Spring Data GemFire Reference Guide

Costin Leau, David Turanski, John Blum, Oliver Gierke

Version 1.7.6.RELEASE, 2016-09-29

Table of Contents

=3 (P 1
1 INErOdUCTHION ...ttt 2
2. REQUITEIMEIITS . . oottt e e 3
3. NEW FRATULES . ..ttt e i i e 4

3 1. Newinthe 1.2 Releaseo e 4
3.2.Newinthe LL3Releasettt e e 4
33. Newinthe 1.4 Release e e 5
34.Newinthe I.SReleaseot e 6
35. Newinthe I.6Release e e 6
3.6. Newinthe 1.7 Release e 6

Reference GUIAEottt e e 7
4. DOCUMENT STFUCTUTE . . oottt ettt ittt ettt ittt eaans 8
5. Bootstrapping GemFire through the Spring Containert 9

5.1. Advantages of using Spring over GemFire cache.xml iiiiiiiiinnnn.. 9
5.2. Using the Core Spring Data GemFire Namespacec..uiiiiininneeininneennnnn.. 9
5.3. Configuring a GemFire Cache. ... e 11
5.3.1. Advanced Cache Configuration, 13
5.3.2. Configuring a GemFire Cache Server 17
5.3.3. Configuring a GemFire Client Cache i 18
5.4. Using the GemFire Data AcCeSS NaIMeSPACEttt 19
5.4.1. An Easy Way to Connectto GemFire........... ..ot 19
5.5. Configuring a GemFire Regionttt e 19
5.5.1. Using an externally configured Regioncoiiiiiiiiiiiiiiinen... 20
5.5.2. Auto Region LOOKUD ... e 20
5.5.3. Configuring RegIONS e 22
5.5.4. Region TempPlates.t e 26
5.5.5. A Word of Caution on Regions, Subregions and Lookups 28
5.5.6. Data PerSISteIICE . . .\ttt e 31
5.5.7. Subscription Interest POLiCY e 32
5.5.8. Data Eviction and OVerflowingottt 32
5.5.9.Data EXPIrationuuuuiii i e 32
5.5.10. Annotation-based Data EXpirationot 33
5.5.11. LoCal REGION . . oo vttt e 36
5.5.12. Replicated REGION e 37
5.5.13. Partitioned RegION. e 37
5.5.14. CHENt REGIOM . . . oottt ittt it 38
3.5 A5 JSON SUPPOTT ottt i e i 40

5.6.Creating an INAeXttt 40

5.7. Configuring @ DisK StOTettt ettt e 41

5.8. Using the GemFire Snapshot SErviceottt it 41
5.8.1. SNapPShOt LOCATION . . .ottt ettt ettt e e et e e et e e i e 43
5.8.2. SNapPShOt FIltersS . ..ottt e e e 43
5.8.3. SNAPShOt EVENtS . . oottt e 45

5.9. Configuring GemFire’s FUNCHON SErVICEettt it eiiaa e 46

5.10. Configuring WAN Gat@WaYSo v vt e tteee et ttiee et tee et iaa et iiae e 47
5.10.1. WAN Configuration in GemFire 7.0.otuuintttii i e 47
5.10.2. WAN Configuration in GemFIre 6.6......... ...ttt 49

6. Working with the GemFire APISttt e et e 50

6.1. Exception Translationuiiininte ettt iie et eiianeas 50

6.2. GeMIIreTemMPlate . . . oottt e 50

6.3. Support for Spring Cache ADBStractioniiiiiriine ittt 51

6.4. Transaction ManageImMentttt ettt et ie et iiee e iiae e 52

6.5. GemFire Continuous QUery CONtainer.ouuuttttiine et iiiaee i 52
6.5.1. Continuous Query Listener CONtaiNeruuuiteiininreennnneeennnnneennnn 53
6.5.2. The ContinuousQueryListenerAdapter and ContinuousQuerylListener.................. 53

6.6. Wiring Declarable COMPONENTSttt ittt ettt i e e iie e iiee e 55
6.6.1. Configuration using template definitions............. ... i, 56
6.6.2. Configuration using auto-wiring and annotationsc..ovveeiineeennn. 58

7. Working with GemFire Serializationttt i 60
7.1. Wiring deserialized INStANCESttt e e 60
7.2. Auto-generating custom "INStantiator Suuetiitiie et i 60

8. POJO M PIIIg v v ettt ettt e e e e e e e e 62
ST O o8 4L Ly 20\ - 0)0 PP 62
8.2. Mapping PDX SerializZeroouu it ettt e 63

9. GEMEIre RePOSITOTIES . . o v ettt ettt e et e e et e e e e i i 64

1T B B 4L 1o L (o) 64

9.2. SPring CONfigUIratiONttt ettt e et e ettt 64

9.3. Executing OQL QUETIESttt ettt et ettt et i ee e et iia e iiianeas 64

9.4. OQL Query Extensions with ANNOtatioNnSouiiiiinrt it 66

10. Annotation Support for Function EXecutionoouiiiiinniiiinneeiinneennn. 69

10.1. INtrOdUCHION .« oo ettt e e 69

10.2. Implementation VS EXECULIONttt ittt iiee e eiianees 69

10.3. Implementing @ FUNCHONttt it iie e eiianeen 69
10.3.1. Annotations for Function Implementation............ ... i, 70

10.4. EXecuting @ FUNCHONttt ettt it et as 72
10.4.1. Annotations for Function Execution............ ..ot 72

10.5. Programmatic Function EXeCUtiONttt i i eiieae e 73

10.6. Function Execution with PDX. e 74

11. Bootstrapping a Spring ApplicationContextin GemFirecccoiviiiiiineeenn.. 78

T R 5 e Yo [(o) P 78

11.2. Using GemFire to Bootstrap a Spring Context Started with Gfsh....................... 78
11.3. Lazy-Wiring GemFire COmMPONENTS. . ..o vvt ittt ittt et ie et iiee e iiiee e 80

12. Sample APPLCAtIONS . . . oo vttt e e e e 82
12.1. Hello WOTLd. . .o oo e e 82
12.1.1. Starting and stopping the sampleo ittt e 82

12.1.2. Using the Samplet i e e 82

12.1.3. Hello World Sample Explainedooiiiiiiiiiii it 84

Other RESOUICES . . .ottt ettt ettt e e ettt 84
13.USefUL LINKS . . oot e 85
APPEIAICES . . vttt ettt ettt e e e e e e 85
Appendix A: Spring Data GemFire Schema.t e 86
Spring Data GemFire Core Schema (gf€)t i i 86

Spring Data GemFire Data Access Schema (gfe-data)..............ccoiiiiiiiiiiiinn.. 86

© 2011-2015 The original authors.

