Spring Cloud

Table of Contents

1. Features

2. Release Train Versions

Spring Cloud AWS
3. Using Amazon Web Services
4. Basic setup

4.1. Spring Cloud AWS maven dependency management
4.2. Amazon SDK dependency version management
4.3. Amazon SDK configuration

5. Cloud environment

5.1. Retrieving instance metadata
5.2. Integrating your Spring Cloud application with the AWS Parameter Store
5.3. Integrating your Spring Cloud application with the AWS Secrets Manager

6. Managing cloud environments

6.1. Automatic CloudFormation configuration

6.2. Manual CloudFormation configuration

6.3. CloudFormation configuration with Java config classes
6.4. CloudFormation configuration in Spring Boot

6.5. Manual name resolution

6.6. Stack Tags

6.7. Using custom CloudFormation client

7. Messaging

7.1. Configuring messaging
7.2. SQS support
7.3. SNS support
7.4. Using CloudFormation

8. Caching

8.1. Configuring dependencies for Redis caches
8.2. Configuring caching with XML

8.3. Configuring caching using Java configuration
8.4. Configuring caching in Spring Boot

8.5. Using caching

8.6. Memcached client implementation

8.7. Using CloudFormation

9. Data Access with JDBC

9.1. Configuring data source

9.2. Configuring data source with Java config
9.3. Configuring data source in Spring Boot
9.4. Read-replica configuration

N o O G N

B bR R R bR R bR W W W W W W W NNNDN NN DNDNDDNDNDDNDN =
A Ul NN O O O O O©W N9 N YN o W NN N Y9 o o0 gaodgokeobh wWwwERE o e

9.5. Failover support
9.6. CloudFormation support
9.7. Database tags
10. Sending mails
10.1. Configuring the mail sender
10.2. Sending simple mails
10.3. Sending attachments
10.4. Configuring regions
10.5. Authenticating e-mails
11. Resource handling
11.1. Configuring the resource loader
11.2. Downloading files
11.3. Uploading files
11.4. Searching resources
11.5. Using CloudFormation
12. CloudWatch Metrics
13. Configuration properties
Spring Cloud Build
14. Building and Deploying
15. Contributing
15.1. Sign the Contributor License Agreement
15.2. Code of Conduct
15.3. Code Conventions and Housekeeping
15.4. Checkstyle
15.5. IDE setup
16. Flattening the POMs
17. Reusing the documentation
18. Updating the guides
Spring Cloud Bus
19. Quick Start
20. Bus Endpoints
20.1. Bus Refresh Endpoint
20.2. Bus Env Endpoint
21. Addressing an Instance
22. Addressing All Instances of a Service
23. Service ID Must Be Unique
24. Customizing the Message Broker
25. Tracing Bus Events
26. Broadcasting Your Own Events
26.1. Registering events in custom packages

27. Configuration properties

47
48
49
51
51
51
52
53
53
35
35
35
56
57
58
60
61
62
65
66
66
66
66
67
69
73
74
77
78
79
80
80
80
81
82
83
84
85
86
86
88

Spring Cloud Circuit Breaker
28. Usage Documentation
28.1. Configuring Resilience4] Circuit Breakers
28.2. Configuring Spring Retry Circuit Breakers
29. Building
29.1. Basic Compile and Test
29.2. Documentation
29.3. Working with the code
30. Contributing
30.1. Sign the Contributor License Agreement
30.2. Code of Conduct
30.3. Code Conventions and Housekeeping
30.4. Checkstyle
30.5. IDE setup
Spring Boot Cloud CLI
31. Installation
32. Running Spring Cloud Services in Development
32.1. Adding Additional Applications
33. Writing Groovy Scripts and Running Applications
34. Encryption and Decryption
Spring Cloud for Cloud Foundry
35. Discovery
36. Single Sign On
37. Configuration
Cloud Native Applications
38. Spring Cloud Context: Application Context Services
38.1. The Bootstrap Application Context
38.2. Application Context Hierarchies
38.3. Changing the Location of Bootstrap Properties
38.4. Overriding the Values of Remote Properties
38.5. Customizing the Bootstrap Configuration
38.6. Customizing the Bootstrap Property Sources
38.7. Logging Configuration
38.8. Environment Changes
38.9. Refresh Scope
38.10. Encryption and Decryption
38.11. Endpoints
39. Spring Cloud Commons: Common Abstractions
39.1. The @EnableDiscoveryClient Annotation
39.2. ServiceRegistry
39.3. Spring RestTemplate as a Load Balancer Client

89

90

90

95

97

97

97

98

99

99

99

99
100
102
106
107
108
110
111
112
113
114
115
116
117
118
118
119
119
120
120
121
121
122
122
123
123
125
125
126
128

39.4. Spring WebClient as a Load Balancer Client 129

39.5. Multiple RestTemplate Objects 133
39.6. Multiple WebClient Objects 134
39.7. Spring WebFlux Web(Client as a Load Balancer Client 135
39.8. Ignore Network Interfaces 137
39.9. HTTP Client Factories 138
39.10. Enabled Features 138
39.11. Spring Cloud Compatibility Verification 139
40. Spring Cloud LoadBalancer 141
40.1. Switching between the load-balancing algorithms 141
40.2. Spring Cloud LoadBalancer integrations 141
40.3. Spring Cloud LoadBalancer Caching 142
40.4. Zone-Based Load-Balancing 142
40.5. Instance Health-Check for LoadBalancer 143
40.6. Same instance preference for LoadBalancer 145
40.7. Transform the load-balanced HTTP request 145
40.8. Spring Cloud LoadBalancer Starter 146
40.9. Passing Your Own Spring Cloud LoadBalancer Configuration 147
41. Spring Cloud Circuit Breaker 149
41.1. Introduction 149
41.2. Core Concepts 149
41.3. Configuration 150
42. CachedRandomPropertySource 152
43. Configuration Properties 153
Spring Cloud Config 154
44. Quick Start 155
44.1. Client Side Usage 156
45. Spring Cloud Config Server 160
45.1. Environment Repository 161
45.2. Health Indicator 185
45.3. Security 185
45.4. Encryption and Decryption 186
45.5. Key Management 188
45.6. Creating a Key Store for Testing 188
45.7. Using Multiple Keys and Key Rotation 189
45.8. Serving Encrypted Properties 189
46. Serving Alternative Formats 190
47. Serving Plain Text 191
47.1. Git, SVN, and Native Backends 191
47.2. AWS S3 192

47.3. Decrypting Plain Text 193

48. Embedding the Config Server
49. Push Notifications and Spring Cloud Bus
50. Spring Cloud Config Client
50.1. Config First Bootstrap
50.2. Discovery First Bootstrap
50.3. Config Client Fail Fast
50.4. Config Client Retry
50.5. Locating Remote Configuration Resources
50.6. Specifying Multiple Urls for the Config Server
50.7. Configuring Timeouts
50.8. Security
50.9. Nested Keys In Vault
Spring Cloud Consul
51. Quick Start
51.1. Discovery Client Usage
51.2. Distributed Configuration Usage
52. Install Consul
53. Consul Agent
54. Service Discovery with Consul
54.1. How to activate
54.2. Registering with Consul
54.3. Looking up services
54.4. Consul Catalog Watch
55. Distributed Configuration with Consul
55.1. How to activate
55.2. Customizing
55.3. Config Watch
55.4. YAML or Properties with Config
55.5. git2consul with Config
55.6. Fail Fast
56. Consul Retry
57. Spring Cloud Bus with Consul
57.1. How to activate
58. Circuit Breaker with Hystrix
59. Hystrix metrics aggregation with Turbine and Consul
60. Configuration Properties
Spring Cloud Function
61. Introduction
62. Getting Started
63. Programming model

63.1. Function Catalog and Flexible Function Signatures

194
195
196
196
196
197
197
197
198
198
198
201
203
204
204
207
210
211
212
212
212
218
219
220
220
220
221
221
222
223
224
225
225
226
227
228
229
230
232
233
233

63.2. Java 8 function support 233

63.3. Function Composition 234
63.4. Function Routing and Filtering 235
63.5. Function Arity 236
63.6. Type conversion (Content-Type negotiation) 237
63.7. Kotlin Lambda support 240
63.8. Function Component Scan 241
64. Standalone Web Applications 242
64.1. Function Mapping rules 243
64.2. Function Filtering rules 243
65. Standalone Streaming Applications 245
66. Deploying a Packaged Function 246
66.1. Supported Packaging Scenarios 247
67. Functional Bean Definitions 251
67.1. Comparing Functional with Traditional Bean Definitions 251
67.2. Limitations of Functional Bean Declaration 253
68. Testing Functional Applications 255
69. Dynamic Compilation 259
70. Serverless Platform Adapters 261
70.1. AWS Lambda 261
70.2. Microsoft Azure 268
70.3. Google Cloud Functions 271
Spring Cloud Gateway 277
71. How to Include Spring Cloud Gateway 278
72. Glossary 279
73. How It Works 280
74. Configuring Route Predicate Factories and Gateway Filter Factories 281
74.1. Shortcut Configuration 281
74.2. Fully Expanded Arguments 281
75. Route Predicate Factories 283
75.1. The After Route Predicate Factory 283
75.2. The Before Route Predicate Factory 283
75.3. The Between Route Predicate Factory 284
75.4. The Cookie Route Predicate Factory 284
75.5. The Header Route Predicate Factory 285
75.6. The Host Route Predicate Factory 285
75.7. The Method Route Predicate Factory 286
75.8. The Path Route Predicate Factory 286
75.9. The Query Route Predicate Factory 287
75.10. The RemoteAddr Route Predicate Factory 287

75.11. The Weight Route Predicate Factory 288

76. GatewayFilter Factories 290

76.1. The AddRequestHeader GatewayFilter Factory 290
76.2. The AddRequestParameter GatewayFilter Factory 291
76.3. The AddResponseHeader GatewayFilter Factory 291
76.4. The DedupeResponseHeader GatewayFilter Factory 292
76.5. The Hystrix GatewayFilter Factory 293
76.6. Spring Cloud CircuitBreaker GatewayFilter Factory 295
76.7. The FallbackHeaders GatewayFilter Factory 299
76.8. The MapRequestHeader GatewayFilter Factory 300
76.9. The PrefixPath GatewayFilter Factory 300
76.10. The PreserveHostHeader GatewayFilter Factory 301
76.11. The RequestRateLimiter GatewayFilter Factory 301
76.12. The RedirectTo GatewayFilter Factory 304
76.13. The RemoveRequestHeader GatewayFilter Factory 304
76.14. RemoveResponseHeader GatewayFilter Factory 305
76.15. The RemoveRequestParameter GatewayFilter Factory 305
76.16. The RewritePath GatewayFilter Factory 306
76.17. RewritelLocationResponseHeader GatewayFilter Factory 306
76.18. The RewriteResponseHeader GatewayFilter Factory 307
76.19. The SaveSession GatewayFilter Factory 308
76.20. The SecureHeaders GatewayFilter Factory 308
76.21. The SetPath GatewayFilter Factory 309
76.22. The SetRequestHeader GatewayFilter Factory 310
76.23. The SetResponseHeader GatewayFilter Factory 310
76.24. The SetStatus GatewayFilter Factory 311
76.25. The StripPrefix GatewayFilter Factory 312
76.26. The Retry GatewayFilter Factory 313
76.27. The RequestSize GatewayFilter Factory 314
76.28. The SetRequestHostHeader GatewayFilter Factory 315
76.29. Modify a Request Body GatewayFilter Factory 316
76.30. Modify a Response Body GatewayFilter Factory 317
76.31. Default Filters 318
77. Global Filters 319
77.1. Combined Global Filter and GatewayFilter Ordering 319
77.2. Forward Routing Filter 320
77.3. The LoadBalancerClient Filter 320
77.4. The ReactiveloadBalancerClientFilter 321
77.5. The Netty Routing Filter 321
77.6. The Netty Write Response Filter 322
77.7. The RouteToRequestUr1 Filter 322

77.8. The Websocket Routing Filter 322

77.9. The Gateway Metrics Filter
77.10. Marking An Exchange As Routed
78. HttpHeadersFilters
78.1. Forwarded Headers Filter
78.2. RemoveHopByHop Headers Filter
78.3. XForwarded Headers Filter
79. TLS and SSL
79.1. TLS Handshake
80. Configuration
81. Route Metadata Configuration
82. Http timeouts configuration
82.1. Global timeouts
82.2. Per-route timeouts
82.3. Fluent Java Routes API
82.4. The DiscoveryClient Route Definition Locator
83. Reactor Netty Access Logs
84. CORS Configuration
85. Actuator API
85.1. Verbose Actuator Format
85.2. Retrieving Route Filters
85.3. Refreshing the Route Cache
85.4. Retrieving the Routes Defined in the Gateway
85.5. Retrieving Information about a Particular Route
85.6. Creating and Deleting a Particular Route
85.7. Recap: The List of All endpoints
86. Troubleshooting
86.1. Log Levels
86.2. Wiretap
87. Developer Guide
87.1. Writing Custom Route Predicate Factories
87.2. Writing Custom GatewayFilter Factories
87.3. Writing Custom Global Filters
88. Building a Simple Gateway by Using Spring MVC or Webflux
89. Configuration properties
Spring Cloud GCP
90. Introduction
91. Getting Started
91.1. Setting up Dependencies
91.2. Learning Spring Cloud GCP
92. Spring Cloud GCP Core

92.1. Configuration

323
323
325
325
325
325
327
328
329
330
331
331
331
332
333
335
336
337
337
338
339
339
340
341
341
343
343
343
344
344
344
346
348
350
351
352
353
353
355
357
357

92.2. Project ID 357

92.3. Credentials 358
92.4. Environment 359
92.5. Customizing bean scope 360
92.6. Spring Initializr 360
93. Cloud Storage 361
93.1. Using Cloud Storage 361
93.2. Cloud Storage Objects As Spring Resources 361
93.3. Configuration 362
93.4. Sample 363
94. Cloud SQL 364
94.1. Prerequisites 364
94.2. Spring Boot Starter for Google Cloud SQL 364
94.3. Samples 367
95. Cloud Pub/Sub 368
95.1. Configuration 368
95.2. Spring Boot Actuator Support 372
95.3. Pub/Sub Operations & Template 373
95.4. Reactive Stream Subscription 378
95.5. Pub/Sub management 378
95.6. Sample 381
96. Spring Integration 382
96.1. Channel Adapters for Cloud Pub/Sub 382
96.2. Channel Adapters for Google Cloud Storage 389
97. Spring Cloud Stream 392
97.1. Overview 392
97.2. Configuration 392
97.3. Binding with Functions 394
97.4. Binding with Annotations 394
97.5. Streaming vs. Polled Input 395
97.6. Sample 396
98. Spring Cloud Bus 397
98.1. Configuration Management with Spring Cloud Config and Spring Cloud Bus 397
99. Stackdriver Trace 399
99.1. Tracing 399
99.2. Spring Boot Starter for Stackdriver Trace 400
99.3. Overriding the auto-configuration 402
99.4. Customizing spans 402
99.5. Integration with Logging 403
99.6. Sample 403

100. Stackdriver Logging 404

100.1. Web MVC Interceptor 404

100.2. Logback Support 405
100.3. Sample 408
101. Stackdriver Monitoring 409
101.1. Configuration 409
101.2. Sample 410
102. Spring Data Cloud Spanner 411
102.1. Configuration 411
102.2. Object Mapping 414
102.3. Spanner Operations & Template 425
102.4. Repositories 431
102.5. Query Methods 433
102.6. Database and Schema Admin 439
102.7. Events 440
102.8. Auditing 441
102.9. Multi-Instance Usage 442
102.10. Cloud Spanner Emulator 443
102.11. Sample 443
103. Spring Data Cloud Datastore 444
103.1. Configuration 444
103.2. Object Mapping 447
103.3. Relationships 454
103.4. Datastore Operations & Template 460
103.5. Repositories 463
103.6. Events 472
103.7. Auditing 472
103.8. Partitioning Data by Namespace 474
103.9. Spring Boot Actuator Support 474
103.10. Sample 474
104. Spring Data Cloud Firestore 475
104.1. Configuration 475
104.2. Object Mapping 477
104.3. Reactive Repositories 480
104.4. Firestore Operations & Template 481
104.5. Query methods by convention 482
104.6. Transactions 484
104.7. Cloud Firestore Spring Boot Starter 487
104.8. Emulator Usage 488
104.9. Samples 489
105. Cloud Memorystore for Redis 490

105.1. Spring Caching 490

106. BigQuery 491

106.1. Configuration 491
106.2. Spring Integration 493
106.3. Sample 494
107. Cloud IAP 495
107.1. Configuration 496
107.2. Sample 496
108. Cloud Vision 497
108.1. Dependency Setup 497
108.2. Configuration 497
108.3. Image Analysis 498
108.4. Document OCR Template 499
108.5. Sample 501
109. Secret Manager 502
109.1. Dependency Setup 502
109.2. Secret Manager Property Source 503
109.3. Secret Manager Template 504
109.4. Sample 504
110. Cloud Runtime Configuration API 505
110.1. Configuration 505
110.2. Quick start 506
110.3. Refreshing the configuration at runtime 507
110.4. Sample 508
111. Cloud Foundry 509
111.1. User-Provided Services 509
112. Kotlin Support 511
112.1. Prerequisites 511
112.2. Sample 511
113. Configuration properties 512
Spring Cloud Kubernetes 513
114. Why do you need Spring Cloud Kubernetes? 514
115. Starters 515
116. DiscoveryClient for Kubernetes 516
117. Kubernetes native service discovery 518
118. Kubernetes PropertySource implementations 519
118.1. Using a ConfigMap PropertySource 519
118.2. Secrets PropertySource 525
118.3. PropertySource Reload 529
119. Ribbon Discovery in Kubernetes 533
120. Kubernetes Ecosystem Awareness 535

120.1. Kubernetes Profile Autoconfiguration 535

120.2. Istio Awareness 535

121. Pod Health Indicator 536
122. Info Contributor 537
123. Leader Election 538
124. LoadBalancer for Kubernetes 539
125. Security Configurations Inside Kubernetes 540
125.1. Namespace 540
125.2. Service Account 540
126. Service Registry Implementation 542
127. Examples 543
128. Other Resources 544
129. Configuration properties 545
130. Building 546
130.1. Basic Compile and Test 546
130.2. Documentation 546
130.3. Working with the code 547
131. Contributing 548
131.1. Sign the Contributor License Agreement 548
131.2. Code of Conduct 548
131.3. Code Conventions and Housekeeping 548
131.4. Checkstyle 549
131.5. IDE setup 551
Spring Cloud Netflix 555
132. Service Discovery: Eureka Clients 556
132.1. How to Include Eureka Client 556
132.2. Registering with Eureka 556
132.3. Authenticating with the Eureka Server 557
132.4. Status Page and Health Indicator 558
132.5. Registering a Secure Application 558
132.6. Eureka’s Health Checks 559
132.7. Eureka Metadata for Instances and Clients 560
132.8. Using the EurekaClient 561
132.9. Alternatives to the Native Netflix EurekaClient 562
132.10. Why Is It so Slow to Register a Service? 563
132.11. Zones 563
132.12. Refreshing Eureka Clients 564
132.13. Using Eureka with Spring Cloud LoadBalancer 564
133. Service Discovery: Eureka Server 565
133.1. How to Include Eureka Server 565
133.2. How to Run a Eureka Server 565

133.3. High Availability, Zones and Regions 566

133.4.
133.5.
133.6.
133.7.

133.8. Disabling Ribbon with Eureka Server and Client starters

Standalone Mode
Peer Awareness
When to Prefer IP Address

Securing The Eureka Server

133.9.]DK 11 Support

134. Circuit Breaker: Spring Cloud Circuit Breaker With Hystrix
134.1. Disabling Spring Cloud Circuit Breaker Hystrix

134.2.

Configuring Hystrix Circuit Breakers

135. Circuit Breaker: Hystrix Clients

135.1.

135.2. Propagating the Security Context or Using Spring Scopes

135.3.
135.4.

How to Include Hystrix

Health Indicator

Hystrix Metrics Stream

136. Circuit Breaker: Hystrix Dashboard
137. Hystrix Timeouts And Ribbon Clients

137.1.
137.2.
137.3.

How to Include the Hystrix Dashboard
Turbine

Turbine Stream

138. Client Side Load Balancer: Ribbon

138.1.
138.2.
138.3.
138.4.
138.5.
138.6.
138.7.
138.8.
138.9.

How to Include Ribbon
Customizing the Ribbon Client

Customizing the Default for All Ribbon Clients
Customizing the Ribbon Client by Setting Properties

Using Ribbon with Eureka

Example: How to Use Ribbon Without Eureka

Example: Disable Eureka Use in Ribbon
Using the Ribbon API Directly

Caching of Ribbon Configuration

138.10. How to Configure Hystrix Thread Pools
138.11. How to Provide a Key to Ribbon’s IRule
139. External Configuration: Archaius
140. Router and Filter: Zuul

140.1.
140.2.
140.3.
140.4.
140.5.
140.6.
140.7.
140.8.

How to Include Zuul

Embedded Zuul Reverse Proxy

Zuul Http Client

Cookies and Sensitive Headers

Ignored Headers

Management Endpoints

Strangulation Patterns and Local Forwards

Uploading Files through Zuul

566
567
568
569
569
570
571
571
571
573
574
575
576
576
377
578
578
578
580
582
582
582
583
584
585
586
586
586
587
587
588
589
590
590
590
595
595
596
596
597
598

140.9.

140.10
140.11
140.12
140.13

Query String Encoding

. Request URI Encoding

. Plain Embedded Zuul

. Disable Zuul Filters

. Providing Hystrix Fallbacks For Routes

140.14. Zuul Timeouts

140.15
140.16
140.17
140.18

. Rewriting the Location header
. Enabling Cross Origin Requests
. Metrics

. Zuul Developer Guide

141. Polyglot support with Sidecar

142. Retrying Failed Requests

142.1.
142.2.

BackOff Policies

Configuration

143. HTTP Clients
144. Modules In Maintenance Mode

145. Configuration properties

Spring Cloud OpenFeign
146. Declarative REST Client: Feign

146.1.
146.2.
146.3.
146.4.
146.5.
146.6.
146.7.
146.8.
146.9.

146.10.
146.11.
146.12.
146.13.

How to Include Feign

Overriding Feign Defaults

Timeout Handling

Creating Feign Clients Manually

Feign Hystrix Support

Feign Hystrix Fallbacks

Feign Spring Cloud CircuitBreaker Support
Feign Spring Cloud CircuitBreaker Fallbacks
Feign and @Primary

Feign Inheritance Support

Feign request/response compression
Feign logging

Feign @QueryMap support

146.14. HATEOAS support

146.15.
146.16.
146.17.
146.18.

Spring @MatrixVariable Support
Feign CollectionFormat support
Reactive Support

Spring Data Support

147. Configuration properties

Spring Cloud Security
148. Quickstart

148.1.

OAuth2 Single Sign On

599
599
600
600
600
602
603
603
604
604
610
612
612
612
614
615
616
617
618
618
619
624
625
626
627
628
629
630
631
631
632
633
633
634
634
635
635
636
637
638
638

148.2. OAuth2 Protected Resource 639

149. More Detail 641
149.1. Single Sign On 641
149.2. Token Relay 641

150. Configuring Authentication Downstream of a Zuul Proxy 645

Spring Cloud Sleuth 646

151. Introduction 647
151.1. Terminology 647
151.2. Purpose 648
151.3. Adding Sleuth to the Project 658
151.4. Overriding the auto-configuration of Zipkin 662

152. Additional Resources 664

153. Features 665
153.1. Introduction to Brave 666

154. Sampling 672
154.1. Declarative sampling 672
154.2. Custom sampling 672
154.3. Sampling in Spring Cloud Sleuth 673

155. Propagation 674
155.1. Propagating extra fields 675

156. Current Tracing Component 680

157. Current Span 681
157.1. Setting a span in scope manually 681

158. Instrumentation 682

159. Span lifecycle 683
159.1. Creating and finishing spans 683
159.2. Continuing Spans 684
159.3. Creating a Span with an explicit Parent 684

160. Naming spans 686
160.1. @SpanName Annotation 686
160.2. toString() method 686

161. Managing Spans with Annotations 688
161.1. Rationale 688
161.2. Creating New Spans 688
161.3. Continuing Spans 689
161.4. Advanced Tag Setting 689

162. Customizations 692
162.1. Disabling Default Logging Pattern 692
162.2. Customizers 692
162.3. HTTP 692

162.4. TracingFilter 694

162.5. Messaging
162.6. RPC
162.7. Custom service name
162.8. Customization of Reported Spans
162.9. Host Locator
163. Sending Spans to Zipkin
164. Zipkin Stream Span Consumer
165. Integrations
165.1. OpenTracing
165.2. Runnable and Callable
165.3. Spring Cloud CircuitBreaker
165.4. Hystrix
165.5. RxJava
165.6. HTTP integration
165.7. HTTP Client Integration
165.8. Feign
165.9. gRPC
165.10. Asynchronous Communication
165.11. Messaging
165.12. Zuul
165.13. Redis
165.14. Quartz
165.15. Project Reactor
166. Configuration properties
Spring Cloud Task Reference Guide
Preface
167. About the documentation
168. Getting help
169. First Steps
Getting started
170. Introducing Spring Cloud Task
171. System Requirements
171.1. Database Requirements
172. Developing Your First Spring Cloud Task Application
172.1. Creating the Spring Task Project using Spring Initializr
172.2. Writing the Code
172.3. Running the Example
Features
173. The lifecycle of a Spring Cloud Task
173.1. The TaskExecution
173.2. Mapping Exit Codes

694
695
696
696
697
698
700
701
701
701
702
702
703
703
705
707
707
709
711
712
712
712
712
714
715
716
717
718
719
720
721
722
722
723
723
723
725
728
729
730
730

174. Configuration
174.1. DataSource
174.2. Table Prefix
174.3. Enable/Disable table initialization
174.4. Externally Generated Task ID
174.5. External Task Id
174.6. Parent Task Id
174.7. TaskConfigurer
174.8. Task Name
174.9. Task Execution Listener

174.10. Restricting Spring Cloud Task Instances

174.11. Disabling Spring Cloud Task Auto Configuration

174.12. Closing the Context
Batch

175. Associating a Job Execution to the Task in which It Was Executed

175.1. Overriding the TaskBatchExecutionListener

176. Remote Partitioning

176.1. Notes on Developing a Batch-partitioned application for the Kubernetes Platform

176.2. Notes on Developing a Batch-partitioned Application for the Cloud Foundry Platform

177. Batch Informational Messages
178. Batch Job Exit Codes
Spring Cloud Stream Integration
179. Launching a Task from a Spring Cloud Stream
179.1. Spring Cloud Data Flow
180. Spring Cloud Task Events
180.1. Disabling Specific Task Events
181. Spring Batch Events
181.1. Sending Batch Events to Different Channels
181.2. Disabling Batch Events
181.3. Emit Order for Batch Events
Appendices
182. Task Repository Schema
182.1. Table Information
183. Building This Documentation
184. Running a Task App on Cloud Foundry
Spring Cloud Vault
185. Quick Start
186. Client Side Usage
186.1. Authentication
187. Authentication methods

187.1. Token authentication

732
732
732
732
732
733
733
733
734
734
736
737
737
738
739
739
740
741
742
744
745
746
747
748
749
749
750
750
750
751
752
753
753
756
757
758
759
762
764
765
765

187.2. Vault Agent authentication 765

187.3. Appld authentication 766
187.4. AppRole authentication 767
187.5. AWS-EC2 authentication 769
187.6. AWS-IAM authentication 771
187.7. Azure MSI authentication 772
187.8. TLS certificate authentication 772
187.9. Cubbyhole authentication 773
187.10. GCP-GCE authentication 774
187.11. GCP-IAM authentication 775
187.12. Kubernetes authentication 776
187.13. Pivotal CloudFoundry authentication 777
188. Secret Backends 778
188.1. Generic Backend 778
188.2. Key-Value Backend 779
188.3. Consul 780
188.4. RabbitMQ 781
188.5. AWS 782
189. Database backends 784
189.1. Database 784
189.2. Apache Cassandra 785
189.3. MongoDB 786
189.4. MySQL 787
189.5. PostgreSQL 787
190. Configure PropertySourceLocator behavior 789
191. Service Registry Configuration 790
192. Vault Client Fail Fast 791
193. Vault Enterprise Namespace Support 792
194. Vault Client SSL configuration 793
195. Lease lifecycle management (renewal and revocation) 794
Spring Cloud Zookeeper 795
196. Quick Start 796
196.1. Discovery Client Usage 796
196.2. Distributed Configuration Usage 799
197. Install Zookeeper 802
198. Service Discovery with Zookeeper 803
198.1. Activating 803
198.2. Registering with Zookeeper 803
198.3. Using the DiscoveryClient 804
199. Using Spring Cloud Zookeeper with Spring Cloud Netflix Components 805

199.1. Ribbon with Zookeeper 805

200. Spring Cloud Zookeeper and Service Registry
200.1. Instance Status
201. Zookeeper Dependencies
201.1. Using the Zookeeper Dependencies
201.2. Activating Zookeeper Dependencies
201.3. Setting up Zookeeper Dependencies
201.4. Configuring Spring Cloud Zookeeper Dependencies
202. Spring Cloud Zookeeper Dependency Watcher
202.1. Activating
202.2. Registering a Listener
202.3. Using the Presence Checker
203. Distributed Configuration with Zookeeper
203.1. Activating
203.2. Customizing
203.3. Access Control Lists (ACLs)

Appendix: Compendium of Configuration Properties

806
806
807
807
807
807
810
812
812
812
812
813
813
813
814
816

Spring Cloud provides tools for developers to quickly build some of the common
patterns in distributed systems (e.g. configuration management, service
discovery, circuit breakers, intelligent routing, micro-proxy, control bus).
Coordination of distributed systems leads to boiler plate patterns, and using
Spring Cloud developers can quickly stand up services and applications that
implement those patterns. They will work well in any distributed environment,
including the developer’s own laptop, bare metal data centres, and managed
platforms such as Cloud Foundry.

Release Train Version: Hoxton.SR12

Supported Boot Version: 2.3.12.RELEASE

Chapter 1. Features

Spring Cloud focuses on providing good out of box experience for typical use cases and extensibility
mechanism to cover others.

* Distributed/versioned configuration

» Service registration and discovery

* Routing

 Service-to-service calls

* Load balancing

* Circuit Breakers

* Distributed messaging

Chapter 2. Release Train Versions

Table 1. Release Train Project Versions

Project Name Project Version
spring-boot 2.3.12.RELEASE
spring-cloud-aws 2.2.6.RELEASE
spring-cloud-build 2.3.5.RELEASE
spring-cloud-bus 2.2.4.RELEASE
spring-cloud-circuitbreaker 1.0.6.RELEASE
spring-cloud-cli 2.2.4.RELEASE
spring-cloud-cloudfoundry 2.2.3.RELEASE
spring-cloud-commons 2.2.9.RELEASE
spring-cloud-config 2.2.8.RELEASE
spring-cloud-consul 2.2.8.RELEASE
spring-cloud-contract 2.2.8.RELEASE
spring-cloud-function 3.0.14.RELEASE
spring-cloud-gateway 2.2.9.RELEASE
spring-cloud-gcp 1.2.8.RELEASE
spring-cloud-kubernetes 1.1.10.RELEASE
spring-cloud-netflix 2.2.9.RELEASE
spring-cloud-openfeign 2.2.9.RELEASE
spring-cloud-security 2.2.5.RELEASE
spring-cloud-sleuth 2.2.8.RELEASE
spring-cloud-task 2.2.5.RELEASE
spring-cloud-vault 2.2.7.RELEASE

spring-cloud-zookeeper 2.2.5.RELEASE

Spring Cloud AWS

Spring Cloud for Amazon Web Services, part of the Spring Cloud umbrella project, eases the
integration with hosted Amazon Web Services. It offers a convenient way to interact with AWS
provided services using well-known Spring idioms and APIs, such as the messaging or caching API.
Developers can build their application around the hosted services without having to care about
infrastructure or maintenance.

Spring Cloud is released under the non-restrictive Apache 2.0 license. If you would
o like to contribute to this section of the documentation or if you find an error,
please find the source code and issue trackers in the project at github.

https://github.com/spring-cloud/spring-cloud

Chapter 3. Using Amazon Web Services

Amazon provides a Java SDK to issue requests for the all services provided by the Amazon Web
Service platform. Using the SDK, application developers still have to integrate the SDK into their
application with a considerable amount of infrastructure related code. Spring Cloud AWS provides
application developers already integrated Spring-based modules to consume services and avoid
infrastructure related code as much as possible. The Spring Cloud AWS module provides a module
set so that application developers can arrange the dependencies based on their needs for the
particular services. The graphic below provides a general overview of all Spring Cloud AWS
modules along with the service support for the respective Spring Cloud AWS services.

[Overview] | overview.png

* Spring Cloud AWS Core is the core module of Spring Cloud AWS providing basic services for
security and configuration setup. Developers will not use this module directly but rather
through other modules. The core module provides support for cloud based environment
configurations providing direct access to the instance based EC2 metadata and the overall
application stack specific CloudFormation metadata.

» Spring Cloud AWS Context delivers access to the Simple Storage Service via the Spring
resource loader abstraction. Moreover developers can send e-mails using the Simple E-Mail
Service and the Spring mail abstraction. Further the developers can introduce declarative
caching using the Spring caching support and the ElastiCache caching service.

* Spring Cloud AWS JDBC provides automatic datasource lookup and configuration for the
Relational Database Service which can be used with JDBC or any other support data access
technology by Spring.

* Spring Cloud AWS Messaging enables developers to receive and send messages with the
Simple Queueing Service for point-to-point communication. Publish-subscribe messaging is
supported with the integration of the Simple Notification Service.

* Spring Cloud AWS Parameter Store Configuration enables Spring Cloud applications to use
the AWS Parameter Store as a Bootstrap Property Source, comparable to the support provided
for the Spring Cloud Config Server or Consul’s key-value store.

* Spring Cloud AWS Secrets Manager Configuration enables Spring Cloud applications to use
the AWS Secrets Manager as a Bootstrap Property Source, comparable to the support provided
for the Spring Cloud Config Server or Consul’s key-value store.

https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com/ec2/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/s3/
https://aws.amazon.com/ses/
https://aws.amazon.com/ses/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/rds/
https://aws.amazon.com/sqs/
https://aws.amazon.com/sns/
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-paramstore.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html

Chapter 4. Basic setup

Before using the Spring Cloud AWS module developers have to pick the dependencies and
configure the Spring Cloud AWS module. The next chapters describe the dependency management
and also the basic configuration for the Spring AWS Cloud project.

4.1. Spring Cloud AWS maven dependency
management

Spring Cloud AWS module dependencies can be used directly in Maven with a direct configuration
of the particular module. The Spring Cloud AWS module includes all transitive dependencies for the
Spring modules and also the Amazon SDK that are needed to operate the modules. The general
dependency configuration will look like this:

<dependencies>
<dependency>
<groupld>org.springframework.cloud</groupId>
<artifactId>spring-cloud-aws-context</artifactId>
<version>{spring-cloud-version}</version>
</dependency>
</dependencies>

Different modules can be included by replacing the module name with the respective one (e.g.
spring-cloud-aws-messaging instead of spring-cloud-aws-context)

The example above works with the Maven Central repository. To use the Spring Maven repository
(e.g. for milestones or developer snapshots), you need to specify the repository location in your
Maven configuration. For full releases:

<repositories>
<repository>
<id>io.spring.repo.maven.release</id>
<url>https://repo.spring.io/release/</url>
<snapshots><enabled>false</enabled></snapshots>
</repository>
</repositories>

For milestones:

https://maven.apache.org

<repositories>
<repository>
<id>io.spring.repo.maven.milestone</id>
<url>https://repo.spring.io/milestone/</url>
<snapshots><enabled>false</enabled></snapshots>
</repository>
</repositories>

4.2. Amazon SDK dependency version management

Amazon SDK is released more frequently than Spring Cloud AWS. If you need to use newer version
of AWS SDK than one configured by Spring Cloud AWS add AWS SDK BOM to dependency
management section making sure it is declared before any other BOM dependency that configures
AWS SDK dependencies.

<dependencyManagement>
<dependencies>
<dependency>
<groupId>com.amazonaws</groupld>
<artifactId>aws-java-sdk-bom</artifactId>
<version>${aws-java-sdk.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

4.3. Amazon SDK configuration

The Spring Cloud AWS configuration is currently done using custom elements provided by Spring
Cloud AWS namespaces. JavaConfig will be supported soon. The configuration setup is done directly
in Spring XML configuration files so that the elements can be directly used. Each module of Spring
Cloud AWS provides custom namespaces to allow the modular use of the modules. A typical XML
configuration to use Spring Cloud AWS is outlined below:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:aws-context="http://www.springframework.org/schema/cloud/aws/context"
xsi:schemalocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/cloud/aws/context
http://www.springframework.org/schema/cloud/aws/context/spring-cloud-aws-

context.xsd">

<aws-context:context-region region="..."/>

</beans>

On application startup, for its internal purposes Spring Cloud AWS performs a
check if application runs in AWS cloud environment by using EC2MetadataUtils
class provided by AWS SDK. Starting from version 1.11.678, AWS SDK logs a
warning message with exception when this check is made outside of AWS

(r) environment. This warning message can be hidden by setting ERROR logging level
on com.amazonaws.util.EC2Metadataltils class.

logging.level.com.amazonaws.util.EC2MetadataUtils=error

4.3.1. SDK credentials configuration

In order to make calls to the Amazon Web Service the credentials must be configured for the the
Amazon SDK. Spring Cloud AWS provides support to configure an application context specific
credentials that are used for each service call for requests done by Spring Cloud AWS components,
with the exception of the Parameter Store and Secrets Manager Configuration. Therefore there
must be exactly one configuration of the credentials for an entire application context.

The com.amazonaws.auth.DefaultAWSCredentialsProviderChain is used by all the
clients if there is no dedicated credentials provider defined. This will essentially
use the following authentication information

O .

use the environment variables AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY
use the system properties aws.accessKeyId and aws.secretKey
use the user specific profile credentials file

use ECS credentials if the AWS_CONTAINER_CREDENTIALS_RELATIVE URI environment
variable is set

use the instance profile credentials (see below)

Based on the overall credentials policy there are different options to configure the credentials. The
possible ones are described in the following sub-chapters.

Simple credentials configuration

Credentials for the Amazon SDK consist of an access key (which might be shared) and a secret key
(which must not be shared). Both security attributes can be configured using the XML namespaces
for each Amazon SDK service created by the Spring Cloud AWS module. The overall configuration
looks like this

<beans ...>

<aws-context:context-credentials>

<aws-context:simple-credentials access-key="AKIAIQ" secret-key="wJalrXUtnFEMI/K7M"
/>

</aws-context:context-credentials>
</beans>

The access-key and secret-key should be externalized into property files (e.g.
o Spring Boot application configuration) and not be checked in into the source
management system.

Instance profile configuration

An instance profile configuration allows to assign a profile that is authorized by a role while
starting an EC2 instance. All calls made from the EC2 instance are then authenticated with the
instance profile specific user role. Therefore there is no dedicated access-key and secret-key needed
in the configuration. The configuration for the instance profile in Spring Cloud AWS looks like this:

<beans ...>
<aws-context:context-credentials>
<aws-context:instance-profile-credentials/>
</aws-context:context-credentials>
</beans>

Mixing both security configurations

In some cases it is useful to combine both authentication strategies to allow the application to use
the instance profile with a fallback for an explicit access-key and secret-key configuration. This is
useful if the application is tested inside EC2 (e.g. on a test server) and locally for testing. The next
snippet shows a combination of both security configurations.

<beans ...>
<aws-context:context-credentials>
<aws-context:instance-profile-credentials/>
<aws-context:simple-credentials access-key="${accessKey:}" secret-
key="${secretKey:}"/>
</aws-context:context-credentials>
</beans>

https://docs.aws.amazon.com/IAM/latest/UserGuide/instance-profiles.html

The access-key and secret-key are defined using a placeholder expressions along
@ with a default value to avoid bootstrap errors if the properties are not configured
at all.

Parameter Store and Secrets Manager Configuration credentials and region configuration

The Parameter Store and Secrets Manager Configuration support uses a bootstrap context to
configure a default AWSSimpleSystemsManagement client, which uses a
com.amazonaws.auth.DefaultAWSCredentialsProviderChain and
com.amazonaws.regions.DefaultAwsRegionProviderChain. If you want to override this, then you need to
define your own Spring Cloud bootstrap configuration class with a bean of type
AWSSimpleSystemsManagement that’s configured to use your chosen credentials and/or region provider.
Because this context is created when your Spring Cloud Bootstrap context is created, you can’t
simply override the bean in a regular @Configuration class.

4.3.2. Region configuration

Amazon Web services are available in different regions. Based on the custom requirements, the
user can host the application on different Amazon regions. The spring-cloud-aws-context module
provides a way to define the region for the entire application context.

Explicit region configuration

The region can be explicitly configured using an XML element. This is particularly useful if the
region can not be automatically derived because the application is not hosted on a EC2 instance
(e.g. local testing) or the region must be manually overridden.

<beans ...>
<aws-context:context-region region="eu-west-1"/>
</beans>

It is also allowed to use expressions or placeholders to externalize the
(r) configuration and ensure that the region can be reconfigured with property files
w .

or system properties.

Automatic region configuration

If the application context is started inside an EC2 instance, then the region can automatically be
fetched from the instance metadata and therefore must not be configured statically. The
configuration will look like this:

<beans ...>
<aws-context:context-region auto-detect="true" />
</beans>

https://cloud.spring.io/spring-cloud-static/Edgware.SR2/multi/multi__spring_cloud_context_application_context_services.html#_customizing_the_bootstrap_configuration
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html

Service specific region configuration

Aregion can also be overridden for particular services if one application context consumes services
from different regions. The configuration can be done globally like described above and configured
for each service with a region attribute. The configuration might look like this for a database
service (described later)

<beans ...>

<aws-context:context-region region="eu-central-1" />
<jdbc:data-source ... region="eu-west-1" />

</beans>

While it is theoretically possible to use multiple regions per application, we
o strongly recommend to write applications that are hosted only inside one region
and split the application if it is hosted in different regions at the same time.

4.3.3. Spring Boot auto-configuration

Following the Spring Cloud umbrella project, Spring Cloud AWS also provides dedicated Spring Boot
support. Spring Cloud AWS can be configured using Spring Boot properties and will also
automatically guess any sensible configuration based on the general setup.

Maven dependencies

Spring Cloud AWS provides a dedicated module to enable the Spring Boot support. That module
must be added to the general maven dependency inside the application. The typical configuration
will look like this

<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-aws-autoconfigure</artifactId>
<version>{spring-cloud-version}</version>
</dependency>
</dependencies>

Additional dependencies to enable particular features like messaging and JDBC have to be added.
Spring Cloud AWS will only configure classes that are available in the Spring Boot application’s
classpath.

Configuring credentials

Spring Boot provides a standard way to define properties with property file or YAML configuration
files. Spring Cloud AWS provides support to configure the credential information with the Spring
Boot application configuration files. Spring Cloud AWS provides the following properties to
configure the credentials setup for the whole application.

Unless cloud.aws.credentials.use-default-aws-credentials-chain is set to true, Spring Cloud AWS

configures following credentials chain:

1. AWSStaticCredentialsProvider if cloud.aws.credentials.access-key is provided

2. EC2ContainerCredentialsProviderWrapper unless cloud.aws.credentials.instance-profile is set to

false

3. ProfileCredentialsProvider

property example

cloud.aws.credentials.access- AKIAIOSFODNN7EXAMPLE
key

cloud.aws.credentials.secret-key wJjalrXUtnFEMI/K7MDENG/bPx
RfiCYEXAMPLEKEY

cloud.aws.credentials.instance- true
profile

cloud.aws.credentials.profile- default
name

cloud.aws.credentials.profile- ~ ~/.aws/credentials
path

cloud.aws.credentials.use- true
default-aws-credentials-chain

Configuring region

description

The access key to be used with a
static provider

The secret key to be used with a
static provider

Configures an instance profile
credentials provider with no
further configuration

The name of a configuration
profile in the specified
configuration file

The file path where the profile
configuration file is located.
Defaults to ~/.aws/credentials if
value is not provided

Use the DefaultAWSCredentials
Chain instead of configuring a
custom credentials chain

Like for the credentials, the Spring Cloud AWS module also supports the configuration of the region
inside the Spring Boot configuration files. The region can be automatically detected or explicitly

configured (e.g. in case of local tests against the AWS cloud).

The properties to configure the region are shown below

property example

cloud.aws.region.auto true

cloud.aws.region.use-default- true
aws-region-chain

description

Enables automatic region
detection based on the EC2
meta data service

Use the DefaultAWSRegion
Chain instead of configuring a
custom region chain

property

cloud.aws.region.static

example

eu-west-1

description

Configures a static region for
the application. Possible regions
are (currently) us-east-1, us-
west-1, us-west-2, eu-west-1, eu-
central-1, ap-southeast-1, ap-
southeast-1, ap-northeast-1, sa-
east-1, cn-north-1 and any
custom region configured with
own region meta data

Chapter 5. Cloud environment

Applications often need environment specific configuration information, especially in changing
environments like in the Amazon cloud environment. Spring Cloud AWS provides a support to
retrieve and use environment specific data inside the application context using common Spring
mechanisms like property placeholder or the Spring expression language.

5.1. Retrieving instance metadata

Instance metadata are available inside an EC2 environment. The metadata can be queried using a
special HTTP address that provides the instance metadata. Spring Cloud AWS enables application to
access this metadata directly in expression or property placeholder without the need to call an
external HTTP service.

5.1.1. Enabling instance metadata support with XML

The instance metadata retrieval support is enabled through an XML element like the standard
property placeholder in Spring. The following code sample demonstrates the activation of the
instance metadata support inside an application context.

<beans ...>
<aws-context:context-instance-data />
</beans>

Instance metadata can be retrieved without an authorized service call, therefore
O the configuration above does not require any region or security specific
w . .

configuration.

5.1.2. Enabling instance metadata support with Java

The instance metadata can also be configured within a Java configuration class without the need
for an XML configuration. The next example shows a typical Spring @Configuration class that

enables the instance metadata with the
org.springframework.cloud.aws.context.config.annotation.EnableInstanceData

@Configuration
@EnableContextInstanceData
public static class ApplicationConfiguration {

}

5.1.3. Enabling instance metadata support in Spring Boot

The instance metadata is automatically available in a Spring Boot application as a property source
if the application is running on an EC2 instance.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html

5.1.4. Using instance metadata

Instance metadata can be used in XML, Java placeholders and expressions. The example below
demonstrates the usage of instance metadata inside an XML file using placeholders and also the
expression referring to the special variable environment

<beans ...>

<bean class="org.springframework.cloud.aws....SimpleConfigurationBean">
<property name="valuel" value="#{environment.ami-id}" />
<property name="value2" value="#{environment.hostname}" />
<property name="value3" value="${instance-type}" />
<property name="value4" value="${instance-id}" />

</bean>

</beans>

Instance metadata can also be injected with the Spring
org.springframework.beans.factory.annotation.Value annotation directly into Java fields. The next
example demonstrates the use of instance metadata inside a Spring bean.

@Component
public class ApplicationInfoBean {

@Value("${ami-id:N/A}")
private String amild;

@Value("${hostname:N/A}")
private String hostname;

@Value("${instance-type:N/A}")
private String instanceType;

@Value("${services/domain:N/A}")
private String serviceDomain;

Every instance metadata can be accessed by the key available in the instance
o metadata service Nested properties can be accessed by separating the properties
with a slash (/).

5.1.5. Using instance user data

Besides the default instance metadata it is also possible to configure user data on each instance.
This user data is retrieved and parsed by Spring Cloud AWS. The user data can be defined while
starting an EC2 instance with the application. Spring Cloud AWS expects the format
<key>:<value>;<key>:<value> inside the user data so that it can parse the string and extract the key
value pairs.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html

The user data can be configured using either the management console shown below or a
CloudFormation template.

[User data in the management console] | cloud-environment-user-data.png

A CloudFormation template snippet for the configuration of the user data is outlined below:

"Resources": {
"ApplicationServerInstance": {
“Type": "AWS::EC2::Instance",
"Properties": {
"ImageId": "ami-6a56b81d",
"UserData": {
"Fn::Base64": "datal:valuel;data2:value2"
I

"InstanceType": "tT.micro",
}
¥

The user data can be accessed directly in the application context like the instance metadata through
placeholders or expressions.

@Component
public class SecondConfigurationBean {

@Value("${data1}")
private String firstDataOption;

@Value("${data2}")
private String secondDataOption;

5.1.6. Using instance tags

User configured properties can also be configured with tags instead of user data. Tags are a global
concept in the context of Amazon Web services and used in different services. Spring Cloud AWS
supports instance tags also across different services. Compared to user data, user tags can be
updated during runtime, there is no need to stop and restart the instance.

User data can also be used to execute scripts on instance startup. Therefore it is
(2 . . .
O useful to leverage instance tags for user configuration and user data to execute
w . .

scripts on instance startup.

Instance specific tags can be configured on the instance level through the management console
outlined below and like user data also with a CloudFormation template shown afterwards.

https://aws.amazon.com/cloudformation/aws-cloudformation-templates/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html

[Instance data in the management console] | cloud-environment-instance-tags.png

A CloudFormation template snippet for the configuration of the instance tags is outlined below:

"Resources": {
"UserTagAndUserDatalnstance": {
"Type": "AWS::EC2::Instance",
"Properties": {
"ImageId": "ami-6a56b81d",
"InstanceType": "t1.micro",

"Tags": [
{
"Key": "tagl1",
"Value": "tagv1"
¥
{
"Key": "tag3",
"Value": "tagv3"
1
{
"Key": "tag2",
"Value": "tagv2"
¥
{
"Key": "tag4d",
"Value": "tagv4"
}
]

To retrieve the instance tags, Spring Cloud AWS has to make authenticated requests and therefore it
will need the region and security configuration before actually resolving the placeholders. Also
because the instance tags are not available while starting the application context, they can only be
referenced as expressions and not with placeholders. The context-instance-data element defines an
attribute user-tags-map that will create a map in the application context for the name. This map can
then be queried using expression for other bean definitions.

<beans ...>
<aws-context:context-instance-data user-tags-map="1instanceData" />
</beans>

A java bean might resolve expressions with the @Value annotation.

public class SimpleConfigurationBean {

@Value("#{instanceData.tag1}")
private String valuel;

@Value("#{instanceData.tag2}")
private String value2;

@Value("#{instanceData.tag3}")
private String value3;

@Value("#{instanceData.tag4}")
private String value4;

5.1.7. Configuring custom EC2 client

In some circumstances it is necessary to have a custom EC2 client to retrieve the instance
information. The context-instance-data element supports a custom EC2 client with the amazon-ec2
attribute. The next example shows the use of a custom EC2 client that might have a special
configuration in place.

<beans ...>

<aws-context:context-credentials>....</aws-context:context-credentials>
<aws-context:context-region ... />
<aws-context:context-instance-data amazon-ec2="myCustomClient"/>

<bean id="myCustomClient" class="com.amazonaws.services.ec2.AmazonEC2Client">
</bean>

</beans>

5.1.8. Injecting the default EC2 client

If there are user tags configured for the instance data (see above) Spring Cloud AWS configures an
EC2 client with the specified region and security credentials. Application developers can inject the
EC2 client directly into their code using the @Autowired annotation.

public class ApplicationService {
private final AmazonEC2 amazonEc2;

@Autowired
public ApplicationService(AmazonEC2 amazonEc2) {
this.amazonEc2 = amazonEc2;

}

5.2. Integrating your Spring Cloud application with the
AWS Parameter Store

Spring Cloud provides support for centralized configuration, which can be read and made available
as a regular Spring PropertySource when the application is started. The Parameter Store
Configuration allows you to use this mechanism with the AWS Parameter Store.

Simply add a dependency on the spring-cloud-starter-aws-parameter-store-config starter module
to activate the support. The support is similar to the support provided for the Spring Cloud Config
Server or Consul’s key-value store: configuration parameters can be defined to be shared across all
services or for a specific service and can be profile-specific. Encrypted values will be decrypted
when retrieved.

All configuration parameters are retrieved from a common path prefix, which defaults to /config.
From there shared parameters are retrieved from a path that defaults to application and service-
specific parameters use a path that defaults to the configured spring.application.name. You can use
both dots and forward slashes to specify the names of configuration keys. Names of activated
profiles will be appended to the path using a separator that defaults to an underscore.

That means that for a service called my-service the module by default would find and use these
parameters:

parameter key Spring property description
/config/application/cloud.aws. cloud.aws.stack.name Shared by all services that have
stack.name

the Configuration support
enabled. Can be overridden
with a service- or profile-
specific property.
/config/application_production cloud.aws.stack.name Shared by all services that have
/cloud.aws. stack.name the Configuration support
enabled and have a production
Spring profile activated. Can be
overridden with a service-

specific property.

https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-paramstore.html

parameter key Spring property description

/Config/my— cloud.aws.stack.auto Specifjc to the my_serv'ice
service/cloud/aws/stack/auto service. Note that slashes in the
key path are replaced with dots.

/config/my- cloud.aws.stack.auto Specific to the my-service
service_production/cloud/aws/s service when a production

tack/auto . o .
Spring profile is activated.

Note that this module does not support full configuration files to be used as parameter values like
e.g. Spring Cloud Consul does: AWS parameter values are limited to 4096 characters, so we support
individual Spring properties to be configured only.

You can configure the following settings in a Spring Cloud bootstrap.properties or bootstrap.yml
file (note that relaxed property binding is applied, so you don’t have to use this exact syntax):

property default explanation

aws.paramstore.prefix /config Prefix indicating first level for
every property loaded from the
Parameter Store. Value must
start with a forward slash
followed by one or more valid
path segments or be empty.

aws.paramstore.defaultContext application Name of the context that

defines properties shared
across all services

aws.paramstore.profileSeparato _ String that separates an

: appended profile from the
context name. Can only contain
dots, dashes, forward slashes,
backward slashes and
underscores next to
alphanumeric characters.

aws.paramstore.failFast true Indicates if an error while
retrieving the parameters
should fail starting the

application.
aws.paramstore.name the configured value for Name to use when constructing
spring.application.name the path for the properties to

look up for this specific service.

aws.paramstore.enabled true Can be used to disable the
Parameter Store Configuration
support even though the auto-
configuration is on the
classpath.

In order to find out which properties are retrieved from AWS Parameter Store on
application startup, turn on DEBUG logging on
org.springframework.cloud.aws.paramstore.AwsParamStorePropertySource class.

logging.level.org.springframework.cloud.aws.paramstore.AwsParamStorePro
pertySource=debug

5.3. Integrating your Spring Cloud application with the
AWS Secrets Manager

Spring Cloud provides support for centralized configuration, which can be read and made available
as a regular Spring PropertySource when the application is started. The Secrets Manager
Configuration allows you to use this mechanism with the AWS Secrets Manager.

Simply add a dependency on the spring-cloud-starter-aws-secrets-manager-config starter module
to activate the support. The support is similar to the support provided for the Spring Cloud Config
Server or Consul’s key-value store: configuration parameters can be defined to be shared across all
services or for a specific service and can be profile-specific.

All configuration parameters are retrieved from a common path prefix, which defaults to /secret.
From there shared parameters are retrieved from a path that defaults to application and service-
specific parameters use a path that defaults to the configured spring.application.name. You can use
both dots and forward slashes to specify the names of configuration keys. Names of activated
profiles will be appended to the path using a separator that defaults to an underscore.

That means that for a service called my-service the module by default would find and use these
parameters:

parameter key description

/secret/application Shared by all services that have the
Configuration support enabled. Can be
overridden with a service- or profile-specific

property.
/secret/application_production Shared by all services that have the
Configuration support enabled and have a

production Spring profile activated. Can be
overridden with a service-specific property.

/secret/my-service Specific to the my-service service..

/secret/my-service_production Specific to the my-service service when a
production Spring profile is activated.

You can configure the following settings in a Spring Cloud bootstrap.properties or bootstrap.yml
file (note that relaxed property binding is applied, so you don’t have to use this exact syntax):

https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html

property default

aws.secretsmanager.prefix /secret

aws.secretsmanager.defaultCont application
ext

aws.secretsmanager.profileSepa

rator

aws.secretsmanager.failFast true

aws.sec retsmanager .name the Conﬁgured value for
spring.application.name

aws.secretsmanager.enabled true

explanation

Prefix indicating first level for
every property loaded from the
Secrets Manager. Value must
start with a forward slash
followed by one or more valid
path segments or be empty.

Name of the context that
defines properties shared
across all services

String that separates an
appended profile from the
context name. Can only contain
dots, dashes, forward slashes,
backward slashes and
underscores next to
alphanumeric characters.

Indicates if an error while
retrieving the secrets should
fail starting the application.

Name to use when constructing
the path for the properties to
look up for this specific service.

Can be used to disable the
Secrets Manager Configuration
support even though the auto-
configuration is on the
classpath.

Chapter 6. Managing cloud environments

Managing environments manually with the management console does not scale and can become
error-prone with the increasing complexity of the infrastructure. Amazon Web services offers a
CloudFormation service that allows to define stack configuration templates and bootstrap the
whole infrastructure with the services. In order to allow multiple stacks in parallel, each resource
in the stack receives a unique physical name that contains some arbitrary generated name. In order
to interact with the stack resources in a unified way Spring Cloud AWS allows developers to work
with logical names instead of the random physical ones.

The next graphics shows a typical stack configuration.
[CloudFormation overview] | cloudformation-overview.png

The Template File describes all stack resources with their logical name. The CloudFormation
service parses the stack template file and creates all resources with their physical name. The
application can use all the stack configured resources with the logical name defined in the template.
Spring Cloud AWS resolves all logical names into the respective physical name for the application
developer.

6.1. Automatic CloudFormation configuration

If the application runs inside a stack (because the underlying EC2 instance has been bootstrapped
within the stack), then Spring Cloud AWS will automatically detect the stack and resolve all
resources from the stack. Application developers can use all the logical names from the stack
template to interact with the services. In the example below, the database resource is configured
using a CloudFormation template, defining a logical name for the database instance.

"applicationDatabase": {
"Type": "AWS::RDS::DBInstance",
"Properties": {
"AllocatedStorage": "5",
"DBInstanceClass": "db.t1.micro",
"DBName": "test"

The datasource is then created and will receive a physical name (e.g. ir142c39k605irj) as the
database service name. Application developers can still use the logical name (in this case
applicationDatabase) to interact with the database. The example below shows the stack
configuration which is defined by the element aws-context:stack-configuration and resolves
automatically the particular stack. The data-source element uses the logical name for the db-
instance-identifier attribute to work with the database.

https://aws.amazon.com/cloudformation/

<beans xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:aws-context="http://www.springframework.org/schema/cloud/aws/context"
xmlns="http://www.springframework.org/schema/beans"
xsi:schemalocation="http://www.springframework.org/schema/cloud/aws/context
http://www.springframework.org/schema/cloud/aws/context/spring-cloud-aws-
context.xsd">

<aws-context:context-credentials>
</aws-context:context-credentials>
<aws-context:context-region .. />

<aws-context:stack-configuration/>

<jdbc:data-source db-instance-identifier="applicationDatabase" ... />

</beans>
(r') Further detailed information on the Amazon RDS configuration and setup can be
- found in the respective chapter in this documentation.

6.2. Manual CloudFormation configuration

If the application is not running inside a stack configured EC2 instance, then the stack configuration
must be configured manually. The configuration consists of an additional element attribute stack-
name that will be used to resolve all the respective stack configuration information at runtime.

<beans>
<aws-context:stack-configuration stack-name="myStackName" />

</beans>

6.3. CloudFormation configuration with Java config
classes

Spring Cloud AWS also supports the configuration of the CloudFormation support within Java
classes avoiding the use of XML inside the application configuration. Spring Cloud AWS provides
the annotation og.springframework.cloud.aws.context.config.annotation.EnableStackConfiguration
that allows the automatic and manual stack configuration. The next example shows a configuration
class that configures the CloudFormation support with an explicit stack name (here
manualStackName).

@Configuration
@EnableStackConfiguration(stackName = "manualStackName")
class ApplicationConfiguration {

}

7 Do not define the stackName attribute if an automatic stack name should be
- enabled.

6.4. CloudFormation configuration in Spring Boot

Spring Cloud AWS also supports the configuration of the CloudFormation support within the Spring
Boot configuration. The manual and automatic stack configuration can be defined with properties
that are described in the table below.

property example description

cloud.aws.stack.name myStackName The name of the manually
configured stack name that will
be used to retrieve the
resources.

cloud.aws.stack.auto true Enables the automatic stack
name detection for the
application.

6.5. Manual name resolution

Spring Cloud AWS uses the CloudFormation stack to resolve all resources internally using the
logical names. In some circumstances it might be needed to resolve the physical name inside the
application code. Spring Cloud AWS provides a pre-configured service to resolve the physical stack
name based on the logical name. The sample shows a manual stack resource resolution.

@Service
public class ApplicationService {

private final ResourceIdResolver resourcelIdResolver;

@Autowired
public ApplicationService(ResourceIdResolver resourceldResolver) {
this.resourceldResolver = resourceldResolver;

}
public void handleApplicationLogic() {

String physicalBucketName =
this.resourceIdResolver.resolveToPhysicalResourceId("somelLogicalName");

6.6. Stack Tags

Like for the Amazon EC2 instances, CloudFormation also provides stack specific tags that can be
used to configure stack specific configuration information and receive them inside the application.
This can for example be a stage specific configuration property (like DEV, INT, PRD).

<beans>
<aws-context:stack-configuration user-tags-map="stackTags"/>
</beans>
The application can then access the stack tags with an expression like #{stackTags.key1}.

6.7. Using custom CloudFormation client

Like for the EC2 configuration setup, the aws-context:stack-configuration element supports a
custom CloudFormation client with a special setup. The client itself can be configured using the
amazon-cloud-formation attribute as shown in the example:

<beans>
<aws-context:stack-configuration amazon-cloud-formation=""/>

<bean class="com.amazonaws.services.cloudformation.AmazonCloudFormationClient">
</bean>
</beans>

Chapter 7. Messaging

Spring Cloud AWS provides Amazon SQS and Amazon SNS integration that simplifies the
publication and consumption of messages over SQS or SNS. While SQS fully relies on the messaging
API introduced with Spring 4.0, SNS only partially implements it as the receiving part must be
handled differently for push notifications.

7.1. Configuring messaging

Before using and configuring the messaging support, the application has to include the respective
module dependency into the Maven configuration. Spring Cloud AWS Messaging support comes as
a separate module to allow the modularized use of the modules.

7.1.1. Maven dependency configuration

The Spring Cloud AWS messaging module comes as a standalone module and can be imported with
the following dependency declaration:

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-aws-messaging</artifactId>
<version>{spring-cloud-version}</version>
</dependency>

7.2. SQS support

Amazon SQS is a hosted messaging service on the Amazon Web Service platform that provides
point-to-point communication with queues. Compared to JMS or other message services Amazon
SQS has several features and limitations that should be taken into consideration.

* Amazon SQS allows only String payloads, so any Object must be transformed into a String
representation. Spring Cloud AWS has dedicated support to transfer Java objects with Amazon
SQS messages by converting them to JSON.

* Amazon SQS has no transaction support, so messages might therefore be retrieved twice.
Application have to be written in an idempotent way so that they can receive a message twice.

* Amazon SQS has a maximum message size of 256kb per message, so bigger messages will fail to
be sent.

7.2.1. Sending a message

The QueueMessagingTemplate contains many convenience methods to send a message. There are send
methods that specify the destination using a QueueMessageChannel object and those that specify the
destination using a string which is going to be resolved against the SQS APIL The send method that
takes no destination argument uses the default destination.

https://aws.amazon.com/sqs/
https://aws.amazon.com/sqs/

import com.amazonaws.services.sqs.AmazonSQSAsync;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.cloud.aws.messaging.core.QueueMessagingTemplate;
import org.springframework.messaging.support.MessageBuilder;

public class SqsQueueSender {
private final QueueMessagingTemplate queueMessagingTemplate;

@Autowired
public SqsQueueSender (AmazonSQSAsync amazonSQSAsync) {
this.queueMessagingTemplate = new QueueMessagingTemplate(amazonSQSAsync);

}

public void send(String message) {
this.queueMessagingTemplate.send("physicalQueueName",
MessageBuilder.withPayload(message).build());
}
}

This example uses the MessageBuilder class to create a message with a string payload. The
QueueMessagingTemplate is constructed by passing a reference to the AmazonSQSAsync client. The
destination in the send method is a string value that must match the queue name defined on AWS.
This value will be resolved at runtime by the Amazon SQS client. Optionally a ResourceIdResolver
implementation can be passed to the QueueMessagingTemplate constructor to resolve resources by
logical name when running inside a CloudFormation stack (see Managing cloud environments for
more information about resource name resolution).

With the messaging namespace a QueueMessagingTemplate can be defined in an XML configuration
file.

<beans xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:aws-context="http://www.springframework.org/schema/cloud/aws/context"
xmlns:aws-messaging="http://www.springframework.org/schema/cloud/aws/messaging"”
xmlns="http://www.springframework.org/schema/beans"
xsi:schemalocation="http://www.springframework.org/schema/beans
https://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/cloud/aws/context
http://www.springframework.org/schema/cloud/aws/context/spring-cloud-aws-
context.xsd
http://www.springframework.org/schema/cloud/aws/messaging
http://www.springframework.org/schema/cloud/aws/messaging/spring-cloud-aws-
messaging">

<aws-context:context-credentials>
<aws-context:instance-profile-credentials />
</aws-context:context-credentials>

<aws-messaging:queue-messaging-template id="queueMessagingTemplate" />

</beans>

In this example the messaging namespace handler constructs a new QueueMessagingTemplate. The
AmazonSQSAsync client is automatically created and passed to the template’s constructor based on the
provided credentials. If the application runs inside a configured CloudFormation stack a
ResourceldResolver is passed to the constructor (see Managing cloud environments for more
information about resource name resolution).

Using message converters

In order to facilitate the sending of domain model objects, the QueueMessagingTemplate has various
send methods that take a Java object as an argument for a message’s data content. The overloaded
methods convertAndSend() and receiveAndConvert() in QueueMessagingTemplate delegate the
conversion process to an instance of the MessageConverter interface. This interface defines a simple
contract to convert between Java objects and SQS messages. The default implementation
SimpleMessageConverter simply unwraps the message payload as long as it matches the target type.
By using the converter, you and your application code can focus on the business object that is being
sent or received via SQS and not be concerned with the details of how it is represented as an SQS
message.

As SQS is only able to send String payloads the default converter

o SimpleMessageConverter should only be used to send String payloads. For more
complex objects a custom converter should be used like the one created by the
messaging namespace handler.

It is recommended to use the XML messaging namespace to create QueueMessagingTemplate as it will
set a more sophisticated MessageConverter that converts objects into JSON when Jackson is on the
classpath.

<aws-messaging:queue-messaging-template id="queueMessagingTemplate" />

this.queueMessagingTemplate.convertAndSend("queueName", new Person("John, "Doe"));

In this example a QueueMessagingTemplate is created using the messaging namespace. The
convertAndSend method converts the payload Person using the configured MessageConverter and
sends the message.

7.2.2. Receiving a message

There are two ways for receiving SQS messages, either use the receive methods of the
QueueMessagingTemplate or with annotation-driven listener endpoints. The latter is by far the more
convenient way to receive messages.

Person person = this.queueMessagingTemplate.receiveAndConvert("queueName",
Person.class);

In this example the QueueMessagingTemplate will get one message from the SQS queue and convert it
to the target class passed as argument.

7.2.3. Annotation-driven listener endpoints

Annotation-driven listener endpoints are the easiest way for listening on SQS messages. Simply
annotate methods with MessageMapping and the QueueMessageHandler will route the messages to the
annotated methods.

<aws-messaging:annotation-driven-queue-listener />

@SqsListener("queueName")

public void queuelistener(Person person) {
/] ...

}

In this example a queue listener container is started that polls the SQS queueName passed to the
MessageMapping annotation. The incoming messages are converted to the target type and then the
annotated method queuelistener is invoked.

In addition to the payload, headers can be injected in the listener methods with the @Header or
@Headers annotations. @Header is used to inject a specific header value while @Headers injects a
Map<String, String>containing all headers.

Only the standard message attributes sent with an SQS message are supported. Custom attributes
are currently not supported.

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_Message.html

In addition to the provided argument resolvers, custom ones can be registered on the aws-
messaging:annotation-driven-queue-listener element using the aws-messaging:argument-resolvers
attribute (see example below).

<aws-messaging:annotation-driven-queue-listener>
<aws-messaging:argument-resolvers>
<bean class="org.custom.CustomArgumentResolver" />
</aws-messaging:arqument-resolvers>
</aws-messaging:annotation-driven-queue-listener>

By default the SimpleMessagelistenerContainer creates a ThreadPoolTaskExecutor with computed
values for the core and max pool sizes. The core pool size is set to twice the number of queues and
the max pool size is obtained by multiplying the number of queues by the value of the
maxNumberOfMessages field. If these default values do not meet the need of the application, a custom
task executor can be set with the task-executor attribute (see example below).

<aws-messaging:annotation-driven-queue-listener task-executor="simpleTaskExecutor" />

Message reply

Message listener methods can be annotated with @SendTo to send their return value to another
channel. The SendToHandlerMethodReturnValueHandler uses the defined messaging template set on the
aws-messaging:annotation-driven-queue-listener element to send the return value. The messaging
template must implement the DestinationResolvingMessageSendingOperations interface.

<aws-messaging:annotation-driven-queue-listener send-to-message-
template="queueMessagingTemplate"/>

@SqsListener ("treeQueue")

@SendTo("1leafsQueue")

public List<Leaf> extractleafs(Tree tree) {
/] ...

In this example the extractLeafs method will receive messages coming from the treeQueue and then
return a List of Leafs which is going to be sent to the leafsQueue. Note that on the aws-
messaging:annotation-driven-queuve-listener XML element there is an attribute send-to-message-
template that specifies QueueMessagingTemplate as the messaging template to be used to send the
return value of the message listener method.

Handling Exceptions

Exception thrown inside @SqsListener annotated methods can be handled by methods annotated
with @MessageExceptionHandler.

import org.springframework.cloud.aws.messaging.listener.annotation.SqsListener;
import org.springframework.messaging.handler.annotation.MessageExceptionHandler;
import org.springframework.stereotype.Component;

@Component
public class MyMessageHandler {

@SqsListener("queueName")
void handle(String message) {

throw new MyException("something went wrong");

}

@MessageExceptionHandler (MyException.class)
void handleException(MyException e) {

}

7.2.4. The SimpleMessageListenerContainerFactory

The SimpleMessagelListenerContainer can also be configured with Java by creating a bean of type
SimpleMessagelistenerContainerFactory.

©Bean
public SimpleMessagelistenerContainerFactory
simpleMessagelistenerContainerFactory(AmazonSQSAsync amazonSgs) {
SimpleMessagelistenerContainerFactory factory = new
SimpleMessagelistenerContainerFactory();
factory.setAmazonSqs(amazonSqs);
factory.setAutoStartup(false);
factory.setMaxNumberOfMessages(5);
/] ...

return factory;

7.2.5. Consuming AWS Event messages with Amazon SQS

It is also possible to receive AWS generated event messages with the SQS message listeners. Because
AWS messages does not contain the mime-type header, the Jackson message converter has to be
configured with the strictContentTypeMatch property false to also parse message without the proper
mime type.

The next code shows the configuration of the message converter using the
QueueMessageHandlerFactory and re-configuring the MappingJackson2MessageConverter

@Bean

public QueueMessageHandlerFactory queueMessageHandlerFactory() {
QueueMessageHandlerFactory factory = new QueueMessageHandlerFactory();
MappingJackson2MessageConverter messageConverter = new

MappingJackson2MessageConverter();

//set strict content type match to false
messageConverter.setStrictContentTypeMatch(false);

factory.setArgumentResolvers(Collections.<HandlerMethodArgumentResolver>singletonList(
new PayloadArgumentResolver(messageConverter)));
return factory;

}

With the configuration above, it is possible to receive event notification for S3 buckets (and also
other event notifications like elastic transcoder messages) inside @SqsListener annotated methods s
shown below.

@SqsListener("testQueue")

public void receive(S3EventNotification s3EventNotificationRecord) {
S3EventNotification.S3Entity s3Entity =

s3EventNotificationRecord.getRecords().qget(0).getS3();

}

7.3. SNS support

Amazon SNS is a publish-subscribe messaging system that allows clients to publish notification to a
particular topic. Other interested clients may subscribe using different protocols like HTTP/HTTPS,
e-mail or an Amazon SQS queue to receive the messages.

The next graphic shows a typical example of an Amazon SNS architecture.
[SNS Overview] | sns-overview.png

Spring Cloud AWS supports Amazon SNS by providing support to send notifications with a
NotificationMessagingTemplate and to receive notifications with the HTTP/HTTPS endpoint using the
Spring Web MVC @Controller based programming model. Amazon SQS based subscriptions can be
used with the annotation-driven message support that is provided by the Spring Cloud AWS
messaging module.

7.3.1. Sending a message

The NotificationMessagingTemplate contains two convenience methods to send a notification. The
first one specifies the destination using a String which is going to be resolved against the SNS API.
The second one takes no destination argument and uses the default destination. All the usual send
methods that are available on the MessageSendingOperations are implemented but are less
convenient to send notifications because the subject must be passed as header.

o Currently only String payloads can be sent using the
NotificationMessagingTemplate as this is the expected type by the SNS APIL.

import com.amazonaws.services.sns.AmazonSNS;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.cloud.aws.messaging.core.NotificationMessagingTemplate;

public class SnsNotificationSender {
private final NotificationMessagingTemplate notificationMessagingTemplate;

@Autowired
public SnsNotificationSender (AmazonSNS amazonSns) {
this.notificationMessagingTemplate = new
NotificationMessagingTemplate(amazonSns);

}

public void send(String subject, String message) {
this.notificationMessagingTemplate.sendNotification("physicalTopicName",
message, subject);
}
}

This example constructs a new NotificationMessagingTemplate by passing an AmazonSNS client as
argument. In the send method the convenience sendNotification method is used to send a message
with subject to an SNS topic. The destination in the sendNotification method is a string value that
must match the topic name defined on AWS. This value is resolved at runtime by the Amazon SNS
client. Optionally a ResourceldResolver implementation can be passed to the
NotificationMessagingTemplate constructor to resolve resources by logical name when running
inside a CloudFormation stack. (See Managing cloud environments for more information about
resource name resolution.)

It is recommended to use the XML messaging namespace to create NotificationMessagingTemplate as

it will automatically configure the SNS client to setup the default converter.

<aws-messaging:notification-messaging-template id="notificationMessagingTemplate" />

7.3.2. Annotation-driven HTTP notification endpoint

SNS supports multiple endpoint types (SQS, Email, HTTP, HTTPS), Spring Cloud AWS provides
support for HTTP(S) endpoints. SNS sends three type of requests to an HTTP topic listener endpoint,
for each of them annotations are provided:

* Subscription request — @NotificationSubscriptionMapping

* Notification request — @NotificationMessageMapping

* Unsubscription request — @NotificationUnsubscribeMapping

HTTP endpoints are based on Spring MVC controllers. Spring Cloud AWS added some custom
argument resolvers to extract the message and subject out of the notification requests.

