Spring Data GemFire Reference Guide

Copyright ©

Spring Data GemFire Reference Guide

Table of Contents

... iv
T = (=1 = Vo SRR 1
1T T o T[0Tt o] o TP 2
R 111 o 11 T3 1T o S 3
A = =T (81T (=T 0 0=) 4
. NBW FRALUIES ...ttt ettt et et et et et e et e ea e e et e e et e et e eenns 5
3.1, NeW in the 1.2.0 REIEASEuovevniiii ittt e e e e e e eees 5

3.2. NeW in the 1.2.1 REIEASEuuiiiiiiiieie e 5

3.3. New in the 1.3.0 REICASEieeiiiii e 5

3.4, NeW iN the 1.3.1 REIEASEuciiiiiii it e e e e e e eaes 6

3.5. NeW in the 1.3.2 REIEASEuuiiiiiiiieii e 6

3.6. NeW in the 1.3.3 REICASEoieuiiiii i 6

3.7. NeW iN the 1.3.4 REIEASEuoveeniiii ittt e e e e e eees 6

3.8. NeW in the 1.4.0 REIEASEviiiiiiiieie e 6

3.9. New in the 1.5.0 REICASEieuniiii e 7

L= (=T 1= o =T U 1o S 8
4.1. DOCUMENT STITUCTUIE ...eeieeei ettt et e e e e e e e e e e e enns 8

4.2. Bootstrapping GemFire through the Spring Containercc.occoiviiiiiiiiiiiiineeee, 8
Advantages of using Spring over GemFire cache. Xxmccoovviiiiiiiiiiiinneennn, 8

Using the Core Spring Data GemFire NameSpacecc.ceevvieiiiieeiineeiiiieeieeeannn 9
Configuring the GemFire Cacheooiiuiiiiiiiii e 10
Advanced Cache Configurationccooeveuiiiiiiiiiniei e 11

Configuring a GemFire Cache Servercoooiiiiiiiiiii e 13

Configuring a GemFire Client Cachecooiiiiiiiiii e 14

Using the GemFire Data ACCESS NAMESPACEccevvuneiiriiieiiiiiiieteiiineeeenii e eennans 14

An Easy Way to Connect to0 GEMFIIec.coveiiiieiiiiiiii e 14

Configuring a GemMFIre REGIONuiiiuiiiiii i 15

Using an externally configured RegIiONcccuoviiiiiiiiiiiiiiiieci e 15

AULO REGION LOOKUP ..ovniii e 16

Configuring REGIONSceuiiii et 17

REQION TEMPIALES ... e 20

A Word of Caution on Regions, Subregions and LOOKUPSc.cccveeeennnen. 23

Data PerSISIENCEcieiiiiiieii e e 25

Subscription INterest POLICYcccuuuiiiiiiiiiii e 26

Data Eviction and OVerflowingcoeeviiiiiiiiiiie e 26

Data EXPIrationccouiieiieiiieee et 26

(o Tox= 1 2 {=To o] o NPT PPRTR 27

LR I=T o] o7= 1 (=10 [= =T | [o] o 27

Partitioned ReQION ... 27

ClIENt REGION ...ttt 29

JSON SUPPOI it 30

Creating @n INOEXcue e et e e e e aans 30
Configuring @ DISK StOMeuuiiiiiiiiei e 31
Configuring GemFire’s FUNCLION SEIVICEocvviiiiiiiiii e 31
Configuring WAN GaEWAYSeeuuietneetiaeit i eeei e et a et e e e e et e e et e aea e et e eenaeenns 31

WAN Configuration in GEMFIre 7.0ooviiiiiiiiiiiii e 31

WAN Configuration in GEMFIre 6.6cc.vevviiiiiiiieii e 33

please define title in your docbook file! ii

Spring Data GemFire Reference Guide

4.3. Working with the GEMFIre APIScoeuniii e 33
EXception TranSIation ... 33
GeMfIrETEMPIALE ... oo e 33
Support for Spring Cache AbStractioncc.vviiiiiiiii i 34
Transaction Man@gEMENTccuuiiii i e e 34
GemFire Continuous QUEry CONAINETc.uuuiiiiiiiiieiiiii e 35

Continuous Query Listener CONtaINErc..ovvviiieiiiieii e eaen 35

The Cont i nuousQuer yLi st ener Adapt er and

Cont i NUOUSQUET YLI ST ENEI ..eiiiiiiii e 36
Wiring Decl ar abl @ COMPONENEScivviiiiiiici e e 38

Configuration using template definitionscooiiiiiiiiiiiii s 38

Configuration using auto-wiring and annotationscccoeeviviiiiiieiineennnn. 40

4.4. Working with GemFire Serializationcc.oiiviiiiiiiie e 40
Wiring deserialized INSTANCEScouuniiiiiiii e 40
Auto-generating custom “INStantiator'sovvieeiiiiiiiiii e 41

T =@ N @ I 11 = o] o] 1 o P 41
L= 0111 YA\ F= o] o] o PP 41
Mapping PDX SeraliZerccoeuuiiiiiiiii e 42

4.6. GEMFIre REPOSITOMES ...vviiiiiiieii et e et e e e et e e e e e e aanas 43
TageTo 011 o] o PP PT PPN 43
SPring CONfIGUIALIONcouviiiiiii e 43
EXECUtING OQL QUEIIES . ivvuieiiiieiit et e et e e e e e e e e e e e e e et e e e e e et e e eanaeenns 43

4.7. Annotation Support for FUNCtion EXECULIONooiiuiiiiiiiiiii e 45
T 10T [T 1o) o PN 45
Implementation VS EXECULIONiiiuiiiiii i e e e e 45
Implementing @ FUNCLIONoouiiii et e e 45

Annotations for Function Implementationooviiiiiiiiinii i, 46
EXECULING @ FUNCLON ...iiitiiii e e e e e 47
Annotations for FUNCtioON EXECULIONcccuuiiiiiiiiiiieii e 47
Programmatic FUNCHION EXECULIONccuuuiiiiiiiieiiiii et 48

4.8. Bootstrapping a Spring ApplicationContext in GemFIreccooeevieeviiiiviineeeieeen, 49
TageTo 011 o] o PP PT PPN 49
Using GemFire to Bootstrap a Spring Context Started with Gfsh 49
Lazy-Wiring GemFire COMPONENTScvvuiiiiiieii e e e e e e e e e e eanaeeaen 50

4.9. Sample APPIICALIONSceeiii e 51
[1= o Yo T 4 o PSP 52

Starting and stopping the sampleccoooiiiiiii 52

USING the SAMPIE ... e 52

Hello World Sample EXplainedoooouiiiiiiiiiii e 53

I @1 01T g o= o TH] o L= PP 54
5.1 USEIUI LINKS ..eeiie et e e e 54

B. APPENAICES ... ittt ettt e e e ettt e aeeab e 55

6.1. Spring Data GemMFIre SCheMAociiuiiiii e eae e 55
Spring Data GemFire Core Schema (gfe)couoiviiiiiiiiii e, 55
Spring Data GemFire Data Access Schema (gfe-data)cccooeveiiiiiiiiiiiiiinnennns 56

please define title in your docbook file! iii

Spring Data GemFire Reference Guide

© 2011-2014 The original authors.

Note

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

please define title in your docbook file!

Part |. Preface

Spring Data GemFire focuses on integrating the Spring Framework’'s powerful, non-invasive
programming model and concepts with Pivotal GemFire, simplifying configuration, development and
providing high-level abstractions. This document assumes the reader already has a basic familiarity with
the Spring Framework and Pivotal GemFire concepts and APlIs.

While every effort has been made to ensure this documentation is comprehensive and there are no
errors, some topics might require more explanation and some typos might have crept in. If you do spot
any mistakes or even more serious errors and you can spare a few cycles, please do bring the errors
to the attention of the Spring Data GemFire team by raising an issue. Thank you.

https://jira.spring.io/browse/SGF

Part Il. Introduction

Spring Data GemFire Reference Guide

1. Introduction

This reference guide for Spring Data GemFire explains how to use the Spring Framework to configure
and develop applications with Pivotal GemFire. It presents the basic concepts, semantics and provides

numerous examples to help you get started.

Note

Spring Data GemFire started as a top-level Spring project called Spring GemFire (SGF) and since
then has been moved under the Spring Data umbrella project and renamed accordingly.

please define title in your docbook file!

Spring Data GemFire Reference Guide

2. Requirements

Spring Data GemFire requires JDK 6.0 or above, Spring Framework 3 and Pivotal GemFire 6.6 or above
(version 7 or above is recommended).

please define title in your docbook file! 4

http://projects.spring.io/spring-framework
http://www.pivotal.io/big-data/pivotal-gemfire

Spring Data GemFire Reference Guide

3. New Features

Note

As of the 1.2.0 release, this project, formerly known as Spring GemFire, has been renamed to
Spring Data GemFire to reflect that it is now a component of the Spring Data project.

3.1 New in the 1.2.0 Release

Full support for GemFire configuration via the SDG gfe namespace. Now GemFire components may
be configured completely without requiring a native cache.xml file.

WAN Gateway support for GemFire 6.6.x. See the section called “Configuring WAN Gateways”.

Spring Data Repository support using a dedicated SDG namespace, gfe-data. See Section 4.6,
“GemFire Repositories”

Namespace support for registering GemFire Functions. See the section called “Configuring GemFire’s
Function Service”

A top-level <di sk- st or e> element has been added to the SDG gfe namespace to allow sharing
of persist stores among Regions, and other components that support persistent backup or overflow.
See the section called “Configuring a Disk Store”

Warning
The <*-r egi on> elements no longer allow a nested <di sk- st or e>
GempFire Sub-Regions are supported via nested <* - r egi on> elements.

A <l ocal - r egi on> element has been added to configure a Local Region.

3.2 New in the 1.2.1 Release

» Support for the re-designed WAN Gateway in GemFire 7.0.

3.3 New in the 1.3.0 Release

Annotation support for GemFire Functions. It is now possible to declare and register Functions written
as POJOs using annotations. In addition, Function executions are defined as annotated interfaces,
similar to the way Spring Data Repositories work. See Section 4.7, “Annotation Support for Function
Execution”.

Added a <dat asour ce> element to the SDG gfe-data namespace to simplify establishing a basic
client connection to a GemFire data grid.

Added a <j son-r egi on- aut opr oxy> element to the SDG gfe-data namespace to support JSON
features introduced in GemFire 7.0, enabling Spring AOP to perform the necessary conversions
automatically on Region operations.

Upgraded to GemFire 7.0.1 and added namespace support for new AsyncEventQueue attributes.

Added support for setting subscription interest policy on Regions.

please define title in your docbook file! 5

http://projects.spring.io/spring-data/

Spring Data GemFire Reference Guide

3.4 New in the 1.3.1 Release

» Support for void returns on Function executions. See Section 4.7, “Annotation Support for Function
Execution” for complete details.

3.5 New in the 1.3.2 Release

» Support for persisting Local Regions. See the section called “Local Region” and the section called
“Common Region Attributes”.

» Support for entry time-to-live and entry idle-time on a GemFire Client Cache. See the section called
“Configuring a GemFire Client Cache”.

» Support for multiple Spring Data GemFire web-based applications using a single GemFire cluster,
operating concurrently inside tc Server.

3.6 New in the 1.3.3 Release

» Support for concurrency-checks-enabled on all GemFire Cache Region definitions using the SDG gfe
namespace. See the section called “Common Region Attributes”.

» Support for Cache Loaders and Cache Writers on Client, Local Regions. See the section called
“Cache Loaders and Cache Writers”.

» Support for registering CacheListeners, AsyncEventQueues and Gateway Senders on GemFire
Cache Sub-Regions.

» Support for PDX persistent keys in GemFire Regions.

» Support for correct Partition Region bean creation in a Spring context when collocation is specified
with the colocated-with attribute.

 Full support for GemFire Cache Sub-Regions using proper, nested <* - r egi on> element syntax in
the SDG gfe namespace.

3.7 New in the 1.3.4 Release

» Upgraded Spring Data GemFire to Spring Framework 3.2.8.

» Upgraded Spring Data GemFire to Spring Data Commons 1.7.1.

3.8 New in the 1.4.0 Release

Upgrades Spring Data GemFire to GemFire 7.0.2.

Upgrades Spring Data GemFire to Spring Data Commons 1.8.0.

Upgrades Spring Data GemFire to Spring Framework 3.2.9.

» Integrates Spring Data GemkFire with Spring Boot, which includes both a spring-boot-starter-
data-gemfire POM along with a Spring Boot sample application demonstrating GemFire Cache
Transactions configured with SDG and bootstrapped with Spring Boot.

please define title in your docbook file! 6

Spring Data GemFire Reference Guide

» Support for bootstrapping a Spring Context in a GemFire Server when started from Gfsh. See
Section 4.8, “Bootstrapping a Spring ApplicationContext in GemFire” for more details.

» Support for persisting application domain object/entities to multiple GemFire Cache Regions. See the
section called “Entity Mapping” for more details.

» Support for persisting application domain object/entities to GemFire Cache Sub-Regions, avoiding
collisions when Sub-Regions are uniquely identifiable, but identically named. See the section called
“Entity Mapping” for more details.

» Adds strict XSD type rules to, and full support for, Data Policies and Region Shortcuts on all GemFire
Cache Region types.

» Changed the default behavior of SDG <* - r egi on> elements from lookup to always create a new
Region along with an option to restore old behavior using the ignore-if-exists attribute. See Common
Region Attributes and the section called “A Word of Caution on Regions, Subregions and Lookups”
for more details.

» Enables Spring Data GemFire to be fully built and ran on JDK 7 and JDK 8 (Note, however, GemFire
has not yet been fully tested and supported on JDK 8; See GemFire User Guide for additional details.

3.9 New in the 1.5.0 Release

e Upgrades Spring Data GemFire to Spring Data Commons 1.9.0

e Upgrades Spring Data GemFire to Spring Framework 4.0.7

» Reference Guide migrated to Asciidoc

» Renewed support for deploying Spring Data GemFire in an OSGi container.

* Removed all default values in the Spring Data GemFire XML namespace Region-type elements,
relying on GemFire defaults instead.

» Added convenience to automatically create Disk Store directory locations without the need to create
them manually, as required by GemFire.

» SDG annotated Functions can now be executed from Gfsh.
» Enable GemFire GatewayReceivers to be started manually.
» Support for Auto Region Lookups. See the section called “Auto Region Lookup” for further details.

e Support for Region Templates See the section called “Region Templates” for further
details. :leveloffset: -1

please define title in your docbook file! 7

http://gemfire.docs.pivotal.io/latest/userguide/index.html#supported_configs/supported_configs_and_system_reqs.html

Spring Data GemFire Reference Guide

4. Reference Guide

4.1 Document Structure

The following chapters explain the core functionality offered by Spring Data GemFire.

Section 4.2, “Bootstrapping GemFire through the Spring Container” describes the configuration support
provided for bootstrapping, configuring, initializing and accessing GemFire Caches, Cache Servers,
Regions, and related Distributed System components.

Section 4.3, “Working with the GemFire APIs” explains the integration between the GemFire APIs and
the various data access features available in Spring, such as transaction management and exception
translation.

Section 4.4, “Working with GemFire Serialization” describes the enhancements for GemkFire
(de)serialization and management of associated objects.

Section 4.5, “POJO mapping” describes persistence mapping for POJOs stored in GemFire using Spring
Data.

Section 4.6, “GemFire Repositories” describes how to create and use GemFire Repositories using
Spring Data.

Section 4.7, “Annotation Support for Function Execution” describes how to create and use GemFire
Functions using annotations.

Section 4.8, “Bootstrapping a Spring ApplicationContext in GemFire” describes how to bootstrap a
Spring ApplicationContext running in a GemFire Server using Gfsh.

Section 4.9, “Sample Applications” describes the samples provided with the distribution to illustrate the
various features available in Spring Data GemFire.

4.2 Bootstrapping GemFire through the Spring Container

Spring Data GemkFire provides full configuration and initialization of the GemFire data grid through
Spring’s 10C container and provides several classes that simplify the configuration of GemFire
components including Caches, Regions, WAN Gateways, Persistence Backup, and other Distributed
System components to support a variety of scenarios with minimal effort.

Note

This section assumes basic familiarity with GemFire. For more information see the product
documentation.

Advantages of using Spring over GemFire cache. xm

As of release 1.2.0, Spring Data GemFire’'s XML namespace supports full configuration of the data grid.
In fact, the Spring Data GemFire namespace is considered the preferred way to configure GemFire.
GemFire will continue to support native cache. xni for legacy reasons, but you can now do everything
in Spring XML and take advantage of the many wonderful things Spring has to offer such as modular

please define title in your docbook file! 8

http://www.pivotal.io/big-data/pivotal-gemfire

Spring Data GemFire Reference Guide

XML configuration, property placeholders, SpEL, and environment profiles. Behind the namespace,
Spring Data GemFire makes extensive use of Spring’s Fact or yBean pattern to simplify the creation
and initialization of GemFire components.

For example, GemFire provides several callback interfaces such as Cacheli st ener, CacheWi ter,
and CachelLoader to allow developers to add custom event handlers. Using the Spring 1oC container,
these may configured as normal Spring beans and injected into GemFire components. This is a
significant improvement over native cache. xml which provides relatively limited configuration options
and requires callbacks to implement GemFire’s Decl ar abl e interface (see the section called “Wiring
Decl ar abl e components” to see how you can still use Decl ar abl es within Spring’s DI container).

