.routing-expression could be provided via
Message headers means that ability to set such expression could be exposed to the
end user (i.e., HTTP Headers when using web module) which could result in some
problems (e.g., malicious code). To manage that, all expressions coming via
Message headers will only be evaluated against SimpleEvaluationContext which has
limited functionality and designed to only evaluate the context object (Message in
our case). On the other hand, all expressions that are set via property or system
variable are evaluated against StandardEvaluationContext, which allows for full
flexibility of Java language. While setting expression via system/application
property or environment variable is generally considered to be secure as it is not
exposed to the end user in normal cases, there are cases where visibility as well as
capability to update system, application and environment variables are indeed
exposed to the end user via Spring Boot Actuator endpoints provided either by
some of the Spring projects or third parties or custom implementation by the end
user. Such endpoints must be secured using industry standard web security
practices. Spring Cloud Function does not expose any of such endpoints.

In specific execution environments/models the adapters are responsible to translate and
communicate spring.cloud.function.definition and/or spring.cloud.function.routing-expression
via Message header. For example, when using spring-cloud-function-web you can provide
spring.cloud.function.definition as an HTTP header and the framework will propagate it as well
as other HTTP headers as Message headers.

Application Properties

Routing instruction can also be communicated via spring.cloud.function.definition or
spring.cloud.function.routing-expression as application properties. The rules described in the
previous section apply here as well. The only difference is you provide these instructions as
application properties (e.g., --spring.cloud.function.definition=foo).

It is important to understand that providing spring.cloud.function.definition or
spring.cloud.function.routing-expression as Message headers will only work for
imperative functions (e.g., Function<Foo, Bar>). That is to say that we can only
route per-message with imperative functions. With reactive functions we can not
route per-message. Therefore you can only provide your routing instructions as
Application Properties. It’s all about unit-of-work. In imperative function unit of
work is Message so we can route based on such unit-of-work. With reactive
function unit-of-work is the entire stream, so we’ll act only on the instruction
provided via application properties and route the entire stream.

Order of priority for routing instructions

Given that we have several mechanisms of providing routing instructions it is important to
understand the priorities for conflict resolutions in the event multiple mechanisms are used at the
same time, so here is the order:

1. MessageRoutingCallback (If function is imperative will take over regardless if anything else is
defined)

2. Message Headers (If function is imperative and no MessageRoutingCallback provided)

3. Application Properties (Any function)

Unroutable Messages

In the event route-to function is not available in catalog you will get an exception stating that.

There are cases when such behavior is not desired and you may want to have some "catch-all" type
function which can handle such messages. To accomplish that, framework provides
org.springframework.cloud.function.context.DefaultMessageRoutingHandler strategy. All you need to
do is register it as a bean. Its default implementation will simply log the fact that the message is un-
routable, but will allow message flow to proceed without the exception, effectively dropping the un-
routable message. If you want something more sophisticated all you need to do is provide your own
implementation of this strategy and register it as a bean.

@Bean
public DefaultMessageRoutingHandler defaultRoutingHandler() {
 return new DefaultMessageRoutingHandler() {
 @Override
 public void accept(Message<?> message) {
 // do something really cool
 }
 };
}

3.4.2. Function Filtering

Filtering is the type of routing where there are only two paths - 'go' or 'discard'. In terms of
functions it mean you only want to invoke a certain function if some condition returns 'true',
otherwise you want to discard input. However, when it comes to discarding input there are many
interpretation of what it could mean in the context of your application. For example, you may want
to log it, or you may want to maintain the counter of discarded messages. you may also want to do
nothing at all. Because of these different paths, we do not provide a general configuration option
for how to deal with discarded messages. Instead we simply recommend to define a simple
Consumer which would signify the 'discard' path:

@Bean
public Consumer<?> devNull() {
 // log, count or whatever
}

Now you can have routing expression that really only has two paths effectively becoming a filter.
For example:

--spring.cloud.function.routing
-expression=headers.contentType.toString().equals('text/plain') ? 'echo' : 'devNull'

Every message that does not fit criteria to go to 'echo' function will go to 'devNull' where you can
simply do nothing with it. The signature Consumer<?> will also ensure that no type conversion will
be attempted resulting in almost no execution overhead.

When dealing with reactive inputs (e.g., Publisher), routing instructions must only
be provided via Function properties. This is due to the nature of the reactive
functions which are invoked only once to pass a Publisher and the rest is handled
by the reactor, hence we can not access and/or rely on the routing instructions
communicated via individual values (e.g., Message).

3.4.3. Multiple Routers

By default the framework will always have a single routing function configured as described in

previous sections. However, there are times when you may need more than one routing function.
In that case you can create your own instance of the RoutingFunction bean in addition to the
existing one as long as you give it a name other than functionRouter.

You can pass spring.cloud.function.routing-expression or spring.cloud.function.definition to
RoutinFunction as key/value pairs in the map.

Here is a simple example

@Configuration
protected static class MultipleRouterConfiguration {

 @Bean
 RoutingFunction mySpecialRouter(FunctionCatalog functionCatalog, BeanFactory
beanFactory, @Nullable MessageRoutingCallback routingCallback) {
 Map<String, String> propertiesMap = new HashMap<>();
 propertiesMap.put(FunctionProperties.PREFIX + ".routing-expression",
"'reverse'");
 return new RoutingFunction(functionCatalog, propertiesMap, new
BeanFactoryResolver(beanFactory), routingCallback);
 }

 @Bean
 public Function<String, String> reverse() {
 return v -> new StringBuilder(v).reverse().toString();
 }

 @Bean
 public Function<String, String> uppercase() {
 return String::toUpperCase;
 }
}

and a test that demonstrates how it works

`

@Test
public void testMultipleRouters() {
 System.setProperty(FunctionProperties.PREFIX + ".routing-expression",
"'uppercase'");
 FunctionCatalog functionCatalog =
this.configureCatalog(MultipleRouterConfiguration.class);
 Function function = functionCatalog.lookup(RoutingFunction.FUNCTION_NAME);
 assertThat(function).isNotNull();
 Message<String> message = MessageBuilder.withPayload("hello").build();
 assertThat(function.apply(message)).isEqualTo("HELLO");

 function = functionCatalog.lookup("mySpecialRouter");
 assertThat(function).isNotNull();
 message = MessageBuilder.withPayload("hello").build();
 assertThat(function.apply(message)).isEqualTo("olleh");
}

3.5. Input/Output Enrichment
There are often times when you need to modify or refine an incoming or outgoing Message and to
keep your code clean of non-functional concerns. You don’t want to do it inside of your business
logic.

You can always accomplish it via Function Composition. Such approach provides several benefits:

• It allows you to isolate this non-functional concern into a separate function which you can
compose with the business function as function definition.

• It provides you with complete freedom (and danger) as to what you can modify before incoming
message reaches the actual business function.

@Bean
public Function<Message<?>, Message<?>> enrich() {
 return message -> MessageBuilder.fromMessage(message).setHeader("foo",
"bar").build();
}

@Bean
public Function<Message<?>, Message<?>> myBusinessFunction() {
 // do whatever
}

And then compose your function by providing the following function definition
enrich|myBusinessFunction.

While the described approach is the most flexible, it is also the most involved as it requires you to
write some code, make it a bean or manually register it as a function before you can compose it
with the business function as you can see from the preceding example.

But what if modifications (enrichments) you are trying to make are trivial as they are in the
preceding example? Is there a simpler and more dynamic and configurable mechanism to
accomplish the same?

Since version 3.1.3, the framework allows you to provide SpEL expression to enrich individual
message headers for both input going into function and and output coming out of it. Let’s look at
one of the tests as the example.

@Test
public void testMixedInputOutputHeaderMapping() throws Exception {
 try (ConfigurableApplicationContext context = new SpringApplicationBuilder(
 SampleFunctionConfiguration.class).web(WebApplicationType.NONE).run(
 "--logging.level.org.springframework.cloud.function=DEBUG",
 "--spring.main.lazy-initialization=true",
 "--spring.cloud.function.configuration.split.output-header-
mapping-expression.keyOut1='hello1'",
 "--spring.cloud.function.configuration.split.output-header-
mapping-expression.keyOut2=headers.contentType",
 "--spring.cloud.function.configuration.split.input-header-mapping-
expression.key1=headers.path.split('/')[0]",
 "--spring.cloud.function.configuration.split.input-header-mapping-
expression.key2=headers.path.split('/')[1]",
 "--spring.cloud.function.configuration.split.input-header-mapping-
expression.key3=headers.path")) {

 FunctionCatalog functionCatalog = context.getBean(FunctionCatalog.class);
 FunctionInvocationWrapper function = functionCatalog.lookup("split");
 Message<byte[]> result = (Message<byte[]>)
function.apply(MessageBuilder.withPayload("helo")
 .setHeader(MessageHeaders.CONTENT_TYPE, "application/json")
 .setHeader("path", "foo/bar/baz").build());
 assertThat(result.getHeaders().containsKey("keyOut1")).isTrue();
 assertThat(result.getHeaders().get("keyOut1")).isEqualTo("hello1");
 assertThat(result.getHeaders().containsKey("keyOut2")).isTrue();
 assertThat(result.getHeaders().get("keyOut2")).isEqualTo("application/json");
 }
}

Here you see a properties called input-header-mapping-expression and output-header-mapping-
expression preceded by the name of the function (i.e., split) and followed by the name of the
message header key you want to set and the value as SpEL expression. The first expression (for
'keyOut1') is literal SpEL expressions enclosed in single quotes, effectively setting 'keyOut1' to value
hello1. The keyOut2 is set to the value of existing 'contentType' header.

You can also observe some interesting features in the input header mapping where we actually
splitting a value of the existing header 'path', setting individual values of key1 and key2 to the
values of split elements based on the index.

if for whatever reason the provided expression evaluation fails, the execution of
the function will proceed as if nothing ever happen. However you will see the
WARN message in your logs informing you about it

o.s.c.f.context.catalog.InputEnricher : Failed while evaluating expression "hello1"
on incoming message. . .

In the event you are dealing with functions that have multiple inputs (next section), you can use
index immediately after input-header-mapping-expression

--spring.cloud.function.configuration.echo.input-header-mapping
-expression[0].key1=‘hello1'
--spring.cloud.function.configuration.echo.input-header-mapping
-expression[1].key2='hello2'

3.6. Function Arity
There are times when a stream of data needs to be categorized and organized. For example,
consider a classic big-data use case of dealing with unorganized data containing, let’s say, ‘orders’
and ‘invoices’, and you want each to go into a separate data store. This is where function arity
(functions with multiple inputs and outputs) support comes to play.

Let’s look at an example of such a function (full implementation details are available here),

@Bean
public Function<Flux<Integer>, Tuple2<Flux<String>, Flux<String>>> organise() {
 return flux -> ...;
}

Given that Project Reactor is a core dependency of SCF, we are using its Tuple library. Tuples give us
a unique advantage by communicating to us both cardinality and type information. Both are
extremely important in the context of SCSt. Cardinality lets us know how many input and output
bindings need to be created and bound to the corresponding inputs and outputs of a function.
Awareness of the type information ensures proper type conversion.

Also, this is where the ‘index’ part of the naming convention for binding names comes into play,
since, in this function, the two output binding names are organise-out-0 and organise-out-1.

IMPORTANT: At the moment, function arity is only supported for reactive
functions (Function<TupleN<Flux<?>…>, TupleN<Flux<?>…>>) centered on Complex
event processing where evaluation and computation on confluence of events
typically requires view into a stream of events rather than single event.

https://github.com/spring-cloud/spring-cloud-stream/blob/master/spring-cloud-stream/src/test/java/org/springframework/cloud/stream/function/MultipleInputOutputFunctionTests.java#L342

3.7. Input Header propagation
In a typical scenario input Message headers are not propagated to output and rightfully so, since
the output of a function may be an input to something else requiring it’s own set of Message
headers. However, there are times when such propagation may be necessary so Spring Cloud
Function provides several mechanisms to accomplish this.

First you can always copy headers manually. For example, if you have a Function with the
signature that takes Message and returns Message (i.e., Function<Message, Message>), you can simply
and selectively copy headers yourselves. Remember, if your function returns Message, the
framework will not do anything to it other then properly converting its payload. However, such
approach may prove to be a bit tedious, especially in cases when you simply want to copy all
headers. To assist with cases like this we provide a simple property that would allow you to set a
boolean flag on a function where you want input headers to be propagated. The property is copy-
input-headers.

For example, let’s assume you have the following configuration:

@EnableAutoConfiguration
@Configuration
protected static class InputHeaderPropagationConfiguration {

 @Bean
 public Function<String, String> uppercase() {
 return x -> x.toUpperCase();
 }
}

As you know you can still invoke this function by sending a Message to it (framework will take care
of type conversion and payload extraction)

By simply setting spring.cloud.function.configuration.uppercase.copy-input-headers to true, the
following assertion will be true as well

Function<Message<String>, Message<byte[]>> uppercase = catalog.lookup("uppercase",
"application/json");
Message<byte[]> result =
uppercase.apply(MessageBuilder.withPayload("bob").setHeader("foo", "bar").build());
assertThat(result.getHeaders()).containsKey("foo");

3.8. Type conversion (Content-Type negotiation)
Content-Type negotiation is one of the core features of Spring Cloud Function as it allows to not
only transform the incoming data to the types declared by the function signature, but to do the
same transformation during function composition making otherwise un-composable (by type)
functions composable.

To better understand the mechanics and the necessity behind content-type negotiation, we take a
look at a very simple use case by using the following function as an example:

@Bean
public Function<Person, String> personFunction {..}

The function shown in the preceding example expects a Person object as an argument and produces
a String type as an output. If such function is invoked with the type Person, than all works fine. But
typically function plays a role of a handler for the incoming data which most often comes in the
raw format such as byte[], JSON String etc. In order for the framework to succeed in passing the
incoming data as an argument to this function, it has to somehow transform the incoming data to a
Person type.

Spring Cloud Function relies on two native to Spring mechanisms to accomplish that.

1. MessageConverter - to convert from incoming Message data to a type declared by the function.

2. ConversionService - to convert from incoming non-Message data to a type declared by the
function.

This means that depending on the type of the raw data (Message or non-Message) Spring Cloud
Function will apply one or the other mechanisms.

For most cases when dealing with functions that are invoked as part of some other request (e.g.,
HTTP, Messaging etc) the framework relies on MessageConverters, since such requests already
converted to Spring Message. In other words, the framework locates and applies the appropriate
MessageConverter. To accomplish that, the framework needs some instructions from the user. One of
these instructions is already provided by the signature of the function itself (Person type).
Consequently, in theory, that should be (and, in some cases, is) enough. However, for the majority of
use cases, in order to select the appropriate MessageConverter, the framework needs an additional
piece of information. That missing piece is contentType header.

Such header usually comes as part of the Message where it is injected by the corresponding adapter
that created such Message in the first place. For example, HTTP POST request will have its content-
type HTTP header copied to contentType header of the Message.

For cases when such header does not exist framework relies on the default content type as
application/json.

3.8.1. Content Type versus Argument Type

As mentioned earlier, for the framework to select the appropriate MessageConverter, it requires
argument type and, optionally, content type information. The logic for selecting the appropriate
MessageConverter resides with the argument resolvers which trigger right before the invocation of
the user-defined function (which is when the actual argument type is known to the framework). If
the argument type does not match the type of the current payload, the framework delegates to the
stack of the pre-configured MessageConverters to see if any one of them can convert the payload.

The combination of contentType and argument type is the mechanism by which framework

determines if message can be converted to a target type by locating the appropriate
MessageConverter. If no appropriate MessageConverter is found, an exception is thrown, which you
can handle by adding a custom MessageConverter (see User-defined Message Converters).

Do not expect Message to be converted into some other type based only on the
contentType. Remember that the contentType is complementary to the target type. It
is a hint, which MessageConverter may or may not take into consideration.

3.8.2. Message Converters

MessageConverters define two methods:

Object fromMessage(Message<?> message, Class<?> targetClass);

Message<?> toMessage(Object payload, @Nullable MessageHeaders headers);

It is important to understand the contract of these methods and their usage, specifically in the
context of Spring Cloud Stream.

The fromMessage method converts an incoming Message to an argument type. The payload of the
Message could be any type, and it is up to the actual implementation of the MessageConverter to
support multiple types.

3.8.3. Provided MessageConverters

As mentioned earlier, the framework already provides a stack of MessageConverters to handle most
common use cases. The following list describes the provided MessageConverters, in order of
precedence (the first MessageConverter that works is used):

1. JsonMessageConverter: Supports conversion of the payload of the Message to/from POJO for cases
when contentType is application/json using Jackson (DEFAULT) or Gson libraries. This message
converter also aware of type parameter (e.g., application/json;type=foo.bar.Person). This is useful
for cases where types may not be known at the time when function is developed, hence function
signature may look like Function<?, ?> or Function or Function<Object, Object>. In other words
for type conversion we typically derive type from function signature. Having, mime-type
parameter allows you to communicate type in a more dynamic way.

2. ByteArrayMessageConverter: Supports conversion of the payload of the Message from byte[] to
byte[] for cases when contentType is application/octet-stream. It is essentially a pass through
and exists primarily for backward compatibility.

3. StringMessageConverter: Supports conversion of any type to a String when contentType is
text/plain.

When no appropriate converter is found, the framework throws an exception. When that happens,
you should check your code and configuration and ensure you did not miss anything (that is,
ensure that you provided a contentType by using a binding or a header). However, most likely, you
found some uncommon case (such as a custom contentType perhaps) and the current stack of
provided MessageConverters does not know how to convert. If that is the case, you can add custom

MessageConverter. See User-defined Message Converters.

3.8.4. User-defined Message Converters

Spring Cloud Function exposes a mechanism to define and register additional MessageConverters. To
use it, implement org.springframework.messaging.converter.MessageConverter, configure it as a
@Bean. It is then appended to the existing stack of `MessageConverter`s.

It is important to understand that custom MessageConverter implementations are
added to the head of the existing stack. Consequently, custom MessageConverter
implementations take precedence over the existing ones, which lets you override
as well as add to the existing converters.

The following example shows how to create a message converter bean to support a new content
type called application/bar:

@SpringBootApplication
public static class SinkApplication {

 ...

 @Bean
 public MessageConverter customMessageConverter() {
 return new MyCustomMessageConverter();
 }
}

public class MyCustomMessageConverter extends AbstractMessageConverter {

 public MyCustomMessageConverter() {
 super(new MimeType("application", "bar"));
 }

 @Override
 protected boolean supports(Class<?> clazz) {
 return (Bar.class.equals(clazz));
 }

 @Override
 protected Object convertFromInternal(Message<?> message, Class<?> targetClass,
Object conversionHint) {
 Object payload = message.getPayload();
 return (payload instanceof Bar ? payload : new Bar((byte[]) payload));
 }
}

3.8.5. Note on JSON options

In Spring Cloud Function we support Jackson and Gson mechanisms to deal with JSON. And for
your benefit have abstracted it under org.springframework.cloud.function.json.JsonMapper which
itself is aware of two mechanisms and will use the one selected by you or following the default rule.
The default rules are as follows:

• Whichever library is on the classpath that is the mechanism that is going to be used. So if you
have com.fasterxml.jackson.* to the classpath, Jackson is going to be used and if you have
com.google.code.gson, then Gson will be used.

• If you have both, then Gson will be the default, or you can set spring.cloud.function.preferred-
json-mapper property with either of two values: gson or jackson.

That said, the type conversion is usually transparent to the developer, however given that
org.springframework.cloud.function.json.JsonMapper is also registered as a bean you can easily
inject it into your code if needed.

3.9. Kotlin Lambda support
We also provide support for Kotlin lambdas (since v2.0). Consider the following:

@Bean
open fun kotlinSupplier(): () -> String {
 return { "Hello from Kotlin" }
}

@Bean
open fun kotlinFunction(): (String) -> String {
 return { it.toUpperCase() }
}

@Bean
open fun kotlinConsumer(): (String) -> Unit {
 return { println(it) }
}

The above represents Kotlin lambdas configured as Spring beans. The signature of each maps to a
Java equivalent of Supplier, Function and Consumer, and thus supported/recognized signatures by the
framework. While mechanics of Kotlin-to-Java mapping are outside of the scope of this
documentation, it is important to understand that the same rules for signature transformation
outlined in "Java 8 function support" section are applied here as well.

To enable Kotlin support all you need is to add Kotlin SDK libraries on the classpath which will
trigger appropriate autoconfiguration and supporting classes.

3.10. Function Component Scan
Spring Cloud Function will scan for implementations of Function, Consumer and Supplier in a
package called functions if it exists. Using this feature you can write functions that have no
dependencies on Spring - not even the @Component annotation is needed. If you want to use a
different package, you can set spring.cloud.function.scan.packages. You can also use
spring.cloud.function.scan.enabled=false to switch off the scan completely.

4. Standalone Web Applications
Functions could be automatically exported as HTTP endpoints.

The spring-cloud-function-web module has autoconfiguration that activates when it is included in a
Spring Boot web application (with MVC support). There is also a spring-cloud-starter-function-web
to collect all the optional dependencies in case you just want a simple getting started experience.

With the web configurations activated your app will have an MVC endpoint (on "/" by default, but
configurable with spring.cloud.function.web.path) that can be used to access the functions in the
application context where function name becomes part of the URL path. The supported content
types are plain text and JSON.

It is important to understand that while SCF provides ability to export Functional
beans as REST endpoints it is NOT a replacement for Spring MVC/WebFlux etc. It is
primarily to accommodate stateless serverless patterns where you simply want to
have some stateless functionality to be exposed via HTTP.

Method Path Request Response Status

GET /{supplier} - Items from the
named supplier

200 OK

POST /{consumer} JSON object or text Mirrors input and
pushes request
body into
consumer

202 Accepted

PUT /{consumer} JSON object or text Mirrors input and
pushes request
body into
consumer

202 Accepted

DELETE /{consumer} JSON object or text - 204 NO CONTENT

POST /{function} JSON object or text The result of
applying the
named function

200 OK

PUT /{function} JSON object or text The result of
applying the
named function

200 OK

Method Path Request Response Status

GET /{function}/{item} - Convert the item
into an object and
return the result
of applying the
function

200 OK

As the table above shows the behavior of the endpoint depends on the method and also the type of
incoming request data. When the incoming data is single valued, and the target function is declared
as obviously single valued (i.e. not returning a collection or Flux), then the response will also
contain a single value. For multi-valued responses the client can ask for a server-sent event stream
by sending Accept: text/event-stream.

Functions and consumers that are declared with input and output in Message<?> will see the request
headers as message headers, and the output message headers will be converted to HTTP headers.
The payload of the Message will be a body or empty string if there is no body or it is null.

When POSTing text the response format might be different with Spring Boot 2.0 and older versions,
depending on the content negotiation (provide content type and accept headers for the best
results).

See Testing Functional Applications to see the details and example on how to test such application.

4.1. HTTP Request Parameters

As you have noticed from the previous table, you can pass an argument to a function as path
variable (i.e., /{function}/{item}). For example, localhost:8080/uppercase/foo will result in calling
uppercase function with its input parameter being foo.

While this is the recommended approach and the one that fits most use cases cases, there are times
when you have to deal with HTTP request parameters (e.g., localhost:8080/uppercase/foo?
name=Bill) The framework will treat HTTP request parameters similar to the HTTP headers by
storing them in the Message headers under the header key http_request_param with its value being a
Map of request parameters, so in order to access them your function input signature should accept
Message type (e.g., Function<Message<String>, String>). For convenience we provide
HeaderUtils.HTTP_REQUEST_PARAM constant.

4.2. Function Mapping rules
If there is only a single function (consumer etc.) in the catalog, the name in the path is optional. In
other words, providing you only have uppercase function in catalog curl -H "Content-Type:
text/plain" localhost:8080/uppercase -d hello and curl -H "Content-Type: text/plain"
localhost:8080/ -d hello calls are identical.

Composite functions can be addressed using pipes or commas to separate function names (pipes
are legal in URL paths, but a bit awkward to type on the command line). For example, curl -H
"Content-Type: text/plain" localhost:8080/uppercase,reverse -d hello.

http://localhost:8080/uppercase/foo
http://localhost:8080/uppercase/foo?name=Bill
http://localhost:8080/uppercase/foo?name=Bill

For cases where there is more than a single function in catalog, each function will be exported and
mapped with function name being part of the path (e.g., localhost:8080/uppercase). In this scenario
you can still map specific function or function composition to the root path by providing
spring.cloud.function.definition property

For example,

--spring.cloud.function.definition=foo|bar

The above property will compose 'foo' and 'bar' function and map the composed function to the "/"
path.

The same property will also work for cases where function can not be resolved via URL. For
example, your URL may be localhost:8080/uppercase, but there is no uppercase function. However
there are function foo and bar. So, in this case localhost:8080/uppercase will resolve to foo|bar. This
could be useful especially for cases when URL is used to communicate certain information since
there will be Message header called uri with the value of the actual URL, giving user ability to use it
for evaluation and computation.

4.3. Function Filtering rules
In situations where there are more than one function in catalog there may be a need to only export
certain functions or function compositions. In that case you can use the same
spring.cloud.function.definition property listing functions you intend to export delimited by ;.
Note that in this case nothing will be mapped to the root path and functions that are not listed
(including compositions) are not going to be exported

For example,

--spring.cloud.function.definition=foo;bar

This will only export function foo and function bar regardless how many functions are available in
catalog (e.g., localhost:8080/foo).

--spring.cloud.function.definition=foo|bar;baz

This will only export function composition foo|bar and function baz regardless how many functions
are available in catalog (e.g., localhost:8080/foo,bar).

4.4. CRUD REST with Spring Cloud Function
By now it should be clear that functions are exported as REST endpoints and can be invoked using
various HTTP methods. In other words a single function could be triggered via GET, POST, PUT etc.

However, it is not always desirable and certainly does not fit the CRUD concept. And while SCF does

not support and has no intention of supporting all the features of Spring web stack, the framework
does provide support for CRUD mappings where a single function could be mapped to a particular
HTTP method(s). It is done via spring.cloud.function.http.<method-name> property.

For example,

spring.cloud.function.http.GET=uppercase;reverse;foo|bar
spring.cloud.function.http.POST=reverse
spring.cloud.function.http.DELETE=deleteById

As you can see, here we’re mapping functions to various HTTP methods using the same rules as
spring.cloud.function.definition property where “;” allows us to define several functions and “|”
signifies function composition.

5. Standalone Streaming Applications
To send or receive messages from a broker (such as RabbitMQ or Kafka) you can leverage spring-
cloud-stream project and it’s integration with Spring Cloud Function. Please refer to Spring Cloud
Function section of the Spring Cloud Stream reference manual for more details and examples.

6. Deploying a Packaged Function
Spring Cloud Function provides a "deployer" library that allows you to launch a jar file (or exploded
archive, or set of jar files) with an isolated class loader and expose the functions defined in it. This
is quite a powerful tool that would allow you to, for instance, adapt a function to a range of
different input-output adapters without changing the target jar file. Serverless platforms often have
this kind of feature built in, so you could see it as a building block for a function invoker in such a
platform (indeed the Riff Java function invoker uses this library).

The standard entry point is to add spring-cloud-function-deployer to the classpath, the deployer
kicks in and looks for some configuration to tell it where to find the function jar.

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-function-deployer</artifactId>
 <version>${spring.cloud.function.version}</version>
</dependency>

At a minimum the user has to provide a spring.cloud.function.location which is a URL or resource
location for the archive containing the functions. It can optionally use a maven: prefix to locate the
artifact via a dependency lookup (see FunctionProperties for complete details). A Spring Boot
application is bootstrapped from the jar file, using the MANIFEST.MF to locate a start class, so that a
standard Spring Boot fat jar works well, for example. If the target jar can be launched successfully
then the result is a function registered in the main application’s FunctionCatalog. The registered
function can be applied by code in the main application, even though it was created in an isolated

https://cloud.spring.io/spring-cloud-static/spring-cloud-stream/current/reference/html/spring-cloud-stream.html#spring_cloud_function
https://cloud.spring.io/spring-cloud-static/spring-cloud-stream/current/reference/html/spring-cloud-stream.html#spring_cloud_function
https://spring.io/projects/spring-cloud-stream
https://projectriff.io

class loader (by deault).

Here is the example of deploying a JAR which contains an 'uppercase' function and invoking it .

@SpringBootApplication
public class DeployFunctionDemo {

 public static void main(String[] args) {
 ApplicationContext context = SpringApplication.run(DeployFunctionDemo.class,
 "--spring.cloud.function.location=..../target/uppercase-0.0.1-
SNAPSHOT.jar",
 "--spring.cloud.function.definition=uppercase");

 FunctionCatalog catalog = context.getBean(FunctionCatalog.class);
 Function<String, String> function = catalog.lookup("uppercase");
 System.out.println(function.apply("hello"));
 }
}

And here is the example using Maven URI (taken from one of the tests in FunctionDeployerTests):

@SpringBootApplication
public class DeployFunctionDemo {

 public static void main(String[] args) {
 String[] args = new String[] {
 "--spring.cloud.function.location=maven://oz.demo:demo-
uppercase:0.0.1-SNAPSHOT",
 "--spring.cloud.function.function-class=oz.demo.uppercase.MyFunction"
};

 ApplicationContext context = SpringApplication.run(DeployerApplication.class,
args);
 FunctionCatalog catalog = context.getBean(FunctionCatalog.class);
 Function<String, String> function = catalog.lookup("myFunction");

 assertThat(function.apply("bob")).isEqualTo("BOB");
 }
}

Keep in mind that Maven resource such as local and remote repositories, user, password and more
are resolved using default MavenProperties which effectively use local defaults and will work for
majority of cases. However if you need to customize you can simply provide a bean of type
MavenProperties where you can set additional properties (see example below).

@Bean
public MavenProperties mavenProperties() {
 MavenProperties properties = new MavenProperties();
 properties.setLocalRepository("target/it/");
 return properties;
}

6.1. Supported Packaging Scenarios
Currently Spring Cloud Function supports several packaging scenarios to give you the most
flexibility when it comes to deploying functions.

6.1.1. Simple JAR

This packaging option implies no dependency on anything related to Spring. For example; Consider
that such JAR contains the following class:

package function.example;
. . .
public class UpperCaseFunction implements Function<String, String> {
 @Override
 public String apply(String value) {
 return value.toUpperCase();
 }
}

All you need to do is specify location and function-class properties when deploying such package:

--spring.cloud.function.location=target/it/simplestjar/target/simplestjar
-1.0.0.RELEASE.jar
--spring.cloud.function.function-class=function.example.UpperCaseFunction

It’s conceivable in some cases that you might want to package multiple functions together. For such
scenarios you can use spring.cloud.function.function-class property to list several classes
delimiting them by ;.

For example,

--spring.cloud.function.function
-class=function.example.UpperCaseFunction;function.example.ReverseFunction

Here we are identifying two functions to deploy, which we can now access in function catalog by
name (e.g., catalog.lookup("reverseFunction");).

For more details please reference the complete sample available here. You can also find a

https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-deployer/src/it/simplestjar

corresponding test in FunctionDeployerTests.

• Component Scanning *

Since version 3.1.4 you can simplify your configuration thru component scanning feature described
in Function Component Scan. If you place your functional class in package named functions, you
can omit spring.cloud.function.function-class property as framework will auto-discover
functional classes loading them in function catalog. Keep in mind the naming convention to follow
when doing function lookup. For example function class functions.UpperCaseFunction will be
available in FunctionCatalog under the name upperCaseFunction.

6.1.2. Spring Boot JAR

This packaging option implies there is a dependency on Spring Boot and that the JAR was generated
as Spring Boot JAR. That said, given that the deployed JAR runs in the isolated class loader, there
will not be any version conflict with the Spring Boot version used by the actual deployer. For
example; Consider that such JAR contains the following class (which could have some additional
Spring dependencies providing Spring/Spring Boot is on the classpath):

package function.example;
. . .
public class UpperCaseFunction implements Function<String, String> {
 @Override
 public String apply(String value) {
 return value.toUpperCase();
 }
}

As before all you need to do is specify location and function-class properties when deploying such
package:

--spring.cloud.function.location=target/it/simplestjar/target/simplestjar
-1.0.0.RELEASE.jar
--spring.cloud.function.function-class=function.example.UpperCaseFunction

For more details please reference the complete sample available here. You can also find a
corresponding test in FunctionDeployerTests.

6.1.3. Spring Boot Application

This packaging option implies your JAR is complete stand alone Spring Boot application with
functions as managed Spring beans. As before there is an obvious assumption that there is a
dependency on Spring Boot and that the JAR was generated as Spring Boot JAR. That said, given that
the deployed JAR runs in the isolated class loader, there will not be any version conflict with the
Spring Boot version used by the actual deployer. For example; Consider that such JAR contains the
following class:

https://github.com/spring-cloud/spring-cloud-function/blob/master/spring-cloud-function-deployer/src/test/java/org/springframework/cloud/function/deployer/FunctionDeployerTests.java#L70
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-deployer/src/it/bootjar
https://github.com/spring-cloud/spring-cloud-function/blob/master/spring-cloud-function-deployer/src/test/java/org/springframework/cloud/function/deployer/FunctionDeployerTests.java#L50

package function.example;
. . .
@SpringBootApplication
public class SimpleFunctionAppApplication {

 public static void main(String[] args) {
 SpringApplication.run(SimpleFunctionAppApplication.class, args);
 }

 @Bean
 public Function<String, String> uppercase() {
 return value -> value.toUpperCase();
 }
}

Given that we’re effectively dealing with another Spring Application context and that functions are
spring managed beans, in addition to the location property we also specify definition property
instead of function-class.

--spring.cloud.function.location=target/it/bootapp/target/bootapp-1.0.0.RELEASE
-exec.jar
--spring.cloud.function.definition=uppercase

For more details please reference the complete sample available here. You can also find a
corresponding test in FunctionDeployerTests.

This particular deployment option may or may not have Spring Cloud Function on
it’s classpath. From the deployer perspective this doesn’t matter.

7. Functional Bean Definitions
Spring Cloud Function supports a "functional" style of bean declarations for small apps where you
need fast startup. The functional style of bean declaration was a feature of Spring Framework 5.0
with significant enhancements in 5.1.

7.1. Comparing Functional with Traditional Bean
Definitions
Here’s a vanilla Spring Cloud Function application from with the familiar @Configuration and @Bean
declaration style:

https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-deployer/src/it/bootapp
https://github.com/spring-cloud/spring-cloud-function/blob/master/spring-cloud-function-deployer/src/test/java/org/springframework/cloud/function/deployer/FunctionDeployerTests.java#L164

@SpringBootApplication
public class DemoApplication {

 @Bean
 public Function<String, String> uppercase() {
 return value -> value.toUpperCase();
 }

 public static void main(String[] args) {
 SpringApplication.run(DemoApplication.class, args);
 }

}

Now for the functional beans: the user application code can be recast into "functional" form, like
this:

@SpringBootConfiguration
public class DemoApplication implements
ApplicationContextInitializer<GenericApplicationContext> {

 public static void main(String[] args) {
 FunctionalSpringApplication.run(DemoApplication.class, args);
 }

 public Function<String, String> uppercase() {
 return value -> value.toUpperCase();
 }

 @Override
 public void initialize(GenericApplicationContext context) {
 context.registerBean("demo", FunctionRegistration.class,
 () -> new FunctionRegistration<>(uppercase())
 .type(FunctionTypeUtils.functionType(String.class, String.class)));
 }

}

The main differences are:

• The main class is an ApplicationContextInitializer.

• The @Bean methods have been converted to calls to context.registerBean()

• The @SpringBootApplication has been replaced with @SpringBootConfiguration to signify that we
are not enabling Spring Boot autoconfiguration, and yet still marking the class as an "entry
point".

• The SpringApplication from Spring Boot has been replaced with a FunctionalSpringApplication
from Spring Cloud Function (it’s a subclass).

The business logic beans that you register in a Spring Cloud Function app are of type
FunctionRegistration. This is a wrapper that contains both the function and information about the
input and output types. In the @Bean form of the application that information can be derived
reflectively, but in a functional bean registration some of it is lost unless we use a
FunctionRegistration.

An alternative to using an ApplicationContextInitializer and FunctionRegistration is to make the
application itself implement Function (or Consumer or Supplier). Example (equivalent to the above):

@SpringBootConfiguration
public class DemoApplication implements Function<String, String> {

 public static void main(String[] args) {
 FunctionalSpringApplication.run(DemoApplication.class, args);
 }

 @Override
 public String apply(String value) {
 return value.toUpperCase();
 }

}

It would also work if you add a separate, standalone class of type Function and register it with the
SpringApplication using an alternative form of the run() method. The main thing is that the generic
type information is available at runtime through the class declaration.

Suppose you have

@Component
public class CustomFunction implements Function<Flux<Foo>, Flux<Bar>> {
 @Override
 public Flux<Bar> apply(Flux<Foo> flux) {
 return flux.map(foo -> new Bar("This is a Bar object from Foo value: " +
foo.getValue()));
 }

}

You register it as such:

@Override
public void initialize(GenericApplicationContext context) {
 context.registerBean("function", FunctionRegistration.class,
 () -> new FunctionRegistration<>(new
CustomFunction()).type(CustomFunction.class));
}

7.2. Limitations of Functional Bean Declaration
Most Spring Cloud Function apps have a relatively small scope compared to the whole of Spring
Boot, so we are able to adapt it to these functional bean definitions easily. If you step outside that
limited scope, you can extend your Spring Cloud Function app by switching back to @Bean style
configuration, or by using a hybrid approach. If you want to take advantage of Spring Boot
autoconfiguration for integrations with external datastores, for example, you will need to use
@EnableAutoConfiguration. Your functions can still be defined using the functional declarations if
you want (i.e. the "hybrid" style), but in that case you will need to explicitly switch off the "full
functional mode" using spring.functional.enabled=false so that Spring Boot can take back control.

8. Function visualization and control
Spring Cloud Function supports visualization of functions available in FunctionCatalog through
Actuator endpoints as well as programmatic way.

Programmatic way

To see function available within your application context programmatically all you need is access to
FunctionCatalog. There you can finds methods to get the size of the catalog, lookup functions as well
as list the names of all the available functions.

For example,

FunctionCatalog functionCatalog = context.getBean(FunctionCatalog.class);
int size = functionCatalog.size(); // will tell you how many functions available in
catalog
Set<String> names = functionCatalog.getNames(null); will list the names of all the
Function, Suppliers and Consumers available in catalog
. . .

Actuator

Since actuator and web are optional, you must first add one of the web dependencies as well as add
the actuator dependency manually. The following example shows how to add the dependency for
the Web framework:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
</dependency>

The following example shows how to add the dependency for the WebFlux framework:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-webflux</artifactId>
</dependency>

You can add the Actuator dependency as follows:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
</dependency>

You must also enable the functions actuator endpoints by setting the following property:
--management.endpoints.web.exposure.include=functions.

Access the following URL to see the functions in FunctionCatalog: <host>:<port>/actuator/functions

For example,

curl http://localhost:8080/actuator/functions

Your output should look something like this:

{"charCounter":
 {"type":"FUNCTION","input-type":"string","output-type":"integer"},
 "logger":
 {"type":"CONSUMER","input-type":"string"},
 "functionRouter":
 {"type":"FUNCTION","input-type":"object","output-type":"object"},
 "words":
 {"type":"SUPPLIER","output-type":"string"}. . .

9. Testing Functional Applications
Spring Cloud Function also has some utilities for integration testing that will be very familiar to
Spring Boot users.

Suppose this is your application:

http://<host>:<port>/actuator/functions

@SpringBootApplication
public class SampleFunctionApplication {

 public static void main(String[] args) {
 SpringApplication.run(SampleFunctionApplication.class, args);
 }

 @Bean
 public Function<String, String> uppercase() {
 return v -> v.toUpperCase();
 }
}

Here is an integration test for the HTTP server wrapping this application:

@SpringBootTest(classes = SampleFunctionApplication.class,
 webEnvironment = WebEnvironment.RANDOM_PORT)
public class WebFunctionTests {

 @Autowired
 private TestRestTemplate rest;

 @Test
 public void test() throws Exception {
 ResponseEntity<String> result = this.rest.exchange(
 RequestEntity.post(new URI("/uppercase")).body("hello"), String.class);
 System.out.println(result.getBody());
 }
}

or when function bean definition style is used:

@FunctionalSpringBootTest
public class WebFunctionTests {

 @Autowired
 private TestRestTemplate rest;

 @Test
 public void test() throws Exception {
 ResponseEntity<String> result = this.rest.exchange(
 RequestEntity.post(new URI("/uppercase")).body("hello"), String.class);
 System.out.println(result.getBody());
 }
}

This test is almost identical to the one you would write for the @Bean version of the same app - the

only difference is the @FunctionalSpringBootTest annotation, instead of the regular @SpringBootTest.
All the other pieces, like the @Autowired TestRestTemplate, are standard Spring Boot features.

And to help with correct dependencies here is the excerpt from POM

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>3.0.9</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>

 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-function-web</artifactId>
 <version>4.0.5</version>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>

Or you could write a test for a non-HTTP app using just the FunctionCatalog. For example:

@FunctionalSpringBootTest
public class FunctionalTests {

 @Autowired
 private FunctionCatalog catalog;

 @Test
 public void words() {
 Function<String, String> function = catalog.lookup(Function.class,
 "uppercase");
 assertThat(function.apply("hello")).isEqualTo("HELLO");
 }

}

10. Serverless Platform Adapters
As well as being able to run as a standalone process, a Spring Cloud Function application can be
adapted to run one of the existing serverless platforms. In the project there are adapters for AWS
Lambda, and Azure. The Oracle Fn platform has its own Spring Cloud Function adapter. And Riff
supports Java functions and its Java Function Invoker acts natively is an adapter for Spring Cloud
Function jars.

10.1. AWS Lambda
The AWS adapter takes a Spring Cloud Function app and converts it to a form that can run in AWS
Lambda.

The details of how to get stared with AWS Lambda is out of scope of this document, so the
expectation is that user has some familiarity with AWS and AWS Lambda and wants to learn what
additional value spring provides.

10.1.1. Getting Started

One of the goals of Spring Cloud Function framework is to provide necessary infrastructure
elements to enable a simple function application to interact in a certain way in a particular
environment. A simple function application (in context or Spring) is an application that contains
beans of type Supplier, Function or Consumer. So, with AWS it means that a simple function bean
should somehow be recognised and executed in AWS Lambda environment.

Let’s look at the example:

@SpringBootApplication
public class FunctionConfiguration {

 public static void main(String[] args) {
 SpringApplication.run(FunctionConfiguration.class, args);
 }

 @Bean
 public Function<String, String> uppercase() {
 return value -> value.toUpperCase();
 }
}

It shows a complete Spring Boot application with a function bean defined in it. What’s interesting is
that on the surface this is just another boot app, but in the context of AWS Adapter it is also a
perfectly valid AWS Lambda application. No other code or configuration is required. All you need to
do is package it and deploy it, so let’s look how we can do that.

To make things simpler we’ve provided a sample project ready to be built and deployed and you
can access it here.

https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-adapters/spring-cloud-function-adapter-aws
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-adapters/spring-cloud-function-adapter-aws
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-adapters/spring-cloud-function-adapter-azure
https://github.com/fnproject/fn
https://projectriff.io
https://github.com/projectriff/java-function-invoker
https://aws.amazon.com/
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-samples/function-sample-aws

You simply execute ./mvnw clean package to generate JAR file. All the necessary maven plugins have
already been setup to generate appropriate AWS deployable JAR file. (You can read more details
about JAR layout in Notes on JAR Layout).

Then you have to upload the JAR file (via AWS dashboard or AWS CLI) to AWS.

When ask about handler you specify
org.springframework.cloud.function.adapter.aws.FunctionInvoker::handleRequest which is a generic
request handler.

[AWS deploy] | https://raw.githubusercontent.com/spring-cloud/spring-

cloud/635cf5cbd0410fc1159f6930f14b47062b44ae75/docs/src/main/asciidoc/images/AWS-deploy.png

That is all. Save and execute the function with some sample data which for this function is expected
to be a String which function will uppercase and return back.

While org.springframework.cloud.function.adapter.aws.FunctionInvoker is a general purpose AWS’s
RequestHandler implementation aimed at completely isolating you from the specifics of AWS
Lambda API, for some cases you may want to specify which specific AWS’s RequestHandler you want
to use. The next section will explain you how you can accomplish just that.

10.1.2. AWS Request Handlers

The adapter has a couple of generic request handlers that you can use. The most generic is (and the
one we used in the Getting Started section) is
org.springframework.cloud.function.adapter.aws.FunctionInvoker which is the implementation of
AWS’s RequestStreamHandler. User doesn’t need to do anything other then specify it as 'handler' on
AWS dashboard when deploying function. It will handle most of the case including Kinesis,
streaming etc. .

If your app has more than one @Bean of type Function etc. then you can choose the one to use by
configuring spring.cloud.function.definition property or environment variable. The functions are
extracted from the Spring Cloud FunctionCatalog. In the event you don’t specify
spring.cloud.function.definition the framework will attempt to find a default following the search
order where it searches first for Function then Consumer and finally Supplier).

10.1.3. AWS Function Routing

One of the core features of Spring Cloud Function is routing - an ability to have one special function
to delegate to other functions based on the user provided routing instructions.

In AWS Lambda environment this feature provides one additional benefit, as it allows you to bind a
single function (Routing Function) as AWS Lambda and thus a single HTTP endpoint for API
Gateway. So in the end you only manage one function and one endpoint, while benefiting from
many function that can be part of your application.

More details are available in the provided sample, yet few general things worth mentioning.

Routing capabilities will be enabled by default whenever there is more then one function in your
application as org.springframework.cloud.function.adapter.aws.FunctionInvoker can not determine
which function to bind as AWS Lambda, so it defaults to RoutingFunction. This means that all you
need to do is provide routing instructions which you can do using several mechanisms (see sample
for more details).

Also, note that since AWS does not allow dots . and/or hyphens`-` in the name of the environment
variable, you can benefit from boot support and simply substitute dots with underscores and
hyphens with camel case. So for example spring.cloud.function.definition becomes
spring_cloud_function_definition and spring.cloud.function.routing-expression becomes
spring_cloud_function_routingExpression.

https://docs.spring.io/spring-cloud-function/docs/4.0.5/reference/html/spring-cloud-function.html#_function_routing_and_filtering
https://github.com/spring-cloud/spring-cloud-function/tree/main/spring-cloud-function-samples/function-sample-aws-routing
https://docs.spring.io/spring-cloud-function/docs/4.0.5/reference/html/spring-cloud-function.html#_function_routing_and_filtering
https://github.com/spring-cloud/spring-cloud-function/tree/main/spring-cloud-function-samples/function-sample-aws-routing

AWS Function Routing with Custom Runtime

When using [Custom Runtime] Function Routing works the same way. All you need is to specify
functionRouter as AWS Handler the same way you would use the name of the function as handler.

10.1.4. Notes on JAR Layout

You don’t need the Spring Cloud Function Web or Stream adapter at runtime in Lambda, so you
might need to exclude those before you create the JAR you send to AWS. A Lambda application has
to be shaded, but a Spring Boot standalone application does not, so you can run the same app using
2 separate jars (as per the sample). The sample app creates 2 jar files, one with an aws classifier for
deploying in Lambda, and one executable (thin) jar that includes spring-cloud-function-web at
runtime. Spring Cloud Function will try and locate a "main class" for you from the JAR file manifest,
using the Start-Class attribute (which will be added for you by the Spring Boot tooling if you use
the starter parent). If there is no Start-Class in your manifest you can use an environment variable
or system property MAIN_CLASS when you deploy the function to AWS.

If you are not using the functional bean definitions but relying on Spring Boot’s auto-configuration,
and are not depending on spring-boot-starter-parent, then additional transformers must be
configured as part of the maven-shade-plugin execution.

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <version>2.7.4</version>
 </dependency>
 </dependencies>
 <executions>
 <execution>
 <goals>
 <goal>shade</goal>
 </goals>
 <configuration>
 <createDependencyReducedPom>false</createDependencyReducedPom>
 <shadedArtifactAttached>true</shadedArtifactAttached>
 <shadedClassifierName>aws</shadedClassifierName>
 <transformers>
 <transformer
implementation="org.apache.maven.plugins.shade.resource.AppendingTransformer">
 <resource>META-INF/spring.handlers</resource>
 </transformer>
 <transformer
implementation="org.springframework.boot.maven.PropertiesMergingResourceTransformer">
 <resource>META-INF/spring.factories</resource>
 </transformer>
 <transformer

implementation="org.apache.maven.plugins.shade.resource.AppendingTransformer">
 <resource>META-
INF/spring/org.springframework.boot.autoconfigure.AutoConfiguration.imports</resource>
 </transformer>
 <transformer
implementation="org.apache.maven.plugins.shade.resource.AppendingTransformer">
 <resource>META-
INF/spring/org.springframework.boot.actuate.autoconfigure.web.ManagementContextConfigu
ration.imports</resource>
 </transformer>
 <transformer
implementation="org.apache.maven.plugins.shade.resource.AppendingTransformer">
 <resource>META-INF/spring.schemas</resource>
 </transformer>
 <transformer
implementation="org.apache.maven.plugins.shade.resource.AppendingTransformer">
 <resource>META-INF/spring.components</resource>
 </transformer>
 </transformers>
 </configuration>
 </execution>
 </executions>
</plugin>

10.1.5. Build file setup

In order to run Spring Cloud Function applications on AWS Lambda, you can leverage Maven or
Gradle plugins offered by the cloud platform provider.

Maven

In order to use the adapter plugin for Maven, add the plugin dependency to your pom.xml file:

<dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-function-adapter-aws</artifactId>
 </dependency>
</dependencies>

As pointed out in the Notes on JAR Layout, you will need a shaded jar in order to upload it to AWS
Lambda. You can use the Maven Shade Plugin for that. The example of the setup can be found
above.

You can use the Spring Boot Maven Plugin to generate the thin jar.

https://maven.apache.org/plugins/maven-shade-plugin/

<plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <dependencies>
 <dependency>
 <groupId>org.springframework.boot.experimental</groupId>
 <artifactId>spring-boot-thin-layout</artifactId>
 <version>${wrapper.version}</version>
 </dependency>
 </dependencies>
</plugin>

You can find the entire sample pom.xml file for deploying Spring Cloud Function applications to AWS
Lambda with Maven here.

Gradle

In order to use the adapter plugin for Gradle, add the dependency to your build.gradle file:

dependencies {
 compile("org.springframework.cloud:spring-cloud-function-adapter-aws:${version}")
}

As pointed out in Notes on JAR Layout, you will need a shaded jar in order to upload it to AWS
Lambda. You can use the Gradle Shadow Plugin for that:

https://github.com/spring-cloud/spring-cloud-function/blob/master/spring-cloud-function-samples/function-sample-aws/pom.xml
https://plugins.gradle.org/plugin/com.github.johnrengelman.shadow/

buildscript {
 dependencies {
 classpath "com.github.jengelman.gradle.plugins:shadow:${shadowPluginVersion}"
 }
}
apply plugin: 'com.github.johnrengelman.shadow'

assemble.dependsOn = [shadowJar]

import com.github.jengelman.gradle.plugins.shadow.transformers.*

shadowJar {
 classifier = 'aws'
 dependencies {
 exclude(
 dependency("org.springframework.cloud:spring-cloud-function-
web:${springCloudFunctionVersion}"))
 }
 // Required for Spring
 mergeServiceFiles()
 append 'META-INF/spring.handlers'
 append 'META-INF/spring.schemas'
 append 'META-INF/spring.tooling'
 append 'META-
INF/spring/org.springframework.boot.autoconfigure.AutoConfiguration.imports'
 append 'META-
INF/spring/org.springframework.boot.actuate.autoconfigure.web.ManagementContextConfigu
ration.imports'
 transform(PropertiesFileTransformer) {
 paths = ['META-INF/spring.factories']
 mergeStrategy = "append"
 }
}

You can use the Spring Boot Gradle Plugin and Spring Boot Thin Gradle Plugin to generate the thin
jar.

buildscript {
 dependencies {
 classpath("org.springframework.boot.experimental:spring-boot-thin-gradle-
plugin:${wrapperVersion}")
 classpath("org.springframework.boot:spring-boot-gradle-
plugin:${springBootVersion}")
 }
}
apply plugin: 'org.springframework.boot'
apply plugin: 'org.springframework.boot.experimental.thin-launcher'
assemble.dependsOn = [thinJar]

You can find the entire sample build.gradle file for deploying Spring Cloud Function applications to
AWS Lambda with Gradle here.

10.1.6. Upload

Build the sample under spring-cloud-function-samples/function-sample-aws and upload the -aws jar
file to Lambda. The handler can be example.Handler or
org.springframework.cloud.function.adapter.aws.SpringBootStreamHandler (FQN of the class, not a
method reference, although Lambda does accept method references).

./mvnw -U clean package

Using the AWS command line tools it looks like this:

aws lambda create-function --function-name Uppercase --role
arn:aws:iam::[USERID]:role/service-role/[ROLE] --zip-file fileb://function-sample-
aws/target/function-sample-aws-2.0.0.BUILD-SNAPSHOT-aws.jar --handler
org.springframework.cloud.function.adapter.aws.SpringBootStreamHandler --description
"Spring Cloud Function Adapter Example" --runtime java8 --region us-east-1 --timeout
30 --memory-size 1024 --publish

The input type for the function in the AWS sample is a Foo with a single property called "value". So
you would need this to test it:

{
 "value": "test"
}

The AWS sample app is written in the "functional" style (as an
ApplicationContextInitializer). This is much faster on startup in Lambda than the
traditional @Bean style, so if you don’t need @Beans (or @EnableAutoConfiguration) it’s
a good choice. Warm starts are not affected.

10.1.7. Type Conversion

Spring Cloud Function will attempt to transparently handle type conversion between the raw input
stream and types declared by your function.

For example, if your function signature is as such Function<Foo, Bar> we will attempt to convert
incoming stream event to an instance of Foo.

In the event type is not known or can not be determined (e.g., Function<?, ?>) we will attempt to
convert an incoming stream event to a generic Map.

https://github.com/spring-cloud/spring-cloud-function/blob/master/spring-cloud-function-samples/function-sample-aws/build.gradle

Raw Input

There are times when you may want to have access to a raw input. In this case all you need is to
declare your function signature to accept InputStream. For example, Function<InputStream, ?>. In
this case we will not attempt any conversion and will pass the raw input directly to a function.

10.2. Microsoft Azure Functions
Azure function adapter for deploying Spring Cloud Function applications as native Azure Java
Functions.

The Azure Functions programming model relays, extensively, on Java annotations for defining the
function’s handler methods and their input and output types. At compile time the annotated classes
are processed by the provided Azure Maven/Gradle plugins to generate the necessary Azure
Function binding files, configurations and package artifacts. The Azure annotations are just a type-
safe way to configure your java function to be recognized as Azure function.

The spring-cloud-function-adapter-azure extends the basic programming model to provide Spring
and Spring Cloud Function support. With the adapter you can build your Spring Cloud Function
application using dependency injections and then auto-wire the necessary services into your Azure
handler methods.

[scf azure adapter] | ../images/scf-azure-adapter.svg

For Web-based function applications, you can replace the generic adapter-azure
with the specialized spring-cloud-function-adapter-azure-web. With the Azure
Web Adapter you can deploy any Spring Web application as an Azure, HttpTrigger,
function. This adapter hides the Azure annotations complexity and uses the
familiar Spring Web programming model instead. For further information follow
the Azure Web Adapter section below.

10.3. Azure Adapter
Provides Spring & Spring Cloud Function integration for Azure Functions.

10.3.1. Dependencies

In order to enable the Azure Function integration add the azure adapter dependency to your
pom.xml or build.gradle files:

https://azure.microsoft.com
https://learn.microsoft.com/en-us/azure/azure-functions/functions-reference-java
https://learn.microsoft.com/en-us/java/api/com.microsoft.azure.functions.annotation?view=azure-java-stable
https://github.com/spring-cloud/spring-cloud-function/tree/main/spring-cloud-function-adapters/spring-cloud-function-adapter-azure
https://github.com/spring-cloud/spring-cloud-function/tree/main/spring-cloud-function-adapters/spring-cloud-function-adapter-azure-web
https://docs.spring.io/spring-boot/docs/current/reference/html/web.html

Maven

<dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-function-adapter-azure</artifactId>
 </dependency>
</dependencies>

Gradle

dependencies {
 implementation 'org.springframework.cloud:spring-cloud-function-adapter-azure'
}

version 4.0.0+ is required. Having the adapter on the classpath activates the Azure
Java Worker integration.

10.3.2. Development Guidelines

Use the @Component (or @Service) annotation to turn any exiting Azure Function class (e.g. with
@FunctionName handlers) into a Spring component. Then you can auto-wire the required
dependencies (or the Function Catalog for Spring Cloud Function composition) and use those inside
the Azure function handlers.

spring-cloud-function.pdf#function.catalog

@Component ①
public class MyAzureFunction {

 // Plain Spring bean - not a Spring Cloud Functions!
 @Autowired private Function<String, String> uppercase; ②

 // The FunctionCatalog leverages the Spring Cloud Function framework.
 @Autowired private FunctionCatalog functionCatalog; ②

 @FunctionName("spring") ③
 public String plainBean(④
 @HttpTrigger(name = "req", authLevel = AuthorizationLevel.ANONYMOUS)
HttpRequestMessage<Optional<String>> request,
 ExecutionContext context) {

 return this.uppercase.apply(request.getBody().get());
 }

 @FunctionName("scf") ③
 public String springCloudFunction(⑤
 @HttpTrigger(name = "req", authLevel = AuthorizationLevel.ANONYMOUS)
HttpRequestMessage<Optional<String>> request,
 ExecutionContext context) {

 // Use SCF composition. Composed functions are not just spring beans but SCF
such.
 Function composed = this.functionCatalog.lookup("reverse|uppercase"); ⑥

 return (String) composed.apply(request.getBody().get());
 }
}

① Indicates that the MyAzureFunction class is a "component" to be considered by the Spring
Framework as a candidate for auto-detection and classpath scanning.

② Auto-wire the uppercase and functionCatalog beans defined in the HttpTriggerDemoApplication
(below).

③ The @FunctionName annotation identifies the designated Azure function handlers. When
invoked by a trigger (such as @HttpTrigger), functions process that trigger, and any other inputs,
to produce one or more outputs.

④ The plainBean method handler is mapped to an Azure function that uses of the auto-wired
uppercase spring bean to compute the result. It demonstrates how to use "plain" Spring
components in your Azure handlers.

⑤ The springCloudFunction method handler is mapped to another Azure function, that uses the
auto-wired FunctionCatalog instance to compute the result.

⑥ Shows how to leverage the Spring Cloud Function Function Catalog composition API.

https://learn.microsoft.com/en-us/azure/azure-functions/functions-reference-java?tabs=bash%2Cconsumption#java-function-basics
spring-cloud-function.pdf#function.catalog

Use the Java annotations included in the
com.microsoft.azure.functions.annotation.* package to bind input and outputs to
your methods.

The implementation of the business logic used inside the Azure handlers looks like a common
Spring application:

@SpringBootApplication ①
public class HttpTriggerDemoApplication {

 public static void main(String[] args) {
 SpringApplication.run(HttpTriggerDemoApplication.class, args);
 }

 @Bean
 public Function<String, String> uppercase() { ②
 return payload -> payload.toUpperCase();
 }

 @Bean
 public Function<String, String> reverse() { ②
 return payload -> new StringBuilder(payload).reverse().toString();
 }
}

① The @SpringBootApplication annotated class is used as a Main-Class as explained in main class
configuration.

② Functions auto-wired and used in the Azure function handlers.

Function Catalog

The Spring Cloud Function supports a range of type signatures for user-defined functions, while
providing a consistent execution model. For this it uses the Function Catalog to transform all user
defined functions into a canonical representation.

The Azure adapter can auto-wire any Spring component, such as the uppercase above. But those are
treated as plain Java class instances, not as a canonical Spring Cloud Functions!

To leverage Spring Cloud Function and have access to the canonical function representations, you
need to auto-wire the FunctionCatalog and use it in your handler, like the functionCatalog instance
the springCloudFunction() handler above.

Accessing Azure ExecutionContext

Some time there is a need to access the target execution context provided by the Azure runtime in
the form of com.microsoft.azure.functions.ExecutionContext. For example one of such needs is
logging, so it can appear in the Azure console.

For that purpose the AzureFunctionUtil.enhanceInputIfNecessary allow you to add an instance of the

https://learn.microsoft.com/en-us/java/api/com.microsoft.azure.functions.annotation?view=azure-java-stable
spring-cloud-function.pdf#function.catalog

ExecutionContext as a Message header so you can retrieve it via executionContext key.

@FunctionName("myfunction")
public String execute(
 @HttpTrigger(name = "req", authLevel = AuthorizationLevel.ANONYMOUS)
HttpRequestMessage<Optional<String>> request,
 ExecutionContext context) {

 Message message =
 (Message) AzureFunctionUtil.enhanceInputIfNecessary(request.getBody().get(),
context); ①

 return this.uppercase.apply(message);
}

① Leverages the AzureFunctionUtil utility to inline the context as message header using the
AzureFunctionUtil.EXECUTION_CONTEXT header key.

Now you can retrieve the ExecutionContext from message headers:

@Bean
public Function<Message<String>, String> uppercase(JsonMapper mapper) {
 return message -> {
 String value = message.getPayload();
 ExecutionContext context =
 (ExecutionContext)
message.getHeaders().get(AzureFunctionUtil.EXECUTION_CONTEXT); ①
 . . .
 }
}

① Retrieve the ExecutionContext instance from the header.

10.3.3. Configuration

To run your function applications on Microsoft Azure, you have to provide the necessary
configurations, such as function.json and host.json, and adhere to the compulsory packaging
format.

Usually the Azure Maven (or Gradle) plugins are used to generate the necessary configurations
from the annotated classes and to produce the required package format.

The Azure packaging format is not compatible with the default Spring Boot
packaging (e.g. uber jar). The Disable Spring Boot Plugin section below explains
how to handle this.

https://learn.microsoft.com/en-us/azure/azure-functions/functions-reference-java?tabs=bash%2Cconsumption#folder-structure
https://learn.microsoft.com/en-us/azure/azure-functions/functions-reference-java?tabs=bash%2Cconsumption#folder-structure
https://learn.microsoft.com/en-us/azure/azure-functions/functions-reference-java?tabs=bash%2Cconsumption#folder-structure

Azure Maven/Gradle Plugins

Azure provides Maven and Gradle plugins to process the annotated classes, generate the necessary
configurations and produce the expected package layout. Plugins are used to set the platform,
runtime and app-settings properties like this:

https://github.com/microsoft/azure-maven-plugins/tree/develop/azure-functions-maven-plugin
https://github.com/microsoft/azure-gradle-plugins/tree/master/azure-functions-gradle-plugin

Maven

<plugin>
 <groupId>com.microsoft.azure</groupId>
 <artifactId>azure-functions-maven-plugin</artifactId>
 <version>1.22.0 or higher</version>

 <configuration>
 <appName>YOUR-AZURE-FUNCTION-APP-NAME</appName>
 <resourceGroup>YOUR-AZURE-FUNCTION-RESOURCE-GROUP</resourceGroup>
 <region>YOUR-AZURE-FUNCTION-APP-REGION</region>
 <appServicePlanName>YOUR-AZURE-FUNCTION-APP-SERVICE-PLANE-
NAME</appServicePlanName>
 <pricingTier>YOUR-AZURE-FUNCTION-PRICING-TIER</pricingTier>

 <hostJson>${project.basedir}/src/main/resources/host.json</hostJson>

 <runtime>
 <os>linux</os>
 <javaVersion>11</javaVersion>
 </runtime>

 <appSettings>
 <property>
 <name>FUNCTIONS_EXTENSION_VERSION</name>
 <value>~4</value>
 </property>
 </appSettings>
 </configuration>
 <executions>
 <execution>
 <id>package-functions</id>
 <goals>
 <goal>package</goal>
 </goals>
 </execution>
 </executions>
</plugin>

Gradle

plugins {
 id "com.microsoft.azure.azurefunctions" version "1.11.0"
 // ...
}

apply plugin: "com.microsoft.azure.azurefunctions"

azurefunctions {
 appName = 'YOUR-AZURE-FUNCTION-APP-NAME'
 resourceGroup = 'YOUR-AZURE-FUNCTION-RESOURCE-GROUP'
 region = 'YOUR-AZURE-FUNCTION-APP-REGION'
 appServicePlanName = 'YOUR-AZURE-FUNCTION-APP-SERVICE-PLANE-NAME'
 pricingTier = 'YOUR-AZURE-FUNCTION-APP-SERVICE-PLANE-NAME'

 runtime {
 os = 'linux'
 javaVersion = '11'
 }

 auth {
 type = 'azure_cli'
 }

 appSettings {
 FUNCTIONS_EXTENSION_VERSION = '~4'
 }
 // Uncomment to enable local debug
 // localDebug = "transport=dt_socket,server=y,suspend=n,address=5005"
}

More information about the runtime configurations: Java Versions, Deployment OS.

Disable Spring Boot Plugin

Expectedly, the Azure Functions run inside the Azure execution runtime, not inside the SpringBoot
runtime! Furthermore, Azure expects a specific packaging format, generated by the Azure
Maven/Gradle plugins, that is not compatible with the default Spring Boot packaging.

You have to either disable the SpringBoot Maven/Gradle plugin or use the Spring Boot Thin
Launcher as shown in this Maven snippet:

https://learn.microsoft.com/en-us/azure/azure-functions/functions-reference-java?tabs=bash%2Cconsumption#java-versions
https://learn.microsoft.com/en-us/azure/azure-functions/functions-reference-java?tabs=bash%2Cconsumption#specify-the-deployment-os
https://github.com/dsyer/spring-boot-thin-launcher
https://github.com/dsyer/spring-boot-thin-launcher

<plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <dependencies>
 <dependency>
 <groupId>org.springframework.boot.experimental</groupId>
 <artifactId>spring-boot-thin-layout</artifactId>
 </dependency>
 </dependencies>
</plugin>

Main-Class Configuration

Specify the Main-Class/Start-Class to point to your Spring application entry point, such as the
HttpTriggerDemoApplication class in the example above.

You can use the Maven start-class property or set the Main-Class attribute of your MANIFEST/META-
INFO:

Maven

<properties>
 <start-class>YOUR APP MAIN CLASS</start-class>
 ...
</properties>

Gradle

jar {
 manifest {
 attributes(
 "Main-Class": "YOUR-APP-MAIN-CLASS"
)
 }
}

Alternatively you can use the MAIN_CLASS environment variable to set the class
name explicitly. For local runs, add the MAIN_CLASS variable to your
local.settings.json file and for Azure portal deployment set the variable in the
App Settings.

If the MAIN_CLASS variable is not set, the Azure adapter lookups the MANIFEST/META-
INFO attributes from the jars found on the classpath and selects the first Main-
Class: annotated with either a @SpringBootApplication or @SpringBootConfiguration
annotation.

https://learn.microsoft.com/en-us/azure/azure-functions/functions-how-to-use-azure-function-app-settings?tabs=portal#get-started-in-the-azure-portal

Metadata Configuration

You can use a shared host.json file to configure the function app.

{
 "version": "2.0",
 "extensionBundle": {
 "id": "Microsoft.Azure.Functions.ExtensionBundle",
 "version": "[4.*, 5.0.0)"
 }
}

The host.json metadata file contains configuration options that affect all functions in a function app
instance.

If the file is not in the project top folder you need to configure your plugins
accordingly (like hostJson maven attribute).

10.3.4. Samples

Here is a list of various Spring Cloud Function Azure Adapter samples you can explore:

• Http Trigger (Maven)

• Http Trigger (Gradle)

• Blob Trigger (Maven)

• Timer Trigger (Maven)

• Kafka Trigger & Output Binding (Maven).

10.4. Azure Web Adapter
For, pure, Web-based function applications, you can replace the generic adapter-azure with the
specialized spring-cloud-function-adapter-azure-web. The Azure Web Adapter can deploy any
Spring Web application as a native Azure function, using the HttpTrigger internally. It hides the
Azure annotations complexity and relies on the familiar Spring Web programming model instead.

To enable the Azure Web Adapter, add the adapter dependency to your pom.xml or build.gradle
files:

https://learn.microsoft.com/en-us/azure/azure-functions/functions-host-json
https://github.com/spring-cloud/spring-cloud-function/tree/main/spring-cloud-function-samples/function-sample-azure-http-trigger
https://github.com/spring-cloud/spring-cloud-function/tree/main/spring-cloud-function-samples/function-sample-azure-http-trigger-gradle
https://github.com/spring-cloud/spring-cloud-function/tree/main/spring-cloud-function-samples/function-sample-azure-blob-trigger
https://github.com/spring-cloud/spring-cloud-function/tree/main/spring-cloud-function-samples/function-sample-azure-timer-trigger
https://github.com/spring-cloud/spring-cloud-function/tree/main/spring-cloud-function-samples/function-sample-azure-kafka-trigger
https://github.com/spring-cloud/spring-cloud-function/tree/main/spring-cloud-function-adapters/spring-cloud-function-adapter-azure-web
https://docs.spring.io/spring-boot/docs/current/reference/html/web.html

Maven

<dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-function-adapter-azure-web</artifactId>
 </dependency>
</dependencies>

Gradle

dependencies {
 implementation 'org.springframework.cloud:spring-cloud-function-adapter-azure-
web'
}

The same Configuration and Usage instructions apply to the Azure Web Adapter as well.

10.4.1. Samples

For further information, explore the following, Azure Web Adapter, sample:

• Azure Web Adapter (Maven).

10.5. Usage
Common instructions for building and deploying both, Azure Adapter and Azure Web Adapter type of
applications.

10.5.1. Build

Maven

./mvnw -U clean package

Gradle

./gradlew azureFunctionsPackage

10.5.2. Running locally

To run locally on top of Azure Functions, and to deploy to your live Azure environment, you will
need Azure Functions Core Tools installed along with the Azure CLI (see here). For some
configuration you would need the Azurite emulator as well.

https://github.com/spring-cloud/spring-cloud-function/tree/main/spring-cloud-function-samples/function-sample-azure-web
https://docs.microsoft.com/en-us/azure/azure-functions/create-first-function-cli-java?tabs=bash%2Cazure-cli%2Cbrowser#configure-your-local-environment
https://learn.microsoft.com/en-us/azure/storage/common/storage-use-emulator

Then run the sample:

Maven

./mvnw azure-functions:run

Gradle

./gradlew azureFunctionsRun

10.5.3. Running on Azure

Make sure you are logged in your Azure account.

az login

and deploy

Maven

./mvnw azure-functions:deploy

Gradle

./gradlew azureFunctionsDeploy

10.5.4. Debug locally

Run the function in debug mode.

Maven

./mvnw azure-functions:run -DenableDebug

Gradle

// If you want to debug your functions, please add the following line
// to the azurefunctions section of your build.gradle.
azurefunctions {
 ...
 localDebug = "transport=dt_socket,server=y,suspend=n,address=5005"
}

Alternatively and the JAVA_OPTS value to your local.settings.json like this:

{
 "IsEncrypted": false,
 "Values": {
 ...
 "FUNCTIONS_WORKER_RUNTIME": "java",
 "JAVA_OPTS": "-Djava.net.preferIPv4Stack=true -Xdebug
-Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=127.0.0.1:5005"
 }
}

Here is snippet for a VSCode remote debugging configuration:

{
 "version": "0.2.0",
 "configurations": [
 {
 "type": "java",
 "name": "Attach to Remote Program",
 "request": "attach",
 "hostName": "localhost",
 "port": "5005"
 },
]
}

10.6. FunctionInvoker (deprecated)

The legacy FunctionInvoker programming model is deprecated and will not be
supported going forward.

For additional documentation and samples about the Function Integration approach follow the
azure-sample README and code.

10.7. Relevant Links
• Spring Cloud Function in Azure

• Spring Cloud Function for Azure Function (blog)

• Spring Cloud Function - Reference Guide

• Azure Functions Java developer guide

• Azure Functions developer guide

Google Cloud Functions
The Google Cloud Functions adapter enables Spring Cloud Function apps to run on the Google
Cloud Functions serverless platform. You can either run the function locally using the open source
Google Functions Framework for Java or on GCP.

Project Dependencies

Start by adding the spring-cloud-function-adapter-gcp dependency to your project.

<dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-function-adapter-gcp</artifactId>
 </dependency>

 ...
</dependencies>

In addition, add the spring-boot-maven-plugin which will build the JAR of the function to deploy.

Notice that we also reference spring-cloud-function-adapter-gcp as a dependency
of the spring-boot-maven-plugin. This is necessary because it modifies the plugin to
package your function in the correct JAR format for deployment on Google Cloud
Functions.

https://github.com/spring-cloud/spring-cloud-function/tree/main/spring-cloud-function-samples/function-sample-azure/
https://learn.microsoft.com/en-us/azure/developer/java/spring-framework/getting-started-with-spring-cloud-function-in-azure
https://spring.io/blog/2023/02/24/spring-cloud-function-for-azure-function
spring-cloud-function.pdf
https://learn.microsoft.com/en-us/azure/azure-functions/functions-reference-java?tabs=bash%2Cconsumption
https://learn.microsoft.com/en-us/azure/azure-functions/functions-reference?tabs=blob
https://cloud.google.com/functions
https://cloud.google.com/functions
https://github.com/GoogleCloudPlatform/functions-framework-java

<plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <configuration>
 <outputDirectory>target/deploy</outputDirectory>
 </configuration>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-function-adapter-gcp</artifactId>
 </dependency>
 </dependencies>
</plugin>

Finally, add the Maven plugin provided as part of the Google Functions Framework for Java. This
allows you to test your functions locally via mvn function:run.

The function target should always be set to
org.springframework.cloud.function.adapter.gcp.GcfJarLauncher; this is an adapter
class which acts as the entry point to your Spring Cloud Function from the Google
Cloud Functions platform.

<plugin>
 <groupId>com.google.cloud.functions</groupId>
 <artifactId>function-maven-plugin</artifactId>
 <version>0.9.1</version>
 <configuration>

<functionTarget>org.springframework.cloud.function.adapter.gcp.GcfJarLauncher</functio
nTarget>
 <port>8080</port>
 </configuration>
</plugin>

A full example of a working pom.xml can be found in the Spring Cloud Functions GCP sample.

HTTP Functions

Google Cloud Functions supports deploying HTTP Functions, which are functions that are invoked
by HTTP request. The sections below describe instructions for deploying a Spring Cloud Function as
an HTTP Function.

Getting Started

Let’s start with a simple Spring Cloud Function example:

https://github.com/spring-cloud/spring-cloud-function/blob/master/spring-cloud-function-samples/function-sample-gcp-http/pom.xml
https://cloud.google.com/functions/docs/writing/http

@SpringBootApplication
public class CloudFunctionMain {

 public static void main(String[] args) {
 SpringApplication.run(CloudFunctionMain.class, args);
 }

 @Bean
 public Function<String, String> uppercase() {
 return value -> value.toUpperCase();
 }
}

Specify your configuration main class in resources/META-INF/MANIFEST.MF.

Main-Class: com.example.CloudFunctionMain

Then run the function locally. This is provided by the Google Cloud Functions function-maven-plugin
described in the project dependencies section.

mvn function:run

Invoke the HTTP function:

curl http://localhost:8080/ -d "hello"

Deploy to GCP

Start by packaging your application.

mvn package

If you added the custom spring-boot-maven-plugin plugin defined above, you should see the
resulting JAR in target/deploy directory. This JAR is correctly formatted for deployment to Google
Cloud Functions.

Next, make sure that you have the Cloud SDK CLI installed.

From the project base directory run the following command to deploy.

https://cloud.google.com/sdk/install

gcloud functions deploy function-sample-gcp-http \
--entry-point org.springframework.cloud.function.adapter.gcp.GcfJarLauncher \
--runtime java11 \
--trigger-http \
--source target/deploy \
--memory 512MB

Invoke the HTTP function:

curl https://REGION-PROJECT_ID.cloudfunctions.net/function-sample-gcp-http -d "hello"

Setting custom HTTP statusCode:

Functions can specify a custom HTTP response code by setting the
`FunctionInvoker.HTTP_STATUS_CODE` header.

@Bean
public Function<String, Message<String>> function() {

 String payload = "hello";

 Message<String> message =
MessageBuilder.withPayload(payload).setHeader(FunctionInvoker.HTTP_STATUS_CODE,
404).build();

 return input -> message;
};

Background Functions

Google Cloud Functions also supports deploying Background Functions which are invoked
indirectly in response to an event, such as a message on a Cloud Pub/Sub topic, a change in a Cloud
Storage bucket, or a Firebase event.

The spring-cloud-function-adapter-gcp allows for functions to be deployed as background functions
as well.

The sections below describe the process for writing a Cloud Pub/Sub topic background function.
However, there are a number of different event types that can trigger a background function to
execute which are not discussed here; these are described in the Background Function triggers
documentation.

Getting Started

Let’s start with a simple Spring Cloud Function which will run as a GCF background function:

https://cloud.google.com/functions/docs/writing/background
https://cloud.google.com/pubsub
https://cloud.google.com/storage
https://cloud.google.com/storage
https://firebase.google.com/
https://cloud.google.com/functions/docs/calling
https://cloud.google.com/functions/docs/calling

@SpringBootApplication
public class BackgroundFunctionMain {

 public static void main(String[] args) {
 SpringApplication.run(BackgroundFunctionMain.class, args);
 }

 @Bean
 public Consumer<PubSubMessage> pubSubFunction() {
 return message -> System.out.println("The Pub/Sub message data: " +
message.getData());
 }
}

In addition, create PubSubMessage class in the project with the below definition. This class represents
the Pub/Sub event structure which gets passed to your function on a Pub/Sub topic event.

https://cloud.google.com/functions/docs/calling/pubsub#event_structure

public class PubSubMessage {

 private String data;

 private Map<String, String> attributes;

 private String messageId;

 private String publishTime;

 public String getData() {
 return data;
 }

 public void setData(String data) {
 this.data = data;
 }

 public Map<String, String> getAttributes() {
 return attributes;
 }

 public void setAttributes(Map<String, String> attributes) {
 this.attributes = attributes;
 }

 public String getMessageId() {
 return messageId;
 }

 public void setMessageId(String messageId) {
 this.messageId = messageId;
 }

 public String getPublishTime() {
 return publishTime;
 }

 public void setPublishTime(String publishTime) {
 this.publishTime = publishTime;
 }

}

Specify your configuration main class in resources/META-INF/MANIFEST.MF.

Main-Class: com.example.BackgroundFunctionMain

Then run the function locally. This is provided by the Google Cloud Functions function-maven-plugin
described in the project dependencies section.

mvn function:run

Invoke the HTTP function:

curl localhost:8080 -H "Content-Type: application/json" -d '{"data":"hello"}'

Verify that the function was invoked by viewing the logs.

Deploy to GCP

In order to deploy your background function to GCP, first package your application.

mvn package

If you added the custom spring-boot-maven-plugin plugin defined above, you should see the
resulting JAR in target/deploy directory. This JAR is correctly formatted for deployment to Google
Cloud Functions.

Next, make sure that you have the Cloud SDK CLI installed.

From the project base directory run the following command to deploy.

gcloud functions deploy function-sample-gcp-background \
--entry-point org.springframework.cloud.function.adapter.gcp.GcfJarLauncher \
--runtime java11 \
--trigger-topic my-functions-topic \
--source target/deploy \
--memory 512MB

Google Cloud Function will now invoke the function every time a message is published to the topic
specified by --trigger-topic.

For a walkthrough on testing and verifying your background function, see the instructions for
running the GCF Background Function sample.

Sample Functions

The project provides the following sample functions as reference:

• The function-sample-gcp-http is an HTTP Function which you can test locally and try deploying.

• The function-sample-gcp-background shows an example of a background function that is
triggered by a message being published to a specified Pub/Sub topic.

https://cloud.google.com/sdk/install
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-samples/function-sample-gcp-background/
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-samples/function-sample-gcp-http/
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-samples/function-sample-gcp-background/

Spring Cloud Gateway
2022.0.4

This project provides an API Gateway built on top of the Spring Ecosystem, including: Spring 6,
Spring Boot 3 and Project Reactor. Spring Cloud Gateway aims to provide a simple, yet effective way
to route to APIs and provide cross cutting concerns to them such as: security, monitoring/metrics,
and resiliency.

1. How to Include Spring Cloud Gateway
To include Spring Cloud Gateway in your project, use the starter with a group ID of
org.springframework.cloud and an artifact ID of spring-cloud-starter-gateway. See the Spring Cloud
Project page for details on setting up your build system with the current Spring Cloud Release
Train.

If you include the starter, but you do not want the gateway to be enabled, set
spring.cloud.gateway.enabled=false.

Spring Cloud Gateway is built on Spring Boot, Spring WebFlux, and Project
Reactor. As a consequence, many of the familiar synchronous libraries (Spring
Data and Spring Security, for example) and patterns you know may not apply
when you use Spring Cloud Gateway. If you are unfamiliar with these projects, we
suggest you begin by reading their documentation to familiarize yourself with
some new concepts before working with Spring Cloud Gateway.

Spring Cloud Gateway requires the Netty runtime provided by Spring Boot and
Spring Webflux. It does not work in a traditional Servlet Container or when built
as a WAR.

2. Glossary
• Route: The basic building block of the gateway. It is defined by an ID, a destination URI, a

collection of predicates, and a collection of filters. A route is matched if the aggregate predicate
is true.

• Predicate: This is a Java 8 Function Predicate. The input type is a Spring Framework
ServerWebExchange. This lets you match on anything from the HTTP request, such as headers or
parameters.

• Filter: These are instances of GatewayFilter that have been constructed with a specific factory.
Here, you can modify requests and responses before or after sending the downstream request.

3. How It Works
The following diagram provides a high-level overview of how Spring Cloud Gateway works:

https://projects.spring.io/spring-cloud/
https://projects.spring.io/spring-cloud/
https://spring.io/projects/spring-boot#learn
https://docs.spring.io/spring/docs/current/spring-framework-reference/web-reactive.html
https://projectreactor.io/docs
https://projectreactor.io/docs
https://docs.oracle.com/javase/8/docs/api/java/util/function/Predicate.html
https://docs.spring.io/spring/docs/5.0.x/javadoc-api/org/springframework/web/server/ServerWebExchange.html
https://docs.spring.io/spring/docs/5.0.x/javadoc-api/org/springframework/web/server/ServerWebExchange.html
https://github.com/spring-cloud/spring-cloud/tree/635cf5cbd0410fc1159f6930f14b47062b44ae75/spring-cloud-gateway-server/src/main/java/org/springframework/cloud/gateway/filter/GatewayFilter.java

[Spring Cloud Gateway Diagram] | spring_cloud_gateway_diagram.png

Clients make requests to Spring Cloud Gateway. If the Gateway Handler Mapping determines that a
request matches a route, it is sent to the Gateway Web Handler. This handler runs the request
through a filter chain that is specific to the request. The reason the filters are divided by the dotted
line is that filters can run logic both before and after the proxy request is sent. All “pre” filter logic
is executed. Then the proxy request is made. After the proxy request is made, the “post” filter logic
is run.

URIs defined in routes without a port get default port values of 80 and 443 for the
HTTP and HTTPS URIs, respectively.

4. Configuring Route Predicate Factories and
Gateway Filter Factories
There are two ways to configure predicates and filters: shortcuts and fully expanded arguments.
Most examples below use the shortcut way.

The name and argument names are listed as code in the first sentence or two of each section. The
arguments are typically listed in the order that are needed for the shortcut configuration.

4.1. Shortcut Configuration
Shortcut configuration is recognized by the filter name, followed by an equals sign (=), followed by
argument values separated by commas (,).

application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: after_route
 uri: https://example.org
 predicates:
 - Cookie=mycookie,mycookievalue

The previous sample defines the Cookie Route Predicate Factory with two arguments, the cookie
name, mycookie and the value to match mycookievalue.

4.2. Fully Expanded Arguments
Fully expanded arguments appear more like standard yaml configuration with name/value pairs.
Typically, there will be a name key and an args key. The args key is a map of key value pairs to
configure the predicate or filter.

application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: after_route
 uri: https://example.org
 predicates:
 - name: Cookie
 args:
 name: mycookie
 regexp: mycookievalue

This is the full configuration of the shortcut configuration of the Cookie predicate shown above.

5. Route Predicate Factories
Spring Cloud Gateway matches routes as part of the Spring WebFlux HandlerMapping infrastructure.
Spring Cloud Gateway includes many built-in route predicate factories. All of these predicates
match on different attributes of the HTTP request. You can combine multiple route predicate
factories with logical and statements.

5.1. The After Route Predicate Factory
The After route predicate factory takes one parameter, a datetime (which is a java ZonedDateTime).
This predicate matches requests that happen after the specified datetime. The following example
configures an after route predicate:

Example 6. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: after_route
 uri: https://example.org
 predicates:
 - After=2017-01-20T17:42:47.789-07:00[America/Denver]

This route matches any request made after Jan 20, 2017 17:42 Mountain Time (Denver).

5.2. The Before Route Predicate Factory
The Before route predicate factory takes one parameter, a datetime (which is a java ZonedDateTime).
This predicate matches requests that happen before the specified datetime. The following example

configures a before route predicate:

Example 7. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: before_route
 uri: https://example.org
 predicates:
 - Before=2017-01-20T17:42:47.789-07:00[America/Denver]

This route matches any request made before Jan 20, 2017 17:42 Mountain Time (Denver).

5.3. The Between Route Predicate Factory
The Between route predicate factory takes two parameters, datetime1 and datetime2 which are java
ZonedDateTime objects. This predicate matches requests that happen after datetime1 and before
datetime2. The datetime2 parameter must be after datetime1. The following example configures a
between route predicate:

Example 8. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: between_route
 uri: https://example.org
 predicates:
 - Between=2017-01-20T17:42:47.789-07:00[America/Denver], 2017-01-
21T17:42:47.789-07:00[America/Denver]

This route matches any request made after Jan 20, 2017 17:42 Mountain Time (Denver) and before
Jan 21, 2017 17:42 Mountain Time (Denver). This could be useful for maintenance windows.

5.4. The Cookie Route Predicate Factory
The Cookie route predicate factory takes two parameters, the cookie name and a regexp (which is a
Java regular expression). This predicate matches cookies that have the given name and whose
values match the regular expression. The following example configures a cookie route predicate
factory:

Example 9. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: cookie_route
 uri: https://example.org
 predicates:
 - Cookie=chocolate, ch.p

This route matches requests that have a cookie named chocolate whose value matches the ch.p
regular expression.

5.5. The Header Route Predicate Factory
The Header route predicate factory takes two parameters, the header and a regexp (which is a Java
regular expression). This predicate matches with a header that has the given name whose value
matches the regular expression. The following example configures a header route predicate:

Example 10. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: header_route
 uri: https://example.org
 predicates:
 - Header=X-Request-Id, \d+

This route matches if the request has a header named X-Request-Id whose value matches the \d+
regular expression (that is, it has a value of one or more digits).

5.6. The Host Route Predicate Factory
The Host route predicate factory takes one parameter: a list of host name patterns. The pattern is an
Ant-style pattern with . as the separator. This predicates matches the Host header that matches the
pattern. The following example configures a host route predicate:

Example 11. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: host_route
 uri: https://example.org
 predicates:
 - Host=**.somehost.org,**.anotherhost.org

URI template variables (such as {sub}.myhost.org) are supported as well.

This route matches if the request has a Host header with a value of www.somehost.org or
beta.somehost.org or www.anotherhost.org.

This predicate extracts the URI template variables (such as sub, defined in the preceding example)
as a map of names and values and places it in the ServerWebExchange.getAttributes() with a key
defined in ServerWebExchangeUtils.URI_TEMPLATE_VARIABLES_ATTRIBUTE. Those values are then
available for use by GatewayFilter factories

5.7. The Method Route Predicate Factory
The Method Route Predicate Factory takes a methods argument which is one or more parameters: the
HTTP methods to match. The following example configures a method route predicate:

Example 12. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: method_route
 uri: https://example.org
 predicates:
 - Method=GET,POST

This route matches if the request method was a GET or a POST.

5.8. The Path Route Predicate Factory
The Path Route Predicate Factory takes two parameters: a list of Spring PathMatcher patterns and an
optional flag called matchTrailingSlash (defaults to true). The following example configures a path
route predicate:

Example 13. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: path_route
 uri: https://example.org
 predicates:
 - Path=/red/{segment},/blue/{segment}

This route matches if the request path was, for example: /red/1 or /red/1/ or /red/blue or
/blue/green.

If matchTrailingSlash is set to false, then request path /red/1/ will not be matched.

This predicate extracts the URI template variables (such as segment, defined in the preceding
example) as a map of names and values and places it in the ServerWebExchange.getAttributes() with
a key defined in ServerWebExchangeUtils.URI_TEMPLATE_VARIABLES_ATTRIBUTE. Those values are then
available for use by GatewayFilter factories

A utility method (called get) is available to make access to these variables easier. The following
example shows how to use the get method:

Map<String, String> uriVariables =
ServerWebExchangeUtils.getUriTemplateVariables(exchange);

String segment = uriVariables.get("segment");

5.9. The Query Route Predicate Factory
The Query route predicate factory takes two parameters: a required param and an optional regexp
(which is a Java regular expression). The following example configures a query route predicate:

Example 14. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: query_route
 uri: https://example.org
 predicates:
 - Query=green

The preceding route matches if the request contained a green query parameter.

application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: query_route
 uri: https://example.org
 predicates:
 - Query=red, gree.

The preceding route matches if the request contained a red query parameter whose value matched
the gree. regexp, so green and greet would match.