@Controller
@RequestMapping("/topicName")
public class NotificationTestController {

@NotificationSubscriptionMapping

public void handleSubscriptionMessage(NotificationStatus status) throws
IOException {

//We subscribe to start receive the message
status.confirmSubscription();

@NotificationMessageMapping
public void handleNotificationMessage(@NotificationSubject String subject,
@NotificationMessage String message) {
/] ...
}

@NotificationUnsubscribeConfirmationMapping

public void handleUnsubscribeMessage(NotificationStatus status) {
//e.qg. the client has been unsubscribed and we want to "re-subscribe"
status.confirmSubscription();

Currently it is not possible to define the mapping URL on the method level
therefore the RequestMapping must be done at type level and must contain the full
path of the endpoint.

This example creates a new Spring MVC controller with three methods to handle the three requests
listed above. In order to resolve the arguments of the handleNotificationMessage methods a custom
argument resolver must be registered. The XML configuration is listed below.

<mvc:annotation-driven>
<mvc:argument-resolvers>
<ref bean="notificationResolver" />
</mvc:argument-resolvers>
</mvc:annotation-driven>

<aws-messaging:notification-argument-resolver id="notificationResolver" />

The aws-messaging:notification-argument-resolver element registers three argument resolvers:
NotificationStatusHandlerMethodArgumentResolver,
NotificationMessageHandlerMethodArgumentResolver, and
NotificationSubjectHandlerMethodArgumentResolver.

7.4. Using CloudFormation

Amazon SQS queues and SNS topics can be configured within a stack and then be used by
applications. Spring Cloud AWS also supports the lookup of stack-configured queues and topics by
their logical name with the resolution to the physical name. The example below shows an SNS topic
and SQS queue configuration inside a CloudFormation template.

"LogicalQueueName": {
"Type": "AWS::SQS::Queue",
"Properties": {
}

I

"LogicalTopicName": {
"Type": "AWS::SNS::Topic",
"Properties": {

}

The logical names LogicalQueueName and LogicalTopicName can then be used in the configuration and
in the application as shown below:

<aws-messaging:queue-messaging-template default-destination="LogicalQueueName" />

<aws-messaging:notification-messaging-template default-destination="LogicalTopicName"
/>

@SqsListener("LogicalQueueName")
public void receiveQueueMessages(Person person) {
// Logical names can also be used with messaging templates
this.notificationMessagingTemplate.sendNotification("anotherLogicalTopicName",
"Message", "Subject");

}

When using the logical names like in the example above, the stack can be created on different
environments without any configuration or code changes inside the application.

Chapter 8. Caching

Caching in a cloud environment is useful for applications to reduce the latency and to save
database round trips. Reducing database round trips can significantly reduce the requirements for
the database instance. The Spring Framework provides, since version 3.1, a unified Cache
abstraction to allow declarative caching in applications analogous to the declarative transactions.

Spring Cloud AWS integrates the Amazon ElastiCache service into the Spring unified caching
abstraction providing a cache manager based on the memcached and Redis protocols. The caching
support for Spring Cloud AWS provides its own memcached implementation for ElastiCache and
uses Spring Data Redis for Redis caches.

8.1. Configuring dependencies for Redis caches

Spring Cloud AWS delivers its own implementation of a memcached cache, therefore no other
dependencies are needed. For Redis Spring Cloud AWS relies on Spring Data Redis to support
caching and also to allow multiple Redis drivers to be used. Spring Cloud AWS supports all Redis
drivers that Spring Data Redis supports (currently Jedis, JRedis, SRP and Lettuce) with Jedis being
used internally for testing against ElastiCache. A dependency definition for Redis with Jedis is
shown in the example

<dependencies>
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redis</artifactld>
<version>${spring-data-redis.version}</version>
</dependency>
<dependency>
<groupId>redis.clients</groupId>
<artifactId>jedis</artifactId>
<version>2.6.1</version>
</dependency>
</dependencies>

Spring Cloud AWS will automatically detect the Redis driver and will use one of them automatically.

8.2. Configuring caching with XML

The cache support for Spring Cloud AWS resides in the context module and can therefore be used if
the context module is already imported in the project. The cache integration provides its own
namespace to configure cache clusters that are hosted in the Amazon ElastiCache service. The next
example contains a configuration for the cache cluster and the Spring configuration to enable
declarative, annotation-based caching.

https://aws.amazon.com/elasticache/
https://projects.spring.io/spring-data-redis/

<beans xmlns:aws-cache="http://www.springframework.org/schema/cloud/aws/cache"
xmlns:cache="http://www.springframework.org/schema/cache"
xmlns="http://www.springframework.org/schema/beans"
xsi:schemalocation="http://www.springframework.org/schema/cloud/aws/cache
http://www.springframework.org/schema/cloud/aws/cache/spring-cloud-aws-

cache.xsd
http://www.springframework.org/schema/cache
https://www.springframework.org/schema/cache/spring-cache.xsd">

<aws-context:context-credentials>
</aws-context:context-credentials>

<aws-cache:cache-manager>
<aws-cache:cache-cluster name="CacheCluster" />
</aws-cache:cache-manager>

<cache:annotation-driven />
</beans>

The configuration above configures a cache-manager with one cache with the name CacheCluster that
represents an ElasticCache cluster.

8.2.1. Mixing caches

Applications may have the need for multiple caches that are maintained by one central cache
cluster. The Spring Cloud AWS caching support allows to define multiple caches inside one cache
manager and also to use externally defined caches inside the cache manager.

The example below demonstrates a configuration example that contains a pre-configured cache
with a cache-ref element (wWhich might be a local cache) and a cache-cluster configuration for
ElastiCache cache clusters.

<beans ...>
<aws-cache:cache-manager id="cacheManager">
<aws-cache:cache-ref ref="memcached" />
<aws-cache:cache-cluster name="SimpleCache"/>
</aws-cache:cache-manager>
</beans>

8.2.2. Defining expiration

The Spring cache demarcation does not support expiry time configuration and leaves it up to the
cache implementation to support an expiry time. The Spring Cloud AWS cache configuration
supports the expiry time setting per cache. The expiry time will be passed to the memcached
service.

The cache-cluster element accepts an expiration attribute that defines the expiration time in

https://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/ManagingCacheClusters.html

seconds. No configured values implies that there is an infinite expiration time.

<beans>
<aws-cache:cache-manager>
<aws-cache:cache-cluster expiration="10000" name="CacheCluster" />
</aws-cache:cache-manager>
</beans>

8.3. Configuring caching using Java configuration

Spring Cloud AWS also support the cache configuration with Java configuration classes. On any
Configuration class, the caching can be configured using the
org.springframework.cloud.aws.cache.config.annotation.EnableElastiCache annotation provided by
Spring Cloud AWS. The next example shows a configuration of two cache clusters.

@EnableElastiCache({@CacheClusterConfig(name = "firstCache"), @CacheClusterConfig(name
= "secondCache")})

public class ApplicationConfiguration {

}

o If you leave the value attribute empty, then all the caches inside your
CloudFormation stack (if available) will be configured automatically.

8.3.1. Configuring expiry time for caches

The Java configuration also allows to configure the expiry time for the caches. This can be done for
all caches using the defaultExpiration attribute as shown in the example below.

@EnableElastiCache(defaultExpiration = 23)
public class ApplicationConfiguration {

}

The expiration can be defined on a cache level using the @CacheClusterConfig annotations
expiration attribute as shown below (using seconds as the value).

@EnableElastiCache({@CacheClusterConfig(name = "firstCache", expiration = 23),
@CacheClusterConfig(name = "secondCache", expiration = 42)})
public class ApplicationConfiguration {

}

8.4. Configuring caching in Spring Boot

The caches will automatically be configured in Spring Boot without any explicit configuration
property.

8.5. Using caching

Based on the configuration of the cache, developers can annotate their methods to use the caching
for method return values. The next example contains a caching declaration for a service for which
the return values should be cached

@Service
public class ExpensiveService {

@Cacheable("CacheCluster")
public String calculateExpensiveValue(String key) {

}

8.6. Memcached client implementation

There are different memcached client implementations available for Java, the most prominent ones
are Spymemcached and XMemcached. Amazon AWS supports a dynamic configuration and delivers
an enhanced memcached client based on Spymemcached to support the auto-discovery of new
nodes based on a central configuration endpoint.

Spring Cloud AWS relies on the Amazon ElastiCache Client implementation and therefore has a
dependency on that.

8.7. Using CloudFormation

Amazon ElastiCache clusters can also be configured within a stack and then be used by
applications. Spring Cloud AWS also supports the lookup of stack-configured cache clusters by their
logical name with the resolution to the physical name. The example below shows a cache cluster
configuration inside a CloudFormation template.

"CacheCluster": {

"Type": "AWS::ElastiCache::CacheCluster",

"Properties": {
"AutoMinorVersionUpgrade": "true",
"Engine": "memcached",
"CacheNodeType": "cache.t2.micro",
"CacheSubnetGroupName" : "sample",
"NumCacheNodes": "1",
"VpcSecurityGroupIds": ["samplel"]

The cache cluster can then be used with the name CacheCluster inside the application configuration
as shown below:

https://github.com/couchbase/spymemcached
https://github.com/killme2008/xmemcached
https://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/AutoDiscovery.html

<beans...>
<aws-cache:cache-manager>
<aws-cache:cache-cluster name="CacheCluster" expiration="15"/>
</aws-cache:cache-manager>
<beans>

With the configuration above the application can be deployed with multiple stacks on different
environments without any configuration change inside the application.

Chapter 9. Data Access with JDBC

Spring has a broad support of data access technologies built on top of JDBC like JdbcTemplate and
dedicated ORM (JPA, Hibernate support). Spring Cloud AWS enables application developers to re-
use their JDBC technology of choice and access the Amazon Relational Database Service with a
declarative configuration. The main support provided by Spring Cloud AWS for JDBC data access
are:

* Automatic data source configuration and setup based on the Amazon RDS database instance.

* Automatic read-replica detection and configuration for Amazon RDS database instances.

» Retry-support to handle exception during Multi-AZ failover inside the data center.

9.1. Configuring data source

Before using and configuring the database support, the application has to include the respective
module dependency into its Maven configuration. Spring Cloud AWS JDBC support comes as a
separate module to allow the modularized use of the modules.

9.1.1. Maven dependency configuration

The Spring Cloud AWS JDBC module comes as a standalone module and can be imported with the
following dependency declaration.

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-aws-jdbe</artifactId>
<version>{spring-cloud-version}</version>
</dependency>

9.1.2. Basic data source configuration

The data source configuration requires the security and region configuration as a minimum
allowing Spring Cloud AWS to retrieve the database metadata information with the Amazon RDS
service. Spring Cloud AWS provides an additional jdbc specific namespace to configure the data
source with the minimum attributes as shown in the example:

https://aws.amazon.com/rds/

<beans xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jdbe="http://www.springframework.org/schema/cloud/aws/jdbc"
xmlns="http://www.springframework.org/schema/beans"
xsi:schemalocation="http://www.springframework.org/schema/cloud/aws/jdbc
http://www.springframework.org/schema/cloud/aws/jdbc/spring-cloud-aws-
jdbc.xsd">

<aws-context:context-credentials>
</aws-context:context-credentials>
<aws-context:context-region region="..."/>

<jdbc:data-source
db-instance-identifier="myRdsDatabase"
password="${rdsPassword}">

</jdbc:data-source>

</beans>

The minimum configuration parameters are a unique id for the data source, a valid db-instance-
identifier attribute that points to a valid Amazon RDS database instance. The master user
password for the master user. If there is another user to be used (which is recommended) then the
username attribute can be set.

With this configuration Spring Cloud AWS fetches all the necessary metadata and creates a Tomcat
JDBC pool with the default properties. The data source can be later injected into any Spring Bean as
shown below:

@Service
public class SimpleDatabaseService implements DatabaseService {

private final JdbcTemplate jdbcTemplate;

@Autowired
public SimpleDatabaseService(DataSource dataSource) {
this.jdbcTemplate = new JdbcTemplate(dataSource);

}
}

It is possible to qualify the data source injection point with an @Qualifier annotation to allow
multiple data source configurations inside one application context and still use auto-wiring.

9.1.3. Data source pool configuration

Spring Cloud AWS creates a new Tomcat JDBC pool with the default properties. Often these default
properties do not meet the requirements of the application with regards to pool size and other
settings. The data source configuration supports the configuration of all valid pool properties with a
nested XML element. The following example demonstrates the re-configuration of the data source

https://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html
https://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html

with custom pool properties.

<beans ..>
<aws-context:context-credentials>
<;é®s—context:context—credentials>
<aws-context:context-region region="..."/>

<jdbc:data-source
db-instance-identifier="myRdsDatabase"
password="${rdsPassword}">
<jdbc:pool-attributes initialSize="1" " maxActive="200" minIdle="10"
testOnBorrow="true" validationQuery="SELECT 1" />
</jdbc:data-source>

</beans>

A full list of all configuration attributes with their value is available here.

9.2. Configuring data source with Java config

Spring Cloud AWS also supports the configuration of the data source within an @Configuration class.
The org.springframework.cloud.aws.jdbc.config.annotation.EnableRdsInstance annotation can be
used to configure one data source. Multiple ones can be used to configure more then one data
source. Each annotation will generate exactly one data source bean.

The class below shows a data source configuration inside a configuration class

@Configuration

@EnableRdsInstance(dbInstanceldentifier = "test",password = "secret",
readReplicaSupport = true)

public class ApplicationConfiguration {

}

The configuration attributes are the same in the XML element. The required
(;) attributes are also the same for the XML configuration (the dbInstanceldentifier
et and password attribute)

9.2.1. Java based data source pool configuration

It is also possible to override the pool configuration with custom values. Spring Cloud AWS provides
a org.springframework.cloud.aws.jdbc.config.annotation.RdsInstanceConfigurer that creates a
org.springframework.cloud.aws.jdbc.datasource.DataSourceFactory which might contain custom
pool attributes. The next examples shows the implementation of one configurer that overrides the
validation query and the initial size.

https://tomcat.apache.org/tomcat-7.0-doc/jdbc-pool.html

@Configuration
@EnableRdsInstance(dbInstanceldentifier = "test",password = "secret")
public class ApplicationConfiguration {

@Bean
public RdsInstanceConfigurer instanceConfigurer() {
return new RdsInstanceConfigurer() {

@0verride

public DataSourceFactory getDataSourceFactory() {

TomcatJdbcDataSourceFactory dataSourceFactory = new

TomcatJdbcDataSourceFactory();

Q

This

dataSourceFactory.setInitialSize(10);
dataSourceFactory.setValidationQuery("SELECT 1 FROM DUAL");
return dataSourceFactory;

class returns an anonymous class of type

org.springframework.cloud.aws.jdbc.config.annotation.RdsInstanceConfiqurer,
which might also of course be a standalone class.

9.3. Configuring data source in Spring Boot

The data sources can also be configured using the Spring Boot configuration files. Because of the
dynamic number of data sources inside one application, the Spring Boot properties must be

configured for each data source.

A data source configuration consists of the general property name cloud.aws.rds.<instanceName> for
the data source identifier following the sub properties for the particular data source where
instanceName is the name of the concrete instance. The table below outlines all properties for a data

source using test as the instance identifier.

property example description

cloud.aws.rds.test.password verySecret The password for the db
instance test

cloud.aws.rds.test.username admin The username for the db

cloud.aws.rds.test.readReplicaS true

upport

cloud.aws.rds.test.databaseNam fooDb

e

instance test (optional)

If read-replicas should be used
for the data source (see below)

Custom database name if the

default one from rds should not

be used

9.4. Read-replica configuration

Amazon RDS allows to use MySQL, MariaDB, Oracle, PostgreSQL and Microsoft SQL Server read-
replica instances to increase the overall throughput of the database by offloading read data access
to one or more read-replica slaves while maintaining the data in one master database.

Spring Cloud AWS supports the use of read-replicas in combination with Spring read-only
transactions. If the read-replica support is enabled, any read-only transaction will be routed to a
read-replica instance while using the master database for write operations.

Using read-replica instances does not guarantee strict ACID semantics for the
database access and should be used with care. This is due to the fact that the read-

° replica might be behind and a write might not be immediately visible to the read
transaction. Therefore it is recommended to use read-replica instances only for
transactions that read data which is not changed very often and where outdated
data can be handled by the application.

The read-replica support can be enabled with the read-replica attribute in the datasource
configuration.

<beans ..>
<jdbc:data-source db-instance-identifier="RdsSingleMicroInstance"
password="${rdsPassword}" read-replica-support="true">

</jdbc:data-source>
</beans>

Spring Cloud AWS will search for any read-replica that is created for the master database and route
the read-only transactions to one of the read-replicas that are available. A business service that uses
read-replicas can be implemented like shown in the example.

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html
https://en.wikipedia.org/wiki/ACID

@Service
public class SimpleDatabaseService {

private final JdbcTemplate jdbcTemplate;

@Autowired

public SimpleDatabaseService(DataSource dataSource) {
this.jdbcTemplate = new JdbcTemplate(dataSource);

}

@Transactional(readOnly = true)
public Person loadA11() {
// read data on the read replica

}

@Transactional
public void updatePerson(Person person) {
// write data into database

}

9.5. Failover support

Amazon RDS supports a Multi-AZ fail-over if one availability zone is not available due to an outage
or failure of the primary instance. The replication is synchronous (compared to the read-replicas)
and provides continuous service. Spring Cloud AWS supports a Multi-AZ failover with a retry
mechanism to recover transactions that fail during a Multi-AZ failover.

In most cases it is better to provide direct feedback to a user instead of trying

o potentially long and frequent retries within a user interaction. Therefore the fail-
over support is primarily useful for batch application or applications where the
responsiveness of a service call is not critical.

The Spring Cloud AWS JDBC module provides a retry interceptor that can be used to decorate
services with an interceptor. The interceptor will retry the database operation again if there is a
temporary error due to a Multi-AZ failover. A Multi-AZ failover typically lasts only a couple of
seconds, therefore a retry of the business transaction will likely succeed.

The interceptor can be configured as a regular bean and then be used by a pointcut expression to
decorate the respective method calls with the interceptor. The interceptor must have a configured
database to retrieve the current status (if it is a temporary fail-over or a permanent error) from the
Amazon RDS service.

The configuration for the interceptor can be done with a custom element from the Spring Cloud
AWS jdbc namespace and will be configured like shown:

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.MultiAZ.html

<beans ..>
<jdbc:retry-interceptor id="myInterceptor"
db-instance-identifier="myRdsDatabase"
max-number-of-retries="10" />
</beans>

The interceptor itself can be used with any Spring advice configuration to wrap the respective
service. A pointcut for the services shown in the chapter before can be defined as follows:

<beans ..>
<aop:config>
<aop:advisor advice-ref="myInterceptor" pointcut="bean(simpleDatabaseService)"
order="1" />
</aop:config>
</beans>

It is important that the interceptor is called outside the transaction interceptor to

° ensure that the whole transaction will be re-executed. Configuring the interceptor
inside the transaction interceptor will lead to a permanent error because the
broken connection will never be refreshed.

The configuration above in combination with a transaction configuration will produce the
following proxy configuration for the service.

[Retry interceptor] | jdbc-retry-interceptor.png

9.6. CloudFormation support

Spring Cloud AWS supports database instances that are configured with CloudFormation. Spring
Cloud AWS can use the logical name inside the database configuration and lookup the concrete
database with the generated physical resource name. A database configuration can be easily
configured in CloudFormation with a template definition that might look like the following
example.

"myRdsDatabase": {

"Type": "AWS::RDS::DBInstance",
"Properties": {

"AllocatedStorage": "5",

"DBInstanceClass": "db.t1.micro",

"DBName": "test",

"Engine": "mysql",

"MasterUsername": "admin",
"MasterUserPassword": {"Ref":"RdsPassword"},

}
}

eadReplicaDatabase": {
"Type": "AWS::RDS::DBInstance",
"Properties": {
"AllocatedStorage"” : "5",
"SourceDBInstanceIdentifier": {
"Ref": "myRdsDatabase"

}I

"DBInstanceClass": "db.t1.micro"

The database can then be configured using the name set in the template. Also, the read-replica can
be enabled to use the configured read-replica database in the application. A configuration to use
the configured database is outlined below:

<beans>
<aws-context:stack-configuration/>

<jdbc:data-source db-instance-identifier="myRdsDatabase" password="${rdsPassword}"
read-replica-support="true"/>
</beans>

9.7. Database tags

Amazon RDS instances can also be configured using RDS database specific tags, allowing users to
configure database specific configuration metadata with the database. Database instance specific
tags can be configured using the user-tags-map attribute on the data-source element. Configure the
tags support like in the example below:

<jdbc:data-source
db-instance-identifier="myRdsDatabase"
password="${rdsPassword}" user-tags-map="dbTags" />

That allows the developer to access the properties in the code using expressions like shown in the
class below:

public class SampleService {

@Value("#{dbTags['aws:cloudformation:aws:cloudformation:stack-name']}")
private String stackName;

o The database tag aws:cloudformation:aws:cloudformation:stack-name is a default tag
that is created if the database is configured using CloudFormation.

Chapter 10. Sending mails

Spring has a built-in support to send e-mails based on the Java Mail API to avoid any static method
calls while using the Java Mail API and thus supporting the testability of an application. Spring
Cloud AWS supports the Amazon SES as an implementation of the Spring Mail abstraction.

As a result Spring Cloud AWS users can decide to use the Spring Cloud AWS implementation of the
Amazon SES service or use the standard Java Mail API based implementation that sends e-mails via
SMTP to Amazon SES.

It is preferred to use the Spring Cloud AWS implementation instead of SMTP
O mainly for performance reasons. Spring Cloud AWS uses one API call to send a
- mail message, while the SMTP protocol makes multiple requests (EHLO, MAIL
FROM, RCPT TO, DATA, QUIT) until it sends an e-mail.

10.1. Configuring the mail sender

Spring Cloud AWS provides an XML element to configure a Spring
org.springframework.mail.MailSender implementation for the client to be used. The default mail
sender works without a Java Mail dependency and is capable of sending messages without
attachments as simple mail messages. A configuration with the necessary elements will look like
this:

<beans xmlns:aws-mail="http://www.springframework.org/schema/cloud/aws/mail"
xsi:schemalocation="http://www.springframework.org/schema/cloud/aws/mail
http://www.springframework.org/schema/cloud/aws/mail/spring-cloud-aws-mail.xsd">
<aws-context:context-credentials>
</aws-context:context-credentials>
<aws-context:context-region region="eu-west-1" />

<aws-mail:mail-sender id="testSender" />

</beans>

10.2. Sending simple mails

Application developers can inject the MailSender into their application code and directly send
simple text based e-mail messages. The sample below demonstrates the creation of a simple mail
message.

https://www.oracle.com/technetwork/java/javamail/index.html
https://aws.amazon.com/de/ses/

public class MailSendingService {
private MailSender mailSender;

@Autowired
public MailSendingService(MailSender mailSender) {
this.mailSender = mailSender;

}

public void sendMailMessage() {
SimpleMailMessage simpleMailMessage = new SimpleMailMessage();
simpleMailMessage.setFrom("foo@bar.com");
simpleMailMessage.setTo("bar@baz.com");
simpleMailMessage.setSubject("test subject");
simpleMailMessage.setText("test content");
this.mailSender.send(simpleMailMessage);

10.3. Sending attachments

Sending attachments with e-mail requires MIME messages to be created and sent. In order to create
MIME messages, the Java Mail dependency is required and has to be included in the classpath.
Spring Cloud AWS will detect the dependency and create a
org.springframework.mail.javamail.JavaMailSender implementation that allows to create and build
MIME messages and send them. A dependency configuration for the Java Mail API is the only
change in the configuration which is shown below.

<dependency>
<groupId>javax.mail</groupId>
<artifactId>mailapi</artifactId>
<version>1.4.1</version>
<exclusions>
<!-- exclusion because we are running on Java 1.7 that includes the activation
API by default-->
<exclusion>
<artifactId>activation</artifactId>
<groupId>javax.activation</groupld>
</exclusion>
</exclusions>
</dependency>

Even though there is a dependency to the Java Mail API there is still the Amazon
o SES API used underneath to send mail messages. There is no SMTP setup required
on the Amazon AWS side.

Sending the mail requires the application developer to use the JavaMailSender to send an e-mail as

https://docs.aws.amazon.com/ses/latest/DeveloperGuide/send-email-smtp.html

shown in the example below.

public class MailSendingService {
private JavaMailSender mailSender;

@Autowired
public MailSendingService(JavaMailSender mailSender) {
this.mailSender = mailSender;

}

public void sendMailMessage() {
this.mailSender.send(new MimeMessagePreparator() {

@0verride

public void prepare(MimeMessage mimeMessage) throws Exception {
MimeMessageHelper helper =

new MimeMessageHelper(mimeMessage, true, "UTF-8");

helper.addTo("foo@bar.com");
helper.setFrom("bar@baz.com");
helper.addAttachment("test.txt", ...);
helper.setSubject("test subject with attachment");
helper.setText("mime body", false);

1

10.4. Configuring regions

Amazon SES is not available in all regions of the Amazon Web Services cloud. Therefore an
application hosted and operated in a region that does not support the mail service will produce an
error while using the mail service. Therefore the region must be overridden for the mail sender
configuration. The example below shows a typical combination of a region (EU-CENTRAL-1) that
does not provide an SES service where the client is overridden to use a valid region (EU-WEST-1).

<beans ...>

<aws-context:context-region region="eu-central-1" />
<aws-mail:mail-sender id="testSender" region="eu-west-1"/>

</beans>

10.5. Authenticating e-mails

To avoid any spam attacks on the Amazon SES mail service, applications without production access
must verify each e-mail receiver otherwise the mail sender will throw a

https://docs.aws.amazon.com/ses/latest/DeveloperGuide/regions.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-email-addresses.html

com.amazonaws.services.simpleemail.model.MessageRejectedException.

Production access can be requested and will disable the need for mail address verification.

https://docs.aws.amazon.com/ses/latest/DeveloperGuide/request-production-access.html

Chapter 11. Resource handling

The Spring Framework provides a org.springframework.core.io.ResourcelLoader abstraction to load
files from the filesystem, servlet context and the classpath. Spring Cloud AWS adds support for the
Amazon S3 service to load and write resources with the resource loader and the s3 protocol.

The resource loader is part of the context module, therefore no additional dependencies are
necessary to use the resource handling support.

11.1. Configuring the resource loader

Spring Cloud AWS does not modify the default resource loader unless it encounters an explicit
configuration with an XML namespace element. The configuration consists of one element for the
whole application context that is shown below:

<beans xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:aws-context="http://www.springframework.org/schema/cloud/aws/context"
xsi:schemalocation="http://www.springframework.org/schema/cloud/aws/context
http://www.springframework.org/schema/cloud/aws/context/spring-cloud-aws-
context.xsd">

<aws-context:context-credentials>
</aws-context:context-credentials>

<aws-context:context-resource-loader/>
</beans>

11.2. Downloading files

Downloading files can be done by using the s3 protocol to reference Amazon S3 buckets and objects
inside their bucket. The typical pattern is s3://<bucket>/<object> where bucket is the global and
unique bucket name and object is a valid object name inside the bucket. The object name can be a
file in the root folder of a bucket or a nested file within a directory inside a bucket.

The next example demonstrates the use of the resource loader to load different resources.

https://aws.amazon.com/s3/

public class SimpleResourceloadingBean {

@Autowired
private ResourcelLoader resourceloader;

public void resourcelLoadingMethod() throws IOException {
Resource resource =
this.resourcelLoader.getResource("s3://myBucket/rootFile.log");
Resource secondResource =
this.resourceloader.getResource("s3://myBucket/rootFolder/subFile");

InputStream inputStream = resource.getInputStream();
//read file

11.3. Uploading files

Since Spring Framework 3.1 the resource loader can also be used to upload files with the
org.springframework.core.io.WritableResource interface which is a specialization of the
org.springframework.core.io.ResourceLoader interface. Clients can wupload files wusing the
WritableResource interface. The next example demonstrates an upload of a resource using the
resource loader.

public class SimpleResourceloadingBean {

@Autowired
private Resourceloader resourceloader;

public void writeResource() throws IOException {
Resource resource =
this.resourceloader.getResource("s3://myBucket/rootFile.log");
WritableResource writableResource = (WritableResource) resource;
try (OutputStream outputStream = writableResource.getOutputStream()) {
outputStream.write("test".getBytes());

}

11.3.1. Uploading multi-part files

Amazon S3 supports multi-part uploads to increase the general throughput while uploading. Spring
Cloud AWS by default only uses one thread to upload the files and therefore does not provide
parallel upload support. Users can configure a custom org.springframework.core.task.TaskExecutor
for the resource loader. The resource loader will queue multiple threads at the same time to use
parallel multi-part uploads.

https://docs.aws.amazon.com/AmazonS3/latest/dev/uploadobjusingmpu.html

The configuration for a resource loader that uploads with 10 Threads looks like the following

<beans ...>
<aws-context:context-resource-loader task-executor="executor" />
<task:executor id="executor" pool-size="10" queue-capacity="0" rejection-
policy="CALLER_RUNS" />
</beans>

Spring Cloud AWS consumes up to 5 MB (at a minimum) of memory per thread.
Therefore each parallel thread will incur a memory footprint of 5 MB in the heap,

A and a thread size of 10 will consume therefore up to 50 mb of heap space. Spring
Cloud AWS releases the memory as soon as possible. Also, the example above
shows that there is no queue-capacity configured, because queued requests would
also consume memory.

11.3.2. Uploading with the TransferManager

The Amazon SDK also provides a high-level abstraction that is useful to upload files, also with
multiple threads using the multi-part functionality. A
com.amazonaws.services.s3.transfer.TransferManager can be easily created in the application code
and injected with the pre-configured com.amazonaws.services.s3.AmazonS3 client that is already
created with the Spring Cloud AWS resource loader configuration.

This example shows the use of the transferManager within an application to upload files from the
hard-drive.

public class SimpleResourceloadingBean {

@Autowired
private AmazonS3 amazonS3;

public void withTransferManager() {
TransferManager transferManager = new TransferManager(this.amazonS3);
transferManager.upload("myBucket","filename",new File("someFile"));

11.4. Searching resources

The Spring resource loader also supports collecting resources based on an Ant-style path
specification. Spring Cloud AWS offers the same support to resolve resources within a bucket and
even throughout buckets. The actual resource loader needs to be wrapped with the Spring Cloud
AWS one in order to search for s3 buckets, in case of non s3 bucket the resource loader will fall
back to the original one. The next example shows the resource resolution by using different
patterns.

public class SimpleResourceloadingBean {
private ResourcePatternResolver resourcePatternResolver;

@Autowired
public void setupResolver(ApplicationContext applicationContext, AmazonS3
amazonS3){
this.resourcePatternResolver = new
PathMatchingSimpleStorageResourcePatternResolver(amazonS3, applicationContext);

}

public void resolveAndLoad() throws IOException {
Resource[] allTxtFilesInFolder =
this.resourcePatternResolver.getResources("s3://bucket/name/*.txt");
Resource[] allTxtFilesInBucket =
this.resourcePatternResolver.getResources("s3://bucket/**/*.txt");
Resource[] allTxtFilesGlobally =
this.resourcePatternResolver.getResources("s3://**/*.txt");

}
}

g Resolving resources throughout all buckets can be very time consuming depending
on the number of buckets a user owns.

11.5. Using CloudFormation

CloudFormation also allows to create buckets during stack creation. These buckets will typically
have a generated name that must be used as the bucket name. In order to allow application
developers to define static names inside their configuration, Spring Cloud AWS provides support to
resolve the generated bucket names. Application developers can use the
org.springframework.cloud.aws.core.env.ResourceldResolver interface to resolve the physical names
that are generated based on the logical names.

The next example shows a bucket definition inside a CloudFormation stack template. The bucket
will be created with a name like integrationteststack-sampleBucket-23qysofs62tc2

{
"Resources": {
"sampleBucket": {
"Type": "AWS::S3::Bucket"
}
}
}

Application developers can resolve that name and use it to load resources as shown in the next
example below.

public class SimpleResourceloadingBean {

private final Resourceloader loader;
private final ResourceIdResolver idResolver;

@Autowired
public SimpleResourcelLoadingBean(ResourcelLoader loader, ResourceldResolver
idResolver) {
this.loader = loader;
this.idResolver = idResolver;

}

public void resolveAndLoad() {
String sampleBucketName = this.idResolver.
resolveToPhysicalResourceld("sampleBucket");
Resource resource = this.loader.
getResource("s3://" + sampleBucketName + "/test");

Chapter 12. CloudWatch Metrics

Spring Cloud AWS provides Spring Boot auto-configuration for Micrometer CloudWatch integration.
To send metrics to CloudWatch add a dependency to spring-cloud-aws-actuator module:

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-aws-actuator</artifactId>
</dependency>

Additionally CloudWatch integration requires a value provided for
management.metrics.export.cloudwatch.namespace configuration property.

Following configuration properties are available to configure CloudWatch integration:

property default description
management.metrics.export.clo The namespace which will be
udwatch.namespace used when sending metrics to

CloudWatch. This property is
needed and must not be null.

management.metrics.export.clo true If CloudWatch integration

udwatch.enabled should be enabled. This
property should be likely set to
false for a local development

profile.
management.metrics.export.clo 1m The interval at which metrics
udwatch.step are sent to CloudWatch. The

default is 1 minute.

Chapter 13. Configuration properties

To see the list of all Spring Cloud AWS related configuration properties please check the Appendix
page.

appendix.html
appendix.html

Spring Cloud Build

[Build] |

https://github.com/spring-cloud/spring-cloud-

build/workflows/Build/badge.svg?branch=main&style=svg

Spring Cloud Build is a common utility project for Spring Cloud to use for plugin and dependency
management.

Chapter 14. Building and Deploying

To install locally:
$ mvn install -s .settings.xml
and to deploy snapshots to repo.spring.io:

$ mvn deploy
-DaltSnapshotDeploymentRepository=repo.spring.io::default::https://repo.spring.io/libs
-snapshot-local

for a RELEASE build use

$ mvn deploy
-DaltReleaseDeploymentRepository=repo.spring.io::default::https://repo.spring.io/libs
-release-local

and for jcenter use

$ mvn deploy
-DaltReleaseDeploymentRepository=bintray::default::https://api.bintray.com/maven/sprin
g/jars/org.springframework.cloud:build

and for Maven Central use

$ mvn deploy -P central -DaltReleaseDeploymentRepository=sonatype-nexus
-staging::default::https://oss.sonatype.org/service/local/staging/deploy/maven2

(the "central" profile is available for all projects in Spring Cloud and it sets up the gpg jar signing,
and the repository has to be specified separately for this project because it is a parent of the starter
parent which users in turn have as their own parent).

Chapter 15. Contributing

Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard
Github development process, using Github tracker for issues and merging pull requests into master.
If you want to contribute even something trivial please do not hesitate, but follow the guidelines
below.

15.1. Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the Contributor
License Agreement. Signing the contributor’s agreement does not grant anyone commit rights to
the main repository, but it does mean that we can accept your contributions, and you will get an
author credit if we do. Active contributors might be asked to join the core team, and given the
ability to merge pull requests.

15.2. Code of Conduct

This project adheres to the Contributor Covenant code of conduct. By participating, you are
expected to wuphold this code. Please report unacceptable behavior to spring-code-of-
conduct@pivotal.io.

15.3. Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help. They can also be added after the
original pull request but before a merge.

* Use the Spring Framework code format conventions. If you use Eclipse you can import
formatter settings using the eclipse-code-formatter.xml file from the Spring Cloud Build project.
If using Intelli], you can use the Eclipse Code Formatter Plugin to import the same file.

* Make sure all new .java files to have a simple Javadoc class comment with at least an @author
tag identifying you, and preferably at least a paragraph on what the class is for.

* Add the ASF license header comment to all new .java files (copy from existing files in the
project)

* Add yourself as an @author to the .java files that you modify substantially (more than cosmetic
changes).

* Add some Javadocs and, if you change the namespace, some XSD doc elements.
* A few unit tests would help a lot as well — someone has to do it.

 If no-one else is using your branch, please rebase it against the current master (or other target
branch in the main project).

* When writing a commit message please follow these conventions, if you are fixing an existing
issue please add Fixes gh-XXXX at the end of the commit message (where XXXX is the issue
number).

https://cla.pivotal.io/sign/spring
https://cla.pivotal.io/sign/spring
https://github.com/spring-cloud/spring-cloud-build/blob/master/docs/src/main/asciidoc/code-of-conduct.adoc
mailto:spring-code-of-conduct@pivotal.io
mailto:spring-code-of-conduct@pivotal.io
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-dependencies-parent/eclipse-code-formatter.xml
https://plugins.jetbrains.com/plugin/6546
https://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

15.4. Checkstyle

Spring Cloud Build comes with a set of checkstyle rules. You can find them in the spring-cloud-
build-tools module. The most notable files under the module are:

spring-cloud-build-tools/

L—— src

—— checkstyle

| L—— checkstyle-suppressions.xml ®
L—— main
L—— resources

—— checkstyle-header.txt @
L—— checkstyle.xml @

@ Default Checkstyle rules
@ File header setup

® Default suppression rules

15.4.1. Checkstyle configuration

Checkstyle rules are disabled by default. To add checkstyle to your project just define the
following properties and plugins.

pom.xml

<properties>

<maven-checkstyle-plugin.failsOnError>true</maven-checkstyle-plugin.failsOnError> @
<maven-checkstyle-plugin.failsOnViolation>true
</maven-checkstyle-plugin.failsOnViolation> @
<maven-checkstyle-plugin.includeTestSourceDirectory>true
</maven-checkstyle-plugin.includeTestSourceDirectory> @

</properties>

<build>
<plugins>
<plugin> @
<groupld>io.spring.javaformat</groupld>
<artifactId>spring-javaformat-maven-plugin</artifactId>
</plugin>
<plugin> ®
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-checkstyle-plugin</artifactId>
</plugin>
</plugins>

<reporting>
<plugins>
<plugin> ®
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-checkstyle-plugin</artifactId>
</plugin>
</plugins>
</reporting>
</build>

@ Fails the build upon Checkstyle errors
@ Fails the build upon Checkstyle violations
® Checkstyle analyzes also the test sources

@ Add the Spring Java Format plugin that will reformat your code to pass most of the Checkstyle
formatting rules

® Add checkstyle plugin to your build and reporting phases
If you need to suppress some rules (e.g. line length needs to be longer), then it’s enough for you to

define a file under ${project.root}/src/checkstyle/checkstyle-suppressions.xml with your
suppressions. Example:

projectRoot/src/checkstyle/checkstyle-suppresions.xml

<?xml version="1.0"?>
<!DOCTYPE suppressions PUBLIC
"-//Puppy Crawl//DTD Suppressions 1.1//EN"
"https://www.puppycrawl.com/dtds/suppressions_1_1.dtd">
<suppressions>
<suppress files=".*ConfigServerApplication\.java"
checks="HideUtilityClassConstructor"/>
<suppress files=".*ConfigClientWatch\.java" checks="LineLengthCheck"/>
</suppressions>

It’'s advisable to copy the ${spring-cloud-build.rootFolder}/.editorconfig and ${spring-cloud-
build.rootFolder}/.springformat to your project. That way, some default formatting rules will be
applied. You can do so by running this script:

$ curl https://raw.githubusercontent.com/spring-cloud/spring-cloud-
build/master/.editorconfig -o .editorconfig
$ touch .springformat

15.5. IDE setup

15.5.1. Intellij IDEA

In order to setup Intellij you should import our coding conventions, inspection profiles and set up
the checkstyle plugin. The following files can be found in the Spring Cloud Build project.

spring-cloud-build-tools/

L—— sre

—— checkstyle

| L—— checkstyle-suppressions.xml ®
L—— main

L—— resources
—— checkstyle-header.txt @
—— checkstyle.xml @
—— intellij
—— Intellij_Project_Defaults.xml @
L—— Intellij_Spring_Boot_Java_Conventions.xml ®

@ Default Checkstyle rules

@ File header setup

® Default suppression rules

@ Project defaults for Intellij that apply most of Checkstyle rules

® Project style conventions for Intellij that apply most of Checkstyle rules

https://github.com/spring-cloud/spring-cloud-build/tree/master/spring-cloud-build-tools

-

Settings

Q- Editor » Code Style
Appearance & Behavior Scheme: | 5pring Boot Java Conventions ~ €1
Keymap Copy to Project...
Editor General Formatter Control Duplicate...
Rename...
General)
Line separator: | System-Dependent Delete...
Font

.) Export...
Applied to new files

Color Scheme

s 2

Intellij IDEA code style XML

Import Scheme
S =R CheckStyle Configuration

Inspections visual guides: Optional columns Eclipse XML Frofile
) JSCS config file
File and Code Templates Specify one guide (80) or several (80, 120)
File Encodings T .
Live Templates e . -
o Detect and use existing file indents for editing
File Types
Copyright EditorConfig
Emmet i
Enable EditorConfig support Export

D EditorConfig may override the IDE code style settings
Images
Intentions
Language Injections
Spelling
TODO
Plugins
Version Control
Build, Execution, Deployment

I annuanacs £ Eramawnrbc

Figure 1. Code style

Go to File — Settings — Editor — Code style. There click on the icon next to the Scheme section.
There, click on the Import Scheme value and pick the Intellij IDEA code style XML option. Import
the spring-cloud-build-
tools/src/main/resources/intellij/Intellij_Spring_Boot_Java_Conventions.xml file.

-

Q- Editor » Inspections For current project

Appearance & Behavior Profile: = Project Default 1DE v o
Keymap Copy to Project...
Editor Q- | Duplicate... |
Rename...
General - Angular I
Angular CLI Add Dependency Add Description...
Font Empty Event Handler Restore Defaults
Color Scheme Ant Delete...
AQP
Code Style Export...

Advice parameters (argNames, returni 2ncy che
: Around advice style inspection
File and Code Templates Introductions (declare parents) errors

File Encgdings Pointcut method St}"E
Live T | Application Servers
ive Templates Geronimo
File Types GlassFish
, JBoss
S WebLogic
Emmet AsciiDoc
: BashSupport
GUID o .
esigner Add missing shebang line to file
Images Change to a built-in shell variable

Convert backquote to subshell commands
Convert simple brackets to double brackets
Language Injections Convert subshell to backquote command
Convert to a quoted or unguoted string

Intentions

Spelling : . -
Duplicate function definition
TODO Evaluate arithmetic expression
Plugins E_w—zluate expansion
. Fix unusal Shebang
Version Control Function name is not in lower snake case

Cunctimn svneridoe intarnsl cammmand

e [] Disable new inspections by default

| anananae & Cramawnarle

Figure 2. Inspection profiles

Go to File — Settings — Editor — Inspections. There click on the icon next to the Profile section.
There, click on the Import Profile and import the spring-cloud-build-
tools/src/main/resources/intellij/Intellij_Project_Defaults.xml file.

Checkstyle

To have Intellij work with Checkstyle, you have to install the Checkstyle plugin. It’s advisable to also
install the Assertions2Assertj to automatically convert the JUnit assertions

Q- OtherSettings) Checkstyle For current project

Editor Checkstyle version: | §.16 - Scan sule: All sources (including tests) - l

File and Code Templates

File Encodings [Treat Checkstyle errors as warnings [_] Copy libraries from project directory (requires restart)

Live Templates Configuration File

File Types Active | Description | File -
v Copyright [suncChecks (bundled)

Copyright Profiles [Google Checks (bundled)

+ Formatting v SPring Cloud Jhome/marcinirepo/spring-cloud-build/spring-clouc-build-tools/src/main/resources/checkstyle xm

» Emmet

T T

O

= + x
GUI Designer — ‘ .
Images checkstyle.additional. suppressions file fhome/marcinire po/spring-cloud-contract/src/checkstyle/checkstyle-suppressions.xmi
s checkstyle.header file home/mar ing-cloud- pring-cloud-build- heckstyle-header it
Rl EoeliEEo checkstyle.suppressionsfile g-cloud pring-cloud-build- cicheckstyle/checkstyle-suppi xml
Spelling
TODO
Plugins
» Version Control
» Build, Execution, Deployment
» Languages & Frameworks
» Tools
+ Other Settings
Lombok plugin
Protobuf Support
| ¥ * Request bod N [oo

15 * 1111 nnt+ ha BEF3RaA ©A AT AR TF Ra SRAITAa FA AT rarF I amhad 3+ 1A 3 TGN FAR

Goto File — Settings — Other settings — Checkstyle. There click on the + icon in the Configuration
file section. There, you’ll have to define where the checkstyle rules should be picked from. In the
image above, we’ve picked the rules from the cloned Spring Cloud Build repository. However, you

can point to the Spring Cloud Build’s GitHub repository (e.g. for the checkstyle.xml
raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/

main/resources/checkstyle.xml). We need to provide the following variables:

» checkstyle.header.file - please point it to the Spring Cloud Build’s, spring-cloud-build-

tools/src/main/resources/checkstyle-header.txt file either in your cloned repo or via the
raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/

src/main/resources/checkstyle-header.txt URL.

» checkstyle.suppressions.file - default suppressions. Please point it to the Spring Cloud Build’s,
spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml file either in your cloned
repo or via the raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-
cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml URL.

* checkstyle.additional.suppressions.file - this variable corresponds to suppressions in your
local project. E.g. you're working on spring-cloud-contract. Then point to the project-
root/src/checkstyle/checkstyle-suppressions.xml folder. Example for spring-cloud-contract
would be: /home/username/spring-cloud-contract/src/checkstyle/checkstyle-suppressions.xml.

o Remember to set the Scan Scope to All sources since we apply checkstyle rules for
production and test sources.

https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml

Chapter 16. Flattening the POMs

To avoid propagating build setup that is required to build a Spring Cloud project, we’re using the
maven flatten plugin. It has the advantage of letting you use whatever features you need while

publishing "clean” pom to the repository.

In order to add it, add the org.codehaus.mojo:flatten-maven-plugin to your pom.xml.

<build>
<plugins>
<plugin>
<groupId>org.codehaus.mojo</groupIld>
<artifactId>flatten-maven-plugin</artifactId>
</plugin>
</plugins>
</build>

Chapter 17. Reusing the documentation

Spring Cloud Build publishes its spring-cloud-build-docs module that contains helpful scripts (e.g.
README generation ruby script) and css, xslt and images for the Spring Cloud documentation. If
you want to follow the same convention approach of generating documentation just add these
plugins to your docs module

<profiles>
<profile>
<id>docs</id>
<build>
<plugins>
<plugin>
<groupId>pl.project13.maven</groupIld>
<artifactId>git-commit-id-plugin</artifactId> @
</plugin>
<plugin>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-dependency-plugin</artifactId> @
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupld>
<artifactId>maven-resources-plugin</artifactId> @
</plugin>
<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>exec-maven-plugin</artifactId> @
</plugin>
<plugin>
<groupld>org.asciidoctor</groupIld>
<artifactId>asciidoctor-maven-plugin</artifactId> ®
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-antrun-plugin</artifactIld> ®
</plugin>
</plugins>
</build>
</profile>
</profiles>

@ This plugin downloads sets up all the git information of the project

@ This plugin downloads the resources of the spring-cloud-build-docs module

® This plugin unpacks the resources of the spring-cloud-build-docs module

@ This plugin generates an adoc file with all the configuration properties from the classpath
® This plugin is required to parse the Asciidoctor documentation

® This plugin is required to copy resources into proper final destinations and to generate main

README.adoc and to assert that no files use unresolved links
o The order of plugin declaration is important!

In order for the build to generate the adoc file with all your configuration properties, your docs
module should contain all the dependencies on the classpath, that you would want to scan for
configuration properties. The file will be output to
${docsModule}/src/main/asciidoc/_configprops.adoc file (configurable via the configprops.path
property).

If you want to modify which of the configuration properties are put in the table, you can tweak the
configprops.inclusionPattern pattern to include only a subset of the properties (e.g.
<configprops.inclusionPattern>spring.sleuth.*</configprops.inclusionPattern>).

Spring Cloud Build Docs comes with a set of attributes for asciidoctor that you can reuse.

<attributes>
<docinfo>shared</docinfo>
<allow-uri-read>true</allow-uri-read>
<nofooter/>
<toc>left</toc>
<toc-levels>4</toc-levels>
<sectlinks>true</sectlinks>
<sources-root>${project.basedir}/srce</sources-root>
<asciidoc-sources-root>${project.basedir}/src/main/asciidoc@</asciidoc-sources-
root>
<generated-resources-root>${project.basedir}/target/generated-resources@
</generated-resources-root>
<!-- Use this attribute the reference code from another module -->
<!-- Note the @ at the end, lowering the precedence of the attribute -->
<project-root>${maven.multiModuleProjectDirectory}@</project-root>
<!-- It's mandatory for you to pass the docs.main property -->
<github-repo>${docs.main}@</github-repo>
<github-project>https://github.com/spring-cloud/${docs.main}@</github-project>
<github-raw>
https://raw.githubusercontent.com/spring-cloud/${docs.main}/${github-tag}e
</github-raw>
<github-code>https://github.com/spring-cloud/${docs.main}/tree/${qgithub-tag}e
</github-code>
<github-issues>https://github.com/spring-cloud/${docs.main}/issues/@</qithub-
issues>
<github-wiki>https://github.com/spring-cloud/${docs.main}/wiki@</github-wiki>
<github-master-code>https://github.com/spring-cloud/${docs.main}/tree/master@
</github-master-code>
<index-1ink>${index-1ink}@</index-1ink>

<!-- Spring Cloud specific -->
<!-- for backward compatibility -->
<spring-cloud-version>${project.version}@</spring-cloud-version>
<project-version>${project.version}@</project-version>
<github-tag>${qgithub-tag}e</github-tag>
<version-type>${version-type}@</version-type>
<docs-url>https://docs.spring.io/${docs.main}/docs/${project.version}@</docs-url>
<raw-docs-ur1>${qgithub-raw}e</raw-docs-url>
<project-version>${project.version}@</project-version>
<project-name>${docs.main}@e</project-name>

</attributes>

Chapter 18. Updating the guides

We assume that your project contains guides under the guides folder.

L—— gquides
—— gs-gquidel
—— gs-quide2

L—— gs-gquide3
This means that the project contains 3 guides that would correspond to the following guides in
Spring Guides org.

 github.com/spring-guides/gs-guidel
 github.com/spring-guides/gs-guide2
» github.com/spring-guides/gs-guide3

If you deploy your project with the -Pquides profile like this
$./mvnw clean deploy -Pguides

what will happen is that for GA project versions, we will clone gs-quide1, gs-quide2 and gs-quide3
and update their contents with the ones being under your guides project.

You can skip this by either not adding the guides profile, or passing the -DskipGuides system
property when the profile is turned on.

You can configure the project version passed to guides via the guides-project.version (defaults to
${project.version}). The phase at which guides get updated can be configured by guides-
update.phase (defaults to deploy).

https://github.com/spring-guides/gs-guide1
https://github.com/spring-guides/gs-guide2
https://github.com/spring-guides/gs-guide3

Spring Cloud Bus

Spring Cloud Bus links the nodes of a distributed system with a lightweight message broker. This
broker can then be used to broadcast state changes (such as configuration changes) or other
management instructions. A key idea is that the bus is like a distributed actuator for a Spring Boot
application that is scaled out. However, it can also be used as a communication channel between
apps. This project provides starters for either an AMQP broker or Kafka as the transport.

Spring Cloud is released under the non-restrictive Apache 2.0 license. If you would
o like to contribute to this section of the documentation or if you find an error,
please find the source code and issue trackers in the project at github.

https://github.com/spring-cloud/spring-cloud

Chapter 19. Quick Start

Spring Cloud Bus works by adding Spring Boot autconfiguration if it detects itself on the classpath.
To enable the bus, add spring-cloud-starter-bus-amgp or spring-cloud-starter-bus-kafka to your
dependency management. Spring Cloud takes care of the rest. Make sure the broker (RabbitMQ or
Kafka) is available and configured. When running on localhost, you need not do anything. If you
run remotely, use Spring Cloud Connectors or Spring Boot conventions to define the broker
credentials, as shown in the following example for Rabbit:

application.yml

spring:
rabbitmq:
host: mybroker.com
port: 5672
username: user
password: secret

The bus currently supports sending messages to all nodes listening or all nodes for a particular
service (as defined by Eureka). The /bus/* actuator namespace has some HTTP endpoints.
Currently, two are implemented. The first, /bus/env, sends key/value pairs to update each node’s
Spring Environment. The second, /bus/refresh, reloads each application’s configuration, as though
they had all been pinged on their /refresh endpoint.

The Spring Cloud Bus starters cover Rabbit and Kafka, because those are the two
most common implementations. However, Spring Cloud Stream is quite flexible,
and the binder works with spring-cloud-bus.

Chapter 20. Bus Endpoints

Spring Cloud Bus provides two endpoints, /actuator/bus-refresh and /actuator/bus-env that
correspond to individual actuator endpoints in Spring Cloud Commons, /actuator/refresh and
/actuator/env respectively.

20.1. Bus Refresh Endpoint

The /actuator/bus-refresh endpoint clears the RefreshScope cache and rebinds
@ConfigurationProperties. See the Refresh Scope documentation for more information.

To expose the /actuator/bus-refresh endpoint, you need to add following configuration to your
application:

management.endpoints.web.exposure.include=bus-refresh

20.2. Bus Env Endpoint

The /actuator/bus-env endpoint updates each instances environment with the specified key/value
pair across multiple instances.

To expose the /actuator/bus-env endpoint, you need to add following configuration to your
application:

management.endpoints.web.exposure.include=bus-env

The /actuator/bus-env endpoint accepts POST requests with the following shape:

"name": "key1",
"value": "valuel"

Chapter 21. Addressing an Instance

Each instance of the application has a service ID, whose value can be set with spring.cloud.bus.id
and whose value is expected to be a colon-separated list of identifiers, in order from least specific to
most specific. The default value is constructed from the environment as a combination of the
spring.application.name and server.port (or spring.application.index, if set). The default value of
the ID is constructed in the form of app:index:id, where:

* appis the vcap.application.name, if it exists, or spring.application.name

* index is the vcap.application.instance_index, if it exists, spring.application.index,
local.server.port, server.port, or @ (in that order).

* idis the vcap.application.instance_id, if it exists, or a random value.
The HTTP endpoints accept a “destination” path parameter, such as /bus-refresh/customers:9000,

where destination is a service ID. If the ID is owned by an instance on the bus, it processes the
message, and all other instances ignore it.

Chapter 22. Addressing All Instances of a
Service

The “destination” parameter is used in a Spring PathMatcher (with the path separator as a colon—:)
to determine if an instance processes the message. Using the example from earlier, /bus-
env/customers:** targets all instances of the “customers” service regardless of the rest of the service

ID.

Chapter 23. Service ID Must Be Unique

The bus tries twice to eliminate processing an event — once from the original ApplicationEvent and
once from the queue. To do so, it checks the sending service ID against the current service ID. If
multiple instances of a service have the same ID, events are not processed. When running on a local
machine, each service is on a different port, and that port is part of the ID. Cloud Foundry supplies
an index to differentiate. To ensure that the ID is unique outside Cloud Foundry, set
spring.application.index to something unique for each instance of a service.

Chapter 24. Customizing the Message Broker

Spring Cloud Bus uses Spring Cloud Stream to broadcast the messages. So, to get messages to flow,
you need only include the binder implementation of your choice in the classpath. There are
convenient starters for the bus with AMQP (RabbitMQ) and Kafka (spring-cloud-starter-bus-
[amqp|kafka]). Generally speaking, Spring Cloud Stream relies on Spring Boot autoconfiguration
conventions for configuring middleware. For instance, the AMQP broker address can be changed
with spring.rabbitmg.* configuration properties. Spring Cloud Bus has a handful of native
configuration properties in spring.cloud.bus.* (for example, spring.cloud.bus.destination is the
name of the topic to use as the external middleware). Normally, the defaults suffice.

To learn more about how to customize the message broker settings, consult the Spring Cloud
Stream documentation.

https://cloud.spring.io/spring-cloud-stream

Chapter 25. Tracing Bus Events

Bus events (subclasses of RemoteApplicationEvent) can be traced by setting
spring.cloud.bus.trace.enabled=true. If you do so, the Spring Boot TraceRepository (if it is present)
shows each event sent and all the acks from each service instance. The following example comes
from the /trace endpoint:

{

"timestamp": "2015-11-26T10:24:44.411+0000",

"info": {
"signal": "spring.cloud.bus.ack",
"type": "RefreshRemoteApplicationEvent",
"id": "c4d374b7-58ea-4928-3312-31984def293b",
"origin": "stores:8081",
"destination": "¥:¥*"

}

¥

{

"timestamp": "2015-11-26T10:24:41.864+0000",
"info": {
"signal": "spring.cloud.bus.sent",
"type": "RefreshRemoteApplicationEvent",
"id": "c4d374b7-58ea-4928-3312-31984def293b",
"origin": "customers:9000",
"destination": "*:¥*"

}
Irs
{
"timestamp": "2015-11-26T10:24:41.862+0000",
"info": {
"signal": "spring.cloud.bus.ack",
"type": "RefreshRemoteApplicationEvent",
"id": "c4d374b7-58ea-4928-3312-31984def293b",

"origin": "customers:9000",
"destination": "¥;**"

The preceding trace shows that a RefreshRemoteApplicationEvent was sent from customers:9000,
broadcast to all services, and received (acked) by customers:9000 and stores:8081.

To handle the ack signals yourself, you could add an @EventListener for the
AckRemoteApplicationEvent and SentApplicationEvent types to your app (and enable tracing).
Alternatively, you could tap into the TraceRepository and mine the data from there.

Any Bus application can trace acks. However, sometimes, it is useful to do this in a
o central service that can do more complex queries on the data or forward it to a
specialized tracing service.

Chapter 26. Broadcasting Your Own Events

The Bus can carry any event of type RemoteApplicationEvent. The default transport is JSON, and the
deserializer needs to know which types are going to be used ahead of time. To register a new type,
you must put it in a subpackage of org.springframework.cloud.bus.event.

To customise the event name, you can use @JsonTypeName on your custom class or rely on the default
strategy, which is to use the simple name of the class.

o Both the producer and the consumer need access to the class definition.

26.1. Registering events in custom packages

If you cannot or do not want to use a subpackage of org.springframework.cloud.bus.event for your
custom events, you must specify which packages to scan for events of type RemoteApplicationEvent
by using the @RemoteApplicationEventScan annotation. Packages specified with
@RemoteApplicationEventScan include subpackages.

For example, consider the following custom event, called MyEvent:

package com.acme;
public class MyEvent extends RemoteApplicationEvent {

}

You can register that event with the deserializer in the following way:

package com.acme;

@Configuration
@RemoteApplicationEventScan
public class BusConfiguration {

}

Without specifying a value, the package of the class where @RemoteApplicationEventScan is used is
registered. In this example, com.acme is registered by using the package of BusConfiguration.

You can also explicitly specify the packages to scan by using the value, basePackages or
basePackage(lasses properties on @RemoteApplicationEventScan, as shown in the following example:

package com.acme,

@Configuration

//@RemoteApplicationEventScan({"com.acme", "foo.bar"})
//@RemoteApplicationEventScan(basePackages = {"com.acme", "foo.bar", "fizz.buzz"})
@RemoteApplicationEventScan(basePackageClasses = BusConfiguration.class)

public class BusConfiguration {

}

All of the preceding examples of @RemoteApplicationEventScan are equivalent, in that the com.acme
package is registered by explicitly specifying the packages on @RemoteApplicationEventScan.

0 You can specify multiple base packages to scan.

Chapter 27. Configuration properties

To see the list of all Bus related configuration properties please check the Appendix page.

appendix.html

Spring Cloud Circuit Breaker

Hoxton.SR12

Chapter 28. Usage Documentation

The Spring Cloud CircuitBreaker project contains implementations for Resilience4] and Spring
Retry. The APIs implemented in Spring Cloud CircuitBreaker live in Spring Cloud Commons. The
usage documentation for these APIs are located in the Spring Cloud Commons documentation.

28.1. Configuring Resilience4] Circuit Breakers

28.1.1. Starters

There are two starters for the Resilience4] implementations, one for reactive applications and one
for non-reactive applications.

* org.springframework.cloud:spring-cloud-starter-circuitbreaker-resilience4j - non-reactive
applications

* org.springframework.cloud:spring-cloud-starter-circuitbreaker-reactor-resilience4j - reactive
applications

28.1.2. Auto-Configuration

You can disable the Resilience4] auto-configuration by setting
spring.cloud.circuitbreaker.resilience4j.enabled to false.

28.1.3. Default Configuration

To provide a default configuration for all of your circuit breakers create a Customize bean that is
passed a Resilience4]CircuitBreakerFactory or ReactiveResilience4]CircuitBreakerFactory. The
configureDefault method can be used to provide a default configuration.

@Bean

public Customizer<Resilience4JCircuitBreakerFactory> defaultCustomizer() {
return factory -> factory.configureDefault(id -> new

Resilience4]ConfigBuilder(id)

.timeLimiterConfig(TimeLimiterConfig.custom().timeoutDuration(Duration.ofSeconds(4

)).build())
.circuitBreakerConfig(CircuitBreakerConfig.ofDefaults())

.build());

Reactive Example

https://docs.spring.io/spring-cloud-commons/docs/current/reference/html/#spring-cloud-circuit-breake

@Bean

public Customizer<ReactiveResilience4]CircuitBreakerFactory> defaultCustomizer() {
return factory -> factory.configureDefault(id -> new
Resilience4]ConfigBuilder(id)

.circuitBreakerConfig(CircuitBreakerConfig.ofDefaults())

.timeLimiterConfig(TimeLimiterConfig.custom().timeoutDuration(Duration.ofSeconds(4
)).build()).build());
}

28.1.4. Specific Circuit Breaker Configuration

Similarly to providing a default configuration, you can create a Customize bean this is passed a
Resilience4]CircuitBreakerFactory or ReactiveResilience4]CircuitBreakerFactory.

@Bean

public Customizer<Resilience4JCircuitBreakerFactory> slowCustomizer() {
return factory -> factory.configure(builder ->

builder.circuitBreakerConfig(CircuitBreakerConfig.ofDefaults())

.timeLimiterConfig(TimeLimiterConfig.custom().timeoutDuration(Duration.ofSeconds(2
)).build()), "slow");

}

In addition to configuring the circuit breaker that is created you can also customize the circuit
breaker after it has been created but before it is returned to the caller. To do this you can use the

addCircuitBreakerCustomizer method. This can be useful for adding event handlers to Resilience4]
circuit breakers.

@Bean
public Customizer<Resilience4JCircuitBreakerFactory> slowCustomizer() {

return factory -> factory.addCircuitBreakerCustomizer(circuitBreaker ->
circuitBreaker.getEventPublisher()

.onError(normalFluxErrorConsumer).onSuccess(normalFluxSuccessConsumer),
"normalflux");

}

Reactive Example

@Bean
public Customizer<ReactiveResilience4]CircuitBreakerFactory> slowCusomtizer() {
return factory -> {
factory.configure(builder -> builder

.timeLimiterConfig(TimeLimiterConfig.custom().timeoutDuration(Duration.ofSeconds(2
)).build())

.circuitBreakerConfig(CircuitBreakerConfig.ofDefaults()), "slow",
"slowflux");

factory.addCircuitBreakerCustomizer(circuitBreaker ->
circuitBreaker.getEventPublisher()

.onError(normalFluxErrorConsumer).onSuccess(normalFluxSuccessConsumer),
"normalflux");

Irs
}

28.1.5. Circuit Breaker Properties Configuration

You can configure CircuitBreaker and TimelLimiter instances in your application’s configuration
properties file. Property configuration has higher priority than Java Customizer configuration.

resilienced4j.circuitbreaker:
instances:
backendA:
registerHealthIndicator: true
slidingWindowSize: 100
backendB:
registerHealthIndicator: true
slidingWindowSize: 10
permittedNumberOfCallsInHalfOpenState: 3
slidingWindowType: TIME_BASED
recordFailurePredicate: io.github.robwin.exception.RecordFailurePredicate

resilience4j.timelimiter:
instances:
backendA:
timeoutDuration: 2s
cancelRunningFuture: true
backendB:
timeoutDuration: 1s
cancelRunningFuture: false

For more information on Resilience4j property configuration, see Resilience4] Spring Boot 2
Configuration.

https://resilience4j.readme.io/docs/getting-started-3#configuration
https://resilience4j.readme.io/docs/getting-started-3#configuration

28.1.6. Bulkhead pattern supporting

If resilience4j-bulkhead is on the classpath, Spring Cloud CircuitBreaker will wrap all methods with
a Resilience4j Bulkhead. You can disable the Resilience4j Bulkhead by setting
spring.cloud.circuitbreaker.bulkhead.resilience4j.enabled to false.

Spring Cloud CircuitBreaker Resilience4j provides two implementation of bulkhead pattern:

* a SemaphoreBulkhead which uses Semaphores

» a FixedThreadPoolBulkhead which uses a bounded queue and a fixed thread pool.

By default, Spring Cloud CircuitBreaker Resilience4j uses FixedThreadPoolBulkhead. For more
information on implementation of Bulkhead patterns see the Resilience4j Bulkhead.

The Customizer<Resilience4jBulkheadProvider> can be used to provide a default Bulkhead and
ThreadPoolBulkhead configuration.

©Bean
public Customizer<Resilience4jBulkheadProvider> defaultBulkheadCustomizer() {
return provider -> provider.configureDefault(id -> new
Resilience4jBulkheadConfigurationBuilder()
.bulkheadConfig(BulkheadConfig.custom().maxConcurrentCalls(4).build())

.threadPoo1BulkheadConfig(ThreadPoolBulkheadConfig.custom().coreThreadPoolSize(1).
maxThreadPoolSize(1).build())
.build()
)i
}

28.1.7. Specific Bulkhead Configuration

Similarly to proving a default 'Bulkhead' or 'ThreadPoolBulkhead' configuration, you can create a
Customize bean this is passed a Resilience4jBulkheadProvider.

@Bean
public Customizer<Resilience4jBulkheadProvider> slowBulkheadProviderCustomizer() {
return provider -> provider.confiqure(builder -> builder
.bulkheadConfig(BulkheadConfig.custom().maxConcurrentCalls(1).build())
.threadPoolBulkheadConfig(ThreadPoolBulkheadConfig.ofDefaults()),
"slowBulkhead");

}

In addition to configuring the Bulkhead that is created you can also customize the bulkhead and
thread pool bulkhead after they have been created but before they are returned to caller. To do this
you can use the addBulkheadCustomizer and addThreadPoolBulkheadCustomizer methods.

https://resilience4j.readme.io/docs/bulkhead

Bulkhead Example

@Bean
public Customizer<Resilience4jBulkheadProvider> customizer() {
return provider -> provider.addBulkheadCustomizer(bulkhead ->
bulkhead.getEventPublisher()
.onCallRejected(slowRejectedConsumer)
.onCallFinished(slowFinishedConsumer), "slowBulkhead");

Thread Pool Bulkhead Example

@Bean

public Customizer<Resilience4jBulkheadProvider> slowThreadPoolBulkheadCustomizer()

{

return provider -> provider.addThreadPoolBulkheadCustomizer(threadPoolBulkhead

-> threadPoolBulkhead.getEventPublisher()
.onCallRejected(slowThreadPoolRejectedConsumer)
.onCallFinished(slowThreadPoolFinishedConsumer),

"slowThreadPoolBulkhead");

}

28.1.8. Bulkhead Properties Configuration

You can configure ThreadPoolBulkhead and SemaphoreBulkhead instances in your application’s

configuration properties file. Property configuration has higher priority than Java Customizer
configuration.

resilience4j.thread-pool-bulkhead:
instances:
backendA:
maxThreadPoolSize: 1
coreThreadPoolSize: 1
resilience4j.bulkhead:
instances:
backendB:
maxConcurrentCalls: 10

For more inforamtion on the Resilience4j property configuration, see Resilience4] Spring Boot 2
Configuration.

https://resilience4j.readme.io/docs/getting-started-3#configuration
https://resilience4j.readme.io/docs/getting-started-3#configuration

28.1.9. Collecting Metrics

Spring Cloud Circuit Breaker Resilience4j includes auto-configuration to setup metrics collection as
long as the right dependencies are on the classpath. To enable metric collection you must include
org.springframework.boot:spring-boot-starter-actuator, and io.github.resilience4j:resilience4j-
micrometer. For more information on the metrics that get produced when these dependencies are
present, see the Resilience4j documentation.

0 You don’t have to include micrometer-core directly as it is brought in by spring-
boot-starter-actuator

28.2. Configuring Spring Retry Circuit Breakers

Spring Retry provides declarative retry support for Spring applications. A subset of the project
includes the ability to implement circuit breaker functionality. Spring Retry provides a circuit
breaker implementation via a combination of it’s CircuitBreakerRetryPolicy and a stateful retry. All
circuit breakers created using Spring Retry will be created using the CircuitBreakerRetryPolicy and
a DefaultRetryState. Both of these classes can be configured using SpringRetryConfigBuilder.

28.2.1. Default Configuration

To provide a default configuration for all of your circuit breakers create a Customize bean that is
passed a SpringRetryCircuitBreakerFactory. The configureDefault method can be used to provide a
default configuration.

@Bean
public Customizer<SpringRetryCircuitBreakerFactory> defaultCustomizer() {
return factory -> factory.configureDefault(id -> new
SpringRetryConfigBuilder(id)
.retryPolicy(new TimeoutRetryPolicy()).build());
}

28.2.2. Specific Circuit Breaker Configuration

Similarly to providing a default configuration, you can create a Customize bean this is passed a
SpringRetryCircuitBreakerFactory.

@Bean

public Customizer<SpringRetryCircuitBreakerFactory> slowCustomizer() {
return factory -> factory.configure(builder -> builder.retryPolicy(new

SimpleRetryPolicy(1)).build(), "slow");

¥

https://resilience4j.readme.io/docs/micrometer
https://github.com/spring-projects/spring-retry/blob/master/src/main/java/org/springframework/retry/policy/CircuitBreakerRetryPolicy.java
https://github.com/spring-projects/spring-retry#stateful-retry
https://github.com/spring-projects/spring-retry/blob/master/src/main/java/org/springframework/retry/support/DefaultRetryState.java

In addition to configuring the circuit breaker that is created you can also customize the circuit
breaker after it has been created but before it is returned to the caller. To do this you can use the
addRetryTemplateCustomizers method. This can be useful for adding event handlers to the
RetryTemplate.

@Bean

public Customizer<SpringRetryCircuitBreakerFactory> slowCustomizer() {
return factory -> factory.addRetryTemplateCustomizers(retryTemplate ->

retryTemplate.registerListener(new RetrylListener() {

@0verride
public <T, E extends Throwable> boolean open(RetryContext context,
RetryCallback<T, E> callback) {
return false;

}

@0verride
public <T, E extends Throwable> void close(RetryContext context,
RetryCallback<T, E> callback, Throwable throwable) {

}

@0verride
public <T, E extends Throwable> void onError(RetryContext context,
RetryCallback<T, E> callback, Throwable throwable) {

}
});

Chapter 29. Building

29.1. Basic Compile and Test

To build the source you will need to install JDK 1.8.

Spring Cloud uses Maven for most build-related activities, and you should be able to get off the
ground quite quickly by cloning the project you are interested in and typing

$./mvnw install

You can also install Maven (>=3.3.3) yourself and run the mvn command in place of

o ./mvnw in the examples below. If you do that you also might need to add -P spring
if your local Maven settings do not contain repository declarations for spring pre-
release artifacts.

Be aware that you might need to increase the amount of memory available to
Maven by setting a MAVEN_OPTS environment variable with a value like -Xmx512m

0 -XX:MaxPermSize=128m. We try to cover this in the .mvn configuration, so if you find
you have to do it to make a build succeed, please raise a ticket to get the settings
added to source control.

For hints on how to build the project look in .travis.yml if there is one. There should be a "script”
and maybe "install" command. Also look at the "services" section to see if any services need to be
running locally (e.g. mongo or rabbit). Ignore the git-related bits that you might find in
"before_install" since they’re related to setting git credentials and you already have those.

The projects that require middleware generally include a docker-compose.yml, so consider using
Docker Compose to run the middeware servers in Docker containers. See the README in the scripts
demo repository for specific instructions about the common cases of mongo, rabbit and redis.

o If all else fails, build with the command from .travis.yml (usually ./mvnw install).

29.2. Documentation

The spring-cloud-build module has a "docs" profile, and if you switch that on it will try to build
asciidoc sources from src/main/asciidoc. As part of that process it will look for a README.adoc and
process it by loading all the includes, but not parsing or rendering it, just copying it to
${main.basedir} (defaults to $/tmp/releaser-1625587021533-0/spring-cloud-release/train-
docs/target/unpacked-docs, i.e. the root of the project). If there are any changes in the README it
will then show up after a Maven build as a modified file in the correct place. Just commit it and
push the change.

https://docs.docker.com/compose/
https://github.com/spring-cloud-samples/scripts
https://github.com/spring-cloud-samples/scripts

29.3. Working with the code

If you don’t have an IDE preference we would recommend that you use Spring Tools Suite or
Eclipse when working with the code. We use the m2eclipse eclipse plugin for maven support. Other
IDEs and tools should also work without issue as long as they use Maven 3.3.3 or better.

29.3.1. Activate the Spring Maven profile

Spring Cloud projects require the 'spring’ Maven profile to be activated to resolve the spring
milestone and snapshot repositories. Use your preferred IDE to set this profile to be active, or you
may experience build errors.

29.3.2. Importing into eclipse with m2eclipse

We recommend the m2eclipse eclipse plugin when working with eclipse. If you don’t already have
m2eclipse installed it is available from the "eclipse marketplace".

Older versions of m2e do not support Maven 3.3, so once the projects are imported
into Eclipse you will also need to tell m2eclipse to use the right profile for the

o projects. If you see many different errors related to the POMs in the projects, check
that you have an up to date installation. If you can’t upgrade m2e, add the "spring"
profile to your settings.xml. Alternatively you can copy the repository settings
from the "spring" profile of the parent pom into your settings.xml.

29.3.3. Importing into eclipse without m2eclipse

If you prefer not to use m2eclipse you can generate eclipse project metadata using the following
command:

$./mvnw eclipse:eclipse

The generated eclipse projects can be imported by selecting import existing projects from the file
menu.

https://www.springsource.com/developer/sts
https://eclipse.org
https://eclipse.org/m2e/
https://eclipse.org/m2e/

Chapter 30. Contributing

Spring Cloud is released under the non-restrictive Apache 2.0 license, and follows a very standard
Github development process, using Github tracker for issues and merging pull requests into master.
If you want to contribute even something trivial please do not hesitate, but follow the guidelines
below.

30.1. Sign the Contributor License Agreement

Before we accept a non-trivial patch or pull request we will need you to sign the Contributor
License Agreement. Signing the contributor’s agreement does not grant anyone commit rights to
the main repository, but it does mean that we can accept your contributions, and you will get an
author credit if we do. Active contributors might be asked to join the core team, and given the
ability to merge pull requests.

30.2. Code of Conduct

This project adheres to the Contributor Covenant code of conduct. By participating, you are
expected to wuphold this code. Please report unacceptable behavior to spring-code-of-
conduct@pivotal.io.

30.3. Code Conventions and Housekeeping

None of these is essential for a pull request, but they will all help. They can also be added after the
original pull request but before a merge.

* Use the Spring Framework code format conventions. If you use Eclipse you can import
formatter settings using the eclipse-code-formatter.xml file from the Spring Cloud Build project.
If using Intelli], you can use the Eclipse Code Formatter Plugin to import the same file.