In addition, IDEs such as the Spring Tool Suite (STS) provide excellent support for Spring XML
namespaces, such as code completion, pop-up annotations, and real time validation, making them easy
to use.

Using the Core Spring Data GemFire Namespace

To simplify configuration, Spring Data GemFire provides a dedicated XML namespace for configuring
core GemFire components. It is also possible to configure the beans directly through Spring’s standard
<bean> definition. However, as of Spring Data GemFire 1.2.0, all bean properties are exposed via
the namespace so there is little benefit to using raw bean definitions. For more information about
XML Schema-based configuration in Spring, see this appendix in the Spring Framework reference
documentation.

Note

Spring Data Repository support uses a separate XML namespace. See Section 4.6, “GemFire
Repositories” for more information on how to configure GemFire Repositories.

To use the Spring Data GemFire namespace, simply declare it in your Spring XML configuration meta-
data:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: gf e="http://ww. springfranework. org/ schena/ genfire" OO
xsi : schemalLocati on="
ht t p: / / www. spri ngf ramewor k. or g/ schena/ beans http://wwv. springframewor k. or g/ schema/ beans/ spri ng-
beans. xsd
http://ww. spri ngfranework. org/ schema/ genfire http://ww.springfranework. org/ schema/ genfire/
spring-genfire.xsd"> 0O

<bean id ... >
<gfe:cache ...> 0
</ beans>

O Spring GemFire namespace prefix. Any name will do but through out the reference documentation,
gf e will be used.

O The namespace URI.

0 The namespace URI location. Note that even though the location points to an external address
(which exists and is valid), Spring will resolve the schema locally as it is included in the Spring
Data GemFire library.

0 Declaration example for the GemFire namespace. Notice the prefix usage.

please define title in your docbook file! 9

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#xsd-config

Spring Data GemFire Reference Guide

Note

It is possible to change the default namespace, for example from beans to gf e. This is useful
for configuration composed mainly of GemFire components as it avoids declaring the prefix. To
achieve this, simply swap the namespace prefix declaration above:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. org/ schema/ genfire" O
xm xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
O
xm ns: beans="http://ww. spri ngframewor k. or g/ scherma/ beans"
xsi : schemaLocat i on="
http://ww. springfranmework. or g/ schema/ beans http://wwm. spri ngframewor k. or g/ schena/ beans/
spring- beans. xsd
http://ww. springframewor k. org/ schema/ genfire http://ww. springframework. org/ schema/ genfire/
spring-genfire.xsd">

<beans:bean id ... > 0O
<cache ...> 0O
</ beans>

0 The default namespace declaration for this XML file points to the Spring Data GemFire
namespace.

O The beans namespace prefix declaration.

Bean declaration using the beans namespace. Notice the prefix.

O Bean declaration using the gf e namespace. Notice the lack of prefix (as the default
namespace is used).

O

Configuring the GemFire Cache

In order to use GemkFire, one needs to either create a new Cache or connect to an existing one. In
the current version of GemFire, there can be only one opened cache per VM (or per classloader to be
technically correct). In most cases the cache is created once.

Note

This section describes the creation and configuration of a full cache member, appropriate for
peer to peer cache topologies and cache servers. A full cache is also commonly used for
standalone applications, integration tests and proofs of concept. In a typical production system,
most application processes will act as cache clients and will create a ClientCache instance instead.
This is described in the sections the section called “Configuring a GemFire Client Cache” and the
section called “Client Region”

A cache with default configuration can be created with a very simple declaration:

<gf e: cache/ >

A Spring application context containing this definition will, upon initialization, will register a
CacheFact or yBean to create a Spring bean named genf i r eCache referencing a GemFire Cache
instance. This will be either an existing cache, or if one does not exist, a newly created one. Since no
additional properties were specified, a newly created cache will apply the default cache configuration.

All Spring Data GemFire components which depend on the Cache respect this naming convention so
that there is no need to explicitly declare the Cache dependency. If you prefer, you can make the

please define title in your docbook file! 10

Spring Data GemFire Reference Guide

dependence explicit via the cache-r ef attribute provided by various namespace elements. Also you
can easily override the Cache’s bean name:

<gf e: cache id="ny-cache"/>

Starting with Spring Data GemFire 1.2.0, The GemFire Cache may be fully configured using Spring.
However, GemFire's native XML configuration file (e.g., cache.xml) is also supported. For scenarios
in which the GemFire cache needs to be configured natively, simply provide a reference the GemFire
configuration file using the cache- xm - | ocat i on attribute:

<gfe:cache id="cache-wi th-xm" cache-xnl-1|ocation="cl asspath: cache. xm "/ >

In this example, if the cache needs to be created, it will use the file named cache. xm located in the
classpath root.

Note

Note that the configuration makes use of Spring’s Resour ce abstraction to locate the file. This
allows various search patterns to be used, depending on the runtime environment or the prefix
specified (if any) in the resource location.

In addition to referencing an external configuration file one can specify GemFire properties using
any of Spring’s common properties support features. For example, one can use the properties
element defined in the ut i | namespace to define properties directly or load properties from properties
files. The latter is recommended for externalizing environment specific settings outside the application
configuration:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: gf e="http://ww. spri ngfranmewor k. or g/ schema/ genfire"
xm ns:util="http://ww.springframework. org/schena/util"
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schenma/ beans http://ww. spri ngframework. or g/
schema/ beans/ spri ng- beans. xsd
http://ww. springfranmework. org/ schema/ genfire http://ww. springfranmework. org/ schema/ genfire/
spring-genfire.xsd
ht t p: // www. spri ngf ramewor k. or g/ schema/ util http://ww. spri ngframework. org/schena/util/spring-
util.xsd">

<gf e: cache properties-ref="props"/>

<util:properties id="props" |location="file:/vfabric/genfire/genfire.properties"/>
</ beans>

Note

The cache settings apply only if a new cache needs to be created. If an open cache already exists
in the JVM, these settings will be ignored.

Advanced Cache Configuration

For advanced cache configuration, the cache element provides a number of configuration options
exposed as attributes or child elements

please define title in your docbook file! 11

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#resources
http://gemfire.docs.pivotal.io/latest/userguide/index.html#reference/topics/gemfire_properties.html

Spring Data GemFire Reference Guide

O

<gf e: cache
copy-on-read="true"
critical - heap- percentage="70"
evi cti on- heap- per cent age="60"
| ock-1 ease="120"
| ock-ti nmeout =" 60"
pdx-serializer="nyPdxSerializer"
pdx- di sk-store="di skSt ore"
pdx-i gnore-unread-fiel ds="true"
pdx- persi stent ="true"
pdx-read-serial i zed="fal se"
nessage- sync-interval =" 1"
sear ch-ti meout =" 300"
cl ose="fal se"
lazy-init="true">

<gfe:transaction-listener ref="nyTransactionListener"/>0

<gfe:transaction-witer> 0O
<bean cl ass="org. springfranewor k. dat a. genfire. exanpl e. Transacti onLi stener"/>
</gfe:transaction-witer>

<gf e: dynam c-regi on-factory/> 0O
<gfe:jndi -bi ndi ng jndi-nanme="nyDat aSour ce" type="ManagedDat aSource"/> O
</ gf e: cache>

O Various cache options are supported by attributes. For further information regarding anything

shown in this example, please consult the GemFire product documentation The cl ose attribute
determines if the cache should be closed when the Spring application context is closed. The default
is t r ue however for cases in which multiple application contexts use the cache (common in web
applications), set this value to f al se. Thel azy-i ni t attribute determines if the cache should be
initialized before another bean references it. The default is t r ue however in some cases it may
be convenient to set this value to f al se.

An example of a Transacti onLi st ener callback declaration using a bean reference. The
referenced bean must implement TransactionListener

An example of a Tr ansact i onW i t er callback declaration using an inner bean declaration this

time. The bean must implement TransactionWriter
0 Enable GemFire's DynamicRegionFactory

0 Declares a JNDI binding to enlist an external datasource in a GemFire transaction

Note

The use- bean-f act ory- | ocat or attribute (not shown) deserves a mention. The factory bean
responsible for creating the cache uses an internal Spring type called a BeanFact or yLocat or
to enable user classes declared in GemFire’s native cache. xmi to be registered as Spring beans.
The BeanFact or yLocat or implementation also permits only one bean definition for a cache
with a given id. In certain situations, such as running JUnit integration tests from within Eclipse,
it is necessary to disable the BeanFact or yLocat or by setting this value to false to prevent
an exception. This exception may also arise during JUnit tests running from a build script. In
this case the test runner should be configured to fork a new JVM for each test (in maven, set
<f or knode>al ways</ f or knnde>) . Generally there is no harm in setting this value to false.

Enabling PDX Serialization

The example above includes a number of attributes related to GemFire’'s enhanced serialization
framework, PDX. While a complete discussion of PDX is beyond the scope of this reference

please define title in your docbook file!

12

http://gemfire.docs.pivotal.io/index.html
http://gemfire.docs.pivotal.io/latest/javadocs/japi/com/gemstone/gemfire/cache/TransactionListener.html
http://gemfire.docs.pivotal.io/latest/javadocs/japi/com/gemstone/gemfire/cache/TransactionWriter.html
http://gemfire.docs.pivotal.io/latest/javadocs/japi/com/gemstone/gemfire/cache/DynamicRegionFactory.html

Spring Data GemFire Reference Guide

guide, it is important to note that PDX is enabled by registering a PDX serializer which
is done via the pdx-serializer attribute. GemFire provides an implementation class
com genst one. genfire. pdx. Refl ecti onBasedAut oSeri al i zer, however it is common for
developers to provide their own implementation. The value of the attribute is simply a reference to a
Spring bean that implements the required interface. More information on serialization support can be
found in Section 4.4, “Working with GemFire Serialization”

Configuring a GemFire Cache Server

In Spring Data GemFire 1.1 dedicated support for configuring a CacheServer was added, allowing
complete configuration through the Spring container:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schenma/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xm ns: gf e="http://ww. spri ngframewor k. org/ schena/ genfire"

xm ns: context ="http://ww. springfranmework. or g/ schema/ cont ext "

xsi : schemalLocati on="http://ww. spri ngfranmewor k. org/ schema/ genfire http://ww. springframework. org/
schema/ genfire/spring-genfire.xsd

http://ww. springfranework. org/ schena/ beans http://ww. spri ngfranework. org/ schena/ beans/ spri ng-
beans. xsd

ht t p: / / www. spri ngf ramewor k. or g/ schema/ context http://ww. springfranmewor k. or g/ schema/ cont ext/ spri ng-
cont ext . xsd">

<gf e: cache />

<I'-- Advanced exanpl e depicting vari ous cache server configuration options -->
<gf e: cache-server id="advanced-config" auto-startup="true"
bi nd- addr ess="1 ocal host" port="${gfe.port.6}" host-nane-for-clients="|ocal host"
| oad- pol | -i nterval ="2000" nmax-connecti ons="22" nax-threads="16"
max- message- count =" 1000" max-ti me- bet ween- pi ngs="30000"
groups="t est-server">

<gf e: subscription-config eviction-type="ENTRY" capacity="1000" disk-store="file://
${java.io.tnpdir}"/>
</ ¢gf e: cache- server >

<cont ext: property- pl acehol der |ocation="cl asspat h: cache-server. properties"/>

</ beans>

The configuration above illustrates the cache- ser ver element and the many options available.

Note

Rather than hard-coding the port, this configuration uses Spring’s context namespace to declare
a property-pl acehol der. property placeholder reads one or more properties file and then
replaces property placeholders with values at runtime. This allows administrators to change such
values without having to touch the main application configuration. Spring also provides SpEL and
the environment abstraction one to support externalization of environment specific properties from
the main code base, easing the deployment across multiple machines.

Note

To avoid initialization problems, the “CacheServer's started by Spring Data GemFire will start
after the container has been fully initialized. This allows potential regions, listeners, writers or
instantiators defined declaratively to be fully initialized and registered before the server starts
accepting connections. Keep this in mind when programmatically configuring these items as the
server might start after your components and thus not be seen by the clients connecting right
away.

please define title in your docbook file! 13

http://gemfire.docs.pivotal.io/latest/javadocs/japi/com/gemstone/gemfire/cache/server/CacheServer.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#xsd-config-body-schemas-context
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#beans-factory-placeholderconfigurer
http://docs.spring.io/spring/docs/3.2.11.RELEASE/spring-framework-reference/htmlsingle/#new-feature-el
http://docs.spring.io/spring/docs/3.2.11.RELEASE/spring-framework-reference/htmlsingle/#new-in-3.1-environment-abstraction

Spring Data GemFire Reference Guide

Configuring a GemFire Client Cache

Another configuration addition in Spring Data GemFire 1.1 is the dedicated support for configuring
ClientCache. This is similar to a cache in both usage and definition and supported by
org. springfranmework. data. genfire.clientd ientCacheFact oryBean.

<beans>
<gfe:client-cache />
</ beans>

cl i ent - cache supports much of the same options as the cache element. However as opposed to a
full cache, a client cache connects to a remote cache server through a pool. By default a pool is created
to connect to a server on | ocal host port 40404. The the default pool is used by all client regions
unless the region is configured to use a different pool.

Pools can be defined through the pool element; The client side pool can be used to configure
connectivity to the server for individual entities or for the entire cache. For example, to customize the
default pool used by cl i ent - cache, one needs to define a pool and wire it to cache definition:

<beans>
<gfe:client-cache id="sinple" pool - name="ny- pool "/ >

<gfe: pool id="ny-pool" subscription-enabl ed="true">
<gfe:locator host="${locatorHost}" port="${locatorPort}"/>
</ gf e: pool >
</ beans>

The <client-cache> tag also includes a r eady- f or - event s attribute. If set to t r ue, the client cache
initialization will include ClientCache.readyForEvents().

Client side configuration is covered in more detail in the section called “Client Region”.
Using the GemFire Data Access Namespace

In addition to the core gf e namespace, Spring Data GemFire provides a gf e- dat a namespace
intended primarily to simplify the development of GemFire client applications. This namespace currently
supports for GemFire repositories and function execution and a <dat asour ce> tag that offers a
convenient way to connect to the data grid.

An Easy Way to Connect to GemFire

For many applications, A basic connection to a GemFire grid, using default values is sufficient. Spring
Data GemFire's <dat asour ce> tag provides a simple way to access data. The data source creates
a client cache and connection pool. In addition, it will query the member servers for all existing root
regions and create a proxy (empty) client region for each one.

<gf e- dat a: dat asour ce>
<l ocat or host ="sonehost" port="1234"/>
</ gf e- dat a: dat asour ce>

The datasource tag is syntactically similar to <gf e: pool >. It may be configured with one or more locator
or server tags to connect to an existing data grid. Additionally, all attributes available to configure a pool
are supported. This configuration will automatically create ClientRegion beans for each region defined
on members connected to the locator, so they may be seamlessly referenced by Spring Data mapping
annotations, GemfireTemplate, and wired into application classes.

Of course, you can explicitly configure client regions. For example, if you want to cache data in local
memory:

please define title in your docbook file! 14

http://gemfire.docs.pivotal.io/latest/javadocs/japi/com/gemstone/gemfire/cache/client/ClientCache.html
http://gemfire.docs.pivotal.io/latest/javadocs/japi/com/gemstone/gemfire/cache/client/ClientCache.html#readyForEvents()

Spring Data GemFire Reference Guide

<gf e- dat a: dat asour ce>
<l ocat or host ="sonehost" port="1234"/>
</ gf e- dat a: dat asour ce>

<gfe:client-region id="Custormer" shortcut="CACH NG _PROXY"/ >

Configuring a GemFire Region

A region is required to store and retrieve data from the cache. Regi on is an interface extending
java. util.Map and enables basic data access using familiar key-value semantics. The Regi on
interface is wired into classes that require it so the actual region type is decoupled from the programming
model . Typically each region is associated with one domain object, similar to a table in a relational
database.

GempFire implements the following types of regions:

* Replicated - Data is replicated across all cache members that define the region. This provides very
high read performance but writes take longer to perform the replication.

» Partioned - Data is partitioned into buckets among cache members that define the region. This
provides high read and write performance and is suitable for very large data sets that are too big for
a single node.

» Local - Data only exists on the local node.

» Client - Technically a client region is a local region that acts as a proxy to a replicated or partitioned
region hosted on cache servers. It may hold data created or fetched locally. Alternately, it can be
empty. Local updates are synchronized to the cache server. Also, a client region may subscribe to
events in order to stay synchronized with changes originating from remote processes that access the
same region.

For more information about the various region types and their capabilities as well as configuration
options, please refer to the GemFire Developer’'s Guide and community site.

Using an externally configured Region

For referencing Regions already configured through GemFire cache. xm file, use the | ookup-
regi on element. Simply declare the target Region name with the’'name’ attribute; for example, to
declare a bean definition named r egi on- bean for an existing region named Or der s one can use the
following bean definition:

<gf e: | ookup-regi on i d="regi on-bean" name="O ders"/>

If the name is not specified, the bean’s i d will be used. The example above becomes:

<l-- lookup for a region called 'Oders' -->
<gf e: | ookup-regi on id="Orders"/>

Note

If the Region does not exist, an initialization exception will be thrown. For configuring new GemFire
Regions, proceed to the appropriate sections below.

