Spring Gemfire Integration Reference Guide

1.0.1.RELEASE

Costin Leau (SpringSource, a division of VMware)

Copyright © 2010

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

(T Lo [FTox i o o PRSPPI 1
[1. RefErence DOCUMENTALIONuuiiiiieeeiiiiiiieiee e e e e s ettt e e e e e e e s e sttt e e e e aeeessasnteaeeeaeeesssansnnneneeaeeeanans 2
1. Bootstrapping GemFire through the Spring CONtaINErcoiviiiiiiiiiiiiiiee e 3

1.1. Using the Spring GEMFIre NaMESPACEceeeiiuuriieiiiiiiee et ee ettt e e 3

1.2. Configuring the GEMFITE CACHEciiiiiiiii s nennnnnnes 4

1.3. Configuring @ GEMFITE REGi 0N ..eeeiuvviieeiiiiiie et e ettt e s e e e e e e nnnaeees 5

1.3.1. Using an externaly configured Regi 0Nueeeieeeeeiiiceiiiiiee e e e e e e 5

1.3.2. REPICAEA REGION ...ceeiiiiiiiieee et a e e s 6

1.3.3. Partition(ed) REJIONccoiuiiiiiiiiiieeeiiie et 7

134, ClIENt REJIONciiiiiiiiiec e e e e e e e e s e et e e e e e e e s s aaneeees 9

1.3.5. Configurating DiSK SIOT80Ecuuveieiiiiiieeiiiie et 10

1.3.6. DAlaPErSISIENCEeeiiiieiiiiiieeee e 10

1.3.7. Data Eviction and OVErfloWingcccceeiiiiiiiiiiiiiiee e 11

1.3.8. Advanced Region Configuralionc..ueeeeiieeeiiiiiiiieieee e e e e 11

1.4. Advantages of using Spring over GemFire cache. Xmcceveeeiiiiiciiiiieeeee e ceiiieeeeean 13

2. Working With the GEMFITE APIScooiiiiieeee e 14

2.1, EXCEPRLION traNSatioNccciieeiiiiiiiiieeeee e e e e e e e e e e e e e s s e e e e e s et rareeaaas 14

A e Yy I =N =Y]I U= S 14

2.3. TransaCtion ManagemeNtccooeeeeiiii i 14

2.4. Wiring Decl ar abl € COMPONENESuvrieeiiieeeeeiiieeeessitreee s s e e e s ssbreeeessneeeeasnneeeeennees 15

2.4.1. Configuration using template definitionsccccceeiiiciiiiiiie e 16

2.4.2. Configuration using auto-wiring and annotationscccceeeeeeiiiiiciiieeeneeeeeeens 17

3. Working with GEMFire SEri@liZaliONcocoueiiiiiiiiie e 19

3.1 Wiring deserialized INSLANCEScc.vvveiiiieeiiiciieeee e e e e aaees 19

3.2. Auto-generating CUSIOM | NST ANT T L OF'S .eeeviuvrreeeriiiieeeeiiieeeessirreeesseeeeesanrreeessneneeeeans 19

LIS] o FS W AN o] o] o= o] P 21

A1 HETOWOITA ... e e e e 21

4.1.1. Starting and stopping the SAMPIEoooiiiiiiie e 21

4.1.2. USINGThE SAMPIE ... a e 21

4.1.3. Hello World Sample EXPlaiNedoeeiiiiiiiieiiieec e 22

[T, OtNEI RESOUICTESeeiiiiiiie ittt et e e sttt e e e st e e e e ss bt e e e e sae e e e e ansee e e e e nnteeeeeansneeeeannnneeas 23
B USEFUL LINKS ©eveiieiieee ittt s ettt e e e e e e et e e e e e e e s e nsateaeeeeaeeeesnnssbaneeaaaeeaans 24

Y N 0] 01 0 [o 25
A. Spring GemFire INtegration SChEMacooviiiiiiie e 26

Spring GemFire(1.0.1.RELEASE)

Preface

Spring GemFire Integration focuses on integrating Spring Framework's powerful, non-invasive programming
model and concepts with Gemstone's GemFire Enterprise Fabric, providing easier configuration, use and
high-level abstractions. This document assumes the reader already has a basic familiarity with the Spring
Framework and GemFire concepts and APIs.

While every effort has been made to ensure that this documentation is comprehensive and there are no errors,
nevertheless some topics might require more explanation and some typos might have crept in. If you do spot
any mistakes or even more serious errors and you can spare afew cycles during lunch, please do bring the error
to the attention of the Spring GemFire Integration team by raising an issue. Thank you.

Spring GemFire(1.0.1.RELEASE) i

http://jira.springframework.org

Part |. Introduction

This document is the reference guide for Spring GemFire project (SGF). It explains the relationship between
Spring framework and GemFire Enterprise Fabric (GEF) 6.0.x, defines the basic concepts and semantics of the
integration and how these can be used effectively.

Spring GemFire(1.0.1.RELEASE) 1

Part |Il. Reference Documentation

Document structure

This part of the reference documentation explains the core functionality offered by Spring GemFire integration.

Chapter 1, Bootstrapping GemFire through the Soring container describes the configuration support provided
for bootstrapping, initializing and accessing a GemFire cache or region.

Chapter 2, Working with the GemFire APIs explains the integration between GemFire APl and the various
"data’ features available in Spring, such as transaction management and exception translation.

Chapter 3, Working with GemFire Serialization describes the enhancements for GemFire (de)serialization
process and management of associated objects.

Chapter 4, Sample Applications describes the samples provided with the distribution for showcasing the various
features available in Spring GemFire.

Spring GemFire(1.0.1.RELEASE) 2

Chapter 1. Bootstrapping GemFire through the
Spring container

One of the first tasks when using GemFire and Spring is to configure the data grid through the 10C container.
While this is possible out of the box, the configuration tends to be verbose and only address basic cases. To
address this problem, the Spring GemFire project provides severa classes that enable the configuration of
distributed caches or regions to support a variety of scenarios with minimal effort.

1.1. Using the Spring GemFire Namespace

To simplify configuration, SGF provides a dedicated namespace for most of its components. However, one can
opt to configure the beans directly through the usual <bean> definition. For more information about XML
Schema-based configuration in Spring, see this appendix in the Spring Framework reference documentation.

To use the SGF namespace, one just needs to import it inside the configuration:

<?xm version="1.0" encodi ng="UTF- 8" ?>

<beans xm ns="http://ww. springfranmewor k. or g/ schenma/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: gf ed="http://ww. spri ngfranmewor k. or g/ schema/ genfire"
xsi : schemaLocati on="
http://ww. springframework. or g/ schema/ beans http://ww. springfranewor k. or g/ schema/ beans/ spri ng- beans. xsc
http://ww. springfranework. org/ schena/ genfire http://ww.springfranework. org/ schena/ genfire/spring-genfi
<bean id ... >

<gfeld: cache ...>

</ beans>

O Spring GemFire namespace prefix. Any name can do but through out the reference documentation, the
gf e will be used.

0 Thenamespace URI.

O The namespace URI location. Note that even though the location points to an external address (which
existsand is valid), Spring will resolve the schemalocally asit isincluded in the Spring GemFire library.

O Declaration example for the GemFire namespace. Notice the prefix usage.

Once declared, the namespace elements can be declared simply by appending the aforementioned prefix. Note
that is possible to change the default namespace, for example from <beans> to <gfe>. This is useful for
configuration composed mainly of GemFire components as it avoids declaring the prefix. To achieve this,
simply swap the namespace prefix declaration above:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springfranmework. org/ schema/ genfire" O
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance" ad
xm ns: beans="http://wwm. spri ngframewor k. or g/ schenma/ beans"
Xsi : schemalLocat i on="
http://ww. springframework. or g/ schenma/ beans http://ww. springfranework. or g/ schenma/ beans/ spri ng- beans
http://ww. springframework. org/ scherma/ genfire http://wwm. springfranmework. org/ schema/ genfire/spring-c

<beans: bean id ... > a0
<cache ...>]
</ beans>

O Thedefault namespace declaration for this XML file points to the Spring GemFire namespace.
O The beans namespace prefix declaration.

Spring GemFire(1.0.1.RELEASE) 3

http://community.gemstone.com/display/gemfire/Integrating+GemFire+with+the+Spring+IoC+Container
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/xsd-config.html

Bootstrapping GemFire through the Spring container

0 Bean declaration using the <beans> namespace. Notice the prefix.
0 Bean declaration using the <gf e> namespace. Notice the lack of prefix (as the default namespace is used).

For the remainder of this doc, to improve readability, the XML examples will simply refer to the <gf e>
namespace without the namespace declaration, where possible.

1.2. Configuring the GemFire cache

In order to use the GemFire Fabric, one needs to either create a new Cache or connect to an existing one. Asin
the current version of GemFire, there can be only one opened cache per VM (or classloader to be technically
correct). In most cases the cache is created once and then all other consumers connect to it.

In its simplest form, a cache can be defined in oneline:

<gf e: cac

he />

The declaration above declares a bean(CacheFact or yBean) for the GemFire Cache, named genfi re- cache. All
the other SGF components use this naming convention if no name is specified, allowing for very concise
configurations. The definition above will try to connect to an existing cache and, in case one does not exist,

create it.

Since no additional properties were specified the created cache uses the default cache

configuration.Especially in environments with opened caches, this basic configuration can go along way.

For scenarios where the cache needs to be configured, the user can pass in a reference the GemFire
configuration file:

<gf e: cac

he id="cache-w th-xm " cache-xnl-1ocation="cl asspath: cache. xm "/ >

In this example, if the cache needs to be created, it will use the file named cache. xm located in the classpath

root. Only

.

e

if the cacheis created will the configuration file be used.
Note

Note that the configuration makes use of Spring's Resour ce abstraction to locate the file. This
allows various search patterns to be used, depending on the running environment or the prefix
specified (if any) by the value.