* Make sure all new .java files to have a simple Javadoc class comment with at least an @author
tag identifying you, and preferably at least a paragraph on what the class is for.

* Add the ASF license header comment to all new .java files (copy from existing files in the
project)

* Add yourself as an @author to the .java files that you modify substantially (more than cosmetic
changes).

* Add some Javadocs and, if you change the namespace, some XSD doc elements.
* A few unit tests would help a lot as well — someone has to do it.

 If no-one else is using your branch, please rebase it against the current master (or other target
branch in the main project).

* When writing a commit message please follow these conventions, if you are fixing an existing
issue please add Fixes gh-XXXX at the end of the commit message (where XXXX is the issue
number).

https://cla.pivotal.io/sign/spring
https://cla.pivotal.io/sign/spring
https://github.com/spring-cloud/spring-cloud-build/blob/master/docs/src/main/asciidoc/code-of-conduct.adoc
mailto:spring-code-of-conduct@pivotal.io
mailto:spring-code-of-conduct@pivotal.io
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-dependencies-parent/eclipse-code-formatter.xml
https://plugins.jetbrains.com/plugin/6546
https://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

30.4. Checkstyle

Spring Cloud Build comes with a set of checkstyle rules. You can find them in the spring-cloud-
build-tools module. The most notable files under the module are:

spring-cloud-build-tools/

L—— src

—— checkstyle

| L—— checkstyle-suppressions.xml ®
L—— main
L—— resources

—— checkstyle-header.txt @
L—— checkstyle.xml @

@ Default Checkstyle rules
@ File header setup

® Default suppression rules

30.4.1. Checkstyle configuration

Checkstyle rules are disabled by default. To add checkstyle to your project just define the
following properties and plugins.

pom.xml

<properties>

<maven-checkstyle-plugin.failsOnError>true</maven-checkstyle-plugin.failsOnError> @
<maven-checkstyle-plugin.failsOnViolation>true
</maven-checkstyle-plugin.failsOnViolation> @
<maven-checkstyle-plugin.includeTestSourceDirectory>true
</maven-checkstyle-plugin.includeTestSourceDirectory> @

</properties>

<build>
<plugins>
<plugin> @
<groupld>io.spring.javaformat</groupld>
<artifactId>spring-javaformat-maven-plugin</artifactId>
</plugin>
<plugin> ®
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-checkstyle-plugin</artifactId>
</plugin>
</plugins>

<reporting>
<plugins>
<plugin> ®
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-checkstyle-plugin</artifactId>
</plugin>
</plugins>
</reporting>
</build>

@ Fails the build upon Checkstyle errors
@ Fails the build upon Checkstyle violations
® Checkstyle analyzes also the test sources

@ Add the Spring Java Format plugin that will reformat your code to pass most of the Checkstyle
formatting rules

® Add checkstyle plugin to your build and reporting phases
If you need to suppress some rules (e.g. line length needs to be longer), then it’s enough for you to

define a file under ${project.root}/src/checkstyle/checkstyle-suppressions.xml with your
suppressions. Example:

projectRoot/src/checkstyle/checkstyle-suppresions.xml

<?xml version="1.0"?>
<!DOCTYPE suppressions PUBLIC
"-//Puppy Crawl//DTD Suppressions 1.1//EN"
"https://www.puppycrawl.com/dtds/suppressions_1_1.dtd">
<suppressions>
<suppress files=".*ConfigServerApplication\.java"
checks="HideUtilityClassConstructor"/>
<suppress files=".*ConfigClientWatch\.java" checks="LineLengthCheck"/>
</suppressions>

It’'s advisable to copy the ${spring-cloud-build.rootFolder}/.editorconfig and ${spring-cloud-
build.rootFolder}/.springformat to your project. That way, some default formatting rules will be
applied. You can do so by running this script:

$ curl https://raw.githubusercontent.com/spring-cloud/spring-cloud-
build/master/.editorconfig -o .editorconfig
$ touch .springformat

30.5. IDE setup

30.5.1. Intellij IDEA

In order to setup Intellij you should import our coding conventions, inspection profiles and set up
the checkstyle plugin. The following files can be found in the Spring Cloud Build project.

spring-cloud-build-tools/

L—— sre

—— checkstyle

| L—— checkstyle-suppressions.xml ®
L—— main

L—— resources
—— checkstyle-header.txt @
—— checkstyle.xml @
—— intellij
—— Intellij_Project_Defaults.xml @
L—— Intellij_Spring_Boot_Java_Conventions.xml ®

@ Default Checkstyle rules

@ File header setup

® Default suppression rules

@ Project defaults for Intellij that apply most of Checkstyle rules

® Project style conventions for Intellij that apply most of Checkstyle rules

https://github.com/spring-cloud/spring-cloud-build/tree/master/spring-cloud-build-tools

-

Settings

Q- Editor » Code Style
Appearance & Behavior Scheme: | 5pring Boot Java Conventions ~ €1
Keymap Copy to Project...
Editor General Formatter Control Duplicate...
Rename...
General)
Line separator: | System-Dependent Delete...
Font

.) Export...
Applied to new files

Color Scheme

s 2

Intellij IDEA code style XML

Import Scheme
S =R CheckStyle Configuration

Inspections visual guides: Optional columns Eclipse XML Frofile
) JSCS config file
File and Code Templates Specify one guide (80) or several (80, 120)
File Encodings T .
Live Templates e . -
o Detect and use existing file indents for editing
File Types
Copyright EditorConfig
Emmet i
Enable EditorConfig support Export

D EditorConfig may override the IDE code style settings
Images
Intentions
Language Injections
Spelling
TODO
Plugins
Version Control
Build, Execution, Deployment

I annuanacs £ Eramawnrbc

Figure 3. Code style

Go to File — Settings — Editor — Code style. There click on the icon next to the Scheme section.
There, click on the Import Scheme value and pick the Intellij IDEA code style XML option. Import
the spring-cloud-build-
tools/src/main/resources/intellij/Intellij_Spring_Boot_Java_Conventions.xml file.

-

Q- Editor » Inspections For current project

Appearance & Behavior Profile: = Project Default 1DE v o
Keymap Copy to Project...
Editor Q- | Duplicate... |
Rename...
General - Angular I
Angular CLI Add Dependency Add Description...
Font Empty Event Handler Restore Defaults
Color Scheme Ant Delete...
AQP
Code Style Export...

Advice parameters (argNames, returni 2ncy che
: Around advice style inspection
File and Code Templates Introductions (declare parents) errors

File Encgdings Pointcut method St}"E
Live T | Application Servers
ive Templates Geronimo
File Types GlassFish
, JBoss
S WebLogic
Emmet AsciiDoc
: BashSupport
GUID o .
esigner Add missing shebang line to file
Images Change to a built-in shell variable

Convert backquote to subshell commands
Convert simple brackets to double brackets
Language Injections Convert subshell to backquote command
Convert to a quoted or unguoted string

Intentions

Spelling : . -
Duplicate function definition
TODO Evaluate arithmetic expression
Plugins E_w—zluate expansion
. Fix unusal Shebang
Version Control Function name is not in lower snake case

Cunctimn svneridoe intarnsl cammmand

e [] Disable new inspections by default

| anananae & Cramawnarle

Figure 4. Inspection profiles

Go to File — Settings — Editor — Inspections. There click on the icon next to the Profile section.
There, click on the Import Profile and import the spring-cloud-build-
tools/src/main/resources/intellij/Intellij_Project_Defaults.xml file.

Checkstyle

To have Intellij work with Checkstyle, you have to install the Checkstyle plugin. It’s advisable to also
install the Assertions2Assertj to automatically convert the JUnit assertions

Q- OtherSettings) Checkstyle For current project

Editor Checkstyle version: | §.16 - Scan sule: All sources (including tests) - l

File and Code Templates

File Encodings [Treat Checkstyle errors as warnings [_] Copy libraries from project directory (requires restart)

Live Templates Configuration File

File Types Active | Description | File -
v Copyright [suncChecks (bundled)

Copyright Profiles [Google Checks (bundled)

+ Formatting v SPring Cloud Jhome/marcinirepo/spring-cloud-build/spring-clouc-build-tools/src/main/resources/checkstyle xm

» Emmet

T T

O

= + x
GUI Designer — ‘ .
Images checkstyle.additional. suppressions file fhome/marcinire po/spring-cloud-contract/src/checkstyle/checkstyle-suppressions.xmi
s checkstyle.header file home/mar ing-cloud- pring-cloud-build- heckstyle-header it
Rl EoeliEEo checkstyle.suppressionsfile g-cloud pring-cloud-build- cicheckstyle/checkstyle-suppi xml
Spelling
TODO
Plugins
» Version Control
» Build, Execution, Deployment
» Languages & Frameworks
» Tools
+ Other Settings
Lombok plugin
Protobuf Support
| ¥ * Request bod N [oo

15 * 1111 nnt+ ha BEF3RaA ©A AT AR TF Ra SRAITAa FA AT rarF I amhad 3+ 1A 3 TGN FAR

Goto File — Settings — Other settings — Checkstyle. There click on the + icon in the Configuration
file section. There, you’ll have to define where the checkstyle rules should be picked from. In the
image above, we’ve picked the rules from the cloned Spring Cloud Build repository. However, you

can point to the Spring Cloud Build’s GitHub repository (e.g. for the checkstyle.xml
raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/

main/resources/checkstyle.xml). We need to provide the following variables:

» checkstyle.header.file - please point it to the Spring Cloud Build’s, spring-cloud-build-

tools/src/main/resources/checkstyle-header.txt file either in your cloned repo or via the
raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/

src/main/resources/checkstyle-header.txt URL.

» checkstyle.suppressions.file - default suppressions. Please point it to the Spring Cloud Build’s,
spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml file either in your cloned
repo or via the raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-
cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml URL.

* checkstyle.additional.suppressions.file - this variable corresponds to suppressions in your
local project. E.g. you're working on spring-cloud-contract. Then point to the project-
root/src/checkstyle/checkstyle-suppressions.xml folder. Example for spring-cloud-contract
would be: /home/username/spring-cloud-contract/src/checkstyle/checkstyle-suppressions.xml.

o Remember to set the Scan Scope to All sources since we apply checkstyle rules for
production and test sources.

https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/main/resources/checkstyle-header.txt
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml
https://raw.githubusercontent.com/spring-cloud/spring-cloud-build/master/spring-cloud-build-tools/src/checkstyle/checkstyle-suppressions.xml

Spring Boot Cloud CLI

Spring Boot CLI provides Spring Boot command line features for Spring Cloud. You can write
Groovy scripts to run Spring Cloud component applications (e.g. @EnableEurekaServer). You can also
easily do things like encryption and decryption to support Spring Cloud Config clients with secret
configuration values. With the Launcher CLI you can launch services like Eureka, Zipkin, Config
Server conveniently all at once from the command line (very useful at development time).

Spring Cloud is released under the non-restrictive Apache 2.0 license. If you would
o like to contribute to this section of the documentation or if you find an error,
please find the source code and issue trackers in the project at github.

https://projects.spring.io/spring-boot
https://github.com/spring-cloud
https://github.com/spring-cloud/spring-cloud

Chapter 31. Installation

To install, make sure you have Spring Boot CLI (2.0.0 or better):

$ spring version
Spring CLI v2.2.3.RELEASE

E.g. for SDKMan users

$ sdk install springboot 2.2.3.RELEASE
$ sdk use springboot 2.2.3.RELEASE

and install the Spring Cloud plugin

$ mvn install
$ spring install org.springframework.cloud:spring-cloud-c1i:2.2.0.RELEASE

Prerequisites: to use the encryption and decryption features you need the full-
strength JCE installed in your JVM (it’s not there by default). You can download the
o "Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files"
from Oracle, and follow instructions for installation (essentially replace the 2
policy files in the JRE lib/security directory with the ones that you downloaded).

https://github.com/spring-projects/spring-boot

Chapter 32. Running Spring Cloud Services
in Development

The Launcher CLI can be used to run common services like Eureka, Config Server etc. from the
command line. To list the available services you can do spring cloud --list, and to launch a default
set of services just spring cloud. To choose the services to deploy, just list them on the command

line, e.g.

$ spring cloud eureka configserver h2 kafka stubrunner zipkin

Summary of supported deployables:

Service

eureka

configserver

h2

kafka

Name

Eureka Server

Config Server

H2 Database

Kafka Broker

Address

localhost:8761

localhost:8888

localhost:9095
(console),
jdbc:h2:tcp://localhost:9
096/{data}

localhost:9091 (actuator
endpoints),
localhost:9092

Description

Eureka server for
service registration and
discovery. All the other
services show up in its
catalog by default.

Spring Cloud Config
Server running in the
"native" profile and
serving configuration
from the local directory
Jlauncher

Relation database
service. Use a file path
for {data} (e.g.
./target/test) when
you connect.
Remember that you can
add ;MODE=MYSQL or
yMODE=POSTGRESQL to
connect with
compatibility to other
server types.

http://localhost:8761
http://localhost:8888
http://localhost:9095
http://localhost:9091

Service Name Address Description

hystrixdashboard Hystrix Dashboard localhost:7979 Any Spring Cloud app
that declares Hystrix
circuit breakers
publishes metrics on
/hystrix.stream. Type
that address into the
dashboard to visualize
all the metrics,

dataflow Dataflow Server localhost:9393 Spring Cloud Dataflow
server with UI at
/admin-ui. Connect the
Dataflow shell to target
at root path.

zipkin Zipkin Server localhost:9411 Zipkin Server with UI
for visualizing traces.
Stores span data in
memory and accepts
them via HTTP POST of
JSON data.

stubrunner Stub Runner Boot localhost:8750 Downloads WireMock
stubs, starts WireMock
and feeds the started
servers with stored
stubs. Pass
stubrunner.ids to pass
stub coordinates and
then go to
localhost:8750/stubs.

Each of these apps can be configured using a local YAML file with the same name (in the current
working directory or a subdirectory called "config" or in ~/.spring-cloud). E.g. in configserver.yml
you might want to do something like this to locate a local git repository for the backend:

configserver.yml

spring:
profiles:
active: git
cloud:
config:
server:
git:
uri: file://${user.home}/dev/demo/config-repo

E.g. in Stub Runner app you could fetch stubs from your local .m2 in the following way.

http://localhost:7979
http://localhost:9393
http://localhost:9411
http://localhost:8750
http://localhost:8750/stubs
http://localhost:8750/stubs
http://localhost:8750/stubs

stubrunner.yml

stubrunner:
workOffline: true
ids:
- com.example:beer-api-producer:+:9876

32.1. Adding Additional Applications

Additional applications can be added to ./config/cloud.yml (not ./config.yml because that would
replace the defaults), e.g. with

config/cloud.yml
spring:
cloud:
launcher:
deployables:
source:
coordinates: maven://com.example:source:@.0.1-SNAPSHOT
port: 7000
sink:
coordinates: maven://com.example:sink:0.0.1-SNAPSHOT
port: 7001
when you list the apps:

$ spring cloud --list
source sink configserver dataflow eureka h2 hystrixdashboard kafka stubrunner zipkin

(notice the additional apps at the start of the list).

Chapter 33. Writing Groovy Scripts and
Running Applications

Spring Cloud CLI has support for most of the Spring Cloud declarative features, such as the @Enable*
class of annotations. For example, here is a fully functional Eureka server

app.groovy

@EnableEurekaServer
class Eureka {}

which you can run from the command line like this
$ spring run app.groovy

To include additional dependencies, often it suffices just to add the appropriate feature-enabling
annotation, e.g. @EnableConfigServer, @Enable0Auth2Sso or @EnableEurekaClient. To manually include
a dependency you can use a @Grab with the special "Spring Boot" short style artifact co-ordinates, i.e.
with just the artifact ID (no need for group or version information), e.g. to set up a client app to
listen on AMQP for management events from the Spring CLoud Bus:

app.groovy

@Grab('spring-cloud-starter-bus-amgp")
@ORestController
class Service {
@RequestMapping('/")
def home() { [message: 'Hello'] }
}

Chapter 34. Encryption and Decryption

The Spring Cloud CLI comes with an "encrypt" and a "decrypt" command. Both accept arguments in
the same form with a key specified as a mandatory "--key", e.g.

$ spring encrypt mysecret --key foo
682bc583f4641835fa2db009355293665d2647dade3375¢c0ee201de2a49f7bda
$ spring decrypt --key foo
682bc583f4641835fa2db009355293665d2647dade3375c0ee201de2a49f7bda
mysecret

To use a key in a file (e.g. an RSA public key for encyption) prepend the key value with "@" and
provide the file path, e.g.

$ spring encrypt mysecret --key @${HOME}/.ssh/id_rsa.pub
AQAjPgt3eFZQXwt8tsHAVv/QHiY5sI2dRcR+. ..

Spring Cloud for Cloud Foundry

Spring Cloud for Cloudfoundry makes it easy to run Spring Cloud apps in Cloud Foundry (the
Platform as a Service). Cloud Foundry has the notion of a "service", which is middlware that you
"bind" to an app, essentially providing it with an environment variable containing credentials (e.g.
the location and username to use for the service).

The spring-cloud-cloudfoundry-commons module configures the Reactor-based Cloud Foundry Java
client, v 3.0, and can be used standalone.

The spring-cloud-cloudfoundry-web project provides basic support for some enhanced features of
webapps in Cloud Foundry: binding automatically to single-sign-on services and optionally
enabling sticky routing for discovery.

The spring-cloud-cloudfoundry-discovery project provides an implementation of Spring Cloud
Commons DiscoveryClient so you can @EnableDiscoveryClient and provide your credentials as
spring.cloud.cloudfoundry.discovery.[username,password] (also *.url if you are not connecting to
Pivotal Web Services) and then you can use the DiscoveryClient directly or via a LoadBalancerClient.

The first time you use it the discovery client might be slow owing to the fact that it has to get an
access token from Cloud Foundry.

https://github.com/spring-cloud
https://github.com/cloudfoundry
https://run.pivotal.io

Chapter 35. Discovery

Here’s a Spring Cloud app with Cloud Foundry discovery:
app.groovy

@Grab('org.springframework.cloud:spring-cloud-cloudfoundry")
@RestController

@EnableDiscovery(Client

class Application {

@Autowired
DiscoveryClient client

@RequestMapping('/")
String home() {
'"Hello from ' + client.getlocalServicelInstance()

}

If you run it without any service bindings:

$ spring jar app.jar app.groovy
$ cf push -p app.jar

It will show its app name in the home page.

The Discovery(Client can lists all the apps in a space, according to the credentials it is authenticated
with, where the space defaults to the one the client is running in (if any). If neither org nor space
are configured, they default per the user’s profile in Cloud Foundry.

Chapter 36. Single Sign On

o All of the OAuth2 SSO and resource server features moved to Spring Boot in
version 1.3. You can find documentation in the Spring Boot user guide.

This project provides automatic binding from CloudFoundry service credentials to the Spring Boot
features. If you have a CloudFoundry service called "sso", for instance, with credentials containing
"client_id", "client_secret" and "auth_domain", it will bind automatically to the Spring OAuth2 client

that you enable with @EnableOAuth2Sso (from Spring Boot). The name of the service can be
parameterized using spring.oauth2.sso.serviceld.

https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/

Chapter 37. Configuration

To see the list of all Spring Cloud Sloud Foundry related configuration properties please check the
Appendix page.

appendix.html
appendix.html

Cloud Native Applications

Cloud Native is a style of application development that encourages easy adoption of best practices
in the areas of continuous delivery and value-driven development. A related discipline is that of
building 12-factor Applications, in which development practices are aligned with delivery and
operations goals—for instance, by using declarative programming and management and
monitoring. Spring Cloud facilitates these styles of development in a number of specific ways. The
starting point is a set of features to which all components in a distributed system need easy access.

Many of those features are covered by Spring Boot, on which Spring Cloud builds. Some more
features are delivered by Spring Cloud as two libraries: Spring Cloud Context and Spring Cloud
Commons. Spring Cloud Context provides utilities and special services for the ApplicationContext of
a Spring Cloud application (bootstrap context, encryption, refresh scope, and environment
endpoints). Spring Cloud Commons is a set of abstractions and common classes used in different
Spring Cloud implementations (such as Spring Cloud Netflix and Spring Cloud Consul).

If you get an exception due to "Illegal key size" and you use Sun’s JDK, you need to install the Java
Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files. See the following links
for more information:

* Java 6 JCE

* Java 7 JCE

» Java 8 JCE

Extract the files into the JDK/jre/lib/security folder for whichever version of JRE/JDK x64/x86 you
use.

Spring Cloud is released under the non-restrictive Apache 2.0 license. If you would
o like to contribute to this section of the documentation or if you find an error, you
can find the source code and issue trackers for the project at github.

https://pivotal.io/platform-as-a-service/migrating-to-cloud-native-application-architectures-ebook
https://12factor.net/
https://projects.spring.io/spring-boot
https://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html
https://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html
https://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
https://github.com/spring-cloud/spring-cloud-cli/tree/master/docs/src/main/asciidoc

Chapter 38. Spring Cloud Context:
Application Context Services

Spring Boot has an opinionated view of how to build an application with Spring. For instance, it has
conventional locations for common configuration files and has endpoints for common
management and monitoring tasks. Spring Cloud builds on top of that and adds a few features that
many components in a system would use or occasionally need.

38.1. The Bootstrap Application Context

A Spring Cloud application operates by creating a “bootstrap” context, which is a parent context for
the main application. This context is responsible for loading configuration properties from the
external sources and for decrypting properties in the local external configuration files. The two
contexts share an Environment, which is the source of external properties for any Spring application.
By default, bootstrap properties (not bootstrap.properties but properties that are loaded during the
bootstrap phase) are added with high precedence, so they cannot be overridden by local
configuration.

The bootstrap context uses a different convention for locating external configuration than the main
application context. Instead of application.yml (or .properties), you can use bootstrap.yml, keeping
the external configuration for bootstrap and main context nicely separate. The following listing
shows an example:

Example 1. bootstrap.yml

spring:
application:
name: foo
cloud:
config:
uri: ${SPRING_CONFIG_URI:http://localhost:8888%}

If your application needs any application-specific configuration from the server, it is a good idea to
set the spring.application.name (in bootstrap.yml or application.yml). For the property
spring.application.name to be wused as the application’s context ID, you must set it in
bootstrap.[properties | yml].

If you want to retrieve specific profile configuration, you should also set spring.profiles.active in
bootstrap.[properties | yml].

You can disable the bootstrap process completely by setting spring.cloud.bootstrap.enabled=false
(for example, in system properties).

38.2. Application Context Hierarchies

If you build an application context from SpringApplication or SpringApplicationBuilder, the
Bootstrap context is added as a parent to that context. It is a feature of Spring that child contexts
inherit property sources and profiles from their parent, so the “main” application context contains
additional property sources, compared to building the same context without Spring Cloud Config.
The additional property sources are:

* “bootstrap”: If any PropertySourcelLocators are found in the bootstrap context and if they have
non-empty properties, an optional CompositePropertySource appears with high priority. An
example would be properties from the Spring Cloud Config Server. See “Customizing the
Bootstrap Property Sources” for how to customize the contents of this property source.

» “applicationConfig: [classpath:bootstrap.yml]” (and related files if Spring profiles are active): If
you have a bootstrap.yml (or .properties), those properties are used to configure the bootstrap
context. Then they get added to the child context when its parent is set. They have lower
precedence than the application.yml (or .properties) and any other property sources that are
added to the child as a normal part of the process of creating a Spring Boot application. See
“Changing the Location of Bootstrap Properties” for how to customize the contents of these
property sources.

Because of the ordering rules of property sources, the “bootstrap” entries take precedence.
However, note that these do not contain any data from bootstrap.yml, which has very low
precedence but can be used to set defaults.

You can extend the context hierarchy by setting the parent context of any ApplicationContext you
create — for example, by using its own interface or with the SpringApplicationBuilder convenience
methods (parent(), child() and sibling()). The bootstrap context is the parent of the most senior
ancestor that you create yourself. Every context in the hierarchy has its own “bootstrap” (possibly
empty) property source to avoid promoting values inadvertently from parents down to their
descendants. If there is a config server, every context in the hierarchy can also (in principle) have a
different spring.application.name and, hence, a different remote property source. Normal Spring
application context behavior rules apply to property resolution: properties from a child context
override those in the parent, by name and also by property source name. (If the child has a
property source with the same name as the parent, the value from the parent is not included in the
child).

Note that the SpringApplicationBuilder lets you share an Environment amongst the whole hierarchy,
but that is not the default. Thus, sibling contexts (in particular) do not need to have the same
profiles or property sources, even though they may share common values with their parent.

38.3. Changing the Location of Bootstrap Properties

The bootstrap.yml (or .properties) location can be specified by setting spring.cloud.bootstrap.name
(default: bootstrap), spring.cloud.bootstrap.location (default: empty) or
spring.cloud.bootstrap.additional-location (default: empty) — for example, in System properties.

Those properties behave like the spring.config.* variants with the same name. With
spring.cloud.bootstrap.location the default locations are replaced and only the specified ones are

used. To add locations to the list of default ones, spring.cloud.bootstrap.additional-location could
be used. In fact, they are used to set up the bootstrap ApplicationContext by setting those properties
in its Environment. If there is an active profile (from spring.profiles.active or through the
Environment API in the context you are building), properties in that profile get loaded as well, the
same as in a regular Spring Boot app — for example, from bootstrap-development.properties for a
development profile.

38.4. Overriding the Values of Remote Properties

The property sources that are added to your application by the bootstrap context are often
“remote” (from example, from Spring Cloud Config Server). By default, they cannot be overridden
locally. If you want to let your applications override the remote properties with their own system
properties or config files, the remote property source has to grant it permission by setting
spring.cloud.config.allowOverride=true (it does not work to set this locally). Once that flag is set,
two finer-grained settings control the location of the remote properties in relation to system
properties and the application’s local configuration:

* spring.cloud.config.overrideNone=true: Override from any local property source.

* spring.cloud.config.overrideSystemProperties=false: Only system properties, command line
arguments, and environment variables (but not the local config files) should override the
remote settings.

38.5. Customizing the Bootstrap Configuration

The bootstrap context can be set to do anything you like by adding entries to /META-
INF/spring.factories under a key named
org.springframework.cloud.bootstrap.BootstrapConfiguration. This holds a comma-separated list of
Spring @Configuration classes that are used to create the context. Any beans that you want to be
available to the main application context for autowiring can be created here. There is a special
contract for @Beans of type ApplicationContextInitializer. If you want to control the startup
sequence, you can mark classes with the @0rder annotation (the default order is last).

When adding custom BootstrapConfiguration, be careful that the classes you add
are not @ComponentScanned by mistake into your “main” application context, where

A they might not be needed. Use a separate package name for boot configuration
classes and make sure that name is not already covered by your @ComponentScan or
@SpringBootApplication annotated configuration classes.

The bootstrap process ends by injecting initializers into the main SpringApplication instance (which
is the normal Spring Boot startup sequence, whether it runs as a standalone application or is
deployed in an application server). First, a bootstrap context is created from the classes found in
spring.factories. Then, all @Beans of type ApplicationContextInitializer are added to the main
SpringApplication before it is started.

38.6. Customizing the Bootstrap Property Sources

The default property source for external configuration added by the bootstrap process is the Spring
Cloud Config Server, but you can add additional sources by adding beans of type
PropertySourcelocator to the bootstrap context (through spring.factories). For instance, you can
insert additional properties from a different server or from a database.

As an example, consider the following custom locator:

@Configuration
public class CustomPropertySourcelocator implements PropertySourcelocator {

@0verride
public PropertySource<?> locate(Environment environment) {
return new MapPropertySource("customProperty",
Collections.<String,
Object>singletonMap("property.from.sample.custom.source"”, "worked as intended"));

}

The Environment that is passed in is the one for the ApplicationContext about to be created —in
other words, the one for which we supply additional property sources. It already has its normal
Spring Boot-provided property sources, so you can use those to locate a property source specific to
this Environment (for example, by keying it on spring.application.name, as is done in the default
Spring Cloud Config Server property source locator).

If you create a jar with this class in it and then add a META-INF/spring.factories containing the
following setting, the customProperty PropertySource appears in any application that includes that
jar on its classpath:

org.springframework.cloud.bootstrap.BootstrapConfiguration=sample.custom.CustomPro
pertySourcelocator

38.7. Logging Configuration

If you use Spring Boot to configure log settings, you should place this configuration in
bootstrap.[yml | properties] if you would like it to apply to all events.

For Spring Cloud to initialize logging configuration properly, you cannot use a
custom prefix. For example, using custom.loggin.logpath is not recognized by
Spring Cloud when initializing the logging system.

38.8. Environment Changes

The application listens for an EnvironmentChangeEvent and reacts to the change in a couple of
standard ways (additional ApplicationListeners can be added as @Beans in the normal way). When
an EnvironmentChangeEvent is observed, it has a list of key values that have changed, and the
application uses those to:

* Re-bind any @ConfigurationProperties beans in the context.

 Set the logger levels for any properties in logging. level.*.

Note that the Spring Cloud Config Client does not, by default, poll for changes in the Environment.
Generally, we would not recommend that approach for detecting changes (although you could set it
up with a @Scheduled annotation). If you have a scaled-out client application, it is better to broadcast
the EnvironmentChangeEvent to all the instances instead of having them polling for changes (for
example, by using the Spring Cloud Bus).

The EnvironmentChangeEvent covers a large class of refresh use cases, as long as you can actually
make a change to the Environment and publish the event. Note that those APIs are public and part of
core Spring). You can verify that the changes are bound to @ConfigurationProperties beans by
visiting the /configprops endpoint (a standard Spring Boot Actuator feature). For instance, a
DataSource can have its maxPoolSize changed at runtime (the default DataSource created by Spring
Boot is a @ConfigurationProperties bean) and grow capacity dynamically. Re-binding
@ConfigurationProperties does not cover another large class of use cases, where you need more
control over the refresh and where you need a change to be atomic over the whole
ApplicationContext. To address those concerns, we have @RefreshScope.

38.9. Refresh Scope

When there is a configuration change, a Spring @Bean that is marked as @RefreshScope gets special
treatment. This feature addresses the problem of stateful beans that get their configuration injected
only when they are initialized. For instance, if a DataSource has open connections when the
database URL is changed through the Environment, you probably want the holders of those
connections to be able to complete what they are doing. Then, the next time something borrows a
connection from the pool, it gets one with the new URL.

Sometimes, it might even be mandatory to apply the @RefreshScope annotation on some beans that
can be only initialized once. If a bean is “immutable”, you have to either annotate the bean with
@RefreshScope or specify the classname under the property key: spring.cloud.refresh.extra-
refreshable.

If you hava a DataSource bean that is a HikariDataSource, it can not be refreshed. It
is the default value for spring.cloud.refresh.never-refreshable. Choose a different
DataSource implementation if you need it to be refreshed.

Refresh scope beans are lazy proxies that initialize when they are used (that is, when a method is
called), and the scope acts as a cache of initialized values. To force a bean to re-initialize on the next
method call, you must invalidate its cache entry.

https://github.com/spring-cloud/spring-cloud-bus

The RefreshScope is a bean in the context and has a public refreshAl1() method to refresh all beans
in the scope by clearing the target cache. The /refresh endpoint exposes this functionality (over
HTTP or JMX). To refresh an individual bean by name, there is also a refresh(String) method.

To expose the /refresh endpoint, you need to add following configuration to your application:

management:
endpoints:
web:
exposure:
include: refresh

@RefreshScope works (technically) on a @Configuration class, but it might lead to
surprising behavior. For example, it does not mean that all the @Beans defined in
that class are themselves in @RefreshScope. Specifically, anything that depends on

o those beans cannot rely on them being updated when a refresh is initiated, unless
it is itself in @RefreshScope. In that case, it is rebuilt on a refresh and its
dependencies are re-injected. At that point, they are re-initialized from the
refreshed @Configuration).

38.10. Encryption and Decryption

Spring Cloud has an Environment pre-processor for decrypting property values locally. It follows the
same rules as the Spring Cloud Config Server and has the same external configuration through
encrypt.*. Thus, you can use encrypted values in the form of {cipher}*, and, as long as there is a
valid key, they are decrypted before the main application context gets the Environment settings. To
use the encryption features in an application, you need to include Spring Security RSA in your
classpath (Maven co-ordinates: org.springframework.security:spring-security-rsa), and you also
need the full strength JCE extensions in your JVM.

If you get an exception due to "Illegal key size" and you use Sun’s JDK, you need to install the Java
Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files. See the following links
for more information:

* Java 6 JCE

* Java 7 JCE

* Java 8 JCE

Extract the files into the JDK/jre/lib/security folder for whichever version of JRE/JDK x64/x86 you
use.

38.11. Endpoints

For a Spring Boot Actuator application, some additional management endpoints are available. You
can use:

https://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html
https://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html
https://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

POST to /actuator/env to update the Environment and rebind @ConfigurationProperties and log
levels. To enabled this endpoint you must set management.endpoint.env.post.enabled=true.

/actuator/refresh to re-load the boot strap context and refresh the @RefreshScope beans.
/actuator/restart to close the ApplicationContext and restart it (disabled by default).

/actuator/pause and /actuator/resume for calling the Lifecycle methods (stop() and start() on
the ApplicationContext).

If you disable the /actuator/restart endpoint then the /actuator/pause and
o /actuator/resume endpoints will also be disabled since they are just a special case
of /actuator/restart.

Chapter 39. Spring Cloud Commons:
Common Abstractions

Patterns such as service discovery, load balancing, and circuit breakers lend themselves to a
common abstraction layer that can be consumed by all Spring Cloud clients, independent of the
implementation (for example, discovery with Eureka or Consul).

39.1. The @EnableDiscoveryClient Annotation

Spring Cloud Commons provides the @EnableDiscoveryClient annotation. This looks for
implementations of the DiscoveryClient and ReactiveDiscovery(Client interfaces with META-
INF/spring.factories. Implementations of the discovery client add a configuration class to
spring.factories under the org.springframework.cloud.client.discovery.EnableDiscoveryClient key.
Examples of Discovery(Client implementations include Spring Cloud Netflix Eureka, Spring Cloud
Consul Discovery, and Spring Cloud Zookeeper Discovery.

Spring Cloud will provide both the blocking and reactive service discovery clients by default. You
can disable the blocking and/or reactive clients easily by setting
spring.cloud.discovery.blocking.enabled=false or spring.cloud.discovery.reactive.enabled=false.
To completely disable service discovery you just need to set spring.cloud.discovery.enabled=false.

By default, implementations of Discovery(Client auto-register the local Spring Boot server with the
remote discovery server. This behavior can be disabled by setting autoRegister=false in
@EnableDiscoveryClient.

@EnableDiscoveryClient is no longer required. You can put a DiscoveryClient
implementation on the classpath to cause the Spring Boot application to register
with the service discovery server.

39.1.1. Health Indicators

Commons auto-configures the following Spring Boot health indicators.

DiscoveryClientHealthIndicator

This health indicator is based on the currently registered DiscoveryClient implementation.

» To disable entirely, set spring.cloud.discovery.client.health-indicator.enabled=false.

* To disable the description field, set spring.cloud.discovery.client.health-indicator.include-
description=false. Otherwise, it can bubble up as the description of the rolled up
HealthIndicator.

» To disable service retrieval, set spring.cloud.discovery.client.health-indicator.use-services-
query=false. By default, the indicator invokes the client’s getServices method. In deployments
with many registered services it may too costly to retrieve all services during every check. This
will skip the service retrieval and instead use the client’s probe method.

https://cloud.spring.io/spring-cloud-netflix/
https://cloud.spring.io/spring-cloud-consul/
https://cloud.spring.io/spring-cloud-consul/
https://cloud.spring.io/spring-cloud-zookeeper/

DiscoveryCompositeHealthContributor

This composite health indicator is based on all registered DiscoveryHealthIndicator beans. To
disable, set spring.cloud.discovery.client.composite-indicator.enabled=false.

39.1.2. Ordering Discovery(Client instances

Discovery(Client interface extends Ordered. This is useful when using multiple discovery clients, as it
allows you to define the order of the returned discovery clients, similar to how you can order the
beans loaded by a Spring application. By default, the order of any DiscoveryClient is set to 0. If you
want to set a different order for your custom DiscoveryClient implementations, you just need to
override the getOrder() method so that it returns the value that is suitable for your setup. Apart
from this, you can use properties to set the order of the Discovery(Client implementations provided
by Spring Cloud, among others ConsulDiscoveryClient, EurekaDiscoveryClient and
ZookeeperDiscoveryClient. In order to do it, you just need to set the
spring.cloud.{clientIdentifier}.discovery.order (or eureka.client.order for Eureka) property to
the desired value.

39.1.3. SimpleDiscoveryClient

If there is no Service-Registry-backed DiscoveryClient in the classpath, SimpleDiscoveryClient
instance, that uses properties to get information on service and instances, will be used.

The information about the available instances should be passed to via properties in the following
format: spring.cloud.discovery.client.simple.instances.servicel[0].uri=http://s11:8080, where
spring.cloud.discovery.client.simple.instances is the common prefix, then servicel stands for the
ID of the service in question, while [0] indicates the index number of the instance (as visible in the
example, indexes start with 0), and then the value of uri is the actual URI under which the instance
is available.

39.2. ServiceRegistry

Commons now provides a ServiceRegistry interface that provides methods such as
register(Registration) and deregister(Registration), which let you provide custom registered
services. Registration is a marker interface.

The following example shows the ServiceRegistry in use:

@Configuration
@EnableDiscoveryClient(autoRegister=false)
public class MyConfiguration {

private ServiceRegistry registry;

public MyConfiguration(ServiceRegistry registry) {
this.registry = registry;
}

// called through some external process, such as an event or a custom actuator
endpoint
public void register() {
Registration registration = constructRegistration();
this.registry.register(registration);

Each ServiceRegistry implementation has its own Registry implementation.

* ZookeeperRegistration used with ZookeeperServiceRegistry
* EurekaRegistration used with EurekaServiceRegistry
* ConsulRegistration used with ConsulServiceRegistry

If you are using the ServiceRegistry interface, you are going to need to pass the correct Registry
implementation for the ServiceRegistry implementation you are using.

39.2.1. ServiceRegistry Auto-Registration

By default, the ServiceRegistry implementation auto-registers the running service. To disable that
behavior, you can set: * @EnableDiscoveryClient(autoRegister=false) to permanently disable auto-
registration. * spring.cloud.service-registry.auto-registration.enabled=false to disable the
behavior through configuration.

ServiceRegistry Auto-Registration Events

There are two events that will be fired when a service auto-registers. The first event, called
InstancePreRegisteredEvent, is fired before the service is registered. The second event, called
InstanceRegisteredEvent, is fired after the service is registered. You can register an
ApplicationListener(s) to listen to and react to these events.

o These events will not be fired if the spring.cloud.service-registry.auto-
registration.enabled property is set to false

39.2.2. Service Registry Actuator Endpoint

Spring Cloud Commons provides a /service-registry actuator endpoint. This endpoint relies on a

Registration bean in the Spring Application Context. Calling /service-registry with GET returns the
status of the Registration. Using POST to the same endpoint with a JSON body changes the status of
the current Registration to the new value. The JSON body has to include the status field with the
preferred value. Please see the documentation of the ServiceRegistry implementation you use for
the allowed values when updating the status and the values returned for the status. For instance,
Eureka’s supported statuses are UP, DOWN, OUT_OF _SERVICE, and UNKNOWN.

39.3. Spring RestTemplate as a Load Balancer Client

You can configure a RestTemplate to use a Load-balancer client. To create a load-balanced
RestTemplate, create a RestTemplate @Bean and use the @LoadBalanced qualifier, as the following
example shows:

@Configuration
public class MyConfiguration {

@LoadBalanced

@Bean

RestTemplate restTemplate() {
return new RestTemplate();

}
}

public class MyClass {
@Autowired
private RestTemplate restTemplate;

public String doOtherStuff() {
String results = restTemplate.getForObject("http://stores/stores"”,
String.class);
return results;

}

o A RestTemplate bean is no longer created through auto-configuration. Individual
applications must create it.

The URI needs to use a virtual host name (that is, a service name, not a host name). The Ribbon
client is wused to create a full physical address. See {githubroot}/spring-cloud-
netflix/blob/master/spring-cloud-netflix-
ribbon/src/main/java/org/springframework/cloud/netflix/ribbon/RibbonAutoConfiguration.java[Rib
bonAutoConfiguration] for the details of how the RestTemplate is set up.

To use a load-balanced RestTemplate, you need to have a load-balancer
implementation in your classpath. The recommended implementation is

o BlockinglLoadBalancerClient. Add Spring Cloud LoadBalancer starter to your project
in order to use it. The RibbonLoadBalancerClient also can be used, but it’s now
under maintenance and we do not recommend adding it to new projects.

By default, if you have both RibbonLoadBalancerClient and
A BlockinglLoadBalancerClient, to preserve backward compatibility,

RibbonLoadBalancerClient is wused. To override it, you can set the

spring.cloud.loadbalancer.ribbon.enabled property to false.

39.4. Spring WebClient as a Load Balancer Client

You can configure WebClient to automatically use a load-balancer client. To create a load-balanced
WebClient, create a WebClient.Builder @Bean and use the @LoadBalanced qualifier, as follows:

@Configuration
public class MyConfiguration {

@Bean
@LoadBalanced
public WebClient.Builder loadBalancedWebClientBuilder() {
return WebClient.builder();
}
}

public class MyClass {
@Autowired
private WebClient.Builder webClientBuilder;

public Mono<String> doOtherStuff() {
return webClientBuilder.build().get().uri("http://stores/stores")
.retrieve().bodyToMono(String.class);

The URI needs to use a virtual host name (that is, a service name, not a host name). The Ribbon
client or Spring Cloud LoadBalancer is used to create a full physical address.

If you want to use a @LoadBalanced WebClient.Builder, you need to have a load
balancer implementation in the classpath. We recommend that you add the Spring
Cloud LoadBalancer starter to your project. Then, ReactivelLoadBalancer is used
underneath. Alternatively, this functionality also works with spring-cloud-starter-
o netflix-ribbon, but the request is handled by a non-reactive LoadBalancerClient
under the hood. Additionally, spring-cloud-starter-netflix-ribbon is already in
maintenance mode, so we do not recommend adding it to new projects. If you
have both spring-cloud-starter-loadbalancer and spring-cloud-starter-netflix-
ribbon in your classpath, Ribbon is used by default. To switch to Spring Cloud
LoadBalancer, set the spring.cloud.loadbalancer.ribbon.enabled property to false.

39.4.1. Retrying Failed Requests

A load-balanced RestTemplate can be configured to retry failed requests. By default, this logic is
disabled. For the non-reactive version (with RestTemplate), you can enable it by adding Spring Retry
to your application’s classpath.

To use the reactive version of load-balanced retries in the Hoxton release train, you will need to
instantiate your own RetryablelLoadBalancerExchangeFilterFunction bean:

@Configuration
public class MyConfiguration {

@Bean
RetryablelLoadBalancerExchangeFilterFunction
retryableLoadBalancerExchangeFilterFunction(
LoadBalancerRetryProperties properties,
ReactiveloadBalancer.Factory<ServiceInstance> factory) {
return new RetryableloadBalancerExchangeFilterFunction(
new RetryableExchangeFilterFunctionLoadBalancerRetryPolicy(
properties),
factory, properties);

Then you can use it as a filter while building webClient instances:

https://github.com/spring-projects/spring-retry

public class MyClass {
@Autowired
private RetryableloadBalancerExchangeFilterFunction retryablelLbFunction;

public Mono<String> doOtherStuff() {
return WebClient.builder().baseUr1("http://stores")

.filter(retryablelLbFunction)
.build()
.get()
.uri("/stores")
.retrieve()
.bodyToMono(String.class);

If you would like to disable the retry logic with Spring Retry on the classpath, you can set
spring.cloud.loadbalancer.retry.enabled=false.

For the non-reactive implementation, if you would like to implement a BackOffPolicy in your
retries, you need to create a bean of type LoadBalancedRetryFactory and override the
createBackOffPolicy() method.

For the reactive implementation, you just need to enable it Dby setting
spring.cloud.loadbalancer.retry.backoff.enabled to false.

You can set:

* spring.cloud.loadbalancer.retry.maxRetriesOnSameServicelnstance - indicates how many times a
request should be retried on the same Servicelnstance (counted separately for every selected
instance)

* spring.cloud.loadbalancer.retry.maxRetriesOnNextServiceInstance - indicates how many times a
request should be retried a newly selected ServiceInstance

* spring.cloud.loadbalancer.retry.retryableStatusCodes - the status codes on which to always
retry a failed request.

For the reactive implementation, you can additionally set: -
spring.cloud.loadbalancer.retry.backoff.minBackoff - Sets the minimum backoff duration (by
default, 5 milliseconds) - spring.cloud.loadbalancer.retry.backoff.maxBackoff - Sets the maximum
backoff duration (by default, max long value of milliseconds) -
spring.cloud.loadbalancer.retry.backoff.jitter - Sets the jitter used for calculationg the actual
backoff duration for each call (by default, 0.5).

For the reactive implementation, you can also implement your own LoadBalancerRetryPolicy to
have more detailed control over the load-balanced call retries.

WARN

For the non-reactive version, if you chose to override the LoadBalancedRetryFactory while using
the Spring Cloud LoadBalancer-backed approach, make sure you annotate your bean with @0rder

and set it to a higher precedence than 1000, which is the order set on the
BlockinglLoadBalancedRetryFactory.

Ribbon-based retries

For the Ribbon-backed implementation, the load-balanced RestTemplate honors some of the Ribbon
configuration values related to retrying failed requests. You can use the
client.ribbon.MaxAutoRetries, client.ribbon.MaxAutoRetriesNextServer, and
client.ribbon.OkToRetryOnAllOperations properties.

See the Ribbon documentation for a description of what these properties do.

Spring Cloud LoadBalancer-based retries

For the Spring Cloud LoadBalancer-backed implementation, you can set:

* spring.cloud.loadbalancer.retry.maxRetriesOnSameServiceInstance - indicates how many times a
request should be retried on the same ServiceInstance (counted separately for every selected
instance)

* spring.cloud.loadbalancer.retry.maxRetriesOnNextServicelnstance - indicates how many times a
request should be retried a newly selected ServiceInstance

* spring.cloud.loadbalancer.retry.retryableStatusCodes - the status codes on which to always
retry a failed request.

WARN

If you chose to override the LoadBalancedRetryFactory while using the Spring Cloud
LoadBalancer-backed approach, make sure you annotate your bean with @0rder and set it to
a higher precedence than 1000, which is the order set on the
BlockinglLoadBalancedRetryFactory.

o client in the preceding examples should be replaced with your Ribbon client’s
name.

If you want to add one or more RetryListener implementations to your retry functionality, you need
to create a bean of type LoadBalancedRetrylListenerFactory and return the RetrylListener array you
would like to use for a given service, as the following example shows:

https://github.com/Netflix/ribbon/wiki/Getting-Started#the-properties-file-sample-clientproperties

@Configuration
public class MyConfiguration {
@Bean
LoadBalancedRetrylListenerFactory retrylListenerFactory() {
return new LoadBalancedRetrylListenerFactory() {
@0verride
public RetrylListener[] createRetrylListeners(String service) {
return new RetryListener[]{new RetryListener() {
@0verride
public <T, E extends Throwable> boolean open(RetryContext
context, RetryCallback<T, E> callback) {
//T0D0 Do you business...
return true;

}

@0verride
public <T, E extends Throwable> void close(RetryContext
context, RetryCallback<T, E> callback, Throwable throwable) {
//T0D0 Do you business...
}

@0verride
public <T, E extends Throwable> void onError(RetryContext
context, RetryCallback<T, E> callback, Throwable throwable) {
//T0D0 Do you business...
}
M

39.5. Multiple RestTemplate Objects

If you want a RestTemplate that is not load-balanced, create a RestTemplate bean and inject it. To
access the load-balanced RestTemplate, use the @LoadBalanced qualifier when you create your @Bean,
as the following example shows:

@Configuration
public class MyConfiguration {

@LoadBalanced

@Bean

RestTemplate loadBalanced() {
return new RestTemplate();

}

@Primary

@Bean

RestTemplate restTemplate() {
return new RestTemplate();

}
}

public class MyClass {
@Autowired
private RestTemplate restTemplate;

@Autowired
@LoadBalanced
private RestTemplate loadBalanced;

public String doOtherStuff() {
return loadBalanced.getForObject("http://stores/stores", String.class);

}

public String doStuff() {
return restTemplate.getForObject("http://example.com", String.class);

}
}
o Notice the use of the @Primary annotation on the plain RestTemplate declaration in
the preceding example to disambiguate the unqualified @Autowired injection.
If you see errors such as java.lang.IllegalArgumentException: Can not set
(,') org.springframework.web.client.RestTemplate field com.my.app.Foo.restTemplate
- to com.sun.proxy.$Proxy89, try injecting RestOperations or setting

spring.aop.proxyTargetClass=true.

39.6. Multiple WebClient Objects

If you want a WebClient that is not load-balanced, create a WebClient bean and inject it. To access the
load-balanced WebClient, use the @LoadBalanced qualifier when you create your @Bean, as the
following example shows:

@Configuration
public class MyConfiguration {

@LoadBalanced

@Bean

WebClient.Builder loadBalanced() {
return WebClient.builder();

}

@Primary

@Bean

WebClient.Builder webClient() {
return WebClient.builder();

}
}

public class MyClass {
@Autowired
private WebClient.Builder webClientBuilder;

@Autowired
@LoadBalanced
private WebClient.Builder loadBalanced;

public Mono<String> doOtherStuff() {
return loadBalanced.build().get().uri("http://stores/stores")
.retrieve().bodyToMono(String.class);

}

public Mono<String> doStuff() {
return webClientBuilder.build().qget().uri("http://example.com")
.retrieve().bodyToMono(String.class);

39.7. Spring WebFlux WebClient as a Load Balancer
Client

The Spring WebFlux can work with both reactive and non-reactive WebClient configurations, as the
topics describe:

» Spring WebFlux WebClient with ReactorLoadBalancerExchangeFilterFunction

* [load-balancer-exchange-filter-functionload-balancer-exchange-filter-function]

39.7.1. Spring WebFlux WebClient with
ReactorLoadBalancerExchangeFilterFunction

You can configure WebClient to use the ReactiveloadBalancer. If you add Spring Cloud LoadBalancer
starter ~ to your project and if spring-webflux is on the classpath,
ReactorLoadBalancerExchangeFilterFunction is auto-configured. The following example shows how
to configure a WebClient to use reactive load-balancer:

public class MyClass {
@Autowired
private ReactorLoadBalancerExchangeFilterFunction 1bFunction;

public Mono<String> doOtherStuff() {
return WebClient.builder().baseUr1("http://stores")

.filter(1bFunction)
.build()
.get()
.uri("/stores")
.retrieve()
.bodyToMono(String.class);

The URI needs to use a virtual host name (that is, a service name, not a host name). The
ReactorLoadBalancer is used to create a full physical address.

By default, if you have spring-cloud-netflix-ribbon in your classpath,
0 LoadBalancerExchangeFilterFunction is used to maintain backward compatibility.

To use ReactorlLoadBalancerExchangeFilterFunction, set the

spring.cloud.loadbalancer.ribbon.enabled property to false.

39.7.2. Spring WebFlux WebClient with a Non-reactive Load Balancer Client

If you you do not have Spring Cloud LoadBalancer starter in your project but you do have spring-
cloud-starter-netflix-ribbon, you can still use WebClient with LoadBalancerClient. If spring-webflux is
on the classpath, LoadBalancerExchangeFilterFunction is auto-configured. Note, however, that this
uses a non-reactive client under the hood. The following example shows how to configure a
WebClient to use load-balancer:

public class MyClass {
@Autowired
private LoadBalancerExchangeFilterFunction 1bFunction;

public Mono<String> doOtherStuff() {
return WebClient.builder().baseUr1("http://stores")

.filter(1bFunction)
.build()
.get()
.uri("/stores")
.retrieve()
.bodyToMono(String.class);

The URI needs to use a virtual host name (that is, a service name, not a host name). The
LoadBalancer(lient is used to create a full physical address.

WARN: This approach is now deprecated. We suggest that you use WebFlux with reactive Load-
Balancer instead.

39.8. Ignore Network Interfaces

Sometimes, it is useful to ignore certain named network interfaces so that they can be excluded
from Service Discovery registration (for example, when running in a Docker container). A list of
regular expressions can be set to cause the desired network interfaces to be ignored. The following
configuration ignores the docker® interface and all interfaces that start with veth:

Example 2. application.yml

spring:
cloud:
inetutils:
ignoredInterfaces:
- docker®@
- veth.*

You can also force the use of only specified network addresses by using a list of regular expressions,
as the following example shows:

Example 3. bootstrap.yml

spring:
cloud:
inetutils:
preferredNetworks:
- 192.168
- 10.0

You can also force the use of only site-local addresses, as the following example shows:

Example 4. application.yml

spring:
cloud:
inetutils:
useOnlySitelocallnterfaces: true

See Inet4Address.html.isSiteLocalAddress() for more details about what constitutes a site-local
address.

39.9. HTTP Client Factories

Spring Cloud Commons provides beans for creating both Apache HTTP clients
(ApacheHttpClientFactory) and OK HTTP clients (OkHttpClientFactory). The OkHttpClientFactory bean
is created only if the OK HTTP jar is on the classpath. In addition, Spring Cloud Commons provides
beans for creating the connection managers used by both clients:
ApacheHttpClientConnectionManagerFactory for the Apache HTTP client and
OkHttpClientConnectionPoolFactory for the OK HTTP client. If you would like to customize how the
HTTP clients are created in downstream projects, you can provide your own implementation of
these beans. In addition, if you provide a bean of type HttpClientBuilder or OkHttpClient.Builder,
the default factories use these builders as the basis for the builders returned to downstream
projects. You can also disable the <creation of these beans by setting
spring.cloud.httpclientfactories.apache.enabled or spring.cloud.httpclientfactories.ok.enabled
to false.

39.10. Enabled Features

Spring Cloud Commons provides a /features actuator endpoint. This endpoint returns features
available on the classpath and whether they are enabled. The information returned includes the
feature type, name, version, and vendor.

https://docs.oracle.com/javase/8/docs/api/java/net/Inet4Address.html#isSiteLocalAddress--

39.10.1. Feature types
There are two types of 'features': abstract and named.

Abstract features are features where an interface or abstract class is defined and that an
implementation the creates, such as DiscoveryClient, LoadBalancerClient, or LockService. The
abstract class or interface is used to find a bean of that type in the context. The version displayed is
bean.get(Class().getPackage().getImplementationVersion().

Named features are features that do not have a particular class they implement. These features
include “Circuit Breaker”, “API Gateway”, “Spring Cloud Bus”, and others. These features require a
name and a bean type.

39.10.2. Declaring features

Any module can declare any number of HasFeature beans, as the following examples show:

©Bean
public HasFeatures commonsFeatures() {

return HasFeatures.abstractFeatures(DiscoveryClient.class,
LoadBalancerClient.class);

}

@Bean
public HasFeatures consulFeatures() {
return HasFeatures.namedFeatures(
new NamedFeature("Spring Cloud Bus", ConsulBusAutoConfiguration.class),
new NamedFeature("Circuit Breaker", HystrixCommandAspect.class));

@Bean
HasFeatures localFeatures() {
return HasFeatures.builder()
.abstractFeature(Something.class)
.namedFeature(new NamedFeature("Some Other Feature", Someother.class))
.abstractFeature(Somethingelse.class)
.build();

Each of these beans should go in an appropriately guarded @Configuration.

39.11. Spring Cloud Compatibility Verification

Due to the fact that some users have problem with setting up Spring Cloud application, we’ve
decided to add a compatibility verification mechanism. It will break if your current setup is not
compatible with Spring Cloud requirements, together with a report, showing what exactly went
wrong.

At the moment we verify which version of Spring Boot is added to your classpath.

Example of a report

kkkkkkhkhkkhkkkhkkkhkkhkhkkhkhhkkhkkkx

APPLICATION FAILED TO START

kkkkkkhkhkhkhhkkhhkhkhkkhkhkhkhhkkrkkk

Description:
Your project setup is incompatible with our requirements due to following reasons:

- Spring Boot [2.1.0.RELEASE] is not compatible with this Spring Cloud release
train

Action:
Consider applying the following actions:

- Change Spring Boot version to one of the following versions [1.2.x, 1.3.x] .
You can find the latest Spring Boot versions here
[https://spring.io/projects/spring-boot#learn].

If you want to learn more about the Spring Cloud Release train compatibility, you
can visit this page [https://spring.io/projects/spring-cloudfoverview] and check
the [Release Trains] section.

In order to disable this feature, set spring.cloud.compatibility-verifier.enabled to false. If you
want to override the compatible Spring Boot versions, just set the spring.cloud.compatibility-
verifier.compatible-boot-versions property with a comma separated list of compatible Spring Boot
versions.

Chapter 40. Spring Cloud LoadBalancer

Spring Cloud provides its own client-side load-balancer abstraction and implementation. For the
load-balancing mechanism, ReactiveloadBalancer interface has been added and a Round-Robin-
based and Random implementations have been provided for it. In order to get instances to select
from reactive ServiceInstancelistSupplier is used. Currently we support a service-discovery-based
implementation of ServiceInstancelistSupplier that retrieves available instances from Service
Discovery using a Discovery Client available in the classpath.

40.1. Switching between the load-balancing algorithms

The ReactiveloadBalancer implementation that is used by default is RoundRobinLoadBalancer. To
switch to a different implementation, either for selected services or all of them, you can use the
custom LoadBalancer configurations mechanism.

For example, the following configuration can be passed via @LoadBalancerClient annotation to
switch to using the RandomLoadBalancer:

public class CustomLoadBalancerConfiguration {

@Bean
ReactorLoadBalancer<ServiceInstance> randomLoadBalancer (Environment environment,
LoadBalancerClientFactory loadBalancerClientFactory) {
String name =
environment.getProperty(LoadBalancerClientFactory.PROPERTY_NAME);
return new RandomLoadBalancer(loadBalancerClientFactory
.getlazyProvider(name, ServiceInstancelistSupplier.class),
name);

The classes you pass as @LoadBalancerClient or @LoadBalancerClients configuration
o arguments should either not be annotated with @Configuration or be outside
component scan scope.

40.2. Spring Cloud LoadBalancer integrations

In order to make it easy to use Spring Cloud LoadBalancer, we provide
ReactorLoadBalancerExchangeFilterFunction that can be used with WebClient and
BlockinglLoadBalancerClient that works with RestTemplate. You can see more information and
examples of usage in the following sections:

* Spring RestTemplate as a L.oad Balancer Client

» Spring WebClient as a Load Balancer Client

* Spring WebFlux WebClient with ReactorLoadBalancerExchangeFilterFunction

40.3. Spring Cloud LoadBalancer Caching

Apart from the basic ServicelnstancelistSupplier implementation that retrieves instances via
Discovery(Client each time it has to choose an instance, we provide two caching implementations.

40.3.1. Caffeine-backed LoadBalancer Cache Implementation

If you have com.github.ben-manes.caffeine:caffeine in the classpath, Caffeine-based
implementation will be used. See the LoadBalancerCacheConfiguration section for information on
how to configure it.

If you are using Caffeine, you can also override the default Caffeine Cache setup for the
LoadBalancer by passing your own Caffeine Specification in the
spring.cloud.loadbalancer.cache.caffeine.spec property.

WARN: Passing your own Caffeine specification will override any other LoadBalancerCache
settings, including General LoadBalancer Cache Configuration fields, such as ttl and capacity.

40.3.2. Default LoadBalancer Cache Implementation

If you do not have Caffeine in the classpath, the DefaultLoadBalancerCache, which comes
automatically with spring-cloud-starter-loadbalancer, will be used. See the
LoadBalancerCacheConfiguration section for information on how to configure it.

(r') To wuse Caffeine instead of the default cache, add the com.github.ben-
- manes.caffeine:caffeine dependency to classpath.

40.3.3. LoadBalancer Cache Configuration

You can set your own ttl value (the time after write after which entries should be expired),
expressed as Duration, by passing a String compliant with the Spring Boot String to Duration
converter syntax. as the value of the spring.cloud.loadbalancer.cache.ttl property. You can also set
your own LoadBalancer cache initial capacity by setting the value of the
spring.cloud.loadbalancer.cache.capacity property.

The default setup includes tt1 set to 35 seconds and the default initialCapacity is 256.

You can also altogether disable loadBalancer caching by setting the value of
spring.cloud.loadbalancer.cache.enabled to false.

Although the basic, non-cached, implementation is useful for prototyping and
testing, it’s much less efficient than the cached versions, so we recommend always
using the cached version in production.

40.4. Zone-Based Load-Balancing

To enable zone-based load-balancing, we provide the ZonePreferenceServiceInstancelistSupplier.
We use DiscoveryClient-specific zone configuration (for example, eureka.instance.metadata-

https://github.com/ben-manes/caffeine
https://static.javadoc.io/com.github.ben-manes.caffeine/caffeine/2.2.2/com/github/benmanes/caffeine/cache/CaffeineSpec.html
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-external-config-conversion-duration
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-external-config-conversion-duration
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-external-config-conversion-duration
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-external-config-conversion-duration
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-external-config-conversion-duration
https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-features.html#boot-features-external-config-conversion-duration

map.zone) to pick the zone that the client tries to filter available service instances for.

o You can also override DiscoveryClient-specific zone setup by setting the value of
spring.cloud.loadbalancer.zone property.

For the time being, only Eureka Discovery Client is instrumented to set the
A LoadBalancer zone. For other discovery client, set the
spring.cloud.loadbalancer.zone property. More instrumentations coming shortly.

o To determine the zone of a retrieved ServiceInstance, we check the value under
the "zone" key in its metadata map.

The ZonePreferenceServiceInstancelistSupplier filters retrieved instances and only returns the ones
within the same zone. If the zone is null or there are no instances within the same zone, it returns
all the retrieved instances.

In order to use the zone-based load-balancing approach, you will have to instantiate a
ZonePreferenceServiceInstancelistSupplier bean in a custom configuration.

We use delegates to work with ServicelnstancelistSupplier beans. We suggest passing a
Discovery(ClientServiceInstancelistSupplier delegate in the constructor of
ZonePreferenceServiceInstancelistSupplier and, in turn, wrapping the latter with a
CachingServiceInstancelistSupplier to leverage LoadBalancer caching mechanism.

You could use this sample configuration to set it up:

public class CustomLoadBalancerConfiguration {

@Bean
public ServicelInstancelistSupplier discoveryClientServiceInstancelistSupplier(
ConfigurableApplicationContext context) {
return ServiceInstancelistSuppliers.builder()
.withDiscoveryClient()
.withZonePreference()
.withCaching()
.build(context);

40.5. Instance Health-Check for LoadBalancer

It is possible to enable a scheduled HealthCheck for the LoadBalancer. The
HealthCheckServiceInstancelistSupplier is provided for that. It regularly verifies if the instances
provided by a delegate ServiceInstancelListSupplier are still alive and only returns the healthy
instances, unless there are none - then it returns all the retrieved instances.

This mechanism is particularly helpful while using the SimpleDiscoveryClient. For

r

the clients backed by an actual Service Registry, it’s not necessary to use, as we
-

already get healthy instances after querying the external ServiceDiscovery.
7 This supplier is also recommended for setups with a small number of instances
- per service in order to avoid retrying calls on a failing instance.

If using any of the Service Discovery-backed suppliers, adding this health-check
A mechanism is usually not necessary, as we retrieve the health state of the instances
directly from the Service Registry.

The HealthCheckServiceInstancelistSupplier relies on having updated instances
provided by a delegate flux. In the rare cases when you want to use a delegate that
does not refresh the instances, even though the list of instances may change (such
as the ReactiveDiscoveryClientServiceInstancelistSupplier provided by us), you
can set spring.cloud.loadbalancer.health-check.refetch-instances to true to have

@ the instance list refreshed by the HealthCheckServiceInstancelListSupplier. You can
then also adjust the refretch intervals by modifying the value of
spring.cloud.loadbalancer.health-check.refetch-instances-interval and opt to
disable the additional healthcheck repetitions by setting
spring.cloud.loadbalancer.repeat-health-check to fasle as every instances refetch
will also trigger a healthcheck.

HealthCheckServiceInstancelListSupplier uses properties prefixed with
spring.cloud.loadbalancer.health-check. You can set the initialDelay and interval for the
scheduler. You can set the default path for the healthcheck URL by setting the value of the
spring.cloud.loadbalancer.health-check.path.default. You can also set a specific value for any
given service by setting the value of the spring.cloud.loadbalancer.health-check.path.[SERVICE_ID],
substituting the [SERVICE_ID] with the correct ID of your service. If the path is not set,
/actuator/health is used by default.

If you rely on the default path (/actuator/health), make sure you add spring-boot-
@ starter-actuator to your collaborator’s dependencies, unless you are planning to
add such an endpoint on your own.

In order to use the health-check scheduler approach, you will have to instantiate a
HealthCheckServiceInstancelListSupplier bean in a custom configuration.

We use delegates to work with ServicelnstancelistSupplier beans. We suggest passing a
DiscoveryClientServiceInstancelistSupplier delegate in the constructor of
HealthCheckServiceInstancelListSupplier.

You could use this sample configuration to set it up:

public class CustomLoadBalancerConfiguration {

@Bean
public ServiceInstancelistSupplier discoveryClientServiceInstancelistSupplier(
ConfigurableApplicationContext context) {
return ServiceInstancelistSupplier.builder()
.withDiscoveryClient()
.withHealthChecks()
.build(context);

HealthCheckServiceInstancelistSupplier has its own caching mechanism based on
Reactor Flux replay(). Therefore, if it’s being used, you may want to skip wrapping
that supplier with CachingServiceInstancelistSupplier.

40.6. Same instance preference for LoadBalancer

You can set up the LoadBalancer in such a way that it prefers the instance that was previously
selected, if that instance is available.

For that, you need to use SameInstancePreferenceServiceInstancelistSupplier. You can configure it
either by setting the value of spring.cloud.loadbalancer.configurations to same-instance-preference
or by providing your own ServiceInstancelistSupplier bean — for example:

public class CustomLoadBalancerConfiguration {

@Bean
public ServicelnstancelistSupplier discoveryClientServiceInstancelistSupplier(
ConfigurableApplicationContext context) {
return ServiceInstancelistSupplier.builder()
.withDiscoveryClient()
.withSameInstancePreference()
.build(context);

@ This is also a replacement for Zookeeper StickyRule.

40.7. Transform the load-balanced HTTP request

You can use the selected ServicelInstance to transform the load-balanced HTTP Request.

For RestTemplate, you need to implement and define LoadBalancerRequestTransformer as follows:

©Bean
public LoadBalancerRequestTransformer transformer() {
return new LoadBalancerRequestTransformer() {
@verride
public HttpRequest transformRequest(HttpRequest request, Servicelnstance
instance) {
return new HttpRequestWrapper(request) {
@lverride
public HttpHeaders getHeaders() {
HttpHeaders headers = new HttpHeaders();
headers.putAll(super.getHeaders());
headers.add("X-InstanceId", instance.getInstanceld());
return headers;

+

For Web(Client, you need to implement and define LoadBalancerClientRequestTransformer as follows:

©Bean
public LoadBalancerClientRequestTransformer transformer() {
return new LoadBalancerClientRequestTransformer() {
@verride
public ClientRequest transformRequest(ClientRequest request, Servicelnstance
instance) {
return ClientRequest.from(request)
.header ("X-Instanceld", instance.getInstanceld())
.build();

If multiple transformers are defined, they are applied in the order in which Beans are defined.
Alternatively, you can use LoadBalancerRequestTransformer.DEFAULT_ORDER or
LoadBalancerClientRequestTransformer.DEFAULT_ORDER to specify the order.

40.8. Spring Cloud LoadBalancer Starter

We also provide a starter that allows you to easily add Spring Cloud LoadBalancer in a Spring Boot
app. In order to use it, just add org.springframework.cloud:spring-cloud-starter-loadbalancer to
your Spring Cloud dependencies in your build file.

o Spring Cloud LoadBalancer starter includes Spring Boot Caching and Evictor.

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-caching.html
https://github.com/stoyanr/Evictor

If you have both Ribbon and Spring Cloud LoadBalancer int the classpath, in order
A to maintain backward compatibility, Ribbon-based implementations will be used
by default. In order to switch to using Spring Cloud LoadBalancer under the hood,
make sure you set the property spring.cloud.loadbalancer.ribbon.enabled to false.

40.9. Passing Your Own Spring Cloud LoadBalancer
Configuration

You can also use the @LoadBalancerClient annotation to pass your own load-balancer client
configuration, passing the name of the load-balancer client and the configuration class, as follows:

@Configuration

@LoadBalancerClient(value = "stores", configuration =
CustomLoadBalancerConfiguration.class)

public class MyConfiguration {

@Bean

@LoadBalanced

public WebClient.Builder loadBalancedWebClientBuilder() {
return WebClient.builder();

}

TIP

In order to make working on your own LoadBalancer configuration easier, we have added
a builder () method to the ServiceInstancelistSupplier class.

TIP

You can also use our alternative predefined configurations in place of the default ones by
setting the value of spring.cloud.loadbalancer.configurations property to zone-preference
to use ZonePreferenceServicelInstancelistSupplier with caching or to health-check to use
HealthCheckServiceInstancelistSupplier with caching.

You can use this feature to instantiate different implementations of ServiceInstancelistSupplier or
ReactorLoadBalancer, either written by you, or provided by us as alternatives (for example
ZonePreferenceServiceInstancelistSupplier) to override the default setup.

You can see an example of a custom configuration here.

The annotation value arguments (stores in the example above) specifies the
service id of the service that we should send the requests to with the given custom
configuration.

You can also pass multiple configurations (for more than one load-balancer client) through the
@LoadBalancerClients annotation, as the following example shows:

@Configuration

@LoadBalancer(Clients({@LoadBalancerClient(value = "stores", configuration =
StoresLoadBalancer(ClientConfiguration.class), @LoadBalancerClient(value =
"customers", configuration = CustomersLoadBalancerClientConfiguration.class)})
public class MyConfiguration {

@Bean
@LoadBalanced

public WebClient.Builder loadBalancedWebClientBuilder() {
return WebClient.builder();

}

The classes you pass as @LoadBalancerClient or @LoadBalancerClients
o configuration arguments should either not be annotated with @Configuration
or be outside component scan scope.

Chapter 41. Spring Cloud Circuit Breaker

41.1. Introduction

Spring Cloud Circuit breaker provides an abstraction across different circuit breaker
implementations. It provides a consistent API to use in your applications, letting you, the developer,
choose the circuit breaker implementation that best fits your needs for your application.

41.1.1. Supported Implementations
Spring Cloud supports the following circuit-breaker implementations:

* Netflix Hystrix
* Resilience4]
* Sentinel

» Spring Retry

41.2. Core Concepts

To create a circuit breaker in your code, you can use the CircuitBreakerFactory API. When you
include a Spring Cloud Circuit Breaker starter on your classpath, a bean that implements this API is
automatically created for you. The following example shows a simple example of how to use this
APIL:

@Service

public static class DemoControllerService {
private RestTemplate rest;
private CircuitBreakerFactory cbFactory;

public DemoControllerService(RestTemplate rest, CircuitBreakerFactory
cbFactory) {
this.rest = rest;
this.cbFactory = cbFactory;

}

public String slow() {
return cbFactory.create("slow").run(() -> rest.getForObject("/slow",
String.class), throwable -> "fallback");

}

The CircuitBreakerFactory.create API creates an instance of a class called CircuitBreaker. The run
method takes a Supplier and a Function. The Supplier is the code that you are going to wrap in a

https://github.com/Netflix/Hystrix
https://github.com/resilience4j/resilience4j
https://github.com/alibaba/Sentinel
https://github.com/spring-projects/spring-retry

circuit breaker. The Function is the fallback that is executed if the circuit breaker is tripped. The
function is passed the Throwable that caused the fallback to be triggered. You can optionally exclude
the fallback if you do not want to provide one.

41.2.1. Circuit Breakers In Reactive Code

If Project Reactor is on the class path, you can also use ReactiveCircuitBreakerFactory for your
reactive code. The following example shows how to do so:

@Service

public static class DemoControllerService {
private ReactiveCircuitBreakerFactory cbFactory;
private WebClient webClient;

public DemoControllerService(WebClient webClient,
ReactiveCircuitBreakerFactory cbFactory) {
this.webClient = webClient;
this.cbFactory = cbFactory;
Iy

public Mono<String> slow() {
return
webClient.get().uri("/slow").retrieve().bodyToMono(String.class).transform(
it -> cbFactory.create("slow").run(it, throwable -> return
Mono.just("fallback")));
}
}

The ReactiveCircuitBreakerFactory.create API creates an instance of a class called
ReactiveCircuitBreaker. The run method takes a Mono or a Flux and wraps it in a circuit breaker. You
can optionally profile a fallback Function, which will be called if the circuit breaker is tripped and is
passed the Throwable that caused the failure.

41.3. Configuration

You can configure your circuit breakers by creating beans of type Customizer. The Customizer
interface has a single method (called customize) that takes the Object to customize.

For detailed information on how to customize a given implementation see the following
documentation:

* Hystrix

* Resilience4]

e Sentinal

* Spring Retry

../../../../../spring-cloud-netflix/docs/2.2.8.RELEASE/reference/html/#circuit-breaker-spring-cloud-circuit-breaker-with-hystrix
../../../../../spring-cloud-circuitbreaker/docs/current/reference/html/spring-cloud-circuitbreaker.html#configuring-resilience4j-circuit-breakers
https://github.com/alibaba/spring-cloud-alibaba/blob/master/spring-cloud-alibaba-docs/src/main/asciidoc/circuitbreaker-sentinel.adoc#circuit-breaker-spring-cloud-circuit-breaker-with-sentinel—​configuring-sentinel-circuit-breakers
../../../../../spring-cloud-circuitbreaker/docs/current/reference/html/spring-cloud-circuitbreaker.html#configuring-spring-retry-circuit-breakers

Some CircuitBreaker implementations such as Resilience4]CircuitBreaker call customize method
every time CircuitBreaker#irun is called. It can be inefficient. In that case, you can use
CircuitBreaker#once method. It is useful where calling customize many times doesn’t make sense,
for example, in case of consuming Resilience4j’s events.

The following example shows the way for each
io.github.resilience4j.circuitbreaker.CircuitBreaker to consume events.

Customizer.once(circuitBreaker -> {
circuitBreaker.getEventPublisher()
.onStateTransition(event -> log.info("{}: {}", event.getCircuitBreakerName(),
event.getStateTransition()));
}, CircuitBreaker::getName)

https://resilience4j.readme.io/docs/circuitbreaker#section-consume-emitted-circuitbreakerevents

Chapter 42. CachedRandomPropertySource

Spring Cloud Context provides a PropertySource that caches random values based on a key. Outside
of the caching functionality it works the same as Spring Boot’s RandomValuePropertySource. This
random value might be useful in the case where you want a random value that is consistent even
after the Spring Application context restarts. The property value takes the form of
cachedrandom. [yourkey].[type] where yourkey is the key in the cache. The type value can be any type
supported by Spring Boot’s RandomValuePropertySource.

myrandom=${cachedrandom.appname.value}

https://github.com/spring-projects/spring-boot/blob/master/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/env/RandomValuePropertySource.java

Chapter 43. Configuration Properties

To see the list of all Spring Cloud Commons related configuration properties please check the
Appendix page.

appendix.html
appendix.html

Spring Cloud Config

Hoxton.SR12

Spring Cloud Config provides server-side and client-side support for externalized configuration in a
distributed system. With the Config Server, you have a central place to manage external properties
for applications across all environments. The concepts on both client and server map identically to
the Spring Environment and PropertySource abstractions, so they fit very well with Spring
applications but can be used with any application running in any language. As an application
moves through the deployment pipeline from dev to test and into production, you can manage the
configuration between those environments and be certain that applications have everything they
need to run when they migrate. The default implementation of the server storage backend uses git,
so it easily supports labelled versions of configuration environments as well as being accessible to a
wide range of tooling for managing the content. It is easy to add alternative implementations and
plug them in with Spring configuration.