Note, in the previous examples, since no cache name was defined, the default naming convention
(genf i reCache) was used. Alternately, one can reference the cache bean through the cache-r ef
attribute:

please define title in your docbook file! 15

http://gemfire.docs.pivotal.io/latest/userguide/index.html#developing/book_intro.html
http://www.pivotal.io/big-data/pivotal-gemfire

Spring Data GemFire Reference Guide

<gf e: cache i d="cache"/>
<gf e: | ookup-regi on i d="regi on-bean" name="Or ders" cache-ref="cache"/>

| ookup- r egi on provides a simple way of retrieving existing, pre-configured Regions without exposing
the Region semantics or setup infrastructure.

Auto Region Lookup

New, as of Spring Date GemFire 1.5, is the ability to "auto-lookup” all Regions defined in GemFire’s
native cache.xml file, and imported into Spring config using the cache-xml-location™ attribute on the
<gf e: cache> element in the GFE XML namespace.

For instance, given a GemFire cache. xm file of...

<?xm version="1.0""?>
<! DOCTYPE cache PUBLIC "-//GenStone Systens, Inc.//GenFire Declarative Caching 7.0//EN'
"http://ww. genst one. comf dt d/ cache7_0. dt d" >
<cache>
<regi on name="Parent" refid="REPLI CATE">
<regi on name="Child" refid="REPLI CATE"/>
</ regi on>
</ cache>

A user may import the cache. xmi file as follows...

<gfe: cache cache-xmnl -l ocation="cache. xm"/>

A user can then use the <gfe:lookup-region> element (e.g. <gfe:|ookup-region
i d="Par ent "/ >) to reference specific GemFire Regions as bean in the Spring context, or the user
may choose to import all GemFire Regions defined in cache. xm with the new...

<gf e: aut o- r egi on- | ookup/ >

Spring Data GemFire will automatically create Spring beans referencing all GemFire Regions defined
in cache. xm that have not been explicitly added to the Spring context with <gf e: | ookup- r egi on>
bean declarations.

It is important to realize that Spring Data GemFire uses a Spring BeanPostProcessor to post process
the Cache after it is both created and initialized to determine the Regions defined in GemFire to add
as beans in the Spring context.

You may inject these "auto-looked-up" Regions like any other bean defined in the Spring context with
1 exception; you may need to define a depends- on association with the ‘gemfireCache’ bean as
follows...

package exanpl e;

import ...

@Reposi tory("appbDao")
@ependsOn("genfireCache")
public class ApplicationDao extends DaoSupport {

@Resour ce(nane = "Parent")
private Region<?, ?> parent;

@Resour ce(nane = "/Parent/ Child")
private Region<?, ?> child;

please define title in your docbook file! 16

http://docs.spring.io/spring/docs/4.0.7.RELEASE/javadoc-api/org/springframework/beans/factory/config/BeanPostProcessor.html

Spring Data GemFire Reference Guide

The above Java example is applicable when using the Spring context's conponent - scan functionality.

If you are declaring your components using Spring XML, then you would...

<bean cl ass="exanpl e. Appl i cati onDao" depends-on="genfireCache"/>

This ensures the GemFire Cache and all the Regions defined in cache. xm get created before any
components with auto-wire references when using the new <gf e: aut o- r egi on- | ookup> element.

Configuring Regions

Spring Data GemFire provides comprehensive support for configuring any type of GemFire Region via

the following elements:

» Local Region <l ocal - r egi on>

» Replicated Region <r epl i cat ed-r egi on>
 Partitioned Region <partiti oned-regi on>

e Client Region <cl i ent - r egi on>

For a comprehensive description of Region types please consult the GemFire product documentation.

Common Region Attributes

The following table(s) list attributes available for various region types:

Table 4.1. Common Region Attributes

Name Values Description

cache-ref GemFire Cache bean name The name of the bean defining
the GemFire Cache (by default
‘gemfireCache).

close boolean, default:false (Note: The Indicates whether the Region should

default was true prior to 1.3.0)

cloning-enabled boolean, default:false

concurrency- boolean, default:true
checks-enabled

be closed at shutdown.

When true, the updates are applied to

a clone of the value and then the clone
is saved to the cache. When false, the
value is modified in place in the cache.

Determines whether members perform
checks to provide consistent handling
for concurrent or out-of-order updates
to distributed Regions.

data-policy See GemFire’'s Data Policy The Region’s Data Policy. Note, not all
Data Policies are supported for every
Region type.
destroy boolean, default:false Indicates whether the Region should
be destroyed at shutdown.
disk-store-ref The name of a configured Disk A reference to a bean created via the
Store. di sk- st or e element.

please define title in your docbook file! 17

http://gemfire.docs.pivotal.io/latest/userguide/index.html#developing/region_options/region_types.html
http://gemfire.docs.pivotal.io/7.0.2/javadocs/japi/index.html

Spring Data GemFire Reference Guide

Name

Values

Description

disk-synchronous

enable-gateway

hub-id

ignore-if-exists

boolean, default:true

boolean, default:false

The name of the Gateway Hub.

Any valid bean name.

boolean, default:false

Indicates whether Disk Store writes
are synchronous.

Indicates whether the Region will
synchronize entries over a WAN
Gateway.

This will automatically set enable-
gateway to true. If enable-gateway is
explicitly set to false, an exception will
be thrown.

Will also be the Region name by
default.

Ignores this bean definition
configuration if the Region already
exists in the GemFire Cache, resulting
in a lookup instead.

ignore-jta

index-update-type

boolean, default:false

synchronous or asynchronous,
default:synchronous

Indicates whether the Region
participates in JTA transactions.

Indicates whether indices will
be updated synchronously or
asynchronously on entry creation.

initial-capacity

key-constraint

integer, default:16

Any valid, fully-qualified Java class
name.

The initial memory allocation for
number of Region entries.

The expected key type.

load-factor float, default:.75 Sets the initial parameters
on the underlying
java.util.ConcurrentHashMap used for
storing Region entries.
name Any valid Region name. The name of the Region definition. If
not specified, it will assume the value
of the id attribute (the bean name).
persistent boolean, default:false Indicates whether the Region persists
entries to a Disk Store (disk).
shorcut *See http:// The RegionShortcut for this Region.
gemfire.docs.pivotal.io/7.0.2/javadocs/ Allows easy initialization of the region
japi/com/gemstone/gemfire/cache/ based on pre-defined defaults.
RegionShortcut.html
statistics boolean, default:false Indicates whether the Region reports

statistics.

please define title in your docbook file! 18

http://gemfire.docs.pivotal.io/7.0.2/javadocs/japi/com/gemstone/gemfire/cache/RegionShortcut.html
http://gemfire.docs.pivotal.io/7.0.2/javadocs/japi/com/gemstone/gemfire/cache/RegionShortcut.html
http://gemfire.docs.pivotal.io/7.0.2/javadocs/japi/com/gemstone/gemfire/cache/RegionShortcut.html
http://gemfire.docs.pivotal.io/7.0.2/javadocs/japi/com/gemstone/gemfire/cache/RegionShortcut.html

Spring Data GemFire Reference Guide

Name Values Description

template The name of a Region Template. A reference to a bean created via one
of the *r egi on-t enpl at e elements.

value-constraint Any valid, fully-qualified Java class The expected value type.
name.

Cache Listeners

Cache Listeners are registered with a region to handle region events such as entries being created,
updated, destroyed, etc. A Cache Listener can be any bean that implements the Cacheli st ener
interface. A region may have multiple listeners, declared using the cache- | i st ener element enclosed
in a *-regi on element. In the example below, there are two “CacheListener's declared. The first
references a top-level named Spring bean; the second is an anonymous inner bean definition.

<gfe:replicated-region id="region-with-listeners">
<gf e: cache-1i st ener>

<l-- nested cache listener reference -->
<ref bean="c-|istener"/>
<I-- nested cache |istener declaration -->

<bean cl ass="sone. pkg. Anot her Si npl eCachelLi stener"/ >
</ gf e: cache-1i st ener>

<bean id="c-listener" class="sone. pkg. Si npl eCacheli stener"/>
</ gfe:replicated-regi on>

The following example uses an alternate form of the cache-1i st ener element with a r ef attribute.
This allows for more concise configuration for a single cache listener. Note that the namespace only
allows a single cache- | i st ener element so either the style above or below must be used.

Warning

Using r ef and a nested declaration in a cache-1i st ener, or similar element, is illegal. The two
options are mutually exclusive and using both on the same element will result in an exception.

<beans>
<gfe:replicated-region id="region-w th-one |istener">
<gfe:cache-listener ref="c-listener"/>
</ gf e:replicated-regi on>

<bean id="c-listener" class="sone. pkg. Si npl eCacheli stener"/>
</ beans>

Bean Reference Conventions

The cache-1i stener element is an example of a common pattern used in the namespace
anywhere GemFire provides a callback interface to be implemented in order to invoke custom
code in response to cache or region events. Using Spring’s 1oC container, the implementation is a
standard Spring bean. In order to simplify the configuration, the schema allows a single occurrence
of the cache- i st ener element, but it may contain nested bean references and inner bean
definitions in any combination if multiple instances are permitted. The convention is to use the
singular form (i.e., cache-1i st ener vs cache-|i st eners) reflecting that the most common
scenario will in fact be a single instance. We have already seen examples of this pattern in the
advanced cache configuration example.

please define title in your docbook file! 19

http://gemfire.docs.pivotal.io/7.0.2/javadocs/japi/com/gemstone/gemfire/cache/CacheListener.html

Spring Data GemFire Reference Guide

Cache Loaders and Cache Writers

Similar to cache- | i st ener, the namespace provides cache-| oader andcache-w it er elements
to register these respective components for a region. A CachelLoader is invoked on a cache miss to
allow an entry to be loaded from an external data source, a database for example. A CacheW i ter is
invoked after an entry is created or updated, intended for synchronizing to an external data source. The
difference is GemFire only supports at most a single instance of each for each region. However, either
declaration style may be used. See CachelLoader and CacheW i t er for more details.

Subregions

In Release 1.2.0, Spring Data GemFire added support for subregions, allowing regions to be arranged
in a hierarchical relationship. For example, GemFire allows for a /Customer/Address region and a
different /Employee/Address region. Additionally, a subregion may have it's own subregions and its
own configuration. A subregion does not inherit attributes from the parent region. Regions types may
be mixed and matched subject to GemFire constraints. A subregion is naturally declared as a child
element of a region. The subregion’s name attribute is the simple name. The above example might be
configured as: [source,nonxml]

<beans>

<gfe:replicated-regi on nanme="Custoner">
<gfe:replicated-regi on nanme="Address"/>
</gfe:replicated-regi on>

<gfe:replicated-regi on nane="Enpl oyee" >
<gfe:replicated-regi on nane="Address"/>

</ gfe:replicated-regi on>

</ beans>

Note that the Monospaced ([id]) attribute is not permitted for a subregion. The subregions will be
created with bean names /Customer/Address and /Employee/Address, respectively. So they may be
injected using the full path name into other beans that use them, such as Genf i r eTenpl at e. The full
path should also be used in OQL query strings.

Region Templates

Also new as of Spring Data GemFire 1.5 is Region Templates. This feature allows developers to define
common Region configuration settings and attributes once and reuse the configuration among many
Region bean definitions declared in the Spring context.

Spring Data GempFire introduces 5 new tags to the SDG XML namespace (XSD):

Table 4.2. Region Template Tags

Tag Name Description

<gf e: regi on-t enpl at e> Defines common, generic Region attributes; extends
regi onType in the SDG 1.5 XSD

<gfe: | ocal -regi on- Defines common, 'Local’ Region attributes; extends
tenpl at e> | ocal Regi onType in the SDG 1.5 XSD
<gfe:partitioned- Defines common, 'PARTITION' Region attributes; extends
regi on-tenpl at e> partitionedRegi onType inthe SDG 1.5 XSD

please define title in your docbook file! 20

http://gemfire.docs.pivotal.io/7.0.2/javadocs/japi/com/gemstone/gemfire/cache/CacheLoader.html
http://gemfire.docs.pivotal.io/7.0.2/javadocs/japi/com/gemstone/gemfire/cache/CacheWriter.html

Spring Data GemFire Reference Guide

Tag Name

Description

<gfe:replicated-region-
t enpl at e>

<gfe:client-region-
t enmpl at e>

Defines common, 'REPLICATE' Region attributes; extends
repl i cat edRegi onType in the SDG 1.5 XSD

Defines common, 'Client' Region attributes; extends
cl i ent Regi onType in the SDG 1.5 XSD

In addition to the new tags, <gf e: *- r egi on> elements along with the <gf e: *-r egi on-t enpl at e>
elements have a t enpl at e attribute used to define the Region Template from which to inherit the
Region configuration. Even Region templates may inherit from other Region Templates.

Here is an example of 1 possible configuration...

please define title in your docbook file! 21

Spring Data GemFire Reference Guide

<gf e: async- event - queue i d="AEQ' persistent="fal se" parallel ="fal se" dispatcher-threads="4">
<gf e: async-event -1 i st ener>
<bean cl ass="exanpl e. AeqLi st ener"/ >
</ gf e: async-event - | i st ener >
</ gf e: async- event - queue>

<gfe:region-tenpl ate i d="BaseRegi onTenpl ate" cl oni ng- enabl ed="t rue"
concurrency- checks- enabl ed="f al se" di sk-synchronous="fal se"
ignore-jta="true" initial-capacity="51" key-constraint="java.lang.Long"
| oad- factor="0.85" persistent="false" statistics="true"
val ue-constrai nt="j ava.l ang. Stri ng">
<gf e: cache-1i stener>
<bean cl ass="exanpl e. CachelLi st ener One"/ >
<bean cl ass="exanpl e. Cacheli st ener Two"/ >
</ gf e: cache-1i st ener>
<gfe:rentry-ttl tinmeout="300" action="I|NVALI DATE"/>
<gfe:entry-tti timeout="600" action="DESTROY"/>
</ gf e:regi on-tenpl at e>

<gfe:region-tenpl ate i d="Ext endedRegi onTenpl ate" tenpl at e="BaseRegi onTenpl at e"
i ndex- updat e-t ype="asynchr onous" cl oni ng- enabl ed="f al se"
concurrency- checks- enabl ed="true" key-constraint="java.lang.|nteger"
| oad- factor="0. 55" >
<gf e: cache- | oader >
<bean cl ass="exanpl e. CacheLoader"/ >
</ gf e: cache-| oader >
<gf e: cache-witer>
<bean cl ass="exanpl e. CacheWiter"/>
</ gf e: cache-witer>
<gf e: menbershi p-attributes required-rol es="readWiteNode" |oss-action="limted-access" resunption-
action="none"/>
<gf e: async- event - queue-r ef bean="AEQ'/ >
</ gf e:regi on-tenpl at e>

<gfe:partitioned-region-tenplate id="PartitionRegi onTenpl ate" tenpl at e="Ext endedRegi onTenpl at e"
copi es="1" | ocal - max- menory="1024" total - max- nenory="16384" recovery-del ay="60000"
startup-recovery-del ay="15000" enabl e-async-confl ati on="fal se"
enabl e- subscri ption-confl ati on="true" |oad-factor="0.70"
val ue- constraint="j ava. | ang. Cbj ect ">

<gfe:partition-resol ver>
<bean cl ass="exanpl e. Partiti onResol ver"/>
</gfe:partition-resol ver>
<gfe:eviction type="ENTRY_COUNT" threshol d="8192000" acti on="OVERFLOWN TO DI SK"/ >
</ gfe:partitioned-region-tenpl at e>

<gfe:partitioned-region id="Tenpl ateBasedPartiti onRegi on" tenpl ate="PartitionRegi onTenpl ate"
copi es="2" | ocal - max- nenory="8192" total - bucket s="91" di sk-synchronous="true"
enabl e-async-confl ati on="true" ignore-jta="fal se" key-constraint="java.util.Date"
persistent="true">
<gf e: cache-writer>
<bean cl ass="exanpl e. CacheWiter"/>
</ gf e: cache-witer>
<gf e: menber shi p-attributes required-rol es="adm n,root" | oss-acti on="no-access" resunption-
action="reinitialize"/>
<gfe:partition-listener>
<bean cl ass="exanpl e. PartitionLi stener"/>
</gfe:partition-listener>
<gfe:subscription type="ALL"/>
</ gfe:partitioned-region>

Region Templates will even work for Subregions. Notice that 'TemplateBasedPartitionRegion'
extends 'PartitionRegionTemplate’ which extends 'ExtendedRegionTemplate’ which extends
'‘BaseRegionTemplate'. Attributes and sub-elements defined in subsequent, inherited Region bean
definitions override what is in the parent.

please define title in your docbook file! 22

Spring Data GemFire Reference Guide

Under the hood...

Spring Data GemFire applies Region Templates when the Spring application context configuration meta-
data is parsed, and therefore, must be declared in the order of inheritance, in other words, parent
templates before children. This ensure the proper configuration is applied, especially when element
attributes or sub-elements are "overridden".

Important

It is equally important to remember the Region types must only inherit from other similar typed
Region. For instance, it is not possible for a <gf e: repl i cat ed-r egi on> to inherit from a
<gfe:partitioned-region-tenpl at e>.

Note

Region Templates are single-inheritance.

A Word of Caution on Regions, Subregions and Lookups

Prior to Spring Data GemFire 1.4, one of the underlying properties of the high-level r epl i cat ed-
regi on, partitioned-region, | ocal -region and client-regi on elements in Spring Data
GemFire’s XML namespace, which correspond to GemFire’s Region types based on Data Policy, is
that these elements perform a lookup first before attempting to create the region. This is done in
case the region already exists, which might be the case if the region was defined in GemFire’s native
configuration, e.g. cache. xmi , thereby avoiding any errors. This was by design, though subject to
change.