Copies of this document may be made for your own use and for
distribution to others, provided that you do not charge any fee for
such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

NOTE

Preface

Spring Data GemFire focuses on integrating the Spring Framework’s powerful, non-invasive
programming model and concepts with Pivotal GemFire, simplifying configuration, development
and providing high-level abstractions. This document assumes the reader already has a basic
familiarity with the Spring Framework and Pivotal GemFire concepts and APIs.

While every effort has been made to ensure this documentation is comprehensive and there are no
errors, some topics might require more explanation and some typos might have crept in. If you do
spot any mistakes or even more serious errors and you can spare a few cycles, please do bring the
errors to the attention of the Spring Data GemFire team by raising an issue. Thank you.

https://jira.spring.io/browse/SGF

Chapter 1. Introduction

This reference guide for Spring Data GemFire explains how to use the Spring Framework to
configure and develop applications with Pivotal GemFire. It presents the basic concepts, semantics
and provides numerous examples to help you get started.

Spring Data GemFire started as a top-level Spring project called Spring GemFire
NOTE (SGF) and since then has been moved under the Spring Data umbrella project and
renamed accordingly.

Chapter 2. Requirements

Spring Data GemFire requires JDK 6.0 or above, Spring Framework 3 and Pivotal GemFire 6.6 or
above (version 7 or above is recommended).

http://projects.spring.io/spring-framework
http://www.pivotal.io/big-data/pivotal-gemfire

Chapter 3. New Features

As of the 1.2.0 release, this project, formerly known as Spring GemFire, has been
NOTE renamed to Spring Data GemFire to reflect that it is now a component of the Spring
Data project.

3.1. New in the 1.2 Release

* Full support for GemFire configuration via the SDG gfe namespace. Now GemFire components
may be configured completely without requiring a native cache.xml file.

WAN Gateway support for GemFire 6.6.X. See Configuring WAN Gateways.

* Spring Data Repository support using a dedicated SDG namespace, gfe-data. See GemFire
Repositories

* Namespace support for registering GemFire Functions. See Configuring GemFire’s Function
Service

A top-level <disk-store> element has been added to the SDG gfe namespace to allow sharing of
persist stores among Regions, and other components that support persistent backup or
overflow. See Configuring a Disk Store

WARNING The <*-region> elements no longer allow a nested <disk-store> element.

* GemFire Sub-Regions are supported via nested <*-region> elements.
* A<local-region> element has been added to configure a Local Region.

 Support for the re-designed WAN Gateway in GemFire 7.0.

3.2. New in the 1.3 Release

* Annotation support for GemFire Functions. It is now possible to declare and register Functions
written as POJOs using annotations. In addition, Function executions are defined as annotated
interfaces, similar to the way Spring Data Repositories work. See Annotation Support for
Function Execution.

Added a <datasource> element to the SDG gfe-data namespace to simplify establishing a basic
client connection to a GemFire data grid.

* Added a <json-region-autoproxy> element to the SDG gfe-data namespace to support JSON
features introduced in GemFire 7.0, enabling Spring AOP to perform the necessary conversions
automatically on Region operations.

Upgraded to GemFire 7.0.1 and added namespace support for new AsyncEventQueue attributes.

Added support for setting subscription interest policy on Regions.

» Support for void returns on Function executions. See Annotation Support for Function
Execution for complete details.

» Support for persisting Local Regions. See Local Region and Common Region Attributes.

http://projects.spring.io/spring-data/
http://projects.spring.io/spring-data/

» Support for entry time-to-live and entry idle-time on a GemFire Client Cache. See Configuring a
GemcFire Client Cache.

* Support for multiple Spring Data GemFire web-based applications using a single GemFire
cluster, operating concurrently inside tc Server.

» Support for concurrency-checks-enabled on all GemFire Cache Region definitions using the SDG
gfe namespace. See Common Region Attributes.

» Support for Cache Loaders and Cache Writers on Client, Local Regions. See Cache Loaders and
Cache Writers.

» Support for registering CacheListeners, AsyncEventQueues and Gateway Senders on GemFire
Cache Sub-Regions.

» Support for PDX persistent keys in GemFire Regions.

» Support for correct Partition Region bean creation in a Spring context when collocation is
specified with the colocated-with attribute.

* Full support for GemFire Cache Sub-Regions using proper, nested <*-region> element syntax in
the SDG gfe namespace.

» Upgraded Spring Data GemFire to Spring Framework 3.2.8.

» Upgraded Spring Data GemFire to Spring Data Commons 1.7.1.

3.3. New in the 1.4 Release

» Upgrades Spring Data GemFire to GemFire 7.0.2.
* Upgrades Spring Data GemFire to Spring Data Commons 1.8.0.
* Upgrades Spring Data GemFire to Spring Framework 3.2.9.

* Integrates Spring Data GemFire with Spring Boot, which includes both a spring-boot-starter-
data-gemfire POM along with a Spring Boot sample application demonstrating GemFire Cache
Transactions configured with SDG and bootstrapped with Spring Boot.

» Support for bootstrapping a Spring Context in a GemFire Server when started from Gfsh. See
Bootstrapping a Spring ApplicationContext in GemFire for more details.

» Support for persisting application domain object/entities to multiple GemFire Cache Regions.
See Entity Mapping for more details.

» Support for persisting application domain object/entities to GemFire Cache Sub-Regions,
avoiding collisions when Sub-Regions are uniquely identifiable, but identically named. See
Entity Mapping for more details.

* Adds strict XSD type rules to, and full support for, Data Policies and Region Shortcuts on all
GemFire Cache Region types.

* Changed the default behavior of SDG <*-region> elements from lookup to always create a new
Region along with an option to restore old behavior using the ignore-if-exists attribute. See
Common Region Attributes and A Word of Caution on Regions, Subregions and Lookups for
more details.

* Enables Spring Data GemFire to be fully built and ran on JDK 7 and JDK 8 (Note, however,

GemFire has not yet been fully tested and supported on JDK 8; See GemFire User Guide for
additional details.

3.4. New in the 1.5 Release

Upgrades Spring Data GemFire to Spring Data Commons 1.9.0

Upgrades Spring Data GemFire to Spring Framework 4.0.7

Reference Guide migrated to Asciidoc

Renewed support for deploying Spring Data GemFire in an OSGi container.

Removed all default values in the Spring Data GemFire XML namespace Region-type elements,
relying on GemFire defaults instead.

Added convenience to automatically create Disk Store directory locations without the need to
create them manually, as required by GemFire.

SDG annotated Functions can now be executed from Gfsh.
Enable GemFire GatewayReceivers to be started manually.
Support for Auto Region Lookups. See Auto Region Lookup for further details.