Chapter 44. Quick Start

This quick start walks through using both the server and the client of Spring Cloud Config Server.

First, start the server, as follows:

$ cd spring-cloud-config-server
$../mvnw spring-boot:run

The server is a Spring Boot application, so you can run it from your IDE if you prefer to do so (the
main class is ConfigServerApplication).

Next try out a client, as follows:

$ curl localhost:8888/foo/development
{"name":"foo","label":"master", "propertySources":[
{"name":"https://qithub.com/scratches/config-repo/foo-
development.properties","source":{"bar":"spam"}},
{"name":"https://github.com/scratches/config-
repo/foo.properties”,"source":{"foo":"bar"}}

1}

The default strategy for locating property sources is to clone a git repository (at
spring.cloud.config.server.git.uri) and use it to initialize a mini SpringApplication. The mini-
application’s Environment is used to enumerate property sources and publish them at a JSON
endpoint.

The HTTP service has resources in the following form:

/{application}/{profile}[/{label}]
/{application}-{profile}.yml
/{1abel}/{application}-{profile}.yml
/{application}-{profile}.properties
/{label}/{application}-{profile}.properties

where application is injected as the spring.config.name in the SpringApplication (what is normally
application in a regular Spring Boot app), profile is an active profile (or comma-separated list of
properties), and label is an optional git label (defaults to master.)

Spring Cloud Config Server pulls configuration for remote clients from various sources. The
following example gets configuration from a git repository (which must be provided), as shown in
the following example:

spring:
cloud:
config:
server:
git:
uri: https://github.com/spring-cloud-samples/config-repo

Other sources are any JDBC compatible database, Subversion, Hashicorp Vault, Credhub and local
filesystems.

44.1. Client Side Usage

To use these features in an application, you can build it as a Spring Boot application that depends
on spring-cloud-config-client (for an example, see the test cases for the config-client or the sample
application). The most convenient way to add the dependency is with a Spring Boot starter
org.springframework.cloud:spring-cloud-starter-config. There is also a parent pom and BOM
(spring-cloud-starter-parent) for Maven users and a Spring IO version management properties file
for Gradle and Spring CLI users. The following example shows a typical Maven configuration:

pom.xml

<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>{spring-boot-docs-version}</version>
<relativePath /> <!-- lookup parent from repository -->
</parent>

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactId>
<version>{spring-cloud-version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-config</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>

<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>

<!-- repositories also needed for snapshots and milestones -->

Now you can create a standard Spring Boot application, such as the following HTTP server:

@SpringBootApplication
@RestController
public class Application {

@RequestMapping("/")
public String home() {

return "Hello World!";
}

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

When this HTTP server runs, it picks up the external configuration from the default local config
server (if it is running) on port 8888. To modify the startup behavior, you can change the location of
the config server by using bootstrap.properties (similar to application.properties but for the
bootstrap phase of an application context), as shown in the following example:

spring.cloud.config.uri: http://myconfigserver.com

By default, if no application name is set, application will be used. To modify the name, the following
property can be added to the bootstrap.properties file:

spring.application.name: myapp

When setting the property ${spring.application.name} do not prefix your app
o name with the reserved word application- to prevent issues resolving the correct
property source.

The bootstrap properties show up in the /env endpoint as a high-priority property source, as shown
in the following example.

$ curl localhost:8080/env
{
"profiles":[],
"configService:https://github.com/spring-cloud-samples/config-
repo/bar.properties":{"foo":"bar"},
"servletContextInitParams":{},
"systemProperties":{...},

A property source called configService:<URL of remote repository>/<file name> contains the foo

property with a value of bar and is the highest priority.

o The URL in the property source name is the git repository, not the config server
URL.

Chapter 45. Spring Cloud Config Server

Spring Cloud Config Server provides an HTTP resource-based API for external configuration (name-
value pairs or equivalent YAML content). The server is embeddable in a Spring Boot application, by
using the @EnableConfigServer annotation. Consequently, the following application is a config
server:

ConfigServer.java

@SpringBootApplication
@EnableConfigServer
public class ConfigServer {
public static void main(String[] args) {
SpringApplication.run(ConfigServer.class, args);
}
}

Like all Spring Boot applications, it runs on port 8080 by default, but you can switch it to the more
conventional port 8888 in various ways. The easiest, which also sets a default configuration
repository, is by launching it with spring.config.name=configserver (there is a configserver.yml in
the Config Server jar). Another is to use your own application.properties, as shown in the
following example:

application.properties

server.port: 8888
spring.cloud.config.server.git.uri: file://${user.home}/config-repo

where ${user.home}/config-repo is a git repository containing YAML and properties files.

o On Windows, you need an extra "/" in the file URL if it is absolute with a drive
prefix (for example,/${user.home}/config-repo).

The following listing shows a recipe for creating the git repository in the preceding
example:

$ cd $HOME
(i) $ mkdir config-repo
- $ cd config-repo
$ git init .
$ echo info.foo: bar > application.properties
$ git add -A .
$ git commit -m "Add application.properties"

g Using the local filesystem for your git repository is intended for testing only. You
should use a server to host your configuration repositories in production.

file:///${user.home}/config-repo
file:///${user.home}/config-repo
file:///${user.home}/config-repo
file:///${user.home}/config-repo
file:///${user.home}/config-repo

The initial clone of your configuration repository can be quick and efficient if you

A keep only text files in it. If you store binary files, especially large ones, you may
experience delays on the first request for configuration or encounter out of
memory errors in the server.

45.1. Environment Repository

Where should you store the configuration data for the Config Server? The strategy that governs this
behaviour is the EnvironmentRepository, serving Environment objects. This Environment is a shallow
copy of the domain from the Spring Environment (including propertySources as the main feature).
The Environment resources are parametrized by three variables:

» {application}, which maps to spring.application.name on the client side.
» {profile}, which maps to spring.profiles.active on the client (comma-separated list).

» {1label}, which is a server side feature labelling a "versioned" set of config files.

Repository implementations generally behave like a Spring Boot application, loading configuration
files from a spring.config.name equal to the {application} parameter, and spring.profiles.active
equal to the {profiles} parameter. Precedence rules for profiles are also the same as in a regular
Spring Boot application: Active profiles take precedence over defaults, and, if there are multiple
profiles, the last one wins (similar to adding entries to a Map).

The following sample client application has this bootstrap configuration:

bootstrap.yml

spring:
application:
name: foo
profiles:
active: dev,mysql

(As usual with a Spring Boot application, these properties could also be set by environment
variables or command line arguments).

If the repository is file-based, the server creates an Environment from application.yml (shared
between all clients) and foo.yml (with foo.yml taking precedence). If the YAML files have documents
inside them that point to Spring profiles, those are applied with higher precedence (in order of the
profiles listed). If there are profile-specific YAML (or properties) files, these are also applied with
higher precedence than the defaults. Higher precedence translates to a PropertySource listed earlier
in the Environment. (These same rules apply in a standalone Spring Boot application.)

You can set spring.cloud.config.server.accept-empty to false so that Server would return a HTTP 404
status, if the application is not found.By default, this flag is set to true.

45.1.1. Git Backend

The default implementation of EnvironmentRepository uses a Git backend, which is very convenient
for managing upgrades and physical environments and for auditing changes. To change the
location of the repository, you can set the spring.cloud.config.server.git.uri configuration
property in the Config Server (for example in application.yml). If you set it with a file: prefix, it
should work from a local repository so that you can get started quickly and easily without a server.
However, in that case, the server operates directly on the local repository without cloning it (it does
not matter if it is not bare because the Config Server never makes changes to the "remote"
repository). To scale the Config Server up and make it highly available, you need to have all
instances of the server pointing to the same repository, so only a shared file system would work.
Even in that case, it is better to use the ssh: protocol for a shared filesystem repository, so that the
server can clone it and use a local working copy as a cache.

This repository implementation maps the {label} parameter of the HTTP resource to a git label
(commit id, branch name, or tag). If the git branch or tag name contains a slash (/), then the label in
the HTTP URL should instead be specified with the special string (_) (to avoid ambiguity with other
URL paths). For example, if the label is foo/bar, replacing the slash would result in the following
label: foo(_)bar. The inclusion of the special string (_) can also be applied to the {application}
parameter. If you use a command-line client such as curl, be careful with the brackets in the
URL —you should escape them from the shell with single quotes (*).

Skipping SSL Certificate Validation

The configuration server’s validation of the Git server’s SSL certificate can be disabled by setting
the git.skipSslValidation property to true (default is false).

spring:
cloud:
config:
server:
git:
uri: https://example.com/my/repo
skipSs1Validation: true

Setting HTTP Connection Timeout

You can configure the time, in seconds, that the configuration server will wait to acquire an HTTP
connection. Use the git.timeout property.

spring:
cloud:
config:
server:
git:
uri: https://example.com/my/repo
timeout: 4

Placeholders in Git URI

Spring Cloud Config Server supports a git repository URL with placeholders for the {application}
and {profile} (and {label} if you need it, but remember that the label is applied as a git label

anyway). So you can support a “one repository per application” policy by using a structure similar
to the following:

spring:
cloud:
config:
server:
git:
uri: https://github.com/myorg/{application}

You can also support a “one repository per profile” policy by using a similar pattern but with
{profile}.

Additionally, using the special string "()" within your {application} parameters can enable support
for multiple organizations, as shown in the following example:

spring:
cloud:
config:
server:
git:
uri: https://github.com/{application}

where {application} is provided at request time in the following format:
organization(_)application.

Pattern Matching and Multiple Repositories

Spring Cloud Config also includes support for more complex requirements with pattern matching
on the application and profile name. The pattern format is a comma-separated list of
{application}/{profile} names with wildcards (note that a pattern beginning with a wildcard may
need to be quoted), as shown in the following example:

spring:

cloud:
config:
server:
git:
uri: https://github.com/spring-cloud-samples/config-repo
repos:
simple: https://github.com/simple/config-repo
special:

pattern: special*/dev*,*special*/dev*

uri: https://github.com/special/config-repo
local:

pattern: local*

uri: file:/home/configsvc/config-repo

If {application}/{profile} does not match any of the patterns, it uses the default URI defined under
spring.cloud.config.server.git.uri. In the above example, for the “simple” repository, the pattern
is simple/* (it only matches one application named simple in all profiles). The “local” repository
matches all application names beginning with local in all profiles (the /* suffix is added
automatically to any pattern that does not have a profile matcher).

The “one-liner” short cut used in the “simple” example can be used only if the only
property to be set is the URL If you need to set anything else (credentials, pattern,
and so on) you need to use the full form.

The pattern property in the repo is actually an array, so you can use a YAML array (or [0], [1], etc.
suffixes in properties files) to bind to multiple patterns. You may need to do so if you are going to
run apps with multiple profiles, as shown in the following example:

spring:
cloud:
config:
server:
git:
uri: https://github.com/spring-cloud-samples/config-repo
repos:
development:
pattern:
- '*/development’
- "*/staging’
uri: https://github.com/development/config-repo
staging:
pattern:
- "*/qa’
- "*/production’
uri: https://github.com/staging/config-repo

Spring Cloud guesses that a pattern containing a profile that does not end in *
implies that you actually want to match a list of profiles starting with this pattern

o (so */staging is a shortcut for ["*/staging", "*/staging,*"], and so on). This is
common where, for instance, you need to run applications in the “development”
profile locally but also the “cloud” profile remotely.

Every repository can also optionally store config files in sub-directories, and patterns to search for
those directories can be specified as search-paths. The following example shows a config file at the
top level:

spring:
cloud:
config:
server:
git:
uri: https://github.com/spring-cloud-samples/config-repo
search-paths:
- foo
- bar*

In the preceding example, the server searches for config files in the top level and in the foo/ sub-
directory and also any sub-directory whose name begins with bar.

By default, the server clones remote repositories when configuration is first requested. The server
can be configured to clone the repositories at startup, as shown in the following top-level example:

spring:
cloud:
config:
server:
git:
uri: https://git/common/config-repo.git
repos:
team-a:
pattern: team-a-*
cloneOnStart: true
uri: https://git/team-a/config-repo.git
team-b:
pattern: team-b-*
cloneOnStart: false
uri: https://git/team-b/config-repo.git
team-c:
pattern: team-c-*
uri: https://git/team-a/config-repo.git

In the preceding example, the server clones team-a’s config-repo on startup, before it accepts any
requests. All other repositories are not cloned until configuration from the repository is requested.

Setting a repository to be cloned when the Config Server starts up can help to
identify a misconfigured configuration source (such as an invalid repository URI)

o quickly, while the Config Server is starting up. With cloneOnStart not enabled for a
configuration source, the Config Server may start successfully with a
misconfigured or invalid configuration source and not detect an error until an
application requests configuration from that configuration source.

Authentication

To use HTTP basic authentication on the remote repository, add the username and password
properties separately (not in the URL), as shown in the following example:

spring:
cloud:
config:
server:
git:
uri: https://github.com/spring-cloud-samples/config-repo
username: trolley
password: strongpassword

If you do not use HTTPS and user credentials, SSH should also work out of the box when you store
keys in the default directories (~/.ssh) and the URI points to an SSH location, such as
git@github.com:configuration/cloud-configuration. It is important that an entry for the Git server
be present in the ~/.ssh/known_hosts file and that it is in ssh-rsa format. Other formats (such as
ecdsa-sha2-nistp256) are not supported. To avoid surprises, you should ensure that only one entry
is present in the known_hosts file for the Git server and that it matches the URL you provided to the
config server. If you use a hostname in the URL, you want to have exactly that (not the IP) in the
known_hosts file. The repository is accessed by using JGit, so any documentation you find on that
should be applicable. HTTPS proxy settings can be set in ~/.git/config or (in the same way as for
any other JVM process) with system properties (-Dhttps.proxyHost and -Dhttps.proxyPort).

(r) If you do not know where your ~/.git directory is, use git config --global to
- manipulate the settings (for example, git config --global http.sslVerify false).

JGit requires RSA keys in PEM format. Below is an example ssh-keygen (from openssh) command
that will generate a key in the corect format:

ssh-keygen -m PEM -t rsa -b 4096 -f ~/config_server_deploy_key.rsa

Warning: When working with SSH keys, the expected ssh private-key must begin with ----- BEGIN
RSA PRIVATE KEY----- . If the key starts with ----- BEGIN OPENSSH PRIVATE KEY----- then the RSA key
will not load when spring-cloud-config server is started. The error looks like:

- Error in object 'spring.cloud.config.server.git': codes
[PrivateKeyIsValid.spring.cloud.config.server.git,PrivateKeyIsValid]; arguments
[org.springframework.context.support.DefaultMessageSourceResolvable: codes
[spring.cloud.config.server.qgit.,]; arquments []; default message []]; default message
[Property 'spring.cloud.config.server.git.privateKey' is not a valid private key]

To correct the above error the RSA key must be converted to PEM format. An example using
openssh is provided above for generating a new key in the appropriate format.

Authentication with AWS CodeCommit

Spring Cloud Config Server also supports AWS CodeCommit authentication. AWS CodeCommit uses
an authentication helper when using Git from the command line. This helper is not used with the
JGit library, so a JGit CredentialProvider for AWS CodeCommit is created if the Git URI matches the
AWS CodeCommit pattern. AWS CodeCommit URIs follow this pattern://git-
codecommit.${AWS_REGION}.amazonaws.com/${repopath}.

If you provide a username and password with an AWS CodeCommit URI, they must be the AWS
accessKeyld and secretAccessKey that provide access to the repository. If you do not specify a
username and password, the accessKeyld and secretAccessKey are retrieved by using the AWS
Default Credential Provider Chain.

If your Git URI matches the CodeCommit URI pattern (shown earlier), you must provide valid AWS
credentials in the username and password or in one of the locations supported by the default
credential provider chain. AWS EC2 instances may use IAM Roles for EC2 Instances.

The aws-java-sdk-core jar is an optional dependency. If the aws-java-sdk-core jar is
not on your classpath, the AWS Code Commit credential provider is not created,
regardless of the git server URI.

Authentication with Google Cloud Source

Spring Cloud Config Server also supports authenticating against Google Cloud Source repositories.

If your Git URI wuses the http or https protocol and the domain name is
source.developers.google.com, the Google Cloud Source credentials provider will be used. A Google
Cloud Source repository URI has the format source.developers.google.com/p/${GCP_PROJECT}/r/
${REPO}. To obtain the URI for your repository, click on "Clone" in the Google Cloud Source UI, and
select "Manually generated credentials". Do not generate any credentials, simply copy the displayed
URL

The Google Cloud Source credentials provider will use Google Cloud Platform application default
credentials. See Google Cloud SDK documentation on how to create application default credentials
for a system. This approach will work for user accounts in dev environments and for service
accounts in production environments.

https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/AWSCredentials.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/AWSCredentials.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/credentials.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/credentials.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://cloud.google.com/source-repositories/
https://source.developers.google.com/p/${GCP_PROJECT}/r/${REPO}
https://source.developers.google.com/p/${GCP_PROJECT}/r/${REPO}
https://source.developers.google.com/p/${GCP_PROJECT}/r/${REPO}
https://source.developers.google.com/p/${GCP_PROJECT}/r/${REPO}
https://source.developers.google.com/p/${GCP_PROJECT}/r/${REPO}
https://source.developers.google.com/p/${GCP_PROJECT}/r/${REPO}
https://source.developers.google.com/p/${GCP_PROJECT}/r/${REPO}
https://source.developers.google.com/p/${GCP_PROJECT}/r/${REPO}
https://source.developers.google.com/p/${GCP_PROJECT}/r/${REPO}
https://cloud.google.com/sdk/gcloud/reference/auth/application-default/login

com.google.auth:google-auth-library-oauth2-http is an optional dependency. If the
o google-auth-library-oauth2-http jar is not on your classpath, the Google Cloud
Source credential provider is not created, regardless of the git server URIL

Git SSH configuration using properties

By default, the JGit library used by Spring Cloud Config Server uses SSH configuration files such as
~/.ssh/known_hosts and /etc/ssh/ssh_config when connecting to Git repositories by using an SSH
URL In cloud environments such as Cloud Foundry, the local filesystem may be ephemeral or not
easily accessible. For those cases, SSH configuration can be set by using Java properties. In order to
activate property-based SSH configuration, the
spring.cloud.config.server.git.ignorelLocalSshSettings property must be set to true, as shown in
the following example:

spring:
cloud:
config:
server:
git:

uri: git@gitserver.com:team/repol.git

ignorelLocalSshSettings: true

hostKey: someHostKey

hostKeyAlgorithm: ssh-rsa

privateKey: |
MITEpgIBAAKCAQEAXx4UbaDzY5xjWbhc9jwNOmX33XpTDVWIWgHp5AKaRbtAC3DgX
IXFMPgw3K45jxRb93f8tvIvL3rDICUGTGv4FM+07ds7FRESSRTjv2RT/JVNICoqF
018+ngLqRZCyBtQN7zYByWMR1rPGoDUqdPYrj2yq+0bBBNhg5N+hOwKj jpzdj2Ud
117R+wxIgmJo1IYyy16xS8WsjyQuyCo1L456qkd5BDZ0Ag8)2X9HID5220Ln7s91
oezTipXipS7p7Jekf3YwxbabIwOmBOrX79dV4qiNcGgzATnG1PkXxqt76VhcGadw
DDVHEEYGbSQbhIGShOI7BQun@alRZoj fE3gqHQIDAQABA0IBAQCZmGrk8BK6tXCd
fYbyTiKxFzwb38IQPQoj IUWNrq@+9Xt+NsypvilHkXfXXCKKU4zUHe IGVRq5MN9b
B056/RrcQHHO0]dUWu0V2qMqlvPUtCOCPpGkD+valhfD75MxoXU7s3FK7yjxy3rsa
EmfA6tHV8/4a5umo5TqSd2YTm5B19AhRq1uUVITwTB41DjULUGIMYrnYrhzQLVvj
5MjnKT1Yu3V8PoYDfv1GmxPPhovlpafXEeEYN8VBI7e5x3DGH; Z5UrurAmTLTd0O8
+AahyoKsIY612TkkQthJ1t7FJAwnCGMgYbpodzzvzICLFmmTXYi1Z/2814BX/m0Se

pZVnfRixAoGBAObU1wt40/PKs53mCEWNgs1SCsh9oGAaLTf/XdvMns5VmuyyAyKG

t18015wqBMi4GIUzjbgUvSUt+IowIrG3f5tN85wpjQ1UGYepTn15Qo9xaSTPFScQ
xrtWZ9eNj2TsIAMp/svIsyGG301bxfnuAIpSXNQiJPwR1W31rzpGgVx/AoGBANYW
dnhshUcEHMJ133aXwR120TDnaLoanVGLwLnkqLSYUZA7ZegpKq90UAuBdcEfgdpyi
PhKpeaeIiAaNnFo8m9aoTKr+716/uMTlwrVnfrsVTZv3orxjwQV20YIBCVRKD1uX
VhE@ozPZxwwKSPAFocpyWpGHGreGFTAIYBE9UBt jAoGBAI8bfPglpyFyMiGBj06z
FwlJc/x1FqDusrcHL7abW5qq@L4v3R+FrIw3ZYufzLTVcKfdj6GelwIJ0+8wBm+R
gTKYJItEhT48duLIfTDyIpHGYM9+I1MGhh5zKuCqIhxIYr9jH10BB7kRmOrPvYY4
VAykcNgyDvtAVODP+4mbJvhjAoGBALbtTqErKN47V@+]JpapLnF@KxGrqeGIjIRV
cYA6VAWYGr7NeIfesecf0C356PyhgPfpcVyEztwlvwTKb3RzIT1TZN8fH4YBrbEe
KTbTjefRFhVUjQqnucAvfGi29f+90E3Ei19f7wA+H350cF6IvTYUSHNMIO/39Z38N
CPjyCMa9AoGBAMhsITNe3QcbsXAbdUR@AdDsIFVROzyF12m4014KCRM35bC/BIBs

q@TY3we+ERB40U8Z2BvU61Quwaun]2+uGadHo58VSVdggqAo@BSkH581nnKKt96]

69pcVH/4rmLbXdemNYGm61u+M1PQk4BUZknHSmVHIFAIOEPupVaQ8RHT

The following table describes the SSH configuration properties.

Table 2. SSH Configuration Properties

Property Name

ignoreLocalSshSettings

privateKey

hostKey

hostKeyAlgorithm

strictHostKeyChecking

knownHostsFile

Remarks

If true, use property-based instead of file-based

SSH config. Must be set at as
spring.cloud.config.server.git.ignoreLocalSshS

ettings, not inside a repository definition.

Valid SSH private key. Must be set if
ignorelLocalSshSettings is true and Git URI is SSH
format.

Valid SSH host key. Must be set if
hostKeyAlgorithm is also set.

One of ssh-dss, ssh-rsa, ecdsa-sha2-nistp256,
ecdsa-sha2-nistp384, or ecdsa-sha2-nistp521.
Must be set if hostKey is also set.

true or false. If false, ignore errors with host
key.

Location of custom .known_hosts file.

Property Name Remarks

preferredAuthentications Override server authentication method order.
This should allow for evading login prompts if
server has keyboard-interactive authentication
before the publickey method.

Placeholders in Git Search Paths

Spring Cloud Config Server also supports a search path with placeholders for the {application} and
{profile} (and {label} if you need it), as shown in the following example:

spring:
cloud:
config:
server:
git:
uri: https://github.com/spring-cloud-samples/config-repo
search-paths: '{application}'

The preceding listing causes a search of the repository for files in the same name as the directory
(as well as the top level). Wildcards are also valid in a search path with placeholders (any matching
directory is included in the search).

Force pull in Git Repositories

As mentioned earlier, Spring Cloud Config Server makes a clone of the remote git repository in case
the local copy gets dirty (for example, folder content changes by an OS process) such that Spring
Cloud Config Server cannot update the local copy from remote repository.

To solve this issue, there is a force-pull property that makes Spring Cloud Config Server force pull
from the remote repository if the local copy is dirty, as shown in the following example:

spring:
cloud:
config:
server:
git:
uri: https://github.com/spring-cloud-samples/config-repo
force-pull: true

If you have a multiple-repositories configuration, you can configure the force-pull property per
repository, as shown in the following example:

spring:
cloud:
config:
server:
git:
uri: https://git/common/config-repo.git
force-pull: true
repos:
team-a:
pattern: team-a-*
uri: https://git/team-a/config-repo.git
force-pull: true
team-b:
pattern: team-b-*
uri: https://git/team-b/config-repo.git
force-pull: true
team-c:
pattern: team-c-*
uri: https://git/team-a/config-repo.git

o The default value for force-pull property is false.

Deleting untracked branches in Git Repositories

As Spring Cloud Config Server has a clone of the remote git repository after check-outing branch to
local repo (e.g fetching properties by label) it will keep this branch forever or till the next server
restart (which creates new local repo). So there could be a case when remote branch is deleted but
local copy of it is still available for fetching. And if Spring Cloud Config Server client service starts

with --spring.cloud.config.label=deletedRemoteBranch,master
deletedRemoteBranch local branch, but not from master.

In order to keep local repository branches clean and up to remote - deleteUntrackedBranches
property could be set. It will make Spring Cloud Config Server force delete untracked branches

from local repository. Example:

spring:
cloud:
config:
server:
git:

it will fetch properties from

uri: https://github.com/spring-cloud-samples/config-repo

deleteUntrackedBranches: true

o The default value for deleteUntrackedBranches property is false.

Git Refresh Rate

You can control how often the config server will fetch updated configuration data from your Git
backend by using spring.cloud.config.server.git.refreshRate. The value of this property is
specified in seconds. By default the value is 0, meaning the config server will fetch updated
configuration from the Git repo every time it is requested.

45.1.2. Version Control Backend Filesystem Use

With VCS-based backends (git, svn), files are checked out or cloned to the local
filesystem. By default, they are put in the system temporary directory with a prefix
of config-repo-. On linux, for example, it could be /tmp/config-repo-<randomid>.
Some operating systems routinely clean out temporary directories. This can lead to

A unexpected behavior, such as missing properties. To avoid this problem, change
the directory that Config Server uses by setting
spring.cloud.config.server.git.basedir or
spring.cloud.config.server.svn.basedir to a directory that does not reside in the
system temp structure.

45.1.3. File System Backend

There is also a “native” profile in the Config Server that does not use Git but loads the config files
from the local classpath or file system (any static URL you want to point to with
spring.cloud.config.server.native.searchLocations). To use the native profile, launch the Config
Server with spring.profiles.active=native.

Remember to use the file: prefix for file resources (the default without a prefix is

o usually the classpath). As with any Spring Boot configuration, you can embed ${}
-style environment placeholders, but remember that absolute paths in Windows
require an extra / (for example, /${user.home}/config-repo).

The default value of the searchlLocations is identical to a local Spring Boot
application (that is, [classpath:/, classpath:/config, file:./, file:./config]).

A This does not expose the application.properties from the server to all clients,
because any property sources present in the server are removed before being sent
to the client.

A filesystem backend is great for getting started quickly and for testing. To use it in
(2
O production, you need to be sure that the file system is reliable and shared across
et all instances of the Config Server.

The search locations can contain placeholders for {application}, {profile}, and {label}. In this way,
you can segregate the directories in the path and choose a strategy that makes sense for you (such
as subdirectory per application or subdirectory per profile).

If you do not use placeholders in the search locations, this repository also appends the {label}
parameter of the HTTP resource to a suffix on the search path, so properties files are loaded from

https://serverfault.com/questions/377348/when-does-tmp-get-cleared/377349#377349
file:///${user.home}/config-repo
file:///${user.home}/config-repo
file:///${user.home}/config-repo
file:///${user.home}/config-repo
file:///${user.home}/config-repo

each search location and a subdirectory with the same name as the label (the labelled properties
take precedence in the Spring Environment). Thus, the default behaviour with no placeholders is
the same as adding a search location ending with /{label}/. For example, file:/tmp/config is the
same as file:/tmp/config,file:/tmp/config/{1label}. This behavior can be disabled by setting
spring.cloud.config.server.native.addlLabellocations=false.

45.1.4. Vault Backend

Spring Cloud Config Server also supports Vault as a backend.

Vault is a tool for securely accessing secrets. A secret is anything that to which you want to
tightly control access, such as API keys, passwords, certificates, and other sensitive
information. Vault provides a unified interface to any secret while providing tight access
control and recording a detailed audit log.

For more information on Vault, see the Vault quick start guide.

To enable the config server to use a Vault backend, you can run your config server with the vault
profile. For example, in your config server’s application.properties, you can add
spring.profiles.active=vault.

By default, the config server assumes that your Vault server runs at 127.0.0.1:8200. It also assumes
that the name of backend is secret and the key is application. All of these defaults can be
configured in your config server’s application.properties. The following table describes
configurable Vault properties:

Name Default Value
host 127.0.0.1
port 8200
scheme http
backend secret
defaultKey application
profileSeparator)

kvVersion 1
skipSslValidation false
timeout 5
namespace null

All of the properties in the preceding table must be prefixed with
o spring.cloud.config.server.vault or placed in the correct Vault section of a
composite configuration.

All configurable properties can be found in

https://www.vaultproject.io
https://learn.hashicorp.com/vault/?track=getting-started#getting-started
http://127.0.0.1:8200

org.springframework.cloud.config.server.environment.VaultEnvironmentProperties.

Vault 0.10.0 introduced a versioned key-value backend (k/v backend version 2) that
o exposes a different API than earlier versions, it now requires a data/ between the

mount path and the actual context path and wraps secrets in a data object. Setting

spring.cloud.config.server.vault.kv-version=2 will take this into account.

Optionally, there is support for the Vault Enterprise X-Vault-Namespace header. To have it sent to
Vault set the namespace property.

With your config server running, you can make HTTP requests to the server to retrieve values from
the Vault backend. To do so, you need a token for your Vault server.

First, place some data in you Vault, as shown in the following example:

$ vault kv put secret/application foo=bar baz=bam
$ vault kv put secret/myapp foo=myappsbar

Second, make an HTTP request to your config server to retrieve the values, as shown in the
following example:

$ curl -X "GET" "http://localhost:8888/myapp/default” -H "X-Config-Token: yourtoken"

You should see a response similar to the following:

"name":"myapp",

"profiles":[
"default"

I

"label":null,

"version":null,

"state":null,

"propertySources”:[

{
"name":"vault:myapp",
"source":{
"foo":"myappsbar"
}
I
{
"name":"vault:application"”,
"source":{
"baz":"bam",
"foo":"bar"
}
¥

The default way for a client to provide the necessary authentication to let Config Server talk to
Vault is to set the X-Config-Token header. However, you can instead omit the header and configure
the authentication in the server, by setting the same configuration properties as Spring Cloud Vault.
The property to set is spring.cloud.config.server.vault.authentication. It should be set to one of
the supported authentication methods. You may also need to set other properties specific to the
authentication method you use, by using the same property names as documented for
spring.cloud.vault but instead using the spring.cloud.config.server.vault prefix. See the Spring
Cloud Vault Reference Guide for more detail.

If you omit the X-Config-Token header and use a server property to set the

o authentication, the Config Server application needs an additional dependency on
Spring Vault to enable the additional authentication options. See the Spring Vault
Reference Guide for how to add that dependency.

Multiple Properties Sources

When using Vault, you can provide your applications with multiple properties sources. For
example, assume you have written data to the following paths in Vault:

https://cloud.spring.io/spring-cloud-vault/reference/html/#vault.config.authentication
https://cloud.spring.io/spring-cloud-vault/reference/html/#vault.config.authentication
https://docs.spring.io/spring-vault/docs/current/reference/html/#dependencies
https://docs.spring.io/spring-vault/docs/current/reference/html/#dependencies

secret/myApp,dev
secret/myApp
secret/application,dev
secret/application

Properties written to secret/application are available to all applications using the Config Server.
An application with the name, myApp, would have any properties written to secret/myApp and
secret/application available to it. When myApp has the dev profile enabled, properties written to all
of the above paths would be available to it, with properties in the first path in the list taking
priority over the others.

45.1.5. Accessing Backends Through a Proxy

The configuration server can access a Git or Vault backend through an HTTP or HTTPS proxy. This
behavior is controlled for either Git or Vault by settings under proxy.http and proxy.https. These
settings are per repository, so if you are using a composite environment repository you must
configure proxy settings for each backend in the composite individually. If using a network which
requires separate proxy servers for HTTP and HTTPS URLs, you can configure both the HTTP and
the HTTPS proxy settings for a single backend.

The following table describes the proxy configuration properties for both HTTP and HTTPS proxies.
All of these properties must be prefixed by proxy.http or proxy.https.

Table 3. Proxy Configuration Properties

Property Name Remarks

host The host of the proxy.

port The port with which to access the proxy.
nonProxyHosts Any hosts which the configuration server should

access outside the proxy. If values are provided
for both proxy.http.nonProxyHosts and
proxy.https.nonProxyHosts, the proxy.http value
will be used.

username The username with which to authenticate to the
proxy. If values are provided for both
proxy.http.username and proxy.https.username,
the proxy.http value will be used.

password The password with which to authenticate to the
proxy. If values are provided for both
proxy.http.password and proxy.https.password,
the proxy.http value will be used.

The following configuration uses an HTTPS proxy to access a Git repository.

spring:
profiles:
active: git
cloud:
config:
server:
git:
uri: https://github.com/spring-cloud-samples/config-repo
proxy:
https:
host: my-proxy.host.io
password: myproxypassword
port: '3128'
username: myproxyusername
nonProxyHosts: example.com

45.1.6. Sharing Configuration With All Applications

Sharing configuration between all applications varies according to which approach you take, as
described in the following topics:

* File Based Repositories

* Vault Server

File Based Repositories

With file-based (git, svn, and native) repositories, resources with file names in application*
(application.properties, application.yml, application-*.properties, and so on) are shared between
all client applications. You can use resources with these file names to configure global defaults and
have them be overridden by application-specific files as necessary.

The property overrides feature can also be used for setting global defaults, with placeholders
applications allowed to override them locally.

With the “native” profile (a local file system backend) , you should use an explicit
(r) search location that is not part of the server’s own configuration. Otherwise, the
- application* resources in the default search locations get removed because they
are part of the server.

Vault Server

When using Vault as a backend, you can share configuration with all applications by placing
configuration in secret/application. For example, if you run the following Vault command, all
applications using the config server will have the properties foo and baz available to them:

$ vault write secret/application foo=bar baz=bam

CredHub Server

When using CredHub as a backend, you can share configuration with all applications by placing
configuration in /application/ or by placing it in the default profile for the application. For
example, if you run the following CredHub command, all applications using the config server will
have the properties shared.color1 and shared.color2 available to them:

credhub set --name "/application/profile/master/shared" --type=json
value: {"shared.color1": "blue", "shared.color": "red"}

credhub set --name "/my-app/default/master/more-shared" --type=json
value: {"shared.word1": "hello", "shared.word2": "world"}

45.1.7. JDBC Backend

Spring Cloud Config Server supports JDBC (relational database) as a backend for configuration
properties. You can enable this feature by adding spring-jdbc to the classpath and using the jdbc
profile or by adding a bean of type JdbcEnvironmentRepository. If you include the right dependencies
on the classpath (see the user guide for more details on that), Spring Boot configures a data source.

You can disable autoconfiguration for JdbcEnvironmentRepository by setting the
spring.cloud.config.server.jdbc.enabled property to false.

The database needs to have a table called PROPERTIES with columns called APPLICATION, PROFILE, and
LABEL (with the usual Environment meaning), plus KEY and VALUE for the key and value pairs in
Properties style. All fields are of type String in Java, so you can make them VARCHAR of whatever
length you need. Property values behave in the same way as they would if they came from Spring
Boot properties files named {application}-{profile}.properties, including all the encryption and
decryption, which will be applied as post-processing steps (that is, not in the repository
implementation directly).

45.1.8. Redis Backend

Spring Cloud Config Server supports Redis as a backend for configuration properties. You can
enable this feature by adding a dependency to Spring Data Redis.

pom.xml

<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
</dependencies>

The following configuration uses Spring Data RedisTemplate to access a Redis. We can use
spring.redis.* properties to override default connection settings.

https://spring.io/projects/spring-data-redis

spring:
profiles:
active: redis
redis:
host: redis
port: 16379

The properties should be stored as fields in a hash. The name of hash should be the same as

spring.application.name property or conjunction of spring.application.name and
spring.profiles.active[n].

HMSET sample-app server.port "8100" sample.topic.name "test" test.propertyl
"property1"

After executing the command visible above a hash should contain the following keys with values:

HGETALL sample-app

{
"server.port": "8100",
"sample.topic.name": "test",
"test.property1": "property1"
}

o When no profile is specified default will be used.

45.1.9. AWS S3 Backend

Spring Cloud Config Server supports AWS S3 as a backend for configuration properties. You can
enable this feature by adding a dependency to the AWS Java SDK For Amazon S3.

pom.xml

<dependencies>
<dependency>
<groupId>com.amazonaws</groupld>
<artifactId>aws-java-sdk-s3</artifactId>
</dependency>
</dependencies>

The following configuration uses the AWS S3 client to access configuration files. We can use
spring.awss3.* properties to select the bucket where your configuration is stored.

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-s3.html

spring:
profiles:
active: awss3
cloud:
config:
server:
awss3:
region: us-east-1
bucket: bucket1

It is also possible to specify an AWS URL to override the standard endpoint of your S3 service with
spring.awss3.endpoint. This allows support for beta regions of S3, and other S3 compatible storage
APIs.

Credentials are found using the Default AWS Credential Provider Chain. Versioned and encrypted
buckets are supported without further configuration.

Configuration files are stored in your bucket as {application}-{profile}.properties, {application}-
{profile}.yml or {application}-{profile}.json. An optional label can be provided to specify a
directory path to the file.

o When no profile is specified default will be used.

45.1.10. CredHub Backend

Spring Cloud Config Server supports CredHub as a backend for configuration properties. You can
enable this feature by adding a dependency to Spring CredHub.

pom.xml

<dependencies>
<dependency>
<groupId>org.springframework.credhub</groupIld>
<artifactId>spring-credhub-starter</artifactId>
</dependency>
</dependencies>

The following configuration uses mutual TLS to access a CredHub:

spring:
profiles:
active: credhub
cloud:
config:
server:
credhub:
url: https://credhub:8844

https://aws.amazon.com/blogs/developer/using-new-regions-and-endpoints/
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/credentials.html
https://docs.cloudfoundry.org/credhub
https://spring.io/projects/spring-credhub

The properties should be stored as JSON, such as:

credhub set --name "/demo-app/default/master/toggles” --type=json
value: {"toggle.button": "blue", "toggle.link": "red"}

credhub set --name "/demo-app/default/master/abs" --type=json
value: {"marketing.enabled": true, "external.enabled": false}

All client applications with the name spring.cloud.config.name=demo-app will have the following
properties available to them:

{
toggle.button: "blue",
toggle.link: "red",
marketing.enabled: true,
external.enabled: false
}

When no profile is specified default will be used and when no label is specified
o master will be used as a default value. NOTE: Values added to application will be
shared by all the applications.

OAuth 2.0

You can authenticate with OAuth 2.0 using UAA as a provider.

pom.xml

<dependencies>
<dependency>
<groupId>org.springframework.security</groupId>
<artifactId>spring-security-config</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.security</groupId>
<artifactId>spring-security-oauth2-client</artifactId>
</dependency>
</dependencies>

The following configuration uses OAuth 2.0 and UAA to access a CredHub:

https://oauth.net/2/
https://docs.cloudfoundry.org/concepts/architecture/uaa.html

spring:
profiles:
active: credhub
cloud:
config:
server:
credhub:
url: https://credhub:8844
oauth2:
registration-id: credhub-client
security:
oauth?:
client:
registration:
credhub-client:
provider: uaa
client-id: credhub_config_server
client-secret: asecret
authorization-grant-type: client_credentials
provider:
uaa:
token-uri: https://uaa:8443/0auth/token

o The used UAA client-id should have credhub.read as scope.

45.1.11. Composite Environment Repositories

In some scenarios, you may wish to pull configuration data from multiple environment
repositories. To do so, you can enable the composite profile in your configuration server’s
application properties or YAML file. If, for example, you want to pull configuration data from a
Subversion repository as well as two Git repositories, you can set the following properties for your
configuration server:

spring:
profiles:
active: composite
cloud:
config:
server:
composite:

type: svn
uri: file:///path/to/svn/repo

type: git
uri: file:///path/to/rex/git/repo

type: git
uri: file:///path/to/walter/git/repo

Using this configuration, precedence is determined by the order in which repositories are listed
under the composite key. In the above example, the Subversion repository is listed first, so a value
found in the Subversion repository will override values found for the same property in one of the
Git repositories. A value found in the rex Git repository will be used before a value found for the
same property in the walter Git repository.

If you want to pull configuration data only from repositories that are each of distinct types, you can
enable the corresponding profiles, rather than the composite profile, in your configuration server’s
application properties or YAML file. If, for example, you want to pull configuration data from a
single Git repository and a single HashiCorp Vault server, you can set the following properties for
your configuration server:

spring:
profiles:
active: git, vault
cloud:
config:
server:
git:
uri: file:///path/to/git/repo
order: 2
vault:
host: 127.0.0.1
port: 8200
order: 1

Using this configuration, precedence can be determined by an order property. You can use the order
property to specify the priority order for all your repositories. The lower the numerical value of the
order property, the higher priority it has. The priority order of a repository helps resolve any
potential conflicts between repositories that contain values for the same properties.

If your composite environment includes a Vault server as in the previous example,

o you must include a Vault token in every request made to the configuration server.
See Vault Backend.

o Any type of failure when retrieving values from an environment repository results
in a failure for the entire composite environment.

When using a composite environment, it is important that all repositories contain
the same labels. If you have an environment similar to those in the preceding

o examples and you request configuration data with the master label but the
Subversion repository does not contain a branch called master, the entire request
fails.

Custom Composite Environment Repositories

In addition to using one of the environment repositories from Spring Cloud, you can also provide
your own EnvironmentRepository bean to be included as part of a composite environment. To do so,
your bean must implement the EnvironmentRepository interface. If you want to control the priority
of your custom EnvironmentRepository within the composite environment, you should also
implement the Ordered interface and override the getOrdered method. If you do not implement the
Ordered interface, your EnvironmentRepository is given the lowest priority.

45.1.12. Property Overrides

The Config Server has an “overrides” feature that lets the operator provide configuration properties
to all applications. The overridden properties cannot be accidentally changed by the application
with the normal Spring Boot hooks. To declare overrides, add a map of name-value pairs to
spring.cloud.config.server.overrides, as shown in the following example:

spring:
cloud:
config:
server:
overrides:
foo: bar

The preceding examples causes all applications that are config clients to read foo=bar, independent
of their own configuration.

A configuration system cannot force an application to use configuration data in
o any particular way. Consequently, overrides are not enforceable. However, they do
provide useful default behavior for Spring Cloud Config clients.

Normally, Spring environment placeholders with ${} can be escaped (and resolved
(r) on the client) by using backslash (\) to escape the § or the {. For example,
\${app.foo:bar} resolves to bar, unless the app provides its own app. foo.

In YAML, you do not need to escape the backslash itself. However, in properties
files, you do need to escape the backslash, when you configure the overrides on
the server.

You can change the priority of all overrides in the client to be more like default values, letting
applications supply their own values in environment variables or System properties, by setting the
spring.cloud.config.overrideNone=true flag (the default is false) in the remote repository.

45.2. Health Indicator

Config Server comes with a Health Indicator that checks whether the configured
EnvironmentRepository is working. By default, it asks the EnvironmentRepository for an application
named app, the default profile, and the default label provided by the EnvironmentRepository
implementation.

You can configure the Health Indicator to check more applications along with custom profiles and
custom labels, as shown in the following example:

spring:
cloud:
config:
server:
health:
repositories:
myservice:
label: mylabel
myservice-dev:
name: myservice
profiles: development

You can disable the Health Indicator by setting health.config.enabled=false.

45.3. Security

You can secure your Config Server in any way that makes sense to you (from physical network
security to OAuth2 bearer tokens), because Spring Security and Spring Boot offer support for many
security arrangements.

To use the default Spring Boot-configured HTTP Basic security, include Spring Security on the
classpath (for example, through spring-boot-starter-security). The default is a username of user
and a randomly generated password. A random password is not useful in practice, so we
recommend you configure the password (by setting spring.security.user.password) and encrypt it
(see below for instructions on how to do that).

45.4. Encryption and Decryption

To use the encryption and decryption features you need the full-strength JCE
installed in your JVM (it is not included by default). You can download the “Java

o Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files” from
Oracle and follow the installation instructions (essentially, you need to replace the
two policy files in the JRE lib/security directory with the ones that you
downloaded).

If the remote property sources contain encrypted content (values starting with {cipher}), they are
decrypted before sending to clients over HTTP. The main advantage of this setup is that the
property values need not be in plain text when they are “at rest” (for example, in a git repository).
If a value cannot be decrypted, it is removed from the property source and an additional property
is added with the same key but prefixed with invalid and a value that means “not applicable”
(usually <n/a>). This is largely to prevent cipher text being used as a password and accidentally
leaking.

If you set up a remote config repository for config client applications, it might contain an
application.yml similar to the following:

application.yml

spring:
datasource:
username: dbuser
password: '{cipher}FKSAJDFGYOS8F7GLHAKERGFHLSA]'

Encrypted values in application.properties file must not be wrapped in quotes. Otherwise, the
value is not decrypted. The following example shows values that would work:

application.properties

spring.datasource.username: dbuser
spring.datasource.password: {cipher}FKSAJDFGYOS8F7GLHAKERGFHLSAJ

You can safely push this plain text to a shared git repository, and the secret password remains
protected.

The server also exposes /encrypt and /decrypt endpoints (on the assumption that these are secured
and only accessed by authorized agents). If you edit a remote config file, you can use the Config
Server to encrypt values by POSTing to the /encrypt endpoint, as shown in the following example:

$ curl localhost:8888/encrypt -s -d mysecret
682bc583f4641835fa2db009355293665d2647dade3375c0ee201de2a49f7bda

If you are testing with curl, then use --data-urlencode (instead of -d) and prefix the
(r) value to encrypt with = (curl requires this) or set an explicit Content-Type:
- text/plain to make sure curl encodes the data correctly when there are special
characters ('+' is particularly tricky).

Be sure not to include any of the curl command statistics in the encrypted value,
(2 o . . .
O this is why the examples use the -s option to silence them. Outputting the value to
a file can help avoid this problem.

The inverse operation is also available through /decrypt (provided the server is configured with a
symmetric key or a full key pair), as shown in the following example:

$ curl localhost:8888/decrypt -s -d
682bc5834641835fa2db009355293665d2647dade3375c0ee201de2a49f7bda
mysecret

Take the encrypted value and add the {cipher} prefix before you put it in the YAML or properties
file and before you commit and push it to a remote (potentially insecure) store.

The /encrypt and /decrypt endpoints also both accept paths in the form of
/*/{application}/{profiles}, which can be used to control cryptography on a per-application
(name) and per-profile basis when clients call into the main environment resource.

To control the cryptography in this granular way, you must also provide a @Bean of

o type TextEncryptorLocator that creates a different encryptor per name and profiles.
The one that is provided by default does not do so (all encryptions use the same
key).

The spring command line client (with Spring Cloud CLI extensions installed) can also be used to
encrypt and decrypt, as shown in the following example:

$ spring encrypt mysecret --key foo
682bc583f4641835fa2db009355293665d2647dade3375c0ee201de2a49f7bda
$ spring decrypt --key foo
682bc583f4641835fa2db009355293665d2647dade3375c0ee201de2a49f7bda
mysecret

To use a key in a file (such as an RSA public key for encryption), prepend the key value with "@"
and provide the file path, as shown in the following example:

$ spring encrypt mysecret --key @${HOME}/.ssh/id_rsa.pub
AQAjPgt3eFZQXwt8tsHAVv/QHiY5sI2dRcR+. ..

o The --key argument is mandatory (despite having a -- prefix).

45.5. Key Management

The Config Server can use a symmetric (shared) key or an asymmetric one (RSA key pair). The
asymmetric choice is superior in terms of security, but it is often more convenient to use a
symmetric key since it is a single property value to configure in the bootstrap.properties.

To configure a symmetric key, you need to set encrypt.key to a secret String (or use the ENCRYPT_KEY
environment variable to keep it out of plain-text configuration files).

0 You cannot configure an asymmetric key using encrypt.key.

To configure an asymmetric key use a keystore (e.g. as created by the keytool utility that comes with
the JDK). The keystore properties are encrypt.keyStore.* with * equal to

Property Description
encrypt.keyStore.location Contains a Resource location
encrypt.keyStore.password Holds the password that unlocks the keystore
encrypt.keyStore.alias Identifies which key in the store to use
encrypt.keyStore.type The type of KeyStore to create. Defaults to jks.

The encryption is done with the public key, and a private key is needed for decryption. Thus, in
principle, you can configure only the public key in the server if you want to only encrypt (and are
prepared to decrypt the values yourself locally with the private key). In practice, you might not
want to do decrypt locally, because it spreads the key management process around all the clients,
instead of concentrating it in the server. On the other hand, it can be a useful option if your config
server is relatively insecure and only a handful of clients need the encrypted properties.

45.6. Creating a Key Store for Testing

To create a keystore for testing, you can use a command resembling the following:

$ keytool -genkeypair -alias mytestkey -keyalg RSA \
-dname "CN=Web Server,0U=Unit,0=0rganization,L=City,S=State,C=US" \
-keypass changeme -keystore server.jks -storepass letmein

When using JDK 11 or above you may get the following warning when using the
o command above. In this case you probably want to make sure the keypass and
storepass values match.

Warning: Different store and key passwords not supported for PKCS12 KeyStores.
Ignoring user-specified -keypass value.

Put the server.jks file in the classpath (for instance) and then, in your bootstrap.yml, for the Config
Server, create the following settings:

encrypt:
keyStore:
location: classpath:/server.jks
password: letmein
alias: mytestkey
secret: changeme

45.7. Using Multiple Keys and Key Rotation

In addition to the {cipher} prefix in encrypted property values, the Config Server looks for zero or
more {name:value} prefixes before the start of the (Base64 encoded) cipher text. The keys are passed
to a TextEncryptorLocator, which can do whatever logic it needs to locate a TextEncryptor for the
cipher. If you have configured a keystore (encrypt.keystore.location), the default locator looks for
keys with aliases supplied by the key prefix, with a cipher text like resembling the following:

foo:
bar: ‘{cipher}{key:testkey}..."

The locator looks for a key named "testkey". A secret can also be supplied by using a {secret:::-}
value in the prefix. However, if it is not supplied, the default is to use the keystore password (which
is what you get when you build a keystore and do not specify a secret). If you do supply a secret,
you should also encrypt the secret using a custom SecretLocator.

When the keys are being used only to encrypt a few bytes of configuration data (that is, they are not
being used elsewhere), key rotation is hardly ever necessary on cryptographic grounds. However,
you might occasionally need to change the keys (for example, in the event of a security breach). In
that case, all the clients would need to change their source config files (for example, in git) and use
a new {key: -} prefix in all the ciphers. Note that the clients need to first check that the key alias is
available in the Config Server keystore.

If you want to let the Config Server handle all encryption as well as decryption, the
(;) {name:value} prefixes can also be added as plain text posted to the /encrypt
- endpoint, .

45.8. Serving Encrypted Properties

Sometimes you want the clients to decrypt the configuration locally, instead of doing it in the
server. In that case, if you provide the encrypt.* configuration to locate a key, you can still have
/encrypt and /decrypt endpoints, but you need to explicitly switch off the decryption of outgoing
properties by placing spring.cloud.config.server.encrypt.enabled=false in
bootstrap.[yml|properties]. If you do not care about the endpoints, it should work if you do not
configure either the key or the enabled flag.

Chapter 46. Serving Alternative Formats

The default JSON format from the environment endpoints is perfect for consumption by Spring
applications, because it maps directly onto the Environment abstraction. If you prefer, you can
consume the same data as YAML or Java properties by adding a suffix (".yml", ".yaml" or
".properties") to the resource path. This can be useful for consumption by applications that do not
care about the structure of the JSON endpoints or the extra metadata they provide (for example, an
application that is not using Spring might benefit from the simplicity of this approach).

The YAML and properties representations have an additional flag (provided as a boolean query
parameter called resolvePlaceholders) to signal that placeholders in the source documents (in the
standard Spring ${---} form) should be resolved in the output before rendering, where possible.
This is a useful feature for consumers that do not know about the Spring placeholder conventions.

There are limitations in using the YAML or properties formats, mainly in relation
to the loss of metadata. For example, the JSON is structured as an ordered list of
property sources, with names that correlate with the source. The YAML and

o properties forms are coalesced into a single map, even if the origin of the values
has multiple sources, and the names of the original source files are lost. Also, the
YAML representation is not necessarily a faithful representation of the YAML
source in a backing repository either. It is constructed from a list of flat property
sources, and assumptions have to be made about the form of the keys.

Chapter 47. Serving Plain Text

Instead of using the Environment abstraction (or one of the alternative representations of it in YAML
or properties format), your applications might need generic plain-text configuration files that are
tailored to their environment. The Config Server provides these through an additional endpoint at
/{application}/{profile}/{1label}/{path}, where application, profile, and label have the same
meaning as the regular environment endpoint, but path is a path to a file name (such as log.xml).
The source files for this endpoint are located in the same way as for the environment endpoints.
The same search path is used for properties and YAML files. However, instead of aggregating all

matching resources, only the first one to match is returned.

After a resource is located, placeholders in the normal format (${::-}) are resolved by using the
effective Environment for the supplied application name, profile, and label. In this way, the resource

endpoint is tightly integrated with the environment endpoints.

At present, Spring Cloud Config can serve plaintext for git, SVN, native backends, and AWS S3. The
support for git, SVN, and native backends is identical. AWS S3 works a bit differently. The following

As with the source files for environment configuration, the profile is used to
resolve the file name. So, if you want a profile-specific file,
/*/development/*/logback.xml can be resolved by a file called logback-
development.xml (in preference to logback.xml).

If you do not want to supply the 1abel and let the server use the default label, you
can supply a useDefaultLabel request parameter. Consequently, the preceding
example for the default profile could be
/sample/default/nginx.conf?useDefaultlLabel.

sections show how each one works:

* Git, SVN, and Native Backends

* AWS S3

47.1. Git, SVN, and Native Backends

Consider the following example for a GIT or SVN repository or a native backend:

application.yml
nginx.conf

The nginx.conf might resemble the following listing:

server {
listen 80;
server_name ${nginx.server.name};

application.yml might resemble the following listing:

nginx:
server:
name: example.com
spring:
profiles: development
nginx:
server:
name: develop.com

The /sample/default/master/nginx.conf resource might be as follows:

server {
listen 80;
server_name example.com;
}

/sample/development/master/nginx.conf might be as follows:

server {
listen 80;
server_name develop.com;
}

47.2. AWS S3

To enable serving plain text for AWS s3, the Config Server application needs to include a
dependency on Spring Cloud AWS. For details on how to set up that dependency, see the Spring
Cloud AWS Reference Guide. Then you need to configure Spring Cloud AWS, as described in the
Spring Cloud AWS Reference Guide.

https://cloud.spring.io/spring-cloud-static/spring-cloud-aws/2.1.3.RELEASE/single/spring-cloud-aws.html#_spring_cloud_aws_maven_dependency_management
https://cloud.spring.io/spring-cloud-static/spring-cloud-aws/2.1.3.RELEASE/single/spring-cloud-aws.html#_spring_cloud_aws_maven_dependency_management
https://cloud.spring.io/spring-cloud-static/spring-cloud-aws/2.1.3.RELEASE/single/spring-cloud-aws.html#_configuring_credentials

47.3. Decrypting Plain Text

By default, encrypted values in plain text files are not decrypted. In order to enable decryption for
plain text files, set spring.cloud.config.server.encrypt.enabled=true and
spring.cloud.config.server.encrypt.plainTextEncrypt=true in bootstrap.[yml|properties]

0 Decrypting plain text files is only supported for YAML, JSON, and properties file
extensions.

If this feature is enabled, and an unsupported file extention is requested, any encrypted values in
the file will not be decrypted.

Chapter 48. Embedding the Config Server

The Config Server runs best as a standalone application. However, if need be, you can embed it in
another application. To do so, use the @EnableConfigServer annotation. An optional property named
spring.cloud.config.server.bootstrap can be useful in this case. It is a flag to indicate whether the
server should configure itself from its own remote repository. By default, the flag is off, because it
can delay startup. However, when embedded in another application, it makes sense to initialize the
same way as any other application. When setting spring.cloud.config.server.bootstrap to true you
must also use a composite environment repository configuration. For example

spring:
application:
name: configserver
profiles:
active: composite
cloud:
config:
server:
composite:
- type: native
search-locations: ${HOME}/Desktop/config
bootstrap: true

o If you use the bootstrap flag, the config server needs to have its name and
repository URI configured in bootstrap.yml.

To change the location of the server endpoints, you can (optionally) set
spring.cloud.config.server.prefix (for example, /config), to serve the resources under a prefix.
The prefix should start but not end with a /. It is applied to the @RequestMappings in the Config
Server (that is, underneath the Spring Boot server.servletPath and server.contextPath prefixes).

If you want to read the configuration for an application directly from the backend repository
(instead of from the config server), you basically want an embedded config server with no
endpoints. You can switch off the endpoints entirely by not using the @EnableConfigServer
annotation (set spring.cloud.config.server.bootstrap=true).

Chapter 49. Push Notifications and Spring
Cloud Bus

Many source code repository providers (such as Github, Gitlab, Gitea, Gitee, Gogs, or Bitbucket)
notify you of changes in a repository through a webhook. You can configure the webhook through
the provider’s user interface as a URL and a set of events in which you are interested. For instance,
Github uses a POST to the webhook with a JSON body containing a list of commits and a header (X-
Github-Event) set to push. If you add a dependency on the spring-cloud-config-monitor library and
activate the Spring Cloud Bus in your Config Server, then a /monitor endpoint is enabled.

When the webhook is activated, the Config Server sends a RefreshRemoteApplicationEvent targeted
at the applications it thinks might have changed. The change detection can be strategized. However,
by default, it looks for changes in files that match the application name (for example,
foo.properties is targeted at the foo application, while application.properties is targeted at all
applications). The strategy to use when you want to override the behavior is
PropertyPathNotificationExtractor, which accepts the request headers and body as parameters and
returns a list of file paths that changed.

The default configuration works out of the box with Github, Gitlab, Gitea, Gitee, Gogs or Bitbucket.
In addition to the JSON notifications from Github, Gitlab, Gitee, or Bitbucket, you can trigger a
change notification by POSTing to /monitor with form-encoded body parameters in the pattern of
path={application}. Doing so broadcasts to applications matching the {application} pattern (which
can contain wildcards).

o The RefreshRemoteApplicationEvent is transmitted only if the spring-cloud-bus is
activated in both the Config Server and in the client application.

The default configuration also detects filesystem changes in local git repositories.
o In that case, the webhook is not used. However, as soon as you edit a config file, a
refresh is broadcast.

https://developer.github.com/v3/activity/events/types/#pushevent

Chapter 50. Spring Cloud Config Client

A Spring Boot application can take immediate advantage of the Spring Config Server (or other
external property sources provided by the application developer). It also picks up some additional
useful features related to Environment change events.

50.1. Config First Bootstrap

The default behavior for any application that has the Spring Cloud Config Client on the classpath is
as follows: When a config client starts, it binds to the Config Server (through the
spring.cloud.config.uri bootstrap configuration property) and initializes Spring Environment with
remote property sources.

The net result of this behavior is that all client applications that want to consume the Config Server
need a bootstrap.yml (or an environment variable) with the server address set in
spring.cloud.config.uri (it defaults to "http://localhost:8888").

50.2. Discovery First Bootstrap

If you use a DiscoveryClient implementation, such as Spring Cloud Netflix and Eureka Service
Discovery or Spring Cloud Consul, you can have the Config Server register with the Discovery
Service. However, in the default “Config First” mode, clients cannot take advantage of the
registration.

If you prefer to use DiscoveryClient to locate the Config Server, you can do so by setting
spring.cloud.config.discovery.enabled=true (the default is false). The net result of doing so is that
client applications all need a bootstrap.yml (or an environment variable) with the appropriate
discovery configuration. For example, with Spring Cloud Netflix, you need to define the Eureka
server address (for example, in eureka.client.serviceUrl.defaultZone). The price for using this
option is an extra network round trip on startup, to locate the service registration. The benefit is
that, as long as the Discovery Service is a fixed point, the Config Server can change its coordinates.
The default service ID is configserver, but you can change that on the client by setting
spring.cloud.config.discovery.serviceld (and on the server, in the usual way for a service, such as
by setting spring.application.name).

The discovery client implementations all support some kind of metadata map (for example, we
have eureka.instance.metadataMap for Eureka). Some additional properties of the Config Server may
need to be configured in its service registration metadata so that clients can connect correctly. If the
Config Server is secured with HTTP Basic, you can configure the credentials as user and password.
Also, if the Config Server has a context path, you can set configPath. For example, the following
YAML file is for a Config Server that is a Eureka client:

bootstrap.yml

eureka:
instance:

metadataMap:
user: osufhalskjrtl
password: lviuhlszvaorhvl1o5847
configPath: /config

50.2.1. Discovery First Bootstrap Using Eureka And WebClient

If you use the Eureka Discovery(Client from Spring Cloud Netflix and also want to use Web(Client
instead of Jersey or RestTemplate, you need to include WebClient on your classpath as well as set
eureka.client.webclient.enabled=true.

50.3. Config Client Fail Fast

In some cases, you may want to fail startup of a service if it cannot connect to the Config Server. If
this is the desired behavior, set the bootstrap configuration property spring.cloud.config.fail-
fast=true to make the client halt with an Exception.

50.4. Config Client Retry

If you expect that the config server may occasionally be unavailable when your application starts,
you can make it keep trying after a failure. First, you need to set spring.cloud.config.fail-
fast=true. Then you need to add spring-retry and spring-boot-starter-aop to your classpath. The
default behavior is to retry six times with an initial backoff interval of 1000ms and an exponential
multiplier of 1.1 for subsequent backoffs. You can configure these properties (and others) by setting
the spring.cloud.config.retry.* configuration properties.

To take full control of the retry behavior, add a @Bean of type
@ RetryOperationsInterceptor with an ID of configServerRetryInterceptor. Spring
et Retry has a RetryInterceptorBuilder that supports creating one.

50.5. Locating Remote Configuration Resources

The Config Service serves property sources from /{application}/{profile}/{label}, where the
default bindings in the client app are as follows:

* "application" = $§{spring.application.name}

* "profile" = §{spring.profiles.active} (actually Environment.getActiveProfiles())

¢ "label" = "master"

When setting the property ${spring.application.name} do not prefix your app
o name with the reserved word application- to prevent issues resolving the correct
property source.

You can override all of them by setting spring.cloud.config.* (where * is name, profile or label). The
label is useful for rolling back to previous versions of configuration. With the default Config Server
implementation, it can be a git label, branch name, or commit ID. Label can also be provided as a
comma-separated list. In that case, the items in the list are tried one by one until one succeeds. This
behavior can be useful when working on a feature branch. For instance, you might want to align
the config label with your branch but make it optional (in that case, use
spring.cloud.config.label=myfeature,develop).

50.6. Specifying Multiple Urls for the Config Server

To ensure high availability when you have multiple instances of Config Server deployed and expect
one or more instances to be unavailable from time to time, you can either specify multiple URLs (as
a comma-separated list under the spring.cloud.config.uri property) or have all your instances
register in a Service Registry like Eureka (if using Discovery-First Bootstrap mode). Note that doing
so ensures high availability only when the Config Server is not running (that is, when the
application has exited) or when a connection timeout has occurred. For example, if the Config
Server returns a 500 (Internal Server Error) response or the Config Client receives a 401 from the
Config Server (due to bad credentials or other causes), the Config Client does not try to fetch
properties from other URLs. An error of that kind indicates a user issue rather than an availability
problem.

If you use HTTP basic security on your Config Server, it is currently possible to support per-Config
Server auth credentials only if you embed the credentials in each URL you specify under the
spring.cloud.config.uri property. If you use any other kind of security mechanism, you cannot
(currently) support per-Config Server authentication and authorization.

50.7. Configuring Timeouts

If you want to configure timeout thresholds:
* Read timeouts can be configured by using the property spring.cloud.config.request-read-
timeout.

* Connection timeouts can be configured by using the property spring.cloud.config.request-
connect-timeout.

50.8. Security

If you use HTTP Basic security on the server, clients need to know the password (and username if it
is not the default). You can specify the username and password through the config server URI or via
separate username and password properties, as shown in the following example:

bootstrap.yml

spring:
cloud:
config:
uri: https://user:secret@myconfig.mycompany.com

The following example shows an alternate way to pass the same information:

bootstrap.yml

spring:
cloud:
config:
uri: https://myconfig.mycompany.com
username: user
password: secret

The spring.cloud.config.password and spring.cloud.config.username values override anything that
is provided in the URI.

If you deploy your apps on Cloud Foundry, the best way to provide the password is through service
credentials (such as in the URI, since it does not need to be in a config file). The following example
works locally and for a user-provided service on Cloud Foundry named configserver:

bootstrap.yml

spring:
cloud:
config:
uri:
${vcap.services.configserver.credentials.uri:http://user:password@localhost:8888}

If config server requires client side TLS certificate, you can configure client side TLS certificate and
trust store via properties, as shown in following example:

bootstrap.yml

spring:
cloud:
config:
uri: https://myconfig.myconfig.com
tls:
enabled: true
key-store: <path-of-key-store>
key-store-type: PKCS12
key-store-password: <key-store-password>
key-password: <key-password>
trust-store: <path-of-trust-store>
trust-store-type: PKCS12
trust-store-password: <trust-store-password>

The spring.cloud.config.tls.enabled needs to be true to enable config client side TLS. When
spring.cloud.config.tls.trust-store is omitted, a JVM default trust store is used. The default value
for spring.cloud.config.tls.key-store-type and spring.cloud.config.tls.trust-store-type is
PKCS12. When password properties are omitted, empty password is assumed.

If you use another form of security, you might need to provide a RestTemplate to the
ConfigServicePropertySourceLocator (for example, by grabbing it in the bootstrap context and
injecting it).

50.8.1. Health Indicator

The Config Client supplies a Spring Boot Health Indicator that attempts to load configuration from
the Config Server. The health indicator can be disabled by setting health.config.enabled=false. The
response is also cached for performance reasons. The default cache time to live is 5 minutes. To
change that value, set the health.config.time-to-1live property (in milliseconds).

50.8.2. Providing A Custom RestTemplate

In some cases, you might need to customize the requests made to the config server from the client.
Typically, doing so involves passing special Authorization headers to authenticate requests to the
server. To provide a custom RestTemplate:

1. Create a new configuration bean with an implementation of PropertySourcelLocator, as shown in
the following example:

CustomConfigServiceBootstrapConfiguration.java

@Configuration
public class CustomConfigServiceBootstrapConfiguration {
@Bean
public ConfigServicePropertySourcelocator configServicePropertySourcelocator() {
ConfigClientProperties clientProperties = configClientProperties();
ConfigServicePropertySourcelLocator configServicePropertySourcelocator = new
ConfigServicePropertySourcelocator(clientProperties);

configServicePropertySourcelocator.setRestTemplate(customRestTemplate(clientProperties

));

return configServicePropertySourcelocator;

0 For a simplified approach to adding Authorization headers, the
spring.cloud.config.headers.* property can be used instead.

1. In resources/META-INF, create a file called spring.factories and specify your custom
configuration, as shown in the following example:

spring.factories

org.springframework.cloud.bootstrap.BootstrapConfiguration =
com.my.config.client.CustomConfigServiceBootstrapConfiguration

50.8.3. Vault

When using Vault as a backend to your config server, the client needs to supply a token for the
server to retrieve values from Vault. This token can be provided within the client by setting
spring.cloud.config.token in bootstrap.yml, as shown in the following example:

bootstrap.yml

spring:
cloud:
config:
token: YourVaultToken

50.9. Nested Keys In Vault

Vault supports the ability to nest keys in a value stored in Vault, as shown in the following example:
echo -n "{"appA": {"secret": "appAsecret"}, "bar": "baz"}' | vault write secret/myapp -

This command writes a JSON object to your Vault. To access these values in Spring, you would use
the traditional dot(.) annotation, as shown in the following example

@Value("${appA.secret}")
String name = "World";

The preceding code would sets the value of the name variable to appAsecret.

Spring Cloud Consul

Hoxton.SR12

This project provides Consul integrations for Spring Boot apps through autoconfiguration and
binding to the Spring Environment and other Spring programming model idioms. With a few
simple annotations you can quickly enable and configure the common patterns inside your
application and build large distributed systems with Consul based components. The patterns
provided include Service Discovery, Control Bus and Configuration. Intelligent Routing (Zuul) and
Client Side Load Balancing (Ribbon), Circuit Breaker (Hystrix) are provided by integration with
Spring Cloud Netflix.

Chapter 51. Quick Start

This quick start walks through using Spring Cloud Consul for Service Discovery and Distributed
Configuration.

First, run Consul Agent on your machine. Then you can access it and use it as a Service Registry and
Configuration source with Spring Cloud Consul.

51.1. Discovery Client Usage

To use these features in an application, you can build it as a Spring Boot application that depends
on spring-cloud-consul-core. The most convenient way to add the dependency is with a Spring Boot
starter: org.springframework.cloud:spring-cloud-starter-consul-discovery. We recommend using
dependency management and spring-boot-starter-parent. The following example shows a typical
Maven configuration:

pom.xml

<project>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>{spring-boot-version}</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>

<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-consul-discovery</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactld>
<version>${spring-cloud.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>
</project>

The following example shows a typical Gradle setup:

build.gradle

plugins {
id 'org.springframework.boot' version ${spring-boot-version}
id 'io.spring.dependency-management' version ${spring-dependency-management-version}
id 'java'

}

repositories {
mavenCentral()

}

dependencies {
implementation 'org.springframework.cloud:spring-cloud-starter-consul-discovery'
testImplementation 'org.springframework.boot:spring-boot-starter-test’
¥
dependencyManagement {
imports {
mavenBom "org.springframework.cloud:spring-cloud-
dependencies:${springCloudVersion}"
}
}

Now you can create a standard Spring Boot application, such as the following HTTP server:

@SpringBootApplication
@RestController
public class Application {

@GetMapping("/")

public String home() {
return "Hello World!";

}

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

When this HTTP server runs, it connects to Consul Agent running at the default local 8500 port. To
modify the startup behavior, you can change the location of Consul Agent by using
application.properties, as shown in the following example:

spring:

cloud:
consul:
host: localhost
port: 8500

You can now use DiscoveryClient, @LoadBalanced RestTemplate, or @LoadBalanced WebClient.Builder
to retrieve services and instances data from Consul, as shown in the following example:

@Autowired
private DiscoveryClient discoveryClient;

public String serviceUrl() {
List<ServiceInstance> list = discoveryClient.getInstances("STORES");
if (list !'= null && list.size() > 0) {
return list.get(0).getUri().toString();
}

return null;

51.2. Distributed Configuration Usage

To use these features in an application, you can build it as a Spring Boot application that depends
on spring-cloud-consul-core and spring-cloud-consul-config. The most convenient way to add the
dependency is with a Spring Boot starter: org.springframework.cloud:spring-cloud-starter-consul-
config. We recommend using dependency management and spring-boot-starter-parent. The
following example shows a typical Maven configuration:

pom.xml

<project>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>{spring-boot-version}</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>

<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-consul-config</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-dependencies</artifactld>
<version>${spring-cloud.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>
</project>

The following example shows a typical Gradle setup:

build.gradle

plugins {
id 'org.springframework.boot' version ${spring-boot-version}

id 'io.spring.dependency-management' version ${spring-dependency-management-version}

id 'java'

}

repositories {
mavenCentral()

}

dependencies {
implementation 'org.springframework.cloud:spring-cloud-starter-consul-config’
testImplementation 'org.springframework.boot:spring-boot-starter-test’
¥
dependencyManagement {
imports {
mavenBom "org.springframework.cloud:spring-cloud-
dependencies:${springCloudVersion}"
}
}

Now you can create a standard Spring Boot application, such as the following HTTP server:

@SpringBootApplication
@RestController
public class Application {

@GetMapping("/")

public String home() {
return "Hello World!";

}

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

The application retrieves configuration data from Consul.

Chapter 52. Install Consul

Please see the installation documentation for instructions on how to install Consul.

https://www.consul.io/intro/getting-started/install.html

Chapter 53. Consul Agent

A Consul Agent client must be available to all Spring Cloud Consul applications. By default, the
Agent client is expected to be at localhost:8500. See the Agent documentation for specifics on how
to start an Agent client and how to connect to a cluster of Consul Agent Servers. For development,
after you have installed consul, you may start a Consul Agent using the following command:

./src/main/bash/local_run_consul.sh

This will start an agent in server mode on port 8500, with the ui available at localhost:8500

https://consul.io/docs/agent/basics.html
http://localhost:8500

Chapter 54. Service Discovery with Consul

Service Discovery is one of the key tenets of a microservice based architecture. Trying to hand
configure each client or some form of convention can be very difficult to do and can be very brittle.
Consul provides Service Discovery services via an HTTP API and DNS. Spring Cloud Consul
leverages the HTTP API for service registration and discovery. This does not prevent non-Spring
Cloud applications from leveraging the DNS interface. Consul Agents servers are run in a cluster
that communicates via a gossip protocol and uses the Raft consensus protocol.

54.1. How to activate

To activate Consul Service Discovery use the starter with group org.springframework.cloud and
artifact id spring-cloud-starter-consul-discovery. See the Spring Cloud Project page for details on
setting up your build system with the current Spring Cloud Release Train.

54.2. Registering with Consul

When a client registers with Consul, it provides meta-data about itself such as host and port, id,
name and tags. An HTTP Check is created by default that Consul hits the /actuator/health endpoint
every 10 seconds. If the health check fails, the service instance is marked as critical.

Example Consul client:

@SpringBootApplication
@RestController
public class Application {

@RequestMapping("/")
public String home() {
return "Hello world";

}

public static void main(String[] args) {
new SpringApplicationBuilder(Application.class).web(true).run(args);
}

(i.e. utterly normal Spring Boot app). If the Consul client is located somewhere other than
localhost: 8500, the configuration is required to locate the client. Example:

https://www.consul.io/docs/agent/http.html
https://www.consul.io/docs/agent/dns.html
https://www.consul.io/docs/internals/architecture.html
https://www.consul.io/docs/internals/gossip.html
https://www.consul.io/docs/internals/consensus.html
https://projects.spring.io/spring-cloud/
https://www.consul.io/docs/agent/checks.html

application.yml

spring:
cloud:
consul:
host: localhost
port: 8500

° If you use Spring Cloud Consul Config, the above values will need to be placed in
bootstrap.yml instead of application.yml

The default service name, instance id and port, taken from the Environment, are
${spring.application.name}, the Spring Context ID and ${server.port} respectively.