Warning

The Spring team highly recommends that the r epl i cat ed-r egi on, partiti oned-regi on,
| ocal -region and client-regi on elements be strictly used only for defining new regions.
One of the problems with these elements doing a lookup first is, if the developer assumed
that defining a bean definition for a REPLICATE region would create a new region, however,
consequently a region with the same name already exists having different semantics for eviction,
expiration, subscription and/or other attributes, this could adversely affect application logic and/
or expectations thereby violating application requirements.

Important

Recommended Practice - Only use ther epl i cat ed-r egi on,partiti oned-region,l ocal -
regi on and cl i ent - r egi on XML namespace elements for defining new regions.

However, because the high-level region elements perform a lookup first, this can cause problems for
dependency injected region resources to application code, like DAOs or Repositories.

Take for instance the following native GemFire configuration file (e.g. cachel . xm)...

please define title in your docbook file! 23

Spring Data GemFire Reference Guide

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE cache PUBLIC "-//GenSBtone Systems, Inc.//GenFire Declarative Caching 7.0//EN'
“http://ww. genmst one. coni dt d/ cache7_0. dt d" >
<cache>
<regi on name="Custoners" refid="REPLI CATE" >
<regi on name="Accounts" refid="REPLI CATE" >
<regi on name="Orders" refid="REPLI CATE">
<regi on name="|tens" refid="REPL|I CATE"/>
</ regi on>
</ regi on>
</ regi on>
</ cache>

Also, consider that you might have defined a DAO as follows...

public class CustonerAccount Dao extends GenDaoSupport {

@Resour ce(nane = "Custoners/Accounts")
private Regi on custonersAccounts;

Here, we are injecting a reference to the Cust oner s/ Account s GemFire Region in our DAO. As such,
it is not uncommon for a developer to define beans for all or some of these regions in Spring XML
configuration meta-data as follows...

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngframework. org/ schena/ beans"
xm ns: gf e="http://ww. spri ngframework. org/ schena/ genfire"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="
http://ww. springfranmework. org/ schema/ beans http://ww. springfranmework. or g/ schema/ beans/
spring- beans. xsd
http: //wwv. spri ngfranewor k. org/ schenma/ genfire http://ww.springfranework. org/schema/ genfire/
spring-genfire.xsd">

<gf e: cache cache-xml -1 ocati on="cl asspat h: cache. xm "/ >
<gf e: | ookup-regi on name="Cust oners/ Account s"/>

<gf e: | ookup-regi on nanme="Cust omer s/ Account s/ Orders"/>
</ beans>

Here the Custoners/Accounts and Custoners/Accounts/ Orders GemFire Regions are
referenced as beans in the Spring context as "Customers/Accounts" and "Customers/Accounts/Orders",
respectively. The nice thing about using the | ookup- r egi on element and the corresponding syntax
above is that it allows a developer to reference a subregion directly without unnecessarily defining a
bean for the parent region (e.g. Cust oner s).

However, if now the developer changes his/her configuration meta-data syntax to using the nested
format, like so...

<gf e: | ookup-regi on name="Cust oners" >
<gfe: | ookup-regi on nane="Accounts">
<gfe: | ookup-regi on nane="0Orders"/>
</ gf e: | ookup-r egi on>
</ gf e: | ookup-regi on>

Or, perhaps the developer erroneously chooses to use the high-level r epl i cat ed- r egi on element,
which will do a lookup first, as in...

please define title in your docbook file! 24

Spring Data GemFire Reference Guide

<gfe:replicated-regi on name="Custoners" persistent="true">
<gfe:replicated-regi on name="Accounts" persistent="true">
<gfe:replicated-regi on name="Orders" persistent="true"/>
</gfe:replicated-regi on>
</ gf e:replicated-regi on>

Then the region beans defined in the Spring context will consist of the following: { " Cust omer s",
"/ Cust oner s/ Accounts", "/ Customrers/Accounts/ Orders” }. This means the dependency
injected reference (i.e. @Resour ce(nhane = "Custoners/ Accounts")) is now broken since no
bean with name "Customers/Accounts" is defined.

GemFire is flexible in referencing both parent regions and subregions. The parent can be referenced
as "/Customers" or "Customers" and the child as "/Customers/Accounts" or just "Customers/Accounts".
However, Spring Data GemFire is very specific when it comes to naming beans after regions, typically
always using the forward slash (/) to represents subregions (e.g. "/Customers/Accounts").

Therefore, it is recommended that users use either the nested | ookup- r egi on syntax as illustrated
above, or define direct references with a leading forward slash (/) like so...

<gf e: | ookup-regi on nanme="/ Cust ormer s/ Accounts"/ >
<gf e: | ookup-regi on name="/ Cust omer s/ Account s/ Orders"/ >

The example above where the nested replicat ed-regi on elements were used to reference
the subregions serves to illustrate the problem stated earlier. Are the Customers, Accounts and
Orders Regions/Subregions persistent or not? Not, since the regions were defined in native GemFire
configuration (i.e. cache. xml) and will exist by the time the cache is initialized, or once the
<gf e: cache> bean is created. Since the high-level region XML namespace abstractions, like
replicat ed-regi on, perform the lookup first, it uses the regions as defined in the cache. xm
configuration file.

Data Persistence

Regions can be made persistent. GemFire ensures that all the data you put into a region that is
configured for persistence will be written to disk in a way that it can be recovered the next time you
create the region. This allows data to be recovered after a machine or process failure or after an orderly
shutdown and restart of GemFire.

To enable persistence with Spring Data GemFire, simply set the per si st ent attribute to true:

<gfe:partitioned-region id="persitent-partition" persistent="true"/>

Important

Persistence for partitioned regions is supported from GemFire 6.5 onwards - configuring this
option on a previous release will trigger an initialization exception.

Persistence may also be configured using the dat a- pol i cy attribute, set to one of GemFire's data
policy settings. For instance...

<gfe:partitioned-region id="persitent-partition" data-policy="PERSI STENT_PARTI TI ON'/ >
The data policy must match the region type and must also agree with the per si st ent attribute if

explicitly set. An initialization exception will be thrown if, for instance, the per si st ent attribute is set
to false, yet a persistent data policy was specified.

please define title in your docbook file! 25

http://gemfire.docs.pivotal.io/7.0.2/javadocs/japi/com/gemstone/gemfire/cache/DataPolicy.html
http://gemfire.docs.pivotal.io/7.0.2/javadocs/japi/com/gemstone/gemfire/cache/DataPolicy.html

Spring Data GemFire Reference Guide

When persisting regions, it is recommended to configure the storage through the di sk- st or e element
for maximum efficiency. The diskstore is referenced using the disk-store-ref attribute. Additionally, the
region may perform disk writes synchronously or asynchronously:

<gfe:partitioned-region id="persitent-partition" persistent="true" disk-store-ref="nyDi skStore" disk-
synchronous="true"/ >

This is discussed further in the section called “Configuring a Disk Store”
Subscription Interest Policy

GemFire allows configuration of subscriptions to control peer to peer event handling. Spring Data
GemFire provides a <gf e: subscri pti on/ > to set the interest policy on replicated and partitioned
regions to either ALL or CACHE_CONTENT.

<gfe:partitioned-region id="subscription-partition">
<gf e: subscri ption type="CACHE_CONTENT"/>
</gfe:partitioned-regi on>

Data Eviction and Overflowing

Based on various constraints, each region can have an eviction policy in place for evicting data from
memory. Currently, in GemFire, eviction applies to the least recently used entry (also known as LRU).
Evicted entries are either destroyed or paged to disk (also known as overflow).

Spring Data GemFire supports all eviction policies (entry count, memory and heap usage) for both
partitioned-regionandreplicated-regi onaswellasclient-region, through the nested
evi cti on element. For example, to configure a partition to overflow to disk if its size is more then 512
MB, one could use the following configuration:

<gfe:partitioned-region id="overfl ow partition">
<gfe:eviction type="MEMORY_SI ZE" threshol d="512" acti on="OVERFLOW.TO DI SK"/ >
</gfe:partitioned-regi on>

Important

Replicas cannot use a | ocal destroy eviction since that would invalidate them. See the
GemFire docs for more information.

When configuring regions for overflow, it is recommended to configure the storage through the di sk-
st or e element for maximum efficiency.

For a detailed description of eviction policies, see the GemFire documentation (such as this page).
Data Expiration

GempFire allows you to control how long entries exist in the cache. Eviction is driven by elapsed time,
as opposed to eviction which is driven by memory usage. Once an entry expires it may no longer be
accessed from the cache. GemFire supports the following expiration types:

* Time to live (TTL) - The amount of time, in seconds, the object may remain in the cache after the
last creation or update. For entries, the counter is set to zero for create and put operations. Region
counters are reset when the region is created and when an entry has its counter reset.

 Idle timeout - The amount of time, in seconds, the object may remain in the cache after the last
access. The idle timeout counter for an object is reset any time its TTL counter is reset. In addition,

please define title in your docbook file! 26

http://gemfire.docs.pivotal.io/latest/userguide/index.html#developing/events/configure_p2p_event_messaging.html
http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used
http://gemfire.docs.pivotal.io/latest/userguide/index.html#developing/eviction/how_eviction_works.html

Spring Data GemFire Reference Guide

an entry’s idle timeout counter is reset any time the entry is accessed through a get operation or a
netSearch . The idle timeout counter for a region is reset whenever the idle timeout is reset for one
of its entries.

Each of these may be applied to the region itself or entries in the region. Spring Data GemFire provides
<region-ttl > <region-tti> <entry-ttl>and<entry-tti>region child elements to specify
timeout values and expiration actions.

Local Region

Spring Data GemFire offers a dedicated | ocal - r egi on element for creating local regions. Local
regions, as the name implies, are standalone meaning they do not share data with any other distributed
system member. Other than that, all common region configuration options are supported. A minimal
declaration looks as follows (again, the example relies on the Spring Data GemFire namespace naming
conventions to wire the cache):

<gfe:local -regi on i d="myLocal Regi on" />

Here, a local region is created (if one doesn’t exist already). The name of the region is the same
as the bean id (myLocalRegion) and the bean assumes the existence of a GemFire cache named
genfireCache.

Replicated Region

One of the common region types is a replicated region or replica. In short, when a region is configured
to be a replicated region, every member that hosts that region stores a copy of the region’s entries
locally. Any update to a replicated region is distributed to all copies of the region. When a replica is
created, it goes through an initialization stage in which it discovers other replicas and automatically
copies all the entries. While one replica is initializing you can still continue to use the other rep

Spring Data GemFire offers ar epl i cat ed- r egi on element. A minimal declaration looks as follows.
All common configuration options are available for replicated regions.

<gfe:replicated-region id="sinpl eReplica" />

Partitioned Region

Another region type supported out of the box by the Spring Data GemFire namespace is the partitioned
region. To quote the GemFire docs:

"A partitioned region is a region where data is divided between peer servers hosting the region so that
each peer stores a subset of the data. When using a partitioned region, applications are presented with
a logical view of the region that looks like a single map containing all of the data in the region. Reads
or writes to this map are transparently routed to the peer that hosts the entry that is the target of the
operation. [...] GemFire divides the domain of hashcodes into buckets. Each bucket is assigned to a
specific peer, but may be relocated at any time to another peer in order to improve the utilization of
resources across the cluster.”

A partition is created using the parti t i oned- r egi on element. Its configuration options are similar to
that of the r epl i cat ed- r egi on plus the partion specific features such as the number of redundant
copies, total maximum memory, number of buckets, partition resolver and so on. Below is a quick
example on setting up a partition region with 2 redundant copies:

please define title in your docbook file! 27

Spring Data GemFire Reference Guide

<l-- bean definition nanmed 'distributed-partition’
and a nested resol ver declaration -->

<gfe:partition-resol ver>
<bean cl ass="sone. pkg. Si npl ePartitionResol ver"/>
</gfe:partition-resol ver>

</ gf e:partitioned-regi on>

partitioned-regi on Options

backed by a region naned 'redundant’ with 2 copies

total - bucket s="4" nane="redundant ">

The following table offers a quick overview of configuration options specific to partitioned regions. These
are in addition to the common region configuration options described above.

Table 4.3. partitioned-region options

Name Values Description

partition-resolver bean name The name of the partitioned resolver
used by this region, for custom
partitioning.

partition-listener bean name The name of the partitioned listener
used by this region, for handling
partition events.

copies 0.4 The number of copies for each

colocated-with

local-max-
memory

total-max-memory

valid region name

positive integer

any integer value

partition for high-availability. By
default, no copies are created
meaning there is no redundancy. Each
copy provides extra backup at the
expense of extra storage.

The name of the partitioned region
with which this newly created
partitioned region is colocated.

The maximum amount of memory, in
megabytes, to be used by the region in
this process.

The maximum amount of memory, in
megabytes, to be used by the region in
all processes.

recovery-delay

startup-recovery-
delay

any long value

any long value

The delay in milliseconds that existing
members will wait before satisfying
redundancy after another member
crashes. -1 (the default) indicates that
redundancy will not be recovered after
a failure.

The delay in milliseconds that new
members will wait before satisfying
redundancy. -1 indicates that

adding new members will not trigger
redundancy recovery. The default is to

please define title in your docbook file! 28

Spring Data GemFire Reference Guide

Name Values Description

recover redundancy immediately when
a new member is added.

Client Region

GemFire supports various deployment topologies for managing and distributing data. The topic is
outside the scope of this documentation however to quickly recap, they can be classified in short in:
peer-to-peer (p2p), client-server, and wide area cache network (or WAN). In the last two scenarios,
it is common to declare client regions which connect to a cache server. Spring Data GemFire offers
dedicated support for such configuration through the section called “Configuring a GemkFire Client
Cache”, cl i ent -regi on and pool elements. As the names imply, the former defines a client region
while the latter defines connection pools to be used/shared by the various client regions.

Below is a typical client region configuration:

<l-- client region using the default client-cache pool -->
<gfe:client-region id="sinple">

<gf e: cache-listener ref="c-listener"/>
</gfe:client-regi on>

<l-- region using its own dedi cated pool -->
<gfe:client-region id="conpl ex" pool - name="genfire-pool ">

<gf e: cache-listener ref="c-listener"/>
</gfe:client-regi on>

<bean id="c-listener" class="sone. pkg. Si npl eCacheli stener"/>

<l-- pool declaration -->

<gf e: pool id="genfire-pool" subscription-enabl ed="true">
<gfe:l ocator host="someHost" port="40403"/>

</ gf e: pool >

As with the other region types, cl i ent - r egi on supports CachelLi st ener” " s as well as a single
CachelLoader or CacheWi t er. It also requires a connection pool for connecting to a server. Each
client can have its own pool or they can share the same one.

Note

In the above example, the pool is configured with a | ocat or . The locator is a separate process
used to discover cache servers in the distributed system and are recommended for production
systems. It is also possible to configure the pool to connect directly to one or more cache servers
using the ser ver element.

For a full list of options to set on the client and especially on the pool, please refer to the Spring Data
GemFire schema (Section 6.1, “Spring Data GemFire Schema”) and the GemFire documentation.

Client Interests

To minimize network traffic, each client can define its own 'interest’, pointing out to GemFire, the data
it actually needs. In Spring Data GemFire, interests can be defined for each client, both key-based and
regular-expression-based types being supported; for example:

please define title in your docbook file! 29

Spring Data GemFire Reference Guide

<gfe:client-region id="conpl ex" pool - name="genfire-pool ">
<gf e: key-interest durable="true" result-policy="KEYS'>
<bean id="key" class="java.lang. String">
<constructor-arg val ue="someKey" />
</ bean>
</ gf e: key-interest>
<gfe:regex-interest pattern=".*" receive-val ues="fal se"/>
</gfe:client-regi on>

A special key ALL_KEYS means interest is registered for all keys (identical to a regex interest of . *).
The r ecei ve- val ues attribute indicates whether or not the values are received for create and update
events. If true, values are received; if false, only invalidation events are received - refer to the GemFire
documentation for more details.

JSON Support

Gemfire 7.0 introduced support for caching JSON documents with OQL query support. These are
stored internally as PdxInstance types using the JSONFormatter to perform conversion to and from
JSON strings. Spring Data GemFire provides a <gf e- dat a: j son-r egi on- aut opr oxy/ > tag to
enable a AOP with Spring component to advise appropriate region operations, effectively encapsulating
the JSONFormatter, allowing your application to work directly with JSON strings. In addition, Java
objects written to JSON configured regions will be automatically converted to JSON using the Jackson
ObjectMapper. Reading these values will return a JSON string.

By default, <gf e- dat a: j son- r egi on- aut opr oxy/ > will perform the conversion on all regions. To
apply this feature to selected regions, provide a comma delimited list of their ids viathe r egi on-ref s
attribute. Other attributes include a pretty- print flag (false by default) and convert - r et ur ned-
col I ecti ons. By default the results of region operations getAll() and values() will be converted
for configured regions. This is done by creating a parallel structure in local memory. This can incur
significant overhead for large collections. Set this flag to false to disable automatic conversion for
these operation. NOTE: Certain region operations, specifically those that use GemFire’s proprietary
Region.Entry such as entries(boolean), entrySet(boolean) and getEntry() type are not targeted for AOP
advice. In addition, the entrySet() method which returns a Set<java.util.Map.Entry<?,?>> is not affected.

<gf e-dat a: j son-regi on-aut oproxy pretty-print="true" regi on-refs="nmyJsonRegi on" convert-returned-
col l ections="true"/>

This feature also works with seamlessly with GemfireTemplate operations, provided that the template
is declared as a Spring bean. Currently native QueryService operations are not supported.