Support for Region Templates See Region Templates for further details.

3.5. New in the 1.6 Release

Upgrades Spring Data GemFire to GemFire 8.0.

Adds support for GemFire 8’s new Cluster-based Configuration.

Enables 'auto-reconnect’ functionality to be employed in Spring-configured GemFire Servers.
Allows the creation of concurrent and parallel Async Event Queues and Gateway Senders.
Adds support for GemFire 8’s Region data compression.

Adds attributes to set both critical and warning percentages on Disk Store usage.

Supports the capability to add the new EventSubstitutionFilters to GatewaySenders.

3.6. New in the 1.7 Release

Upgrades Spring Data GemFire to GemFire 8.1.0.
Early Access support for Apache Geode.

Support for adding Spring defined Cache Listeners, Loaders and Writers on "existing" GemFire
Regions configured in Spring XML, cache.xml or even with GemFire’s Cluster Config.

Spring JavaConfig support added to SpringContextBootstrappingInitializer.

Support for custom C(lasslLoaders in SpringContextBootstrappingInitializer to load Spring-
defined bean classes.

Support for LazyWiringDeclarableSupport re-initialization and complete replacement for
WiringDeclarableSupport.

http://gemfire.docs.pivotal.io/docs-gemfire/supported_configs/supported_configs_and_system_reqs.html

* Adds locators and servers attributes to the <gfe:pool> element allowing variable Locator/Server
endpoint lists configured with Spring’s property placeholders.

* Enables the use of <gfe-data:datasource> element with non-Spring configured GemFire Servers.
* Multi-Index definition and creation support.

* Annotation-based Data Expiration

* OQL Query Extensions with Annotations

» Using the GemFire Snapshot Service

Reference Guide

Chapter 4. Document Structure

The following chapters explain the core functionality offered by Spring Data GemFire.

Bootstrapping GemFire through the Spring Container describes the configuration support provided
for bootstrapping, configuring, initializing and accessing GemFire Caches, Cache Servers, Regions,
and related Distributed System components.

Working with the GemFire APIs explains the integration between the GemFire APIs and the various
data access features available in Spring, such as transaction management and exception
translation.

Working with GemFire Serialization describes the enhancements for GemFire (de)serialization and
management of associated objects.

POJO mapping describes persistence mapping for POJOs stored in GemFire using Spring Data.
GemFire Repositories describes how to create and use GemFire Repositories using Spring Data.

Annotation Support for Function Execution describes how to create and use GemFire Functions
using annotations.

Bootstrapping a Spring ApplicationContext in GemFire describes how to bootstrap a Spring
ApplicationContext running in a GemFire Server using Gfsh.

Sample Applications describes the samples provided with the distribution to illustrate the various
features available in Spring Data GemFire.

Chapter 5. Bootstrapping GemFire through
the Spring Container

Spring Data GemFire provides full configuration and initialization of the GemFire data grid through
Spring’s IoC container and provides several classes that simplify the configuration of GemFire
components including Caches, Regions, WAN Gateways, Persistence Backup, and other Distributed
System components to support a variety of scenarios with minimal effort.

This section assumes basic familiarity with GemFire. For more information see the

NOTE .
product documentation.

5.1. Advantages of using Spring over GemFire cache.xml

As of release 1.2.0, Spring Data GemFire’s XML namespace supports full configuration of the
GemFire in-memory data grid. In fact, Spring Data GemFire’s XML namespace is considered to be
the preferred way to configure GemFire. GemFire will continue to support native cache.xml for
legacy reasons, but GemFire application developers can now do everything in Spring XML and take
advantage of the many wonderful things Spring has to offer such as modular XML configuration,
property placeholders and overrides, SpEL, and environment profiles. Behind the XML namespace,
Spring Data GemFire makes extensive use of Spring’s FactoryBean pattern to simplify the creation,
configuration and initialization of GemFire components.

For example, GemFire provides several callback interfaces, such as CachelListener, Cacheliriter, and
Cacheloader, that allow developers to add custom event handlers. Using Spring’s IoC container,
these callbacks may be configured as normal Spring beans and injected into GemFire components.
This is a significant improvement over native cache.xml, which provides relatively limited
configuration options and requires callbacks to implement GemFire’s Declarable interface (see
Wiring Declarable components to see how you can still use Declarables within Spring’s 10C/DI
container).

In addition, IDEs such as the Spring Tool Suite (STS) provide excellent support for Spring XML
namespaces, such as code completion, pop-up annotations, and real time validation, making them
easy to use.

5.2. Using the Core Spring Data GemFire Namespace

To simplify configuration, Spring Data GemFire provides a dedicated XML namespace for
configuring core GemFire components. It is also possible to configure beans directly using Spring’s
standard <bean> definition. However, as of Spring Data GemFire 1.2.0, all bean properties are
exposed via the XML namespace so there is little benefit to using raw bean definitions. For more
information about XML Schema-based configuration in Spring, see this appendix in the Spring
Framework reference documentation.

http://www.pivotal.io/big-data/pivotal-gemfire
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#xsd-config

Spring Data Repository support uses a separate XML namespace. See GemFire
NOTE Repositories for more information on how to configure Spring Data GemFire
Repositories.

To use the Spring Data GemFire XML namespace, simply declare it in your Spring XML
configuration meta-data:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:gfe="http://www.springframework.org/schema/gemfire" @ @
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/gemfire
http://www.springframework.org/schema/gemfire/spring-gemfire.xsd"> ®

<bean id ... >
<gfe:cache ...> @

</beans>

@ Spring GemFire namespace prefix. Any name will do but through out the reference
documentation, gfe will be used.

@ The namespace URIL.

® The namespace URI location. Note that even though the location points to an external address
(which exists and is valid), Spring will resolve the schema locally as it is included in the Spring
Data GemFire library.

@ Declaration example for the GemFire namespace. Notice the prefix usage.

10

It is possible to change the default namespace, for example from beans to gfe. This is
useful for configuration composed mainly of GemFire components as it avoids

declaring the prefix. To achieve this, simply swap the namespace prefix declaration
above:

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/gemfire" @
xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" @
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/gemfire
NOTE http://www.springframework.org/schema/gemfire/spring-gemfire.xsd">

<beans:bean id ... > ®
<cache ...> @

</beans>

@ The default namespace declaration for this XML file points to the Spring Data
GemFire namespace.

@ The beans namespace prefix declaration.
® Bean declaration using the beans namespace. Notice the prefix.

@ Bean declaration using the gfe namespace. Notice the lack of prefix (as the
default namespace is used).