5.10. The RemoteAddr Route Predicate Factory
The RemoteAddr route predicate factory takes a list (min size 1) of sources, which are CIDR-notation
(IPv4 or IPv6) strings, such as 192.168.0.1/16 (where 192.168.0.1 is an IP address and 16 is a subnet
mask). The following example configures a RemoteAddr route predicate:

Example 15. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: remoteaddr_route
 uri: https://example.org
 predicates:
 - RemoteAddr=192.168.1.1/24

This route matches if the remote address of the request was, for example, 192.168.1.10.

5.10.1. Modifying the Way Remote Addresses Are Resolved

By default, the RemoteAddr route predicate factory uses the remote address from the incoming
request. This may not match the actual client IP address if Spring Cloud Gateway sits behind a
proxy layer.

You can customize the way that the remote address is resolved by setting a custom
RemoteAddressResolver. Spring Cloud Gateway comes with one non-default remote address resolver
that is based off of the X-Forwarded-For header, XForwardedRemoteAddressResolver.

XForwardedRemoteAddressResolver has two static constructor methods, which take different
approaches to security:

• XForwardedRemoteAddressResolver::trustAll returns a RemoteAddressResolver that always takes
the first IP address found in the X-Forwarded-For header. This approach is vulnerable to
spoofing, as a malicious client could set an initial value for the X-Forwarded-For, which would be
accepted by the resolver.

• XForwardedRemoteAddressResolver::maxTrustedIndex takes an index that correlates to the number
of trusted infrastructure running in front of Spring Cloud Gateway. If Spring Cloud Gateway is,
for example only accessible through HAProxy, then a value of 1 should be used. If two hops of
trusted infrastructure are required before Spring Cloud Gateway is accessible, then a value of 2
should be used.

Consider the following header value:

X-Forwarded-For: 0.0.0.1, 0.0.0.2, 0.0.0.3

The following maxTrustedIndex values yield the following remote addresses:

maxTrustedIndex result

[Integer.MIN_VALUE,0] (invalid, IllegalArgumentException during
initialization)

1 0.0.0.3

2 0.0.0.2

3 0.0.0.1

[4, Integer.MAX_VALUE] 0.0.0.1

The following example shows how to achieve the same configuration with Java:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Forwarded-For

Example 16. GatewayConfig.java

RemoteAddressResolver resolver = XForwardedRemoteAddressResolver
 .maxTrustedIndex(1);

...

.route("direct-route",
 r -> r.remoteAddr("10.1.1.1", "10.10.1.1/24")
 .uri("https://downstream1")
.route("proxied-route",
 r -> r.remoteAddr(resolver, "10.10.1.1", "10.10.1.1/24")
 .uri("https://downstream2")
)

5.11. The Weight Route Predicate Factory
The Weight route predicate factory takes two arguments: group and weight (an int). The weights are
calculated per group. The following example configures a weight route predicate:

Example 17. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: weight_high
 uri: https://weighthigh.org
 predicates:
 - Weight=group1, 8
 - id: weight_low
 uri: https://weightlow.org
 predicates:
 - Weight=group1, 2

This route would forward ~80% of traffic to weighthigh.org and ~20% of traffic to weighlow.org

5.12. The XForwarded Remote Addr Route Predicate
Factory
The XForwarded Remote Addr route predicate factory takes a list (min size 1) of sources, which are
CIDR-notation (IPv4 or IPv6) strings, such as 192.168.0.1/16 (where 192.168.0.1 is an IP address and
16 is a subnet mask).

https://weighthigh.org
https://weighlow.org

This route predicate allows requests to be filtered based on the X-Forwarded-For HTTP header.

This can be used with reverse proxies such as load balancers or web application firewalls where
the request should only be allowed if it comes from a trusted list of IP addresses used by those
reverse proxies.

The following example configures a XForwardedRemoteAddr route predicate:

Example 18. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: xforwarded_remoteaddr_route
 uri: https://example.org
 predicates:
 - XForwardedRemoteAddr=192.168.1.1/24

This route matches if the X-Forwarded-For header contains, for example, 192.168.1.10.

6. GatewayFilter Factories
Route filters allow the modification of the incoming HTTP request or outgoing HTTP response in
some manner. Route filters are scoped to a particular route. Spring Cloud Gateway includes many
built-in GatewayFilter Factories.

For more detailed examples of how to use any of the following filters, take a look
at the unit tests.

6.1. The AddRequestHeader GatewayFilter Factory
The AddRequestHeader GatewayFilter factory takes a name and value parameter. The following
example configures an AddRequestHeader GatewayFilter:

https://github.com/spring-cloud/spring-cloud-gateway/tree/master/spring-cloud-gateway-server/src/test/java/org/springframework/cloud/gateway/filter/factory

Example 19. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: add_request_header_route
 uri: https://example.org
 filters:
 - AddRequestHeader=X-Request-red, blue

This listing adds X-Request-red:blue header to the downstream request’s headers for all matching
requests.

AddRequestHeader is aware of the URI variables used to match a path or host. URI variables may be
used in the value and are expanded at runtime. The following example configures an
AddRequestHeader GatewayFilter that uses a variable:

Example 20. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: add_request_header_route
 uri: https://example.org
 predicates:
 - Path=/red/{segment}
 filters:
 - AddRequestHeader=X-Request-Red, Blue-{segment}

6.2. The AddRequestHeadersIfNotPresent GatewayFilter
Factory
The AddRequestHeadersIfNotPresent GatewayFilter factory takes a collection of name and value pairs
separated by colon. The following example configures an AddRequestHeadersIfNotPresent
GatewayFilter:

Example 21. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: add_request_headers_route
 uri: https://example.org
 filters:
 - AddRequestHeadersIfNotPresent=X-Request-Color-1:blue,X-Request-Color-
2:green

This listing adds 2 headers X-Request-Color-1:blue and X-Request-Color-2:green to the downstream
request’s headers for all matching requests. This is similar to how AddRequestHeader works, but
unlike AddRequestHeader it will do it only if the header is not already there. Otherwise, the original
value in the client request is sent.

Additionally, to set a multi-valued header, use the header name multiple times like
AddRequestHeadersIfNotPresent=X-Request-Color-1:blue,X-Request-Color-1:green.

AddRequestHeadersIfNotPresent also supports URI variables used to match a path or host. URI
variables may be used in the value and are expanded at runtime. The following example configures
an AddRequestHeadersIfNotPresent GatewayFilter that uses a variable:

Example 22. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: add_request_header_route
 uri: https://example.org
 predicates:
 - Path=/red/{segment}
 filters:
 - AddRequestHeadersIfNotPresent=X-Request-Red:Blue-{segment}

6.3. The AddRequestParameter GatewayFilter Factory
The AddRequestParameter GatewayFilter Factory takes a name and value parameter. The following
example configures an AddRequestParameter GatewayFilter:

Example 23. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: add_request_parameter_route
 uri: https://example.org
 filters:
 - AddRequestParameter=red, blue

This will add red=blue to the downstream request’s query string for all matching requests.

AddRequestParameter is aware of the URI variables used to match a path or host. URI variables may
be used in the value and are expanded at runtime. The following example configures an
AddRequestParameter GatewayFilter that uses a variable:

Example 24. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: add_request_parameter_route
 uri: https://example.org
 predicates:
 - Host: {segment}.myhost.org
 filters:
 - AddRequestParameter=foo, bar-{segment}

6.4. The AddResponseHeader GatewayFilter Factory
The AddResponseHeader GatewayFilter Factory takes a name and value parameter. The following
example configures an AddResponseHeader GatewayFilter:

Example 25. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: add_response_header_route
 uri: https://example.org
 filters:
 - AddResponseHeader=X-Response-Red, Blue

This adds X-Response-Red:Blue header to the downstream response’s headers for all matching
requests.

AddResponseHeader is aware of URI variables used to match a path or host. URI variables may be used
in the value and are expanded at runtime. The following example configures an AddResponseHeader
GatewayFilter that uses a variable:

Example 26. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: add_response_header_route
 uri: https://example.org
 predicates:
 - Host: {segment}.myhost.org
 filters:
 - AddResponseHeader=foo, bar-{segment}

6.5. The CircuitBreaker GatewayFilter Factory
The Spring Cloud CircuitBreaker GatewayFilter factory uses the Spring Cloud CircuitBreaker APIs to
wrap Gateway routes in a circuit breaker. Spring Cloud CircuitBreaker supports multiple libraries
that can be used with Spring Cloud Gateway. Spring Cloud supports Resilience4J out of the box.

To enable the Spring Cloud CircuitBreaker filter, you need to place spring-cloud-starter-
circuitbreaker-reactor-resilience4j on the classpath. The following example configures a Spring
Cloud CircuitBreaker GatewayFilter:

Example 27. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: circuitbreaker_route
 uri: https://example.org
 filters:
 - CircuitBreaker=myCircuitBreaker

To configure the circuit breaker, see the configuration for the underlying circuit breaker
implementation you are using.

• Resilience4J Documentation

The Spring Cloud CircuitBreaker filter can also accept an optional fallbackUri parameter. Currently,
only forward: schemed URIs are supported. If the fallback is called, the request is forwarded to the
controller matched by the URI. The following example configures such a fallback:

Example 28. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: circuitbreaker_route
 uri: lb://backing-service:8088
 predicates:
 - Path=/consumingServiceEndpoint
 filters:
 - name: CircuitBreaker
 args:
 name: myCircuitBreaker
 fallbackUri: forward:/inCaseOfFailureUseThis
 - RewritePath=/consumingServiceEndpoint, /backingServiceEndpoint

The following listing does the same thing in Java:

https://cloud.spring.io/spring-cloud-circuitbreaker/reference/html/spring-cloud-circuitbreaker.html

Example 29. Application.java

@Bean
public RouteLocator routes(RouteLocatorBuilder builder) {
 return builder.routes()
 .route("circuitbreaker_route", r -> r.path("/consumingServiceEndpoint")
 .filters(f -> f.circuitBreaker(c ->
c.name("myCircuitBreaker").fallbackUri("forward:/inCaseOfFailureUseThis"))
 .rewritePath("/consumingServiceEndpoint",
"/backingServiceEndpoint")).uri("lb://backing-service:8088")
 .build();
}

This example forwards to the /inCaseofFailureUseThis URI when the circuit breaker fallback is
called. Note that this example also demonstrates the (optional) Spring Cloud LoadBalancer load-
balancing (defined by the lb prefix on the destination URI).

CircuitBreaker also supports URI variables in the fallbackUri. This allows more complex routing
options, like forwarding sections of the original host or url path using PathPattern expression.

In the example below the call consumingServiceEndpoint/users/1 will be redirected to
inCaseOfFailureUseThis/users/1.

Example 30. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: circuitbreaker_route
 uri: lb://backing-service:8088
 predicates:
 - Path=/consumingServiceEndpoint/{*segments}
 filters:
 - name: CircuitBreaker
 args:
 name: myCircuitBreaker
 fallbackUri: forward:/inCaseOfFailureUseThis/{segments}

The primary scenario is to use the fallbackUri to define an internal controller or handler within the
gateway application. However, you can also reroute the request to a controller or handler in an
external application, as follows:

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/util/pattern/PathPattern.html

Example 31. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: ingredients
 uri: lb://ingredients
 predicates:
 - Path=//ingredients/**
 filters:
 - name: CircuitBreaker
 args:
 name: fetchIngredients
 fallbackUri: forward:/fallback
 - id: ingredients-fallback
 uri: http://localhost:9994
 predicates:
 - Path=/fallback

In this example, there is no fallback endpoint or handler in the gateway application. However,
there is one in another application, registered under localhost:9994.

In case of the request being forwarded to fallback, the Spring Cloud CircuitBreaker Gateway filter
also provides the Throwable that has caused it. It is added to the ServerWebExchange as the
ServerWebExchangeUtils.CIRCUITBREAKER_EXECUTION_EXCEPTION_ATTR attribute that can be used when
handling the fallback within the gateway application.

For the external controller/handler scenario, headers can be added with exception details. You can
find more information on doing so in the FallbackHeaders GatewayFilter Factory section.

6.5.1. Tripping The Circuit Breaker On Status Codes

In some cases you might want to trip a circuit breaker based on the status code returned from the
route it wraps. The circuit breaker config object takes a list of status codes that if returned will
cause the circuit breaker to be tripped. When setting the status codes you want to trip the circuit
breaker you can either use an integer with the status code value or the String representation of the
HttpStatus enumeration.

http://localhost:9994

Example 32. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: circuitbreaker_route
 uri: lb://backing-service:8088
 predicates:
 - Path=/consumingServiceEndpoint
 filters:
 - name: CircuitBreaker
 args:
 name: myCircuitBreaker
 fallbackUri: forward:/inCaseOfFailureUseThis
 statusCodes:
 - 500
 - "NOT_FOUND"

Example 33. Application.java

@Bean
public RouteLocator routes(RouteLocatorBuilder builder) {
 return builder.routes()
 .route("circuitbreaker_route", r -> r.path("/consumingServiceEndpoint")
 .filters(f -> f.circuitBreaker(c ->
c.name("myCircuitBreaker").fallbackUri("forward:/inCaseOfFailureUseThis").addStatu
sCode("INTERNAL_SERVER_ERROR"))
 .rewritePath("/consumingServiceEndpoint",
"/backingServiceEndpoint")).uri("lb://backing-service:8088")
 .build();
}

6.6. The CacheRequestBody GatewayFilter Factory
Some situations necessitate reading the request body. Since the request can be read only once, we
need to cache the request body. You can use the CacheRequestBody filter to cache the request body
before sending it downstream and getting the body from exchange attribute.

The following listing shows how to cache the request body GatewayFilter:

@Bean
public RouteLocator routes(RouteLocatorBuilder builder) {
 return builder.routes()
 .route("cache_request_body_route", r -> r.path("/downstream/**")
 .filters(f -> f.prefixPath("/httpbin")
 .cacheRequestBody(String.class).uri(uri))
 .build();
}

Example 34. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: cache_request_body_route
 uri: lb://downstream
 predicates:
 - Path=/downstream/**
 filters:
 - name: CacheRequestBody
 args:
 bodyClass: java.lang.String

CacheRequestBody extracts the request body and converts it to a body class (such as java.lang.String,
defined in the preceding example). CacheRequestBody then places it in the attributes available from
ServerWebExchange.getAttributes(), with a key defined in
ServerWebExchangeUtils.CACHED_REQUEST_BODY_ATTR.

 This filter works only with HTTP (including HTTPS) requests.

6.7. The DedupeResponseHeader GatewayFilter Factory
The DedupeResponseHeader GatewayFilter factory takes a name parameter and an optional strategy
parameter. name can contain a space-separated list of header names. The following example
configures a DedupeResponseHeader GatewayFilter:

Example 35. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: dedupe_response_header_route
 uri: https://example.org
 filters:
 - DedupeResponseHeader=Access-Control-Allow-Credentials Access-Control-
Allow-Origin

This removes duplicate values of Access-Control-Allow-Credentials and Access-Control-Allow-
Origin response headers in cases when both the gateway CORS logic and the downstream logic add
them.

The DedupeResponseHeader filter also accepts an optional strategy parameter. The accepted values
are RETAIN_FIRST (default), RETAIN_LAST, and RETAIN_UNIQUE.

6.8. The FallbackHeaders GatewayFilter Factory
The FallbackHeaders factory lets you add Spring Cloud CircuitBreaker execution exception details in
the headers of a request forwarded to a fallbackUri in an external application, as in the following
scenario:

Example 36. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: ingredients
 uri: lb://ingredients
 predicates:
 - Path=//ingredients/**
 filters:
 - name: CircuitBreaker
 args:
 name: fetchIngredients
 fallbackUri: forward:/fallback
 - id: ingredients-fallback
 uri: http://localhost:9994
 predicates:
 - Path=/fallback
 filters:
 - name: FallbackHeaders
 args:
 executionExceptionTypeHeaderName: Test-Header

In this example, after an execution exception occurs while running the circuit breaker, the request
is forwarded to the fallback endpoint or handler in an application running on localhost:9994. The
headers with the exception type, message and (if available) root cause exception type and message
are added to that request by the FallbackHeaders filter.

You can overwrite the names of the headers in the configuration by setting the values of the
following arguments (shown with their default values):

• executionExceptionTypeHeaderName ("Execution-Exception-Type")

• executionExceptionMessageHeaderName ("Execution-Exception-Message")

• rootCauseExceptionTypeHeaderName ("Root-Cause-Exception-Type")

• rootCauseExceptionMessageHeaderName ("Root-Cause-Exception-Message")

For more information on circuit breakers and the gateway see the Spring Cloud CircuitBreaker
Factory section.

6.9. The JsonToGrpc GatewayFilter Factory
The JSONToGRPCFilter GatewayFilter Factory converts a JSON payload to a gRPC request.

The filter takes the following arguments:

• protoDescriptor: Proto descriptor file.

This file can be generated using protoc and specifying the --descriptor_set_out flag:

protoc --proto_path=src/main/resources/proto/ \
--descriptor_set_out=src/main/resources/proto/hello.pb \
src/main/resources/proto/hello.proto

• protoFile: Proto definition file.

• service: Short name of the service that handles the request.

• method: Method name in the service that handles the request.

 streaming is not supported.

application.yml.

@Bean
public RouteLocator routes(RouteLocatorBuilder builder) {
 return builder.routes()
 .route("json-grpc", r -> r.path("/json/hello").filters(f -> {
 String protoDescriptor = "file:src/main/proto/hello.pb";
 String protoFile = "file:src/main/proto/hello.proto";
 String service = "HelloService";
 String method = "hello";
 return f.jsonToGRPC(protoDescriptor, protoFile, service, method);
 }).uri(uri))

spring:
 cloud:
 gateway:
 routes:
 - id: json-grpc
 uri: https://localhost:6565/testhello
 predicates:
 - Path=/json/**
 filters:
 - name: JsonToGrpc
 args:
 protoDescriptor: file:proto/hello.pb
 protoFile: file:proto/hello.proto
 service: HelloService
 method: hello

When a request is made through the gateway to /json/hello, the request is transformed by using
the definition provided in hello.proto, sent to HelloService/hello, and the response back is
transformed to JSON.

By default, it creates a NettyChannel by using the default TrustManagerFactory. However, you can

customize this TrustManager by creating a bean of type GrpcSslConfigurer:

@Configuration
public class GRPCLocalConfiguration {
 @Bean
 public GRPCSSLContext sslContext() {
 TrustManager trustManager = trustAllCerts();
 return new GRPCSSLContext(trustManager);
 }
}

6.10. The LocalResponseCache GatewayFilter Factory
This filter allows caching the response body and headers to follow these rules:

• It can only cache bodiless GET requests.

• It caches the response only for one of the following status codes: HTTP 200 (OK), HTTP 206
(Partial Content), or HTTP 301 (Moved Permanently).

• Response data is not cached if Cache-Control header does not allow it (no-store present in the
request or no-store or private present in the response).

• If the response is already cached and a new request is performed with no-cache value in Cache-
Control header, it returns a bodiless response with 304 (Not Modified).

This filter configures the local response cache per route and is available only if the
spring.cloud.gateway.filter.local-response-cache.enabled property is enabled. And a local
response cache configured globally is also available as feature.

It accepts the first parameter to override the time to expire a cache entry (expressed in s for
seconds, m for minutes, and h for hours) and a second parameter to set the maximum size of the
cache to evict entries for this route (KB, MB, or GB).

The following listing shows how to add local response cache GatewayFilter:

@Bean
public RouteLocator routes(RouteLocatorBuilder builder) {
 return builder.routes()
 .route("rewrite_response_upper", r -> r.host("*.rewriteresponseupper.org")
 .filters(f -> f.prefixPath("/httpbin")
 .localResponseCache(Duration.ofMinutes(30), "500MB")
).uri(uri))
 .build();
}

or this

application.yaml

spring:
 cloud:
 gateway:
 routes:
 - id: resource
 uri: http://localhost:9000
 predicates:
 - Path=/resource
 filters:
 - LocalResponseCache=30m,500MB

This filter also automatically calculates the max-age value in the HTTP Cache-
Control header. Only if max-age is present on the original response is the value
rewritten with the number of seconds set in the timeToLive configuration
parameter. In consecutive calls, this value is recalculated with the number of
seconds left until the response expires.

To enable this feature, add com.github.ben-manes.caffeine:caffeine and spring-
boot-starter-cache as project dependencies.

If your project creates custom CacheManager beans, it will either need to be marked
with @Primary or injected using @Qualifier.

6.11. The MapRequestHeader GatewayFilter Factory
The MapRequestHeader GatewayFilter factory takes fromHeader and toHeader parameters. It creates a
new named header (toHeader), and the value is extracted out of an existing named header
(fromHeader) from the incoming http request. If the input header does not exist, the filter has no
impact. If the new named header already exists, its values are augmented with the new values. The
following example configures a MapRequestHeader:

Example 37. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: map_request_header_route
 uri: https://example.org
 filters:
 - MapRequestHeader=Blue, X-Request-Red

This adds the X-Request-Red:<values> header to the downstream request with updated values from
the incoming HTTP request’s Blue header.

6.12. The ModifyRequestBody GatewayFilter Factory
You can use the ModifyRequestBody filter to modify the request body before it is sent downstream by
the gateway.

 This filter can be configured only by using the Java DSL.

The following listing shows how to modify a request body GatewayFilter:

@Bean
public RouteLocator routes(RouteLocatorBuilder builder) {
 return builder.routes()
 .route("rewrite_request_obj", r -> r.host("*.rewriterequestobj.org")
 .filters(f -> f.prefixPath("/httpbin")
 .modifyRequestBody(String.class, Hello.class,
MediaType.APPLICATION_JSON_VALUE,
 (exchange, s) -> Mono.just(new
Hello(s.toUpperCase())))).uri(uri))
 .build();
}

static class Hello {
 String message;

 public Hello() { }

 public Hello(String message) {
 this.message = message;
 }

 public String getMessage() {
 return message;
 }

 public void setMessage(String message) {
 this.message = message;
 }
}

If the request has no body, the RewriteFilter is passed null. Mono.empty()
should be returned to assign a missing body in the request.

6.13. The ModifyResponseBody GatewayFilter Factory
You can use the ModifyResponseBody filter to modify the response body before it is sent back to the
client.

 This filter can be configured only by using the Java DSL.

The following listing shows how to modify a response body GatewayFilter:

@Bean
public RouteLocator routes(RouteLocatorBuilder builder) {
 return builder.routes()
 .route("rewrite_response_upper", r -> r.host("*.rewriteresponseupper.org")
 .filters(f -> f.prefixPath("/httpbin")
 .modifyResponseBody(String.class, String.class,
 (exchange, s) -> Mono.just(s.toUpperCase()))).uri(uri))
 .build();
}

If the response has no body, the RewriteFilter is passed null. Mono.empty()
should be returned to assign a missing body in the response.

6.14. The PrefixPath GatewayFilter Factory
The PrefixPath GatewayFilter factory takes a single prefix parameter. The following example
configures a PrefixPath GatewayFilter:

Example 38. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: prefixpath_route
 uri: https://example.org
 filters:
 - PrefixPath=/mypath

This prefixes /mypath to the path of all matching requests. So a request to /hello is sent to
/mypath/hello.

6.15. The PreserveHostHeader GatewayFilter Factory
The PreserveHostHeader GatewayFilter factory has no parameters. This filter sets a request attribute
that the routing filter inspects to determine if the original host header should be sent rather than
the host header determined by the HTTP client. The following example configures a
PreserveHostHeader GatewayFilter:

Example 39. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: preserve_host_route
 uri: https://example.org
 filters:
 - PreserveHostHeader

6.16. The RedirectTo GatewayFilter Factory
The RedirectTo GatewayFilter factory takes two parameters, status and url. The status parameter
should be a 300 series redirect HTTP code, such as 301. The url parameter should be a valid URL.
This is the value of the Location header. For relative redirects, you should use uri: no://op as the
uri of your route definition. The following listing configures a RedirectTo GatewayFilter:

Example 40. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: prefixpath_route
 uri: https://example.org
 filters:
 - RedirectTo=302, https://acme.org

This will send a status 302 with a Location:https://acme.org header to perform a redirect.

6.17. RemoveJsonAttributesResponseBody GatewayFilter
Factory
The RemoveJsonAttributesResponseBody GatewayFilter factory takes a collection of attribute names to
search for, an optional last parameter from the list can be a boolean to remove the attributes just at
root level (that’s the default value if not present at the end of the parameter configuration, false) or
recursively (true). It provides a convenient method to apply a transformation to JSON body content
by deleting attributes from it.

The following example configures an RemoveJsonAttributesResponseBody GatewayFilter:

Example 41. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: removejsonattributes_route
 uri: https://example.org
 filters:
 - RemoveJsonAttributesResponseBody=id,color

This removes attributes "id" and "color" from the JSON content body at root level.

The following example configures an RemoveJsonAttributesResponseBody GatewayFilter that uses the
optional last parameter:

Example 42. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: removejsonattributes_recursively_route
 uri: https://example.org
 predicates:
 - Path=/red/{segment}
 filters:
 - RemoveJsonAttributesResponseBody=id,color,true

This removes attributes "id" and "color" from the JSON content body at any level.

6.18. The RemoveRequestHeader GatewayFilter Factory
The RemoveRequestHeader GatewayFilter factory takes a name parameter. It is the name of the header
to be removed. The following listing configures a RemoveRequestHeader GatewayFilter:

Example 43. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: removerequestheader_route
 uri: https://example.org
 filters:
 - RemoveRequestHeader=X-Request-Foo

This removes the X-Request-Foo header before it is sent downstream.

6.19. The RemoveRequestParameter GatewayFilter Factory
The RemoveRequestParameter GatewayFilter factory takes a name parameter. It is the name of the
query parameter to be removed. The following example configures a RemoveRequestParameter
GatewayFilter:

Example 44. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: removerequestparameter_route
 uri: https://example.org
 filters:
 - RemoveRequestParameter=red

This will remove the red parameter before it is sent downstream.

6.20. The RemoveResponseHeader GatewayFilter Factory
The RemoveResponseHeader GatewayFilter factory takes a name parameter. It is the name of the header
to be removed. The following listing configures a RemoveResponseHeader GatewayFilter:

Example 45. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: removeresponseheader_route
 uri: https://example.org
 filters:
 - RemoveResponseHeader=X-Response-Foo

This will remove the X-Response-Foo header from the response before it is returned to the gateway
client.

To remove any kind of sensitive header, you should configure this filter for any routes for which
you may want to do so. In addition, you can configure this filter once by using
spring.cloud.gateway.default-filters and have it applied to all routes.

6.21. The RequestHeaderSize GatewayFilter Factory
The RequestHeaderSize GatewayFilter factory takes maxSize and errorHeaderName parameters. The
maxSize parameter is the maximum data size allowed by the request header (including key and
value). The errorHeaderName parameter sets the name of the response header containing an error
message, by default it is "errorMessage". The following listing configures a RequestHeaderSize
GatewayFilter:

Example 46. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: requestheadersize_route
 uri: https://example.org
 filters:
 - RequestHeaderSize=1000B

This will send a status 431 if size of any request header is greater than 1000 Bytes.

6.22. The RequestRateLimiter GatewayFilter Factory
The RequestRateLimiter GatewayFilter factory uses a RateLimiter implementation to determine if the
current request is allowed to proceed. If it is not, a status of HTTP 429 - Too Many Requests (by
default) is returned.

This filter takes an optional keyResolver parameter and parameters specific to the rate limiter
(described later in this section).

keyResolver is a bean that implements the KeyResolver interface. In configuration, reference the
bean by name using SpEL. #{@myKeyResolver} is a SpEL expression that references a bean named
myKeyResolver. The following listing shows the KeyResolver interface:

Example 47. KeyResolver.java

public interface KeyResolver {
 Mono<String> resolve(ServerWebExchange exchange);
}

The KeyResolver interface lets pluggable strategies derive the key for limiting requests. In future
milestone releases, there will be some KeyResolver implementations.

The default implementation of KeyResolver is the PrincipalNameKeyResolver, which retrieves the
Principal from the ServerWebExchange and calls Principal.getName().

By default, if the KeyResolver does not find a key, requests are denied. You can adjust this behavior
by setting the spring.cloud.gateway.filter.request-rate-limiter.deny-empty-key (true or false) and
spring.cloud.gateway.filter.request-rate-limiter.empty-key-status-code properties.

The RequestRateLimiter is not configurable with the "shortcut" notation. The
following example below is invalid:

Example 48. application.properties

INVALID SHORTCUT CONFIGURATION
spring.cloud.gateway.routes[0].filters[0]=RequestRateLimiter=2, 2,
#{@userkeyresolver}

6.22.1. The Redis RateLimiter

The Redis implementation is based on work done at Stripe. It requires the use of the spring-boot-
starter-data-redis-reactive Spring Boot starter.

The algorithm used is the Token Bucket Algorithm.

The redis-rate-limiter.replenishRate property defines how many requests per second to allow
(without any dropped requests). This is the rate at which the token bucket is filled.

The redis-rate-limiter.burstCapacity property is the maximum number of requests a user is
allowed in a single second (without any dropped requests). This is the number of tokens the token
bucket can hold. Setting this value to zero blocks all requests.

https://stripe.com/blog/rate-limiters
https://en.wikipedia.org/wiki/Token_bucket

The redis-rate-limiter.requestedTokens property is how many tokens a request costs. This is the
number of tokens taken from the bucket for each request and defaults to 1.

A steady rate is accomplished by setting the same value in replenishRate and burstCapacity.
Temporary bursts can be allowed by setting burstCapacity higher than replenishRate. In this case,
the rate limiter needs to be allowed some time between bursts (according to replenishRate), as two
consecutive bursts results in dropped requests (HTTP 429 - Too Many Requests). The following listing
configures a redis-rate-limiter:

Rate limits below 1 request/s are accomplished by setting replenishRate to the wanted number of
requests, requestedTokens to the timespan in seconds, and burstCapacity to the product of
replenishRate and requestedTokens. For example, setting replenishRate=1, requestedTokens=60, and
burstCapacity=60 results in a limit of 1 request/min. .application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: requestratelimiter_route
 uri: https://example.org
 filters:
 - name: RequestRateLimiter
 args:
 redis-rate-limiter.replenishRate: 10
 redis-rate-limiter.burstCapacity: 20
 redis-rate-limiter.requestedTokens: 1

The following example configures a KeyResolver in Java:

Example 49. Config.java

@Bean
KeyResolver userKeyResolver() {
 return exchange ->
Mono.just(exchange.getRequest().getQueryParams().getFirst("user"));
}

This defines a request rate limit of 10 per user. A burst of 20 is allowed, but, in the next second, only
10 requests are available. The KeyResolver is a simple one that gets the user request parameter
NOTE: This is not recommended for production

You can also define a rate limiter as a bean that implements the RateLimiter interface. In
configuration, you can reference the bean by name using SpEL. #{@myRateLimiter} is a SpEL
expression that references a bean with named myRateLimiter. The following listing defines a rate
limiter that uses the KeyResolver defined in the previous listing:

Example 50. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: requestratelimiter_route
 uri: https://example.org
 filters:
 - name: RequestRateLimiter
 args:
 rate-limiter: "#{@myRateLimiter}"
 key-resolver: "#{@userKeyResolver}"

6.23. The RewriteLocationResponseHeader GatewayFilter
Factory
The RewriteLocationResponseHeader GatewayFilter factory modifies the value of the Location
response header, usually to get rid of backend-specific details. It takes the stripVersionMode,
locationHeaderName, hostValue, and protocolsRegex parameters. The following listing configures a
RewriteLocationResponseHeader GatewayFilter:

Example 51. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: rewritelocationresponseheader_route
 uri: http://example.org
 filters:
 - RewriteLocationResponseHeader=AS_IN_REQUEST, Location, ,

For example, for a request of POST api.example.com/some/object/name, the Location response header
value of object-service.prod.example.net/v2/some/object/id is rewritten as api.example.com/some/
object/id.

The stripVersionMode parameter has the following possible values: NEVER_STRIP, AS_IN_REQUEST
(default), and ALWAYS_STRIP.

• NEVER_STRIP: The version is not stripped, even if the original request path contains no version.

• AS_IN_REQUEST: The version is stripped only if the original request path contains no version.

• ALWAYS_STRIP: The version is always stripped, even if the original request path contains version.

https://api.example.com/some/object/name
https://object-service.prod.example.net/v2/some/object/id
https://api.example.com/some/object/id
https://api.example.com/some/object/id

The hostValue parameter, if provided, is used to replace the host:port portion of the response
Location header. If it is not provided, the value of the Host request header is used.

The protocolsRegex parameter must be a valid regex String, against which the protocol name is
matched. If it is not matched, the filter does nothing. The default is http|https|ftp|ftps.

6.24. The RewritePath GatewayFilter Factory
The RewritePath GatewayFilter factory takes a path regexp parameter and a replacement parameter.
This uses Java regular expressions for a flexible way to rewrite the request path. The following
listing configures a RewritePath GatewayFilter:

Example 52. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: rewritepath_route
 uri: https://example.org
 predicates:
 - Path=/red/**
 filters:
 - RewritePath=/red/?(?<segment>.*), /$\{segment}

For a request path of /red/blue, this sets the path to /blue before making the downstream request.
Note that the $ should be replaced with $\ because of the YAML specification.

6.25. The RewriteResponseHeader GatewayFilter Factory
The RewriteResponseHeader GatewayFilter factory takes name, regexp, and replacement parameters. It
uses Java regular expressions for a flexible way to rewrite the response header value. The following
example configures a RewriteResponseHeader GatewayFilter:

Example 53. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: rewriteresponseheader_route
 uri: https://example.org
 filters:
 - RewriteResponseHeader=X-Response-Red, , password=[^&]+, password=***

For a header value of /42?user=ford&password=omg!what&flag=true, it is set to
/42?user=ford&password=***&flag=true after making the downstream request. You must use $\ to
mean $ because of the YAML specification.

6.26. The SaveSession GatewayFilter Factory
The SaveSession GatewayFilter factory forces a WebSession::save operation before forwarding the
call downstream. This is of particular use when using something like Spring Session with a lazy
data store, and you need to ensure the session state has been saved before making the forwarded
call. The following example configures a SaveSession GatewayFilter:

Example 54. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: save_session
 uri: https://example.org
 predicates:
 - Path=/foo/**
 filters:
 - SaveSession

If you integrate Spring Security with Spring Session and want to ensure security details have been
forwarded to the remote process, this is critical.

6.27. The SecureHeaders GatewayFilter Factory
The SecureHeaders GatewayFilter factory adds a number of headers to the response, per the
recommendation made in this blog post.

The following headers (shown with their default values) are added:

• X-Xss-Protection:1 (mode=block)

• Strict-Transport-Security (max-age=631138519)

• X-Frame-Options (DENY)

• X-Content-Type-Options (nosniff)

• Referrer-Policy (no-referrer)

• Content-Security-Policy (default-src 'self' https:; font-src 'self' https: data:; img-src
'self' https: data:; object-src 'none'; script-src https:; style-src 'self' https: 'unsafe-
inline)'

• X-Download-Options (noopen)

• X-Permitted-Cross-Domain-Policies (none)

https://projects.spring.io/spring-session/
https://projects.spring.io/spring-security/
https://blog.appcanary.com/2017/http-security-headers.html

To change the default values, set the appropriate property in the
spring.cloud.gateway.filter.secure-headers namespace. The following properties are available:

• xss-protection-header

• strict-transport-security

• frame-options

• content-type-options

• referrer-policy

• content-security-policy

• download-options

• permitted-cross-domain-policies

To disable the default values set the spring.cloud.gateway.filter.secure-headers.disable property
with comma-separated values. The following example shows how to do so:

spring.cloud.gateway.filter.secure-headers.disable=x-frame-options,strict-
transport-security

 The lowercase full name of the secure header needs to be used to disable it..

6.28. The SetPath GatewayFilter Factory
The SetPath GatewayFilter factory takes a path template parameter. It offers a simple way to
manipulate the request path by allowing templated segments of the path. This uses the URI
templates from Spring Framework. Multiple matching segments are allowed. The following
example configures a SetPath GatewayFilter:

Example 55. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: setpath_route
 uri: https://example.org
 predicates:
 - Path=/red/{segment}
 filters:
 - SetPath=/{segment}

For a request path of /red/blue, this sets the path to /blue before making the downstream request.

6.29. The SetRequestHeader GatewayFilter Factory
The SetRequestHeader GatewayFilter factory takes name and value parameters. The following listing
configures a SetRequestHeader GatewayFilter:

Example 56. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: setrequestheader_route
 uri: https://example.org
 filters:
 - SetRequestHeader=X-Request-Red, Blue

This GatewayFilter replaces (rather than adding) all headers with the given name. So, if the
downstream server responded with X-Request-Red:1234, it will be replaced with X-Request-Red:Blue,
which is what the downstream service would receive.

SetRequestHeader is aware of URI variables used to match a path or host. URI variables may be used
in the value and are expanded at runtime. The following example configures an SetRequestHeader
GatewayFilter that uses a variable:

Example 57. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: setrequestheader_route
 uri: https://example.org
 predicates:
 - Host: {segment}.myhost.org
 filters:
 - SetRequestHeader=foo, bar-{segment}

6.30. The SetResponseHeader GatewayFilter Factory
The SetResponseHeader GatewayFilter factory takes name and value parameters. The following listing
configures a SetResponseHeader GatewayFilter:

Example 58. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: setresponseheader_route
 uri: https://example.org
 filters:
 - SetResponseHeader=X-Response-Red, Blue

This GatewayFilter replaces (rather than adding) all headers with the given name. So, if the
downstream server responded with X-Response-Red:1234, it will be replaced with X-Response-
Red:Blue, which is what the gateway client would receive.

SetResponseHeader is aware of URI variables used to match a path or host. URI variables may be used
in the value and will be expanded at runtime. The following example configures an
SetResponseHeader GatewayFilter that uses a variable:

Example 59. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: setresponseheader_route
 uri: https://example.org
 predicates:
 - Host: {segment}.myhost.org
 filters:
 - SetResponseHeader=foo, bar-{segment}

6.31. The SetStatus GatewayFilter Factory
The SetStatus GatewayFilter factory takes a single parameter, status. It must be a valid Spring
HttpStatus. It may be the integer value 404 or the string representation of the enumeration:
NOT_FOUND. The following listing configures a SetStatus GatewayFilter:

Example 60. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: setstatusstring_route
 uri: https://example.org
 filters:
 - SetStatus=UNAUTHORIZED
 - id: setstatusint_route
 uri: https://example.org
 filters:
 - SetStatus=401

In either case, the HTTP status of the response is set to 401.

You can configure the SetStatus GatewayFilter to return the original HTTP status code from the
proxied request in a header in the response. The header is added to the response if configured with
the following property:

Example 61. application.yml

spring:
 cloud:
 gateway:
 set-status:
 original-status-header-name: original-http-status

6.32. The StripPrefix GatewayFilter Factory
The StripPrefix GatewayFilter factory takes one parameter, parts. The parts parameter indicates
the number of parts in the path to strip from the request before sending it downstream. The
following listing configures a StripPrefix GatewayFilter:

Example 62. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: nameRoot
 uri: https://nameservice
 predicates:
 - Path=/name/**
 filters:
 - StripPrefix=2

When a request is made through the gateway to /name/blue/red, the request made to nameservice
looks like nameservice/red.

6.33. The Retry GatewayFilter Factory
The Retry GatewayFilter factory supports the following parameters:

• retries: The number of retries that should be attempted.

• statuses: The HTTP status codes that should be retried, represented by using
org.springframework.http.HttpStatus.

• methods: The HTTP methods that should be retried, represented by using
org.springframework.http.HttpMethod.

• series: The series of status codes to be retried, represented by using
org.springframework.http.HttpStatus.Series.

• exceptions: A list of thrown exceptions that should be retried.

• backoff: The configured exponential backoff for the retries. Retries are performed after a
backoff interval of firstBackoff * (factor ^ n), where n is the iteration. If maxBackoff is
configured, the maximum backoff applied is limited to maxBackoff. If basedOnPreviousValue is
true, the backoff is calculated by using prevBackoff * factor.

The following defaults are configured for Retry filter, if enabled:

• retries: Three times

• series: 5XX series

• methods: GET method

• exceptions: IOException and TimeoutException

• backoff: disabled

The following listing configures a Retry GatewayFilter:

https://nameservice/red

Example 63. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: retry_test
 uri: http://localhost:8080/flakey
 predicates:
 - Host=*.retry.com
 filters:
 - name: Retry
 args:
 retries: 3
 statuses: BAD_GATEWAY
 methods: GET,POST
 backoff:
 firstBackoff: 10ms
 maxBackoff: 50ms
 factor: 2
 basedOnPreviousValue: false

When using the retry filter with a forward: prefixed URL, the target endpoint
should be written carefully so that, in case of an error, it does not do anything that
could result in a response being sent to the client and committed. For example, if
the target endpoint is an annotated controller, the target controller method should
not return ResponseEntity with an error status code. Instead, it should throw an
Exception or signal an error (for example, through a Mono.error(ex) return value),
which the retry filter can be configured to handle by retrying.

When using the retry filter with any HTTP method with a body, the body will be
cached and the gateway will become memory constrained. The body is cached in a
request attribute defined by ServerWebExchangeUtils.CACHED_REQUEST_BODY_ATTR. The
type of the object is org.springframework.core.io.buffer.DataBuffer.

A simplified "shortcut" notation can be added with a single status and method.

The following two examples are equivalent:

Example 64. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: retry_route
 uri: https://example.org
 filters:
 - name: Retry
 args:
 retries: 3
 statuses: INTERNAL_SERVER_ERROR
 methods: GET
 backoff:
 firstBackoff: 10ms
 maxBackoff: 50ms
 factor: 2
 basedOnPreviousValue: false

 - id: retryshortcut_route
 uri: https://example.org
 filters:
 - Retry=3,INTERNAL_SERVER_ERROR,GET,10ms,50ms,2,false

6.34. The RequestSize GatewayFilter Factory
When the request size is greater than the permissible limit, the RequestSize GatewayFilter factory
can restrict a request from reaching the downstream service. The filter takes a maxSize parameter.
The maxSize is a DataSize type, so values can be defined as a number followed by an optional
DataUnit suffix such as 'KB' or 'MB'. The default is 'B' for bytes. It is the permissible size limit of the
request defined in bytes. The following listing configures a RequestSize GatewayFilter:

Example 65. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: request_size_route
 uri: http://localhost:8080/upload
 predicates:
 - Path=/upload
 filters:
 - name: RequestSize
 args:
 maxSize: 5000000

The RequestSize GatewayFilter factory sets the response status as 413 Payload Too Large with an
additional header errorMessage when the request is rejected due to size. The following example
shows such an errorMessage:

errorMessage : Request size is larger than permissible limit. Request size is 6.0
MB where permissible limit is 5.0 MB

The default request size is set to five MB if not provided as a filter argument in the
route definition.

6.35. The SetRequestHostHeader GatewayFilter Factory
There are certain situation when the host header may need to be overridden. In this situation, the
SetRequestHostHeader GatewayFilter factory can replace the existing host header with a specified
value. The filter takes a host parameter. The following listing configures a SetRequestHostHeader
GatewayFilter:

Example 66. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: set_request_host_header_route
 uri: http://localhost:8080/headers
 predicates:
 - Path=/headers
 filters:
 - name: SetRequestHostHeader
 args:
 host: example.org

The SetRequestHostHeader GatewayFilter factory replaces the value of the host header with
example.org.

6.36. The TokenRelay GatewayFilter Factory
A Token Relay is where an OAuth2 consumer acts as a Client and forwards the incoming token to
outgoing resource requests. The consumer can be a pure Client (like an SSO application) or a
Resource Server.

Spring Cloud Gateway can forward OAuth2 access tokens downstream to the services it is proxying.
To add this functionality to the gateway, you need to add the TokenRelayGatewayFilterFactory like
this:

App.java

@Bean
public RouteLocator customRouteLocator(RouteLocatorBuilder builder) {
 return builder.routes()
 .route("resource", r -> r.path("/resource")
 .filters(f -> f.tokenRelay())
 .uri("http://localhost:9000"))
 .build();
}

or this

application.yaml

spring:
 cloud:
 gateway:
 routes:
 - id: resource
 uri: http://localhost:9000
 predicates:
 - Path=/resource
 filters:
 - TokenRelay=

and it will (in addition to logging the user in and grabbing a token) pass the authentication token
downstream to the services (in this case /resource).

To enable this for Spring Cloud Gateway add the following dependencies

• org.springframework.boot:spring-boot-starter-oauth2-client

How does it work? The filter extracts an access token from the currently authenticated user, and
puts it in a request header for the downstream requests.

For a full working sample see this project.

A TokenRelayGatewayFilterFactory bean will only be created if the proper
spring.security.oauth2.client.* properties are set which will trigger creation of a
ReactiveClientRegistrationRepository bean.

The default implementation of ReactiveOAuth2AuthorizedClientService used by
TokenRelayGatewayFilterFactory uses an in-memory data store. You will need to
provide your own implementation ReactiveOAuth2AuthorizedClientService if you
need a more robust solution.

6.37. Default Filters
To add a filter and apply it to all routes, you can use spring.cloud.gateway.default-filters. This
property takes a list of filters. The following listing defines a set of default filters:

https://github.com/spring-cloud/spring-cloud-function/tree/master/src/main/java/org/springframework/cloud/gateway/security/TokenRelayGatewayFilterFactory.java
https://github.com/spring-cloud-samples/sample-gateway-oauth2login

Example 67. application.yml

spring:
 cloud:
 gateway:
 default-filters:
 - AddResponseHeader=X-Response-Default-Red, Default-Blue
 - PrefixPath=/httpbin

7. Global Filters
The GlobalFilter interface has the same signature as GatewayFilter. These are special filters that
are conditionally applied to all routes.

 This interface and its usage are subject to change in future milestone releases.

7.1. Combined Global Filter and GatewayFilter Ordering
When a request matches a route, the filtering web handler adds all instances of GlobalFilter and all
route-specific instances of GatewayFilter to a filter chain. This combined filter chain is sorted by the
org.springframework.core.Ordered interface, which you can set by implementing the getOrder()
method.

As Spring Cloud Gateway distinguishes between “pre” and “post” phases for filter logic execution
(see How it Works), the filter with the highest precedence is the first in the “pre”-phase and the last
in the “post”-phase.

The following listing configures a filter chain:

Example 68. ExampleConfiguration.java

@Bean
public GlobalFilter customFilter() {
 return new CustomGlobalFilter();
}

public class CustomGlobalFilter implements GlobalFilter, Ordered {

 @Override
 public Mono<Void> filter(ServerWebExchange exchange, GatewayFilterChain chain)
{
 log.info("custom global filter");
 return chain.filter(exchange);
 }

 @Override
 public int getOrder() {
 return -1;
 }
}

7.2. The Gateway Metrics Filter
To enable gateway metrics, add spring-boot-starter-actuator as a project dependency. Then, by
default, the gateway metrics filter runs as long as the spring.cloud.gateway.metrics.enabled
property is not set to false. This filter adds a timer metric named spring.cloud.gateway.requests
with the following tags:

• routeId: The route ID.

• routeUri: The URI to which the API is routed.

• outcome: The outcome, as classified by HttpStatus.Series.

• status: The HTTP status of the request returned to the client.

• httpStatusCode: The HTTP Status of the request returned to the client.

• httpMethod: The HTTP method used for the request.

In addition, through the spring.cloud.gateway.metrics.tags.path.enabled property (by default,
false), you can activate an extra metric with the path tag:

• path: The path of the request.

These metrics are then available to be scraped from
/actuator/metrics/spring.cloud.gateway.requests and can be easily integrated with Prometheus to
create a Grafana dashboard.

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/http/HttpStatus.Series.html
images/gateway-grafana-dashboard.jpeg
gateway-grafana-dashboard.json

To enable the prometheus endpoint, add micrometer-registry-prometheus as a
project dependency.

7.3. The Local Response Cache Filter
The LocalResponseCache runs if associated properties are enabled:

• spring.cloud.gateway.global-filter.local-response-cache.enabled: Activates the global cache
for all routes

• spring.cloud.gateway.filter.local-response-cache.enabled: Activates the associated filter to use
at route level

This feature enables a local cache using Caffeine for all responses that meet the following criteria:

• The request is a bodiless GET.

• The response has one of the following status codes: HTTP 200 (OK), HTTP 206 (Partial Content),
or HTTP 301 (Moved Permanently).

• The HTTP Cache-Control header allows caching (that means it does not have any of the following
values: no-store present in the request and no-store or private present in the response).

It accepts two configuration parameters:

• spring.cloud.gateway.filter.local-response-cache.size: Sets the maximum size of the cache to
evict entries for this route (in KB, MB and GB).

• spring.cloud.gateway.filter.local-response-cache.time-to-live Sets the time to expire a cache
entry (expressed in s for seconds, m for minutes, and h for hours).

If none of these parameters are configured but the global filter is enabled, by default, it configures 5
minutes of time to live for the cached response.

This filter also implements the automatic calculation of the max-age value in the HTTP Cache-Control
header. If max-age is present on the original response, the value is rewritten with the number of
seconds set in the timeToLive configuration parameter. In subsequent calls, this value is
recalculated with the number of seconds left until the response expires.

Setting spring.cloud.gateway.global-filter.local-response-cache.enabled to false deactivate the
local response cache for all routes, the LocalResponseCache filter allows to use this functionality at
route level.

To enable this feature, add com.github.ben-manes.caffeine:caffeine and spring-
boot-starter-cache as project dependencies.

If your project creates custom CacheManager beans, it will either need to be marked
with @Primary or injected using @Qualifier.

7.4. Forward Routing Filter
The ForwardRoutingFilter looks for a URI in the exchange attribute
ServerWebExchangeUtils.GATEWAY_REQUEST_URL_ATTR. If the URL has a forward scheme (such as
forward:///localendpoint), it uses the Spring DispatcherHandler to handle the request. The path part
of the request URL is overridden with the path in the forward URL. The unmodified original URL is
appended to the list in the ServerWebExchangeUtils.GATEWAY_ORIGINAL_REQUEST_URL_ATTR attribute.

7.5. The Netty Routing Filter
The Netty routing filter runs if the URL located in the
ServerWebExchangeUtils.GATEWAY_REQUEST_URL_ATTR exchange attribute has a http or https scheme. It
uses the Netty HttpClient to make the downstream proxy request. The response is put in the
ServerWebExchangeUtils.CLIENT_RESPONSE_ATTR exchange attribute for use in a later filter. (There is
also an experimental WebClientHttpRoutingFilter that performs the same function but does not
require Netty.)

7.6. The Netty Write Response Filter
The NettyWriteResponseFilter runs if there is a Netty HttpClientResponse in the
ServerWebExchangeUtils.CLIENT_RESPONSE_ATTR exchange attribute. It runs after all other filters have
completed and writes the proxy response back to the gateway client response. (There is also an
experimental WebClientWriteResponseFilter that performs the same function but does not require
Netty.)

7.7. The ReactiveLoadBalancerClientFilter
The ReactiveLoadBalancerClientFilter looks for a URI in the exchange attribute named
ServerWebExchangeUtils.GATEWAY_REQUEST_URL_ATTR. If the URL has a lb scheme (such as
lb://myservice), it uses the Spring Cloud ReactorLoadBalancer to resolve the name (myservice in this
example) to an actual host and port and replaces the URI in the same attribute. The unmodified
original URL is appended to the list in the
ServerWebExchangeUtils.GATEWAY_ORIGINAL_REQUEST_URL_ATTR attribute. The filter also looks in the
ServerWebExchangeUtils.GATEWAY_SCHEME_PREFIX_ATTR attribute to see if it equals lb. If so, the same
rules apply. The following listing configures a ReactiveLoadBalancerClientFilter:

Example 69. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: myRoute
 uri: lb://service
 predicates:
 - Path=/service/**

By default, when a service instance cannot be found by the ReactorLoadBalancer, a
503 is returned. You can configure the gateway to return a 404 by setting
spring.cloud.gateway.loadbalancer.use404=true.

The isSecure value of the ServiceInstance returned from the
ReactiveLoadBalancerClientFilter overrides the scheme specified in the request
made to the Gateway. For example, if the request comes into the Gateway over
HTTPS but the ServiceInstance indicates it is not secure, the downstream request is
made over HTTP. The opposite situation can also apply. However, if
GATEWAY_SCHEME_PREFIX_ATTR is specified for the route in the Gateway configuration,
the prefix is stripped and the resulting scheme from the route URL overrides the
ServiceInstance configuration.

Gateway supports all the LoadBalancer features. You can read more about them in
the Spring Cloud Commons documentation.

7.8. The RouteToRequestUrl Filter
If there is a Route object in the ServerWebExchangeUtils.GATEWAY_ROUTE_ATTR exchange attribute, the
RouteToRequestUrlFilter runs. It creates a new URI, based off of the request URI but updated with
the URI attribute of the Route object. The new URI is placed in the
ServerWebExchangeUtils.GATEWAY_REQUEST_URL_ATTR exchange attribute.

If the URI has a scheme prefix, such as lb:ws://serviceid, the lb scheme is stripped from the URI
and placed in the ServerWebExchangeUtils.GATEWAY_SCHEME_PREFIX_ATTR for use later in the filter
chain.

7.9. The Websocket Routing Filter
If the URL located in the ServerWebExchangeUtils.GATEWAY_REQUEST_URL_ATTR exchange attribute has a
ws or wss scheme, the websocket routing filter runs. It uses the Spring WebSocket infrastructure to
forward the websocket request downstream.

You can load-balance websockets by prefixing the URI with lb, such as lb:ws://serviceid.

https://docs.spring.io/spring-cloud-commons/docs/current/reference/html/#spring-cloud-loadbalancer

If you use SockJS as a fallback over normal HTTP, you should configure a normal
HTTP route as well as the websocket Route.

The following listing configures a websocket routing filter:

Example 70. application.yml

spring:
 cloud:
 gateway:
 routes:
 # SockJS route
 - id: websocket_sockjs_route
 uri: http://localhost:3001
 predicates:
 - Path=/websocket/info/**
 # Normal Websocket route
 - id: websocket_route
 uri: ws://localhost:3001
 predicates:
 - Path=/websocket/**

7.10. Marking An Exchange As Routed
After the gateway has routed a ServerWebExchange, it marks that exchange as “routed” by adding
gatewayAlreadyRouted to the exchange attributes. Once a request has been marked as routed, other
routing filters will not route the request again, essentially skipping the filter. There are convenience
methods that you can use to mark an exchange as routed or check if an exchange has already been
routed.

• ServerWebExchangeUtils.isAlreadyRouted takes a ServerWebExchange object and checks if it has
been “routed”.

• ServerWebExchangeUtils.setAlreadyRouted takes a ServerWebExchange object and marks it as
“routed”.

8. HttpHeadersFilters
HttpHeadersFilters are applied to the requests before sending them downstream, such as in the
NettyRoutingFilter.

8.1. Forwarded Headers Filter
The Forwarded Headers Filter creates a Forwarded header to send to the downstream service. It adds
the Host header, scheme and port of the current request to any existing Forwarded header.

https://github.com/sockjs

8.2. RemoveHopByHop Headers Filter
The RemoveHopByHop Headers Filter removes headers from forwarded requests. The default list of
headers that is removed comes from the IETF.

The default removed headers are:

• Connection

• Keep-Alive

• Proxy-Authenticate

• Proxy-Authorization

• TE

• Trailer

• Transfer-Encoding

• Upgrade

To change this, set the spring.cloud.gateway.filter.remove-hop-by-hop.headers property to the list
of header names to remove.

8.3. XForwarded Headers Filter
The XForwarded Headers Filter creates various X-Forwarded-* headers to send to the downstream
service. It uses the Host header, scheme, port and path of the current request to create the various
headers.

Creating of individual headers can be controlled by the following boolean properties (defaults to
true):

• spring.cloud.gateway.x-forwarded.for-enabled

• spring.cloud.gateway.x-forwarded.host-enabled

• spring.cloud.gateway.x-forwarded.port-enabled

• spring.cloud.gateway.x-forwarded.proto-enabled

• spring.cloud.gateway.x-forwarded.prefix-enabled

Appending multiple headers can be controlled by the following boolean properties (defaults to
true):

• spring.cloud.gateway.x-forwarded.for-append

• spring.cloud.gateway.x-forwarded.host-append

• spring.cloud.gateway.x-forwarded.port-append

• spring.cloud.gateway.x-forwarded.proto-append

• spring.cloud.gateway.x-forwarded.prefix-append

https://tools.ietf.org/html/draft-ietf-httpbis-p1-messaging-14#section-7.1.3

9. TLS and SSL
The gateway can listen for requests on HTTPS by following the usual Spring server configuration.
The following example shows how to do so:

Example 71. application.yml

server:
 ssl:
 enabled: true
 key-alias: scg
 key-store-password: scg1234
 key-store: classpath:scg-keystore.p12
 key-store-type: PKCS12

You can route gateway routes to both HTTP and HTTPS backends. If you are routing to an HTTPS
backend, you can configure the gateway to trust all downstream certificates with the following
configuration:

Example 72. application.yml

spring:
 cloud:
 gateway:
 httpclient:
 ssl:
 useInsecureTrustManager: true

Using an insecure trust manager is not suitable for production. For a production deployment, you
can configure the gateway with a set of known certificates that it can trust with the following
configuration:

Example 73. application.yml

spring:
 cloud:
 gateway:
 httpclient:
 ssl:
 trustedX509Certificates:
 - cert1.pem
 - cert2.pem

If the Spring Cloud Gateway is not provisioned with trusted certificates, the default trust store is
used (which you can override by setting the javax.net.ssl.trustStore system property).

9.1. TLS Handshake
The gateway maintains a client pool that it uses to route to backends. When communicating over
HTTPS, the client initiates a TLS handshake. A number of timeouts are associated with this
handshake. You can configure these timeouts can be configured (defaults shown) as follows:

Example 74. application.yml

spring:
 cloud:
 gateway:
 httpclient:
 ssl:
 handshake-timeout-millis: 10000
 close-notify-flush-timeout-millis: 3000
 close-notify-read-timeout-millis: 0

10. Configuration
Configuration for Spring Cloud Gateway is driven by a collection of RouteDefinitionLocator
instances. The following listing shows the definition of the RouteDefinitionLocator interface:

Example 75. RouteDefinitionLocator.java

public interface RouteDefinitionLocator {
 Flux<RouteDefinition> getRouteDefinitions();
}

By default, a PropertiesRouteDefinitionLocator loads properties by using Spring Boot’s
@ConfigurationProperties mechanism.

The earlier configuration examples all use a shortcut notation that uses positional arguments
rather than named ones. The following two examples are equivalent:

Example 76. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: setstatus_route
 uri: https://example.org
 filters:
 - name: SetStatus
 args:
 status: 401
 - id: setstatusshortcut_route
 uri: https://example.org
 filters:
 - SetStatus=401

For some usages of the gateway, properties are adequate, but some production use cases benefit
from loading configuration from an external source, such as a database. Future milestone versions
will have RouteDefinitionLocator implementations based off of Spring Data Repositories, such as
Redis, MongoDB, and Cassandra.

10.1. RouteDefinition Metrics
To enable RouteDefinition metrics, add spring-boot-starter-actuator as a project dependency. Then,
by default, the metrics will be available as long as the property
spring.cloud.gateway.metrics.enabled is set to true. A gauge metric named
spring.cloud.gateway.routes.count will be added, whose value is the number of RouteDefinitions.
This metric will be available from /actuator/metrics/spring.cloud.gateway.routes.count.

11. Route Metadata Configuration
You can configure additional parameters for each route by using metadata, as follows:

Example 77. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: route_with_metadata
 uri: https://example.org
 metadata:
 optionName: "OptionValue"
 compositeObject:
 name: "value"
 iAmNumber: 1

You could acquire all metadata properties from an exchange, as follows:

Route route = exchange.getAttribute(GATEWAY_ROUTE_ATTR);
// get all metadata properties
route.getMetadata();
// get a single metadata property
route.getMetadata(someKey);

12. Http timeouts configuration
Http timeouts (response and connect) can be configured for all routes and overridden for each
specific route.

12.1. Global timeouts
To configure Global http timeouts:
connect-timeout must be specified in milliseconds.
response-timeout must be specified as a java.time.Duration

global http timeouts example

spring:
 cloud:
 gateway:
 httpclient:
 connect-timeout: 1000
 response-timeout: 5s

12.2. Per-route timeouts
To configure per-route timeouts:
connect-timeout must be specified in milliseconds.
response-timeout must be specified in milliseconds.

per-route http timeouts configuration via configuration

 - id: per_route_timeouts
 uri: https://example.org
 predicates:
 - name: Path
 args:
 pattern: /delay/{timeout}
 metadata:
 response-timeout: 200
 connect-timeout: 200

per-route timeouts configuration using Java DSL

import static
org.springframework.cloud.gateway.support.RouteMetadataUtils.CONNECT_TIMEOUT_ATTR;
import static
org.springframework.cloud.gateway.support.RouteMetadataUtils.RESPONSE_TIMEOUT_ATTR;

 @Bean
 public RouteLocator customRouteLocator(RouteLocatorBuilder routeBuilder){
 return routeBuilder.routes()
 .route("test1", r -> {
 return r.host("*.somehost.org").and().path("/somepath")
 .filters(f -> f.addRequestHeader("header1", "header-value-1"))
 .uri("http://someuri")
 .metadata(RESPONSE_TIMEOUT_ATTR, 200)
 .metadata(CONNECT_TIMEOUT_ATTR, 200);
 })
 .build();
 }

A per-route response-timeout with a negative value will disable the global response-timeout value.

 - id: per_route_timeouts
 uri: https://example.org
 predicates:
 - name: Path
 args:
 pattern: /delay/{timeout}
 metadata:
 response-timeout: -1

13. Fluent Java Routes API
To allow for simple configuration in Java, the RouteLocatorBuilder bean includes a fluent API. The
following listing shows how it works:

Example 78. GatewaySampleApplication.java

// static imports from GatewayFilters and RoutePredicates
@Bean
public RouteLocator customRouteLocator(RouteLocatorBuilder builder,
ThrottleGatewayFilterFactory throttle) {
 return builder.routes()
 .route(r -> r.host("**.abc.org").and().path("/image/png")
 .filters(f ->
 f.addResponseHeader("X-TestHeader", "foobar"))
 .uri("http://httpbin.org:80")
)
 .route(r -> r.path("/image/webp")
 .filters(f ->
 f.addResponseHeader("X-AnotherHeader", "baz"))
 .uri("http://httpbin.org:80")
 .metadata("key", "value")
)
 .route(r -> r.order(-1)
 .host("**.throttle.org").and().path("/get")
 .filters(f -> f.filter(throttle.apply(1,
 1,
 10,
 TimeUnit.SECONDS)))
 .uri("http://httpbin.org:80")
 .metadata("key", "value")
)
 .build();
}

This style also allows for more custom predicate assertions. The predicates defined by
RouteDefinitionLocator beans are combined using logical and. By using the fluent Java API, you can
use the and(), or(), and negate() operators on the Predicate class.

14. The DiscoveryClient Route Definition
Locator
You can configure the gateway to create routes based on services registered with a DiscoveryClient
compatible service registry.

To enable this, set spring.cloud.gateway.discovery.locator.enabled=true and make sure a

DiscoveryClient implementation (such as Netflix Eureka, Consul, or Zookeeper) is on the classpath
and enabled.

14.1. Configuring Predicates and Filters For
DiscoveryClient Routes
By default, the gateway defines a single predicate and filter for routes created with a
DiscoveryClient.

The default predicate is a path predicate defined with the pattern /serviceId/**, where serviceId is
the ID of the service from the DiscoveryClient.

The default filter is a rewrite path filter with the regex /serviceId/?(?<remaining>.*) and the
replacement /${remaining}. This strips the service ID from the path before the request is sent
downstream.

If you want to customize the predicates or filters used by the DiscoveryClient routes, set
spring.cloud.gateway.discovery.locator.predicates[x] and
spring.cloud.gateway.discovery.locator.filters[y]. When doing so, you need to make sure to
include the default predicate and filter shown earlier, if you want to retain that functionality. The
following example shows what this looks like:

Example 79. application.properties

spring.cloud.gateway.discovery.locator.predicates[0].name: Path
spring.cloud.gateway.discovery.locator.predicates[0].args[pattern]:
"'/'+serviceId+'/**'"
spring.cloud.gateway.discovery.locator.predicates[1].name: Host
spring.cloud.gateway.discovery.locator.predicates[1].args[pattern]: "'**.foo.com'"
spring.cloud.gateway.discovery.locator.filters[0].name: CircuitBreaker
spring.cloud.gateway.discovery.locator.filters[0].args[name]: serviceId
spring.cloud.gateway.discovery.locator.filters[1].name: RewritePath
spring.cloud.gateway.discovery.locator.filters[1].args[regexp]: "'/' + serviceId +
'/?(?<remaining>.*)'"
spring.cloud.gateway.discovery.locator.filters[1].args[replacement]:
"'/${remaining}'"

15. Reactor Netty Access Logs
To enable Reactor Netty access logs, set -Dreactor.netty.http.server.accessLogEnabled=true.

 It must be a Java System Property, not a Spring Boot property.

You can configure the logging system to have a separate access log file. The following example
creates a Logback configuration:

Example 80. logback.xml

 <appender name="accessLog" class="ch.qos.logback.core.FileAppender">
 <file>access_log.log</file>
 <encoder>
 <pattern>%msg%n</pattern>
 </encoder>
 </appender>
 <appender name="async" class="ch.qos.logback.classic.AsyncAppender">
 <appender-ref ref="accessLog" />
 </appender>

 <logger name="reactor.netty.http.server.AccessLog" level="INFO"
additivity="false">
 <appender-ref ref="async"/>
 </logger>

16. CORS Configuration
You can configure the gateway to control CORS behavior globally or per route. Both offer the same
possibilities.

16.1. Global CORS Configuration
The “global” CORS configuration is a map of URL patterns to Spring Framework CorsConfiguration.
The following example configures CORS:

Example 81. application.yml

spring:
 cloud:
 gateway:
 globalcors:
 cors-configurations:
 '[/**]':
 allowedOrigins: "https://docs.spring.io"
 allowedMethods:
 - GET

In the preceding example, CORS requests are allowed from requests that originate from
docs.spring.io for all GET requested paths.

To provide the same CORS configuration to requests that are not handled by some gateway route
predicate, set the spring.cloud.gateway.globalcors.add-to-simple-url-handler-mapping property to
true. This is useful when you try to support CORS preflight requests and your route predicate does

https://docs.spring.io/spring/docs/5.0.x/javadoc-api/org/springframework/web/cors/CorsConfiguration.html
https://docs.spring.io/spring/docs/5.0.x/javadoc-api/org/springframework/web/cors/CorsConfiguration.html

not evaluate to true because the HTTP method is options.

16.2. Route CORS Configuration
The “route” configuration allows applying CORS directly to a route as metadata with key cors. Like
in the case of global configuration, the properties belong to Spring Framework CorsConfiguration.

 If no Path predicate is present in the route '/**' will be applied.

Example 82. application.yml

spring:
 cloud:
 gateway:
 routes:
 - id: cors_route
 uri: https://example.org
 predicates:
 - Path=/service/**
 metadata:
 cors
 allowedOrigins: '*'
 allowedMethods:
 - GET
 - POST
 allowedHeaders: '*'
 maxAge: 30

17. Actuator API
The /gateway actuator endpoint lets you monitor and interact with a Spring Cloud Gateway
application. To be remotely accessible, the endpoint has to be enabled and exposed over HTTP or
JMX in the application properties. The following listing shows how to do so:

Example 83. application.properties

management.endpoint.gateway.enabled=true # default value
management.endpoints.web.exposure.include=gateway

17.1. Verbose Actuator Format
A new, more verbose format has been added to Spring Cloud Gateway. It adds more detail to each
route, letting you view the predicates and filters associated with each route along with any
configuration that is available. The following example configures /actuator/gateway/routes:

https://docs.spring.io/spring/docs/5.0.x/javadoc-api/org/springframework/web/cors/CorsConfiguration.html
https://docs.spring.io/spring/docs/5.0.x/javadoc-api/org/springframework/web/cors/CorsConfiguration.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html#production-ready-endpoints-enabling-endpoints
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html#production-ready-endpoints-exposing-endpoints
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html#production-ready-endpoints-exposing-endpoints

[
 {
 "predicate": "(Hosts: [**.addrequestheader.org] && Paths: [/headers], match
trailing slash: true)",
 "route_id": "add_request_header_test",
 "filters": [
 "[[AddResponseHeader X-Response-Default-Foo = 'Default-Bar'], order = 1]",
 "[[AddRequestHeader X-Request-Foo = 'Bar'], order = 1]",
 "[[PrefixPath prefix = '/httpbin'], order = 2]"
],
 "uri": "lb://testservice",
 "order": 0
 }
]

This feature is enabled by default. To disable it, set the following property:

Example 84. application.properties

spring.cloud.gateway.actuator.verbose.enabled=false

This will default to true in a future release.

17.2. Retrieving Route Filters
This section details how to retrieve route filters, including:

• Global Filters

• [gateway-route-filters]

17.2.1. Global Filters

To retrieve the global filters applied to all routes, make a GET request to
/actuator/gateway/globalfilters. The resulting response is similar to the following:

{

"org.springframework.cloud.gateway.filter.ReactiveLoadBalancerClientFilter@77856cc
5": 10100,
 "org.springframework.cloud.gateway.filter.RouteToRequestUrlFilter@4f6fd101":
10000,
 "org.springframework.cloud.gateway.filter.NettyWriteResponseFilter@32d22650":
-1,
 "org.springframework.cloud.gateway.filter.ForwardRoutingFilter@106459d9":
2147483647,
 "org.springframework.cloud.gateway.filter.NettyRoutingFilter@1fbd5e0":
2147483647,
 "org.springframework.cloud.gateway.filter.ForwardPathFilter@33a71d23": 0,
 "org.springframework.cloud.gateway.filter.AdaptCachedBodyGlobalFilter@135064ea":
2147483637,
 "org.springframework.cloud.gateway.filter.WebsocketRoutingFilter@23c05889":
2147483646
}

The response contains the details of the global filters that are in place. For each global filter, there is
a string representation of the filter object (for example,
org.springframework.cloud.gateway.filter.ReactiveLoadBalancerClientFilter@77856cc5) and the
corresponding order in the filter chain.

17.2.2. Route Filters

To retrieve the GatewayFilter factories applied to routes, make a GET request to
/actuator/gateway/routefilters. The resulting response is similar to the following:

{
 "[AddRequestHeaderGatewayFilterFactory@570ed9c configClass =
AbstractNameValueGatewayFilterFactory.NameValueConfig]": null,
 "[SecureHeadersGatewayFilterFactory@fceab5d configClass = Object]": null,
 "[SaveSessionGatewayFilterFactory@4449b273 configClass = Object]": null
}

The response contains the details of the GatewayFilter factories applied to any particular route. For
each factory there is a string representation of the corresponding object (for example,
[SecureHeadersGatewayFilterFactory@fceab5d configClass = Object]). Note that the null value is due
to an incomplete implementation of the endpoint controller, because it tries to set the order of the
object in the filter chain, which does not apply to a GatewayFilter factory object.

17.3. Refreshing the Route Cache
To clear the routes cache, make a POST request to /actuator/gateway/refresh. The request returns a
200 without a response body.

To clear the routes with specific metadata values, add the Query parameter metadata specifying the
key:value pairs that the routes to be cleared should match. If an error is produced during the
asynchronous refresh, the refresh will not modify the existing routes.

Sending POST request to /actuator/gateway/refresh?metadata=group:group-1 will only refresh the
routes whose group metadata is group-1: first_route and third_route.

[{
 "route_id": "first_route",
 "route_object": {
 "predicate": "...",
 },
 "metadata": { "group": "group-1" }
},
{
 "route_id": "second_route",
 "route_object": {
 "predicate": "...",
 },
 "metadata": { "group": "group-2" }
},
{
 "route_id": "third_route",
 "route_object": {
 "predicate": "...",
 },
 "metadata": { "group": "group-1" }
}]

17.4. Retrieving the Routes Defined in the Gateway
To retrieve the routes defined in the gateway, make a GET request to /actuator/gateway/routes. The
resulting response is similar to the following:

[{
 "route_id": "first_route",
 "route_object": {
 "predicate":
"org.springframework.cloud.gateway.handler.predicate.PathRoutePredicateFactory$$La
mbda$432/1736826640@1e9d7e7d",
 "filters": [

"OrderedGatewayFilter{delegate=org.springframework.cloud.gateway.filter.factory.Pr
eserveHostHeaderGatewayFilterFactory$$Lambda$436/674480275@6631ef72, order=0}"
]
 },
 "order": 0
},
{
 "route_id": "second_route",
 "route_object": {
 "predicate":
"org.springframework.cloud.gateway.handler.predicate.PathRoutePredicateFactory$$La
mbda$432/1736826640@cd8d298",
 "filters": []
 },
 "order": 0
}]

The response contains the details of all the routes defined in the gateway. The following table
describes the structure of each element (each is a route) of the response:

Path Type Description

route_id String The route ID.

route_object.predicate Object The route predicate.

route_object.filters Array The GatewayFilter factories applied to the
route.

order Number The route order.

17.5. Retrieving Information about a Particular Route
To retrieve information about a single route, make a GET request to /actuator/gateway/routes/{id}
(for example, /actuator/gateway/routes/first_route). The resulting response is similar to the
following:

{
 "id": "first_route",
 "predicates": [{
 "name": "Path",
 "args": {"_genkey_0":"/first"}
 }],
 "filters": [],
 "uri": "https://www.uri-destination.org",
 "order": 0
}

The following table describes the structure of the response:

Path Type Description

id String The route ID.

predicates Array The collection of route predicates. Each
item defines the name and the arguments
of a given predicate.

filters Array The collection of filters applied to the
route.

uri String The destination URI of the route.

order Number The route order.

17.6. Creating and Deleting a Particular Route
Definition
To create a route definition, make a POST request to /gateway/routes/{id_route_to_create} with a
JSON body that specifies the fields of the route (see Retrieving Information about a Particular
Route).

To delete a route definition, make a DELETE request to /gateway/routes/{id_route_to_delete}.

17.7. Creating multiple Route Definitions
To create multiple route definitions in a single request, make a POST request to /gateway/routes with
a JSON body that specifies the fields of the route, including the route id (see Retrieving Information
about a Particular Route).

The route definitions will be discarded if any route raises an error during the creation of the routes.

17.8. Recap: The List of All endpoints
The following table below summarizes the Spring Cloud Gateway actuator endpoints (note that
each endpoint has /actuator/gateway as the base-path):

ID HTTP Method Description

globalfilters GET Displays the list of global filters applied to the routes.

routefilters GET Displays the list of GatewayFilter factories applied to a
particular route.

refresh POST Clears the routes cache.

routes GET Displays the list of routes defined in the gateway.

routes/{id} GET Displays information about a particular route.

routes/{id} POST Adds a new route to the gateway.

routes/{id} DELETE Removes an existing route from the gateway.

17.9. Sharing Routes between multiple Gateway
instances
Spring Cloud Gateway offers two RouteDefinitionRepository implementations. The first one is the
InMemoryRouteDefinitionRepository which only lives within the memory of one Gateway instance.
This type of Repository is not suited to populate Routes across multiple Gateway instances.

In order to share Routes across a cluster of Spring Cloud Gateway instances,
RedisRouteDefinitionRepository can be used. To enable this kind of repository, the following
property has to set to true: spring.cloud.gateway.redis-route-definition-repository.enabled
Likewise to the RedisRateLimiter Filter Factory it requires the use of the spring-boot-starter-data-
redis-reactive Spring Boot starter.

18. Troubleshooting
This section covers common problems that may arise when you use Spring Cloud Gateway.

18.1. Log Levels
The following loggers may contain valuable troubleshooting information at the DEBUG and TRACE
levels:

• org.springframework.cloud.gateway

• org.springframework.http.server.reactive

• org.springframework.web.reactive

• org.springframework.boot.autoconfigure.web

• reactor.netty

• redisratelimiter

18.2. Wiretap
The Reactor Netty HttpClient and HttpServer can have wiretap enabled. When combined with
setting the reactor.netty log level to DEBUG or TRACE, it enables the logging of information, such as
headers and bodies sent and received across the wire. To enable wiretap, set
spring.cloud.gateway.httpserver.wiretap=true or spring.cloud.gateway.httpclient.wiretap=true for
the HttpServer and HttpClient, respectively.

19. Developer Guide
These are basic guides to writing some custom components of the gateway.

19.1. Writing Custom Route Predicate Factories
In order to write a Route Predicate you will need to implement RoutePredicateFactory as a bean.
There is an abstract class called AbstractRoutePredicateFactory which you can extend.

MyRoutePredicateFactory.java

@Component
public class MyRoutePredicateFactory extends
AbstractRoutePredicateFactory<MyRoutePredicateFactory.Config> {

 public MyRoutePredicateFactory() {
 super(Config.class);
 }

 @Override
 public Predicate<ServerWebExchange> apply(Config config) {
 // grab configuration from Config object
 return exchange -> {
 //grab the request
 ServerHttpRequest request = exchange.getRequest();
 //take information from the request to see if it
 //matches configuration.
 return matches(config, request);
 };
 }

 public static class Config {
 //Put the configuration properties for your filter here
 }

}

19.2. Writing Custom GatewayFilter Factories
To write a GatewayFilter, you must implement GatewayFilterFactory as a bean. You can extend an
abstract class called AbstractGatewayFilterFactory. The following examples show how to do so:

Example 85. PreGatewayFilterFactory.java

@Component
public class PreGatewayFilterFactory extends
AbstractGatewayFilterFactory<PreGatewayFilterFactory.Config> {

 public PreGatewayFilterFactory() {
 super(Config.class);
 }

 @Override
 public GatewayFilter apply(Config config) {
 // grab configuration from Config object
 return (exchange, chain) -> {
 //If you want to build a "pre" filter you need to manipulate the
 //request before calling chain.filter
 ServerHttpRequest.Builder builder = exchange.getRequest().mutate();
 //use builder to manipulate the request
 return
chain.filter(exchange.mutate().request(builder.build()).build());
 };
 }

 public static class Config {
 //Put the configuration properties for your filter here
 }

}

PostGatewayFilterFactory.java

@Component
public class PostGatewayFilterFactory extends
AbstractGatewayFilterFactory<PostGatewayFilterFactory.Config> {

 public PostGatewayFilterFactory() {
 super(Config.class);
 }

 @Override
 public GatewayFilter apply(Config config) {
 // grab configuration from Config object
 return (exchange, chain) -> {
 return chain.filter(exchange).then(Mono.fromRunnable(() -> {
 ServerHttpResponse response = exchange.getResponse();
 //Manipulate the response in some way
 }));
 };
 }

 public static class Config {
 //Put the configuration properties for your filter here
 }

}

19.2.1. Naming Custom Filters And References In Configuration

Custom filters class names should end in GatewayFilterFactory.

For example, to reference a filter named Something in configuration files, the filter must be in a class
named SomethingGatewayFilterFactory.

It is possible to create a gateway filter named without the GatewayFilterFactory
suffix, such as class AnotherThing. This filter could be referenced as AnotherThing
in configuration files. This is not a supported naming convention and this syntax
may be removed in future releases. Please update the filter name to be compliant.

19.3. Writing Custom Global Filters
To write a custom global filter, you must implement GlobalFilter interface as a bean. This applies
the filter to all requests.

The following examples show how to set up global pre- and post-filters, respectively:

@Bean
public GlobalFilter customGlobalFilter() {
 return (exchange, chain) -> exchange.getPrincipal()
 .map(Principal::getName)
 .defaultIfEmpty("Default User")
 .map(userName -> {
 //adds header to proxied request
 exchange.getRequest().mutate().header("CUSTOM-REQUEST-HEADER",
userName).build();
 return exchange;
 })
 .flatMap(chain::filter);
}

@Bean
public GlobalFilter customGlobalPostFilter() {
 return (exchange, chain) -> chain.filter(exchange)
 .then(Mono.just(exchange))
 .map(serverWebExchange -> {
 //adds header to response
 serverWebExchange.getResponse().getHeaders().set("CUSTOM-RESPONSE-
HEADER",

HttpStatus.OK.equals(serverWebExchange.getResponse().getStatusCode()) ? "It
worked": "It did not work");
 return serverWebExchange;
 })
 .then();
}

20. Building a Simple Gateway by Using
Spring MVC or Webflux

The following describes an alternative style gateway. None of the prior
documentation applies to what follows.

Spring Cloud Gateway provides a utility object called ProxyExchange. You can use it inside a regular
Spring web handler as a method parameter. It supports basic downstream HTTP exchanges
through methods that mirror the HTTP verbs. With MVC, it also supports forwarding to a local
handler through the forward() method. To use the ProxyExchange, include the right module in your
classpath (either spring-cloud-gateway-mvc or spring-cloud-gateway-webflux).

The following MVC example proxies a request to /test downstream to a remote server:

@RestController
@SpringBootApplication
public class GatewaySampleApplication {

 @Value("${remote.home}")
 private URI home;

 @GetMapping("/test")
 public ResponseEntity<?> proxy(ProxyExchange<byte[]> proxy) throws Exception {
 return proxy.uri(home.toString() + "/image/png").get();
 }

}

The following example does the same thing with Webflux:

@RestController
@SpringBootApplication
public class GatewaySampleApplication {

 @Value("${remote.home}")
 private URI home;

 @GetMapping("/test")
 public Mono<ResponseEntity<?>> proxy(ProxyExchange<byte[]> proxy) throws
Exception {
 return proxy.uri(home.toString() + "/image/png").get();
 }

}

Convenience methods on the ProxyExchange enable the handler method to discover and enhance the
URI path of the incoming request. For example, you might want to extract the trailing elements of a
path to pass them downstream:

@GetMapping("/proxy/path/**")
public ResponseEntity<?> proxyPath(ProxyExchange<byte[]> proxy) throws Exception {
 String path = proxy.path("/proxy/path/");
 return proxy.uri(home.toString() + "/foos/" + path).get();
}

All the features of Spring MVC and Webflux are available to gateway handler methods. As a result,

you can inject request headers and query parameters, for instance, and you can constrain the
incoming requests with declarations in the mapping annotation. See the documentation for
@RequestMapping in Spring MVC for more details of those features.

You can add headers to the downstream response by using the header() methods on ProxyExchange.

You can also manipulate response headers (and anything else you like in the response) by adding a
mapper to the get() method (and other methods). The mapper is a Function that takes the incoming
ResponseEntity and converts it to an outgoing one.

First-class support is provided for “sensitive” headers (by default, cookie and authorization), which
are not passed downstream, and for “proxy” (x-forwarded-*) headers.

21. AOT and Native Image Support
Since 4.0.0, Spring Cloud Gateway supports Spring AOT transformations and native images.

If you’re using load-balanced routes, you need to explicitly define your
LoadBalancerClient service IDs. You can do so by using the value or name attributes
of the @LoadBalancerClient annotation or as values of the
spring.cloud.loadbalancer.eager-load.clients property.

22. Configuration properties
To see the list of all Spring Cloud Gateway related configuration properties, see the appendix.

Spring Cloud Kubernetes
This reference guide covers how to use Spring Cloud Kubernetes.

1. Why do you need Spring Cloud
Kubernetes?
Spring Cloud Kubernetes provides implementations of well known Spring Cloud interfaces allowing
developers to build and run Spring Cloud applications on Kubernetes. While this project may be
useful to you when building a cloud native application, it is also not a requirement in order to
deploy a Spring Boot app on Kubernetes. If you are just getting started in your journey to running
your Spring Boot app on Kubernetes you can accomplish a lot with nothing more than a basic
Spring Boot app and Kubernetes itself. To learn more, you can get started by reading the Spring
Boot reference documentation for deploying to Kubernetes and also working through the
workshop material Spring and Kubernetes.

appendix.html
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#cloud-deployment-kubernetes
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#cloud-deployment-kubernetes
https://hackmd.io/@ryanjbaxter/spring-on-k8s-workshop

2. Starters
Starters are convenient dependency descriptors you can include in your application. Include a
starter to get the dependencies and Spring Boot auto-configuration for a feature set. Starters that
begin with spring-cloud-starter-kubernetes-fabric8 provide implementations using the Fabric8
Kubernetes Java Client. Starters that begin with spring-cloud-starter-kubernetes-client provide
implementations using the Kubernetes Java Client.

Starter Features

Fabric8 Dependency

<dependency>

<groupId>org.springframework.cloud</grou
pId>
 <artifactId>spring-cloud-starter-
kubernetes-fabric8</artifactId>
</dependency>

Kubernetes Client Dependency

<dependency>

<groupId>org.springframework.cloud</grou
pId>
 <artifactId>spring-cloud-starter-
kubernetes-client</artifactId>
</dependency>

Discovery Client implementation that resolves
service names to Kubernetes Services.

https://github.com/fabric8io/kubernetes-client
https://github.com/fabric8io/kubernetes-client
https://github.com/kubernetes-client/java

Starter Features

Fabric8 Dependency

<dependency>

<groupId>org.springframework.cloud</grou
pId>
 <artifactId>spring-cloud-starter-
kubernetes-fabric8-config</artifactId>
</dependency>

Kubernetes Client Dependency

<dependency>

<groupId>org.springframework.cloud</grou
pId>
 <artifactId>spring-cloud-starter-
kubernetes-client-config</artifactId>
</dependency>

Load application properties from Kubernetes
ConfigMaps and Secrets. Reload application
properties when a ConfigMap or Secret changes.

Fabric8 Dependency

<dependency>

<groupId>org.springframework.cloud</grou
pId>
 <artifactId>spring-cloud-starter-
kubernetes-fabric8-all</artifactId>
</dependency>

Kubernetes Client Dependency

<dependency>

<groupId>org.springframework.cloud</grou
pId>
 <artifactId>spring-cloud-starter-
kubernetes-client-all</artifactId>
</dependency>

All Spring Cloud Kubernetes features.

3. DiscoveryClient for Kubernetes
This project provides an implementation of Discovery Client for Kubernetes. This client lets you
query Kubernetes endpoints (see services) by name. A service is typically exposed by the

https://github.com/spring-cloud/spring-cloud-commons/blob/master/spring-cloud-commons/src/main/java/org/springframework/cloud/client/discovery/DiscoveryClient.java
https://kubernetes.io
https://kubernetes.io/docs/user-guide/services/

Kubernetes API server as a collection of endpoints that represent http and https addresses and that
a client can access from a Spring Boot application running as a pod.

DiscoveryClient can also find services of type ExternalName (see ExternalName services). At the
moment, external name support type of services is only available if the following property
spring.cloud.kubernetes.discovery.include-external-name-services is set to true and only in the
fabric8 implementation. In a later release, support will be added for the kubernetes native client
also.

This is something that you get for free by adding the following dependency inside your project:

HTTP Based DiscoveryClient

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-kubernetes-discoveryclient</artifactId>
</dependency>

spring-cloud-starter-kubernetes-discoveryclient is designed to be used with the
Spring Cloud Kubernetes DiscoveryServer.

Fabric8 Kubernetes Client

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-kubernetes-fabric8</artifactId>
</dependency>

Kubernetes Java Client

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-kubernetes-client</artifactId>
</dependency>

To enable loading of the DiscoveryClient, add @EnableDiscoveryClient to the according configuration
or application class, as the following example shows:

https://kubernetes.io/docs/concepts/services-networking/service/#externalname

@SpringBootApplication
@EnableDiscoveryClient
public class Application {
 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }
}

Then you can inject the client in your code simply by autowiring it, as the following example shows:

@Autowired
private DiscoveryClient discoveryClient;

You can choose to enable DiscoveryClient from all namespaces by setting the following property in
application.properties:

spring.cloud.kubernetes.discovery.all-namespaces=true

To discover services and endpoints only from specified namespaces you should set property all-
namespaces to false and set the following property in application.properties (in this example
namespaces are: ns1 and ns2).

spring.cloud.kubernetes.discovery.namespaces[0]=ns1
spring.cloud.kubernetes.discovery.namespaces[1]=ns2

To discover service endpoint addresses that are not marked as "ready" by the kubernetes api
server, you can set the following property in application.properties (default: false):

spring.cloud.kubernetes.discovery.include-not-ready-addresses=true

This might be useful when discovering services for monitoring purposes, and
would enable inspecting the /health endpoint of not-ready service instances.

If your service exposes multiple ports, you will need to specify which port the DiscoveryClient
should use. The DiscoveryClient will choose the port using the following logic.

1. If the service has a label primary-port-name it will use the port with the name specified in the
label’s value.

2. If no label is present, then the port name specified in
spring.cloud.kubernetes.discovery.primary-port-name will be used.

3. If neither of the above are specified it will use the port named https.

4. If none of the above conditions are met it will use the port named http.

5. As a last resort it wil pick the first port in the list of ports.

The last option may result in non-deterministic behaviour. Please make sure to
configure your service and/or application accordingly.

By default all of the ports and their names will be added to the metadata of the ServiceInstance.

As said before, if you want to get the list of ServiceInstance to also include the ExternalName type
services, you need to enable that support via: spring.cloud.kubernetes.discovery.include-external-
name-services=true. As such, when calling DiscoveryClient::getInstances those will be returned
also. You can distinguish between ExternalName and any other types by inspecting
ServiceInstance::getMetadata and lookup for a field called type. This will be the type of the service
returned : ExternalName/ClusterIP, etc.

ServiceInstance can include the labels and annotations of specific pods from the underlying service
instance. To obtain such information, you need to also enable:

spring.cloud.kubernetes.discovery.metadata.add-pod-labels=true and/or
spring.cloud.kubernetes.discovery.metadata.add-pod-annotations=true. At the moment, such
functionality is present only in the fabric8 client implementation, but will be added to the
kubernetes native client in a later release.