Creating an Index

GemFire allows creation on indexes (or indices) to improve the performance of (common) queries.
Spring Data GemFire allows indecies to be declared through the i ndex element:

<gfe:index id="nylndex" expression="sonmeField" from="/sonmeRegi on" />

Before creating an index, Spring Data GemFire will verify whether one with the same name already
exists. If it does, it will compare the properties and if they don’t match, will remove the old one to create
a new one. If the properties match, Spring Data GemFire will simply return the index (in case it does not
exist it will simply create one). To prevent the update of the index, even if the properties do not match,
set the property overri de to false.

Note that index declaration are not bound to a region but rather are top-level elements (just like
gf e: cache). This allows one to declare any number of indecies on any region whether they are just

please define title in your docbook file! 30

http://gemfire.docs.pivotal.io/latest/javadocs/japi/com/gemstone/gemfire/pdx/PdxInstance.html
http://gemfire.docs.pivotal.io/latest/javadocs/japi/com/gemstone/gemfire/pdx/JSONFormatter.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#aop-introduction

Spring Data GemFire Reference Guide

created or already exist - an improvement versus the GemFire cache. xmi . By default the index relies
on the default cache declaration but one can customize it accordingly or use a pool (if need be) - see
the namespace schema for the full set of options.

Configuring a Disk Store

As of Release 1.2.0, Spring Data GemFire supports disk store configuration via a top level di sk- st ore
element.

Note

Prior to Release 1.2.0, di sk- st ore was a child element of *-r egi on. If you have regions
configured with disk storage using a prior release of Spring Data GemFire and want to upgrade to
the latest release, move the disk-store element to the top level, assign an id and use the region’s
di sk-store-ref attribute. Also, di sk- synchr onous is now a region level attribute.

<gfe:di sk-store id="di skStorel" queue-size="50" auto-conpact="true"
max- opl og- si ze="10" time-interval ="9999">
<gfe:disk-dir location="/genfire/storel/" max-size="20"/>
<gfe:disk-dir location="/genfire/store2/" max-size="20"/>
</ gf e: di sk-store>

Disk stores are used by regions for file system persistent backup or overflow storage of evicted entries,
and persistent backup of WAN gateways. Note that multiple components may share the same disk
store. Also multiple directories may be defined for a single disk store. Please refer to the GemFire
documentation for an explanation of the configuration options.

Configuring GemFire’s Function Service

As of Release 1.3.0, Spring Data GemFire provides annotation support for implementing and
registering functions. Spring Data GemFire also provides hamespace support for registering GemFire
Functions for remote function execution. Please refer to the GemFire documentation for more
information on the function execution framework. Functions are declared as Spring beans and
must implement the com genst one. genfire. cache. execut e. Functi on interface or extend
com genst one. genfire. cache. execut e. Functi onAdapt er. The namespace uses a familiar
pattern to declare functions:

<gf e: functi on-service>
<gf e: functi on>
<bean cl ass="com conpany. exanpl e. Functi onl1"/ >
<ref bean="function2"/>
</ gfe: functi on>
</ gf e: functi on-servi ce>

<bean id="function2" class="com conpany. exanpl e. Functi on2"/>

Configuring WAN Gateways

WAN gateways provide a way to synchronize GemkFire distributed systems across geographic
distributed areas. As of Release 1.2.0, Spring Data GemkFire provides namespace support for
configuring WAN gateways as illustrated in the following examples:

WAN Configuration in GemFire 7.0

GemFire 7.0 introduces new APIs for WAN configuration. While the original APIs provided in GemFire
6 are still supported, it is recommended that you use the new APIs if you are using GemFire 7.0.

please define title in your docbook file! 31

http://gemfire.docs.pivotal.io/latest/javadocs/japi/com/gemstone/gemfire/cache/execute/Function.html

Spring Data GemFire Reference Guide

The Spring Data GemFire namespace supports either. In the example below, Gat ewaySender " s
are configured for a partitioned region by adding child elenents to the
regi on (gateway-sender and gat eway-sender-ref). The Gat ewaySender may register
EventFilter s and " TransportFilters. Also shown below is an example configuration of an
AsyncEvent Queue which must also be wired into a region (not shown).

<gfe:partitioned-region id="regi on-inner-gateway-sender" >
<gf e: gat eway- sender
renot e-di stri but ed-systemid="1">
<gfe:event-filter>
<bean cl ass="org. springfranework. dat a. genfire. exanpl e. SoneEventFilter"/>
</gfe:event-filter>
<gfe:transport-filter>
<bean cl ass="org. springframework. dat a. genfire. exanpl e. SomeTransportFilter"/>
</gfe:transport-filter>
</ gf e: gat eway- sender >
<gf e: gat eway- sender -ref bean="gat eway- sender"/>
</ gf e:partitioned-regi on>

<gf e: async- event - queue i d="async-event - queue" batch-si ze="10" persistent="true" di sk-store-
ref ="di skst ore"
maxi mum queue- nenor y="50" >
<gf e: async-event -1 i st ener >
<bean cl ass="org. spri ngfranmewor k. dat a. genfire. exanpl e. SoneAsyncEvent Li st ener"/ >
</ gf e: async-event-1i st ener>
</ gf e: async- event - queue>

<gf e: gateway- sender id="gateway-sender" renpte-distributed-systemid="2">
<gfe:event-filter>
<ref bean="event-filter"/>
<bean cl ass="org. springfranmewor k. dat a. genfire. exanpl e. SoneEventFilter"/>
</gfe:event-filter>
<gfe:transport-filter>
<ref bean="transport-filter"/>
<bean cl ass="org. spri ngfranmewor k. dat a. genfire. exanpl e. SoneTransportFilter"/>
</gfe:transport-filter>
</ gf e: gat eway- sender >

<bean id="event-filter" class="org.springfranework.data.genfire.exanple. AnotherEventFilter"/>
<bean id="transport-filter" class="org.springframework. data. genfire. exanpl e. Anot her TransportFilter"/>

On the other end of a Gat ewaySender is a corresponding Gat ewayRecei ver to receive gateway
events. The Gat ewayRecei ver may also be configured with "EventFilter’s and “TransportFilter’s.

<gf e: gat enay-r ecei ver id="gateway-receiver"
start-port="12345" end-port="23456" bi nd-address="192.168.0.1">
<gfe:transport-filter>
<bean cl ass="org. spri ngfranewor k. dat a. genfire. exanpl e. SoneTransportFilter"/>
</gfe:transport-filter>
</ gf e: gat eway-r ecei ver >

Please refer to the GemFire product document for a detailed explanation of all the configuration options.

please define title in your docbook file! 32

Spring Data GemFire Reference Guide

WAN Configuration in GemFire 6.6
<gf e: cache/ >
<gfe:replicated-region id="regi on-w th-gateway" enabl e-gateway="true" hub-id="gateway- hub"/>

<gf e: gat eway- hub i d="gat eway- hub" manual -start="true">
<gf e: gat enay gat eway-i d="gat enay" >

<gf e: gat eway- | i st ener >
<bean cl ass="com conpany. exanpl e. M\yGat ewayLi st ener"/ >

</ gf e: gat eway- | i st ener >

<gf e: gat eway- queue maxi mum queue- menory="5" bat ch-si ze="3"

bat ch-time-interval ="10" />
</ gf e: gat eway>

<gf e: gat eway gateway-i d="gat eway2">
<gf e: gat eway- endpoi nt port="1234" host="host 1" endpoi nt-i d="endpoint1"/>
<gf e: gat eway- endpoi nt port="2345" host="host2" endpoi nt-id="endpoi nt2"/>
</ gf e: gat enay>
</ gf e: gat eway- hub>

A region may synchronize all or part of its contents to a gateway hub used to access one or more remote
systems. The region must set enabl e- gat eway to t r ue and specify the hub-i d.

Note

If just a hub-id is specified, Spring Data GemFire automatically assumes that the gateway should
be enabled.

Please refer to the GemFire product document for a detailed explanation of all the configuration options.

4.3 Working with the GemFire APIs

Once the GemFire Cache and Regions have been configured they can be injected and used inside
application objects. This chapter describes the integration with Spring’s Transaction Management
functionality and DaoExcept i on hierarchy. It also covers support for dependency injection of GemFire
managed objects.

Exception Translation

Using a new data access technology requires not only accommodating a new API but also
handling exceptions specific to that technology. To accommodate this case, Spring Framework
provides a technology agnostic, consistent exception hierarchy that abstracts the application from
proprietary (and usually checked) exceptions to a set of focused runtime exceptions. As mentioned
in the Spring Framework documentation, exception translation can be applied transparently to
your data access objects through the use of the @Reposi t ory annotation and AOP by defining
a Persi st enceExcepti onTransl ati onPost Processor bean. The same exception translation
functionality is enabled when using GemFire as long as at least a CacheFact or yBean is declared,
e.g. using a <gf e: cache/ > declaration, as it acts as an exception translator which is automatically
detected by the Spring infrastructure and used accordingly.

GemfireTemplate

As with many other high-level abstractions provided by the Spring projects, Spring Data GemFire
provides a template that simplifies GemFire data access. The class provides several one-line methods,
for common region operations but also the ability to execute code against the native GemFire API
without having to deal with GemFire checked exceptions for example through the Genf i r eCal | back.

please define title in your docbook file! 33

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#dao-exceptions
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#orm-exception-translation

Spring Data GemFire Reference Guide

The template class requires a GemFire Regi on instance and once configured is thread-safe and should
be reused across multiple classes:

<bean id="genfireTenpl ate" class="org.springfranmework. data. genfire. GenfireTenplate" p:region-
ref ="soneRegi on"/ >

Once the template is configured, one can use it alongside Genf i r eCal | back to work directly with the
GemFire Regi on, without having to deal with checked exceptions, threading or resource management
concerns:

tenpl at e. execut e(new GenfireCal |l back<Iterabl e<String>>() {
public Iterabl e<String> dol nGenfire(Region reg) throws GenFireCheckedException, GenFireException {
/1 working agai nst a Region of String
Regi on<String, String> region = reg;

region.put("1", "one");
region.put("3", "three");

return region.query("length < 5");

}
1)

For accessing the full power of the GemFire query language, one can use the fi nd and f i ndUni que
which, as opposed to the query method, can execute queries across multiple regions, execute
projections, and the like. The fi nd method should be used when the query selects multiple items
(through’SelectResults™) and the latter, f i ndUni que, as the name suggests, when only one object is
returned.

Support for Spring Cache Abstraction

Since 1.1, Spring Data GemFire provides an implementation of the Spring 3.1 cache abstraction. To
use GemFire as a backing implementation, simply add Genf i r eCacheManager to your configuration:

<beans xm ns="http://wwm. springframework. or g/ schema/ beans"

xm ns: cache="http://ww. springfranmework. org/ schema/ cache"

xm ns: gf e="http://ww. springfranework. org/ scherma/ genfire"

xm ns: p="http://ww. springfranmewor k. or g/ schema/ p"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schena/ beans http://ww. spri ngfranmework. or g/ schena/
beans/ spri ng- beans. xsd

http://ww. springframework. org/ schema/ genfire http://ww.springfranmework. org/
schema/ genfire/ spring-genfire. xsd
ht t p: / / www. spri ngf ramewor k. or g/ schena/ cache http://www. springframework. or g/ schena/

cache/ spring- cache. xsd" >

<l-- turn on declarative caching -->
<cache: annot ati on-driven/ >

<gfe: cache id="genfire-cache"/>

<l-- declare GenFire Cache Manager -->

<bean id="cacheManager" cl ass="org. springfranmework. data. genfire.support. GenfireCacheManager" p:cache-
ref ="genfire-cache">
</ beans>

Transaction Management

One of the most popular features of Spring Framework is transaction management. If you are not familiar
with it, we strongly recommend reading about it as it offers a consistent programming model that works
transparently across multiple APIs and can be configured either programmatically or declaratively (the
most popular choice).

please define title in your docbook file! 34

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#cache
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#transaction
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#transaction-motivation

Spring Data GemFire Reference Guide

For GemFire, Spring Data GemFire provides a dedicated, per-cache, transaction manager that, once
declared, allows Region operations to be executed atomically through Spring:

<gf e:transacti on- manager id="tx-manager" cache-ref="cache"/>

Note

The example above can be simplified even more by eliminating the cache-ref attribute
if the GemFire Cache is defined under the default name’gemfireCache’. As with the other
Spring Data GemFire namespace elements, if the Cache bean name is not configured, the
aforementioned naming convention will used. Additionally, the transaction manager name
is’gemfireTransactionManager’ if not explicitly specified.

Currently, GemFire supports optimistic transactions with read committed isolation. Furthermore, to
guarantee this isolation, developers should avoid making in-place changes that manually modify
values present in the Cache. To prevent this from happening, the transaction manager configures the
Cache to use copy on read semantics, meaning a clone of the actual value is created, each time a
read is performed. This behavior can be disabled if needed through the copyOnRead property. For
more information on the semantics of the underlying GemFire transaction manager, see the GemFire
documentation.

GemFire Continuous Query Container

A powerful functionality offered by GemFire is continuous querying (or CQ). In short, CQ
allows one to create a query and automatically be notified when new data that gets added to
GemFire matches the query. Spring GemFire provides dedicated support for CQs through the
org.springframework. data. genfire.listener package and its listener container; very
similar in functionality and naming to the JMS integration in Spring Framework; in fact, users familiar with
the JMS support in Spring, should feel right at home. Basically Spring Data GemFire allows methods on
POJOs to become end-points for CQ - simply define the query and indicate the method that should be
notified when there is a match - Spring Data GemFire takes care of the rest. This is similar Java EE’s
message-driven bean style, but without any requirement for base class or interface implementations,
based on GemFire.

Note

Currently, continuous queries are supported by GemkFire only in client/server topologies.
Additionally the pool used is required to have the subscri pti on property enabled. Please refer
to the documentation for more information.

Continuous Query Listener Container

Spring Data GemFire simplifies the creation, registration, life-cycle and dispatch of CQs by taking care of
the infrastructure around them through Cont i nuousQuer yLi st ener Cont ai ner which does all the
heavy lifting on behalf of the user - users familiar with EJB and JMS should find the concepts familiar as
it is designed as close as possible to the support in Spring Framework and its message-driven POJOs
(MDPs)

Cont i nuousQuer yLi st ener Cont ai ner acts as an event (or message) listener container; it is used
to receive the events from the registered CQs and drive the POJOs that are injected into it. The listener
container is responsible for all threading of message reception and dispatches into the listener for

please define title in your docbook file! 35

http://gemfire.docs.pivotal.io/latest/javadocs/japi/com/gemstone/gemfire/cache/CacheTransactionManager.html
http://community.gemstone.com/display/gemfire/Continuous+Querying

Spring Data GemFire Reference Guide

processing. It acts as the intermediary between an EDP (Event Driven POJO) and the event provider
and takes care of creation and registration of CQs (to receive events), resource acquisition and release,
exception conversion and the like. This allows you as an application developer to write the (possibly
complex) business logic associated with receiving an event (and reacting to it), and delegates boilerplate
GemFire infrastructure concerns to the framework.

The container is fully customizable - one can chose either to use the CQ thread to perform the dispatch
(synchronous delivery) or a new thread (from an existing pool for examples) for an asynchronous
approach by defining the suitablej ava. uti | . concurrent. Execut or (or Spring’'s TaskExecut or).
Depending on the load, the number of listeners or the runtime environment, one should change or tweak
the executor to better serve her needs - in particular in managed environments (such as app servers),
it is highly recommended to pick a a proper TaskExecut or to take advantage of its runtime.

The Cont i nuousQuer yLi st ener Adapt er and Cont i nuousQuer yLi st ener

The Conti nuousQueryLi st ener Adapt er class is the final component in Spring Data GemFire
CQ support: in a nutshell, it allows you to expose almost any class as a EDP (there are of course
some constraints) - it implements Cont i nuousQuer yLi st ener, a simpler listener interface similar to
GempFire CgListener.

Consider the following interface definition. Notice the various event handling methods and their
parameters:

public interface EventDel egate {
voi d handl eEvent (CgEvent event);
voi d handl eEvent (Operati on base();
voi d handl eEvent (bj ect key);
voi d handl eEvent (Cbj ect key, Cbject newal ue);
voi d handl eEvent (Thr owabl e th);
voi d handl eQuery(CqQuery cq);
voi d handl eEvent (CgEvent event, Operation baseQp, byte[] deltaVal ue);
voi d handl eEvent (CgEvent event, Operation baseQp, Operation queryQp, Object key, Cbject newval ue);

public class Defaul t Event Del egate i npl enents Event Del egate {
/1 inplenmentation elided for clarity...