5.3. Configuring a GemFire Cache

In order to use GemFire, a developer needs to either create a new (Cache or connect to an existing
one. In the current version of GemFire, there can be only one open Cache per VM (or per
(lassLoader to be technically correct). In most cases the Cache should only be created once.

This section describes the creation and configuration of a full Cache member,
appropriate for peer-to-peer cache topologies and cache servers. A full cache is also
commonly used for standalone applications, integration tests and proofs of concept.
In a typical production system, most application processes will act as cache clients
and will create a ClientCache instance instead. This is described in the sections
Configuring a GemFire Client Cache and Client Region

NOTE

A cache with default configuration can be created with a very simple declaration:

<gfe:cache/>

11

Upon initialization, a Spring application context containing this cache definition will register a
CacheFactoryBean to create a Spring bean named gemfireCache referencing a GemFire Cache instance.
This will either be an existing cache, or if one does not already exist, a newly created one. Since no
additional properties were specified, a newly created cache will apply the default cache
configuration.

All Spring Data GemFire components that depend on the cache respect this naming convention so
that there is no need to explicitly declare the cache dependency. If you prefer, you can make the
dependency explicit via the cache-ref attribute provided by various namespace elements. Also, you
can easily override the cache’s bean name:

<gfe:cache id="my-cache"/>

Starting with Spring Data GemFire 1.2.0, the GemFire Cache may be fully configured using Spring.
However, GemFire’s native XML configuration file, cache.xml, is also supported. For scenarios in
which the GemFire Cache needs to be configured natively, simply provide a reference to the
GemFire configuration file using the cache-xml-location attribute:

<gfe:cache id="cache-using-native-xml" cache-xml-location="classpath:cache.xml"/>

In this example, if the cache needs to be created, it will use the file named cache.xml located in the
classpath root.

Note that the configuration makes use of Spring’s Resource abstraction to locate the
NOTE file. This allows various search patterns to be used, depending on the runtime
environment or the prefix specified (if any) in the resource location.

In addition to referencing an external configuration file one can specify GemFire properties using
any of Spring’s common properties support features. For example, one can use the properties
element defined in the util namespace to define properties directly or load properties from a
properties file. The latter is recommended for externalizing environment specific settings outside
the application configuration:

12

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#resources
http://gemfire.docs.pivotal.io/docs-gemfire/reference/topics/gemfire_properties.html

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:gfe="http://www.springframework.org/schema/gemfire"
xmlns:util="http://www.springframework.org/schema/util"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/gemfire
http://www.springframework.org/schema/gemfire/spring-gemfire.xsd
http://www.springframework.org/schema/util
http://www.springframework.org/schema/util/spring-util.xsd">

<util:properties id="gemfireProperties" location=
"file:/pivotal/gemfire/gemfire.properties"/>

<gfe:cache properties-ref="gemfireProperties"/>
</beans>

The cache settings apply only if a new cache needs to be created. If an open cache

NOTE
already exists in the VM, these settings will be ignored.

5.3.1. Advanced Cache Configuration

For advanced cache configuration, the cache element provides a number of configuration options
exposed as attributes or child elements:

13

@

<gfe:cache
close="false"
copy-on-read="true"
critical-heap-percentage="70"
eviction-heap-percentage="60"
enable-auto-reconnect="false" @
lock-lease="120"
lock-timeout="60"
message-sync-interval="1"
pdx-serializer-ref="myPdxSerializer'
pdx-persistent="true"
pdx-disk-store="diskStore"
pdx-read-serialized="false"
pdx-ignore-unread-fields="true"
search-timeout="300"
use-cluster-configuration="false" ®
lazy-init="true">

<gfe:transaction-listener ref="myTransactionListener"/> @

<gfe:transaction-writer> ®
<bean class="org.springframework.data.gemfire.example.TransactionlListener"/>
</gfe:transaction-writer>

<gfe:gateway-conflict-resolver ref="myGatewayConflictResolver"/> ®
<gfe:dynamic-region-factory/> @
<gfe:jndi-binding jndi-name="myDataSource" type="ManagedDataSource"/> ®

</gfe:cache>

@ Various cache options are supported by attributes. For further information regarding anything
shown in this example, please consult the GemFire product documentation. The close attribute
determines if the cache should be closed when the Spring application context is closed. The
default is true however for cases in which multiple application contexts use the cache (common
in web applications), set this value to false. The lazy-init attribute determines if the cache
should be initialized before another bean references it. The default is true however in some
cases it may be convenient to set this value to false.

@ Setting the enable-auto-reconnect attribute to true (default is false), allows a disconnected
GemFire member to automatically reconnect and rejoin a GemFire cluster. See the GemFire
product documentation for more details.

® Setting the use-cluster-configuration attribute to true (default is false) to enable a GemFire
member to retrieve the common, shared Cluster-based configuration from a Locator. See the
GemFire product documentation for more details.

@ An example of a TransactionlListener callback declaration using a bean reference. The
referenced bean must implement TransactionListener. TransactionListener(s) can be

14

http://gemfire.docs.pivotal.io/index.html
http://gemfire.docs.pivotal.io/docs-gemfire/latest/managing/autoreconnect/member-reconnect.html
http://gemfire.docs.pivotal.io/docs-gemfire/configuring/cluster_config/gfsh_persist.html
http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/cache/TransactionListener.html

implemented to handle transaction related events.

® An example of a TransactionWriter callback declaration using an inner bean declaration this
time. The bean must implement TransactionWriter. TransactionWriter is a callback that is
allowed to veto a transaction.

® An example of a GatewayConflictResolver declaration using a bean reference. The referenced
bean must implement GatewayConflictResolver. GatewayConflictResolver is a Cache-level plugin
that is called upon to decide what to do with events that originate in other systems and arrive
through the WAN Gateway.

@ Enable GemFire’s DynamicRegionFactory, which provides a distributed region creation service.

Declares a JNDI binding to enlist an external DataSource in a GemFire transaction.

The use-bean-factory-locator attribute (not shown) deserves a mention. The factory
bean responsible for creating the cache uses an internal Spring type called a
BeanFactorylLocator to enable user classes declared in GemFire’s native cache.xml to
be registered as Spring beans. The BeanFactorylLocator implementation also permits
only one bean definition for a cache with a given id. In certain situations, such as

NOTE running JUnit integration tests from within Eclipse, it is necessary to disable the
BeanFactorylLocator by setting this value to false to prevent an exception. This
exception may also arise during JUnit tests running from a build script. In this case
the test runner should be configured to fork a new JVM for each test (in maven, set
<forkmode>always</forkmode>) . Generally, there is no harm in setting this value to
false.