In addition to referencing an externa configuration file one can specify GemFire settings directly through Java
Properti es. Thiscan be quite handy when just a few settings need to be changed.

To setup properties one can either use the properti es element inside the util namespace to declare or load

properties

files (the latter is recommended for externalizing environment specific settings outside the

application configuration):

<?xm ve
<beans x
xm n
xm n
xm n

<gf

<ut
</ beans>

rsion="1.0" encodi ng="UTF-8"?>

m ns="http://ww. springfranework. or g/ schema/ beans"

s:xsi ="http://ww. w3. org/ 2001/ XM_Schene- i nst ance"

s: gfe="http://ww. springfranework. org/ schema/ genfire"

s:util="http://ww.springfranmework. org/schema/util"

xsi : schemaLocati on="http://wwmv spri ngframework. or g/ scherma/ beans http://wwmv springframewor k. or g/ schema/ be
http://ww. springframework. org/ schema/genfire http://ww. springfranmework. org/ schema/ genfire/spring-genfi
http://ww. springfranework. org/ schema/util http://ww.springfranework. org/schema/util/spring-util.xsd">

e: cache id="cache-wi th-xm " cache-xnl -1 ocation="cl asspat h: cache. xm " properties-ref="props"/>

il:properties id="props" |ocation="classpath:/depl oynent/env. properties"/>

Spring GemFire(1.0.1.RELEASE) 4

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/resources.html

Bootstrapping GemFire through the Spring container

Or can use fallback to araw <beans> declaration:

<bean i d="cache-with-props" class="org.springfranework. data. genfire.CacheFact or yBean">
<property name="properties">
<pr ops>
<prop key="bi nd-address">127. 0. 0. 1</ pr op>
</ props>
</ property>
</ bean>

In this last example, the SGF classes are declared and configured directly without relying on the namespace. As
one can tell, this approach is a generic one, exposing more of the backing infrastructure.

It is worth pointing out again, that the cache settings apply only if the cache needs to be created, there is no
opened cache in existence otherwise the existing cache will be used and the configuration will ssimply be
discarded.

1.3. Configuring a GemFire Regi on

Once the cache is configured, one needs to configure one or more Regi ons to interact with the data fabric. SGF
allows various region types to be configured and created directly from Spring or in case they are created
directly in GemFire, retrieved as such.

For more information about the various region types and their capabilities as well as configuration options,
please refer to the GemFire Developer's Guide and community site.

1.3.1. Using an externaly configured Regi on

For consuming but not creating Regi ons (for example in case, the regions are aready configured through
GemFire native configuration, the cache. xn), one can use the | ookup-regi on element. Simply declare the
target region name the nane attribute; for example to declare a bean definition, named r egi on- bean for an
existing region named or der s one can use the following definition:

<gf e: | ookup-regi on i d="regi on-bean" name="orders"/>

If the nane is not specified, the bean name will be used automatically. The example above becomes:

<!-- lookup for a region called 'orders' -->
<gfe: | ookup-regi on i d="orders"/>

Note

If the region does not exist, an initialization exception will be thrown. For configuring new
GemFire regions proceed to the sections below for replicated, partitioned, client or advanced region
configuration.

Note that in the previous examples, since no cache name was defined, the default SGF naming convention
(genfire-cache) was used. If that is not an option, one can point to the cache bean through the cache-r ef
attribute:

<gf e: cache id="cache"/>

<gf e: | ookup-regi on id="regi on-bean" name="orders" cache-ref="cache"/>

Spring GemFire(1.0.1.RELEASE) 5

http://www.gemstone.com/documentation
http://community.gemstone.com/display/gemfire/GemFire+Enterprise

Bootstrapping GemFire through the Spring container

The | ookup-r egi on provides a simple way of retrieving existing, pre-configured regions without exposing the
region semantics or setup infrastructure.

1.3.2. Replicated Region
One of the common region types supported by GemFire is replicated region or replica. In short:

What isareplica?

e When aregion is configured to be a replicated region, every member that hosts that region stores a
copy of the contents of the region locally. Any update to a replicated region is distributed to all
copies of the region. [...] When areplicais created, it goes through an initialization stage in which
it discovers other replicas and automatically copies all the entries. While one replicais initializing
you can still continue to use the other replicas.

SGF offers a dedicated element for creating replicas in the form of repl i cat ed-regi on element. A minimal
declaration looks as follows (again, the example will not setup the cache wiring, relying on the SGF namespace
naming conventions):

<gfe:replicated-region id="sinple-replica" />

Here, areplicated region is created (if one doesn't exist already). The name of the region is the same as the bean
name (si npl e-r epl i ca) and the bean assumes the existence of a GemFire cache named genf i r e- cache.

When setting a region, it's fairly common to associate various CachelLoadersS, CachelistenerS and
CacheWiters with it. These components can be either referrenced or declared inlined by the region
declaration.

Note

“a
Following the GemFire recommandations, the namespace allows for each region created multiple
listeners but only one cache writer and cache loader. This restriction can be relaxed, for advanced
usages by using the beans declaration (see the next section).

Below is an example, showing both styles:

<gfe:replicated-regi on id="m xed">
<gf e: cache-1|i st ener>

<l-- nested cache |listener reference -->
<ref bean="c-listener"/>
<l-- nested cache |listener declaration -->

<bean cl ass="sone. pkg. Si npl eCacheli stener"/ >
</ gf e: cache-1i st ener>

<l-- | oader reference -->
<gf e: cache-1 oader ref="c-|oader"/>
<l-- witer reference -->

<gfe:cache-witer ref="c-witer"/>
</ gf e:replicat ed-regi on>

=] Warning

Using ref and a nested declaration on cache- 1 i st ener, cache- | oader Or cache-witer isillegal.
The two options are mutually exclusive and using them at the same time, on the same element will
throw an exception.

Spring GemFire(1.0.1.RELEASE) 6

Bootstrapping GemFire through the Spring container

1.3.2.1. replicated-regi on Options
The following table offers a quick overview of the most important configuration options names, possible values

and short descriptions for each of settings supported by therepl i cat ed- r egi on element. Please see the storage
and eviction section for the relevant configuration.

Table 1.1. replicated-region options

Name Values Description
id any valid bean name Theid of the region bean
definition.
name any valid region name The name of the region definition.

If no specified, it will have the
value of theid attribute (that is, the
bean name).

cache-ref GemFire cache bean name The name of the bean defining the
GemFire cache (by default
‘gemfire-cache’).

cache-listener valid bean name or definition The name or nested bean
declaration of a GemFire
Cacheli st ener.

cache-loader valid bean name or definition The name or nested bean
declaration of a GemFire
Cacheloader.

cache-writer valid bean name or definition The name or nested bean
declaration of a GemFire
CacheWiter.

1.3.3. Partition(ed) Region

Another region type supported out of the box by the SGF namespace, is the partitioned region. To quote again
the GemFire docs:

What isa partition?

A A partitioned region is a region where data is divided between peer servers hosting the region so
that each peer stores a subset of the data. When using a partitioned region, applications are
presented with a logical view of the region that looks like a single map containing all of the datain
the region. Reads or writes to this map are transparently routed to the peer that hosts the entry that
is the target of the operation. [...] GemFire divides the domain of hashcodes into buckets. Each
bucket is assigned to a specific peer, but may be relocated at any time to another peer in order to
improve the utilization of resources across the cluster.

A partition can be created by SGF through the parti ti oned-regi on €element. Its configuration options are
similar to that of the repl i cat ed-regi on plus the partion specific features such as the number of redundant
copies, total maximum memory, number of buckets, partition resolver and so on. Below is a quick example on

Spring GemFire(1.0.1.RELEASE) 7

Bootstrapping GemFire through the Spring container

Setting up a partition region with 2 redundant copies:

<l-- bean definition naned 'distributed-partition' backed by a region naned 'redundant’' with 2 copies
and a nested resol ver declaration -->

<gfe:partitioned-region id="distributed-partition" copies="2" total-buckets="4" name="redundant">
<gfe:partition-resol ver>

<bean cl ass="sone. pkg. Si npl ePartiti onResol ver"/>
</gfe:partition-resol ver>
</gfe:partitioned-region>

1.3.3.1. parti tioned-regi on Options
The following table offers a quick overview of the most important configuration options names, possible values

and short descriptions for each of settings supported by the partition element. Please see the storage and
eviction section for the relevant configuration.

Table 1.2. partitioned-region options

Name Values Description
id any valid bean name Theid of the region bean
definition.
name any valid region name The name of the region definition.

If no specified, it will have the
value of theid attribute (that is, the
bean name).

cache-ref GemFire cache bean name The name of the bean defining the
GemFire cache (by default
‘gemfire-cache’).

cache-listener valid bean name or definition The name or nested bean
declaration of a GemFire
Cacheli st ener.

cache-loader valid bean name or definition The name or nested bean

declaration of a GemFire
CachelLoader.

cache-writer valid bean name or definition The name or nested bean

declaration of a GemFire
CacheWiter.

partition-resolver bean name The name of the partitioned
resolver used by thisregion, for
custom partitioning.

copies 0.4 The number of copiesfor each
partition for high-availability. By
default, no copies are created
meaning thereis no redundancy.
Each copy provides extra backup
at the expense of extra storages.

colocated-with valid region name The name of the partitioned region
with which this newly created
partitioned region is colocated.

Spring GemFire(1.0.1.RELEASE) 8

Bootstrapping GemFire through the Spring container

Name Values Description

local-max-memory positive integer The maximum amount of memory,
in megabytes, to be used by the
region in this process.

total-max-memory any integer value The maximum amount of memory,
in megabytes, to be used by the
regionin all processes.

recovery-delay any long value The delay in milliseconds that
existing members will wait before
satisfying redundancy after another
member crashes. -1 (the default)
indicates that redundancy will not
be recovered after afailure.

startup-recovery-delay any long value The delay in milliseconds that new
members will wait before
satisfying redundancy. -1 indicates
that adding new members will not
trigger redundancy recovery. The
default is to recover redundancy
immediately when a new member
is added.