}

In particular, note how the above implementation of the Event Del egat e interface (the above
Def aul t Event Del egat e class) has no GemFire dependencies at all. It truly is a POJO that we will
make into an EDP via the following configuration (note that the class doesn’t have to implement an
interface, one is present only to better show case the decoupling between contract and implementation).

please define title in your docbook file! 36

http://gemfire.docs.pivotal.io/latest/javadocs/japi/com/gemstone/gemfire/cache/query/CqListener.html

Spring Data GemFire Reference Guide

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xm ns: gf e="http://ww. springfranework. org/ scherma/ genfire"

xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schena/ beans http://ww. spri ngframework. or g/
schema/ beans/ spri ng- beans. xsd

http://ww. spri ngfranework. org/ schema/ genfire http://ww. springfranework. org/schema/ genfire/

spring-genfire. xsd">

<gfe:client-cache pool -nane="client"/>

<gfe:pool id="client" subscription-enabl ed="true">
<gf e:server host="Iocal host" port="40404"/>
</ gf e: pool >

<gfe:cqg-Ilistener-container>
<l-- default handle nethod -->
<gfe:listener ref="listener" query="SELECT * from/region"/ >
<gfe:listener ref="another-listener" query="SELECT * from /another-regi on" nanme="ny-
query" net hod="handl eQuery"/>
</ gfe:cq-1istener-container>

<bean id="listener" class="genfireexanple. Def aul t MessageDel egate"/ >
<bean id="another-1listener" class="genfireexanple. Def aul t MessageDel egate"/>

<beans>

Note

The example above shows some of the various forms that a listener can have; at its minimum the
listener reference and the actual query definition are required. It's possible however to specify a
name for the resulting continuous query (useful for monitoring) but also the name of the method
(the default is handl eEvent). The specified method can have various argument types, the
Event Del egat e interface lists the allowed types.

The example above uses the Spring Data GemFire namespace to declare the event listener container
and automatically register the listeners. The full blown, beans definition is displayed below:

<l-- this is the Event Driven PQIO (MDP) -->
<bean id="eventListener" class="org.springfranmework. data.genfire.|istener.adapter.ContinuousQueryLi stenerAdapter">
<const ructor - ar g>
<bean cl ass="genfireexanpl e. Def aul t Event Del egate"/ >
</ constructor-arg>
</ bean>

<l-- and this is the event |istener container... -->
<bean id="genfireListenerContainer" class="org.springfranework.data.genfire.|istener.Conti nuousQueryLi stener Contai ner">
<property name="cache" ref="genfireCache"/>
<property name="queryLi steners">
<l-- set of listeners -->
<set >
<bean cl ass="org. springfranework. data.genfire.|istener.Conti nuousQueryDefinition" >
<constructor-arg val ue="SELECT * from/region" />
<constructor-arg ref="eventListener" />
</ bean>
</ set>
</ property>
</ bean>

Each time an event is received, the adapter automatically performs type translation between the
GemFire event and the required method argument(s) transparently. Any exception caused by the
method invocation is caught and handled by the container (by default, being logged).

please define title in your docbook file! 37

Spring Data GemFire Reference Guide

Wiring Decl ar abl e components

GemFire XML configuration (usually named cache. xnl allows user objects to be declared as part of
the configuration. Usually these objects are CacheLoader s or other pluggable call back
conponents supported by GenFire. Using native GenFire configuration, each
user type declared through XML nust inplenment the " Decl arabl e interface which
allows arbitrary parameters to be passed to the declared class through a Pr operti es instance.

In this section we describe how you can configure these pluggable components defined in cache. xni
using Spring while keeping your Cache/Region configuration defined in cache. xm This allows your
pluggable components to focus on the application logic and not the location or creation of DataSources
or other collaboration objects.

However, if you are starting a green field project, it is recommended that you configure Cache, Region,
and other pluggable components directly in Spring. This avoids inheriting from the Decl ar abl e
interface or the base class presented in this section. See the following sidebar for more information on
this approach.

Eliminate Decl ar abl e components

One can configure custom types entirely through Spring as mentioned in the section called
“Configuring a GemFire Region”. That way, one does not have to implement the Decl ar abl e
interface and also benefits from all the features of the Spring 10C container (not just dependency
injection but also life-cycle and instance management).

As an example of configuring a Decl ar abl e component using Spring, consider the following
declaration (taken from the Decl ar abl e javadoc):

<cache- | oader >
<cl ass- nane>com conpany. app. DBLoader </ c| ass- nane>
<par anet er name="URL">
<string>jdbc://12.34.56.78/ mydb</string>
</ par anet er >
</ cache-| oader >

To simplify the task of parsing, converting the parameters and initializing the object, Spring Data
GemFire offers a base class (W ri ngDecl ar abl eSupport) that allows GemFire user objects
to be wired through a template bean definition or, in case that is missing, perform autowiring
through the Spring container. To take advantage of this feature, the user objects need to extend
W ri ngDecl ar abl eSupport which automatically locates the declaring BeanFact or y and performs
wiring as part of the initialization process.

Why is a base class needed?

In the current GemFire release there is no concept of an object factory and the types declared
are instantiated and used as is. In other words, there is no easy way to manage object creation
outside GemFire.

Configuration using template definitions

When used, W ri ngDecl ar abl eSupport tries to first locate an existing bean definition and use
that as wiring template. Unless specified, the component class name will be used as an implicit bean
definition name. Let’'s see how our DBLoader declaration would look in that case:

please define title in your docbook file! 38

Spring Data GemFire Reference Guide

public class DBLoader extends WringDecl arabl eSupport inplenents CacheLoader {
private DataSource dataSource;

public void setDataSour ce(Dat aSource ds){
this.dataSource = ds;

}

public Object |oad(LoaderHel per helper) { ... }
}

<cache- | oader >
<cl ass- nanme>com conpany. app. DBLoader </ c| ass- nane>
<l-- no paraneter is passed (use the bean inplicit nanme
that is the class nane) -->

</ cache-| oader >

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: p="http://ww. spri ngframework. org/ schena/ p"
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schena/ beans
http://ww. spri ngfranmework. or g/ schema/ beans/ spri ng- beans. xsd" >

<bean id="dataSource" ... />
<!-- tenplate bean definition -->

<bean i d="com conpany. app. DBLoader" abstract="true" p: dataSource-ref="dataSource"/>
</ beans>

In the scenario above, as no parameter was specified, a bean with the id/name
com conpany. app. DBLoader was used as a template for wiring the instance created by GemFire.
For cases where the bean name uses a different convention, one can pass in the bean- nane parameter
in the GemFire configuration:

<cache- | oader >
<cl ass- nane>com conpany. app. DBLoader </ c| ass- nane>
<l-- pass the bean definition tenplate nane
as paraneter -->
<par anet er name="bean- name" >
<string>tenpl ate-bean</string>
</ par anet er >
</ cache-| oader >

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngframework. org/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schenma- i nst ance"
xm ns: p="http://wwm. springframework. or g/ schema/ p"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schena/ beans
htt p: // ww. spri ngf ramewor k. or g/ schema/ beans/ spri ng- beans. xsd" >

<bean id="dataSource" ... />

<l-- tenplate bean definition -->
<bean id="tenpl at e-bean" abstract="true" p:dataSource-ref="dataSource"/>

</ beans>

Note

The template bean definitions do not have to be declared in XML - any format is allowed (Groovy,
annotations, etc..).

please define title in your docbook file! 39

Spring Data GemFire Reference Guide

Configuration using auto-wiring and annotations

If no bean definition is found, by default, W ri ngDecl ar abl eSupport will autowire the declaring
instance. This means that unless any dependency injection metadata is offered by the instance, the
container will find the object setters and try to automatically satisfy these dependencies. However, one
can also use JDK 5 annotations to provide additional information to the auto-wiring process. We strongly
recommend reading the dedicated chapter in the Spring documentation for more information on the
supported annotations and enabling factors.

For example, the hypothetical DBLoader declaration above can be injected with a Spring-configured
Dat aSour ce in the following way:

public class DBLoader extends WringDecl arabl eSupport inpl enents CacheLoader {
// use annotations to 'nark' the needed dependencies
@ avax. i nject.|nject
private Dat aSource dataSource;

public Object |oad(LoaderHel per helper) { ... }

<cache- | oader >
<cl ass- name>com conpany. app. DBLoader </ c| ass- nane>
<l-- no need to declare any paraneters anynore
since the class is auto-wired -->
</ cache-| oader >

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schera- i nst ance"
xm ns: cont ext ="http://ww. spri ngframewor k. or g/ schena/ cont ext "
xsi : schemalLocation="http://ww. spri ngfranmework. or g/ schema/ beans
http://ww. springfranmewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ cont ext
http://ww. spri ngframewor k. or g/ schema/ cont ext / spri ng- cont ext . xsd" >

<l -- enabl e annotation processing -->
<cont ext: annot ati on-confi g/ >

</ beans>

By using the JSR-330 annotations, the cache loader code has been simplified since the location and
creation of the DataSource has been externalized and the user code is concerned only with the loading
process. The Dat aSour ce might be transactional, created lazily, shared between multiple objects or
retrieved from JNDI - these aspects can be easily configured and changed through the Spring container
without touching the DBLoader code.

4.4 Working with GemFire Serialization

To improve overall performance of the data grid, GemFire supports a dedicated serialization protocol
(PDX) that is both faster and offers more compact results over the standard Java serialization and works
transparently across various language platforms (such as Java, .NET and C++). This chapter discusses
the various ways in which Spring Data GemFire simplifies and improves GemFire custom serialization
in Java.

Wiring deserialized instances

It is fairly common for serialized objects to have transient data. Transient data is often dependent on
the node or environment where it lives at a certain point in time, for example a DataSource. Serializing

please define title in your docbook file! 40

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#beans-factory-autowire
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#beans-annotation-config
http://community.gemstone.com/display/gemfire/Interoperability
http://community.gemstone.com/display/gemfire/Serialization+in+Java
http://community.gemstone.com/display/gemfire/Serialization+in+.NET

Spring Data GemFire Reference Guide

such information is useless (and potentially even dangerous) since it is local to a certain VM/machine.
For such cases, Spring Data GemFire offers a special | nst ant i at or that performs wiring for each
new instance created by GemFire during deserialization.

Through such a mechanism, one can rely on the Spring container to inject (and manage) certain
dependencies making it easy to split transient from persistent data and have rich domain objects
in a transparent manner (Spring users might find this approach similar to that of @onf i gur abl e).
The Wri ngl nst anti at or works just like W ri ngDecl ar abl eSupport, trying to first locate a bean
definition as a wiring template and following to autowiring otherwise. Please refer to the previous section
(the section called “Wiring Decl ar abl e components”) for more details on wiring functionality.

To use this | nst ant i at or, simply declare it as a usual bean:

<bean id="instantiator" class="org.springfranework.data.genfire.serialization. Wringlnstantiator">
<!-- DataSerializable type -->
<constructor-arg>org. pkg. SoneDat aSeri al i zabl ed ass</ constructor-arg>
<l-- type id -->
<constructor - ar g>95</ const ruct or - ar g>
</ bean>

During the container startup, once it is being initialized, the i nst anti at or will, by default, register
itself with the GemFire system and perform wiring on all instances of SomeDat aSeri al i zabl ed ass
created by GemFire during deserialization.

Auto-generating custom ‘Instantiator's

For data intensive applications, a large number of instances might be created on each machine as data
flows in. Out of the box, GemFire uses reflection to create new types but for some scenarios, this might
prove to be expensive. As always, it is good to perform profiling to quantify whether this is the case or
not. For such cases, Spring Data GemFire allows the automatic generation of | nst at i at or classes
which instantiate a new type (using the default constructor) without the use of reflection:

<bean id="instantiator-
factory" class="org.springfranework. data.genfire.serialization.|nstantiatorFactoryBean">
<property name="custonilypes" >
<I’THp>
<entry key="org. pkg. Cust onifypeA" val ue="1025"/>
<entry key="org. pkg. Cust onTypeB" val ue="1026"/ >
</ map>
</ property>
</ bean>

The definition above, automatically generated two | nst antiator s for two cl asses, nanely
" Cust omTypeA and Cust onilypeB and registers them with GemFire, under user id 1025 and 1026.
The two instantiators avoid the use of reflection and create the instances directly through Java code.

4.5 POJO mapping
Entity Mapping

Spring Data GemFire provides support to map entities that will be stored in a GemFire data grid. The
mapping metadata is defined using annotations at the domain classes just like this:

please define title in your docbook file! 41

http://gemfire.docs.pivotal.io/latest/javadocs/japi/com/gemstone/gemfire/Instantiator.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#aop-atconfigurable

Spring Data GemFire Reference Guide

@Regi on(" Peopl e")
public class Person {

@d Long id;
String firstnane;
String | astnane;

@er si st enceConst ruct or

public Person(String firstnane, String |astnane) {
/...

}

}
Example 4.1 Mapping a domain class to a GemFire Region

The first thing you see here is the @Regi on annotation that can be used to customize the Region in which
the Per son class is stored in. The @ d annotation can be used to annotate the property that shall be
used as the Cache key. The @er si st enceConst r uct or annotation actually helps disambiguating
multiple potentially available constructors taking parameters and explicitly marking the one annotated as
the one to be used to create entities. With none or only a single constructor you can omit the annotation.

In addition to storing entities in top-level Regions, entities can be stored in GemFire Sub-Regions, as so:

@Regi on("/ User s/ Adm n")
public class Adm n extends User {

}

@Regi on("/ Users/ Guest™)
public class Guest extends User {

}

Be sure to use the full-path of the GemFire Region, as defined in Spring Data GemFire XML namespace
configuration meta-data, as specified in the i d or nane attributes of the <*-r egi on> bean definition.

As alternative to specifying the Region in which the entity will be stored using the @Regi on annotation on
the entity class, you can also specify the @Regi on annotation on the entity’s Reposi t or y abstraction.
See Section 4.6, “GemFire Repositories” for more details.

However, let's say you want to store a Person in multiple GemFire Regions (e.g. Peopl e and
Cust omrer s), then you can define your corresponding Reposi t or y interface abstractions like so:

@Regi on(" Peopl e")
public interface PersonRepository extends GenfireRepository<Person, String> {

}

@Regi on(" Cust oners")
public interface CustonerRepository extends GenfireRepository<Person, String> {

}

Mapping PDX Serializer

Spring Data GemFire provides a custom PDXSeri al i zer implementation that uses the mapping
information to customize entity serialization. Beyond that it allows customizing the entity instantiation
by using the Spring Data Entityl nstanti ator abstraction. By default the serializer uses a
Ref | ecti onEntityl nstanti ator that will use the persistence constructor of the mapped entity

please define title in your docbook file! 42

Spring Data GemFire Reference Guide

(either the single declared one or explicitly annoted with @er si st enceConst r uct or). To provide
values for constructor parameters it will read fields with name of the constructor parameters from the
PDXReader supplied.

public class Person {

public Person(@al ue("#root.foo") String firstnane, @alue("bean") String |astnane) {
/...
}

}
Example 4.2 Using @Value on entity constructor parameters

The entity annotated as such will get the field f oo read from the PDXReader and handed as constructor
parameter value for f i r st nane. The value for | ast name will be the Spring bean with name bean.

4.6 GemFire Repositories

Introduction

Spring Data GemFire provides support to use the Spring Data repository abstraction to easily persist
entities into GemFire and execute queries. A general introduction into the repository programming model
is been provided here.

Spring configuration

To bootstrap Spring Data repositories you use the <reposi tori es /> element from the GemFire
namespace:

<beans xm ns="http://wwm. spri ngframework. org/ schena/ beans"
xm ns: gf e-dat a="htt p: // www. spri ngf ramewor k. or g/ schena/ dat a/ genfire"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schena/ beans
http://ww. springframewor k. or g/ schema/ beans/ spri ng- beans. xsd
http: //ww. spri ngf ramewor k. or g/ schema/ dat a/ genfire
http://ww. springfranmewor k. or g/ schema/ dat a/ genfire/ spring-data-genfire. xsd>

<gf e-dat a: reposi tori es base- package="com acne. repository" />

</ beans>

Example 4.3 Bootstrap GemFire repositories

This configuration snippet will look for interfaces below the configured base package and create
repository instances for those interfaces backed by a Si npl eGenti r eReposi t ory. Note that you
have to have your domain classes correctly mapped to configured regions as the bottstrap process will
fail otherwise.

Executing OQL queries

The GemFire repositories allow the definition of query methods to easily execute OQL queries against
the Region the managed entity is mapped to.

@Regi on(" nyRegi on")
public class Person { ...}

please define title in your docbook file! 43

http://docs.spring.io/spring-data/data-commons/docs/current/reference/html/#repositories

Spring Data GemFire Reference Guide

}

Example 4.4 Sample repository

public interface PersonRepository extends CrudRepository<Person,
Person findByEnmai | Address(String enuail Address);
Col | ecti on<Per son> findByFirstnane(String firstnane);

@uery("SELECT * FROM / Person p WHERE p. firstnane = $1")
Col | ecti on<Per son> findByFirstnameAnnotated(String firstnane);

@uery("SELECT * FROM / Person p WHERE p.firstnane IN SET $1")
Col | ecti on<Per son> findByFirstnamesAnnot at ed(Col | ecti on<String> firstnanes);

Long> {

The first method listed here will cause the following query to be derived: SELECT x FROM / nyRegi on
x WHERE x. emai | Address = $1. The second method works the same way except it's returning all
entities found whereas the first one expects a single result value. In case the supported keywords are
not sufficient to declare your query or the method name gets to verbose you can annotate the query
methods with @er y as seen for methods 3 and 4.