Enabling PDX Serialization

The example above includes a number of attributes related to GemFire’s enhanced serialization
framework, PDX. While a complete discussion of PDX is beyond the scope of this reference guide, it
is important to note that PDX is enabled by registering a PDX serializer which is done via the pdx-
serializer attribute. GemFire provides an implementation class
com.gemstone.gemfire.pdx.ReflectionBasedAutoSerializer, however it is common for developers to
provide their own implementation. The value of the attribute is simply a reference to a Spring bean
that implements the required interface. More information on serialization support can be found in
Working with GemFire Serialization

Enabling auto-reconnect

Setting the <gfe:cache enable-auto-reconnect="[true|false*]> attribute to true should be done with
care.

Generally, enabling 'auto-reconnect' should only be done in cases where Spring Data GemFire’s
XML namespace is used to configure and bootstrap a new GemFire Server data node to add to the
cluster. In other words, 'auto-reconnect' should not be used when Spring Data GemFire is used to
develop and build an GemFire application that also happens to be a peer cache member of the
GemFire cluster.

The main reason is most GemFire applications use references to the GemFire cache or regions in
order to perform data access operations. The references are "injected" by the Spring container into

15

http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/cache/TransactionWriter.html
http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/cache/util/GatewayConflictResolver.html
http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/cache/DynamicRegionFactory.html

application components (e.g. DAOs or Repositories) for use by the application. When a member
(such as the application) is forcefully disconnected from the rest of the cluster, presumably because
the member (the application) has become unresponsive for a period of time, or network partition
separates one or more members (along with the application peer cache member) into a group that
is too small to act as the distributed system, the member will shutdown and all GemFire component
references (e.g. Cache, Regions, etc) become invalid.

Essentially, the current forced-disconnect processing in each member dismantles the system from
the ground up. It shuts down the JGroups stack, puts the Distributed System in a shut-down state
and then closes the Cache. This effectively loses all in-memory information.

After being disconnected from a distributed system and successfully shutting down, the GemFire
member then restarts in a "reconnecting” state, while periodically attempting to rejoin the
distributed system. If the member succeeds in reconnecting, the member rebuilds its "view" of the
distributed system from existing members and receives a new distributed system ID.

This means the cache, regions and other GemFire components are reconstructed and all old
references that may have been injected into application are now stale and no longer valid.

GemFire makes no guarantee, even when using the GemFire public Java API, that application cache,
region or other component references will be automatically refreshed by the reconnect operation.
As such, applications must take care to refresh their own references.

Unfortunately there is no way to be "notified" of a disconnect and subsequently a reconnect event.
If so, the application developer would then have a clean way to know when to call
ConfigurableApplicationContext.refresh(), if even applicable for an application to do so, which is
why this "feature" of GemFire 8 is not recommended for peer cache GemFire applications.

For more information about 'auto-reconnect’, see GemFire’s product documentation.

Using Cluster-based Configuration

GemFire 8’s new Cluster-based Configuration Service is a convenient way for a member joining the
cluster to get a "consistent view" of the cluster, by using the shared, persistent configuration
maintained by a Locator, ensuring the member’s configuration will be compatible with the
GemFire distributed system when the member joins.

This feature of Spring Data GemFire (setting the use-cluster-configuration attribute to true) works
in the same way as the cache-xml-location attribute, except the source of the GemFire configuration
meta-data comes from a network Locator as opposed to a native cache.xml file.

All GemFire native configuration meta-data, whether from cache.xml or from the Cluster
Configuration Service, gets applied before any Spring XML configuration meta-data. As such,
Spring’s config serves to "augment" the native GemFire configuration meta-data, which would most
likely be specific to the application.

Again, to enable this feature, just specify the following in the Spring XML config:

<gfe:cache use-cluster-configuration="true"/>

16

http://gemfire.docs.pivotal.io/docs-gemfire/latest/managing/autoreconnect/member-reconnect.html

While certain GemFire tools, like Gfsh, have their actions "recorded" when any
schema-like change is made (e.g. gfsh>create region --name=Example

NOTE --type=PARTITION) to the cluster, Spring Data GemkFire’s configuration meta-data
specified with the XML namespace is not recorded. The same is true when using
GemFire’s public Java API directly; it too is not recorded.

For more information on GemFire’s Cluster Configuration Service, see the product documentation.

5.3.2. Configuring a GemFire Cache Server

In Spring Data GemFire 1.1 dedicated support for configuring a CacheServer was added, allowing
complete configuration through the Spring container:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:gfe="http://www.springframework.org/schema/gemfire"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="http://www.springframework.org/schema/gemfire

http://www.springframework.org/schema/gemfire/spring-gemfire.xsd
http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context

http://www.springframework.org/schema/context/spring-context.xsd">

<gfe:cache />
<!-- Advanced example depicting various cache server configuration options -->
<gfe:cache-server id="advanced-config" auto-startup="true"
bind-address="1ocalhost" port="${gfe.port.6}" host-name-for-clients="1localhost"
load-poll-interval="2000" max-connections="22" max-threads="16"
max-message-count="1000" max-time-between-pings="30000"
groups="test-server">
<gfe:subscription-config eviction-type="ENTRY" capacity="1000" disk-store=
"file://${java.io.tmpdir}"/>
</gfe:cache-server>

<context:property-placeholder location="classpath:cache-server.properties"/>

</beans>

The configuration above illustrates the cache-server element and the many options available.

17

http://gemfire.docs.pivotal.io/docs-gemfire/configuring/cluster_config/gfsh_persist.html
http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/cache/server/CacheServer.html

Rather than hard-coding the port, this configuration uses Spring’s context
namespace to declare a property-placeholder. property placeholder reads one or
more properties file and then replaces property placeholders with values at

NOTE runtime. This allows administrators to change such values without having to touch
the main application configuration. Spring also provides SpEL and the environment
abstraction one to support externalization of environment specific properties from
the main code base, easing the deployment across multiple machines.

To avoid initialization problems, the “CacheServer's started by Spring Data
GemFire will start after the container has been fully initialized. This allows
potential regions, listeners, writers or instantiators defined declaratively to be fully
initialized and registered before the server starts accepting connections. Keep this
in mind when programmatically configuring these items as the server might start
after your components and thus not be seen by the clients connecting right away.

NOTE

5.3.3. Configuring a GemFire Client Cache

Another configuration addition in Spring Data GemFire 1.1 is the dedicated support for configuring
ClientCache. This is similar to a cache in both usage and definition and supported by
org.springframework.data.gemfire.clientClientCacheFactoryBean.

<beans>
<gfe:client-cache />
</beans>

client-cache supports much of the same options as the cache element. However as opposed to a
full cache, a client cache connects to a remote cache server through a pool. By default a pool is
created to connect to a server on localhost port 40404. The the default pool is used by all client
regions unless the region is configured to use a different pool.