To disable the Consul Discovery Client you can set spring.cloud.consul.discovery.enabled to false.
Consul Discovery Client will also be disabled when spring.cloud.discovery.enabled is set to false.

To disable the service registration you can set spring.cloud.consul.discovery.register to false.

54.2.1. Registering Management as a Separate Service

When management server port is set to something different than the application port, by setting
management.server.port property, management service will be registered as a separate service than
the application service. For example:

application.yml
spring:
application:
name: myApp
management:
server:
port: 4452

Above configuration will register following 2 services:

* Application Service:

ID: myApp
Name: myApp

* Management Service:

ID: myApp-management
Name: myApp-management

Management service will inherit its instanceId and serviceName from the application service. For

example:

application.yml

spring:
application:
name: myApp
management:
server:
port: 4452
spring:
cloud:
consul:
discovery:
instance-id: custom-service-id
serviceName: myprefix-${spring.application.name}

Above configuration will register following 2 services:

* Application Service:

ID: custom-service-id
Name: myprefix-myApp

* Management Service:

ID: custom-service-id-management
Name: myprefix-myApp-management

Further customization is possible via following properties:

/** Port to register the management service under (defaults to management port) */
spring.cloud.consul.discovery.management-port

/** Suffix to use when registering management service (defaults to "management" */
spring.cloud.consul.discovery.management-suffix

/** Tags to use when registering management service (defaults to "management” */
spring.cloud.consul.discovery.management-tags

54.2.2. HTTP Health Check

The health check for a Consul instance defaults to "/actuator/health", which is the default location of
the health endpoint in a Spring Boot Actuator application. You need to change this, even for an
Actuator application, if you use a non-default context path or servlet path (e.g.
server.servletPath=/foo) or management endpoint path (e.g. management.server.servlet.context-

path=/admin).

The interval that Consul uses to check the health endpoint may also be configured. "10s" and "1m"
represent 10 seconds and 1 minute respectively.

This example illustrates the above (see the spring.cloud.consul.discovery.health-check-*
properties in the appendix page for more options).

application.yml

spring:
cloud:
consul:
discovery:
healthCheckPath: ${management.server.servlet.context-path}/actuator/health
healthCheckInterval: 15s

You can disable the HTTP health check entirely by setting spring.cloud.consul.discovery.register-
health-check=false.

Applying Headers

Headers can be applied to health check requests. For example, if you’re trying to register a Spring
Cloud Config server that uses Vault Backend:

application.yml

spring:
cloud:
consul:
discovery:
health-check-headers:
X-Config-Token: 6442e58b-d1ea-182e-cfa5-cf9cddefd722

According to the HTTP standard, each header can have more than one values, in which case, an
array can be supplied:

application.yml

spring:
cloud:
consul:
discovery:
health-check-headers:
X-Config-Token:
- "6442e58b-d1ea-182e-cfab-cf9cddef0722"
- "Some other value"

appendix.html
https://cloud.spring.io/spring-cloud-config/
https://cloud.spring.io/spring-cloud-config/
https://github.com/spring-cloud/spring-cloud-config/blob/master/docs/src/main/asciidoc/spring-cloud-config.adoc#vault-backend

54.2.3. Actuator Health Indicator(s)

If the service instance is a Spring Boot Actuator application, it may be provided the following
Actuator health indicators.

DiscoveryClientHealthIndicator

When Consul Service Discovery is active, a DiscoverClientHealthIndicator is configured and made
available to the Actuator health endpoint. See here for configuration options.

ConsulHealthIndicator

An indicator is configured that verifies the health of the ConsulClient.

By default, it retrieves the Consul leader node status and all registered services. In deployments
that have many registered services it may be costly to retrieve all services on every health check. To
skip the service retrieval and only check the leader node status set spring.cloud.consul.health-
indicator.include-services-query=false.

To disable the indicator set management.health.consul.enabled=false.

When the application runs in bootstrap context mode (the default), this indicator is
loaded into the bootstrap context and is not made available to the Actuator health
endpoint.

54.2.4. Metadata and Consul tags

Consul does not yet support metadata on services. Spring Cloud’s ServiceInstance has a Map<String,
String> metadata field. Spring Cloud Consul uses Consul tags to approximate metadata until Consul
officially supports metadata. Tags with the form key=value will be split and used as a Map key and
value respectively. Tags without the equal = sign, will be used as both the key and value.

application.yml

spring:
cloud:
consul:
discovery:
tags: foo=bar, baz

The above configuration will result in a map with foo—>bar and baz—baz.

Generated Metadata

The Consul Auto Registration will generate a few entries automatically.

Table 4. Auto Generated Metadata

https://cloud.spring.io/spring-cloud-commons/2.2.x/reference/html/#health-indicator
https://cloud.spring.io/spring-cloud-commons/2.2.x/reference/html/#health-indicator
https://cloud.spring.io/spring-cloud-commons/2.2.x/reference/html/#the-bootstrap-application-context

Key Value

'group’ Property
spring.cloud.consul.discovery.instance-group.
This values is only generated if instance-group is
not empty.'

'secure’ True if property
spring.cloud.consul.discovery.scheme equals
'https', otherwise false.

Property Property

spring.cloud.consul.discovery.default-zone- spring.cloud.consul.discovery.instance-zone.

metadata-name, defaults to 'zone’ This values is only generated if instance-zone is
not empty.'

Official Consul Metadata

Consul added official support for a meta field that is a Map<String, String>. Spring Cloud Consul has
added spring.cloud.consul.discovery.metadata and spring.cloud.consul.discovery.management-
metadata properties to support it.

By default, the Servicelnstance.getMetadata() method from Spring Cloud
Commons will continue to populated by parsing the

o spring.cloud.consul.discovery.tags property for backwards compatibility. To
change this behaviour set spring.cloud.consul.discovery.tags-as-metadata=false
and the metadata will be populated from spring.cloud.consul.discovery.metadata.
In a future version, parsing the tags property will be removed.

54.2.5. Making the Consul Instance ID Unique

By default a consul instance is registered with an ID that is equal to its Spring Application Context
ID. By default, the Spring Application Context ID is
${spring.application.name}:comma,separated,profiles:${server.port}. For most cases, this will
allow multiple instances of one service to run on one machine. If further uniqueness is required,
Using Spring Cloud you can override this by providing a wunique identifier in
spring.cloud.consul.discovery.instanceld. For example:

application.yml

spring:
cloud:
consul:
discovery:
instanceld:
${spring.application.name}:${vcap.application.instance_id:${spring.application.instanc
e_id:${random.value}}}

With this metadata, and multiple service instances deployed on localhost, the random value will

kick in there to make the instance unique. In Cloudfoundry the vcap.application.instance_id will
be populated automatically in a Spring Boot application, so the random value will not be needed.

54.3. Looking up services

54.3.1. Using Load-balancer

Spring Cloud has support for Feign (a REST client builder) and also Spring RestTemplate for looking
up services using the logical service names/ids instead of physical URLs. Both Feign and the
discovery-aware RestTemplate utilize Ribbon for client-side load balancing.

If you want to access service STORES using the RestTemplate simply declare:

@LoadBalanced

@Bean

public RestTemplate loadbalancedRestTemplate() {
return new RestTemplate();

}

and use it like this (notice how we use the STORES service name/id from Consul instead of a fully
qualified domainname):

@Autowired
RestTemplate restTemplate;

public String getFirstProduct() {
return this.restTemplate.getForObject("https://STORES/products/1", String.class);
}

If you have Consul clusters in multiple datacenters and you want to access a service in another
datacenter a service name/id alone is not enough. In that case you wuse property
spring.cloud.consul.discovery.datacenters.STORES=dc-west where STORES is the service name/id and
dc-west is the datacenter where the STORES service lives.

(;) Spring Cloud now also offers support for Spring Cloud LoadBalancer.
-

As Spring Cloud Ribbon is now under maintenance, we suggest you set
spring.cloud.loadbalancer.ribbon.enabled to false, so that BlockinglLoadBalancerClient is used
instead of RibbonLoadBalancer(lient.

54.3.2. Using the DiscoveryClient

You can also use the org.springframework.cloud.client.discovery.DiscoveryClient which provides a
simple API for discovery clients that is not specific to Netflix, e.g.

https://github.com/spring-cloud/spring-cloud-netflix/blob/master/docs/src/main/asciidoc/spring-cloud-netflix.adoc#spring-cloud-feign
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/docs/src/main/asciidoc/spring-cloud-netflix.adoc#spring-cloud-ribbon
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/docs/src/main/asciidoc/spring-cloud-netflix.adoc#spring-cloud-ribbon
https://cloud.spring.io/spring-cloud-netflix/single/spring-cloud-netflix.html#spring-cloud-ribbon
https://cloud.spring.io/spring-cloud-commons/reference/html/#_spring_resttemplate_as_a_load_balancer_client

@Autowired
private DiscoveryClient discoveryClient;

public String serviceUrl() {
List<Servicelnstance> list = discoveryClient.getInstances("STORES");
if (list !'= null && list.size() > 0) {
return list.qget(0).getUri();
}

return null;

54.4. Consul Catalog Watch

The Consul Catalog Watch takes advantage of the ability of consul to watch services. The Catalog
Watch makes a blocking Consul HTTP API call to determine if any services have changed. If there is
new service data a Heartbeat Event is published.

To change the frequency of when the Config Watch is called change
spring.cloud.consul.config.discovery.catalog-services-watch-delay. The default value is 1000,
which is in milliseconds. The delay is the amount of time after the end of the previous invocation
and the start of the next.

To disable the Catalog Watch set
spring.cloud.consul.discovery.catalogServicesWatch.enabled=false.

The watch uses a Spring TaskScheduler to schedule the call to consul. By default it is a
ThreadPoolTaskScheduler with a poolSize of 1. To change the TaskScheduler, create a bean of type
TaskScheduler named with the
ConsulDiscoveryClientConfiguration.CATALOG_WATCH_TASK_SCHEDULER_NAME constant.

https://www.consul.io/docs/agent/watches.html#services

Chapter 55. Distributed Configuration with
Consul

Consul provides a Key/Value Store for storing configuration and other metadata. Spring Cloud
Consul Config is an alternative to the Config Server and Client. Configuration is loaded into the
Spring Environment during the special "bootstrap" phase. Configuration is stored in the /config
folder by default. Multiple PropertySource instances are created based on the application’s name
and the active profiles that mimicks the Spring Cloud Config order of resolving properties. For
example, an application with the name "testApp" and with the "dev" profile will have the following
property sources created:

config/testApp,dev/
config/testApp/
config/application,dev/
config/application/

The most specific property source is at the top, with the least specific at the bottom. Properties in
the config/application folder are applicable to all applications using consul for configuration.
Properties in the config/testApp folder are only available to the instances of the service named
"testApp".

Configuration is currently read on startup of the application. Sending a HTTP POST to /refresh will
cause the configuration to be reloaded. Config Watch will also automatically detect changes and
reload the application context.

55.1. How to activate

To get started with Consul Configuration use the starter with group org.springframework.cloud and
artifact id spring-cloud-starter-consul-config. See the Spring Cloud Project page for details on
setting up your build system with the current Spring Cloud Release Train.

This will enable auto-configuration that will setup Spring Cloud Consul Config.

55.2. Customizing

Consul Config may be customized using the following properties:

https://consul.io/docs/agent/http/kv.html
https://github.com/spring-cloud/spring-cloud-config
https://projects.spring.io/spring-cloud/

bootstrap.yml

spring:
cloud:
consul:
config:

enabled: true
prefix: configuration
defaultContext: apps
profileSeparator: "::'

* enabled setting this value to "false" disables Consul Config

» prefix sets the base folder for configuration values

defaultContext sets the folder name used by all applications

» profileSeparator sets the value of the separator used to separate the profile name in property
sources with profiles

55.3. Config Watch

The Consul Config Watch takes advantage of the ability of consul to watch a key prefix. The Config
Watch makes a blocking Consul HTTP API call to determine if any relevant configuration data has
changed for the current application. If there is new configuration data a Refresh Event is published.
This is equivalent to calling the /refresh actuator endpoint.

To change the frequency of when the Config Watch is called change
spring.cloud.consul.config.watch.delay. The default value is 1000, which is in milliseconds. The
delay is the amount of time after the end of the previous invocation and the start of the next.

To disable the Config Watch set spring.cloud.consul.config.watch.enabled=false.

The watch uses a Spring TaskScheduler to schedule the call to consul. By default it is a
ThreadPoolTaskScheduler with a poolSize of 1. To change the TaskScheduler, create a bean of type
TaskScheduler named with the ConsulConfigAutoConfiguration.CONFIG_WATCH_TASK_SCHEDULER_NAME
constant.

55.4. YAML or Properties with Config

It may be more convenient to store a blob of properties in YAML or Properties format as opposed to
individual key/value pairs. Set the spring.cloud.consul.config.format property to YAML or
PROPERTIES. For example to use YAML:

https://www.consul.io/docs/agent/watches.html#keyprefix

bootstrap.yml

spring:
cloud:
consul:
config:
format: YAML

YAML must be set in the appropriate data key in consul. Using the defaults above the keys would
look like:

config/testApp,dev/data
config/testApp/data
config/application,dev/data
config/application/data

You could store a YAML document in any of the keys listed above.

You can change the data key using spring.cloud.consul.config.data-key.

55.5. git2consul with Config

git2consul is a Consul community project that loads files from a git repository to individual keys
into Consul. By default the names of the keys are names of the files. YAML and Properties files are
supported with file extensions of .yml and .properties respectively. Set the
spring.cloud.consul.config.format property to FILES. For example:

bootstrap.yml

spring:
cloud:
consul:
config:
format: FILES

Given the following keys in /config, the development profile and an application name of foo:

.gitignore

application.yml
bar.properties
foo-development.properties
foo-production.yml
foo.properties

master.ref

the following property sources would be created:

config/foo-development.properties
config/foo.properties
config/application.yml

The value of each key needs to be a properly formatted YAML or Properties file.

55.6. Fail Fast

It may be convenient in certain circumstances (like local development or certain test scenarios) to
not fail if consul isn’t available for configuration. Setting
spring.cloud.consul.config.failFast=false in bootstrap.yml will cause the configuration module to
log a warning rather than throw an exception. This will allow the application to continue startup
normally.

Chapter 56. Consul Retry

If you expect that the consul agent may occasionally be unavailable when your app starts, you can
ask it to keep trying after a failure. You need to add spring-retry and spring-boot-starter-aop to
your classpath. The default behaviour is to retry 6 times with an initial backoff interval of 1000ms
and an exponential multiplier of 1.1 for subsequent backoffs. You can configure these properties
(and others) using spring.cloud.consul.retry.* configuration properties. This works with both
Spring Cloud Consul Config and Discovery registration.

To take full control of the retry add a @Bean of type RetryOperationsInterceptor with
O id "consulRetryInterceptor". Spring Retry has a RetryInterceptorBuilder that
ot makes it easy to create one.

Chapter 57. Spring Cloud Bus with Consul

57.1. How to activate

To get started with the Consul Bus use the starter with group org.springframework.cloud and artifact
id spring-cloud-starter-consul-bus. See the Spring Cloud Project page for details on setting up your
build system with the current Spring Cloud Release Train.

See the Spring Cloud Bus documentation for the available actuator endpoints and howto send
custom messages.

https://projects.spring.io/spring-cloud/
https://cloud.spring.io/spring-cloud-bus/

Chapter 58. Circuit Breaker with Hystrix

Applications can use the Hystrix Circuit Breaker provided by the Spring Cloud Netflix project by
including this starter in the projects pom.xml: spring-cloud-starter-hystrix. Hystrix doesn’t
depend on the Netflix Discovery Client. The @EnableHystrix annotation should be placed on a
configuration class (usually the main class). Then methods can be annotated with @HystrixCommand
to be protected by a circuit breaker. See the documentation for more details.

https://projects.spring.io/spring-cloud/spring-cloud.html#_circuit_breaker_hystrix_clients

Chapter 59. Hystrix metrics aggregation
with Turbine and Consul

Turbine (provided by the Spring Cloud Netflix project), aggregates multiple instances Hystrix
metrics streams, so the dashboard can display an aggregate view. Turbine uses the DiscoveryClient
interface to lookup relevant instances. To use Turbine with Spring Cloud Consul, configure the
Turbine application in a manner similar to the following examples:

pom.xml

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-netflix-turbine</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-consul-discovery</artifactId>
</dependency>

Notice that the Turbine dependency is not a starter. The turbine starter includes support for Netflix
Eureka.

application.yml

spring.application.name: turbine
applications: consulhystrixclient
turbine:
aggregator:
clusterConfig: ${applications}
appConfig: ${applications}

The clusterConfig and appConfig sections must match, so it’s useful to put the comma-separated list
of service ID’s into a separate configuration property.

Turbine.java

@EnableTurbine
@SpringBootApplication
public class Turbine {
public static void main(String[] args) {
SpringApplication.run(DemoturbinecommonsApplication.class, args);

}

Chapter 60. Configuration Properties

To see the list of all Consul related configuration properties please check the Appendix page.

index.htmladoc

appendix.html

Spring Cloud Function

Mark Fisher, Dave Syer, Oleg Zhurakousky, Anshul Mehra

3.0.14.RELEASE

Chapter 61. Introduction

Spring Cloud Function is a project with the following high-level goals:

* Promote the implementation of business logic via functions.

* Decouple the development lifecycle of business logic from any specific runtime target so that
the same code can run as a web endpoint, a stream processor, or a task.

* Support a uniform programming model across serverless providers, as well as the ability to run
standalone (locally or in a PaaS).

* Enable Spring Boot features (auto-configuration, dependency injection, metrics) on serverless
providers.

It abstracts away all of the transport details and infrastructure, allowing the developer to keep all
the familiar tools and processes, and focus firmly on business logic.

Here’s a complete, executable, testable Spring Boot application (implementing a simple string
manipulation):

@SpringBootApplication
public class Application {

@Bean
public Function<Flux<String>, Flux<String>> uppercase() {
return flux -> flux.map(value -> value.toUpperCase());

}

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}
}

It’s just a Spring Boot application, so it can be built, run and tested, locally and in a CI build, the
same way as any other Spring Boot application. The Function is from java.util and Flux is a
Reactive Streams Publisher from Project Reactor. The function can be accessed over HTTP or
messaging.

Spring Cloud Function has 4 main features:

In the nutshell Spring Cloud Function provides the following features: 1. Wrappers for @Beans of
type Function, Consumer and Supplier, exposing them to the outside world as either HTTP endpoints
and/or message stream listeners/publishers with RabbitMQ, Kafka etc.

* Choice of programming styles - reactive, imperative or hybrid.

» Function composition and adaptation (e.g., composing imperative functions with reactive).

* Support for reactive function with multiple inputs and outputs allowing merging, joining and
other complex streaming operation to be handled by functions.

https://www.reactive-streams.org/
https://projectreactor.io/

» Transparent type conversion of inputs and outputs.

* Packaging functions for deployments, specific to the target platform (e.g., Project Riff, AWS
Lambda and more)

» Adapters to expose function to the outside world as HTTP endpoints etc.

* Deploying a JAR file containing such an application context with an isolated classloader, so that
you can pack them together in a single JVM.

* Compiling strings which are Java function bodies into bytecode, and then turning them into @Beans
that can be wrapped as above.

» Adapters for AWS Lambda, Azure, Google Cloud Functions, Apache OpenWhisk and possibly other
"serverless" service providers.

Spring Cloud is released under the non-restrictive Apache 2.0 license. If you would
o like to contribute to this section of the documentation or if you find an error,
please find the source code and issue trackers in the project at github.

https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-adapters/spring-cloud-function-adapter-aws
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-adapters/spring-cloud-function-adapter-azure
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-adapters/spring-cloud-function-adapter-gcp
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-adapters/spring-cloud-function-adapter-openwhisk
https://github.com/spring-cloud/spring-cloud

Chapter 62. Getting Started

Build from the command line (and "install" the samples):
$./mvnw clean install

(If you like to YOLO add -DskipTests.)

Run one of the samples, e.g.
$ java -jar spring-cloud-function-samples/function-sample/target/*.jar

This runs the app and exposes its functions over HTTP, so you can convert a string to uppercase,
like this:

$ curl -H "Content-Type: text/plain" localhost:8080/uppercase -d Hello
HELLO

You can convert multiple strings (a Flux<String>) by separating them with new lines

$ curl -H "Content-Type: text/plain" localhost:8080/uppercase -d 'Hello
> World'
HELLOWORLD

(You can use %J in a terminal to insert a new line in a literal string like that.)

Chapter 63. Programming model

63.1. Function Catalog and Flexible Function
Signatures

One of the main features of Spring Cloud Function is to adapt and support a range of type
signatures for user-defined functions, while providing a consistent execution model. That’s why all
user defined functions are transformed into a canonical representation by FunctionCatalog.

While users don’t normally have to care about the FunctionCatalog at all, it is useful to know what
kind of functions are supported in user code.

It is also important to understand that Spring Cloud Function provides first class support for
reactive API provided by Project Reactor allowing reactive primitives such as Mono and Flux to be
used as types in user defined functions providing greater flexibility when choosing programming
model for your function implementation. Reactive programming model also enables functional
support for features that would be otherwise difficult to impossible to implement using imperative
programming style. For more on this please read Function Arity section.

63.2. Java 8 function support

Spring Cloud Function embraces and builds on top of the 3 core functional interfaces defined by
Java and available to us since Java 8.

* Supplier<O>
e Function<I, O>

¢ Consumer<I>

63.2.1. Supplier

Supplier can be reactive - Supplier<Flux<T>> or imperative - Supplier<T>. From the invocation
standpoint this should make no difference to the implementor of such Supplier. However, when
used within frameworks (e.g., Spring Cloud Stream), Suppliers, especially reactive, often used to
represent the source of the stream, therefore they are invoked once to get the stream (e.g., Flux) to
which consumers can subscribe to. In other words such suppliers represent an equivalent of an
infinite stream. However, the same reactive suppliers can also represent finite stream(s) (e.g., result
set on the polled JDBC data). In those cases such reactive suppliers must be hooked up to some
polling mechanism of the underlying framework.

To assist with that Spring Cloud Function provides a marker annotation
org.springframework.cloud.function.context.PollableSupplier to signal that such supplier produces
a finite stream and may need to be polled again. That said, it is important to understand that Spring
Cloud Function itself provides no behavior for this annotation.

In addition PollableSupplier annotation exposes a splittable attribute to signal that produced
stream needs to be split (see Splitter EIP)

https://projectreactor.io/
https://spring.io/projects/spring-cloud-stream
https://www.enterpriseintegrationpatterns.com/patterns/messaging/Sequencer.html

Here is the example:

@PollableSupplier(splittable = true)
public Supplier<Flux<String>> someSupplier() {
return () -> {
String v1 = String.valueOf(System.nanoTime());
String v2 = String.valueOf(System.nanoTime());
String v3 = String.valueOf(System.nanoTime());
return Flux.just(v1, v2, v3);

63.2.2. Function

Function can also be written in imperative or reactive way, yet unlike Supplier and Consumer there
are no special considerations for the implementor other then understanding that when used within
frameworks such as Spring Cloud Stream and others, reactive function is invoked only once to pass
a reference to the stream (Flux or Mono) and imperative is invoked once per event.

63.2.3. Consumer

Consumer is a little bit special because it has a void return type, which implies blocking, at least
potentially. Most likely you will not need to write Consumer<Flux<?>>, but if you do need to do that,
remember to subscribe to the input flux.

63.3. Function Composition

Function Composition is a feature that allows one to compose several functions into one. The core
support is based on function composition feature available with Function.andThen(..) support
available since Java 8. However on top of it, we provide few additional features.

63.3.1. Declarative Function Composition

This feature allows you to provide composition instruction in a declarative way using | (pipe) or ,
(comma) delimiter when providing spring.cloud.function.definition property.

For example
--spring.cloud.function.definition=uppercase|reverse

Here we effectively provided a definition of a single function which itself is a composition of
function uppercase and function reverse. In fact that is one of the reasons why the property name is
definition and not name, since the definition of a function can be a composition of several named
functions. And as mentioned you can use , instead of pipe (such as
definition=uppercase,reverse).

https://spring.io/projects/spring-cloud-stream
https://docs.oracle.com/javase/8/docs/api/java/util/function/Function.html#andThen-java.util.function.Function-

63.3.2. Composing non-Functions

Spring Cloud Function also supports composing Supplier with Consumer or Function as well as
Function with Consumer. What’s important here is to understand the end product of such definitions.
Composing Supplier with Function still results in Supplier while composing Supplier with
Consumer will effectively render Runnable. Following the same logic composing Function with
Consumer will result in Consumer.

And of course you can’t compose uncomposable such as Consumer and Function, Consumer and
Supplier etc.

63.4. Function Routing and Filtering

Since version 2.2 Spring Cloud Function provides routing feature allowing you to invoke a single
function which acts as a router to an actual function you wish to invoke This feature is very useful
in certain FAAS environments where maintaining configurations for several functions could be
cumbersome or exposing more then one function is not possible.

The RoutingFunction is registered in FunctionCatalog under the name functionRouter. For simplicity
and consistency you can also refer to RoutingFunction.FUNCTION_NAME constant.

This function has the following signature:

public class RoutingFunction implements Function<Object, Object> {

The routing instructions could be communicated in several ways;
Message Headers

If the input argument is of type Message<?>, you can communicate routing instruction by setting one
of spring.cloud.function.definition or spring.cloud.function.routing-expression Message headers.
For more static cases you can use spring.cloud.function.definition header which allows you to
provide the name of a single function (e.g., ---definition=foo) or a composition instruction (e.g., **
definition=foo|bar|baz). For more dynamic cases you can use spring.cloud.function.routing-
expression header which allows you to use Spring Expression Language (SpEL) and provide SpEL
expression that should resolve into definition of a function (as described above).

SpEL evaluation context’s root object is the actual input argument, so in he case of
o Message<?> you can construct expression that has access to both payload and
headers (e.g., spring.cloud.function.routing-expression=headers.function_name).

In specific execution environments/models the adapters are responsible to translate and
communicate spring.cloud.function.definition and/or spring.cloud.function.routing-expression
via Message header. For example, when using spring-cloud-function-web you can provide
spring.cloud.function.definition as an HTTP header and the framework will propagate it as well
as other HTTP headers as Message headers.

Application Properties

Routing instruction can also be communicated via spring.cloud.function.definition or
spring.cloud.function.routing-expression as application properties. The rules described in the
previous section apply here as well. The only difference is you provide these instructions as
application properties (e.g., --spring.cloud.function.definition=foo0).

Function Filtering Filtering is the type of routing where there are only tow paths - 'go’ or 'discard'.
In terms of functions it mean you only want to invoke a certain function if some condition returns
'true’, otherwise you want to discard input. However, when it comes to discarding input there are
many interpretation of what it could mean in the context of your application. For example, you may
want to log it, or you may want to maintain the counter of discarded messages. you may also want
to do nothing at all. Because of these different paths, we do not provide a general configuration
option for how to deal with discarded messages. Instead we simply recommend to define a simple
Consumer which would signify the 'discard’ path:

@Bean
public Consumer<?> devNull() {
// log, count or whatever

Now you can have routing expression that really only has two paths effectively becoming a filter.
For example:

--spring.cloud. function.routing
-expression=headers.contentType.toString().equals('text/plain') ? 'echo' : 'devNull'

Every message that does not fit criteria to go to 'echo’ function will go to 'devNull' where you can
simply do nothing with it. The signature Consumer<?> will also ensure that no type conversion will
be attempted resulting in almost no execution overhead.

When dealing with reactive inputs (e.g., Publisher), routing instructions must only
be provided via Function properties. This is due to the nature of the reactive

o functions which are invoked only once to pass a Publisher and the rest is handled
by the reactor, hence we can not access and/or rely on the routing instructions
communicated via individual values (e.g., Message).

63.5. Function Arity

There are times when a stream of data needs to be categorized and organized. For example,
consider a classic big-data use case of dealing with unorganized data containing, let’s say, ‘orders’
and ‘invoices’, and you want each to go into a separate data store. This is where function arity
(functions with multiple inputs and outputs) support comes to play.

Let’s look at an example of such a function (full implementation details are available here),

https://github.com/spring-cloud/spring-cloud-stream/blob/master/spring-cloud-stream/src/test/java/org/springframework/cloud/stream/function/MultipleInputOutputFunctionTests.java#L342

@Bean
public Function<Flux<Integer>, Tuple2<Flux<String>, Flux<String>>> organise() {
return flux -> ...;

}

Given that Project Reactor is a core dependency of SCF, we are using its Tuple library. Tuples give us
a unique advantage by communicating to us both cardinality and type information. Both are
extremely important in the context of SCSt. Cardinality lets us know how many input and output
bindings need to be created and bound to the corresponding inputs and outputs of a function.
Awareness of the type information ensures proper type conversion.

Also, this is where the ‘index’ part of the naming convention for binding names comes into play,
since, in this function, the two output binding names are organise-out-0 and organise-out-1.

IMPORTANT: At the moment, function arity is only supported for reactive

o functions (Function<TupleN<Flux<?>-:->, TupleN<Flux<?>:-->>) centered on Complex
event processing where evaluation and computation on confluence of events
typically requires view into a stream of events rather than single event.

63.6. Type conversion (Content-Type negotiation)

Content-Type negotiation is one of the core features of Spring Cloud Function as it allows to not
only transform the incoming data to the types declared by the function signature, but to do the
same transformation during function composition making otherwise un-composable (by type)
functions composable.

To better understand the mechanics and the necessity behind content-type negotiation, we take a
look at a very simple use case by using the following function as an example:

@Bean
public Function<Person, String> personFunction {..}

The function shown in the preceding example expects a Person object as an argument and produces
a String type as an output. If such function is invoked with the type Person, than all works fine. But
typically function plays a role of a handler for the incoming data which most often comes in the
raw format such as byte[], JSON String etc. In order for the framework to succeed in passing the
incoming data as an argument to this function, it has to somehow transform the incoming data to a
Person type.

Spring Cloud Function relies on two native to Spring mechanisms to accomplish that.

1. MessageConverter - to convert from incoming Message data to a type declared by the function.

2. ConversionService - to convert from incoming non-Message data to a type declared by the
function.

This means that depending on the type of the raw data (Message or non-Message) Spring Cloud

Function will apply one or the other mechanisms.

For most cases when dealing with functions that are invoked as part of some other request (e.g.,
HTTP, Messaging etc) the framework relies on MessageConverters, since such requests already
converted to Spring Message. In other words, the framework locates and applies the appropriate
MessageConverter. To accomplish that, the framework needs some instructions from the user. One of
these instructions is already provided by the signature of the function itself (Person type).
Consequently, in theory, that should be (and, in some cases, is) enough. However, for the majority of
use cases, in order to select the appropriate MessageConverter, the framework needs an additional
piece of information. That missing piece is contentType header.

Such header usually comes as part of the Message where it is injected by the corresponding adapter
that created such Message in the first place. For example, HTTP POST request will have its content-
type HTTP header copied to contentType header of the Message.

For cases when such header does not exist framework relies on the default content type as
application/json.

63.6.1. Content Type versus Argument Type

As mentioned earlier, for the framework to select the appropriate MessageConverter, it requires
argument type and, optionally, content type information. The logic for selecting the appropriate
MessageConverter resides with the argument resolvers which trigger right before the invocation of
the user-defined function (which is when the actual argument type is known to the framework). If
the argument type does not match the type of the current payload, the framework delegates to the
stack of the pre-configured MessageConverters to see if any one of them can convert the payload.

The combination of contentType and argument type is the mechanism by which framework
determines if message can be converted to a target type by locating the appropriate
MessageConverter. If no appropriate MessageConverter is found, an exception is thrown, which you
can handle by adding a custom MessageConverter (see User-defined Message Converters).

Do not expect Message to be converted into some other type based only on the
o contentType. Remember that the contentType is complementary to the target type. It
is a hint, which MessageConverter may or may not take into consideration.

63.6.2. Message Converters

MessageConverters define two methods:

Object fromMessage(Message<?> message, Class<?> target(lass);

Message<?> toMessage(Object payload, @Nullable MessageHeaders headers);

It is important to understand the contract of these methods and their usage, specifically in the
context of Spring Cloud Stream.

The fromMessage method converts an incoming Message to an argument type. The payload of the

Message could be any type, and it is up to the actual implementation of the MessageConverter to
support multiple types.

63.6.3. Provided MessageConverters

As mentioned earlier, the framework already provides a stack of MessageConverters to handle most
common use cases. The following list describes the provided MessageConverters, in order of
precedence (the first MessageConverter that works is used):

1. JsonMessageConverter: Supports conversion of the payload of the Message to/from POJO for cases
when contentType is application/json using Jackson or Gson libraries (DEFAULT).

2. ByteArrayMessageConverter: Supports conversion of the payload of the Message from byte[] to
byte[] for cases when contentType is application/octet-stream. It is essentially a pass through
and exists primarily for backward compatibility.

3. StringMessageConverter: Supports conversion of any type to a String when contentType is
text/plain.

When no appropriate converter is found, the framework throws an exception. When that happens,
you should check your code and configuration and ensure you did not miss anything (that is,
ensure that you provided a contentType by using a binding or a header). However, most likely, you
found some uncommon case (such as a custom contentType perhaps) and the current stack of
provided MessageConverters does not know how to convert. If that is the case, you can add custom
MessageConverter. See User-defined Message Converters.

63.6.4. User-defined Message Converters

Spring Cloud Function exposes a mechanism to define and register additional MessageConverters. To
use it, implement org.springframework.messaging.converter.MessageConverter, configure it as a
@Bean. It is then appended to the existing stack of "MessageConverter 's.

It is important to understand that custom MessageConverter implementations are

o added to the head of the existing stack. Consequently, custom MessageConverter
implementations take precedence over the existing ones, which lets you override
as well as add to the existing converters.

The following example shows how to create a message converter bean to support a new content
type called application/bar:

@SpringBootApplication
public static class SinkApplication {

@Bean
public MessageConverter customMessageConverter() {
return new MyCustomMessageConverter();
}
}

public class MyCustomMessageConverter extends AbstractMessageConverter {

public MyCustomMessageConverter() {
super(new MimeType("application”, "bar"));

}

@0verride
protected boolean supports(Class<?> clazz) {
return (Bar.class.equals(clazz));

}

@0verride
protected Object convertFromInternal(Message<?> message, (lass<?> target(lass,
Object conversionHint) {
Object payload = message.getPayload();
return (payload instanceof Bar ? payload : new Bar((byte[]) payload));

63.7. Kotlin Lambda support

We also provide support for Kotlin lambdas (since v2.0). Consider the following:

@Bean

open fun kotlinSupplier(): () -> String {
return { "Hello from Kotlin" }

}

@Bean

open fun kotlinFunction(): (String) -> String {
return { it.toUpperCase() }

}

@Bean

open fun kotlinConsumer(): (String) -> Unit {
return { println(it) }

+

The above represents Kotlin lambdas configured as Spring beans. The signature of each maps to a
Java equivalent of Supplier, Function and Consumer, and thus supported/recognized signatures by the
framework. While mechanics of Kotlin-to-Java mapping are outside of the scope of this
documentation, it is important to understand that the same rules for signature transformation
outlined in "Java 8 function support" section are applied here as well.

To enable Kotlin support all you need is to add spring-cloud-function-kotlin module to your
classpath which contains the appropriate autoconfiguration and supporting classes.

63.8. Function Component Scan

Spring Cloud Function will scan for implementations of Function, Consumer and Supplier in a
package called functions if it exists. Using this feature you can write functions that have no
dependencies on Spring - not even the @Component annotation is needed. If you want to use a
different package, you can set spring.cloud.function.scan.packages. You can also use
spring.cloud.function.scan.enabled=false to switch off the scan completely.

Chapter 64. Standalone Web Applications

Functions could be automatically exported as HTTP endpoints.

The spring-cloud-function-web module has autoconfiguration that activates when it is included in a
Spring Boot web application (with MVC support). There is also a spring-cloud-starter-function-web
to collect all the optional dependencies in case you just want a simple getting started experience.

With the web configurations activated your app will have an MVC endpoint (on "/" by default, but
configurable with spring.cloud.function.web.path) that can be used to access the functions in the
application context where function name becomes part of the URL path. The supported content
types are plain text and JSON.

Method Path Request Response Status

GET [{supplier} - Items from the 200 OK
named supplier

POST /{consumer} JSON object or text Mirrors input and 202 Accepted
pushes request
body into
consumer

POST /{consumer} JSON array or text Mirrors input and 202 Accepted
with new lines pushes body into
consumer one by
one

POST [{function} JSON object or text The result of 200 OK
applying the
named function

POST [{function} JSON array or text The result of 200 OK
with new lines applying the
named function

GET [{function}/{item} - Convert the item 200 OK
into an object and
return the result
of applying the
function

As the table above shows the behaviour of the endpoint depends on the method and also the type of
incoming request data. When the incoming data is single valued, and the target function is declared
as obviously single valued (i.e. not returning a collection or Flux), then the response will also
contain a single value. For multi-valued responses the client can ask for a server-sent event stream
by sending " Accept: text/event-stream".

Functions and consumers that are declared with input and output in Message<?> will see the request
headers on the input messages, and the output message headers will be converted to HTTP headers.

When POSTing text the response format might be different with Spring Boot 2.0 and older versions,

depending on the content negotiation (provide content type and accept headers for the best
results).

See Testing Functional Applications to see the details and example on how to test such application.

64.1. Function Mapping rules

If there is only a single function (consumer etc.) in the catalog, the name in the path is optional. In
other words, providing you only have uppercase function in catalog curl -H "Content-Type:
text/plain" Tlocalhost:8080/uppercase -d hello and curl -H "Content-Type: text/plain”
localhost:8080/ -d hello calls are identical.

Composite functions can be addressed using pipes or commas to separate function names (pipes
are legal in URL paths, but a bit awkward to type on the command line). For example, curl -H
"Content-Type: text/plain" localhost:8080/uppercase,reverse -d hello.

For cases where there is more then a single function in catalog, each function will be exported and
mapped with function name being part of the path (e.g., localhost:8080/uppercase). In this scenario
you can still map specific function or function composition to the root path by providing
spring.cloud.function.definition property

For example,
--spring.cloud.function.definition=foo|bar

The above property will compose 'foo' and 'bar' function and map the composed function to the "/"
path.

64.2. Function Filtering rules

In situations where there are more then one function in catalog there may be a need to only export
certain functions or function compositions. In that case you can use the same
spring.cloud.function.definition property listing functions you intend to export delimited by ;.
Note that in this case nothing will be mapped to the root path and functions that are not listed
(including compositions) are not going to be exported

For example,
--spring.cloud.function.definition=foo;bar

This will only export function foo and function bar regardless how many functions are available in
catalog (e.g., localhost:8080/fo0).

--spring.cloud.function.definition=foo|bar;baz

This will only export function composition foo|bar and function baz regardless how many functions

are available in catalog (e.g., localhost:8080/foo,bar).

Chapter 65. Standalone Streaming
Applications

To send or receive messages from a broker (such as RabbitMQ or Kafka) you can leverage spring-
cloud-stream project and it’s integration with Spring Cloud Function. Please refer to Spring Cloud
Function section of the Spring Cloud Stream reference manual for more details and examples.

https://cloud.spring.io/spring-cloud-static/spring-cloud-stream/current/reference/html/spring-cloud-stream.html#spring_cloud_function
https://cloud.spring.io/spring-cloud-static/spring-cloud-stream/current/reference/html/spring-cloud-stream.html#spring_cloud_function

Chapter 66. Deploying a Packaged Function

Spring Cloud Function provides a "deployer" library that allows you to launch a jar file (or exploded
archive, or set of jar files) with an isolated class loader and expose the functions defined in it. This
is quite a powerful tool that would allow you to, for instance, adapt a function to a range of
different input-output adapters without changing the target jar file. Serverless platforms often have
this kind of feature built in, so you could see it as a building block for a function invoker in such a
platform (indeed the Riff Java function invoker uses this library).

The standard entry point is to add spring-cloud-function-deployer to the classpath, the deployer
kicks in and looks for some configuration to tell it where to find the function jar.

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-function-deployer</artifactId>
<version>${spring.cloud.function.version}</version>
</dependency>

At a minimum the user has to provide a spring.cloud.function.location which is a URL or resource
location for the archive containing the functions. It can optionally use a maven: prefix to locate the
artifact via a dependency lookup (see FunctionProperties for complete details). A Spring Boot
application is bootstrapped from the jar file, using the MANIFEST.MF to locate a start class, so that a
standard Spring Boot fat jar works well, for example. If the target jar can be launched successfully
then the result is a function registered in the main application’s FunctionCatalog. The registered
function can be applied by code in the main application, even though it was created in an isolated
class loader (by deault).

Here is the example of deploying a JAR which contains an 'uppercase’ function and invoking it .

@SpringBootApplication
public class DeployFunctionDemo {

public static void main(String[] args) {
ApplicationContext context = SpringApplication.run(DeployFunctionDemo.class,
"--spring.cloud.function.location=..../target/uppercase-0.0.1-
SNAPSHOT. jar",
"--spring.cloud.function.definition=uppercase");

FunctionCatalog catalog = context.getBean(FunctionCatalog.class);

Function<String, String> function = catalog.lookup("uppercase");
System.out.println(function.apply("hello"));

And here is the example using Maven URI (taken from one of the tests in FunctionDeployerTests):

https://projectriff.io

@SpringBootApplication
public class DeployFunctionDemo {

public static void main(String[] args) {
String[] args = new String[] {
"--spring.cloud.function.location=maven://o0z.demo:demo-
uppercase:0.0.1-SNAPSHOT",
"--spring.cloud.function.function-class=0z.demo.uppercase.MyFunction"

b
ApplicationContext context = SpringApplication.run(DeployerApplication.class,

args);
FunctionCatalog catalog = context.getBean(FunctionCatalog.class);
Function<String, String> function = catalog.lookup("myFunction");
assertThat(function.apply("bob")).isEqualTo("BOB");

}
}

Keep in mind that Maven resource such as local and remote repositories, user, password and more
are resolved using default MavenProperties which effectively use local defaults and will work for
majority of cases. However if you need to customize you can simply provide a bean of type
MavenProperties where you can set additional properties (see example below).

@Bean

public MavenProperties mavenProperties() {
MavenProperties properties = new MavenProperties();
properties.setLocalRepository("target/it/");
return properties;

66.1. Supported Packaging Scenarios

Currently Spring Cloud Function supports several packaging scenarios to give you the most
flexibility when it comes to deploying functions.

66.1.1. Simple JAR

This packaging option implies no dependency on anything related to Spring. For example; Consider
that such JAR contains the following class:

package function.example;

public class UpperCaseFunction implements Function<String, String> {
@0verride
public String apply(String value) {
return value.toUpperCase();

}

All you need to do is specify location and function-class properties when deploying such package:

--spring.cloud.function.location=target/it/simplestjar/target/simplestjar
-1.0.0.RELEASE. jar
--spring.cloud. function.function-class=function.example.UpperCaseFunction

It’s conceivable in some cases that you might want to package multiple functions together. For such
scenarios you can use spring.cloud.function.function-class property to list several classes
delimiting them by ;.

For example,

--spring.cloud.function.function
-class=function.example.UpperCaseFunction; function.example.ReverseFunction

Here we are identifying two functions to deploy, which we can now access in function catalog by
name (e.g., catalog.lookup("reverseFunction");).

For more details please reference the complete sample available here. You can also find a
corresponding test in FunctionDeployerTests.

66.1.2. Spring Boot JAR

This packaging option implies there is a dependency on Spring Boot and that the JAR was generated
as Spring Boot JAR. That said, given that the deployed JAR runs in the isolated class loader, there
will not be any version conflict with the Spring Boot version used by the actual deployer. For
example; Consider that such JAR contains the following class (which could have some additional
Spring dependencies providing Spring/Spring Boot is on the classpath):

https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-deployer/src/it/simplestjar
https://github.com/spring-cloud/spring-cloud-function/blob/master/spring-cloud-function-deployer/src/test/java/org/springframework/cloud/function/deployer/FunctionDeployerTests.java#L70

package function.example;

public class UpperCaseFunction implements Function<String, String> {
@0verride
public String apply(String value) {
return value.toUpperCase();

}

As before all you need to do is specify location and function-class properties when deploying such
package:

--spring.cloud.function.location=target/it/simplestjar/target/simplestjar
-1.0.0.RELEASE. jar
--spring.cloud. function.function-class=function.example.UpperCaseFunction

For more details please reference the complete sample available here. You can also find a
corresponding test in FunctionDeployerTests.

66.1.3. Spring Boot Application

This packaging option implies your JAR is complete stand alone Spring Boot application with
functions as managed Spring beans. As before there is an obvious assumption that there is a
dependency on Spring Boot and that the JAR was generated as Spring Boot JAR. That said, given that
the deployed JAR runs in the isolated class loader, there will not be any version conflict with the
Spring Boot version used by the actual deployer. For example; Consider that such JAR contains the
following class:

package function.example;

@SpringBootApplication
public class SimpleFunctionAppApplication {

public static void main(String[] args) {
SpringApplication.run(SimpleFunctionAppApplication.class, args);
}

@Bean
public Function<String, String> uppercase() {
return value -> value.toUpperCase();

}

Given that we’re effectively dealing with another Spring Application context and that functions are
spring managed beans, in addition to the location property we also specify definition property
instead of function-class.

https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-deployer/src/it/bootjar
https://github.com/spring-cloud/spring-cloud-function/blob/master/spring-cloud-function-deployer/src/test/java/org/springframework/cloud/function/deployer/FunctionDeployerTests.java#L50

--spring.cloud.function.location=target/it/bootapp/target/bootapp-1.0.0.RELEASE
-exec.jar
--spring.cloud.function.definition=uppercase

For more details please reference the complete sample available here. You can also find a
corresponding test in FunctionDeployerTests.

o This particular deployment option may or may not have Spring Cloud Function on
it’s classpath. From the deployer perspective this doesn’t matter.

https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-deployer/src/it/bootapp
https://github.com/spring-cloud/spring-cloud-function/blob/master/spring-cloud-function-deployer/src/test/java/org/springframework/cloud/function/deployer/FunctionDeployerTests.java#L164

Chapter 67. Functional Bean Definitions

Spring Cloud Function supports a "functional” style of bean declarations for small apps where you
need fast startup. The functional style of bean declaration was a feature of Spring Framework 5.0
with significant enhancements in 5.1.

67.1. Comparing Functional with Traditional Bean
Definitions

Here’s a vanilla Spring Cloud Function application from with the familiar @Configuration and @Bean
declaration style:

@SpringBootApplication
public class DemoApplication {

@Bean
public Function<String, String> uppercase() {
return value -> value.toUpperCase();

}

public static void main(String[] args) {
SpringApplication.run(DemoApplication.class, args);

}

Now for the functional beans: the user application code can be recast into "functional” form, like
this:

@SpringBootConfiguration
public class DemoApplication implements
ApplicationContextInitializer<GenericApplicationContext> {

public static void main(String[] args) {
FunctionalSpringApplication.run(DemoApplication.class, args);

}

public Function<String, String> uppercase() {
return value -> value.toUpperCase();

}

@verride
public void initialize(GenericApplicationContext context) {
context.registerBean("demo", FunctionRegistration.class,
() -> new FunctionRegistration<>(uppercase())
.type(FunctionType.from(String.class).to(String.class)));

The main differences are:

e The main class is an ApplicationContextInitializer.
* The @Bean methods have been converted to calls to context.registerBean()

» The @SpringBootApplication has been replaced with @SpringBootConfiguration to signify that we
are not enabling Spring Boot autoconfiguration, and yet still marking the class as an "entry
point".

* The SpringApplication from Spring Boot has been replaced with a FunctionalSpringApplication
from Spring Cloud Function (it’s a subclass).

The business logic beans that you register in a Spring Cloud Function app are of type
FunctionRegistration. This is a wrapper that contains both the function and information about the
input and output types. In the @Bean form of the application that information can be derived
reflectively, but in a functional bean registration some of it is lost unless we use a
FunctionRegistration.

An alternative to using an ApplicationContextInitializer and FunctionRegistration is to make the
application itself implement Function (or Consumer or Supplier). Example (equivalent to the above):

@SpringBootConfiguration
public class DemoApplication implements Function<String, String> {

public static void main(String[] args) {
FunctionalSpringApplication.run(DemoApplication.class, args);

}

@0verride
public String apply(String value) {
return value.toUpperCase();

}

It would also work if you add a separate, standalone class of type Function and register it with the
SpringApplication using an alternative form of the run() method. The main thing is that the generic
type information is available at runtime through the class declaration.

Suppose you have

@Component
public class CustomFunction implements Function<Flux<Foo>, Flux<Bar>> {
@lverride
public Flux<Bar> apply(Flux<Foo> flux) {
return flux.map(foo -> new Bar("This is a Bar object from Foo value:
foo.getValue()));
}

+

You register it as such:

@0verride
public void initialize(GenericApplicationContext context) {
context.registerBean("function", FunctionRegistration.class,
() -> new FunctionRegistration<>(new
CustomFunction()).type(CustomFunction.class));

}

67.2. Limitations of Functional Bean Declaration

Most Spring Cloud Function apps have a relatively small scope compared to the whole of Spring
Boot, so we are able to adapt it to these functional bean definitions easily. If you step outside that
limited scope, you can extend your Spring Cloud Function app by switching back to @Bean style
configuration, or by using a hybrid approach. If you want to take advantage of Spring Boot
autoconfiguration for integrations with external datastores, for example, you will need to use

@EnableAutoConfiguration. Your functions can still be defined using the functional declarations if
you want (i.e. the "hybrid" style), but in that case you will need to explicitly switch off the "full
functional mode" using spring.functional.enabled=false so that Spring Boot can take back control.

Chapter 68. Testing Functional Applications

Spring Cloud Function also has some utilities for integration testing that will be very familiar to
Spring Boot users.

Suppose this is your application:

@SpringBootApplication
public class SampleFunctionApplication {

public static void main(String[] args) {
SpringApplication.run(SampleFunctionApplication.class, args);

}

@Bean
public Function<String, String> uppercase() {
return v -> v.toUpperCase();

}

Here is an integration test for the HTTP server wrapping this application:

@SpringBootTest(classes = SampleFunctionApplication.class,
webEnvironment = WebEnvironment.RANDOM_PORT)
public class WebFunctionTests {

@Autowired
private TestRestTemplate rest;

@Test
public void test() throws Exception {
ResponseEntity<String> result = this.rest.exchange(
RequestEntity.post(new URI("/uppercase")).body("hello"), String.class);
System.out.println(result.getBody());

or when function bean definition style is used:

@FunctionalSpringBootTest
public class WebFunctionTests {

@Autowired
private TestRestTemplate rest;

@Test
public void test() throws Exception {
ResponseEntity<String> result = this.rest.exchange(
RequestEntity.post(new URI("/uppercase")).body("hello"), String.class);
System.out.println(result.getBody());

This test is almost identical to the one you would write for the @Bean version of the same app - the
only difference is the @FunctionalSpringBootTest annotation, instead of the regular @SpringBootTest.
All the other pieces, like the @Autowired TestRestTemplate, are standard Spring Boot features.

And to help with correct dependencies here is the excerpt from POM

<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.2.2.RELEASE</version>
<relativePath/> <!-- lookup parent from repository -->

</parent>

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-function-web</artifactId>
<version>3.0.1.BUILD-SNAPSHOT</version>

</dependency>

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter</artifactId>

</dependency>

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
<scope>test</scope>

</dependency>

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
<exclusions>

<exclusion>
<groupId>org.junit.vintage</groupIld>
<artifactId>junit-vintage-engine</artifactId>
</exclusion>

</exclusions>

</dependency>

Or you could write a test for a non-HTTP app using just the FunctionCatalog. For example:

@RunWith(SpringRunner.class)
@FunctionalSpringBootTest
public class FunctionalTests {

@Autowired
private FunctionCatalog catalog;

@Test
public void words() throws Exception {
Function<String, String> function = catalog.lookup(Function.class,
"uppercase");
assertThat(function.apply("hello")).isEqualTo("HELLO");

Chapter 69. Dynamic Compilation

There is a sample app that uses the function compiler to create a function from a configuration
property. The vanilla "function-sample” also has that feature. And there are some scripts that you
can run to see the compilation happening at run time. To run these examples, change into the
scripts directory:

cd scripts

Also, start a RabbitMQ server locally (e.g. execute rabbitmq-server).

Start the Function Registry Service:

./function-registry.sh
Register a Function:

./registerFunction.sh -n uppercase -f "f->f.map(s->s.toString().toUpperCase())"
Run a REST Microservice using that Function:

./web.sh -f uppercase -p 9000
curl -H "Content-Type: text/plain" -H "Accept: text/plain" localhost:9000/uppercase -d
foo

Register a Supplier:
./registerSupplier.sh -n words -f "()->Flux.just(\"foo\",\"bar\")"
Run a REST Microservice using that Supplier:

./web.sh -s words -p 9001
curl -H "Accept: application/json" localhost:9001/words

Register a Consumer:
./registerConsumer.sh -n print -t String -f "System.out::println"

Run a REST Microservice using that Consumer:

./web.sh -c print -p 9002
curl -X POST -H "Content-Type: text/plain" -d foo localhost:9002/print

Run Stream Processing Microservices:

First register a streaming words supplier:

./registerSupplier.sh -n wordstream -f "()-
>Flux.interval(Duration.ofMillis(1000)).map(i->\"message-\"+i)"

Then start the source (supplier), processor (function), and sink (consumer) apps (in reverse order):

./stream.sh -p 9103 -i uppercaseWords -c print
./stream.sh -p 9102 -i words -f uppercase -o uppercaseWords
./stream.sh -p 9101 -s wordstream -o words

The output will appear in the console of the sink app (one message per second, converted to
uppercase):

MESSAGE-0
MESSAGE-1
MESSAGE-2
MESSAGE-3
MESSAGE-4
MESSAGE-5
MESSAGE-6
MESSAGE-7
MESSAGE-8
MESSAGE-9

Chapter 70. Serverless Platform Adapters

As well as being able to run as a standalone process, a Spring Cloud Function application can be
adapted to run one of the existing serverless platforms. In the project there are adapters for AWS
Lambda, Azure, and Apache OpenWhisk. The Oracle Fn platform has its own Spring Cloud Function
adapter. And Riff supports Java functions and its Java Function Invoker acts natively is an adapter
for Spring Cloud Function jars.

70.1. AWS Lambda

The AWS adapter takes a Spring Cloud Function app and converts it to a form that can run in AWS
Lambda.

The details of how to get stared with AWS Lambda is out of scope of this document, so the
expectation is that user has some familiarity with AWS and AWS Lambda and wants to learn what
additional value spring provides.

70.1.1. Getting Started

One of the goals of Spring Cloud Function framework is to provide necessary infrastructure
elements to enable a simple function application to interact in a certain way in a particular
environment. A simple function application (in context or Spring) is an application that contains
beans of type Supplier, Function or Consumer. So, with AWS it means that a simple function bean
should somehow be recognised and executed in AWS Lambda environment.

Let’s look at the example:

@SpringBootApplication
public class FunctionConfiguration {

public static void main(String[] args) {
SpringApplication.run(FunctionConfiguration.class, args);

}

@Bean
public Function<String, String> uppercase() {
return value -> value.toUpperCase();

}

It shows a complete Spring Boot application with a function bean defined in it. What’s interesting is
that on the surface this is just another boot app, but in the context of AWS Adapter it is also a
perfectly valid AWS Lambda application. No other code or configuration is required. All you need to
do is package it and deploy it, so let’s look how we can do that.

To make things simpler we’ve provided a sample project ready to be built and deployed and you
can access it here.

https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-adapters/spring-cloud-function-adapter-aws
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-adapters/spring-cloud-function-adapter-aws
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-adapters/spring-cloud-function-adapter-azure
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-adapters/spring-cloud-function-adapter-openwhisk
https://github.com/fnproject/fn
https://projectriff.io
https://github.com/projectriff/java-function-invoker
https://aws.amazon.com/
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-samples/function-sample-aws

You simply execute ./mvnw clean package to generate JAR file. All the necessary maven plugins have
already been setup to generate appropriate AWS deployable JAR file. (You can read more details
about JAR layout in Notes on JAR Layout).

Then you have to upload the JAR file (via AWS dashboard or AWS CLI) to AWS.

When ask about handler you specify
org.springframework.cloud.function.adapter.aws.FunctionInvoker::handleRequest which is a generic
request handler.

[AWS deploy] | https://raw.githubusercontent.com/spring-cloud/spring-

cloud/cbffd61c43f8cc0857fdd9e8df9e17971d6e321d/docs/src/main/asciidoc/images/AWS-deploy.png

That is all. Save and execute the function with some sample data which for this function is expected
to be a String which function will uppercase and return back.

While org.springframework.cloud.function.adapter.aws.FunctionInvoker is a general purpose AWS’s
RequestHandler implementation aimed at completely isolating you from the specifics of AWS
Lambda API, for some cases you may want to specify which specific AWS’s RequestHandler you want
to use. The next section will explain you how you can accomplish just that.

70.1.2. AWS Request Handlers

The adapter has a couple of generic request handlers that you can use. The most generic is (and the
one we used in the Getting Started section) is
org.springframework.cloud.function.adapter.aws.FunctionInvoker which is the implementation of
AWS’s RequestStreamHandler. User doesn’t need to do anything other then specify it as 'handler' on
AWS dashborad when deploying function. It will handle most of the case including Kinesis,
streaming etc. .

If your app has more than one @Bean of type Function etc. then you can choose the one to use by
configuring spring.cloud.function.definition property or environment variable. The functions are
extracted from the Spring Cloud FunctionCatalog. In the event you don’t specify
spring.cloud. function.definition the framework will attempt to find a default following the search
order where it searches first for Function then Consumer and finally Supplier).

70.1.3. Notes on JAR Layout

You don’t need the Spring Cloud Function Web or Stream adapter at runtime in Lambda, so you
might need to exclude those before you create the JAR you send to AWS. A Lambda application has
to be shaded, but a Spring Boot standalone application does not, so you can run the same app using
2 separate jars (as per the sample). The sample app creates 2 jar files, one with an aws classifier for
deploying in Lambda, and one executable (thin) jar that includes spring-cloud-function-web at
runtime. Spring Cloud Function will try and locate a "main class" for you from the JAR file manifest,
using the Start-Class attribute (which will be added for you by the Spring Boot tooling if you use
the starter parent). If there is no Start-Class in your manifest you can use an environment variable
or system property MAIN_CLASS when you deploy the function to AWS.

If you are not using the functional bean definitions but relying on Spring Boot’s auto-configuration,
then additional transformers must be configured as part of the maven-shade-plugin execution.

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<dependencies>
<dependency>
<groupld>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</dependency>
</dependencies>
<configuration>
<createDependencyReducedPom>false</createDependencyReducedPom>
<shadedArtifactAttached>true</shadedArtifactAttached>
<shaded(ClassifierName>aws</shadedClassifierName>
<transformers>
<transformer
implementation="org.apache.maven.plugins.shade.resource.AppendingTransformer">
<resource>META-INF/spring.handlers</resource>
</transformer>
<transformer
implementation="org.springframework.boot.maven.PropertiesMergingResourceTransformer">
<resource>META-INF/spring.factories</resource>
</transformer>
<transformer
implementation="org.apache.maven.plugins.shade.resource.AppendingTransformer">
<resource>META-INF/spring.schemas</resource>
</transformer>
</transformers>
</configuration>
</plugin>

70.1.4. Build file setup

In order to run Spring Cloud Function applications on AWS Lambda, you can leverage Maven or
Gradle plugins offered by the cloud platform provider.

Maven

In order to use the adapter plugin for Maven, add the plugin dependency to your pom.xml file:

<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-function-adapter-aws</artifactId>
</dependency>
</dependencies>

As pointed out in the Notes on JAR Layout, you will need a shaded jar in order to upload it to AWS
Lambda. You can use the Maven Shade Plugin for that. The example of the setup can be found

https://maven.apache.org/plugins/maven-shade-plugin/

above.

You can use theSpring Boot Maven Plugin to generate the thin jar.

<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<dependencies>
<dependency>
<groupId>org.springframework.boot.experimental</groupIld>
<artifactId>spring-boot-thin-layout</artifactId>
<version>${wrapper.version}</version>
</dependency>
</dependencies>
</plugin>

You can find the entire sample pom. xml file for deploying Spring Cloud Function applications to AWS
Lambda with Maven here.

Gradle
In order to use the adapter plugin for Gradle, add the dependency to your build.gradle file:

dependencies {
compile("org.springframework.cloud:spring-cloud-function-adapter-aws:${version}")

}

As pointed out in Notes on JAR Layout, you will need a shaded jar in order to upload it to AWS
Lambda. You can use the Gradle Shadow Plugin for that:

https://github.com/spring-cloud/spring-cloud-function/blob/master/spring-cloud-function-samples/function-sample-aws/pom.xml
https://plugins.gradle.org/plugin/com.github.johnrengelman.shadow/

buildscript {
dependencies {
classpath "com.github.jengelman.gradle.plugins:shadow:${shadowPluginVersion}"
}
}

apply plugin: 'com.github.johnrengelman.shadow'
assemble.dependsOn = [shadow]ar]
import com.github.jengelman.gradle.plugins.shadow.transformers.*

shadowl]ar {
classifier = 'aws'
dependencies {
exclude(
dependency("org.springframework.cloud:spring-cloud-function-
web:${springCloudFunctionVersion}"))
}
// Required for Spring
mergeServiceFiles()
append 'META-INF/spring.handlers’
append 'META-INF/spring.schemas’
append 'META-INF/spring.tooling'
transform(PropertiesFileTransformer) {
paths = ["META-INF/spring.factories’]
mergeStrategy = "append"

You can use the Spring Boot Gradle Plugin and Spring Boot Thin Gradle Plugin to generate the thin
jar.

buildscript {
dependencies {
classpath("org.springframework.boot.experimental:spring-boot-thin-gradle-
plugin:${wrapperVersion}")
classpath("org.springframework.boot:spring-boot-gradle-
plugin: ${springBootVersion}")
}
}
apply plugin: 'org.springframework.boot'
apply plugin: 'org.springframework.boot.experimental.thin-launcher'
assemble.dependsOn = [thinJar]

You can find the entire sample build.gradle file for deploying Spring Cloud Function applications to
AWS Lambda with Gradle here.

https://github.com/spring-cloud/spring-cloud-function/blob/master/spring-cloud-function-samples/function-sample-aws/build.gradle

70.1.5. Upload

Build the sample under spring-cloud-function-samples/function-sample-aws and upload the -aws jar
file to Lambda. The handler can be example.Handler or
org.springframework.cloud.function.adapter.aws.SpringBootStreamHandler (FQN of the class, not a
method reference, although Lambda does accept method references).

./mvnw -U clean package
Using the AWS command line tools it looks like this:

aws lambda create-function --function-name Uppercase --role
arn:aws:iam::[USERID]:role/service-role/[ROLE] --zip-file fileb://function-sample-
aws/target/function-sample-aws-2.0.0.BUILD-SNAPSHOT-aws.jar --handler
org.springframework.cloud.function.adapter.aws.SpringBootStreamHandler --description
"Spring Cloud Function Adapter Example" --runtime java8 --region us-east-1 --timeout
30 --memory-size 1024 --publish

The input type for the function in the AWS sample is a Foo with a single property called "value". So
you would need this to test it:

"value": "test"

The AWS sample app 1is written in the "functional" style (as an

o ApplicationContextInitializer). This is much faster on startup in Lambda than the
traditional @Bean style, so if you don’t need @Beans (or @EnableAutoConfiguration) it’s
a good choice. Warm starts are not affected.

70.1.6. Type Conversion

Spring Cloud Function will attempt to transparently handle type conversion between the raw input
stream and types declared by your function.

For example, if your function signature is as such Function<Foo, Bar> we will attempt to convert
incoming stream event to an instance of Foo.

In the event type is not known or can not be determined (e.g., Function<?, 7>) we will attempt to
convert an incoming stream event to a generic Map.

Raw Input

There are times when you may want to have access to a raw input. In this case all you need is to
declare your function signature to accept InputStream. For example, Function<InputStream, ?7>. In
this case we will not attempt any conversion and will pass the raw input directly to a function.

70.2. Microsoft Azure

The Azure adapter bootstraps a Spring Cloud Function context and channels function calls from the
Azure framework into the user functions, using Spring Boot configuration where necessary. Azure
Functions has quite a unique, but invasive programming model, involving annotations in user code
that are specific to the platform. The easiest way to use it with Spring Cloud is to extend a base class
and write a method in it with the @FunctionName annotation which delegates to a base class method.

This project provides an adapter layer for a Spring Cloud Function application onto Azure. You can
write an app with a single @Bean of type Function and it will be deployable in Azure if you get the
JAR file laid out right.

There is an AzureSpringBootRequestHandler which you must extend, and provide the input and
output types as annotated method parameters (enabling Azure to inspect the class and create JSON
bindings). The base class has two useful methods (handleRequest and handleOutput) to which you can
delegate the actual function call, so mostly the function will only ever have one line.

Example:

public class FooHandler extends AzureSpringBootRequestHandler<Foo, Bar> {
@FunctionName("uppercase")
public Bar execute(@HttpTrigger(name = "req", methods = {HttpMethod.GET,
HttpMethod.POST}, authLevel = AuthorizationLevel.ANONYMOUS)
HttpRequestMessage<Optional<Foo>> request,
ExecutionContext context) {
return handleRequest(request.getBody().get(), context);

This Azure handler will delegate to a Function<Foo,Bar> bean (or a
Function<Publisher<Foo>,Publisher<Bar>>). Some Azure triggers (e.g. @CosmosDBTrigger) result in a
input type of List and in that case you can bind to List in the Azure handler, or String (the raw
JSON). The List input delegates to a Function with input type Map<String,0bject>, or Publisher or
List of the same type. The output of the Function can be a List (one-for-one) or a single value
(aggregation), and the output binding in the Azure declaration should match.

If your app has more than one @Bean of type Function etc. then you can choose the one to use by
configuring function.name. Or if you make the @FunctionName in the Azure handler method match the
function name it should work that way (also for function apps with multiple functions). The
functions are extracted from the Spring Cloud FunctionCatalog so the default function names are
the same as the bean names.

70.2.1. Accessing Azure ExecutionContext

Some time there is a need to access the target execution context provided by Azure runtime in the
form of com.microsoft.azure.functions.ExecutionContext. For example one of such needs is logging,
so it can appear in the Azure console.

https://azure.microsoft.com

For that purpose Spring Cloud Function will register ExecutionContext as bean in the Application
context, so it could be injected into your function. For example

@Bean
public Function<Foo, Bar> uppercase(ExecutionContext targetContext) {
return foo -> {
targetContext.getlLogger().info("Invoking 'uppercase' on " + foo.getValue());
return new Bar(foo.getValue().toUpperCase());

};

Normally type-based injection should suffice, however if need to you can also utilise the bean name
under which it is registered which is targetExecutionContext.

70.2.2. Notes on JAR Layout

You don’t need the Spring Cloud Function Web at runtime in Azure, so you can exclude this before
you create the JAR you deploy to Azure, but it won’t be used if you include it, so it doesn’t hurt to
leave it in. A function application on Azure is an archive generated by the Maven plugin. The
function lives in the JAR file generated by this project. The sample creates it as an executable jar,
using the thin layout, so that Azure can find the handler classes. If you prefer you can just use a
regular flat JAR file. The dependencies should not be included.

70.2.3. Build file setup

In order to run Spring Cloud Function applications on Microsoft Azure, you can leverage the Maven
plugin offered by the cloud platform provider.

In order to use the adapter plugin for Maven, add the plugin dependency to your pom.xml file:

<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-function-adapter-azure</artifactId>
</dependency>
</dependencies>

Then, configure the plugin. You will need to provide Azure-specific configuration for your
application, specifying the resourceGroup, appName and other optional properties, and add the package
goal execution so that the function.json file required by Azure is generated for you. Full plugin
documentation can be found in the plugin repository.

https://github.com/microsoft/azure-maven-plugins

<plugin>
<groupId>com.microsoft.azure</groupld>
<artifactId>azure-functions-maven-plugin</artifactId>
<configuration>
<resource@Group>${functionResourceGroup}</resourceGroup>
<appName>${functionAppName}</appName>
</confiquration>
<executions>
<execution>
<id>package-functions</id>
<goals>
<goal>package</goal>
</goals>
</execution>
</executions>
</plugin>

You will also have to ensure that the files to be scanned by the plugin can be found in the Azure
functions staging directory (see the plugin repository for more details on the staging directory and
it’s default location).

You can find the entire sample pom.xml file for deploying Spring Cloud Function applications to
Microsoft Azure with Maven here.

o As of yet, only Maven plugin is available. Gradle plugin has not been created by the
cloud platform provider.

70.2.4. Build

./mvnw -U clean package

70.2.5. Running the sample

You can run the sample locally, just like the other Spring Cloud Function samples:

and curl -H "Content-Type: text/plain" 1localhost:8080/api/uppercase -d '{"value": "hello
foobar"}'.

You will need the az CLI app (see docs.microsoft.com/en-us/azure/azure-functions/functions-create-
first-java-maven for more detail). To deploy the function on Azure runtime:

$ az login
$ mvn azure-functions:deploy

https://github.com/microsoft/azure-maven-plugins
https://github.com/spring-cloud/spring-cloud-function/blob/master/spring-cloud-function-samples/function-sample-azure/pom.xml
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-java-maven
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-java-maven

On another terminal try this: curl <azure-function-url-from-the-log>/api/uppercase -d '{"value":
"hello foobar!"}'. Please ensure that you use the right URL for the function above. Alternatively
you can test the function in the Azure Dashboard UI (click on the function name, go to the right
hand side and click "Test" and to the bottom right, "Run").

The input type for the function in the Azure sample is a Foo with a single property called "value". So
you need this to test it with something like below:

{

"value": "foobar"

}

The Azure sample app is written in the "non-functional" style (using @Bean). The
functional style (with just Function or ApplicationContextInitializer) is much

o faster on startup in Azure than the traditional @Bean style, so if you don’t need
@Beans (or @EnableAutoConfiguration) it’s a good choice. Warm starts are not
affected. :branch: master

70.3. Google Cloud Functions

The Google Cloud Functions adapter enables Spring Cloud Function apps to run on the Google
Cloud Functions serverless platform. You can either run the function locally using the open source
Google Functions Framework for Java or on GCP.

70.3.1. Project Dependencies

Start by adding the spring-cloud-function-adapter-gcp dependency to your project.

<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-function-adapter-gcp</artifactId>
</dependency>

</dependencies>

In addition, add the spring-boot-maven-plugin which will build the JAR of the function to deploy.

Notice that we also reference spring-cloud-function-adapter-gcp as a dependency

o of the spring-boot-maven-plugin. This is necessary because it modifies the plugin to
package your function in the correct JAR format for deployment on Google Cloud
Functions.

https://<azure-function-url-from-the-log>/api/uppercase
https://<azure-function-url-from-the-log>/api/uppercase
https://<azure-function-url-from-the-log>/api/uppercase
https://<azure-function-url-from-the-log>/api/uppercase
https://<azure-function-url-from-the-log>/api/uppercase
https://cloud.google.com/functions
https://cloud.google.com/functions
https://github.com/GoogleCloudPlatform/functions-framework-java

<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<configuration>
<outputDirectory>target/deploy</outputDirectory>
</confiquration>
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-function-adapter-gcp</artifactId>
</dependency>
</dependencies>
</plugin>

Finally, add the Maven plugin provided as part of the Google Functions Framework for Java. This
allows you to test your functions locally via mvn function:run.

The function target should always be set to

9 org.springframework.cloud.function.adapter.gcp.GefJarLauncher; this is an adapter
class which acts as the entry point to your Spring Cloud Function from the Google
Cloud Functions platform.

<plugin>
<groupId>com.google.cloud.functions</groupIld>
<artifactId>function-maven-plugin</artifactId>
<version>0.9.1</version>
<configuration>

<functionTarget>org.springframework.cloud.function.adapter.gcp.GefJarLauncher</functio
nTarget>
<port>8080</port>
</confiquration>
</plugin>

A full example of a working pom.xml can be found in the Spring Cloud Functions GCP sample.

70.3.2. HTTP Functions

Google Cloud Functions supports deploying HTTP Functions, which are functions that are invoked
by HTTP request. The sections below describe instructions for deploying a Spring Cloud Function as
an HTTP Function

Getting Started

Let’s start with a simple Spring Cloud Function example:

https://github.com/spring-cloud/spring-cloud-function/blob/master/spring-cloud-function-samples/function-sample-gcp-http/pom.xml
https://cloud.google.com/functions/docs/writing/http

@SpringBootApplication
public class CloudFunctionMain {

public static void main(String[] args) {
SpringApplication.run(CloudFunctionMain.class, args);

}

@Bean

public Function<String, String> uppercase() {

return value -> value.toUpperCase();

}

Specify your configuration main class in resources/META-INF/MANIFEST.MF.

Main-Class: com.example.CloudFunctionMain

Then run the function locally. This is provided by the Google Cloud Functions function-maven-plugin
described in the project dependencies section.

mvn function:run

Invoke the HTTP function:

curl http://localhost:8080/ -d "hello"

Deploy to GCP

Start by packaging your application.

mvn package

If you added the custom spring-boot-maven-plugin plugin defined above, you should see the
resulting JAR in target/deploy directory. This JAR is correctly formatted for deployment to Google
Cloud Functions.

Next, make sure that you have the Cloud SDK CLI installed.

From the project base directory run the following command to deploy.

https://cloud.google.com/sdk/install

gcloud functions deploy function-sample-gcp-http \

--entry-point org.springframework.cloud.function.adapter.gcp.GcfJarLauncher \
--runtime javall \

--trigger-http \

--source target/deploy \

--memory 512MB

Invoke the HTTP function:

curl https://REGION-PROJECT_ID.cloudfunctions.net/function-sample-gcp-http -d "hello"

70.3.3. Background Functions

Google Cloud Functions also supports deploying Background Functions which are invoked
indirectly in response to an event, such as a message on a Cloud Pub/Sub topic, a change in a Cloud
Storage bucket, or a Firebase event.

The spring-cloud-function-adapter-gcp allows for functions to be deployed as background functions
as well.

The sections below describe the process for writing a Cloud Pub/Sub topic background function.
However, there are a number of different event types that can trigger a background function to
execute which are not discussed here; these are described in the Background Function triggers
documentation.

Getting Started

Let’s start with a simple Spring Cloud Function which will run as a GCF background function:

@SpringBootApplication
public class BackgroundFunctionMain {

public static void main(String[] args) {
SpringApplication.run(BackgroundFunctionMain.class, args);

}

@Bean
public Consumer<PubSubMessage> pubSubFunction() {
return message -> System.out.println("The Pub/Sub message data:
message.getData());

}

+

}

In addition, create PubSubMessage class in the project with the below definition. This class represents
the Pub/Sub event structure which gets passed to your function on a Pub/Sub topic event.

https://cloud.google.com/functions/docs/writing/background
https://cloud.google.com/pubsub
https://cloud.google.com/storage
https://cloud.google.com/storage
https://firebase.google.com/
https://cloud.google.com/functions/docs/calling
https://cloud.google.com/functions/docs/calling
https://cloud.google.com/functions/docs/calling/pubsub#event_structure

public class PubSubMessage {
private String data;
private Map<String, String> attributes;
private String messageld;
private String publishTime;

public String getData() {
return data;

}

public void setData(String data) {
this.data = data;
}

public Map<String, String> getAttributes() {
return attributes;

}

public void setAttributes(Map<String, String> attributes) {
this.attributes = attributes;

}

public String getMessageId() {
return messageld;

}

public void setMessageId(String messageld) {
this.messageld = messageld;

}

public String getPublishTime() {
return publishTime;

}

public void setPublishTime(String publishTime) {
this.publishTime = publishTime;
}

Specify your configuration main class in resources/META-INF/MANIFEST.MF.