If, for any reason, you need to disable the DiscoveryClient, you can set the following property in
application.properties:

spring.cloud.kubernetes.discovery.enabled=false

Some Spring Cloud components use the DiscoveryClient in order to obtain information about the
local service instance. For this to work, you need to align the Kubernetes service name with the
spring.application.name property.

spring.application.name has no effect as far as the name registered for the
application within Kubernetes

Spring Cloud Kubernetes can also watch the Kubernetes service catalog for changes and update the
DiscoveryClient implementation accordingly. By "watch" we mean that we will publish a heartbeat
event every spring.cloud.kubernetes.discovery.catalog-services-watch-delay milliseconds (by
default it is 30000). The heartbeat event will contain the target references (and their namespaces of
the addresses of all endpoints (for the exact details of what will get returned you can take a look

inside KubernetesCatalogWatch). This is an implementation detail, and listeners of the heartbeat
event should not rely on the details. Instead, they should see if there are differences between two
subsequent heartbeats via equals method. We will take care to return a correct implementation that
adheres to the equals contract. The endpoints will be queried in either :

• all namespaces (enabled via spring.cloud.kubernetes.discovery.all-namespaces=true)

• specific namespaces (enabled via spring.cloud.kubernetes.discovery.namespaces), for example:

spring:
 cloud:
 kubernetes:
 discovery:
 namespaces:
 - namespace-a
 - namespace-b

• we will use: Namespace Resolution if the above two paths are not taken.

In order to enable this functionality you need to add @EnableScheduling on a configuration class in
your application.

By default, we use the Endpoints(see kubernetes.io/docs/concepts/services-networking/service/#
endpoints) API to find out the current state of services. There is another way though, via
EndpointSlices (kubernetes.io/docs/concepts/services-networking/endpoint-slices/). Such support
can be enabled via a property: spring.cloud.kubernetes.discovery.use-endpoint-slices=true (by
default it is false). Of course, your cluster has to support it also. As a matter of fact, if you enable
this property, but your cluster does not support it, we will fail starting the application. If you decide
to enable such support, you also need proper Role/ClusterRole set-up. For example:

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 namespace: default
 name: namespace-reader
rules:
 - apiGroups: ["discovery.k8s.io"]
 resources: ["endpointslices"]
 verbs: ["get", "list", "watch"]

4. Kubernetes native service discovery
Kubernetes itself is capable of (server side) service discovery (see: kubernetes.io/docs/concepts/
services-networking/service/#discovering-services). Using native kubernetes service discovery
ensures compatibility with additional tooling, such as Istio (istio.io), a service mesh that is capable
of load balancing, circuit breaker, failover, and much more.

The caller service then need only refer to names resolvable in a particular Kubernetes cluster. A

property-source-config.pdf#namespace-resolution
https://kubernetes.io/docs/concepts/services-networking/service/#endpoints
https://kubernetes.io/docs/concepts/services-networking/service/#endpoints
https://kubernetes.io/docs/concepts/services-networking/endpoint-slices/
https://kubernetes.io/docs/concepts/services-networking/service/#discovering-services
https://kubernetes.io/docs/concepts/services-networking/service/#discovering-services
https://istio.io

simple implementation might use a spring RestTemplate that refers to a fully qualified domain name
(FQDN), such as {service-name}.{namespace}.svc.{cluster}.local:{service-port}.

Additionally, you can use Hystrix for:

• Circuit breaker implementation on the caller side, by annotating the spring boot application
class with @EnableCircuitBreaker

• Fallback functionality, by annotating the respective method with
@HystrixCommand(fallbackMethod=

5. Kubernetes PropertySource
implementations
The most common approach to configuring your Spring Boot application is to create an
application.properties or application.yaml or an application-profile.properties or application-
profile.yaml file that contains key-value pairs that provide customization values to your
application or Spring Boot starters. You can override these properties by specifying system
properties or environment variables.

To enable this functionality you need to set spring.config.import=kubernetes: in your application’s
configuration properties. Currently you can not specify a ConfigMap or Secret to load using
spring.config.import, by default Spring Cloud Kubernetes will load a ConfigMap and/or Secret
based on the spring.application.name property. If spring.application.name is not set it will load a
ConfigMap and/or Secret with the name application.

If you would like to load Kubernetes PropertySources during the bootstrap phase like it worked
prior to the 3.0.x release you can either add spring-cloud-starter-bootstrap to your application’s
classpath or set spring.cloud.bootstrap.enabled=true as an environment variable.

5.1. Using a ConfigMap PropertySource
Kubernetes provides a resource named ConfigMap to externalize the parameters to pass to your
application in the form of key-value pairs or embedded application.properties or application.yaml
files. The Spring Cloud Kubernetes Config project makes Kubernetes ConfigMap instances available
during application startup and triggers hot reloading of beans or Spring context when changes are
detected on observed ConfigMap instances.

Everything that follows is explained mainly referring to examples using ConfigMaps, but the same
stands for Secrets, i.e.: every feature is supported for both.

The default behavior is to create a Fabric8ConfigMapPropertySource (or a
KubernetesClientConfigMapPropertySource) based on a Kubernetes ConfigMap that has a metadata.name
value of either the name of your Spring application (as defined by its spring.application.name
property) or a custom name defined within the application.properties file under the following key:
spring.cloud.kubernetes.config.name.

However, more advanced configuration is possible where you can use multiple ConfigMap instances.

https://{service-name}.{namespace}.svc.{cluster}.local:{service-port}
https://kubernetes.io/docs/user-guide/configmap/
https://github.com/spring-cloud/spring-cloud-kubernetes/tree/master/spring-cloud-kubernetes-fabric8-config

The spring.cloud.kubernetes.config.sources list makes this possible. For example, you could define
the following ConfigMap instances:

spring:
 application:
 name: cloud-k8s-app
 cloud:
 kubernetes:
 config:
 name: default-name
 namespace: default-namespace
 sources:
 # Spring Cloud Kubernetes looks up a ConfigMap named c1 in namespace
default-namespace
 - name: c1
 # Spring Cloud Kubernetes looks up a ConfigMap named default-name in
whatever namespace n2
 - namespace: n2
 # Spring Cloud Kubernetes looks up a ConfigMap named c3 in namespace n3
 - namespace: n3
 name: c3

In the preceding example, if spring.cloud.kubernetes.config.namespace had not been set, the
ConfigMap named c1 would be looked up in the namespace that the application runs. See Namespace
resolution to get a better understanding of how the namespace of the application is resolved.

Any matching ConfigMap that is found is processed as follows:

• Apply individual configuration properties.

• Apply as yaml (or properties) the content of any property that is named by the value of
spring.application.name (if it’s not present, by application.yaml/properties)

• Apply as a properties file the content of the above name + each active profile.

An example should make a lot more sense. Let’s suppose that spring.application.name=my-app and
that we have a single active profile called k8s. For a configuration as below:

kind: ConfigMap
apiVersion: v1
metadata:
 name: my-app
data:
 my-app.yaml: |-
 ...
 my-app-k8s.yaml: |-
 ..
 my-app-dev.yaml: |-
 ..
 someProp: someValue

These is what we will end-up loading:

• my-app.yaml treated as a file

• my-app-k8s.yaml treated as a file

• my-app-dev.yaml ignored, since dev is not an active profile

• someProp: someValue plain property

The single exception to the aforementioned flow is when the ConfigMap contains a single key that
indicates the file is a YAML or properties file. In that case, the name of the key does NOT have to be
application.yaml or application.properties (it can be anything) and the value of the property is
treated correctly. This features facilitates the use case where the ConfigMap was created by using
something like the following:

kubectl create configmap game-config --from-file=/path/to/app-config.yaml

Assume that we have a Spring Boot application named demo that uses the following properties to
read its thread pool configuration.

• pool.size.core

• pool.size.maximum

This can be externalized to config map in yaml format as follows:

kind: ConfigMap
apiVersion: v1
metadata:
 name: demo
data:
 pool.size.core: 1
 pool.size.max: 16

Individual properties work fine for most cases. However, sometimes, embedded yaml is more
convenient. In this case, we use a single property named application.yaml to embed our yaml, as
follows:

kind: ConfigMap
apiVersion: v1
metadata:
 name: demo
data:
 application.yaml: |-
 pool:
 size:
 core: 1
 max:16

The following example also works:

kind: ConfigMap
apiVersion: v1
metadata:
 name: demo
data:
 custom-name.yaml: |-
 pool:
 size:
 core: 1
 max:16

You can also define the search to happen based on labels, for example:

spring:
 application:
 name: labeled-configmap-with-prefix
 cloud:
 kubernetes:
 config:
 enableApi: true
 useNameAsPrefix: true
 namespace: spring-k8s
 sources:
 - labels:
 letter: a

This will search for every configmap in namespace spring-k8s that has labels {letter : a}. The
important thing to notice here is that unlike reading a configmap by name, this can result in
multiple config maps read. As usual, the same feature is supported for secrets.

You can also configure Spring Boot applications differently depending on active profiles that are
merged together when the ConfigMap is read. You can provide different property values for different
profiles by using an application.properties or application.yaml property, specifying profile-specific
values, each in their own document (indicated by the --- sequence), as follows:

kind: ConfigMap
apiVersion: v1
metadata:
 name: demo
data:
 application.yml: |-
 greeting:
 message: Say Hello to the World
 farewell:
 message: Say Goodbye

 spring:
 profiles: development
 greeting:
 message: Say Hello to the Developers
 farewell:
 message: Say Goodbye to the Developers

 spring:
 profiles: production
 greeting:
 message: Say Hello to the Ops

In the preceding case, the configuration loaded into your Spring Application with the development
profile is as follows:

 greeting:
 message: Say Hello to the Developers
 farewell:
 message: Say Goodbye to the Developers

However, if the production profile is active, the configuration becomes:

 greeting:
 message: Say Hello to the Ops
 farewell:
 message: Say Goodbye

If both profiles are active, the property that appears last within the ConfigMap overwrites any
preceding values.

Another option is to create a different config map per profile and spring boot will automatically
fetch it based on active profiles

kind: ConfigMap
apiVersion: v1
metadata:
 name: demo
data:
 application.yml: |-
 greeting:
 message: Say Hello to the World
 farewell:
 message: Say Goodbye

kind: ConfigMap
apiVersion: v1
metadata:
 name: demo-development
data:
 application.yml: |-
 spring:
 profiles: development
 greeting:
 message: Say Hello to the Developers
 farewell:
 message: Say Goodbye to the Developers

kind: ConfigMap
apiVersion: v1
metadata:
 name: demo-production
data:
 application.yml: |-
 spring:
 profiles: production
 greeting:
 message: Say Hello to the Ops
 farewell:
 message: Say Goodbye

To tell Spring Boot which profile should be enabled see the Spring Boot documentation. One option
for activating a specific profile when deploying to Kubernetes is to launch your Spring Boot
application with an environment variable that you can define in the PodSpec at the container
specification. Deployment resource file, as follows:

https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.profiles

apiVersion: apps/v1
kind: Deployment
metadata:
 name: deployment-name
 labels:
 app: deployment-name
spec:
 replicas: 1
 selector:
 matchLabels:
 app: deployment-name
 template:
 metadata:
 labels:
 app: deployment-name
 spec:
 containers:
 - name: container-name
 image: your-image
 env:
 - name: SPRING_PROFILES_ACTIVE
 value: "development"

You could run into a situation where there are multiple configs maps that have the same property
names. For example:

kind: ConfigMap
apiVersion: v1
metadata:
 name: config-map-one
data:
 application.yml: |-
 greeting:
 message: Say Hello from one

and

kind: ConfigMap
apiVersion: v1
metadata:
 name: config-map-two
data:
 application.yml: |-
 greeting:
 message: Say Hello from two

Depending on the order in which you place these in bootstrap.yaml|properties, you might end up
with an un-expected result (the last config map wins). For example:

spring:
 application:
 name: cloud-k8s-app
 cloud:
 kubernetes:
 config:
 namespace: default-namespace
 sources:
 - name: config-map-two
 - name: config-map-one

will result in property greetings.message being Say Hello from one.

There is a way to change this default configuration by specifying useNameAsPrefix. For example:

spring:
 application:
 name: with-prefix
 cloud:
 kubernetes:
 config:
 useNameAsPrefix: true
 namespace: default-namespace
 sources:
 - name: config-map-one
 useNameAsPrefix: false
 - name: config-map-two

Such a configuration will result in two properties being generated:

• greetings.message equal to Say Hello from one.

• config-map-two.greetings.message equal to Say Hello from two

Notice that spring.cloud.kubernetes.config.useNameAsPrefix has a lower priority than
spring.cloud.kubernetes.config.sources.useNameAsPrefix. This allows you to set a "default" strategy
for all sources, at the same time allowing to override only a few.

If using the config map name is not an option, you can specify a different strategy, called :
explicitPrefix. Since this is an explicit prefix that you select, it can only be supplied to the sources
level. At the same time it has a higher priority than useNameAsPrefix. Let’s suppose we have a third
config map with these entries:

kind: ConfigMap
apiVersion: v1
metadata:
 name: config-map-three
data:
 application.yml: |-
 greeting:
 message: Say Hello from three

A configuration like the one below:

spring:
 application:
 name: with-prefix
 cloud:
 kubernetes:
 config:
 useNameAsPrefix: true
 namespace: default-namespace
 sources:
 - name: config-map-one
 useNameAsPrefix: false
 - name: config-map-two
 explicitPrefix: two
 - name: config-map-three

will result in three properties being generated:

• greetings.message equal to Say Hello from one.

• two.greetings.message equal to Say Hello from two.

• config-map-three.greetings.message equal to Say Hello from three.

The same way you configure a prefix for configmaps, you can do it for secrets also; both for secrets
that are based on name and the ones based on labels. For example:

spring:
 application:
 name: prefix-based-secrets
 cloud:
 kubernetes:
 secrets:
 enableApi: true
 useNameAsPrefix: true
 namespace: spring-k8s
 sources:
 - labels:
 letter: a
 useNameAsPrefix: false
 - labels:
 letter: b
 explicitPrefix: two
 - labels:
 letter: c
 - labels:
 letter: d
 useNameAsPrefix: true
 - name: my-secret

The same processing rules apply when generating property source as for config maps. The only
difference is that potentially, looking up secrets by labels can mean that we find more than one
source. In such a case, prefix (if specified via useNameAsPrefix) will be the names of all secrets found
for those particular labels.

One more thing to bear in mind is that we support prefix per source, not per secret. The easiest way
to explain this is via an example:

spring:
 application:
 name: prefix-based-secrets
 cloud:
 kubernetes:
 secrets:
 enableApi: true
 useNameAsPrefix: true
 namespace: spring-k8s
 sources:
 - labels:
 color: blue
 useNameAsPrefix: true

Suppose that a query matching such a label will provide two secrets as a result: secret-a and
secret-b. Both of these secrets have the same property name: color=sea-blue and color=ocean-blue.
It is undefined which color will end-up as part of property sources, but the prefix for it will be
secret-a.secret-b (concatenated sorted naturally, names of the secrets).

If you need more fine-grained results, adding more labels to identify the secret uniquely would be
an option.

By default, besides reading the config map that is specified in the sources configuration, Spring will
also try to read all properties from "profile aware" sources. The easiest way to explain this is via an
example. Let’s suppose your application enables a profile called "dev" and you have a configuration
like the one below:

spring:
 application:
 name: spring-k8s
 cloud:
 kubernetes:
 config:
 namespace: default-namespace
 sources:
 - name: config-map-one

Besides reading the config-map-one, Spring will also try to read config-map-one-dev; in this particular
order. Each active profile generates such a profile aware config map.

Though your application should not be impacted by such a config map, it can be disabled if needed:

spring:
 application:
 name: spring-k8s
 cloud:
 kubernetes:
 config:
 includeProfileSpecificSources: false
 namespace: default-namespace
 sources:
 - name: config-map-one
 includeProfileSpecificSources: false

Notice that just like before, there are two levels where you can specify this property: for all config
maps or for individual ones; the latter having a higher priority.

You should check the security configuration section. To access config maps from
inside a pod you need to have the correct Kubernetes service accounts, roles and
role bindings.

Another option for using ConfigMap instances is to mount them into the Pod by running the Spring
Cloud Kubernetes application and having Spring Cloud Kubernetes read them from the file system.

This feature is deprecated and will be removed in a future release (Use
spring.config.import instead). This behavior is controlled by the
spring.cloud.kubernetes.config.paths property. You can use it in addition to or
instead of the mechanism described earlier. spring.cloud.kubernetes.config.paths
expects a List of full paths to each property file, because directories are not being
recursively parsed. For example:

spring:
 cloud:
 kubernetes:
 config:
 paths:
 - /tmp/application.properties
 - /var/application.yaml

If you use spring.cloud.kubernetes.config.paths or
spring.cloud.kubernetes.secrets.path the automatic reload functionality will not
work. You will need to make a POST request to the /actuator/refresh endpoint or
restart/redeploy the application.

In some cases, your application may be unable to load some of your ConfigMaps using the
Kubernetes API. If you want your application to fail the start-up process in such cases, you can set
spring.cloud.kubernetes.config.fail-fast=true to make the application start-up fail with an

Exception.

You can also make your application retry loading ConfigMap property sources on a failure. First, you
need to set spring.cloud.kubernetes.config.fail-fast=true. Then you need to add spring-retry and
spring-boot-starter-aop to your classpath. You can configure retry properties such as the
maximum number of attempts, backoff options like initial interval, multiplier, max interval by
setting the spring.cloud.kubernetes.config.retry.* properties.

If you already have spring-retry and spring-boot-starter-aop on the classpath for
some reason and want to enable fail-fast, but do not want retry to be enabled; you
can disable retry for ConfigMap PropertySources by setting
spring.cloud.kubernetes.config.retry.enabled=false.

Table 6. Properties:

Name Type Default Description

spring.cloud.kubernete
s.config.enabled

Boolean true Enable ConfigMaps
PropertySource

spring.cloud.kubernete
s.config.name

String ${spring.application.n
ame}

Sets the name of
ConfigMap to look up

spring.cloud.kubernete
s.config.namespace

String Client namespace Sets the Kubernetes
namespace where to
lookup

spring.cloud.kubernete
s.config.paths

List null Sets the paths where
ConfigMap instances are
mounted

spring.cloud.kubernete
s.config.enableApi

Boolean true Enable or disable
consuming ConfigMap
instances through APIs

spring.cloud.kubernete
s.config.fail-fast

Boolean false Enable or disable
failing the application
start-up when an error
occurred while loading
a ConfigMap

spring.cloud.kubernete
s.config.retry.enabled

Boolean true Enable or disable
config retry.

spring.cloud.kubernete
s.config.retry.initial
-interval

Long 1000 Initial retry interval in
milliseconds.

spring.cloud.kubernete
s.config.retry.max-
attempts

Integer 6 Maximum number of
attempts.

spring.cloud.kubernete
s.config.retry.max-
interval

Long 2000 Maximum interval for
backoff.

Name Type Default Description

spring.cloud.kubernete
s.config.retry.multipl
ier

Double 1.1 Multiplier for next
interval.

5.2. Secrets PropertySource
Kubernetes has the notion of Secrets for storing sensitive data such as passwords, OAuth tokens,
and so on. This project provides integration with Secrets to make secrets accessible by Spring Boot
applications. You can explicitly enable or disable This feature by setting the
spring.cloud.kubernetes.secrets.enabled property.

When enabled, the Fabric8SecretsPropertySource looks up Kubernetes for Secrets from the
following sources:

1. Reading recursively from secrets mounts

2. Named after the application (as defined by spring.application.name)

3. Matching some labels

Note:

By default, consuming Secrets through the API (points 2 and 3 above) is not enabled for security
reasons. The permission 'list' on secrets allows clients to inspect secrets values in the specified
namespace. Further, we recommend that containers share secrets through mounted volumes.

If you enable consuming Secrets through the API, we recommend that you limit access to Secrets by
using an authorization policy, such as RBAC. For more information about risks and best practices
when consuming Secrets through the API refer to this doc.

If the secrets are found, their data is made available to the application.

Assume that we have a spring boot application named demo that uses properties to read its database
configuration. We can create a Kubernetes secret by using the following command:

kubectl create secret generic db-secret --from-literal=username=user --from
-literal=password=p455w0rd

The preceding command would create the following secret (which you can see by using kubectl get
secrets db-secret -o yaml):

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/#best-practices

apiVersion: v1
data:
 password: cDQ1NXcwcmQ=
 username: dXNlcg==
kind: Secret
metadata:
 creationTimestamp: 2017-07-04T09:15:57Z
 name: db-secret
 namespace: default
 resourceVersion: "357496"
 selfLink: /api/v1/namespaces/default/secrets/db-secret
 uid: 63c89263-6099-11e7-b3da-76d6186905a8
type: Opaque

Note that the data contains Base64-encoded versions of the literal provided by the create command.

Your application can then use this secret — for example, by exporting the secret’s value as
environment variables:

apiVersion: v1
kind: Deployment
metadata:
 name: ${project.artifactId}
spec:
 template:
 spec:
 containers:
 - env:
 - name: DB_USERNAME
 valueFrom:
 secretKeyRef:
 name: db-secret
 key: username
 - name: DB_PASSWORD
 valueFrom:
 secretKeyRef:
 name: db-secret
 key: password

You can select the Secrets to consume in a number of ways:

1. By listing the directories where secrets are mapped:

-Dspring.cloud.kubernetes.secrets.paths=/etc/secrets/db
-secret,etc/secrets/postgresql

If you have all the secrets mapped to a common root, you can set them like:

-Dspring.cloud.kubernetes.secrets.paths=/etc/secrets

2. By setting a named secret:

-Dspring.cloud.kubernetes.secrets.name=db-secret

3. By defining a list of labels:

-Dspring.cloud.kubernetes.secrets.labels.broker=activemq
-Dspring.cloud.kubernetes.secrets.labels.db=postgresql

As the case with ConfigMap, more advanced configuration is also possible where you can use
multiple Secret instances. The spring.cloud.kubernetes.secrets.sources list makes this possible. For
example, you could define the following Secret instances:

spring:
 application:
 name: cloud-k8s-app
 cloud:
 kubernetes:
 secrets:
 name: default-name
 namespace: default-namespace
 sources:
 # Spring Cloud Kubernetes looks up a Secret named s1 in namespace
default-namespace
 - name: s1
 # Spring Cloud Kubernetes looks up a Secret named default-name in
namespace n2
 - namespace: n2
 # Spring Cloud Kubernetes looks up a Secret named s3 in namespace n3
 - namespace: n3
 name: s3

In the preceding example, if spring.cloud.kubernetes.secrets.namespace had not been set, the Secret
named s1 would be looked up in the namespace that the application runs. See namespace-
resolution to get a better understanding of how the namespace of the application is resolved.

Similar to the ConfigMaps; if you want your application to fail to start when it is unable to load
Secrets property sources, you can set spring.cloud.kubernetes.secrets.fail-fast=true.

It is also possible to enable retry for Secret property sources like the ConfigMaps. As with the
ConfigMap property sources, first you need to set spring.cloud.kubernetes.secrets.fail-fast=true.
Then you need to add spring-retry and spring-boot-starter-aop to your classpath. Retry behavior
of the Secret property sources can be configured by setting the
spring.cloud.kubernetes.secrets.retry.* properties.

If you already have spring-retry and spring-boot-starter-aop on the classpath for
some reason and want to enable fail-fast, but do not want retry to be enabled; you
can disable retry for Secrets PropertySources by setting
spring.cloud.kubernetes.secrets.retry.enabled=false.

Table 7. Properties:

Name Type Default Description

spring.cloud.kubernete
s.secrets.enabled

Boolean true Enable Secrets
PropertySource

spring.cloud.kubernete
s.secrets.name

String ${spring.application.n
ame}

Sets the name of the
secret to look up

Name Type Default Description

spring.cloud.kubernete
s.secrets.namespace

String Client namespace Sets the Kubernetes
namespace where to
look up

spring.cloud.kubernete
s.secrets.labels

Map null Sets the labels used to
lookup secrets

spring.cloud.kubernete
s.secrets.paths

List null Sets the paths where
secrets are mounted
(example 1)

spring.cloud.kubernete
s.secrets.enableApi

Boolean false Enables or disables
consuming secrets
through APIs (examples
2 and 3)

spring.cloud.kubernete
s.secrets.fail-fast

Boolean false Enable or disable
failing the application
start-up when an error
occurred while loading
a Secret

spring.cloud.kubernete
s.secrets.retry.enable
d

Boolean true Enable or disable
secrets retry.

spring.cloud.kubernete
s.secrets.retry.initia
l-interval

Long 1000 Initial retry interval in
milliseconds.

spring.cloud.kubernete
s.secrets.retry.max-
attempts

Integer 6 Maximum number of
attempts.

spring.cloud.kubernete
s.secrets.retry.max-
interval

Long 2000 Maximum interval for
backoff.

spring.cloud.kubernete
s.secrets.retry.multip
lier

Double 1.1 Multiplier for next
interval.

Notes:

• The spring.cloud.kubernetes.secrets.labels property behaves as defined by Map-based
binding.

• The spring.cloud.kubernetes.secrets.paths property behaves as defined by Collection-based
binding.

• Access to secrets through the API may be restricted for security reasons. The preferred way is to
mount secrets to the Pod.

You can find an example of an application that uses secrets (though it has not been updated to use
the new spring-cloud-kubernetes project) at spring-boot-camel-config

https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-Configuration-Binding#map-based-binding
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-Configuration-Binding#map-based-binding
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-Configuration-Binding#collection-based-binding
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-Configuration-Binding#collection-based-binding
https://github.com/fabric8-quickstarts/spring-boot-camel-config

5.3. Namespace resolution
Finding an application namespace happens on a best-effort basis. There are some steps that we
iterate in order to find it. The easiest and most common one, is to specify it in the proper
configuration, for example:

spring:
 application:
 name: app
 cloud:
 kubernetes:
 secrets:
 name: secret
 namespace: default
 sources:
 # Spring Cloud Kubernetes looks up a Secret named 'a' in namespace
'default'
 - name: a
 # Spring Cloud Kubernetes looks up a Secret named 'secret' in namespace
'b'
 - namespace: b
 # Spring Cloud Kubernetes looks up a Secret named 'd' in namespace 'c'
 - namespace: c
 name: d

Remember that the same can be done for config maps. If such a namespace is not specified, it will
be read (in this order):

1. from property spring.cloud.kubernetes.client.namespace

2. from a String residing in a file denoted by
spring.cloud.kubernetes.client.serviceAccountNamespacePath property

3. from a String residing in /var/run/secrets/kubernetes.io/serviceaccount/namespace file
(kubernetes default namespace path)

4. from a designated client method call (for example fabric8’s : KubernetesClient::getNamespace), if
the client provides such a method. This, in turn, could be configured via environment
properties. For example fabric8 client can be configured via "KUBERNETES_NAMESPACE"
property; consult the client documentation for exact details.

Failure to find a namespace from the above steps will result in an Exception being raised.

5.4. Order of ConfigMaps and Secrets
If, for whatever reason, you enabled both configmaps and secrets, and there is a common property
between them, the value from the ConfigMap will have a higher precedence. That is: it will override
whatever values are found in secrets.

5.5. PropertySource Reload

This functionality has been deprecated in the 2020.0 release. Please see the Spring
Cloud Kubernetes Configuration Watcher controller for an alternative way to
achieve the same functionality.

Some applications may need to detect changes on external property sources and update their
internal status to reflect the new configuration. The reload feature of Spring Cloud Kubernetes is
able to trigger an application reload when a related ConfigMap or Secret changes.

By default, this feature is disabled. You can enable it by using the
spring.cloud.kubernetes.reload.enabled=true configuration property (for example, in the
application.properties file). Please notice that this will enable monitoring of configmaps only (i.e.:
spring.cloud.kubernetes.reload.monitoring-config-maps will be set to true). If you want to enable
monitoring of secrets, this must be done explicitly via : spring.cloud.kubernetes.reload.monitoring-
secrets=true.

The following levels of reload are supported (by setting the
spring.cloud.kubernetes.reload.strategy property):

• refresh (default): Only configuration beans annotated with @ConfigurationProperties or
@RefreshScope are reloaded. This reload level leverages the refresh feature of Spring Cloud
Context.

• restart_context: the whole Spring ApplicationContext is gracefully restarted. Beans are
recreated with the new configuration. In order for the restart context functionality to work
properly you must enable and expose the restart actuator endpoint

management:
 endpoint:
 restart:
 enabled: true
 endpoints:
 web:
 exposure:
 include: restart

• shutdown: the Spring ApplicationContext is shut down to activate a restart of the container. When
you use this level, make sure that the lifecycle of all non-daemon threads is bound to the
ApplicationContext and that a replication controller or replica set is configured to restart the
pod.

Assuming that the reload feature is enabled with default settings (refresh mode), the following
bean is refreshed when the config map changes:

@Configuration
@ConfigurationProperties(prefix = "bean")
public class MyConfig {

 private String message = "a message that can be changed live";

 // getter and setters

}

To see that changes effectively happen, you can create another bean that prints the message
periodically, as follows

@Component
public class MyBean {

 @Autowired
 private MyConfig config;

 @Scheduled(fixedDelay = 5000)
 public void hello() {
 System.out.println("The message is: " + config.getMessage());
 }
}

You can change the message printed by the application by using a ConfigMap, as follows:

apiVersion: v1
kind: ConfigMap
metadata:
 name: reload-example
data:
 application.properties: |-
 bean.message=Hello World!

Any change to the property named bean.message in the ConfigMap associated with the pod is reflected
in the output. More generally speaking, changes associated to properties prefixed with the value
defined by the prefix field of the @ConfigurationProperties annotation are detected and reflected in
the application. Associating a ConfigMap with a pod is explained earlier in this chapter.

The full example is available in spring-cloud-kubernetes-reload-example.

https://github.com/spring-cloud/spring-cloud-kubernetes/tree/main/spring-cloud-kubernetes-examples/kubernetes-reload-example

The reload feature supports two operating modes:

• Event (default): Watches for changes in config maps or secrets by using the Kubernetes API
(web socket). Any event produces a re-check on the configuration and, in case of changes, a
reload. The view role on the service account is required in order to listen for config map
changes. A higher level role (such as edit) is required for secrets (by default, secrets are not
monitored).

• Polling: Periodically re-creates the configuration from config maps and secrets to see if it has
changed. You can configure the polling period by using the
spring.cloud.kubernetes.reload.period property and defaults to 15 seconds. It requires the same
role as the monitored property source. This means, for example, that using polling on file-
mounted secret sources does not require particular privileges.

5.6. Reload namespace and label filtering
By default, a namespace chosen using the steps outlined in Namespace resolution will be used to
listen to changes in configmaps and secrets. i.e.: if you do not tell reload what namespaces and
configmaps/secrets to watch for, it will watch all configmaps/secrets from the namespace that will
be computed using the above algorithm.

On the other hand, you can define a more fine-grained approach. For example, you can specify the
namespaces where changes will be monitored:

spring:
 application:
 name: event-reload
 cloud:
 kubernetes:
 reload:
 enabled: true
 strategy: shutdown
 mode: event
 namespaces:
 - my-namespace

Such a configuration will make the app watch changes only in the my-namespace namespace. Mind
that this will watch all configmaps/secrets (depending on which one you enable). If you want an
even more fine-grained approach, you can enable "label-filtering". First we need to enable such
support via : enable-reload-filtering: true

spring:
 application:
 name: event-reload
 cloud:
 kubernetes:
 reload:
 enabled: true
 strategy: shutdown
 mode: event
 namespaces:
 - my-namespaces
 monitoring-config-maps: true
 enable-reload-filtering: true

What this will do, is watch configmaps/secrets that only have the
spring.cloud.kubernetes.config.informer.enabled: true label.

Table 8. Properties:

Name Type Default Description

spring.cloud.kubernete
s.reload.enabled

Boolean false Enables monitoring of
property sources and
configuration reload

spring.cloud.kubernete
s.reload.monitoring-
config-maps

Boolean true Allow monitoring
changes in config maps

spring.cloud.kubernete
s.reload.monitoring-
secrets

Boolean false Allow monitoring
changes in secrets

spring.cloud.kubernete
s.reload.strategy

Enum refresh The strategy to use
when firing a reload
(refresh,
restart_context, or
shutdown)

spring.cloud.kubernete
s.reload.mode

Enum event Specifies how to listen
for changes in property
sources (event or
polling)

spring.cloud.kubernete
s.reload.period

Duration 15s The period for
verifying changes when
using the polling
strategy

spring.cloud.kubernete
s.reload.namespaces

String[] namespaces where we
should watch for
changes

Name Type Default Description

spring.cloud.kubernete
s.reload.enable-
reload-filtering

String enabled labeled
filtering for reload
functionality

Notes:

• You should not use properties under spring.cloud.kubernetes.reload in config maps or secrets.
Changing such properties at runtime may lead to unexpected results.

• Deleting a property or the whole config map does not restore the original state of the beans
when you use the refresh level.

6. Kubernetes Ecosystem Awareness
All features described earlier in this guide work equally well, regardless of whether your
application is running inside Kubernetes. This is really helpful for development and
troubleshooting. From a development point of view, this lets you start your Spring Boot application
and debug one of the modules that is part of this project. You need not deploy it in Kubernetes, as
the code of the project relies on the Fabric8 Kubernetes Java client, which is a fluent DSL that can
communicate by using http protocol to the REST API of the Kubernetes Server.

Kubernetes awareness is based on Spring Boot API, specifically on ConditionalOnCloudPlatform.
That property will auto-detect if your application is currently deployed in kubernetes or not. It is
possible to override that setting via spring.main.cloud-platform.

For example, if you need to test some features, but do not want to deploy to a cluster, it is enough to
set the: spring.main.cloud-platform=KUBERNETES. This will make spring-cloud-kubernetes act as-if it is
deployed in a real cluster.

If you have spring-cloud-starter-bootstrap on your classpath or are setting
spring.cloud.bootstrap.enabled=true then you will have to set spring.main.cloud-
platform should be set in bootstrap.{properties|yml} (or the profile specific one).
Also note that these properties: spring.cloud.kubernetes.config.enabled and
spring.cloud.kubernetes.secrets.enabled will only take effect when set in
bootstrap.{properties|yml} when you have spring-cloud-starter-bootstrap on
your classpath or are setting spring.cloud.bootstrap.enabled=true.

6.1. Breaking Changes In 3.0.x
In versions of Spring Cloud Kubernetes prior to 3.0.x, Kubernetes awareness was implemented
using spring.cloud.kubernetes.enabled property. This property was removed and is un-supported.
Instead, we use Spring Boot API: ConditionalOnCloudPlatform. If it is needed to explicitly enable or
disable this awareness, use spring.main.cloud-platform=NONE/KUBERNETES.

https://github.com/fabric8io/kubernetes-client
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/autoconfigure/condition/ConditionalOnCloudPlatform.html
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/autoconfigure/condition/ConditionalOnCloudPlatform.html

6.2. Kubernetes Profile Autoconfiguration
When the application runs as a pod inside Kubernetes, a Spring profile named kubernetes
automatically gets activated. This lets you customize the configuration, to define beans that are
applied when the Spring Boot application is deployed within the Kubernetes platform (for example,
different development and production configuration).

6.3. Istio Awareness
When you include the spring-cloud-kubernetes-fabric8-istio module in the application classpath, a
new profile is added to the application, provided the application is running inside a Kubernetes
Cluster with Istio installed. You can then use spring @Profile("istio") annotations in your Beans
and @Configuration classes.

The Istio awareness module uses me.snowdrop:istio-client to interact with Istio APIs, letting us
discover traffic rules, circuit breakers, and so on, making it easy for our Spring Boot applications to
consume this data to dynamically configure themselves according to the environment.

7. Pod Health Indicator
Spring Boot uses HealthIndicator to expose info about the health of an application. That makes it
really useful for exposing health-related information to the user and makes it a good fit for use as
readiness probes.

The Kubernetes health indicator (which is part of the core module) exposes the following info:

• Pod name, IP address, namespace, service account, node name, and its IP address

• A flag that indicates whether the Spring Boot application is internal or external to Kubernetes

You can disable this HealthContributor by setting management.health.kubernetes.enabled to false in
application.[properties | yaml].

8. Info Contributor
Spring Cloud Kubernetes includes an InfoContributor which adds Pod information to Spring Boot’s
/info Acturator endpoint.

You can disable this InfoContributor by setting management.info.kubernetes.enabled to false in
application.[properties | yaml].

9. Leader Election
The Spring Cloud Kubernetes leader election mechanism implements the leader election API of
Spring Integration using a Kubernetes ConfigMap.

Multiple application instances compete for leadership, but leadership will only be granted to one.

https://istio.io
https://github.com/spring-projects/spring-boot/blob/master/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/HealthEndpoint.java
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/

When granted leadership, a leader application receives an OnGrantedEvent application event with
leadership Context. Applications periodically attempt to gain leadership, with leadership granted to
the first caller. A leader will remain a leader until either it is removed from the cluster, or it yields
its leadership. When leadership removal occurs, the previous leader receives OnRevokedEvent
application event. After removal, any instances in the cluster may become the new leader,
including the old leader.

To include it in your project, add the following dependency.

Fabric8 Leader Implementation

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-kubernetes-fabric8-leader</artifactId>
</dependency>

To specify the name of the configmap used for leader election use the following property.

spring.cloud.kubernetes.leader.config-map-name=leader

10. LoadBalancer for Kubernetes
This project includes Spring Cloud Load Balancer for load balancing based on Kubernetes
Endpoints and provides implementation of load balancer based on Kubernetes Service. To include
it to your project add the following dependency.

Fabric8 Implementation

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-kubernetes-fabric8-loadbalancer</artifactId>
</dependency>

Kubernetes Java Client Implementation

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-kubernetes-client-loadbalancer</artifactId>
</dependency>

To enable load balancing based on Kubernetes Service name use the following property. Then load
balancer would try to call application using address, for example service-
a.default.svc.cluster.local

spring.cloud.kubernetes.loadbalancer.mode=SERVICE

To enabled load balancing across all namespaces use the following property. Property from spring-
cloud-kubernetes-discovery module is respected.

spring.cloud.kubernetes.discovery.all-namespaces=true

If a service needs to be accessed over HTTPS you need to add a label or annotation to your service
definition with the name secured and the value true and the load balancer will then use HTTPS to
make requests to the service.

11. Security Configurations Inside
Kubernetes

11.1. Namespace
Most of the components provided in this project need to know the namespace. For Kubernetes
(1.3+), the namespace is made available to the pod as part of the service account secret and is
automatically detected by the client. For earlier versions, it needs to be specified as an environment
variable to the pod. A quick way to do this is as follows:

 env:
 - name: "KUBERNETES_NAMESPACE"
 valueFrom:
 fieldRef:
 fieldPath: "metadata.namespace"

11.2. Service Account
For distributions of Kubernetes that support more fine-grained role-based access within the cluster,
you need to make sure a pod that runs with spring-cloud-kubernetes has access to the Kubernetes
API. For any service accounts you assign to a deployment or pod, you need to make sure they have
the correct roles.

Depending on the requirements, you’ll need get, list and watch permission on the following
resources:

Table 9. Kubernetes Resource Permissions

Dependency Resources

spring-cloud-starter-kubernetes-fabric8 pods, services, endpoints

spring-cloud-starter-kubernetes-fabric8-config configmaps, secrets

spring-cloud-starter-kubernetes-client pods, services, endpoints

spring-cloud-starter-kubernetes-client-config configmaps, secrets

For development purposes, you can add cluster-reader permissions to your default service
account. On a production system you’ll likely want to provide more granular permissions.

The following Role and RoleBinding are an example for namespaced permissions for the default
account:

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 namespace: YOUR-NAME-SPACE
 name: namespace-reader
rules:
 - apiGroups: [""]
 resources: ["configmaps", "pods", "services", "endpoints", "secrets"]
 verbs: ["get", "list", "watch"]

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: namespace-reader-binding
 namespace: YOUR-NAME-SPACE
subjects:
- kind: ServiceAccount
 name: default
 apiGroup: ""
roleRef:
 kind: Role
 name: namespace-reader
 apiGroup: ""

12. Service Registry Implementation
In Kubernetes service registration is controlled by the platform, the application itself does not
control registration as it may do in other platforms. For this reason using spring.cloud.service-
registry.auto-registration.enabled or setting @EnableDiscoveryClient(autoRegister=false) will
have no effect in Spring Cloud Kubernetes.

13. Spring Cloud Kubernetes Configuration
Watcher
Kubernetes provides the ability to mount a ConfigMap or Secret as a volume in the container of
your application. When the contents of the ConfigMap or Secret changes, the mounted volume will
be updated with those changes.

However, Spring Boot will not automatically update those changes unless you restart the
application. Spring Cloud provides the ability refresh the application context without restarting the
application by either hitting the actuator endpoint /refresh or via publishing a
RefreshRemoteApplicationEvent using Spring Cloud Bus.

https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#add-configmap-data-to-a-volume
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#mounted-configmaps-are-updated-automatically
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/#mounted-configmaps-are-updated-automatically

To achieve this configuration refresh of a Spring Cloud app running on Kubernetes, you can deploy
the Spring Cloud Kubernetes Configuration Watcher controller into your Kubernetes cluster.

The application is published as a container and is available on Docker Hub. However, if you need to
customize the config watcher behavior or prefer to build the image yourself you can easily build
your own image from the source code on GitHub and use that.

Spring Cloud Kubernetes Configuration Watcher can send refresh notifications to applications in
two ways.

1. Over HTTP in which case the application being notified must of the /refresh actuator endpoint
exposed and accessible from within the cluster

2. Using Spring Cloud Bus, in which case you will need a message broker deployed to your custer
for the application to use.

13.1. Deployment YAML
Below is a sample deployment YAML you can use to deploy the Kubernetes Configuration Watcher
to Kubernetes.

https://hub.docker.com/r/springcloud/spring-cloud-kubernetes-configuration-watcher
https://github.com/spring-cloud/spring-cloud-kubernetes/tree/main/spring-cloud-kubernetes-controllers/spring-cloud-kubernetes-configuration-watcher

apiVersion: v1
kind: List
items:
 - apiVersion: v1
 kind: Service
 metadata:
 labels:
 app: spring-cloud-kubernetes-configuration-watcher
 name: spring-cloud-kubernetes-configuration-watcher
 spec:
 ports:
 - name: http
 port: 8888
 targetPort: 8888
 selector:
 app: spring-cloud-kubernetes-configuration-watcher
 type: ClusterIP
 - apiVersion: v1
 kind: ServiceAccount
 metadata:
 labels:
 app: spring-cloud-kubernetes-configuration-watcher
 name: spring-cloud-kubernetes-configuration-watcher
 - apiVersion: rbac.authorization.k8s.io/v1
 kind: RoleBinding
 metadata:
 labels:
 app: spring-cloud-kubernetes-configuration-watcher
 name: spring-cloud-kubernetes-configuration-watcher:view
 roleRef:
 kind: Role
 apiGroup: rbac.authorization.k8s.io
 name: namespace-reader
 subjects:
 - kind: ServiceAccount
 name: spring-cloud-kubernetes-configuration-watcher
 - apiVersion: rbac.authorization.k8s.io/v1
 kind: Role
 metadata:
 namespace: default
 name: namespace-reader
 rules:
 - apiGroups: ["", "extensions", "apps"]
 resources: ["configmaps", "pods", "services", "endpoints", "secrets"]
 verbs: ["get", "list", "watch"]
 - apiVersion: apps/v1
 kind: Deployment
 metadata:

 name: spring-cloud-kubernetes-configuration-watcher-deployment
 spec:
 selector:
 matchLabels:
 app: spring-cloud-kubernetes-configuration-watcher
 template:
 metadata:
 labels:
 app: spring-cloud-kubernetes-configuration-watcher
 spec:
 serviceAccount: spring-cloud-kubernetes-configuration-watcher
 containers:
 - name: spring-cloud-kubernetes-configuration-watcher
 image: springcloud/spring-cloud-kubernetes-configuration-
watcher:2.0.1-SNAPSHOT
 imagePullPolicy: IfNotPresent
 readinessProbe:
 httpGet:
 port: 8888
 path: /actuator/health/readiness
 livenessProbe:
 httpGet:
 port: 8888
 path: /actuator/health/liveness
 ports:
 - containerPort: 8888

The Service Account and associated Role Binding is important for Spring Cloud Kubernetes
Configuration to work properly. The controller needs access to read data about ConfigMaps, Pods,
Services, Endpoints and Secrets in the Kubernetes cluster.

13.2. Monitoring ConfigMaps and Secrets
Spring Cloud Kubernetes Configuration Watcher will react to changes in ConfigMaps with a label of
spring.cloud.kubernetes.config with the value true or any Secret with a label of
spring.cloud.kubernetes.secret with the value true. If the ConfigMap or Secret does not have either
of those labels or the values of those labels is not true then any changes will be ignored.

If a change is made to a ConfigMap or Secret with valid labels then Spring Cloud Kubernetes
Configuration Watcher will take the name of the ConfigMap or Secret and send a notification to the
application with that name. This might not be enough for your use-case though, you could for
example what to:

• bind a config-map to multiple applications, so that a change inside a single configmap triggers a
refresh for many services

• have profile based sources trigger events for your application

For that reasons there is an addition annotation you could specify:

spring.cloud.kubernetes.configmap.apps or spring.cloud.kubernetes.secret.apps. It takes a String of
apps separated by comma, that specifies the names of applications that will receive a notification
when changes happen in this secret/configmap.

For example:

kind: ConfigMap
apiVersion: v1
metadata:
 name: example-configmap
 labels:
 spring.cloud.kubernetes.config: "true"
 annotations:
 spring.cloud.kubernetes.configmap.apps: "app-a, app-b"

13.3. HTTP Implementation
The HTTP implementation is what is used by default. When this implementation is used Spring
Cloud Kubernetes Configuration Watcher and a change to a ConfigMap or Secret occurs then the
HTTP implementation will use the Spring Cloud Kubernetes Discovery Client to fetch all instances
of the application which match the name of the ConfigMap or Secret and send an HTTP POST
request to the application’s actuator /refresh endpoint. By default it will send the post request to
/actuator/refresh using the port registered in the discovery client.

13.3.1. Non-Default Management Port and Actuator Path

If the application is using a non-default actuator path and/or using a different port for the
management endpoints, the Kubernetes service for the application can add an annotation called
boot.spring.io/actuator and set its value to the path and port used by the application. For example

apiVersion: v1
kind: Service
metadata:
 labels:
 app: config-map-demo
 name: config-map-demo
 annotations:
 boot.spring.io/actuator: http://:9090/myactuator/home
spec:
 ports:
 - name: http
 port: 8080
 targetPort: 8080
 selector:
 app: config-map-demo

Another way you can choose to configure the actuator path and/or management port is by setting
spring.cloud.kubernetes.configuration.watcher.actuatorPath and
spring.cloud.kubernetes.configuration.watcher.actuatorPort.

13.4. Messaging Implementation
The messaging implementation can be enabled by setting profile to either bus-amqp (RabbitMQ) or
bus-kafka (Kafka) when the Spring Cloud Kubernetes Configuration Watcher application is deployed
to Kubernetes.

13.5. Configuring RabbitMQ
When the bus-amqp profile is enabled you will need to configure Spring RabbitMQ to point it to the
location of the RabbitMQ instance you would like to use as well as any credentials necessary to
authenticate. This can be done by setting the standard Spring RabbitMQ properties, for example

spring:
 rabbitmq:
 username: user
 password: password
 host: rabbitmq

13.6. Configuring Kafka
When the bus-kafka profile is enabled you will need to configure Spring Kafka to point it to the
location of the Kafka Broker instance you would like to use. This can be done by setting the
standard Spring Kafka properties, for example

spring:
 kafka:
 producer:
 bootstrap-servers: localhost:9092

14. Spring Cloud Kubernetes Config Server
The Spring Cloud Kubernetes Config Server, is based on Spring Cloud Config Server and adds an
environment repository for Kubernetes Config Maps and Secrets.

This is component is completely optional. However, it allows you to continue to leverage
configuration you may have stored in existing environment repositories (Git, SVN, Vault, etc) with
applications that you are running on Kubernetes.

A default image is located on Docker Hub which will allow you to easily get a Config Server
deployed on Kubernetes without building the code and image yourself. However, if you need to
customize the config server behavior or prefer to build the image yourself you can easily build your
own image from the source code on GitHub and use that.

14.1. Configuration

14.1.1. Enabling The Kubernetes Environment Repository

To enable the Kubernetes environment repository the kubernetes profile must be included in the list
of active profiles. You may activate other profiles as well to use other environment repository
implementations.

14.1.2. Config Map and Secret PropertySources

By default, only Config Map data will be fetched. To enable Secrets as well you will need to set
spring.cloud.kubernetes.secrets.enableApi=true. You can disable the Config Map PropertySource by
setting spring.cloud.kubernetes.config.enableApi=false.

14.1.3. Fetching Config Map and Secret Data From Additional Namespaces

By default, the Kubernetes environment repository will only fetch Config Map and Secrets from the
namespace in which it is deployed. If you want to include data from other namespaces you can set
spring.cloud.kubernetes.configserver.config-map-namespaces and/or
spring.cloud.kubernetes.configserver.secrets-namespaces to a comma separated list of namespace
values.

https://spring.io/projects/spring-cloud-config
https://docs.spring.io/spring-cloud-config/docs/current/reference/html/#_environment_repository
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/secret/
https://hub.docker.com/r/springcloud/spring-cloud-kubernetes-configserver
https://github.com/spring-cloud/spring-cloud-kubernetes/tree/main/spring-cloud-kubernetes-controllers/spring-cloud-kubernetes-configserver

If you set spring.cloud.kubernetes.configserver.config-map-namespaces and/or
spring.cloud.kubernetes.configserver.secrets-namespaces you will need to include
the namespace in which the Config Server is deployed in order to continue to fetch
Config Map and Secret data from that namespace.

14.1.4. Kubernetes Access Controls

The Kubernetes Config Server uses the Kubernetes API server to fetch Config Map and Secret data.
In order for it to do that it needs ability to get and list Config Map and Secrets (depending on what
you enable/disable).

14.2. Deployment Yaml
Below is a sample deployment, service and permissions configuration you can use to deploy a basic
Config Server to Kubernetes.

apiVersion: v1
kind: List
items:
 - apiVersion: v1
 kind: Service
 metadata:
 labels:
 app: spring-cloud-kubernetes-configserver
 name: spring-cloud-kubernetes-configserver
 spec:
 ports:
 - name: http
 port: 8888
 targetPort: 8888
 selector:
 app: spring-cloud-kubernetes-configserver
 type: ClusterIP
 - apiVersion: v1
 kind: ServiceAccount
 metadata:
 labels:
 app: spring-cloud-kubernetes-configserver
 name: spring-cloud-kubernetes-configserver
 - apiVersion: rbac.authorization.k8s.io/v1
 kind: RoleBinding
 metadata:
 labels:
 app: spring-cloud-kubernetes-configserver
 name: spring-cloud-kubernetes-configserver:view
 roleRef:
 kind: Role
 apiGroup: rbac.authorization.k8s.io
 name: namespace-reader
 subjects:
 - kind: ServiceAccount
 name: spring-cloud-kubernetes-configserver
 - apiVersion: rbac.authorization.k8s.io/v1
 kind: Role
 metadata:
 namespace: default
 name: namespace-reader
 rules:
 - apiGroups: ["", "extensions", "apps"]
 resources: ["configmaps", "secrets"]
 verbs: ["get", "list"]
 - apiVersion: apps/v1
 kind: Deployment
 metadata:

 name: spring-cloud-kubernetes-configserver-deployment
 spec:
 selector:
 matchLabels:
 app: spring-cloud-kubernetes-configserver
 template:
 metadata:
 labels:
 app: spring-cloud-kubernetes-configserver
 spec:
 serviceAccount: spring-cloud-kubernetes-configserver
 containers:
 - name: spring-cloud-kubernetes-configserver
 image: springcloud/spring-cloud-kubernetes-configserver
 imagePullPolicy: IfNotPresent
 env:
 - name: SPRING_PROFILES_INCLUDE
 value: "kubernetes"
 readinessProbe:
 httpGet:
 port: 8888
 path: /actuator/health/readiness
 livenessProbe:
 httpGet:
 port: 8888
 path: /actuator/health/liveness
 ports:
 - containerPort: 8888

15. Spring Cloud Kubernetes Discovery
Server
The Spring Cloud Kubernetes Discovery Server provides HTTP endpoints apps can use to gather
information about services available within a Kubernetes cluster. The Spring Cloud Kubernetes
Discovery Server can be used by apps using the spring-cloud-starter-kubernetes-discoveryclient to
provide data to the DiscoveryClient implementation provided by that starter.

15.1. Permissions
The Spring Cloud Discovery server uses the Kubernetes API server to get data about Service and
Endpoint resrouces so it needs list, watch, and get permissions to use those endpoints. See the
below sample Kubernetes deployment YAML for an examlpe of how to configure the Service
Account on Kubernetes.

15.2. Endpoints
There are three endpoints exposed by the server.

15.2.1. /apps

A GET request sent to /apps will return a JSON array of available services. Each item contains the
name of the Kubernetes service and service instance information. Below is a sample response.

[
 {
 "name":"spring-cloud-kubernetes-discoveryserver",
 "serviceInstances":[
 {
 "instanceId":"836a2f25-daee-4af2-a1be-aab9ce2b938f",
 "serviceId":"spring-cloud-kubernetes-discoveryserver",
 "host":"10.244.1.6",
 "port":8761,
 "uri":"http://10.244.1.6:8761",
 "secure":false,
 "metadata":{
 "app":"spring-cloud-kubernetes-discoveryserver",
 "kubectl.kubernetes.io/last-applied-
configuration":"{\"apiVersion\":\"v1\",\"kind\":\"Service\",\"metadata\":{\"annota
tions\":{},\"labels\":{\"app\":\"spring-cloud-kubernetes-
discoveryserver\"},\"name\":\"spring-cloud-kubernetes-
discoveryserver\",\"namespace\":\"default\"},\"spec\":{\"ports\":[{\"name\":\"http
\",\"port\":80,\"targetPort\":8761}],\"selector\":{\"app\":\"spring-cloud-
kubernetes-discoveryserver\"},\"type\":\"ClusterIP\"}}\n",
 "http":"8761"
 },
 "namespace":"default",
 "scheme":"http"
 }
]
 },
 {
 "name":"kubernetes",
 "serviceInstances":[
 {
 "instanceId":"1234",
 "serviceId":"kubernetes",
 "host":"172.18.0.3",
 "port":6443,
 "uri":"http://172.18.0.3:6443",
 "secure":false,
 "metadata":{
 "provider":"kubernetes",
 "component":"apiserver",
 "https":"6443"
 },
 "namespace":"default",
 "scheme":"http"
 }
]
 }
]

15.2.2. /apps/{name}

A GET request to /apps/{name} can be used to get instance data for all instances of a given service.
Below is a sample response when a GET request is made to /apps/kubernetes.

[
 {
 "instanceId":"1234",
 "serviceId":"kubernetes",
 "host":"172.18.0.3",
 "port":6443,
 "uri":"http://172.18.0.3:6443",
 "secure":false,
 "metadata":{
 "provider":"kubernetes",
 "component":"apiserver",
 "https":"6443"
 },
 "namespace":"default",
 "scheme":"http"
 }
]

15.2.3. /app/{name}/{instanceid}

A GET request made to /app/{name}/{instanceid} will return the instance data for a specific instance
of a given service. Below is a sample response when a GET request is made to /app/kubernetes/1234.

 {
 "instanceId":"1234",
 "serviceId":"kubernetes",
 "host":"172.18.0.3",
 "port":6443,
 "uri":"http://172.18.0.3:6443",
 "secure":false,
 "metadata":{
 "provider":"kubernetes",
 "component":"apiserver",
 "https":"6443"
 },
 "namespace":"default",
 "scheme":"http"
 }

15.3. Deployment YAML
An image of the Spring Cloud Discovery Server is hosted on Docker Hub. However, if you need to
customize the discovery server behavior or prefer to build the image yourself you can easily build
your own image from the source code on GitHub and use that.

Below is a sample deployment YAML you can use to deploy the Kubernetes Configuration Watcher
to Kubernetes.

https://hub.docker.com/r/springcloud/spring-cloud-kubernetes-discoveryserver
https://github.com/spring-cloud/spring-cloud-kubernetes/tree/main/spring-cloud-kubernetes-controllers/spring-cloud-kubernetes-discoveryserver

apiVersion: v1
kind: List
items:
 - apiVersion: v1
 kind: Service
 metadata:
 labels:
 app: spring-cloud-kubernetes-discoveryserver
 name: spring-cloud-kubernetes-discoveryserver
 spec:
 ports:
 - name: http
 port: 80
 targetPort: 8761
 selector:
 app: spring-cloud-kubernetes-discoveryserver
 type: ClusterIP
 - apiVersion: v1
 kind: ServiceAccount
 metadata:
 labels:
 app: spring-cloud-kubernetes-discoveryserver
 name: spring-cloud-kubernetes-discoveryserver
 - apiVersion: rbac.authorization.k8s.io/v1
 kind: RoleBinding
 metadata:
 labels:
 app: spring-cloud-kubernetes-discoveryserver
 name: spring-cloud-kubernetes-discoveryserver:view
 roleRef:
 kind: Role
 apiGroup: rbac.authorization.k8s.io
 name: namespace-reader
 subjects:
 - kind: ServiceAccount
 name: spring-cloud-kubernetes-discoveryserver
 - apiVersion: rbac.authorization.k8s.io/v1
 kind: Role
 metadata:
 namespace: default
 name: namespace-reader
 rules:
 - apiGroups: ["", "extensions", "apps"]
 resources: ["services", "endpoints"]
 verbs: ["get", "list", "watch"]
 - apiVersion: apps/v1
 kind: Deployment
 metadata:

 name: spring-cloud-kubernetes-discoveryserver-deployment
 spec:
 selector:
 matchLabels:
 app: spring-cloud-kubernetes-discoveryserver
 template:
 metadata:
 labels:
 app: spring-cloud-kubernetes-discoveryserver
 spec:
 serviceAccount: spring-cloud-kubernetes-discoveryserver
 containers:
 - name: spring-cloud-kubernetes-discoveryserver
 image: springcloud/spring-cloud-kubernetes-discoveryserver:3.0.0-
SNAPSHOT
 imagePullPolicy: IfNotPresent
 readinessProbe:
 httpGet:
 port: 8761
 path: /actuator/health/readiness
 livenessProbe:
 httpGet:
 port: 8761
 path: /actuator/health/liveness
 ports:
 - containerPort: 8761

16. Examples
Spring Cloud Kubernetes tries to make it transparent for your applications to consume Kubernetes
Native Services by following the Spring Cloud interfaces.

In your applications, you need to add the spring-cloud-kubernetes-discovery dependency to your
classpath and remove any other dependency that contains a DiscoveryClient implementation (that
is, a Eureka discovery client). The same applies for PropertySourceLocator, where you need to add to
the classpath the spring-cloud-kubernetes-config and remove any other dependency that contains a
PropertySourceLocator implementation (that is, a configuration server client).

The following projects highlight the usage of these dependencies and demonstrate how you can use
these libraries from any Spring Boot application:

• Spring Cloud Kubernetes Examples: the ones located inside this repository.

• Spring Cloud Kubernetes Full Example: Minions and Boss

◦ Minion

◦ Boss

• Spring Cloud Kubernetes Full Example: SpringOne Platform Tickets Service

https://github.com/spring-cloud/spring-cloud-kubernetes/tree/master/spring-cloud-kubernetes-examples
https://github.com/salaboy/spring-cloud-k8s-minion
https://github.com/salaboy/spring-cloud-k8s-boss
https://github.com/salaboy/s1p_docs

• Spring Cloud Gateway with Spring Cloud Kubernetes Discovery and Config

• Spring Boot Admin with Spring Cloud Kubernetes Discovery and Config

17. Other Resources
This section lists other resources, such as presentations (slides) and videos about Spring Cloud
Kubernetes.

• S1P Spring Cloud on PKS

• Spring Cloud, Docker, Kubernetes → London Java Community July 2018

Please feel free to submit other resources through pull requests to this repository.

18. Configuration properties
To see the list of all Kubernetes related configuration properties please check the Appendix page.

19. Building

19.1. Basic Compile and Test
To build the source you will need to install JDK 17.

Spring Cloud uses Maven for most build-related activities, and you should be able to get off the
ground quite quickly by cloning the project you are interested in and typing

$./mvnw install

You can also install Maven (>=3.3.3) yourself and run the mvn command in place of
./mvnw in the examples below. If you do that you also might need to add -P spring
if your local Maven settings do not contain repository declarations for spring pre-
release artifacts.

Be aware that you might need to increase the amount of memory available to
Maven by setting a MAVEN_OPTS environment variable with a value like -Xmx512m
-XX:MaxPermSize=128m. We try to cover this in the .mvn configuration, so if you find
you have to do it to make a build succeed, please raise a ticket to get the settings
added to source control.

The projects that require middleware (i.e. Redis) for testing generally require that a local instance
of [Docker](www.docker.com/get-started) is installed and running.

https://github.com/salaboy/s1p_gateway
https://github.com/salaboy/showcase-admin-tool
https://salaboy.com/2018/09/27/the-s1p-experience/
https://salaboy.com/2018/07/18/ljc-july-18-spring-cloud-docker-k8s/
https://github.com/spring-cloud/spring-cloud-kubernetes
appendix.html
https://www.docker.com/get-started

19.2. Documentation
The spring-cloud-build module has a "docs" profile, and if you switch that on it will try to build
asciidoc sources from src/main/asciidoc. As part of that process it will look for a README.adoc and
process it by loading all the includes, but not parsing or rendering it, just copying it to
${main.basedir} (defaults to $/Users/ryanjbaxter/git-repos/spring-cloud/spring-cloud-
release/train-docs/target/unpacked-docs, i.e. the root of the project). If there are any changes in the
README it will then show up after a Maven build as a modified file in the correct place. Just
commit it and push the change.

19.3. Working with the code
If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or
Eclipse when working with the code. We use the m2eclipse eclipse plugin for maven support. Other
IDEs and tools should also work without issue as long as they use Maven 3.3.3 or better.

19.3.1. Activate the Spring Maven profile

Spring Cloud projects require the 'spring' Maven profile to be activated to resolve the spring
milestone and snapshot repositories. Use your preferred IDE to set this profile to be active, or you
may experience build errors.

19.3.2. Importing into eclipse with m2eclipse

We recommend the m2eclipse eclipse plugin when working with eclipse. If you don’t already have
m2eclipse installed it is available from the "eclipse marketplace".

Older versions of m2e do not support Maven 3.3, so once the projects are imported
into Eclipse you will also need to tell m2eclipse to use the right profile for the
projects. If you see many different errors related to the POMs in the projects, check
that you have an up to date installation. If you can’t upgrade m2e, add the "spring"
profile to your settings.xml. Alternatively you can copy the repository settings
from the "spring" profile of the parent pom into your settings.xml.

19.3.3. Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following
command:

$./mvnw eclipse:eclipse

The generated eclipse projects can be imported by selecting import existing projects from the file
menu.

https://www.springsource.com/developer/sts
https://eclipse.org
https://eclipse.org/m2e/
https://eclipse.org/m2e/

19.4. Building Docker Images On ARM64
If you run the Spring Cloud Kuberentes build on an ARM64 machine the docker images used for the
integration tests will fail to run due to using the wrong architecture. This is because the Paketo
build pack does not yet support ARM64. To work around this you can run the build by passing
-Dspring-boot.build-image.builder=dashaun/builder:tiny to Maven.

For example:

./mvnw clean install -Dspring-boot.build-image.builder=dashaun/builder:tiny

20. Contributing
Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard
Github development process, using Github tracker for issues and merging pull requests into master.
If you want to contribute even something trivial please do not hesitate, but follow the guidelines
below.

20.1. Sign the Contributor License Agreement
Before we accept a non-trivial patch or pull request we will need you to sign the Contributor
License Agreement. Signing the contributor’s agreement does not grant anyone commit rights to
the main repository, but it does mean that we can accept your contributions, and you will get an
author credit if we do. Active contributors might be asked to join the core team, and given the
ability to merge pull requests.

20.2. Code of Conduct
This project adheres to the Contributor Covenant code of conduct. By participating, you are
expected to uphold this code. Please report unacceptable behavior to spring-code-of-
conduct@pivotal.io.

20.3. Code Conventions and Housekeeping
None of these is essential for a pull request, but they will all help. They can also be added after the
original pull request but before a merge.

• Use the Spring Framework code format conventions. If you use Eclipse you can import
formatter settings using the eclipse-code-formatter.xml file from the Spring Cloud Build project.
If using IntelliJ, you can use the Eclipse Code Formatter Plugin to import the same file.

• Make sure all new .java files to have a simple Javadoc class comment with at least an @author
tag identifying you, and preferably at least a paragraph on what the class is for.

• Add the ASF license header comment to all new .java files (copy from existing files in the
project)

https://cla.pivotal.io/sign/spring
https://cla.pivotal.io/sign/spring
https://github.com/spring-cloud/spring-cloud-build/blob/master/docs/src/main/asciidoc/code-of-conduct.adoc
mailto:spring-code-of-conduct@pivotal.io
mailto:spring-code-of-conduct@pivotal.io
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-dependencies-parent/eclipse-code-formatter.xml
https://plugins.jetbrains.com/plugin/6546

• Add yourself as an @author to the .java files that you modify substantially (more than cosmetic
changes).

• Add some Javadocs and, if you change the namespace, some XSD doc elements.

• A few unit tests would help a lot as well — someone has to do it.

• If no-one else is using your branch, please rebase it against the current master (or other target
branch in the main project).

• When writing a commit message please follow these conventions, if you are fixing an existing
issue please add Fixes gh-XXXX at the end of the commit message (where XXXX is the issue
number).

20.4. Checkstyle
Spring Cloud Build comes with a set of checkstyle rules. You can find them in the spring-cloud-
build-tools module. The most notable files under the module are:

spring-cloud-build-tools/

└── src
 ├── checkstyle
 │ └── checkstyle-suppressions.xml ③
 └── main
 └── resources
 ├── checkstyle-header.txt ②
 └── checkstyle.xml ①

① Default Checkstyle rules

② File header setup

③ Default suppression rules

20.4.1. Checkstyle configuration

Checkstyle rules are disabled by default. To add checkstyle to your project just define the
following properties and plugins.

https://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

pom.xml

<properties>
<maven-checkstyle-plugin.failsOnError>true</maven-checkstyle-plugin.failsOnError> ①
 <maven-checkstyle-plugin.failsOnViolation>true
 </maven-checkstyle-plugin.failsOnViolation> ②
 <maven-checkstyle-plugin.includeTestSourceDirectory>true
 </maven-checkstyle-plugin.includeTestSourceDirectory> ③
</properties>

<build>
 <plugins>
 <plugin> ④
 <groupId>io.spring.javaformat</groupId>
 <artifactId>spring-javaformat-maven-plugin</artifactId>
 </plugin>
 <plugin> ⑤
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-checkstyle-plugin</artifactId>
 </plugin>
 </plugins>

 <reporting>
 <plugins>
 <plugin> ⑤
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-checkstyle-plugin</artifactId>
 </plugin>
 </plugins>
 </reporting>
</build>

① Fails the build upon Checkstyle errors

② Fails the build upon Checkstyle violations

③ Checkstyle analyzes also the test sources

④ Add the Spring Java Format plugin that will reformat your code to pass most of the Checkstyle
formatting rules

⑤ Add checkstyle plugin to your build and reporting phases

If you need to suppress some rules (e.g. line length needs to be longer), then it’s enough for you to
define a file under ${project.root}/src/checkstyle/checkstyle-suppressions.xml with your
suppressions. Example:

projectRoot/src/checkstyle/checkstyle-suppresions.xml

<?xml version="1.0"?>
<!DOCTYPE suppressions PUBLIC
 "-//Puppy Crawl//DTD Suppressions 1.1//EN"
 "https://www.puppycrawl.com/dtds/suppressions_1_1.dtd">
<suppressions>
 <suppress files=".*ConfigServerApplication\.java"
checks="HideUtilityClassConstructor"/>
 <suppress files=".*ConfigClientWatch\.java" checks="LineLengthCheck"/>
</suppressions>

It’s advisable to copy the ${spring-cloud-build.rootFolder}/.editorconfig and ${spring-cloud-
build.rootFolder}/.springformat to your project. That way, some default formatting rules will be
applied. You can do so by running this script:

$ curl https://raw.githubusercontent.com/spring-cloud/spring-cloud-
build/master/.editorconfig -o .editorconfig
$ touch .springformat

20.5. IDE setup

20.5.1. Intellij IDEA

In order to setup Intellij you should import our coding conventions, inspection profiles and set up
the checkstyle plugin. The following files can be found in the Spring Cloud Build project.

spring-cloud-build-tools/

└── src
 ├── checkstyle
 │ └── checkstyle-suppressions.xml ③
 └── main
 └── resources
 ├── checkstyle-header.txt ②
 ├── checkstyle.xml ①
 └── intellij
 ├── Intellij_Project_Defaults.xml ④
 └── Intellij_Spring_Boot_Java_Conventions.xml ⑤

① Default Checkstyle rules

② File header setup

③ Default suppression rules

④ Project defaults for Intellij that apply most of Checkstyle rules

⑤ Project style conventions for Intellij that apply most of Checkstyle rules

https://github.com/spring-cloud/spring-cloud-build/tree/master/spring-cloud-build-tools

Figure 5. Code style

Go to File → Settings → Editor → Code style. There click on the icon next to the Scheme section.
There, click on the Import Scheme value and pick the Intellij IDEA code style XML option. Import
the spring-cloud-build-
tools/src/main/resources/intellij/Intellij_Spring_Boot_Java_Conventions.xml file.

Figure 6. Inspection profiles

Go to File → Settings → Editor → Inspections. There click on the icon next to the Profile section.
There, click on the Import Profile and import the spring-cloud-build-
tools/src/main/resources/intellij/Intellij_Project_Defaults.xml file.

Checkstyle

To have Intellij work with Checkstyle, you have to install the Checkstyle plugin. It’s advisable to also
install the Assertions2Assertj to automatically convert the JUnit assertions

Go to File → Settings → Other settings → Checkstyle. There click on the + icon in the Configuration
file section. There, you’ll have to define where the checkstyle rules should be picked from. In the
image above, we’ve picked the rules from the cloned Spring Cloud Build repository. However, you
can point to the Spring Cloud Build’s GitHub repository (e.g. for the checkstyle.xml :
raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/
main/resources/checkstyle.xml). We need to provide the following variables:

• checkstyle.header.file - please point it to the Spring Cloud Build’s, spring-cloud-build-
tools/src/main/resources/checkstyle-header.txt file either in your cloned repo or via the
raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/
src/main/resources/checkstyle-header.txt URL.

• checkstyle.suppressions.file - default suppressions. Please point it to the Spring Cloud Build’s,
spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml file either in your cloned
repo or via the raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-
cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml URL.

• checkstyle.additional.suppressions.file - this variable corresponds to suppressions in your
local project. E.g. you’re working on spring-cloud-contract. Then point to the project-
root/src/checkstyle/checkstyle-suppressions.xml folder. Example for spring-cloud-contract
would be: /home/username/spring-cloud-contract/src/checkstyle/checkstyle-suppressions.xml.

Remember to set the Scan Scope to All sources since we apply checkstyle rules for
production and test sources.

20.6. Duplicate Finder
Spring Cloud Build brings along the basepom:duplicate-finder-maven-plugin, that enables flagging
duplicate and conflicting classes and resources on the java classpath.

20.6.1. Duplicate Finder configuration

Duplicate finder is enabled by default and will run in the verify phase of your Maven build, but it
will only take effect in your project if you add the duplicate-finder-maven-plugin to the build
section of the projecst’s pom.xml.

https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml

pom.xml

<build>
 <plugins>
 <plugin>
 <groupId>org.basepom.maven</groupId>
 <artifactId>duplicate-finder-maven-plugin</artifactId>
 </plugin>
 </plugins>
</build>

For other properties, we have set defaults as listed in the plugin documentation.

You can easily override them but setting the value of the selected property prefixed with duplicate-
finder-maven-plugin. For example, set duplicate-finder-maven-plugin.skip to true in order to skip
duplicates check in your build.

If you need to add ignoredClassPatterns or ignoredResourcePatterns to your setup, make sure to add
them in the plugin configuration section of your project:

<build>
 <plugins>
 <plugin>
 <groupId>org.basepom.maven</groupId>
 <artifactId>duplicate-finder-maven-plugin</artifactId>
 <configuration>
 <ignoredClassPatterns>

<ignoredClassPattern>org.joda.time.base.BaseDateTime</ignoredClassPattern>
 <ignoredClassPattern>.*module-info</ignoredClassPattern>
 </ignoredClassPatterns>
 <ignoredResourcePatterns>
 <ignoredResourcePattern>changelog.txt</ignoredResourcePattern>
 </ignoredResourcePatterns>
 </configuration>
 </plugin>
 </plugins>
</build>

21. AOT and native image support
At this point, Spring Cloud Kubernetes does not support Spring Boot AOT transformations or native
images. Partial support might be added in future releases.

https://github.com/basepom/duplicate-finder-maven-plugin/wiki

Spring Cloud Netflix
2022.0.4

This project provides Netflix OSS integrations for Spring Boot apps through autoconfiguration and
binding to the Spring Environment and other Spring programming model idioms. With a few
simple annotations you can quickly enable and configure the common patterns inside your
application and build large distributed systems with battle-tested Netflix components. The patterns
provided include Service Discovery (Eureka).

1. Service Discovery: Eureka Clients
Service Discovery is one of the key tenets of a microservice-based architecture. Trying to hand-
configure each client or some form of convention can be difficult to do and can be brittle. Eureka is
the Netflix Service Discovery Server and Client. The server can be configured and deployed to be
highly available, with each server replicating state about the registered services to the others.

1.1. How to Include Eureka Client
To include the Eureka Client in your project, use the starter with a group ID of
org.springframework.cloud and an artifact ID of spring-cloud-starter-netflix-eureka-client. See the
Spring Cloud Project page for details on setting up your build system with the current Spring Cloud
Release Train.

1.2. Registering with Eureka
When a client registers with Eureka, it provides meta-data about itself — such as host, port, health
indicator URL, home page, and other details. Eureka receives heartbeat messages from each
instance belonging to a service. If the heartbeat fails over a configurable timetable, the instance is
normally removed from the registry.

The following example shows a minimal Eureka client application:

https://projects.spring.io/spring-cloud/

@SpringBootApplication
@RestController
public class Application {

 @RequestMapping("/")
 public String home() {
 return "Hello world";
 }

 public static void main(String[] args) {
 new SpringApplicationBuilder(Application.class).web(true).run(args);
 }

}

Note that the preceding example shows a normal Spring Boot application. By having spring-cloud-
starter-netflix-eureka-client on the classpath, your application automatically registers with the
Eureka Server. Configuration is required to locate the Eureka server, as shown in the following
example:

application.yml

eureka:
 client:
 serviceUrl:
 defaultZone: http://localhost:8761/eureka/

In the preceding example, defaultZone is a magic string fallback value that provides the service URL
for any client that does not express a preference (in other words, it is a useful default).

The defaultZone property is case sensitive and requires camel case because the
serviceUrl property is a Map<String, String>. Therefore, the defaultZone property
does not follow the normal Spring Boot snake-case convention of default-zone.

The default application name (that is, the service ID), virtual host, and non-secure port (taken from
the Environment) are ${spring.application.name}, ${spring.application.name} and ${server.port},
respectively.

Having spring-cloud-starter-netflix-eureka-client on the classpath makes the app into both a
Eureka “instance” (that is, it registers itself) and a “client” (it can query the registry to locate other
services). The instance behaviour is driven by eureka.instance.* configuration keys, but the
defaults are fine if you ensure that your application has a value for spring.application.name (this is
the default for the Eureka service ID or VIP).

See EurekaInstanceConfigBean and EurekaClientConfigBean for more details on the configurable
options.

To disable the Eureka Discovery Client, you can set eureka.client.enabled to false. Eureka

https://projects.spring.io/spring-boot/
https://github.com/spring-cloud/spring-cloud-netflix/tree/main/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/tree/main/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java

Discovery Client will also be disabled when spring.cloud.discovery.enabled is set to false.

Specifying the version of the Spring Cloud Netflix Eureka server as a path
parameter is not currently supported. This means you cannot set the version in the
context path (eurekaServerURLContext). Instead, you can include the version in the
server URL (for example, you can set defaultZone: localhost:8761/eureka/v2).

1.3. Authenticating with the Eureka Server
HTTP basic authentication is automatically added to your eureka client if one of the
eureka.client.serviceUrl.defaultZone URLs has credentials embedded in it (curl style, as follows:
user:password@localhost:8761/eureka). For more complex needs, you can create a @Bean of type
DiscoveryClientOptionalArgs and inject ClientFilter instances into it, all of which is applied to the
calls from the client to the server.

When Eureka server requires client side certificate for authentication, the client side certificate and
trust store can be configured via properties, as shown in following example:

application.yml

eureka:
 client:
 tls:
 enabled: true
 key-store: <path-of-key-store>
 key-store-type: PKCS12
 key-store-password: <key-store-password>
 key-password: <key-password>
 trust-store: <path-of-trust-store>
 trust-store-type: PKCS12
 trust-store-password: <trust-store-password>

The eureka.client.tls.enabled needs to be true to enable Eureka client side TLS. When
eureka.client.tls.trust-store is omitted, a JVM default trust store is used. The default value for
eureka.client.tls.key-store-type and eureka.client.tls.trust-store-type is PKCS12. When
password properties are omitted, empty password is assumed.

Because of a limitation in Eureka, it is not possible to support per-server basic auth
credentials, so only the first set that are found is used.

If you want to customize the RestTemplate used by the Eureka HTTP Client you may want to create
a bean of EurekaClientHttpRequestFactorySupplier and provide your own logic for generating a
ClientHttpRequestFactory instance.

All default timeout-related properties for RestTemplate used by the Eureka HTTP Client are set to 3
minutes (in keeping with Apache HC5 default RequestConfig and SocketConfig). Therefore, to specify
the timeout values, you must specify the value directly with the properties in eureka.client.rest-
template-timeout. (All timeout properties are in milliseconds.)

http://localhost:8761/eureka/v2
https://user:password@localhost:8761/eureka

application.yml

eureka:
 client:
 rest-template-timeout:
 connect-timeout: 5000
 connect-request-timeout: 8000
 socket-timeout: 10000

1.4. Status Page and Health Indicator
The status page and health indicators for a Eureka instance default to /info and /health
respectively, which are the default locations of useful endpoints in a Spring Boot Actuator
application. You need to change these, even for an Actuator application if you use a non-default
context path or servlet path (such as server.servletPath=/custom). The following example shows the
default values for the two settings:

application.yml

eureka:
 instance:
 statusPageUrlPath: ${server.servletPath}/info
 healthCheckUrlPath: ${server.servletPath}/health

These links show up in the metadata that is consumed by clients and are used in some scenarios to
decide whether to send requests to your application, so it is helpful if they are accurate.

In Dalston it was also required to set the status and health check URLs when
changing that management context path. This requirement was removed
beginning in Edgware.

1.5. Registering a Secure Application
If your app wants to be contacted over HTTPS, you can set two flags in the
EurekaInstanceConfigBean:

• eureka.instance.[nonSecurePortEnabled]=[false]

• eureka.instance.[securePortEnabled]=[true]

Doing so makes Eureka publish instance information that shows an explicit preference for secure
communication. The Spring Cloud DiscoveryClient always returns a URI starting with https for a
service configured this way. Similarly, when a service is configured this way, the Eureka (native)
instance information has a secure health check URL.

Because of the way Eureka works internally, it still publishes a non-secure URL for the status and
home pages unless you also override those explicitly. You can use placeholders to configure the
eureka instance URLs, as shown in the following example:

application.yml

eureka:
 instance:
 statusPageUrl: https://${eureka.hostname}/info
 healthCheckUrl: https://${eureka.hostname}/health
 homePageUrl: https://${eureka.hostname}/

(Note that ${eureka.hostname} is a native placeholder only available in later versions of Eureka. You
could achieve the same thing with Spring placeholders as well — for example, by using
${eureka.instance.hostName}.)

If your application runs behind a proxy, and the SSL termination is in the proxy
(for example, if you run in Cloud Foundry or other platforms as a service), then
you need to ensure that the proxy “forwarded” headers are intercepted and
handled by the application. If the Tomcat container embedded in a Spring Boot
application has explicit configuration for the 'X-Forwarded-*` headers, this
happens automatically. The links rendered by your app to itself being wrong (the
wrong host, port, or protocol) is a sign that you got this configuration wrong.

1.6. Eureka’s Health Checks
By default, Eureka uses the client heartbeat to determine if a client is up. Unless specified
otherwise, the Discovery Client does not propagate the current health check status of the
application, per the Spring Boot Actuator. Consequently, after successful registration, Eureka
always announces that the application is in 'UP' state. This behavior can be altered by enabling
Eureka health checks, which results in propagating application status to Eureka. As a consequence,
every other application does not send traffic to applications in states other then 'UP'. The following
example shows how to enable health checks for the client:

application.yml

eureka:
 client:
 healthcheck:
 enabled: true

eureka.client.healthcheck.enabled=true should only be set in application.yml.
Setting the value in bootstrap.yml causes undesirable side effects, such as
registering in Eureka with an UNKNOWN status.

If you require more control over the health checks, consider implementing your own
com.netflix.appinfo.HealthCheckHandler.

1.7. Eureka Metadata for Instances and Clients
It is worth spending a bit of time understanding how the Eureka metadata works, so you can use it
in a way that makes sense in your platform. There is standard metadata for information such as
hostname, IP address, port numbers, the status page, and health check. These are published in the
service registry and used by clients to contact the services in a straightforward way. Additional
metadata can be added to the instance registration in the eureka.instance.metadataMap, and this
metadata is accessible in the remote clients. In general, additional metadata does not change the
behavior of the client, unless the client is made aware of the meaning of the metadata. There are a
couple of special cases, described later in this document, where Spring Cloud already assigns
meaning to the metadata map.

1.7.1. Using Eureka on Cloud Foundry

Cloud Foundry has a global router so that all instances of the same app have the same hostname
(other PaaS solutions with a similar architecture have the same arrangement). This is not
necessarily a barrier to using Eureka. However, if you use the router (recommended or even
mandatory, depending on the way your platform was set up), you need to explicitly set the
hostname and port numbers (secure or non-secure) so that they use the router. You might also want
to use instance metadata so that you can distinguish between the instances on the client (for
example, in a custom load balancer). By default, the eureka.instance.instanceId is
vcap.application.instance_id, as shown in the following example:

application.yml

eureka:
 instance:
 hostname: ${vcap.application.uris[0]}
 nonSecurePort: 80

Depending on the way the security rules are set up in your Cloud Foundry instance, you might be
able to register and use the IP address of the host VM for direct service-to-service calls. This feature
is not yet available on Pivotal Web Services (PWS).

1.7.2. Using Eureka on AWS

If the application is planned to be deployed to an AWS cloud, the Eureka instance must be
configured to be AWS-aware. You can do so by customizing the EurekaInstanceConfigBean as
follows:

https://run.pivotal.io
https://github.com/spring-cloud/spring-cloud-netflix/tree/main/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java

@Bean
@Profile("!default")
public EurekaInstanceConfigBean eurekaInstanceConfig(InetUtils inetUtils) {
 EurekaInstanceConfigBean bean = new EurekaInstanceConfigBean(inetUtils);
 AmazonInfo info = AmazonInfo.Builder.newBuilder().autoBuild("eureka");
 bean.setDataCenterInfo(info);
 return bean;
}

1.7.3. Changing the Eureka Instance ID

A vanilla Netflix Eureka instance is registered with an ID that is equal to its host name (that is, there
is only one service per host). Spring Cloud Eureka provides a sensible default, which is defined as
follows:

${spring.cloud.client.hostname}:${spring.application.name}:${spring.application.instance_id:${s
erver.port}}

An example is myhost:myappname:8080.

By using Spring Cloud, you can override this value by providing a unique identifier in
eureka.instance.instanceId, as shown in the following example:

application.yml

eureka:
 instance:
 instanceId:
${spring.application.name}:${vcap.application.instance_id:${spring.application.instanc
e_id:${random.value}}}

With the metadata shown in the preceding example and multiple service instances deployed on
localhost, the random value is inserted there to make the instance unique. In Cloud Foundry, the
vcap.application.instance_id is populated automatically in a Spring Boot application, so the
random value is not needed.

1.8. Using the EurekaClient
Once you have an application that is a discovery client, you can use it to discover service instances
from the Eureka Server. One way to do so is to use the native com.netflix.discovery.EurekaClient
(as opposed to the Spring Cloud DiscoveryClient), as shown in the following example:

@Autowired
private EurekaClient discoveryClient;

public String serviceUrl() {
 InstanceInfo instance = discoveryClient.getNextServerFromEureka("STORES", false);
 return instance.getHomePageUrl();
}

Do not use the EurekaClient in a @PostConstruct method or in a @Scheduled method
(or anywhere where the ApplicationContext might not be started yet). It is
initialized in a SmartLifecycle (with phase=0), so the earliest you can rely on it
being available is in another SmartLifecycle with a higher phase.

1.8.1. EurekaClient with Jersey

By default, EurekaClient uses Spring’s RestTemplate for HTTP communication. If you wish to use
Jersey instead, you need to add the Jersey dependencies to your classpath. The following example
shows the dependencies you need to add:

<dependency>
 <groupId>com.sun.jersey</groupId>
 <artifactId>jersey-client</artifactId>
</dependency>
<dependency>
 <groupId>com.sun.jersey</groupId>
 <artifactId>jersey-core</artifactId>
</dependency>
<dependency>
 <groupId>com.sun.jersey.contribs</groupId>
 <artifactId>jersey-apache-client4</artifactId>
</dependency>

1.9. Alternatives to the Native Netflix EurekaClient
You need not use the raw Netflix EurekaClient. Also, it is usually more convenient to use it behind a
wrapper of some sort. Spring Cloud has support for Feign (a REST client builder) and Spring
RestTemplate through the logical Eureka service identifiers (VIPs) instead of physical URLs.

You can also use the org.springframework.cloud.client.discovery.DiscoveryClient, which provides a
simple API (not specific to Netflix) for discovery clients, as shown in the following example:

@Autowired
private DiscoveryClient discoveryClient;

public String serviceUrl() {
 List<ServiceInstance> list = discoveryClient.getInstances("STORES");
 if (list != null && list.size() > 0) {
 return list.get(0).getUri();
 }
 return null;
}

1.10. Why Is It so Slow to Register a Service?
Being an instance also involves a periodic heartbeat to the registry (through the client’s serviceUrl)
with a default duration of 30 seconds. A service is not available for discovery by clients until the
instance, the server, and the client all have the same metadata in their local cache (so it could take 3
heartbeats). You can change the period by setting eureka.instance.leaseRenewalIntervalInSeconds.
Setting it to a value of less than 30 speeds up the process of getting clients connected to other
services. In production, it is probably better to stick with the default, because of internal
computations in the server that make assumptions about the lease renewal period.

1.11. Zones
If you have deployed Eureka clients to multiple zones, you may prefer that those clients use
services within the same zone before trying services in another zone. To set that up, you need to
configure your Eureka clients correctly.

First, you need to make sure you have Eureka servers deployed to each zone and that they are
peers of each other. See the section on zones and regions for more information.

Next, you need to tell Eureka which zone your service is in. You can do so by using the metadataMap
property. For example, if service 1 is deployed to both zone 1 and zone 2, you need to set the
following Eureka properties in service 1:

Service 1 in Zone 1

eureka.instance.metadataMap.zone = zone1
eureka.client.preferSameZoneEureka = true

Service 1 in Zone 2

eureka.instance.metadataMap.zone = zone2
eureka.client.preferSameZoneEureka = true

1.12. Refreshing Eureka Clients
By default, the EurekaClient bean is refreshable, meaning the Eureka client properties can be
changed and refreshed. When a refresh occurs clients will be unregistered from the Eureka server
and there might be a brief moment of time where all instance of a given service are not available.
One way to eliminate this from happening is to disable the ability to refresh Eureka clients. To do
this set eureka.client.refresh.enable=false.

1.13. Using Eureka with Spring Cloud LoadBalancer
We offer support for the Spring Cloud LoadBalancer ZonePreferenceServiceInstanceListSupplier.
The zone value from the Eureka instance metadata (eureka.instance.metadataMap.zone) is used for
setting the value of spring-cloud-loadbalancer-zone property that is used to filter service instances
by zone.

If that is missing and if the spring.cloud.loadbalancer.eureka.approximateZoneFromHostname flag is
set to true, it can use the domain name from the server hostname as a proxy for the zone.

If there is no other source of zone data, then a guess is made, based on the client configuration (as
opposed to the instance configuration). We take eureka.client.availabilityZones, which is a map
from region name to a list of zones, and pull out the first zone for the instance’s own region (that is,
the eureka.client.region, which defaults to "us-east-1", for compatibility with native Netflix).

1.14. AOT and Native Image Support
Spring Cloud Netflix Eureka Client integration supports Spring AOT transformations and native
images, however, only with refresh mode disabled.

If you want to run Eureka Client in AOT or native image modes, make sure to set
spring.cloud.refresh.enabled to false

2. Service Discovery: Eureka Server
This section describes how to set up a Eureka server.

2.1. How to Include Eureka Server
To include Eureka Server in your project, use the starter with a group ID of
org.springframework.cloud and an artifact ID of spring-cloud-starter-netflix-eureka-server. See the
Spring Cloud Project page for details on setting up your build system with the current Spring Cloud
Release Train.