Pools can be defined through the pool element; The client side pool can be used to configure
connectivity to the server for individual entities or for the entire cache. For example, to customize
the default pool used by client-cache, one needs to define a pool and wire it to cache definition:

<beans>
<gfe:client-cache id="simple" pool-name="my-pool"/>

<gfe:pool id="my-pool" subscription-enabled="true">
<gfe:locator host="${locatorHost}" port="${locatorPort}"/>

</gfe:pool>
</beans>

The <client-cache> tag also includes a ready-for-events attribute. If set to true, the client cache
initialization will include ClientCache.readyForEvents().

Client side configuration is covered in more detail in Client Region.

18

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#xsd-config-body-schemas-context
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#beans-factory-placeholderconfigurer
http://docs.spring.io/spring/docs/3.2.11.RELEASE/spring-framework-reference/htmlsingle/#new-feature-el
http://docs.spring.io/spring/docs/3.2.11.RELEASE/spring-framework-reference/htmlsingle/#new-in-3.1-environment-abstraction
http://docs.spring.io/spring/docs/3.2.11.RELEASE/spring-framework-reference/htmlsingle/#new-in-3.1-environment-abstraction
http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/cache/client/ClientCache.html
http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/cache/client/ClientCache.html#readyForEvents()

5.4. Using the GemFire Data Access Namespace

In addition to the core gfe namespace, Spring Data GemFire provides a gfe-data namespace
intended primarily to simplify the development of GemFire client applications. This namespace
currently supports for GemFire repositories and function execution and a <datasource> tag that
offers a convenient way to connect to the data grid.

5.4.1. An Easy Way to Connect to GemFire

For many applications, A basic connection to a GemFire grid, using default values is sufficient.
Spring Data GemFire’s <datasource> tag provides a simple way to access data. The data source
creates a client cache and connection pool. In addition, it will query the member servers for all
existing root regions and create a proxy (empty) client region for each one.

<gfe-data:datasource>
<locator host="somehost" port="1234"/>
</gfe-data:datasource>

The datasource tag is syntactically similar to <gfe:pool>. It may be configured with one or more
locator or server tags to connect to an existing data grid. Additionally, all attributes available to
configure a pool are supported. This configuration will automatically create ClientRegion beans for
each region defined on members connected to the locator, so they may be seamlessly referenced by
Spring Data mapping annotations, GemfireTemplate, and wired into application classes.

Of course, you can explicitly configure client regions. For example, if you want to cache data in
local memory:

<gfe-data:datasource>
<locator host="somehost" port="1234"/>
</gfe-data:datasource>

<gfe:client-region id="Customer" shortcut="CACHING_PROXY"/>

5.5. Configuring a GemFire Region

A region is required to store and retrieve data from the cache. Region is an interface extending
java.util.Map and enables basic data access using familiar key-value semantics. The Region
interface is wired into classes that require it so the actual region type is decoupled from the
programming model . Typically each region is associated with one domain object, similar to a table
in a relational database.

GemFire implements the following types of regions:

* Replicated - Data is replicated across all cache members that define the region. This provides
very high read performance but writes take longer to perform the replication.

» Partioned - Data is partitioned into buckets among cache members that define the region. This

19

provides high read and write performance and is suitable for very large data sets that are too
big for a single node.

* Local - Data only exists on the local node.

* Client - Technically a client region is a local region that acts as a proxy to a replicated or
partitioned region hosted on cache servers. It may hold data created or fetched locally.
Alternately, it can be empty. Local updates are synchronized to the cache server. Also, a client
region may subscribe to events in order to stay synchronized with changes originating from
remote processes that access the same region.

For more information about the various region types and their capabilities as well as configuration
options, please refer to the GemFire Developer’s Guide and community site.

5.5.1. Using an externally configured Region

For referencing Regions already configured through GemFire cache.xml file, use the lookup-region
element. Simply declare the target Region name with the ‘name" attribute; for example, to declare
a bean definition named region-bean for an existing region named Orders one can use the following
bean definition:

<gfe:lookup-region id="region-bean" name="Orders"/>
If the name is not specified, the bean’s id will be used. The example above becomes:

<!-- lookup for a region called 'Orders' -->
<gfe:lookup-region id="Orders"/>

NOTE If the Region does not exist, an initialization exception will be thrown. For
configuring new GemFire Regions, proceed to the appropriate sections below.

Note, in the previous examples, since no cache name was defined, the default naming convention

(gemfireCache) was used. Alternately, one can reference the cache bean through the cache-ref

attribute:

<gfe:cache id="cache"/>
<gfe:lookup-region id="region-bean" name="Orders" cache-ref="cache"/>

lookup-region provides a simple way of retrieving existing, pre-configured Regions without
exposing the Region semantics or setup infrastructure.

5.5.2. Auto Region Lookup

New, as of Spring Data GemFire 1.5, is the ability to "auto-lookup" all Regions defined in GemFire’s
native cache.xml file, and imported into Spring config using the " cache-xml-location" attribute on
the <gfe:cache> element in the GFE XML namespace.

20

http://gemfire.docs.pivotal.io/docs-gemfire/latest/developing/book_intro.html
http://www.pivotal.io/big-data/pivotal-gemfire

For instance, given a GemFire cache.xml file of...

<?xml version="1.0"7>
<IDOCTYPE cache PUBLIC "-//GemStone Systems, Inc.//GemFire Declarative Caching
7.0//EN"

"http://www.gemstone.com/dtd/cache7_0.dtd">
<cache>

<region name="Parent" refid="REPLICATE">

<region name="Child" refid="REPLICATE"/>

</region>

</cache>

A user may import the cache.xml file as follows...

<gfe:cache cache-xml-location="cache.xml"/>

A user can then use the <gfe:lookup-region> element (e.g. <gfe:lookup-region id="Parent"/>) to
reference specific GemFire Regions as beans in the Spring context, or the user may choose to
import all GemFire Regions defined in cache.xml with the new...

<gfe:auto-region-lookup/>

Spring Data GemFire will automatically create Spring beans referencing all GemFire Regions
defined in cache.xml that have not been explicitly added to the Spring context with <gfe:lookup-
region> bean declarations.

It is important to realize that Spring Data GemFire uses a Spring BeanPostProcessor to post process
the Cache after it is both created and initialized to determine the Regions defined in GemFire to add
as beans in the Spring context.

You may inject these "auto-looked-up" Regions like any other bean defined in the Spring context
with 1 exception; you may need to define a depends-on association with the ‘gemfireCache’ bean as
follows...

21

http://docs.spring.io/spring/docs/4.0.7.RELEASE/javadoc-api/org/springframework/beans/factory/config/BeanPostProcessor.html

package example;
import ...