Main-Class: com.example.BackgroundFunctionMain

Then run the function locally. This is provided by the Google Cloud Functions function-maven-plugin
described in the project dependencies section.

mvn function:run
Invoke the HTTP function:
curl localhost:8080 -H "Content-Type: application/json" -d '{"data":"hello"}'

Verify that the function was invoked by viewing the logs.

Deploy to GCP

In order to deploy your background function to GCP, first package your application.
mvn package

If you added the custom spring-boot-maven-plugin plugin defined above, you should see the
resulting JAR in target/deploy directory. This JAR is correctly formatted for deployment to Google
Cloud Functions.

Next, make sure that you have the Cloud SDK CLI installed.

From the project base directory run the following command to deploy.

gcloud functions deploy function-sample-gcp-background \

--entry-point org.springframework.cloud.function.adapter.gcp.GefJarLauncher \
--runtime javall \

--trigger-topic my-functions-topic \

--source target/deploy \

--memory 512MB

Google Cloud Function will now invoke the function every time a message is published to the topic
specified by --trigger-topic.

For a walkthrough on testing and verifying your background function, see the instructions for
running the GCF Background Function sample.

70.3.4. Sample Functions
The project provides the following sample functions as reference:

* The function-sample-gcp-http is an HTTP Function which you can test locally and try deploying.

* The function-sample-gcp-background shows an example of a background function that is
triggered by a message being published to a specified Pub/Sub topic.

https://cloud.google.com/sdk/install
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-samples/function-sample-gcp-background/
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-samples/function-sample-gcp-http/
https://github.com/spring-cloud/spring-cloud-function/tree/master/spring-cloud-function-samples/function-sample-gcp-background/

Spring Cloud Gateway

Hoxton.SR12

This project provides an API Gateway built on top of the Spring Ecosystem, including: Spring 5,
Spring Boot 2 and Project Reactor. Spring Cloud Gateway aims to provide a simple, yet effective way
to route to APIs and provide cross cutting concerns to them such as: security, monitoring/metrics,
and resiliency.

Chapter 71. How to Include Spring Cloud
Gateway

To include Spring Cloud Gateway in your project, use the starter with a group ID of
org.springframework.cloud and an artifact ID of spring-cloud-starter-gateway. See the Spring Cloud
Project page for details on setting up your build system with the current Spring Cloud Release
Train.

If you include the starter, but you do not want the gateway to be enabled, set
spring.cloud.gateway.enabled=false.

Spring Cloud Gateway is built on Spring Boot 2.x, Spring WebFlux, and Project
Reactor. As a consequence, many of the familiar synchronous libraries (Spring

o Data and Spring Security, for example) and patterns you know may not apply
when you use Spring Cloud Gateway. If you are unfamiliar with these projects, we
suggest you begin by reading their documentation to familiarize yourself with
some of the new concepts before working with Spring Cloud Gateway.

Spring Cloud Gateway requires the Netty runtime provided by Spring Boot and
o Spring Webflux. It does not work in a traditional Servlet Container or when built
as a WAR.

https://projects.spring.io/spring-cloud/
https://projects.spring.io/spring-cloud/
https://spring.io/projects/spring-boot#learn
https://docs.spring.io/spring/docs/current/spring-framework-reference/web-reactive.html
https://projectreactor.io/docs
https://projectreactor.io/docs

Chapter 72. Glossary

* Route: The basic building block of the gateway. It is defined by an ID, a destination URI, a
collection of predicates, and a collection of filters. A route is matched if the aggregate predicate
is true.

* Predicate: This is a Java 8 Function Predicate. The input type is a Spring Framework
ServerlWlebExchange. This lets you match on anything from the HTTP request, such as headers or
parameters.

* Filter: These are instances of GatewayFilter that have been constructed with a specific factory.
Here, you can modify requests and responses before or after sending the downstream request.

https://docs.oracle.com/javase/8/docs/api/java/util/function/Predicate.html
https://docs.spring.io/spring/docs/5.0.x/javadoc-api/org/springframework/web/server/ServerWebExchange.html
https://docs.spring.io/spring/docs/5.0.x/javadoc-api/org/springframework/web/server/ServerWebExchange.html
https://github.com/spring-cloud/spring-cloud/tree/cbffd61c43f8cc0857fdd9e8df9e17971d6e321d/spring-cloud-gateway-server/src/main/java/org/springframework/cloud/gateway/filter/GatewayFilter.java

Chapter 73. How It Works

The following diagram provides a high-level overview of how Spring Cloud Gateway works:
[Spring Cloud Gateway Diagram] | spring cloud_gateway_diagram.png

Clients make requests to Spring Cloud Gateway. If the Gateway Handler Mapping determines that a
request matches a route, it is sent to the Gateway Web Handler. This handler runs the request
through a filter chain that is specific to the request. The reason the filters are divided by the dotted
line is that filters can run logic both before and after the proxy request is sent. All “pre” filter logic
is executed. Then the proxy request is made. After the proxy request is made, the “post” filter logic
is run.

o URIs defined in routes without a port get default port values of 80 and 443 for the
HTTP and HTTPS URIs, respectively.

Chapter 74. Configuring Route Predicate
Factories and Gateway Filter Factories

There are two ways to configure predicates and filters: shortcuts and fully expanded arguments.
Most examples below use the shortcut way.

The name and argument names will be listed as code in the first sentance or two of the each section.
The arguments are typically listed in the order that would be needed for the shortcut configuration.

74.1. Shortcut Configuration

Shortcut configuration is recognized by the filter name, followed by an equals sign (=), followed by
argument values separated by commas (,).

application.yml

spring:
cloud:
gateway:
routes:
- id: after_route
uri: https://example.org
predicates:
- Cookie=mycookie,mycookievalue

The previous sample defines the Cookie Route Predicate Factory with two arguments, the cookie
name, mycookie and the value to match mycookievalue.

74.2. Fully Expanded Arguments

Fully expanded arguments appear more like standard yaml configuration with name/value pairs.
Typically, there will be a name key and an args key. The args key is a map of key value pairs to
configure the predicate or filter.

application.yml

spring:
cloud:
gateway:
routes:
- id: after_route
uri: https://example.org
predicates:
- name: Cookie
args:
name: mycookie
regexp: mycookievalue

This is the full configuration of the shortcut configuration of the Cookie predicate shown above.

Chapter 75. Route Predicate Factories

Spring Cloud Gateway matches routes as part of the Spring WebFlux HandlerMapping infrastructure.
Spring Cloud Gateway includes many built-in route predicate factories. All of these predicates
match on different attributes of the HTTP request. You can combine multiple route predicate
factories with logical and statements.

75.1. The After Route Predicate Factory

The After route predicate factory takes one parameter, a datetime (which is a java ZonedDateTime).
This predicate matches requests that happen after the specified datetime. The following example
configures an after route predicate:

Example 5. application.yml

spring:
cloud:
gateway:
routes:
- id: after_route
uri: https://example.org
predicates:
- After=2017-01-20T17:42:47.789-07:00[America/Denver]

This route matches any request made after Jan 20, 2017 17:42 Mountain Time (Denver).

75.2. The Before Route Predicate Factory

The Before route predicate factory takes one parameter, a datetime (which is a java ZonedDateTime).
This predicate matches requests that happen before the specified datetime. The following example
configures a before route predicate:

Example 6. application.yml

spring:
cloud:
gateway:
routes:
- id: before_route
uri: https://example.org
predicates:
- Before=2017-01-20T17:42:47.789-07:00[America/Denver]

This route matches any request made before Jan 20, 2017 17:42 Mountain Time (Denver).

75.3. The Between Route Predicate Factory

The Between route predicate factory takes two parameters, datetimel and datetime2 which are java
ZonedDateTime objects. This predicate matches requests that happen after datetimel and before
datetime2. The datetime2 parameter must be after datetimel. The following example configures a
between route predicate:

Example 7. application.yml

spring:
cloud:
gateway:
routes:
- id: between_route
uri: https://example.org
predicates:
- Between=2017-01-20T17:42:47.789-07:00[America/Denver], 2017-01-
21717:42:47.789-07:00[America/Denver]

This route matches any request made after Jan 20, 2017 17:42 Mountain Time (Denver) and before
Jan 21, 2017 17:42 Mountain Time (Denver). This could be useful for maintenance windows.

75.4. The Cookie Route Predicate Factory

The Cookie route predicate factory takes two parameters, the cookie name and a regexp (which is a
Java regular expression). This predicate matches cookies that have the given name and whose
values match the regular expression. The following example configures a cookie route predicate
factory:

Example 8. application.yml

spring:
cloud:
gateway:
routes:
- id: cookie_route
uri: https://example.org
predicates:
- Cookie=chocolate, ch.p

This route matches requests that have a cookie named chocolate whose value matches the ch.p
regular expression.

75.5. The Header Route Predicate Factory

The Header route predicate factory takes two parameters, the header name and a regexp (which is a
Java regular expression). This predicate matches with a header that has the given name whose
value matches the regular expression. The following example configures a header route predicate:

Example 9. application.yml

spring:
cloud:
gateway:
routes:
- id: header_route
uri: https://example.org
predicates:
- Header=X-Request-Id, \d+

This route matches if the request has a header named X-Request-Id whose value matches the \d+
regular expression (that is, it has a value of one or more digits).

75.6. The Host Route Predicate Factory

The Host route predicate factory takes one parameter: a list of host name patterns. The pattern is an
Ant-style pattern with . as the separator. This predicates matches the Host header that matches the
pattern. The following example configures a host route predicate:

Example 10. application.yml

spring:
cloud:
gateway:
routes:
- id: host_route
uri: https://example.org
predicates:
- Host=**.somehost.org,**.anotherhost.org

URI template variables (such as {sub}.myhost.org) are supported as well.

This route matches if the request has a Host header with a value of www.somehost.org or
beta.somehost.org or www.anotherhost.org

This predicate extracts the URI template variables (such as sub, defined in the preceding example)
as a map of names and values and places it in the ServerWebExchange.getAttributes() with a key
defined in ServerWebExchangeUtils.URI_TEMPLATE_VARIABLES_ATTRIBUTE. Those values are then

available for use by GatewayFilter factories

75.7. The Method Route Predicate Factory

The Method Route Predicate Factory takes a methods argument which is one or more parameters: the
HTTP methods to match. The following example configures a method route predicate:

Example 11. application.yml

spring:
cloud:
gateway:
routes:
- id: method _route
uri: https://example.org
predicates:
- Method=GET,POST

This route matches if the request method was a GET or a POST.

75.8. The Path Route Predicate Factory

The Path Route Predicate Factory takes two parameters: a list of Spring PathMatcher patterns and an
optional flag called matchOptionalTrailingSeparator. The following example configures a path route
predicate:

Example 12. application.yml

spring:
cloud:
gateway:
routes:
- id: path_route
uri: https://example.org
predicates:
- Path=/red/{segment},/blue/{segment}

This route matches if the request path was, for example: /red/1 or /red/blue or /blue/green.

This predicate extracts the URI template variables (such as segment, defined in the preceding
example) as a map of names and values and places it in the ServerWebExchange.getAttributes() with
a key defined in ServerWebExchangeUtils.URI_TEMPLATE_VARIABLES_ATTRIBUTE. Those values are then
available for use by GatewayFilter factories

A utility method (called get) is available to make access to these variables easier. The following

example shows how to use the get method:

Map<String, String> uriVariables =
ServerWebExchangeUtils.getPathPredicateVariables(exchange);

String segment = uriVariables.get("segment");

75.9. The Query Route Predicate Factory

The Query route predicate factory takes two parameters: a required param and an optional regexp
(which is a Java regular expression). The following example configures a query route predicate:

Example 13. application.yml

spring:
cloud:
gateway:
routes:
- id: query_route
uri: https://example.org
predicates:
- Query=green

The preceding route matches if the request contained a green query parameter.

application.yml

spring:
cloud:
gateway:
routes:
- 1id: query_route
uri: https://example.org
predicates:
- Query=red, gree.

The preceding route matches if the request contained a red query parameter whose value matched
the gree. regexp, so green and greet would match.

75.10. The RemoteAddr Route Predicate Factory

The RemoteAddr route predicate factory takes a list (min size 1) of sources, which are CIDR-notation
(IPv4 or IPv6) strings, such as 192.168.0.1/16 (where 192.168.0.1 is an IP address and 16 is a subnet
mask). The following example configures a RemoteAddr route predicate:

Example 14. application.yml

spring:
cloud:
gateway:
routes:
- id: remoteaddr_route
uri: https://example.org
predicates:
- RemoteAddr=192.168.1.1/24

This route matches if the remote address of the request was, for example, 192.168.1.10.

75.11. The Weight Route Predicate Factory

The Weight route predicate factory takes two arguments: group and weight (an int). The weights are
calculated per group. The following example configures a weight route predicate:

Example 15. application.yml

spring:
cloud:
gateway:
routes:
- id: weight_high
uri: https://weighthigh.org
predicates:
- Weight=group1, 8
- id: weight_low
uri: https://weightlow.org
predicates:
- Weight=group1, 2

This route would forward ~80% of traffic to weighthigh.org and ~20% of traffic to weighlow.org

75.11.1. Modifying the Way Remote Addresses Are Resolved

By default, the RemoteAddr route predicate factory uses the remote address from the incoming
request. This may not match the actual client IP address if Spring Cloud Gateway sits behind a
proxy layer.

You can customize the way that the remote address is resolved by setting a custom
RemoteAddressResolver. Spring Cloud Gateway comes with one non-default remote address resolver
that is based off of the X-Forwarded-For header, XForwardedRemoteAddressResolver.

XForwardedRemoteAddressResolver has two static constructor methods, which take different

https://weighthigh.org
https://weighlow.org
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Forwarded-For

approaches to security:

» XForwardedRemoteAddressResolver::trustAll returns a RemoteAddressResolver that always takes
the first IP address found in the X-Forwarded-For header. This approach is vulnerable to
spoofing, as a malicious client could set an initial value for the X-Forwarded-For, which would be
accepted by the resolver.

» XForwardedRemoteAddressResolver::maxTrustedIndex takes an index that correlates to the number
of trusted infrastructure running in front of Spring Cloud Gateway. If Spring Cloud Gateway is,
for example only accessible through HAProxy, then a value of 1 should be used. If two hops of
trusted infrastructure are required before Spring Cloud Gateway is accessible, then a value of 2
should be used.

Consider the following header value:

X-Forwarded-For: 0.0.0.1, 0.0.0.2, 0.0.0.3

The following maxTrustedIndex values yield the following remote addresses:

maxTrustedIndex result

[Integer.MIN_VALUE,O] (invalid, I1legalArgumentException during
initialization)

1 0.0.0.3

2 0.0.0.2

3 0.0.0.1

[4, Integer.MAX_VALUE] 0.0.0.1

The following example shows how to achieve the same configuration with Java:

Example 16. GatewayConfig.java

RemoteAddressResolver resolver = XForwardedRemoteAddressResolver
.maxTrustedIndex(1);

.route("direct-route",
r -> r.remoteAddr("10.1.7.1", "10.10.1.1/24")
.uri("https://downstream1")
.route("proxied-route",
r -> r.remoteAddr(resolver, "10.10.1.1", "10.10.1.1/24")
.uri("https://downstream2")

Chapter 76. GatewayFilter Factories

Route filters allow the modification of the incoming HTTP request or outgoing HTTP response in
some manner. Route filters are scoped to a particular route. Spring Cloud Gateway includes many
built-in GatewayFilter Factories.

0 For more detailed examples of how to use any of the following filters, take a look
at the unit tests.

76.1. The AddRequestHeader GatewayFilter Factory

The AddRequestHeader GatewayFilter factory takes a name and value parameter. The following
example configures an AddRequestHeader GatewayFilter:

Example 17. application.yml

spring:
cloud:
gateway:
routes:
- id: add_request_header_route
uri: https://example.org
filters:
- AddRequestHeader=X-Request-red, blue

This listing adds X-Request-red:blue header to the downstream request’s headers for all matching
requests.

AddRequestHeader is aware of the URI variables used to match a path or host. URI variables may be
used in the value and are expanded at runtime. The following example configures an
AddRequestHeader GatewayFilter that uses a variable:

Example 18. application.yml

spring:
cloud:
gateway:
routes:
- id: add_request_header_route
uri: https://example.org
predicates:
- Path=/red/{segment}
filters:
- AddRequestHeader=X-Request-Red, Blue-{segment}

https://github.com/spring-cloud/spring-cloud-gateway/tree/master/spring-cloud-gateway-server/src/test/java/org/springframework/cloud/gateway/filter/factory

76.2. The AddRequestParameter GatewayFilter Factory

The AddRequestParameter GatewayFilter Factory takes a name and value parameter. The following
example configures an AddRequestParameter GatewayFilter:

Example 19. application.yml

spring:
cloud:
gateway:

routes:

- id: add_request_parameter_route
uri: https://example.org
filters:

- AddRequestParameter=red, blue

This will add red=blue to the downstream request’s query string for all matching requests.

AddRequestParameter is aware of the URI variables used to match a path or host. URI variables may
be used in the value and are expanded at runtime. The following example configures an
AddRequestParameter GatewayFilter that uses a variable:

Example 20. application.yml

spring:
cloud:
gateway:
routes:
- 1d: add_request_parameter_route
uri: https://example.org
predicates:
- Host: {segment}.myhost.org
filters:
- AddRequestParameter=foo, bar-{segment}

76.3. The AddResponseHeader GatewayFilter Factory

The AddResponseHeader GatewayFilter Factory takes a name and value parameter. The following
example configures an AddResponseHeader GatewayFilter:

Example 21. application.yml

spring:
cloud:
gateway:
routes:
- id: add_response_header_route
uri: https://example.org
filters:
- AddResponseHeader=X-Response-Red, Blue

This adds X-Response-Foo:Bar header to the downstream response’s headers for all matching
requests.

AddResponseHeader is aware of URI variables used to match a path or host. URI variables may be used
in the value and are expanded at runtime. The following example configures an AddResponseHeader
GatewayFilter that uses a variable:

Example 22. application.yml

spring:
cloud:
gateway:
routes:
- id: add_response_header_route
uri: https://example.org
predicates:
- Host: {segment}.myhost.org
filters:
- AddResponseHeader=foo, bar-{segment}

76.4. The DedupeResponseHeader GatewayFilter Factory

The DedupeResponseHeader GatewayFilter factory takes a name parameter and an optional strategy
parameter. name can contain a space-separated list of header names. The following example
configures a DedupeResponseHeader GatewayFilter:

Example 23. application.yml

spring:
cloud:
gateway:
routes:
- id: dedupe_response_header_route
uri: https://example.org
filters:
- DedupeResponseHeader=Access-Control-Allow-Credentials Access-Control-
Allow-0Origin

This removes duplicate values of Access-Control-Allow-Credentials and Access-Control-Allow-
Origin response headers in cases when both the gateway CORS logic and the downstream logic add
them.

The DedupeResponseHeader filter also accepts an optional strategy parameter. The accepted values
are RETAIN_FIRST (default), RETAIN_LAST, and RETAIN_UNIQUE.

76.5. The Hystrix GatewayFilter Factory

Netflix has put Hystrix in maintenance mode. We suggest you use the Spring Cloud
0 CircuitBreaker Gateway Filter with Resilience4], as support for Hystrix will be
removed in a future release.

Hystrix is a library from Netflix that implements the circuit breaker pattern. The Hystrix
GatewayFilter lets you introduce circuit breakers to your gateway routes, protecting your services
from cascading failures and letting you provide fallback responses in the event of downstream
failures.

To enable Hystrix GatewayFilter instances in your project, add a dependency on spring-cloud-
starter-netflix-hystrix from Spring Cloud Netflix.

The Hystrix GatewayFilter factory requires a single name parameter, which is the name of the
HystrixCommand. The following example configures a Hystrix GatewayFilter:

https://cloud.spring.io/spring-cloud-netflix/multi/multi__modules_in_maintenance_mode.html
https://github.com/Netflix/Hystrix
https://martinfowler.com/bliki/CircuitBreaker.html
https://cloud.spring.io/spring-cloud-netflix/

Example 24. application.yml

spring:
cloud:
gateway:
routes:
- id: hystrix_route
uri: https://example.org
filters:
- Hystrix=myCommandName

This wraps the remaining filters in a HystrixCommand with a command name of myCommandName.

The Hystrix filter can also accept an optional fallbackUri parameter. Currently, only forward:
schemed URIs are supported. If the fallback is called, the request is forwarded to the controller
matched by the URI The following example configures such a fallback:

Example 25. application.yml

spring:
cloud:
gateway:
routes:
- 1id: hystrix_route
uri: 1b://backing-service:8088
predicates:
- Path=/consumingserviceendpoint
filters:
- name: Hystrix
args:
name: fallbackemd
fallbackUri: forward:/incaseoffailureusethis
- RewritePath=/consumingserviceendpoint, /backingserviceendpoint

This will forward to the /incaseoffailureusethis URI when the Hystrix fallback is called. Note that
this example also demonstrates (optional) Spring Cloud Netflix Ribbon load-balancing (defined the
1b prefix on the destination URI).

The primary scenario is to use the fallbackUri to an internal controller or handler within the
gateway app. However, you can also reroute the request to a controller or handler in an external
application, as follows:

Example 26. application.yml

spring:
cloud:
gateway:
routes:
- id: ingredients
uri: 1b://ingredients
predicates:
- Path=//ingredients/**
filters:
- name: Hystrix
args:
name: fetchIngredients
fallbackUri: forward:/fallback
- id: ingredients-fallback
uri: http://localhost:9994
predicates:
- Path=/fallback

In this example, there is no fallback endpoint or handler in the gateway application. However,
there is one in another application, registered under localhost:9994.

In case of the request being forwarded to the fallback, the Hystrix Gateway filter also provides the
Throwable that has caused it. It is added to the ServerWebExchange as the
ServerWebExchangeUtils.HYSTRIX_EXECUTION_EXCEPTION_ATTR attribute, which you can use when
handling the fallback within the gateway application.

For the external controller/handler scenario, you can add headers with exception details. You can
find more information on doing so in the FallbackHeaders GatewayFilter Factory section.

You can configured Hystrix settings (such as timeouts) with global defaults or on a route-by-route
basis by using application properties, as explained on the Hystrix wiki.

To set a five-second timeout for the example route shown earlier, you could use the following
configuration:

Example 27. application.yml
hystrix.command.fallbackcmd.execution.isolation.thread.timeoutInMilliseconds: 5000

76.6. Spring Cloud CircuitBreaker GatewayFilter
Factory

The Spring Cloud CircuitBreaker GatewayFilter factory uses the Spring Cloud CircuitBreaker APIs to

http://localhost:9994
https://github.com/Netflix/Hystrix/wiki/Configuration

wrap Gateway routes in a circuit breaker. Spring Cloud CircuitBreaker supports two libraries that
can be used with Spring Cloud Gateway, Hystrix and Resilience4]. Since Netflix has placed Hystrix
in maintenance-only mode, we suggest that you use Resilience4].

To enable the Spring Cloud CircuitBreaker filter, you need to place either spring-cloud-starter-
circuitbreaker-reactor-resilience4j or spring-cloud-starter-netflix-hystrix on the classpath. The
following example configures a Spring Cloud CircuitBreaker GatewayFilter:

Example 28. application.yml

spring:
cloud:
gateway:
routes:
- id: circuitbreaker_route
uri: https://example.org
filters:
- CircuitBreaker=myCircuitBreaker

To configure the circuit breaker, see the configuration for the underlying circuit breaker
implementation you are using.

* Resilience4] Documentation

* Hystrix Documentation

The Spring Cloud CircuitBreaker filter can also accept an optional fallbackUri parameter. Currently,
only forward: schemed URIs are supported. If the fallback is called, the request is forwarded to the
controller matched by the URI. The following example configures such a fallback:

Example 29. application.yml

spring:
cloud:
gateway:
routes:
- id: circuitbreaker_route
uri: 1b://backing-service:8088
predicates:
- Path=/consumingServiceEndpoint
filters:
- name: CircuitBreaker
args:
name: myCircuitBreaker
fallbackUri: forward:/inCaseOfFailureUseThis
- RewritePath=/consumingServiceEndpoint, /backingServiceEndpoint

https://cloud.spring.io/spring-cloud-circuitbreaker/reference/html/spring-cloud-circuitbreaker.html
https://cloud.spring.io/spring-cloud-netflix/reference/html/

The following listing does the same thing in Java:

Example 30. Application.java

@Bean
public Routelocator routes(RoutelocatorBuilder builder) {
return builder.routes()
.route("circuitbreaker_route", r -> r.path("/consumingServiceEndpoint")
.filters(f -> f.circuitBreaker(c ->
c.name("myCircuitBreaker").fallbackUri("forward:/inCaseOfFailureUseThis"))
.rewritePath("/consumingServiceEndpoint",
"/backingServiceEndpoint")).uri("1b://backing-service:8088")
.build();
}

This example forwards to the /inCaseofFailureUseThis URI when the circuit breaker fallback is
called. Note that this example also demonstrates the (optional) Spring Cloud Netflix Ribbon load-
balancing (defined by the 1b prefix on the destination URI).

The primary scenario is to use the fallbackUri to define an internal controller or handler within the
gateway application. However, you can also reroute the request to a controller or handler in an
external application, as follows:

Example 31. application.yml

spring:
cloud:
gateway:
routes:
- id: ingredients
uri: 1b://ingredients
predicates:
- Path=//ingredients/**
filters:
- name: CircuitBreaker
args:
name: fetchIngredients
fallbackUri: forward:/fallback
- id: ingredients-fallback
uri: http://localhost:9994
predicates:
- Path=/fallback

In this example, there is no fallback endpoint or handler in the gateway application. However,
there is one in another application, registered under localhost:9994.

In case of the request being forwarded to fallback, the Spring Cloud CircuitBreaker Gateway filter

http://localhost:9994

also provides the Throwable that has caused it. It is added to the ServerWebExchange as the
ServerWebExchangeUtils.CIRCUITBREAKER_EXECUTION_EXCEPTION_ATTR attribute that can be used when
handling the fallback within the gateway application.

For the external controller/handler scenario, headers can be added with exception details. You can
find more information on doing so in the FallbackHeaders GatewayFilter Factory section.

76.6.1. Tripping The Circuit Breaker On Status Codes

In some cases you might want to trip a circuit breaker based on the status code returned from the
route it wraps. The circuit breaker config object takes a list of status codes that if returned will
cause the the circuit breaker to be tripped. When setting the status codes you want to trip the
circuit breaker you can either use a integer with the status code value or the String representation
of the HttpStatus enumeration.

Example 32. application.yml

spring:
cloud:
gateway:
routes:
- 1id: circuitbreaker_route
uri: 1b://backing-service:8088
predicates:
- Path=/consumingServiceEndpoint
filters:
- name: CircuitBreaker
args:
name: myCircuitBreaker
fallbackUri: forward:/inCaseOfFailureUseThis
statusCodes:
- 500
- "NOT_FOUND"

Example 33. Application.java

©Bean
public Routelocator routes(RoutelLocatorBuilder builder) {
return builder.routes()
.route("circuitbreaker_route", r -> r.path("/consumingServiceEndpoint")
.filters(f -> f.circuitBreaker(c ->
c.name("myCircuitBreaker").fallbackUri("forward:/inCaseOfFailureUseThis").addStatu
sCode("INTERNAL_SERVER_ERROR"))
.rewritePath("/consumingServiceEndpoint",

"/backingServiceEndpoint")).uri("1b://backing-service:8088")

.build();

}

76.7. The FallbackHeaders GatewayFilter Factory

The FallbackHeaders factory lets you add Hystrix or Spring Cloud CircuitBreaker execution
exception details in the headers of a request forwarded to a fallbackUri in an external application,
as in the following scenario:

Example 34. application.yml

spring:
cloud:
gateway:
routes:
- id: ingredients
uri: 1b://ingredients
predicates:
- Path=//ingredients/**
filters:
- name: CircuitBreaker
args:
name: fetchIngredients
fallbackUri: forward:/fallback
- id: ingredients-fallback
uri: http://localhost:9994
predicates:
- Path=/fallback
filters:
- name: FallbackHeaders
args:
executionExceptionTypeHeaderName: Test-Header

In this example, after an execution exception occurs while running the circuit breaker, the request
is forwarded to the fallback endpoint or handler in an application running on localhost:9994. The

headers with the exception type, message and (if available) root cause exception type and message
are added to that request by the FallbackHeaders filter.

You can overwrite the names of the headers in the configuration by setting the values of the
following arguments (shown with their default values):

e executionExceptionTypeHeaderName ("Execution-Exception-Type")
» executionExceptionMessageHeaderName ("Execution-Exception-Message")
» rootCauseExceptionTypeHeaderName ("Root-Cause-Exception-Type")

* rootCauseExceptionMessageHeaderName ("Root-Cause-Exception-Message")

For more information on circuit breakers and the gateway see the Hystrix GatewayFilter Factory
section or Spring Cloud CircuitBreaker Factory section.

76.8. The MapRequestHeader GatewayFilter Factory

The MapRequestHeader GatewayFilter factory takes fromHeader and toHeader parameters. It creates a
new named header (toHeader), and the value is extracted out of an existing named header
(fromHeader) from the incoming http request. If the input header does not exist, the filter has no
impact. If the new named header already exists, its values are augmented with the new values. The
following example configures a MapRequestHeader:

Example 35. application.yml

spring:
cloud:
gateway:
routes:
- id: map_request_header_route
uri: https://example.org
filters:
- MapRequestHeader=Blue, X-Request-Red

This adds X-Request-Red:<values> header to the downstream request with updated values from the
incoming HTTP request’s Blue header.

76.9. The PrefixPath GatewayFilter Factory

The PrefixPath GatewayFilter factory takes a single prefix parameter. The following example
configures a PrefixPath GatewayFilter:

Example 36. application.yml

spring:
cloud:
gateway:

routes:

- id: prefixpath_route
uri: https://example.org
filters:

- PrefixPath=/mypath

This will prefix /mypath to the path of all matching requests. So a request to /hello would be sent to
/mypath/hello.

76.10. The PreserveHostHeader GatewayFilter Factory

The PreserveHostHeader GatewayFilter factory has no parameters. This filter sets a request attribute
that the routing filter inspects to determine if the original host header should be sent, rather than
the host header determined by the HTTP client. The following example configures a
PreserveHostHeader GatewayFilter:

Example 37. application.yml

spring:
cloud:
gateway:

routes:

- id: preserve_host_route
uri: https://example.org
filters:

- PreserveHostHeader

76.11. The RequestRatelLimiter GatewayFilter Factory

The RequestRatelLimiter GatewayFilter factory uses a RatelLimiter implementation to determine if the
current request is allowed to proceed. If it is not, a status of HTTP 429 - Too Many Requests (by
default) is returned.

This filter takes an optional keyResolver parameter and parameters specific to the rate limiter
(described later in this section).

keyResolver is a bean that implements the KeyResolver interface. In configuration, reference the
bean by name using SpEL. #{@myKeyResolver} is a SpEL expression that references a bean named
myKeyResolver. The following listing shows the KeyResolver interface:

Example 38. KeyResolver.java

public interface KeyResolver {
Mono<String> resolve(ServerWebExchange exchange);

}

The KeyResolver interface lets pluggable strategies derive the key for limiting requests. In future
milestone releases, there will be some KeyResolver implementations.

The default implementation of KeyResolver is the PrincipalNameKeyResolver, which retrieves the
Principal from the ServerWebExchange and calls Principal.getName().

By default, if the KeyResolver does not find a key, requests are denied. You can adjust this behavior
by setting the spring.cloud.gateway.filter.request-rate-limiter.deny-empty-key (true or false) and
spring.cloud.gateway.filter.request-rate-limiter.empty-key-status-code properties.

The RequestRateLimiter is not configurable with the "shortcut" notation. The
following example below is invalid:

Example 39. application.properties

INVALID SHORTCUT CONFIGURATION
spring.cloud.gateway.routes[0].filters[0]=RequestRatelLimiter=2, 2,
#{@userkeyresolver}

76.11.1. The Redis RatelLimiter

The Redis implementation is based off of work done at Stripe. It requires the use of the spring-boot-
starter-data-redis-reactive Spring Boot starter.

The algorithm used is the Token Bucket Algorithm.

The redis-rate-limiter.replenishRate property is how many requests per second you want a user
to be allowed to do, without any dropped requests. This is the rate at which the token bucket is
filled.

The redis-rate-limiter.burstCapacity property is the maximum number of requests a user is
allowed to do in a single second. This is the number of tokens the token bucket can hold. Setting this
value to zero blocks all requests.

The redis-rate-limiter.requestedTokens property is how many tokens a request costs. This is the
number of tokens taken from the bucket for each request and defaults to 1.

A steady rate is accomplished by setting the same value in replenishRate and burstCapacity.
Temporary bursts can be allowed by setting burstCapacity higher than replenishRate. In this case,
the rate limiter needs to be allowed some time between bursts (according to replenishRate), as two

https://stripe.com/blog/rate-limiters
https://en.wikipedia.org/wiki/Token_bucket

consecutive bursts will result in dropped requests (HTTP 429 - Too Many Requests). The following
listing configures a redis-rate-limiter:

Rate limits bellow 1 request/s are accomplished by setting replenishRate to the wanted number of
requests, requestedTokens to the timespan in seconds and burstCapacity to the product of
replenishRate and requestedTokens, e.g. setting replenishRate=1, requestedTokens=60 and
burstCapacity=60 will result in a limit of 1 request/min.

Example 40. application.yml

spring:
cloud:
gateway:
routes:
- id: requestratelimiter_route
uri: https://example.org
filters:
- name: RequestRatelLimiter
args:
redis-rate-limiter.replenishRate: 10
redis-rate-limiter.burstCapacity: 20
redis-rate-limiter.requestedTokens: 1

The following example configures a KeyResolver in Java:

Example 41. Config.java

©Bean
KeyResolver userKeyResolver() {

return exchange ->
Mono.just(exchange.getRequest().getQueryParams().getFirst("user"));
}

This defines a request rate limit of 10 per user. A burst of 20 is allowed, but, in the next second, only
10 requests are available. The KeyResolver is a simple one that gets the user request parameter (note
that this is not recommended for production).

You can also define a rate limiter as a bean that implements the Ratelimiter interface. In
configuration, you can reference the bean by name using SpEL. #{@myRatelLimiter} is a SpEL
expression that references a bean with named myRatelLimiter. The following listing defines a rate
limiter that uses the KeyResolver defined in the previous listing:

Example 42. application.yml

spring:
cloud:
gateway:
routes:
- id: requestratelimiter_route
uri: https://example.org
filters:
- name: RequestRatelLimiter
args:
rate-limiter: "#{@myRateLimiter}"
key-resolver: "#{@userKeyResolver}"

76.12. The RedirectTo GatewayFilter Factory

The RedirectTo GatewayFilter factory takes two parameters, status and url. The status parameter
should be a 300 series redirect HTTP code, such as 301. The url parameter should be a valid URL.
This is the value of the Location header. For relative redirects, you should use uri: no://op as the
uri of your route definition. The following listing configures a RedirectTo GatewayFilter:

Example 43. application.yml

spring:
cloud:
gateway:
routes:
- id: prefixpath_route
uri: https://example.org
filters:
- RedirectTo=302, https://acme.org

This will send a status 302 with a Location:https://acme.org header to perform a redirect.

76.13. The RemoveRequestHeader GatewayFilter Factory

The RemoveRequestHeader GatewayFilter factory takes a name parameter. It is the name of the header
to be removed. The following listing configures a RemoveRequestHeader GatewayFilter:

Example 44. application.yml

spring:
cloud:
gateway:
routes:
- id: removerequestheader_route
uri: https://example.org
filters:
- RemoveRequestHeader=X-Request-Foo

This removes the X-Request-Foo header before it is sent downstream.

76.14. RemoveResponseHeader GatewayFilter Factory

The RemoveResponseHeader GatewayFilter factory takes a name parameter. It is the name of the header
to be removed. The following listing configures a RemoveResponseHeader GatewayFilter:

Example 45. application.yml

spring:
cloud:
gateway:
routes:
- id: removeresponseheader_route
uri: https://example.org
filters:
- RemoveResponseHeader=X-Response-Foo

This will remove the X-Response-Foo header from the response before it is returned to the gateway
client.

To remove any kind of sensitive header, you should configure this filter for any routes for which
you may want to do so. In addition, you can configure this filter once by using
spring.cloud.gateway.default-filters and have it applied to all routes.

76.15. The RemoveRequestParameter GatewayFilter Factory

The RemoveRequestParameter GatewayFilter factory takes a name parameter. It is the name of the
query parameter to be removed. The following example configures a RemoveRequestParameter
GatewayFilter:

Example 46. application.yml

spring:
cloud:
gateway:

routes:

- id: removerequestparameter_route
uri: https://example.org
filters:

- RemoveRequestParameter=red

This will remove the red parameter before it is sent downstream.

76.16. The RewritePath GatewayFilter Factory

The RewritePath GatewayFilter factory takes a path regexp parameter and a replacement parameter.
This uses Java regular expressions for a flexible way to rewrite the request path. The following
listing configures a RewritePath GatewayFilter:

Example 47. application.yml

spring:
cloud:
gateway:
routes:
- id: rewritepath_route
uri: https://example.org
predicates:
- Path=/red/**
filters:
- RewritePath=/red(?<segment>/?.*), $\{segment}

For a request path of /red/blue, this sets the path to /blue before making the downstream request.
Note that the § should be replaced with $\ because of the YAML specification.

76.17. RewritelocationResponseHeader GatewayFilter
Factory

The RewritelocationResponseHeader GatewayFilter factory modifies the value of the Location
response header, usually to get rid of backend-specific details. It takes stripVersionMode,
locationHeaderName, hostValue, and protocolsRegex parameters. The following listing configures a
RewritelocationResponseHeader GatewayFilter:

Example 48. application.yml

spring:
cloud:
gateway:
routes:
- id: rewritelocationresponseheader_route
uri: http://example.org
filters:
- RewritelocationResponseHeader=AS_IN_REQUEST, Location, ,

For example, for a request of POST api.example.com/some/object/name, the Location response header
value of object-service.prod.example.net/v2/some/object/id is rewritten as api.example.com/some/
object/id.

The stripVersionMode parameter has the following possible values: NEVER_STRIP, AS_IN_REQUEST
(default), and ALWAYS_STRIP.

» NEVER_STRIP: The version is not stripped, even if the original request path contains no version.
» AS_IN_REQUEST The version is stripped only if the original request path contains no version.

» ALWAYS_STRIP The version is always stripped, even if the original request path contains version.

The hostValue parameter, if provided, is used to replace the host:port portion of the response
Location header. If it is not provided, the value of the Host request header is used.

The protocolsRegex parameter must be a valid regex String, against which the protocol name is
matched. If it is not matched, the filter does nothing. The default is http|https|ftp|ftps.

76.18. The RewriteResponseHeader GatewayFilter Factory

The RewriteResponseHeader GatewayFilter factory takes name, regexp, and replacement parameters. It
uses Java regular expressions for a flexible way to rewrite the response header value. The following
example configures a RewriteResponseHeader GatewayFilter:

Example 49. application.yml

spring:
cloud:
gateway:
routes:
- id: rewriteresponseheader_route
uri: https://example.org
filters:
- RewriteResponseHeader=X-Response-Red, , password=["&]+, password=***

https://api.example.com/some/object/name
https://api.example.com/some/object/name
https://api.example.com/some/object/name
https://api.example.com/some/object/name
https://api.example.com/some/object/name
https://api.example.com/some/object/name
https://api.example.com/some/object/name
https://object-service.prod.example.net/v2/some/object/id
https://object-service.prod.example.net/v2/some/object/id
https://object-service.prod.example.net/v2/some/object/id
https://object-service.prod.example.net/v2/some/object/id
https://object-service.prod.example.net/v2/some/object/id
https://object-service.prod.example.net/v2/some/object/id
https://object-service.prod.example.net/v2/some/object/id
https://object-service.prod.example.net/v2/some/object/id
https://object-service.prod.example.net/v2/some/object/id
https://api.example.com/some/object/id
https://api.example.com/some/object/id
https://api.example.com/some/object/id
https://api.example.com/some/object/id
https://api.example.com/some/object/id
https://api.example.com/some/object/id
https://api.example.com/some/object/id

For a header value of /427user=ford&password=omg!what&flag=true, it is set to
/427user=ford&password=***&flag=true after making the downstream request. You must use $\ to
mean $ because of the YAML specification.

76.19. The SaveSession GatewayFilter Factory

The SaveSession GatewayFilter factory forces a WebSession::save operation before forwarding the
call downstream. This is of particular use when using something like Spring Session with a lazy
data store and you need to ensure the session state has been saved before making the forwarded
call. The following example configures a SaveSession GatewayFilter:

Example 50. application.yml

spring:
cloud:
gateway:
routes:
- id: save_session
uri: https://example.org
predicates:
- Path=/foo/**
filters:
- SaveSession

If you integrate Spring Security with Spring Session and want to ensure security details have been
forwarded to the remote process, this is critical.

76.20. The SecureHeaders GatewayFilter Factory

The SecureHeaders GatewayFilter factory adds a number of headers to the response, per the
recommendation made in this blog post.

The following headers (shown with their default values) are added:

e X-Xss-Protection:1 (mode=block)

o Strict-Transport-Security (max-age=631138519)
o X-Frame-Options (DENY)

« X-Content-Type-Options (nosniff)

o Referrer-Policy (no-referrer)

o Content-Security-Policy (default-src 'self' https:; font-src 'self' https: data:; img-src
"self' https: data:; object-src 'none'; script-src https:; style-src 'self' https: 'unsafe-
inline)'

« X-Download-Options (noopen)

e X-Permitted-Cross-Domain-Policies (none)

To change the default values, set the appropriate property in the

https://projects.spring.io/spring-session/
https://projects.spring.io/spring-security/
https://blog.appcanary.com/2017/http-security-headers.html

spring.cloud.gateway.filter.secure-headers namespace. The following properties are available:

« xss-protection-header

« strict-transport-security
« x-frame-options

« Xx-content-type-options

« referrer-policy

« content-security-policy

« x-download-options

« X-permitted-cross-domain-policies

To disable the default values set the spring.cloud.gateway.filter.secure-headers.disable property
with comma-separated values. The following example shows how to do so:

spring.cloud.gateway.filter.secure-headers.disable=x-frame-options,strict-
transport-security

o The lowercase full name of the secure header needs to be used to disable it..

76.21. The SetPath GatewayFilter Factory

The SetPath GatewayFilter factory takes a path template parameter. It offers a simple way to
manipulate the request path by allowing templated segments of the path. This uses the URI
templates from Spring Framework. Multiple matching segments are allowed. The following
example configures a SetPath GatewayFilter:

Example 51. application.yml

spring:
cloud:
gateway:
routes:
- id: setpath_route
uri: https://example.org
predicates:
- Path=/red/{segment}
filters:
- SetPath=/{segment}

For a request path of /red/blue, this sets the path to /blue before making the downstream request.

76.22. The SetRequestHeader GatewayFilter Factory

The SetRequestHeader GatewayFilter factory takes name and value parameters. The following listing
configures a SetRequestHeader GatewayFilter

Example 52. application.yml

spring:
cloud:
gateway:
routes:
- id: setrequestheader_route
uri: https://example.org
filters:
- SetRequestHeader=X-Request-Red, Blue

This GatewayFilter replaces (rather than adding) all headers with the given name. So, if the
downstream server responded with a X-Request-Red: 1234, this would be replaced with X-Request-
Red:Blue, which is what the downstream service would receive.

SetRequestHeader is aware of URI variables used to match a path or host. URI variables may be used
in the value and are expanded at runtime. The following example configures an SetRequestHeader
GatewayFilter that uses a variable:

Example 53. application.yml

spring:
cloud:
gateway:
routes:
- id: setrequestheader_route
uri: https://example.org
predicates:
- Host: {segment}.myhost.org
filters:
- SetRequestHeader=foo, bar-{segment}

76.23. The SetResponseHeader GatewayFilter Factory

The SetResponseHeader GatewayFilter factory takes name and value parameters. The following listing
configures a SetResponseHeader GatewayFilter:

Example 54. application.yml

spring:
cloud:
gateway:
routes:
- id: setresponseheader_route
uri: https://example.org
filters:
- SetResponseHeader=X-Response-Red, Blue

This GatewayFilter replaces (rather than adding) all headers with the given name. So, if the
downstream server responded with a X-Response-Red:1234, this is replaced with X-Response-
Red:Blue, which is what the gateway client would receive.

SetResponseHeader is aware of URI variables used to match a path or host. URI variables may be used
in the value and will be expanded at runtime. The following example configures an
SetResponseHeader GatewayFilter that uses a variable:

Example 55. application.yml

spring:
cloud:
gateway:
routes:
- id: setresponseheader_route
uri: https://example.org
predicates:
- Host: {segment}.myhost.org
filters:
- SetResponseHeader=foo, bar-{segment}

76.24. The SetStatus GatewayFilter Factory

The SetStatus GatewayFilter factory takes a single parameter, status. It must be a valid Spring
HttpStatus. It may be the integer value 404 or the string representation of the enumeration:
NOT_FOUND. The following listing configures a SetStatus GatewayFilter:

Example 56. application.yml

spring:
cloud:
gateway:

routes:

- id: setstatusstring_route
uri: https://example.org
filters:

- SetStatus=BAD_REQUEST

- id: setstatusint_route
uri: https://example.org
filters:

- SetStatus=401

In either case, the HTTP status of the response is set to 401.

You can configure the SetStatus GatewayFilter to return the original HTTP status code from the
proxied request in a header in the response. The header is added to the response if configured with
the following property:

Example 57. application.yml

spring:
cloud:
gateway:
set-status:
original-status-header-name: original-http-status

76.25. The StripPrefix GatewayFilter Factory

The StripPrefix GatewayFilter factory takes one parameter, parts. The parts parameter indicates
the number of parts in the path to strip from the request before sending it downstream. The
following listing configures a StripPrefix GatewayFilter:

Example 58. application.yml

spring:
cloud:
gateway:
routes:
- id: nameRoot
uri: https://nameservice
predicates:
- Path=/name/**
filters:
- StripPrefix=2

When a request is made through the gateway to /name/blue/red, the request made to nameservice
looks like nameservice/red.

76.26. The Retry GatewayFilter Factory

The Retry GatewayFilter factory supports the following parameters:

retries: The number of retries that should be attempted.

statuses: The HTTP status codes that should be retried, represented by using
org.springframework.http.HttpStatus.

methods: The HTTP methods that should be retried, represented by using
org.springframework.http.HttpMethod.

series: The series of status codes to be retried, represented by using
org.springframework.http.HttpStatus.Series.

exceptions: A list of thrown exceptions that should be retried.

backoff: The configured exponential backoff for the retries. Retries are performed after a
backoff interval of firstBackoff * (factor A n), where n is the iteration. If maxBackoff is
configured, the maximum backoff applied is limited to maxBackoff. If basedOnPreviousValue is
true, the backoff is calculated byusing prevBackoff * factor.

The following defaults are configured for Retry filter, if enabled:

retries: Three times

series: 5XX series

methods: GET method

exceptions: I0Exception and TimeoutException

backoff: disabled

The following listing configures a Retry GatewayFilter:

https://nameservice/red
https://nameservice/red
https://nameservice/red

Example 59. application.yml

spring:
cloud:
gateway:
routes:
- id: retry_test
uri: http://localhost:8080/flakey
predicates:
- Host=*.retry.com
filters:
- name: Retry
args:
retries: 3
statuses: BAD_GATEWAY
methods: GET,POST
backoff:
firstBackoff: 10ms
maxBackoff: 50ms
factor: 2
basedOnPreviousValue: false

When using the retry filter with a forward: prefixed URL, the target endpoint
should be written carefully so that, in case of an error, it does not do anything that
could result in a response being sent to the client and committed. For example, if

o the target endpoint is an annotated controller, the target controller method should
not return ResponseEntity with an error status code. Instead, it should throw an
Exception or signal an error (for example, through a Mono.error(ex) return value),
which the retry filter can be configured to handle by retrying.

When using the retry filter with any HTTP method with a body, the body will be

A cached and the gateway will become memory constrained. The body is cached in a
request attribute defined by ServerWebExchangeUtils.CACHED_REQUEST_BODY_ATTR. The
type of the object is a org.springframework.core.io.buffer.DataBuffer.

76.27. The RequestSize GatewayFilter Factory

When the request size is greater than the permissible limit, the RequestSize GatewayFilter factory
can restrict a request from reaching the downstream service. The filter takes a maxSize parameter.
The maxSize is a ‘DataSize type, so values can be defined as a number followed by an optional
DataUnit suffix such as 'KB' or 'MB'. The default is 'B' for bytes. It is the permissible size limit of the
request defined in bytes. The following listing configures a RequestSize GatewayFilter:

Example 60. application.yml

spring:
cloud:
gateway:

routes:

- id: request_size_route
uri: http://localhost:8080/upload
predicates:

- Path=/upload
filters:
- name: RequestSize
args:
maxSize: 5000000

The RequestSize GatewayFilter factory sets the response status as 413 Payload Too Large with an
additional header errorMessage when the request is rejected due to size. The following example
shows such an errorMessage:

errorMessage' : ‘Request size is larger than permissible limit. Request size is
6.0 MB where permissible limit is 5.0 MB

o The default request size is set to five MB if not provided as a filter argument in the
route definition.

76.28. The SetRequestHostHeader GatewayFilter Factory

There are certain situation when the host header may need to be overridden. In this situation, the
SetRequestHostHeader GatewayFilter factory can replace the existing host header with a specified
vaue. The filter takes a host parameter. The following listing configures a SetRequestHostHeader
GatewayFilter:

Example 61. application.yml

spring:
cloud:
gateway:

routes:

- id: set_request_host_header_route
uri: http://localhost:8080/headers
predicates:

- Path=/headers
filters:
- name: SetRequestHostHeader
args:
host: example.org

The SetRequestHostHeader GatewayFilter factory replaces the value of the host header with
example.org.

76.29. Modify a Request Body GatewayFilter Factory

You can use the ModifyRequestBody filter filter to modify the request body before it is sent
downstream by the gateway.

o This filter can be configured only by using the Java DSL.

The following listing shows how to modify a request body GatewayFilter:

©Bean
public Routelocator routes(RoutelLocatorBuilder builder) {
return builder.routes()
.route("rewrite_request_obj", r -> r.host("*.rewriterequestobj.org")
.filters(f -> f.prefixPath("/httpbin")
.modifyRequestBody(String.class, Hello.class,
MediaType.APPLICATION_JSON_VALUE,
(exchange, s) -> return Mono.just(new

Hello(s.toUpperCase())))).uri(uri))

.build();
}

static class Hello {
String message;

public Hello() { }

public Hello(String message) {
this.message = message;

}

public String getMessage() {
return message;

}

public void setMessage(String message) {
this.message = message;

}

o if the request has no body, the RewriteFilter will be passed null. Mono.empty()
should be returned to assign a missing body in the request.

76.30. Modify a Response Body GatewayFilter Factory

You can use the ModifyResponseBody filter to modify the response body before it is sent back to the
client.

o This filter can be configured only by using the Java DSL.

The following listing shows how to modify a response body GatewayFilter:

@Bean
public Routelocator routes(RoutelLocatorBuilder builder) {

return builder.routes()
.route("rewrite_response_upper", r -> r.host("*.rewriteresponseupper.org")
.filters(f -> f.prefixPath("/httpbin")
.modifyResponseBody(String.class, String.class,
(exchange, s) -> Mono.just(s.toUpperCase()))).uri(uri))

.build();

o if the response has no body, the RewriteFilter will be passed null.
Mono.empty() should be returned to assign a missing body in the response.

76.31. Default Filters

To add a filter and apply it to all routes, you can use spring.cloud.gateway.default-filters. This
property takes a list of filters. The following listing defines a set of default filters:

Example 62. application.yml

spring:
cloud:
gateway:
default-filters:
- AddResponseHeader=X-Response-Default-Red, Default-Blue

- PrefixPath=/httpbin

Chapter 77. Global Filters

The GlobalFilter interface has the same signature as GatewayFilter. These are special filters that
are conditionally applied to all routes.

e This interface and its usage are subject to change in future milestone releases.

77.1. Combined Global Filter and GatewayFilter
Ordering

When a request matches a route, the filtering web handler adds all instances of GlobalFilter and all
route-specific instances of GatewayFilter to a filter chain. This combined filter chain is sorted by the
org.springframework.core.Ordered interface, which you can set by implementing the getOrder()
method.

As Spring Cloud Gateway distinguishes between “pre” and “post” phases for filter logic execution
(see How it Works), the filter with the highest precedence is the first in the “pre”-phase and the last
in the “post”-phase.

The following listing configures a filter chain:

Example 63. ExampleConfiguration.java

@Bean
public GlobalFilter customFilter() {
return new CustomGlobalFilter();

}

public class CustomGlobalFilter implements GlobalFilter, Ordered {

@0verride
public Mono<Void> filter(ServerWebExchange exchange, GatewayFilterChain chain)

log.info("custom global filter");
return chain.filter(exchange);

}

@0verride

public int getOrder() {
return -1;

}

77.2. Forward Routing Filter

The ForwardRoutingFilter looks for a URI in the exchange attribute
ServerWebExchangeUtils.GATEWAY_REQUEST_URL_ATTR. If the URL has a forward scheme (such as
forward:///localendpoint), it uses the Spring DispatcherHandler to handle the request. The path part
of the request URL is overridden with the path in the forward URL. The unmodified original URL is
appended to the list in the ServerWebExchangeUtils.GATEWAY_ORIGINAL_REQUEST_URL_ATTR attribute.

77.3. The LoadBalancer(Client Filter

The LoadBalancerClientFilter looks for a URI in the exchange attribute named
ServerWebExchangeUtils.GATEWAY_REQUEST_URL_ATTR. If the URL has a scheme of 1b (such as
1b://myservice), it uses the Spring Cloud LoadBalancerClient to resolve the name (myservice in this
case) to an actual host and port and replaces the URI in the same attribute. The unmodified original
URL is appended to the list in the ServerWebExchangeUtils.GATEWAY_ORIGINAL_REQUEST_URL_ATTR
attribute. The filter also looks in the ServerWebExchangeUtils.GATEWAY_SCHEME_PREFIX_ATTR attribute to
see if it equals 1b. If so, the same rules apply. The following listing configures a
LoadBalancer(ClientFilter:

Example 64. application.yml

spring:
cloud:
gateway:
routes:
- id: myRoute
uri: lb://service
predicates:
- Path=/service/**

By default, when a service instance cannot be found in the LoadBalancer, a 503 is
o returned. You can configure the Gateway to return a 404 by setting
spring.cloud.qgateway.loadbalancer.use404=true.

The isSecure value of the Servicelnstance returned from the LoadBalancer
overrides the scheme specified in the request made to the Gateway. For example, if
the request comes into the Gateway over HTTPS but the ServiceInstance indicates it

o is not secure, the downstream request is made over HTTP. The opposite situation
can also apply. However, if GATEWAY_SCHEME_PREFIX_ATTR is specified for the route in
the Gateway configuration, the prefix is stripped and the resulting scheme from
the route URL overrides the ServiceInstance configuration.

LoadBalancer(ClientFilter uses a blocking ribbon LoadBalancerClient under the

0 hood. We suggest you use ReactiveloadBalancerClientFilter instead. You can
switch to it by setting the value of the spring.cloud.loadbalancer.ribbon.enabled to
false.

77.4. The ReactiveloadBalancerClientFilter

The ReactiveloadBalancerClientFilter looks for a URI in the exchange attribute named
ServerWebExchangeUtils.GATEWAY_REQUEST_URL_ATTR. If the URL has a 1b scheme (such as
1b://myservice), it uses the Spring Cloud ReactorlLoadBalancer to resolve the name (myservice in this
example) to an actual host and port and replaces the URI in the same attribute. The unmodified
original URL is appended to the list in the
ServerWebExchangeUtils.GATEWAY_ORIGINAL_REQUEST_URL_ATTR attribute. The filter also looks in the
ServerWebExchangeUtils.GATEWAY_SCHEME_PREFIX_ATTR attribute to see if it equals 1b. If so, the same
rules apply. The following listing configures a ReactivelLoadBalancerClientFilter:

Example 65. application.yml

spring:
cloud:
gateway:
routes:
- id: myRoute
uri: lb://service
predicates:
- Path=/service/**

By default, when a service instance cannot be found by the ReactorLoadBalancer, a
o 503 is returned. You can configure the gateway to return a 404 by setting
spring.cloud.gateway.loadbalancer.use404=true.

The isSecure value of the Servicelnstance returned from the
ReactiveloadBalancerClientFilter overrides the scheme specified in the request
made to the Gateway. For example, if the request comes into the Gateway over

o HTTPS but the ServiceInstance indicates it is not secure, the downstream request is
made over HTTP. The opposite situation can also apply. However, if
GATEWAY_SCHEME_PREFIX_ATTR is specified for the route in the Gateway configuration,
the prefix is stripped and the resulting scheme from the route URL overrides the
ServicelInstance configuration.

77.5. The Netty Routing Filter

The Netty routing filter runs if the URL located in the
ServerWebExchangeUtils.GATEWAY_REQUEST_URL_ATTR exchange attribute has a http or https scheme. It
uses the Netty HttpClient to make the downstream proxy request. The response is put in the

ServerWebExchangeUtils.CLIENT_RESPONSE_ATTR exchange attribute for use in a later filter. (There is
also an experimental WebClientHttpRoutingFilter that performs the same function but does not
require Netty.)

77.6. The Netty Write Response Filter

The NettyWriteResponseFilter runs if there 1is a Netty HttpClientResponse in the
ServerWebExchangeUtils.CLIENT_RESPONSE_ATTR exchange attribute. It runs after all other filters have
completed and writes the proxy response back to the gateway client response. (There is also an
experimental WebClientWriteResponseFilter that performs the same function but does not require
Netty.)

77.7. The RouteToRequestUr1 Filter

If there is a Route object in the ServerWebExchangeUtils.GATEWAY_ROUTE_ATTR exchange attribute, the
RouteToRequestUrlFilter runs. It creates a new URI, based off of the request URI but updated with
the URI attribute of the Route object. The new URI is placed in the
ServerWebExchangeUtils.GATEWAY_REQUEST_URL_ATTR exchange attribute .

If the URI has a scheme prefix, such as 1b:ws://serviceid, the 1b scheme is stripped from the URI
and placed in the ServerWebExchangeUtils.GATEWAY_SCHEME_PREFIX_ATTR for use later in the filter
chain.

77.8. The Websocket Routing Filter

If the URL located in the ServerWebExchangeUtils.GATEWAY_REQUEST_URL_ATTR exchange attribute has a
ws or wss scheme, the websocket routing filter runs. It uses the Spring WebSocket infrastructure to
forward the websocket request downstream.

You can load-balance websockets by prefixing the URI with 1b, such as 1b:ws://serviceid.

o If you use Sock]S as a fallback over normal HTTP, you should configure a normal
HTTP route as well as the websocket Route.

The following listing configures a websocket routing filter:

https://github.com/sockjs

Example 66. application.yml

spring:
cloud:
gateway:
routes:
Sock]S route
- id: websocket_sockjs_route
uri: http://localhost:3001
predicates:
- Path=/websocket/info/**
Normal Websocket route
- id: websocket_route
uri: ws://localhost:3001
predicates:
- Path=/websocket/**

77.9. The Gateway Metrics Filter

To enable gateway metrics, add spring-boot-starter-actuator as a project dependency. Then, by
default, the gateway metrics filter runs as long as the property
spring.cloud.gateway.metrics.enabled is not set to false. This filter adds a timer metric named
gateway.requests with the following tags:

* routeld: The route ID.

 routeUri: The URI to which the API is routed.

 outcome: The outcome, as classified by HttpStatus.Series.

» status: The HTTP status of the request returned to the client.

httpStatusCode: The HTTP Status of the request returned to the client.

httpMethod: The HTTP method used for the request.

These metrics are then available to be scraped from /actuator/metrics/gateway.requests and can be
easily integrated with Prometheus to create a Grafana dashboard.

o To enable the prometheus endpoint, add micrometer-registry-prometheus as a
project dependency.

77.10. Marking An Exchange As Routed

After the gateway has routed a ServerWebExchange, it marks that exchange as “routed” by adding
gatewayAlreadyRouted to the exchange attributes. Once a request has been marked as routed, other
routing filters will not route the request again, essentially skipping the filter. There are convenience
methods that you can use to mark an exchange as routed or check if an exchange has already been
routed.

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/http/HttpStatus.Series.html
images/gateway-grafana-dashboard.jpeg
gateway-grafana-dashboard.json

» ServerlWebExchangeUtils.isAlreadyRouted takes a ServerWebExchange object and checks if it has
been “routed”.

» ServerlWlebExchangeUtils.setAlreadyRouted takes a ServerWebExchange object and marks it as
“routed”.

Chapter 78. HttpHeadersFilters

HttpHeadersFilters are applied to requests before sending them downstream, such as in the
NettyRoutingFilter.

78.1. Forwarded Headers Filter

The Forwarded Headers Filter creates a Forwarded header to send to the downstream service. It adds
the Host header, scheme and port of the current request to any existing Forwarded header.

78.2. RemoveHopByHop Headers Filter

The RemoveHopByHop Headers Filter removes headers from forwarded requests. The default list of
headers that is removed comes from the IETF.

The default removed headers are:

* Connection

* Keep-Alive

* Proxy-Authenticate
* Proxy-Authorization
 TE

e Trailer

* Transfer-Encoding
* Upgrade

To change this, set the spring.cloud.qgateway.filter.remove-hop-by-hop.headers property to the list
of header names to remove.

78.3. XForwarded Headers Filter

The XForwarded Headers Filter creates various a X-Forwarded-* headers to send to the downstream
service. It users the Host header, scheme, port and path of the current request to create the various
headers.

Creating of individual headers can be controlled by the following boolean properties (defaults to
true):

« spring.cloud.gateway.x-forwarded. for-enabled

« spring.cloud.gateway.x-forwarded.host-enabled
« spring.cloud.gateway.x-forwarded.port-enabled
« spring.cloud.gateway.x-forwarded.proto-enabled

« spring.cloud.gateway.x-forwarded.prefix-enabled

Appending multiple headers can be controlled by the following boolean properties (defaults to

https://tools.ietf.org/html/draft-ietf-httpbis-p1-messaging-14#section-7.1.3

true):

spring.
spring.
spring.
spring.

spring.

cloud.gateway.
cloud.gateway.
cloud.gateway.
cloud.gateway.

cloud.gateway.

x-forwarded. for-append

x-forwarded.host-append
x-forwarded.port-append
x-forwarded.proto-append

x-forwarded.prefix-append

Chapter 79. TLS and SSL

The gateway can listen for requests on HTTPS by following the usual Spring server configuration.
The following example shows how to do so:

Example 67. application.yml

server:
ssl:
enabled: true
key-alias: scg
key-store-password: scgl1234
key-store: classpath:scg-keystore.p12
key-store-type: PK(CS12

You can route gateway routes to both HTTP and HTTPS backends. If you are routing to an HTTPS
backend, you can configure the gateway to trust all downstream certificates with the following
configuration:

Example 68. application.yml

spring:
cloud:
gateway:
httpclient:
ssl:
uselnsecureTrustManager: true

Using an insecure trust manager is not suitable for production. For a production deployment, you
can configure the gateway with a set of known certificates that it can trust with the following
configuration:

Example 69. application.yml

spring:
cloud:
gateway:
httpclient:
ssl:
trustedX509Certificates:
- certl1.pem
- cert2.pem

If the Spring Cloud Gateway is not provisioned with trusted certificates, the default trust store is
used (which you can override by setting the javax.net.ssl.trustStore system property).

79.1. TLS Handshake

The gateway maintains a client pool that it uses to route to backends. When communicating over
HTTPS, the client initiates a TLS handshake. A number of timeouts are associated with this
handshake. You can configure these timeouts can be configured (defaults shown) as follows:

Example 70. application.yml

spring:
cloud:
gateway:
httpclient:
ssl:
handshake-timeout-millis: 10000
close-notify-flush-timeout-millis: 3000
close-notify-read-timeout-millis: @

Chapter 80. Configuration

Configuration for Spring Cloud Gateway is driven by a collection of RouteDefinitionlLocator
instances. The following listing shows the definition of the RouteDefinitionLocator interface:

Example 71. RouteDefinitionLocator.java

public interface RouteDefinitionLocator {
Flux<RouteDefinition> getRouteDefinitions();

}

By default, a PropertiesRouteDefinitionLocator loads properties by using Spring Boot’s
@ConfigurationProperties mechanism.

The earlier configuration examples all use a shortcut notation that uses positional arguments
rather than named ones. The following two examples are equivalent:

Example 72. application.yml

spring:
cloud:
gateway:
routes:
- id: setstatus_route
uri: https://example.org

filters:
- name: SetStatus
args:
status: 401

- id: setstatusshortcut route
uri: https://example.org
filters:

- SetStatus=401

For some usages of the gateway, properties are adequate, but some production use cases benefit
from loading configuration from an external source, such as a database. Future milestone versions
will have RouteDefinitionLocator implementations based off of Spring Data Repositories, such as
Redis, MongoDB, and Cassandra.

Chapter 81. Route Metadata Configuration

You can configure additional parameters for each route by using metadata, as follows:

Example 73. application.yml

spring:
cloud:
gateway:
routes:
- id: route_with_metadata
uri: https://example.org

metadata:
optionName: "OptionValue"
compositeObject:

name: "value"
iAmNumber: 1

You could acquire all metadata properties from an exchange, as follows:

Route route = exchange.getAttribute(GATEWAY_ROUTE_ATTR);
// get all metadata properties

route.getMetadata();

// get a single metadata property
route.getMetadata(someKey);

Chapter 82. Http timeouts configuration

Http timeouts (response and connect) can be configured for all routes and overridden for each
specific route.

82.1. Globhal timeouts

To configure Global http timeouts:
connect-timeout must be specified in milliseconds.
response-timeout must be specified as a java.time.Duration

global http timeouts example

spring:
cloud:
gateway:
httpclient:
connect-timeout: 1000
response-timeout: 5s

82.2. Per-route timeouts

To configure per-route timeouts:
connect-timeout must be specified in milliseconds.
response-timeout must be specified in milliseconds.

per-route http timeouts configuration via configuration

- id: per_route_timeouts
uri: https://example.org
predicates:
- name: Path
args:
pattern: /delay/{timeout}
metadata:
response-timeout: 200
connect-timeout: 200

per-route timeouts configuration using Java DSL

import static
org.springframework.cloud.gateway.support.RouteMetadataltils.CONNECT_TIMEOUT_ATTR;

import static
org.springframework.cloud.gateway.support.RouteMetadataUtils.RESPONSE_TIMEOUT_ATTR;

@Bean
public Routelocator customRoutelocator(RoutelLocatorBuilder routeBuilder){

return routeBuilder.routes()

.route("test1", r -> {
return r.host("*.somehost.org").and().path("/somepath")
.filters(f -> f.addRequestHeader("header1", "header-value-1"))

.uri("http://someuri")
.metadata(RESPONSE_TIMEOUT_ATTR, 200)
.metadata(CONNECT_TIMEOUT _ATTR, 200);

1))
.build();

82.3. Fluent Java Routes API

To allow for simple configuration in Java, the RoutelLocatorBuilder bean includes a fluent APIL. The
following listing shows how it works:

Example 74. GatewaySampleApplication.java

// static imports from GatewayFilters and RoutePredicates
@Bean
public Routelocator customRoutelLocator(RouteLocatorBuilder builder,
ThrottleGatewayFilterFactory throttle) {
return builder.routes()
.route(r -> r.host("**.abc.org").and().path("/image/png")
filters(f ->
f.addResponseHeader ("X-TestHeader", "foobar"))
.uri("http://httpbin.org:80")
)
.route(r -> r.path("/image/webp")
filters(f ->
f.addResponseHeader ("X-AnotherHeader", "baz"))
.uri("http://httpbin.org:80")
.metadata("key", "value")
)
.route(r -> r.order(-1)
.host("**.throttle.org").and().path("/get")
.filters(f -> f.filter(throttle.apply(1,
1
10,
TimeUnit.SECONDS)))
.uri("http://httpbin.org:80")
.metadata("key", "value")

)
.build();

This style also allows for more custom predicate assertions. The predicates defined by
RouteDefinitionLocator beans are combined using logical and. By using the fluent Java API, you can

use the and(), or(), and negate() operators on the Predicate class.

82.4. The DiscoveryClient Route Definition Locator

You can configure the gateway to create routes based on services registered with a DiscoveryClient

compatible service registry.

To enable this, set spring.cloud.gateway.discovery.locator.enabled=true and make sure a
Discovery(Client implementation (such as Netflix Eureka, Consul, or Zookeeper) is on the classpath

and enabled.

82.4.1. Configuring Predicates and Filters For DiscoveryClient Routes

By default, the gateway defines a single predicate and filter for routes created with a

Discovery(Client.

The default predicate is a path predicate defined with the pattern /serviceId/**, where serviceld is
the ID of the service from the DiscoveryClient.

The default filter is a rewrite path filter with the regex /serviceld/(7<remaining>.*) and the
replacement /${remaining}. This strips the service ID from the path before the request is sent
downstream.

If you want to customize the predicates or filters used by the DiscoveryClient routes, set
spring.cloud.gateway.discovery.locator.predicates[x] and
spring.cloud.gateway.discovery.locator.filters[y]. When doing so, you need to make sure to
include the default predicate and filter shown earlier, if you want to retain that functionality. The
following example shows what this looks like:

Example 75. application.properties

spring.cloud.gateway.discovery.locator.predicates[@].name: Path
spring.cloud.gateway.discovery.locator.predicates[0].args[pattern]:
"'/'+serviceld+'/**""

spring.cloud.gateway.discovery.locator.predicates[1].name: Host
spring.cloud.gateway.discovery.locator.predicates[1].args[pattern]: "'**.foo.com""
spring.cloud.gateway.discovery.locator.filters[@].name: Hystrix
spring.cloud.gateway.discovery.locator.filters[@].args[name]: serviceld
spring.cloud.gateway.discovery.locator.filters[1].name: RewritePath
spring.cloud.qgateway.discovery.locator.filters[1].args[regexp]: "'/"' + serviceld +
"/(?<remaining>.*)""
spring.cloud.gateway.discovery.locator.filters[1].args[replacement]:
"'/${remaining}

Chapter 83. Reactor Netty Access Logs

To enable Reactor Netty access logs, set -Dreactor.netty.http.server.accessLogEnabled=true.

o It must be a Java System Property, not a Spring Boot property.

You can configure the logging system to have a separate access log file. The following example
creates a Logback configuration:

Example 76. logback.xml

<appender name="accesslLog" class="ch.qos.logback.core.FileAppender">
<file>access_log.log</file>
<encoder>
<pattern>%msg%n</pattern>
</encoder>
</appender>
<appender name="async" class="ch.qos.logback.classic.AsyncAppender">
<appender-ref ref="accesslLog" />
</appender>

<logger name="reactor.netty.http.server.AccessLog" level="INFO0"
additivity="false">
<appender-ref ref="async"/>
</logger>

Chapter 84. CORS Configuration

You can configure the gateway to control CORS behavior. The “global” CORS configuration is a map
of URL patterns to Spring Framework CorsConfiguration. The following example configures CORS:

Example 77. application.yml

spring:
cloud:
gateway:
globalcors:
cors-configurations:
B WA B
allowedOrigins: "https://docs.spring.io"
allowedMethods:
- GET

In the preceding example, CORS requests are allowed from requests that originate from
docs.spring.io for all GET requested paths.

To provide the same CORS configuration to requests that are not handled by some gateway route
predicate, set the spring.cloud.gateway.globalcors.add-to-simple-url-handler-mapping property to
true. This is useful when you try to support CORS preflight requests and your route predicate does
not evalute to true because the HTTP method is options.

https://docs.spring.io/spring/docs/5.0.x/javadoc-api/org/springframework/web/cors/CorsConfiguration.html
https://docs.spring.io/spring/docs/5.0.x/javadoc-api/org/springframework/web/cors/CorsConfiguration.html

Chapter 85. Actuator API

The /gateway actuator endpoint lets you monitor and interact with a Spring Cloud Gateway
application. To be remotely accessible, the endpoint has to be enabled and exposed over HTTP or
JMX in the application properties. The following listing shows how to do so:

Example 78. application.properties

management.endpoint.gateway.enabled=true # default value
management.endpoints.web.exposure.include=gateway

85.1. Verbose Actuator Format

A new, more verbose format has been added to Spring Cloud Gateway. It adds more detail to each
route, letting you view the predicates and filters associated with each route along with any
configuration that is available. The following example configures /actuator/gateway/routes:

[

{
"predicate": "(Hosts: [**.addrequestheader.org] && Paths: [/headers], match

trailing slash: true)",
"route_id": "add_request_header_test",
"filters": [
"[[AddResponseHeader X-Response-Default-Foo = 'Default-Bar'], order = 1]",
"[[AddRequestHeader X-Request-Foo = 'Bar'], order = 1]",
"[[PrefixPath prefix = '/httpbin'], order = 2]"
.
"uri": "1b://testservice",
"order": @
}
]

This feature is enabled by default. To disable it, set the following property:

Example 79. application.properties

spring.cloud.gateway.actuator.verbose.enabled=false

This will default to true in a future release.

https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html#production-ready-endpoints-enabling-endpoints
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html#production-ready-endpoints-exposing-endpoints
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-endpoints.html#production-ready-endpoints-exposing-endpoints

85.2. Retrieving Route Filters

This section details how to retrieve route filters, including:

* Global Filters

* [gateway-route-filters]

85.2.1. Global Filters

To retrieve the global filters applied to all routes, make a GET request
/actuator/qgateway/globalfilters. The resulting response is similar to the following:

{
"org.springframework.cloud.gateway.filter.LoadBalancerClientFilter@77856cc5":

10100,
"org.springframework.cloud.gateway.filter.RouteToRequestUr1Filter@4f6fd101":

10000,

org.springframework.cloud.gateway.filter.NettyWriteResponseFilter@32d22650":

"org.springframework.cloud.gateway.filter.ForwardRoutingFilter@106459d9":
2147483647,

"org.springframework.cloud.gateway.filter.NettyRoutingFilter@1fbd5e0":
2147483647,

"org.springframework.cloud.gateway.filter.ForwardPathFilter@33a71d23": @,

"org.springframework.cloud.gateway.filter.AdaptCachedBodyGlobalFilter@135064ea":
2147483637,

"org.springframework.cloud.gateway.filter.WebsocketRoutingFilter@23c05889":
2147483646

}

to

The response contains the details of the global filters that are in place. For each global filter, there is
a string representation of the filter object (for example,

org.springframework.cloud.gateway.filter.LoadBalancerClientFilter@77856cc5) and
corresponding order in the filter chain.}

85.2.2. Route Filters

the

To retrieve the GatewayFilter factories applied to routes, make a GET request to

/actuator/qgateway/routefilters. The resulting response is similar to the following:

{
"[AddRequestHeaderGatewayFilterFactory@570ed9c configClass =
AbstractNameValueGatewayFilterFactory.NameValueConfig]": null,
"[SecureHeadersGatewayFilterFactory@fceab5d configClass = Object]": null,
"[SaveSessionGatewayFilterFactory@4449b273 configClass = Object]": null

}

The response contains the details of the GatewayFilter factories applied to any particular route. For
each factory there is a string representation of the corresponding object (for example,
[SecureHeadersGatewayFilterFactory@fceab5d configClass = Object]). Note that the null value is due
to an incomplete implementation of the endpoint controller, because it tries to set the order of the
object in the filter chain, which does not apply to a GatewayFilter factory object.