If your project already uses Thymeleaf as its template engine, the Freemarker
templates of the Eureka server may not be loaded correctly. In this case it is
necessary to configure the template loader manually:

https://projects.spring.io/spring-cloud/

application.yml

spring:
 freemarker:
 template-loader-path: classpath:/templates/
 prefer-file-system-access: false

2.2. How to Run a Eureka Server
The following example shows a minimal Eureka server:

@SpringBootApplication
@EnableEurekaServer
public class Application {

 public static void main(String[] args) {
 new SpringApplicationBuilder(Application.class).web(true).run(args);
 }

}

The server has a home page with a UI and HTTP API endpoints for the normal Eureka functionality
under /eureka/*.

The following links have some Eureka background reading: flux capacitor and google group
discussion.

https://github.com/cfregly/fluxcapacitor/wiki/NetflixOSS-FAQ#eureka-service-discovery-load-balancer
https://groups.google.com/forum/?fromgroups#!topic/eureka_netflix/g3p2r7gHnN0
https://groups.google.com/forum/?fromgroups#!topic/eureka_netflix/g3p2r7gHnN0

Due to Gradle’s dependency resolution rules and the lack of a parent bom feature,
depending on spring-cloud-starter-netflix-eureka-server can cause failures on
application startup. To remedy this issue, add the Spring Boot Gradle plugin and
import the Spring cloud starter parent bom as follows:

build.gradle

buildscript {
 dependencies {
 classpath("org.springframework.boot:spring-boot-gradle-
plugin:{spring-boot-docs-version}")
 }
}

apply plugin: "spring-boot"

dependencyManagement {
 imports {
 mavenBom "org.springframework.cloud:spring-cloud-
dependencies:{spring-cloud-version}"
 }
}

2.3. defaultOpenForTrafficCount and its effect on
EurekaServer warmup time
Netflix Eureka’s waitTimeInMsWhenSyncEmpty setting is not taken into account in Spring Cloud Eureka
server at the beginning. In order to enable the warmup time, set
eureka.server.defaultOpenForTrafficCount=0.

2.4. High Availability, Zones and Regions
The Eureka server does not have a back end store, but the service instances in the registry all have
to send heartbeats to keep their registrations up to date (so this can be done in memory). Clients
also have an in-memory cache of Eureka registrations (so they do not have to go to the registry for
every request to a service).

By default, every Eureka server is also a Eureka client and requires (at least one) service URL to
locate a peer. If you do not provide it, the service runs and works, but it fills your logs with a lot of
noise about not being able to register with the peer.

2.5. Standalone Mode
The combination of the two caches (client and server) and the heartbeats make a standalone
Eureka server fairly resilient to failure, as long as there is some sort of monitor or elastic runtime
(such as Cloud Foundry) keeping it alive. In standalone mode, you might prefer to switch off the

client side behavior so that it does not keep trying and failing to reach its peers. The following
example shows how to switch off the client-side behavior:

application.yml (Standalone Eureka Server)

server:
 port: 8761

eureka:
 instance:
 hostname: localhost
 client:
 registerWithEureka: false
 fetchRegistry: false
 serviceUrl:
 defaultZone: http://${eureka.instance.hostname}:${server.port}/eureka/

Notice that the serviceUrl is pointing to the same host as the local instance.

2.6. Peer Awareness
Eureka can be made even more resilient and available by running multiple instances and asking
them to register with each other. In fact, this is the default behavior, so all you need to do to make it
work is add a valid serviceUrl to a peer, as shown in the following example:

application.yml (Two Peer Aware Eureka Servers)

spring:
 profiles: peer1
eureka:
 instance:
 hostname: peer1
 client:
 serviceUrl:
 defaultZone: https://peer2/eureka/

spring:
 profiles: peer2
eureka:
 instance:
 hostname: peer2
 client:
 serviceUrl:
 defaultZone: https://peer1/eureka/

In the preceding example, we have a YAML file that can be used to run the same server on two
hosts (peer1 and peer2) by running it in different Spring profiles. You could use this configuration to

test the peer awareness on a single host (there is not much value in doing that in production) by
manipulating /etc/hosts to resolve the host names. In fact, the eureka.instance.hostname is not
needed if you are running on a machine that knows its own hostname (by default, it is looked up by
using java.net.InetAddress).

You can add multiple peers to a system, and, as long as they are all connected to each other by at
least one edge, they synchronize the registrations amongst themselves. If the peers are physically
separated (inside a data center or between multiple data centers), then the system can, in principle,
survive “split-brain” type failures. You can add multiple peers to a system, and as long as they are
all directly connected to each other, they will synchronize the registrations amongst themselves.

application.yml (Three Peer Aware Eureka Servers)

eureka:
 client:
 serviceUrl:
 defaultZone: https://peer1/eureka/,http://peer2/eureka/,http://peer3/eureka/

spring:
 profiles: peer1
eureka:
 instance:
 hostname: peer1

spring:
 profiles: peer2
eureka:
 instance:
 hostname: peer2

spring:
 profiles: peer3
eureka:
 instance:
 hostname: peer3

2.7. When to Prefer IP Address
In some cases, it is preferable for Eureka to advertise the IP addresses of services rather than the
hostname. Set eureka.instance.preferIpAddress to true and, when the application registers with
eureka, it uses its IP address rather than its hostname.

If the hostname cannot be determined by Java, then the IP address is sent to
Eureka. Only explict way of setting the hostname is by setting
eureka.instance.hostname property. You can set your hostname at the run-time by
using an environment variable — for example,
eureka.instance.hostname=${HOST_NAME}.

2.8. Securing The Eureka Server
You can secure your Eureka server simply by adding Spring Security to your server’s classpath via
spring-boot-starter-security. By default, when Spring Security is on the classpath it will require
that a valid CSRF token be sent with every request to the app. Eureka clients will not generally
possess a valid cross site request forgery (CSRF) token you will need to disable this requirement for
the /eureka/** endpoints. For example:

@Bean
public SecurityFilterChain securityFilterChain(HttpSecurity http) throws Exception {
 http.authorizeHttpRequests((authz) -> authz
 .anyRequest().authenticated())
 .httpBasic(withDefaults());
 http.csrf().ignoringRequestMatchers("/eureka/**");
 return http.build();
}

For more information on CSRF see the Spring Security documentation.

A demo Eureka Server can be found in the Spring Cloud Samples repo.

2.9. JDK 11 Support
The JAXB modules which the Eureka server depends upon were removed in JDK 11. If you intend to
use JDK 11 when running a Eureka server you must include these dependencies in your POM or
Gradle file.

<dependency>
 <groupId>org.glassfish.jaxb</groupId>
 <artifactId>jaxb-runtime</artifactId>
</dependency>

2.10. AOT and Native Image Support
Spring Cloud Netflix Eureka Server does not support Spring AOT transformations or native images.

https://docs.spring.io/spring-security/site/docs/current/reference/htmlsingle/#csrf
https://github.com/spring-cloud-samples/eureka/tree/Eureka-With-Security-4.x

3. Configuration properties
To see the list of all Spring Cloud Netflix related configuration properties please check the Appendix
page.

Spring Cloud OpenFeign
2022.0.4

This project provides OpenFeign integrations for Spring Boot apps through autoconfiguration and
binding to the Spring Environment and other Spring programming model idioms.

1. Declarative REST Client: Feign
Feign is a declarative web service client. It makes writing web service clients easier. To use Feign
create an interface and annotate it. It has pluggable annotation support including Feign
annotations and JAX-RS annotations. Feign also supports pluggable encoders and decoders. Spring
Cloud adds support for Spring MVC annotations and for using the same HttpMessageConverters used
by default in Spring Web. Spring Cloud integrates Eureka, Spring Cloud CircuitBreaker, as well as
Spring Cloud LoadBalancer to provide a load-balanced http client when using Feign.

1.1. How to Include Feign
To include Feign in your project use the starter with group org.springframework.cloud and artifact
id spring-cloud-starter-openfeign. See the Spring Cloud Project page for details on setting up your
build system with the current Spring Cloud Release Train.

Example spring boot app

@SpringBootApplication
@EnableFeignClients
public class Application {

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }

}

appendix.html
appendix.html
https://github.com/OpenFeign/feign
https://projects.spring.io/spring-cloud/

StoreClient.java

@FeignClient("stores")
public interface StoreClient {
 @RequestMapping(method = RequestMethod.GET, value = "/stores")
 List<Store> getStores();

 @RequestMapping(method = RequestMethod.GET, value = "/stores")
 Page<Store> getStores(Pageable pageable);

 @RequestMapping(method = RequestMethod.POST, value = "/stores/{storeId}", consumes
= "application/json")
 Store update(@PathVariable("storeId") Long storeId, Store store);

 @RequestMapping(method = RequestMethod.DELETE, value = "/stores/{storeId:\\d+}")
 void delete(@PathVariable Long storeId);
}

In the @FeignClient annotation the String value ("stores" above) is an arbitrary client name, which
is used to create a Spring Cloud LoadBalancer client. You can also specify a URL using the url
attribute (absolute value or just a hostname). The name of the bean in the application context is the
fully qualified name of the interface. To specify your own alias value you can use the qualifiers
value of the @FeignClient annotation.

The load-balancer client above will want to discover the physical addresses for the "stores" service.
If your application is a Eureka client then it will resolve the service in the Eureka service registry. If
you don’t want to use Eureka, you can configure a list of servers in your external configuration
using SimpleDiscoveryClient.

Spring Cloud OpenFeign supports all the features available for the blocking mode of Spring Cloud
LoadBalancer. You can read more about them in the project documentation.

To use @EnableFeignClients annotation on @Configuration-annotated-classes, make
sure to specify where the clients are located, for example:
@EnableFeignClients(basePackages = "com.example.clients") or list them explicitly:
@EnableFeignClients(clients = InventoryServiceFeignClient.class)

1.1.1. Attribute resolution mode

While creating Feign client beans, we resolve the values passed via the @FeignClient annotation. As
of 4.x, the values are being resolved eagerly. This is a good solution for most use-cases, and it also
allows for AOT support.

If you need the attributes to be resolved lazily, set the spring.cloud.openfeign.lazy-attributes-
resolution property value to true.

 For Spring Cloud Contract test integration, lazy attribute resolution should be used.

https://github.com/spring-cloud/spring-cloud-commons/blob/main/spring-cloud-loadbalancer/src/main/java/org/springframework/cloud/loadbalancer/blocking/client/BlockingLoadBalancerClient.java
https://docs.spring.io/spring-cloud-commons/docs/current/reference/html/#simplediscoveryclient
https://docs.spring.io/spring-cloud-commons/docs/current/reference/html/#spring-cloud-loadbalancer

1.2. Overriding Feign Defaults
A central concept in Spring Cloud’s Feign support is that of the named client. Each feign client is
part of an ensemble of components that work together to contact a remote server on demand, and
the ensemble has a name that you give it as an application developer using the @FeignClient
annotation. Spring Cloud creates a new ensemble as an ApplicationContext on demand for each
named client using FeignClientsConfiguration. This contains (amongst other things) an
feign.Decoder, a feign.Encoder, and a feign.Contract. It is possible to override the name of that
ensemble by using the contextId attribute of the @FeignClient annotation.

Spring Cloud lets you take full control of the feign client by declaring additional configuration (on
top of the FeignClientsConfiguration) using @FeignClient. Example:

@FeignClient(name = "stores", configuration = FooConfiguration.class)
public interface StoreClient {
 //..
}

In this case the client is composed from the components already in FeignClientsConfiguration
together with any in FooConfiguration (where the latter will override the former).

FooConfiguration does not need to be annotated with @Configuration. However, if it
is, then take care to exclude it from any @ComponentScan that would otherwise
include this configuration as it will become the default source for feign.Decoder,
feign.Encoder, feign.Contract, etc., when specified. This can be avoided by putting
it in a separate, non-overlapping package from any @ComponentScan or
@SpringBootApplication, or it can be explicitly excluded in @ComponentScan.

Using contextId attribute of the @FeignClient annotation in addition to changing
the name of the ApplicationContext ensemble, it will override the alias of the client
name and it will be used as part of the name of the configuration bean created for
that client.

Previously, using the url attribute, did not require the name attribute. Using name is
now required.

Placeholders are supported in the name and url attributes.

@FeignClient(name = "${feign.name}", url = "${feign.url}")
public interface StoreClient {
 //..
}

Spring Cloud OpenFeign provides the following beans by default for feign (BeanType beanName:
ClassName):

• Decoder feignDecoder: ResponseEntityDecoder (which wraps a SpringDecoder)

• Encoder feignEncoder: SpringEncoder

• Logger feignLogger: Slf4jLogger

• MicrometerObservationCapability micrometerObservationCapability: If feign-micrometer is on
the classpath and ObservationRegistry is available

• MicrometerCapability micrometerCapability: If feign-micrometer is on the classpath,
MeterRegistry is available and ObservationRegistry is not available

• CachingCapability cachingCapability: If @EnableCaching annotation is used. Can be disabled via
spring.cloud.openfeign.cache.enabled.

• Contract feignContract: SpringMvcContract

• Feign.Builder feignBuilder: FeignCircuitBreaker.Builder

• Client feignClient: If Spring Cloud LoadBalancer is on the classpath,
FeignBlockingLoadBalancerClient is used. If none of them is on the classpath, the default feign
client is used.

spring-cloud-starter-openfeign supports spring-cloud-starter-loadbalancer.
However, as is an optional dependency, you need to make sure it has been added
to your project if you want to use it.

The OkHttpClient and Apache HttpClient 5 Feign clients can be used by setting
spring.cloud.openfeign.okhttp.enabled or spring.cloud.openfeign.httpclient.hc5.enabled to true,
respectively, and having them on the classpath. You can customize the HTTP client used by
providing a bean of either org.apache.hc.client5.http.impl.classic.CloseableHttpClient when
using Apache HC5.

You can further customise http clients by setting values in the
spring.cloud.openfeign.httpclient.xxx properties. The ones prefixed just with httpclient will work
for all the clients, the ones prefixed with httpclient.hc5 to Apache HttpClient 5 and the ones
prefixed with httpclient.okhttp to OkHttpClient. You can find a full list of properties you can
customise in the appendix.

Starting with Spring Cloud OpenFeign 4, the Feign Apache HttpClient 4 is no longer
supported. We suggest using Apache HttpClient 5 instead.

Spring Cloud OpenFeign does not provide the following beans by default for feign, but still looks up
beans of these types from the application context to create the feign client:

• Logger.Level

• Retryer

• ErrorDecoder

• Request.Options

• Collection<RequestInterceptor>

• SetterFactory

• QueryMapEncoder

• Capability (MicrometerObservationCapability and CachingCapability are provided by default)

A bean of Retryer.NEVER_RETRY with the type Retryer is created by default, which will disable
retrying. Notice this retrying behavior is different from the Feign default one, where it will
automatically retry IOExceptions, treating them as transient network related exceptions, and any
RetryableException thrown from an ErrorDecoder.

Creating a bean of one of those type and placing it in a @FeignClient configuration (such as
FooConfiguration above) allows you to override each one of the beans described. Example:

@Configuration
public class FooConfiguration {
 @Bean
 public Contract feignContract() {
 return new feign.Contract.Default();
 }

 @Bean
 public BasicAuthRequestInterceptor basicAuthRequestInterceptor() {
 return new BasicAuthRequestInterceptor("user", "password");
 }
}

This replaces the SpringMvcContract with feign.Contract.Default and adds a RequestInterceptor to
the collection of RequestInterceptor.

@FeignClient also can be configured using configuration properties.

application.yml

spring:
 cloud:
 openfeign:
 client:
 config:
 feignName:
 url: http://remote-service.com
 connectTimeout: 5000
 readTimeout: 5000
 loggerLevel: full
 errorDecoder: com.example.SimpleErrorDecoder
 retryer: com.example.SimpleRetryer
 defaultQueryParameters:
 query: queryValue
 defaultRequestHeaders:
 header: headerValue
 requestInterceptors:
 - com.example.FooRequestInterceptor
 - com.example.BarRequestInterceptor
 responseInterceptor: com.example.BazResponseInterceptor
 dismiss404: false
 encoder: com.example.SimpleEncoder
 decoder: com.example.SimpleDecoder
 contract: com.example.SimpleContract
 capabilities:
 - com.example.FooCapability
 - com.example.BarCapability
 queryMapEncoder: com.example.SimpleQueryMapEncoder
 micrometer.enabled: false

feignName in this example refers to @FeignClient value, that is also aliased with @FeignClient name
and @FeignClient contextId. In a load-balanced scenario, it also corresponds to the serviceId of the
server app that will be used to retrieve the instances.

Default configurations can be specified in the @EnableFeignClients attribute defaultConfiguration in
a similar manner as described above. The difference is that this configuration will apply to all feign
clients.

If you prefer using configuration properties to configure all @FeignClient, you can create
configuration properties with default feign name.

You can use spring.cloud.openfeign.client.config.feignName.defaultQueryParameters and
spring.cloud.openfeign.client.config.feignName.defaultRequestHeaders to specify query
parameters and headers that will be sent with every request of the client named feignName.

application.yml

spring:
 cloud:
 openfeign:
 client:
 config:
 default:
 connectTimeout: 5000
 readTimeout: 5000
 loggerLevel: basic

If we create both @Configuration bean and configuration properties, configuration properties will
win. It will override @Configuration values. But if you want to change the priority to @Configuration,
you can change spring.cloud.openfeign.client.default-to-properties to false.

If we want to create multiple feign clients with the same name or url so that they would point to the
same server but each with a different custom configuration then we have to use contextId attribute
of the @FeignClient in order to avoid name collision of these configuration beans.

@FeignClient(contextId = "fooClient", name = "stores", configuration =
FooConfiguration.class)
public interface FooClient {
 //..
}

@FeignClient(contextId = "barClient", name = "stores", configuration =
BarConfiguration.class)
public interface BarClient {
 //..
}

It is also possible to configure FeignClient not to inherit beans from the parent context. You can do
this by overriding the inheritParentConfiguration() in a FeignClientConfigurer bean to return
false:

@Configuration
public class CustomConfiguration{

@Bean
public FeignClientConfigurer feignClientConfigurer() {
 return new FeignClientConfigurer() {

 @Override
 public boolean inheritParentConfiguration() {
 return false;
 }
 };

 }
}

By default, Feign clients do not encode slash / characters. You can change this
behaviour, by setting the value of spring.cloud.openfeign.client.decodeSlash to
false.

1.2.1. SpringEncoder configuration

In the SpringEncoder that we provide, we set null charset for binary content types and UTF-8 for all
the other ones.

You can modify this behaviour to derive the charset from the Content-Type header charset instead
by setting the value of spring.cloud.openfeign.encoder.charset-from-content-type to true.

1.3. Timeout Handling
We can configure timeouts on both the default and the named client. OpenFeign works with two
timeout parameters:

• connectTimeout prevents blocking the caller due to the long server processing time.

• readTimeout is applied from the time of connection establishment and is triggered when
returning the response takes too long.

In case the server is not running or available a packet results in connection refused.
The communication ends either with an error message or in a fallback. This can
happen before the connectTimeout if it is set very low. The time taken to perform a
lookup and to receive such a packet causes a significant part of this delay. It is
subject to change based on the remote host that involves a DNS lookup.

1.4. Creating Feign Clients Manually
In some cases it might be necessary to customize your Feign Clients in a way that is not possible

using the methods above. In this case you can create Clients using the Feign Builder API. Below is
an example which creates two Feign Clients with the same interface but configures each one with a
separate request interceptor.

@Import(FeignClientsConfiguration.class)
class FooController {

 private FooClient fooClient;

 private FooClient adminClient;

 @Autowired
 public FooController(Client client, Encoder encoder, Decoder decoder, Contract
contract, MicrometerObservationCapability micrometerObservationCapability) {
 this.fooClient = Feign.builder().client(client)
 .encoder(encoder)
 .decoder(decoder)
 .contract(contract)
 .addCapability(micrometerObservationCapability)
 .requestInterceptor(new BasicAuthRequestInterceptor("user", "user"))
 .target(FooClient.class, "https://PROD-SVC");

 this.adminClient = Feign.builder().client(client)
 .encoder(encoder)
 .decoder(decoder)
 .contract(contract)
 .addCapability(micrometerObservationCapability)
 .requestInterceptor(new BasicAuthRequestInterceptor("admin", "admin"))
 .target(FooClient.class, "https://PROD-SVC");
 }
}

In the above example FeignClientsConfiguration.class is the default configuration
provided by Spring Cloud OpenFeign.

 PROD-SVC is the name of the service the Clients will be making requests to.

The Feign Contract object defines what annotations and values are valid on
interfaces. The autowired Contract bean provides supports for SpringMVC
annotations, instead of the default Feign native annotations.

You can also use the Builder`to configure FeignClient not to inherit beans from the parent
context. You can do this by overriding calling `inheritParentContext(false) on the Builder.

1.5. Feign Spring Cloud CircuitBreaker Support
If Spring Cloud CircuitBreaker is on the classpath and

https://github.com/OpenFeign/feign/#basics

spring.cloud.openfeign.circuitbreaker.enabled=true, Feign will wrap all methods with a circuit
breaker.

To disable Spring Cloud CircuitBreaker support on a per-client basis create a vanilla Feign.Builder
with the "prototype" scope, e.g.:

@Configuration
public class FooConfiguration {
 @Bean
 @Scope("prototype")
 public Feign.Builder feignBuilder() {
 return Feign.builder();
 }
}

The circuit breaker name follows this pattern
<feignClientClassName>#<calledMethod>(<parameterTypes>). When calling a @FeignClient with
FooClient interface and the called interface method that has no parameters is bar then the circuit
breaker name will be FooClient#bar().

As of 2020.0.2, the circuit breaker name pattern has changed from
<feignClientName>_<calledMethod>. Using CircuitBreakerNameResolver introduced in
2020.0.4, circuit breaker names can retain the old pattern.

Providing a bean of CircuitBreakerNameResolver, you can change the circuit breaker name pattern.

@Configuration
public class FooConfiguration {
 @Bean
 public CircuitBreakerNameResolver circuitBreakerNameResolver() {
 return (String feignClientName, Target<?> target, Method method) ->
feignClientName + "_" + method.getName();
 }
}

To enable Spring Cloud CircuitBreaker group set the
spring.cloud.openfeign.circuitbreaker.group.enabled property to true (by default false).

1.6. Configuring CircuitBreakers With Configuration
Properties
You can configure CircuitBreakers via configuration properties.

For example, if you had this Feign client

@FeignClient(url = "http://localhost:8080")
public interface DemoClient {

 @GetMapping("demo")
 String getDemo();
}

You could configure it using configuration properties by doing the following

spring:
 cloud:
 openfeign:
 circuitbreaker:
 enabled: true
 alphanumeric-ids:
 enabled: true
resilience4j:
 circuitbreaker:
 instances:
 DemoClientgetDemo:
 minimumNumberOfCalls: 69
 timelimiter:
 instances:
 DemoClientgetDemo:
 timeoutDuration: 10s

If you want to switch back to the circuit breaker names used prior to Spring Cloud
2022.0.0 you can set spring.cloud.openfeign.circuitbreaker.alphanumeric-
ids.enabled to false.

1.7. Feign Spring Cloud CircuitBreaker Fallbacks
Spring Cloud CircuitBreaker supports the notion of a fallback: a default code path that is executed
when the circuit is open or there is an error. To enable fallbacks for a given @FeignClient set the
fallback attribute to the class name that implements the fallback. You also need to declare your
implementation as a Spring bean.

@FeignClient(name = "test", url = "http://localhost:${server.port}/", fallback =
Fallback.class)
 protected interface TestClient {

 @RequestMapping(method = RequestMethod.GET, value = "/hello")
 Hello getHello();

 @RequestMapping(method = RequestMethod.GET, value = "/hellonotfound")
 String getException();

 }

 @Component
 static class Fallback implements TestClient {

 @Override
 public Hello getHello() {
 throw new NoFallbackAvailableException("Boom!", new RuntimeException());
 }

 @Override
 public String getException() {
 return "Fixed response";
 }

 }

If one needs access to the cause that made the fallback trigger, one can use the fallbackFactory
attribute inside @FeignClient.

@FeignClient(name = "testClientWithFactory", url = "http://localhost:${server.port}/",
 fallbackFactory = TestFallbackFactory.class)
 protected interface TestClientWithFactory {

 @RequestMapping(method = RequestMethod.GET, value = "/hello")
 Hello getHello();

 @RequestMapping(method = RequestMethod.GET, value = "/hellonotfound")
 String getException();

 }

 @Component
 static class TestFallbackFactory implements FallbackFactory<FallbackWithFactory> {

 @Override
 public FallbackWithFactory create(Throwable cause) {
 return new FallbackWithFactory();
 }

 }

 static class FallbackWithFactory implements TestClientWithFactory {

 @Override
 public Hello getHello() {
 throw new NoFallbackAvailableException("Boom!", new RuntimeException());
 }

 @Override
 public String getException() {
 return "Fixed response";
 }

 }

1.8. Feign and @Primary
When using Feign with Spring Cloud CircuitBreaker fallbacks, there are multiple beans in the
ApplicationContext of the same type. This will cause @Autowired to not work because there isn’t
exactly one bean, or one marked as primary. To work around this, Spring Cloud OpenFeign marks
all Feign instances as @Primary, so Spring Framework will know which bean to inject. In some cases,
this may not be desirable. To turn off this behavior set the primary attribute of @FeignClient to false.

@FeignClient(name = "hello", primary = false)
public interface HelloClient {
 // methods here
}

1.9. Feign Inheritance Support
Feign supports boilerplate apis via single-inheritance interfaces. This allows grouping common
operations into convenient base interfaces.

UserService.java

public interface UserService {

 @RequestMapping(method = RequestMethod.GET, value ="/users/{id}")
 User getUser(@PathVariable("id") long id);
}

UserResource.java

@RestController
public class UserResource implements UserService {

}

UserClient.java

package project.user;

@FeignClient("users")
public interface UserClient extends UserService {

}

@FeignClient interfaces should not be shared between server and client and
annotating @FeignClient interfaces with @RequestMapping on class level is no longer
supported.

1.10. Feign request/response compression
You may consider enabling the request or response GZIP compression for your Feign requests. You
can do this by enabling one of the properties:

spring.cloud.openfeign.compression.request.enabled=true
spring.cloud.openfeign.compression.response.enabled=true

Feign request compression gives you settings similar to what you may set for your web server:

spring.cloud.openfeign.compression.request.enabled=true
spring.cloud.openfeign.compression.request.mime-
types=text/xml,application/xml,application/json
spring.cloud.openfeign.compression.request.min-request-size=2048

These properties allow you to be selective about the compressed media types and minimum request
threshold length.

Since the OkHttpClient uses "transparent" compression, that is disabled if the
content-encoding or accept-encoding header is present, we do not enable
compression when feign.okhttp.OkHttpClient is present on the classpath and
spring.cloud.openfeign.okhttp.enabled is set to true.

1.11. Feign logging
A logger is created for each Feign client created. By default, the name of the logger is the full class
name of the interface used to create the Feign client. Feign logging only responds to the DEBUG level.

application.yml

logging.level.project.user.UserClient: DEBUG

The Logger.Level object that you may configure per client, tells Feign how much to log. Choices are:

• NONE, No logging (DEFAULT).

• BASIC, Log only the request method and URL and the response status code and execution time.

• HEADERS, Log the basic information along with request and response headers.

• FULL, Log the headers, body, and metadata for both requests and responses.

For example, the following would set the Logger.Level to FULL:

@Configuration
public class FooConfiguration {
 @Bean
 Logger.Level feignLoggerLevel() {
 return Logger.Level.FULL;
 }
}

1.12. Feign Capability support
The Feign capabilities expose core Feign components so that these components can be modified. For
example, the capabilities can take the Client, decorate it, and give the decorated instance back to
Feign. The support for Micrometer is a good real-life example for this. See Micrometer Support.

Creating one or more Capability beans and placing them in a @FeignClient configuration lets you
register them and modify the behavior of the involved client.

@Configuration
public class FooConfiguration {
 @Bean
 Capability customCapability() {
 return new CustomCapability();
 }
}

1.13. Micrometer Support
If all of the following conditions are true, a MicrometerObservationCapability bean is created and
registered so that your Feign client is observable by Micrometer:

• feign-micrometer is on the classpath

• A ObservationRegistry bean is available

• feign micrometer properties are set to true (by default)

◦ spring.cloud.openfeign.micrometer.enabled=true (for all clients)

◦ spring.cloud.openfeign.client.config.feignName.micrometer.enabled=true (for a single
client)

If your application already uses Micrometer, enabling this feature is as simple as
putting feign-micrometer onto your classpath.

You can also disable the feature by either:

• excluding feign-micrometer from your classpath

• setting one of the feign micrometer properties to false

◦ spring.cloud.openfeign.micrometer.enabled=false

◦ spring.cloud.openfeign.client.config.feignName.micrometer.enabled=false

spring.cloud.openfeign.micrometer.enabled=false disables Micrometer support for
all Feign clients regardless of the value of the client-level flags:
spring.cloud.openfeign.client.config.feignName.micrometer.enabled. If you want
to enable or disable Micrometer support per client, don’t set
spring.cloud.openfeign.micrometer.enabled and use
spring.cloud.openfeign.client.config.feignName.micrometer.enabled.

You can also customize the MicrometerObservationCapability by registering your own bean:

@Configuration
public class FooConfiguration {
 @Bean
 public MicrometerObservationCapability
micrometerObservationCapability(ObservationRegistry registry) {
 return new MicrometerObservationCapability(registry);
 }
}

It is still possible to use MicrometerCapability with Feign (metrics-only support), you need to disable
Micrometer support (spring.cloud.openfeign.micrometer.enabled=false) and create a
MicrometerCapability bean:

@Configuration
public class FooConfiguration {
 @Bean
 public MicrometerCapability micrometerCapability(MeterRegistry meterRegistry) {
 return new MicrometerCapability(meterRegistry);
 }
}

1.14. Feign Caching
If @EnableCaching annotation is used, a CachingCapability bean is created and registered so that your
Feign client recognizes @Cache* annotations on its interface:

public interface DemoClient {

 @GetMapping("/demo/{filterParam}")
 @Cacheable(cacheNames = "demo-cache", key = "#keyParam")
 String demoEndpoint(String keyParam, @PathVariable String filterParam);
}

You can also disable the feature via property spring.cloud.openfeign.cache.enabled=false.

1.15. Feign @QueryMap support
Spring Cloud OpenFeign provides an equivalent @SpringQueryMap annotation, which is used to
annotate a POJO or Map parameter as a query parameter map.

For example, the Params class defines parameters param1 and param2:

// Params.java
public class Params {
 private String param1;
 private String param2;

 // [Getters and setters omitted for brevity]
}

The following feign client uses the Params class by using the @SpringQueryMap annotation:

@FeignClient("demo")
public interface DemoTemplate {

 @GetMapping(path = "/demo")
 String demoEndpoint(@SpringQueryMap Params params);
}

If you need more control over the generated query parameter map, you can implement a custom
QueryMapEncoder bean.

1.16. HATEOAS support
Spring provides some APIs to create REST representations that follow the HATEOAS principle,
Spring Hateoas and Spring Data REST.

If your project use the org.springframework.boot:spring-boot-starter-hateoas starter or the
org.springframework.boot:spring-boot-starter-data-rest starter, Feign HATEOAS support is
enabled by default.

When HATEOAS support is enabled, Feign clients are allowed to serialize and deserialize HATEOAS
representation models: EntityModel, CollectionModel and PagedModel.

@FeignClient("demo")
public interface DemoTemplate {

 @GetMapping(path = "/stores")
 CollectionModel<Store> getStores();
}

https://en.wikipedia.org/wiki/HATEOAS
https://spring.io/projects/spring-hateoas
https://spring.io/projects/spring-data-rest
https://docs.spring.io/spring-hateoas/docs/1.0.0.M1/apidocs/org/springframework/hateoas/EntityModel.html
https://docs.spring.io/spring-hateoas/docs/1.0.0.M1/apidocs/org/springframework/hateoas/CollectionModel.html
https://docs.spring.io/spring-hateoas/docs/1.0.0.M1/apidocs/org/springframework/hateoas/PagedModel.html

1.17. Spring @MatrixVariable Support
Spring Cloud OpenFeign provides support for the Spring @MatrixVariable annotation.

If a map is passed as the method argument, the @MatrixVariable path segment is created by joining
key-value pairs from the map with a =.

If a different object is passed, either the name provided in the @MatrixVariable annotation (if defined)
or the annotated variable name is joined with the provided method argument using =.

IMPORTANT

Even though, on the server side, Spring does not require the users to name the path segment
placeholder same as the matrix variable name, since it would be too ambiguous on the client
side, Spring Cloud OpenFeign requires that you add a path segment placeholder with a name
matching either the name provided in the @MatrixVariable annotation (if defined) or the
annotated variable name.

For example:

@GetMapping("/objects/links/{matrixVars}")
Map<String, List<String>> getObjects(@MatrixVariable Map<String, List<String>>
matrixVars);

Note that both variable name and the path segment placeholder are called matrixVars.

@FeignClient("demo")
public interface DemoTemplate {

 @GetMapping(path = "/stores")
 CollectionModel<Store> getStores();
}

1.18. Feign CollectionFormat support
We support feign.CollectionFormat by providing the @CollectionFormat annotation. You can
annotate a Feign client method (or the whole class to affect all methods) with it by passing the
desired feign.CollectionFormat as annotation value.

In the following example, the CSV format is used instead of the default EXPLODED to process the
method.

@FeignClient(name = "demo")
protected interface DemoFeignClient {

 @CollectionFormat(feign.CollectionFormat.CSV)
 @GetMapping(path = "/test")
 ResponseEntity performRequest(String test);

}

1.19. Reactive Support
As the OpenFeign project does not currently support reactive clients, such as Spring WebClient,
neither does Spring Cloud OpenFeign.We will add support for it here as soon as it becomes
available in the core project.

Until that is done, we recommend using feign-reactive for Spring WebClient support.

1.19.1. Early Initialization Errors

Depending on how you are using your Feign clients you may see initialization errors when starting
your application. To work around this problem you can use an ObjectProvider when autowiring
your client.

@Autowired
ObjectProvider<TestFeignClient> testFeignClient;

1.20. Spring Data Support
If Jackson Databind and Spring Data Commons are on the classpath, converters for
org.springframework.data.domain.Page and org.springframework.data.domain.Sort will be added
automatically.

To disable this behaviour set

spring.cloud.openfeign.autoconfiguration.jackson.enabled=false

See org.springframework.cloud.openfeign.FeignAutoConfiguration.FeignJacksonConfiguration for
details.

1.21. Spring @RefreshScope Support
If Feign client refresh is enabled, each Feign client is created with:

• feign.Request.Options as a refresh-scoped bean. This means properties such as connectTimeout
and readTimeout can be refreshed against any Feign client instance.

https://github.com/OpenFeign/feign
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/web/reactive/function/client/WebClient.html
https://github.com/Playtika/feign-reactive

• A url wrapped under org.springframework.cloud.openfeign.RefreshableUrl. This means the URL
of Feign client, if defined with spring.cloud.openfeign.client.config.{feignName}.url property,
can be refreshed against any Feign client instance.

You can refresh these properties through POST /actuator/refresh.

By default, refresh behavior in Feign clients is disabled. Use the following property to enable
refresh behavior:

spring.cloud.openfeign.client.refresh-enabled=true

 DO NOT annotate the @FeignClient interface with the @RefreshScope annotation.

1.22. OAuth2 Support
OAuth2 support can be enabled by setting following flag:

spring.cloud.openfeign.oauth2.enabled=true

When the flag is set to true, and the oauth2 client context resource details are present, a bean of
class OAuth2AccessTokenInterceptor is created. Before each request, the interceptor resolves the
required access token and includes it as a header. OAuth2AccessTokenInterceptor uses the
OAuth2AuthorizedClientManager to get OAuth2AuthorizedClient that holds an OAuth2AccessToken. If the
user has specified an OAuth2 clientRegistrationId using the
spring.cloud.openfeign.oauth2.clientRegistrationId property, it will be used to retrieve the token.
If the token is not retrieved or the clientRegistrationId has not been specified, the serviceId
retrieved from the url host segment will be used.

TIP

Using the serviceId as OAuth2 client registrationId is convenient for load-balanced Feign clients.
For non-load-balanced ones, the property-based clientRegistrationId is a suitable approach.

TIP

If you do not want to use the default setup for the OAuth2AuthorizedClientManager, you can just
instantiate a bean of this type in your configuration.

1.23. Transform the load-balanced HTTP request
You can use the selected ServiceInstance to transform the load-balanced HTTP Request.

For Request, you need to implement and define LoadBalancerFeignRequestTransformer, as follows:

@Bean
public LoadBalancerFeignRequestTransformer transformer() {
 return new LoadBalancerFeignRequestTransformer() {

 @Override
 public Request transformRequest(Request request, ServiceInstance instance) {
 Map<String, Collection<String>> headers = new
HashMap<>(request.headers());
 headers.put("X-ServiceId",
Collections.singletonList(instance.getServiceId()));
 headers.put("X-InstanceId",
Collections.singletonList(instance.getInstanceId()));
 return Request.create(request.httpMethod(), request.url(), headers,
request.body(), request.charset(),
 request.requestTemplate());
 }
 };
}

If multiple transformers are defined, they are applied in the order in which beans are defined.
Alternatively, you can use LoadBalancerFeignRequestTransformer.DEFAULT_ORDER to specify the order.

1.24. X-Forwarded Headers Support
X-Forwarded-Host and X-Forwarded-Proto support can be enabled by setting following flag:

spring.cloud.loadbalancer.x-forwarded.enabled=true

1.25. Supported Ways To Provide URL To A Feign Client
You can provide a URL to a Feign client in any of the following ways:

Case Example Details

The URL is provided in the
@FeignClient annotation.

@FeignClient(name="testClient"
, url="http://localhost:8081")

The URL is resolved from the
url attribute of the annotation,
without load-balancing.

The URL is provided in the
@FeignClient annotation and in
the configuration properties.

@FeignClient(name="testClient"
, url="http://localhost:8081")
and the property defined in
application.yml as
spring.cloud.openfeign.client.
config.testClient.url=http://l
ocalhost:8081

The URL is resolved from the
url attribute of the annotation,
without load-balancing. The
URL provided in the
configuration properties
remains unused.

Case Example Details

The URL is not provided in the
@FeignClient annotation but is
provided in configuration
properties.

@FeignClient(name="testClient"
) and the property defined in
application.yml as
spring.cloud.openfeign.client.
config.testClient.url=http://l
ocalhost:8081

The URL is resolved from
configuration properties,
without load-balancing. If
spring.cloud.openfeign.client.
refresh-enabled=true, then the
URL defined in configuration
properties can be refreshed as
described in Spring
RefreshScope Support.

The URL is neither provided in
the @FeignClient annotation nor
in configuration properties.

@FeignClient(name="testClient"
)

The URL is resolved from name
attribute of annotation, with
load balancing.

1.26. AOT and Native Image Support
Spring Cloud OpenFeign supports Spring AOT transformations and native images, however, only
with refresh mode disabled, Feign clients refresh disabled (default setting) and lazy @FeignClient
attribute resolution disabled (default setting).

If you want to run Spring Cloud OpenFeign clients in AOT or native image modes,
make sure to set spring.cloud.refresh.enabled to false.

If you want to run Spring Cloud OpenFeign clients in AOT or native image modes,
ensure spring.cloud.openfeign.client.refresh-enabled has not been set to true.

If you want to run Spring Cloud OpenFeign clients in AOT or native image modes,
ensure spring.cloud.openfeign.lazy-attributes-resolution has not been set to
true.

However, if you set the url value via properties, it is possible to override the
@FeignClient url value by running the image with
-Dspring.cloud.openfeign.client.config.[clientId].url=[url] flag. In order to
enable overriding, a url value also has to be set via properties and not
@FeignClient attribute during buildtime.

2. Configuration properties
To see the list of all Spring Cloud OpenFeign related configuration properties please check the
Appendix page.

4.0.4

appendix.html
appendix.html

3. Preface

3.1. A Brief History of Spring’s Data Integration
Journey
Spring’s journey on Data Integration started with Spring Integration. With its programming model,
it provided a consistent developer experience to build applications that can embrace Enterprise
Integration Patterns to connect with external systems such as, databases, message brokers, and
among others.

Fast forward to the cloud-era, where microservices have become prominent in the enterprise
setting. Spring Boot transformed the way how developers built Applications. With Spring’s
programming model and the runtime responsibilities handled by Spring Boot, it became seamless
to develop stand-alone, production-grade Spring-based microservices.

To extend this to Data Integration workloads, Spring Integration and Spring Boot were put together
into a new project. Spring Cloud Stream was born.

With Spring Cloud Stream, developers can:

• Build, test and deploy data-centric applications in isolation.

• Apply modern microservices architecture patterns, including composition through messaging.

• Decouple application responsibilities with event-centric thinking. An event can represent
something that has happened in time, to which the downstream consumer applications can
react without knowing where it originated or the producer’s identity.

• Port the business logic onto message brokers (such as RabbitMQ, Apache Kafka, Amazon
Kinesis).

• Rely on the framework’s automatic content-type support for common use-cases. Extending to
different data conversion types is possible.

• and many more. . .

3.2. Quick Start
You can try Spring Cloud Stream in less than 5 min even before you jump into any details by
following this three-step guide.

We show you how to create a Spring Cloud Stream application that receives messages coming from
the messaging middleware of your choice (more on this later) and logs received messages to the
console. We call it LoggingConsumer. While not very practical, it provides a good introduction to some
of the main concepts and abstractions, making it easier to digest the rest of this user guide.

The three steps are as follows:

1. Creating a Sample Application by Using Spring Initializr

2. Importing the Project into Your IDE

https://projects.spring.io/spring-integration/
http://www.enterpriseintegrationpatterns.com/
http://www.enterpriseintegrationpatterns.com/
https://projects.spring.io/spring-boot/

3. Adding a Message Handler, Building, and Running

3.2.1. Creating a Sample Application by Using Spring Initializr

To get started, visit the Spring Initializr. From there, you can generate our LoggingConsumer
application. To do so:

1. In the Dependencies section, start typing stream. When the “Cloud Stream” option should
appears, select it.

2. Start typing either 'kafka' or 'rabbit'.

3. Select “Kafka” or “RabbitMQ”.

Basically, you choose the messaging middleware to which your application binds. We
recommend using the one you have already installed or feel more comfortable with installing
and running. Also, as you can see from the Initilaizer screen, there are a few other options you
can choose. For example, you can choose Gradle as your build tool instead of Maven (the
default).

4. In the Artifact field, type 'logging-consumer'.

The value of the Artifact field becomes the application name. If you chose RabbitMQ for the
middleware, your Spring Initializr should now be as follows:

[spring initializr] | spring-initializr.png

1. Click the Generate Project button.

Doing so downloads the zipped version of the generated project to your hard drive.

2. Unzip the file into the folder you want to use as your project directory.

We encourage you to explore the many possibilities available in the Spring
Initializr. It lets you create many different kinds of Spring applications.

3.2.2. Importing the Project into Your IDE

Now you can import the project into your IDE. Keep in mind that, depending on the IDE, you may
need to follow a specific import procedure. For example, depending on how the project was
generated (Maven or Gradle), you may need to follow specific import procedure (for example, in
Eclipse or STS, you need to use File → Import → Maven → Existing Maven Project).

Once imported, the project must have no errors of any kind. Also, src/main/java should contain
com.example.loggingconsumer.LoggingConsumerApplication.

Technically, at this point, you can run the application’s main class. It is already a valid Spring Boot
application. However, it does not do anything, so we want to add some code.

https://start.spring.io

3.2.3. Adding a Message Handler, Building, and Running

Modify the com.example.loggingconsumer.LoggingConsumerApplication class to look as follows:

@SpringBootApplication
public class LoggingConsumerApplication {

 public static void main(String[] args) {
 SpringApplication.run(LoggingConsumerApplication.class, args);
 }

 @Bean
 public Consumer<Person> log() {
 return person -> {
 System.out.println("Received: " + person);
 };
 }

 public static class Person {
 private String name;
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
 public String toString() {
 return this.name;
 }
 }
}

As you can see from the preceding listing:

• We are using functional programming model (see Spring Cloud Function support) to define a
single message handler as Consumer.

• We are relying on framework conventions to bind such handler to the input destination binding
exposed by the binder.

Doing so also lets you see one of the core features of the framework: It tries to automatically
convert incoming message payloads to type Person.

You now have a fully functional Spring Cloud Stream application that does listens for messages.
From here, for simplicity, we assume you selected RabbitMQ in step one. Assuming you have
RabbitMQ installed and running, you can start the application by running its main method in your
IDE.

You should see following output:

 --- [main] c.s.b.r.p.RabbitExchangeQueueProvisioner : declaring queue for
inbound: input.anonymous.CbMIwdkJSBO1ZoPDOtHtCg, bound to: input
 --- [main] o.s.a.r.c.CachingConnectionFactory : Attempting to connect to:
[localhost:5672]
 --- [main] o.s.a.r.c.CachingConnectionFactory : Created new connection:
rabbitConnectionFactory#2a3a299:0/SimpleConnection@66c83fc8. . .
 . . .
 --- [main] o.s.i.a.i.AmqpInboundChannelAdapter : started
inbound.input.anonymous.CbMIwdkJSBO1ZoPDOtHtCg
 . . .
 --- [main] c.e.l.LoggingConsumerApplication : Started
LoggingConsumerApplication in 2.531 seconds (JVM running for 2.897)

Go to the RabbitMQ management console or any other RabbitMQ client and send a message to
input.anonymous.CbMIwdkJSBO1ZoPDOtHtCg. The anonymous.CbMIwdkJSBO1ZoPDOtHtCg part represents the
group name and is generated, so it is bound to be different in your environment. For something
more predictable, you can use an explicit group name by setting
spring.cloud.stream.bindings.input.group=hello (or whatever name you like).

The contents of the message should be a JSON representation of the Person class, as follows:

{"name":"Sam Spade"}

Then, in your console, you should see:

Received: Sam Spade

You can also build and package your application into a boot jar (by using ./mvnw clean install) and
run the built JAR by using the java -jar command.

Now you have a working (albeit very basic) Spring Cloud Stream application.

4. Spring Expression Language (SpEL) in the
context of Streaming data
Throughout this reference manual you will encounter many features and examples where you can
utilize Spring Expression Language (SpEL). It is important to understand certain limitations when it
comes to using it.

SpEL gives you access to the current Message as well as the Application Context you are running in.
However it is important to understand what type of data SpEL can see especially in the context of
the incoming Message. From the broker, the message arrives in a form of a byte[]. It is then
transformed to a Message<byte[]> by the binders where as you can see the payload of the message
maintains its raw form. The headers of the message are <String, Object>, where values are
typically another primitive or a collection/array of primitives, hence Object. That is because binder
does not know the required input type as it has no access to the user code (function). So effectively

binder delivered an envelope with the payload and some readable meta-data in the form of
message headers, just like the letter delivered by mail. This means that while accessing payload of
the message is possible you will only have access to it as raw data (i.e., byte[]). And while it may be
very common for developers to ask for ability to have SpEL access to fields of a payload object as
concrete type (e.g., Foo, Bar etc), you can see how difficult or even impossible would it be to
achieve. Here is one example to demonstrate the problem; Imagine you have a routing expression
to route to different functions based on payload type. This requirement would imply payload
conversion from byte[] to a specific type and then applying the SpEL. However, in order to perform
such conversion we would need to know the actual type to pass to converter and that comes from
function’s signature which we don’t know which one. A better approach to solve this requirement
would be to pass the type information as message headers (e.g., application/json;type=foo.bar.Baz
). You’ll get a clear readable String value that could be accessed and evaluated in a year and easy to
read SpEL expression.

Additionally it is considered very bad practice to use payload for routing decisions, since the
payload is considered to be privileged data - data only to be read by its final recipient. Again, using
the mail delivery analogy you would not want the mailman to open your envelope and read the
contents of the letter to make some delivery decisions. The same concept applies here, especially
when it is relatively easy to include such information when generating a Message. It enforces
certain level of discipline related to the design of data to be transmitted over the network and
which pieces of such data can be considered as public and which are privileged.

This section goes into more detail about how you can work with Spring Cloud Stream. It covers
topics such as creating and running stream applications.

5. Introducing Spring Cloud Stream
Spring Cloud Stream is a framework for building message-driven microservice applications. Spring
Cloud Stream builds upon Spring Boot to create standalone, production-grade Spring applications
and uses Spring Integration to provide connectivity to message brokers. It provides opinionated
configuration of middleware from several vendors, introducing the concepts of persistent publish-
subscribe semantics, consumer groups, and partitions.

By adding spring-cloud-stream dependencies to the classpath of your application, you get
immediate connectivity to a message broker exposed by the provided spring-cloud-stream binder
(more on that later), and you can implement your functional requirement, which is run (based on
the incoming message) by a java.util.function.Function.

The following listing shows a quick example:

@SpringBootApplication
public class SampleApplication {

 public static void main(String[] args) {
 SpringApplication.run(SampleApplication.class, args);
 }

 @Bean
 public Function<String, String> uppercase() {
 return value -> value.toUpperCase();
 }
}

The following listing shows the corresponding test:

@SpringBootTest(classes = SampleApplication.class)
@Import({TestChannelBinderConfiguration.class})
class BootTestStreamApplicationTests {

 @Autowired
 private InputDestination input;

 @Autowired
 private OutputDestination output;

 @Test
 void contextLoads() {
 input.send(new GenericMessage<byte[]>("hello".getBytes()));
 assertThat(output.receive().getPayload()).isEqualTo("HELLO".getBytes());
 }
}

6. Main Concepts
Spring Cloud Stream provides a number of abstractions and primitives that simplify the writing of
message-driven microservice applications. This section gives an overview of the following:

• Spring Cloud Stream’s application model

• The Binder Abstraction

• Persistent publish-subscribe support

• Consumer group support

• Partitioning support

• A pluggable Binder SPI

6.1. Application Model
A Spring Cloud Stream application consists of a middleware-neutral core. The application
communicates with the outside world by establishing bindings between destinations exposed by the
external brokers and input/output arguments in your code. Broker specific details necessary to
establish bindings are handled by middleware-specific Binder implementations.

[SCSt with binder] | SCSt-with-binder.png

Figure 7. Spring Cloud Stream Application

6.1.1. Fat JAR

Spring Cloud Stream applications can be run in stand-alone mode from your IDE for testing. To run
a Spring Cloud Stream application in production, you can create an executable (or “fat”) JAR by
using the standard Spring Boot tooling provided for Maven or Gradle. See the Spring Boot
Reference Guide for more details.

6.2. The Binder Abstraction
Spring Cloud Stream provides Binder implementations for Kafka and Rabbit MQ. The framework
also includes a test binder for integration testing of your applications as spring-cloud-stream
application. See Testing section for more details.

Binder abstraction is also one of the extension points of the framework, which means you can
implement your own binder on top of Spring Cloud Stream. In the How to create a Spring Cloud
Stream Binder from scratch post a community member documents in details, with an example, a
set of steps necessary to implement a custom binder. The steps are also highlighted in the
Implementing Custom Binders section.

Spring Cloud Stream uses Spring Boot for configuration, and the Binder abstraction makes it
possible for a Spring Cloud Stream application to be flexible in how it connects to middleware. For
example, deployers can dynamically choose, at runtime, the mapping between the external
destinations (such as the Kafka topics or RabbitMQ exchanges) and inputs and outputs of the
message handler (such as input parameter of the function and its return argument). Such
configuration can be provided through external configuration properties and in any form
supported by Spring Boot (including application arguments, environment variables, and
application.yml or application.properties files). In the sink example from the Introducing Spring
Cloud Stream section, setting the spring.cloud.stream.bindings.input.destination application
property to raw-sensor-data causes it to read from the raw-sensor-data Kafka topic or from a queue
bound to the raw-sensor-data RabbitMQ exchange.

Spring Cloud Stream automatically detects and uses a binder found on the classpath. You can use
different types of middleware with the same code. To do so, include a different binder at build time.
For more complex use cases, you can also package multiple binders with your application and have
it choose the binder(and even whether to use different binders for different bindings) at runtime.

https://docs.spring.io/spring-boot/docs/current/reference/html/howto-build.html#howto-create-an-executable-jar-with-maven
https://docs.spring.io/spring-boot/docs/current/reference/html/howto-build.html#howto-create-an-executable-jar-with-maven
https://github.com/spring-cloud/spring-cloud-stream-binder-kafka
https://github.com/spring-cloud/spring-cloud-stream-binder-rabbit
https://medium.com/@domenicosibilio/how-to-create-a-spring-cloud-stream-binder-from-scratch-ab8b29ee931b
https://medium.com/@domenicosibilio/how-to-create-a-spring-cloud-stream-binder-from-scratch-ab8b29ee931b

6.3. Persistent Publish-Subscribe Support
Communication between applications follows a publish-subscribe model, where data is broadcast
through shared topics. This can be seen in the following figure, which shows a typical deployment
for a set of interacting Spring Cloud Stream applications.

[SCSt sensors] | SCSt-sensors.png

Figure 8. Spring Cloud Stream Publish-Subscribe

Data reported by sensors to an HTTP endpoint is sent to a common destination named raw-sensor-
data. From the destination, it is independently processed by a microservice application that
computes time-windowed averages and by another microservice application that ingests the raw
data into HDFS (Hadoop Distributed File System). In order to process the data, both applications
declare the topic as their input at runtime.

The publish-subscribe communication model reduces the complexity of both the producer and the
consumer and lets new applications be added to the topology without disruption of the existing
flow. For example, downstream from the average-calculating application, you can add an
application that calculates the highest temperature values for display and monitoring. You can then
add another application that interprets the same flow of averages for fault detection. Doing all
communication through shared topics rather than point-to-point queues reduces coupling between
microservices.

While the concept of publish-subscribe messaging is not new, Spring Cloud Stream takes the extra
step of making it an opinionated choice for its application model. By using native middleware
support, Spring Cloud Stream also simplifies use of the publish-subscribe model across different
platforms.

6.4. Consumer Groups
While the publish-subscribe model makes it easy to connect applications through shared topics, the
ability to scale up by creating multiple instances of a given application is equally important. When
doing so, different instances of an application are placed in a competing consumer relationship,
where only one of the instances is expected to handle a given message.

Spring Cloud Stream models this behavior through the concept of a consumer group. (Spring Cloud
Stream consumer groups are similar to and inspired by Kafka consumer groups.) Each consumer
binding can use the spring.cloud.stream.bindings.<bindingName>.group property to specify a group
name. For the consumers shown in the following figure, this property would be set as
spring.cloud.stream.bindings.<bindingName>.group=hdfsWrite or
spring.cloud.stream.bindings.<bindingName>.group=average.

[SCSt groups] | SCSt-groups.png

Figure 9. Spring Cloud Stream Consumer Groups

All groups that subscribe to a given destination receive a copy of published data, but only one
member of each group receives a given message from that destination. By default, when a group is
not specified, Spring Cloud Stream assigns the application to an anonymous and independent

single-member consumer group that is in a publish-subscribe relationship with all other consumer
groups.

6.5. Consumer Types
Two types of consumer are supported:

• Message-driven (sometimes referred to as Asynchronous)

• Polled (sometimes referred to as Synchronous)

Prior to version 2.0, only asynchronous consumers were supported. A message is delivered as soon
as it is available and a thread is available to process it.

When you wish to control the rate at which messages are processed, you might want to use a
synchronous consumer.

6.5.1. Durability

Consistent with the opinionated application model of Spring Cloud Stream, consumer group
subscriptions are durable. That is, a binder implementation ensures that group subscriptions are
persistent and that, once at least one subscription for a group has been created, the group receives
messages, even if they are sent while all applications in the group are stopped.

Anonymous subscriptions are non-durable by nature. For some binder
implementations (such as RabbitMQ), it is possible to have non-durable group
subscriptions.

In general, it is preferable to always specify a consumer group when binding an application to a
given destination. When scaling up a Spring Cloud Stream application, you must specify a
consumer group for each of its input bindings. Doing so prevents the application’s instances from
receiving duplicate messages (unless that behavior is desired, which is unusual).

6.6. Partitioning Support
Spring Cloud Stream provides support for partitioning data between multiple instances of a given
application. In a partitioned scenario, the physical communication medium (such as the broker
topic) is viewed as being structured into multiple partitions. One or more producer application
instances send data to multiple consumer application instances and ensure that data identified by
common characteristics are processed by the same consumer instance.

Spring Cloud Stream provides a common abstraction for implementing partitioned processing use
cases in a uniform fashion. Partitioning can thus be used whether the broker itself is naturally
partitioned (for example, Kafka) or not (for example, RabbitMQ).

[SCSt partitioning] | SCSt-partitioning.png

Figure 10. Spring Cloud Stream Partitioning

Partitioning is a critical concept in stateful processing, where it is critical (for either performance or

consistency reasons) to ensure that all related data is processed together. For example, in the time-
windowed average calculation example, it is important that all measurements from any given
sensor are processed by the same application instance.

To set up a partitioned processing scenario, you must configure both the data-
producing and the data-consuming ends.

7. Programming Model
To understand the programming model, you should be familiar with the following core concepts:

• Destination Binders: Components responsible to provide integration with the external
messaging systems.

• Bindings: Bridge between the external messaging systems and application provided Producers
and Consumers of messages (created by the Destination Binders).

• Message: The canonical data structure used by producers and consumers to communicate with
Destination Binders (and thus other applications via external messaging systems).

[SCSt overview] | SCSt-overview.png

7.1. Destination Binders
Destination Binders are extension components of Spring Cloud Stream responsible for providing
the necessary configuration and implementation to facilitate integration with external messaging
systems. This integration is responsible for connectivity, delegation, and routing of messages to and
from producers and consumers, data type conversion, invocation of the user code, and more.

Binders handle a lot of the boiler plate responsibilities that would otherwise fall on your shoulders.
However, to accomplish that, the binder still needs some help in the form of minimalistic yet
required set of instructions from the user, which typically come in the form of some type of binding
configuration.

While it is out of scope of this section to discuss all of the available binder and binding
configuration options (the rest of the manual covers them extensively), Binding as a concept, does
require special attention. The next section discusses it in detail.

7.2. Bindings
As stated earlier, Bindings provide a bridge between the external messaging system (e.g., queue,
topic etc.) and application-provided Producers and Consumers.

The following example shows a fully configured and functioning Spring Cloud Stream application
that receives the payload of the message as a String type (see Content Type Negotiation section),
logs it to the console and sends it down stream after converting it to upper case.

@SpringBootApplication
public class SampleApplication {

 public static void main(String[] args) {
 SpringApplication.run(SampleApplication.class, args);
 }

 @Bean
 public Function<String, String> uppercase() {
 return value -> {
 System.out.println("Received: " + value);
 return value.toUpperCase();
 };
 }
}

The above example looks no different then any vanilla spring-boot application. It defines a single
bean of type Function and that is it. So, how does it become a spring-cloud-stream application? It
becomes a spring-cloud-stream application simply because of the presence of spring-cloud-stream
and binder dependencies and auto-configuration classes on the classpath, effectively setting the
context for your boot application as a spring-cloud-stream application. And in this context beans of
type Supplier, Function or Consumer are treated as defacto message handlers triggering binding of to
destinations exposed by the provided binder following certain naming conventions and rules to
avoid extra configuration.

7.2.1. Binding and Binding names

Binding is an abstraction that represents a bridge between sources and targets exposed by the
binder and user code, This abstraction has a name and while we try to do our best to limit
configuration required to run spring-cloud-stream applications, being aware of such name(s) is
necessary for cases where additional per-binding configuration is required.

Throughout this manual you will see examples of configuration properties such as
spring.cloud.stream.bindings.input.destination=myQueue. The input segment in this property name
is what we refer to as binding name and it could derive via several mechanisms. The following sub-
sections will describe the naming conventions and configuration elements used by spring-cloud-
stream to control binding names.

If your binding name has special characters, such as the . character, you need to
surround the binding key with brackets ([]) and then wrap it in qoutes. For
example spring.cloud.stream.bindings."[my.output.binding.key]".destination.

Functional binding names

Unlike the explicit naming required by annotation-based support (legacy) used in the previous
versions of spring-cloud-stream, the functional programming model defaults to a simple
convention when it comes to binding names, thus greatly simplifying application configuration.
Let’s look at the first example:

@SpringBootApplication
public class SampleApplication {

 @Bean
 public Function<String, String> uppercase() {
 return value -> value.toUpperCase();
 }
}

In the preceding example we have an application with a single function which acts as message
handler. As a Function it has an input and output. The naming convention used to name input and
output bindings is as follows:

• input - <functionName> + -in- + <index>

• output - <functionName> + -out- + <index>

The in and out corresponds to the type of binding (such as input or output). The index is the index of
the input or output binding. It is always 0 for typical single input/output function, so it’s only
relevant for Functions with multiple input and output arguments.

So if for example you would want to map the input of this function to a remote destination (e.g.,
topic, queue etc) called "my-topic" you would do so with the following property:

--spring.cloud.stream.bindings.uppercase-in-0.destination=my-topic

Note how uppercase-in-0 is used as a segment in property name. The same goes for uppercase-out-0.

Descriptive Binding Names

Some times to improve readability you may want to give your binding a more descriptive name
(such as 'account', 'orders' etc). Another way of looking at it is you can map an implicit binding name
to an explicit binding name. And you can do it with
spring.cloud.stream.function.bindings.<binding-name> property. This property also provides a
migration path for existing applications that rely on custom interface-based bindings that require
explicit names.

For example,

--spring.cloud.stream.function.bindings.uppercase-in-0=input

In the preceding example you mapped and effectively renamed uppercase-in-0 binding name to
input. Now all configuration properties can refer to input binding name instead (e.g.,
--spring.cloud.stream.bindings.input.destination=my-topic).

While descriptive binding names may enhance the readability aspect of the
configuration, they also create another level of misdirection by mapping an
implicit binding name to an explicit binding name. And since all subsequent
configuration properties will use the explicit binding name you must always refer
to this 'bindings' property to correlate which function it actually corresponds to.
We believe that for most cases (with the exception of Functional Composition) it
may be an overkill, so, it is our recommendation to avoid using it altogether,
especially since not using it provides a clear path between binder destination and
binding name, such as spring.cloud.stream.bindings.uppercase-in-
0.destination=sample-topic, where you are clearly correlating the input of
uppercase function to sample-topic destination.

For more on properties and other configuration options please see Configuration Options section.

Explicit binding creation

In the previous section we explained how bindings are created implicitly driven by the names of
Function, Supplier or Consumer beans provided by your application. However, there are times when
you may need to create binding explicitly where bindings are not tied to any function. This is
typically done to support integrations with other frameworks via StreamBridge.

Spring Cloud Stream allows you to define input and output bindings explicitly via
spring.cloud.stream.input-bindings and spring.cloud.stream.output-bindings properties. Noticed
the plural in the property names allowing you to define multiple bindings by simply using ; as a
delimiter. Just look at the following test case as an example:

@Test
public void testExplicitBindings() {
 try (ConfigurableApplicationContext context = new SpringApplicationBuilder(

TestChannelBinderConfiguration.getCompleteConfiguration(EmptyConfiguration.class))
 .web(WebApplicationType.NONE)
 .run("--spring.jmx.enabled=false",
 "--spring.cloud.stream.input-bindings=fooin;barin",
 "--spring.cloud.stream.output-bindings=fooout;barout")) {

 . . .
 }
}

@EnableAutoConfiguration
@Configuration
public static class EmptyConfiguration {
}

As you can see we have declared two input bindings and two output bindings while our
configuration had no functions defined, yet we were able to successfully create these bindings and

access their corresponding channels.

7.3. Producing and Consuming Messages
You can write a Spring Cloud Stream application by simply writing functions and exposing them as
@Bean s. You can also use Spring Integration annotations based configuration or Spring Cloud
Stream annotation based configuration, although starting with spring-cloud-stream 3.x we
recommend using functional implementations.

7.3.1. Spring Cloud Function support

Overview

Since Spring Cloud Stream v2.1, another alternative for defining stream handlers and sources is to
use build-in support for Spring Cloud Function where they can be expressed as beans of type
java.util.function.[Supplier/Function/Consumer].

To specify which functional bean to bind to the external destination(s) exposed by the bindings, you
must provide spring.cloud.function.definition property.

In the event you only have single bean of type
java.util.function.[Supplier/Function/Consumer], you can skip the
spring.cloud.function.definition property, since such functional bean will be
auto-discovered. However, it is considered best practice to use such property to
avoid any confusion. Some time this auto-discovery can get in the way, since single
bean of type java.util.function.[Supplier/Function/Consumer] could be there for
purposes other then handling messages, yet being single it is auto-discovered and
auto-bound. For these rare scenarios you can disable auto-discovery by providing
spring.cloud.stream.function.autodetect property with value set to false.

Here is the example of the application exposing message handler as java.util.function.Function
effectively supporting pass-thru semantics by acting as consumer and producer of data.

@SpringBootApplication
public class MyFunctionBootApp {

 public static void main(String[] args) {
 SpringApplication.run(MyFunctionBootApp.class);
 }

 @Bean
 public Function<String, String> toUpperCase() {
 return s -> s.toUpperCase();
 }
}

In the preceding example, we define a bean of type java.util.function.Function called toUpperCase
to be acting as message handler whose 'input' and 'output' must be bound to the external

https://cloud.spring.io/spring-cloud-function/

destinations exposed by the provided destination binder. By default the 'input' and 'output' binding
names will be toUpperCase-in-0 and toUpperCase-out-0. Please see Functional binding names section
for details on naming convention used to establish binding names.

Below are the examples of simple functional applications to support other semantics:

Here is the example of a source semantics exposed as java.util.function.Supplier

@SpringBootApplication
public static class SourceFromSupplier {

 @Bean
 public Supplier<Date> date() {
 return () -> new Date(12345L);
 }
}

Here is the example of a sink semantics exposed as java.util.function.Consumer

@SpringBootApplication
public static class SinkFromConsumer {

 @Bean
 public Consumer<String> sink() {
 return System.out::println;
 }
}

Suppliers (Sources)

Function and Consumer are pretty straightforward when it comes to how their invocation is
triggered. They are triggered based on data (events) sent to the destination they are bound to. In
other words, they are classic event-driven components.

However, Supplier is in its own category when it comes to triggering. Since it is, by definition, the
source (the origin) of the data, it does not subscribe to any in-bound destination and, therefore, has
to be triggered by some other mechanism(s). There is also a question of Supplier implementation,
which could be imperative or reactive and which directly relates to the triggering of such suppliers.

Consider the following sample:

@SpringBootApplication
public static class SupplierConfiguration {

 @Bean
 public Supplier<String> stringSupplier() {
 return () -> "Hello from Supplier";
 }
}

The preceding Supplier bean produces a string whenever its get() method is invoked. However,
who invokes this method and how often? The framework provides a default polling mechanism
(answering the question of "Who?") that will trigger the invocation of the supplier and by default it
will do so every second (answering the question of "How often?"). In other words, the above
configuration produces a single message every second and each message is sent to an output
destination that is exposed by the binder. To learn how to customize the polling mechanism, see
Polling Configuration Properties section.

Consider a different example:

@SpringBootApplication
public static class SupplierConfiguration {

 @Bean
 public Supplier<Flux<String>> stringSupplier() {
 return () -> Flux.fromStream(Stream.generate(new Supplier<String>() {
 @Override
 public String get() {
 try {
 Thread.sleep(1000);
 return "Hello from Supplier";
 } catch (Exception e) {
 // ignore
 }
 }
 })).subscribeOn(Schedulers.elastic()).share();
 }
}

The preceding Supplier bean adopts the reactive programming style. Typically, and unlike the
imperative supplier, it should be triggered only once, given that the invocation of its get() method
produces (supplies) the continuous stream of messages and not an individual message.

The framework recognizes the difference in the programming style and guarantees that such a
supplier is triggered only once.

However, imagine the use case where you want to poll some data source and return a finite stream
of data representing the result set. The reactive programming style is a perfect mechanism for such
a Supplier. However, given the finite nature of the produced stream, such Supplier still needs to be

invoked periodically.

Consider the following sample, which emulates such use case by producing a finite stream of data:

@SpringBootApplication
public static class SupplierConfiguration {

 @PollableBean
 public Supplier<Flux<String>> stringSupplier() {
 return () -> Flux.just("hello", "bye");
 }
}

The bean itself is annotated with PollableBean annotation (sub-set of @Bean), thus signaling to the
framework that although the implementation of such a supplier is reactive, it still needs to be
polled.

There is a splittable attribute defined in PollableBean which signals to the post
processors of this annotation that the result produced by the annotated component
has to be split and is set to true by default. It means that the framework will split
the returning sending out each item as an individual message. If this is not he
desired behavior you can set it to false at which point such supplier will simply
return the produced Flux without splitting it.

Supplier & threading

As you have learned by now, unlike Function and Consumer, which are triggered by
an event (they have input data), Supplier does not have any input and thus
triggered by a different mechanism - poller, which may have an unpredictable
threading mechanism. And while the details of the threading mechanism most of
the time are not relevant to the downstream execution of the function it may
present an issue in certain cases especially with integrated frameworks that may
have certain expectations to thread affinity. For example, Spring Cloud Sleuth
which relies on tracing data stored in thread local. For those cases we have
another mechanism via StreamBridge, where user has more control over threading
mechanism. You can get more details in Sending arbitrary data to an output (e.g.
Foreign event-driven sources) section.

Consumer (Reactive)

Reactive Consumer is a little bit special because it has a void return type, leaving framework with no
reference to subscribe to. Most likely you will not need to write Consumer<Flux<?>>, and instead
write it as a Function<Flux<?>, Mono<Void>> invoking then operator as the last operator on your
stream.

For example:

https://spring.io/projects/spring-cloud-sleuth

public Function<Flux<?>, Mono<Void>> consumer() {
 return flux -> flux.map(..).filter(..).then();
}

But if you do need to write an explicit Consumer<Flux<?>>, remember to subscribe to the incoming
Flux.

Also, keep in mind that the same rule applies for function composition when mixing reactive and
imperative functions. Spring Cloud Function indeed supports composing reactive functions with
imperative, however you must be aware of certain limitations. For example, assume you have
composed reactive function with imperative consumer. The result of such composition is a reactive
Consumer. However, there is no way to subscribe to such consumer as discussed earlier in this
section, so this limitation can only be addressed by either making your consumer reactive and
subscribing manually (as discussed earlier), or changing your function to be imperative.

Polling Configuration Properties

The following properties are exposed by Spring Cloud Stream and are prefixed with the
spring.integration.poller.:

fixedDelay

Fixed delay for default poller in milliseconds.

Default: 1000L.

maxMessagesPerPoll

Maximum messages for each polling event of the default poller.

Default: 1L.

cron

Cron expression value for the Cron Trigger.

Default: none.

initialDelay

Initial delay for periodic triggers.

Default: 0.

timeUnit

The TimeUnit to apply to delay values.

Default: MILLISECONDS.

For example --spring.integration.poller.fixed-delay=2000 sets the poller interval to poll every two
seconds.

Per-binding polling configuration

The previous section shows how to configure a single default poller that will be applied to all
bindings. While it fits well with the model of microservices spring-cloud-stream designed for where
each microservice represents a single component (e.g., Supplier) and thus default poller
configuration is enough, there are edge cases where you may have several components that require
different polling configurations

For such cases please use per-binding way of configuring poller. For example, assume you have an
output binding supply-out-0. In this case you can configure poller for such binding using
spring.cloud.stream.bindings.supply-out-0.producer.poller.. prefix (e.g.,
spring.cloud.stream.bindings.supply-out-0.producer.poller.fixed-delay=2000).

Sending arbitrary data to an output (e.g. Foreign event-driven sources)

There are cases where the actual source of data may be coming from the external (foreign) system
that is not a binder. For example, the source of the data may be a classic REST endpoint. How do we
bridge such source with the functional mechanism used by spring-cloud-stream?

Spring Cloud Stream provides two mechanisms, so let’s look at them in more details

Here, for both samples we’ll use a standard MVC endpoint method called delegateToSupplier bound
to the root web context, delegating incoming requests to stream via StreamBridge mechanism.

@SpringBootApplication
@Controller
public class WebSourceApplication {

 public static void main(String[] args) {
 SpringApplication.run(WebSourceApplication.class, "--
spring.cloud.stream.output-bindings=toStream");
 }

 @Autowired
 private StreamBridge streamBridge;

 @RequestMapping
 @ResponseStatus(HttpStatus.ACCEPTED)
 public void delegateToSupplier(@RequestBody String body) {
 System.out.println("Sending " + body);
 streamBridge.send("toStream", body);
 }
}

Here we autowire a StreamBridge bean which allows us to send data to an output binding effectively
bridging non-stream application with spring-cloud-stream. Note that preceding example does not
have any source functions defined (e.g., Supplier bean) leaving the framework with no trigger to
create source bindings in advance, which would be typical for cases where configuration contains
function beans. And that is fine, since StreamBridge will initiate creation of output bindings (as well
as destination auto-provisioning if necessary) for non existing bindings on the first call to its

send(..) operation caching it for subsequent reuse (see StreamBridge and Dynamic Destinations for
more details).

However, if you want to pre-create an output binding at the initialization (startup) time you can
benefit from spring.cloud.stream.output-bindings property where you can declare the name of
your sources. The provided name will be used as a trigger to create a source binding. You can use ;
to signify multiple sources (multiple output bindings) (e.g., --spring.cloud.stream.output
-bindings=foo;bar)

Also, note that streamBridge.send(..) method takes an Object for data. This means you can send
POJO or Message to it and it will go through the same routine when sending output as if it was from
any Function or Supplier providing the same level of consistency as with functions. This means the
output type conversion, partitioning etc are honored as if it was from the output produced by
functions.

StreamBridge and Dynamic Destinations

StreamBridge can also be used for cases when output destination(s) are not known ahead of time
similar to the use cases described in Routing FROM Consumer section.

Let’s look at the example

@SpringBootApplication
@Controller
public class WebSourceApplication {

 public static void main(String[] args) {
 SpringApplication.run(WebSourceApplication.class, args);
 }

 @Autowired
 private StreamBridge streamBridge;

 @RequestMapping
 @ResponseStatus(HttpStatus.ACCEPTED)
 public void delegateToSupplier(@RequestBody String body) {
 System.out.println("Sending " + body);
 streamBridge.send("myDestination", body);
 }
}

As you can see the preceding example is very similar to the previous one with the exception of
explicit binding instruction provided via spring.cloud.stream.output-bindings property (which is
not provided). Here we’re sending data to myDestination name which does not exist as a binding.
Therefore such name will be treated as dynamic destination as described in Routing FROM
Consumer section.

In the preceding example, we are using ApplicationRunner as a foreign source to feed the stream.

A more practical example, where the foreign source is REST endpoint.

@SpringBootApplication
@Controller
public class WebSourceApplication {

 public static void main(String[] args) {
 SpringApplication.run(WebSourceApplication.class);
 }

 @Autowired
 private StreamBridge streamBridge;

 @RequestMapping
 @ResponseStatus(HttpStatus.ACCEPTED)
 public void delegateToSupplier(@RequestBody String body) {
 streamBridge.send("myBinding", body);
 }
}

As you can see inside of delegateToSupplier method we’re using StreamBridge to send data to
myBinding binding. And here you’re also benefiting from the dynamic features of StreamBridge
where if myBinding doesn’t exist it will be created automatically and cached, otherwise existing
binding will be used.

Caching dynamic destinations (bindings) could result in memory leaks in the event
there are many dynamic destinations. To have some level of control we provide a
self-evicting caching mechanism for output bindings with default cache size of 10.
This means that if your dynamic destination size goes above that number, there is
a possibility that an existing binding will be evicted and thus would need to be
recreated which could cause minor performance degradation. You can increase
the cache size via spring.cloud.stream.dynamic-destination-cache-size property
setting it to the desired value.

curl -H "Content-Type: text/plain" -X POST -d "hello from the other side"
http://localhost:8080/

By showing two examples we want to emphasize the approach will work with any type of foreign
sources.

If you are using the Solace PubSub+ binder, Spring Cloud Stream has reserved the
scst_targetDestination header (retrievable via
BinderHeaders.TARGET_DESTINATION), which allows for messages to be
redirected from their bindings' configured destination to the target destination
specified by this header. This allows for the binder to manage the resources
necessary to publish to dynamic destinations, relieving the framework from
having to do so, and avoids the caching issues mentioned in the previous Note.
More info here.

https://github.com/SolaceProducts/solace-spring-cloud/tree/master/solace-spring-cloud-starters/solace-spring-cloud-stream-starter#dynamic-producer-destinations

Output Content Type with StreamBridge

You can also provide specific content type if necessary with the following method signature public
boolean send(String bindingName, Object data, MimeType outputContentType). Or if you send data as
a Message, its content type will be honored.

Using specific binder type with StreamBridge

Spring Cloud Stream supports multiple binder scenarios. For example you may be receiving data
from Kafka and sending it to RabbitMQ.

For more information on multiple binders scenarios, please see Binders section and specifically
Multiple Binders on the Classpath

In the event you are planning to use StreamBridge and have more then one binder configured in
your application you must also tell StreamBridge which binder to use. And for that there are two
more variations of send method:

public boolean send(String bindingName, @Nullable String binderType, Object data)

public boolean send(String bindingName, @Nullable String binderType, Object data,
MimeType outputContentType)

As you can see there is one additional argument that you can provide - binderType, telling
BindingService which binder to use when creating dynamic binding.

For cases where spring.cloud.stream.output-bindings property is used or the
binding was already created under different binder, the binderType argument will
have no effect.

Using channel interceptors with StreamBridge

Since StreamBridge uses a MessageChannel to establish the output binding, you can activate channel
interceptors when sending data through StreamBridge. It is up to the application to decide which
channel interceptors to apply on StreamBridge. Spring Cloud Stream does not inject all the channel
interceptors detected into StreamBridge unless they are annoatated with
@GlobalChannelInterceptor(patterns = "*").

Let us assume that you have the following two different StreamBridge bindings in the application.

streamBridge.send("foo-out-0", message);

and

streamBridge.send("bar-out-0", message);

Now, if you want a channel interceptor applied on both the StreamBridge bindings, then you can
declare the following GlobalChannelInterceptor bean.

@Bean
@GlobalChannelInterceptor(patterns = "*")
public ChannelInterceptor customInterceptor() {
 return new ChannelInterceptor() {
 @Override
 public Message<?> preSend(Message<?> message, MessageChannel channel) {
 ...
 }
 };
}

However, if you don’t like the global approach above and want to have a dedicated interceptor for
each binding, then you can do the following.

@Bean
@GlobalChannelInterceptor(patterns = "foo-*")
public ChannelInterceptor fooInterceptor() {
 return new ChannelInterceptor() {
 @Override
 public Message<?> preSend(Message<?> message, MessageChannel channel) {
 ...
 }
 };
}

and

@Bean
@GlobalChannelInterceptor(patterns = "bar-*")
public ChannelInterceptor barInterceptor() {
 return new ChannelInterceptor() {
 @Override
 public Message<?> preSend(Message<?> message, MessageChannel channel) {
 ...
 }
 };
}

You have the flexibility to make the patterns more strict or customized to your business needs.

With this approach, the application gets the ability to decide which interceptors to inject in
StreamBridge rather than applying all the available interceptors.

StreamBridge provides a contract through the StreamOperations interface that
contains all the send methods of StreamBridge. Therefore, applications may choose
to autowire using StreamOperations. This is handy when it comes to unit testing
code that uses StreamBridge by providing a mock or similar mechanisms for the
StreamOperations interface.

Reactive Functions support

Since Spring Cloud Function is build on top of Project Reactor there isn’t much you need to do to
benefit from reactive programming model while implementing Supplier, Function or Consumer.

For example:

@SpringBootApplication
public static class SinkFromConsumer {

 @Bean
 public Function<Flux<String>, Flux<String>> reactiveUpperCase() {
 return flux -> flux.map(val -> val.toUpperCase());
 }
}

https://projectreactor.io/

Few important things must be understood when choosing reactive or imperative
programming model.

Fully reactive or just API?

Using reactive API does not necessarily imply that you can benefit from all of the
reactive features of such API. In other words things like back-pressure and other
advanced features will only work when they are working with compatible system -
such as Reactive Kafka binder. In the event you are using regular Kafka or Rabbit
or any other non-reactive binder, you can only benefit from the conveniences of
the reactive API itself and not its advanced features, since the actual sources or
targets of the stream are not reactive.

Error handling and retries

Throughout this manual you will see several reference on the framework-based
error handling, retries and other features as well as configuration properties
associated with them. It is important to understand that they only effect the
imperative functions and you should NOT have the same expectations when it
comes to reactive functions. And here is why. . . There is a fundamental difference
between reactive and imperative functions. Imperative function is a message
handler that is invoked by the framework on each message it receives. So for N
messages there will be N invocations of such function and because of that we can
wrap such function and add additional functionality such as error handling,
retries etc. Reactive function is initialization function. It is invoked only once to get
a reference to a Flux/Mono provided by the user to be connected with the one
provided by the framework. After that we (the framework) have absolutely no
visibility nor control of the stream. Therefore, with reactive functions you must
rely on the richness of the reactive API when it comes to error handling and
retries (i.e., doOnError(), .onError*() etc).

Functional Composition

Using functional programming model you can also benefit from functional composition where you
can dynamically compose complex handlers from a set of simple functions. As an example let’s add
the following function bean to the application defined above

@Bean
public Function<String, String> wrapInQuotes() {
 return s -> "\"" + s + "\"";
}

and modify the spring.cloud.function.definition property to reflect your intention to compose a
new function from both ‘toUpperCase’ and ‘wrapInQuotes’. To do so Spring Cloud Function relies on
| (pipe) symbol. So, to finish our example our property will now look like this:

--spring.cloud.function.definition=toUpperCase|wrapInQuotes

One of the great benefits of functional composition support provided by Spring
Cloud Function is the fact that you can compose reactive and imperative functions.

The result of a composition is a single function which, as you may guess, could have a very long and
rather cryptic name (e.g., foo|bar|baz|xyz. . .) presenting a great deal of inconvenience when it
comes to other configuration properties. This is where descriptive binding names feature described
in Functional binding names section can help.

For example, if we want to give our toUpperCase|wrapInQuotes a more descriptive name we can do
so with the following property spring.cloud.stream.function.bindings.toUpperCase|wrapInQuotes-
in-0=quotedUpperCaseInput allowing other configuration properties to refer to that binding name
(e.g., spring.cloud.stream.bindings.quotedUpperCaseInput.destination=myDestination).

Functional Composition and Cross-cutting Concerns

Function composition effectively allows you to address complexity by breaking it down to a set of
simple and individually manageable/testable components that could still be represented as one at
runtime. But that is not the only benefit.

You can also use composition to address certain cross-cutting non-functional concerns, such as
content enrichment. For example, assume you have an incoming message that may be lacking
certain headers, or some headers are not in the exact state your business function would expect.
You can now implement a separate function that addresses those concerns and then compose it
with the main business function.

Let’s look at the example

@SpringBootApplication
public class DemoStreamApplication {

 public static void main(String[] args) {
 SpringApplication.run(DemoStreamApplication.class,
 "--spring.cloud.function.definition=enrich|echo",
 "--spring.cloud.stream.function.bindings.enrich|echo-in-0=input",
 "--spring.cloud.stream.bindings.input.destination=myDestination",
 "--spring.cloud.stream.bindings.input.group=myGroup");

 }

 @Bean
 public Function<Message<String>, Message<String>> enrich() {
 return message -> {
 Assert.isTrue(!message.getHeaders().containsKey("foo"), "Should NOT
contain 'foo' header");
 return MessageBuilder.fromMessage(message).setHeader("foo",
"bar").build();
 };
 }

 @Bean
 public Function<Message<String>, Message<String>> echo() {
 return message -> {
 Assert.isTrue(message.getHeaders().containsKey("foo"), "Should contain
'foo' header");
 System.out.println("Incoming message " + message);
 return message;
 };
 }
}

While trivial, this example demonstrates how one function enriches the incoming Message with the
additional header(s) (non-functional concern), so the other function - echo - can benefit form it. The
echo function stays clean and focused on business logic only. You can also see the usage of
spring.cloud.stream.function.bindings property to simplify composed binding name.

Functions with multiple input and output arguments

Starting with version 3.0 spring-cloud-stream provides support for functions that have multiple
inputs and/or multiple outputs (return values). What does this actually mean and what type of use
cases it is targeting?

• Big Data: Imagine the source of data you’re dealing with is highly un-organized and contains
various types of data elements (e.g., orders, transactions etc) and you effectively need to sort it out.

• Data aggregation: Another use case may require you to merge data elements from 2+ incoming
_streams.

The above describes just a few use cases where you may need to use a single function to accept
and/or produce multiple streams of data. And that is the type of use cases we are targeting here.

Also, note a slightly different emphasis on the concept of streams here. The assumption is that such
functions are only valuable if they are given access to the actual streams of data (not the individual
elements). So for that we are relying on abstractions provided by Project Reactor (i.e., Flux and Mono)
which is already available on the classpath as part of the dependencies brought in by spring-cloud-
functions.

Another important aspect is representation of multiple input and outputs. While java provides
variety of different abstractions to represent multiple of something those abstractions are a)
unbounded, b) lack arity and c) lack type information which are all important in this context. As an
example, let’s look at Collection or an array which only allows us to describe multiple of a single
type or up-cast everything to an Object, affecting the transparent type conversion feature of spring-
cloud-stream and so on.

So to accommodate all these requirements the initial support is relying on the signature which
utilizes another abstraction provided by Project Reactor - Tuples. However, we are working on
allowing a more flexible signatures.

Please refer to Binding and Binding names section to understand the naming
convention used to establish binding names used by such application.

Let’s look at the few samples:

@SpringBootApplication
public class SampleApplication {

 @Bean
 public Function<Tuple2<Flux<String>, Flux<Integer>>, Flux<String>> gather() {
 return tuple -> {
 Flux<String> stringStream = tuple.getT1();
 Flux<String> intStream = tuple.getT2().map(i -> String.valueOf(i));
 return Flux.merge(stringStream, intStream);
 };
 }
}

The above example demonstrates function which takes two inputs (first of type String and second
of type Integer) and produces a single output of type String.

So, for the above example the two input bindings will be gather-in-0 and gather-in-1 and for
consistency the output binding also follows the same convention and is named gather-out-0.

Knowing that will allow you to set binding specific properties. For example, the following will
override content-type for gather-in-0 binding:

--spring.cloud.stream.bindings.gather-in-0.content-type=text/plain

https://projectreactor.io/

@SpringBootApplication
public class SampleApplication {

 @Bean
 public static Function<Flux<Integer>, Tuple2<Flux<String>, Flux<String>>>
scatter() {
 return flux -> {
 Flux<Integer> connectedFlux = flux.publish().autoConnect(2);
 UnicastProcessor even = UnicastProcessor.create();
 UnicastProcessor odd = UnicastProcessor.create();
 Flux<Integer> evenFlux = connectedFlux.filter(number -> number % 2 ==
0).doOnNext(number -> even.onNext("EVEN: " + number));
 Flux<Integer> oddFlux = connectedFlux.filter(number -> number % 2 !=
0).doOnNext(number -> odd.onNext("ODD: " + number));

 return Tuples.of(Flux.from(even).doOnSubscribe(x -> evenFlux.subscribe()),
Flux.from(odd).doOnSubscribe(x -> oddFlux.subscribe()));
 };
 }
}

The above example is somewhat of a the opposite from the previous sample and demonstrates
function which takes single input of type Integer and produces two outputs (both of type String).

So, for the above example the input binding is scatter-in-0 and the output bindings are scatter-
out-0 and scatter-out-1.

And you test it with the following code:

@Test
public void testSingleInputMultiOutput() {
 try (ConfigurableApplicationContext context = new SpringApplicationBuilder(
 TestChannelBinderConfiguration.getCompleteConfiguration(
 SampleApplication.class))
 .run("--spring.cloud.function.definition=scatter")) {

 InputDestination inputDestination = context.getBean(InputDestination.class);
 OutputDestination outputDestination =
context.getBean(OutputDestination.class);

 for (int i = 0; i < 10; i++) {

inputDestination.send(MessageBuilder.withPayload(String.valueOf(i).getBytes()).build()
);
 }

 int counter = 0;
 for (int i = 0; i < 5; i++) {
 Message<byte[]> even = outputDestination.receive(0, 0);
 assertThat(even.getPayload()).isEqualTo(("EVEN: " +
String.valueOf(counter++)).getBytes());
 Message<byte[]> odd = outputDestination.receive(0, 1);
 assertThat(odd.getPayload()).isEqualTo(("ODD: " +
String.valueOf(counter++)).getBytes());
 }
 }
}

Multiple functions in a single application

There may also be a need for grouping several message handlers in a single application. You would
do so by defining several functions.

@SpringBootApplication
public class SampleApplication {

 @Bean
 public Function<String, String> uppercase() {
 return value -> value.toUpperCase();
 }

 @Bean
 public Function<String, String> reverse() {
 return value -> new StringBuilder(value).reverse().toString();
 }
}

In the above example we have configuration which defines two functions uppercase and reverse. So
first, as mentioned before, we need to notice that there is a a conflict (more then one function) and
therefore we need to resolve it by providing spring.cloud.function.definition property pointing to
the actual function we want to bind. Except here we will use ; delimiter to point to both functions
(see test case below).

As with functions with multiple inputs/outputs, please refer to Binding and
Binding names section to understand the naming convention used to establish
binding names used by such application.