(nappDaon)
("gemfireCache")
public class ApplicationDao extends DaoSupport {

(name = "Parent")
private Region<?, 7> parent;

(name = "/Parent/Child")
private Region<?, 7> child;

The above Java example is applicable when using the Spring context’s component-scan functionality.

If you are declaring your components using Spring XML, then you would do...
<bean class="example.ApplicationDao" depends-on="gemfireCache"/>

This ensures the GemFire Cache and all the Regions defined in cache.xml get created before any
components with auto-wire references when using the new <gfe:auto-region-lookup> element.

5.5.3. Configuring Regions

Spring Data GemFire provides comprehensive support for configuring any type of GemFire Region
via the following elements:

Local Region <local-region>

Replicated Region <replicated-region>

* Partitioned Region <partitioned-region>

Client Region <client-region>

For a comprehensive description of Region types please consult the GemFire product
documentation.

Common Region Attributes
The following table(s) list attributes available for various region types:

Table 1. Common Region Attributes

22

http://gemfire.docs.pivotal.io/docs-gemfire/latest/developing/region_options/region_types.html

Name

cache-ref

close

cloning-enabled

concurrency-
checks-enabled

data-policy

destroy

disk-store-ref

disk-synchronous

enable-gateway

hub-id

id

ignore-if-exists

ignore-jta

index-update-type

Values

GemFire Cache bean name

boolean, default:false (Note: The

default was true prior to 1.3.0)

boolean, default:false

boolean, default:true

See GemFire’s Data Policy

boolean, default:false
The name of a configured Disk
Store.

boolean, default:true

boolean, default:false

The name of the Gateway Hub.

Any valid bean name.

boolean, default:false

boolean, default:false

synchronous or asynchronous,
default:synchronous

Description

The name of the bean defining the
GemFire Cache (by default
'gemfireCache’).

Indicates whether the Region should
be closed at shutdown.

When true, the updates are applied to
a clone of the value and then the clone
is saved to the cache. When false, the
value is modified in place in the cache.

Determines whether members
perform checks to provide consistent
handling for concurrent or out-of-
order updates to distributed Regions.

The Region’s Data Policy. Note, not all
Data Policies are supported for every
Region type.

Indicates whether the Region should
be destroyed at shutdown.

A reference to a bean created via the
disk-store element.

Indicates whether Disk Store writes
are synchronous.

Indicates whether the Region will
synchronize entries over a WAN
Gateway.

This will automatically set enable-
gateway to true. If enable-gateway is
explicitly set to false, an exception will
be thrown.

Will also be the Region name by
default.

Ignores this bean definition
configuration if the Region already
exists in the GemFire Cache, resulting
in a lookup instead.

Indicates whether the Region
participates in JTA transactions.

Indicates whether indices will be
updated synchronously or
asynchronously on entry creation.

23

http://data-docs-samples.cfapps.io/docs-gemfire/821/javadocs/japi/index.html

Name

initial-capacity

key-constraint

load-factor

nhame

persistent

shorcut

statistics

template

value-constraint

Cache Listeners

Values

integer, default:16

Any valid, fully-qualified Java class
name.

float, default:.75

Any valid Region name.

boolean, default:false

*See http://data-docs-
samples.cfapps.io/docs-
gemfire/latest/javadocs/japi/com/gemst
one/gemfire/cache/RegionShortcut.ht
ml

boolean, default:false

The name of a Region Template.

Any valid, fully-qualified Java class
name.

Description

The initial memory allocation for
number of Region entries.

The expected key type.

Sets the initial parameters on the
underlying
java.util.ConcurrentHashMap used for
storing Region entries.

The name of the Region definition. If
not specified, it will assume the value
of the id attribute (the bean name).

Indicates whether the Region persists
entries to a Disk Store (disk).

The RegionShortcut for this Region.
Allows easy initialization of the region
based on pre-defined defaults.

Indicates whether the Region reports
statistics.

A reference to a bean created via one
of the *region-template elements.

The expected value type.

Cachelisteners are registered with a Region to handle Region events such as entries being created,
updated, destroyed, etc. A CachelListener can be any bean that implements the Cachelistener
interface. A Region may have multiple listeners, declared using the cache-listener element
enclosed in a *-region element.

In the example below, there are two (Cachelistener’s declared. The first references a top-level
named Spring bean; the second is an anonymous inner bean definition.

24

http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/cache/RegionShortcut.html
http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/cache/RegionShortcut.html
http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/cache/RegionShortcut.html
http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/cache/RegionShortcut.html
http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/cache/RegionShortcut.html
http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/cache/CacheListener.html

<gfe:replicated-region id="region-with-listeners">
<gfe:cache-listener>
<!-- nested cache listener reference -->
<ref bean="c-listener"/>
<!-- nested cache listener declaration -->
<bean class="some.pkg.AnotherSimpleCacheListener"/>
</gfe:cache-listener>

<bean id="c-listener" class="some.pkg.SimpleCacheListener"/>
</gfe:replicated-region>

The following example uses an alternate form of the cache-listener element with a ref attribute.
This allows for more concise configuration for a single cache listener. Note that the namespace only
allows a single cache-listener element so either the style above or below must be used.

Using ref and a nested declaration in a cache-listener, or similar element, is
WARNING illegal. The two options are mutually exclusive and using both on the same
element will result in an exception.

<beans>
<gfe:replicated-region id="region-with-one listener">
<gfe:cache-listener ref="c-listener"/>
</gfe:replicated-region>

<bean id="c-listener" class="some.pkg.SimpleCachelistener"/>
</beans>

Bean Reference Conventions

The cache-listener element is an example of a common pattern used in the
namespace anywhere GemFire provides a callback interface to be implemented in
order to invoke custom code in response to Cache or Region events. Using Spring’s
IoC container, the implementation is a standard Spring bean. In order to simplify

NOTE the configuration, the schema allows a single occurrence of the cache-listener
element, but it may contain nested bean references and inner bean definitions in
any combination if multiple instances are permitted. The convention is to use the
singular form (i.e., cache-listener vs cache-listeners) reflecting that the most
common scenario will in fact be a single instance. We have already seen examples
of this pattern in the advanced cache configuration example.

Cache Loaders and Cache Writers

Similar to cache-listener, the namespace provides cache-loader and cache-writer elements to
register these respective components for a Region. A CachelLoader is invoked on a cache miss to
allow an entry to be loaded from an external data source, a database for example. A Cacheliriter is
invoked before an entry is created or updated, intended for synchronizing to an external data
source. The difference is GemFire only supports at most a single instance of each for each Region.

25

However, either declaration style may be used.