Table 4.4. Supported keywords for query methods

Keyword Sample Logical result
Great er Than fi ndByAgeG eat er Than(i nt X.age > $1
age)
G eat er ThanEquaf i ndByAgeG eat er ThanEqual (i nt x.age >= $1
age)
LessThan fi ndByAgeLessThan(i nt age) X.age < $1
LessThanEqual fi ndByAgelLessThanEqual (i nt X.age # $1
age)
I sNot Nul |, fi ndByFi r st naneNot Nul | () x.firstname =!' NULL
Not Nul |
[sNul I, Null findByFirstnanmeNull () x.firstnane = NULL
In fi ndByFi rstnanel n(Col | ecti on<Skr fhgst name | N SET $1
X)
Not I n findByFirstnaneNot | n(Col | ecti or<St rshgane NOT IN SET $1
X)
(No keyword) findByFirstname(String name) x.firstnane = $1
Li ke findByFirstnaneLi ke(String x.firstnane LIKE $1
nane)
Not findByFirstnameNot (String x.firstname = $1
nane)
| sTrue, True findByActivel sTrue() X.active = true
| sFal se, Fal se findByActivel sFal se() x.active = fal se
please define title in your docbook file! 44

Spring Data GemFire Reference Guide

4.7 Annotation Support for Function Execution

Introduction

Spring Data GemFire 1.3.0 introduces annotation support to simplify working with GemFire function
execution. The GemFire API provides classes to implement and register Functions deployed to cache
servers that may be invoked remotely by member applications, typically cache clients. Functions may
execute in parallel, distributed among multiple servers, combining results in a map-reduce pattern, or
may be targeted to a single server. A Function execution may be also be targeted to a specific region.

GemFire’s also provides APIls to support remote execution of functions targeted to various defined
scopes (region, member groups, servers, etc.) and the ability to aggregate results. The API also
provides certain runtime options. The implementation and execution of remote functions, as with any
RPC protocol, requires some boilerplate code. Spring Data GemFire, true to Spring's core value
proposition, aims to hide the mechanics of remote function execution and allow developers to focus on
POJO programming and business logic. To this end, Spring Data GemFire introduces annotations to
declaratively register public methods as functions, and the ability to invoke registered functions remotely
via annotated interfaces.

Implementation vs Execution

There are two separate concerns to address. First is the function implementation (server) which
must interact with the FunctionContext to obtain the invocation arguments, the ResultsSender and
other execution context information. The function implementation typically accesses the Cache and or
Region and is typically registered with the FunctionService under a unique Id. The application invoking
a function (the client) does not depend on the implementation. To invoke a function remotely, the
application instantiates an Execution providing the function ID, invocation arguments, the function target
or scope (region, server, servers, member, members). If the function produces a result, the invoker
uses a ResultCollector to aggregate and acquire the execution results. In certain scenarios, a custom
ResultCollector implementation is required and may be registered with the Execution.

Note

‘Client’ and 'Server' are used here in the context of function execution which may have a different
meaning then client and server in a client-server cache topology. While itis common for a member
with a Client Cache to invoke a function on one or more Cache Server members it is also possible
to execute functions in a peer-to-peer configuration

Implementing a Function

Using GemFire APIs, the FunctionContext provides a runtime invocation context including the client's
calling arguments and a ResultSender interface to send results back to the client. Additionally, if the
function is executed on a Region, the FunctionContext is an instance of RegionFunctionContext which
provides additional context such as the target Region and any Filter (set of specific keys) associated
with the Execution. If the Region is a Partition Region, the function should use the PartitionRegionHelper
to extract only the local data.

Using Spring, one can write a simple POJO and enable the Spring container bind one or more of it's
public methods to a Function. The signature for a POJO method intended to be used as a function must
generally conform to the the client’s execution arguments. However, in the case of a region execution,
the region data must also be provided (presumably the data held in the local partition if the region is a

please define title in your docbook file! 45

http://gemfire.docs.pivotal.io/latest/userguide/index.html#developing/function_exec/chapter_overview.html
http://gemfire.docs.pivotal.io/latest/userguide/index.html#developing/function_exec/chapter_overview.html
http://gemfire.docs.pivotal.io/latest/javadocs/japi/com/gemstone/gemfire/cache/execute/Function.html
http://gemfire.docs.pivotal.io/latest/javadocs/japi/com/gemstone/gemfire/cache/execute/FunctionContext.html
http://gemfire.docs.pivotal.io/latest/javadocs/japi/com/gemstone/gemfire/cache/execute/ResultSender.html
http://gemfire.docs.pivotal.io/latest/javadocs/japi/com/gemstone/gemfire/cache/execute/FunctionService.html
http://gemfire.docs.pivotal.io/latest/javadocs/japi/com/gemstone/gemfire/cache/execute/Execution.html
http://gemfire.docs.pivotal.io/latest/javadocs/japi/com/gemstone/gemfire/cache/execute/ResultCollector.html

Spring Data GemFire Reference Guide

partition region). Additionally the function may require the filter that was applied, if any. This suggests
that the client and server may share a contract for the calling arguments but that the method signature
may include additional parameters to pass values provided by the FunctionContext. One possibility is
that the client and server share a common interface, but this is not required. The only constraint is that
the method signature includes the same sequence of calling arguments with which the function was
invoked after the additional parameters are resolved. For example, suppose the client provides a String
and int as the calling arguments. These are provided by the FunctionContext as an array:

ohject[] args = new Object[]{"hello", 123}

Then the Spring container should be able to bind to any method signature similar to the following. Let’s
ignore the return type for the moment:

public Qbject methodl(String s1, int i2) {...}

public Cbject nethod2(Map<?,?> data, String s1, int i2) {...}

public Object nethod3(String s1, Map<?,?>data, int i2) {...}

public Object nethod4(String s1l, Map<?,?> data, Set<?> filter, int i2) {...}
public void nethod4(String sl, Set<?> filter, int i2, Region<?, ?> data) {...}
public void nethod5(String s1, ResultSender rs, int i2);

public void nethod6(Functi onContest fc);

The general rule is that once any additional arguments, i.e., region data and filter, are resolved the
remaining arguments must correspond exactly, in order and type, to the expected calling parameters.
The method’s return type must be void or a type that may be serialized (either java.io.Serializable,
DataSerializable, or PDX serializable). The latter is also a requirement for the calling arguments. The
Region data should normally be defined as a Map, to facilitate unit testing, but may also be of type
Region if necessary. As shown in the example above, it is also valid to pass the FunctionContext itself,
or the ResultSender, if you need to control how the results are returned to the client.

Annotations for Function Implementation

The following example illustrates how annotations are used to expose a POJO as a GemFire function:

@onponent
public class MyFunctions {
@zenfireFunction
public String functionl(String sl, @RegionData Map<?,?> data, int i2) { ... }

@zenfireFunction("nmyFunction", HA=true, optim zedForWite=true, batchSi ze=100)
public List<String> function2(String sl, @Regi onData Map<?,?> data, int i2, @ilter Set<?> keys)
{...1

@zenf i reFuncti on(hasResul t =t r ue)
public void functi onWthContext (FunctionContext functionContext) { ... }

Note that the class itself must be registered as a Spring bean. Here the @onponent annotation is
used, but you may register the bean by any method provided by Spring (e.g. XML configuration or Java
configuration class). This allows the Spring container to create an instance of this class and wrap it
in a PojoFunctionWrapper(PFW). Spring creates one PFW instance for each method annotated with
@z=nfireFuncti on. Each will all share the same target object instance to invoke the corresponding
method.

Note

The fact that the function class is a Spring bean may offer other benefits since it shares the
application context with GemFire components such as a Cache and Regions. These may be
injected into the class if necessary.

please define title in your docbook file! 46

https://github.com/spring-projects/spring-data-gemfire/blob/master/src/main/java/org/springframework/data/gemfire/function/PojoFunctionWrapper.java

Spring Data GemFire Reference Guide

Spring creates the wrapper class, and registers the function with GemFire’s Function Service. The
function id used to register the functions must be unique. By convention it defaults to the simple
(unqualified) method name. Note that this annotation also provides configuration attributes, HA and
opti m zedFor Wi t e which correspond to properties defined by GemFire’s Function interface. If the
method’s return type is void, then the hasResul t property is automatically set to f al se; otherwise
itistrue.

For voi d return types, the annotation provides a hasResul t attribute that can be set to true to override
this convention, as shown in the f unct i onW t hCont ext method above. Presumably, the intention is
to use the ResultSender directly to send results to the caller.

The PFW implements GemFire’s Function interface, binds the method parameters, and invokes the
target method in its execut e() method. It also sends the method’s return value using the ResultSender.

Batching Results

If the return type is a Collection or Array, then some consideration must be given to how the results are
returned. By default, the PFW returns the entire collection at once. If the number of items is large, this
may incur a performance penalty. To divide the payload into small sections (sometimes called chunking),
you can set the bat chSi ze attribute, as illustrated in f uncti on2, above. NOTE: If you need more
control of the ResultSender, especially if the method itself would use too much memory to create the
collection, you can pass the ResultSender, or access it via the FunctionContext, to use it directly within
the method.

Enabling Annotation Processing

In accordance with Spring standards, you must explicitly activate annotation processing for
@GemfireFunction using XML:

<gf e: annot ati on-dri ven/ >

or by annotating a Java configuration class:

‘ @nabl eGenfireFuncti ons

Executing a Function

A process invoking a remote function needs to provide calling arguments, a function id, the execution
target (onRegion, onServers, onServer, onMember, onMembers) and optionally a Filter set. All you
need to do is define an interface supported by annotations. Spring will create a dynamic proxy the
interface which will use the FunctionService to create an Execution, invoke the execution and coerce
the results to a defined return type, if necessary. This technique is very similar to the way Spring Data
repositories work, thus some of the configuration and concepts should be familiar. Generally a single
interface definition maps to multiple function executions, one corresponding to each method defined
in the interface.

Annotations for Function Execution

To support client side function execution, the following annotations are provided: @nRegi on,
@nServer, @nServers, @nMenber, @nMenbers. These correspond to the Execution
implementations GemFire’s FunctionService provides. Each annotation exposes the appropriate
attributes. These annotations also provide an optional r esul t Col | ect or attribute whose value is the
name of a Spring bean implementing ResultCollector to use for the execution.

please define title in your docbook file! 47

http://gemfire.docs.pivotal.io/latest/javadocs/japi/com/gemstone/gemfire/cache/execute/ResultCollector.html

Spring Data GemFire Reference Guide

Note

The proxy interface binds all declared methods to the same execution configuration. Although it
is expected that single method interfaces will be common, all methods in the interface are backed
by the same proxy instance and therefore are all share the same configuration.

Here are some examples:

@nRegi on(regi on="soneRegi on", resultCollector="nyCollector")
public interface FunctionExecution {
@ unctionld("functionl")
public String dolt(String s1, int i2);
public String getString(Object argl, @ilter Set<Chject> keys) ;

By default, the function id is the simple (unqualified) method name. @unct i onl d is used to bind this
invocation to a different function id.

Enabling Annotation Processing

The client side uses Spring’s component scanning capability to discover annotated interfaces. To enable
function execution annotation processing, you can use XML:

<gf e-dat a: functi on- executi ons base- package="or g. exanpl e. nyapp. functi ons"/ >

Note that the functi on-executi ons tag is provided in the gf e- dat a namespace. The base-
package attribute is required to avoid scanning the entiire class path. Additional filters are provided as
described in the Spring reference.

Or annotate your Java configuration class:

@Enabl eGenfi reFuncti onExecut i ons(basePackages = "org. exanpl e. nyapp. functi ons")

Programmatic Function Execution

Using the annotated interface as described in the previous section, simply wire your interface into a
bean that will invoke the function:

@onponent
public class M/App {

@\ut owi red Functi onExecution functionExecution;

public void doSonet hi ng() {
functi onExecution. dolt("hello", 123);

}

Alternately, you can use a Function Execution template directly. For example
GemfireOnRegionFunctionTemplate creates an onRegion execution. For example:

Set<?,?> nyFilter = getFilter();

Regi on<?, ?> nyRegi on = get Regi on();

GenfireOnRegi onCperations tenplate = new GenfireOnRegi onFuncti onTenpl at e(nyRegi on) ;
String result = tenpl ate. execut eAndExtract ("soneFunction", nyFilter,"hello", "world", 1234);

Internally, function executions always return a List. execut eAndExt r act assumes a singleton list
containing the result and will attempt to coerce that value into the requested type. There is also an

please define title in your docbook file! 48

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#beans-scanning-filters

Spring Data GemFire Reference Guide

execut e method that returns the List itself. The first parameter is the function id. The filter argument is
optional. The following arguments are a variable argument list.

4.8 Bootstrapping a Spring ApplicationContext in GemFire

Introduction

Normally, a Spring-based application will bootstrap GemFire using Spring Data GemFire’s XML
namespace. Just by specifying a <gf e: cache/ > element in Spring Data GemFire configuration meta-
data, a single, peer GemFire Cache instance will be created and initialized with default settings in the
same JVM process as your application.

However, sometimes it is a requirement, perhaps imposed by your IT operations team, that GemFire
must be fully managed and operated using the provided GemFire tool suite, such as with Gfsh. Using
Gfsh, even though the application and GemFire will share the same JVM process, GemFire will
bootstrap your Spring application context rather than the other way around. So, using this approach
GemFire, instead of an application server, or a Java main class using Spring Boot, will bootstrap and
host your application.

Keep in mind, however, that GemFire is not an application server. In addition, there are limitations to
using this approach where GemFire Cache configuration is concerned.

Using GemFire to Bootstrap a Spring Context Started with Gfsh

In order to bootstrap a Spring application context in GemFire when starting a GemFire Server process
using Gfsh, a user must make use of GemFire's Initalizer functionality. An Initializer can be used to
specify a callback application that is launched after the Cache is initialized by GemFire.

An Initializer is specified within an initializer element using a minimal snippet of GemFire’'s native
configuration meta-data inside a cache. xm file. The cache. xmi file is required in order to bootstrap
the Spring application context, much like a minimal snippet of Spring XML config is needed to bootstrap
a Spring application context configured with component scanning (e.g. <cont ext : conponent - scan
base- packages=".."/>)

As of Spring Data GemFire 1.4, such an Initializer is already conveniently provided by the framework,

the

org. springfranmewor k. data. genfire. support. Spri ngCont ext Bootstrappinglnitializer.
The typical, yet minimal configuration for this class inside GemFire’s cache. xm file will look like the
following:

<?xm version="1.0"?>
<! DOCTYPE cache PUBLIC "-//GenBtone Systenms, Inc.//GenFire Declarative Caching 7.0//EN'
"http://ww. genmst one. conf dt d/ cache7_0. dt d" >

<cache>
<initializer>
<cl ass- nane>or g. spri ngf ramewor k. dat a. genfire. support. Spri ngCont ext Boot st rappi nglnitializer</class-
nane>
<par anet er nanme="cont ext Confi gLocati ons" >
<string>cl asspath: application-context.xm </string>
</ par anet er >
</initializer>
</ cache>

The Spri ngCont ext Boot st rappi ngl nitializer class follows similar conventions as Spring’s
ContextLoaderListener class for bootstrapping a Spring context inside a Web Application, where
application context configuration files are specified with the cont ext Confi gLocati ons Servlet

please define title in your docbook file! 49

http://gemfire.docs.pivotal.io/latest/userguide/index.html#tools_modules/gfsh/chapter_overview.html
http://gemfire.docs.pivotal.io/latest/userguide/index.html#basic_config/the_cache/setting_cache_initializer.html
http://gemfire.docs.pivotal.io/latest/userguide/index.html#reference/topics/cache_xml.html#initializer

Spring Data GemFire Reference Guide

Context Parameter. In addition, the Spri ngCont ext Boot st rappi ngl niti ali zer class can also
be used with a basePackages parameter to specify a comma-separated list of base package
containing the appropriately annotated application components that the Spring container will search
using component scanning and create Spring beans for:

<?xm version="1.0"?>
<! DOCTYPE cache PUBLIC "-//GenBtone Systens, Inc.//GenFire Declarative Caching 7.0//EN'
"http://ww. genst one. coni dt d/ cache7_0. dt d" >

<cache>
<initializer>
<cl ass- nane>org. spri ngf ranmewor k. dat a. genfi re. support. Spri ngCont ext Boot st rappi ngl ni ti alizer</cl ass-
nane>
<par anet er nanme="basePackages" >
<string>org. myconpany. myapp. servi ces, or g. myconpany. nyapp. dao, ... </string>
</ par anet er >
</initializer>
</ cache>

Then, with a properly configured and constructed CLASSPATH along with the cache. xmi file shown
above specified as a command-line option when starting a GemFire Server in Gfsh, the command-line
would be:

gf sh>start server --name=Serverl --1o0g-|evel =config ...
--classpath="/path/to/spring-data-genfire-1.4.0.jar:/path/to/application/classes.jar"
--cache-xm -file="/path/to/genfirel/cache. xm"

The appl i cati on- cont ext. xnl can be any valid Spring context configuration meta-data including
all the SDG namespace elements. The only limitation with this approach is that the GemFire Cache
cannot be configured using the Spring Data GemFire namespace. In other words, none of the
<gf e: cache/ > element attributes, such as cache- xm -1 ocati on,properties-ref,critical-
heap- per cent age, pdx-serializer-ref, | ock-1ease, etc can be specified. If used, these
attributes will be ignored. The main reason for this is that GemFire itself has already created an initialized
the Cache before the Initializer gets invoked. As such, the Cache will already exist and since it is a
"Singleton", it cannot be re-initialized or have any of it's configuration augmented.

Lazy-Wiring GemFire Components

Spring Data GemFire already provides existing support for wiring GemFire components (such
as CachelListeners, CachelLoaders or CacheWriters) that are declared and created by GemFire
in cache. xm using the Wri ngDecl ar abl eSupport class as described in the section called
“Configuration using auto-wiring and annotations”. However, this only works when Spring does the
bootstrapping (i.e. bootstraps GemkFire). When your Spring application context is the one bootstrapped
by GemFire, then these GemFire components go unnoticed since the Spring application context does
not even exist yet! The Spring application context will not get created until GemFire calls the Initializer,
which occurs after all the other GemFire components and configuration have already been created and
initialized.