1.3.4. Client Region

GemFire supports various deployment topologies for managing and distributing data. The topic is outside the
scope of this documentation however to quickly recap, they can be categoried in short in: peer-to-peer (p2p),
client-server (or super-peer cache network) and wide area cache network (or WAN). In the last two scenarios, it
is common to declare client regions which connect to a backing cache server (or super peer). SGF offers
dedicated support for such configuration through the cl i ent - regi on and pool elements. As the name imply,
the former defines a client region while the latter connection pools to be used/shared by the various client
regions.

Below isausual configuration for aclient region:

<l-- client region declaration -->

<gfe:client-region id="conpl ex" pool -nanme="genfire-pool ">
<gfe: cache-listener ref="c-listener"/>

</ gfe:client-region>

<bean id="c-listener" class="sone. pkg.Si npl eCachelLi stener"/>

<l-- pool declaration -->

<gfe: pool id="genfire-pool" subscription-enabl ed="fal se">
<gfe:locator host="local host" port="40403"/>

</ gf e: pool >

Just as the other region types, client-regi on alows defining CachelLi steners. It aso relies on the same
naming conventions in case the region name or the cache are not set explicitely. However, it also requires a
connection pool to be specified for connecting to the server. Each client can have its own pool or they can
share the same one.

For a full list of options to set on the client and especially on the pool, please refer to the SGF schema

Spring GemFire(1.0.1.RELEASE) 9

Bootstrapping GemFire through the Spring container

Appendix A, Spring GemFire Integration Schema) and the GemFire documentation.

1.3.4.1. Client Interests

To minimize network traffic, each client can define its own 'interest’, pointing out to GemFire, the data it
actually needs. In SGF, interests can be defined for each client, both key-based and regular-expression-based
types being supported; for example:

<gfe:client-region id="conpl ex" pool -name="genfire-pool ">
<gfe: key-interest durable="true" result-policy="KEYS">
<bean id="key" class="java.lang. String"/>
</ gf e: key-i nt erest >
<gfe:regex-interest pattern=".*"/>
</gfe:client-region>

1.3.5. Configurating Disk Storage

GemFire can use disk as a secondary storage for persisting regions or/and overflow (known as data pagination
or eviction to disk). SGF alows such options to be configured directly from Spring through di sk-store
element available on both replicated-region and partitioned-region as well asclient-region. A disk
store defines how that particular region can use the disk and how much space it has available. Multiple
directories can be defined in a disk store such as in our example below:

<gfe:partitioned-region id="partition-data">
<gfe: di sk-store queue-size="50" auto-conpact="true" max-opl og-size="10" synchronous-wite="fal se" tinme-inter
<gfe:di sk-dir |ocation="/mai nbackup/partition" max-size="999"/>
<gfe:disk-dir |ocation="/backup2/partition" max-size="999"/>
</ gf e: di sk-store>
</gfe:replicated-regi on>

In general, for maximum efficiency, it is recommended that each region that accesses the disk uses a disk store
configuration.

For the full set of options and their meaning please refer to the Appendix A, Soring GemFire Integration
Schema and GemFire documentation.

1.3.6. Data Persistence
Both partitioned and replicated regions can be made persistent. That is:

What isregion persistence?

"
GemFire ensures that all the data you put into a region that is configured for persistence will be
written to disk in a way that it can be recovered the next time you create the region. This allows
data to be recovered after a machine or process failure or after an orderly shutdown and restart of
GemFire.

With SGF, to enable persistence, simply set to true the persistent attribute on replicat ed-region,
partitioned-regionOrclient-region:

<gfe:partitioned-region id="persitent-partition" persistent="true"/>

| mportant
"9

Spring GemFire(1.0.1.RELEASE) 10

Bootstrapping GemFire through the Spring container

Persistence for partitioned regions is supported from GemFire 6.5 onwards - configuring this
option on a previous release will trigger an initialization exception.

When persisting regions, it is recommended to configure the storage through the di sk-store element for
maximum efficiency.

1.3.7. Data Eviction and Overflowing

Based on various constraints, each region can have an eviction policy in place for evi cti ng datafrom memory.
Currently, in GemFire eviction applies on the least recently used entry (also known as LRU). Evicted entries
are either destroyed or paged to disk (also known as overflow).

SGF supports all eviction policies (entry count, memory and heap usage) for both partiti oned-regi on and
replicated-region as well as client-region, through the nested eviction element. For example, to
configure a partition to overflow to disk if its size is more then 512 MB, one could use the following
configuration:

<gfe:partitioned-region id="overflowpartition">
<gfe:eviction type="MEMORY_SI ZE" threshol d="512" acti on="OVERFLOW.TO DI SK"/ >
</gfe:partitioned-regi on>

| mportant

9
Replicas cannot use a | ocal destroy eviction since that would invalidate them. See the GemFire
docs for more information.

When configuring regions for oveflow, it is recommended to configure the storage through the di sk-store
element for maximum efficiency.

For a detailed description of eviction policies, see the GemFire documentation (such asthis page).

1.3.8. Advanced Region Configuration

SGF namespaces alow short and easy configuration of the major GemFire regions and associated entities.
However, there might be corner cases where the namespaces are not enough, where a certain combination or set
of attributes needs to be used. For such situations, using directly the SGF Fact or yBeansis a possible alternative
asit gives accessto the full set of options at the expense of conciseness.

Asawarm up, below are some common configurations, declared through raw beans definitions.

A basic configuration looks as follows:

<bean id="basic" class="org.springframework. data. genfire. Regi onFact or yBean">
<property name="cache">
<bean cl ass="org. spri ngfranmework. dat a. genfire. CacheFact or yBean"/ >
</ property>
<property nanme="nanme" val ue="basic"/>
</ bean>

Notice how the GemFire cache definition has been nested into the declaring region definition. Let's add more
regions and make the cache atop level bean.

Spring GemFire(1.0.1.RELEASE) 11

http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used
http://community.gemstone.com/display/gemfire/Data+Eviction

Bootstrapping GemFire through the Spring container

Since the region bean definition name is usualy the same with that of the cache, the nane property can be
omitted (the bean name will be used automatically). Additionally by using the name the p namespace, the
configuration can be simplified even more:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: p="http://ww.springfranmework. org/ scherma/ p"
xsi : schemaLocati on="http://ww. spri ngfranewor k. or g/ schema/ beans http://ww. springfranmewor k. or g/ schena/ beans/ sy

<!-- shared cache across regions -->
<bean i d="cache" class="org. springframework. data. genfire. CacheFact oryBean"/>

<l-- region nanmed 'basic' -->
<bean id="basi c" class="org. springfranmework. data. genfire. Regi onFact oryBean" p: cache-ref="cache"/>

<l-- region with a nanme different then the bean definition -->
<bean id="root-region" class="org.springfranmework. data. genfire. Regi onFact oryBean" p: cache-ref="cache" p: nane
</ beans>

It is worth pointing out, that for the vast majority of cases configuring the cache loader, listener and writer
through the Spring container is preferred since the same instances can be reused across multiple regions and
additionally, the instances themselves can benefit from the container's rich feature set:

<bean id="cachelLogger" cl ass="org. sone. pkg. CacheLogger"/ >
<bean id="custom zed-regi on" class="org. springfranmework. data. genfire. Regi onFact oryBean" p: cache-ref="cache">
<property name="cachelLi st eners">
<array>
<ref name="cachelLogger"/>
<bean cl ass="org. sone. ot her. pkg. Sysout Logger"/ >
</ array>
</ property>
<property name="cachelLoader"><bean cl ass="org. sone. pkg. CacheLoad"/ ></ property>
<property name="cacheWiter"><bean cl ass="org. sone. pkg. CacheWite"/></property>
</ bean>

<bean id="Ilocal -regi on" class="org. springfranmework. dat a. genfire. Regi onFact oryBean" p:cache-ref="cache">
<property name="cachelLi steners" ref="cachelLogger"/>
</ bean>

For scenarios where a CacheServer is used and clients need to be configured and the namespace is not an
option, SGF offers a dedicated configuration class named: d i ent Regi onFact oryBean. This alows client
interests to be registered in both key and regex form through I nterest and Regexl nterest classes in the
org. springfranmewor k. dat a. genfire. client package:

<bean id="interested-client" class="org.springfranmework.data.genfire.client.CientRegi onFactoryBean" p: cache-r ef
<property name="interests">

<array>
<l-- key-based interest -->
<bean cl ass="org. springfranmework. data.genfire.client.Interest” p:key="Vlaicu" p:policy="NONE"/>
<l-- regex-based interest -->
<bean cl ass="org. springfranmework. data.genfire.client.Regexlnterest" p:key=".*" p:policy="KEYS" p:durabl e="

</ array>

</ property>
</ bean>

Users that need fine control over aregion, can configureit in Spring by using the at t ri but es property. To ease
declarative configuration in Spring, SGF provides two Fact or yBeans for creating Regi onAttributes and
PartitionAttributes, namely Regi onAttributesFactory and PartitionAttribut esFactory. See below an
example of configuring a partitioned region through Spring XML.:

<bean id="partitioned-regi on" class="org.springfranmework.data.genfire. Regi onFact oryBean" p:cache-ref="cache">
<property name="attributes">
<bean cl ass="org. springfranmework. data. genfire. Regi onAttri butesFactory" p:initial-capacity="1024">
<property name="partitionAttributes">
<bean cl ass="org. springframework. data.genfire.PartitionAttributesFactory" p:redundant-copies="2" p:loca

Spring GemFire(1.0.1.RELEASE) 12

http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#beans-p-namespace

Bootstrapping GemFire through the Spring container

</ property>
</ bean>
</ property>
</ bean>

By using the attribute factories above, one can reduce the size of the cache. xm or even eliminate it al
together.