And you test it with the following code:

@Test
public void testMultipleFunctions() {
 try (ConfigurableApplicationContext context = new SpringApplicationBuilder(
 TestChannelBinderConfiguration.getCompleteConfiguration(
 ReactiveFunctionConfiguration.class))
 .run("--
spring.cloud.function.definition=uppercase;reverse")) {

 InputDestination inputDestination = context.getBean(InputDestination.class);
 OutputDestination outputDestination =
context.getBean(OutputDestination.class);

 Message<byte[]> inputMessage =
MessageBuilder.withPayload("Hello".getBytes()).build();
 inputDestination.send(inputMessage, "uppercase-in-0");
 inputDestination.send(inputMessage, "reverse-in-0");

 Message<byte[]> outputMessage = outputDestination.receive(0, "uppercase-out-
0");
 assertThat(outputMessage.getPayload()).isEqualTo("HELLO".getBytes());

 outputMessage = outputDestination.receive(0, "reverse-out-1");
 assertThat(outputMessage.getPayload()).isEqualTo("olleH".getBytes());
 }
}

Batch Consumers

When using a MessageChannelBinder that supports batch listeners, and the feature is enabled for the
consumer binding, you can set spring.cloud.stream.bindings.<binding-name>.consumer.batch-mode to
true to enable the entire batch of messages to be passed to the function in a List.

@Bean
public Function<List<Person>, Person> findFirstPerson() {
 return persons -> persons.get(0);
}

Batch Producers

You can also use the concept of batching on the producer side by returning a collection of Messages
which effectively provides an inverse effect where each message in the collection will be sent
individually by the binder.

Consider the following function:

@Bean
public Function<String, List<Message<String>>> batch() {
 return p -> {
 List<Message<String>> list = new ArrayList<>();
 list.add(MessageBuilder.withPayload(p + ":1").build());
 list.add(MessageBuilder.withPayload(p + ":2").build());
 list.add(MessageBuilder.withPayload(p + ":3").build());
 list.add(MessageBuilder.withPayload(p + ":4").build());
 return list;
 };
}

Each message in the returned list will be sent individually resulting in four messages sent to output
destination.

Spring Integration flow as functions

When you implement a function, you may have complex requirements that fit the category of
Enterprise Integration Patterns (EIP). These are best handled by using a framework such as Spring
Integration (SI), which is a reference implementation of EIP.

Thankfully SI already provides support for exposing integration flows as functions via Integration
flow as gateway Consider the following sample:

https://www.enterpriseintegrationpatterns.com
https://spring.io/projects/spring-integration
https://spring.io/projects/spring-integration
https://docs.spring.io/spring-integration/docs/current/reference/html/#java-dsl-gateway
https://docs.spring.io/spring-integration/docs/current/reference/html/#java-dsl-gateway

@SpringBootApplication
public class FunctionSampleSpringIntegrationApplication {

 public static void main(String[] args) {
 SpringApplication.run(FunctionSampleSpringIntegrationApplication.class, args);
 }

 @Bean
 public IntegrationFlow uppercaseFlow() {
 return IntegrationFlows.from(MessageFunction.class, "uppercase")
 .<String, String>transform(String::toUpperCase)
 .logAndReply(LoggingHandler.Level.WARN);
 }

 public interface MessageFunction extends Function<Message<String>,
Message<String>> {

 }
}

For those who are familiar with SI you can see we define a bean of type IntegrationFlow where we
declare an integration flow that we want to expose as a Function<String, String> (using SI DSL)
called uppercase. The MessageFunction interface lets us explicitly declare the type of the inputs and
outputs for proper type conversion. See Content Type Negotiation section for more on type
conversion.

To receive raw input you can use from(Function.class, …).

The resulting function is bound to the input and output destinations exposed by the target binder.

Please refer to Binding and Binding names section to understand the naming
convention used to establish binding names used by such application.

For more details on interoperability of Spring Integration and Spring Cloud Stream specifically
around functional programming model you may find this post very interesting, as it dives a bit
deeper into various patterns you can apply by merging the best of Spring Integration and Spring
Cloud Stream/Functions.

7.3.2. Using Polled Consumers

Overview

When using polled consumers, you poll the PollableMessageSource on demand. To define binding for
polled consumer you need to provide spring.cloud.stream.pollable-source property.

Consider the following example of a polled consumer binding:

https://spring.io/blog/2019/10/25/spring-cloud-stream-and-spring-integration

--spring.cloud.stream.pollable-source=myDestination

The pollable-source name myDestination in the preceding example will result in myDestination-in-0
binding name to stay consistent with functional programming model.

Given the polled consumer in the preceding example, you might use it as follows:

@Bean
public ApplicationRunner poller(PollableMessageSource destIn, MessageChannel destOut)
{
 return args -> {
 while (someCondition()) {
 try {
 if (!destIn.poll(m -> {
 String newPayload = ((String) m.getPayload()).toUpperCase();
 destOut.send(new GenericMessage<>(newPayload));
 })) {
 Thread.sleep(1000);
 }
 }
 catch (Exception e) {
 // handle failure
 }
 }
 };
}

A less manual and more Spring-like alternative would be to configure a scheduled task bean. For
example,

@Scheduled(fixedDelay = 5_000)
public void poll() {
 System.out.println("Polling...");
 this.source.poll(m -> {
 System.out.println(m.getPayload());

 }, new ParameterizedTypeReference<Foo>() { });
}

The PollableMessageSource.poll() method takes a MessageHandler argument (often a lambda
expression, as shown here). It returns true if the message was received and successfully processed.

As with message-driven consumers, if the MessageHandler throws an exception, messages are
published to error channels, as discussed in Error Handling.

Normally, the poll() method acknowledges the message when the MessageHandler exits. If the
method exits abnormally, the message is rejected (not re-queued), but see Handling Errors. You can

override that behavior by taking responsibility for the acknowledgment, as shown in the following
example:

@Bean
public ApplicationRunner poller(PollableMessageSource dest1In, MessageChannel
dest2Out) {
 return args -> {
 while (someCondition()) {
 if (!dest1In.poll(m -> {
 StaticMessageHeaderAccessor.getAcknowledgmentCallback(m).noAutoAck();
 // e.g. hand off to another thread which can perform the ack
 // or acknowledge(Status.REQUEUE)

 })) {
 Thread.sleep(1000);
 }
 }
 };
}

 You must ack (or nack) the message at some point, to avoid resource leaks.

Some messaging systems (such as Apache Kafka) maintain a simple offset in a log.
If a delivery fails and is re-queued with
StaticMessageHeaderAccessor.getAcknowledgmentCallback(m).acknowledge(Status.REQ
UEUE);, any later successfully ack’d messages are redelivered.

There is also an overloaded poll method, for which the definition is as follows:

poll(MessageHandler handler, ParameterizedTypeReference<?> type)

The type is a conversion hint that allows the incoming message payload to be converted, as shown
in the following example:

boolean result = pollableSource.poll(received -> {
 Map<String, Foo> payload = (Map<String, Foo>) received.getPayload();
 ...

 }, new ParameterizedTypeReference<Map<String, Foo>>() {});

Handling Errors

By default, an error channel is configured for the pollable source; if the callback throws an
exception, an ErrorMessage is sent to the error channel (<destination>.<group>.errors); this error
channel is also bridged to the global Spring Integration errorChannel.

You can subscribe to either error channel with a @ServiceActivator to handle errors; without a
subscription, the error will simply be logged and the message will be acknowledged as successful. If
the error channel service activator throws an exception, the message will be rejected (by default)
and won’t be redelivered. If the service activator throws a RequeueCurrentMessageException, the
message will be requeued at the broker and will be again retrieved on a subsequent poll.

If the listener throws a RequeueCurrentMessageException directly, the message will be requeued, as
discussed above, and will not be sent to the error channels.

7.4. Event Routing
Event Routing, in the context of Spring Cloud Stream, is the ability to either a) route events to a
particular event subscriber or b) route events produced by an event subscriber to a particular
destination. Here we’ll refer to it as route ‘TO’ and route ‘FROM’.

7.4.1. Routing TO Consumer

Routing can be achieved by relying on RoutingFunction available in Spring Cloud Function 3.0. All
you need to do is enable it via --spring.cloud.stream.function.routing.enabled=true application
property or provide spring.cloud.function.routing-expression property. Once enabled
RoutingFunction will be bound to input destination receiving all the messages and route them to
other functions based on the provided instruction.

For the purposes of binding the name of the routing destination is functionRouter-
in-0 (see RoutingFunction.FUNCTION_NAME and binding naming convention
Functional binding names).

Instruction could be provided with individual messages as well as application properties.

Here are couple of samples:

Using message headers

@SpringBootApplication
public class SampleApplication {

 public static void main(String[] args) {
 SpringApplication.run(SampleApplication.class,
 "--spring.cloud.stream.function.routing.enabled=true");
 }

 @Bean
 public Consumer<String> even() {
 return value -> {
 System.out.println("EVEN: " + value);
 };
 }

 @Bean
 public Consumer<String> odd() {
 return value -> {
 System.out.println("ODD: " + value);
 };
 }
}

By sending a message to the functionRouter-in-0 destination exposed by the binder (i.e., rabbit,
kafka), such message will be routed to the appropriate (‘even’ or ‘odd’) Consumer.

By default RoutingFunction will look for a spring.cloud.function.definition or
spring.cloud.function.routing-expression (for more dynamic scenarios with SpEL) header and if it
is found, its value will be treated as the routing instruction.

For example, setting spring.cloud.function.routing-expression header to value
T(java.lang.System).currentTimeMillis() % 2 == 0 ? 'even' : 'odd' will end up semi-randomly
routing request to either odd or even functions. Also, for SpEL, the root object of the evaluation
context is Message so you can do evaluation on individual headers (or message) as well ….routing-
expression=headers['type']

Using application properties

The spring.cloud.function.routing-expression and/or spring.cloud.function.definition can be
passed as application properties (e.g., spring.cloud.function.routing-expression=headers['type'].

@SpringBootApplication
public class RoutingStreamApplication {

 public static void main(String[] args) {
 SpringApplication.run(RoutingStreamApplication.class,
 "--spring.cloud.function.routing-expression="
 + "T(java.lang.System).nanoTime() % 2 == 0 ? 'even' : 'odd'");
 }
 @Bean
 public Consumer<Integer> even() {
 return value -> System.out.println("EVEN: " + value);
 }

 @Bean
 public Consumer<Integer> odd() {
 return value -> System.out.println("ODD: " + value);
 }
}

Passing instructions via application properties is especially important for reactive
functions given that a reactive function is only invoked once to pass the Publisher,
so access to the individual items is limited.

Routing Function and output binding

RoutingFunction is a Function and as such treated no differently than any other function. Well. . .
almost.

When RoutingFunction routes to another Function, its output is sent to the output binding of the
RoutingFunction which is functionRouter-in-0 as expected. But what if RoutingFunction routes to a
Consumer? In other words the result of invocation of the RoutingFunction may not produce anything
to be sent to the output binding, thus making it necessary to even have one. So, we do treat
RoutingFunction a little bit differently when we create bindings. And even though it is transparent
to you as a user (there is really nothing for you to do), being aware of some of the mechanics would
help you understand its inner workings.

So, the rule is; We never create output binding for the RoutingFunction, only input. So when you
routing to Consumer, the RoutingFunction effectively becomes as a Consumer by not having any output
bindings. However, if RoutingFunction happen to route to another Function which produces the
output, the output binding for the RoutingFunction will be create dynamically at which point
RoutingFunction will act as a regular Function with regards to bindings (having both input and
output bindings).

7.4.2. Routing FROM Consumer

Aside from static destinations, Spring Cloud Stream lets applications send messages to dynamically
bound destinations. This is useful, for example, when the target destination needs to be determined
at runtime. Applications can do so in one of two ways.

spring.cloud.stream.sendto.destination

You can also delegate to the framework to dynamically resolve the output destination by specifying
spring.cloud.stream.sendto.destination header set to the name of the destination to be resolved.

Consider the following example:

@SpringBootApplication
@Controller
public class SourceWithDynamicDestination {

 @Bean
 public Function<String, Message<String>> destinationAsPayload() {
 return value -> {
 return MessageBuilder.withPayload(value)
 .setHeader("spring.cloud.stream.sendto.destination", value).build();};
 }
}

Albeit trivial you can clearly see in this example, our output is a Message with
spring.cloud.stream.sendto.destination header set to the value of he input argument. The
framework will consult this header and will attempt to create or discover a destination with that
name and send output to it.

If destination names are known in advance, you can configure the producer properties as with any
other destination. Alternatively, if you register a NewDestinationBindingCallback<> bean, it is
invoked just before the binding is created. The callback takes the generic type of the extended
producer properties used by the binder. It has one method:

void configure(String destinationName, MessageChannel channel, ProducerProperties
producerProperties,
 T extendedProducerProperties);

The following example shows how to use the RabbitMQ binder:

@Bean
public NewDestinationBindingCallback<RabbitProducerProperties> dynamicConfigurer() {
 return (name, channel, props, extended) -> {
 props.setRequiredGroups("bindThisQueue");
 extended.setQueueNameGroupOnly(true);
 extended.setAutoBindDlq(true);
 extended.setDeadLetterQueueName("myDLQ");
 };
}

If you need to support dynamic destinations with multiple binder types, use Object
for the generic type and cast the extended argument as needed.

Also, please see [Using StreamBridge] section to see how yet another option (StreamBridge) can be
utilized for similar cases.

7.5. Post processing (after sending message)
Once function is invoked, its result is sent by the framework to a target destination which
effectively completes function invocation cycle.

However such cycle may not be fully complete from the business standpoint until some additional
tasks are performed after completion of this cycle. While this could be accomplished with a simple
combination of Consumer and StreamBridge as described in this Stack Overflow post, since version
4.0.3 the framework provides a more idiomatic approach to solve this issue via
PostProcessingFunction provided by Spring Cloud Function project. The PostProcessingFunction is a
special semi-marker function which contains one additional method postProcess(Message>)
designed to provide a place for implementing such post processing task.

package org.springframework.cloud.function.context
. . .
public interface PostProcessingFunction<I, O> extends Function<I, O> {
 default void postProcess(Message<O> result) {
 }
}

So, now you have two options.

Option 1: You can implement your function as PostProcessingFunction and also include the
additional post processing behavior by implementing its postProcess(Message>) method.

private static class Uppercase implements PostProcessingFunction<String, String> {

 @Override
 public String apply(String input) {
 return input.toUpperCase();
 }

 @Override
 public void postProcess(Message<String> result) {
 System.out.println("Function Uppercase has been successfully invoked and its
result successfully sent to target destination");
 }
}
. . .
@Bean
public Function<String, String> uppercase() {
 return new Uppercase();
}

https://stackoverflow.com/questions/75917883/post-processing-after-spring-cloud-stream-function

Option 2: If you already have an existing function and don’t want to change its implementation or
want to keep your function as POJO, you can simply implement only postProcess(Message>) method
and compose this new post processing function with your other function.

private static class Logger implements PostProcessingFunction<?, String> {

 @Override
 public void postProcess(Message<String> result) {
 System.out.println("Function has been successfully invoked and its result
successfully sent to target destination");
 }
}
. . .
@Bean
public Function<String, String> uppercase() {
 return v -> v.toUpperCase();
}
@Bean
public Function<String, String> logger() {
 return new Logger();
}
. . .
// and then have your function definition as such `uppercase|logger`

NOTE: In case of function composition only the last instance of PostProcessingFunction (if present)
will take effect. For example, let’s say you have the following function definition - foo|bar|baz and
both foo and baz are instances of PostProcessingFunction. Only baz.postProcess(Message>) will be
invoked. If baz is not an instance of PostProcessingFunction, then no post processing functionality
will be performed.

One may argue that you can easily do that via function composition by simply composing a post-
processor as just another Function. That is indeed a possibility however the post processing
functionality in this case will be invoked right after invocation of the previous function and before
the message is sent to a target destination which is before the function invocation cycle is complete.

7.6. Error Handling
In this section we’ll explain the general idea behind error handling mechanisms provided by the
framework. We’ll be using Rabbit binder as an example, since individual binders define different
set of properties for certain supported mechanisms specific to underlying broker capabilities (such
as Kafka binder).

Errors happen, and Spring Cloud Stream provides several flexible mechanisms to deal with them.
Note, the techniques are dependent on binder implementation and the capability of the underlying
messaging middleware as well as programming model (more on this later).

Whenever Message handler (function) throws an exception, it is propagated back to the binder, at
which point binder will make several attempts at re-trying the same message (3 by default) using

RetryTemplate provided by the Spring Retry library. If retries are unsuccessful it is up to the error
handling mechanism which may drop the message, re-queue the message for re-processing or send
the failed message to DLQ.

Both Rabbit and Kafka support these concepts (especially DLQ). However, other binders may not, so
refer to your individual binder’s documentation for details on supported error-handling options.

Keep in mind however, the reactive function does NOT qualify as a Message handler, since it does
not handle individual messages and instead provides a way to connect stream (i.e., Flux) provided
by the framework with the one provided by the user. Why is this important? That is because
anything you read later in this section with regard to Retry Template, dropping failed messages,
retrying, DLQ and configuration properties that assist with all of it only applies to Message
handlers (i.e., imperative functions).

Reactive API provides a very rich library of its own operators and mechanisms to assist you with
error handling specific to variety of reactive uses cases which are far more complex then simple
Message handler cases, So use them, such as public final Flux<T> retryWhen(Retry retrySpec); that
you can find in reactor.core.publisher.Flux.

@Bean
public Function<Flux<String>, Flux<String>> uppercase() {
 return flux -> flux
 .retryWhen(Retry.backoff(3, Duration.ofMillis(1000)))
 .map(v -> v.toUpperCase());
}

7.6.1. Drop Failed Messages

By default, the system provides error handlers. The first error handler will simply log error
message. The second error handler is binder specific error handler which is responsible for
handling error message in the context of a specific messaging system (e.g., send to DLQ). But since
no additional error handling configuration was provided (in this current scenario) this handler will
not do anything. So essentially after being logged, the message will be dropped.

While acceptable in some cases, for most cases, it is not, and we need some recovery mechanism to
avoid message loss.

7.6.2. Handle Error Messages

In the previous section we mentioned that by default messages that resulted in error are effectively
logged and dropped. The framework also exposes mechanism for you to provide custom error
handler (i.e., to send notification or write to database, etc). You can do so by adding Consumer that is
specifically designed to accept ErrorMessage which aside form all the information about the error
(e.g., stack trace etc) contains the original message (the one that triggered the error). NOTE: Custom
error handler is mutually exclusive with framework provided error handlers (i.e., logging and
binder error handler - see previous section) to ensure that they do not interfere.

https://github.com/spring-projects/spring-retry

@Bean
public Consumer<ErrorMessage> myErrorHandler() {
 return v -> {
 // send SMS notification code
 };
}

To identify such consumer as an error handler all you need is to provide error-handler-definition
property pointing to the function name - spring.cloud.stream.bindings.<binding-name>.error-
handler-definition=myErrorHandler.

For example, for binding name uppercase-in-0 the property would look like this:

spring.cloud.stream.bindings.uppercase-in-0.error-handler-definition=myErrorHandler

And if you used special mapping instruction to map binding to a more readable name -
spring.cloud.stream.function.bindings.uppercase-in-0=upper, then this property would look like
this:

spring.cloud.stream.bindings.upper.error-handler-definition=myErrorHandler.

If by accident you declare such handler as a Function, it will still work with the
exception that nothing is going to be done with its output. However, given that
such handler is still relying on functionality provided by Spring Cloud Function,
you can also benefit from function composition in the event your handler has
some complexity which you would like to address through function composition
(however unlikely).

Default Error Handler

If you want to have a single error handler for all function beans, you can use the standard spring-
cloud-stream mechanism for defining default properties spring.cloud.stream.default.error-
handler-definition=myErrorHandler

7.6.3. DLQ - Dead Letter Queue

Perhaps the most common mechanism, DLQ allows failed messages to be sent to a special
destination: the Dead Letter Queue.

When configured, failed messages are sent to this destination for subsequent re-processing or
auditing and reconciliation.

Consider the following example:

@SpringBootApplication
public class SimpleStreamApplication {

 public static void main(String[] args) throws Exception {
 SpringApplication.run(SimpleStreamApplication.class,
 "--spring.cloud.function.definition=uppercase",
 "--spring.cloud.stream.bindings.uppercase-in-0.destination=uppercase",
 "--spring.cloud.stream.bindings.uppercase-in-0.group=myGroup",
 "--spring.cloud.stream.rabbit.bindings.uppercase-in-0.consumer.auto-bind-
dlq=true"
);
 }

 @Bean
 public Function<Person, Person> uppercase() {
 return personIn -> {
 throw new RuntimeException("intentional");
 });
 };
 }
}

As a reminder, in this example uppercase-in-0 segment of the property corresponds to the name of
the input destination binding. The consumer segment indicates that it is a consumer property.

When using DLQ, at least the group property must be provided for proper naming
of the DLQ destination. However group is often used together with destination
property, as in our example.

Aside from some standard properties we also set the auto-bind-dlq to instruct the binder to create
and configure DLQ destination for uppercase-in-0 binding which corresponds to uppercase
destination (see corresponding property), which results in an additional Rabbit queue named
uppercase.myGroup.dlq (see Kafka documentation for Kafka specific DLQ properties).

Once configured, all failed messages are routed to this destination preserving the original message
for further actions.

And you can see that the error message contains more information relevant to the original error, as
follows:

. . . .
x-exception-stacktrace: org.springframework.messaging.MessageHandlingException: nested
exception is
 org.springframework.messaging.MessagingException: has an error,
failedMessage=GenericMessage [payload=byte[15],
 headers={amqp_receivedDeliveryMode=NON_PERSISTENT,
amqp_receivedRoutingKey=input.hello, amqp_deliveryTag=1,
 deliveryAttempt=3, amqp_consumerQueue=input.hello, amqp_redelivered=false,
id=a15231e6-3f80-677b-5ad7-d4b1e61e486e,
 amqp_consumerTag=amq.ctag-skBFapilvtZhDsn0k3ZmQg, contentType=application/json,
timestamp=1522327846136}]
 at
org.spring...integ...han...MethodInvokingMessageProcessor.processMessage(MethodInvokin
gMessageProcessor.java:107)
 at.
Payload: blah

You can also facilitate immediate dispatch to DLQ (without re-tries) by setting max-attempts to '1'.
For example,

--spring.cloud.stream.bindings.uppercase-in-0.consumer.max-attempts=1

7.6.4. Retry Template

In this section we cover configuration properties relevant to configuration of retry capabilities.

The RetryTemplate is part of the Spring Retry library. While it is out of scope of this document to
cover all of the capabilities of the RetryTemplate, we will mention the following consumer
properties that are specifically related to the RetryTemplate:

maxAttempts

The number of attempts to process the message.

Default: 3.

backOffInitialInterval

The backoff initial interval on retry.

Default 1000 milliseconds.

backOffMaxInterval

The maximum backoff interval.

Default 10000 milliseconds.

backOffMultiplier

The backoff multiplier.

https://github.com/spring-projects/spring-retry

Default 2.0.

defaultRetryable

Whether exceptions thrown by the listener that are not listed in the retryableExceptions are
retryable.

Default: true.

retryableExceptions

A map of Throwable class names in the key and a boolean in the value. Specify those exceptions
(and subclasses) that will or won’t be retried. Also see defaultRetriable. Example:
spring.cloud.stream.bindings.input.consumer.retryable-
exceptions.java.lang.IllegalStateException=false.

Default: empty.

While the preceding settings are sufficient for the majority of the customization requirements, they
may not satisfy certain complex requirements, at which point you may want to provide your own
instance of the RetryTemplate. To do so configure it as a bean in your application configuration. The
application provided instance will override the one provided by the framework. Also, to avoid
conflicts you must qualify the instance of the RetryTemplate you want to be used by the binder as
@StreamRetryTemplate. For example,

@StreamRetryTemplate
public RetryTemplate myRetryTemplate() {
 return new RetryTemplate();
}

As you can see from the above example you don’t need to annotate it with @Bean since
@StreamRetryTemplate is a qualified @Bean.

If you need to be more precise with your RetryTemplate, you can specify the bean by name in your
ConsumerProperties to associate the specific retry bean per binding.

spring.cloud.stream.bindings.<foo>.consumer.retry-template-name=<your-retry-template-
bean-name>

8. Binders
Spring Cloud Stream provides a Binder abstraction for use in connecting to physical destinations at
the external middleware. This section provides information about the main concepts behind the
Binder SPI, its main components, and implementation-specific details.

8.1. Producers and Consumers
The following image shows the general relationship of producers and consumers:

[producers consumers] | producers-consumers.png

Figure 11. Producers and Consumers

A producer is any component that sends messages to a binding destination. The binding destination
can be bound to an external message broker with a Binder implementation for that broker. When
invoking the bindProducer() method, the first parameter is the name of the destination within the
broker, the second parameter is the instance if local destination to which the producer sends
messages, and the third parameter contains properties (such as a partition key expression) to be
used within the adapter that is created for that binding destination.

A consumer is any component that receives messages from the binding destination. As with a
producer, the consumer can be bound to an external message broker. When invoking the
bindConsumer() method, the first parameter is the destination name, and a second parameter
provides the name of a logical group of consumers. Each group that is represented by consumer
bindings for a given destination receives a copy of each message that a producer sends to that
destination (that is, it follows normal publish-subscribe semantics). If there are multiple consumer
instances bound with the same group name, then messages are load-balanced across those
consumer instances so that each message sent by a producer is consumed by only a single
consumer instance within each group (that is, it follows normal queueing semantics).

8.2. Binder SPI
The Binder SPI consists of a number of interfaces, out-of-the box utility classes, and discovery
strategies that provide a pluggable mechanism for connecting to external middleware.

The key point of the SPI is the Binder interface, which is a strategy for connecting inputs and
outputs to external middleware. The following listing shows the definition of the Binder interface:

public interface Binder<T, C extends ConsumerProperties, P extends ProducerProperties>
{
 Binding<T> bindConsumer(String bindingName, String group, T inboundBindTarget, C
consumerProperties);

 Binding<T> bindProducer(String bindingName, T outboundBindTarget, P
producerProperties);
}

The interface is parameterized, offering a number of extension points:

• Input and output bind targets.

• Extended consumer and producer properties, allowing specific Binder implementations to add
supplemental properties that can be supported in a type-safe manner.

A typical binder implementation consists of the following:

• A class that implements the Binder interface;

• A Spring @Configuration class that creates a bean of type Binder along with the middleware

connection infrastructure.

• A META-INF/spring.binders file found on the classpath containing one or more binder
definitions, as shown in the following example:

kafka:\
org.springframework.cloud.stream.binder.kafka.config.KafkaBinderConfiguration

As it was mentioned earlier Binder abstraction is also one of the extension points
of the framework. So if you can’t find a suitable binder in the preceding list you
can implement your own binder on top of Spring Cloud Stream. In the How to
create a Spring Cloud Stream Binder from scratch post a community member
documents in details, with an example, a set of steps necessary to implement a
custom binder. The steps are also highlighted in the Implementing Custom Binders
section.

8.3. Binder Detection
Spring Cloud Stream relies on implementations of the Binder SPI to perform the task of connecting
(binding) user code to message brokers. Each Binder implementation typically connects to one type
of messaging system.

8.3.1. Classpath Detection

By default, Spring Cloud Stream relies on Spring Boot’s auto-configuration to configure the binding
process. If a single Binder implementation is found on the classpath, Spring Cloud Stream
automatically uses it. For example, a Spring Cloud Stream project that aims to bind only to
RabbitMQ can add the following dependency:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-stream-binder-rabbit</artifactId>
</dependency>

For the specific Maven coordinates of other binder dependencies, see the documentation of that
binder implementation.

8.4. Multiple Binders on the Classpath
When multiple binders are present on the classpath, the application must indicate which binder is
to be used for each destination binding. Each binder configuration contains a META-
INF/spring.binders file, which is a simple properties file, as shown in the following example:

https://medium.com/@domenicosibilio/how-to-create-a-spring-cloud-stream-binder-from-scratch-ab8b29ee931b
https://medium.com/@domenicosibilio/how-to-create-a-spring-cloud-stream-binder-from-scratch-ab8b29ee931b

rabbit:\
org.springframework.cloud.stream.binder.rabbit.config.RabbitServiceAutoConfiguration

Similar files exist for the other provided binder implementations (such as Kafka), and custom
binder implementations are expected to provide them as well. The key represents an identifying
name for the binder implementation, whereas the value is a comma-separated list of configuration
classes that each contain one and only one bean definition of type
org.springframework.cloud.stream.binder.Binder.

Binder selection can either be performed globally, using the spring.cloud.stream.defaultBinder
property (for example, spring.cloud.stream.defaultBinder=rabbit) or individually, by configuring
the binder on each binding. For instance, a processor application (that has bindings named input
and output for read and write respectively) that reads from Kafka and writes to RabbitMQ can
specify the following configuration:

spring.cloud.stream.bindings.input.binder=kafka
spring.cloud.stream.bindings.output.binder=rabbit

8.5. Connecting to Multiple Systems
By default, binders share the application’s Spring Boot auto-configuration, so that one instance of
each binder found on the classpath is created. If your application should connect to more than one
broker of the same type, you can specify multiple binder configurations, each with different
environment settings.

Turning on explicit binder configuration disables the default binder configuration
process altogether. If you do so, all binders in use must be included in the
configuration. Frameworks that intend to use Spring Cloud Stream transparently
may create binder configurations that can be referenced by name, but they do not
affect the default binder configuration. In order to do so, a binder configuration
may have its defaultCandidate flag set to false (for example,
spring.cloud.stream.binders.<configurationName>.defaultCandidate=false). This
denotes a configuration that exists independently of the default binder
configuration process.

The following example shows a typical configuration for a processor application that connects to
two RabbitMQ broker instances:

spring:
 cloud:
 stream:
 bindings:
 input:
 destination: thing1
 binder: rabbit1
 output:
 destination: thing2
 binder: rabbit2
 binders:
 rabbit1:
 type: rabbit
 environment:
 spring:
 rabbitmq:
 host: <host1>
 rabbit2:
 type: rabbit
 environment:
 spring:
 rabbitmq:
 host: <host2>

The environment property of the particular binder can also be used for any Spring
Boot property, including this spring.main.sources which can be useful for adding
additional configurations for the particular binders, e.g. overriding auto-
configured beans.

For example;

environment:
 spring:
 main:
 sources: com.acme.config.MyCustomBinderConfiguration

To activate a specific profile for the particular binder environment, you should use a
spring.profiles.active property:

environment:
 spring:
 profiles:
 active: myBinderProfile

8.6. Customizing binders in multi binder applications
When an application has multiple binders in it and wants to customize the binders, then that can
be achieved by providing a BinderCustomizer implementation. In the case of applications with a
single binder, this special customizer is not necessary since the binder context can access the
customization beans directly. However, this is not the case in a multi-binder scenario, since various
binders live in different application contexts. By providing an implementation of BinderCustomizer
interface, the binders, although reside in different application contexts, will receive the
customization. Spring Cloud Stream ensures that the customizations take place before the
applications start using the binders. The user must check for the binder type and then apply the
necessary customizations.

Here is an example of providing a BinderCustomizer bean.

@Bean
public BinderCustomizer binderCustomizer() {
 return (binder, binderName) -> {
 if (binder instanceof KafkaMessageChannelBinder kafkaMessageChannelBinder) {
 kafkaMessageChannelBinder.setRebalanceListener(...);
 }
 else if (binder instanceof KStreamBinder) {
 ...
 }
 else if (binder instanceof RabbitMessageChannelBinder) {
 ...
 }
 };
}

Note that, when there are more than one instance of the same type of the binder, the binder name
can be used to filter customization.

8.7. Binding visualization and control
Spring Cloud Stream supports visualization and control of the Bindings through Actuator endpoints
as well as programmatic way.

8.7.1. Programmatic way

Since version 3.1 we expose org.springframework.cloud.stream.binding.BindingsLifecycleController
which is registered as bean and once injected could be used to control the lifecycle of individual
bindings

For example, looks at the fragment from one of the test cases. As you can see we retrieve
BindingsLifecycleController from spring application context and execute individual methods to
control the lifecycle of echo-in-0 binding..

BindingsLifecycleController bindingsController =
context.getBean(BindingsLifecycleController.class);
Binding binding = bindingsController.queryState("echo-in-0");
assertThat(binding.isRunning()).isTrue();
bindingsController.changeState("echo-in-0", State.STOPPED);
//Alternative way of changing state. For convenience we expose start/stop and
pause/resume operations.
//bindingsController.stop("echo-in-0")
assertThat(binding.isRunning()).isFalse();

8.7.2. Actuator

Since actuator and web are optional, you must first add one of the web dependencies as well as add
the actuator dependency manually. The following example shows how to add the dependency for
the Web framework:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
</dependency>

The following example shows how to add the dependency for the WebFlux framework:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-webflux</artifactId>
</dependency>

You can add the Actuator dependency as follows:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
</dependency>

To run Spring Cloud Stream 2.0 apps in Cloud Foundry, you must add spring-boot-
starter-web and spring-boot-starter-actuator to the classpath. Otherwise, the
application will not start due to health check failures.

You must also enable the bindings actuator endpoints by setting the following property:
--management.endpoints.web.exposure.include=bindings.

Once those prerequisites are satisfied. you should see the following in the logs when application
start:

: Mapped "{[/actuator/bindings/{name}],methods=[POST]. . .
: Mapped "{[/actuator/bindings],methods=[GET]. . .
: Mapped "{[/actuator/bindings/{name}],methods=[GET]. . .

To visualize the current bindings, access the following URL: <host>:<port>/actuator/bindings

Alternative, to see a single binding, access one of the URLs similar to the following: <code><a
href="http://<host>:<port>/actuator/bindings/<bindingName>"
class="bare"><host>:<port>/actuator/bindings/<bindingName>;</code>

You can also stop, start, pause, and resume individual bindings by posting to the same URL while
providing a state argument as JSON, as shown in the following examples:

curl -d '{"state":"STOPPED"}' -H "Content-Type: application/json" -X POST
http://<host>:<port>/actuator/bindings/myBindingName
curl -d '{"state":"STARTED"}' -H "Content-Type: application/json" -X POST
http://<host>:<port>/actuator/bindings/myBindingName
curl -d '{"state":"PAUSED"}' -H "Content-Type: application/json" -X POST
http://<host>:<port>/actuator/bindings/myBindingName
curl -d '{"state":"RESUMED"}' -H "Content-Type: application/json" -X POST
http://<host>:<port>/actuator/bindings/myBindingName

PAUSED and RESUMED work only when the corresponding binder and its underlying
technology supports it. Otherwise, you see the warning message in the logs.
Currently, only Kafka and [Solace](github.com/SolaceProducts/solace-spring-cloud/
tree/master/solace-spring-cloud-starters/solace-spring-cloud-stream-starter#
consumer-bindings-pauseresume) binders supports the PAUSED and RESUMED states.

8.8. Binder Configuration Properties
The following properties are available when customizing binder configurations. These properties
exposed via org.springframework.cloud.stream.config.BinderProperties

They must be prefixed with spring.cloud.stream.binders.<configurationName>.

type

The binder type. It typically references one of the binders found on the classpath — in particular,
a key in a META-INF/spring.binders file.

By default, it has the same value as the configuration name.

inheritEnvironment

Whether the configuration inherits the environment of the application itself.

Default: true.

http://<host>:<port>/actuator/bindings
https://github.com/SolaceProducts/solace-spring-cloud/tree/master/solace-spring-cloud-starters/solace-spring-cloud-stream-starter#consumer-bindings-pauseresume
https://github.com/SolaceProducts/solace-spring-cloud/tree/master/solace-spring-cloud-starters/solace-spring-cloud-stream-starter#consumer-bindings-pauseresume
https://github.com/SolaceProducts/solace-spring-cloud/tree/master/solace-spring-cloud-starters/solace-spring-cloud-stream-starter#consumer-bindings-pauseresume

environment

Root for a set of properties that can be used to customize the environment of the binder. When
this property is set, the context in which the binder is being created is not a child of the
application context. This setting allows for complete separation between the binder components
and the application components.

Default: empty.

defaultCandidate

Whether the binder configuration is a candidate for being considered a default binder or can be
used only when explicitly referenced. This setting allows adding binder configurations without
interfering with the default processing.

Default: true.

8.9. Implementing Custom Binders
In order to implement a custom Binder, all you need is to:

• Add the required dependencies

• Provide a ProvisioningProvider implementation

• Provide a MessageProducer implementation

• Provide a MessageHandler implementation

• Provide a Binder implementation

• Create a Binder Configuration

• Define your binder in META-INF/spring.binders

Add the required dependencies

Add the spring-cloud-stream dependency to your project (eg. for Maven):

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-stream</artifactId>
 <version>${spring.cloud.stream.version}</version>
</dependency>

Provide a ProvisioningProvider implementation

The ProvisioningProvider is responsible for the provisioning of consumer and producer
destinations, and is required to convert the logical destinations included in the application.yml or
application.properties file in physical destination references.

Below an example of ProvisioningProvider implementation that simply trims the destinations
provided via input/output bindings configuration:

public class FileMessageBinderProvisioner implements
ProvisioningProvider<ConsumerProperties, ProducerProperties> {

 @Override
 public ProducerDestination provisionProducerDestination(
 final String name,
 final ProducerProperties properties) {

 return new FileMessageDestination(name);
 }

 @Override
 public ConsumerDestination provisionConsumerDestination(
 final String name,
 final String group,
 final ConsumerProperties properties) {

 return new FileMessageDestination(name);
 }

 private class FileMessageDestination implements ProducerDestination,
ConsumerDestination {

 private final String destination;

 private FileMessageDestination(final String destination) {
 this.destination = destination;
 }

 @Override
 public String getName() {
 return destination.trim();
 }

 @Override
 public String getNameForPartition(int partition) {
 throw new UnsupportedOperationException("Partitioning is not implemented
for file messaging.");
 }

 }

}

Provide a MessageProducer implementation

The MessageProducer is responsible for consuming events and handling them as messages to the
client application that is configured to consume such events.

Here is an example of MessageProducer implementation that extends the MessageProducerSupport

abstraction in order to poll on a file that matches the trimmed destination name and is located in
the project path, while also archiving read messages and discarding consequent identical messages:

public class FileMessageProducer extends MessageProducerSupport {

 public static final String ARCHIVE = "archive.txt";
 private final ConsumerDestination destination;
 private String previousPayload;

 public FileMessageProducer(ConsumerDestination destination) {
 this.destination = destination;
 }

 @Override
 public void doStart() {
 receive();
 }

 private void receive() {
 ScheduledExecutorService executorService =
Executors.newScheduledThreadPool(1);

 executorService.scheduleWithFixedDelay(() -> {
 String payload = getPayload();

 if(payload != null) {
 Message<String> receivedMessage =
MessageBuilder.withPayload(payload).build();
 archiveMessage(payload);
 sendMessage(receivedMessage);
 }

 }, 0, 50, MILLISECONDS);
 }

 private String getPayload() {
 try {
 List<String> allLines =
Files.readAllLines(Paths.get(destination.getName()));
 String currentPayload = allLines.get(allLines.size() - 1);

 if(!currentPayload.equals(previousPayload)) {
 previousPayload = currentPayload;
 return currentPayload;
 }
 } catch (IOException e) {
 throw new RuntimeException(e);
 }

 return null;

 }

 private void archiveMessage(String payload) {
 try {
 Files.write(Paths.get(ARCHIVE), (payload + "\n").getBytes(), CREATE,
APPEND);
 } catch (IOException e) {
 throw new RuntimeException(e);
 }
 }

}

When implementing a custom binder, this step is not strictly mandatory as you
could always resort to using an already existing MessageProducer
implementation!

Provide a MessageHandler implementation

The MessageHandler provides the logic required to produce an event.

Here is an example of MessageHandler implementation:

public class FileMessageHandler implements MessageHandler{

 @Override
 public void handleMessage(Message<?> message) throws MessagingException {
 //write message to file
 }

}

When implementing a custom binder, this step is not strictly mandatory as you
could always resort to using an already existing MessageHandler implementation!

Provide a Binder implementation

You are now able to provide your own implementation of the Binder abstraction. This can be easily
done by:

• extending the AbstractMessageChannelBinder class

• specifying your ProvisioningProvider as a generic argument of the
AbstractMessageChannelBinder

• overriding the createProducerMessageHandler and createConsumerEndpoint methods

eg.:

public class FileMessageBinder extends
AbstractMessageChannelBinder<ConsumerProperties, ProducerProperties,
FileMessageBinderProvisioner> {

 public FileMessageBinder(
 String[] headersToEmbed,
 FileMessageBinderProvisioner provisioningProvider) {

 super(headersToEmbed, provisioningProvider);
 }

 @Override
 protected MessageHandler createProducerMessageHandler(
 final ProducerDestination destination,
 final ProducerProperties producerProperties,
 final MessageChannel errorChannel) throws Exception {

 return message -> {
 String fileName = destination.getName();
 String payload = new String((byte[])message.getPayload()) + "\n";

 try {
 Files.write(Paths.get(fileName), payload.getBytes(), CREATE, APPEND);
 } catch (IOException e) {
 throw new RuntimeException(e);
 }
 };
 }

 @Override
 protected MessageProducer createConsumerEndpoint(
 final ConsumerDestination destination,
 final String group,
 final ConsumerProperties properties) throws Exception {

 return new FileMessageProducer(destination);
 }

}

Create a Binder Configuration

It is strictly required that you create a Spring Configuration to initialize the bean for your binder
implementation (and all other beans that you might need):

@Configuration
public class FileMessageBinderConfiguration {

 @Bean
 @ConditionalOnMissingBean
 public FileMessageBinderProvisioner fileMessageBinderProvisioner() {
 return new FileMessageBinderProvisioner();
 }

 @Bean
 @ConditionalOnMissingBean
 public FileMessageBinder fileMessageBinder(FileMessageBinderProvisioner
fileMessageBinderProvisioner) {
 return new FileMessageBinder(null, fileMessageBinderProvisioner);
 }

}

Define your binder in META-INF/spring.binders

Finally, you must define your binder in a META-INF/spring.binders file on the classpath, specifying
both the name of the binder and the full qualified name of your Binder Configuration class:

myFileBinder:\
com.example.springcloudstreamcustombinder.config.FileMessageBinderConfiguration

9. Configuration Options
Spring Cloud Stream supports general configuration options as well as configuration for bindings
and binders. Some binders let additional binding properties support middleware-specific features.

Configuration options can be provided to Spring Cloud Stream applications through any
mechanism supported by Spring Boot. This includes application arguments, environment variables,
and YAML or .properties files.

9.1. Binding Service Properties
These properties are exposed via
org.springframework.cloud.stream.config.BindingServiceProperties

spring.cloud.stream.instanceCount

The number of deployed instances of an application. Must be set for partitioning on the
producer side. Must be set on the consumer side when using RabbitMQ and with Kafka if
autoRebalanceEnabled=false.

Default: 1.

spring.cloud.stream.instanceIndex

The instance index of the application: A number from 0 to instanceCount - 1. Used for
partitioning with RabbitMQ and with Kafka if autoRebalanceEnabled=false. Automatically set in
Cloud Foundry to match the application’s instance index.

spring.cloud.stream.dynamicDestinations

A list of destinations that can be bound dynamically (for example, in a dynamic routing
scenario). If set, only listed destinations can be bound.

Default: empty (letting any destination be bound).

spring.cloud.stream.defaultBinder

The default binder to use, if multiple binders are configured. See Multiple Binders on the
Classpath.

Default: empty.

spring.cloud.stream.overrideCloudConnectors

This property is only applicable when the cloud profile is active and Spring Cloud Connectors are
provided with the application. If the property is false (the default), the binder detects a suitable
bound service (for example, a RabbitMQ service bound in Cloud Foundry for the RabbitMQ
binder) and uses it for creating connections (usually through Spring Cloud Connectors). When
set to true, this property instructs binders to completely ignore the bound services and rely on
Spring Boot properties (for example, relying on the spring.rabbitmq.* properties provided in the
environment for the RabbitMQ binder). The typical usage of this property is to be nested in a
customized environment when connecting to multiple systems.

Default: false.

spring.cloud.stream.bindingRetryInterval

The interval (in seconds) between retrying binding creation when, for example, the binder does
not support late binding and the broker (for example, Apache Kafka) is down. Set it to zero to
treat such conditions as fatal, preventing the application from starting.

Default: 30

9.2. Binding Properties
Binding properties are supplied by using the format of
spring.cloud.stream.bindings.<bindingName>.<property>=<value>. The <bindingName> represents the
name of the binding being configured.

For example, for the following function

@Bean
public Function<String, String> uppercase() {
 return v -> v.toUpperCase();
}

there are two bindings named uppercase-in-0 for input and uppercase-out-0 for output. See Binding
and Binding names for more details.

To avoid repetition, Spring Cloud Stream supports setting values for all bindings, in the format of
spring.cloud.stream.default.<property>=<value> and
spring.cloud.stream.default.<producer|consumer>.<property>=<value> for common binding
properties.

When it comes to avoiding repetitions for extended binding properties, this format should be used -
spring.cloud.stream.<binder-type>.default.<producer|consumer>.<property>=<value>.

9.2.1. Common Binding Properties

These properties are exposed via org.springframework.cloud.stream.config.BindingProperties

The following binding properties are available for both input and output bindings and must be
prefixed with spring.cloud.stream.bindings.<bindingName>. (for example,
spring.cloud.stream.bindings.uppercase-in-0.destination=ticktock).

Default values can be set by using the spring.cloud.stream.default prefix (for example
spring.cloud.stream.default.contentType=application/json).

destination

The target destination of a binding on the bound middleware (for example, the RabbitMQ
exchange or Kafka topic). If binding represents a consumer binding (input), it could be bound to
multiple destinations, and the destination names can be specified as comma-separated String
values. If not, the actual binding name is used instead. The default value of this property cannot
be overridden.

group

The consumer group of the binding. Applies only to inbound bindings. See Consumer Groups.

Default: null (indicating an anonymous consumer).

contentType

The content type of this binding. See Content Type Negotiation.

Default: application/json.

binder

The binder used by this binding. See Multiple Binders on the Classpath for details.

Default: null (the default binder is used, if it exists).

9.2.2. Consumer Properties

These properties are exposed via org.springframework.cloud.stream.binder.ConsumerProperties

The following binding properties are available for input bindings only and must be prefixed with
spring.cloud.stream.bindings.<bindingName>.consumer. (for example,

spring.cloud.stream.bindings.input.consumer.concurrency=3).

Default values can be set by using the spring.cloud.stream.default.consumer prefix (for example,
spring.cloud.stream.default.consumer.headerMode=none).

autoStartup

Signals if this consumer needs to be started automatically

Default: true.

concurrency

The concurrency of the inbound consumer.

Default: 1.

partitioned

Whether the consumer receives data from a partitioned producer.

Default: false.

headerMode

When set to none, disables header parsing on input. Effective only for messaging middleware
that does not support message headers natively and requires header embedding. This option is
useful when consuming data from non-Spring Cloud Stream applications when native headers
are not supported. When set to headers, it uses the middleware’s native header mechanism.
When set to embeddedHeaders, it embeds headers into the message payload.

Default: depends on the binder implementation.

maxAttempts

If processing fails, the number of attempts to process the message (including the first). Set to 1 to
disable retry.

Default: 3.

backOffInitialInterval

The backoff initial interval on retry.

Default: 1000.

backOffMaxInterval

The maximum backoff interval.

Default: 10000.

backOffMultiplier

The backoff multiplier.

Default: 2.0.

defaultRetryable

Whether exceptions thrown by the listener that are not listed in the retryableExceptions are
retryable.

Default: true.

instanceCount

When set to a value greater than equal to zero, it allows customizing the instance count of this
consumer (if different from spring.cloud.stream.instanceCount). When set to a negative value, it
defaults to spring.cloud.stream.instanceCount. See Instance Index and Instance Count for more
information.

Default: -1.

instanceIndex

When set to a value greater than equal to zero, it allows customizing the instance index of this
consumer (if different from spring.cloud.stream.instanceIndex). When set to a negative value, it
defaults to spring.cloud.stream.instanceIndex. Ignored if instanceIndexList is provided. See
Instance Index and Instance Count for more information.

Default: -1.

instanceIndexList

Used with binders that do not support native partitioning (such as RabbitMQ); allows an
application instance to consume from more than one partition.

Default: empty.

retryableExceptions

A map of Throwable class names in the key and a boolean in the value. Specify those exceptions
(and subclasses) that will or won’t be retried. Also see defaultRetriable. Example:
spring.cloud.stream.bindings.input.consumer.retryable-
exceptions.java.lang.IllegalStateException=false.

Default: empty.

useNativeDecoding

When set to true, the inbound message is deserialized directly by the client library, which must
be configured correspondingly (for example, setting an appropriate Kafka producer value
deserializer). When this configuration is being used, the inbound message unmarshalling is not
based on the contentType of the binding. When native decoding is used, it is the responsibility of
the producer to use an appropriate encoder (for example, the Kafka producer value serializer) to
serialize the outbound message. Also, when native encoding and decoding is used, the
headerMode=embeddedHeaders property is ignored and headers are not embedded in the message.
See the producer property useNativeEncoding.

Default: false.

multiplex

When set to true, the underlying binder will natively multiplex destinations on the same input
binding.

Default: false.

9.2.3. Advanced Consumer Configuration

For advanced configuration of the underlying message listener container for message-driven
consumers, add a single ListenerContainerCustomizer bean to the application context. It will be
invoked after the above properties have been applied and can be used to set additional properties.
Similarly, for polled consumers, add a MessageSourceCustomizer bean.

The following is an example for the RabbitMQ binder:

@Bean
public ListenerContainerCustomizer<AbstractMessageListenerContainer>
containerCustomizer() {
 return (container, dest, group) -> container.setAdviceChain(advice1, advice2);
}

@Bean
public MessageSourceCustomizer<AmqpMessageSource> sourceCustomizer() {
 return (source, dest, group) ->
source.setPropertiesConverter(customPropertiesConverter);
}

9.2.4. Producer Properties

These properties are exposed via org.springframework.cloud.stream.binder.ProducerProperties

The following binding properties are available for output bindings only and must be prefixed with
spring.cloud.stream.bindings.<bindingName>.producer. (for example,
spring.cloud.stream.bindings.func-out-0.producer.partitionKeyExpression=headers.id).

Default values can be set by using the prefix spring.cloud.stream.default.producer (for example,
spring.cloud.stream.default.producer.partitionKeyExpression=headers.id).

autoStartup

Signals if this consumer needs to be started automatically

Default: true.

partitionKeyExpression

A SpEL expression that determines how to partition outbound data. If set, outbound data on this
binding is partitioned. partitionCount must be set to a value greater than 1 to be effective. See
Partitioning Support.

Default: null.

partitionKeyExtractorName

The name of the bean that implements PartitionKeyExtractorStrategy. Used to extract a key used
to compute the partition id (see 'partitionSelector*'). Mutually exclusive with
'partitionKeyExpression'.

Default: null.

partitionSelectorName

The name of the bean that implements PartitionSelectorStrategy. Used to determine partition id
based on partition key (see 'partitionKeyExtractor*'). Mutually exclusive with
'partitionSelectorExpression'.

Default: null.

partitionSelectorExpression

A SpEL expression for customizing partition selection. If neither is set, the partition is selected as
the hashCode(key) % partitionCount, where key is computed through either
partitionKeyExpression.

Default: null.

partitionCount

The number of target partitions for the data, if partitioning is enabled. Must be set to a value
greater than 1 if the producer is partitioned. On Kafka, it is interpreted as a hint. The larger of
this and the partition count of the target topic is used instead.

Default: 1.

requiredGroups

A comma-separated list of groups to which the producer must ensure message delivery even if
they start after it has been created (for example, by pre-creating durable queues in RabbitMQ).

headerMode

When set to none, it disables header embedding on output. It is effective only for messaging
middleware that does not support message headers natively and requires header embedding.
This option is useful when producing data for non-Spring Cloud Stream applications when
native headers are not supported. When set to headers, it uses the middleware’s native header
mechanism. When set to embeddedHeaders, it embeds headers into the message payload.

Default: Depends on the binder implementation.

useNativeEncoding

When set to true, the outbound message is serialized directly by the client library, which must be
configured correspondingly (for example, setting an appropriate Kafka producer value
serializer). When this configuration is being used, the outbound message marshalling is not
based on the contentType of the binding. When native encoding is used, it is the responsibility of
the consumer to use an appropriate decoder (for example, the Kafka consumer value de-

serializer) to deserialize the inbound message. Also, when native encoding and decoding is used,
the headerMode=embeddedHeaders property is ignored and headers are not embedded in the
message. See the consumer property useNativeDecoding.

Default: false.

errorChannelEnabled

When set to true, if the binder supports asynchroous send results, send failures are sent to an
error channel for the destination. See Error Handling for more information.

Default: false.

9.2.5. Advanced Producer Configuration

In some cases Producer Properties are not enough to properly configure a producing
MessageHandler in the binder, or may be you prefer a programmatic approach while configuring
such producing MessageHandler. Regardless of the reason, spring-cloud-stream provides
ProducerMessageHandlerCustomizer to accomplish it.

@FunctionalInterface
public interface ProducerMessageHandlerCustomizer<H extends MessageHandler> {

 /**
 * Configure a {@link MessageHandler} that is being created by the binder for
the
 * provided destination name.
 * @param handler the {@link MessageHandler} from the binder.
 * @param destinationName the bound destination name.
 */
 void configure(H handler, String destinationName);

}

As you can see it gives you access to an actual instance of producing MessageHandler which you
can configure as you wish. All you need to do is provide implementation of this strategy and
configure it as a @Bean.

10. Content Type Negotiation
Data transformation is one of the core features of any message-driven microservice architecture.
Given that, in Spring Cloud Stream, such data is represented as a Spring Message, a message may
have to be transformed to a desired shape or size before reaching its destination. This is required
for two reasons:

1. To convert the contents of the incoming message to match the signature of the application-
provided handler.

2. To convert the contents of the outgoing message to the wire format.

The wire format is typically byte[] (that is true for the Kafka and Rabbit binders), but it is governed
by the binder implementation.

In Spring Cloud Stream, message transformation is accomplished with an
org.springframework.messaging.converter.MessageConverter.

As a supplement to the details to follow, you may also want to read the following
blog post.

10.1. Mechanics
To better understand the mechanics and the necessity behind content-type negotiation, we take a
look at a very simple use case by using the following message handler as an example:

public Function<Person, String> personFunction {..}

For simplicity, we assume that this is the only handler function in the application
(we assume there is no internal pipeline).

The handler shown in the preceding example expects a Person object as an argument and produces
a String type as an output. In order for the framework to succeed in passing the incoming Message
as an argument to this handler, it has to somehow transform the payload of the Message type from
the wire format to a Person type. In other words, the framework must locate and apply the
appropriate MessageConverter. To accomplish that, the framework needs some instructions from the
user. One of these instructions is already provided by the signature of the handler method itself
(Person type). Consequently, in theory, that should be (and, in some cases, is) enough. However, for
the majority of use cases, in order to select the appropriate MessageConverter, the framework needs
an additional piece of information. That missing piece is contentType.

Spring Cloud Stream provides three mechanisms to define contentType (in order of precedence):

1. HEADER: The contentType can be communicated through the Message itself. By providing a
contentType header, you declare the content type to use to locate and apply the appropriate
MessageConverter.

2. BINDING: The contentType can be set per destination binding by setting the
spring.cloud.stream.bindings.input.content-type property.

The input segment in the property name corresponds to the actual name of the
destination (which is “input” in our case). This approach lets you declare, on a
per-binding basis, the content type to use to locate and apply the appropriate
MessageConverter.

3. DEFAULT: If contentType is not present in the Message header or the binding, the default
application/json content type is used to locate and apply the appropriate MessageConverter.

https://spring.io/blog/2018/02/26/spring-cloud-stream-2-0-content-type-negotiation-and-transformation

As mentioned earlier, the preceding list also demonstrates the order of precedence in case of a tie.
For example, a header-provided content type takes precedence over any other content type. The
same applies for a content type set on a per-binding basis, which essentially lets you override the
default content type. However, it also provides a sensible default (which was determined from
community feedback).

Another reason for making application/json the default stems from the interoperability
requirements driven by distributed microservices architectures, where producer and consumer not
only run in different JVMs but can also run on different non-JVM platforms.

When the non-void handler method returns, if the return value is already a Message, that Message
becomes the payload. However, when the return value is not a Message, the new Message is
constructed with the return value as the payload while inheriting headers from the input Message
minus the headers defined or filtered by
SpringIntegrationProperties.messageHandlerNotPropagatedHeaders. By default, there is only one
header set there: contentType. This means that the new Message does not have contentType header
set, thus ensuring that the contentType can evolve. You can always opt out of returning a Message
from the handler method where you can inject any header you wish.

If there is an internal pipeline, the Message is sent to the next handler by going through the same
process of conversion. However, if there is no internal pipeline or you have reached the end of it,
the Message is sent back to the output destination.

10.1.1. Content Type versus Argument Type

As mentioned earlier, for the framework to select the appropriate MessageConverter, it requires
argument type and, optionally, content type information. The logic for selecting the appropriate
MessageConverter resides with the argument resolvers (HandlerMethodArgumentResolvers), which
trigger right before the invocation of the user-defined handler method (which is when the actual
argument type is known to the framework). If the argument type does not match the type of the
current payload, the framework delegates to the stack of the pre-configured MessageConverters to
see if any one of them can convert the payload. As you can see, the Object fromMessage(Message<?>
message, Class<?> targetClass); operation of the MessageConverter takes targetClass as one of its
arguments. The framework also ensures that the provided Message always contains a contentType
header. When no contentType header was already present, it injects either the per-binding
contentType header or the default contentType header. The combination of contentType argument
type is the mechanism by which framework determines if message can be converted to a target
type. If no appropriate MessageConverter is found, an exception is thrown, which you can handle by
adding a custom MessageConverter (see User-defined Message Converters).

But what if the payload type matches the target type declared by the handler method? In this case,
there is nothing to convert, and the payload is passed unmodified. While this sounds pretty
straightforward and logical, keep in mind handler methods that take a Message<?> or Object as an
argument. By declaring the target type to be Object (which is an instanceof everything in Java), you
essentially forfeit the conversion process.

Do not expect Message to be converted into some other type based only on the
contentType. Remember that the contentType is complementary to the target type. If
you wish, you can provide a hint, which MessageConverter may or may not take into
consideration.

10.1.2. Message Converters

MessageConverters define two methods:

Object fromMessage(Message<?> message, Class<?> targetClass);

Message<?> toMessage(Object payload, @Nullable MessageHeaders headers);

It is important to understand the contract of these methods and their usage, specifically in the
context of Spring Cloud Stream.

The fromMessage method converts an incoming Message to an argument type. The payload of the
Message could be any type, and it is up to the actual implementation of the MessageConverter to
support multiple types. For example, some JSON converter may support the payload type as byte[],
String, and others. This is important when the application contains an internal pipeline (that is,
input → handler1 → handler2 →. . . → output) and the output of the upstream handler results in a
Message which may not be in the initial wire format.

However, the toMessage method has a more strict contract and must always convert Message to the
wire format: byte[].

So, for all intents and purposes (and especially when implementing your own converter) you
regard the two methods as having the following signatures:

Object fromMessage(Message<?> message, Class<?> targetClass);

Message<byte[]> toMessage(Object payload, @Nullable MessageHeaders headers);

10.2. Provided MessageConverters
As mentioned earlier, the framework already provides a stack of MessageConverters to handle most
common use cases. The following list describes the provided MessageConverters, in order of
precedence (the first MessageConverter that works is used):

1. JsonMessageConverter: As the name suggests it supports conversion of the payload of the Message
to/from POJO for cases when contentType is application/json (DEFAULT).

2. ByteArrayMessageConverter: Supports conversion of the payload of the Message from byte[] to
byte[] for cases when contentType is application/octet-stream. It is essentially a pass through
and exists primarily for backward compatibility.

3. ObjectStringMessageConverter: Supports conversion of any type to a String when contentType is

text/plain. It invokes Object’s toString() method or, if the payload is byte[], a new
String(byte[]).

When no appropriate converter is found, the framework throws an exception. When that happens,
you should check your code and configuration and ensure you did not miss anything (that is,
ensure that you provided a contentType by using a binding or a header). However, most likely, you
found some uncommon case (such as a custom contentType perhaps) and the current stack of
provided MessageConverters does not know how to convert. If that is the case, you can add custom
MessageConverter. See User-defined Message Converters.

10.3. User-defined Message Converters
Spring Cloud Stream exposes a mechanism to define and register additional MessageConverter s. To
use it, implement org.springframework.messaging.converter.MessageConverter, configure it as a
@Bean. It is then appended to the existing stack of MessageConverter s.

It is important to understand that custom MessageConverter implementations are
added to the head of the existing stack. Consequently, custom MessageConverter
implementations take precedence over the existing ones, which lets you override
as well as add to the existing converters.

The following example shows how to create a message converter bean to support a new content
type called application/bar:

@SpringBootApplication
public static class SinkApplication {

 ...

 @Bean
 public MessageConverter customMessageConverter() {
 return new MyCustomMessageConverter();
 }
}

public class MyCustomMessageConverter extends AbstractMessageConverter {

 public MyCustomMessageConverter() {
 super(new MimeType("application", "bar"));
 }

 @Override
 protected boolean supports(Class<?> clazz) {
 return (Bar.class.equals(clazz));
 }

 @Override
 protected Object convertFromInternal(Message<?> message, Class<?> targetClass,
Object conversionHint) {
 Object payload = message.getPayload();
 return (payload instanceof Bar ? payload : new Bar((byte[]) payload));
 }
}

11. Inter-Application Communication
Spring Cloud Stream enables communication between applications. Inter-application
communication is a complex issue spanning several concerns, as described in the following topics:

• Connecting Multiple Application Instances

• Instance Index and Instance Count

• Partitioning

11.1. Connecting Multiple Application Instances
While Spring Cloud Stream makes it easy for individual Spring Boot applications to connect to
messaging systems, the typical scenario for Spring Cloud Stream is the creation of multi-application
pipelines, where microservice applications send data to each other. You can achieve this scenario
by correlating the input and output destinations of “adjacent” applications.

Suppose a design calls for the Time Source application to send data to the Log Sink application. You

could use a common destination named ticktock for bindings within both applications.

Time Source (that has the binding named output) would set the following property:

spring.cloud.stream.bindings.output.destination=ticktock

Log Sink (that has the binding named input) would set the following property:

spring.cloud.stream.bindings.input.destination=ticktock

11.2. Instance Index and Instance Count
When scaling up Spring Cloud Stream applications, each instance can receive information about
how many other instances of the same application exist and what its own instance index is. Spring
Cloud Stream does this through the spring.cloud.stream.instanceCount and
spring.cloud.stream.instanceIndex properties. For example, if there are three instances of a HDFS
sink application, all three instances have spring.cloud.stream.instanceCount set to 3, and the
individual applications have spring.cloud.stream.instanceIndex set to 0, 1, and 2, respectively.

When Spring Cloud Stream applications are deployed through Spring Cloud Data Flow, these
properties are configured automatically; when Spring Cloud Stream applications are launched
independently, these properties must be set correctly. By default, spring.cloud.stream.instanceCount
is 1, and spring.cloud.stream.instanceIndex is 0.

In a scaled-up scenario, correct configuration of these two properties is important for addressing
partitioning behavior (see below) in general, and the two properties are always required by certain
binders (for example, the Kafka binder) in order to ensure that data are split correctly across
multiple consumer instances.

11.3. Partitioning
Partitioning in Spring Cloud Stream consists of two tasks:

• Configuring Output Bindings for Partitioning

• Configuring Input Bindings for Partitioning

11.3.1. Configuring Output Bindings for Partitioning

You can configure an output binding to send partitioned data by setting one and only one of its
partitionKeyExpression or partitionKeyExtractorName properties, as well as its partitionCount
property.

For example, the following is a valid and typical configuration:

spring.cloud.stream.bindings.func-out-0.producer.partitionKeyExpression=headers.id
spring.cloud.stream.bindings.func-out-0.producer.partitionCount=5

Based on that example configuration, data is sent to the target partition by using the following logic.

A partition key’s value is calculated for each message sent to a partitioned output binding based on
the partitionKeyExpression. The partitionKeyExpression is a SpEL expression that is evaluated
against the outbound message (in the preceding example it’s the value of the id from message
headers) for extracting the partitioning key.

If a SpEL expression is not sufficient for your needs, you can instead calculate the partition key
value by providing an implementation of
org.springframework.cloud.stream.binder.PartitionKeyExtractorStrategy and configuring it as a
bean (by using the @Bean annotation). If you have more then one bean of type
org.springframework.cloud.stream.binder.PartitionKeyExtractorStrategy available in the
Application Context, you can further filter it by specifying its name with the
partitionKeyExtractorName property, as shown in the following example:

--spring.cloud.stream.bindings.func-out
-0.producer.partitionKeyExtractorName=customPartitionKeyExtractor
--spring.cloud.stream.bindings.func-out-0.producer.partitionCount=5
. . .
@Bean
public CustomPartitionKeyExtractorClass customPartitionKeyExtractor() {
 return new CustomPartitionKeyExtractorClass();
}

In previous versions of Spring Cloud Stream, you could specify the implementation
of org.springframework.cloud.stream.binder.PartitionKeyExtractorStrategy by
setting the
spring.cloud.stream.bindings.output.producer.partitionKeyExtractorClass
property. Since version 3.0, this property is removed.

Once the message key is calculated, the partition selection process determines the target partition
as a value between 0 and partitionCount - 1. The default calculation, applicable in most scenarios,
is based on the following formula: key.hashCode() % partitionCount. This can be customized on the
binding, either by setting a SpEL expression to be evaluated against the 'key' (through the
partitionSelectorExpression property) or by configuring an implementation of
org.springframework.cloud.stream.binder.PartitionSelectorStrategy as a bean (by using the @Bean
annotation). Similar to the PartitionKeyExtractorStrategy, you can further filter it by using the
spring.cloud.stream.bindings.output.producer.partitionSelectorName property when more than
one bean of this type is available in the Application Context, as shown in the following example:

--spring.cloud.stream.bindings.func-out
-0.producer.partitionSelectorName=customPartitionSelector
. . .
@Bean
public CustomPartitionSelectorClass customPartitionSelector() {
 return new CustomPartitionSelectorClass();
}

In previous versions of Spring Cloud Stream you could specify the implementation
of org.springframework.cloud.stream.binder.PartitionSelectorStrategy by setting
the spring.cloud.stream.bindings.output.producer.partitionSelectorClass
property. Since version 3.0, this property is removed.

11.3.2. Configuring Input Bindings for Partitioning

An input binding (with the binding name uppercase-in-0) is configured to receive partitioned data
by setting its partitioned property, as well as the instanceIndex and instanceCount properties on the
application itself, as shown in the following example:

spring.cloud.stream.bindings.uppercase-in-0.consumer.partitioned=true
spring.cloud.stream.instanceIndex=3
spring.cloud.stream.instanceCount=5

The instanceCount value represents the total number of application instances between which the
data should be partitioned. The instanceIndex must be a unique value across the multiple instances,
with a value between 0 and instanceCount - 1. The instance index helps each application instance
to identify the unique partition(s) from which it receives data. It is required by binders using
technology that does not support partitioning natively. For example, with RabbitMQ, there is a
queue for each partition, with the queue name containing the instance index. With Kafka, if
autoRebalanceEnabled is true (default), Kafka takes care of distributing partitions across instances,
and these properties are not required. If autoRebalanceEnabled is set to false, the instanceCount and
instanceIndex are used by the binder to determine which partition(s) the instance subscribes to
(you must have at least as many partitions as there are instances). The binder allocates the
partitions instead of Kafka. This might be useful if you want messages for a particular partition to
always go to the same instance. When a binder configuration requires them, it is important to set
both values correctly in order to ensure that all of the data is consumed and that the application
instances receive mutually exclusive datasets.

While a scenario in which using multiple instances for partitioned data processing may be complex
to set up in a standalone case, Spring Cloud Dataflow can simplify the process significantly by
populating both the input and output values correctly and by letting you rely on the runtime
infrastructure to provide information about the instance index and instance count.

12. Testing
Spring Cloud Stream provides support for testing your microservice applications without
connecting to a messaging system.

12.1. Spring Integration Test Binder
Spring Cloud Stream comes with a test binder which you can use for testing the various application
components without requiring an actual real-world binder implementation or a message broker.

This test binder acts as a bridge between unit and integration testing and is based on Spring
Integration framework as an in-JVM message broker essentially giving you the best of both worlds -
a real binder without the networking.

12.1.1. Test Binder configuration

To enable Spring Integration test binder, all you need is to add it as a dependency.

Add required dependencies

Below is the example of the required Maven POM entries.

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-stream-test-binder</artifactId>
 <scope>test</scope>
</dependency>

Or for build.gradle.kts

testImplementation("org.springframework.cloud:spring-cloud-stream-test-binder")

12.1.2. Test Binder usage

Now you can test your microservice as a simple unit test

https://spring.io/projects/spring-integration
https://spring.io/projects/spring-integration

@SpringBootTest
public class SampleStreamTests {

 @Autowired
 private InputDestination input;

 @Autowired
 private OutputDestination output;

 @Test
 public void testEmptyConfiguration() {
 this.input.send(new GenericMessage<byte[]>("hello".getBytes()));
 assertThat(output.receive().getPayload()).isEqualTo("HELLO".getBytes());
 }

 @SpringBootApplication
 @Import(TestChannelBinderConfiguration.class)
 public static class SampleConfiguration {
 @Bean
 public Function<String, String> uppercase() {
 return v -> v.toUpperCase();
 }
 }
}

And if you need more control or want to test several configurations in the same test suite you can
also do the following:

@EnableAutoConfiguration
public static class MyTestConfiguration {
 @Bean
 public Function<String, String> uppercase() {
 return v -> v.toUpperCase();
 }
}

. . .

@Test
public void sampleTest() {
 try (ConfigurableApplicationContext context = new SpringApplicationBuilder(
 TestChannelBinderConfiguration.getCompleteConfiguration(
 MyTestConfiguration.class))
 .run("--spring.cloud.function.definition=uppercase")) {
 InputDestination source = context.getBean(InputDestination.class);
 OutputDestination target = context.getBean(OutputDestination.class);
 source.send(new GenericMessage<byte[]>("hello".getBytes()));
 assertThat(target.receive().getPayload()).isEqualTo("HELLO".getBytes());
 }
}

For cases where you have multiple bindings and/or multiple inputs and outputs, or simply want to
be explicit about names of the destination you are sending to or receiving from, the send() and
receive() methods of InputDestination and OutputDestination are overridden to allow you to
provide the name of the input and output destination.

Consider the following sample:

@EnableAutoConfiguration
public static class SampleFunctionConfiguration {

 @Bean
 public Function<String, String> uppercase() {
 return value -> value.toUpperCase();
 }

 @Bean
 public Function<String, String> reverse() {
 return value -> new StringBuilder(value).reverse().toString();
 }
}

and the actual test

@Test
public void testMultipleFunctions() {
 try (ConfigurableApplicationContext context = new SpringApplicationBuilder(
 TestChannelBinderConfiguration.getCompleteConfiguration(
 SampleFunctionConfiguration.class))
 .run("--
spring.cloud.function.definition=uppercase;reverse")) {

 InputDestination inputDestination = context.getBean(InputDestination.class);
 OutputDestination outputDestination =
context.getBean(OutputDestination.class);

 Message<byte[]> inputMessage =
MessageBuilder.withPayload("Hello".getBytes()).build();
 inputDestination.send(inputMessage, "uppercase-in-0");
 inputDestination.send(inputMessage, "reverse-in-0");

 Message<byte[]> outputMessage = outputDestination.receive(0, "uppercase-out-
0");
 assertThat(outputMessage.getPayload()).isEqualTo("HELLO".getBytes());

 outputMessage = outputDestination.receive(0, "reverse-out-0");
 assertThat(outputMessage.getPayload()).isEqualTo("olleH".getBytes());
 }
}

For cases where you have additional mapping properties such as destination you should use those
names. For example, consider a different version of the preceding test where we explicitly map
inputs and outputs of the uppercase function to myInput and myOutput binding names:

@Test
public void testMultipleFunctions() {
 try (ConfigurableApplicationContext context = new SpringApplicationBuilder(
 TestChannelBinderConfiguration.getCompleteConfiguration(
 SampleFunctionConfiguration.class))
 .run(
 "--spring.cloud.function.definition=uppercase;reverse",
 "--spring.cloud.stream.bindings.uppercase-in-
0.destination=myInput",
 "--spring.cloud.stream.bindings.uppercase-out-
0.destination=myOutput"
)) {

 InputDestination inputDestination = context.getBean(InputDestination.class);
 OutputDestination outputDestination =
context.getBean(OutputDestination.class);

 Message<byte[]> inputMessage =
MessageBuilder.withPayload("Hello".getBytes()).build();
 inputDestination.send(inputMessage, "myInput");
 inputDestination.send(inputMessage, "reverse-in-0");

 Message<byte[]> outputMessage = outputDestination.receive(0, "myOutput");
 assertThat(outputMessage.getPayload()).isEqualTo("HELLO".getBytes());

 outputMessage = outputDestination.receive(0, "reverse-out-0");
 assertThat(outputMessage.getPayload()).isEqualTo("olleH".getBytes());
 }
}

12.1.3. Test Binder and PollableMessageSource

Spring Integration Test Binder also allows you to write tests when working with
PollableMessageSource (see Using Polled Consumers for more details).

The important thing that needs to be understood though is that polling is not event-driven, and that
PollableMessageSource is a strategy which exposes operation to produce (poll for) a Message
(singular). How often you poll or how many threads you use or where you’re polling from (message
queue or file system) is entirely up to you; In other words it is your responsibility to configure
Poller or Threads or the actual source of Message. Luckily Spring has plenty of abstractions to
configure exactly that.

Let’s look at the example:

@Test
public void samplePollingTest() {
 ApplicationContext context = new
SpringApplicationBuilder(SamplePolledConfiguration.class)
 .web(WebApplicationType.NONE)
 .run("--spring.jmx.enabled=false", "--spring.cloud.stream.pollable-
source=myDestination");
 OutputDestination destination = context.getBean(OutputDestination.class);
 System.out.println("Message 1: " + new
String(destination.receive().getPayload()));
 System.out.println("Message 2: " + new
String(destination.receive().getPayload()));
 System.out.println("Message 3: " + new
String(destination.receive().getPayload()));
}

@Import(TestChannelBinderConfiguration.class)
@EnableAutoConfiguration
public static class SamplePolledConfiguration {
 @Bean
 public ApplicationRunner poller(PollableMessageSource polledMessageSource,
StreamBridge output, TaskExecutor taskScheduler) {
 return args -> {
 taskScheduler.execute(() -> {
 for (int i = 0; i < 3; i++) {
 try {
 if (!polledMessageSource.poll(m -> {
 String newPayload = ((String)
m.getPayload()).toUpperCase();
 output.send("myOutput", newPayload);
 })) {
 Thread.sleep(2000);
 }
 }
 catch (Exception e) {
 // handle failure
 }
 }
 });
 };
 }
}

The above (very rudimentary) example will produce 3 messages in 2 second intervals sending them
to the output destination of Source which this binder sends to OutputDestination where we retrieve
them (for any assertions). Currently, it prints the following:

Message 1: POLLED DATA
Message 2: POLLED DATA
Message 3: POLLED DATA

As you can see the data is the same. That is because this binder defines a default implementation of
the actual MessageSource - the source from which the Messages are polled using poll() operation.
While sufficient for most testing scenarios, there are cases where you may want to define your own
MessageSource. To do so simply configure a bean of type MessageSource in your test configuration
providing your own implementation of Message sourcing.

Here is the example:

@Bean
public MessageSource<?> source() {
 return () -> new GenericMessage<>("My Own Data " + UUID.randomUUID());
}

rendering the following output;

Message 1: MY OWN DATA 1C180A91-E79F-494F-ABF4-BA3F993710DA
Message 2: MY OWN DATA D8F3A477-5547-41B4-9434-E69DA7616FEE
Message 3: MY OWN DATA 20BF2E64-7FF4-4CB6-A823-4053D30B5C74

DO NOT name this bean messageSource as it is going to be in conflict with the bean
of the same name (different type) provided by Spring Boot for unrelated reasons.

12.1.4. Special Note on Mixing Test Binder and Regular Middleware Binder
for Testing

The Spring Integration based test binder is provided for testing the application without involving
an actual middleware based binder such as the Kafka or RabbitMQ binder. As described in the
sections above, the test binder helps you to verify the application behavior quickly by relying on
the in-memory Spring Integration channels. When the test binder is present on the test classpath,
Spring Cloud Stream will try to use this binder for all testing purposes wherever it needs a binder
for communication. In other words, you cannot mix both the test binder and a regular middleware
binder for testing purposes in the same module. After testing the application with the test binder, if
you want to continue doing further integration tests using the actual middleware binder, it is
recommended to add those tests that use the actual binder in a separate module so that those tests
can make the proper connection to the actual middleware rather than relying on the in-memory
channels provided by the test binder.

13. Health Indicator
Spring Cloud Stream provides a health indicator for binders. It is registered under the name binders

and can be enabled or disabled by setting the management.health.binders.enabled property.

To enable health check you first need to enable both "web" and "actuator" by including its
dependencies (see Binding visualization and control)

If management.health.binders.enabled is not set explicitly by the application, then
management.health.defaults.enabled is matched as true and the binder health indicators are
enabled. If you want to disable health indicator completely, then you have to set
management.health.binders.enabled to false.

You can use Spring Boot actuator health endpoint to access the health indicator - /actuator/health.
By default, you will only receive the top level application status when you hit the above endpoint.
In order to receive the full details from the binder specific health indicators, you need to include
the property management.endpoint.health.show-details with the value ALWAYS in your application.

Health indicators are binder-specific and certain binder implementations may not necessarily
provide a health indicator.

If you want to completely disable all health indicators available out of the box and instead provide
your own health indicators, you can do so by setting property management.health.binders.enabled to
false and then provide your own HealthIndicator beans in your application. In this case, the health
indicator infrastructure from Spring Boot will still pick up these custom beans. Even if you are not
disabling the binder health indicators, you can still enhance the health checks by providing your
own HealthIndicator beans in addition to the out of the box health checks.

When you have multiple binders in the same application, health indicators are enabled by default
unless the application turns them off by setting management.health.binders.enabled to false. In this
case, if the user wants to disable health check for a subset of the binders, then that should be done
by setting management.health.binders.enabled to false in the multi binder configurations’s
environment. See Connecting to Multiple Systems for details on how environment specific
properties can be provided.

If there are multiple binders present in the classpath but not all of them are used in the application,
this may cause some issues in the context of health indicators. There may be implementation
specific details as to how the health checks are performed. For example, a Kafka binder may decide
the status as DOWN if there are no destinations registered by the binder.

Lets take a concrete situation. Imagine you have both Kafka and Kafka Streams binders present in
the classpath, but only use the Kafka Streams binder in the application code, i.e. only provide
bindings using the Kafka Streams binder. Since Kafka binder is not used and it has specific checks
to see if any destinations are registered, the binder health check will fail. The top level application
health check status will be reported as DOWN. In this situation, you can simply remove the
dependency for kafka binder from your application since you are not using it.

14. Samples
For Spring Cloud Stream samples, see the spring-cloud-stream-samples repository on GitHub.

https://github.com/spring-cloud/spring-cloud-stream-samples

14.1. Deploying Stream Applications on CloudFoundry
On CloudFoundry, services are usually exposed through a special environment variable called
VCAP_SERVICES.

When configuring your binder connections, you can use the values from an environment variable
as explained on the dataflow Cloud Foundry Server docs.

15. Binder Implementations
The following is the list of available binder implementations

• RabbitMQ

• Apache Kafka

• Amazon Kinesis

• Google PubSub (partner maintained)

• Solace PubSub+ (partner maintained)

• Azure Event Hubs (partner maintained)

• Azure Service Bus (partner maintained)

• Apache RocketMQ (partner maintained)

As it was mentioned earlier Binder abstraction is also one of the extension points of the framework.
So if you can’t find a suitable binder in the preceding list you can implement your own binder on
top of Spring Cloud Stream. In the How to create a Spring Cloud Stream Binder from scratch post a
community member documents in details, with an example, a set of steps necessary to implement a
custom binder. The steps are also highlighted in the Implementing Custom Binders section.

Spring Cloud Task Reference Guide
Michael Minella, Glenn Renfro, Jay Bryant

Version 3.0.3

© 2009-2022 VMware, Inc. All rights reserved.

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

Preface
This section provides a brief overview of the Spring Cloud Task reference documentation. Think of
it as a map for the rest of the document. You can read this reference guide in a linear fashion or you

https://docs.cloudfoundry.org/devguide/deploy-apps/environment-variable.html#VCAP-SERVICES
http://docs.spring.io/spring-cloud-dataflow-server-cloudfoundry/docs/current-SNAPSHOT/reference/htmlsingle/#getting-started-ups
https://cloud.spring.io/spring-cloud-stream-binder-rabbit/
https://cloud.spring.io/spring-cloud-stream-binder-kafka/
https://github.com/spring-cloud/spring-cloud-stream-binder-aws-kinesis
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-pubsub-stream-binder
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-pubsub-stream-binder
https://github.com/SolaceProducts/spring-cloud-stream-binder-solace
https://github.com/SolaceProducts/spring-cloud-stream-binder-solace
https://aka.ms/spring/docs#spring-cloud-stream-binder-for-azure-event-hubs
https://aka.ms/spring/docs#spring-cloud-stream-binder-for-azure-event-hubs
https://aka.ms/spring/docs#spring-cloud-stream-binder-for-azure-service-bus
https://aka.ms/spring/docs#spring-cloud-stream-binder-for-azure-service-bus
https://github.com/alibaba/spring-cloud-alibaba/wiki/RocketMQ-en
https://github.com/alibaba/spring-cloud-alibaba/wiki/RocketMQ-en
https://medium.com/@domenicosibilio/how-to-create-a-spring-cloud-stream-binder-from-scratch-ab8b29ee931b

can skip sections if something does not interest you.

1. About the documentation
The Spring Cloud Task reference guide is available in html and pdf, epub . The latest copy is
available at docs.spring.io/spring-cloud-task/docs/current-SNAPSHOT/reference/html/.

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

2. Getting help
Having trouble with Spring Cloud Task? We would like to help!

• Ask a question. We monitor stackoverflow.com for questions tagged with spring-cloud-task.

• Report bugs with Spring Cloud Task at github.com/spring-cloud/spring-cloud-task/issues.

All of Spring Cloud Task is open source, including the documentation. If you find a
problem with the docs or if you just want to improve them, please get involved.

3. First Steps
If you are just getting started with Spring Cloud Task or with 'Spring' in general, we suggesting
reading the getting-started.pdf chapter.

To get started from scratch, read the following sections:

• Introducing Spring Cloud Task

• System Requirements

To follow the tutorial, read Developing Your First Spring Cloud Task Application
To run your example, read Running the Example

Getting started
If you are just getting started with Spring Cloud Task, you should read this section. Here, we answer
the basic “what?”, “how?”, and “why?” questions. We start with a gentle introduction to Spring
Cloud Task. We then build a Spring Cloud Task application, discussing some core principles as we
go.

1. Introducing Spring Cloud Task
Spring Cloud Task makes it easy to create short-lived microservices. It provides capabilities that let

https://docs.spring.io/spring-cloud-task/docs/current/reference
https://docs.spring.io/spring-cloud-task/docs/current/reference/index.pdf
https://docs.spring.io/spring-cloud-task/docs/current/reference/index.epub
https://docs.spring.io/spring-cloud-task/docs/current-SNAPSHOT/reference/html/
https://stackoverflow.com
https://stackoverflow.com/tags/spring-cloud-task
https://github.com/spring-cloud/spring-cloud-task/issues
https://github.com/spring-cloud/spring-cloud-task/tree/master
getting-started.pdf#getting-started
getting-started.pdf#getting-started-introducing-spring-cloud-task
getting-started.pdf#getting-started-system-requirements
getting-started.pdf#getting-started-developing-first-task
getting-started.pdf#getting-started-running-the-example

short-lived JVM processes be executed on demand in a production environment.

2. System Requirements
You need to have Java installed (Java 17 or better). To build, you need to have Maven installed as
well.

2.1. Database Requirements
Spring Cloud Task uses a relational database to store the results of an executed task. While you can
begin developing a task without a database (the status of the task is logged as part of the task
repository’s updates), for production environments, you want to use a supported database. Spring
Cloud Task currently supports the following databases:

• DB2

• H2

• HSQLDB

• MySql

• Oracle

• Postgres

• SqlServer

3. Developing Your First Spring Cloud Task
Application
A good place to start is with a simple “Hello, World!” application, so we create the Spring Cloud Task
equivalent to highlight the features of the framework. Most IDEs have good support for Apache
Maven, so we use it as the build tool for this project.

The spring.io web site contains many “Getting Started” guides that use Spring
Boot. If you need to solve a specific problem, check there first. You can shortcut the
following steps by going to the Spring Initializr and creating a new project. Doing
so automatically generates a new project structure so that you can start coding
right away. We recommend experimenting with the Spring Initializr to become
familiar with it.

3.1. Creating the Spring Task Project using Spring
Initializr
Now we can create and test an application that prints Hello, World! to the console.

To do so:

https://spring.io/guides
https://spring.io/guides
https://spring.io/guides
https://start.spring.io/

1. Visit the Spring Initialzr site.

a. Create a new Maven project with a Group name of io.spring.demo and an Artifact name of
helloworld.

b. In the Dependencies text box, type task and then select the Cloud Task dependency.

c. In the Dependencies text box, type jdbc and then select the JDBC dependency.

d. In the Dependencies text box, type h2 and then select the H2. (or your favorite database)

e. Click the Generate Project button

2. Unzip the helloworld.zip file and import the project into your favorite IDE.

3.2. Writing the Code
To finish our application, we need to update the generated HelloworldApplication with the following
contents so that it launches a Task.

package io.spring.Helloworld;

import org.springframework.boot.ApplicationArguments;
import org.springframework.boot.ApplicationRunner;
import org.springframework.boot.CommandLineRunner;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.task.configuration.EnableTask;
import org.springframework.context.annotation.Bean;

@SpringBootApplication
@EnableTask
public class HelloworldApplication {

 @Bean
 public ApplicationRunner applicationRunner() {
 return new HelloWorldApplicationRunner();
 }

 public static void main(String[] args) {
 SpringApplication.run(HelloworldApplication.class, args);
 }

 public static class HelloWorldApplicationRunner implements ApplicationRunner {

 @Override
 public void run(ApplicationArguments args) throws Exception {
 System.out.println("Hello, World!");

 }
 }
}

https://start.spring.io/

While it may seem small, quite a bit is going on. For more about Spring Boot specifics, see the
Spring Boot reference documentation.

Now we can open the application.properties file in src/main/resources. We need to configure two
properties in application.properties:

• application.name: To set the application name (which is translated to the task name)

• logging.level: To set the logging for Spring Cloud Task to DEBUG in order to get a view of what is
going on.

The following example shows how to do both:

logging.level.org.springframework.cloud.task=DEBUG
spring.application.name=helloWorld

3.2.1. Task Auto Configuration

When including Spring Cloud Task Starter dependency, Task auto configures all beans to bootstrap
it’s functionality. Part of this configuration registers the TaskRepository and the infrastructure for its
use.

In our demo, the TaskRepository uses an embedded H2 database to record the results of a task. This
H2 embedded database is not a practical solution for a production environment, since the H2 DB
goes away once the task ends. However, for a quick getting-started experience, we can use this in
our example as well as echoing to the logs what is being updated in that repository. In the
Configuration section (later in this documentation), we cover how to customize the configuration of
the pieces provided by Spring Cloud Task.

When our sample application runs, Spring Boot launches our HelloWorldCommandLineRunner and
outputs our “Hello, World!” message to standard out. The TaskLifecycleListener records the start of
the task and the end of the task in the repository.

3.2.2. The main method

The main method serves as the entry point to any java application. Our main method delegates to
Spring Boot’s SpringApplication class.

3.2.3. The ApplicationRunner

Spring includes many ways to bootstrap an application’s logic. Spring Boot provides a convenient
method of doing so in an organized manner through its *Runner interfaces (CommandLineRunner or
ApplicationRunner). A well behaved task can bootstrap any logic by using one of these two runners.

The lifecycle of a task is considered from before the *Runner#run methods are executed to once they
are all complete. Spring Boot lets an application use multiple *Runner implementations, as does
Spring Cloud Task.

https://docs.spring.io/spring-boot/docs/current/reference/html/
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-spring-application.html

Any processing bootstrapped from mechanisms other than a CommandLineRunner or
ApplicationRunner (by using InitializingBean#afterPropertiesSet for example) is
not recorded by Spring Cloud Task.

3.3. Running the Example
At this point, our application should work. Since this application is Spring Boot-based, we can run it
from the command line by using $ mvn spring-boot:run from the root of our application, as shown
(with its output) in the following example:

$ mvn clean spring-boot:run
....... . . .
....... . . . (Maven log output here)
....... . . .