85.3. Refreshing the Route Cache

To clear the routes cache, make a POST request to /actuator/gateway/refresh. The request returns a
200 without a response body.

85.4. Retrieving the Routes Defined in the Gateway

To retrieve the routes defined in the gateway, make a GET request to /actuator/gateway/routes. The
resulting response is similar to the following:

[{

"route_id": "first_route",
“route_object": {

"predicate":
"org.springframework.cloud.gateway.handler.predicate.PathRoutePredicateFactory$$La

mbda$432/1736826640@1e9d7e7d",
"filters": [

"OrderedGatewayFilter{delegate=org.springframework.cloud.gateway.filter.factory.Pr
eserveHostHeaderGatewayFilterFactory$$Lambda$436/67448027506631ef72, order=0}"

]
+
"order": 0
+
{

"route_id": "second_route",
"route_object": {
"predicate":
"org.springframework.cloud.gateway.handler.predicate.PathRoutePredicateFactory$$La

mbda$432/1736826640@cd8d298",
"filters": []

h

"order": 0

}

The response contains the details of all the routes defined in the gateway. The following table
describes the structure of each element (each is a route) of the response:

Path Type Description

route_id String The route ID.

route_object.predicate Object The route predicate.

route_object.filters Array The GatewayFilter factories applied to the
route.

order Number The route order.

85.5. Retrieving Information about a Particular Route

To retrieve information about a single route, make a GET request to /actuator/gateway/routes/{id}
(for example, /actuator/gateway/routes/first_route). The resulting response is similar to the

following:

"id": "first_route",
"predicates": [{

"name": "Path",

"args": {"_genkey_0":"/first"}

H,
"filters": [],
"uri": "https://www.uri-destination.org",
"order": 0
]

The following table describes the structure of the response:

Path Type Description
id String The route ID.
predicates Array The collection of route predicates. Each

item defines the name and the arguments
of a given predicate.

filters Array The collection of filters applied to the
route.

uri String The destination URI of the route.

order Number The route order.

85.6. Creating and Deleting a Particular Route

To create a route, make a POST request to /gateway/routes/{id_route_to_create} with a JSON body
that specifies the fields of the route (see Retrieving Information about a Particular Route).

To delete a route, make a DELETE request to /gateway/routes/{id_route_to_delete}.

85.7. Recap: The List of All endpoints

The folloiwng table below summarizes the Spring Cloud Gateway actuator endpoints (note that
each endpoint has /actuator/gateway as the base-path):

ID HTTP Method Description
globalfilters GET Displays the list of global filters applied to the routes.
routefilters GET Displays the list of GatewayFilter factories applied to a

particular route.
refresh POST Clears the routes cache.

routes GET Displays the list of routes defined in the gateway.

ID HTTP Method Description

routes/{id} GET Displays information about a particular route.

routes/{id} POST
routes/{id} DELETE

Adds a new route to the gateway.

Removes an existing route from the gateway.

Chapter 86. Troubleshooting

This section covers common problems that may arise when you use Spring Cloud Gateway.

86.1. Log Levels

The following loggers may contain valuable troubleshooting information at the DEBUG and TRACE
levels:

« org.springframework.cloud.gateway

o org.springframework.http.server.reactive

o org.springframework.web.reactive

« org.springframework.boot.autoconfigure.web
o reactor.netty

o redisratelimiter

86.2. Wiretap

The Reactor Netty HttpClient and HttpServer can have wiretap enabled. When combined with
setting the reactor.netty log level to DEBUG or TRACE, it enables the logging of information, such as
headers and bodies sent and received across the wire. To enable wiretap, set
spring.cloud.gateway.httpserver.wiretap=true or spring.cloud.gateway.httpclient.wiretap=true for
the HttpServer and HttpClient, respectively.

Chapter 87. Developer Guide

These are basic guides to writing some custom components of the gateway.

87.1. Writing Custom Route Predicate Factories

In order to write a Route Predicate you will need to implement RoutePredicateFactory. There is an
abstract class called AbstractRoutePredicateFactory which you can extend.

MyRoutePredicateFactory.java

public class MyRoutePredicateFactory extends
AbstractRoutePredicateFactory<HeaderRoutePredicateFactory.Config> {

public MyRoutePredicateFactory() {
super(Config.class);

}

@0verride
public Predicate<ServerWebExchange> apply(Config config) {
// grab configuration from Config object
return exchange -> {
//grab the request
ServerHttpRequest request = exchange.getRequest();
//take information from the request to see if it
//matches configuration.
return matches(config, request);
}i
}

public static class Config {
//Put the configuration properties for your filter here

}

87.2. Writing Custom GatewayFilter Factories

To write a GatewayFilter, you must implement GatewayFilterFactory. You can extend an abstract
class called AbstractGatewayFilterFactory. The following examples show how to do so:

Example 80. PreGatewayFilterFactory.java

public class PreGatewayFilterFactory extends
AbstractGatewayFilterFactory<PreGatewayFilterFactory.Config> {

public PreGatewayFilterFactory() {
super(Config.class);

}

@0verride
public GatewayFilter apply(Config config) {
// grab configuration from Config object
return (exchange, chain) -> {
//1f you want to build a "pre" filter you need to manipulate the
//request before calling chain.filter
ServerHttpRequest.Builder builder = exchange.getRequest().mutate();
//use builder to manipulate the request
return
chain.filter(exchange.mutate().request(builder.build()).build());
¥
}

public static class Config {
//Put the configuration properties for your filter here

}

PostGatewayFilterFactory.java

public class PostGatewayFilterFactory extends
AbstractGatewayFilterFactory<PostGatewayFilterFactory.Config> {

public PostGatewayFilterFactory() {
super(Config.class);

}

@Override
public GatewayFilter apply(Config config) {
// grab configuration from Config object
return (exchange, chain) -> {
return chain.filter(exchange).then(Mono.fromRunnable(() -> {
ServerHttpResponse response = exchange.getResponse();
//Manipulate the response in some way
)i
h
}

public static class Config {
//Put the configuration properties for your filter here

}

87.2.1. Naming Custom Filters And References In Configuration
Custom filters class names should end in GatewayFilterFactory.

For example, to reference a filter named Something in configuration files, the filter must be in a class
named SomethingGatewayFilterFactory.

It is possible to create a gateway filter named without the GatewayFilterFactory
A suffix, such as class AnotherThing. This filter could be referenced as AnotherThing

in configuration files. This is not a supported naming convention and this syntax

may be removed in future releases. Please update the filter name to be compliant.

87.3. Writing Custom Global Filters

To write a custom global filter, you must implement GlobalFilter interface. This applies the filter to
all requests.

The following examples show how to set up global pre and post filters, respectively:

©Bean
public GlobalFilter customGlobalFilter() {
return (exchange, chain) -> exchange.getPrincipal()
.map(Principal::getName)
.defaultIfEmpty("Default User")
.map(userName -> {
//adds header to proxied request
exchange.getRequest().mutate().header ("CUSTOM-REQUEST-HEADER",
userName).build();
return exchange;
1))
.flatMap(chain::filter);
}

@Bean
public GlobalFilter customGlobalPostFilter() {
return (exchange, chain) -> chain.filter(exchange)
.then(Mono. just(exchange))
.map(serverWebExchange -> {
//adds header to response
serverWebExchange.getResponse().getHeaders().set("CUSTOM-RESPONSE-
HEADER",

HttpStatus.0K.equals(serverWebExchange.getResponse().getStatusCode()) ? "It
worked": "It did not work");
return serverWebExchange;

)
.then();

Chapter 88. Building a Simple Gateway by
Using Spring MVC or Webflux

n The following describes an alternative style gateway. None of the prior
documentation applies to what follows.

Spring Cloud Gateway provides a utility object called ProxyExchange. You can use it inside a regular
Spring web handler as a method parameter. It supports basic downstream HTTP exchanges
through methods that mirror the HTTP verbs. With MVC, it also supports forwarding to a local
handler through the forward() method. To use the ProxyExchange, include the right module in your
classpath (either spring-cloud-gateway-mvc or spring-cloud-gateway-webflux).

The following MVC example proxies a request to /test downstream to a remote server:

@RestController
@SpringBootApplication
public class GatewaySampleApplication {

@Value("${remote.home}")
private URI home;

@GetMapping("/test")

public ResponseEntity<?> proxy(ProxyExchange<byte[]> proxy) throws Exception {
return proxy.uri(home.toString() + "/image/png").get();

}

The following example does the same thing with Webflux:

@RestController
@SpringBootApplication
public class GatewaySampleApplication {

@Value("${remote.home}")
private URI home;

@GetMapping("/test")
public Mono<ResponseEntity<?>> proxy(ProxyExchange<byte[]> proxy) throws
Exception {
return proxy.uri(home.toString() + "/image/png").get();

}

Convenience methods on the ProxyExchange enable the handler method to discover and enhance the
URI path of the incoming request. For example, you might want to extract the trailing elements of a
path to pass them downstream:

@GetMapping("/proxy/path/**")

public ResponseEntity<?> proxyPath(ProxyExchange<byte[]> proxy) throws Exception {
String path = proxy.path("/proxy/path/");
return proxy.uri(home.toString() + "/foos/" + path).get();

}

All the features of Spring MVC and Webflux are available to gateway handler methods. As a result,
you can inject request headers and query parameters, for instance, and you can constrain the
incoming requests with declarations in the mapping annotation. See the documentation for
@RequestMapping in Spring MVC for more details of those features.

You can add headers to the downstream response by using the header () methods on ProxyExchange.

You can also manipulate response headers (and anything else you like in the response) by adding a
mapper to the get() method (and other methods). The mapper is a Function that takes the incoming
ResponseEntity and converts it to an outgoing one.

First-class support is provided for “sensitive” headers (by default, cookie and authorization), which
are not passed downstream, and for “proxy” (x-forwarded-*) headers.

Chapter 89. Configuration properties

To see the list of all Spring Cloud Gateway related configuration properties, see the appendix.

appendix.html

Spring Cloud GCP

Jodo André Martins; Jisha Abubaker; Ray Tsang; Mike Eltsufin; Artem Bilan; Andreas Berger; Balint
Pato; Chengyuan Zhao; Dmitry Solomakha; Elena Felder; Daniel Zou, Eddu Meléndez

Chapter 90. Introduction

The Spring Cloud GCP project makes the Spring Framework a first-class citizen of Google Cloud
Platform (GCP).

Spring Cloud GCP lets you leverage the power and simplicity of the Spring Framework to:

* Publish and subscribe to Google Cloud Pub/Sub topics
* Configure Spring JDBC with a few properties to use Google Cloud SQL

* Map objects, relationships, and collections with Spring Data Cloud Spanner, Spring Data Cloud
Datastore and Spring Data Reactive Repositories for Cloud Firestore

* Write and read from Spring Resources backed up by Google Cloud Storage
* Exchange messages with Spring Integration using Google Cloud Pub/Sub on the background
» Trace the execution of your app with Spring Cloud Sleuth and Google Stackdriver Trace

* Configure your app with Spring Cloud Config, backed up by the Google Runtime Configuration
API

* Consume and produce Google Cloud Storage data via Spring Integration GCS Channel Adapters
* Use Spring Security via Google Cloud IAP

* Analyze your images for text, objects, and other content with Google Cloud Vision

Chapter 91. Getting Started

This section describes how to get up to speed with Spring Cloud GCP libraries.

91.1. Setting up Dependencies

All Spring Cloud GCP artifacts are made available through Maven Central. The following resources
are provided to help you setup the libraries for your project:

* Maven Bill of Materials for dependency management

« Starter Dependencies for depending on Spring Cloud GCP modules

You may also consult our Github project to examine the code or build directly from source.

91.1.1. Bill of Materials
The Spring Cloud GCP Bill of Materials (BOM) contains the versions of all the dependencies it uses.

If you're a Maven user, adding the following to your pom.xml file will allow you omit any Spring
Cloud GCP dependency version numbers from your configuration. Instead, the version of the BOM
you’re using determines the versions of the used dependencies.

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-gcp-dependencies</artifactId>
<version>1.2.8.RELEASE</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

See the sections in the README for selecting an available version and Maven repository.

In the following sections, it will be assumed you are using the Spring Cloud GCP BOM and the
dependency snippets will not contain versions.

Gradle users can achieve the same kind of BOM experience using Spring’s dependency-
management-plugin Gradle plugin. For simplicity, the Gradle dependency snippets in the remainder
of this document will also omit their versions.

91.1.2. Starter Dependencies

Spring Cloud GCP offers starter dependencies through Maven to easily depend on different modules
of the library. Each starter contains all the dependencies and transitive dependencies needed to
begin using their corresponding Spring Cloud GCP module.

https://github.com/spring-cloud/spring-cloud-gcp
https://github.com/spring-gradle-plugins/dependency-management-plugin
https://github.com/spring-gradle-plugins/dependency-management-plugin
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-starters

For example, if you wish to write a Spring application with Cloud Pub/Sub, you would include the
spring-cloud-gcp-starter-pubsub dependency in your project. You do not need to include the
underlying spring-cloud-gcp-pubsub dependency, because the starter dependency includes it.

A summary of these artifacts are provided below.

Spring Cloud GCP Starter

Core

Cloud Spanner

Cloud Datastore

Cloud Pub/Sub

Logging

SQL - MySQL

SQL - PostgreSQL

Storage

Config

Trace

Vision

Security - IAP

Description

Automatically configure
authentication and Google
project settings

Provides integrations with
Google Cloud Spanner

Provides integrations with
Google Cloud Datastore

Provides integrations with
Google Cloud Pub/Sub

Enables Stackdriver Logging

Cloud SQL integrations with
MySQL

Cloud SQL integrations with
PostgreSQL

Provides integrations with
Google Cloud Storage and
Spring Resource

Enables usage of Google
Runtime Configuration API as a
Spring Cloud Config server

Enables instrumentation with
Google Stackdriver Tracing

Provides integrations with
Google Cloud Vision

Provides a security layer over
applications deployed to Google
Cloud

Maven Artifact Name

org.springframework.cloud:spri
ng-cloud-gcp-starter

org.springframework.cloud:spri
ng-cloud-gcp-starter-data-
spanner

org.springframework.cloud:spri
ng-cloud-gcp-starter-data-
datastore

org.springframework.cloud:spri
ng-cloud-gcp-starter-pubsub

org.springframework.cloud:spri
ng-cloud-gcp-starter-logging

org.springframework.cloud:spri
ng-cloud-gcp-starter-sql-mysql

org.springframework.cloud:spri
ng-cloud-gcp-starter-sql-
postgresql

org.springframework.cloud:spri
ng-cloud-gcp-starter-storage

org.springframework.cloud:spri
ng-cloud-gcp-starter-config

org.springframework.cloud:spri
ng-cloud-gcp-starter-trace

org.springframework.cloud:spri
ng-cloud-gcp-starter-vision
org.springframework.cloud:spri
ng-cloud-gcp-starter-security-
iap

91.1.3. Spring Initializr

Spring Initializr is a tool which generates the scaffolding code for a new Spring Boot project. It
handles the work of generating the Maven or Gradle build file so you do not have to manually add

core.pdf#spring-cloud-gcp-core
core.pdf#spring-cloud-gcp-core
spanner.pdf#_spring_data_cloud_spanner
spanner.pdf#_spring_data_cloud_spanner
spanner.pdf#_spring_data_cloud_spanner
datastore.pdf#_spring_data_cloud_datastore
datastore.pdf#_spring_data_cloud_datastore
datastore.pdf#_spring_data_cloud_datastore
pubsub.pdf#_google_cloud_pubsub
pubsub.pdf#_google_cloud_pubsub
logging.pdf#_stackdriver_logging
logging.pdf#_stackdriver_logging
sql.pdf#_spring_jdbc
sql.pdf#_spring_jdbc
sql.pdf#_spring_jdbc
sql.pdf#_spring_jdbc
sql.pdf#_spring_jdbc
storage.pdf#_spring_resources
storage.pdf#_spring_resources
config.pdf#_spring_cloud_config
config.pdf#_spring_cloud_config
trace.pdf#_spring_cloud_sleuth
trace.pdf#_spring_cloud_sleuth
vision.pdf#_google_cloud_vision
vision.pdf#_google_cloud_vision
security-iap.pdf#_cloud_identity_aware_proxy_iap_authentication
security-iap.pdf#_cloud_identity_aware_proxy_iap_authentication
security-iap.pdf#_cloud_identity_aware_proxy_iap_authentication
https://start.spring.io/

the dependencies yourself.

Spring Initializr offers three modules from Spring Cloud GCP that you can use to generate your
project.

* GCP Support: The GCP Support module contains auto-configuration support for every Spring
Cloud GCP integration. Most of the autoconfiguration code is only enabled if the required
dependency is added to your project.

* GCP Messaging: Google Cloud Pub/Sub integrations work out of the box.

* GCP Storage: Google Cloud Storage integrations work out of the box.

91.2. Learning Spring Cloud GCP

There are a variety of resources to help you learn how to use Spring Cloud GCP libraries.

91.2.1. Sample Applications

The easiest way to learn how to use Spring Cloud GCP is to consult the sample applications on
Github. Spring Cloud GCP provides sample applications which demonstrate how to use every
integration in the library. The table below highlights several samples of the most commonly used
integrations in Spring Cloud GCP.

GCP Integration Sample Application

Cloud Pub/Sub spring-cloud-gcp-pubsub-sample

Cloud Spanner spring-cloud-gcp-data-spanner-sample
Datastore spring-cloud-gcp-data-datastore-sample
Cloud SQL (w/ MySQL) spring-cloud-gcp-sql-mysql-sample

Cloud Storage spring-cloud-gcp-storage-resource-sample
Stackdriver Logging spring-cloud-gcp-logging-sample

Trace spring-cloud-gcp-trace-sample

Cloud Vision spring-cloud-gcp-vision-api-sample

Cloud Security - IAP spring-cloud-gcp-security-iap-sample

Each sample application demonstrates how to use Spring Cloud GCP libraries in context and how to
setup the dependencies for the project. The applications are fully functional and can be deployed to
Google Cloud Platform as well. If you are interested, you may consult guides for deploying an
application to AppEngine and to Google Kubernetes Engine.

91.2.2. Codelabs

For a more hands-on approach, there are several guides and codelabs to help you get up to speed.
These guides provide step-by-step instructions for building an application using Spring Cloud GCP.

Some examples include:

https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-pubsub-sample
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-data-spanner-sample
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-data-datastore-sample
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-sql-mysql-sample
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-storage-resource-sample
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-logging-sample
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-trace-sample
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-vision-api-sample
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-security-iap-sample
https://codelabs.developers.google.com/codelabs/cloud-app-engine-springboot/index.html
https://codelabs.developers.google.com/codelabs/cloud-app-engine-springboot/index.html
https://codelabs.developers.google.com/codelabs/cloud-springboot-kubernetes/index.html

Deploy a Spring Boot app to App Engine

Build a Kotlin Spring Boot app with Cloud SQL and Cloud Pub/Sub
* Build a Spring Boot application with Datastore

* Messaging with Spring Integration and Cloud Pub/Sub

The full collection of Spring codelabs can be found on the Google Developer Codelabs page.

https://codelabs.developers.google.com/codelabs/cloud-app-engine-springboot/index.html
https://codelabs.developers.google.com/codelabs/cloud-spring-cloud-gcp-kotlin/index.html
https://codelabs.developers.google.com/codelabs/cloud-spring-datastore/index.html
https://codelabs.developers.google.com/codelabs/cloud-spring-cloud-gcp-pubsub-integration/index.html
https://codelabs.developers.google.com/spring

Chapter 92. Spring Cloud GCP Core

Each Spring Cloud GCP module uses GepProjectIdProvider and CredentialsProvider to get the GCP
project ID and access credentials.

Spring Cloud GCP provides a Spring Boot starter to auto-configure the core components.

Maven coordinates, using Spring Cloud GCP BOM:

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-gcp-starter</artifactld>
</dependency>

Gradle coordinates:

dependencies {
implementation("org.springframework.cloud:spring-cloud-gcp-starter")

}

92.1. Configuration

The following options may be configured with Spring Cloud core.

Name Description Required Default value
spring.cloud.gcp.core. Enables or disables GCP No true
enabled

core auto configuration

92.2. Project ID

GepProjectIdProvider is a functional interface that returns a GCP project ID string.

public interface GcpProjectIdProvider {
String getProjectId();

}

The Spring Cloud GCP starter auto-configures a GepProjectIdProvider. If a spring.cloud.gcp.project-
id property is specified, the provided GepProjectIdProvider returns that property value.

spring.cloud.gcp.project-id=my-gcp-project-id

Otherwise, the project ID is discovered based on an ordered list of rules:

getting-started.pdf#_bill_of_materials
https://googlecloudplatform.github.io/google-cloud-java/google-cloud-clients/apidocs/com/google/cloud/ServiceOptions.html#getDefaultProjectId--

1. The project ID specified by the 600GLE_CLOUD_PROJECT environment variable
2. The Google App Engine project ID

3. The project ID specified in the JSON credentials file pointed by the
GOOGLE_APPLICATION_CREDENTIALS environment variable

4. The Google Cloud SDK project ID

5. The Google Compute Engine project ID, from the Google Compute Engine Metadata Server

92.3. Credentials

CredentialsProvider is a functional interface that returns the credentials to authenticate and
authorize calls to Google Cloud Client Libraries.

public interface CredentialsProvider {
Credentials getCredentials() throws IOException;
}

The Spring Cloud GCP starter auto-configures a CredentialsProvider. It uses the
spring.cloud.gcp.credentials.location property to locate the OAuth2 private key of a Google
service account. Keep in mind this property is a Spring Resource, so the credentials file can be
obtained from a number of different locations such as the file system, classpath, URL, etc. The next
example specifies the credentials location property in the file system.

spring.cloud.gcp.credentials.location=file:/usr/local/key.json

Alternatively, you can set the credentials by directly specifying the
spring.cloud.gcp.credentials.encoded-key property. The value should be the base64-encoded
account private key in JSON format.

If that credentials aren’t specified through properties, the starter tries to discover credentials from
a number of places:

1. Credentials file pointed to by the GOOGLE_APPLICATION_CREDENTIALS environment variable

2. Credentials provided by the Google Cloud SDK gcloud auth application-default login command

3. Google App Engine built-in credentials

4. Google Cloud Shell built-in credentials

5. Google Compute Engine built-in credentials
If your app is running on Google App Engine or Google Compute Engine, in most cases, you should
omit the spring.cloud.gcp.credentials.location property and, instead, let the Spring Cloud GCP
Starter get the correct credentials for those environments. On App Engine Standard, the App
Identity service account credentials are used, on App Engine Flexible, the Flexible service account

credential are used and on Google Compute Engine, the Compute Engine Default Service Account is
used.

https://docs.spring.io/spring/docs/current/spring-framework-reference/html/resources.html#resources-implementations
https://github.com/GoogleCloudPlatform/google-cloud-java#authentication
https://cloud.google.com/appengine/docs/standard/java/appidentity/
https://cloud.google.com/appengine/docs/standard/java/appidentity/
https://cloud.google.com/appengine/docs/flexible/java/service-account
https://cloud.google.com/appengine/docs/flexible/java/service-account
https://cloud.google.com/compute/docs/access/create-enable-service-accounts-for-instances#using_the_compute_engine_default_service_account

92.3.1. Scopes

By default, the credentials provided by the Spring Cloud GCP Starter contain scopes for every
service supported by Spring Cloud GCP.

Service Scope

Spanner www.googleapis.com/auth/spanner.admin,
www.googleapis.com/auth/spanner.data

Datastore www.googleapis.com/auth/datastore

Pub/Sub www.googleapis.com/auth/pubsub

Storage (Read Only) www.googleapis.com/auth/devstorage.read_only
Storage (Read/Write) www.googleapis.com/auth/

devstorage.read_write

Runtime Config www.googleapis.com/auth/cloudruntimeconfig
Trace (Append) www.googleapis.com/auth/trace.append

Cloud Platform www.googleapis.com/auth/cloud-platform
Vision www.googleapis.com/auth/cloud-vision

The Spring Cloud GCP starter allows you to configure a custom scope list for the provided
credentials. To do that, specify a comma-delimited list of Google OAuth2 scopes in the
spring.cloud.gcp.credentials.scopes property.

spring.cloud.gcp.credentials.scopes is a comma-delimited list of Google OAuth2 scopes for Google
Cloud Platform services that the credentials returned by the provided CredentialsProvider support.

spring.cloud.gcp.credentials.scopes=https://www.googleapis.com/auth/pubsub,https://wuww
.googleapis.com/auth/sqlservice.admin

You can also use DEFAULT_SCOPES placeholder as a scope to represent the starters default scopes, and
append the additional scopes you need to add.

spring.cloud.gcp.credentials.scopes=DEFAULT_SCOPES, https://www.googleapis.com/auth/clo
ud-vision

92.4. Environment

GepEnvironmentProvider is a functional interface, auto-configured by the Spring Cloud GCP starter,
that returns a GepEnvironment enum. The provider can help determine programmatically in which
GCP environment (App Engine Flexible, App Engine Standard, Kubernetes Engine or Compute
Engine) the application is deployed.

https://www.googleapis.com/auth/spanner.admin
https://www.googleapis.com/auth/spanner.data
https://www.googleapis.com/auth/datastore
https://www.googleapis.com/auth/pubsub
https://www.googleapis.com/auth/devstorage.read_only
https://www.googleapis.com/auth/devstorage.read_write
https://www.googleapis.com/auth/devstorage.read_write
https://www.googleapis.com/auth/cloudruntimeconfig
https://www.googleapis.com/auth/trace.append
https://www.googleapis.com/auth/cloud-platform
https://www.googleapis.com/auth/cloud-vision
https://developers.google.com/identity/protocols/googlescopes
https://developers.google.com/identity/protocols/googlescopes

public interface GcpEnvironmentProvider {
GepEnvironment getCurrentEnvironment();

}

92.5. Customizing bean scope

Spring Cloud GCP starters autoconfigure all necessary beans in the default singleton scope. If you
need a particular bean or set of beans to be recreated dynamically (for example, to rotate
credentials), there are two options:

1. Annotate custom beans of the necessary types with @RefreshScope. This makes the most sense if
your application is already redefining those beans.

2. Override the scope for autoconfigured beans by listing them in the Spring Cloud property
spring.cloud.refresh.extra-refreshable.

For example, the beans involved in Cloud Pub/Sub subscription could be marked as refreshable
as follows:

spring.cloud.refresh.extra-
refreshable=org.springframework.cloud.gcp.pubsub.support.SubscriberFactory,\
org.springframework.cloud.gcp.pubsub.core.subscriber.PubSubSubscriberTemplate

SmartLifecycle beans, such as Spring Integration adapters, do not currently
support @RefreshScope. If your application refreshes any beans used by such
SmartLifecycle objects, it may also have to restart the beans manually when
RefreshScopeRefreshedEvent is detected, such as in the Cloud Pub/Sub example
below:

o @Autowired
private PubSubInboundChannelAdapter pubSubAdapter;

@EventListener (RefreshScopeRefreshedEvent.class)

public void onRefreshScope(RefreshScopeRefreshedEvent event) {
this.pubSubAdapter.stop();
this.pubSubAdapter.start();

+

92.6. Spring Initializr

This starter is available from Spring Initializr through the GCP Support entry.

https://start.spring.io/

Chapter 93. Cloud Storage

Google Cloud Storage allows storing any types of files in single or multiple regions. A Spring Boot
starter is provided to auto-configure the various Storage components.

Maven coordinates, using Spring Cloud GCP BOM:

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-gcp-starter-storage</artifactId>
</dependency>

Gradle coordinates:

dependencies {
implementation("org.springframework.cloud:spring-cloud-gcp-starter-storage")

}

This starter is also available from Spring Initializr through the GCP Storage entry.

93.1. Using Cloud Storage

The starter automatically configures and registers a Storage bean in the Spring application context.
The Storage bean (Javadoc) can be used to list/create/update/delete buckets (a group of objects with
similar permissions and resiliency requirements) and objects.

@Autowired
private Storage storage;

public void createFile() {
Bucket bucket = storage.create(BucketInfo.of("my-app-storage-bucket"));

storage.create(
BlobInfo.newBuilder("my-app-storage-bucket", "subdirectory/my-file").build(),
"file contents".getBytes()

93.2. Cloud Storage Objects As Spring Resources

Spring Resources are an abstraction for a number of low-level resources, such as file system files,
classpath files, servlet context-relative files, etc. Spring Cloud GCP adds a new resource type: a
Google Cloud Storage (GCS) object.

The Spring Resource Abstraction for Google Cloud Storage allows GCS objects to be accessed by

https://cloud.google.com/storage/docs
getting-started.pdf#_bill_of_materials
https://start.spring.io/
https://googleapis.dev/java/google-cloud-storage/latest/com/google/cloud/storage/Storage.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/resources.html

their GCS URL using the @Value annotation:

@Value("gs://[YOUR_GCS_BUCKET]/[GCS_FILE_NAME]")
private Resource gcsResource;

...or the Spring application context
SpringApplication.run(...).getResource("gs://[YOUR_GCS_BUCKET]/[GCS_FILE_NAME]");

This creates a Resource object that can be used to read the object, among other possible operations.

It is also possible to write to a Resource, although a WritableResource is required.

@Value("gs://[YOUR_GCS_BUCKET]/[GCS_FILE_NAME]")
private Resource gcsResource;

try (OutputStream os = ((WritableResource) gcsResource).getOutputStream()) {
os.write("foo".getBytes());
}

To work with the Resource as a Google Cloud Storage resource, cast it to GoogleStorageResource.

If the resource path refers to an object on Google Cloud Storage (as opposed to a bucket), then the
getBlob method can be called to obtain a Blob. This type represents a GCS file, which has associated
metadata, such as content-type, that can be set. The createSignedUrl method can also be used to
obtain signed URLs for GCS objects. However, creating signed URLs requires that the resource was
created using service account credentials.

The Spring Boot Starter for Google Cloud Storage auto-configures the Storage bean required by the
spring-cloud-gcp-storage module, based on the CredentialsProvider provided by the Spring Boot
GCP starter.

93.2.1. Setting the Content Type

You can set the content-type of Google Cloud Storage files from their corresponding Resource
objects:

((GoogleStorageResource)gcsResource).getBlob().toBuilder().setContentType("text/html")
.build().update();

93.3. Configuration

The Spring Boot Starter for Google Cloud Storage provides the following configuration options:

Name Description Required Default value

https://docs.spring.io/spring/docs/current/spring-framework-reference/html/resources.html#resources-resource
https://github.com/GoogleCloudPlatform/google-cloud-java/blob/master/google-cloud-storage/src/main/java/com/google/cloud/storage/Blob.java
https://cloud.google.com/storage/docs/gsutil/addlhelp/WorkingWithObjectMetadata
https://cloud.google.com/storage/docs/access-control/signed-urls

spring.cloud.gcp.stora
ge.enabled

spring.cloud.gcp.stora
ge.auto-create-files

spring.cloud.gcp.stora
ge.credentials.locatio
n

spring.cloud.gcp.stora
ge.credentials.encoded
-key

spring.cloud.gcp.stora
ge.credentials.scopes

93.4. Sample

Enables the GCP No
storage APIs.
Creates files and No

buckets on Google
Cloud Storage when
writes are made to non-
existent files

OAuth2 credentials for No
authenticating with the
Google Cloud Storage

API, if different from

the ones in the Spring
Cloud GCP Core Module

Base64-encoded No
contents of OAuth2

account private key for
authenticating with the
Google Cloud Storage

API, if different from

the ones in the Spring
Cloud GCP Core Module

OAuth2 scope for No
Spring Cloud GCP
Storage credentials

A sample application and a codelab are available.

true

true

www.googleapis.com/
auth/
devstorage.read_write

https://developers.google.com/identity/protocols/googlescopes
https://www.googleapis.com/auth/devstorage.read_write
https://www.googleapis.com/auth/devstorage.read_write
https://www.googleapis.com/auth/devstorage.read_write
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-storage-resource-sample
https://codelabs.developers.google.com/codelabs/spring-cloud-gcp-gcs/index.html

Chapter 94. Cloud SQL

Spring Cloud GCP adds integrations with Spring JDBC so you can run your MySQL or PostgreSQL
databases in Google Cloud SQL using Spring JDBC, or other libraries that depend on it like Spring
Data JPA.

The Cloud SQL support is provided by Spring Cloud GCP in the form of two Spring Boot starters, one
for MySQL and another one for PostgreSQL. The role of the starters is to read configuration from
properties and assume default settings so that user experience connecting to MySQL and
PostgreSQL is as simple as possible.

Maven coordinates, using Spring Cloud GCP BOM:

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-gcp-starter-sql-mysql</artifactId>
</dependency>
<dependency>
<groupld>org.springframework.cloud</groupId>
<artifactId>spring-cloud-gcp-starter-sql-postgresql</artifactId>
</dependency>

Gradle coordinates:

dependencies {
implementation("org.springframework.cloud:spring-cloud-gcp-starter-sql-mysql")
implementation("org.springframework.cloud:spring-cloud-gcp-starter-sql-

postgresql")

}

94.1. Prerequisites

In order to use the Spring Boot Starters for Google Cloud SQL, the Google Cloud SQL API must be
enabled in your GCP project.

To do that, go to the API library page of the Google Cloud Console, search for "Cloud SQL API", click
the first result and enable the API.

o There are several similar "Cloud SQL" results. You must access the "Google Cloud
SQL API" one and enable the API from there.

94.2. Spring Boot Starter for Google Cloud SQL

The Spring Boot Starters for Google Cloud SQL provide an auto-configured DataSource object.
Coupled with Spring JDBC, it provides a JdbcTemplate object bean that allows for operations such as
querying and modifying a database.

https://docs.spring.io/spring/docs/current/spring-framework-reference/html/jdbc.html
https://cloud.google.com/sql
getting-started.pdf#_bill_of_materials
https://console.cloud.google.com/apis/library
https://docs.oracle.com/javase/7/docs/api/javax/sql/DataSource.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/jdbc.html#jdbc-JdbcTemplate

public List<Map<String, Object>> listUsers() {
return jdbcTemplate.queryForList("SELECT * FROM user;");

}

You can rely on Spring Boot data source auto-configuration to configure a DataSource bean. In other

SQL username,

spring.datasource.username,

and password,

spring.datasource.password can be used. There is also some configuration specific to Google Cloud

words, properties like the
SQL:
Property name

spring.cloud.gcp.sql.enabled
spring.cloud.gcp.sql.database-
name

spring.cloud.gcp.sql.instance-
connection-name

spring.cloud.gcp.sql.ip-types

spring.cloud.gcp.sql.credentia
1s.location

spring.cloud.gcp.sql.credentia
1s.encoded-key

Description

Enables or disables Cloud SQL
auto configuration

Name of the database to
connect to.

A string containing a Google
Cloud SQL instance’s project ID,
region and name, each
separated by a colon. For
example, my-project-id:my-
region:my-instance-name.
Allows you to specify a comma

delimited list of preferred IP
types for connecting to a Cloud

SQL instance. Left unconfigured

Cloud SQL Socket Factory will
default it to PUBLIC,PRIVATE. See
Cloud SQL Socket Factory -
Specifying IP Types

File system path to the Google
OAuth2 credentials private key
file. Used to authenticate and
authorize new connections to a
Google Cloud SQL instance.

Base64-encoded contents of
OAuth2 account private key in
JSON format. Used to
authenticate and authorize new
connections to a Google Cloud
SQL instance.

Default value

true

PUBLIC,PRIVATE

Default credentials provided by
the Spring GCP Boot starter

Default credentials provided by
the Spring GCP Boot starter

If you provide your own spring.datasource.url, it will be ignored, unless you
disable Cloud SQL auto configuration with spring.cloud.gcp.sql.enabled=false.

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html#boot-features-connect-to-production-database
https://github.com/GoogleCloudPlatform/cloud-sql-jdbc-socket-factory#specifying-ip-types
https://github.com/GoogleCloudPlatform/cloud-sql-jdbc-socket-factory#specifying-ip-types

94.2.1. DataSource creation flow

Based on the previous properties, the Spring Boot starter for Google Cloud SQL creates a
CloudSqlJdbcInfoProvider object which is used to obtain an instance’s JDBC URL and driver class
name. If you provide your own CloudSqlJdbcInfoProvider bean, it is used instead and the properties
related to building the JDBC URL or driver class are ignored.

The DataSourceProperties object provided by Spring Boot Autoconfigure is mutated in order to use
the JDBC URL and driver class names provided by CloudSqlJldbcInfoProvider, unless those values
were provided in the properties. It is in the DataSourceProperties mutation step that the credentials
factory is registered in a system property to be SqlCredentialFactory.

DataSource creation is delegated to Spring Boot. You can select the type of connection pool (e.g.,
Tomcat, HikariCP, etc.) by adding their dependency to the classpath.

Using the created DataSource in conjunction with Spring JDBC provides you with a fully configured
and operational JdbcTemplate object that you can use to interact with your SQL database. You can
connect to your database with as little as a database and instance names.

94.2.2. Troubleshooting tips

Connection issues

If you're not able to connect to a database and see an endless loop of Connecting to Cloud SQL
instance [:--] on IP [:--], it’s likely that exceptions are being thrown and logged at a level lower
than your logger’s level. This may be the case with HikariCP, if your logger is set to INFO or higher
level.

To see what’s going on in the background, you should add a logback.xml file to your application
resources folder, that looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<confiquration>
<include resource="org/springframework/boot/logging/logback/base.xml"/>
<logger name="com.zaxxer.hikari.pool" level="DEBUG"/>

</configuration>

Errors like c.g.cloud.sql.core.Ss1SocketFactory : Re-throwing cached exception due to attempt
to refresh instance information too soon after error

If you see a lot of errors like this in a loop and can’t connect to your database, this is usually a
symptom that something isn’t right with the permissions of your credentials or the Google Cloud
SQL API is not enabled. Verify that the Google Cloud SQL API is enabled in the Cloud Console and
that your service account has the necessary IAM roles.

To find out what’s causing the issue, you can enable DEBUG logging level as mentioned above.

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html#boot-features-connect-to-production-database
https://cloud.google.com/sql/docs/mysql/project-access-control#roles
#connection-issues

PostgreSQL: java.net.SocketException: already connected issue

We found this exception to be common if your Maven project’s parent is spring-boot version 1.5.x,
or in any other circumstance that would cause the version of the org.postgresql:postgresql
dependency to be an older one (e.g.,9.4.1212.jre7).

To fix this, re-declare the dependency in its correct version. For example, in Maven:

<dependency>
<groupld>org.postgresql</groupId>
<artifactId>postgresql</artifactId>
<version>42.1.1</version>
</dependency>

94.3. Samples

Available sample applications and codelabs:

Spring Cloud GCP MySQL

Spring Cloud GCP PostgreSQL
» Spring Data JPA with Spring Cloud GCP SQL

* Codelab: Spring Pet Clinic using Cloud SQL

https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-sql-mysql-sample
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-sql-postgres-sample
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-data-jpa-sample
https://codelabs.developers.google.com/codelabs/cloud-spring-petclinic-cloudsql/index.html

Chapter 95. Cloud Pub/Sub

Spring Cloud GCP provides an abstraction layer to publish to and subscribe from Google Cloud
Pub/Sub topics and to create, list or delete Google Cloud Pub/Sub topics and subscriptions.

A Spring Boot starter is provided to auto-configure the various required Pub/Sub components.

Maven coordinates, using Spring Cloud GCP BOM:

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-gcp-starter-pubsub</artifactId>
</dependency>

Gradle coordinates:

dependencies {
implementation("org.springframework.cloud:spring-cloud-gcp-starter-pubsub")

}

This starter is also available from Spring Initializr through the GCP Messaging entry.

95.1. Configuration

The Spring Boot starter for Google Cloud Pub/Sub provides the following configuration options.

95.1.1. Spring Cloud GCP Pub/Sub API Configuration

This section describes options for enabling the integration, specifying the GCP project and
credentials, and setting whether the APIs should connect to an emulator for local testing.

Name Description Required Default value
spring.cloud.gcp.pubsu Enables or disables No true
b.enabled Pub/Sub auto-

configuration
spring.cloud.gcp.pubsu GCP project ID where ~ No
b.project-id the Google Cloud

Pub/Sub API is hosted,

if different from the

one in the Spring Cloud
GCP Core Module

getting-started.pdf#_bill_of_materials
https://start.spring.io

spring.cloud.gcp.pubsu
b.credentials.location

spring.cloud.gcp.pubsu
b.emulator-host

spring.cloud.gcp.pubsu
b.credentials.encoded-
key

spring.cloud.gcp.pubsu
b.credentials.scopes

OAuth2 credentials for No
authenticating with the
Google Cloud Pub/Sub

API], if different from

the ones in the Spring
Cloud GCP Core Module

The host and port of the No
local running emulator.

If provided, this will

setup the client to

connect against a

running Google Cloud
Pub/Sub Emulator.

Base64-encoded No
contents of OAuth2

account private key for
authenticating with the
Google Cloud Pub/Sub

API, if different from

the ones in the Spring
Cloud GCP Core Module

OAuth2 scope for No
Spring Cloud GCP
Pub/Sub credentials

www.googleapis.com/
auth/pubsub

95.1.2. Publisher/Subscriber Configuration

This section describes configuration options to customize the behavior of the application’s Pub/Sub
publishers and subscribers.

Name Description Required Default value
spring.cloud.gcp.pubsu The number of pull No 1
b.subscriber.parallel- workers

pull-count

spring.cloud.gcp.pubsu The maximum perioda No 0

b.subscriber.max-ack-
extension-period

spring.cloud.gcp.pubsu
b.subscriber.pull-
endpoint

spring.cloud.gcp.pubsu
b.[subscriber,publishe
r].executor-threads

message ack deadline
will be extended, in
seconds

The endpoint for No
synchronous pulling
messages

Number of threads No
used by Subscriber

instances created by
SubscriberFactory

pubsub.googleapis.com:
443

https://cloud.google.com/pubsub/docs/emulator
https://cloud.google.com/pubsub/docs/emulator
https://developers.google.com/identity/protocols/googlescopes
https://www.googleapis.com/auth/pubsub
https://www.googleapis.com/auth/pubsub

spring.cloud.gcp.pubsu
b.[subscriber,publishe
r.batching].flow-
control.max-
outstanding-element-
count

spring.cloud.gcp.pubsu
b.[subscriber,publishe
r.batching].flow-
control.max-
outstanding-request-
bytes

spring.cloud.gcp.pubsu
b.[subscriber,publishe
r.batching].flow-
control.limit-
exceeded-behavior

spring.cloud.gcp.pubsu
b.publisher.batching.e
lement-count-threshold

spring.cloud.gcp.pubsu
b.publisher.batching.r
equest-byte-threshold

spring.cloud.gcp.pubsu
b.publisher.batching.d
elay-threshold-seconds

spring.cloud.gcp.pubsu
b.publisher.batching.e
nabled

Maximum number of
outstanding elements
to keep in memory
before enforcing flow
control.

Maximum number of
outstanding bytes to
keep in memory before
enforcing flow control.

The behavior when the
specified limits are
exceeded.

The element count
threshold to use for
batching.

The request byte
threshold to use for
batching.

The delay threshold to
use for batching. After
this amount of time has
elapsed (counting from
the first element
added), the elements
will be wrapped up in a
batch and sent.

Enables batching.

95.1.3. GRPC Connection Settings

No

No

No

No

No

No

No

unlimited

unlimited

Block

1 (batching off)

1 byte (batching off)

1 ms (batching off)

false

The Pub/Sub API uses the GRPC protocol to send API requests to the Pub/Sub service. This section

describes configuration options for customizing the GRPC behavior.

The properties that refer to retry control the RPC retries for transient failures

o during the gRPC call to Cloud Pub/Sub server. They do not control message
redelivery; only message acknowledgement deadline can be used to extend or
shorten the amount of time until Pub/Sub attempts redelivery.

Name

Description

Required

Default value

https://cloud.google.com/pubsub/docs/reference/service_apis_overview#grpc_api

spring.cloud.gcp.pubsu
b.keepAliveIntervalMin
utes

spring.cloud.gcp.pubsu
b.[subscriber,publishe
r].retry.total-
timeout-seconds

spring.cloud.gcp.pubsu
b.[subscriber,publishe
r].retry.initial-
retry-delay-second

spring.cloud.gcp.pubsu
b.[subscriber,publishe
r].retry.retry-delay-
multiplier

spring.cloud.gcp.pubsu
b.[subscriber,publishe
r].retry.max-retry-
delay-seconds

spring.cloud.gcp.pubsu
b.[subscriber,publishe
r].retry.max-attempts

Determines frequency No

of keepalive gRPC ping

TotalTimeout has
ultimate control over
how long the logic
should keep trying the
remote call until it
gives up completely.
The higher the total
timeout, the more
retries can be
attempted.

InitialRetryDelay
controls the delay
before the first retry.
Subsequent retries will
use this value adjusted
according to the
RetryDelayMultiplier.

RetryDelayMultiplier
controls the change in
retry delay. The retry
delay of the previous
call is multiplied by the
RetryDelayMultiplier to
calculate the retry
delay for the next call.

MaxRetryDelay puts a
limit on the value of the
retry delay, so that the
RetryDelayMultiplier
can’t increase the retry
delay higher than this
amount.

MaxAttempts defines
the maximum number
of attempts to perform.
If this value is greater
than 0, and the number
of attempts reaches this
limit, the logic will give
up retrying even if the
total retry time is still
lower than
TotalTimeout.

5 minutes

spring.cloud.gcp.pubsu Jitter determines if the No true
b.[subscriber,publishe delay time should be
r].retry.jittered)
randomized.
spring.cloud.gcp.pubsu InitialRpcTimeout No 0
b.[subscriber, publishe .o 115 the timeout for
r].retry.initial-rpc- he initial
timeout-seconds the initial RPC.
Subsequent calls will
use this value adjusted
according to the
RpcTimeoutMultiplier.
spring.cloud.gcp.pubsu RpcTimeoutMultiplier No 1
b.[subscriber,publishe controls the change in
r].retry.rpc-timeout- RPC ti Th
multiplier C timeout. The
timeout of the previous
call is multiplied by the
RpcTimeoutMultiplier
to calculate the timeout
for the next call.
spring.cloud.gcp.pubsu MaxRpcTimeout putsa No 0

b.[subscriber,publishe
r].retry.max-rpc-
timeout-seconds

limit on the value of the
RPC timeout, so that the
RpcTimeoutMultiplier
can’t increase the RPC
timeout higher than
this amount.

95.2. Spring Boot Actuator Support

95.2.1. Cloud Pub/Sub Health Indicator

If you are using Spring Boot Actuator, you can take advantage of the Cloud Pub/Sub health indicator
called pubsub. The health indicator will verify whether Cloud Pub/Sub is up and accessible by your
application. To enable it, all you need to do is add the Spring Boot Actuator to your project.

The pubsub indicator will then roll up to the overall application status visible at localhost:8080/
actuator/health (use the management.endpoint.health.show-details property to view per-indicator
details).

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-actuator</artifactId>
</dependency>

https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#production-ready
http://localhost:8080/actuator/health
http://localhost:8080/actuator/health

If your application already has actuator and Cloud Pub/Sub starters, this health
o indicator is enabled by default. To disable the Cloud Pub/Sub indicator, set
management.health.pubsub.enabled to false.

95.3. Pub/Sub Operations & Template

PubSubOperations is an abstraction that allows Spring users to use Google Cloud Pub/Sub without
depending on any Google Cloud Pub/Sub API semantics. It provides the common set of operations
needed to interact with Google Cloud Pub/Sub. PubSubTemplate is the default implementation of
PubSubOperations and it uses the Google Cloud Java Client for Pub/Sub to interact with Google Cloud
Pub/Sub.

95.3.1. Publishing to a topic

PubSubTemplate provides asynchronous methods to publish messages to a Google Cloud Pub/Sub
topic. The publish() method takes in a topic name to post the message to, a payload of a generic
type and, optionally, a map with the message headers. The topic name could either be a canonical
topic name within the current project, or the fully-qualified name referring to a topic in a different
project using the projects/<project_name>/topics/<topic_name> format.

Here is an example of how to publish a message to a Google Cloud Pub/Sub topic:

Map<String, String> headers = Collections.singletonMap("key1", "vall");
pubSubTemplate.publish(topicName, "message”, headers).get();

By default, the SimplePubSubMessageConverter is used to convert payloads of type byte[], ByteString,
ByteBuffer, and String to Pub/Sub messages.

95.3.2. Subscribing to a subscription

Google Cloud Pub/Sub allows many subscriptions to be associated to the same topic. PubSubTemplate
allows you to listen to subscriptions via the subscribe() method. When listening to a subscription,
messages will be pulled from Google Cloud Pub/Sub asynchronously and passed to a user provided
message handler. The subscription name could either be a canonical subscription name within the
current project, or the fully-qualified name referring to a subscription in a different project using
the projects/<project_name>/subscriptions/<subscription_name> format.

Example

Subscribe to a subscription with a message handler:

Subscriber subscriber = pubSubTemplate.subscribe(subscriptionName, (message) -> {
logger.info("Message received from " + subscriptionName + " subscription:
+ message.getPubsubMessage().getData().toStringUtf8());
message.ack();

1

https://github.com/GoogleCloudPlatform/google-cloud-java/tree/master/google-cloud-pubsub

Subscribe methods

PubSubTemplate provides the following subscribe methods:

subscribe(String asynchronously pulls messages and passes them to messageConsumer
subscription,

Consumer<Basic

Acknowledgeable

PubsubMessage>

messageConsume

r)

subscribeAndCon same as pull, but converts message payload to payloadType using the converter
vert(String configured in the template

subscription,

Consumer<Conve

rtedBasicAcknow

ledgeablePubsub

Message<T>>

messageConsume

r, Class<T>

payloadType)

As of version 1.2, subscribing by itself is not enough to keep an application
running. For a command-line application, you may want to provide your own
ThreadPoolTaskScheduler bean named pubsubSubscriberThreadPool, which by default

o creates non-daemon threads that will keep an application from stopping. This
default behavior has been overridden in Spring Cloud GCP for consistency with
Cloud Pub/Sub client library, and to avoid holding up command-line applications
that would like to shut down once their work is done.

95.3.3. Pulling messages from a subscription

Google Cloud Pub/Sub supports synchronous pulling of messages from a subscription. This is
different from subscribing to a subscription, in the sense that subscribing is an asynchronous task.

Example

Pull up to 10 messages:

int maxMessages = 10;
boolean returnImmediately = false;
List<AcknowledgeablePubsubMessage> messages = pubSubTemplate.pull(subscriptionName,
maxMessages,
returnImmediately);

//acknowledge the messages
pubSubTemplate.ack(messages);

messages.forEach(message ->
logger.info(message.getPubsubMessage().getData().toStringUtf8()));

Pull methods

PubsubTemplate provides the following pull methods:

pull(String Pulls a number of messages from a subscription, allowing for the retry settings
subscription, to be configured. Any messages received by pull() are not automatically
Integer acknowledged. See Acknowledging messages.

maxMessages,

Boolean The maxMessages parameter is the maximum limit of how many messages to
returnImmediate pull from a subscription in a single call; this value must be greater than 0. You
ly) may omit this parameter by passing in null; this means there will be no limit

on the number of messages pulled (maxMessages will be Integer.MAX_INTEGER).

If returnImmediately is true, the system will respond immediately even if it
there are no messages available to return in the Pull response. Otherwise, the
system may wait (for a bounded amount of time) until at least one message is
available, rather than returning no messages.

pullAndAck Works the same as the pull method and, additionally, acknowledges all
received messages.

pullNext Allows for a single message to be pulled and automatically acknowledged
from a subscription.

pullAndConvert Works the same as the pull method and, additionally, converts the Pub/Sub
binary payload to an object of the desired type, using the converter configured
in the template.

Acknowledging messages

There are two ways to acknowledge messages.

1. To acknowledge multiple messages at once, you can use the PubSubTemplate.ack() method. You
can also use the PubSubTemplate.nack() for negatively acknowledging messages. Using these
methods for acknowledging messages in batches is more efficient than acknowledging messages
individually, but they require the collection of messages to be from the same project.

2. To acknowledge messages individually you can use the ack() or nack() method on each of them

(to acknowledge or negatively acknowledge, correspondingly).

All ack(), nack(), and modifyAckDeadline() methods on messages, as well as
PubSubSubscriberTemplate, are implemented asynchronously, returning a
ListenableFuture<Void> to enable asynchronous processing.

95.3.4. JSON support

For serialization and deserialization of POJOs wusing Jackson JSON, configure a
PubSubMessageConverter bean, and the Spring Boot starter for GCP Pub/Sub will automatically wire it
into the PubSubTemplate.

// Note: The ObjectMapper is used to convert Java P0JOs to and from JSON.
// You will have to configure your own instance if you are unable to depend
// on the ObjectMapper provided by Spring Boot starters.
@Bean
public PubSubMessageConverter pubSubMessageConverter() {

return new JacksonPubSubMessageConverter(new ObjectMapper());

}

Alternatively, you can set it directly by calling the setMessageConverter() method
on the PubSubTemplate. Other implementations of the PubSubMessageConverter can
also be configured in the same manner.

Assuming you have the following class defined:

static class TestUser {
String username;
String password;

public String getUsername() {
return this.username;

}

void setUsername(String username) {
this.username = username;

}

public String getPassword() {
return this.password;

}

void setPassword(String password) {
this.password = password;

}

You can serialize objects to JSON on publish automatically:

TestUser user = new TestUser();
user.setUsername("John");
user.setPassword("password");
pubSubTemplate.publish(topicName, user);

And that’s how you convert messages to objects on pull:

int maxMessages = 1;
boolean returnImmediately = false;
List<ConvertedAcknowledgeablePubsubMessage<TestUser>> messages =
pubSubTemplate.pullAndConvert(

subscriptionName, maxMessages, returnImmediately, TestUser.class);

ConvertedAcknowledgeablePubsubMessage<TestUser> message = messages.get(0);

//acknowledge the message
message.ack();

TestUser receivedTestUser = message.getPayload();

Please refer to our Pub/Sub JSON Payload Sample App as a reference for using this functionality.

https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-integration-pubsub-json-sample

95.4. Reactive Stream Subscription

It is also possible to acquire a reactive stream backed by a subscription. To do so, a Project Reactor
dependency (io.projectreactor:reactor-core) must be added to the project. The combination of the
Pub/Sub starter and the Project Reactor dependencies will then make a PubSubReactiveFactory bean
available, which can then be used to get a Publisher.

@Autowired
PubSubReactiveFactory reactiveFactory;

/] ...

Flux<AcknowledgeablePubsubMessage> flux
= reactiveFactory.poll("exampleSubscription", 1000);

The Flux then represents an infinite stream of GCP Pub/Sub messages coming in through the
specified subscription. For unlimited demand, the Pub/Sub subscription will be polled regularly, at
intervals determined by pollingPeriodMs parameter passed in when creating the Flux. For bounded
demand, the pollingPeriodMs parameter is unused. Instead, as many messages as possible (up to the
requested number) are delivered immediately, with the remaining messages delivered as they
become available.

Any exceptions thrown by the underlying message retrieval logic will be passed as an error to the
stream. The error handling operators (Flux#iretry(), Flux#onErrorResume() etc.) can be used to
recover.

The full range of Project Reactor operations can be applied to the stream. For example, if you only
want to fetch 5 messages, you can use limitRequest operation to turn the infinite stream into a finite
one:

Flux<AcknowledgeablePubsubMessage> fiveMessageFlux = flux.limitRequest(5);
Messages flowing through the Flux should be manually acknowledged.

flux.doOnNext(AcknowledgeablePubsubMessage: :ack);

95.5. Pub/Sub management

PubSubAdmin is the abstraction provided by Spring Cloud GCP to manage Google Cloud Pub/Sub
resources. It allows for the creation, deletion and listing of topics and subscriptions.

Generally when referring to topics and subscriptions, you can either use the short
o canonical name within the current project, or the fully-qualified name referring to

a topic or subscription in a different project wusing the

projects/<project_name>/(topics|subscriptions)/<name> format.

PubSubAdmin depends on GepProjectIdProvider and either a CredentialsProvider or a
TopicAdminClient and a SubscriptionAdminClient. If given a CredentialsProvider, it creates a
TopicAdminClient and a SubscriptionAdminClient with the Google Cloud Java Library for Pub/Sub
default settings. The Spring Boot starter for GCP Pub/Sub auto-configures a PubSubAdmin object using
the GepProjectIdProvider and the CredentialsProvider auto-configured by the Spring Boot GCP Core
starter.

95.5.1. Creating a topic

PubSubAdmin implements a method to create topics:
public Topic createTopic(String topicName)
Here is an example of how to create a Google Cloud Pub/Sub topic:

public void newTopic() {
pubSubAdmin.createTopic("topicName");
}

95.5.2. Deleting a topic

PubSubAdmin implements a method to delete topics:
public void deleteTopic(String topicName)
Here is an example of how to delete a Google Cloud Pub/Sub topic:

public void deleteTopic() {
pubSubAdmin.deleteTopic("topicName");
}

95.5.3. Listing topics

PubSubAdmin implements a method to list topics:
public List<Topic> listTopics

Here is an example of how to list every Google Cloud Pub/Sub topic name in a project:

List<String> topics = pubSubAdmin
.ListTopics()
.stream()
.map(Topic::getName)
.collect(Collectors.tolList());

95.5.4. Creating a subscription

PubSubAdmin implements a method to create subscriptions to existing topics:

public Subscription createSubscription(String subscriptionName, String topicName,
Integer ackDeadline, String pushEndpoint)

Here is an example of how to create a Google Cloud Pub/Sub subscription:

public void newSubscription() {
pubSubAdmin.createSubscription("subscriptionName", "topicName", 10,

“https://my.endpoint/push”);

}

Alternative methods with default settings are provided for ease of use. The default value for
ackDeadline is 10 seconds. If pushEndpoint isn’t specified, the subscription uses message pulling,
instead.

public Subscription createSubscription(String subscriptionName, String topicName)

public Subscription createSubscription(String subscriptionName, String topicName,
Integer ackDeadline)

public Subscription createSubscription(String subscriptionName, String topicName,
String pushEndpoint)

95.5.5. Deleting a subscription

PubSubAdmin implements a method to delete subscriptions:
public void deleteSubscription(String subscriptionName)

Here is an example of how to delete a Google Cloud Pub/Sub subscription:

public void deleteSubscription() {
pubSubAdmin.deleteSubscription("subscriptionName");

}

95.5.6. Listing subscriptions

PubSubAdmin implements a method to list subscriptions:
public List<Subscription> listSubscriptions()
Here is an example of how to list every subscription name in a project:

List<String> subscriptions = pubSubAdmin
.ListSubscriptions()
.stream()
.map(Subscription::getName)
.collect(Collectors.tolList());

95.6. Sample

Sample applications for using the template and using a subscription-backed reactive stream are
available.

https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-pubsub-sample
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-pubsub-reactive-sample

Chapter 96. Spring Integration

Spring Cloud GCP provides Spring Integration adapters that allow your applications to use
Enterprise Integration Patterns backed up by Google Cloud Platform services.

96.1. Channel Adapters for Cloud Pub/Sub

The channel adapters for Google Cloud Pub/Sub connect your Spring MessageChannels to Google
Cloud Pub/Sub topics and subscriptions. This enables messaging between different processes,
applications or micro-services backed up by Google Cloud Pub/Sub.

The Spring Integration Channel Adapters for Google Cloud Pub/Sub are included in the spring-
cloud-gcp-pubsub module and can be autoconfigured by using the spring-cloud-gcp-starter-pubsub
module in combination with a Spring Integration dependency.

Maven coordinates, using Spring Cloud GCP BOM:

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-gcp-starter-pubsub</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.integration</groupId>
<artifactId>spring-integration-core</artifactId>
</dependency>

Gradle coordinates:

dependencies {
implementation("org.springframework.cloud:spring-cloud-gcp-starter-pubsub")
implementation("org.springframework.integration:spring-integration-core")

96.1.1. Inbound channel adapter (using Pub/Sub Streaming Pull)

PubSubInboundChannelAdapter is the inbound channel adapter for GCP Pub/Sub that listens to a GCP
Pub/Sub subscription for new messages. It converts new messages to an internal Spring Message and
then sends it to the bound output channel.

Google Pub/Sub treats message payloads as byte arrays. So, by default, the inbound channel adapter
will construct the Spring Message with byte[] as the payload. However, you can change the desired
payload type by setting the payloadType property of the PubSubInboundChannelAdapter. The
PubSubInboundChannelAdapter delegates the conversion to the desired payload type to the
PubSubMessageConverter configured in the PubSubTemplate.

To use the inbound channel adapter, a PubSubInboundChannelAdapter must be provided and

https://docs.spring.io/spring-integration/reference/html/channel.html
getting-started.pdf#_bill_of_materials
https://docs.spring.io/spring-integration/reference/html/messaging-construction-chapter.html#message

configured on the user application side.

@Bean
public MessageChannel pubsubInputChannel() {
return new PublishSubscribeChannel();

}

©Bean

public PubSubInboundChannelAdapter messageChannelAdapter(
@Qualifier("pubsubInputChannel") MessageChannel inputChannel,
PubSubSubscriberOperations subscriberOperations) {
PubSubInboundChannelAdapter adapter =

new PubSubInboundChannelAdapter(subscriberOperations, "subscriptionName");

adapter.setOutputChannel(inputChannel);
adapter.setAckMode (AckMode.MANUAL) ;

return adapter;

In the example, we first specify the MessageChannel where the adapter is going to write incoming
messages to. The MessageChannel implementation isn’t important here. Depending on your use case,
you might want to use a MessageChannel other than PublishSubscribeChannel.

Then, we declare a PubSubInboundChannelAdapter bean. It requires the channel we just created and a
SubscriberFactory, which creates Subscriber objects from the Google Cloud Java Client for Pub/Sub.
The Spring Boot starter for GCP Pub/Sub provides a configured PubSubSubscriberOperations object.

Acknowledging messages and handling failures

When working with Cloud Pub/Sub, it is important to understand the concept of ackDeadline —the
amount of time Cloud Pub/Sub will wait until attempting redelivery of an outstanding message.
Each subscription has a default ackDeadline applied to all messages sent to it. Additionally, the Cloud
Pub/Sub client library can extend each streamed message’s ackDeadline until the message
processing completes, fails or until the maximum extension period elapses.

In the Pub/Sub client library, default maximum extension period is an hour.

o However, Spring Cloud GCP disables this auto-extension behavior. Use the
spring.cloud.gcp.pubsub.subscriber.max-ack-extension-period property to re-
enable it.

Acknowledging (acking) a message removes it from Pub/Sub’s known outstanding messages.
Nacking a message resets its acknowledgement deadline to 0, forcing immediate redelivery. This
could be useful in a load balanced architecture, where one of the subscribers is having issues but
others are available to process messages.

The PubSubInboundChannelAdapter supports three acknowledgement modes: the default AckMode .AUTO
(automatic acking on processing success and nacking on exception), as well as two modes for
additional manual control: AckMode.AUTO_ACK (automatic acking on success but no action on
exception) and AckMode.MANUAL (no automatic actions at all; both acking and nacking have to be

done manually).

Table 5. Acknowledgement mode behavior

AUTO AUTO_ACK MANUAL
Message processing ack, no redelivery ack, no redelivery <no action>*
completes successfully
Message processing ack, no redelivery ack, no redelivery <no action>*
fails, but error handler
completes
successfully**
Message processing nack, immediate <no action>* <no action>*
fails; no error handler redelivery
present
Message processing nack, immediate <no action>* <no action>*

fails, and error handler redelivery
throws an exception

* <no action> means that the message will be neither acked nor nacked. Cloud Pub/Sub will attempt
redelivery according to subscription ackDeadline setting and the max-ack-extension-period client
library setting.

** For the adapter, "success" means the Spring Integration flow processed without raising an
exception, so successful message processing and the successful completion of an error handler both
result in the same behavior (message will be acknowledged). To trigger default error behavior
(nacking in AUTO mode; neither acking nor nacking in AUTO_ACK mode), propagate the error back to
the adapter by throwing an exception from the Error Handling flow.

Manual acking/nacking

The adapter attaches a BasicAcknowledgeablePubsubMessage object to the Message headers. Users can
extract the BasicAcknowledgeablePubsubMessage using the GepPubSubHeaders.ORIGINAL_MESSAGE key and
use it to ack (or nack) a message.

©Bean
@ServiceActivator(inputChannel = "pubsubInputChannel")
public MessageHandler messageReceiver() {
return message -> {

LOGGER.info("Message arrived! Payload: " + new String((byte[])
message.getPayload()));

BasicAcknowledgeablePubsubMessage originalMessage =

message.getHeaders().get(GepPubSubHeaders.ORIGINAL_MESSAGE,

BasicAcknowledgeablePubsubMessage.class);

originalMessage.ack();

};

Error Handling

If you want to have more control over message processing in case of an error, you need to associate
the PubSubInboundChannelAdapter with a Spring Integration error channel and specify the behavior
to be invoked with @ServiceActivator.

In order to activate the default behavior (nacking in AUTO mode; neither acking nor

o nacking in AUTO_ACK mode), your error handler has to throw an exception.
Otherwise, the adapter will assume that processing completed successfully and
will ack the message.

@Bean
public MessageChannel pubsubInputChannel() {
return new PublishSubscribeChannel();

}

@Bean

public PubSubInboundChannelAdapter messageChannelAdapter(
@Qualifier("pubsubInputChannel") MessageChannel inputChannel,
SubscriberFactory subscriberFactory) {
PubSubInboundChannelAdapter adapter =

new PubSubInboundChannelAdapter(subscriberFactory, "subscriptionName");

adapter.setOutputChannel(inputChannel);
adapter.setAckMode (AckMode.AUTO_ACK);
adapter.setErrorChannelName("pubsubErrors");

return adapter;

}

@ServiceActivator(inputChannel = "pubsubErrors")

public void pubsubErrorHandler(Message<MessagingException> message) {
LOGGER.warn("This message will be automatically acked because error handler

completes successfully");

}

If you would prefer to manually ack or nack the message, you can do it by retrieving the header of
the exception payload:

@ServiceActivator(inputChannel = "pubsubErrors")
public void pubsubErrorHandler (Message<MessagingException> exceptionMessage) {

BasicAcknowledgeablePubsubMessage originalMessage =

(BasicAcknowledgeablePubsubMessage)exceptionMessage.getPayload().getFailedMessage()
.getHeaders().get(GecpPubSubHeaders.ORIGINAL_MESSAGE);

originalMessage.nack();

96.1.2. Pollable Message Source (using Pub/Sub Synchronous Pull)

While PubSubInboundChannelAdapter, through the underlying Asynchronous Pull Pub/Sub
mechanism, provides the best performance for high-volume applications that receive a steady flow
of messages, it can create load balancing anomalies due to message caching. This behavior is most
obvious when publishing a large batch of small messages that take a long time to process
individually. It manifests as one subscriber taking up most messages, even if multiple subscribers
are available to take on the work. For a more detailed explanation of this scenario, see GCP Pub/Sub
documentation.

In such a scenario, a PubSubMessageSource can help spread the load between different subscribers
more evenly.

As with the Inbound Channel Adapter, the message source has a configurable acknowledgement
mode, payload type, and header mapping.

The default behavior is to return from the synchronous pull operation immediately if no messages
are present. This can be overridden by using setBlockOnPull() method to wait for at least one
message to arrive.

By default, PubSubMessageSource pulls from the subscription one message at a time. To pull a batch of
messages on each request, use the setMaxFetchSize() method to set the batch size.

@Bean
@InboundChannelAdapter(channel = "pubsubInputChannel", poller = @Poller(fixedDelay =
"100"))
public MessageSource<Object> pubsubAdapter (PubSubTemplate pubSubTemplate) {
PubSubMessageSource messageSource = new PubSubMessageSource(pubSubTemplate,
"exampleSubscription");
messageSource.setAckMode (AckMode .MANUAL) ;
messageSource.setPayloadType(String.class);
messageSource.setBlockOnPull(true);
messageSource.setMaxFetchSize(100);
return messageSource;

The @InboundChannelAdapter annotation above ensures that the configured MessageSource is polled
for messages, which are then available for manipulation with any Spring Integration mechanism
on the pubsubInputChannel message channel. For example, messages can be retrieved in a method
annotated with @ServiceActivator, as seen below.

For additional flexibility, PubSubMessageSource attaches an AcknowledgeablePubSubMessage object to
the GcpPubSubHeaders.ORIGINAL_MESSAGE message header. The object can be used for manually
(n)acking the message.

https://cloud.google.com/pubsub/docs/pull#streamingpull_dealing_with_large_backlogs_of_small_messages
https://cloud.google.com/pubsub/docs/pull#streamingpull_dealing_with_large_backlogs_of_small_messages

@ServiceActivator(inputChannel = "pubsubInputChannel")
public void messageReceiver(String payload,
@Header (GepPubSubHeaders.ORIGINAL_MESSAGE) AcknowledgeablePubsubMessage
message)
throws InterruptedException {
LOGGER. info("Message arrived by Synchronous Pull! Payload:
message.ack();

+ payload);

AcknowledgeablePubSubMessage objects acquired by synchronous pull are aware of
their own acknowledgement IDs. Streaming pull does not expose this information
o due to limitations of the underlying API], and returns
BasicAcknowledgeablePubsubMessage objects that allow acking/nacking individual
messages, but not extracting acknowledgement IDs for future processing.

96.1.3. Outbound channel adapter

PubSubMessageHandler is the outbound channel adapter for GCP Pub/Sub that listens for new
messages on a Spring MessageChannel. It uses PubSubTemplate to post them to a GCP Pub/Sub topic.

To construct a Pub/Sub representation of the message, the outbound channel adapter needs to
convert the Spring Message payload to a byte array representation expected by Pub/Sub. It delegates
this conversion to the PubSubTemplate. To customize the conversion, you can specify a
PubSubMessageConverter in the PubSubTemplate that should convert the Object payload and headers of
the Spring Message to a PubsubMessage.

To use the outbound channel adapter, a PubSubMessageHandler bean must be provided and
configured on the user application side.

@Bean

@ServiceActivator(inputChannel = "pubsubOutputChannel")

public MessageHandler messageSender(PubSubTemplate pubsubTemplate) {
return new PubSubMessageHandler (pubsubTemplate, "topicName");

}

The provided PubSubTemplate contains all the necessary configuration to publish messages to a GCP
Pub/Sub topic.

PubSubMessageHandler publishes messages asynchronously by default. A publish timeout can be
configured for synchronous publishing. If none is provided, the adapter waits indefinitely for a
response.

It is possible to set user-defined callbacks for the publish() call in PubSubMessageHandler through the
setPublishFutureCallback() method. These are useful to process the message ID, in case of success,
or the error if any was thrown.

To override the default topic you can use the GepPubSubHeaders.TOPIC header.

@Autowired
private MessageChannel pubsubOutputChannel;

public void handleMessage(Message<?> msg) throws MessagingException {
final Message<?> message = MessageBuilder
.withPayload(msg.getPayload())
.setHeader (GcpPubSubHeaders.TOPIC, "customTopic").build();
pubsubOutputChannel.send(message);

It is also possible to set an SpEL expression for the topic with the setTopicExpression() or
setTopicExpressionString() methods.

96.1.4. Header mapping

These channel adapters contain header mappers that allow you to map, or filter out, headers from
Spring to Google Cloud Pub/Sub messages, and vice-versa. By default, the inbound channel adapter
maps every header on the Google Cloud Pub/Sub messages to the Spring messages produced by the
adapter. The outbound channel adapter maps every header from Spring messages into Google
Cloud Pub/Sub ones, except the ones added by Spring, like headers with key "id", "timestamp" and
"gcp_pubsub_acknowledgement”. In the process, the outbound mapper also converts the value of the
headers into string.

Each adapter declares a setHeaderMapper () method to let you further customize which headers you
want to map from Spring to Google Cloud Pub/Sub, and vice-versa.

For example, to filter out headers "foo", "bar" and all headers starting with the prefix "prefix_", you
can use setHeaderMapper() along with the PubSubHeaderMapper implementation provided by this
module.

PubSubMessageHandler adapter = ...

PubSubHeaderMapper headerMapper = new PubSubHeaderMapper();
headerMapper.setOutboundHeaderPatterns("!foo", "!bar", "lprefix_*", "*");
adapter.setHeaderMapper (headerMapper);

The order in which the patterns are declared in
o PubSubHeaderMapper.setOutboundHeaderPatterns() and
PubSubHeaderMapper.setInboundHeaderPatterns() matters. The first patterns have

precedence over the following ones.

In the previous example, the "*" pattern means every header is mapped. However, because it
comes last in the list, the previous patterns take precedence.

96.1.5. Samples

Available examples:

https://docs.spring.io/spring-integration/api/org/springframework/integration/util/PatternMatchUtils.html#smartMatch-java.lang.String-java.lang.String…​-

* Sending/Receiving Messages with Channel Adapters
* Pub/Sub Channel Adapters with JSON payloads

* Spring Integration and Pub/Sub Codelab

96.2. Channel Adapters for Google Cloud Storage

The channel adapters for Google Cloud Storage allow you to read and write files to Google Cloud
Storage through MessageChannels.

Spring Cloud GCP provides two inbound adapters, GesInboundFileSynchronizingMessageSource and
GesStreamingMessageSource, and one outbound adapter, GesMessageHandler.

The Spring Integration Channel Adapters for Google Cloud Storage are included in the spring-
cloud-gcp-storage module.

To use the Storage portion of Spring Integration for Spring Cloud GCP, you must also provide the
spring-integration-file dependency, since it isn’t pulled transitively.

Maven coordinates, using Spring Cloud GCP BOM:

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-gcp-storage</artifactId>

</dependency>

<dependency>
<groupId>org.springframework.integration</groupld>
<artifactId>spring-integration-file</artifactId>

</dependency>

Gradle coordinates:

dependencies {
implementation("org.springframework.cloud:spring-cloud-gcp-starter-storage")
implementation("org.springframework.integration:spring-integration-file")

96.2.1. Inbound channel adapter

The Google Cloud Storage inbound channel adapter polls a Google Cloud Storage bucket for new
files and sends each of them in a Message payload to the MessageChannel specified in the
@InboundChannelAdapter annotation. The files are temporarily stored in a folder in the local file
system.

Here is an example of how to configure a Google Cloud Storage inbound channel adapter.

https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-integration-pubsub-sample
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-integration-pubsub-json-sample
https://codelabs.developers.google.com/codelabs/cloud-spring-cloud-gcp-pubsub-integration/index.html
getting-started.pdf#_bill_of_materials

@Bean

@InboundChannelAdapter(channel = "new-file-channel”, poller = @Poller(fixedDelay =

"5000"))

public MessageSource<File> synchronizerAdapter(Storage gcs) {
GesInboundFileSynchronizer synchronizer = new GesInboundFileSynchronizer(ges);
synchronizer.setRemoteDirectory("your-ges-bucket");

GesInboundFileSynchronizingMessageSource synchAdapter =
new GesInboundFileSynchronizingMessageSource(synchronizer);
synchAdapter.setlocalDirectory(new File("local-directory"));

return synchAdapter;

96.2.2. Inbound streaming channel adapter

The inbound streaming channel adapter is similar to the normal inbound channel adapter, except
it does not require files to be stored in the file system.