1.4. Advantages of using Spring over GemFire cache. xn

With SGF, GemFire regions, pools and cache can be configured either through Spring or directly inside
GempFire, native, cache. xm file. While both are valid approaches, it's worth pointing out that Spring's powerful
DI container and AOP functionality makes it very easy to wire GemFire into an application. For example
configuring a region cache loader, listener and writer through the Spring container is preferred since the same
instances can be reused across multiple regions and additionally are either to configure due to the presence of
the DI and eliminates the need of implementing GemFire's Decl ar abl e interface (see Section 2.4, “Wiring
Decl ar abl e components’ on chapter on how you can still use them yet benefit from Spring's DI container).

Whatever route one chooses to go, SGF supports both approaches allowing for easy migrate between them
without forcing an upfront decision.

Spring GemFire(1.0.1.RELEASE) 13

Chapter 2. Working with the GemFire APIs

Once the GemFire cache and regions have been configured they can injected and used inside application
objects. This chapter describes the integration with Spring's transaction management functionality and
DaoExcept i on hierarchy. It also covers support for dependency injection of GemFire managed objects.

2.1. Exception translation

Using a new data access technology requires not just accommodating to a new API but also handling
exceptions specific to that technology. To accommodate this case, Spring Framework provides a technology
agnostic, consistent exception hierarchy that abstracts one from proprietary (and usually checked) exceptions to
a set of focused runtime exceptions. As mentioned in the Spring Framework documentation, exception
trandation can be applied transparently to your data access objects through the use of the @repository
annotation and AOP by defining a PersistenceExceptionTrang ationPostProcessor bean. The same exception
trandlation functionality is enabled when using Gemfire as long as at least a CacheFact or yBean isdeclared. The
Cache factory acts as an exception trandator which is automatically detected by the Spring infrastructure and
used accordingly.

2.2. GenfireTenpl ate

As with many other high-level abstractions provided by the Spring Framework and related projects, Spring
GempFire provides a template that plays a central role when working with the GemFire API. The class provides
several one-liner methods, for popular operations but also the ability to execute code against the native
GemFire API without having to deal with exceptions for example through the Genf i r eCal | back.

The template class requires a GemFire Regi on instance and once configured is thread-safe and should be reused
across multiple classes:

<bean id="genfireTenpl ate" class="org.springframework. data. genfire.GenfireTenpl ate" p:region-ref="soneRegi on"/>

Once the template is configured, one can use it alongside Genfi recCal | back to work directly with the GemFire
Regi on, without having to deal with checked exceptions, threading or resource management concerns:

tenpl at e. execut e(new GenfireCal | back<|terabl e<String>>() {
public Iterabl e<String> dolnGenfire(Region reg) throws GenFireCheckedException, GenFireException {
/1 working against a Region of String
Regi on<String, String> region = reg

regi on.put("1", "one");
region. put ("3", "three");

return region.query("length < 5");

});

2.3. Transaction Management

One of the most popular features of Spring Framework is transaction management. If you are not familiar with
it, we strongly recommend |ooking into it as it offers a consistent programming model that works transparently
across multiple APIs that can be configured either programmatically or declaratively (the most popular choice).

Spring GemFire(1.0.1.RELEASE) 14

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/dao.html#dao-exceptions
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/orm.html#orm-exception-translation
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/orm.html#orm-exception-translation
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/transaction.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/transaction.html#transaction-motivation

Working with the GemFire APIs

For GemFire, SGF provides a dedicated, per-cache, transaction manager that once declared, allows actions on
the Regi ons to be grouped and executed atomically through Spring:

<gfe:transacti on-nmanager id="tx-nmanager" cache-ref="cache"/>

Note

" The example above can be simplified even more by eliminating the cache-ref attribute if the
GemFire cache is defined under the default name genfire-cache. As with the other SGF
namespace elements, if the cache name is not configured, the aforementioned naming convention
will used. Additionally, the transaction manager name, if not specified is
genfire-transacti on- manager.

or if you prefer bean declarations:

<bean id="tx-manager" class="org. springfranmework. data. genfire. GenfireTransacti onManager" p: cache-ref=

Note that currently GemFire supports optimistic transactions with read committed isolation. Furthermore, to
guarantee this isolation, developers should avoid making in-place changes, that is manually modifying the
values present in the cache. To prevent this from happening, the transaction manager configured the cache to
use copy on read semantics, meaning a clone of the actual value is created, each time aread is performed. This
behaviour can be disabled if needed through the copynRead property. For more information on the semantics
of the underlying GemFire transaction manager, see the GemFire documentation.

2.4. Wiring Decl ar abl e cOmponents

GemFire XML configuration (usually named cache. xm allows user objects to be declared as part of the fabric
configuration. Usually these objects are CacheLoader s or other pluggable components into GemFire. Out of the
box in GemFire, each such type declared through XML must implement the Decl ar abl e interface which allows
arbitrary parametersto be passed to the declared class through a Pr oper ti es instance.

In this section we describe how you can configure the pluggable components defined in cache. xmi using
Spring while keeping your Cache/Region configuration defined in cache. xni This allows your pluggable
components to focus on the application logic and not the location or creation of DataSources or other
collaboration object.

However, if you are starting on a green-field project, it is recommended that you configure Cache, Region, and
other pluggable components directly in Spring. This avoids inheriting from the Decl ar abl e interface or the
base class presented in this section. See the following sidebar for more information on this approach.

Eliminate Decl ar abl e components

One can configure custom types entirely inside through Spring as mentioned in Section 1.3, “ Configuring
a GemFire Regi on”. That way, one does not have to implement the Decl ar abl e interface and gets access
to all the features of the Spring 10C container (including not just dependency injection but also life-cycle
and instance management).

As an example of configuring a Decl ar abl e component using Spring, consider the following declaration (taken
from the Decl ar abl e javadoc):

<cache- | oader >

Spring GemFire(1.0.1.RELEASE) 15

‘cache"/ >

http://www.gemstone.com/docs/6.0.1/product/docs/japi/com/gemstone/gemfire/cache/CacheTransactionManager.html

Working with the GemFire APIs

<cl ass- nane>com conpany. app. DBLoader </ c| ass- nane>
<par anet er nanme="URL">
<string>jdbc://12.34.56. 78/ nydb</string>
</ par anet er >
</ cache- | oader >

To simplify the task of parsing, converting the parameters and initializing the object, SGF offers a base class
(W ri ngDecl ar abl eSupport) that allows GemFire user objects to be wired through a template bean definition
or, in case that is missing perform autowiring through the Spring container. To take advantage of this feature,
the user objects need to extend W ringDecl arabl eSupport which automatically locates the declaring
BeanFact ory and performs wiring as part of the initialization process.

Why is a base class needed?

In the current GemFire release there is no concept of an object factory and the types declared are
instantiated and used as is - that is there are no other ways in which third parties can take care of the
object creation outside GemFire. Support for this feature is planned for the up-coming GemFire release
(6.5)

2.4.1. Configuration using template definitions

When used W ri ngDecl ar abl eSupport tries to first locate an existing bean definition and use that as wiring
template. Unless specified, the component class name will be used as an implicit bean definition name. Let's
see how our DBLoader declaration would look in that case:

public class DBLoader extends WringDecl arabl eSupport inplenents CachelLoader {
privat e Dat aSource dataSour ce;

public voi d set Dat aSour ce(Dat aSource ds) {
thi s. dat aSource = ds;

}

public Object |oad(LoaderHel per helper) { ... }

<cache-| oader >
<cl ass- nane>com conpany. app. DBLoader </ cl ass- nane>
<l-- no paraneter is passed (use the bean inplicit name
that is the class nane) -->

</ cache- | oader >

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springfranmewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: p="http://ww. spri ngfranmework. or g/ schenma/ p"
xsi : schemaLocati on="http://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. springframework. org/ schenma/ beans/ spri ng- beans. xsd" >

<bean i d="dataSource" ... />

<l-- tenplate bean definition -->
<bean id="com conpany. app. DBLoader" abstract="true" p: dataSource-ref="dataSource"/>
</ beans>

In the scenario above, as no parameter was specified, a bean with id/name com conpany. app. DBLoader Was
searched for. The found bean definition is used as a template for wiring the instance created by GemFire. For
cases where the bean name uses a different convention, one can pass in the bean- nane parameter in the
GempFire configuration:

Spring GemFire(1.0.1.RELEASE) 16

Working with the GemFire APIs

<cache-| oader >
<cl ass- nane>com conpany. app. DBLoader </ cl ass- nane>
<l-- pass the bean definition tenplate nane
as paraneter -->
<par anet er name="bean- nane" >
<string>tenpl at e- bean</string>
</ par anet er >
</ cache- | oader >

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springfranmework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: p="http://ww. springfranmework. or g/ schema/ p"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. spri ngfranmework. or g/ schenma/ beans/ spri ng- beans. xsd" >

<bean id="dataSource" ... />

<l-- tenplate bean definition -->
<bean i d="tenpl at e-bean" abstract="true" p:dataSource-ref="dataSource"/>

</ beans>

Note

"
The template bean definitions do not have to be declared in XML - any format is alowed (Groovy,
annotations, etc..).

2.4.2. Configuration using auto-wiring and annotations

If no bean definition is found, by default, w ri ngDecl ar abl eSupport will autowire the declaring instance. This
means that unless any dependency injection metadata is offered by the instance, the container will find the
object setters and try to automatically satisfy these dependencies. However, one can also use JDK 5 annotations
to provide additional information to the auto-wiring process. We strongly recommend reading the dedicated
chapter in the Spring documentation for more information on the supported annotations and enabling factors.