 . ____ _ __ _ _
 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \
(()___ | '_ | '_| | '_ \/ _` | \ \ \ \
 \\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, | / / / /
 =========|_|==============|___/=/_/_/_/
 :: Spring Boot :: (v2.0.3.RELEASE)

2018-07-23 17:44:34.426 INFO 1978 --- [main]
i.s.d.helloworld.HelloworldApplication : Starting HelloworldApplication on Glenns-
MBP-2.attlocal.net with PID 1978 (/Users/glennrenfro/project/helloworld/target/classes
started by glennrenfro in /Users/glennrenfro/project/helloworld)
2018-07-23 17:44:34.430 INFO 1978 --- [main]
i.s.d.helloworld.HelloworldApplication : No active profile set, falling back to
default profiles: default
2018-07-23 17:44:34.472 INFO 1978 --- [main]
s.c.a.AnnotationConfigApplicationContext : Refreshing
org.springframework.context.annotation.AnnotationConfigApplicationContext@1d24f32d:
startup date [Mon Jul 23 17:44:34 EDT 2018]; root of context hierarchy
2018-07-23 17:44:35.280 INFO 1978 --- [main]
com.zaxxer.hikari.HikariDataSource : HikariPool-1 - Starting...
2018-07-23 17:44:35.410 INFO 1978 --- [main]
com.zaxxer.hikari.HikariDataSource : HikariPool-1 - Start completed.
2018-07-23 17:44:35.419 DEBUG 1978 --- [main]
o.s.c.t.c.SimpleTaskConfiguration : Using
org.springframework.cloud.task.configuration.DefaultTaskConfigurer TaskConfigurer
2018-07-23 17:44:35.420 DEBUG 1978 --- [main]
o.s.c.t.c.DefaultTaskConfigurer : No EntityManager was found, using
DataSourceTransactionManager
2018-07-23 17:44:35.522 DEBUG 1978 --- [main]
o.s.c.t.r.s.TaskRepositoryInitializer : Initializing task schema for h2 database
2018-07-23 17:44:35.525 INFO 1978 --- [main]
o.s.jdbc.datasource.init.ScriptUtils : Executing SQL script from class path
resource [org/springframework/cloud/task/schema-h2.sql]

2018-07-23 17:44:35.558 INFO 1978 --- [main]
o.s.jdbc.datasource.init.ScriptUtils : Executed SQL script from class path
resource [org/springframework/cloud/task/schema-h2.sql] in 33 ms.
2018-07-23 17:44:35.728 INFO 1978 --- [main]
o.s.j.e.a.AnnotationMBeanExporter : Registering beans for JMX exposure on
startup
2018-07-23 17:44:35.730 INFO 1978 --- [main]
o.s.j.e.a.AnnotationMBeanExporter : Bean with name 'dataSource' has been
autodetected for JMX exposure
2018-07-23 17:44:35.733 INFO 1978 --- [main]
o.s.j.e.a.AnnotationMBeanExporter : Located MBean 'dataSource': registering
with JMX server as MBean [com.zaxxer.hikari:name=dataSource,type=HikariDataSource]
2018-07-23 17:44:35.738 INFO 1978 --- [main]
o.s.c.support.DefaultLifecycleProcessor : Starting beans in phase 0
2018-07-23 17:44:35.762 DEBUG 1978 --- [main]
o.s.c.t.r.support.SimpleTaskRepository : Creating: TaskExecution{executionId=0,
parentExecutionId=null, exitCode=null, taskName='application', startTime=Mon Jul 23
17:44:35 EDT 2018, endTime=null, exitMessage='null', externalExecutionId='null',
errorMessage='null', arguments=[]}
2018-07-23 17:44:35.772 INFO 1978 --- [main]
i.s.d.helloworld.HelloworldApplication : Started HelloworldApplication in 1.625
seconds (JVM running for 4.764)
Hello, World!
2018-07-23 17:44:35.782 DEBUG 1978 --- [main]
o.s.c.t.r.support.SimpleTaskRepository : Updating: TaskExecution with executionId=1
with the following {exitCode=0, endTime=Mon Jul 23 17:44:35 EDT 2018,
exitMessage='null', errorMessage='null'}

The preceding output has three lines that of interest to us here:

• SimpleTaskRepository logged the creation of the entry in the TaskRepository.

• The execution of our CommandLineRunner, demonstrated by the “Hello, World!” output.

• SimpleTaskRepository logs the completion of the task in the TaskRepository.

A simple task application can be found in the samples module of the Spring Cloud
Task Project here.

Features
This section goes into more detail about Spring Cloud Task, including how to use it, how to
configure it, and the appropriate extension points.

1. The lifecycle of a Spring Cloud Task
In most cases, the modern cloud environment is designed around the execution of processes that
are not expected to end. If they do end, they are typically restarted. While most platforms do have
some way to run a process that is not restarted when it ends, the results of that run are typically not

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples/timestamp

maintained in a consumable way. Spring Cloud Task offers the ability to execute short-lived
processes in an environment and record the results. Doing so allows for a microservices
architecture around short-lived processes as well as longer running services through the
integration of tasks by messages.

While this functionality is useful in a cloud environment, the same issues can arise in a traditional
deployment model as well. When running Spring Boot applications with a scheduler such as cron, it
can be useful to be able to monitor the results of the application after its completion.

Spring Cloud Task takes the approach that a Spring Boot application can have a start and an end
and still be successful. Batch applications are one example of how processes that are expected to
end (and that are often short-lived) can be helpful.

Spring Cloud Task records the lifecycle events of a given task. Most long-running processes, typified
by most web applications, do not save their lifecycle events. The tasks at the heart of Spring Cloud
Task do.

The lifecycle consists of a single task execution. This is a physical execution of a Spring Boot
application configured to be a task (that is, it has the Sprint Cloud Task dependencies).

At the beginning of a task, before any CommandLineRunner or ApplicationRunner implementations have
been run, an entry in the TaskRepository that records the start event is created. This event is
triggered through SmartLifecycle#start being triggered by the Spring Framework. This indicates to
the system that all beans are ready for use and comes before running any of the CommandLineRunner
or ApplicationRunner implementations provided by Spring Boot.

The recording of a task only occurs upon the successful bootstrapping of an
ApplicationContext. If the context fails to bootstrap at all, the task’s run is not
recorded.

Upon completion of all of the *Runner#run calls from Spring Boot or the failure of an
ApplicationContext (indicated by an ApplicationFailedEvent), the task execution is updated in the
repository with the results.

If the application requires the ApplicationContext to be closed at the completion of
a task (all *Runner#run methods have been called and the task repository has been
updated), set the property spring.cloud.task.closecontextEnabled to true.

1.1. The TaskExecution
The information stored in the TaskRepository is modeled in the TaskExecution class and consists of
the following information:

Field Description

executionid The unique ID for the task’s run.

Field Description

exitCode The exit code generated from an
ExitCodeExceptionMapper implementation. If
there is no exit code generated but an
ApplicationFailedEvent is thrown, 1 is set.
Otherwise, it is assumed to be 0.

taskName The name for the task, as determined by the
configured TaskNameResolver.

startTime The time the task was started, as indicated by
the SmartLifecycle#start call.

endTime The time the task was completed, as indicated by
the ApplicationReadyEvent.

exitMessage Any information available at the time of exit.
This can programmatically be set by a
TaskExecutionListener.

errorMessage If an exception is the cause of the end of the task
(as indicated by an ApplicationFailedEvent), the
stack trace for that exception is stored here.

arguments A List of the string command line arguments as
they were passed into the executable boot
application.

1.2. Mapping Exit Codes
When a task completes, it tries to return an exit code to the OS. If we take a look at our original
example, we can see that we are not controlling that aspect of our application. So, if an exception is
thrown, the JVM returns a code that may or may not be of any use to you in debugging.

Consequently, Spring Boot provides an interface, ExitCodeExceptionMapper, that lets you map
uncaught exceptions to exit codes. Doing so lets you indicate, at the level of exit codes, what went
wrong. Also, by mapping exit codes in this manner, Spring Cloud Task records the returned exit
code.

If the task terminates with a SIG-INT or a SIG-TERM, the exit code is zero unless otherwise specified
within the code.

While the task is running, the exit code is stored as a null in the repository. Once
the task completes, the appropriate exit code is stored based on the guidelines
described earlier in this section.

2. Configuration
Spring Cloud Task provides a ready-to-use configuration, as defined in the DefaultTaskConfigurer
and SimpleTaskConfiguration classes. This section walks through the defaults and how to customize

Spring Cloud Task for your needs.

2.1. DataSource
Spring Cloud Task uses a datasource for storing the results of task executions. By default, we
provide an in-memory instance of H2 to provide a simple method of bootstrapping development.
However, in a production environment, you probably want to configure your own DataSource.

If your application uses only a single DataSource and that serves as both your business schema and
the task repository, all you need to do is provide any DataSource (the easiest way to do so is through
Spring Boot’s configuration conventions). This DataSource is automatically used by Spring Cloud
Task for the repository.

If your application uses more than one DataSource, you need to configure the task repository with
the appropriate DataSource. This customization can be done through an implementation of
TaskConfigurer.

2.2. Table Prefix
One modifiable property of TaskRepository is the table prefix for the task tables. By default, they are
all prefaced with TASK_. TASK_EXECUTION and TASK_EXECUTION_PARAMS are two examples. However,
there are potential reasons to modify this prefix. If the schema name needs to be prepended to the
table names or if more than one set of task tables is needed within the same schema, you must
change the table prefix. You can do so by setting the spring.cloud.task.tablePrefix to the prefix you
need, as follows:

spring.cloud.task.tablePrefix=yourPrefix

By using the spring.cloud.task.tablePrefix, a user assumes the responsibility to create the task
tables that meet both the criteria for the task table schema but with modifications that are required
for a user’s business needs. You can utilize the Spring Cloud Task Schema DDL as a guide when
creating your own Task DDL as seen here.

2.3. Enable/Disable table initialization
In cases where you are creating the task tables and do not wish for Spring Cloud Task to create
them at task startup, set the spring.cloud.task.initialize-enabled property to false, as follows:

spring.cloud.task.initialize-enabled=false

It defaults to true.

 The property spring.cloud.task.initialize.enable has been deprecated.

2.4. Externally Generated Task ID
In some cases, you may want to allow for the time difference between when a task is requested and
when the infrastructure actually launches it. Spring Cloud Task lets you create a TaskExecution

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-core/src/main/resources/org/springframework/cloud/task

when the task is requested. Then pass the execution ID of the generated TaskExecution to the task so
that it can update the TaskExecution through the task’s lifecycle.

A TaskExecution can be created by calling the createTaskExecution method on an implementation of
the TaskRepository that references the datastore that holds the TaskExecution objects.

In order to configure your Task to use a generated TaskExecutionId, add the following property:

spring.cloud.task.executionid=yourtaskId

2.5. External Task Id
Spring Cloud Task lets you store an external task ID for each TaskExecution. In order to configure
your Task to use a generated TaskExecutionId, add the following property:

spring.cloud.task.external-execution-id=<externalTaskId>

2.6. Parent Task Id
Spring Cloud Task lets you store a parent task ID for each TaskExecution. An example of this would
be a task that executes another task or tasks and you want to record which task launched each of
the child tasks. In order to configure your Task to set a parent TaskExecutionId add the following
property on the child task:

spring.cloud.task.parent-execution-id=<parentExecutionTaskId>

2.7. TaskConfigurer
The TaskConfigurer is a strategy interface that lets you customize the way components of Spring
Cloud Task are configured. By default, we provide the DefaultTaskConfigurer that provides logical
defaults: Map-based in-memory components (useful for development if no DataSource is provided)
and JDBC based components (useful if there is a DataSource available).

The TaskConfigurer lets you configure three main components:

Component Description Default (provided by
DefaultTaskConfigurer)

TaskRepository The implementation of the
TaskRepository to be used.

SimpleTaskRepository

TaskExplorer The implementation of the
TaskExplorer (a component for
read-only access to the task
repository) to be used.

SimpleTaskExplorer

PlatformTransactionManager A transaction manager to be
used when running updates for
tasks.

JdbcTransactionManager if a
DataSource is used.
ResourcelessTransactionManager
if it is not.

You can customize any of the components described in the preceding table by creating a custom
implementation of the TaskConfigurer interface. Typically, extending the DefaultTaskConfigurer
(which is provided if a TaskConfigurer is not found) and overriding the required getter is sufficient.
However, implementing your own from scratch may be required.

Users should not directly use getter methods from a TaskConfigurer directly unless
they are using it to supply implementations to be exposed as Spring Beans.

2.8. Task Execution Listener
TaskExecutionListener lets you register listeners for specific events that occur during the task
lifecycle. To do so, create a class that implements the TaskExecutionListener interface. The class that
implements the TaskExecutionListener interface is notified of the following events:

• onTaskStartup: Prior to storing the TaskExecution into the TaskRepository.

• onTaskEnd: Prior to updating the TaskExecution entry in the TaskRepository and marking the final
state of the task.

• onTaskFailed: Prior to the onTaskEnd method being invoked when an unhandled exception is
thrown by the task.

Spring Cloud Task also lets you add TaskExecution Listeners to methods within a bean by using the
following method annotations:

• @BeforeTask: Prior to the storing the TaskExecution into the TaskRepository

• @AfterTask: Prior to the updating of the TaskExecution entry in the TaskRepository marking the
final state of the task.

• @FailedTask: Prior to the @AfterTask method being invoked when an unhandled exception is
thrown by the task.

The following example shows the three annotations in use:

 public class MyBean {

 @BeforeTask
 public void methodA(TaskExecution taskExecution) {
 }

 @AfterTask
 public void methodB(TaskExecution taskExecution) {
 }

 @FailedTask
 public void methodC(TaskExecution taskExecution, Throwable throwable) {
 }
}

Inserting an ApplicationListener earlier in the chain than TaskLifecycleListener
exists may cause unexpected effects.

2.8.1. Exceptions Thrown by Task Execution Listener

If an exception is thrown by a TaskExecutionListener event handler, all listener processing for that
event handler stops. For example, if three onTaskStartup listeners have started and the first
onTaskStartup event handler throws an exception, the other two onTaskStartup methods are not
called. However, the other event handlers (onTaskEnd and onTaskFailed) for the
TaskExecutionListeners are called.

The exit code returned when a exception is thrown by a TaskExecutionListener event handler is the
exit code that was reported by the ExitCodeEvent. If no ExitCodeEvent is emitted, the Exception
thrown is evaluated to see if it is of type ExitCodeGenerator. If so, it returns the exit code from the
ExitCodeGenerator. Otherwise, 1 is returned.

In the case that an exception is thrown in an onTaskStartup method, the exit code for the application
will be 1. If an exception is thrown in either a onTaskEnd or onTaskFailed method, the exit code for
the application will be the one established using the rules enumerated above.

In the case of an exception being thrown in a onTaskStartup, onTaskEnd, or
onTaskFailed you can not override the exit code for the application using
ExitCodeExceptionMapper.

2.8.2. Exit Messages

You can set the exit message for a task programmatically by using a TaskExecutionListener. This is
done by setting the TaskExecution’s exitMessage, which then gets passed into the
TaskExecutionListener. The following example shows a method that is annotated with the
@AfterTask ExecutionListener :

@AfterTask
public void afterMe(TaskExecution taskExecution) {
 taskExecution.setExitMessage("AFTER EXIT MESSAGE");
}

An ExitMessage can be set at any of the listener events (onTaskStartup, onTaskFailed, and onTaskEnd).
The order of precedence for the three listeners follows:

1. onTaskEnd

2. onTaskFailed

3. onTaskStartup

For example, if you set an exitMessage for the onTaskStartup and onTaskFailed listeners and the task
ends without failing, the exitMessage from the onTaskStartup is stored in the repository. Otherwise, if
a failure occurs, the exitMessage from the onTaskFailed is stored. Also if you set the exitMessage with
an onTaskEnd listener, the exitMessage from the onTaskEnd supersedes the exit messages from both

https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/ExitCodeEvent.html
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#boot-features-application-exit

the onTaskStartup and onTaskFailed.

2.9. Restricting Spring Cloud Task Instances
Spring Cloud Task lets you establish that only one task with a given task name can be run at a time.
To do so, you need to establish the task name and set spring.cloud.task.single-instance-
enabled=true for each task execution. While the first task execution is running, any other time you
try to run a task with the same task name and`spring.cloud.task.single-instance-enabled=true`, the
task fails with the following error message: Task with name "application" is already running. The
default value for spring.cloud.task.single-instance-enabled is false. The following example shows
how to set spring.cloud.task.single-instance-enabled to true:

spring.cloud.task.single-instance-enabled=true or false

To use this feature, you must add the following Spring Integration dependencies to your
application:

<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-core</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.integration</groupId>
 <artifactId>spring-integration-jdbc</artifactId>
</dependency>

The exit code for the application will be 1 if the task fails because this feature is
enabled and another task is running with the same task name.

2.9.1. Single Instance Usage for Spring AOT And Native Compilation

To use Spring Cloud Task’s single-instance feature when creating a natively compiled app, you need
to enable the feature at build time. To do so, add the process-aot execution and set
spring.cloud.task.single-step-instance-enabled=true as a JVM argument, as follows:

<plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <executions>
 <execution>
 <id>process-aot</id>
 <goals>
 <goal>process-aot</goal>
 </goals>
 <configuration>
 <jvmArguments>
 -Dspring.cloud.task.single-instance-enabled=true
 </jvmArguments>
 </configuration>
 </execution>
 </executions>
</plugin>

2.10. Enabling Observations for ApplicationRunner
and CommandLineRunner
To Enable Task Observations for ApplicationRunner or CommandLineRunner set
spring.cloud.task.observation.enabled to true.

An example task application with observations enables using the SimpleMeterRegistry can be found
here.

2.11. Disabling Spring Cloud Task Auto Configuration
In cases where Spring Cloud Task should not be autoconfigured for an implementation, you can
disable Task’s auto configuration. This can be done either by adding the following annotation to
your Task application:

@EnableAutoConfiguration(exclude={SimpleTaskAutoConfiguration.class})

You may also disable Task auto configuration by setting the
spring.cloud.task.autoconfiguration.enabled property to false.

2.12. Closing the Context
If the application requires the ApplicationContext to be closed at the completion of a task (all
*Runner#run methods have been called and the task repository has been updated), set the property
spring.cloud.task.closecontextEnabled to true.

Another case to close the context is when the Task Execution completes however the application

https://github.com/spring-cloud/spring-cloud-task/tree/main/spring-cloud-task-samples/task-observations

does not terminate. In these cases the context is held open because a thread has been allocated (for
example: if you are using a TaskExecutor). In these cases set the
spring.cloud.task.closecontextEnabled property to true when launching your task. This will close
the application’s context once the task is complete. Thus allowing the application to terminate.

2.13. Enable Task Metrics
Spring Cloud Task integrates with Micrometer and creates observations for the Tasks it executes. To
enable Task Observability integration, you must add spring-boot-starter-actuator, your preferred
registry implementation (if you want to publish metrics), and micrometer-tracing (if you want to
publish tracing data) to your task application. An example maven set of dependencies to enable
task observability and metrics using Influx would be:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
</dependency>
<dependency>
 <groupId>io.micrometer</groupId>
 <artifactId>micrometer-registry-influx</artifactId>
 <scope>runtime</scope>
</dependency>

2.14. Spring Task and Spring Cloud Task Properties
The term task is frequently used word in the industry. In one such example Spring Boot offers the
spring.task while Spring Cloud Task offers the spring.cloud.task properties. This has caused some
confusion in the past that these two groups of properties are directly related. However, they
represent 2 different set of features offered in the Spring ecosystem.

• spring.task refers to the properties that configure the ThreadPoolTaskScheduler.

• spring.cloud.task refers to the properties that configure features of Spring Cloud Task.

Batch
This section goes into more detail about Spring Cloud Task’s integration with Spring Batch. Tracking
the association between a job execution and the task in which it was executed as well as remote
partitioning through Spring Cloud Deployer are covered in this section.

1. Associating a Job Execution to the Task in
which It Was Executed
Spring Boot provides facilities for the execution of batch jobs within an über-jar. Spring Boot’s
support of this functionality lets a developer execute multiple batch jobs within that execution.

Spring Cloud Task provides the ability to associate the execution of a job (a job execution) with a
task’s execution so that one can be traced back to the other.

Spring Cloud Task achieves this functionality by using the TaskBatchExecutionListener. By default,
this listener is auto configured in any context that has both a Spring Batch Job configured (by
having a bean of type Job defined in the context) and the spring-cloud-task-batch jar on the
classpath. The listener is injected into all jobs that meet those conditions.

1.1. Overriding the TaskBatchExecutionListener
To prevent the listener from being injected into any batch jobs within the current context, you can
disable the autoconfiguration by using standard Spring Boot mechanisms.

To only have the listener injected into particular jobs within the context, override the
batchTaskExecutionListenerBeanPostProcessor and provide a list of job bean IDs, as shown in the
following example:

public static TaskBatchExecutionListenerBeanPostProcessor
batchTaskExecutionListenerBeanPostProcessor() {
 TaskBatchExecutionListenerBeanPostProcessor postProcessor =
 new TaskBatchExecutionListenerBeanPostProcessor();

 postProcessor.setJobNames(Arrays.asList(new String[] {"job1", "job2"}));

 return postProcessor;
}

You can find a sample batch application in the samples module of the Spring Cloud
Task Project, here.

2. Remote Partitioning
Spring Cloud Deployer provides facilities for launching Spring Boot-based applications on most
cloud infrastructures. The DeployerPartitionHandler and DeployerStepExecutionHandler delegate the
launching of worker step executions to Spring Cloud Deployer.

To configure the DeployerStepExecutionHandler, you must provide a Resource representing the
Spring Boot über-jar to be executed, a TaskLauncherHandler, and a JobExplorer. You can configure
any environment properties as well as the max number of workers to be executing at once, the
interval to poll for the results (defaults to 10 seconds), and a timeout (defaults to -1 or no timeout).
The following example shows how configuring this PartitionHandler might look:

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples/batch-job

@Bean
public PartitionHandler partitionHandler(TaskLauncher taskLauncher,
 JobExplorer jobExplorer) throws Exception {

 MavenProperties mavenProperties = new MavenProperties();
 mavenProperties.setRemoteRepositories(new
HashMap<>(Collections.singletonMap("springRepo",
 new MavenProperties.RemoteRepository(repository))));

 Resource resource =
 MavenResource.parse(String.format("%s:%s:%s",
 "io.spring.cloud",
 "partitioned-batch-job",
 "1.1.0.RELEASE"), mavenProperties);

 DeployerPartitionHandler partitionHandler =
 new DeployerPartitionHandler(taskLauncher, jobExplorer, resource,
"workerStep");

 List<String> commandLineArgs = new ArrayList<>(3);
 commandLineArgs.add("--spring.profiles.active=worker");
 commandLineArgs.add("--spring.cloud.task.initialize.enable=false");
 commandLineArgs.add("--spring.batch.initializer.enabled=false");

 partitionHandler.setCommandLineArgsProvider(
 new PassThroughCommandLineArgsProvider(commandLineArgs));
 partitionHandler.setEnvironmentVariablesProvider(new
NoOpEnvironmentVariablesProvider());
 partitionHandler.setMaxWorkers(2);
 partitionHandler.setApplicationName("PartitionedBatchJobTask");

 return partitionHandler;
}

When passing environment variables to partitions, each partition may be on a
different machine with different environment settings. Consequently, you should
pass only those environment variables that are required.

Notice in the example above that we have set the maximum number of workers to 2. Setting the
maximum of workers establishes the maximum number of partitions that should be running at one
time.

The Resource to be executed is expected to be a Spring Boot über-jar with a
DeployerStepExecutionHandler configured as a CommandLineRunner in the current context. The
repository enumerated in the preceding example should be the remote repository in which the
über-jar is located. Both the manager and worker are expected to have visibility into the same data
store being used as the job repository and task repository. Once the underlying infrastructure has
bootstrapped the Spring Boot jar and Spring Boot has launched the DeployerStepExecutionHandler,
the step handler executes the requested Step. The following example shows how to configure the

DeployerStepExecutionHandler:

@Bean
public DeployerStepExecutionHandler stepExecutionHandler(JobExplorer jobExplorer) {
 DeployerStepExecutionHandler handler =
 new DeployerStepExecutionHandler(this.context, jobExplorer,
this.jobRepository);

 return handler;
}

You can find a sample remote partition application in the samples module of the
Spring Cloud Task project, here.

2.1. Asynchronously launch remote batch partitions
By default batch partitions are launched sequentially. However, in some cases this may affect
performance as each launch will block until the resource (For example: provisioning a pod in
Kubernetes) is provisioned. In these cases you can provide a ThreadPoolTaskExecutor to the
DeployerPartitionHandler. This will launch the remote batch partitions based on the configuration
of the ThreadPoolTaskExecutor. For example:

 @Bean
 public ThreadPoolTaskExecutor threadPoolTaskExecutor() {
 ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
 executor.setCorePoolSize(4);
 executor.setThreadNamePrefix("default_task_executor_thread");
 executor.setWaitForTasksToCompleteOnShutdown(true);
 executor.initialize();
 return executor;
 }

 @Bean
 public PartitionHandler partitionHandler(TaskLauncher taskLauncher, JobExplorer
jobExplorer,
 TaskRepository taskRepository, ThreadPoolTaskExecutor executor) throws
Exception {
 Resource resource = this.resourceLoader
 .getResource("maven://io.spring.cloud:partitioned-batch-job:2.2.0.BUILD-
SNAPSHOT");

 DeployerPartitionHandler partitionHandler =
 new DeployerPartitionHandler(taskLauncher, jobExplorer, resource,
 "workerStep", taskRepository, executor);
 ...
 }

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples/partitioned-batch-job

We need to close the context since the use of ThreadPoolTaskExecutor leaves a
thread active thus the app will not terminate. To close the application
appropriately, we will need to set spring.cloud.task.closecontextEnabled property
to true.

2.2. Notes on Developing a Batch-partitioned
application for the Kubernetes Platform

• When deploying partitioned apps on the Kubernetes platform, you must use the following
dependency for the Spring Cloud Kubernetes Deployer:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-deployer-kubernetes</artifactId>
</dependency>

• The application name for the task application and its partitions need to follow the following
regex pattern: [a-z0-9]([-a-z0-9]*[a-z0-9]). Otherwise, an exception is thrown.

3. Batch Informational Messages
Spring Cloud Task provides the ability for batch jobs to emit informational messages. The
“stream.pdf” section covers this feature in detail.

4. Batch Job Exit Codes
As discussed earlier, Spring Cloud Task applications support the ability to record the exit code of a
task execution. However, in cases where you run a Spring Batch Job within a task, regardless of
how the Batch Job Execution completes, the result of the task is always zero when using the default
Batch/Boot behavior. Keep in mind that a task is a boot application and that the exit code returned
from the task is the same as a boot application. To override this behavior and allow the task to
return an exit code other than zero when a batch job returns an BatchStatus of FAILED, set
spring.cloud.task.batch.fail-on-job-failure to true. Then the exit code can be 1 (the default) or be
based on the specified ExitCodeGenerator)

This functionality uses a new ApplicationRunner that replaces the one provided by Spring Boot. By
default, it is configured with the same order. However, if you want to customize the order in which
the ApplicationRunner is run, you can set its order by setting the
spring.cloud.task.batch.applicationRunnerOrder property. To have your task return the exit code
based on the result of the batch job execution, you need to write your own CommandLineRunner.

stream.pdf#stream-integration-batch-events
features.pdf#features-lifecycle-exit-codes
https://docs.spring.io/spring-batch/4.0.x/reference/html/step.html#batchStatusVsExitStatus
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-spring-application.html#boot-features-application-exit
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-spring-application.html#boot-features-application-exit

Single Step Batch Job Starter
This section goes into how to develop a Spring Batch Job with a single Step by using the starter
included in Spring Cloud Task. This starter lets you use configuration to define an ItemReader, an
ItemWriter, or a full single-step Spring Batch Job. For more about Spring Batch and its capabilities,
see the Spring Batch documentation.

To obtain the starter for Maven, add the following to your build:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-single-step-batch-job</artifactId>
 <version>2.3.0</version>
</dependency>

To obtain the starter for Gradle, add the following to your build:

compile "org.springframework.cloud:spring-cloud-starter-single-step-batch-
job:2.3.0"

1. Defining a Job
You can use the starter to define as little as an ItemReader or an ItemWriter or as much as a full Job.
In this section, we define which properties are required to be defined to configure a Job.

1.1. Properties
To begin, the starter provides a set of properties that let you configure the basics of a Job with one
Step:

Table 10. Job Properties

Property Type Default Value Description

spring.batch.job.jobNa
me

String null The name of the job.

spring.batch.job.stepN
ame

String null The name of the step.

spring.batch.job.chunk
Size

Integer null The number of items to
be processed per
transaction.

With the above properties configured, you have a job with a single, chunk-based step. This chunk-

https://spring.io/projects/spring-batch

based step reads, processes, and writes Map<String, Object> instances as the items. However, the
step does not yet do anything. You need to configure an ItemReader, an optional ItemProcessor, and
an ItemWriter to give it something to do. To configure one of these, you can either use properties
and configure one of the options that has provided autoconfiguration or you can configure your
own with the standard Spring configuration mechanisms.

If you configure your own, the input and output types must match the others in
the step. The ItemReader implementations and ItemWriter implementations in this
starter all use a Map<String, Object> as the input and the output item.

2. Autoconfiguration for ItemReader
Implementations
This starter provides autoconfiguration for four different ItemReader implementations:
AmqpItemReader, FlatFileItemReader, JdbcCursorItemReader, and KafkaItemReader. In this section, we
outline how to configure each of these by using the provided autoconfiguration.

2.1. AmqpItemReader
You can read from a queue or topic with AMQP by using the AmqpItemReader. The autoconfiguration
for this ItemReader implementation is dependent upon two sets of configuration. The first is the
configuration of an AmqpTemplate. You can either configure this yourself or use the
autoconfiguration provided by Spring Boot. See the Spring Boot AMQP documentation. Once you
have configured the AmqpTemplate, you can enable the batch capabilities to support it by setting the
following properties:

Table 11. AmqpItemReader Properties

Property Type Default Value Description

spring.batch.job.amqpi
temreader.enabled

boolean false If true, the
autoconfiguration will
execute.

spring.batch.job.amqpi
temreader.jsonConverte
rEnabled

boolean true Indicates if the
Jackson2JsonMessageCon
verter should be
registered to parse
messages.

For more information, see the AmqpItemReader documentation.

2.2. FlatFileItemReader
FlatFileItemReader lets you read from flat files (such as CSVs and other file formats). To read from a
file, you can provide some components yourself through normal Spring configuration
(LineTokenizer, RecordSeparatorPolicy, FieldSetMapper, LineMapper, or SkippedLinesCallback). You can
also use the following properties to configure the reader:

https://docs.spring.io/spring-boot/docs/3.0.x/reference/htmlsingle/#messaging.amqp.rabbitmq
https://docs.spring.io/spring-batch/docs/4.3.x/api/org/springframework/batch/item/amqp/AmqpItemReader.html
https://docs.spring.io/spring-batch/docs/4.3.x/api/org/springframework/batch/item/amqp/AmqpItemReader.html

Table 12. FlatFileItemReader Properties

Property Type Default Value Description

spring.batch.job.flatf
ileitemreader.saveStat
e

boolean true Determines if the state
should be saved for
restarts.

spring.batch.job.flatf
ileitemreader.name

String null Name used to provide
unique keys in the
ExecutionContext.

spring.batch.job.flatf
ileitemreader.maxItemc
ount

int Integer.MAX_VALUE Maximum number of
items to be read from
the file.

spring.batch.job.flatf
ileitemreader.currentI
temCount

int 0 Number of items that
have already been
read. Used on restarts.

spring.batch.job.flatf
ileitemreader.comments

List<String> empty List A list of Strings that
indicate commented
lines (lines to be
ignored) in the file.

spring.batch.job.flatf
ileitemreader.resource

Resource null The resource to be
read.

spring.batch.job.flatf
ileitemreader.strict

boolean true If set to true, the reader
throws an exception if
the resource is not
found.

spring.batch.job.flatf
ileitemreader.encoding

String FlatFileItemReader.DEF
AULT_CHARSET

Encoding to be used
when reading the file.

spring.batch.job.flatf
ileitemreader.linesToS
kip

int 0 Indicates the number
of lines to skip at the
start of a file.

spring.batch.job.flatf
ileitemreader.delimite
d

boolean false Indicates whether the
file is a delimited file
(CSV and other
formats). Only one of
this property or
spring.batch.job.flatf
ileitemreader.fixedLen
gth can be true at the
same time.

spring.batch.job.flatf
ileitemreader.delimite
r

String DelimitedLineTokenizer
.DELIMITER_COMMA

If reading a delimited
file, indicates the
delimiter to parse on.

Property Type Default Value Description

spring.batch.job.flatf
ileitemreader.quoteCha
racter

char DelimitedLineTokenizer
.DEFAULT_QUOTE_CHARACT
ER

Used to determine the
character used to quote
values.

spring.batch.job.flatf
ileitemreader.included
Fields

List<Integer> empty list A list of indices to
determine which fields
in a record to include
in the item.

spring.batch.job.flatf
ileitemreader.fixedLen
gth

boolean false Indicates if a file’s
records are parsed by
column numbers. Only
one of this property or
spring.batch.job.flatf
ileitemreader.delimite
d can be true at the
same time.

spring.batch.job.flatf
ileitemreader.ranges

List<Range> empty list List of column ranges
by which to parse a
fixed width record. See
the Range
documentation.

spring.batch.job.flatf
ileitemreader.names

String [] null List of names for each
field parsed from a
record. These names
are the keys in the
Map<String, Object> in
the items returned
from this ItemReader.

spring.batch.job.flatf
ileitemreader.parsingS
trict

boolean true If set to true, the
mapping fails if the
fields cannot be
mapped.

See the FlatFileItemReader documentation.

2.3. JdbcCursorItemReader
The JdbcCursorItemReader runs a query against a relational database and iterates over the resulting
cursor (ResultSet) to provide the resulting items. This autoconfiguration lets you provide a
PreparedStatementSetter, a RowMapper, or both. You can also use the following properties to configure
a JdbcCursorItemReader:

Table 13. JdbcCursorItemReader Properties

https://docs.spring.io/spring-batch/docs/4.3.x/api/org/springframework/batch/item/file/transform/Range.html
https://docs.spring.io/spring-batch/docs/4.3.x/api/org/springframework/batch/item/file/transform/Range.html
https://docs.spring.io/spring-batch/docs/4.3.x/api/org/springframework/batch/item/file/FlatFileItemReader.html
https://docs.spring.io/spring-batch/docs/4.3.x/api/org/springframework/batch/item/file/FlatFileItemReader.html

Property Type Default Value Description

spring.batch.job.jdbcc
ursoritemreader.saveSt
ate

boolean true Determines whether
the state should be
saved for restarts.

spring.batch.job.jdbcc
ursoritemreader.name

String null Name used to provide
unique keys in the
ExecutionContext.

spring.batch.job.jdbcc
ursoritemreader.maxIte
mcount

int Integer.MAX_VALUE Maximum number of
items to be read from
the file.

spring.batch.job.jdbcc
ursoritemreader.curren
tItemCount

int 0 Number of items that
have already been
read. Used on restarts.

spring.batch.job.jdbcc
ursoritemreader.fetchS
ize

int A hint to the driver to
indicate how many
records to retrieve per
call to the database
system. For best
performance, you
usually want to set it to
match the chunk size.

spring.batch.job.jdbcc
ursoritemreader.maxRow
s

int Maximum number of
items to read from the
database.

spring.batch.job.jdbcc
ursoritemreader.queryT
imeout

int Number of milliseconds
for the query to
timeout.

spring.batch.job.jdbcc
ursoritemreader.ignore
Warnings

boolean true Determines whether
the reader should
ignore SQL warnings
when processing.

spring.batch.job.jdbcc
ursoritemreader.verify
CursorPosition

boolean true Indicates whether the
cursor’s position
should be verified after
each read to verify that
the RowMapper did not
advance the cursor.

spring.batch.job.jdbcc
ursoritemreader.driver
SupportsAbsolute

boolean false Indicates whether the
driver supports
absolute positioning of
a cursor.

Property Type Default Value Description

spring.batch.job.jdbcc
ursoritemreader.useSha
redExtendedConnection

boolean false Indicates whether the
connection is shared
with other processing
(and is therefore part of
a transaction).

spring.batch.job.jdbcc
ursoritemreader.sql

String null SQL query from which
to read.

You can also specify JDBC DataSource specifically for the reader by using the following properties:
.JdbcCursorItemReader Properties

Property Type Default Value Description

spring.batch.job.jdbcc
ursoritemreader.dataso
urce.enable

boolean false Determines whether
JdbcCursorItemReader
DataSource should be
enabled.

jdbccursoritemreader.d
atasource.url

String null JDBC URL of the
database.

jdbccursoritemreader.d
atasource.username

String null Login username of the
database.

jdbccursoritemreader.d
atasource.password

String null Login password of the
database.

jdbccursoritemreader.d
atasource.driver-
class-name

String null Fully qualified name of
the JDBC driver.

The default DataSource will be used by the JDBCCursorItemReader if the
jdbccursoritemreader_datasource is not specified.

See the JdbcCursorItemReader documentation.

2.4. KafkaItemReader
Ingesting a partition of data from a Kafka topic is useful and exactly what the KafkaItemReader can
do. To configure a KafkaItemReader, two pieces of configuration are required. First, configuring
Kafka with Spring Boot’s Kafka autoconfiguration is required (see the Spring Boot Kafka
documentation). Once you have configured the Kafka properties from Spring Boot, you can
configure the KafkaItemReader itself by setting the following properties:

Table 14. KafkaItemReader Properties

https://docs.spring.io/spring-batch/docs/4.3.x/api/org/springframework/batch/item/database/JdbcCursorItemReader.html
https://docs.spring.io/spring-batch/docs/4.3.x/api/org/springframework/batch/item/database/JdbcCursorItemReader.html
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#messaging.kafka.additional-properties
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#messaging.kafka.additional-properties

Property Type Default Value Description

spring.batch.job.kafka
itemreader.name

String null Name used to provide
unique keys in the
ExecutionContext.

spring.batch.job.kafka
itemreader.topic

String null Name of the topic from
which to read.

spring.batch.job.kafka
itemreader.partitions

List<Integer> empty list List of partition indices
from which to read.

spring.batch.job.kafka
itemreader.pollTimeOut
InSeconds

long 30 Timeout for the poll()
operations.

spring.batch.job.kafka
itemreader.saveState

boolean true Determines whether
the state should be
saved for restarts.

See the KafkaItemReader documentation.

2.5. Native Compilation
The advantage of Single Step Batch Processing is that it lets you dynamically select which reader
and writer beans to use at runtime when you use the JVM. However, when you use native
compilation, you must determine the reader and writer at build time instead of runtime. The
following example does so:

<plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <executions>
 <execution>
 <id>process-aot</id>
 <goals>
 <goal>process-aot</goal>
 </goals>
 <configuration>
 <jvmArguments>
 -Dspring.batch.job.flatfileitemreader.name=fooReader
 -Dspring.batch.job.flatfileitemwriter.name=fooWriter
 </jvmArguments>
 </configuration>
 </execution>
 </executions>
</plugin>

https://docs.spring.io/spring-batch/docs/4.3.x/api/org/springframework/batch/item/kafka/KafkaItemReader.html
https://docs.spring.io/spring-batch/docs/4.3.x/api/org/springframework/batch/item/kafka/KafkaItemReader.html

3. ItemProcessor Configuration
The single-step batch job autoconfiguration accepts an ItemProcessor if one is available within the
ApplicationContext. If one is found of the correct type (ItemProcessor<Map<String, Object>,
Map<String, Object>>), it is autowired into the step.

4. Autoconfiguration for ItemWriter
implementations
This starter provides autoconfiguration for ItemWriter implementations that match the supported
ItemReader implementations: AmqpItemWriter, FlatFileItemWriter, JdbcItemWriter, and
KafkaItemWriter. This section covers how to use autoconfiguration to configure a supported
ItemWriter.

4.1. AmqpItemWriter
To write to a RabbitMQ queue, you need two sets of configuration. First, you need an AmqpTemplate.
The easiest way to get this is by using Spring Boot’s RabbitMQ autoconfiguration. See the Spring
Boot AMQP documentation.

Once you have configured the AmqpTemplate, you can configure the AmqpItemWriter by setting the
following properties:

Table 15. AmqpItemWriter Properties

Property Type Default Value Description

spring.batch.job.amqpi
temwriter.enabled

boolean false If true, the
autoconfiguration runs.

spring.batch.job.amqpi
temwriter.jsonConverte
rEnabled

boolean true Indicates whether
Jackson2JsonMessageCon
verter should be
registered to convert
messages.

4.2. FlatFileItemWriter
To write a file as the output of the step, you can configure FlatFileItemWriter. Autoconfiguration
accepts components that have been explicitly configured (such as LineAggregator, FieldExtractor,
FlatFileHeaderCallback, or a FlatFileFooterCallback) and components that have been configured by
setting the following properties specified:

Table 16. FlatFileItemWriter Properties

https://docs.spring.io/spring-boot/docs/3.0.x/reference/htmlsingle/#messaging.amqp.rabbitmq
https://docs.spring.io/spring-boot/docs/3.0.x/reference/htmlsingle/#messaging.amqp.rabbitmq

Property Type Default Value Description

spring.batch.job.flatf
ileitemwriter.resource

Resource null The resource to be
read.

spring.batch.job.flatf
ileitemwriter.delimite
d

boolean false Indicates whether the
output file is a
delimited file. If true,
spring.batch.job.flatf
ileitemwriter.formatte
d must be false.

spring.batch.job.flatf
ileitemwriter.formatte
d

boolean false Indicates whether the
output file a formatted
file. If true,
spring.batch.job.flatf
ileitemwriter.delimite
d must be false.

spring.batch.job.flatf
ileitemwriter.format

String null The format used to
generate the output for
a formatted file. The
formatting is
performed by using
String.format.

spring.batch.job.flatf
ileitemwriter.locale

Locale Locale.getDefault() The Locale to be used
when generating the
file.

spring.batch.job.flatf
ileitemwriter.maximumL
ength

int 0 Max length of the
record. If 0, the size is
unbounded.

spring.batch.job.flatf
ileitemwriter.minimumL
ength

int 0 The minimum record
length.

spring.batch.job.flatf
ileitemwriter.delimite
r

String , The String used to
delimit fields in a
delimited file.

spring.batch.job.flatf
ileitemwriter.encoding

String FlatFileItemReader.DEF
AULT_CHARSET

Encoding to use when
writing the file.

spring.batch.job.flatf
ileitemwriter.forceSyn
c

boolean false Indicates whether a file
should be force-synced
to the disk on flush.

Property Type Default Value Description

spring.batch.job.flatf
ileitemwriter.names

String [] null List of names for each
field parsed from a
record. These names
are the keys in the
Map<String, Object> for
the items received by
this ItemWriter.

spring.batch.job.flatf
ileitemwriter.append

boolean false Indicates whether a file
should be appended to
if the output file is
found.

spring.batch.job.flatf
ileitemwriter.lineSepa
rator

String FlatFileItemWriter.DEF
AULT_LINE_SEPARATOR

What String to use to
separate lines in the
output file.

spring.batch.job.flatf
ileitemwriter.name

String null Name used to provide
unique keys in the
ExecutionContext.

spring.batch.job.flatf
ileitemwriter.saveStat
e

boolean true Determines whether
the state should be
saved for restarts.

spring.batch.job.flatf
ileitemwriter.shouldDe
leteIfEmpty

boolean false If set to true, an empty
file (there is no output)
is deleted when the job
completes.

spring.batch.job.flatf
ileitemwriter.shouldDe
leteIfExists

boolean true If set to true and a file
is found where the
output file should be, it
is deleted before the
step begins.

spring.batch.job.flatf
ileitemwriter.transact
ional

boolean FlatFileItemWriter.DEF
AULT_TRANSACTIONAL

Indicates whether the
reader is a
transactional queue
(indicating that the
items read are returned
to the queue upon a
failure).

See the FlatFileItemWriter documentation.

4.3. JdbcBatchItemWriter
To write the output of a step to a relational database, this starter provides the ability to
autoconfigure a JdbcBatchItemWriter. The autoconfiguration lets you provide your own

https://docs.spring.io/spring-batch/docs/4.3.x/api/org/springframework/batch/item/file/FlatFileItemWriter.html
https://docs.spring.io/spring-batch/docs/4.3.x/api/org/springframework/batch/item/file/FlatFileItemWriter.html

ItemPreparedStatementSetter or ItemSqlParameterSourceProvider and configuration options by
setting the following properties:

Table 17. JdbcBatchItemWriter Properties

Property Type Default Value Description

spring.batch.job.jdbcb
atchitemwriter.name

String null Name used to provide
unique keys in the
ExecutionContext.

spring.batch.job.jdbcb
atchitemwriter.sql

String null The SQL used to insert
each item.

spring.batch.job.jdbcb
atchitemwriter.assertU
pdates

boolean true Whether to verify that
every insert results in
the update of at least
one record.

You can also specify JDBC DataSource specifically for the writer by using the following properties:
.JdbcBatchItemWriter Properties

Property Type Default Value Description

spring.batch.job.jdbcb
atchitemwriter.datasou
rce.enable

boolean false Determines whether
JdbcCursorItemReader
DataSource should be
enabled.

jdbcbatchitemwriter.da
tasource.url

String null JDBC URL of the
database.

jdbcbatchitemwriter.da
tasource.username

String null Login username of the
database.

jdbcbatchitemwriter.da
tasource.password

String null Login password of the
database.

jdbcbatchitemreader.da
tasource.driver-class-
name

String null Fully qualified name of
the JDBC driver.

The default DataSource will be used by the JdbcBatchItemWriter if the
jdbcbatchitemwriter_datasource is not specified.

See the JdbcBatchItemWriter documentation.

4.4. KafkaItemWriter
To write step output to a Kafka topic, you need KafkaItemWriter. This starter provides
autoconfiguration for a KafkaItemWriter by using facilities from two places. The first is Spring Boot’s
Kafka autoconfiguration. (See the Spring Boot Kafka documentation.) Second, this starter lets you
configure two properties on the writer.

https://docs.spring.io/spring-batch/docs/4.3.x/api/org/springframework/batch/item/database/JdbcBatchItemWriter.html
https://docs.spring.io/spring-batch/docs/4.3.x/api/org/springframework/batch/item/database/JdbcBatchItemWriter.html
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#messaging.kafka.additional-properties

Table 18. KafkaItemWriter Properties

Property Type Default Value Description

spring.batch.job.kafka
itemwriter.topic

String null The Kafka topic to
which to write.

spring.batch.job.kafka
itemwriter.delete

boolean false Whether the items
being passed to the
writer are all to be sent
as delete events to the
topic.

For more about the configuration options for the KafkaItemWriter, see the KafkaItemWiter
documentation.

4.5. Spring AOT
When using Spring AOT with Single Step Batch Starter you must set the reader and writer name
properties at compile time (unless you create a bean(s) for the reader and or writer). To do this you
must include the name of the reader and writer that you wish to use as and argument or
environment variable in the boot maven plugin or gradle plugin. For example if you wish to enable
the FlatFileItemReader and FlatFileItemWriter in Maven it would look like:

 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <executions>
 <execution>
 <id>process-aot</id>
 <goals>
 <goal>process-aot</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <arguments>
 <argument>--spring.batch.job.flatfileitemreader.name=foobar</argument>
 <argument>--
spring.batch.job.flatfileitemwriter.name=fooWriter</argument>
 </arguments>
 </configuration>
 </plugin>

Spring Cloud Stream Integration
A task by itself can be useful, but integration of a task into a larger ecosystem lets it be useful for
more complex processing and orchestration. This section covers the integration options for Spring

https://docs.spring.io/spring-batch/docs/4.3.x/api/org/springframework/batch/item/kafka/KafkaItemWriter.html
https://docs.spring.io/spring-batch/docs/4.3.x/api/org/springframework/batch/item/kafka/KafkaItemWriter.html
https://docs.spring.io/spring-batch/docs/4.3.x/api/org/springframework/batch/item/kafka/KafkaItemWriter.html

Cloud Task with Spring Cloud Stream.

1. Launching a Task from a Spring Cloud
Stream
You can launch tasks from a stream. To do so, create a sink that listens for a message that contains a
TaskLaunchRequest as its payload. The TaskLaunchRequest contains:

• uri: To the task artifact that is to be executed.

• applicationName: The name that is associated with the task. If no applicationName is set, the
TaskLaunchRequest generates a task name comprised of the following: Task-<UUID>.

• commandLineArguments: A list containing the command line arguments for the task.

• environmentProperties: A map containing the environment variables to be used by the task.

• deploymentProperties: A map containing the properties that are used by the deployer to deploy
the task.

 If the payload is of a different type, the sink throws an exception.

For example, a stream can be created that has a processor that takes in data from an HTTP source
and creates a GenericMessage that contains the TaskLaunchRequest and sends the message to its
output channel. The task sink would then receive the message from its input channel and then
launch the task.

To create a taskSink, you need only create a Spring Boot application that includes the
EnableTaskLauncher annotation, as shown in the following example:

@SpringBootApplication
@EnableTaskLauncher
public class TaskSinkApplication {
 public static void main(String[] args) {
 SpringApplication.run(TaskSinkApplication.class, args);
 }
}

The samples module of the Spring Cloud Task project contains a sample Sink and Processor. To
install these samples into your local maven repository, run a maven build from the spring-cloud-
task-samples directory with the skipInstall property set to false, as shown in the following
example:

mvn clean install

The maven.remoteRepositories.springRepo.url property must be set to the location
of the remote repository in which the über-jar is located. If not set, there is no
remote repository, so it relies upon the local repository only.

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples

1.1. Spring Cloud Data Flow
To create a stream in Spring Cloud Data Flow, you must first register the Task Sink Application we
created. In the following example, we are registering the Processor and Sink sample applications by
using the Spring Cloud Data Flow shell:

app register --name taskSink --type sink --uri
maven://io.spring.cloud:tasksink:<version>
app register --name taskProcessor --type processor --uri
maven:io.spring.cloud:taskprocessor:<version>

The following example shows how to create a stream from the Spring Cloud Data Flow shell:

stream create foo --definition "http --server.port=9000|taskProcessor|taskSink"
--deploy

2. Spring Cloud Task Events
Spring Cloud Task provides the ability to emit events through a Spring Cloud Stream channel when
the task is run through a Spring Cloud Stream channel. A task listener is used to publish the
TaskExecution on a message channel named task-events. This feature is autowired into any task that
has spring-cloud-stream, spring-cloud-stream-<binder>, and a defined task on its classpath.

To disable the event emitting listener, set the spring.cloud.task.events.enabled
property to false.

With the appropriate classpath defined, the following task emits the TaskExecution as an event on
the task-events channel (at both the start and the end of the task):

@SpringBootApplication
public class TaskEventsApplication {

 public static void main(String[] args) {
 SpringApplication.run(TaskEventsApplication.class, args);
 }

 @Configuration
 public static class TaskConfiguration {

 @Bean
 public ApplicationRunner applicationRunner() {
 return new ApplicationRunner() {
 @Override
 public void run(ApplicationArguments args) {
 System.out.println("The ApplicationRunner was executed");
 }
 };
 }
 }
}

 A binder implementation is also required to be on the classpath.

A sample task event application can be found in the samples module of the Spring
Cloud Task Project, here.

2.1. Disabling Specific Task Events
To disable task events, you can set the spring.cloud.task.events.enabled property to false.

3. Spring Batch Events
When executing a Spring Batch job through a task, Spring Cloud Task can be configured to emit
informational messages based on the Spring Batch listeners available in Spring Batch. Specifically,
the following Spring Batch listeners are autoconfigured into each batch job and emit messages on
the associated Spring Cloud Stream channels when run through Spring Cloud Task:

• JobExecutionListener listens for job-execution-events

• StepExecutionListener listens for step-execution-events

• ChunkListener listens for chunk-events

• ItemReadListener listens for item-read-events

• ItemProcessListener listens for item-process-events

• ItemWriteListener listens for item-write-events

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples/task-events

• SkipListener listens for skip-events

These listeners are autoconfigured into any AbstractJob when the appropriate beans (a Job and a
TaskLifecycleListener) exist in the context. Configuration to listen to these events is handled the
same way binding to any other Spring Cloud Stream channel is done. Our task (the one running the
batch job) serves as a Source, with the listening applications serving as either a Processor or a Sink.

An example could be to have an application listening to the job-execution-events channel for the
start and stop of a job. To configure the listening application, you would configure the input to be
job-execution-events as follows:

spring.cloud.stream.bindings.input.destination=job-execution-events

 A binder implementation is also required to be on the classpath.

A sample batch event application can be found in the samples module of the
Spring Cloud Task Project, here.

3.1. Sending Batch Events to Different Channels
One of the options that Spring Cloud Task offers for batch events is the ability to alter the channel to
which a specific listener can emit its messages. To do so, use the following configuration:
spring.cloud.stream.bindings.<the channel>.destination=<new destination>. For example, if
StepExecutionListener needs to emit its messages to another channel called my-step-execution-
events instead of the default step-execution-events, you can add the following configuration:

spring.cloud.task.batch.events.step-execution-events-binding-name=my-step-execution-events

3.2. Disabling Batch Events
To disable the listener functionality for all batch events, use the following configuration:

spring.cloud.task.batch.events.enabled=false

To disable a specific batch event, use the following configuration:

spring.cloud.task.batch.events.<batch event listener>.enabled=false:

The following listing shows individual listeners that you can disable:

spring.cloud.task.batch.events.job-execution.enabled=false
spring.cloud.task.batch.events.step-execution.enabled=false
spring.cloud.task.batch.events.chunk.enabled=false
spring.cloud.task.batch.events.item-read.enabled=false
spring.cloud.task.batch.events.item-process.enabled=false
spring.cloud.task.batch.events.item-write.enabled=false
spring.cloud.task.batch.events.skip.enabled=false

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-samples/batch-events

3.3. Emit Order for Batch Events
By default, batch events have Ordered.LOWEST_PRECEDENCE. To change this value (for example, to 5),
use the following configuration:

spring.cloud.task.batch.events.job-execution-order=5
spring.cloud.task.batch.events.step-execution-order=5
spring.cloud.task.batch.events.chunk-order=5
spring.cloud.task.batch.events.item-read-order=5
spring.cloud.task.batch.events.item-process-order=5
spring.cloud.task.batch.events.item-write-order=5
spring.cloud.task.batch.events.skip-order=5

Appendices

1. Task Repository Schema
This appendix provides an ERD for the database schema used in the task repository.

[task schema] | task_schema.png

1.1. Table Information
TASK_EXECUTION

Stores the task execution information.

Col
um
n
Na
me

Req
uire
d

Typ
e

Fiel
d
Len
gth

Notes

TAS
K_E
XEC
UTI
ON_
ID

TRU
E

BIGI
NT

X Spring Cloud Task Framework at app startup
establishes the next available id as obtained from the
TASK_SEQ. Or if the record is created outside of task then
the value must be populated at record creation time.

STA
RT_
TIM
E

FAL
SE

DAT
ETI
ME(
6)

X Spring Cloud Task Framework at app startup
establishes the value.

Col
um
n
Na
me

Req
uire
d

Typ
e

Fiel
d
Len
gth

Notes

END
_TI
ME

FAL
SE

DAT
ETI
ME(
6)

X Spring Cloud Task Framework at app exit establishes
the value.

TAS
K_N
AM
E

FAL
SE

VAR
CHA
R

100 Spring Cloud Task Framework at app startup will set
this to "Application" unless user establish the name
using the spring.application.name.

EXI
T_C
ODE

FAL
SE

INT
EGE
R

X Follows Spring Boot defaults unless overridden by the
user as discussed here.

EXI
T_M
ESS
AGE

FAL
SE

VAR
CHA
R

2500 User Defined as discussed here.

ERR
OR_
MES
SAG
E

FAL
SE

VAR
CHA
R

2500 Spring Cloud Task Framework at app exit establishes
the value.

LAS
T_U
PDA
TED

TRU
E

TIM
EST
AM
P

X Spring Cloud Task Framework at app startup
establishes the value. Or if the record is created outside
of task then the value must be populated at record
creation time.

EXT
ERN
AL_
EXE
CUT
ION
_ID

FAL
SE

VAR
CHA
R

250 If the spring.cloud.task.external-execution-id
property is set then Spring Cloud Task Framework at
app startup will set this to the value specified. More
information can be found here

PAR
ENT
_TA
SK_
EXE
CUT
ION
_ID

FAL
SE

BIGI
NT

X If the spring.cloud.task.parent-execution-id property
is set then Spring Cloud Task Framework at app startup
will set this to the value specified. More information
can be found here

https://docs.spring.io/spring-cloud-task/docs/current/reference/#features-lifecycle-exit-codes
https://docs.spring.io/spring-cloud-task/docs/current/reference/#features-task-execution-listener-exit-messages

TASK_EXECUTION_PARAMS

Stores the parameters used for a task execution

Column Name Required Type Field Length

TASK_EXECUTION
_ID

TRUE BIGINT X

TASK_PARAM FALSE VARCHAR 2500

TASK_TASK_BATCH

Used to link the task execution to the batch execution.

Column Name Required Type Field Length

TASK_EXECUTION
_ID

TRUE BIGINT X

JOB_EXECUTION_I
D

TRUE BIGINT X

TASK_LOCK

Used for the single-instance-enabled feature discussed here.

Col
um
n
Na
me

Req
uire
d

Typ
e

Fiel
d
Len
gth

Notes

LOC
K_K
EY

TRU
E

CHA
R

36 UUID for the this lock

REG
ION

TRU
E

VAR
CHA
R

100 User can establish a group of locks using this field.

CLIE
NT_I
D

TRU
E

CHA
R

36 The task execution id that contains the name of the app
to lock.

CRE
ATE
D_D
ATE

TRU
E

DAT
ETI
ME

X The date that the entry was created

 The DDL for setting up tables for each database type can be found here.

https://github.com/spring-cloud/spring-cloud-task/tree/master/spring-cloud-task-core/src/main/resources/org/springframework/cloud/task

1.2. SQL Server
By default Spring Cloud Task uses a sequence table for determining the TASK_EXECUTION_ID for the
TASK_EXECUTION table. However, when launching multiple tasks simultaneously while using SQL
Server, this can cause a deadlock to occur on the TASK_SEQ table. The resolution is to drop the
TASK_EXECUTION_SEQ table and create a sequence using the same name. For example:

DROP TABLE TASK_SEQ;

CREATE SEQUENCE [DBO].[TASK_SEQ] AS BIGINT
 START WITH 1
 INCREMENT BY 1;

 Set the START WITH to a higher value than your current execution id.

2. Building This Documentation
This project uses Maven to generate this documentation. To generate it for yourself, run the
following command: $ mvn clean install -DskipTests -P docs.

Spring Cloud Vault
© 2016-2021 the original authors.

Copies of this document may be made for your own use and for distribution to
others, provided that you do not charge any fee for such copies and further provided
that each copy contains this Copyright Notice, whether distributed in print or
electronically.

Spring Cloud Vault Config provides client-side support for externalized configuration in a
distributed system. With HashiCorp’s Vault you have a central place to manage external secret
properties for applications across all environments. Vault can manage static and dynamic secrets
such as username/password for remote applications/resources and provide credentials for external
services such as MySQL, PostgreSQL, Apache Cassandra, Couchbase, MongoDB, Consul, AWS and
more.

1. New & Noteworthy
This section briefly covers items that are new and noteworthy in the latest releases.

1.1. New in Spring Cloud Vault 3.0
• Migration of PropertySource initialization from Spring Cloud’s Bootstrap Context to Spring Boot’s

ConfigData API.

https://www.vaultproject.io

• Support for the Couchbase Database backend.

• Configuration of keystore/truststore types through spring.cloud.vault.ssl.key-store-type=…
/spring.cloud.vault.ssl.trust-store-type=… including PEM support.

• Support for ReactiveDiscoveryClient by configuring a ReactiveVaultEndpointProvider.

• Support to configure Multiple Databases.

2. Quick Start
Prerequisites

To get started with Vault and this guide you need a *NIX-like operating systems that provides:

• wget, openssl and unzip

• at least Java 8 and a properly configured JAVA_HOME environment variable

This guide explains Vault setup from a Spring Cloud Vault perspective for
integration testing. You can find a getting started guide directly on the Vault
project site: learn.hashicorp.com/vault

Install Vault

$ wget
https://releases.hashicorp.com/vault/${vault_version}/vault_${vault_version}_${platfor
m}.zip
$ unzip vault_${vault_version}_${platform}.zip

 These steps can be achieved by downloading and running install_vault.sh.

Create SSL certificates for Vault

Next, you’r required to generate a set of certificates:

• Root CA

• Vault Certificate (decrypted key work/ca/private/localhost.decrypted.key.pem and certificate
work/ca/certs/localhost.cert.pem)

Make sure to import the Root Certificate into a Java-compliant truststore.

The easiest way to achieve this is by using OpenSSL.

create_certificates.sh creates certificates in work/ca and a JKS truststore
work/keystore.jks. If you want to run Spring Cloud Vault using this quickstart
guide you need to configure the truststore the spring.cloud.vault.ssl.trust-store
property to file:work/keystore.jks.

https://learn.hashicorp.com/vault
https://github.com/spring-cloud/spring-cloud-vault/blob/master/src/test/bash/install_vault.sh
https://github.com/spring-cloud/spring-cloud-vault/blob/master/src/test/bash/

Start Vault server

Next create a config file along the lines of:

backend "inmem" {
}

listener "tcp" {
 address = "0.0.0.0:8200"
 tls_cert_file = "work/ca/certs/localhost.cert.pem"
 tls_key_file = "work/ca/private/localhost.decrypted.key.pem"
}

disable_mlock = true

 You can find an example config file at vault.conf.

$ vault server -config=vault.conf

Vault is started listening on 0.0.0.0:8200 using the inmem storage and https. Vault is sealed and not
initialized when starting up.

If you want to run tests, leave Vault uninitialized. The tests will initialize Vault and
create a root token 00000000-0000-0000-0000-000000000000.

If you want to use Vault for your application or give it a try then you need to initialize it first.

$ export VAULT_ADDR="https://localhost:8200"
$ export VAULT_SKIP_VERIFY=true # Don't do this for production
$ vault operator init

You should see something like:

https://github.com/spring-clod/spring-cloud-vault/blob/master/src/test/bash/vault.conf

Key 1: 7149c6a2e16b8833f6eb1e76df03e47f6113a3288b3093faf5033d44f0e70fe701
Key 2: 901c534c7988c18c20435a85213c683bdcf0efcd82e38e2893779f152978c18c02
Key 3: 03ff3948575b1165a20c20ee7c3e6edf04f4cdbe0e82dbff5be49c63f98bc03a03
Key 4: 216ae5cc3ddaf93ceb8e1d15bb9fc3176653f5b738f5f3d1ee00cd7dccbe926e04
Key 5: b2898fc8130929d569c1677ee69dc5f3be57d7c4b494a6062693ce0b1c4d93d805
Initial Root Token: 19aefa97-cccc-bbbb-aaaa-225940e63d76

Vault initialized with 5 keys and a key threshold of 3. Please
securely distribute the above keys. When the Vault is re-sealed,
restarted, or stopped, you must provide at least 3 of these keys
to unseal it again.

Vault does not store the master key. Without at least 3 keys,
your Vault will remain permanently sealed.

Vault will initialize and return a set of unsealing keys and the root token. Pick 3 keys and unseal
Vault. Store the Vault token in the VAULT_TOKEN environment variable.

$ vault operator unseal (Key 1)
$ vault operator unseal (Key 2)
$ vault operator unseal (Key 3)
$ export VAULT_TOKEN=(Root token)
Required to run Spring Cloud Vault tests after manual initialization
$ vault token create -id="00000000-0000-0000-0000-000000000000" -policy="root"

Spring Cloud Vault accesses different resources. By default, the secret backend is enabled which
accesses secret config settings via JSON endpoints.

The HTTP service has resources in the form:

/secret/{application}/{profile}
/secret/{application}
/secret/{defaultContext}/{profile}
/secret/{defaultContext}

where the "application" is injected as the spring.application.name in the SpringApplication (i.e. what
is normally "application" in a regular Spring Boot app), "profile" is an active profile (or comma-
separated list of properties). Properties retrieved from Vault will be used "as-is" without further
prefixing of the property names.

3. Client Side Usage
To use these features in an application, just build it as a Spring Boot application that depends on
spring-cloud-vault-config (e.g. see the test cases). Example Maven configuration:

Example 86. pom.xml

<parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.4.0.RELEASE</version>
 <relativePath /> <!-- lookup parent from repository -->
</parent>

<dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-vault-config</artifactId>
 <version>4.0.1</version>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
</dependencies>

<build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
</build>

<!-- repositories also needed for snapshots and milestones -->

Then you can create a standard Spring Boot application, like this simple HTTP server:

@SpringBootApplication
@RestController
public class Application {

 @RequestMapping("/")
 public String home() {
 return "Hello World!";
 }

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }
}

When it runs it will pick up the external configuration from the default local Vault server on port
8200 if it is running. To modify the startup behavior you can change the location of the Vault server
using application.properties, for example

Example 87. application.yml

spring.cloud.vault:
 host: localhost
 port: 8200
 scheme: https
 uri: https://localhost:8200
 connection-timeout: 5000
 read-timeout: 15000
 config:
spring.config.import: vault://

• host sets the hostname of the Vault host. The host name will be used for SSL certificate
validation

• port sets the Vault port

• scheme setting the scheme to http will use plain HTTP. Supported schemes are http and https.

• uri configure the Vault endpoint with an URI. Takes precedence over host/port/scheme
configuration

• connection-timeout sets the connection timeout in milliseconds

• read-timeout sets the read timeout in milliseconds

• spring.config.import mounts Vault as PropertySource using all enabled secret backends (key-
value enabled by default)

Enabling further integrations requires additional dependencies and configuration. Depending on
how you have set up Vault you might need additional configuration like SSL and authentication.

https://cloud.spring.io/spring-cloud-vault/reference/html/#vault.config.ssl
https://cloud.spring.io/spring-cloud-vault/reference/html/#vault.config.authentication

If the application imports the spring-boot-starter-actuator project, the status of the vault server
will be available via the /health endpoint.

The vault health indicator can be enabled or disabled through the property
management.health.vault.enabled (default to true).

With Spring Cloud Vault 3.0 and Spring Boot 2.4, the bootstrap context
initialization (bootstrap.yml, bootstrap.properties) of property sources was
deprecated. Instead, Spring Cloud Vault favors Spring Boot’s Config Data API which
allows importing configuration from Vault. With Spring Boot Config Data
approach, you need to set the spring.config.import property in order to bind to
Vault. You can read more about it in the Config Data Locations section. You can
enable the bootstrap context either by setting the configuration property
spring.cloud.bootstrap.enabled=true or by including the dependency
org.springframework.cloud:spring-cloud-starter-bootstrap.

3.1. Authentication
Vault requires an authentication mechanism to authorize client requests.

Spring Cloud Vault supports multiple authentication mechanisms to authenticate applications with
Vault.

For a quickstart, use the root token printed by the Vault initialization.

Example 88. application.yml

spring.cloud.vault:
 token: 19aefa97-cccc-bbbb-aaaa-225940e63d76
spring.config.import: vault://

Consider carefully your security requirements. Static token authentication is fine if
you want quickly get started with Vault, but a static token is not protected any
further. Any disclosure to unintended parties allows Vault use with the associated
token roles.

4. ConfigData API
Spring Boot provides since version 2.4 a ConfigData API that allows the declaration of configuration
sources and importing these as property sources.

Spring Cloud Vault uses as of version 3.0 the ConfigData API to mount Vault’s secret backends as
property sources. In previous versions, the Bootstrap context was used. The ConfigData API is much
more flexible as it allows specifying which configuration systems to import and in which order.

https://www.vaultproject.io/docs/concepts/auth.html
https://www.vaultproject.io/docs/concepts/tokens.html
https://cloud.spring.io/spring-cloud-vault/reference/html/#vault.config.authentication

You can enable the bootstrap context either by setting the configuration property
spring.cloud.bootstrap.enabled=true or by including the dependency
org.springframework.cloud:spring-cloud-starter-bootstrap. Using the boostrap
context should be only rarely required hence we recommend using the Config
Data API for more flexibility regarding property source ordering.

4.1. ConfigData Locations
You can mount Vault configuration through one or more PropertySource that are materialized from
Vault. Spring Cloud Vault supports two config locations:

• vault:// (default location)

• vault:///<context-path> (contextual location)

Using the default location mounts property sources for all enabled Secret Backends. Without
further configuration, Spring Cloud Vault mounts the key-value backend at
/secret/${spring.application.name}. Each activated profile adds another context path following the
form /secret/${spring.application.name}/${profile}. Adding further modules to the classpath, such
as spring-cloud-config-databases, provides additional secret backend configuration options which
get mounted as property sources if enabled.

If you want to control which context paths are mounted from Vault as PropertySource, you can
either use a contextual location (vault:///my/context/path) or configure a VaultConfigurer.

Contextual locations are specified and mounted individually. Spring Cloud Vault mounts each
location as a unique PropertySource. You can mix the default locations with contextual locations (or
other config systems) to control the order of property sources. This approach is useful in particular
if you want to disable the default key-value path computation and mount each key-value backend
yourself instead.

Example 89. application.yml

spring.config.import: vault://first/context/path, vault://other/path, vault://

Property names within a Spring Environment must be unique to avoid shadowing. If you use the
same secret names in different context paths and you want to expose these as individual properties
you can distinguish them by adding a prefix query parameter to the location.

Example 90. application.yml

spring.config.import: vault://my/path?prefix=foo.,
vault://my/other/path?prefix=bar.
secret: ${foo.secret}
other.secret: ${bar.secret}

Prefixes are added as-is to all property names returned by Vault. If you want
key names to be separated with a dot between the prefix and key name, make
sure to add a trailing dot to the prefix.

4.2. Conditionally enable/disable Vault Configuration
In some cases, it can be required to launch an application without Vault. You can express whether a
Vault config location should be optional or mandatory (default) through the location string:

• optional:vault:// (default location)

• optional:vault:///<context-path> (contextual location)

Optional locations are skipped during application startup if Vault support was disabled through
spring.cloud.vault.enabled=false.

Vault context paths that cannot be found (HTTP Status 404) are skipped regardless
of whether the config location is marked optional. Vault Client Fail Fast allows
failing on start if a Vault context path cannot be found because of HTTP Status 404.

4.3. Infrastructure Customization
Spring Cloud Vault requires infrastructure classes to interact with Vault. When not using the
ConfigData API (meaning that you haven’t specified spring.config.import=vault:// or a contextual
Vault path), Spring Cloud Vault defines its beans through VaultAutoConfiguration and
VaultReactiveAutoConfiguration. Spring Boot bootstraps the application before a Spring Context is
available. Therefore VaultConfigDataLoader registers beans itself to propagate these later on into the
application context.

You can customize the infrastructure used by Spring Cloud Vault by registering custom instances
using the Bootstrapper API:

Example 91. Customizing ClientHttpRequestFactory

ClientOptions options = new ClientOptions();
SslConfiguration sslConfiguration = SslConfiguration.unconfigured();
HttpClientBuilder builder = HttpComponents.getHttpClientBuilder(options,
sslConfiguration);

InstanceSupplier<ClientFactoryWrapper> supplier = context ->
new ClientFactoryWrapper(new
HttpComponentsClientHttpRequestFactory(builder.build()));

SpringApplication application = new SpringApplication(MyApplication.class);
application.addBootstrapRegistryInitializer(registry ->
registry.register(ClientFactoryWrapper.class, supplier));

Example 92. Customizing RestTemplateBuilder

InstanceSupplier<RestTemplateBuilder> supplier = context -> {

 return RestTemplateBuilder
 .builder()

.requestFactory(context.get(ClientFactoryWrapper.class).getClientHttpRequestFactor
y())
 .defaultHeader("X-Vault-Namespace", "my-namespace");
};

SpringApplication application = new SpringApplication(MyApplication.class);
application.addBootstrapRegistryInitializer(registry ->
registry.register(RestTemplateBuilder.class, supplier));

See also Customize which secret backends to expose as PropertySource and the source of
VaultConfigDataLoader for customization hooks.

5. Authentication methods
Different organizations have different requirements for security and authentication. Vault reflects
that need by shipping multiple authentication methods. Spring Cloud Vault supports token and
AppId authentication.

5.1. Token authentication
Tokens are the core method for authentication within Vault. Token authentication requires a static
token to be provided using the configuration. As a fallback, the token may also be retrieved from
~/.vault-token which is the default location used by the Vault CLI to cache tokens.

Token authentication is the default authentication method. If a token is disclosed
an unintended party gains access to Vault and can access secrets for the intended
client.

Example 93. application.yml

spring.cloud.vault:
 authentication: TOKEN
 token: 00000000-0000-0000-0000-000000000000

• authentication setting this value to TOKEN selects the Token authentication method

• token sets the static token to use. If missing or empty, then an attempt will be made to retrieve a
token from ~/.vault-token.

See also:

• Vault Documentation: Tokens

• Vault Documentation: CLI login

• Vault Documentation: CLI default to ~/.vault-token

5.2. Vault Agent authentication
Vault ships a sidecar utility with Vault Agent since version 0.11.0. Vault Agent implements the
functionality of Spring Vault’s SessionManager with its Auto-Auth feature. Applications can reuse
cached session credentials by relying on Vault Agent running on localhost. Spring Vault can send
requests without the X-Vault-Token header. Disable Spring Vault’s authentication infrastructure to
disable client authentication and session management.

Example 94. application.yml

spring.cloud.vault:
 authentication: NONE

• authentication setting this value to NONE disables ClientAuthentication and SessionManager.

See also: Vault Documentation: Agent

5.3. AppId authentication
Vault supports AppId authentication that consists of two hard to guess tokens. The AppId defaults to
spring.application.name that is statically configured. The second token is the UserId which is a part
determined by the application, usually related to the runtime environment. IP address, Mac
address or a Docker container name are good examples. Spring Cloud Vault Config supports IP

https://www.vaultproject.io/docs/concepts/tokens.html
https://www.vaultproject.io/docs/commands/login
https://www.vaultproject.io/docs/commands/token-helper
https://www.vaultproject.io/docs/agent/index.html
https://www.vaultproject.io/docs/auth/app-id.html

address, Mac address and static UserId’s (e.g. supplied via System properties). The IP and Mac
address are represented as Hex-encoded SHA256 hash.

IP address-based UserId’s use the local host’s IP address.

Example 95. application.yml using SHA256 IP-Address UserId’s

spring.cloud.vault:
 authentication: APPID
 app-id:
 user-id: IP_ADDRESS

• authentication setting this value to APPID selects the AppId authentication method

• app-id-path sets the path of the AppId mount to use

• user-id sets the UserId method. Possible values are IP_ADDRESS, MAC_ADDRESS or a class name
implementing a custom AppIdUserIdMechanism

The corresponding command to generate the IP address UserId from a command line is:

$ echo -n 192.168.99.1 | sha256sum

Including the line break of echo leads to a different hash value so make sure to
include the -n flag.

Mac address-based UserId’s obtain their network device from the localhost-bound device. The
configuration also allows specifying a network-interface hint to pick the right device. The value of
network-interface is optional and can be either an interface name or interface index (0-based).

Example 96. application.yml using SHA256 Mac-Address UserId’s

spring.cloud.vault:
 authentication: APPID
 app-id:
 user-id: MAC_ADDRESS
 network-interface: eth0

• network-interface sets network interface to obtain the physical address

The corresponding command to generate the IP address UserId from a command line is:

$ echo -n 0AFEDE1234AC | sha256sum

The Mac address is specified uppercase and without colons. Including the line
break of echo leads to a different hash value so make sure to include the -n flag.

5.3.1. Custom UserId

The UserId generation is an open mechanism. You can set spring.cloud.vault.app-id.user-id to any
string and the configured value will be used as static UserId.

A more advanced approach lets you set spring.cloud.vault.app-id.user-id to a classname. This
class must be on your classpath and must implement the
org.springframework.cloud.vault.AppIdUserIdMechanism interface and the createUserId method.
Spring Cloud Vault will obtain the UserId by calling createUserId each time it authenticates using
AppId to obtain a token.

Example 97. application.yml

spring.cloud.vault:
 authentication: APPID
 app-id:
 user-id: com.examlple.MyUserIdMechanism

Example 98. MyUserIdMechanism.java

public class MyUserIdMechanism implements AppIdUserIdMechanism {

 @Override
 public String createUserId() {
 String userId = ...
 return userId;
 }
}

See also: Vault Documentation: Using the App ID auth backend

5.4. AppRole authentication
AppRole is intended for machine authentication, like the deprecated (since Vault 0.6.1) AppId
authentication. AppRole authentication consists of two hard to guess (secret) tokens: RoleId and
SecretId.

Spring Vault supports various AppRole scenarios (push/pull mode and wrapped).

RoleId and optionally SecretId must be provided by configuration, Spring Vault will not look up
these or create a custom SecretId.

https://www.vaultproject.io/docs/auth/app-id.html
https://www.vaultproject.io/docs/auth/app-id.html

Example 99. application.yml with AppRole authentication properties

spring.cloud.vault:
 authentication: APPROLE
 app-role:
 role-id: bde2076b-cccb-3cf0-d57e-bca7b1e83a52

The following scenarios are supported along the required configuration details:

Table 19. Configuration

Method RoleId SecretId RoleName Token

Provided
RoleId/SecretId

Provided Provided

Provided RoleId
without SecretId

Provided

Provided RoleId,
Pull SecretId

Provided Provided Provided

Pull RoleId,
provided SecretId

Provided Provided Provided

Full Pull Mode Provided Provided

Wrapped Provided

Wrapped RoleId,
provided SecretId

Provided Provided

Provided RoleId,
wrapped SecretId

Provided Provided

Table 20. Pull/Push/Wrapped Matrix

RoleId SecretId Supported

Provided Provided ✅

Provided Pull ✅

Provided Wrapped ✅

Provided Absent ✅

Pull Provided ✅

Pull Pull ✅

Pull Wrapped ❌

Pull Absent ❌

Wrapped Provided ✅

Wrapped Pull ❌

Wrapped Wrapped ✅

Wrapped Absent ❌

You can use still all combinations of push/pull/wrapped modes by providing a
configured AppRoleAuthentication bean within the context. Spring Cloud Vault
cannot derive all possible AppRole combinations from the configuration
properties.

AppRole authentication is limited to simple pull mode using reactive
infrastructure. Full pull mode is not yet supported. Using Spring Cloud Vault with
the Spring WebFlux stack enables Vault’s reactive auto-configuration which can be
disabled by setting spring.cloud.vault.reactive.enabled=false.

Example 100. application.yml with all AppRole authentication properties

spring.cloud.vault:
 authentication: APPROLE
 app-role:
 role-id: bde2076b-cccb-3cf0-d57e-bca7b1e83a52
 secret-id: 1696536f-1976-73b1-b241-0b4213908d39
 role: my-role
 app-role-path: approle

• role-id sets the RoleId.

• secret-id sets the SecretId. SecretId can be omitted if AppRole is configured without requiring
SecretId (See bind_secret_id).

• role: sets the AppRole name for pull mode.

• app-role-path sets the path of the approle authentication mount to use.

See also: Vault Documentation: Using the AppRole auth backend

5.5. AWS-EC2 authentication
The aws-ec2 auth backend provides a secure introduction mechanism for AWS EC2 instances,
allowing automated retrieval of a Vault token. Unlike most Vault authentication backends, this
backend does not require first-deploying, or provisioning security-sensitive credentials (tokens,
username/password, client certificates, etc.). Instead, it treats AWS as a Trusted Third Party and
uses the cryptographically signed dynamic metadata information that uniquely represents each
EC2 instance.

https://www.vaultproject.io/docs/auth/approle.html
https://www.vaultproject.io/docs/auth/aws-ec2.html

Example 101. application.yml using AWS-EC2 Authentication

spring.cloud.vault:
 authentication: AWS_EC2

AWS-EC2 authentication enables nonce by default to follow the Trust On First Use (TOFU) principle.
Any unintended party that gains access to the PKCS#7 identity metadata can authenticate against
Vault.

During the first login, Spring Cloud Vault generates a nonce that is stored in the auth backend aside
the instance Id. Re-authentication requires the same nonce to be sent. Any other party does not
have the nonce and can raise an alert in Vault for further investigation.

The nonce is kept in memory and is lost during application restart. You can configure a static nonce
with spring.cloud.vault.aws-ec2.nonce.

AWS-EC2 authentication roles are optional and default to the AMI. You can configure the
authentication role by setting the spring.cloud.vault.aws-ec2.role property.

Example 102. application.yml with configured role

spring.cloud.vault:
 authentication: AWS_EC2
 aws-ec2:
 role: application-server

Example 103. application.yml with all AWS EC2 authentication properties

spring.cloud.vault:
 authentication: AWS_EC2
 aws-ec2:
 role: application-server
 aws-ec2-path: aws-ec2
 identity-document: http://...
 nonce: my-static-nonce

• authentication setting this value to AWS_EC2 selects the AWS EC2 authentication method

• role sets the name of the role against which the login is being attempted.

• aws-ec2-path sets the path of the AWS EC2 mount to use

• identity-document sets URL of the PKCS#7 AWS EC2 identity document

• nonce used for AWS-EC2 authentication. An empty nonce defaults to nonce generation

See also: Vault Documentation: Using the aws auth backend

5.6. AWS-IAM authentication
The aws backend provides a secure authentication mechanism for AWS IAM roles, allowing the
automatic authentication with vault based on the current IAM role of the running application.
Unlike most Vault authentication backends, this backend does not require first-deploying, or
provisioning security-sensitive credentials (tokens, username/password, client certificates, etc.).
Instead, it treats AWS as a Trusted Third Party and uses the 4 pieces of information signed by the
caller with their IAM credentials to verify that the caller is indeed using that IAM role.

The current IAM role the application is running in is automatically calculated. If you are running
your application on AWS ECS then the application will use the IAM role assigned to the ECS task of
the running container. If you are running your application naked on top of an EC2 instance then
the IAM role used will be the one assigned to the EC2 instance.

When using the AWS-IAM authentication you must create a role in Vault and assign it to your IAM
role. An empty role defaults to the friendly name the current IAM role.

Example 104. application.yml with required AWS-IAM Authentication properties

spring.cloud.vault:
 authentication: AWS_IAM

Example 105. application.yml with all AWS-IAM Authentication properties

spring.cloud.vault:
 authentication: AWS_IAM
 aws-iam:
 region: aws-global
 role: my-dev-role
 aws-path: aws
 server-name: some.server.name
 endpoint-uri: https://sts.eu-central-1.amazonaws.com

• region sets the name of the AWS region. If not supplied, the region will be determined by AWS
defaults.

• role sets the name of the role against which the login is being attempted. This should be bound
to your IAM role. If one is not supplied then the friendly name of the current IAM user will be
used as the vault role.

• aws-path sets the path of the AWS mount to use

• server-name sets the value to use for the X-Vault-AWS-IAM-Server-ID header preventing certain
types of replay attacks.

https://www.vaultproject.io/docs/auth/aws.html
https://www.vaultproject.io/docs/auth/aws-ec2.html

• endpoint-uri sets the value to use for the AWS STS API used for the iam_request_url parameter.

AWS-IAM requires the AWS Java SDK v2 dependency (software.amazon.awssdk:auth) as the
authentication implementation uses AWS SDK types for credentials and request signing.

See also: Vault Documentation: Using the aws auth backend

5.7. Azure MSI authentication
The azure auth backend provides a secure introduction mechanism for Azure VM instances,
allowing automated retrieval of a Vault token. Unlike most Vault authentication backends, this
backend does not require first-deploying, or provisioning security-sensitive credentials (tokens,
username/password, client certificates, etc.). Instead, it treats Azure as a Trusted Third Party and
uses the managed service identity and instance metadata information that can be bound to a VM
instance.

Example 106. application.yml with required Azure Authentication properties

spring.cloud.vault:
 authentication: AZURE_MSI
 azure-msi:
 role: my-dev-role

Example 107. application.yml with all Azure Authentication properties

spring.cloud.vault:
 authentication: AZURE_MSI
 azure-msi:
 role: my-dev-role
 azure-path: azure
 metadata-service: http://169.254.169.254/metadata/instance…
 identity-token-service: http://169.254.169.254/metadata/identity…

• role sets the name of the role against which the login is being attempted.

• azure-path sets the path of the Azure mount to use

• metadata-service sets the URI at which to access the instance metadata service

• identity-token-service sets the URI at which to access the identity token service

Azure MSI authentication obtains environmental details about the virtual machine (subscription Id,
resource group, VM name) from the instance metadata service. The Vault server has Resource Id
defaults to vault.hashicorp.com. To change this, set spring.cloud.vault.azure-msi.identity-token-
service accordingly.

See also:

https://www.vaultproject.io/docs/auth/aws.html
https://www.vaultproject.io/docs/auth/azure.html
https://vault.hashicorp.com

• Vault Documentation: Using the azure auth backend

• Azure Documentation: Azure Instance Metadata Service

5.8. TLS certificate authentication
The cert auth backend allows authentication using SSL/TLS client certificates that are either signed
by a CA or self-signed.

To enable cert authentication you need to:

1. Use SSL, see Vault Client SSL configuration

2. Configure a Java Keystore that contains the client certificate and the private key

3. Set the spring.cloud.vault.authentication to CERT

Example 108. application.yml

spring.cloud.vault:
 authentication: CERT
 ssl:
 key-store: classpath:keystore.jks
 key-store-password: changeit
 key-store-type: JKS
 cert-auth-path: cert

See also: Vault Documentation: Using the Cert auth backend

5.9. Cubbyhole authentication
Cubbyhole authentication uses Vault primitives to provide a secured authentication workflow.
Cubbyhole authentication uses tokens as primary login method. An ephemeral token is used to
obtain a second, login VaultToken from Vault’s Cubbyhole secret backend. The login token is usually
longer-lived and used to interact with Vault. The login token will be retrieved from a wrapped
response stored at /cubbyhole/response.

Creating a wrapped token

 Response Wrapping for token creation requires Vault 0.6.0 or higher.

https://www.vaultproject.io/docs/auth/azure.html
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/instance-metadata-service
https://www.vaultproject.io/docs/auth/cert.html

Example 109. Creating and storing tokens

$ vault token-create -wrap-ttl="10m"
Key Value
--- -----
wrapping_token: 397ccb93-ff6c-b17b-9389-380b01ca2645
wrapping_token_ttl: 0h10m0s
wrapping_token_creation_time: 2016-09-18 20:29:48.652957077 +0200 CEST
wrapped_accessor: 46b6aebb-187f-932a-26d7-4f3d86a68319

Example 110. application.yml

spring.cloud.vault:
 authentication: CUBBYHOLE
 token: 397ccb93-ff6c-b17b-9389-380b01ca2645

See also:

• Vault Documentation: Tokens

• Vault Documentation: Cubbyhole Secret Backend

• Vault Documentation: Response Wrapping

5.10. GCP-GCE authentication
The gcp auth backend allows Vault login by using existing GCP (Google Cloud Platform) IAM and
GCE credentials.

GCP GCE (Google Compute Engine) authentication creates a signature in the form of a JSON Web
Token (JWT) for a service account. A JWT for a Compute Engine instance is obtained from the GCE
metadata service using Instance identification. This API creates a JSON Web Token that can be used
to confirm the instance identity.

Unlike most Vault authentication backends, this backend does not require first-deploying, or
provisioning security-sensitive credentials (tokens, username/password, client certificates, etc.).
Instead, it treats GCP as a Trusted Third Party and uses the cryptographically signed dynamic
metadata information that uniquely represents each GCP service account.

https://www.vaultproject.io/docs/concepts/tokens.html
https://www.vaultproject.io/docs/secrets/cubbyhole/index.html
https://www.vaultproject.io/docs/concepts/response-wrapping.html
https://www.vaultproject.io/docs/auth/gcp.html
https://cloud.google.com/compute/docs/instances/verifying-instance-identity

Example 111. application.yml with required GCP-GCE Authentication properties

spring.cloud.vault:
 authentication: GCP_GCE
 gcp-gce:
 role: my-dev-role

Example 112. application.yml with all GCP-GCE Authentication properties

spring.cloud.vault:
 authentication: GCP_GCE
 gcp-gce:
 gcp-path: gcp
 role: my-dev-role
 service-account: my-service@projectid.iam.gserviceaccount.com

• role sets the name of the role against which the login is being attempted.

• gcp-path sets the path of the GCP mount to use

• service-account allows overriding the service account Id to a specific value. Defaults to the
default service account.

See also:

• Vault Documentation: Using the GCP auth backend

• GCP Documentation: Verifying the Identity of Instances

5.11. GCP-IAM authentication
The gcp auth backend allows Vault login by using existing GCP (Google Cloud Platform) IAM and
GCE credentials.

GCP IAM authentication creates a signature in the form of a JSON Web Token (JWT) for a service
account. A JWT for a service account is obtained by calling GCP IAM’s
projects.serviceAccounts.signJwt API. The caller authenticates against GCP IAM and proves thereby
its identity. This Vault backend treats GCP as a Trusted Third Party.

IAM credentials can be obtained from either the runtime environment , specifically the
GOOGLE_APPLICATION_CREDENTIALS environment variable, the Google Compute metadata service, or
supplied externally as e.g. JSON or base64 encoded. JSON is the preferred form as it carries the
project id and service account identifier required for calling projects.serviceAccounts.signJwt.

https://www.vaultproject.io/docs/auth/gcp.html
https://cloud.google.com/compute/docs/instances/verifying-instance-identity
https://www.vaultproject.io/docs/auth/gcp.html
https://cloud.google.com/iam/reference/rest/v1/projects.serviceAccounts/signJwt
https://cloud.google.com/docs/authentication/production

Example 113. application.yml with required GCP-IAM Authentication properties

spring.cloud.vault:
 authentication: GCP_IAM
 gcp-iam:
 role: my-dev-role

Example 114. application.yml with all GCP-IAM Authentication properties

spring.cloud.vault:
 authentication: GCP_IAM
 gcp-iam:
 credentials:
 location: classpath:credentials.json
 encoded-key: e+KApn0=
 gcp-path: gcp
 jwt-validity: 15m
 project-id: my-project-id
 role: my-dev-role
 service-account-id: my-service@projectid.iam.gserviceaccount.com

• role sets the name of the role against which the login is being attempted.