Here is an example of how to configure a Google Cloud Storage inbound streaming channel
adapter.

@Bean
@InboundChannelAdapter(channel = "streaming-channel", poller = @Poller(fixedDelay =
"5000"))
public MessageSource<InputStream> streamingAdapter(Storage gcs) {

GesStreamingMessageSource adapter =

new GesStreamingMessageSource(new GesRemoteFileTemplate(new

GesSessionFactory(ges)));

adapter.setRemoteDirectory("your-ges-bucket");

return adapter;

}

If you would like to process the files in your bucket in a specific order, you may pass in a
Comparator<BlobInfo> to the constructor GesStreamingMessageSource to sort the files being processed.

96.2.3. Outbound channel adapter

The outbound channel adapter allows files to be written to Google Cloud Storage. When it receives
a Message containing a payload of type File, it writes that file to the Google Cloud Storage bucket
specified in the adapter.

Here is an example of how to configure a Google Cloud Storage outbound channel adapter.

@Bean
@ServiceActivator(inputChannel = "writeFiles")
public MessageHandler outboundChannelAdapter(Storage gcs) {

GesMessageHandler outboundChannelAdapter = new GcsMessageHandler (new
GesSessionFactory(ges));

outboundChannelAdapter.setRemoteDirectoryExpression(new ValueExpression<>("your-gcs-
bucket"));

return outboundChannelAdapter;

}

96.2.4. Sample

See the Spring Integration with Google Cloud Storage Sample Code.

https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-integration-storage-sample

Chapter 97. Spring Cloud Stream

Spring Cloud GCP provides a Spring Cloud Stream binder to Google Cloud Pub/Sub.
The provided binder relies on the Spring Integration Channel Adapters for Google Cloud Pub/Sub.

Maven coordinates, using Spring Cloud GCP BOM:
<dependency>
<groupId>org.springframework.cloud</groupId>

<artifactId>spring-cloud-gcp-pubsub-stream-binder</artifactId>
</dependency>

Gradle coordinates:

dependencies {
implementation("org.springframework.cloud:spring-cloud-gcp-pubsub-stream-binder")

}

97.1. Overview

This binder binds producers to Google Cloud Pub/Sub topics and consumers to subscriptions.

o Partitioning is currently not supported by this binder.

97.2. Configuration

You can configure the Spring Cloud Stream Binder for Google Cloud Pub/Sub to automatically
generate the underlying resources, like the Google Cloud Pub/Sub topics and subscriptions for

producers and consumers. For that, you can use the
spring.cloud.stream.gcp.pubsub.bindings.<channelName>.<consumer |producer>.auto-create-resources

property, which is turned ON by default.

Starting with version 1.1, these and other binder properties can be configured globally for all the
bindings, e.g. spring.cloud.stream.gcp.pubsub.default.consumer.auto-create-resources.

If you are using Pub/Sub auto-configuration from the Spring Cloud GCP Pub/Sub Starter, you should
refer to the configuration section for other Pub/Sub parameters.

o To use this binder with a running emulator, configure its host and port via
spring.cloud.gcp.pubsub.emulator-host.
97.2.1. Producer Synchronous Sending Configuration

By default, this binder will send messages to Cloud Pub/Sub asynchronously. If synchronous
sending is preferred (for example, to allow propagating errors back to the sender), set

https://cloud.spring.io/spring-cloud-stream/
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-pubsub/src/main/java/org/springframework/cloud/gcp/pubsub/integration
getting-started.pdf#_bill_of_materials
https://cloud.google.com/pubsub/docs/emulator

spring.cloud.stream.gcp.pubsub.default.producer.sync property to true.

97.2.2. Producer Destination Configuration

If automatic resource creation is turned ON and the topic corresponding to the destination name
does not exist, it will be created.

For example, for the following configuration, a topic called myEvents would be created.

application.properties

spring.cloud.stream.bindings.events.destination=myEvents
spring.cloud.stream.gcp.pubsub.bindings.events.producer.auto-create-resources=true

97.2.3. Consumer Destination Configuration

A PubSubInboundChannelAdapter will be configured for your consumer endpoint. You may adjust the
ack mode of the consumer endpoint using the ack-mode property. The ack mode controls how
messages will be acknowledged when they are successfully received. The three possible options
are: AUTO (default), AUTO_ACK, and MANUAL. These options are described in detail in the Pub/Sub
channel adapter documentation.

application.properties

How to set the ACK mode of the consumer endpoint.
spring.cloud.stream.gcp.pubsub.bindings.{CONSUMER_NAME}.consumer .ack-mode=AUTO_ACK

If automatic resource creation is turned ON and the subscription and/or the topic do not exist for a
consumer, a subscription and potentially a topic will be created. The topic name will be the same as
the destination name, and the subscription name will be the destination name followed by the
consumer group name.

Regardless of the auto-create-resources setting, if the consumer group is not specified, an
anonymous one will be created with the name anonymous.<destinationName>.<randomUUID>. Then
when the binder shuts down, all Pub/Sub subscriptions created for anonymous consumer groups
will be automatically cleaned up.

For example, for the following configuration, a topic named myEvents and a subscription called
myEvents.consumerGroup1 would be created. If the consumer group is not specified, a subscription
called anonymous.myEvents.a6d83782-c5a3-4861-ac38-ebe2af15a7be would be created and later
cleaned up.

o If you are manually creating Pub/Sub subscriptions for consumers, make sure that
they follow the naming convention of <destinationName>.<consumerGroup>.

application.properties

spring.cloud.stream.bindings.events.destination=myEvents
spring.cloud.stream.gcp.pubsub.bindings.events.consumer.auto-create-resources=true

specify consumer group, and avoid anonymous consumer group generation
spring.cloud.stream.bindings.events.group=consumerGroup1

97.3. Binding with Functions

Since version 3.0, Spring Cloud Stream supports a functional programming model natively. This
means that the only requirement for turning your application into a sink is presence of a
java.util.function.Consumer bean in the application context.

@Bean
public Consumer<UserMessage> logUserMessage() {
return userMessage -> {
// process message

}
+

A source application is one where a Supplier bean is present. It can return an object, in which case
Spring Cloud Stream will invoke the supplier repeatedly. Alternatively, the function can return a
reactive stream, which will be used as is.

@Bean
Supplier<Flux<UserMessage>> generateUserMessages() {
return () -> /* flux creation logic */;

}

A processor application works similarly to a source application, except it is triggered by presence of
a Function bean.

97.4. Binding with Annotations
o As of version 3.0, annotation binding is considered legacy.

To set up a sink application in this style, you would associate a class with a binding interface, such
as the built-in Sink interface.

@EnableBinding(Sink.class)
public class SinkExample {

@StreamListener(Sink.INPUT)
public void handleMessage(UserMessage userMessage) {
// process message

}

To set up a source application, you would similarly associate a class with a built-in Source interface,
and inject an instance of it provided by Spring Cloud Stream.

@EnableBinding(Source.class)
public class SourceExample {

@Autowired
private Source source;

public void sendMessage() {
this.source.output().send(new GenericMessage<>(/* your object here */));

}

97.5. Streaming vs. Polled Input

Many Spring Cloud Stream applications will use the built-in Sink binding, which triggers the
streaming input binder creation. Messages can then be consumed with an input handler marked by
@StreamListener(Sink.INPUT) annotation, at whatever rate Pub/Sub sends them.

For more control over the rate of message arrival, a polled input binder can be set up by defining a
custom binding interface with an @Input-annotated method returning PollableMessageSource.

public interface PollableSink {

@Input("input")
PollableMessageSource input();

The PollableMessageSource can then be injected and queried, as needed.

@EnableBinding(PollableSink.class)
public class SinkExample {

@Autowired
PollableMessageSource destlIn;

@Bean
public ApplicationRunner singlePollRunner() {
return args -> {
// This will poll only once.
// Add a loop or a scheduler to get more messages.

destIn.poll((message) -> System.out.println("Message retrieved: " +
message));

};
}

97.6. Sample

Sample applications are available:

» For streaming input, annotation-based.
* For streaming input, functional style.

* For polled input.

https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-pubsub-binder-sample
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-pubsub-stream-binder-functional-sample
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-pubsub-polling-binder-sample

Chapter 98. Spring Cloud Bus

Using Cloud Pub/Sub as the Spring Cloud Bus implementation is as simple as importing the spring-
cloud-gcp-starter-bus-pubsub starter.

This starter brings in the Spring Cloud Stream binder for Cloud Pub/Sub, which is used to both
publish and subscribe to the bus. If the bus topic (named springCloudBus by default) does not exist,
the binder automatically creates it. The binder also creates anonymous subscriptions for each
project using the spring-cloud-gcp-starter-bus-pubsub starter.

Maven coordinates, using Spring Cloud GCP BOM:

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-gcp-starter-bus-pubsub</artifactld>
</dependency>

Gradle coordinates:

dependencies {
implementation("org.springframework.cloud:spring-cloud-gcp-starter-bus-pubsub")

}

98.1. Configuration Management with Spring Cloud
Config and Spring Cloud Bus

Spring Cloud Bus can be used to push configuration changes from a Spring Cloud Config server to
the clients listening on the same bus.

To use GCP Pub/Sub as the bus implementation, both the configuration server and the configuration
client need the spring-cloud-gcp-starter-bus-pubsub dependency.

All other configuration is standard to Spring Cloud Config.
[spring cloud bus over pubsub] | spring cloud_bus_over_pubsub.png

Spring Cloud Config Server typically runs on port 8888, and can read configuration from a variety of
source control systems such as GitHub, and even from the local filesystem. When the server is
notified that new configuration is available, it fetches the updated configuration and sends a
notification (RefreshRemoteApplicationEvent) out via Spring Cloud Bus.

When configuration is stored locally, config server polls the parent directory for changes. With
configuration stored in source control repository, such as GitHub, the config server needs to be
notified that a new version of configuration is available. In a deployed server, this would be done
automatically through a GitHub webhook, but in a local testing scenario, the /monitor HTTP
endpoint needs to be invoked manually.

https://cloud.google.com/pubsub/
https://spring.io/projects/spring-cloud-bus
spring-stream.pdf#_spring_cloud_stream
getting-started.pdf#_bill_of_materials
https://spring.io/projects/spring-cloud-config
https://cloud.spring.io/spring-cloud-config/spring-cloud-config.html#_environment_repository
https://cloud.spring.io/spring-cloud-config/spring-cloud-config.html#_environment_repository

curl -X POST http://localhost:8888/monitor -H "X-Github-Event: push" -H "Content-Type:
application/json" -d '{"commits": [{"modified": ["application.properties"]}]}’

By adding the spring-cloud-gcp-starter-bus-pubsub dependency, you instruct Spring Cloud Bus to
use Cloud Pub/Sub to broadcast configuration changes. Spring Cloud Bus will then create a topic
named springCloudBus, as well as a subscription for each configuration client.

The configuration server happens to also be a configuration client, subscribing to the configuration
changes that it sends out. Thus, in a scenario with one configuration server and one configuration
client, two anonymous subscriptions to the springCloudBus topic are created. However, a config
server disables configuration refresh by default (see ConfigServerBootstrapApplicationListener for
more details).

A demo application showing configuration management and distribution over a Cloud Pub/Sub-
powered bus is available. The sample contains two examples of configuration management with
Spring Cloud Bus: one monitoring a local file system, and the other retrieving configuration from a
GitHub repository.

https://static.javadoc.io/org.springframework.cloud/spring-cloud-config-server/2.1.0.RELEASE/index.html
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-pubsub-bus-config-sample

Chapter 99. Stackdriver Trace

Google Cloud Platform provides a managed distributed tracing service called Stackdriver Trace, and
Spring Cloud Sleuth can be used with it to easily instrument Spring Boot applications for
observability.

Typically, Spring Cloud Sleuth captures trace information and forwards traces to services like
Zipkin for storage and analysis. However, on GCP, instead of running and maintaining your own
Zipkin instance and storage, you can use Stackdriver Trace to store traces, view trace details,
generate latency distributions graphs, and generate performance regression reports.

This Spring Cloud GCP starter can forward Spring Cloud Sleuth traces to Stackdriver Trace without
an intermediary Zipkin server.

Maven coordinates, using Spring Cloud GCP BOM:

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-gcp-starter-trace</artifactId>
</dependency>

Gradle coordinates:

dependencies {
implementation("org.springframework.cloud:spring-cloud-gcp-starter-trace")

}

You must enable Stackdriver Trace API from the Google Cloud Console in order to capture traces.
Navigate to the Stackdriver Trace API for your project and make sure it’s enabled.

If you are already using a Zipkin server capturing trace information from multiple
platform/frameworks, you can also use a Stackdriver Zipkin proxy to forward
those traces to Stackdriver Trace without modifying existing applications.

99.1. Tracing

Spring Cloud Sleuth uses the Brave tracer to generate traces. This integration enables Brave to use
the StackdriverTracePropagation propagation.

A propagation is responsible for extracting trace context from an entity (e.g., an HTTP servlet
request) and injecting trace context into an entity. A canonical example of the propagation usage is
a web server that receives an HTTP request, which triggers other HTTP requests from the server
before returning an HTTP response to the original caller. In the case of
StackdriverTracePropagation, first it looks for trace context in the x-cloud-trace-context key (e.g., an
HTTP request header). The value of the x-cloud-trace-context key can be formatted in three
different ways:

https://cloud.google.com/trace/
https://cloud.spring.io/spring-cloud-sleuth/
getting-started.pdf#_bill_of_materials
https://console.cloud.google.com/apis/api/cloudtrace.googleapis.com/overview
https://cloud.google.com/trace/docs/zipkin
https://github.com/openzipkin/brave
https://github.com/openzipkin/zipkin-gcp/tree/master/propagation-stackdriver

o X-cloud-trace-context: TRACE_ID
o X-cloud-trace-context: TRACE_ID/SPAN_ID

o X-cloud-trace-context: TRACE_ID/SPAN_ID;o=TRACE_TRUE

TRACE _IDis a 32-character hexadecimal value that encodes a 128-bit number.

SPAN_ID is an unsigned long. Since Stackdriver Trace doesn’t support span joins, a new span ID is
always generated, regardless of the one specified in x-cloud-trace-context.

TRACE_TRUE can either be 0 if the entity should be untraced, or 1 if it should be traced. This field
forces the decision of whether or not to trace the request; if omitted then the decision is deferred to

the sampler.

If a x-cloud-trace-context key isn’t found, StackdriverTracePropagation falls back to tracing with the

X-B3 headers.

99.2. Spring Boot Starter for Stackdriver Trace

Spring Boot Starter for Stackdriver Trace uses Spring Cloud Sleuth and auto-configures a
StackdriverSender that sends the Sleuth’s trace information to Stackdriver Trace.

All configurations are optional:

Name

spring.cloud.gcp.trace
.enabled

spring.cloud.
.project-id

gcp.trace

spring.cloud.
.credentials.

gcp.trace
location

spring.cloud.
.credentials.
key

gcp.trace
encoded-

spring.cloud.
.credentials.

gcp.trace
scopes

spring.cloud.gcp.trace
.num-executor-threads

Description

Auto-configure Spring No
Cloud Sleuth to send

traces to Stackdriver

Trace.

Overrides the project No
ID from the Spring

Cloud GCP Module

Overrides the No
credentials location
from the Spring Cloud

GCP Module

Overrides the No
credentials encoded
key from the Spring

Cloud GCP Module

Overrides the No
credentials scopes from
the Spring Cloud GCP

Module

Number of threads No
used by the Trace

executor

Required Default value

https://github.com/openzipkin/b3-propagation
https://github.com/openzipkin/zipkin-gcp/blob/master/sender-stackdriver/src/main/java/zipkin2/reporter/stackdriver/StackdriverSender.java

spring.cloud.gcp.trace
.authority

spring.cloud.gcp.trace
.compression

spring.cloud.gcp.trace
.deadline-ms

spring.cloud.gcp.trace
.max-inbound-size

spring.cloud.gcp.trace
.max-outbound-size

spring.cloud.gcp.trace
.wait-for-ready

spring.cloud.gcp.trace
.messageTimeout

You can use core Spring Cloud Sleuth properties to control Sleuth’s sampling rate, etc. Read Sleuth
documentation for more information on Sleuth configurations.

For example, when you are testing to see the traces are going through, you can set the sampling rate

to 100%.

HTTP/2 authority the
channel claims to be
connecting to.

Name of the
compression to use in
Trace calls

Call deadline in
milliseconds

Maximum size for
inbound messages

Maximum size for
outbound messages

Waits for the channel
to be ready in case of a
transient failure

Timeout in seconds
before pending spans
will be sent in batches
to GCP Stackdriver
Trace. (previously
spring.zipkin.messageT
imeout)

spring.sleuth.sampler.probability=1
traces to Stackdriver.

spring.sleuth.web.skipPattern=(Acleanup.*|.+favicon.*) # Ignore some URL paths.
disable executor 'async'

spring.sleuth.scheduled.enabled=false

traces

By default, Spring Cloud Sleuth auto-configuration instruments executor beans,
which may cause recurring traces with the name async to appear in Stackdriver
A Trace if your application or one of its dependencies introduces scheduler beans
into Spring application context. To avoid this noise, please disable automatic
instrumentation of executors via spring.sleuth.scheduled.enabled=false in your

application configuration.

Spring Cloud GCP Trace does override some Sleuth configurations:

* Always uses 128-bit Trace IDs. This is required by Stackdriver Trace.

No

No

No

No

No

No

No

false

Send 100% of the request

https://github.com/grpc/grpc/blob/master/doc/wait-for-ready.md
https://github.com/grpc/grpc/blob/master/doc/wait-for-ready.md
https://cloud.spring.io/spring-cloud-sleuth/
https://cloud.spring.io/spring-cloud-sleuth/

* Does not use Span joins. Span joins will share the span ID between the client and server Spans.
Stackdriver requires that every Span ID within a Trace to be unique, so Span joins are not
supported.

» Uses StackdriverHttpClientParser and StackdriverHttpServerParser by default to populate
Stackdriver related fields.

99.3. Overriding the auto-configuration

Spring Cloud Sleuth supports sending traces to multiple tracing systems as of version 2.1.0. In order
to get this to work, every tracing system needs to have a Reporter and Sender. If you want to
override the provided beans you need to give them a specific name. To do this you can use
respectively StackdriverTraceAutoConfiguration.REPORTER_BEAN_NAME and
StackdriverTraceAutoConfiguration.SENDER_BEAN_NAME.

99.4. Customizing spans

You can add additional tags and annotations to spans by using the brave.SpanCustomizer, which is
available in the application context.

Here’s an example that uses WebMvcConfigurer to configure an MVC interceptor that adds two extra
tags to all web controller spans.

@SpringBootApplication
public class Application implements WebMvcConfigurer {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);
}

@Autowired
private SpanCustomizer spanCustomizer;

@0verride
public void addInterceptors(InterceptorRegistry registry) {
registry.addInterceptor(new HandlerInterceptor() {
@0verride
public boolean preHandle(HttpServletRequest request, HttpServletResponse
response, Object handler) throws Exception {
spanCustomizer.tag("session-id", request.getSession().getId());
spanCustomizer.tag("environment", "QA");

return true;

b

You can then search and filter traces based on these additional tags in the Stackdriver Trace service.

99.5. Integration with Logging

Integration with Stackdriver Logging is available through the Stackdriver Logging Support. If the
Trace integration is used together with the Logging one, the request logs will be associated to the
corresponding traces. The trace logs can be viewed by going to the Google Cloud Console Trace List,
selecting a trace and pressing the Logs - Viewlink in the Details section.

99.6. Sample

A sample application and a codelab are available.

logging.adoc
https://console.cloud.google.com/traces/traces
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-trace-sample
https://codelabs.developers.google.com/codelabs/cloud-spring-cloud-gcp-trace/index.html

Chapter 100. Stackdriver Logging

Maven coordinates, using Spring Cloud GCP BOM:

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-gcp-starter-logging</artifactId>
</dependency>

Gradle coordinates:

dependencies {
implementation("org.springframework.cloud:spring-cloud-gcp-starter-logging")

}

Stackdriver Logging is the managed logging service provided by Google Cloud Platform.

This module provides support for associating a web request trace ID with the corresponding log
entries. It does so by retrieving the X-B3-Traceld value from the Mapped Diagnostic Context (MDC),
which is set by Spring Cloud Sleuth. If Spring Cloud Sleuth isn’t used, the configured
TraceIdExtractor extracts the desired header value and sets it as the log entry’s trace ID. This allows
grouping of log messages by request, for example, in the Google Cloud Console Logs viewer.

Due to the way logging is set up, the GCP project ID and credentials defined in
application.properties are ignored. Instead, you should set the
GOOGLE_CLOUD_PROJECT and GOOGLE_APPLICATION_CREDENTIALS environment variables

o to the project ID and credentials private key location, respectively. You can do this
easily if you’re using the Google Cloud SDK, using the gcloud config set project
[YOUR_PROJECT_ID] and gcloud auth application-default Tlogin commands,
respectively.

100.1. Web MVC Interceptor

For use in Web MVC-based applications, TraceIdLoggingWebMvcInterceptor is provided that extracts
the request trace ID from an HTTP request using a TraceIdExtractor and stores it in a thread-local,
which can then be used in a logging appender to add the trace ID metadata to log messages.

g If Spring Cloud GCP Trace is enabled, the logging module disables itself and
delegates log correlation to Spring Cloud Sleuth.

LoggingWebMvcConfigurer configuration class 1is also provided to help register the
TraceIdLoggingWebMvcInterceptor in Spring MVC applications.

Applications hosted on the Google Cloud Platform include trace IDs under the x-cloud-trace-
context header, which will be included in log entries. However, if Sleuth is used the trace ID will be

getting-started.pdf#_bill_of_materials
https://cloud.google.com/logging/
https://logback.qos.ch/manual/mdc.html
https://console.cloud.google.com/logs/viewer
https://cloud.google.com/sdk

picked up from the MDC.

100.2. Logback Support

Currently, only Logback is supported and there are 2 possibilities to log to Stackdriver via this
library with Logback: via direct API calls and through JSON-formatted console logs.

100.2.1. Log via API

A Stackdriver appender is available wusing org/springframework/cloud/gcp/logging/logback-
appender.xml. This appender builds a Stackdriver Logging log entry from a JUL or Logback log entry,
adds a trace ID to it and sends it to Stackdriver Logging.

STACKDRIVER_LOG_NAME and STACKDRIVER_LOG_FLUSH_LEVEL environment variables can be used to
customize the STACKDRIVER appender.

Your configuration may then look like this:

<configuration>
<include resource="org/springframework/cloud/gcp/logging/logback-appender.xml" />

<root level="INFO0">
<appender-ref ref="STACKDRIVER" />
</root>
</configuration>

If you want to have more control over the log output, you can further configure the appender. The
following properties are available:

Property Default Value Description

log spring.log The Stackdriver Log name. This
can also be set via the
STACKDRIVER_LOG_NAME
environmental variable.

flushLevel WARN If a log entry with this level is
encountered, trigger a flush of
locally buffered log to
Stackdriver Logging. This can
also be set via the
STACKDRIVER_LOG_FLUSH_LEVEL
environmental variable.

100.2.2. Log via Console

For Logback, a org/springframework/cloud/gcp/logging/logback-json-appender.xml file is made
available for import to make it easier to configure the JSON Logback appender.

Your configuration may then look something like this:

<confiquration>
<include resource="org/springframework/cloud/gcp/logging/logback-json-appender.xml"

/>

<root level="INFO0">
<appender-ref ref="CONSOLE_JSON" />
</root>
</configuration>

If your application is running on Google Kubernetes Engine, Google Compute Engine or Google App
Engine Flexible, your console logging is automatically saved to Google Stackdriver Logging.
Therefore, you can just include org/springframework/cloud/gcp/logging/logback-json-appender.xml
in your logging configuration, which logs JSON entries to the console. The trace id will be set
correctly.

If you want to have more control over the log output, you can further configure the appender. The
following properties are available:

Property Default Value Description

projectId If not set, default value is This is used to generate fully
determined in the following qualified Stackdriver Trace ID
order: format: projects/[PROJECT-

ID]/traces/[TRACE-ID].
1. SPRING_CLOUD_GCP_LOGGING_PR

0JECT_ID ~ Environmental This format is required to
Variable. correlate trace between
2. Value of Stackdriver Trace and

DefaultGepProjectIdProvider Stackdriver Logging.
.getProjectId()
If projectld is not set and

cannot be determined, then it’ll
log traceld without the fully
qualified format.

includeTraceld true Should the traceId be included
includeSpanId true Should the spanId be included
includelevel true Should the severity be included
includeThreadName true Should the thread name be

included

Property
includeMDC

includelLoggerName

includeFormattedMessage

includeExceptionInMessage

includeContextName

includeMessage

includeException

serviceContext

customJson

This is an example of such an Logback configuration:

Default Value

true

true

true

true

true

false

false

none

none

Description

Should all MDC properties be
included. The MDC properties
X-B3-Traceld, X-B3-SpanId and X-
Span-Export provided by Spring
Sleuth will get excluded as they
get handled separately

Should the name of the logger
be included

Should the formatted log
message be included.

Should the stacktrace be
appended to the formatted log
message. This setting is only
evaluated if
includeFormattedMessage is true

Should the logging context be
included

Should the log message with
blank placeholders be included

Should the stacktrace be
included as a own field

Define the Stackdriver service
context data (service and
version). This allows filtering of
error reports for service and
version in the Google Cloud
Error Reporting View.

Defines custom json data. Data
will be added to the json output.

https://console.cloud.google.com/errors
https://console.cloud.google.com/errors

<confiquration >
<property name="projectId" value="${projectId:-${GOOGLE_CLOUD_PROJECT}}"/>

<appender name="CONSOLE_JSON" class="ch.qos.logback.core.ConsoleAppender">
<encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">
<layout class="org.springframework.cloud.gcp.logging.StackdriverJsonlLayout">
<projectId>${projectId}</projectId>

<I'--<includeTraceld>true</includeTraceId>-->
<!--<includeSpanId>true</includeSpanId>-->
<!--<includelevel>true</includelLevel>-->
<I--<includeThreadName>true</includeThreadName>-->
<!--<includeMDC>true</includeMDC>-->
<!--<includelLoggerName>true</includeLoggerName>-->
<!--<includeFormattedMessage>true</includeFormattedMessage>-->
<!--<includeExceptionInMessage>true</includeExceptionInMessage>-->
<I--<includeContextName>true</includeContextName>-->
<!--<includeMessage>false</includeMessage>-->
<!--<includeException>false</includeException>-->
<!--<serviceContext>
<service>service-name</service>
<version>service-version</version>
</serviceContext>-->
<!--<customJson>{"custom-key": "custom-value"}</customJson>-->
</layout>
</encoder>
</appender>
</configuration>

100.3. Sample

A Sample Spring Boot Application is provided to show how to use the Cloud logging starter.

https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-logging-sample

Chapter 101. Stackdriver Monitoring

Google Cloud Platform provides a service called Stackdriver Monitoring, and Micrometer can be
used with it to easily instrument Spring Boot applications for observability.

Spring Boot already provides auto-configuration for Stackdriver. This module enables auto-
detection of the project-id and credentials. Also, it can be customized.

Maven coordinates, using Spring Cloud GCP BOM:

<dependency>

<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-gcp-starter-metrics</artifactId>

</dependency>

Gradle coordinates:

dependencies {

implementation("org.springframework.cloud:spring-cloud-gcp-starter-metrics")

}

You must enable Stackdriver Monitoring API from the Google Cloud Console in order to capture
metrics. Navigate to the Stackdriver Monitoring API for your project and make sure it’s enabled.

Spring Boot Starter for Stackdriver Monitoring uses Micrometer.

101.1. Configuration

All configurations are optional:

Name

spring.cloud.gcp.metri
cs.enabled

spring.cloud.gcp.metri
cs.project-id

spring.cloud.gcp.metri
cs.credentials.locatio
n

Description

Auto-configure
Micrometer to send
metrics to Stackdriver
Monitoring.

Overrides the project
ID from the Spring
Cloud GCP Module

Overrides the
credentials location
from the Spring Cloud
GCP Module

Required Default value
No true

No

No

https://cloud.google.com/monitoring/
https://micrometer.io/docs/registry/stackdriver
getting-started.pdf#_bill_of_materials
https://console.cloud.google.com/apis/api/monitoring.googleapis.com/overview

spring.cloud.gcp.metri Overrides the No
cs.credentials.encoded credentials encoded

key key from the Spring

Cloud GCP Module
spring.cloud.gcp.metri Qverrides the No
cs.credentials.scopes . oqentials scopes from

the Spring Cloud GCP

Module

You can use core Spring Boot Actuator properties to control reporting frequency, etc. Read Spring
Boot Actuator documentation for more information on Stackdriver Actuator configurations.

101.2. Sample

A sample application is available.

https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#production-ready-metrics-export-stackdriver
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#production-ready-metrics-export-stackdriver
https://github.com/spring-cloud/spring-cloud-gcp/tree/master/spring-cloud-gcp-samples/spring-cloud-gcp-metrics-sample

Chapter 102. Spring Data Cloud Spanner

Spring Data is an abstraction for storing and retrieving POJOs in numerous storage technologies.
Spring Cloud GCP adds Spring Data support for Google Cloud Spanner.

Maven coordinates for this module only, using Spring Cloud GCP BOM:

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-gcp-data-spanner</artifactId>
</dependency>

Gradle coordinates:

dependencies {
implementation("org.springframework.cloud:spring-cloud-gcp-data-spanner")

}

We provide a Spring Boot Starter for Spring Data Spanner, with which you can leverage our
recommended auto-configuration setup. To use the starter, see the coordinates see below.

Maven:

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-gcp-starter-data-spanner</artifactId>
</dependency>

Gradle:

dependencies {
implementation("org.springframework.cloud:spring-cloud-gcp-starter-data-spanner")

}

This setup takes care of bringing in the latest compatible version of Cloud Java Cloud Spanner
libraries as well.

102.1. Configuration

To setup Spring Data Cloud Spanner, you have to configure the following:

» Setup the connection details to Google Cloud Spanner.

* Enable Spring Data Repositories (optional).

https://projects.spring.io/spring-data/
https://cloud.google.com/spanner/
getting-started.pdf#_bill_of_materials
../spring-cloud-gcp-starters/spring-cloud-gcp-starter-data-spanner

102.1.1. Cloud Spanner settings

You can the use Spring Boot Starter for Spring Data Spanner to autoconfigure Google Cloud Spanner
in your Spring application. It contains all the necessary setup that makes it easy to authenticate

with your Google Cloud project. The following configuration options are available:

Name

spring.cloud.gcp.spann
er.instance-id

spring.cloud.gcp.spann
er.database

spring.cloud.gcp.spann
er.project-id

spring.cloud.gcp.spann
er.credentials.locatio
n

spring.cloud.gcp.spann
er.credentials.encoded
-key

spring.cloud.gcp.spann
er.credentials.scopes

spring.cloud.gcp.spann
er.createlnterleavedTa
bleDd10nDeleteCascade

Description Required

Cloud Spanner instance Yes
to use

Cloud Spanner Yes
database to use

GCP project ID where No
the Google Cloud

Spanner API is hosted,

if different from the

one in the Spring Cloud
GCP Core Module

OAuth2 credentials for No
authenticating with the
Google Cloud Spanner

API, if different from

the ones in the Spring
Cloud GCP Core Module

Base64-encoded No
OAuth2 credentials for
authenticating with the
Google Cloud Spanner

API, if different from

the ones in the Spring
Cloud GCP Core Module

OAuth2 scope for No
Spring Cloud GCP Cloud
Spanner credentials

If true, then schema No
statements generated
by SpannerSchemaUtils
for tables with
interleaved parent-
child relationships will
be "ON DELETE
CASCADE". The schema
for the tables will be
"ON DELETE NO
ACTION" if false.

Default value

www.googleapis.com/
auth/spanner.data

true

../spring-cloud-gcp-starters/spring-cloud-gcp-starter-data-spanner
https://developers.google.com/identity/protocols/googlescopes
https://www.googleapis.com/auth/spanner.data
https://www.googleapis.com/auth/spanner.data

spring.cloud.gcp.spann
er.numRpcChannels

spring.cloud.gcp.spann
er.prefetchChunks

spring.cloud.gcp.spann
er.minSessions

spring.cloud.gcp.spann
er.maxSessions

spring.cloud.gcp.spann
er.maxIdleSessions

spring.cloud.gcp.spann
er.writeSessionsFracti
on

spring.cloud.gcp.spann
er.keepAliveIntervalMi
nutes

spring.cloud.gcp.spann
er.faillfPoolExhausted

spring.cloud.gcp.spann
er.emulator.enabled

Number of gRPC
channels used to
connect to Cloud
Spanner

Number of chunks
prefetched by Cloud
Spanner for read and

query

Minimum number of
sessions maintained in
the session pool

Maximum number of
sessions session pool
can have

Maximum number of
idle sessions session
pool will maintain

Fraction of sessions to
be kept prepared for
write transactions

How long to keep idle
sessions alive

If all sessions are in
use, fail the request by
throwing an exception.
Otherwise, by default,
block until a session
becomes available.

Enables the usage of an
emulator. If this is set
to true, then you should
set the
spring.cloud.gcp.spann
er.emulator-host to the
host:port of your
locally running
emulator instance.

No

No

No

No

No

No

No

No

No

4 - Determined by
Cloud Spanner client
library

4 - Determined by
Cloud Spanner client
library

0 - Determined by
Cloud Spanner client
library

400 - Determined by
Cloud Spanner client
library

0 - Determined by
Cloud Spanner client
library

0.2 - Determined by
Cloud Spanner client
library

30 - Determined by
Cloud Spanner client
library

false

false

spring.cloud.gcp.spann The host and port of the No localhost:9010
er.emulator-host Spanner emulator; can

be overridden to

specify connecting to

an already-running

Spanner emulator

instance.

102.1.2. Repository settings

Spring Data Repositories can be configured via the @EnableSpannerRepositories annotation on your
main @Configuration class. With our Spring Boot Starter for Spring Data Cloud Spanner,
@EnableSpannerRepositories is automatically added. It is not required to add it to any other class,
unless there is a need to override finer grain configuration parameters provided by
@EnableSpannerRepositories.

102.1.3. Autoconfiguration

Our Spring Boot autoconfiguration creates the following beans available in the Spring application
context:
e an instance of SpannerTemplate

* an instance of SpannerDatabaseAdminTemplate for generating table schemas from object
hierarchies and creating and deleting tables and databases

* an instance of all user-defined repositories extending SpannerRepository, CrudRepository,
PagingAndSortingRepository, when repositories are enabled

* an instance of DatabaseClient from the Google Cloud Java Client for Spanner, for convenience
and lower level API access

102.2. Object Mapping

Spring Data Cloud Spanner allows you to map domain POJOs to Cloud Spanner tables via
annotations:

https://cloud.google.com/spanner/docs/emulator#installing_and_running_the_emulator
https://github.com/spring-cloud/spring-cloud-gcp/blob/master/spring-cloud-gcp-data-spanner/src/main/java/org/springframework/cloud/gcp/data/spanner/repository/config/EnableSpannerRepositories.java

@Table(name = "traders")
public class Trader {

@PrimaryKey
@Column(name = "trader_id")
String traderId;

String firstName;
String lastName;

@NotMapped
Double temporaryNumber;

Spring Data Cloud Spanner will ignore any property annotated with @NotMapped. These properties
will not be written to or read from Spanner.

102.2.1. Constructors

Simple constructors are supported on POJOs. The constructor arguments can be a subset of the
persistent properties. Every constructor argument needs to have the same name and type as a
persistent property on the entity and the constructor should set the property from the given
argument. Arguments that are not directly set to properties are not supported.

@Table(name = "traders")

public class Trader {
@PrimaryKey
@Column(name = "trader_id")
String traderld;

String firstName;
String lastName;

@NotMapped
Double temporaryNumber;

public Trader(String traderId, String firstName) {
this.traderId = traderId;
this.firstName = firstName;

102.2.2. Table

The @Table annotation can provide the name of the Cloud Spanner table that stores instances of the
annotated class, one per row. This annotation is optional, and if not given, the name of the table is

inferred from the class name with the first character uncapitalized.

SpEL expressions for table names

In some cases, you might want the @Table table name to be determined dynamically. To do that, you
can use Spring Expression Language.

For example:

@Table(name = "trades_#{tableNameSuffix}")
public class Trade {

/] ...
}

The table name will be resolved only if the tableNameSuffix value/bean in the Spring application
context is defined. For example, if tableNameSuffix has the value "123", the table name will resolve
to trades_123.

102.2.3. Primary Keys

For a simple table, you may only have a primary key consisting of a single column. Even in that
case, the @PrimaryKey annotation is required. @PrimaryKey identifies the one or more ID properties
corresponding to the primary key.

Spanner has first class support for composite primary keys of multiple columns. You have to
annotate all of your POJO’s fields that the primary key consists of with @PrimaryKey as below:

@Table(name = "trades")

public class Trade {
@PrimaryKey(keyOrder = 2)
@Column(name = "trade_id")
private String tradeld;

@PrimaryKey(keyOrder = 1)
@Column(name = "trader_id")
private String traderld;
private String action;
private BigDecimal price;

private Double shares;

private String symbol;

The keyOrder parameter of @PrimaryKey identifies the properties corresponding to the primary key
columns in order, starting with 1 and increasing consecutively. Order is important and must reflect

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#expressions

the order defined in the Cloud Spanner schema. In our example the DDL to create the table and its
primary key is as follows:

CREATE TABLE trades (
trader_id STRING(MAX),
trade_id STRING(MAX),
action STRING(15),
symbol STRING(10),
price NUMERIC,
shares FLOAT64
) PRIMARY KEY (trader_id, trade_id)

Spanner does not have automatic ID generation. For most use-cases, sequential IDs should be used
with caution to avoid creating data hotspots in the system. Read Spanner Primary Keys
documentation for a better understanding of primary keys and recommended practices.

102.2.4. Columns

All accessible properties on POJOs are automatically recognized as a Cloud Spanner column.
Column naming is generated by the PropertyNameFieldNamingStrategy by default defined on the
SpannerMappingContext bean. The @Column annotation optionally provides a different column name
than that of the property and some other settings:

* name is the optional name of the column

* spannerTypeMaxLength specifies for STRING and BYTES columns the maximum length. This setting is
only used when generating DDL schema statements based on domain types.

* nullable specifies if the column is created as NOT NULL. This setting is only used when generating
DDL schema statements based on domain types.

» spannerType is the Cloud Spanner column type you can optionally specify. If this is not specified
then a compatible column type is inferred from the Java property type.

» spannerCommitTimestamp is a boolean specifying if this property corresponds to an auto-populated
commit timestamp column. Any value set in this property will be ignored when writing to Cloud
Spanner.

102.2.5. Embedded Objects

If an object of type B is embedded as a property of A, then the columns of B will be saved in the same
Cloud Spanner table as those of A.

If B has primary key columns, those columns will be included in the primary key of A. B can also
have embedded properties. Embedding allows reuse of columns between multiple entities, and can
be useful for implementing parent-child situations, because Cloud Spanner requires child tables to
include the key columns of their parents.

For example:

https://cloud.google.com/spanner/docs/schema-and-data-model#primary_keys
https://cloud.google.com/spanner/docs/schema-and-data-model#primary_keys

class X {
@PrimaryKey
String grandParentId;

long age;

}

class A {
@PrimaryKey
@Embedded
X grandParent;

@PrimaryKey(keyOrder = 2)
String parentld;

String value;

}

@Table(name = "items")
class B {
@PrimaryKey
©Embedded
A parent;

@PrimaryKey(keyOrder = 2)
String 1id;

@Column(name = "child_value")
String value;

Entities of B can be stored in a table defined as:

CREATE TABLE items (
grandParentId STRING(MAX),
parentId STRING(MAX),
id STRING(MAX),
value STRING(MAX),
child_value STRING(MAX),
age INT64
) PRIMARY KEY (grandParentId, parentId, id)

Note that embedded properties' column names must all be unique.

102.2.6. Relationships

Spring Data Cloud Spanner supports parent-child relationships using the Cloud Spanner parent-
child interleaved table mechanism. Cloud Spanner interleaved tables enforce the one-to-many

https://cloud.google.com/spanner/docs/schema-and-data-model#creating-interleaved-tables
https://cloud.google.com/spanner/docs/schema-and-data-model#creating-interleaved-tables

relationship and provide efficient queries and operations on entities of a single domain parent
entity. These relationships can be up to 7 levels deep. Cloud Spanner also provides automatic
cascading delete or enforces the deletion of child entities before parents.

While one-to-one and many-to-many relationships can be implemented in Cloud Spanner and
Spring Data Cloud Spanner using constructs of interleaved parent-child tables, only the parent-
child relationship is natively supported. Cloud Spanner does not support the foreign key constraint,
though the parent-child key constraint enforces a similar requirement when used with interleaved
tables.

For example, the following Java entities:

@Table(name = "Singers")
class Singer {
@PrimaryKey
long SingerId;

String FirstName;
String LastName;
byte[] SingerInfo;

@Interleaved
List<Album> albums;

}

@Table(name = "Albums")
class Album {
@PrimaryKey
long Singerld;

@PrimaryKey(keyOrder = 2)
long AlbumId;

String AlbumTitle;

These classes can correspond to an existing pair of interleaved tables. The @Interleaved annotation
may be applied to Collection properties and the inner type is resolved as the child entity type. The
schema needed to create them can also be generated using the SpannerSchemalUtils and run by using
the SpannerDatabaseAdminTemplate:

@Autowired
SpannerSchemaltils schemaltils;

@Autowired
SpannerDatabaseAdminTemplate databaseAdmin;

// Get the create statmenets for all tables in the table structure rooted at Singer
List<String> createStrings =
this.schemaUtils.getCreateTableDd1StringsForInterleavedHierarchy(Singer.class);

// Create the tables and also create the database if necessary
this.databaseAdmin.executeDd1Strings(createStrings, true);

The createStrings list contains table schema statements using column names and types compatible
with the provided Java type and any resolved child relationship types contained within based on
the configured custom converters.

CREATE TABLE Singers (
SingerId INT64 NOT NULL,
FirstName STRING(1024),
LastName STRING(1024),
SingerInfo BYTES(MAX),

) PRIMARY KEY (SingerId);

CREATE TABLE Albums (
SingerId INT64 NOT NULL,
AlbumId INT64 NOT NULL,
AlbumTitle STRING(MAX),
) PRIMARY KEY (SingerId, AlbumId),
INTERLEAVE IN PARENT Singers ON DELETE CASCADE;

The ON DELETE CASCADE clause indicates that Cloud Spanner will delete all Albums of a singer if the
Singer is deleted. The alternative is ON DELETE NO ACTION, where a Singer cannot be deleted until all
of its Albums have already been deleted. When using SpannerSchemaltils to generate the schema
strings, the spring.cloud.gcp.spanner.createlnterleavedTableDd10nDeleteCascade boolean setting
determines if these schema are generated as ON DELETE CASCADE for true and ON DELETE NO ACTION for
false.

Cloud Spanner restricts these relationships to 7 child layers. A table may have multiple child tables.

On updating or inserting an object to Cloud Spanner, all of its referenced children objects are also
updated or inserted in the same request, respectively. On read, all of the interleaved child rows are
also all read.

Lazy Fetch

@Interleaved properties are retrieved eagerly by default, but can be fetched lazily for performance

in both read and write:

@Interleaved(lazy = true)
List<Album> albums;

Lazily-fetched interleaved properties are retrieved upon the first interaction with the property. If a
property marked for lazy fetching is never retrieved, then it is also skipped when saving the parent
entity.

If used inside a transaction, subsequent operations on lazily-fetched properties use the same
transaction context as that of the original parent entity.

Declarative Filtering with @Where

The @Where annotation could be applied to an entity class or to an interleaved property. This
annotation provides an SQL where clause that will be applied at the fetching of interleaved
collections or the entity itself.

Let’s say we have an Agreement with a list of Participants which could be assigned to it. We would
like to fetch a list of currently active participants. For security reasons, all records should remain in
the database forever, even if participants become inactive. That can be easily achieved with the
@Where annotation, which is demonstrated by this example:

@Table(name = "participants")
public class Participant {
//...
boolean active;
//...
}

@Table(name = "agreements")
public class Agreement {
//...
@Interleaved
@Where("active = true")
List<Participant> participants;
Person person;
//...

102.2.7. Supported Types

Spring Data Cloud Spanner natively supports the following types for regular fields but also utilizes
custom converters (detailed in following sections) and dozens of pre-defined Spring Data custom
converters to handle other common Java types.

Natively supported types:

« com.google.cloud.ByteArray
« com.google.cloud.Date

« com.google.cloud.Timestamp
* java.lang.Boolean, boolean
* java.lang.Double, double

* java.lang.long, long

* java.lang.Integer, int

« java.lang.String

« double[]

« long[]

« boolean[]

o java.util.Date

« java.time.Instant

« java.sql.Date

o java.time.LocalDate

o java.time.lLocalDateTime

102.2.8. Lists
Spanner supports ARRAY types for columns. ARRAY columns are mapped to List fields in POJOS.

Example:

List<Double> curve;

The types inside the lists can be any singular property type.

102.2.9. Lists of Structs

Cloud Spanner queries can construct STRUCT values that appear as columns in the result. Cloud
Spanner requires STRUCT values appear in ARRAYs at the root level: SELECT ARRAY(SELECT STRUCT(1
as vall, 2 as val2)) as pair FROM Users

Spring Data Cloud Spanner will attempt to read the column STRUCT values into a property that is
an Iterable of an entity type compatible with the schema of the column STRUCT value.

For the previous array-select example, the following property can be mapped with the constructed
ARRAY<STRUCT> column: List<TwoInts> pair; where the TwoInts type is defined:

https://cloud.google.com/spanner/docs/query-syntax#using-structs-with-select

class Twolnts {
int vall;

int val2;

}

102.2.10. Custom types
Custom converters can be used to extend the type support for user defined types.

1. Converters need to implement the org.springframework.core.convert.converter.Converter
interface in both directions.

2. The user defined type needs to be mapped to one of the basic types supported by Spanner:
- com.google.cloud.ByteArray

- com.google.cloud.Date

» com.google.cloud.Timestamp

> java.lang.Boolean, boolean
o java.lang.Double, double

> java.lang.long, long
o java.lang.String

- double[]

- long[]

- boolean[]

° enum types

3. An instance of both Converters needs to be passed to a
ConverterAwareMappingSpannerEntityProcessor, which then has to be made available as a @Bean
for SpannerEntityProcessor.

For example:

We would like to have a field of type Person on our Trade POJO:

@Table(name = "trades")
public class Trade {
/...
Person person;
//...
}

Where Person is a simple class:

public class Person {

public String firstName;
public String lastName;

We have to define the two converters:

public class PersonWriteConverter implements Converter<Person, String> {

@0verride
public String convert(Person person) {
return person.firstName + " " + person.lastName;
}
}

public class PersonReadConverter implements Converter<String, Person> {

@0verride

public Person convert(String s) {
Person person = new Person();
person.firstName = s.split(" ")[0];
person.lastName = s.split(" ")[1];
return person;

}

}

That will be configured in our @Configuration file:

@Configuration
public class ConverterConfiguration {

@Bean
public SpannerEntityProcessor spannerEntityProcessor(SpannerMappingContext
spannerMappingContext) {
return new ConverterAwareMappingSpannerEntityProcessor(spannerMappingContext,
Arrays.asList(new PersonWriteConverter()),
Arrays.asList(new PersonReadConverter()));

102.2.11. Custom Converter for Struct Array Columns

If a Converter<Struct, A> is provided, then properties of type List<A> can be used in your entity
types.

102.3. Spanner Operations & Template

SpannerOperations and its implementation, SpannerTemplate, provides the Template pattern familiar
to Spring developers. It provides:
* Resource management

* One-stop-shop to Spanner operations with the Spring Data POJO mapping and conversion
features

» Exception conversion
Using the autoconfigure provided by our Spring Boot Starter for Spanner, your Spring application

context will contain a fully configured SpannerTemplate object that you can easily autowire in your
application:

@SpringBootApplication
public class SpannerTemplateExample {

@Autowired
SpannerTemplate spannerTemplate;

public void doSomething() {
this.spannerTemplate.delete(Trade.class, KeySet.all());
/...
Trade t = new Trade();
//...
this.spannerTemplate.insert(t);
//...
List<Trade> tradesByAction = spannerTemplate.findAll(Trade.class);
/...

The Template API provides convenience methods for:

* Reads, and by providing SpannerReadOptions and SpannerQueryOptions
o Stale read
- Read with secondary indices
> Read with limits and offsets
o Read with sorting
* Queries
* DML operations (delete, insert, update, upsert)
 Partial reads
> You can define a set of columns to be read into your entity

e Partial writes

https://cloud.google.com/spanner/docs/reads
https://cloud.google.com/spanner/docs/reads#execute_a_query

o Persist only a few properties from your entity
* Read-only transactions

* Locking read-write transactions

102.3.1. SQL Query

Cloud Spanner has SQL support for running read-only queries. All the query related methods start
with query on SpannerTemplate. By using SpannerTemplate, you can run SQL queries that map to
POJOs:

List<Trade> trades = this.spannerTemplate.query(Trade.class, Statement.of("SELECT *
FROM trades"));

102.3.2. Read

Spanner exposes a Read API for reading single row or multiple rows in a table or in a secondary
index.

Using SpannerTemplate you can run reads, as the following example shows:

List<Trade> trades = this.spannerTemplate.readAll(Trade.class);

Main benefit of reads over queries is reading multiple rows of a certain pattern of keys is much
easier using the features of the KeySet class.

102.3.3. Advanced reads

Stale read

All reads and queries are strong reads by default. A strong read is a read at a current time and is
guaranteed to see all data that has been committed up until the start of this read. An exact
staleness read is read at a timestamp in the past. Cloud Spanner allows you to determine how
current the data should be when you read data. With SpannerTemplate you can specify the Timestamp
by setting it on SpannerQueryOptions or SpannerReadOptions to the appropriate read or query
methods:

Reads:
// a read with options:
SpannerReadOptions spannerReadOptions = new

SpannerReadOptions().setTimestamp(myTimestamp);
List<Trade> trades = this.spannerTemplate.readAll(Trade.class, spannerReadOptions);

Queries:

https://cloud.google.com/spanner/docs/reads
https://github.com/GoogleCloudPlatform/google-cloud-java/blob/master/google-cloud-spanner/src/main/java/com/google/cloud/spanner/KeySet.java

// a query with options:

SpannerQueryOptions spannerQueryOptions = new
SpannerQueryOptions().setTimestamp(myTimestamp);

List<Trade> trades = this.spannerTemplate.query(Trade.class, Statement.of("SELECT *
FROM trades"), spannerQueryOptions);

You can also read with bounded staleness by setting
.setTimestampBound(TimestampBound.ofMinReadTimestamp(myTimestamp)) on the query and read
options objects. Bounded staleness lets Cloud Spanner choose any point in time later than or equal
to the given timestampBound, but it cannot be used inside transactions.

Read from a secondary index

Using a secondary index is available for Reads via the Template API and it is also implicitly
available via SQL for Queries.

The following shows how to read rows from a table using a secondary index simply by setting index
on SpannerReadOptions:

SpannerReadOptions spannerReadOptions = new
SpannerReadOptions().setIndex("TradesByTrader");
List<Trade> trades = this.spannerTemplate.readAl1l(Trade.class, spannerReadOptions);

Read with offsets and limits

Limits and offsets are only supported by Queries. The following will get only the first two rows of
the query:

SpannerQueryOptions spannerQueryOptions = new
SpannerQueryOptions().setLimit(2).setOffset(3);

List<Trade> trades = this.spannerTemplate.query(Trade.class, Statement.of("SELECT *
FROM trades"), spannerQueryOptions);

Note that the above is equivalent of running SELECT * FROM trades LIMIT 2 OFFSET 3.

Sorting

Reads by keys do not support sorting. However, queries on the Template API support sorting
through standard SQL and also via Spring Data Sort API:

List<Trade> trades = this.spannerTemplate.queryAl1l(Trade.class, Sort.by("action"));

If the provided sorted field name is that of a property of the domain type, then the column name
corresponding to that property will be used in the query. Otherwise, the given field name is
assumed to be the name of the column in the Cloud Spanner table. Sorting on columns of Cloud
Spanner types STRING and BYTES can be done while ignoring case:

https://cloud.google.com/spanner/docs/timestamp-bounds
https://cloud.google.com/spanner/docs/secondary-indexes
https://cloud.google.com/spanner/docs/secondary-indexes

Sort.by(Order.desc("action").ignoreCase())

Partial read

Partial read is only possible when using Queries. In case the rows returned by the query have fewer
columns than the entity that it will be mapped to, Spring Data will map the returned columns only.
This setting also applies to nested structs and their corresponding nested POJO properties.

List<Trade> trades = this.spannerTemplate.query(Trade.class, Statement.of("SELECT
action, symbol FROM trades"),
new SpannerQueryOptions().setAllowMissingResultSetColumns(true));

If the setting is set to false, then an exception will be thrown if there are missing columns in the
query result.

Summary of options for Query vs Read

Feature Query supports it Read supports it
SQL yes no

Partial read yes no

Limits yes no

Offsets yes no

Secondary index yes yes

Read using index range no yes

Sorting yes no

102.3.4. Write / Update

The write methods of SpannerOperations accept a POJO and writes all of its properties to Spanner.
The corresponding Spanner table and entity metadata is obtained from the given object’s actual

type.

If a POJO was retrieved from Spanner and its primary key properties values were changed and
then written or updated, the operation will occur as if against a row with the new primary key
values. The row with the original primary key values will not be affected.

Insert

The insert method of SpannerOperations accepts a POJO and writes all of its properties to Spanner,
which means the operation will fail if a row with the POJO’s primary key already exists in the table.

Trade t = new Trade();
this.spannerTemplate.insert(t);

Update

The update method of SpannerOperations accepts a POJO and writes all of its properties to Spanner,
which means the operation will fail if the POJO’s primary key does not already exist in the table.

// t was retrieved from a previous operation
this.spannerTemplate.update(t);

Upsert
The upsert method of SpannerOperations accepts a POJO and writes all of its properties to Spanner

using update-or-insert.

// t was retrieved from a previous operation or it's new
this.spannerTemplate.upsert(t);

Partial Update

The update methods of SpannerOperations operate by default on all properties within the given
object, but also accept String[] and Optional<Set<String>> of column names. If the Optional of set of
column names is empty, then all columns are written to Spanner. However, if the Optional is
occupied by an empty set, then no columns will be written.

// t was retrieved from a previous operation or it's new
this.spannerTemplate.update(t, "symbol", "action");

102.3.5. DML

DML statements can be run by using SpannerOperations.executeDmlStatement. Inserts, updates, and
deletions can affect any number of rows and entities.

You can run partitioned DML updates by using the executePartitionedDmlStatement method.
Partitioned DML queries have performance benefits but also have restrictions and cannot be used
inside transactions.

102.3.6. Transactions

SpannerOperations provides methods to run java.util.Function objects within a single transaction
while making available the read and write methods from SpannerOperations.

Read/Write Transaction

Read and write transactions are provided by SpannerOperations via the performReadWriteTransaction
method:

https://cloud.google.com/spanner/docs/dml-partitioned

@Autowired
SpannerOperations mySpannerOperations;

public String doWorkInsideTransaction() {
return mySpannerOperations.performReadWriteTransaction(
transActionSpannerOperations -> {
// Work with transActionSpannerOperations here.
// It is also a SpannerOperations object.

return "transaction completed";

}
)
}

The performReadWriteTransaction method accepts a Function that is provided an instance of a
SpannerOperations object. The final returned value and type of the function is determined by the
user. You can use this object just as you would a regular SpannerOperations with a few exceptions:

* Its read functionality cannot perform stale reads, because all reads and writes happen at the
single point in time of the transaction.

o It cannot perform sub-transactions via performReadWriteTransaction or
performReadOnlyTransaction.

As these read-write transactions are locking, it is recommended that you wuse the
performReadOnlyTransaction if your function does not perform any writes.

Read-only Transaction

The performReadOnlyTransaction method is used to perform read-only transactions using a
SpannerOperations:

@Autowired
SpannerOperations mySpannerOperations;

public String doWorkInsideTransaction() {
return mySpannerOperations.performReadOnlyTransaction(
transActionSpannerQOperations -> {
// Work with transActionSpannerOperations here.
// It is also a SpannerOperations object.

return "transaction completed";

}
)
}

The performReadOnlyTransaction method accepts a Function that is provided an instance of a
SpannerOperations object. This method also accepts a ReadOptions object, but the only attribute used
is the timestamp used to determine the snapshot in time to perform the reads in the transaction. If

the timestamp is not set in the read options the transaction is run against the current state of the
database. The final returned value and type of the function is determined by the user. You can use
this object just as you would a regular SpannerOperations with a few exceptions:

* Its read functionality cannot perform stale reads (other than the staleness set on the entire
transaction), because all reads happen at the single point in time of the transaction.

o It cannot perform sub-transactions via performReadWriteTransaction or
performReadOnlyTransaction

* It cannot perform any write operations.

Because read-only transactions are non-locking and can be performed on points in time in the past,
these are recommended for functions that do not perform write operations.

Declarative Transactions with @Transactional Annotation

This feature requires a bean of SpannerTransactionManager, which is provided when using spring-
cloud-gcp-starter-data-spanner.

SpannerTemplate and SpannerRepository support running methods with the @Transactional
annotation as transactions. If a method annotated with @Transactional calls another method also
annotated, then both methods will work within the same transaction. performReadOnlyTransaction
and performReadWriteTransaction cannot be used in @Transactional annotated methods because
Cloud Spanner does not support transactions within transactions.

102.3.7. DML Statements

SpannerTemplate supports DML Statements. DML statements can also be run in transactions by using
performReadWriteTransaction or by using the @Transactional annotation.

102.4. Repositories

Spring Data Repositories are a powerful abstraction that can save you a lot of boilerplate code.

For example:

public interface TraderRepository extends SpannerRepository<Trader, String> {

}

Spring Data generates a working implementation of the specified interface, which can be
conveniently autowired into an application.

The Trader type parameter to SpannerRepository refers to the underlying domain type. The second
type parameter, String in this case, refers to the type of the key of the domain type.

For POJOs with a composite primary key, this ID type parameter can be any descendant of Object[]
compatible with all primary key properties, any descendant of Iterable, or
com.google.cloud.spanner.Key. If the domain POJO type only has a single primary key column, then
the primary key property type can be used or the Key type.

https://docs.spring.io/spring/docs/current/spring-framework-reference/data-access.html#transaction-declarative
https://cloud.google.com/spanner/docs/dml-tasks:
https://docs.spring.io/spring-data/data-commons/docs/current/reference/html/#repositories

For example in case of Trades, that belong to a Trader, TradeRepository would look like this:

public interface TradeRepository extends SpannerRepository<Trade, String[]> {

}

public class MyApplication {

@Autowired
SpannerTemplate spannerTemplate;

@Autowired
StudentRepository studentRepository;

public void demo() {

this.tradeRepository.deleteAll();
String traderId = "demo_trader";
Trade t = new Trade();

t.symbol = stock;

t.action = action;

t.traderId = traderld;

t.price = new BigDecimal("100.0");
t.shares = 12345.6;
this.spannerTemplate.insert(t);

Iterable<Trade> allTrades = this.tradeRepository.findAl1l();

int count = this.tradeRepository.countByAction("BUY");

102.4.1. CRUD Repository

CrudRepository methods work as expected, with one thing Spanner specific: the save and saveAll
methods work as update-or-insert.

102.4.2. Paging and Sorting Repository

You can also use PagingAndSortingRepository with Spanner Spring Data. The sorting and pageable
findAll methods available from this interface operate on the current state of the Spanner database.
As a result, beware that the state of the database (and the results) might change when moving page
to page.

102.4.3. Spanner Repository

The SpannerRepository extends the PagingAndSortingRepository, but adds the read-only and the read-
write transaction functionality provided by Spanner. These transactions work very similarly to
those of SpannerQOperations, but is specific to the repository’s domain type and provides repository
functions instead of template functions.

For example, this is a read-only transaction:

@Autowired
SpannerRepository myRepo;

public String doWorkInsideTransaction() {
return myRepo.performReadOnlyTransaction(
transactionSpannerRepo -> {
// Work with the single-transaction transactionSpannerRepo here.
// This is a SpannerRepository object.

return "transaction completed";

}
)
}

When creating custom repositories for your own domain types and query methods, you can extend
SpannerRepository to access Cloud Spanner-specific features as well as all features from
PagingAndSortingRepository and CrudRepository.

102.5. Query Methods

SpannerRepository supports Query Methods. Described in the following sections, these are methods
residing in your custom repository interfaces of which implementations are generated based on
their names and annotations. Query Methods can read, write, and delete entities in Cloud Spanner.
Parameters to these methods can be any Cloud Spanner data type supported directly or via custom
configured converters. Parameters can also be of type Struct or POJOs. If a POJO is given as a
parameter, it will be converted to a Struct with the same type-conversion logic as used to create
write mutations. Comparisons using Struct parameters are limited to what is available with Cloud
Spanner.

102.5.1. Query methods by convention

https://cloud.google.com/spanner/docs/data-types#limited-comparisons-for-struct
https://cloud.google.com/spanner/docs/data-types#limited-comparisons-for-struct

public interface TradeRepository extends SpannerRepository<Trade, String[]> {
List<Trade> findByAction(String action);

int countByAction(String action);

// Named methods are powerful, but can get unwieldy
List<Trade>
findTop3DistinctByActionAndSymbolIgnoreCaseOrTraderIdOrderBySymbolDesc(
String action, String symbol, String traderId);
}

In the example above, the query methods in TradeRepository are generated based on the name of
the methods, using the Spring Data Query creation naming convention.

List<Trade> findByAction(String action) would translate to a SELECT * FROM trades WHERE action =
2.

The function List<Trade>
findTop3DistinctByActionAndSymbolIgnoreCaseOrTraderIdOrderBySymbolDesc(String action, String

symbol, String traderId); will be translated as the equivalent of this SQL query:

SELECT DISTINCT * FROM trades

WHERE ACTION = ? AND LOWER(SYMBOL) = LOWER(?) AND TRADER_ID = ?
ORDER BY SYMBOL DESC

LIMIT 3

The following filter options are supported:

* Equality

* Greater than or equals
* Greater than

* Less than or equals

* Less than

e Isnull

* Isnot null

e Istrue

* Is false

* Like a string

* Not like a string

* Contains a string

* Not contains a string

e In

https://docs.spring.io/spring-data/data-commons/docs/current/reference/html/#repositories.query-methods
https://docs.spring.io/spring-data/data-commons/docs/current/reference/html#repositories.query-methods.query-creation

¢ Notin

Note that the phrase SymbolIgnore(ase is translated to LOWER(SYMBOL) = LOWER(?) indicating a non-
case-sensitive matching. The IgnoreCase phrase may only be appended to fields that correspond to
columns of type STRING or BYTES. The Spring Data "AllignoreCase" phrase appended at the end of
the method name is not supported.

The Like or NotLike naming conventions:
List<Trade> findBySymbolLike(String symbolFragment);

The param symbolFragment can contain wildcard characters for string matching such as _ and %.

The Contains and NotContains naming conventions:
List<Trade> findBySymbolContains(String symbolFragment);

The param symbolFragment is a regular expression that is checked for occurrences.
The In and NotIn keywords must be used with Iterable corresponding parameters.

Delete queries are also supported. For example, query methods such as deleteByAction or
removeByAction delete entities found by findByAction. The delete operation happens in a single
transaction.

Delete queries can have the following return types: * An integer type that is the number of entities
deleted * A collection of entities that were deleted * void

102.5.2. Custom SQL/DML query methods

The example above for List<Trade> fetchByActionNamedQuery(String action) does not match the
Spring Data Query creation naming convention, so we have to map a parametrized Spanner SQL
query to it.

The SQL query for the method can be mapped to repository methods in one of two ways:

 namedQueries properties file
* using the @Query annotation

The names of the tags of the SQL correspond to the @Param annotated names of the method
parameters.

Interleaved properties are loaded eagerly, unless they are annotated with @Interleaved(lazy =
true).

Custom SQL query methods can accept a single Sort or Pageable parameter that is applied on top of
the specified custom query. It is the recommended way to control the sort order of the results,
which is not guaranteed by the ORDER BY clause in the SQL query. This is due to the fact that the

https://cloud.google.com/spanner/docs/functions-and-operators#comparison-operators
https://cloud.google.com/spanner/docs/functions-and-operators#regexp_contains
https://docs.spring.io/spring-data/data-commons/docs/current/reference/html#repositories.query-methods.query-creation

user-provided query is used as a sub-query, and Cloud Spanner doesn’t preserve order in subquery
results.

You might want to use ORDER BY with LIMIT to obtain the top records, according to a specified order.
However, to ensure the correct sort order of the final result set, sort options have to be passed in
with a Pageable.

@Query("SELECT * FROM trades")
List<Trade> fetchTrades(Pageable pageable);

@Query("SELECT * FROM trades ORDER BY price DESC LIMIT 1")
Trade topTrade(Pageable pageable);

This can be used:

List<Trade> customSortedTrades = tradeRepository.fetchTrades(PageRequest
.0f(2, 2, org.springframework.data.domain.Sort.by(Order.asc("id"))));

The results would be sorted by "id" in ascending order.

Your query method can also return non-entity types:

@Query("SELECT COUNT(1) FROM trades WHERE action = @action")
int countByActionQuery(String action);

@Query("SELECT EXISTS(SELECT COUNT(1) FROM trades WHERE action = @action)")
boolean existsByActionQuery(String action);

@Query("SELECT action FROM trades WHERE action = @action LIMIT 1")
String getFirstString(@Param("action") String action);

@Query("SELECT action FROM trades WHERE action = @action")
List<String> getFirstStringlist(@Param("action") String action);

DML statements can also be run by query methods, but the only possible return value is a long
representing the number of affected rows. The dmlStatement boolean setting must be set on @Query
to indicate that the query method is run as a DML statement.

@Query(value = "DELETE FROM trades WHERE action = @action", dmlStatement = true)
long deleteByActionQuery(String action);

Query methods with named queries properties

By default, the namedQueriesLocation attribute on @EnableSpannerRepositories points to the META-
INF/spanner-named-queries.properties file. You can specify the query for a method in the properties
file by providing the SQL as the value for the "interface.method" property:

Trade.fetchByActionNamedQuery=SELECT * FROM trades WHERE trades.action = @tag@

public interface TradeRepository extends SpannerRepository<Trade, String[]> {

// This method uses the query from the properties file instead of one generated
based on name.

List<Trade> fetchByActionNamedQuery(@Param("tag@") String action);

Query methods with annotation

Using the @Query annotation:

public interface TradeRepository extends SpannerRepository<Trade, String[]> {
@Query("SELECT * FROM trades WHERE trades.action = @tag@")
List<Trade> fetchByActionNamedQuery(@Param("tag@") String action);

Table names can be used directly. For example, "trades" in the above example. Alternatively, table
names can be resolved from the @Table annotation on domain classes as well. In this case, the query
should refer to table names with fully qualified class names between : characters:
:fully.qualified.ClassName:. A full example would look like:

©Query("SELECT * FROM :com.example.Trade: WHERE trades.action = @tag@")
List<Trade> fetchByActionNamedQuery(String action);

This allows table names evaluated with SpEL to be used in custom queries.

SpEL can also be used to provide SQL parameters:

©Query("SELECT * FROM :com.example.Trade: WHERE trades.action = @tag@
AND price > #{#priceRadius * -1} AND price < #{#priceRadius * 2}")
List<Trade> fetchByActionNamedQuery(String action, Double priceRadius);

When using the IN SQL clause, remember to use IN UNNEST(@iterableParam) to specify a single
Iterable parameter. You can also use a fixed number of singular parameters such as IN
(@stringParam1, @stringParam2).

102.5.3. Projections

Spring Data Spanner supports projections. You can define projection interfaces based on domain
types and add query methods that return them in your repository:

https://docs.spring.io/spring-data/data-commons/docs/current/reference/html/#projections

public interface TradeProjection {
String getAction();

@Value("#{target.symbol + ' ' + target.action}")
String getSymbolAndAction();
}

public interface TradeRepository extends SpannerRepository<Trade, Key> {
List<Trade> findByTraderId(String traderId);
List<TradeProjection> findByAction(String action);

@Query("SELECT action, symbol FROM trades WHERE action = @action")
List<TradeProjection> findByQuery(String action);

Projections can be provided by name-convention-based query methods as well as by custom SQL
queries. If using custom SQL queries, you can further restrict the columns retrieved from Spanner
to just those required by the projection to improve performance.

Properties of projection types defined using SpEL use the fixed name target for the underlying
domain object. As a result accessing underlying properties take the form target.<property-name>.

102.5.4. Empty result handling in repository methods
Java java.util.Optional can be used to indicate the potential absence of a return value.

Alternatively, query methods can return the result without a wrapper. In that case the absence of a
query result is indicated by returning null. Repository methods returning collections are
guaranteed never to return null but rather the corresponding empty collection.

o You can enable nullability checks. For more details please see Spring Framework’s
nullability docs.

102.5.5. REST Repositories

When running with Spring Boot, repositories can be exposed as REST services by simply adding this
dependency to your pom file:

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-rest</artifactId>
</dependency>

If you prefer to configure parameters (such as path), you can use @RepositoryRestResource

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#null-safety
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#null-safety

annotation:

@RepositoryRestResource(collectionResourceRel = "trades", path = "trades")
public interface TradeRepository extends SpannerRepository<Trade, Key> {

}

o For classes that have composite keys (multiple @PrimaryKey fields), only the Key type
is supported for the repository ID type.

For example, you can retrieve all Trade objects in the repository by using curl
http://<server>:<port>/trades, or any specific trade via curl
http://<server>:<port>/trades/<trader_id>,<trade_id>.

The separator between your primary key components, id and trader_id in this case, is a comma by
default, but can be configured to any string not found in your key values by extending the
SpannerKeyIdConverter class:

@Component
class MySpecialldConverter extends SpannerKeyIdConverter {

@0verride

protected String getUr1lIdSeparator() {
return ":";

}

You can also write trades using curl -XPOST -H"Content-Type: application/json" -d@test.json
http://<server>:<port>/trades/ where the file test.json holds the JSON representation of a Trade
object.

102.6. Database and Schema Admin

Databases and tables inside Spanner instances can be created automatically from
SpannerPersistentEntity objects:

mailto:d@test.json

@Autowired

private SpannerSchemaUtils spannerSchemaltils;

@Autowired

private SpannerDatabaseAdminTemplate spannerDatabaseAdminTemplate;

public void createTable(SpannerPersistentEntity entity) {
if(!spannerDatabaseAdminTemplate.tableExists(entity.tableName()){

// The boolean parameter indicates that the database will be created if it does

not exist.

spannerDatabaseAdminTemplate.executeDd1Strings(Arrays.asList(
spannerSchemaltils.qgetCreateTableDDLString(entity.getType())), true);

Schemas can be generated for entire object hierarchies with interleaved relationships and

composite keys.

102.7. Events

Spring Data Cloud Spanner publishes events extending the Spring Framework’s ApplicationEvent to
the context that can be received by ApplicationlListener beans you register.

Type
AfterReadEvent

AfterQueryEvent

BeforeExecuteDmlEvent

AfterExecuteDmlEvent

BeforeSaveEvent

Description

Published immediately after
entities are read by key from

Cloud Spanner by
SpannerTemplate

Published immediately after
entities are read by query from

Cloud Spanner by
SpannerTemplate

Published immediately before
DML statements are executed
by SpannerTemplate

Published immediately after
DML statements are executed
by SpannerTemplate

Published immediately before
upsert/update/insert operations

are executed by SpannerTemplate

Contents

The entities loaded. The read
options and key-set originally
specified for the load operation.

The entities loaded. The query
options and query statement
originally specified for the load
operation.

The DML statement to execute.

The DML statement to execute
and the number of rows
affected by the operation as
reported by Cloud Spanner.

The mutations to be sent to
Cloud Spanner, the entities to
be saved, and optionally the
properties in those entities to
save.

Type Description Contents

AfterSaveEvent Published immediately after ~ The mutations sent to Cloud
upsert/update/insert operations Spanner, the entities to be
are executed by SpannerTemplate saved, and optionally the

properties in those entities to

save.

BeforeDeleteEvent Published immediately before The mutations to be sent to
delete operations are executed Cloud Spanner. The target

by SpannerTemplate entities, keys, or entity type

originally specified for the
delete operation.

AfterDeleteEvent Published immediately after ~ The mutations sent to Cloud
delete operations are executed Spanner. The target entities,
by SpannerTemplate keys, or entity type originally

specified for the delete
operation.

102.8. Auditing

Spring Data Cloud Spanner supports the @LastModifiedDate and @LastModifiedBy auditing
annotations for properties:

@Table

public class SimpleEntity {
@PrimaryKey
String 1id;

@LastModifiedBy
String lastUser;

@LastModifiedDate
DateTime lastTouched;

Upon insert, update, or save, these properties will be set automatically by the framework before
mutations are generated and saved to Cloud Spanner.

To take advantage of these features, add the @EnableSpannerAuditing annotation to your
configuration class and provide a bean for an AuditorAware<A> implementation where the type A is
the desired property type annotated by @LastModifiedBy:

@Configuration
@EnableSpannerAuditing
public class Config {

@Bean

public AuditorAware<String> auditorProvider() {
return () -> Optional.of("YOUR_USERNAME_HERE");

}

The AuditorAware interface contains a single method that supplies the value for fields annotated by
@LastModifiedBy and can be of any type. One alternative is to use Spring Security’s User type:

class SpringSecurityAuditorAware implements AuditorAware<User> {
public Optional<User> getCurrentAuditor() {

return Optional.ofNullable(SecurityContextHolder.getContext())
.map(SecurityContext::getAuthentication)
.filter(Authentication::isAuthenticated)
.map(Authentication::getPrincipal)
.map(User.class::cast);

You can also set a custom provider for properties annotated @LastModifiedDate by providing a bean
for DateTimeProvider and providing the bean name to @EnableSpannerAuditing(dateTimeProviderRef =
"customDateTimeProviderBean").

102.9. Multi-Instance Usage

Your application can be configured to use multiple Cloud Spanner instances or databases by
providing a custom bean for DatabaseIdProvider. The default bean uses the instance ID, database
name, and project ID options you configured in application.properties.

@Bean
public DatabaseldProvider databaseldProvider() {
// return custom connection options provider

}

The Databaseld given by this provider is used as the target database name and instance of each
operation Spring Data Cloud Spanner executes. By providing a custom implementation of this bean
(for example, supplying a thread-local DatabaseId), you can direct your application to use multiple
instances or databases.

Database administrative operations, such as creating tables using SpannerDatabaseAdminTemplate,

will also utilize the provided Databaseld.

If you would like to configure every aspect of each connection (such as pool size and retry settings),
you can supply a bean for Supplier<Database(Client>.

102.10. Cloud Spanner Emulator

The Cloud SDK provides a local, in-memory emulator for Cloud Spanner, which you can use to
develop and test your application. As the emulator stores data onl