So, in order to solve this problem, a new LazyW ri ngDecl ar abl eSupport class was introduced,
that is, in a sense, Spring application context aware. The intention of this abstract base class is that
any implementing class will register itself to be configured by the Spring application context created
by GemFire after the Initializer is called. In essence, this give your GemFire managed component a
chance to be configured and auto-wired with Spring beans defined in the Spring application context.

In order for your GemFire application component to be auto-wired by the Spring container, create a
application class that extends the LazyW r i ngDecl ar abl eSupport and annotate any class member
that needs to be provided as a Spring bean dependency, similar to:

please define title in your docbook file! 50

Spring Data GemFire Reference Guide

public static final class UserDataSourceCacheLoader extends LazyWringDecl ar abl eSupport inplenents
CachelLoader<String, User> {

@\ut owi r ed
private DataSource user DataSource;

As implied by the CachelLoader example above, you might necessarily (although, rare) have defined
both a Region and CacheListener component in GemFire cache. xm . The CachelLoader may need
access to an application DAO, or perhaps Spring application context defined JDBC Data Source for
loading "Users" into a GemFire Cache REPLI CATE Region on start. Of course, one should be careful
in mixing the different life-cycles of GemFire and the Spring Container together in this manner as not
all use cases and scenarios are supported. The GemFire cache. xm configuration would be similar to
the following (which comes from SDG's test suite):

<?xm version="1.0"?>
<! DOCTYPE cache PUBLIC "-//GenBtone Systens, Inc.//GenFire Declarative Caching 7.0//EN'
"http://ww. genmst one. conf dt d/ cache7_0. dt d" >

<cache>
<regi on name="Users" refid="REPLI CATE">
<region-attributes initial-capacity="101" |oad-factor="0.85">
<key- constraint >j ava. | ang. Stri ng</ key- constrai nt >
<val ue-constrai nt >org. spri ngframewor k. dat a. genfire.repository. sanpl e. User </ val ue-constrai nt >
<cache- | oader >
<cl ass-
name>or g. spri ngf ramewor k. dat a. genfire. support. Spri ngCont ext Boot strappi ngl nitializerlntegrationTest
$User Dat aSt or eCachelLoader </ cl ass- nane>
</ cache-| oader >
</region-attributes>
</ regi on>
<initializer>
<cl ass- nane>org. spri ngf ranmewor k. dat a. genfi re. support. Spri ngCont ext Boot st rappi ngl ni ti alizer</class-
nane>
<par anet er name="basePackages" >
<string>org.springfranmework. data. genfire. support.sanpl e</string>
</ par anet er >
</initializer>
</ cache>

4.9 Sample Applications

Note

Sample applications are now maintained in the Spring Data GemFire Examples repository.

The Spring Data GemFire project also includes one sample application. Named "Hello World", the
sample demonstrates how to configure and use GempFire inside a Spring application. At runtime, the
sample offers a shell to the user allowing him to run various commands against the grid. It provides an
excellent starting point for users unfamiliar with the essential components or the Spring and GemFire
concepts.

The sample is bundled with the distribution and is Maven-based. One can easily import them into any
Maven-aware IDE (such as Spring Tool Suite) or run them from the command-line.

please define title in your docbook file! 51

https://github.com/spring-projects/spring-gemfire-examples
https://spring.io/tools/sts

Spring Data GemFire Reference Guide

Hello World

The Hello World sample demonstrates the core functionality of the Spring GemFire project. It bootstraps
GemFire, configures it, executes arbitrary commands against it and shuts it down when the application
exits. Multiple instances can be started at the same time as they will work with each other sharing data
without any user intervention.

Running under Linux

If you experience networking problems when starting GemFire or the samples, try adding the
following system property j ava. net . pr ef er | Pv4St ack=t r ue to the command line (insert -
D ava. net . pref er | Pv4St ack=t r ue). For an alternative (global) fix especially on Ubuntu see
this link

Starting and stopping the sample

Hello World is designed as a stand-alone java application. It features a Mai n class which can be started
either from your IDE of choice (in Eclipse/STS through Run As/Java Appli cati on) or from the
command line through Maven using nvn exec: j ava. One can also use j ava directly on the resulting
artifact if the classpath is properly set.

To stop the sample, simply type exi t at the command line or press Ctrl +C to stop the VM and
shutdown the Spring container.

Using the sample

Once started, the sample will create a shared data grid and allow the user to issue commands against
it. The output will likely look as follows:

INFO Created GenFire Cache [Spring GenFire Wrld] v. X VY.Z
INFO Created new cache region [myWrl d]

INFO Menber xxxxxx:50694/51611 connecting to region [nyWrld]
Hell o Worl d!

Want to interact with the world ? ...

Supported conmands are:

get <key> - retrieves an entry (by key) fromthe grid
put <key> <value> - puts a new entry into the grid
renove <key> - renoves an entry (by key) fromthe grid

For example to add new items to the grid one can use:

-> Bol d Section gNane: enphasis |evel:5, chunks:[put 1 unu] attrs:[role:bold]
INFO Added [1=unu] to the cache

nul |

-> Bol d Section gNane: enphasis | evel :5, chunks:[put 1 one] attrs:[role:bold]
INFO Updated [1] from [unu] to [one]

unu

-> Bol d Section gNane: enphasis |evel:5, chunks:[size] attrs:[role:bold]

1

-> Bol d Section gNane: enphasis | evel :5, chunks:[put 2 two] attrs:[role:bold]
INFO Added [2=two] to the cache

nul |

-> Bol d Section gNane: enphasi s | evel:5, chunks:[size] attrs:[role:bold]

2

Multiple instances can be created at the same time. Once started, the new VMs automatically see the
existing region and its information:

please define title in your docbook file! 52

https://jira.spring.io/browse/SGF-28

Spring Data GemFire Reference Guide

INFO. Connected to Distributed System[' Spring GenFire Wirld' =xxxx: 56218/ 49320@yyyy]
Hell o Worl d!

-> Bol d Section gNane: enphasis | evel:5, chunks:[size] attrs:[role:bold]

2

-> Bol d Section gNane: enphasis | evel:5, chunks:[map] attrs:[role: bol d]

[2=two] [1=one]

-> Bol d Section gNane: enphasi s | evel :5, chunks:[query length = 3] attrs:[role:bold]
[one, two]

Experiment with the example, start (and stop) as many instances as you want, run various commands in
one instance and see how the others react. To preserve data, at least one instance needs to be alive all
times - if all instances are shutdown, the grid data is completely destroyed (in this example - to preserve
data between runs, see the GemFire documentations).

Hello World Sample Explained

Hello World uses both Spring XML and annotations for its configuration. The initial boostrapping
configuration is app- cont ext . xm which includes the cache configuration, defined under cache-
cont ext . xm file and performs classpath scanning for Spring components. The cache configuration
defines the GemFire cache, region and for illustrative purposes a simple cache listener that acts as a
logger.

The main beans are Hel | oWbr | d and CommrandPr ocessor which rely on the Genf i reTenpl at e to
interact with the distributed fabric. Both classes use annotations to define their dependency and life-
cycle callbacks.

please define title in your docbook file! 53

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#beans-classpath-scanning
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#beans-annotation-config

Spring Data GemFire Reference Guide

5. Other Resources

In addition to this reference documentation, there are a number of other resources that may help
you learn how to use GemFire and Spring framework. These additional, third-party resources are

enumerated in this section.

5.1 Useful Links

* Spring Data GemFire Home Page

» Pivotal GemFire Home Page

» Pivotal GemFire Documentation

» Pivotal GemFire Knowledge Base

» Pivotal GemFire Community Home Page

* VMWare vFabric GemFire Community Home Page

* Spring Data GemFire Forum (StackOverflow)

» Spring Data GemFire Forum (spring.io archive)

please define title in your docbook file!

54

http://projects.spring.io/spring-data-gemfire
http://www.pivotal.io/big-data/pivotal-gemfire
http://gemfire.docs.pivotal.io/index.html
https://support.pivotal.io/hc/en-us/categories/200072748-Pivotal-GemFire-Knowledge-Base
https://support.pivotal.io/hc/communities/public/topics/200053218-Pivotal-GemFire-General
http://communities.vmware.com/community/vmtn/appplatform/vfabric_gemfire
http://stackoverflow.com/questions/tagged/spring-data-gemfire
http://forum.spring.io/forum/spring-projects/data/gemfire

<xsd:attribute name="ref" type="xsd:string" use="optional">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
The nane of the gateway event |istener bean referred by this declaration. Used as a conveni ence nethod
If no reference exists
use inner bean declarations.
]]1></ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attribute>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: choi ce>
<xsd: el enent nanme="gat eway- queue" m nCccurs="0"
maxQccurs="1" type="gat ewayQueueType" />
</ xsd: sequence>
<xsd:attribute name="gateway-id" type="xsd:string" use="required">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
Specifies the id for this gateway
]1></ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd:attribute>
<xsd:attribute name="socket-buffer-size" type="xsd:string"
use="optional ">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Specifies the socket buffer size in bytes
]11></ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd:attribute>
<xsd:attribute name="socket-read-ti meout" type="xsd:string"
use="optional ">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
Speci fies the socket read timeout in mlliseconds
]]1></ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd: attribute>
<xsd:attribute name="order-policy" type="xsd:string"
use="optional ">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
Specifies the order policy - This only applies if parallel is enabled
KEY: Indicates that events will be parallelized based on the event's key
PARTI TI ON: | ndi cates that events will be parallelized based on the event's: partition (using the
PartitionResol ver)
THREAD: | ndi cates that events will be parallelized based on the event's originating nenber and thread
]]1></ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd: attribute>
<xsd:attribute name="concurrency-level" type="xsd:string"
use="optional ">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
Speci fies the nunber of parallel threads
]1></ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd:attribute>
</ xsd: conpl exType>
<l-- -->
<xsd: el enent nanme="gat eway- hub" type="gat ewayHubType" >
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Deprecated as of Genfire 7
]11></ xsd: docunent at i on>
</ xsd: annot at i on>
</ xsd: el ement >
<l-- End Genfire 6 WAN Gateway schema -->

<!-- Function Annotation Support -->
<xsd: el ement nanme="annot ati on-driven">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Enabl es genfire annotations
11></ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: el ement >
</ xsd: schema>

please define title in your docbook file!

55

Spring Data GemFire Reference Guide

Spring Data GemFire Data Access Schema (gfe-data)

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<xsd: schema xm ns="http://ww. springfranmework. or g/ schema/ dat a/ genfire" xm ns: xsd="http://
www. W3. or g/ 2001/ XMLSchena" xml ns: beans="htt p: // ww. spri ngf r amewor k. or g/ schena/ beans"
xm ns: tool ="http://ww. springframework. org/ schena/ t ool "
xm ns: repository="http://ww. springframework. org/ schena/ dat a/ r eposi t ory"
xm ns: cont ext ="http://ww. spri ngfranmewor k. or g/ schema/ cont ext "
xm ns: gf e="http://ww. spri ngfranmework. org/ schenma/ genfire"
tar get Nanespace="htt p: // www. spri ngf r anewor k. or g/ schena/ dat a/
genfire" el ement FornDef aul t ="qual i fied" attributeFornDefaul t="unqualified" version="1.3">
<xsd:inport namespace="http://ww. springfranmework. or g/ schema/ beans"/ >
<xsd: i nport nanmespace="http://ww.springfranework. org/schema/tool "/ >
<xsd: i nport namespace="http://ww. spri ngfranmework. org/ schena/ dat a/ r eposi tory"
schemaLocati on="http://ww. spri ngframewor k. or g/ schema/ dat a/ r eposi t ory/ spri ng-repository. xsd"/ >
<xsd:inport namespace="http://ww. springfranmework. org/ schema/ genfire"
schemaLocati on="http://ww. spri ngframewor k. org/ schema/ genfire/spring-genfire.xsd"/>
<xsd:inport nanmespace="http://ww.springfranmework. org/schema/ context"
schemaLocati on="ht t p: // wwv. spri ngf ramewor k. or g/ schena/ cont ext/ spri ng-cont ext. xsd" />
<l-- -->
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
Narmespace support for the Spring Data GenFire Client side data access.
]11></ xsd: docunent at i on>
</ xsd: annot at i on>
<l-- -->
<l-- Repositories -->
<xsd: el ement name="repositories">
<xsd: conpl exType>
<xsd: conpl exCont ent >
<xsd: extensi on base="repository:repositories">
<xsd:attributeGoup ref="genfire-repository-attributes"/>
<xsd:attributeGoup ref="repository:repository-attributes"/>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el ement >
<l-- -->
<xsd: el enment name="function-executions">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Enabl es conponent scanning for annotated function execution interfaces.
11></ xsd: docunent at i on>
</ xsd: annot ati on>

<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement name="include-filter" type="context:filterType" m nQccurs="0" maxCccurs="unbounded">
<xsd: annot ati on>
<xsd: docurnent at i on><! [CDATA
Controls which eligible types to include for component scanni ng.
11></ xsd: docunent at i on>
</ xsd: annot at i on>
</ xsd: el ement >
<xsd: el enent name="excl ude-filter" type="context:filterType" m nQccurs="0" maxCccurs="unbounded">
<xsd: annot ati on>
<xsd: docunent at i on><! [CDATA[
Controls which eligible types to exclude for conponent scanni ng.
11></ xsd: docunent at i on>
</ xsd: annot at i on>
</ xsd: el ement >
</ xsd: sequence>
<xsd:attribute name="base- package" type="xsd:string" use="required">
<xsd: annot at i on>
<xsd: docunent at i on><! [CDATA[
Defines the base package where function execution interfaces will be tried to be detected.
]]1></ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: attribute>
</ xsd: conpl exType>
</ xsd: el ement >
<l-- -->
<xsd:attributeG oup name="genfire-repository-attributes">
<xsd:attribute name="nmappi ng-context-ref" type="mappi ngCont ext Ref" >
<xsd: annot at i on>
<xsd: docunent at i on>
The reference to a MappingContext. If not set a default one will be created.
</ xsd: docunent at i on>

	Spring Data GemFire Reference Guide
	Table of Contents
	
	Part I. Preface
	Part II. Introduction
	1. Introduction
	2. Requirements
	3. New Features
	3.1 New in the 1.2.0 Release
	3.2 New in the 1.2.1 Release
	3.3 New in the 1.3.0 Release
	3.4 New in the 1.3.1 Release
	3.5 New in the 1.3.2 Release
	3.6 New in the 1.3.3 Release
	3.7 New in the 1.3.4 Release
	3.8 New in the 1.4.0 Release
	3.9 New in the 1.5.0 Release

	4. Reference Guide
	4.1 Document Structure
	4.2 Bootstrapping GemFire through the Spring Container
	Advantages of using Spring over GemFire cache.xml
	Using the Core Spring Data GemFire Namespace
	Configuring the GemFire Cache
	Advanced Cache Configuration
	Enabling PDX Serialization

	Configuring a GemFire Cache Server
	Configuring a GemFire Client Cache

	Using the GemFire Data Access Namespace
	An Easy Way to Connect to GemFire

	Configuring a GemFire Region
	Using an externally configured Region
	Auto Region Lookup
	Configuring Regions
	Common Region Attributes
	Cache Listeners
	Cache Loaders and Cache Writers
	Subregions

	Region Templates
	Under the hood…​

	A Word of Caution on Regions, Subregions and Lookups
	Data Persistence
	Subscription Interest Policy
	Data Eviction and Overflowing
	Data Expiration
	Local Region
	Replicated Region
	Partitioned Region
	partitioned-region Options

	Client Region
	Client Interests

	JSON Support

	Creating an Index
	Configuring a Disk Store
	Configuring GemFire’s Function Service
	Configuring WAN Gateways
	WAN Configuration in GemFire 7.0
	WAN Configuration in GemFire 6.6

	4.3 Working with the GemFire APIs
	Exception Translation
	GemfireTemplate
	Support for Spring Cache Abstraction
	Transaction Management
	GemFire Continuous Query Container
	Continuous Query Listener Container
	The ContinuousQueryListenerAdapter and ContinuousQueryListener

	Wiring Declarable components
	Configuration using template definitions
	Configuration using auto-wiring and annotations

	4.4 Working with GemFire Serialization
	Wiring deserialized instances
	Auto-generating custom `Instantiator`s

	4.5 POJO mapping
	Entity Mapping
	Mapping PDX Serializer

	4.6 GemFire Repositories
	Introduction
	Spring configuration
	Executing OQL queries

	4.7 Annotation Support for Function Execution
	Introduction
	Implementation vs Execution
	Implementing a Function
	Annotations for Function Implementation
	Batching Results
	Enabling Annotation Processing

	Executing a Function
	Annotations for Function Execution
	Enabling Annotation Processing

	Programmatic Function Execution

	4.8 Bootstrapping a Spring ApplicationContext in GemFire
	Introduction
	Using GemFire to Bootstrap a Spring Context Started with Gfsh
	Lazy-Wiring GemFire Components

	4.9 Sample Applications
	Hello World
	Starting and stopping the sample
	Using the sample
	Hello World Sample Explained

	5. Other Resources
	5.1 Useful Links

	6. Appendices
	6.1 Spring Data GemFire Schema
	Spring Data GemFire Core Schema (gfe)
	Spring Data GemFire Data Access Schema (gfe-data)