For example, the hypothetical DBLoader declaration above can be injected with a Spring-configured DataSource
in the following way:

public class DBLoader extends WringDecl arabl eSupport inplenents CachelLoader {
/1 use annotations to 'mark' the needed dependenci es
@ avax. i nject.|nject
private DataSource dataSource

public Object |oad(LoaderHel per helper) { ... }

<cache- | oader >
<cl ass- nane>com conpany. app. DBLoader </ cl ass- nane>
<l-- no need to declare any paraneters anynore
since the class is auto-wired -->
</ cache- | oader >

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="http://wwmv springframework. or g/ schema/ cont ext "
xsi : schemaLocati on="http://wwm. spri ngfranmewor k. or g/ schena/ beans
http://ww. spri ngfranework. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ cont ext
http://ww. spri ngfranework. or g/ schena/ cont ext/ spri ng- cont ext . xsd" >

<!-- enabl e annotation processing -->

Spring GemFire(1.0.1.RELEASE) 17

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-factory-autowire
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-annotation-config

Working with the GemFire APIs

<cont ext : annot ati on- confi g/ >

</ beans>

By using the JSR-330 annotations, the cache loader code has been simplified since the location and creation of
the DataSource has been externalized and the user code is concerned only with the loading process. The
Dat aSour ce might be transactional, created lazily, shared between multiple objects or retrieved from JNDI -
these aspects can be easily configured and changed through the Spring container without touching the DBLoader

code.

Spring GemFire(1.0.1.RELEASE)

18

Chapter 3. Working with GemFire Serialization

To improve overall performance of the data fabric, GemFire supports a dedicated serialization protocol that is
both faster and offers more compact results over the standard Java serialization and works transparently across
various language platforms (such as Java, .NET and C++). This chapter discusses the various ways in which
SGF simplifies and improves GemFire custom serialization in Java.

3.1. Wiring deserialized instances

It isfairly common for serialized objectsto have transient data. Transient data is often dependent on the node or
environment where it lives at a certain point in time, for example a DataSource. Serializing such information is
useless (and potentially even dangerous) since it islocal to a certain VM/machine. For such cases, SGF offersa
special | nst anti at or that performs wiring for each new instance created by GemFire during deserialization.

Through such a mechanism, one can rely on the Spring container to inject (and manage) certain dependencies
making it easy to split transient from persistent data and have rich domain objects in a transparent manner
(Spring users might find this approach similar to that of @onf i gurabl e). The Wri ngl nst anti at or works just
like W ri ngDecl ar abl eSupport, trying to first locate a bean definition as a wiring template and following to
autowiring otherwise. Please refer to the previous section (Section 2.4, “Wiring Decl ar abl e components”) for
more details on wiring functionality.

Tousethisinstanti at or, SSmply declareit as a usual bean:

<bean id="instantiator" class="org.springframework.data.genfire.serialization. Wringlnstantiator">
<I-- DataSerializable type -->
<constructor-arg>org. pkg. SonmeDat aSeri al i zabl eCl ass</ construct or - ar g>
<l-- type id -->
<construct or - ar g>95</ const ruct or - ar g>
</ bean>

During the container startup, once it is being initialized, the i nst anti at or will, by default, register itself with
the GemFire system and perform wiring on all instances of SoneDat aSeri al i zabl ed ass created by GemFire
during deserialization.

3.2. Auto-generating custom I nstantiators

For data intensive applications, alarge number of instances might be created on each machine as data flows in.
Out of the box, GemFire uses reflection to create new types but for some scenarios, this might prove to be
expensive. As aways, it is good to perform profiling to quantify whether thisis the case or not. For such cases,
SGF allows the automatic generation of | nst ati at or classes which instantiate a new type (using the default
constructor) without the use of reflection:

<bean id="instantiator-factory" class="org.springfranework. data.genfire.serialization.|nstantiatorFactoryBean">
<property name="custonilypes">
<map>
<entry key="org. pkg. Cust onilypeA" val ue="1025"/>
<entry key="org. pkg. Cust onilypeB" val ue="1026"/>
</ map>
</ property>
</ bean>

The definition above, automatically generated two I nstanti at or S for two classes, namely Cust onifypeA and
Cust onypeB and registers them with GemFire, under user id 1025 and 1026. The two instantiators avoid the

Spring GemFire(1.0.1.RELEASE) 19

http://community.gemstone.com/display/gemfire/Interoperability
http://community.gemstone.com/display/gemfire/Serialization+in+Java
http://community.gemstone.com/display/gemfire/Serialization+in+.NET
http://www.gemstone.com/docs/6.0.1/product/docs/japi/com/gemstone/gemfire/Instantiator.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/aop.html#aop-atconfigurable

Working with GemFire Serialization

use of reflection and create the instances directly through Java code.

Spring GemFire(1.0.1.RELEASE)

20

Chapter 4. Sample Applications

The Spring GemFire project includes one sample application. Named "Hello World", the sample demonstrates
how to configure and use GemFire inside a Spring application. At runtime, the sample offers a shell to the user
allowing him to run various commands against the grid. It provides an excellent starting point for users
unfamiliar with the essential components or the Spring and GemFire concepts.

The sample is bundled with the distribution and is Maven-based. One can easily import them into any
Maven-aware IDE (such as SpringSource Tool Suite) or run them from the command-line.

4.1. Hello World

The Hello World sample demonstrates the core functionality of the Spring GemFire project. It bootstraps
GemFire, configures it, executes arbitrary commands against it and shuts it down when the application exits.
Multiple instances can be started at the same time as they will work with each other sharing data without any
user intervention.

Running under Linux

e
If you experience networking problems when starting GemFire or the samples, try adding the
following system property java.net.preferlPv4Stack=true to the command line (insert
-Dj ava. net . pref er | Pv4St ack=t r ue). For an aternative (global) fix especially on Ubuntu see this
link

4.1.1. Starting and stopping the sample

Hello World is designed as a stand-alone java application. It features a mai n class which can be started either
from your IDE of choice (in Eclipse/STS through Run As/Java Application) or from the command line
through Maven using mvn exec: j ava. One can also usej ava directly on the resulting artifact if the classpath is
properly set.

To stop the sample, simply type exi t at the command line or press ¢t r1 +C to stop the VM and shutdown the
Spring container.

4.1.2. Using the sample

Once started, the sample will create a shared data grid and alow the user to issue commands against it. The
output will likely look as follows:

INFO. Created GenFire Cache [Spring GenFire Wrld] v. X VY.Z

I NFO Created new cache region [nyWrl d]

I NFO Menber xxxxxx:50694/51611 connecting to region [nmyWrl d]
Hell o Worl d!

Want to interact with the world ? ...

Supported conmands are

get <key> - retrieves an entry (by key) fromthe grid

put <key> <value> - puts a new entry into the grid
remove <key> - renoves an entry (by key) fromthe grid

For example to add new itemsto the grid one can use:

Spring GemFire(1.0.1.RELEASE) 21

http://www.springsource.com/products/sts
https://jira.springsource.org/browse/SGF-28

Sample Applications

-> put 1 unu

I NFO Added [1=unu] to the cache
nul |

-> put 1 one

INFO Updated [1] from [unu] to [one]
unu

-> size

1

-> put 2 two

I NFO Added [2=two] to the cache
nul |

-> size

2

Multiple instances can be created at the same time. Once started, the new VMs automatically see the existing
region and its information:

I NFO Connected to Distributed System[' Spring GenFire Worl d' =xxxx: 56218/ 49320@yyyy]
Hel l o Worl d!

-> size

2

-> nap

[2=two] [1l=one]

-> query length = 3
[one, two]

Experiment with the example, start (and stop) as many instances as you want, run various commands in one
instance and see how the others react. To preserve data, at least one instance needs to be alive all times - if al
instances are shutdown, the grid data is completely destroyed (in this example - to preserve data between runs,
see the GemFire documentations).

4.1.3. Hello World Sample Explained

Hello World uses both Spring XML and annotations for its configuration. The initial boostrapping
configuration is app- cont ext . xmi which includes the cache configuration, defined under cache- cont ext . xm

file and performs classpath scanning for Spring components. The cache configuration defines the GemFire
cache, region and for illustrative purposes a simple cache listener that acts as a logger.

The main beans are Hel | owor | d and ConmandPr ocessor Which rely on the GenfireTenpl at e to interact with
the distributed fabric. Both classes use annotations to define their dependency and life-cycle callbacks.

Spring GemFire(1.0.1.RELEASE) 22

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-classpath-scanning
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-factorybeans-annotations

Part lll. Other Resources

In addition to this reference documentation, there are a number of other resources that may help you learn how
to use GemFire and Spring framework. These additional, third-party resources are enumerated in this section.