• credentials.location path to the credentials resource that contains Google credentials in JSON
format.

• credentials.encoded-key the base64 encoded contents of an OAuth2 account private key in the
JSON format.

• gcp-path sets the path of the GCP mount to use

• jwt-validity configures the JWT token validity. Defaults to 15 minutes.

• project-id allows overriding the project Id to a specific value. Defaults to the project Id from the
obtained credential.

• service-account allows overriding the service account Id to a specific value. Defaults to the
service account from the obtained credential.

GCP IAM authentication requires the Google Cloud Java SDK dependency (com.google.apis:google-
api-services-iam and com.google.auth:google-auth-library-oauth2-http) as the authentication
implementation uses Google APIs for credentials and JWT signing.

Google credentials require an OAuth 2 token maintaining the token lifecycle. All
API is synchronous therefore, GcpIamAuthentication does not support
AuthenticationSteps which is required for reactive usage.

See also:

• Vault Documentation: Using the GCP auth backend

• GCP Documentation: projects.serviceAccounts.signJwt

5.12. Kubernetes authentication
Kubernetes authentication mechanism (since Vault 0.8.3) allows to authenticate with Vault using a
Kubernetes Service Account Token. The authentication is role based and the role is bound to a
service account name and a namespace.

A file containing a JWT token for a pod’s service account is automatically mounted at
/var/run/secrets/kubernetes.io/serviceaccount/token.

Example 115. application.yml with all Kubernetes authentication properties

spring.cloud.vault:
 authentication: KUBERNETES
 kubernetes:
 role: my-dev-role
 kubernetes-path: kubernetes
 service-account-token-file:
/var/run/secrets/kubernetes.io/serviceaccount/token

• role sets the Role.

• kubernetes-path sets the path of the Kubernetes mount to use.

• service-account-token-file sets the location of the file containing the Kubernetes Service
Account Token. Defaults to /var/run/secrets/kubernetes.io/serviceaccount/token.

See also:

• Vault Documentation: Kubernetes

• Kubernetes Documentation: Configure Service Accounts for Pods

5.13. Pivotal CloudFoundry authentication
The pcf auth backend provides a secure introduction mechanism for applications running within
Pivotal’s CloudFoundry instances allowing automated retrieval of a Vault token. Unlike most Vault
authentication backends, this backend does not require first-deploying, or provisioning security-
sensitive credentials (tokens, username/password, client certificates, etc.) as identity provisioning is
handled by PCF itself. Instead, it treats PCF as a Trusted Third Party and uses the managed instance
identity.

https://www.vaultproject.io/docs/auth/gcp.html
https://cloud.google.com/iam/reference/rest/v1/projects.serviceAccounts/signJwt
https://www.vaultproject.io/docs/auth/kubernetes.html
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://www.vaultproject.io/docs/auth/pcf.html

Example 116. application.yml with required PCF Authentication properties

spring.cloud.vault:
 authentication: PCF
 pcf:
 role: my-dev-role

Example 117. application.yml with all PCF Authentication properties

spring.cloud.vault:
 authentication: PCF
 pcf:
 role: my-dev-role
 pcf-path: path
 instance-certificate: /etc/cf-instance-credentials/instance.crt
 instance-key: /etc/cf-instance-credentials/instance.key

• role sets the name of the role against which the login is being attempted.

• pcf-path sets the path of the PCF mount to use.

• instance-certificate sets the path to the PCF instance identity certificate. Defaults to
${CF_INSTANCE_CERT} env variable.

• instance-key sets the path to the PCF instance identity key. Defaults to ${CF_INSTANCE_KEY} env
variable.

PCF authentication requires BouncyCastle (bcpkix-jdk15on) to be on the classpath
for RSA PSS signing.

See also: Vault Documentation: Using the pcf auth backend

6. ACL Requirements
This section explains which paths are accessed by Spring Vault so you can derive your policy
declarations from the required capabilities.

Capability Associated HTTP verbs

create POST/PUT

read GET

update POST/PUT

delete DELETE

list LIST (GET)

https://www.vaultproject.io/docs/auth/pcf.html

See also www.vaultproject.io/guides/identity/policies.

6.1. Authentication
Login: POST auth/$authMethod/login

6.2. KeyValue Mount Discovery
GET sys/internal/ui/mounts/$mountPath

6.3. SecretLeaseContainer
SecretLeaseContainer uses different paths depending on the configured lease endpoint.

LeaseEndpoints.Legacy

• Revocation: PUT sys/revoke

• Renewal: PUT sys/renew

LeaseEndpoints.Leases (SysLeases)

• Revocation: PUT sys/leases/revoke

• Renewal: PUT sys/leases/renew

6.4. Session Management
• Token lookup: GET auth/token/lookup-self

• Renewal: POST auth/token/renew-self

• Revoke: POST auth/token/revoke-self

7. Secret Backends

7.1. Key-Value Backend
Spring Cloud Vault supports both Key-Value secret backends, the versioned (v2) and unversioned
(v1). The key-value backend allows storage of arbitrary values as key-value store. A single context
can store one or many key-value tuples. Contexts can be organized hierarchically. Spring Cloud
Vault determines itself whether a secret is using versioning and maps the path to its appropriate
URL. Spring Cloud Vault allows using the Application name, and a default context name
(application) in combination with active profiles.

https://www.vaultproject.io/guides/identity/policies

/secret/{application}/{profile}
/secret/{application}
/secret/{default-context}/{profile}
/secret/{default-context}

The application name is determined by the properties:

• spring.cloud.vault.kv.application-name

• spring.cloud.vault.application-name

• spring.application.name

The profiles are determined by the properties:

• spring.cloud.vault.kv.profiles

• spring.profiles.active

Secrets can be obtained from other contexts within the key-value backend by adding their paths to
the application name, separated by commas. For example, given the application name
usefulapp,mysql1,projectx/aws, each of these folders will be used:

• /secret/usefulapp

• /secret/mysql1

• /secret/projectx/aws

Spring Cloud Vault adds all active profiles to the list of possible context paths. No active profiles will
skip accessing contexts with a profile name.

Properties are exposed like they are stored (i.e. without additional prefixes).

Spring Cloud Vault adds the data/ context between the mount path and the actual
context path depending on whether the mount uses the versioned key-value
backend.

spring.cloud.vault:
 kv:
 enabled: true
 backend: secret
 profile-separator: '/'
 default-context: application
 application-name: my-app
 profiles: local, cloud

• enabled setting this value to false disables the secret backend config usage

• backend sets the path of the secret mount to use

• default-context sets the context name used by all applications

• application-name overrides the application name for use in the key-value backend

• profiles overrides the active profiles for use in the key-value backend

• profile-separator separates the profile name from the context in property sources with profiles

The key-value secret backend can be operated in versioned (v2) and non-versioned
(v1) modes.

See also:

• Vault Documentation: Using the KV Secrets Engine - Version 1 (generic secret backend)

• Vault Documentation: Using the KV Secrets Engine - Version 2 (versioned key-value backend)

7.2. Consul
Spring Cloud Vault can obtain credentials for HashiCorp Consul. The Consul integration requires
the spring-cloud-vault-config-consul dependency.

Example 118. pom.xml

<dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-vault-config-consul</artifactId>
 <version>4.0.1</version>
 </dependency>
</dependencies>

The integration can be enabled by setting spring.cloud.vault.consul.enabled=true (default false)
and providing the role name with spring.cloud.vault.consul.role=….

The obtained token is stored in spring.cloud.consul.token so using Spring Cloud Consul can pick up
the generated credentials without further configuration. You can configure the property name by
setting spring.cloud.vault.consul.token-property.

spring.cloud.vault:
 consul:
 enabled: true
 role: readonly
 backend: consul
 token-property: spring.cloud.consul.token

• enabled setting this value to true enables the Consul backend config usage

https://www.vaultproject.io/docs/secrets/kv/kv-v1.html
https://www.vaultproject.io/docs/secrets/kv/kv-v2.html

• role sets the role name of the Consul role definition

• backend sets the path of the Consul mount to use

• token-property sets the property name in which the Consul ACL token is stored

See also: Vault Documentation: Setting up Consul with Vault

7.3. RabbitMQ
Spring Cloud Vault can obtain credentials for RabbitMQ.

The RabbitMQ integration requires the spring-cloud-vault-config-rabbitmq dependency.

Example 119. pom.xml

<dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-vault-config-rabbitmq</artifactId>
 <version>4.0.1</version>
 </dependency>
</dependencies>

The integration can be enabled by setting spring.cloud.vault.rabbitmq.enabled=true (default false)
and providing the role name with spring.cloud.vault.rabbitmq.role=….

Username and password are stored in spring.rabbitmq.username and spring.rabbitmq.password so
using Spring Boot will pick up the generated credentials without further configuration. You can
configure the property names by setting spring.cloud.vault.rabbitmq.username-property and
spring.cloud.vault.rabbitmq.password-property.

spring.cloud.vault:
 rabbitmq:
 enabled: true
 role: readonly
 backend: rabbitmq
 username-property: spring.rabbitmq.username
 password-property: spring.rabbitmq.password

• enabled setting this value to true enables the RabbitMQ backend config usage

• role sets the role name of the RabbitMQ role definition

• backend sets the path of the RabbitMQ mount to use

• username-property sets the property name in which the RabbitMQ username is stored

• password-property sets the property name in which the RabbitMQ password is stored

https://www.vaultproject.io/docs/secrets/consul/index.html

See also: Vault Documentation: Setting up RabbitMQ with Vault

7.4. AWS
Spring Cloud Vault can obtain credentials for AWS.

The AWS integration requires the spring-cloud-vault-config-aws dependency.

Example 120. pom.xml

<dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-vault-config-aws</artifactId>
 <version>4.0.1</version>
 </dependency>
</dependencies>

The integration can be enabled by setting spring.cloud.vault.aws=true (default false) and providing
the role name with spring.cloud.vault.aws.role=….

Supported AWS credential Types:

• iam_user (Defaults)

• assumed_role (STS)

• federation_token (STS)

The access key and secret key are stored in cloud.aws.credentials.accessKey and
cloud.aws.credentials.secretKey. So using Spring Cloud AWS will pick up the generated credentials
without further configuration.

You can configure the property names by setting spring.cloud.vault.aws.access-key-property and
spring.cloud.vault.aws.secret-key-property.

For STS security token, you can configure the property name by setting
spring.cloud.vault.aws.session-token-key-property. The security token is stored under
cloud.aws.credentials.sessionToken (defaults).

Example: iam_user

https://www.vaultproject.io/docs/secrets/rabbitmq/index.html

spring.cloud.vault:
 aws:
 enabled: true
 role: readonly
 backend: aws
 access-key-property: cloud.aws.credentials.accessKey
 secret-key-property: cloud.aws.credentials.secretKey

Example: assumed_role (STS)

spring.cloud.vault:
 aws:
 enabled: true
 role: sts-vault-role
 backend: aws
 credential-type: assumed_role
 access-key-property: cloud.aws.credentials.accessKey
 secret-key-property: cloud.aws.credentials.secretKey
 session-token-key-property: cloud.aws.credentials.sessionToken
 ttl: 3600s
 role-arn: arn:aws:iam::${AWS_ACCOUNT}:role/sts-app-role

• enabled setting this value to true enables the AWS backend config usage

• role sets the role name of the AWS role definition

• backend sets the path of the AWS mount to use

• access-key-property sets the property name in which the AWS access key is stored

• secret-key-property sets the property name in which the AWS secret key is stored

• session-token-key-property sets the property name in which the AWS STS security token is
stored.

• credential-type sets the aws credential type to use for this backend. Defaults to iam_user

• ttl sets the ttl for the STS token when using assumed_role or federation_token. Defaults to the ttl
specified by the vault role. Min/Max values are also limited to what AWS would support for STS.

• role-arn sets the IAM role to assume if more than one are configured for the vault role when
using assumed_role.

See also: Vault Documentation: Setting up AWS with Vault

8. Database backends
Vault supports several database secret backends to generate database credentials dynamically

https://www.vaultproject.io/docs/secrets/aws/index.html

based on configured roles. This means services that need to access a database no longer need to
configure credentials: they can request them from Vault, and use Vault’s leasing mechanism to
more easily roll keys.

Spring Cloud Vault integrates with these backends:

• Database

• Apache Cassandra

• Couchbase Database

• Elasticsearch

• MongoDB

• MySQL

• PostgreSQL

Using a database secret backend requires to enable the backend in the configuration and the
spring-cloud-vault-config-databases dependency.

Vault ships since 0.7.1 with a dedicated database secret backend that allows database integration via
plugins. You can use that specific backend by using the generic database backend. Make sure to
specify the appropriate backend path, e.g. spring.cloud.vault.mysql.role.backend=database.

Example 121. pom.xml

<dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-vault-config-databases</artifactId>
 <version>4.0.1</version>
 </dependency>
</dependencies>

Enabling multiple JDBC-compliant databases will generate credentials and store
them by default in the same property keys hence property names for JDBC secrets
need to be configured separately.

8.1. Database
Spring Cloud Vault can obtain credentials for any database listed at www.vaultproject.io/api/secret/
databases/index.html. The integration can be enabled by setting
spring.cloud.vault.database.enabled=true (default false) and providing the role name with
spring.cloud.vault.database.role=….

While the database backend is a generic one, spring.cloud.vault.database specifically targets JDBC
databases. Username and password are available from spring.datasource.username and
spring.datasource.password properties so using Spring Boot will pick up the generated credentials

https://www.vaultproject.io/api/secret/databases/index.html
https://www.vaultproject.io/api/secret/databases/index.html

for your DataSource without further configuration. You can configure the property names by setting
spring.cloud.vault.database.username-property and spring.cloud.vault.database.password-
property.

spring.cloud.vault:
 database:
 enabled: true
 role: readonly
 backend: database
 username-property: spring.datasource.username
 password-property: spring.datasource.password

8.2. Multiple Databases
Sometimes, credentials for a single database isn’t sufficient because an application might connect to
two or more databases of the same kind. Beginning with version 3.0.5, Spring Vault supports the
configuration of multiple database secret backends under the spring.cloud.vault.databases.*
namespace.

The configuration accepts multiple database backends to materialize credentials into the specified
properties. Make sure to configure username-property and password-property appropriately.

spring.cloud.vault:
 databases:
 primary:
 enabled: true
 role: readwrite
 backend: database
 username-property: spring.primary-datasource.username
 password-property: spring.primary-datasource.password
 other-database:
 enabled: true
 role: readonly
 backend: database
 username-property: spring.secondary-datasource.username
 password-property: spring.secondary-datasource.password

• <name> descriptive name of the database configuration.

• <name>.enabled setting this value to true enables the Database backend config usage

• <name>.role sets the role name of the Database role definition

• <name>.backend sets the path of the Database mount to use

• <name>.username-property sets the property name in which the Database username is stored.

Make sure to use unique property names to avoid property shadowing.

• <name>.password-property sets the property name in which the Database password is stored
Make sure to use unique property names to avoid property shadowing.

See also: Vault Documentation: Database Secrets backend

Spring Cloud Vault does not support getting new credentials and configuring your
DataSource with them when the maximum lease time has been reached. That is, if
max_ttl of the Database role in Vault is set to 24h that means that 24 hours after
your application has started it can no longer authenticate with the database.

8.3. Apache Cassandra

The cassandra backend has been deprecated in Vault 0.7.1 and it is recommended
to use the database backend and mount it as cassandra.

Spring Cloud Vault can obtain credentials for Apache Cassandra. The integration can be enabled by
setting spring.cloud.vault.cassandra.enabled=true (default false) and providing the role name with
spring.cloud.vault.cassandra.role=….

Username and password are available from spring.data.cassandra.username and
spring.data.cassandra.password properties so using Spring Boot will pick up the generated
credentials without further configuration. You can configure the property names by setting
spring.cloud.vault.cassandra.username-property and spring.cloud.vault.cassandra.password-
property.

spring.cloud.vault:
 cassandra:
 enabled: true
 role: readonly
 backend: cassandra
 username-property: spring.data.cassandra.username
 password-property: spring.data.cassandra.password

• enabled setting this value to true enables the Cassandra backend config usage

• role sets the role name of the Cassandra role definition

• backend sets the path of the Cassandra mount to use

• username-property sets the property name in which the Cassandra username is stored

• password-property sets the property name in which the Cassandra password is stored

See also: Vault Documentation: Setting up Apache Cassandra with Vault

https://www.vaultproject.io/docs/secrets/databases/index.html
https://www.vaultproject.io/docs/secrets/cassandra/index.html

8.4. Couchbase Database
Spring Cloud Vault can obtain credentials for Couchbase. The integration can be enabled by setting
spring.cloud.vault.couchbase.enabled=true (default false) and providing the role name with
spring.cloud.vault.couchbase.role=….

Username and password are available from spring.couchbase.username and
spring.couchbase.password properties so using Spring Boot will pick up the generated credentials
without further configuration. You can configure the property names by setting
spring.cloud.vault.couchbase.username-property and spring.cloud.vault.couchbase.password-
property.

spring.cloud.vault:
 couchbase:
 enabled: true
 role: readonly
 backend: database
 username-property: spring.couchbase.username
 password-property: spring.couchbase.password

• enabled setting this value to true enables the Couchbase backend config usage

• role sets the role name of the Couchbase role definition

• backend sets the path of the Couchbase mount to use

• username-property sets the property name in which the Couchbase username is stored

• password-property sets the property name in which the Couchbase password is stored

See also: Couchbase Database Plugin Documentation

8.5. Elasticsearch
Spring Cloud Vault can obtain since version 3.0 credentials for Elasticsearch. The integration can be
enabled by setting spring.cloud.vault.elasticsearch.enabled=true (default false) and providing the
role name with spring.cloud.vault.elasticsearch.role=….

Username and password are available from spring.elasticsearch.rest.username and
spring.elasticsearch.rest.password properties so using Spring Boot will pick up the generated
credentials without further configuration. You can configure the property names by setting
spring.cloud.vault.elasticsearch.username-property and
spring.cloud.vault.elasticsearch.password-property.

https://github.com/hashicorp/vault-plugin-database-couchbase

spring.cloud.vault:
 elasticsearch:
 enabled: true
 role: readonly
 backend: mongodb
 username-property: spring.elasticsearch.rest.username
 password-property: spring.elasticsearch.rest.password

• enabled setting this value to true enables the Elasticsearch database backend config usage

• role sets the role name of the Elasticsearch role definition

• backend sets the path of the Elasticsearch mount to use

• username-property sets the property name in which the Elasticsearch username is stored

• password-property sets the property name in which the Elasticsearch password is stored

See also: Vault Documentation: Setting up Elasticsearch with Vault

8.6. MongoDB

The mongodb backend has been deprecated in Vault 0.7.1 and it is recommended to
use the database backend and mount it as mongodb.

Spring Cloud Vault can obtain credentials for MongoDB. The integration can be enabled by setting
spring.cloud.vault.mongodb.enabled=true (default false) and providing the role name with
spring.cloud.vault.mongodb.role=….

Username and password are stored in spring.data.mongodb.username and
spring.data.mongodb.password so using Spring Boot will pick up the generated credentials without
further configuration. You can configure the property names by setting
spring.cloud.vault.mongodb.username-property and spring.cloud.vault.mongodb.password-property.

spring.cloud.vault:
 mongodb:
 enabled: true
 role: readonly
 backend: mongodb
 username-property: spring.data.mongodb.username
 password-property: spring.data.mongodb.password

• enabled setting this value to true enables the MongodB backend config usage

• role sets the role name of the MongoDB role definition

• backend sets the path of the MongoDB mount to use

https://www.vaultproject.io/docs/secrets/databases/elasticdb

• username-property sets the property name in which the MongoDB username is stored

• password-property sets the property name in which the MongoDB password is stored

See also: Vault Documentation: Setting up MongoDB with Vault

8.7. MySQL

The mysql backend has been deprecated in Vault 0.7.1 and it is recommended to
use the database backend and mount it as mysql. Configuration for
spring.cloud.vault.mysql will be removed in a future version.

Spring Cloud Vault can obtain credentials for MySQL. The integration can be enabled by setting
spring.cloud.vault.mysql.enabled=true (default false) and providing the role name with
spring.cloud.vault.mysql.role=….

Username and password are available from spring.datasource.username and
spring.datasource.password properties so using Spring Boot will pick up the generated credentials
without further configuration. You can configure the property names by setting
spring.cloud.vault.mysql.username-property and spring.cloud.vault.mysql.password-property.

spring.cloud.vault:
 mysql:
 enabled: true
 role: readonly
 backend: mysql
 username-property: spring.datasource.username
 password-property: spring.datasource.password

• enabled setting this value to true enables the MySQL backend config usage

• role sets the role name of the MySQL role definition

• backend sets the path of the MySQL mount to use

• username-property sets the property name in which the MySQL username is stored

• password-property sets the property name in which the MySQL password is stored

See also: Vault Documentation: Setting up MySQL with Vault

8.8. PostgreSQL

The postgresql backend has been deprecated in Vault 0.7.1 and it is recommended
to use the database backend and mount it as postgresql. Configuration for
spring.cloud.vault.postgresql will be removed in a future version.

Spring Cloud Vault can obtain credentials for PostgreSQL. The integration can be enabled by setting

https://www.vaultproject.io/docs/secrets/mongodb/index.html
https://www.vaultproject.io/docs/secrets/mysql/index.html

spring.cloud.vault.postgresql.enabled=true (default false) and providing the role name with
spring.cloud.vault.postgresql.role=….

Username and password are available from spring.datasource.username and
spring.datasource.password properties so using Spring Boot will pick up the generated credentials
without further configuration. You can configure the property names by setting
spring.cloud.vault.postgresql.username-property and spring.cloud.vault.postgresql.password-
property.

spring.cloud.vault:
 postgresql:
 enabled: true
 role: readonly
 backend: postgresql
 username-property: spring.datasource.username
 password-property: spring.datasource.password

• enabled setting this value to true enables the PostgreSQL backend config usage

• role sets the role name of the PostgreSQL role definition

• backend sets the path of the PostgreSQL mount to use

• username-property sets the property name in which the PostgreSQL username is stored

• password-property sets the property name in which the PostgreSQL password is stored

See also: Vault Documentation: Setting up PostgreSQL with Vault

9. Customize which secret backends to
expose as PropertySource
Spring Cloud Vault uses property-based configuration to create PropertySources for key-value and
discovered secret backends.

Discovered backends provide VaultSecretBackendDescriptor beans to describe the configuration
state to use secret backend as PropertySource. A SecretBackendMetadataFactory is required to create a
SecretBackendMetadata object which contains path, name and property transformation
configuration.

SecretBackendMetadata is used to back a particular PropertySource.

You can register a VaultConfigurer for customization. Default key-value and discovered backend
registration is disabled if you provide a VaultConfigurer. You can however enable default
registration with SecretBackendConfigurer.registerDefaultKeyValueSecretBackends() and
SecretBackendConfigurer.registerDefaultDiscoveredSecretBackends().

https://www.vaultproject.io/docs/secrets/postgresql/index.html

public class CustomizationBean implements VaultConfigurer {

 @Override
 public void addSecretBackends(SecretBackendConfigurer configurer) {

 configurer.add("secret/my-application");

 configurer.registerDefaultKeyValueSecretBackends(false);
 configurer.registerDefaultDiscoveredSecretBackends(true);
 }
}

SpringApplication application = new SpringApplication(MyApplication.class);
application.addBootstrapper(VaultBootstrapper.fromConfigurer(new
CustomizationBean()));

10. Custom Secret Backend Implementations
Spring Cloud Vault ships with secret backend support for the most common backend integrations.
You can integrate with any kind of backend by providing an implementation that describes how to
obtain data from the backend you want to use and how to surface data provided by that backend by
providing a PropertyTransformer.

Adding a custom implementation for a backend requires implementation of two interfaces:

• org.springframework.cloud.vault.config.VaultSecretBackendDescriptor

• org.springframework.cloud.vault.config.SecretBackendMetadataFactory

VaultSecretBackendDescriptor is typically an object that holds configuration data, such as
VaultDatabaseProperties. Spring Cloud Vault requires that your type is annotated with
@ConfigurationProperties to materialize the class from the configuration.

SecretBackendMetadataFactory accepts VaultSecretBackendDescriptor to create the actual
SecretBackendMetadata object which holds the context path within your Vault server, any path
variables required to resolve parametrized context paths and PropertyTransformer.

Both, VaultSecretBackendDescriptor and SecretBackendMetadataFactory types must be registered in
spring.factories which is an extension mechanism provided by Spring, similar to Java’s
ServiceLoader.

11. Service Registry Configuration
You can use a DiscoveryClient (such as from Spring Cloud Consul) to locate a Vault server by setting
spring.cloud.vault.discovery.enabled=true (default false). The net result of that is that your apps

need a application.yml (or an environment variable) with the appropriate discovery configuration.
The benefit is that the Vault can change its co-ordinates, as long as the discovery service is a fixed
point. The default service id is vault but you can change that on the client with
spring.cloud.vault.discovery.serviceId.

The discovery client implementations all support some kind of metadata map (e.g. for Eureka we
have eureka.instance.metadataMap). Some additional properties of the service may need to be
configured in its service registration metadata so that clients can connect correctly. Service
registries that do not provide details about transport layer security need to provide a scheme
metadata entry to be set either to https or http. If no scheme is configured and the service is not
exposed as secure service, then configuration defaults to spring.cloud.vault.scheme which is https
when it’s not set.

spring.cloud.vault.discovery:
 enabled: true
 service-id: my-vault-service

12. Vault Client Fail Fast
In some cases, it may be desirable to fail startup of a service if it cannot connect to the Vault Server.
If this is the desired behavior, set the bootstrap configuration property spring.cloud.vault.fail-
fast=true and the client will halt with an Exception.

spring.cloud.vault:
 fail-fast: true

13. Vault Enterprise Namespace Support
Vault Enterprise allows using namespaces to isolate multiple Vaults on a single Vault server.
Configuring a namespace by setting spring.cloud.vault.namespace=… enables the namespace
header X-Vault-Namespace on every outgoing HTTP request when using the Vault RestTemplate or
WebClient.

Please note that this feature is not supported by Vault Community edition and has no effect on Vault
operations.

spring.cloud.vault:
 namespace: my-namespace

See also: Vault Enterprise: Namespaces

14. Vault Client SSL configuration
SSL can be configured declaratively by setting various properties. You can set either
javax.net.ssl.trustStore to configure JVM-wide SSL settings or spring.cloud.vault.ssl.trust-store
to set SSL settings only for Spring Cloud Vault Config.

spring.cloud.vault:
 ssl:
 trust-store: classpath:keystore.jks
 trust-store-password: changeit
 trust-store-type: JKS
 enabled-protocols: TLSv1.2,TLSv1.3
 enabled-cipher-suites: TLS_AES_128_GCM_SHA256

• trust-store sets the resource for the trust-store. SSL-secured Vault communication will validate
the Vault SSL certificate with the specified trust-store.

• trust-store-password sets the trust-store password

• trust-store-type sets the trust-store type. Supported values are all supported KeyStore types
including PEM.

• enabled-protocols sets the list of enabled SSL/TLS protocols (since 3.0.2).

• enabled-cipher-suites sets the list of enabled SSL/TLS cipher suites (since 3.0.2).

Please note that configuring spring.cloud.vault.ssl.* can be only applied when either Apache Http
Components or the OkHttp client is on your class-path.

15. Lease lifecycle management (renewal
and revocation)
With every secret, Vault creates a lease: metadata containing information such as a time duration,
renewability, and more.

Vault promises that the data will be valid for the given duration, or Time To Live (TTL). Once the
lease is expired, Vault can revoke the data, and the consumer of the secret can no longer be certain
that it is valid.

Spring Cloud Vault maintains a lease lifecycle beyond the creation of login tokens and secrets. That
said, login tokens and secrets associated with a lease are scheduled for renewal just before the lease
expires until terminal expiry. Application shutdown revokes obtained login tokens and renewable
leases.

Secret service and database backends (such as MongoDB or MySQL) usually generate a renewable

https://www.vaultproject.io/docs/enterprise/namespaces/index.html

lease so generated credentials will be disabled on application shutdown.

 Static tokens are not renewed or revoked.

Lease renewal and revocation is enabled by default and can be disabled by setting
spring.cloud.vault.config.lifecycle.enabled to false. This is not recommended as leases can
expire and Spring Cloud Vault cannot longer access Vault or services using generated credentials
and valid credentials remain active after application shutdown.

spring.cloud.vault:
 config.lifecycle:
 enabled: true
 min-renewal: 10s
 expiry-threshold: 1m
 lease-endpoints: Legacy

• enabled controls whether leases associated with secrets are considered to be renewed and
expired secrets are rotated. Enabled by default.

• min-renewal sets the duration that is at least required before renewing a lease. This setting
prevents renewals from happening too often.

• expiry-threshold sets the expiry threshold. A lease is renewed the configured period of time
before it expires.

• lease-endpoints sets the endpoints for renew and revoke. Legacy for vault versions before 0.8
and SysLeases for later.

See also: Vault Documentation: Lease, Renew, and Revoke

16. Session token lifecycle management
(renewal, re-login and revocation)
A Vault session token (also referred to as LoginToken) is quite similar to a lease as it has a TTL, max
TTL, and may expire. Once a login token expires, it cannot be used anymore to interact with Vault.
Therefore, Spring Vault ships with a SessionManager API for imperative and reactive use.

Spring Cloud Vault maintains the session token lifecycle by default. Session tokens are obtained
lazily so the actual login is deferred until the first session-bound use of Vault. Once Spring Cloud
Vault obtains a session token, it retains it until expiry. The next time a session-bound activity is
used, Spring Cloud Vault re-logins into Vault and obtains a new session token. On application shut
down, Spring Cloud Vault revokes the token if it was still active to terminate the session.

Session lifecycle is enabled by default and can be disabled by setting
spring.cloud.vault.session.lifecycle.enabled to false. Disabling is not recommended as session
tokens can expire and Spring Cloud Vault cannot longer access Vault.

https://www.vaultproject.io/docs/concepts/lease.html

spring.cloud.vault:
 session.lifecycle:
 enabled: true
 refresh-before-expiry: 10s
 expiry-threshold: 20s

• enabled controls whether session lifecycle management is enabled to renew session tokens.
Enabled by default.

• refresh-before-expiry controls the point in time when the session token gets renewed. The
refresh time is calculated by subtracting refresh-before-expiry from the token expiry time.
Defaults to 5 seconds.

• expiry-threshold sets the expiry threshold. The threshold represents a minimum TTL duration
to consider a session token as valid. Tokens with a shorter TTL are considered expired and are
not used anymore. Should be greater than refresh-before-expiry to prevent token expiry.
Defaults to 7 seconds.

See also: Vault Documentation: Token Renewal

Appendix A: Common application properties
Various properties can be specified inside your application.properties file, inside your
application.yml file, or as command line switches. This appendix provides a list of common Spring
Cloud Vault properties and references to the underlying classes that consume them.

Property contributions can come from additional jar files on your classpath, so you
should not consider this an exhaustive list. Also, you can define your own
properties.

Name Default Description

spring.cloud.vault.app-id.app-
id-path

app-id Mount path of the AppId
authentication backend.

spring.cloud.vault.app-
id.network-interface

Network interface hint for the
"MAC_ADDRESS" UserId
mechanism.

spring.cloud.vault.app-id.user-
id

MAC_ADDRESS UserId mechanism. Can be
either "MAC_ADDRESS",
"IP_ADDRESS", a string or a
class name.

spring.cloud.vault.app-role.app-
role-path

approle Mount path of the AppRole
authentication backend.

spring.cloud.vault.app-role.role Name of the role, optional, used
for pull-mode.

https://www.vaultproject.io/api-docs/auth/token#renew-a-token-self

Name Default Description

spring.cloud.vault.app-role.role-
id

The RoleId.

spring.cloud.vault.app-
role.secret-id

The SecretId.

spring.cloud.vault.application-
name

application Application name for AppId
authentication.

spring.cloud.vault.authenticatio
n

spring.cloud.vault.aws-ec2.aws-
ec2-path

aws-ec2 Mount path of the AWS-EC2
authentication backend.

spring.cloud.vault.aws-
ec2.identity-document

http://169.254.169.254/latest/
dynamic/instance-
identity/pkcs7

URL of the AWS-EC2 PKCS7
identity document.

spring.cloud.vault.aws-
ec2.nonce

Nonce used for AWS-EC2
authentication. An empty nonce
defaults to nonce generation.

spring.cloud.vault.aws-ec2.role Name of the role, optional.

spring.cloud.vault.aws-iam.aws-
path

aws Mount path of the AWS
authentication backend.

spring.cloud.vault.aws-
iam.endpoint-uri

STS server URI. @since 2.2

spring.cloud.vault.aws-
iam.region

Name of the region, optional.
Inferred by AWS defaults if not
set. @since 4.0.1

spring.cloud.vault.aws-iam.role Name of the role, optional.
Defaults to the friendly IAM
name if not set.

spring.cloud.vault.aws-
iam.server-name

Name of the server used to set
{@code X-Vault-AWS-IAM-
Server-ID} header in the
headers of login requests.

spring.cloud.vault.aws.access-
key-property

cloud.aws.credentials.accessKe
y

Target property for the
obtained access key.

spring.cloud.vault.aws.backend aws aws backend path.

spring.cloud.vault.aws.credenti
al-type

aws credential type

spring.cloud.vault.aws.enabled false Enable aws backend usage.

spring.cloud.vault.aws.role Role name for credentials.

Name Default Description

spring.cloud.vault.aws.role-arn Role arn for assumed_role in
case we have multiple roles
associated with the vault role.
@since 3.0.2

spring.cloud.vault.aws.secret-
key-property

cloud.aws.credentials.secretKe
y

Target property for the
obtained secret key.

spring.cloud.vault.aws.session-
token-key-property

cloud.aws.credentials.sessionT
oken

Target property for the
obtained secret key.

spring.cloud.vault.aws.ttl 0 TTL for sts tokens. Defaults to
whatever the vault Role may
have for Max. Also limited to
what AWS supports to be the
max for STS. @since 3.0.2

spring.cloud.vault.azure-
msi.azure-path

azure Mount path of the Azure MSI
authentication backend.

spring.cloud.vault.azure-
msi.identity-token-service

Identity token service URI.
@since 3.0

spring.cloud.vault.azure-
msi.metadata-service

Instance metadata service URI.
@since 3.0

spring.cloud.vault.azure-
msi.role

Name of the role.

spring.cloud.vault.cassandra.ba
ckend

cassandra Cassandra backend path.

spring.cloud.vault.cassandra.en
abled

false Enable cassandra backend
usage.

spring.cloud.vault.cassandra.pa
ssword-property

spring.data.cassandra.password Target property for the
obtained password.

spring.cloud.vault.cassandra.rol
e

Role name for credentials.

spring.cloud.vault.cassandra.sta
tic-role

false Enable static role usage. @since
2.2

spring.cloud.vault.cassandra.us
ername-property

spring.data.cassandra.username Target property for the
obtained username.

spring.cloud.vault.config.lifecyc
le.enabled

true Enable lifecycle management.

spring.cloud.vault.config.lifecyc
le.expiry-threshold

The expiry threshold. {@link
Lease} is renewed the given
{@link Duration} before it
expires. @since 2.2

Name Default Description

spring.cloud.vault.config.lifecyc
le.lease-endpoints

Set the {@link LeaseEndpoints}
to delegate renewal/revocation
calls to. {@link LeaseEndpoints}
encapsulates differences
between Vault versions that
affect the location of
renewal/revocation endpoints.
Can be {@link
LeaseEndpoints#SysLeases} for
version 0.8 or above of Vault or
{@link LeaseEndpoints#Legacy}
for older versions (the default).
@since 2.2

spring.cloud.vault.config.lifecyc
le.min-renewal

The time period that is at least
required before renewing a
lease. @since 2.2

spring.cloud.vault.config.order 0 Used to set a {@link
org.springframework.core.env.
PropertySource} priority. This is
useful to use Vault as an
override on other property
sources. @see
org.springframework.core.Prior
ityOrdered

spring.cloud.vault.connection-
timeout

5000 Connection timeout.

spring.cloud.vault.consul.backe
nd

consul Consul backend path.

spring.cloud.vault.consul.enabl
ed

false Enable consul backend usage.

spring.cloud.vault.consul.role Role name for credentials.

spring.cloud.vault.consul.token-
property

spring.cloud.consul.token Target property for the
obtained token.

spring.cloud.vault.couchbase.ba
ckend

database Couchbase backend path.

spring.cloud.vault.couchbase.en
abled

false Enable couchbase backend
usage.

spring.cloud.vault.couchbase.pa
ssword-property

spring.couchbase.password Target property for the
obtained password.

spring.cloud.vault.couchbase.ro
le

Role name for credentials.

Name Default Description

spring.cloud.vault.couchbase.st
atic-role

false Enable static role usage.

spring.cloud.vault.couchbase.us
ername-property

spring.couchbase.username Target property for the
obtained username.

spring.cloud.vault.database.bac
kend

database Database backend path.

spring.cloud.vault.database.ena
bled

false Enable database backend usage.

spring.cloud.vault.database.pas
sword-property

spring.datasource.password Target property for the
obtained password.

spring.cloud.vault.database.role Role name for credentials.

spring.cloud.vault.database.stat
ic-role

false Enable static role usage.

spring.cloud.vault.database.use
rname-property

spring.datasource.username Target property for the
obtained username.

spring.cloud.vault.databases

spring.cloud.vault.discovery.en
abled

false Flag to indicate that Vault
server discovery is enabled
(vault server URL will be looked
up via discovery).

spring.cloud.vault.discovery.ser
vice-id

vault Service id to locate Vault.

spring.cloud.vault.elasticsearch.
backend

database Database backend path.

spring.cloud.vault.elasticsearch.
enabled

false Enable elasticsearch backend
usage.

spring.cloud.vault.elasticsearch.
password-property

spring.elasticsearch.rest.pass
word

Target property for the
obtained password.

spring.cloud.vault.elasticsearch.
role

Role name for credentials.

spring.cloud.vault.elasticsearch.
static-role

false Enable static role usage.

spring.cloud.vault.elasticsearch.
username-property

spring.elasticsearch.rest.user
name

Target property for the
obtained username.

spring.cloud.vault.enabled true Enable Vault config server.

spring.cloud.vault.fail-fast false Fail fast if data cannot be
obtained from Vault.

spring.cloud.vault.gcp-gce.gcp-
path

gcp Mount path of the Kubernetes
authentication backend.

Name Default Description

spring.cloud.vault.gcp-gce.role Name of the role against which
the login is being attempted.

spring.cloud.vault.gcp-
gce.service-account

Optional service account id.
Using the default id if left
unconfigured.

spring.cloud.vault.gcp-
iam.credentials.encoded-key

The base64 encoded contents of
an OAuth2 account private key
in JSON format.

spring.cloud.vault.gcp-
iam.credentials.location

Location of the OAuth2
credentials private key. <p>
Since this is a Resource, the
private key can be in a
multitude of locations, such as a
local file system, classpath, URL,
etc.

spring.cloud.vault.gcp-iam.gcp-
path

gcp Mount path of the Kubernetes
authentication backend.

spring.cloud.vault.gcp-iam.jwt-
validity

15m Validity of the JWT token.

spring.cloud.vault.gcp-
iam.project-id

Overrides the GCP project Id.

spring.cloud.vault.gcp-iam.role Name of the role against which
the login is being attempted.

spring.cloud.vault.gcp-
iam.service-account-id

Overrides the GCP service
account Id.

spring.cloud.vault.host localhost Vault server host.

spring.cloud.vault.kubernetes.k
ubernetes-path

kubernetes Mount path of the Kubernetes
authentication backend.

spring.cloud.vault.kubernetes.r
ole

Name of the role against which
the login is being attempted.

spring.cloud.vault.kubernetes.s
ervice-account-token-file

/var/run/secrets/kubernetes.io
/serviceaccount/token

Path to the service account
token file.

spring.cloud.vault.kv.applicatio
n-name

application Application name to be used for
the context.

spring.cloud.vault.kv.backend secret Name of the default backend.

Name Default Description

spring.cloud.vault.kv.backend-
version

2 Key-Value backend version.
Currently supported versions
are: Version 1
(unversioned key-value
backend). Version 2
(versioned key-value
backend).

spring.cloud.vault.kv.default-
context

application Name of the default context.

spring.cloud.vault.kv.enabled true Enable the key-value backend.

spring.cloud.vault.kv.profile-
separator

/ Profile-separator to combine
application name and profile.

spring.cloud.vault.kv.profiles List of active profiles. @since
3.0

spring.cloud.vault.mongodb.bac
kend

mongodb MongoDB backend path.

spring.cloud.vault.mongodb.ena
bled

false Enable mongodb backend
usage.

spring.cloud.vault.mongodb.pas
sword-property

spring.data.mongodb.password Target property for the
obtained password.

spring.cloud.vault.mongodb.rol
e

Role name for credentials.

spring.cloud.vault.mongodb.stat
ic-role

false Enable static role usage. @since
2.2

spring.cloud.vault.mongodb.use
rname-property

spring.data.mongodb.username Target property for the
obtained username.

spring.cloud.vault.mysql.backe
nd

mysql mysql backend path.

spring.cloud.vault.mysql.enable
d

false Enable mysql backend usage.

spring.cloud.vault.mysql.passw
ord-property

spring.datasource.password Target property for the
obtained username.

spring.cloud.vault.mysql.role Role name for credentials.

spring.cloud.vault.mysql.userna
me-property

spring.datasource.username Target property for the
obtained username.

spring.cloud.vault.namespace Vault namespace (requires
Vault Enterprise).

Name Default Description

spring.cloud.vault.pcf.instance-
certificate

Path to the instance certificate
(PEM). Defaults to {@code
CF_INSTANCE_CERT} env
variable.

spring.cloud.vault.pcf.instance-
key

Path to the instance key (PEM).
Defaults to {@code
CF_INSTANCE_KEY} env
variable.

spring.cloud.vault.pcf.pcf-path pcf Mount path of the Kubernetes
authentication backend.

spring.cloud.vault.pcf.role Name of the role against which
the login is being attempted.

spring.cloud.vault.port 8200 Vault server port.

spring.cloud.vault.postgresql.ba
ckend

postgresql postgresql backend path.

spring.cloud.vault.postgresql.en
abled

false Enable postgresql backend
usage.

spring.cloud.vault.postgresql.pa
ssword-property

spring.datasource.password Target property for the
obtained username.

spring.cloud.vault.postgresql.ro
le

Role name for credentials.

spring.cloud.vault.postgresql.us
ername-property

spring.datasource.username Target property for the
obtained username.

spring.cloud.vault.rabbitmq.bac
kend

rabbitmq rabbitmq backend path.

spring.cloud.vault.rabbitmq.ena
bled

false Enable rabbitmq backend
usage.

spring.cloud.vault.rabbitmq.pas
sword-property

spring.rabbitmq.password Target property for the
obtained password.

spring.cloud.vault.rabbitmq.rol
e

Role name for credentials.

spring.cloud.vault.rabbitmq.use
rname-property

spring.rabbitmq.username Target property for the
obtained username.

spring.cloud.vault.reactive.enab
led

true Flag to indicate that reactive
discovery is enabled

spring.cloud.vault.read-timeout 15000 Read timeout.

spring.cloud.vault.scheme https Protocol scheme. Can be either
"http" or "https".

Name Default Description

spring.cloud.vault.session.lifecy
cle.enabled

true Enable session lifecycle
management.

spring.cloud.vault.session.lifecy
cle.expiry-threshold

7s The expiry threshold for a
{@link LoginToken}. The
threshold represents a
minimum TTL duration to
consider a login token as valid.
Tokens with a shorter TTL are
considered expired and are not
used anymore. Should be
greater than {@code
refreshBeforeExpiry} to
prevent token expiry.

spring.cloud.vault.session.lifecy
cle.refresh-before-expiry

5s The time period that is at least
required before renewing the
{@link LoginToken}.

spring.cloud.vault.ssl.cert-auth-
path

cert Mount path of the TLS cert
authentication backend.

spring.cloud.vault.ssl.enabled-
cipher-suites

List of enabled SSL/TLS cipher
suites. @since 3.0.2

spring.cloud.vault.ssl.enabled-
protocols

List of enabled SSL/TLS
protocol. @since 3.0.2

spring.cloud.vault.ssl.key-store Trust store that holds
certificates and private keys.

spring.cloud.vault.ssl.key-store-
password

Password used to access the key
store.

spring.cloud.vault.ssl.key-store-
type

Type of the key store. @since
3.0

spring.cloud.vault.ssl.trust-store Trust store that holds SSL
certificates.

spring.cloud.vault.ssl.trust-
store-password

Password used to access the
trust store.

spring.cloud.vault.ssl.trust-
store-type

Type of the trust store. @since
3.0

spring.cloud.vault.token Static vault token. Required if
{@link #authentication} is
{@code TOKEN}.

spring.cloud.vault.uri Vault URI. Can be set with
scheme, host and port.

Spring Cloud Zookeeper
This project provides Zookeeper integrations for Spring Boot applications through
autoconfiguration and binding to the Spring Environment and other Spring programming model
idioms. With a few annotations, you can quickly enable and configure the common patterns inside
your application and build large distributed systems with Zookeeper based components. The
provided patterns include Service Discovery and Configuration. The project also provides client-
side load-balancing via integration with Spring Cloud LoadBalancer.

1. Quick Start
This quick start walks through using Spring Cloud Zookeeper for Service Discovery and Distributed
Configuration.

First, run Zookeeper on your machine. Then you can access it and use it as a Service Registry and
Configuration source with Spring Cloud Zookeeper.

1.1. Discovery Client Usage
To use these features in an application, you can build it as a Spring Boot application that depends
on spring-cloud-zookeeper-core and spring-cloud-zookeeper-discovery. The most convenient way to
add the dependency is with a Spring Boot starter: org.springframework.cloud:spring-cloud-starter-
zookeeper-discovery. We recommend using dependency management and spring-boot-starter-
parent. The following example shows a typical Maven configuration:

pom.xml

<project>
<parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>{spring-boot-version}</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>

 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-zookeeper-discovery</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>
 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>${spring-cloud.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>
</project>

The following example shows a typical Gradle setup:

build.gradle

plugins {
 id 'org.springframework.boot' version ${spring-boot-version}
 id 'io.spring.dependency-management' version ${spring-dependency-management-version}
 id 'java'
}

repositories {
 mavenCentral()
}

dependencies {
 implementation 'org.springframework.cloud:spring-cloud-starter-zookeeper-discovery'
 testImplementation 'org.springframework.boot:spring-boot-starter-test'
}
dependencyManagement {
 imports {
 mavenBom "org.springframework.cloud:spring-cloud-
dependencies:${springCloudVersion}"
 }
}

Depending on the version you are using, you might need to adjust Apache
Zookeeper version used in your project. You can read more about it in the Install
Zookeeper section.

Now you can create a standard Spring Boot application, such as the following HTTP server:

@SpringBootApplication
@RestController
public class Application {

 @GetMapping("/")
 public String home() {
 return "Hello World!";
 }

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }

}

When this HTTP server runs, it connects to Zookeeper, which runs on the default local port (2181).
To modify the startup behavior, you can change the location of Zookeeper by using
application.properties, as shown in the following example:

spring:
 cloud:
 zookeeper:
 connect-string: localhost:2181

You can now use DiscoveryClient, @LoadBalanced RestTemplate, or @LoadBalanced WebClient.Builder
to retrieve services and instances data from Zookeeper, as shown in the following example:

@Autowired
private DiscoveryClient discoveryClient;

public String serviceUrl() {
 List<ServiceInstance> list = discoveryClient.getInstances("STORES");
 if (list != null && list.size() > 0) {
 return list.get(0).getUri().toString();
 }
 return null;
}

1.2. Distributed Configuration Usage
To use these features in an application, you can build it as a Spring Boot application that depends
on spring-cloud-zookeeper-core and spring-cloud-zookeeper-config. The most convenient way to
add the dependency is with a Spring Boot starter: org.springframework.cloud:spring-cloud-starter-
zookeeper-config. We recommend using dependency management and spring-boot-starter-parent.
The following example shows a typical Maven configuration:

pom.xml

<project>
<parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>{spring-boot-version}</version>
 <relativePath/> <!-- lookup parent from repository -->
 </parent>

 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-zookeeper-config</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 </dependencies>
 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>${spring-cloud.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>
</project>

The following example shows a typical Gradle setup:

build.gradle

plugins {
 id 'org.springframework.boot' version ${spring-boot-version}
 id 'io.spring.dependency-management' version ${spring-dependency-management-version}
 id 'java'
}

repositories {
 mavenCentral()
}

dependencies {
 implementation 'org.springframework.cloud:spring-cloud-starter-zookeeper-config'
 testImplementation 'org.springframework.boot:spring-boot-starter-test'
}
dependencyManagement {
 imports {
 mavenBom "org.springframework.cloud:spring-cloud-
dependencies:${springCloudVersion}"
 }
}

Depending on the version you are using, you might need to adjust Apache
Zookeeper version used in your project. You can read more about it in the Install
Zookeeper section.

Now you can create a standard Spring Boot application, such as the following HTTP server:

@SpringBootApplication
@RestController
public class Application {

 @GetMapping("/")
 public String home() {
 return "Hello World!";
 }

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }

}

The application retrieves configuration data from Zookeeper.

If you use Spring Cloud Zookeeper Config, you need to set the spring.config.import
property in order to bind to Zookeeper. You can read more about it in the Spring
Boot Config Data Import section.

2. Install Zookeeper
See the installation documentation for instructions on how to install Zookeeper.

Spring Cloud Zookeeper uses Apache Curator behind the scenes. While Zookeeper 3.5.x is still
considered "beta" by the Zookeeper development team, the reality is that it is used in production by
many users. However, Zookeeper 3.4.x is also used in production. Prior to Apache Curator 4.0, both
versions of Zookeeper were supported via two versions of Apache Curator. Starting with Curator
4.0 both versions of Zookeeper are supported via the same Curator libraries.

In case you are integrating with version 3.4 you need to change the Zookeeper dependency that
comes shipped with curator, and thus spring-cloud-zookeeper. To do so simply exclude that
dependency and add the 3.4.x version like shown below.

maven

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-zookeeper-all</artifactId>
 <exclusions>
 <exclusion>
 <groupId>org.apache.zookeeper</groupId>
 <artifactId>zookeeper</artifactId>
 </exclusion>
 </exclusions>
</dependency>
<dependency>
 <groupId>org.apache.zookeeper</groupId>
 <artifactId>zookeeper</artifactId>
 <version>3.4.12</version>
 <exclusions>
 <exclusion>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 </exclusion>
 </exclusions>
</dependency>

https://zookeeper.apache.org/doc/current/zookeeperStarted.html

gradle

compile('org.springframework.cloud:spring-cloud-starter-zookeeper-all') {
 exclude group: 'org.apache.zookeeper', module: 'zookeeper'
}
compile('org.apache.zookeeper:zookeeper:3.4.12') {
 exclude group: 'org.slf4j', module: 'slf4j-log4j12'
}

3. Service Discovery with Zookeeper
Service Discovery is one of the key tenets of a microservice based architecture. Trying to hand-
configure each client or some form of convention can be difficult to do and can be brittle. Curator(A
Java library for Zookeeper) provides Service Discovery through a Service Discovery Extension.
Spring Cloud Zookeeper uses this extension for service registration and discovery.

3.1. Activating
Including a dependency on org.springframework.cloud:spring-cloud-starter-zookeeper-discovery
enables autoconfiguration that sets up Spring Cloud Zookeeper Discovery.

For web functionality, you still need to include org.springframework.boot:spring-
boot-starter-web.

When working with version 3.4 of Zookeeper you need to change the way you
include the dependency as described here.

3.2. Registering with Zookeeper
When a client registers with Zookeeper, it provides metadata (such as host and port, ID, and name)
about itself.

The following example shows a Zookeeper client:

https://curator.apache.org
https://curator.apache.org/curator-x-discovery/

@SpringBootApplication
@RestController
public class Application {

 @RequestMapping("/")
 public String home() {
 return "Hello world";
 }

 public static void main(String[] args) {
 new SpringApplicationBuilder(Application.class).web(true).run(args);
 }

}

 The preceding example is a normal Spring Boot application.

If Zookeeper is located somewhere other than localhost:2181, the configuration must provide the
location of the server, as shown in the following example:

application.yml

spring:
 cloud:
 zookeeper:
 connect-string: localhost:2181

If you use Spring Cloud Zookeeper Config, the values shown in the preceding
example need to be in bootstrap.yml instead of application.yml.

The default service name, instance ID, and port (taken from the Environment) are
${spring.application.name}, the Spring Context ID, and ${server.port}, respectively.

Having spring-cloud-starter-zookeeper-discovery on the classpath makes the app into both a
Zookeeper “service” (that is, it registers itself) and a “client” (that is, it can query Zookeeper to
locate other services).

If you would like to disable the Zookeeper Discovery Client, you can set
spring.cloud.zookeeper.discovery.enabled to false.

3.3. Using the DiscoveryClient
Spring Cloud has support for Feign (a REST client builder), Spring RestTemplate and Spring WebFlux,
using logical service names instead of physical URLs.

You can also use the org.springframework.cloud.client.discovery.DiscoveryClient, which provides a
simple API for discovery clients that is not specific to Netflix, as shown in the following example:

https://github.com/spring-cloud/spring-cloud-netflix/blob/master/docs/src/main/asciidoc/spring-cloud-netflix.adoc#spring-cloud-feign
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/docs/src/main/ascii
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/docs/src/main/ascii
https://cloud.spring.io/spring-cloud-commons/reference/html/#loadbalanced-webclient

@Autowired
private DiscoveryClient discoveryClient;

public String serviceUrl() {
 List<ServiceInstance> list = discoveryClient.getInstances("STORES");
 if (list != null && list.size() > 0) {
 return list.get(0).getUri().toString();
 }
 return null;
}

4. Using Spring Cloud Zookeeper with Spring
Cloud Components
Feign, Spring Cloud Gateway and Spring Cloud LoadBalancer all work with Spring Cloud Zookeeper.

4.1. Spring Cloud LoadBalancer with Zookeeper
Spring Cloud Zookeeper provides an implementation of Spring Cloud LoadBalancer
ServiceInstanceListSupplier. When you use the spring-cloud-starter-zookeeper-discovery, Spring
Cloud LoadBalancer is autoconfigured to use the ZookeeperServiceInstanceListSupplier by default.

If you were previously using the StickyRule in Zookeeper, its replacement in the
current stack is the SameInstancePreferenceServiceInstanceListSupplier in SC
LoadBalancer. You can read on how to set it up in the Spring Cloud Commons
documentation.

5. Spring Cloud Zookeeper and Service
Registry
Spring Cloud Zookeeper implements the ServiceRegistry interface, letting developers register
arbitrary services in a programmatic way.

The ServiceInstanceRegistration class offers a builder() method to create a Registration object that
can be used by the ServiceRegistry, as shown in the following example:

https://docs.spring.io/spring-cloud-commons/docs/current/reference/html/#spring-cloud-loadbalancer
https://docs.spring.io/spring-cloud-commons/docs/current/reference/html/#spring-cloud-loadbalancer

@Autowired
private ZookeeperServiceRegistry serviceRegistry;

public void registerThings() {
 ZookeeperRegistration registration = ServiceInstanceRegistration.builder()
 .defaultUriSpec()
 .address("anyUrl")
 .port(10)
 .name("/a/b/c/d/anotherservice")
 .build();
 this.serviceRegistry.register(registration);
}

5.1. Instance Status
Netflix Eureka supports having instances that are OUT_OF_SERVICE registered with the server. These
instances are not returned as active service instances. This is useful for behaviors such as
blue/green deployments. (Note that the Curator Service Discovery recipe does not support this
behavior.) Taking advantage of the flexible payload has let Spring Cloud Zookeeper implement
OUT_OF_SERVICE by updating some specific metadata and then filtering on that metadata in the
Spring Cloud LoadBalancer ZookeeperServiceInstanceListSupplier. The
ZookeeperServiceInstanceListSupplier filters out all non-null instance statuses that do not equal UP.
If the instance status field is empty, it is considered to be UP for backwards compatibility. To change
the status of an instance, make a POST with OUT_OF_SERVICE to the ServiceRegistry instance status
actuator endpoint, as shown in the following example:

$ http POST http://localhost:8081/service-registry status=OUT_OF_SERVICE

 The preceding example uses the http command from httpie.org.

6. Zookeeper Dependencies
The following topics cover how to work with Spring Cloud Zookeeper dependencies:

• Using the Zookeeper Dependencies

• Activating Zookeeper Dependencies

• Setting up Zookeeper Dependencies

• Configuring Spring Cloud Zookeeper Dependencies

6.1. Using the Zookeeper Dependencies
Spring Cloud Zookeeper gives you a possibility to provide dependencies of your application as
properties. As dependencies, you can understand other applications that are registered in

https://httpie.org

Zookeeper and which you would like to call through Feign (a REST client builder), Spring
RestTemplate and Spring WebFlux.

You can also use the Zookeeper Dependency Watchers functionality to control and monitor the state
of your dependencies.

6.2. Activating Zookeeper Dependencies
Including a dependency on org.springframework.cloud:spring-cloud-starter-zookeeper-discovery
enables autoconfiguration that sets up Spring Cloud Zookeeper Dependencies. Even if you provide
the dependencies in your properties, you can turn off the dependencies. To do so, set the
spring.cloud.zookeeper.dependency.enabled property to false (it defaults to true).

6.3. Setting up Zookeeper Dependencies
Consider the following example of dependency representation:

application.yml

spring.application.name: yourServiceName
spring.cloud.zookeeper:
 dependencies:
 newsletter:
 path: /path/where/newsletter/has/registered/in/zookeeper
 loadBalancerType: ROUND_ROBIN
 contentTypeTemplate: application/vnd.newsletter.$version+json
 version: v1
 headers:
 header1:
 - value1
 header2:
 - value2
 required: false
 stubs: org.springframework:foo:stubs
 mailing:
 path: /path/where/mailing/has/registered/in/zookeeper
 loadBalancerType: ROUND_ROBIN
 contentTypeTemplate: application/vnd.mailing.$version+json
 version: v1
 required: true

The next few sections go through each part of the dependency one by one. The root property name
is spring.cloud.zookeeper.dependencies.

6.3.1. Aliases

Below the root property you have to represent each dependency as an alias. This is due to the
constraints of Spring Cloud LoadBalancer, which requires that the application ID be placed in the
URL. Consequently, you cannot pass any complex path, suchas /myApp/myRoute/name). The alias is the

https://github.com/spring-cloud/spring-cloud-netflix/blob/master/docs/src/main/asciidoc/spring-cloud-netflix.adoc#spring-cloud-feign
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/docs/src/main/ascii
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/docs/src/main/ascii
https://cloud.spring.io/spring-cloud-commons/reference/html/#loadbalanced-webclient

name you use instead of the serviceId for DiscoveryClient, Feign, or RestTemplate.

In the previous examples, the aliases are newsletter and mailing. The following example shows
Feign usage with a newsletter alias:

@FeignClient("newsletter")
public interface NewsletterService {
 @RequestMapping(method = RequestMethod.GET, value = "/newsletter")
 String getNewsletters();
}

6.3.2. Path

The path is represented by the path YAML property and is the path under which the dependency is
registered under Zookeeper. As described in the previous section, Spring Cloud LoadBalancer
operates on URLs. As a result, this path is not compliant with its requirement. That is why Spring
Cloud Zookeeper maps the alias to the proper path.

6.3.3. Load Balancer Type

The load balancer type is represented by loadBalancerType YAML property.

If you know what kind of load-balancing strategy has to be applied when calling this particular
dependency, you can provide it in the YAML file, and it is automatically applied. You can choose one
of the following load balancing strategies:

• STICKY: Once chosen, the instance is always called.

• RANDOM: Picks an instance randomly.

• ROUND_ROBIN: Iterates over instances over and over again.

6.3.4. Content-Type Template and Version

The Content-Type template and version are represented by the contentTypeTemplate and version
YAML properties.

If you version your API in the Content-Type header, you do not want to add this header to each of
your requests. Also, if you want to call a new version of the API, you do not want to roam around
your code to bump up the API version. That is why you can provide a contentTypeTemplate with a
special $version placeholder. That placeholder will be filled by the value of the version YAML
property. Consider the following example of a contentTypeTemplate:

application/vnd.newsletter.$version+json

Further consider the following version:

v1

The combination of contentTypeTemplate and version results in the creation of a Content-Type
header for each request, as follows:

application/vnd.newsletter.v1+json

6.3.5. Default Headers

Default headers are represented by the headers map in YAML.

Sometimes, each call to a dependency requires setting up of some default headers. To not do that in
code, you can set them up in the YAML file, as shown in the following example headers section:

headers:
 Accept:
 - text/html
 - application/xhtml+xml
 Cache-Control:
 - no-cache

That headers section results in adding the Accept and Cache-Control headers with appropriate list of
values in your HTTP request.

6.3.6. Required Dependencies

Required dependencies are represented by required property in YAML.

If one of your dependencies is required to be up when your application boots, you can set the
required: true property in the YAML file.

If your application cannot localize the required dependency during boot time, it throws an
exception, and the Spring Context fails to set up. In other words, your application cannot start if the
required dependency is not registered in Zookeeper.

You can read more about Spring Cloud Zookeeper Presence Checker later in this document.

6.3.7. Stubs

You can provide a colon-separated path to the JAR containing stubs of the dependency, as shown in
the following example:

stubs: org.springframework:myApp:stubs

where:

• org.springframework is the groupId.

• myApp is the artifactId.

• stubs is the classifier. (Note that stubs is the default value.)

Because stubs is the default classifier, the preceding example is equal to the following example:

stubs: org.springframework:myApp

6.4. Configuring Spring Cloud Zookeeper
Dependencies
You can set the following properties to enable or disable parts of Zookeeper Dependencies
functionalities:

• spring.cloud.zookeeper.dependencies: If you do not set this property, you cannot use Zookeeper
Dependencies.

• spring.cloud.zookeeper.dependency.loadbalancer.enabled (enabled by default): Turns on
Zookeeper-specific custom load-balancing strategies, including
ZookeeperServiceInstanceListSupplier and dependency-based load-balanced RestTemplate setup.

• spring.cloud.zookeeper.dependency.headers.enabled (enabled by default): This property registers
a FeignBlockingLoadBalancerClient that automatically appends appropriate headers and content
types with their versions, as presented in the Dependency configuration. Without this setting,
those two parameters do not work.

• spring.cloud.zookeeper.dependency.resttemplate.enabled (enabled by default): When enabled,
this property modifies the request headers of a @LoadBalanced-annotated RestTemplate such that
it passes headers and content type with the version set in dependency configuration. Without
this setting, those two parameters do not work.

7. Spring Cloud Zookeeper Dependency
Watcher
The Dependency Watcher mechanism lets you register listeners to your dependencies. The
functionality is, in fact, an implementation of the Observator pattern. When a dependency changes,
its state (to either UP or DOWN), some custom logic can be applied.

7.1. Activating
Spring Cloud Zookeeper Dependencies functionality needs to be enabled for you to use the
Dependency Watcher mechanism.

7.2. Registering a Listener
To register a listener, you must implement an interface called
org.springframework.cloud.zookeeper.discovery.watcher.DependencyWatcherListener and register it
as a bean. The interface gives you one method:

void stateChanged(String dependencyName, DependencyState newState);

If you want to register a listener for a particular dependency, the dependencyName would be the
discriminator for your concrete implementation. newState provides you with information about
whether your dependency has changed to CONNECTED or DISCONNECTED.

7.3. Using the Presence Checker
Bound with the Dependency Watcher is the functionality called Presence Checker. It lets you
provide custom behavior when your application boots, to react according to the state of your
dependencies.

The default implementation of the abstract
org.springframework.cloud.zookeeper.discovery.watcher.presence.DependencyPresenceOnStartupVerif
ier class is the
org.springframework.cloud.zookeeper.discovery.watcher.presence.DefaultDependencyPresenceOnStart
upVerifier, which works in the following way.

1. If the dependency is marked us required and is not in Zookeeper, when your application boots,
it throws an exception and shuts down.

2. If the dependency is not required, the
org.springframework.cloud.zookeeper.discovery.watcher.presence.LogMissingDependencyChecker
logs that the dependency is missing at the WARN level.

Because the DefaultDependencyPresenceOnStartupVerifier is registered only when there is no bean of
type DependencyPresenceOnStartupVerifier, this functionality can be overridden.

8. Distributed Configuration with Zookeeper
Zookeeper provides a hierarchical namespace that lets clients store arbitrary data, such as
configuration data. Spring Cloud Zookeeper Config is an alternative to the Config Server and Client.
Configuration is loaded into the Spring Environment during the special “bootstrap” phase.
Configuration is stored in the /config namespace by default. Multiple PropertySource instances are
created, based on the application’s name and the active profiles, to mimic the Spring Cloud Config
order of resolving properties. For example, an application with a name of testApp and with the dev
profile has the following property sources created for it:

• config/testApp,dev

• config/testApp

• config/application,dev

• config/application

The most specific property source is at the top, with the least specific at the bottom. Properties in
the config/application namespace apply to all applications that use zookeeper for configuration.
Properties in the config/testApp namespace are available only to the instances of the service named
testApp.

https://zookeeper.apache.org/doc/current/zookeeperOver.html#sc_dataModelNameSpace
https://github.com/spring-cloud/spring-cloud-config

Configuration is currently read on startup of the application. Sending a HTTP POST request to
/refresh causes the configuration to be reloaded. Watching the configuration namespace (which
Zookeeper supports) is not currently implemented.

8.1. Activating
Including a dependency on org.springframework.cloud:spring-cloud-starter-zookeeper-config
enables autoconfiguration that sets up Spring Cloud Zookeeper Config.

When working with version 3.4 of Zookeeper you need to change the way you
include the dependency as described here.

8.2. Spring Boot Config Data Import
Spring Boot 2.4 introduced a new way to import configuration data via the spring.config.import
property. This is now the default way to get configuration from Zookeeper.

To optionally connect to Zookeeper for configuration set the following in application.properties:

application.properties

spring.config.import=optional:zookeeper:

This will connect to Zookeeper at the default location of "localhost:2181". Removing the optional:
prefix will cause Zookeeper Config to fail if it is unable to connect to Zookeeper. To change the
connection properties of Zookeeper Config either set spring.cloud.zookeeper.connect-string or add
the connect string to the spring.config.import statement such as,
spring.config.import=optional:zookeeper:myhost:2818. The location in the import property has
precedence over the connect-string property.

Zookeeper Config will try to load values from four automatic contexts based on
spring.cloud.zookeeper.config.name (which defaults to the value of the spring.application.name
property) and spring.cloud.zookeeper.config.default-context (which defaults to application). If
you want to specify the contexts rather than using the computed ones, you can add that
information to the spring.config.import statement.

application.properties

spring.config.import=optional:zookeeper:myhost:2181/contextone;/context/two

This will optionally load configuration only from /contextone and /context/two.

A bootstrap file (properties or yaml) is not needed for the Spring Boot Config Data
method of import via spring.config.import.

8.3. Customizing
Zookeeper Config may be customized by setting the following properties:

spring:
 cloud:
 zookeeper:
 config:
 enabled: true
 root: configuration
 defaultContext: apps
 profileSeparator: '::'

• enabled: Setting this value to false disables Zookeeper Config.

• root: Sets the base namespace for configuration values.

• defaultContext: Sets the name used by all applications.

• profileSeparator: Sets the value of the separator used to separate the profile name in property
sources with profiles.

If you have set spring.cloud.bootstrap.enabled=true or spring.config.use-legacy-
processing=true, or included spring-cloud-starter-bootstrap, then the above
values will need to be placed in bootstrap.yml instead of application.yml.

8.4. Access Control Lists (ACLs)
You can add authentication information for Zookeeper ACLs by calling the addAuthInfo method of a
CuratorFramework bean. One way to accomplish this is to provide your own CuratorFramework bean,
as shown in the following example:

@BoostrapConfiguration
public class CustomCuratorFrameworkConfig {

 @Bean
 public CuratorFramework curatorFramework() {
 CuratorFramework curator = new CuratorFramework();
 curator.addAuthInfo("digest", "user:password".getBytes());
 return curator;
 }

}

Consult the ZookeeperAutoConfiguration class to see how the CuratorFramework bean’s default
configuration.

Alternatively, you can add your credentials from a class that depends on the existing

https://github.com/spring-cloud/spring-cloud-zookeeper/blob/master/spring-cloud-zookeeper-core/src/main/java/org/springframework/cloud/zookeeper/ZookeeperAutoConfiguration.java

CuratorFramework bean, as shown in the following example:

@BoostrapConfiguration
public class DefaultCuratorFrameworkConfig {

 public ZookeeperConfig(CuratorFramework curator) {
 curator.addAuthInfo("digest", "user:password".getBytes());
 }

}

The creation of this bean must occur during the boostrapping phase. You can register configuration
classes to run during this phase by annotating them with @BootstrapConfiguration and including
them in a comma-separated list that you set as the value of the
org.springframework.cloud.bootstrap.BootstrapConfiguration property in the resources/META-
INF/spring.factories file, as shown in the following example:

resources/META-INF/spring.factories

org.springframework.cloud.bootstrap.BootstrapConfiguration=\
my.project.CustomCuratorFrameworkConfig,\
my.project.DefaultCuratorFrameworkConfig

Appendix: Compendium of
Configuration Properties
Name Default Description

eureka.client.eureka-
connection-idle-timeout-
seconds

30 Indicates how much time (in
seconds) that the HTTP
connections to eureka server
can stay idle before it can be
closed. In the AWS
environment, it is
recommended that the values is
30 seconds or less, since the
firewall cleans up the
connection information after a
few mins leaving the
connection hanging in limbo.

Name Default Description

eureka.client.eureka-server-
connect-timeout-seconds

5 Indicates how long to wait (in
seconds) before a connection to
eureka server needs to timeout.
Note that the connections in the
client are pooled by {@link
HttpClient} and this setting
affects the actual connection
creation and also the wait time
to get the connection from the
pool.

eureka.client.eureka-server-d-n-
s-name

`` Gets the DNS name to be
queried to get the list of eureka
servers.This information is not
required if the contract returns
the service urls by
implementing serviceUrls. The
DNS mechanism is used when
useDnsForFetchingServiceUrls
is set to true and the eureka
client expects the DNS to
configured a certain way so that
it can fetch changing eureka
servers dynamically. The
changes are effective at
runtime.

eureka.client.eureka-server-
port

`` Gets the port to be used to
construct the service url to
contact eureka server when the
list of eureka servers come
from the DNS.This information
is not required if the contract
returns the service urls
eurekaServerServiceUrls(String
). The DNS mechanism is used
when
useDnsForFetchingServiceUrls
is set to true and the eureka
client expects the DNS to
configured a certain way so that
it can fetch changing eureka
servers dynamically. The
changes are effective at
runtime.

Name Default Description

eureka.client.eureka-server-
read-timeout-seconds

8 Indicates how long to wait (in
seconds) before a read from
eureka server needs to timeout.

eureka.client.eureka-server-
total-connections

200 Gets the total number of
connections that is allowed
from eureka client to all eureka
servers.

eureka.client.eureka-server-
total-connections-per-host

50 Gets the total number of
connections that is allowed
from eureka client to a eureka
server host.

eureka.client.eureka-server-u-r-
l-context

`` Gets the URL context to be used
to construct the service url to
contact eureka server when the
list of eureka servers come
from the DNS. This information
is not required if the contract
returns the service urls from
eurekaServerServiceUrls. The
DNS mechanism is used when
useDnsForFetchingServiceUrls
is set to true and the eureka
client expects the DNS to
configured a certain way so that
it can fetch changing eureka
servers dynamically. The
changes are effective at
runtime.

eureka.client.eureka-service-
url-poll-interval-seconds

0 Indicates how often(in seconds)
to poll for changes to eureka
server information. Eureka
servers could be added or
removed and this setting
controls how soon the eureka
clients should know about it.

Name Default Description

eureka.client.prefer-same-zone-
eureka

true Indicates whether or not this
instance should try to use the
eureka server in the same zone
for latency and/or other reason.
Ideally eureka clients are
configured to talk to servers in
the same zone The changes are
effective at runtime at the next
registry fetch cycle as specified
by registryFetchIntervalSeconds

eureka.client.register-with-
eureka

true Indicates whether or not this
instance should register its
information with eureka server
for discovery by others. In some
cases, you do not want your
instances to be discovered
whereas you just want do
discover other instances.

eureka.server.peer-eureka-
nodes-update-interval-ms

0

eureka.server.peer-eureka-
status-refresh-time-interval-ms

0

ribbon.eureka.enabled true Enables the use of Eureka with
Ribbon.

spring.cloud.bus.ack.destinatio
n-service

`` Service that wants to listen to
acks. By default null (meaning
all services).

spring.cloud.bus.ack.enabled true Flag to switch off acks (default
on).

spring.cloud.bus.content-type `` The bus mime-type.

spring.cloud.bus.destination `` Name of Spring Cloud Stream
destination for messages.

spring.cloud.bus.enabled true Flag to indicate that the bus is
enabled.

spring.cloud.bus.env.enabled true Flag to switch off environment
change events (default on).

spring.cloud.bus.id application The identifier for this
application instance.

spring.cloud.bus.refresh.enable
d

true Flag to switch off refresh events
(default on).

Name Default Description

spring.cloud.bus.trace.enabled false Flag to switch on tracing of acks
(default off).

spring.cloud.compatibility-
verifier.compatible-boot-
versions

`` Default accepted versions for
the Spring Boot dependency.
You can set {@code x} for the
patch version if you don't want
to specify a concrete value.
Example: {@code 3.4.x}

spring.cloud.compatibility-
verifier.enabled

false Enables creation of Spring
Cloud compatibility
verification.

spring.cloud.config.allow-
override

true Flag to indicate that {@link
#isOverrideSystemProperties()
systemPropertiesOverride} can
be used. Set to false to prevent
users from changing the default
accidentally. Default true.

spring.cloud.config.allow-
override

true Flag to indicate that {@link
#isOverrideSystemProperties()
systemPropertiesOverride} can
be used. Set to false to prevent
users from changing the default
accidentally. Default true.

spring.cloud.config.discovery.e
nabled

false Flag to indicate that config
server discovery is enabled
(config server URL will be
looked up via discovery).

spring.cloud.config.discovery.se
rvice-id

configserver Service id to locate config
server.

spring.cloud.config.enabled true Flag to say that remote
configuration is enabled.
Default true;

spring.cloud.config.fail-fast false Flag to indicate that failure to
connect to the server is fatal
(default false).

spring.cloud.config.headers `` Additional headers used to
create the client request.

spring.cloud.config.initialize-
on-context-refresh

false Flag to initialize bootstrap
configuration on context
refresh event. Default false.

Name Default Description

spring.cloud.config.initialize-
on-context-refresh

false Flag to initialize bootstrap
configuration on context
refresh event. Default false.

spring.cloud.config.label `` The label name to use to pull
remote configuration
properties. The default is set on
the server (generally "main" for
a git based server).

spring.cloud.config.media-type `` The Accept header media type
to send to config server.

spring.cloud.config.multiple-
uri-strategy

`` The strategy to use when call to
server fails and there are
multiple URLs configured on
the uri property (default {@link
MultipleUriStrategy#ALWAYS}).

spring.cloud.config.name `` Name of application used to
fetch remote properties.

spring.cloud.config.override-
none

false Flag to indicate that when
{@link
#setAllowOverride(boolean)
allowOverride} is true, external
properties should take lowest
priority and should not
override any existing property
sources (including local config
files). Default false.

spring.cloud.config.override-
none

false Flag to indicate that when
{@link
#setAllowOverride(boolean)
allowOverride} is true, external
properties should take lowest
priority and should not
override any existing property
sources (including local config
files). Default false.

spring.cloud.config.override-
system-properties

true Flag to indicate that the
external properties should
override system properties.
Default true.

spring.cloud.config.override-
system-properties

true Flag to indicate that the
external properties should
override system properties.
Default true.

Name Default Description

spring.cloud.config.password `` The password to use (HTTP
Basic) when contacting the
remote server.

spring.cloud.config.profile default The default profile to use when
fetching remote configuration
(comma-separated). Default is
"default".

spring.cloud.config.request-
connect-timeout

0 timeout on waiting to connect
to the Config Server.

spring.cloud.config.request-
read-timeout

0 timeout on waiting to read data
from the Config Server.

spring.cloud.config.retry.initial-
interval

1000 Initial retry interval in
milliseconds.

spring.cloud.config.retry.max-
attempts

6 Maximum number of attempts.

spring.cloud.config.retry.max-
interval

2000 Maximum interval for backoff.

spring.cloud.config.retry.multip
lier

1.1 Multiplier for next interval.

spring.cloud.config.send-state true Flag to indicate whether to send
state. Default true.

spring.cloud.config.tls `` TLS properties.

spring.cloud.config.token `` Security Token passed thru to
underlying environment
repository.

spring.cloud.config.uri [http://localhost:8888] The URI of the remote server
(default localhost:8888).

spring.cloud.config.username `` The username to use (HTTP
Basic) when contacting the
remote server.

spring.cloud.consul.config.acl-
token

``

spring.cloud.consul.config.data-
key

data If format is Format.PROPERTIES
or Format.YAML then the
following field is used as key to
look up consul for
configuration.

spring.cloud.consul.config.defa
ult-context

application

http://localhost:8888

Name Default Description

spring.cloud.consul.config.enab
led

true

spring.cloud.consul.config.fail-
fast

true Throw exceptions during config
lookup if true, otherwise, log
warnings.

spring.cloud.consul.config.form
at

``

spring.cloud.consul.config.nam
e

`` Alternative to
spring.application.name to use
in looking up values in consul
KV.

spring.cloud.consul.config.prefi
x

``

spring.cloud.consul.config.prefi
xes

``

spring.cloud.consul.config.profi
le-separator

,

spring.cloud.consul.config.watc
h.delay

1000 The value of the fixed delay for
the watch in millis. Defaults to
1000.

spring.cloud.consul.config.watc
h.enabled

true If the watch is enabled. Defaults
to true.

spring.cloud.consul.config.watc
h.wait-time

55 The number of seconds to wait
(or block) for watch query,
defaults to 55. Needs to be less
than default ConsulClient
(defaults to 60). To increase
ConsulClient timeout create a
ConsulClient bean with a
custom ConsulRawClient with a
custom HttpClient.

spring.cloud.consul.discovery.a
cl-token

``

spring.cloud.consul.discovery.c
atalog-services-watch-delay

1000 The delay between calls to
watch consul catalog in millis,
default is 1000.

spring.cloud.consul.discovery.c
atalog-services-watch-timeout

2 The number of seconds to block
while watching consul catalog,
default is 2.

spring.cloud.consul.discovery.c
onsistency-mode

`` Consistency mode for health
service request.

Name Default Description

spring.cloud.consul.discovery.d
atacenters

`` Map of serviceId's -> datacenter
to query for in server list. This
allows looking up services in
another datacenters.

spring.cloud.consul.discovery.d
efault-query-tag

`` Tag to query for in service list if
one is not listed in
serverListQueryTags. Multiple
tags can be specified with a
comma separated value.

spring.cloud.consul.discovery.d
efault-zone-metadata-name

zone Service instance zone comes
from metadata. This allows
changing the metadata tag
name.

spring.cloud.consul.discovery.d
eregister

true Disable automatic de-
registration of service in consul.

spring.cloud.consul.discovery.e
nable-tag-override

`` Enable tag override for the
registered service.

spring.cloud.consul.discovery.e
nabled

true Is service discovery enabled?

spring.cloud.consul.discovery.fa
il-fast

true Throw exceptions during
service registration if true,
otherwise, log warnings
(defaults to true).

spring.cloud.consul.discovery.h
ealth-check-critical-timeout

`` Timeout to deregister services
critical for longer than timeout
(e.g. 30m). Requires consul
version 7.x or higher.

spring.cloud.consul.discovery.h
ealth-check-headers

`` Headers to be applied to the
Health Check calls.

spring.cloud.consul.discovery.h
ealth-check-interval

10s How often to perform the
health check (e.g. 10s), defaults
to 10s.

spring.cloud.consul.discovery.h
ealth-check-path

/actuator/health Alternate server path to invoke
for health checking.

spring.cloud.consul.discovery.h
ealth-check-timeout

`` Timeout for health check (e.g.
10s).

spring.cloud.consul.discovery.h
ealth-check-tls-skip-verify

`` Skips certificate verification
during service checks if true,
otherwise runs certificate
verification.

Name Default Description

spring.cloud.consul.discovery.h
ealth-check-url

`` Custom health check url to
override default.

spring.cloud.consul.discovery.h
eartbeat.actuator-health-group

`` The actuator health group to
use (null for the root group)
when determining system
health via Actuator.

spring.cloud.consul.discovery.h
eartbeat.enabled

false

spring.cloud.consul.discovery.h
eartbeat.interval-ratio

``

spring.cloud.consul.discovery.h
eartbeat.reregister-service-on-
failure

false

spring.cloud.consul.discovery.h
eartbeat.ttl

30s

spring.cloud.consul.discovery.h
eartbeat.use-actuator-health

true Whether or not to take the
current system health (as
reported via the Actuator
Health endpoint) into account
when reporting the application
status to the Consul TTL check.
Actuator Health endpoint also
has to be available to the
application.

spring.cloud.consul.discovery.h
ostname

`` Hostname to use when
accessing server.

spring.cloud.consul.discovery.in
clude-hostname-in-instance-id

false Whether hostname is included
into the default instance id
when registering service.

spring.cloud.consul.discovery.in
stance-group

`` Service instance group.

spring.cloud.consul.discovery.in
stance-id

`` Unique service instance id.

spring.cloud.consul.discovery.in
stance-zone

`` Service instance zone.

spring.cloud.consul.discovery.ip
-address

`` IP address to use when
accessing service (must also set
preferIpAddress to use).

spring.cloud.consul.discovery.li
fecycle.enabled

true

Name Default Description

spring.cloud.consul.discovery.m
anagement-enable-tag-override

`` Enable tag override for the
registered management service.

spring.cloud.consul.discovery.m
anagement-metadata

`` Metadata to use when
registering management
service.

spring.cloud.consul.discovery.m
anagement-port

`` Port to register the
management service under
(defaults to management port).

spring.cloud.consul.discovery.m
anagement-suffix

management Suffix to use when registering
management service.

spring.cloud.consul.discovery.m
anagement-tags

`` Tags to use when registering
management service.

spring.cloud.consul.discovery.m
etadata

`` Metadata to use when
registering service.

spring.cloud.consul.discovery.o
rder

0 Order of the discovery client
used by
`CompositeDiscoveryClient` for
sorting available clients.

spring.cloud.consul.discovery.p
ort

`` Port to register the service
under (defaults to listening
port).

spring.cloud.consul.discovery.p
refer-agent-address

false Source of how we will
determine the address to use.

spring.cloud.consul.discovery.p
refer-ip-address

false Use ip address rather than
hostname during registration.

spring.cloud.consul.discovery.q
uery-passing

false Add the 'passing` parameter to
/v1/health/service/serviceName.
This pushes health check
passing to the server.

spring.cloud.consul.discovery.r
egister

true Register as a service in consul.

spring.cloud.consul.discovery.r
egister-health-check

true Register health check in consul.
Useful during development of a
service.

spring.cloud.consul.discovery.sc
heme

http Whether to register an http or
https service.

Name Default Description

spring.cloud.consul.discovery.s
erver-list-query-tags

`` Map of serviceId's -> tag to
query for in server list. This
allows filtering services by one
more tags. Multiple tags can be
specified with a comma
separated value.

spring.cloud.consul.discovery.s
ervice-name

`` Service name.

spring.cloud.consul.discovery.ta
gs

`` Tags to use when registering
service.

spring.cloud.consul.enabled true Is spring cloud consul enabled.

spring.cloud.consul.host localhost Consul agent hostname.
Defaults to 'localhost'.

spring.cloud.consul.path `` Custom path if consul is under
non-root.

spring.cloud.consul.port 8500 Consul agent port. Defaults to
'8500'.

spring.cloud.consul.retry.enabl
ed

true If consul retry is enabled.

spring.cloud.consul.retry.initial-
interval

1000 Initial retry interval in
milliseconds.

spring.cloud.consul.retry.max-
attempts

6 Maximum number of attempts.

spring.cloud.consul.retry.max-
interval

2000 Maximum interval for backoff.

spring.cloud.consul.retry.multip
lier

1.1 Multiplier for next interval.

spring.cloud.consul.ribbon.ena
bled

true Enables Consul and Ribbon
integration.

spring.cloud.consul.scheme `` Consul agent scheme
(HTTP/HTTPS). If there is no
scheme in address - client will
use HTTP.

spring.cloud.consul.service-
registry.auto-
registration.enabled

true Enables Consul Service Registry
Auto-registration.

spring.cloud.consul.service-
registry.enabled

true Enables Consul Service Registry
functionality.

spring.cloud.consul.tls.certificat
e-password

`` Password to open the
certificate.

Name Default Description

spring.cloud.consul.tls.certificat
e-path

`` File path to the certificate.

spring.cloud.consul.tls.key-
store-instance-type

`` Type of key framework to use.

spring.cloud.consul.tls.key-
store-password

`` Password to an external
keystore.

spring.cloud.consul.tls.key-
store-path

`` Path to an external keystore.

spring.cloud.decrypt-
environment-post-
processor.enabled

true Enable the
DecryptEnvironmentPostProces
sor.

spring.cloud.discovery.client.co
mposite-indicator.enabled

true Enables discovery client
composite health indicator.

spring.cloud.discovery.client.he
alth-indicator.enabled

true

spring.cloud.discovery.client.he
alth-indicator.include-
description

false

spring.cloud.discovery.client.he
alth-indicator.use-services-
query

true Whether or not the indicator
should use {@link
DiscoveryClient#getServices} to
check its health. When set to
{@code false} the indicator
instead uses the lighter {@link
DiscoveryClient#probe()}. This
can be helpful in large
deployments where the number
of services returned makes the
operation unnecessarily heavy.

spring.cloud.discovery.client.si
mple.instances

``

spring.cloud.discovery.client.si
mple.local.host

``

spring.cloud.discovery.client.si
mple.local.instance-id

``

spring.cloud.discovery.client.si
mple.local.metadata

``

spring.cloud.discovery.client.si
mple.local.port

0

Name Default Description

spring.cloud.discovery.client.si
mple.local.secure

false

spring.cloud.discovery.client.si
mple.local.service-id

``

spring.cloud.discovery.client.si
mple.local.uri

``

spring.cloud.discovery.client.si
mple.order

``

spring.cloud.discovery.enabled true Enables discovery client health
indicators.

spring.cloud.features.enabled true Enables the features endpoint.

spring.cloud.gateway.default-
filters

`` List of filter definitions that are
applied to every route.

spring.cloud.gateway.discovery.
locator.enabled

false Flag that enables
DiscoveryClient gateway
integration.

spring.cloud.gateway.discovery.
locator.filters

``

spring.cloud.gateway.discovery.
locator.include-expression

true SpEL expression that will
evaluate whether to include a
service in gateway integration
or not, defaults to: true.

spring.cloud.gateway.discovery.
locator.lower-case-service-id

false Option to lower case serviceId
in predicates and filters,
defaults to false. Useful with
eureka when it automatically
uppercases serviceId. so
MYSERIVCE, would match
/myservice/**

spring.cloud.gateway.discovery.
locator.predicates

``

spring.cloud.gateway.discovery.
locator.route-id-prefix

`` The prefix for the routeId,
defaults to
discoveryClient.getClass().getSi
mpleName() + "_". Service Id
will be appended to create the
routeId.

spring.cloud.gateway.discovery.
locator.url-expression

'lb://'+serviceId SpEL expression that create the
uri for each route, defaults to:
'lb://'+serviceId.

Name Default Description

spring.cloud.gateway.enabled true Enables gateway functionality.

spring.cloud.gateway.fail-on-
route-definition-error

true Option to fail on route
definition errors, defaults to
true. Otherwise, a warning is
logged.

spring.cloud.gateway.filter.add-
request-header.enabled

true Enables the add-request-header
filter.

spring.cloud.gateway.filter.add-
request-parameter.enabled

true Enables the add-request-
parameter filter.

spring.cloud.gateway.filter.add-
response-header.enabled

true Enables the add-response-
header filter.

spring.cloud.gateway.filter.circ
uit-breaker.enabled

true Enables the circuit-breaker
filter.

spring.cloud.gateway.filter.ded
upe-response-header.enabled

true Enables the dedupe-response-
header filter.

spring.cloud.gateway.filter.fallb
ack-headers.enabled

true Enables the fallback-headers
filter.

spring.cloud.gateway.filter.hyst
rix.enabled

true Enables the hystrix filter.

spring.cloud.gateway.filter.json-
to-grpc.enabled

true Enables the JSON to gRPC filter.

spring.cloud.gateway.filter.local
-response-cache.enabled

false Enables the local-response-
cache filter.

spring.cloud.gateway.filter.local
-response-cache.size

5m Maximum size of the cache to
evict entries for this route (in
KB, MB and GB).

spring.cloud.gateway.filter.local
-response-cache.time-to-live

`` Time to expire a cache entry
(expressed in s for seconds, m
for minutes, and h for hours).

spring.cloud.gateway.filter.map-
request-header.enabled

true Enables the map-request-
header filter.

spring.cloud.gateway.filter.mod
ify-request-body.enabled

true Enables the modify-request-
body filter.

spring.cloud.gateway.filter.mod
ify-response-body.enabled

true Enables the modify-response-
body filter.

spring.cloud.gateway.filter.prefi
x-path.enabled

true Enables the prefix-path filter.

spring.cloud.gateway.filter.pres
erve-host-header.enabled

true Enables the preserve-host-
header filter.

Name Default Description

spring.cloud.gateway.filter.redi
rect-to.enabled

true Enables the redirect-to filter.

spring.cloud.gateway.filter.rem
ove-hop-by-hop.headers

``

spring.cloud.gateway.filter.rem
ove-hop-by-hop.order

0

spring.cloud.gateway.filter.rem
ove-request-header.enabled

true Enables the remove-request-
header filter.

spring.cloud.gateway.filter.rem
ove-request-parameter.enabled

true Enables the remove-request-
parameter filter.

spring.cloud.gateway.filter.rem
ove-response-header.enabled

true Enables the remove-response-
header filter.

spring.cloud.gateway.filter.requ
est-header-size.enabled

true Enables the request-header-size
filter.

spring.cloud.gateway.filter.requ
est-header-to-request-
uri.enabled

true Enables the request-header-to-
request-uri filter.

spring.cloud.gateway.filter.requ
est-rate-limiter.default-key-
resolver

``

spring.cloud.gateway.filter.requ
est-rate-limiter.default-rate-
limiter

``

spring.cloud.gateway.filter.requ
est-rate-limiter.enabled

true Enables the request-rate-limiter
filter.

spring.cloud.gateway.filter.requ
est-size.enabled

true Enables the request-size filter.

spring.cloud.gateway.filter.retr
y.enabled

true Enables the retry filter.

spring.cloud.gateway.filter.rewr
ite-location-response-
header.enabled

true Enables the rewrite-location-
response-header filter.

spring.cloud.gateway.filter.rewr
ite-location.enabled

true Enables the rewrite-location
filter.

spring.cloud.gateway.filter.rewr
ite-path.enabled

true Enables the rewrite-path filter.

spring.cloud.gateway.filter.rewr
ite-response-header.enabled

true Enables the rewrite-response-
header filter.

Name Default Description

spring.cloud.gateway.filter.save-
session.enabled

true Enables the save-session filter.

spring.cloud.gateway.filter.secu
re-headers.content-security-
policy

default-src 'self' https:;
font-src 'self' https: data:;
img-src 'self' https: data:;
object-src 'none'; script-src
https:; style-src 'self'
https: 'unsafe-inline'

spring.cloud.gateway.filter.secu
re-headers.content-type-options

nosniff

spring.cloud.gateway.filter.secu
re-headers.disable

``

spring.cloud.gateway.filter.secu
re-headers.download-options

noopen

spring.cloud.gateway.filter.secu
re-headers.enabled

true Enables the secure-headers
filter.

spring.cloud.gateway.filter.secu
re-headers.frame-options

DENY

spring.cloud.gateway.filter.secu
re-headers.permitted-cross-
domain-policies

none

spring.cloud.gateway.filter.secu
re-headers.referrer-policy

no-referrer

spring.cloud.gateway.filter.secu
re-headers.strict-transport-
security

<code>max-
age=631138519</code>

spring.cloud.gateway.filter.secu
re-headers.xss-protection-
header

<code>1 ;
mode=block</code>

spring.cloud.gateway.filter.set-
path.enabled

true Enables the set-path filter.

spring.cloud.gateway.filter.set-
request-header.enabled

true Enables the set-request-header
filter.

spring.cloud.gateway.filter.set-
request-host-header.enabled

true Enables the set-request-host-
header filter.

spring.cloud.gateway.filter.set-
response-header.enabled

true Enables the set-response-
header filter.

spring.cloud.gateway.filter.set-
status.enabled

true Enables the set-status filter.

spring.cloud.gateway.filter.strip
-prefix.enabled

true Enables the strip-prefix filter.

Name Default Description

spring.cloud.gateway.forwarde
d.enabled

true Enables the
ForwardedHeadersFilter.

spring.cloud.gateway.global-
filter.adapt-cached-
body.enabled

true Enables the adapt-cached-body
global filter.

spring.cloud.gateway.global-
filter.forward-path.enabled

true Enables the forward-path global
filter.

spring.cloud.gateway.global-
filter.forward-routing.enabled

true Enables the forward-routing
global filter.

spring.cloud.gateway.global-
filter.load-balancer-
client.enabled

true Enables the load-balancer-client
global filter.

spring.cloud.gateway.global-
filter.local-response-
cache.enabled

true Enables the local-response-
cache filter for all routes, it
allows to add a specific
configuration at route level
using LocalResponseCache
filter.

spring.cloud.gateway.global-
filter.netty-routing.enabled

true Enables the netty-routing global
filter.

spring.cloud.gateway.global-
filter.netty-write-
response.enabled

true Enables the netty-write-
response global filter.

spring.cloud.gateway.global-
filter.reactive-load-balancer-
client.enabled

true Enables the reactive-load-
balancer-client global filter.

spring.cloud.gateway.global-
filter.remove-cached-
body.enabled

true Enables the remove-cached-
body global filter.

spring.cloud.gateway.global-
filter.route-to-request-
url.enabled

true Enables the route-to-request-url
global filter.

spring.cloud.gateway.global-
filter.websocket-
routing.enabled

true Enables the websocket-routing
global filter.

spring.cloud.gateway.globalcors
.add-to-simple-url-handler-
mapping

false If global CORS config should be
added to the URL handler.

spring.cloud.gateway.globalcors
.cors-configurations

``

Name Default Description

spring.cloud.gateway.handler-
mapping.order

1 The order of
RoutePredicateHandlerMappin
g.

spring.cloud.gateway.httpclient.
compression

false Enables compression for Netty
HttpClient.

spring.cloud.gateway.httpclient.
connect-timeout

`` The connect timeout in millis,
the default is 30s.

spring.cloud.gateway.httpclient.
max-header-size

`` The max response header size.

spring.cloud.gateway.httpclient.
max-initial-line-length

`` The max initial line length.

spring.cloud.gateway.httpclient.
pool.acquire-timeout

`` Only for type FIXED, the
maximum time in millis to wait
for acquiring.

spring.cloud.gateway.httpclient.
pool.eviction-interval

0 Perform regular eviction checks
in the background at a specified
interval. Disabled by default
({@link Duration#ZERO})

spring.cloud.gateway.httpclient.
pool.max-connections

`` Only for type FIXED, the
maximum number of
connections before starting
pending acquisition on existing
ones.

spring.cloud.gateway.httpclient.
pool.max-idle-time

`` Time in millis after which the
channel will be closed. If NULL,
there is no max idle time.

spring.cloud.gateway.httpclient.
pool.max-life-time

`` Duration after which the
channel will be closed. If NULL,
there is no max life time.

spring.cloud.gateway.httpclient.
pool.metrics

false Enables channel pools metrics
to be collected and registered in
Micrometer. Disabled by
default.

spring.cloud.gateway.httpclient.
pool.name

proxy The channel pool map name,
defaults to proxy.

spring.cloud.gateway.httpclient.
pool.type

`` Type of pool for HttpClient to
use, defaults to ELASTIC.

spring.cloud.gateway.httpclient.
proxy.host

`` Hostname for proxy
configuration of Netty
HttpClient.

Name Default Description

spring.cloud.gateway.httpclient.
proxy.non-proxy-hosts-pattern

`` Regular expression (Java) for a
configured list of hosts. that
should be reached directly,
bypassing the proxy

spring.cloud.gateway.httpclient.
proxy.password

`` Password for proxy
configuration of Netty
HttpClient.

spring.cloud.gateway.httpclient.
proxy.port

`` Port for proxy configuration of
Netty HttpClient.

spring.cloud.gateway.httpclient.
proxy.type

`` proxyType for proxy
configuration of Netty
HttpClient.

spring.cloud.gateway.httpclient.
proxy.username

`` Username for proxy
configuration of Netty
HttpClient.

spring.cloud.gateway.httpclient.
response-timeout

`` The response timeout.

spring.cloud.gateway.httpclient.
ssl.close-notify-flush-timeout

3000ms SSL close_notify flush timeout.
Default to 3000 ms.

spring.cloud.gateway.httpclient.
ssl.close-notify-read-timeout

0 SSL close_notify read timeout.
Default to 0 ms.

spring.cloud.gateway.httpclient.
ssl.handshake-timeout

10000ms SSL handshake timeout. Default
to 10000 ms

spring.cloud.gateway.httpclient.
ssl.key-password

`` Key password, default is same
as keyStorePassword.

spring.cloud.gateway.httpclient.
ssl.key-store

`` Keystore path for Netty
HttpClient.

spring.cloud.gateway.httpclient.
ssl.key-store-password

`` Keystore password.

spring.cloud.gateway.httpclient.
ssl.key-store-provider

`` Keystore provider for Netty
HttpClient, optional field.

spring.cloud.gateway.httpclient.
ssl.key-store-type

JKS Keystore type for Netty
HttpClient, default is JKS.

spring.cloud.gateway.httpclient.
ssl.trusted-x509-certificates

`` Trusted certificates for
verifying the remote endpoint's
certificate.

spring.cloud.gateway.httpclient.
ssl.use-insecure-trust-manager

false Installs the netty
InsecureTrustManagerFactory.
This is insecure and not suitable
for production.

Name Default Description

spring.cloud.gateway.httpclient.
websocket.max-frame-payload-
length

`` Max frame payload length.

spring.cloud.gateway.httpclient.
websocket.proxy-ping

true Proxy ping frames to
downstream services, defaults
to true.

spring.cloud.gateway.httpclient.
wiretap

false Enables wiretap debugging for
Netty HttpClient.

spring.cloud.gateway.httpserve
r.wiretap

false Enables wiretap debugging for
Netty HttpServer.

spring.cloud.gateway.loadbalan
cer.use404

false

spring.cloud.gateway.metrics.e
nabled

false Enables the collection of
metrics data.

spring.cloud.gateway.metrics.pr
efix

spring.cloud.gateway The prefix of all metrics emitted
by gateway.

spring.cloud.gateway.metrics.ta
gs

`` Tags map that added to metrics.

spring.cloud.gateway.observabi
lity.enabled

true If Micrometer Observability
support should be turned on.

spring.cloud.gateway.predicate.
after.enabled

true Enables the after predicate.

spring.cloud.gateway.predicate.
before.enabled

true Enables the before predicate.

spring.cloud.gateway.predicate.
between.enabled

true Enables the between predicate.

spring.cloud.gateway.predicate.
cloud-foundry-route-
service.enabled

true Enables the cloud-foundry-
route-service predicate.

spring.cloud.gateway.predicate.
cookie.enabled

true Enables the cookie predicate.

spring.cloud.gateway.predicate.
header.enabled

true Enables the header predicate.

spring.cloud.gateway.predicate.
host.enabled

true Enables the host predicate.

spring.cloud.gateway.predicate.
method.enabled

true Enables the method predicate.

spring.cloud.gateway.predicate.
path.enabled

true Enables the path predicate.

Name Default Description

spring.cloud.gateway.predicate.
query.enabled

true Enables the query predicate.

spring.cloud.gateway.predicate.
read-body.enabled

true Enables the read-body
predicate.

spring.cloud.gateway.predicate.
remote-addr.enabled

true Enables the remote-addr
predicate.

spring.cloud.gateway.predicate.
weight.enabled

true Enables the weight predicate.

spring.cloud.gateway.predicate.
xforwarded-remote-
addr.enabled

true Enables the xforwarded-
remote-addr predicate.

spring.cloud.gateway.redis-rate-
limiter.burst-capacity-header

X-RateLimit-Burst-Capacity The name of the header that
returns the burst capacity
configuration.

spring.cloud.gateway.redis-rate-
limiter.config

``

spring.cloud.gateway.redis-rate-
limiter.include-headers

true Whether or not to include
headers containing rate limiter
information, defaults to true.

spring.cloud.gateway.redis-rate-
limiter.remaining-header

X-RateLimit-Remaining The name of the header that
returns number of remaining
requests during the current
second.

spring.cloud.gateway.redis-rate-
limiter.replenish-rate-header

X-RateLimit-Replenish-Rate The name of the header that
returns the replenish rate
configuration.

spring.cloud.gateway.redis-rate-
limiter.requested-tokens-header

X-RateLimit-Requested-Tokens The name of the header that
returns the requested tokens
configuration.

spring.cloud.gateway.restrictive
-property-accessor.enabled

true Restricts method and property
access in SpEL.

spring.cloud.gateway.routes `` List of Routes.

spring.cloud.gateway.set-
status.original-status-header-
name

`` The name of the header which
contains http code of the
proxied request.

spring.cloud.gateway.streaming
-media-types

``

spring.cloud.gateway.x-
forwarded.enabled

true If the XForwardedHeadersFilter
is enabled.

Name Default Description

spring.cloud.gateway.x-
forwarded.for-append

true If appending X-Forwarded-For
as a list is enabled.

spring.cloud.gateway.x-
forwarded.for-enabled

true If X-Forwarded-For is enabled.

spring.cloud.gateway.x-
forwarded.host-append

true If appending X-Forwarded-Host
as a list is enabled.

spring.cloud.gateway.x-
forwarded.host-enabled

true If X-Forwarded-Host is enabled.

spring.cloud.gateway.x-
forwarded.order

0 The order of the
XForwardedHeadersFilter.

spring.cloud.gateway.x-
forwarded.port-append

true If appending X-Forwarded-Port
as a list is enabled.

spring.cloud.gateway.x-
forwarded.port-enabled

true If X-Forwarded-Port is enabled.

spring.cloud.gateway.x-
forwarded.prefix-append

true If appending X-Forwarded-
Prefix as a list is enabled.

spring.cloud.gateway.x-
forwarded.prefix-enabled

true If X-Forwarded-Prefix is
enabled.

spring.cloud.gateway.x-
forwarded.proto-append

true If appending X-Forwarded-
Proto as a list is enabled.

spring.cloud.gateway.x-
forwarded.proto-enabled

true If X-Forwarded-Proto is
enabled.

spring.cloud.httpclientfactories.
apache.enabled

true Enables creation of Apache Http
Client factory beans.

spring.cloud.httpclientfactories.
ok.enabled

true Enables creation of OK Http
Client factory beans.

spring.cloud.hypermedia.refres
h.fixed-delay

5000

spring.cloud.hypermedia.refres
h.initial-delay

10000

spring.cloud.inetutils.default-
hostname

localhost The default hostname. Used in
case of errors.

spring.cloud.inetutils.default-ip-
address

127.0.0.1 The default IP address. Used in
case of errors.

spring.cloud.inetutils.ignored-
interfaces

`` List of Java regular expressions
for network interfaces that will
be ignored.

Name Default Description

spring.cloud.inetutils.preferred-
networks

`` List of Java regular expressions
for network addresses that will
be preferred.

spring.cloud.inetutils.timeout-
seconds

1 Timeout, in seconds, for
calculating hostname.

spring.cloud.inetutils.use-only-
site-local-interfaces

false Whether to use only interfaces
with site local addresses. See
{@link
InetAddress#isSiteLocalAddress
()} for more details.

spring.cloud.kubernetes.client.a
pi-version

``

spring.cloud.kubernetes.client.a
piVersion

v1 Kubernetes API Version

spring.cloud.kubernetes.client.c
a-cert-data

``

spring.cloud.kubernetes.client.c
a-cert-file

``

spring.cloud.kubernetes.client.c
aCertData

`` Kubernetes API CACertData

spring.cloud.kubernetes.client.c
aCertFile

`` Kubernetes API CACertFile

spring.cloud.kubernetes.client.c
lient-cert-data

``

spring.cloud.kubernetes.client.c
lient-cert-file

``

spring.cloud.kubernetes.client.c
lient-key-algo

``

spring.cloud.kubernetes.client.c
lient-key-data

``

spring.cloud.kubernetes.client.c
lient-key-file

``

spring.cloud.kubernetes.client.c
lient-key-passphrase

``

spring.cloud.kubernetes.client.c
lientCertData

`` Kubernetes API ClientCertData

spring.cloud.kubernetes.client.c
lientCertFile

`` Kubernetes API ClientCertFile

Name Default Description

spring.cloud.kubernetes.client.c
lientKeyAlgo

RSA Kubernetes API ClientKeyAlgo

spring.cloud.kubernetes.client.c
lientKeyData

`` Kubernetes API ClientKeyData

spring.cloud.kubernetes.client.c
lientKeyFile

`` Kubernetes API ClientKeyFile

spring.cloud.kubernetes.client.c
lientKeyPassphrase

changeit Kubernetes API
ClientKeyPassphrase

spring.cloud.kubernetes.client.c
onnection-timeout

``

spring.cloud.kubernetes.client.c
onnectionTimeout

10s Connection timeout

spring.cloud.kubernetes.client.h
ttp-proxy

``

spring.cloud.kubernetes.client.h
ttps-proxy

``

spring.cloud.kubernetes.client.l
ogging-interval

``

spring.cloud.kubernetes.client.l
oggingInterval

20s Logging interval

spring.cloud.kubernetes.client.
master-url

``

spring.cloud.kubernetes.client.
masterUrl

https://kubernetes.default.svc Kubernetes API Master Node
URL

spring.cloud.kubernetes.client.n
amespace

true Kubernetes Namespace

spring.cloud.kubernetes.client.n
o-proxy

``

spring.cloud.kubernetes.client.o
auth-token

``

spring.cloud.kubernetes.client.o
authToken

`` Kubernetes API Oauth Token

spring.cloud.kubernetes.client.p
assword

`` Kubernetes API Password

spring.cloud.kubernetes.client.p
roxy-password

``

spring.cloud.kubernetes.client.p
roxy-username

``

Name Default Description

spring.cloud.kubernetes.client.r
equest-timeout

``

spring.cloud.kubernetes.client.r
equestTimeout

10s Request timeout

spring.cloud.kubernetes.client.r
olling-timeout

``

spring.cloud.kubernetes.client.r
ollingTimeout

900s Rolling timeout

spring.cloud.kubernetes.client.s
ervice-account-namespace-path

/var/run/secrets/kubernetes.io
/serviceaccount/namespace

spring.cloud.kubernetes.client.t
rust-certs

``

spring.cloud.kubernetes.client.t
rustCerts

false Kubernetes API Trust
Certificates

spring.cloud.kubernetes.client.u
ser-agent

Spring-Cloud-Kubernetes-
Application

spring.cloud.kubernetes.client.u
sername

`` Kubernetes API Username

spring.cloud.kubernetes.client.
watch-reconnect-interval

``

spring.cloud.kubernetes.client.
watch-reconnect-limit

``

spring.cloud.kubernetes.client.
watchReconnectInterval

1s Reconnect Interval

spring.cloud.kubernetes.client.
watchReconnectLimit

-1 Reconnect Interval limit retries

spring.cloud.kubernetes.config.
enable-api

true

spring.cloud.kubernetes.config.
enabled

true Enable the ConfigMap property
source locator.

spring.cloud.kubernetes.config.f
ail-fast

false

spring.cloud.kubernetes.config.i
nclude-profile-specific-sources

true

spring.cloud.kubernetes.config.l
abels

``

spring.cloud.kubernetes.config.
name

``

Name Default Description

spring.cloud.kubernetes.config.
namespace

``

spring.cloud.kubernetes.config.
paths

``

spring.cloud.kubernetes.config.
retry

``

spring.cloud.kubernetes.config.
sources

``

spring.cloud.kubernetes.config.
use-name-as-prefix

false

spring.cloud.kubernetes.discove
ry.all-namespaces

false

spring.cloud.kubernetes.discove
ry.cache-loading-timeout-
seconds

60

spring.cloud.kubernetes.discove
ry.enabled

true

spring.cloud.kubernetes.discove
ry.filter

``

spring.cloud.kubernetes.discove
ry.include-external-name-
services

false

spring.cloud.kubernetes.discove
ry.include-not-ready-addresses

false

spring.cloud.kubernetes.discove
ry.known-secure-ports

[443, 8443]

spring.cloud.kubernetes.discove
ry.metadata.add-annotations

true

spring.cloud.kubernetes.discove
ry.metadata.add-labels

true

spring.cloud.kubernetes.discove
ry.metadata.add-pod-
annotations

false

spring.cloud.kubernetes.discove
ry.metadata.add-pod-labels

false

spring.cloud.kubernetes.discove
ry.metadata.add-ports

true

spring.cloud.kubernetes.discove
ry.metadata.annotations-prefix

``

Name Default Description

spring.cloud.kubernetes.discove
ry.metadata.labels-prefix

``

spring.cloud.kubernetes.discove
ry.metadata.ports-prefix

port.

spring.cloud.kubernetes.discove
ry.namespaces

``

spring.cloud.kubernetes.discove
ry.order

0

spring.cloud.kubernetes.discove
ry.primary-port-name

``

spring.cloud.kubernetes.discove
ry.service-labels

``

spring.cloud.kubernetes.discove
ry.use-endpoint-slices

false

spring.cloud.kubernetes.discove
ry.wait-cache-ready

true

spring.cloud.kubernetes.leader.
auto-startup

true Should leader election be
started automatically on
startup. Default: true

spring.cloud.kubernetes.leader.
config-map-name

leaders Kubernetes ConfigMap where
leaders information will be
stored. Default: leaders

spring.cloud.kubernetes.leader.
create-config-map

true Enable/disable creating
ConfigMap if it does not exist.
Default: true

spring.cloud.kubernetes.leader.
enabled

true Should leader election be
enabled. Default: true

spring.cloud.kubernetes.leader.l
eader-id-prefix

leader.id. Leader id property prefix for
the ConfigMap. Default:
leader.id.

spring.cloud.kubernetes.leader.
namespace

`` Kubernetes namespace where
the leaders ConfigMap and
candidates are located.

spring.cloud.kubernetes.leader.
publish-failed-events

false Enable/disable publishing
events in case leadership
acquisition fails. Default: false

spring.cloud.kubernetes.leader.
role

`` Role for which leadership this
candidate will compete.

spring.cloud.kubernetes.leader.
update-period

60000ms Leadership status check period.
Default: 60s

Name Default Description

spring.cloud.kubernetes.loadbal
ancer.cluster-domain

cluster.local cluster domain.

spring.cloud.kubernetes.loadbal
ancer.enabled

true Load balancer enabled,default
true.

spring.cloud.kubernetes.loadbal
ancer.mode

`` {@link
KubernetesLoadBalancerMode}
setting load balancer server list
with ip of pod or service name.
default value is POD.

spring.cloud.kubernetes.loadbal
ancer.port-name

http service port name.

spring.cloud.kubernetes.reload.
enable-reload-filtering

false

spring.cloud.kubernetes.reload.
enabled

false

spring.cloud.kubernetes.reload.
max-wait-for-restart

2s

spring.cloud.kubernetes.reload.
mode

EVENT

spring.cloud.kubernetes.reload.
monitoring-config-maps

true

spring.cloud.kubernetes.reload.
monitoring-secrets

false

spring.cloud.kubernetes.reload.
namespaces

``

spring.cloud.kubernetes.reload.
period

15000ms

spring.cloud.kubernetes.reload.
strategy

REFRESH

spring.cloud.kubernetes.secrets.
enable-api

false

spring.cloud.kubernetes.secrets.
enabled

true Enable the Secrets property
source locator.

spring.cloud.kubernetes.secrets.
fail-fast

false

spring.cloud.kubernetes.secrets.
include-profile-specific-sources

true

spring.cloud.kubernetes.secrets.
labels

``

Name Default Description

spring.cloud.kubernetes.secrets.
name

``

spring.cloud.kubernetes.secrets.
namespace

``

spring.cloud.kubernetes.secrets.
paths

``

spring.cloud.kubernetes.secrets.
retry

``

spring.cloud.kubernetes.secrets.
sources

``

spring.cloud.kubernetes.secrets.
use-name-as-prefix

false

spring.cloud.loadbalancer.cach
e.caffeine.spec

`` The spec to use to create caches.
See CaffeineSpec for more
details on the spec format.

spring.cloud.loadbalancer.cach
e.capacity

256 Initial cache capacity expressed
as int.

spring.cloud.loadbalancer.cach
e.enabled

true Enables Spring Cloud
LoadBalancer caching
mechanism.

Name Default Description

spring.cloud.loadbalancer.cach
e.ttl

35s Time To Live - time counted
from writing of the record, after
which cache entries are
expired, expressed as a {@link
Duration}. The property {@link
String} has to be in keeping
with the appropriate syntax as
specified in Spring Boot
<code>StringToDurationC
onverter</code>. @see
<a href= "<a
href="https://github.com/spring-
projects/spring-
boot/blob/master/spring-boot-
project/spring-
boot/src/main/java/org/springfr
amework/boot/convert/StringTo
DurationConverter.java"&
gt;StringToDurationConverter.j
ava"
class="bare">github.com/
spring-projects/spring-boot/
blob/master/spring-boot-
project/spring-boot/src/main/
java/org/springframework/boot/
convert/
StringToDurationConverter.jav
a">StringToDurationCo
nverter.java;

Name Default Description

spring.cloud.loadbalancer.call-
get-with-request-on-delegates

false If this flag is set to {@code true},
{@code
ServiceInstanceListSupplier#get
(Request request)} method will
be implemented to call {@code
delegate.get(request)} in classes
assignable from {@code
DelegatingServiceInstanceListS
upplier} that don't already
implement that method, with
the exclusion of {@code
CachingServiceInstanceListSup
plier} and {@code
HealthCheckServiceInstanceList
Supplier}, which should be
placed in the instance supplier
hierarchy directly after the
supplier performing instance
retrieval over the network,
before any request-based
filtering is done. Note: in 4.1,
this behaviour will become the
default

spring.cloud.loadbalancer.client
s

``

spring.cloud.loadbalancer.confi
gurations

default Enables a predefined
LoadBalancer configuration.

spring.cloud.loadbalancer.eager
-load.clients

`` Names of the clients.

spring.cloud.loadbalancer.enabl
ed

true Enables Spring Cloud
LoadBalancer.

spring.cloud.loadbalancer.eure
ka.approximate-zone-from-
hostname

false Used to determine whether we
should try to get the `zone`
value from host name.

spring.cloud.loadbalancer.healt
h-check.initial-delay

0 Initial delay value for the
HealthCheck scheduler.

spring.cloud.loadbalancer.healt
h-check.interval

25s Interval for rerunning the
HealthCheck scheduler.

spring.cloud.loadbalancer.healt
h-check.interval

25s Interval for rerunning the
HealthCheck scheduler.

Name Default Description

spring.cloud.loadbalancer.healt
h-check.path

`` Path at which the health-check
request should be made. Can be
set up per `serviceId`. A
`default` value can be set up as
well. If none is set up,
`/actuator/health` will be used.

spring.cloud.loadbalancer.healt
h-check.port

`` Path at which the health-check
request should be made. If none
is set, the port under which the
requested service is available at
the service instance.

spring.cloud.loadbalancer.healt
h-check.refetch-instances

false Indicates whether the instances
should be refetched by the
`HealthCheckServiceInstanceLi
stSupplier`. This can be used if
the instances can be updated
and the underlying delegate
does not provide an ongoing
flux.

spring.cloud.loadbalancer.healt
h-check.refetch-instances-
interval

25s Interval for refetching available
service instances.

spring.cloud.loadbalancer.healt
h-check.repeat-health-check

true Indicates whether health checks
should keep repeating. It might
be useful to set it to `false` if
periodically refetching the
instances, as every refetch will
also trigger a healthcheck.

spring.cloud.loadbalancer.healt
h-check.update-results-list

true Indicates whether the {@code
healthCheckFlux} should emit
on each alive {@link
ServiceInstance} that has been
retrieved. If set to {@code
false}, the entire alive instances
sequence is first collected into a
list and only then emitted.

spring.cloud.loadbalancer.hint `` Allows setting the value of
<code>hint</code> that is
passed on to the LoadBalancer
request and can subsequently
be used in {@link
ReactiveLoadBalancer}
implementations.

Name Default Description

spring.cloud.loadbalancer.hint-
header-name

X-SC-LB-Hint Allows setting the name of the
header used for passing the hint
for hint-based service instance
filtering.

spring.cloud.loadbalancer.retry.
avoid-previous-instance

true Enables wrapping
ServiceInstanceListSupplier
beans with
`RetryAwareServiceInstanceLis
tSupplier` if Spring-Retry is in
the classpath.

spring.cloud.loadbalancer.retry.
backoff.enabled

false Indicates whether Reactor Retry
backoffs should be applied.

spring.cloud.loadbalancer.retry.
backoff.jitter

0.5 Used to set
`RetryBackoffSpec.jitter`.

spring.cloud.loadbalancer.retry.
backoff.max-backoff

Long.MAX ms Used to set
`RetryBackoffSpec.maxBackoff
`.

spring.cloud.loadbalancer.retry.
backoff.min-backoff

5 ms Used to set
`RetryBackoffSpec#minBackoff
`.

spring.cloud.loadbalancer.retry.
enabled

true Enables LoadBalancer retries.

spring.cloud.loadbalancer.retry.
max-retries-on-next-service-
instance

1 Number of retries to be
executed on the next
`ServiceInstance`. A
`ServiceInstance` is chosen
before each retry call.

spring.cloud.loadbalancer.retry.
max-retries-on-same-service-
instance

0 Number of retries to be
executed on the same
`ServiceInstance`.

spring.cloud.loadbalancer.retry.
retry-on-all-exceptions

false Indicates retries should be
attempted for all exceptions,
not only those specified in
`retryableExceptions`.

spring.cloud.loadbalancer.retry.
retry-on-all-operations

false Indicates retries should be
attempted on operations other
than `HttpMethod.GET`.

spring.cloud.loadbalancer.retry.
retryable-exceptions

{} A `Set` of `Throwable` classes
that should trigger a retry.

spring.cloud.loadbalancer.retry.
retryable-status-codes

{} A `Set` of status codes that
should trigger a retry.

Name Default Description

spring.cloud.loadbalancer.servi
ce-discovery.timeout

`` String representation of
Duration of the timeout for calls
to service discovery.

spring.cloud.loadbalancer.stats.
micrometer.enabled

false Enables Spring Cloud
LoadBalancer Micrometer stats.

spring.cloud.loadbalancer.stick
y-session.add-service-instance-
cookie

false Indicates whether a cookie with
the newly selected instance
should be added by
LoadBalancer.

spring.cloud.loadbalancer.stick
y-session.instance-id-cookie-
name

sc-lb-instance-id The name of the cookie holding
the preferred instance id.

spring.cloud.loadbalancer.x-
forwarded.enabled

false To Enable X-Forwarded
Headers.

spring.cloud.loadbalancer.zone `` Spring Cloud LoadBalancer
zone.

spring.cloud.openfeign.autocon
figuration.jackson.enabled

false If true, PageJacksonModule and
SortJacksonModule bean will be
provided for Jackson page
decoding.

spring.cloud.openfeign.circuitbr
eaker.enabled

false If true, an OpenFeign client will
be wrapped with a Spring Cloud
CircuitBreaker circuit breaker.

spring.cloud.openfeign.circuitbr
eaker.group.enabled

false If true, an OpenFeign client will
be wrapped with a Spring Cloud
CircuitBreaker circuit breaker
with with group.

spring.cloud.openfeign.client.co
nfig

``

spring.cloud.openfeign.client.de
code-slash

true Feign clients do not encode
slash `/` characters by default.
To change this behavior, set the
`decodeSlash` to `false`.

spring.cloud.openfeign.client.de
fault-config

default

spring.cloud.openfeign.client.de
fault-to-properties

true

spring.cloud.openfeign.client.re
fresh-enabled

false Enables options value refresh
capability for Feign.

Name Default Description

spring.cloud.openfeign.compres
sion.request.enabled

false Enables the request sent by
Feign to be compressed.

spring.cloud.openfeign.compres
sion.request.mime-types

[text/xml, application/xml,
application/json]

The list of supported mime
types.

spring.cloud.openfeign.compres
sion.request.min-request-size

2048 The minimum threshold
content size.

spring.cloud.openfeign.compres
sion.response.enabled

false Enables the response from
Feign to be compressed.

spring.cloud.openfeign.encoder.
charset-from-content-type

false Indicates whether the charset
should be derived from the
{@code Content-Type} header.

spring.cloud.openfeign.httpclie
nt.connection-timeout

2000

spring.cloud.openfeign.httpclie
nt.connection-timer-repeat

3000

spring.cloud.openfeign.httpclie
nt.disable-ssl-validation

false

spring.cloud.openfeign.httpclie
nt.enabled

true Enables the use of the Apache
HTTP Client by Feign.

spring.cloud.openfeign.httpclie
nt.follow-redirects

true

spring.cloud.openfeign.httpclie
nt.hc5.enabled

false Enables the use of the Apache
HTTP Client 5 by Feign.

spring.cloud.openfeign.httpclie
nt.hc5.pool-concurrency-policy

`` Pool concurrency policies.

spring.cloud.openfeign.httpclie
nt.hc5.pool-reuse-policy

`` Pool connection re-use policies.

spring.cloud.openfeign.httpclie
nt.hc5.socket-timeout

5 Default value for socket
timeout.

spring.cloud.openfeign.httpclie
nt.hc5.socket-timeout-unit

`` Default value for socket timeout
unit.

spring.cloud.openfeign.httpclie
nt.max-connections

200

spring.cloud.openfeign.httpclie
nt.max-connections-per-route

50

spring.cloud.openfeign.httpclie
nt.ok-http.read-timeout

60s {@link OkHttpClient} read
timeout; defaults to 60 seconds.

spring.cloud.openfeign.httpclie
nt.time-to-live

900

Name Default Description

spring.cloud.openfeign.httpclie
nt.time-to-live-unit

``

spring.cloud.openfeign.microm
eter.enabled

true Enables Micrometer capabilities
for Feign.

spring.cloud.openfeign.oauth2.e
nabled

false Enables feign interceptor for
managing oauth2 access token.

spring.cloud.openfeign.oauth2.l
oad-balanced

false Enables load balancing for
oauth2 access token provider.

spring.cloud.openfeign.okhttp.e
nabled

false Enables the use of the OK HTTP
Client by Feign.

spring.cloud.refresh.additional-
property-sources-to-retain

`` Additional property sources to
retain during a refresh.
Typically only system property
sources are retained. This
property allows property
sources, such as property
sources created by
EnvironmentPostProcessors to
be retained as well.

spring.cloud.refresh.enabled true Enables autoconfiguration for
the refresh scope and
associated features.

spring.cloud.refresh.extra-
refreshable

true Additional class names for
beans to post process into
refresh scope.

spring.cloud.refresh.never-
refreshable

true Comma separated list of class
names for beans to never be
refreshed or rebound.

spring.cloud.service-
registry.auto-
registration.enabled

true Whether service auto-
registration is enabled. Defaults
to true.

spring.cloud.service-
registry.auto-registration.fail-
fast

false Whether startup fails if there is
no AutoServiceRegistration.
Defaults to false.

spring.cloud.service-
registry.auto-
registration.register-
management

true Whether to register the
management as a service.
Defaults to true.

Name Default Description

spring.cloud.stream.binders `` Additional per-binder
properties (see {@link
BinderProperties}) if more then
one binder of the same type is
used (i.e., connect to multiple
instances of RabbitMq). Here
you can specify multiple binder
configurations, each with
different environment settings.
For example;
spring.cloud.stream.binders.rab
bit1.environment. . . ,
spring.cloud.stream.binders.rab
bit2.environment. . .

spring.cloud.stream.binding-
retry-interval

30 Retry interval (in seconds) used
to schedule binding attempts.
Default: 30 sec.

spring.cloud.stream.bindings `` Additional binding properties
(see {@link BinderProperties})
per binding name (e.g.,
'input`). For
example; This sets the content-
type for the 'input'
binding of a Sink application:
'spring.cloud.stream.bind
ings.input.contentType=te
xt/plain'

spring.cloud.stream.default-
binder

`` The name of the binder to use
by all bindings in the event
multiple binders available (e.g.,
'rabbit').

spring.cloud.stream.dynamic-
destination-cache-size

10 The maximum size of Least
Recently Used (LRU) cache of
dynamic destinations. Once this
size is reached, new
destinations will trigger the
removal of old destinations.
Default: 10

spring.cloud.stream.dynamic-
destinations

[] A list of destinations that can be
bound dynamically. If set, only
listed destinations can be
bound.

Name Default Description

spring.cloud.stream.function.bi
ndings

``

spring.cloud.stream.input-
bindings

`` A semi-colon delimited string to
explicitly define input bindings
(specifically for cases when
there is no implicit trigger to
create such bindings such as
Function, Supplier or
Consumer).

spring.cloud.stream.instance-
count

1 The number of deployed
instances of an application.
Default: 1. NOTE: Could also be
managed per individual
binding
"spring.cloud.stream.bindings.f
oo.consumer.instance-count"
where 'foo' is the name of the
binding.

spring.cloud.stream.instance-
index

0 The instance id of the
application: a number from 0 to
instanceCount-1. Used for
partitioning and with Kafka.
NOTE: Could also be managed
per individual binding
"spring.cloud.stream.bindings.f
oo.consumer.instance-index"
where 'foo' is the name of the
binding.

spring.cloud.stream.instance-
index-list

`` A list of instance id's from 0 to
instanceCount-1. Used for
partitioning and with Kafka.
NOTE: Could also be managed
per individual binding
"spring.cloud.stream.bindings.f
oo.consumer.instance-index-
list" where 'foo' is the name of
the binding. This setting will
override the one set in
'spring.cloud.stream.instance-
index'

spring.cloud.stream.integration.
message-handler-not-
propagated-headers

`` Message header names that will
NOT be copied from the
inbound message.

Name Default Description

spring.cloud.stream.output-
bindings

`` A semi-colon delimited string to
explicitly define output
bindings (specifically for cases
when there is no implicit
trigger to create such bindings
such as Function, Supplier or
Consumer).

spring.cloud.stream.override-
cloud-connectors

false This property is only applicable
when the cloud profile is active
and Spring Cloud Connectors
are provided with the
application. If the property is
false (the default), the binder
detects a suitable bound service
(for example, a RabbitMQ
service bound in Cloud Foundry
for the RabbitMQ binder) and
uses it for creating connections
(usually through Spring Cloud
Connectors). When set to true,
this property instructs binders
to completely ignore the bound
services and rely on Spring Boot
properties (for example, relying
on the spring.rabbitmq.*
properties provided in the
environment for the RabbitMQ
binder). The typical usage of
this property is to be nested in a
customized environment when
connecting to multiple systems.

spring.cloud.stream.pollable-
source

none A semi-colon delimited list of
binding names of pollable
sources. Binding names follow
the same naming convention as
functions. For example, name
'…​pollable-
source=foobar' will
be accessible as 'foobar-
iin-0'' binding

spring.cloud.stream.sendto.dest
ination

none The name of the header used to
determine the name of the
output destination

Name Default Description

spring.cloud.stream.source `` A semi-colon delimited string
representing the names of the
sources based on which source
bindings will be created. This is
primarily to support cases
where source binding may be
required without providing a
corresponding Supplier. (e.g.,
for cases where the actual
source of data is outside of
scope of spring-cloud-stream -
HTTP -> Stream) @deprecated
use {@link #outputBindings}

spring.cloud.task.batch.applicat
ion-runner-order

0 The order for the {@code
ApplicationRunner} used to run
batch jobs when {@code
spring.cloud.task.batch.fail-on-
job-failure=true}. Defaults
to 0 (same as the {@link
org.springframework.boot.auto
configure.batch.JobLauncherAp
plicationRunner}).

spring.cloud.task.batch.comma
nd-line-runner-order

``

spring.cloud.task.batch.events.c
hunk-event-binding-name

chunk-events

spring.cloud.task.batch.events.c
hunk-order

`` Establishes the default {@link
Ordered} precedence for {@link
org.springframework.batch.cor
e.ChunkListener}.

spring.cloud.task.batch.events.c
hunk.enabled

true This property is used to
determine if a task should listen
for batch chunk events.

spring.cloud.task.batch.events.e
nabled

true This property is used to
determine if a task should listen
for batch events.

spring.cloud.task.batch.events.it
em-process-event-binding-name

item-process-events

spring.cloud.task.batch.events.it
em-process-order

`` Establishes the default {@link
Ordered} precedence for {@link
org.springframework.batch.cor
e.ItemProcessListener}.

Name Default Description

spring.cloud.task.batch.events.it
em-process.enabled

true This property is used to
determine if a task should listen
for batch item processed events.

spring.cloud.task.batch.events.it
em-read-event-binding-name

item-read-events

spring.cloud.task.batch.events.it
em-read-order

`` Establishes the default {@link
Ordered} precedence for {@link
org.springframework.batch.cor
e.ItemReadListener}.

spring.cloud.task.batch.events.it
em-read.enabled

true This property is used to
determine if a task should listen
for batch item read events.

spring.cloud.task.batch.events.it
em-write-event-binding-name

item-write-events

spring.cloud.task.batch.events.it
em-write-order

`` Establishes the default {@link
Ordered} precedence for {@link
org.springframework.batch.cor
e.ItemWriteListener}.

spring.cloud.task.batch.events.it
em-write.enabled

true This property is used to
determine if a task should listen
for batch item write events.

spring.cloud.task.batch.events.j
ob-execution-event-binding-
name

job-execution-events

spring.cloud.task.batch.events.j
ob-execution-order

`` Establishes the default {@link
Ordered} precedence for {@link
org.springframework.batch.cor
e.JobExecutionListener}.

spring.cloud.task.batch.events.j
ob-execution.enabled

true This property is used to
determine if a task should listen
for batch job execution events.

spring.cloud.task.batch.events.s
kip-event-binding-name

skip-events

spring.cloud.task.batch.events.s
kip-order

`` Establishes the default {@link
Ordered} precedence for {@link
org.springframework.batch.cor
e.SkipListener}.

spring.cloud.task.batch.events.s
kip.enabled

true This property is used to
determine if a task should listen
for batch skip events.

Name Default Description

spring.cloud.task.batch.events.s
tep-execution-event-binding-
name

step-execution-events

spring.cloud.task.batch.events.s
tep-execution-order

`` Establishes the default {@link
Ordered} precedence for {@link
org.springframework.batch.cor
e.StepExecutionListener}.

spring.cloud.task.batch.events.s
tep-execution.enabled

true This property is used to
determine if a task should listen
for batch step execution events.

spring.cloud.task.batch.events.t
ask-event-binding-name

task-events

spring.cloud.task.batch.fail-on-
job-failure

false This property is used to
determine if a task app should
return with a non zero exit code
if a batch job fails.

spring.cloud.task.batch.fail-on-
job-failure-poll-interval

5000 Fixed delay in milliseconds that
Spring Cloud Task will wait
when checking if {@link
org.springframework.batch.cor
e.JobExecution}s have
completed, when
spring.cloud.task.batch.failOnJo
bFailure is set to true. Defaults
to 5000.

spring.cloud.task.batch.job-
names

`` Comma-separated list of job
names to execute on startup
(for instance, `job1,job2`). By
default, all Jobs found in the
context are executed.
@deprecated use
spring.batch.job.name instead
of
spring.cloud.task.batch.jobNam
es.

spring.cloud.task.batch.listener.
enabled

true This property is used to
determine if a task will be
linked to the batch jobs that are
run.

spring.cloud.task.closecontext-
enabled

false When set to true the context is
closed at the end of the task.
Else the context remains open.

Name Default Description

spring.cloud.task.events.enable
d

true This property is used to
determine if a task app should
emit task events.

spring.cloud.task.executionid `` An id that will be used by the
task when updating the task
execution.

spring.cloud.task.external-
execution-id

`` An id that can be associated
with a task.

spring.cloud.task.initialize-
enabled

`` If set to true then tables are
initialized. If set to false tables
are not initialized. Defaults to
null. The requirement for it to
be defaulted to null is so that
we can support the
<code>spring.cloud.task.initializ
e.enable</code> until it is
removed.

spring.cloud.task.parent-
execution-id

`` The id of the parent task
execution id that launched this
task execution. Defaults to null
if task execution had no parent.

spring.cloud.task.single-
instance-enabled

false This property is used to
determine if a task will execute
if another task with the same
app name is running.

spring.cloud.task.single-
instance-lock-check-interval

500 Declares the time (in millis) that
a task execution will wait
between checks. Default time is:
500 millis.

spring.cloud.task.single-
instance-lock-ttl

`` Declares the maximum amount
of time (in millis) that a task
execution can hold a lock to
prevent another task from
executing with a specific task
name when the single-instance-
enabled is set to true. Default
time is: Integer.MAX_VALUE.

spring.cloud.task.table-prefix TASK_ The prefix to append to the
table names created by Spring
Cloud Task.

spring.cloud.util.enabled true Enables creation of Spring
Cloud utility beans.

Name Default Description

spring.cloud.vault.app-id.app-
id-path

app-id Mount path of the AppId
authentication backend.

spring.cloud.vault.app-
id.network-interface

`` Network interface hint for the
"MAC_ADDRESS" UserId
mechanism.

spring.cloud.vault.app-id.user-
id

MAC_ADDRESS UserId mechanism. Can be
either "MAC_ADDRESS",
"IP_ADDRESS", a string or a
class name.

spring.cloud.vault.app-role.app-
role-path

approle Mount path of the AppRole
authentication backend.

spring.cloud.vault.app-role.role `` Name of the role, optional, used
for pull-mode.

spring.cloud.vault.app-role.role-
id

`` The RoleId.

spring.cloud.vault.app-
role.secret-id

`` The SecretId.

spring.cloud.vault.application-
name

application Application name for AppId
authentication.

spring.cloud.vault.authenticatio
n

``

spring.cloud.vault.aws-ec2.aws-
ec2-path

aws-ec2 Mount path of the AWS-EC2
authentication backend.

spring.cloud.vault.aws-
ec2.identity-document

http://169.254.169.254/latest/
dynamic/instance-
identity/pkcs7

URL of the AWS-EC2 PKCS7
identity document.

spring.cloud.vault.aws-
ec2.nonce

`` Nonce used for AWS-EC2
authentication. An empty nonce
defaults to nonce generation.

spring.cloud.vault.aws-ec2.role `` Name of the role, optional.

spring.cloud.vault.aws-iam.aws-
path

aws Mount path of the AWS
authentication backend.

spring.cloud.vault.aws-
iam.endpoint-uri

`` STS server URI. @since 2.2

spring.cloud.vault.aws-
iam.region

`` Name of the region, optional.
Inferred by AWS defaults if not
set. @since 4.0.1

spring.cloud.vault.aws-iam.role `` Name of the role, optional.
Defaults to the friendly IAM
name if not set.

Name Default Description

spring.cloud.vault.aws-
iam.server-name

`` Name of the server used to set
{@code X-Vault-AWS-IAM-
Server-ID} header in the
headers of login requests.

spring.cloud.vault.aws.access-
key-property

cloud.aws.credentials.accessKe
y

Target property for the
obtained access key.

spring.cloud.vault.aws.backend aws aws backend path.

spring.cloud.vault.aws.credenti
al-type

`` aws credential type

spring.cloud.vault.aws.enabled false Enable aws backend usage.

spring.cloud.vault.aws.role `` Role name for credentials.

spring.cloud.vault.aws.role-arn `` Role arn for assumed_role in
case we have multiple roles
associated with the vault role.
@since 3.0.2

spring.cloud.vault.aws.secret-
key-property

cloud.aws.credentials.secretKe
y

Target property for the
obtained secret key.

spring.cloud.vault.aws.session-
token-key-property

cloud.aws.credentials.sessionT
oken

Target property for the
obtained secret key.

spring.cloud.vault.aws.ttl 0 TTL for sts tokens. Defaults to
whatever the vault Role may
have for Max. Also limited to
what AWS supports to be the
max for STS. @since 3.0.2

spring.cloud.vault.azure-
msi.azure-path

azure Mount path of the Azure MSI
authentication backend.

spring.cloud.vault.azure-
msi.identity-token-service

`` Identity token service URI.
@since 3.0

spring.cloud.vault.azure-
msi.metadata-service

`` Instance metadata service URI.
@since 3.0

spring.cloud.vault.azure-
msi.role

`` Name of the role.

spring.cloud.vault.cassandra.ba
ckend

cassandra Cassandra backend path.

spring.cloud.vault.cassandra.en
abled

false Enable cassandra backend
usage.

spring.cloud.vault.cassandra.pa
ssword-property

spring.data.cassandra.password Target property for the
obtained password.

Name Default Description

spring.cloud.vault.cassandra.rol
e

`` Role name for credentials.

spring.cloud.vault.cassandra.sta
tic-role

false Enable static role usage. @since
2.2

spring.cloud.vault.cassandra.us
ername-property

spring.data.cassandra.username Target property for the
obtained username.

spring.cloud.vault.config.lifecyc
le.enabled

true Enable lifecycle management.

spring.cloud.vault.config.lifecyc
le.expiry-threshold

`` The expiry threshold. {@link
Lease} is renewed the given
{@link Duration} before it
expires. @since 2.2

spring.cloud.vault.config.lifecyc
le.lease-endpoints

`` Set the {@link LeaseEndpoints}
to delegate renewal/revocation
calls to. {@link LeaseEndpoints}
encapsulates differences
between Vault versions that
affect the location of
renewal/revocation endpoints.
Can be {@link
LeaseEndpoints#SysLeases} for
version 0.8 or above of Vault or
{@link LeaseEndpoints#Legacy}
for older versions (the default).
@since 2.2

spring.cloud.vault.config.lifecyc
le.min-renewal

`` The time period that is at least
required before renewing a
lease. @since 2.2

spring.cloud.vault.config.order 0 Used to set a {@link
org.springframework.core.env.
PropertySource} priority. This is
useful to use Vault as an
override on other property
sources. @see
org.springframework.core.Prior
ityOrdered

spring.cloud.vault.connection-
timeout

5000 Connection timeout.

spring.cloud.vault.consul.backe
nd

consul Consul backend path.

spring.cloud.vault.consul.enabl
ed

false Enable consul backend usage.

Name Default Description

spring.cloud.vault.consul.role `` Role name for credentials.

spring.cloud.vault.consul.token-
property

spring.cloud.consul.token Target property for the
obtained token.

spring.cloud.vault.couchbase.ba
ckend

database Couchbase backend path.

spring.cloud.vault.couchbase.en
abled

false Enable couchbase backend
usage.

spring.cloud.vault.couchbase.pa
ssword-property

spring.couchbase.password Target property for the
obtained password.

spring.cloud.vault.couchbase.ro
le

`` Role name for credentials.

spring.cloud.vault.couchbase.st
atic-role

false Enable static role usage.

spring.cloud.vault.couchbase.us
ername-property

spring.couchbase.username Target property for the
obtained username.

spring.cloud.vault.database.bac
kend

database Database backend path.

spring.cloud.vault.database.ena
bled

false Enable database backend usage.

spring.cloud.vault.database.pas
sword-property

spring.datasource.password Target property for the
obtained password.

spring.cloud.vault.database.role `` Role name for credentials.

spring.cloud.vault.database.stat
ic-role

false Enable static role usage.

spring.cloud.vault.database.use
rname-property

spring.datasource.username Target property for the
obtained username.

spring.cloud.vault.databases ``

spring.cloud.vault.discovery.en
abled

false Flag to indicate that Vault
server discovery is enabled
(vault server URL will be looked
up via discovery).

spring.cloud.vault.discovery.ser
vice-id

vault Service id to locate Vault.

spring.cloud.vault.elasticsearch.
backend

database Database backend path.

spring.cloud.vault.elasticsearch.
enabled

false Enable elasticsearch backend
usage.

spring.cloud.vault.elasticsearch.
password-property

spring.elasticsearch.rest.pass
word

Target property for the
obtained password.

Name Default Description

spring.cloud.vault.elasticsearch.
role

`` Role name for credentials.

spring.cloud.vault.elasticsearch.
static-role

false Enable static role usage.

spring.cloud.vault.elasticsearch.
username-property

spring.elasticsearch.rest.user
name

Target property for the
obtained username.

spring.cloud.vault.enabled true Enable Vault config server.

spring.cloud.vault.fail-fast false Fail fast if data cannot be
obtained from Vault.

spring.cloud.vault.gcp-gce.gcp-
path

gcp Mount path of the Kubernetes
authentication backend.

spring.cloud.vault.gcp-gce.role `` Name of the role against which
the login is being attempted.

spring.cloud.vault.gcp-
gce.service-account

`` Optional service account id.
Using the default id if left
unconfigured.

spring.cloud.vault.gcp-
iam.credentials.encoded-key

`` The base64 encoded contents of
an OAuth2 account private key
in JSON format.

spring.cloud.vault.gcp-
iam.credentials.location

`` Location of the OAuth2
credentials private key. <p>
Since this is a Resource, the
private key can be in a
multitude of locations, such as a
local file system, classpath, URL,
etc.

spring.cloud.vault.gcp-iam.gcp-
path

gcp Mount path of the Kubernetes
authentication backend.

spring.cloud.vault.gcp-iam.jwt-
validity

15m Validity of the JWT token.

spring.cloud.vault.gcp-
iam.project-id

`` Overrides the GCP project Id.

spring.cloud.vault.gcp-iam.role `` Name of the role against which
the login is being attempted.

spring.cloud.vault.gcp-
iam.service-account-id

`` Overrides the GCP service
account Id.

spring.cloud.vault.host localhost Vault server host.

spring.cloud.vault.kubernetes.k
ubernetes-path

kubernetes Mount path of the Kubernetes
authentication backend.

Name Default Description

spring.cloud.vault.kubernetes.r
ole

`` Name of the role against which
the login is being attempted.

spring.cloud.vault.kubernetes.s
ervice-account-token-file

/var/run/secrets/kubernetes.io
/serviceaccount/token

Path to the service account
token file.

spring.cloud.vault.kv.applicatio
n-name

application Application name to be used for
the context.

spring.cloud.vault.kv.backend secret Name of the default backend.

spring.cloud.vault.kv.backend-
version

2 Key-Value backend version.
Currently supported versions
are: Version 1
(unversioned key-value
backend). Version 2
(versioned key-value
backend).

spring.cloud.vault.kv.default-
context

application Name of the default context.

spring.cloud.vault.kv.enabled true Enable the key-value backend.

spring.cloud.vault.kv.profile-
separator

/ Profile-separator to combine
application name and profile.

spring.cloud.vault.kv.profiles `` List of active profiles. @since
3.0

spring.cloud.vault.mongodb.bac
kend

mongodb MongoDB backend path.

spring.cloud.vault.mongodb.ena
bled

false Enable mongodb backend
usage.

spring.cloud.vault.mongodb.pas
sword-property

spring.data.mongodb.password Target property for the
obtained password.

spring.cloud.vault.mongodb.rol
e

`` Role name for credentials.

spring.cloud.vault.mongodb.stat
ic-role

false Enable static role usage. @since
2.2

spring.cloud.vault.mongodb.use
rname-property

spring.data.mongodb.username Target property for the
obtained username.

spring.cloud.vault.mysql.backe
nd

mysql mysql backend path.

spring.cloud.vault.mysql.enable
d

false Enable mysql backend usage.

spring.cloud.vault.mysql.passw
ord-property

spring.datasource.password Target property for the
obtained username.

Name Default Description

spring.cloud.vault.mysql.role `` Role name for credentials.

spring.cloud.vault.mysql.userna
me-property

spring.datasource.username Target property for the
obtained username.

spring.cloud.vault.namespace `` Vault namespace (requires
Vault Enterprise).

spring.cloud.vault.pcf.instance-
certificate

`` Path to the instance certificate
(PEM). Defaults to {@code
CF_INSTANCE_CERT} env
variable.

spring.cloud.vault.pcf.instance-
key

`` Path to the instance key (PEM).
Defaults to {@code
CF_INSTANCE_KEY} env
variable.

spring.cloud.vault.pcf.pcf-path pcf Mount path of the Kubernetes
authentication backend.

spring.cloud.vault.pcf.role `` Name of the role against which
the login is being attempted.

spring.cloud.vault.port 8200 Vault server port.

spring.cloud.vault.postgresql.ba
ckend

postgresql postgresql backend path.

spring.cloud.vault.postgresql.en
abled

false Enable postgresql backend
usage.

spring.cloud.vault.postgresql.pa
ssword-property

spring.datasource.password Target property for the
obtained username.

spring.cloud.vault.postgresql.ro
le

`` Role name for credentials.

spring.cloud.vault.postgresql.us
ername-property

spring.datasource.username Target property for the
obtained username.

spring.cloud.vault.rabbitmq.bac
kend

rabbitmq rabbitmq backend path.

spring.cloud.vault.rabbitmq.ena
bled

false Enable rabbitmq backend
usage.

spring.cloud.vault.rabbitmq.pas
sword-property

spring.rabbitmq.password Target property for the
obtained password.

spring.cloud.vault.rabbitmq.rol
e

`` Role name for credentials.

spring.cloud.vault.rabbitmq.use
rname-property

spring.rabbitmq.username Target property for the
obtained username.

Name Default Description

spring.cloud.vault.reactive.enab
led

true Flag to indicate that reactive
discovery is enabled

spring.cloud.vault.read-timeout 15000 Read timeout.

spring.cloud.vault.scheme https Protocol scheme. Can be either
"http" or "https".

spring.cloud.vault.session.lifecy
cle.enabled

true Enable session lifecycle
management.

spring.cloud.vault.session.lifecy
cle.expiry-threshold

7s The expiry threshold for a
{@link LoginToken}. The
threshold represents a
minimum TTL duration to
consider a login token as valid.
Tokens with a shorter TTL are
considered expired and are not
used anymore. Should be
greater than {@code
refreshBeforeExpiry} to
prevent token expiry.

spring.cloud.vault.session.lifecy
cle.refresh-before-expiry

5s The time period that is at least
required before renewing the
{@link LoginToken}.

spring.cloud.vault.ssl.cert-auth-
path

cert Mount path of the TLS cert
authentication backend.

spring.cloud.vault.ssl.enabled-
cipher-suites

`` List of enabled SSL/TLS cipher
suites. @since 3.0.2

spring.cloud.vault.ssl.enabled-
protocols

`` List of enabled SSL/TLS
protocol. @since 3.0.2

spring.cloud.vault.ssl.key-store `` Trust store that holds
certificates and private keys.

spring.cloud.vault.ssl.key-store-
password

`` Password used to access the key
store.

spring.cloud.vault.ssl.key-store-
type

`` Type of the key store. @since
3.0

spring.cloud.vault.ssl.trust-store `` Trust store that holds SSL
certificates.

spring.cloud.vault.ssl.trust-
store-password

`` Password used to access the
trust store.

spring.cloud.vault.ssl.trust-
store-type

`` Type of the trust store. @since
3.0

Name Default Description

spring.cloud.vault.token `` Static vault token. Required if
{@link #authentication} is
{@code TOKEN}.

spring.cloud.vault.uri `` Vault URI. Can be set with
scheme, host and port.

spring.cloud.zookeeper.base-
sleep-time-ms

50 Initial amount of time to wait
between retries.

spring.cloud.zookeeper.block-
until-connected-unit

`` The unit of time related to
blocking on connection to
Zookeeper.

spring.cloud.zookeeper.block-
until-connected-wait

10 Wait time to block on
connection to Zookeeper.

spring.cloud.zookeeper.config.d
efault-context

application The name of the default
context.

spring.cloud.zookeeper.config.e
nabled

true

spring.cloud.zookeeper.config.f
ail-fast

true Throw exceptions during config
lookup if true, otherwise, log
warnings.

spring.cloud.zookeeper.config.n
ame

`` Alternative to
spring.application.name to use
in looking up values in
zookeeper.

spring.cloud.zookeeper.config.p
rofile-separator

, Separator for profile appended
to the application name.

spring.cloud.zookeeper.config.r
oot

config Root folder where the
configuration for Zookeeper is
kept.

spring.cloud.zookeeper.connect
-string

localhost:2181 Connection string to the
Zookeeper cluster.

spring.cloud.zookeeper.connect
ion-timeout

`` The configured connection
timeout in milliseconds.

spring.cloud.zookeeper.depend
encies

`` Mapping of alias to
ZookeeperDependency. From
LoadBalancer perspective the
alias is actually serviceID since
SC LoadBalancer can't accept
nested structures in serviceID.

spring.cloud.zookeeper.depend
ency-configurations

``

Name Default Description

spring.cloud.zookeeper.depend
ency-names

``

spring.cloud.zookeeper.discove
ry.enabled

true

spring.cloud.zookeeper.discove
ry.initial-status

`` The initial status of this
instance (defaults to {@link
StatusConstants#STATUS_UP}).

spring.cloud.zookeeper.discove
ry.instance-host

`` Predefined host with which a
service can register itself in
Zookeeper. Corresponds to the
{code address} from the URI
spec.

spring.cloud.zookeeper.discove
ry.instance-id

`` Id used to register with
zookeeper. Defaults to a
random UUID.

spring.cloud.zookeeper.discove
ry.instance-port

`` Port to register the service
under (defaults to listening
port).

spring.cloud.zookeeper.discove
ry.instance-ssl-port

`` Ssl port of the registered
service.

spring.cloud.zookeeper.discove
ry.metadata

`` Gets the metadata name/value
pairs associated with this
instance. This information is
sent to zookeeper and can be
used by other instances.

spring.cloud.zookeeper.discove
ry.order

0 Order of the discovery client
used by
`CompositeDiscoveryClient` for
sorting available clients.

spring.cloud.zookeeper.discove
ry.register

true Register as a service in
zookeeper.

spring.cloud.zookeeper.discove
ry.root

/services Root Zookeeper folder in which
all instances are registered.

spring.cloud.zookeeper.discove
ry.uri-spec

{scheme}://{address}:{port} The URI specification to resolve
during service registration in
Zookeeper.

spring.cloud.zookeeper.enabled true Is Zookeeper enabled.

spring.cloud.zookeeper.max-
retries

10 Max number of times to retry.

Name Default Description

spring.cloud.zookeeper.max-
sleep-ms

500 Max time in ms to sleep on each
retry.

spring.cloud.zookeeper.prefix `` Common prefix that will be
applied to all Zookeeper
dependencies' paths.

spring.cloud.zookeeper.session-
timeout

`` The configured/negotiated
session timeout in milliseconds.
Please refer to <a
href='<a
href="https://cwiki.apache.org/c
onfluence/display/CURATOR/TN
14'>Curator's"
class="bare">cwiki.apache.org/
confluence/display/CURATOR/
TN14'>Curator&#
x27;s Tech Note 14
to understand how Curator
implements connection
sessions. @see <a
href='<a
href="https://cwiki.apache.org/c
onfluence/display/CURATOR/TN
14'>Curator's"
class="bare">cwiki.apache.org/
confluence/display/CURATOR/
TN14'>Curator&#
x27;s Tech Note 14

stubrunner.amqp.enabled false Whether to enable support for
Stub Runner and AMQP.

stubrunner.amqp.mockCOnnect
ion

true Whether to enable support for
Stub Runner and AMQP mocked
connection factory.

stubrunner.classifier stubs The classifier to use by default
in ivy co-ordinates for a stub.

stubrunner.cloud.consul.enable
d

true Whether to enable stubs
registration in Consul.

stubrunner.cloud.delegate.enab
led

true Whether to enable
DiscoveryClient's Stub Runner
implementation.

stubrunner.cloud.enabled true Whether to enable Spring Cloud
support for Stub Runner.

Name Default Description

stubrunner.cloud.eureka.enable
d

true Whether to enable stubs
registration in Eureka.

stubrunner.cloud.loadbalancer.
enabled

true Whether to enable Stub
Runner's Spring Cloud Load
Balancer integration.

stubrunner.cloud.stubbed.disco
very.enabled

true Whether Service Discovery
should be stubbed for Stub
Runner. If set to false, stubs will
get registered in real service
discovery.

stubrunner.cloud.zookeeper.en
abled

true Whether to enable stubs
registration in Zookeeper.

stubrunner.consumer-name `` You can override the default
{@code
spring.application.name} of this
field by setting a value to this
parameter.

stubrunner.delete-stubs-after-
test

true If set to {@code false} will NOT
delete stubs from a temporary
folder after running tests.

stubrunner.fail-on-no-stubs true When enabled, this flag will tell
stub runner to throw an
exception when no stubs /
contracts were found.

stubrunner.generate-stubs false When enabled, this flag will tell
stub runner to not load the
generated stubs, but convert the
found contracts at runtime to a
stub format and run those
stubs.

stubrunner.http-server-stub-
configurer

`` Configuration for an HTTP
server stub.

stubrunner.ids [] The ids of the stubs to run in
"ivy" notation
([groupId]:artifactId:[version]:[c
lassifier][:port]). {@code
groupId}, {@code classifier},
{@code version} and {@code
port} can be optional.

Name Default Description

stubrunner.ids-to-service-ids `` Mapping of Ivy notation based
ids to serviceIds inside your
application. Example "a:b" ->
"myService" "artifactId" ->
"myOtherService"

stubrunner.integration.enabled true Whether to enable Stub Runner
integration with Spring
Integration.

stubrunner.jms.enabled true Whether to enable Stub Runner
integration with Spring JMS.

stubrunner.kafka.enabled true Whether to enable Stub Runner
integration with Spring Kafka.

stubrunner.kafka.initializer.ena
bled

true Whether to allow Stub Runner
to take care of polling for
messages instead of the
KafkaStubMessages component.
The latter should be used only
on the producer side.

stubrunner.mappings-output-
folder

`` Dumps the mappings of each
HTTP server to the selected
folder.

stubrunner.max-port 15000 Max value of a port for the
automatically started WireMock
server.

stubrunner.min-port 10000 Min value of a port for the
automatically started WireMock
server.

stubrunner.password `` Repository password.

stubrunner.properties `` Map of properties that can be
passed to custom {@link
org.springframework.cloud.con
tract.stubrunner.StubDownload
erBuilder}.

stubrunner.proxy-host `` Repository proxy host.

stubrunner.proxy-port `` Repository proxy port.

stubrunner.server-id ``

stubrunner.stream.enabled true Whether to enable Stub Runner
integration with Spring Cloud
Stream.

Name Default Description

stubrunner.stubs-mode `` Pick where the stubs should
come from.

stubrunner.stubs-per-consumer false Should only stubs for this
particular consumer get
registered in HTTP server stub.

stubrunner.username `` Repository username.

wiremock.placeholders.enabled true Flag to indicate that http URLs
in generated wiremock stubs
should be filtered to add or
resolve a placeholder for a
dynamic port.

wiremock.reset-mappings-after-
each-test

false

wiremock.rest-template-ssl-
enabled

false

wiremock.server.files []

wiremock.server.https-port -1

wiremock.server.https-port-
dynamic

false

wiremock.server.port 8080

wiremock.server.port-dynamic false

wiremock.server.stubs []

	Spring Cloud
	Table of Contents
	1. Features
	2. Release Train Versions
	Spring Cloud Build
	1. Building and Deploying
	2. Contributing
	2.1. Sign the Contributor License Agreement
	2.2. Code of Conduct
	2.3. Code Conventions and Housekeeping
	2.4. Checkstyle
	2.5. IDE setup
	2.6. Duplicate Finder

	3. Flattening the POMs
	4. Reusing the documentation
	5. Updating the guides

	Spring Cloud Bus
	1. Quick Start
	2. Bus Endpoints
	2.1. Bus Refresh Endpoint
	2.2. Bus Env Endpoint

	3. Addressing an Instance
	4. Addressing All Instances of a Service
	5. Service ID Must Be Unique
	6. Customizing the Message Broker
	7. Tracing Bus Events
	8. Broadcasting Your Own Events
	8.1. Registering events in custom packages

	9. Configuration properties

	Spring Cloud Circuit Breaker
	1. Usage Documentation
	1.1. Configuring Resilience4J Circuit Breakers
	1.2. Configuring Spring Retry Circuit Breakers

	2. Building
	2.1. Basic Compile and Test
	2.2. Documentation
	2.3. Working with the code

	3. Contributing
	3.1. Sign the Contributor License Agreement
	3.2. Code of Conduct
	3.3. Code Conventions and Housekeeping
	3.4. Checkstyle
	3.5. IDE setup
	3.6. Duplicate Finder

	Cloud Native Applications
	1. Spring Cloud Context: Application Context Services
	1.1. The Bootstrap Application Context
	1.2. Application Context Hierarchies
	1.3. Changing the Location of Bootstrap Properties
	1.4. Overriding the Values of Remote Properties
	1.5. Customizing the Bootstrap Configuration
	1.6. Customizing the Bootstrap Property Sources
	1.7. Logging Configuration
	1.8. Environment Changes
	1.9. Refresh Scope
	1.10. Encryption and Decryption
	1.11. Endpoints

	2. Spring Cloud Commons: Common Abstractions
	2.1. The @EnableDiscoveryClient Annotation
	2.2. ServiceRegistry
	2.3. Spring RestTemplate as a Load Balancer Client
	2.4. Spring WebClient as a Load Balancer Client
	2.5. Multiple RestTemplate Objects
	2.6. Multiple WebClient Objects
	2.7. Spring WebFlux WebClient as a Load Balancer Client
	2.8. Ignore Network Interfaces
	2.9. HTTP Client Factories
	2.10. Enabled Features
	2.11. Spring Cloud Compatibility Verification

	3. Spring Cloud LoadBalancer
	3.1. Eager loading of LoadBalancer contexts
	3.2. Switching between the load-balancing algorithms
	3.3. Spring Cloud LoadBalancer integrations
	3.4. Spring Cloud LoadBalancer Caching
	3.5. Weighted Load-Balancing
	3.6. Zone-Based Load-Balancing
	3.7. Instance Health-Check for LoadBalancer
	3.8. Same instance preference for LoadBalancer
	3.9. Request-based Sticky Session for LoadBalancer
	3.10. Spring Cloud LoadBalancer Hints
	3.11. Hint-Based Load-Balancing
	3.12. Transform the load-balanced HTTP request
	3.13. Spring Cloud LoadBalancer Starter
	3.14. Passing Your Own Spring Cloud LoadBalancer Configuration
	3.15. Spring Cloud LoadBalancer Lifecycle
	3.16. Spring Cloud LoadBalancer Statistics
	3.17. Configuring Individual LoadBalancerClients
	3.18. AOT and Native Image Support

	4. Spring Cloud Circuit Breaker
	4.1. Introduction
	4.2. Core Concepts
	4.3. Configuration

	5. CachedRandomPropertySource
	6. Security
	6.1. Single Sign On

	7. Configuration Properties

	Spring Cloud Config
	1. Quick Start
	1.1. Client Side Usage

	2. Spring Cloud Config Server
	2.1. Environment Repository
	2.2. Health Indicator
	2.3. Security
	2.4. Actuator and Security
	2.5. Encryption and Decryption
	2.6. Key Management
	2.7. Creating a Key Store for Testing
	2.8. Using Multiple Keys and Key Rotation
	2.9. Serving Encrypted Properties
	2.10. Serving Alternative Formats
	2.11. Serving Plain Text
	2.12. Serving Binary Files
	2.13. Embedding the Config Server
	2.14. Push Notifications and Spring Cloud Bus
	2.15. AOT and Native Image Support

	3. Spring Cloud Config Client
	3.1. Spring Boot Config Data Import
	3.2. Config First Bootstrap
	3.3. Config Client Fail Fast
	3.4. Config Client Retry
	3.5. Config Client Retry with spring.config.import
	3.6. Locating Remote Configuration Resources
	3.7. Specifying Multiple URLs for the Config Server
	3.8. Configuring Timeouts
	3.9. Security
	3.10. Nested Keys In Vault
	3.11. AOT and Native Image Support

	Spring Cloud Consul
	1. Quick Start
	1.1. Discovery Client Usage
	1.2. Distributed Configuration Usage

	2. Install Consul
	3. Consul Agent
	4. Service Discovery with Consul
	4.1. How to activate
	4.2. Registering with Consul
	4.3. Looking up services
	4.4. Consul Catalog Watch

	5. Distributed Configuration with Consul
	5.1. How to activate
	5.2. Spring Boot Config Data Import
	5.3. Customizing
	5.4. Config Watch
	5.5. YAML or Properties with Config
	5.6. git2consul with Config
	5.7. Fail Fast

	6. Consul Retry
	7. Spring Cloud Bus with Consul
	7.1. How to activate

	8. Circuit Breaker with Hystrix
	9. Hystrix metrics aggregation with Turbine and Consul
	10. Configuration Properties

	Spring Cloud Contract Reference Documentation
	Spring Cloud Function
	1. Introduction
	2. Getting Started
	3. Programming model
	3.1. Function Catalog and Flexible Function Signatures
	3.2. Java 8 function support
	3.3. Function Composition
	3.4. Function Routing and Filtering
	3.5. Input/Output Enrichment
	3.6. Function Arity
	3.7. Input Header propagation
	3.8. Type conversion (Content-Type negotiation)
	3.9. Kotlin Lambda support
	3.10. Function Component Scan

	4. Standalone Web Applications
	4.1. HTTP Request Parameters
	4.2. Function Mapping rules
	4.3. Function Filtering rules
	4.4. CRUD REST with Spring Cloud Function

	5. Standalone Streaming Applications
	6. Deploying a Packaged Function
	6.1. Supported Packaging Scenarios

	7. Functional Bean Definitions
	7.1. Comparing Functional with Traditional Bean Definitions
	7.2. Limitations of Functional Bean Declaration

	8. Function visualization and control
	Programmatic way
	Actuator

	9. Testing Functional Applications
	10. Serverless Platform Adapters
	10.1. AWS Lambda
	10.2. Microsoft Azure Functions
	10.3. Azure Adapter
	10.4. Azure Web Adapter
	10.5. Usage
	10.6. FunctionInvoker (deprecated)
	10.7. Relevant Links
	Google Cloud Functions

	Spring Cloud Gateway
	1. How to Include Spring Cloud Gateway
	2. Glossary
	3. How It Works
	4. Configuring Route Predicate Factories and Gateway Filter Factories
	4.1. Shortcut Configuration
	4.2. Fully Expanded Arguments

	5. Route Predicate Factories
	5.1. The After Route Predicate Factory
	5.2. The Before Route Predicate Factory
	5.3. The Between Route Predicate Factory
	5.4. The Cookie Route Predicate Factory
	5.5. The Header Route Predicate Factory
	5.6. The Host Route Predicate Factory
	5.7. The Method Route Predicate Factory
	5.8. The Path Route Predicate Factory
	5.9. The Query Route Predicate Factory
	5.10. The RemoteAddr Route Predicate Factory
	5.11. The Weight Route Predicate Factory
	5.12. The XForwarded Remote Addr Route Predicate Factory

	6. GatewayFilter Factories
	6.1. The AddRequestHeader GatewayFilter Factory
	6.2. The AddRequestHeadersIfNotPresent GatewayFilter Factory
	6.3. The AddRequestParameter GatewayFilter Factory
	6.4. The AddResponseHeader GatewayFilter Factory
	6.5. The CircuitBreaker GatewayFilter Factory
	6.6. The CacheRequestBody GatewayFilter Factory
	6.7. The DedupeResponseHeader GatewayFilter Factory
	6.8. The FallbackHeaders GatewayFilter Factory
	6.9. The JsonToGrpc GatewayFilter Factory
	6.10. The LocalResponseCache GatewayFilter Factory
	6.11. The MapRequestHeader GatewayFilter Factory
	6.12. The ModifyRequestBody GatewayFilter Factory
	6.13. The ModifyResponseBody GatewayFilter Factory
	6.14. The PrefixPath GatewayFilter Factory
	6.15. The PreserveHostHeader GatewayFilter Factory
	6.16. The RedirectTo GatewayFilter Factory
	6.17. RemoveJsonAttributesResponseBody GatewayFilter Factory
	6.18. The RemoveRequestHeader GatewayFilter Factory
	6.19. The RemoveRequestParameter GatewayFilter Factory
	6.20. The RemoveResponseHeader GatewayFilter Factory
	6.21. The RequestHeaderSize GatewayFilter Factory
	6.22. The RequestRateLimiter GatewayFilter Factory
	6.23. The RewriteLocationResponseHeader GatewayFilter Factory
	6.24. The RewritePath GatewayFilter Factory
	6.25. The RewriteResponseHeader GatewayFilter Factory
	6.26. The SaveSession GatewayFilter Factory
	6.27. The SecureHeaders GatewayFilter Factory
	6.28. The SetPath GatewayFilter Factory
	6.29. The SetRequestHeader GatewayFilter Factory
	6.30. The SetResponseHeader GatewayFilter Factory
	6.31. The SetStatus GatewayFilter Factory
	6.32. The StripPrefix GatewayFilter Factory
	6.33. The Retry GatewayFilter Factory
	6.34. The RequestSize GatewayFilter Factory
	6.35. The SetRequestHostHeader GatewayFilter Factory
	6.36. The TokenRelay GatewayFilter Factory
	6.37. Default Filters

	7. Global Filters
	7.1. Combined Global Filter and GatewayFilter Ordering
	7.2. The Gateway Metrics Filter
	7.3. The Local Response Cache Filter
	7.4. Forward Routing Filter
	7.5. The Netty Routing Filter
	7.6. The Netty Write Response Filter
	7.7. The ReactiveLoadBalancerClientFilter
	7.8. The RouteToRequestUrl Filter
	7.9. The Websocket Routing Filter
	7.10. Marking An Exchange As Routed

	8. HttpHeadersFilters
	8.1. Forwarded Headers Filter
	8.2. RemoveHopByHop Headers Filter
	8.3. XForwarded Headers Filter

	9. TLS and SSL
	9.1. TLS Handshake

	10. Configuration
	10.1. RouteDefinition Metrics

	11. Route Metadata Configuration
	12. Http timeouts configuration
	12.1. Global timeouts
	12.2. Per-route timeouts

	13. Fluent Java Routes API
	14. The DiscoveryClient Route Definition Locator
	14.1. Configuring Predicates and Filters For DiscoveryClient Routes

	15. Reactor Netty Access Logs
	16. CORS Configuration
	16.1. Global CORS Configuration
	16.2. Route CORS Configuration

	17. Actuator API
	17.1. Verbose Actuator Format
	17.2. Retrieving Route Filters
	17.3. Refreshing the Route Cache
	17.4. Retrieving the Routes Defined in the Gateway
	17.5. Retrieving Information about a Particular Route
	17.6. Creating and Deleting a Particular Route Definition
	17.7. Creating multiple Route Definitions
	17.8. Recap: The List of All endpoints
	17.9. Sharing Routes between multiple Gateway instances

	18. Troubleshooting
	18.1. Log Levels
	18.2. Wiretap

	19. Developer Guide
	19.1. Writing Custom Route Predicate Factories
	19.2. Writing Custom GatewayFilter Factories
	19.3. Writing Custom Global Filters

	20. Building a Simple Gateway by Using Spring MVC or Webflux
	21. AOT and Native Image Support
	22. Configuration properties

	Spring Cloud Kubernetes
	1. Why do you need Spring Cloud Kubernetes?
	2. Starters
	3. DiscoveryClient for Kubernetes
	4. Kubernetes native service discovery
	5. Kubernetes PropertySource implementations
	5.1. Using a ConfigMap PropertySource
	5.2. Secrets PropertySource
	5.3. Namespace resolution
	5.4. Order of ConfigMaps and Secrets
	5.5. PropertySource Reload
	5.6. Reload namespace and label filtering

	6. Kubernetes Ecosystem Awareness
	6.1. Breaking Changes In 3.0.x
	6.2. Kubernetes Profile Autoconfiguration
	6.3. Istio Awareness

	7. Pod Health Indicator
	8. Info Contributor
	9. Leader Election
	10. LoadBalancer for Kubernetes
	11. Security Configurations Inside Kubernetes
	11.1. Namespace
	11.2. Service Account

	12. Service Registry Implementation
	13. Spring Cloud Kubernetes Configuration Watcher
	13.1. Deployment YAML
	13.2. Monitoring ConfigMaps and Secrets
	13.3. HTTP Implementation
	13.4. Messaging Implementation
	13.5. Configuring RabbitMQ
	13.6. Configuring Kafka

	14. Spring Cloud Kubernetes Config Server
	14.1. Configuration
	14.2. Deployment Yaml

	15. Spring Cloud Kubernetes Discovery Server
	15.1. Permissions
	15.2. Endpoints
	15.3. Deployment YAML

	16. Examples
	17. Other Resources
	18. Configuration properties
	19. Building
	19.1. Basic Compile and Test
	19.2. Documentation
	19.3. Working with the code
	19.4. Building Docker Images On ARM64

	20. Contributing
	20.1. Sign the Contributor License Agreement
	20.2. Code of Conduct
	20.3. Code Conventions and Housekeeping
	20.4. Checkstyle
	20.5. IDE setup
	20.6. Duplicate Finder

	21. AOT and native image support

	Spring Cloud Netflix
	1. Service Discovery: Eureka Clients
	1.1. How to Include Eureka Client
	1.2. Registering with Eureka
	1.3. Authenticating with the Eureka Server
	1.4. Status Page and Health Indicator
	1.5. Registering a Secure Application
	1.6. Eureka’s Health Checks
	1.7. Eureka Metadata for Instances and Clients
	1.8. Using the EurekaClient
	1.9. Alternatives to the Native Netflix EurekaClient
	1.10. Why Is It so Slow to Register a Service?
	1.11. Zones
	1.12. Refreshing Eureka Clients
	1.13. Using Eureka with Spring Cloud LoadBalancer
	1.14. AOT and Native Image Support

	2. Service Discovery: Eureka Server
	2.1. How to Include Eureka Server
	2.2. How to Run a Eureka Server
	2.3. defaultOpenForTrafficCount and its effect on EurekaServer warmup time
	2.4. High Availability, Zones and Regions
	2.5. Standalone Mode
	2.6. Peer Awareness
	2.7. When to Prefer IP Address
	2.8. Securing The Eureka Server
	2.9. JDK 11 Support
	2.10. AOT and Native Image Support

	3. Configuration properties

	Spring Cloud OpenFeign
	1. Declarative REST Client: Feign
	1.1. How to Include Feign
	1.2. Overriding Feign Defaults
	1.3. Timeout Handling
	1.4. Creating Feign Clients Manually
	1.5. Feign Spring Cloud CircuitBreaker Support
	1.6. Configuring CircuitBreakers With Configuration Properties
	1.7. Feign Spring Cloud CircuitBreaker Fallbacks
	1.8. Feign and @Primary
	1.9. Feign Inheritance Support
	1.10. Feign request/response compression
	1.11. Feign logging
	1.12. Feign Capability support
	1.13. Micrometer Support
	1.14. Feign Caching
	1.15. Feign @QueryMap support
	1.16. HATEOAS support
	1.17. Spring @MatrixVariable Support
	1.18. Feign CollectionFormat support
	1.19. Reactive Support
	1.20. Spring Data Support
	1.21. Spring @RefreshScope Support
	1.22. OAuth2 Support
	1.23. Transform the load-balanced HTTP request
	1.24. X-Forwarded Headers Support
	1.25. Supported Ways To Provide URL To A Feign Client
	1.26. AOT and Native Image Support

	2. Configuration properties
	3. Preface
	3.1. A Brief History of Spring’s Data Integration Journey
	3.2. Quick Start

	4. Spring Expression Language (SpEL) in the context of Streaming data
	5. Introducing Spring Cloud Stream
	6. Main Concepts
	6.1. Application Model
	6.2. The Binder Abstraction
	6.3. Persistent Publish-Subscribe Support
	6.4. Consumer Groups
	6.5. Consumer Types
	6.6. Partitioning Support

	7. Programming Model
	7.1. Destination Binders
	7.2. Bindings
	7.3. Producing and Consuming Messages
	7.4. Event Routing
	7.5. Post processing (after sending message)
	7.6. Error Handling

	8. Binders
	8.1. Producers and Consumers
	8.2. Binder SPI
	8.3. Binder Detection
	8.4. Multiple Binders on the Classpath
	8.5. Connecting to Multiple Systems
	8.6. Customizing binders in multi binder applications
	8.7. Binding visualization and control
	8.8. Binder Configuration Properties
	8.9. Implementing Custom Binders

	9. Configuration Options
	9.1. Binding Service Properties
	9.2. Binding Properties

	10. Content Type Negotiation
	10.1. Mechanics
	10.2. Provided MessageConverters
	10.3. User-defined Message Converters

	11. Inter-Application Communication
	11.1. Connecting Multiple Application Instances
	11.2. Instance Index and Instance Count
	11.3. Partitioning

	12. Testing
	12.1. Spring Integration Test Binder

	13. Health Indicator
	14. Samples
	14.1. Deploying Stream Applications on CloudFoundry

	15. Binder Implementations

	Spring Cloud Task Reference Guide
	Preface
	1. About the documentation
	2. Getting help
	3. First Steps

	Getting started
	1. Introducing Spring Cloud Task
	2. System Requirements
	2.1. Database Requirements

	3. Developing Your First Spring Cloud Task Application
	3.1. Creating the Spring Task Project using Spring Initializr
	3.2. Writing the Code
	3.3. Running the Example

	Features
	1. The lifecycle of a Spring Cloud Task
	1.1. The TaskExecution
	1.2. Mapping Exit Codes

	2. Configuration
	2.1. DataSource
	2.2. Table Prefix
	2.3. Enable/Disable table initialization
	2.4. Externally Generated Task ID
	2.5. External Task Id
	2.6. Parent Task Id
	2.7. TaskConfigurer
	2.8. Task Execution Listener
	2.9. Restricting Spring Cloud Task Instances
	2.10. Enabling Observations for ApplicationRunner and CommandLineRunner
	2.11. Disabling Spring Cloud Task Auto Configuration
	2.12. Closing the Context
	2.13. Enable Task Metrics
	2.14. Spring Task and Spring Cloud Task Properties

	Batch
	1. Associating a Job Execution to the Task in which It Was Executed
	1.1. Overriding the TaskBatchExecutionListener

	2. Remote Partitioning
	2.1. Asynchronously launch remote batch partitions
	2.2. Notes on Developing a Batch-partitioned application for the Kubernetes Platform

	3. Batch Informational Messages
	4. Batch Job Exit Codes

	Single Step Batch Job Starter
	1. Defining a Job
	1.1. Properties

	2. Autoconfiguration for ItemReader Implementations
	2.1. AmqpItemReader
	2.2. FlatFileItemReader
	2.3. JdbcCursorItemReader
	2.4. KafkaItemReader
	2.5. Native Compilation

	3. ItemProcessor Configuration
	4. Autoconfiguration for ItemWriter implementations
	4.1. AmqpItemWriter
	4.2. FlatFileItemWriter
	4.3. JdbcBatchItemWriter
	4.4. KafkaItemWriter
	4.5. Spring AOT

	Spring Cloud Stream Integration
	1. Launching a Task from a Spring Cloud Stream
	1.1. Spring Cloud Data Flow

	2. Spring Cloud Task Events
	2.1. Disabling Specific Task Events

	3. Spring Batch Events
	3.1. Sending Batch Events to Different Channels
	3.2. Disabling Batch Events
	3.3. Emit Order for Batch Events

	Appendices
	1. Task Repository Schema
	1.1. Table Information
	1.2. SQL Server

	2. Building This Documentation

	Spring Cloud Vault
	1. New & Noteworthy
	1.1. New in Spring Cloud Vault 3.0

	2. Quick Start
	3. Client Side Usage
	3.1. Authentication

	4. ConfigData API
	4.1. ConfigData Locations
	4.2. Conditionally enable/disable Vault Configuration
	4.3. Infrastructure Customization

	5. Authentication methods
	5.1. Token authentication
	5.2. Vault Agent authentication
	5.3. AppId authentication
	5.4. AppRole authentication
	5.5. AWS-EC2 authentication
	5.6. AWS-IAM authentication
	5.7. Azure MSI authentication
	5.8. TLS certificate authentication
	5.9. Cubbyhole authentication
	5.10. GCP-GCE authentication
	5.11. GCP-IAM authentication
	5.12. Kubernetes authentication
	5.13. Pivotal CloudFoundry authentication

	6. ACL Requirements
	6.1. Authentication
	6.2. KeyValue Mount Discovery
	6.3. SecretLeaseContainer
	6.4. Session Management

	7. Secret Backends
	7.1. Key-Value Backend
	7.2. Consul
	7.3. RabbitMQ
	7.4. AWS

	8. Database backends
	8.1. Database
	8.2. Multiple Databases
	8.3. Apache Cassandra
	8.4. Couchbase Database
	8.5. Elasticsearch
	8.6. MongoDB
	8.7. MySQL
	8.8. PostgreSQL

	9. Customize which secret backends to expose as PropertySource
	10. Custom Secret Backend Implementations
	11. Service Registry Configuration
	12. Vault Client Fail Fast
	13. Vault Enterprise Namespace Support
	14. Vault Client SSL configuration
	15. Lease lifecycle management (renewal and revocation)
	16. Session token lifecycle management (renewal, re-login and revocation)
	Appendix A: Common application properties

	Spring Cloud Zookeeper
	1. Quick Start
	1.1. Discovery Client Usage
	1.2. Distributed Configuration Usage

	2. Install Zookeeper
	3. Service Discovery with Zookeeper
	3.1. Activating
	3.2. Registering with Zookeeper
	3.3. Using the DiscoveryClient

	4. Using Spring Cloud Zookeeper with Spring Cloud Components
	4.1. Spring Cloud LoadBalancer with Zookeeper

	5. Spring Cloud Zookeeper and Service Registry
	5.1. Instance Status

	6. Zookeeper Dependencies
	6.1. Using the Zookeeper Dependencies
	6.2. Activating Zookeeper Dependencies
	6.3. Setting up Zookeeper Dependencies
	6.4. Configuring Spring Cloud Zookeeper Dependencies

	7. Spring Cloud Zookeeper Dependency Watcher
	7.1. Activating
	7.2. Registering a Listener
	7.3. Using the Presence Checker

	8. Distributed Configuration with Zookeeper
	8.1. Activating
	8.2. Spring Boot Config Data Import
	8.3. Customizing
	8.4. Access Control Lists (ACLs)

	Appendix: Compendium of Configuration Properties