Spring GemFire(1.0.1.RELEASE) 23

Chapter 5. Useful Links

» Soring GemFire Integration Home Page - here
» SpringSource blog - here

e GemFire Community - here

Spring GemFire(1.0.1.RELEASE)

24

http://www.springframework.org/spring-gemfire/
http://blog.springsource.com/
http://community.gemstone.com/display/gemfire/GemFire+Enterprise

Part IV. Appendices

Spring GemFire(1.0.1.RELEASE)

25

Appendix A. Spring GemFire Integration
Schema

Spring GemFire Schema

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<xsd: schema xm ns="http://ww. springfranmework. org/ schema/ genfire"
xm ns: xsd="ht t p: / / www. w3. or g/ 2001/ XM_Schema"
xm ns: beans="http://ww. spri ngfranmewor k. or g/ schena/ beans"
xm ns: tool ="http://ww. springfranmework. org/ schenma/t ool "
t ar get Nanespace="htt p://ww. spri ngframewor k. or g/ scherma/ genfire"
el enent For nDef aul t =" qual i fi ed"
attri but eFor nDef aul t =" unqual i fi ed"
versi on="1.0.1">

<xsd:inport namespace="http://ww. springframework. or g/ schenma/ beans"/ >
<xsd:inport namespace="http://ww. springfranework. org/ schema/tool "/ >

<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
Nanespace support for the Spring GenFire project.
]]1></ xsd: docunent ati on>
</ xsd: annot at i on>

<xsd: el ement nane="cache">
<xsd: annot ati on>
<xsd: docunent ati on source="org. springframewor k. dat a. genfire. CacheFact or yBean! ><! [CDATA[
Defines a GenFire Cache instance used for creating or retrieving 'regions'
]]1></ xsd: docunent at i on>
<xsd: appi nf 0>
<t ool : annot ati on>
<t ool : exports type="com genstone. genfire.cache. Cache" />
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd:attribute name="id" type="xsd:|D"' use="optional ">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
The name of the cache definition (by default "genfire-cache").]]></xsd: docunentati on>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd: attribute name="cache-xmnl -1 ocati on" type="xsd:string" use="optional ">
<xsd: annot at i on>
<xsd: docunent ati on source="org. springframework. core.io.Resource"><![CDAT
The | ocation of the GenFire cache xm file, as a Spring resource |location: a URL, a "classpath:" pseudo URL
or arelative file path.
]]1></ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd:attribute name="properties-ref" type="xsd:string" use="optional ">
<xsd: annot ati on>
<xsd: docunent ati on source="java. util.Properties"><![CDATA
The bean nane of a Java Properties object that will be used for property substitution. For |oading properties
consi der using a dedicated utility such as the <util:*/> namespace and its 'properties' elenent.
]1]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>
</ xsd: conpl exType>
</ xsd: el enent >

<xsd: el ement nanme="transacti on- manager" >
<xsd: annot at i on>
<xsd: docunent ati on sour ce="org. spri ngfranmewor k. data. genfire. GenfireTransacti onManager" ><
Defines a GenFire Transaction Manager instance for a single GenFire cache
]]></ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: conpl exType>
<xsd:attribute nanme="id" type="xsd:|D' use="optional ">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The name of the transacti on manager definition (by default "genfire-transacti on-nmanager").]]></xsd: docunentati or

Spring GemFire(1.0.1.RELEASE) 26

Spring GemFire Integration Schema

</ xsd: annot ati on>
</ xsd: attri bute>
<xsd: attribute nane="cache-ref" type="xsd:string" default="genfire-cache" use="optional"
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The name of the bean defining the GenFire cache (by default 'genfire-cache').
]]></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>
<xsd: attribute nane="copy-on-read" type="xsd:string" default="true" use="optional">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
I ndi cat es whether the cache returns direct references or copies of the objects (default) it manages
While copies inply additional work for every fetch operation, direct references can cause dirty reads
across concurrent threads in the sane VM whether or not transactions are used
]]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>

</ xsd: conpl exType>
</ xsd: el enent >

<I-- nested bean definition -->
<xsd: conpl exType nanme="beanDecl arati onType" >
<xsd: sequence>
<xsd: any nanmespace="##ot her" m nQccurs="0" maxQOccurs="1" processCont ents="skip">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
I nner bean definition. The nested declaration serves as an alternative to bean references (using
both in the same definition) is illegal
]]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: any>
</ xsd: sequence>
<xsd:attribute nane="ref" type="xsd:string" use="optional">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
The name of the bean referred by this declaration. If no reference exists, use an inner bean declaration
]]></ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd:attribute>
</ xsd: conpl exType>

<xsd: conpl exType nanme="basi cRegi onType" >
<xsd: annot ati on>
<xsd: appi nf 0>
<t ool : annot ati on>
<t ool : exports type="com genstone. genfire.cache. Regi on" />
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot at i on>
<xsd:attribute name="id" type="xsd:string" use="required">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
The id of the region bean definition
]]></ xsd: docunent at i on>
</ xsd: annot at i on>
</ xsd: attri bute>
<xsd:attribute name="nanme" type="xsd:string" use="optional">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
The name of the region definition. If no specified, it will have the value of the id attribute (that is, the beg
]]></ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd:attribute>
<xsd:attribute nanme="cache-ref" type="xsd:string" default="genfire-cache" use="optional ">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
The nanme of the bean defining the GenFire cache (by default 'genfire-cache').
]1]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>
</ xsd: conpl exType>

<xsd: conpl exType nanme="readOnl yRegi onType" abstract="true">
<xsd: conpl exCont ent >
<xsd: ext ensi on base="basi cRegi onType" >
<xsd: sequence>

Spring GemFire(1.0.1.RELEASE) 27

Spring GemFire Integration Schema

<xsd: el enent name="cache-listener" m nCccurs="0" maxQccurs="1">
<xsd: annot at i on>
<xsd: docunent ati on source="com genstone. genfire. cache. Cz
A cache listener definition for this region. A cache listener handles region or entry related events (that occur
various operations on the region). Miltiple listeners can be declared in a nested nmanner

Note: Avoid the risk of deadlock. Since the listener is invoked while holding a |lock on the entry generating the
it is easy to generate a deadlock by interacting with the region. For this reason, it is highly recommended to
other thread for accessing the region and not waiting for it to conplete its task
]]1></ xsd: docunent at i on>
<xsd: appi nf 0>
<t ool : annot at i on>
<t ool : exports type="com genstone. genfire
</t ool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd: sequence>
<xsd: any namespace="##ot her" m nQccurs="0" maxCc
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
I nner bean definition of the cache |istener
]]1></ xsd: docunent at i on>
</ xsd: annot at i on>
</ xsd: any>
</ xsd: sequence>
<xsd:attribute name="ref" type="xsd:string" use="optione
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The name of the cache |listener bean referred by this declaration. Used as a conveni ence nmethod. If no reference
use inner bean declarations.
]]1></ xsd: docunent at i on>
</ xsd: annot at i on>
</xsd:attribute>
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el ement nanme="di sk-store" type="di skStoreType" m nQccurs="0" maxQcc
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
Di sk storage configuration for the defined region
]]></ xsd: docunent at i on>
</ xsd: annot at i on>
</ xsd: el emrent >
</ xsd: sequence>
<xsd:attribute nanme="persistent" type="xsd:string" default="fal se">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
I ndi cat es whether the defined region is persistent or not. GenFire ensures that all the data you put into a reg
is configured for persistence will be witten to disk in a way that it can be recovered the next tine you creat
region. This allows data to be recovered after a machine or process failure or after an orderly shutdown and res
of GenFire.

Default is false, neaning the regions are not persisted

Not e: Persistence for partitioned regions is supported only fromGenFire 6.5 onwards.
]]></ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: attribute>
<xsd:attribute nane="destroy" type="xsd:string" default="fal se">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
I ndi cat es whet her the defined region should be destroyed or not at shutdown. Destroy cascades to all entries anc
After the destroy, this region object can not be used any nore and any attenpt to use this region object will ge
Regi onDest r oyedExcepti on.

Default is false, neaning that regi ons are not destroyed

Not e: destroy and close are nmutual |y exclusive. Enabling one will automatically disable the other.
]]></ xsd: docunent ati on>
</ xsd: annot at i on>
</xsd:attribute>
<xsd: attribute nane="cl ose" type="xsd:string" default="true">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
I ndi cat es whet her the defined region should be closed or not at shutdown. Cl ose perfornms a |ocal destroy but |ec
disk files. Additionally it notifies the |listeners and call backs.

Default is true, neaning the regions are closed

Spring GemFire(1.0.1.RELEASE) 28

Spring GemFire Integration Schema

Not e: Regi ons are autonmtically closed when cache cl oses.
Not e: destroy and close are nmutual |y exclusive. Enabling one will automatically disable the other
]]></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>
<xsd:attribute nanme="statistics" type="xsd:string" default="fal se">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
I ndi cates whether statistics are enabled or disabled for this region and its entries
Default is false, neaning statistics are disabl ed
]]></ xsd: docunent at i on>
</ xsd: annot at i on>
</ xsd: attri bute>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<xsd: conpl exType nanme="regi onType" >
<xsd: conpl exCont ent >
<xsd: ext ensi on base="readOnl yRegi onType" >
<xsd: sequence m nCccurs="0" maxCccurs="1">
<xsd: el enent name="cache-| oader" m nQccurs="0" maxQOccurs="1" type="bhear
<xsd: annot at i on>
<xsd: docunent ati on sour ce="com genst one. genfire. cache. Ce
The cache | oader definition for this region. A cache |oader allows data to be placed into a region.
]]></ xsd: docunent at i on>
<xsd: appi nf 0>
<t ool : annot ati on>
<t ool : exports type="com genstone. genfire
</t ool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot at i on>
</ xsd: el enent >
<xsd: el ement name="cache-witer" m nGCccurs="0" maxCccurs="1" type="beanl
<xsd: annot at i on>
<xsd: docunent ati on source="com genstone. genfire. cache. Cz
The cache witer definition for this region. A cache witer acts as a dedi cated synchronous |istener that is not
before a region or an entry is nodified. A typical exanple would be a witer that updates the database

Note: Only one CacheWiter is invoked. GenFire will always prefer the local one (if it exists) otherwise it wll
arbitrarily pick one.
]]1></ xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot at i on>
<t ool : exports type="com genstone. genfire
</t ool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd: el ement >
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<xsd: el ement name="| ookup-regi on" type="basi cRegi onType" >
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[[
Looks up an existing, working, GenFire region. Typically regions are defined through GenFire own configuration
cache.xm . |If the region does not exist, an exception will be thrown.

For defining regions, consider the region el enents.
]]1></ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: el enent >

<xsd: el ement name="replicated-regi on">
<xsd: annot at i on>
<xsd: docunent ati on source="org. spri ngframewor k. dat a. genfire. Regi onFact or yBean" ><! [CDATA[
Defines a GenFire replicated region instance. Each replicated region contains a conplete copy of the data
As well as high availability, replication provides excellent performance as each region contains a conplete
up to date copy of the data.
]1]1></ xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot at i on>
<t ool : exports type="com genstone. genfire.cache. Regi on" />
</t ool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
<xsd: conpl exType>

Spring GemFire(1.0.1.RELEASE) 29

Spring GemFire Integration Schema

<xsd: conpl exCont ent >
<xsd: ext ensi on base="regi onType" >
<xsd: sequence m nCccurs="1" maxCccurs="1">
<xsd: el ement name="evi ction" m nOccurs="0" maxQOccurs="1">

<xsd: annot at i on>

<xsd: docunent at i on><! [CDATA[
Eviction policy for the partitioned region.

]]1></ xsd: docunent ati on>

</ xsd: annot ati on>

<xsd: conpl exType>
<xsd: conpl exCont ent >

<xsd: ext ensi on base="evi cti onType">
<xsd:attribute name="action" tyr
<xsd: annot at | on>
<xsd: docunent at
The action to take when perform ng eviction
]11></ xsd: docuner
</ xsd: annot ati on>
</ xsd: attribute>
</ xsd: ext ensi on>

</ xsd: conpl exCont ent >

</ xsd: conpl exType>

</ xsd: el enent >
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el enent >

<xsd: el ement nane="partitioned-region">
<xsd: annot ati on>
<xsd: docunent ati on source="org. spri ngframework. dat a. genfire. Regi onFact or yBean" ><! [CDATA[
Defines a GenFire partitioned region instance. Through partitioning, the data is split across regions.
Partitioning is useful when the ambunt of data to store is too |large for one nenmber to hold and work
with as if it were a single entity. One can configure the partitioned region to store redundant copies
in different menbers, for high availability in case of an application failure
]]></ xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot ati on>
<t ool : exports type="com genstone. genfire.cache. Regi on" />
</ tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot at i on>
<xsd: conpl exType>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="regi onType" >
<xsd: sequence>
<xsd: el ement name="partition-resolver" m nCccurs="0" maxCOccurs="
<xsd: annot at i on>
<xsd: docunent ati on source="com genstone. genfire.
The partition resolver definition for this region, allow ng for custompartitioning. GenFire uses the resolver t
col ocate data based on customcriterias (such as colocating trades by nonth and year).
]]1></ xsd: docunent at i on>
<xsd: appi nf 0>
<t ool : annot ati on>
<t ool : exports type="com genst one
</t ool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el enent name="evi ction" m nCccurs="0" maxCOccurs="1">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
Eviction policy for the partitioned region.
]]1></ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="evicti onType">
<xsd:attribute name="action" tyy
<xsd: annot at | on>
<xsd: docunent at
The action to take when perform ng eviction
]11></ xsd: docuner
</ xsd: annot ati on>
</ xsd:attribute>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

Spring GemFire(1.0.1.RELEASE) 30

Spring GemFire Integration Schema

</ xsd: el ement >
</ xsd: sequence>
<xsd:attribute name="copi es" default="0" use="optional ">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
The number of copies for each partition for high-availability. By default, no copies are created nmeaning there
redundancy. Each copy provides extra backup at the expense of extra storages.
]]1></ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: si npl eType>
<xsd:restriction base="xsd: byte">
<xsd: m nl ncl usi ve val ue="0"/>
<xsd: max| ncl usi ve val ue="3"/>
</ xsd:restriction>
</ xsd: si npl eType>
</ xsd: attri bute>
<xsd:attribute nanme="col ocated-wi th" type="xsd:string" use="optional">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The nanme of the partitioned region with which this newy created partitioned region is col ocated
]]1></ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: attri but e>
<xsd: attribute name="|ocal - max- nenory" type="xsd:string" use="optional ">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The maxi mum amount of nenory, in negabytes, to be used by the region in this process. If not set, a default of ¢
of available heap is used
]1]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>
<xsd:attribute nane="tot al - max- menory" type="xsd:string" use="optional ">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The maxi mum anount of nenory, in negabytes, to be used by the region in all process.

Note: This setting nust be the sane in all processes using the region
]]1></ xsd: docunent at i on>
</ xsd: annot ati on>
</xsd:attribute>
<xsd:attribute name="tot al - buckets" type="xsd:string" use="optional">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The total nunmber of hash buckets to be used by the region in all processes.

A bucket is the smallest unit of data managenent in a partitioned region. Entries are stored in buckets and buck
nove fromone VMto another. Buckets nay al so have copi es, dependi ng on redundancy to provide high availability
face of VWM failure.
The nunmber of buckets should be prime and as a rough guide at the | east four tines the nunber of partition VMs.
, there is significant overhead to nanagi ng a bucket, particularly for higher values of redundancy.

Note: This setting nust be the sane in all processes using the region
]]1></ xsd: docunent at i on>
</ xsd: annot at i on>
</xsd:attribute>
<xsd:attribute name="recovery-del ay" type="xsd:string" default="-1" uses-
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The delay in mlliseconds that existing nenbers will wait before satisfying redundancy after another menber cras
-1 (the default) indicates that redundancy will not be recovered after a failure
]]1></ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd:attribute>
<xsd:attribute name="startup-recovery-del ay" type="xsd:string" default="
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
The delay in mlliseconds that new nmenbers will wait before satisfying redundancy. -1 indicates that adding new
wi Il not trigger redundancy recovery. The default is to recover redundancy i medi ately when a new nenber is adc
]]></ xsd: docunent ati on>
</ xsd: annot at i on>
</xsd:attribute>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el ement >

<xsd: conpl exType name="evi ctionType">
<xsd: sequence m nCccurs="0" maxCccurs="1">
<xsd: el ement name="obj ect-si zer" type="beanDecl arati onType">

Spring GemFire(1.0.1.RELEASE) 31

Spring GemFire Integration Schema

<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Entity conputing sizes for objects stored into the grid
1] ></ xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot ati on>
<t ool : exports type="com genstone. genfire.cache.util.Qbje
</t ool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot at i on>
</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute name="type" default="ENTRY_COUNT">
<xsd: si npl eType>
<xsd:restriction base="xsd:string">
<xsd: enuner ati on val ue="ENTRY_COUNT" >
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
Consi ders the nunber of entries in the region before perform ng an eviction
1] ></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: enuner ati on>
<xsd: enuner ati on val ue="MEMORY_SI ZE" >
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
Consi ders the ampbunt of nmenory consuned by the region before performng an eviction
1] ></ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd: enuner at i on>
<xsd: enunerati on val ue="HEAP_PERCENTAGE" >
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Consi ders the amount of heap used (through the GenFire resource manager) before perform ng an eviction
1] ></ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd: enumer at i on>
</xsd:restriction>
</ xsd: si npl eType>
</ xsd:attribute>
<xsd:attribute name="t hreshol d' type="xsd:string" use="required">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
The threshold (or linmit) against which the eviction algorithmruns. Once the threashold is reached, eviction is
per f or med.
1] ></ xsd: docunent ati on>
</ xsd: annot at i on>
</xsd:attribute>
</ xsd: conpl exType>

<xsd: si npl eType nanme="evi cti onActi onType">
<xsd:restriction base="xsd: string">
<xsd: enunerati on val ue="LOCAL_DESTROY" >
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The LRU (|l east-recently-used) region entries is locally destroyed

Note: this option is not conpatible with replicated regions (as it render the replica region inconplete).
1] ></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: enuner ati on>
<xsd: enuner ati on val ue="OVERFLOW TO DI SK" >
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
The LRU (|l east-recently-used) region entry values are witten to disk and nulled-out in the nenber to
recl ai m menory
1] ></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: enuner ati on>
</xsd:restriction>
</ xsd: si npl eType>

<xsd: conpl exType nanme="di skSt oreType" >
<xsd: sequence>
<xsd: el enent name="di sk-dir" m nQOccurs="0" maxQOccurs="unbounded" >
<xsd: conpl exType>
<xsd:attribute nane="l| ocati on" type="xsd:string" use="required">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
Directory on the file systemfor storing data

Spring GemFire(1.0.1.RELEASE) 32

Spring GemFire Integration Schema

Note: the directory must already exist.
]]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>
<xsd: attribute nanme="max-size" type="xsd:string" default="10240">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
The maxi mum si ze (in nmegabytes) of data stored in each directory. Default is 10240 MB (10 gi gabytes).
]]1></ xsd: docunent at i on>
</ xsd: annot at i on>
</ xsd: attri but e>
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: sequence>
<xsd: attribute nane="synchronous-wite" type="xsd:string" default="fal se">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
I ndi cates whether the witing to the disk si synchronous or not. Default is fal se, neaning asynchronous writing.
11>
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attribute>
<xsd: attribute name="auto-conpact" type="xsd:string" default="true">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
I ndi cat es whether or not the operation |ogs are automatically conpacted or not. Default is true
11>
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attri bute>
SIBE
<xsd: attribute nane="conpaction-threshol d* defaul t="50">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
Sets the threshold at which an oplog will beconme conpactable. Until it reaches this threshold the oplog will not
conpacted. The threshold is a percentage in the range 0..100. Wen the ambunt of garbage in an opl og exceeds thi
percent age then when a conpaction is done this garbage will be cleaned up freeing up di sk space. Garbage is cree
by entry destroys, entry updates, and regi on destroys
11>
</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: si npl eType>
<xsd:restriction base="xsd: short">
<xsd: m nExcl usi ve val ue="0"/>
<xsd: maxExcl usi ve val ue="100"/>
</ xsd:restriction>
</ xsd: si npl eType>
</ xsd: attri bute>
SR
<xsd:attribute name="max-opl og-si ze" type="xsd:string" defaul t="1024">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
Sets the maxi mum si ze in negabytes a single oplog (operation log) is allowed to be. Wien an oplog is created thi
amount of file space will be immediately reserved
11>
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attri but e>
<xsd:attribute nanme="tine-interval" type="xsd:string" default="1">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
Sets the nunber of mlliseconds that can el apse before unwitten data is witten to disk.
It is considered only for asynchronous writing.
11>
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd: attribute name="queue-size" type="xsd:string" default="0">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
The maxi mum nunber of operations that can be asynchronously queued. Once this many pendi ng async operations have
gqueued async ops will begin blocking until some of the queued ops have been flushed to disk
Consi dered only for asynchronous witing.
11>
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attri bute>
</ xsd: conpl exType>

Spring GemFire(1.0.1.RELEASE) 33

Spring GemFire Integration Schema

<xsd: el ement name="client-region">
<xsd: annot ati on>
<xsd: docunent ati on source="org. springfranmework. data. genfire.client.CientRegi onFact or yBe
Defines a GenFire client region instance. A client region is connected to a (long-lived) farmof GenFire servers
which it receives its data. The client can hold sonme data locally or forward all requests to the server.
]]></ xsd: docunent ati on>
<xsd: appi nf 0>
<t ool : annot ati on>
<t ool : exports type="com genstone. genfire.cache. Regi on" />
</tool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot at i on>
<xsd: conpl exType>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="readOnl yRegi onType" >
<xsd: sequence>
<xsd: choi ce m nCccurs="0" maxCccur s="unbounded" >
<xsd: el ement nanme="key-interest">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
Key based interest. If the key is a List, then all the keys in the List will be registered. The key can al so be
speci al token 'ALL_KEYS', which will register interest in all keys in the region. In effect, this will cause an
to any key in this region in the CacheServer to be pushed to the client.
]]1></ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: conpl exType>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="interest Tyr
<xsd: sequence m nCccurs=
<xsd: any namespe
<xsd: annot at
<xsd: dc
I nner bean definition of the client key interest.

</ xsd: ar
</ xsd: any>
</ xsd: sequence>
<xsd: attri bute name="key
<xsd: annot ati on>
<xsd: doc
The nanme of the client key interest bean referred by this declaration. Used as a convenience nethod. |If no refer
use the inner bean decl aration.
]1]1></ xsc
</ xsd: annot ati or
</ xsd:attribute>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el ement nane="regex-i nterest">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
Regul ar expression based interest. |If the patternis '.*" then all keys of any type will be pushed to the client
]]1></ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="interest Tyr
<xsd:attribute nanme="pat
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: choi ce>
<xsd: el ement name="evi ction" m nQOccurs="0" maxQOccurs="1">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
Eviction policy for the partitioned region.
]1]1></ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="evicti onType">
<xsd:attribute name="action" tyg
<xsd: annot at | on>
<xsd: docunent at
The action to take when perform ng eviction
]11></ xsd: docuner

Spring GemFire(1.0.1.RELEASE) 34

Spring GemFire Integration Schema

</ xsd: annot at i on>
</xsd:attribute>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
<xsd: attribute nane="dat a-policy" use="optional" defaul t="NORVAL">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
The data policy for this client. Can be either 'EMPTY' or 'NORMAL' (the default). In case persistence or overflc
configured for this region, this parameter will be ignored

EMPTY - causes data to never be stored in local nmenory. The region will always appear enpty. It can be used to f
footprint producers that only want to distribute their data to others and for zero footprint consumers that on
to see events.

NORMAL - causes data that this region is interested in to be stored in local nenory. It allows the contents in t

cache to differ from other caches.

]]1></ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: si npl eType>
<xsd:restriction base="xsd: string">
<xsd: enuner ati on val ue="EMPTY"/>
<xsd: enuner ati on val ue="NORVAL"/ >
</ xsd:restriction>
</ xsd: si npl eType>
</ xsd: attri bute>
<xsd:attribute name="pool -nane" use="required" type="xsd:string">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The nanme of the pool used by this client.
]]1></ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: attribute>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el enent >

<xsd: conpl exType name="connecti onType">
<xsd:attribute name="host" type="xsd:string">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The host nanme or ip address of the connection
]1></ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: attri bute>
<xsd:attribute name="port">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The port nunber of the connection (between 1 and 65535 i ncl usive).
]]></ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: si npl eType>
<xsd:restriction base="xsd:string"/>
</ xsd: si npl eType>
</ xsd: attri bute>
</ xsd: conpl exType>

<xsd: conpl exType name="interest Type" abstract="true">
<xsd:attribute nanme="durabl e" type="xsd:string" default="false" use="optional">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
I ndi cat es whether or not the registered interest is durable or not. Default is false
]]></ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd:attribute>
<xsd:attribute nane="result-policy" defaul t="KEYS VALUES' use="optional ">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
The result policy for this interest. Can be one of 'KEYS or 'KEYS_VALUES (the default) or ' NONE .

KEYS - Initializes the |ocal cache with the keys satisfying the request.
KEYS- VALUES - initializes the |local cache with the keys and current val ues satisfying the request.
NONE - Does not initialize the |ocal cache

]]1></ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: si npl eType>
<xsd:restriction base="xsd:string">

Spring GemFire(1.0.1.RELEASE) 35

Spring GemFire Integration Schema

<xsd: enunerati on val ue="KEYS"/ >
<xsd: enuneration val ue="KEYS_VALUES"/ >
<xsd: enuner ati on val ue="NONE"/ >
</ xsd:restriction>
</ xsd: si npl eType>
</ xsd: attribute>
</ xsd: conpl exType>

<xsd: el enent nanme="pool ">
<xsd: annot at i on>
<xsd: docunent ati on sour ce="org. spri ngfranmewor k. data. genfire.client.Pool Fact oryBean"><![(
Defines a pool for connections froma client to a set of GenFire Cache Servers.

Note that in order to instantiate a pool, a GenFire cache needs to be already started
1] ></ xsd: docunent at i on>
<xsd: appi nf 0>
<t ool : annot ati on>
<t ool : exports type="com genstone. genfire.cache.client.Pool" />
</t ool : annot ati on>
</ xsd: appi nf 0>
</ xsd: annot at i on>
<xsd: conpl exType>
<xsd: choi ce m nCccurs="1" maxQccurs="1">
<xsd: el enent name="| ocator" type="connecti onType" m nQccurs="1" maxQOccur s="unbot
<xsd: el ement name="server" type="connectionType" m nQccurs="1" maxQccurs="unbour
</ xsd: choi ce>
<xsd:attribute name="id" type="xsd:|D"' use="optional ">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
The name of the pool definition (by default "genfire-pool").]]></xsd:docunentati on>
</ xsd: annot at i on>
</xsd:attribute>
<xsd:attribute name="free-connection-tineout" use="optional" type="xsd:string"/>
<xsd:attribute name="idle-tineout" use="optional" type="xsd:string"/>
<xsd:attribute name="|oad-conditioning-interval" use="optional" type="xsd:string"/>
<xsd:attribute name="max-connections" use="optional" type="xsd:string"/>
<xsd:attribute name="m n-connections" use="optional" type="xsd:string"/>
<xsd:attribute name="ping-interval" use="optional" type="xsd:string"/>
<xsd:attribute name="read-ti neout" use="optional" type="xsd:string"/>
<xsd:attribute name="retry-attenpts" use="optional" type="xsd:string"/>
<xsd:attribute name="server-group" use="optional" type="xsd:string"/>
<xsd:attribute name="socket-buffer-size" use="optional" type="xsd:string"/>
<xsd:attribute name="statistic-interval" use="optional" type="xsd:string"/>
<xsd:attribute name="subscription-ack-interval" use="optional" type="xsd:string"/>
<xsd:attribute name="subscription-enabl ed" use="optional" type="xsd:string"/>
<xsd:attribute nane="subscri ption-nmessage-tracki ng-ti meout” use="optional" type="xsd:str
<xsd:attribute name="subscri ption-redundancy" use="optional" type="xsd:string"/>
<xsd:attribute name="t hread-1|ocal - connecti ons" use="optional" type="xsd:string"/>
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: schema>

Spring GemFire(1.0.1.RELEASE) 36

	Spring Gemfire Integration Reference Guide
	Table of Contents
	Preface
	Part I. Introduction
	Part II. Reference Documentation
	Chapter 1. Bootstrapping GemFire through the Spring container
	1.1. Using the Spring GemFire Namespace
	1.2. Configuring the GemFire Cache
	1.3. Configuring a GemFire Region
	1.3.1. Using an externaly configured Region
	1.3.2. Replicated Region
	1.3.2.1. replicated-region Options

	1.3.3. Partition(ed) Region
	1.3.3.1. partitioned-region Options

	1.3.4. Client Region
	1.3.4.1. Client Interests

	1.3.5. Configurating Disk Storage
	1.3.6. Data Persistence
	1.3.7. Data Eviction and Overflowing
	1.3.8. Advanced Region Configuration

	1.4. Advantages of using Spring over GemFire cache.xml

	Chapter 2. Working with the GemFire APIs
	2.1. Exception translation
	2.2. GemfireTemplate
	2.3. Transaction Management
	2.4. Wiring Declarable components
	2.4.1. Configuration using template definitions
	2.4.2. Configuration using auto-wiring and annotations

	Chapter 3. Working with GemFire Serialization
	3.1. Wiring deserialized instances
	3.2. Auto-generating custom Instantiators

	Chapter 4. Sample Applications
	4.1. Hello World
	4.1.1. Starting and stopping the sample
	4.1.2. Using the sample
	4.1.3. Hello World Sample Explained

	Part III. Other Resources
	Chapter 5. Useful Links

	Part IV. Appendices
	Appendix A. Spring GemFire Integration Schema