See Cacheloader and CacheWriter for more details.

Subregions

In Release 1.2.0, Spring Data GemkFire added support for subregions, allowing regions to be
arranged in a hierarchical relationship. For example, GemFire allows for a /Customer/Address
region and a different /Employee/Address region. Additionally, a subregion may have it’'s own
subregions and its own configuration. A subregion does not inherit attributes from the parent
region. Regions types may be mixed and matched subject to GemFire constraints. A subregion is
naturally declared as a child element of a region. The subregion’s name attribute is the simple
name. The above example might be configured as: [source,nonxml]

<beans>

<gfe:replicated-region name="Customer">
<gfe:replicated-region name="Address"/>
</gfe:replicated-region>

<gfe:replicated-region name="Employee">
<gfe:replicated-region name="Address"/>
</gfe:replicated-region>

</beans>

Note that the Monospaced ([id]) attribute is not permitted for a subregion. The subregions will be
created with bean names /Customer/Address and /Employee/Address, respectively. So they may
be injected using the full path name into other beans that use them, such as GemfireTemplate. The
full path should also be used in OQL query strings.

5.5.4. Region Templates

Also new as of Spring Data GemFire 1.5 is Region Templates. This feature allows developers to
define common Region configuration settings and attributes once and reuse the configuration
among many Region bean definitions declared in the Spring context.

Spring Data GemFire introduces 5 new tags to the SDG XML namespace (XSD):

Table 2. Region Template Tags
Tag Name Description

<gfe:region-template> Defines common, generic Region attributes; extends regionType in
the SDG 1.5 XSD

<gfe:local-region-template> Defines common, 'Local' Region attributes; extends
localRegionType in the SDG 1.5 XSD

<gfe:partitioned-region- Defines common, 'PARTITION' Region attributes; extends
template> partitionedRegionType in the SDG 1.5 XSD

26

http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/cache/CacheLoader.html
http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/cache/CacheWriter.html

Tag Name Description

<gfe:replicated-region- Defines common, 'REPLICATE' Region attributes; extends
template> replicatedRegionType in the SDG 1.5 XSD

<gfe:client-region-template> Defines common, 'Client' Region attributes; extends
clientRegionType in the SDG 1.5 XSD

In addition to the new tags, <gfe:*-region> elements along with the <gfe:*-region-template>
elements have a template attribute used to define the Region Template from which to inherit the
Region configuration. Even Region templates may inherit from other Region Templates.

Here is an example of 1 possible configuration...

<gfe:async-event-queue id="AEQ" persistent="false" parallel="false" dispatcher-
threads="4">
<gfe:async-event-listener>
<bean class="example.Aeqlistener"/>
</gfe:async-event-listener>
</gfe:async-event-queue>

<gfe:region-template id="BaseRegionTemplate" cloning-enabled="true"
concurrency-checks-enabled="false" disk-synchronous="false"
ignore-jta="true" initial-capacity="51" key-constraint="java.lang.Long"
load-factor="0.85" persistent="false" statistics="true"
value-constraint="java.lang.String">
<gfe:cache-listener>
<bean class="example.CachelistenerOne"/>
<bean class="example.CachelistenerTwo"/>
</gfe:cache-listener>
<gfe:entry-ttl timeout="300" action="INVALIDATE"/>
<gfe:entry-tti timeout="600" action="DESTROY"/>
</gfe:region-template>

<gfe:region-template id="ExtendedRegionTemplate" template="BaseRegionTemplate"
index-update-type="asynchronous" cloning-enabled="false"
concurrency-checks-enabled="true" key-constraint="java.lang.Integer"
load-factor="0.55">
<gfe:cache-loader>
<bean class="example.CachelLoader"/>
</gfe:cache-loader>
<gfe:cache-writer>
<bean class="example.CacheWriter"/>
</gfe:cache-writer>
<gfe:membership-attributes required-roles="readWriteNode" loss-action="limited-
access" resumption-action="none"/>
<gfe:async-event-queue-ref bean="AEQ"/>
</gfe:region-template>

<gfe:partitioned-region-template id="PartitionRegionTemplate" template=
"ExtendedRegionTemplate”

27

copies="1" local-max-memory="1024" total-max-memory="16384" recovery-delay="60000"
startup-recovery-delay="15000" enable-async-conflation="false"
enable-subscription-conflation="true" load-factor="0.70"
value-constraint="java.lang.Object">

<gfe:partition-resolver>
<bean class="example.PartitionResolver"/>

</gfe:partition-resolver>

<gfe:eviction type="ENTRY_COUNT" threshold="8192000" action="OVERFLOW_TO_DISK"/>

</gfe:partitioned-region-template>

<gfe:partitioned-region id="TemplateBasedPartitionRegion" template=
"PartitionRegionTemplate”
copies="2" local-max-memory="8192" total-buckets="91" disk-synchronous="true"
enable-async-conflation="true" ignore-jta="false" key-constraint="java.util.Date"
persistent="true">
<gfe:cache-writer>
<bean class="example.CacheWriter"/>
</gfe:cache-writer>
<gfe:membership-attributes required-roles="admin,root" loss-action="no-access"
resumption-action="reinitialize"/>
<gfe:partition-listener>
<bean class="example.PartitionListener"/>
</gfe:partition-listener>
<gfe:subscription type="ALL"/>
</gfe:partitioned-region>

Region Templates will even work for Subregions. Notice that 'TemplateBasedPartitionRegion'
extends 'PartitionRegionTemplate’ which extends 'ExtendedRegionTemplate’ which extends
'BaseRegionTemplate'. Attributes and sub-elements defined in subsequent, inherited Region bean
definitions override what is in the parent.

Under-the-hood...

Spring Data GemFire applies Region Templates when the Spring application context configuration
meta-data is parsed, and therefore, must be declared in the order of inheritance, in other words,
parent templates before children. This ensures the proper configuration is applied, especially
when element attributes or sub-elements are "overridden".

It is equally important to remember the Region types must only inherit from
IMPORTANT other similar typed Regions. For instance, it is not possible for a
<gfe:replicated-region> to inherit from a <gfe:partitioned-region-template>.

NOTE Region Templates are single-inheritance.

5.5.5. A Word of Caution on Regions, Subregions and Lookups

Prior to Spring Data GemFire 1.4, one of the underlying properties of the high-level replicated-
region, partitioned-region, local-region and client-region elements in Spring Data GemFire’s XML
namespace, which correspond to GemFire’s Region types based on Data Policy, is that these

28

elements perform a lookup first before attempting to create the region. This is done in case the
region already exists, which might be the case if the region was defined in GemFire’s native
configuration, e.g. cache.xml, thereby avoiding any errors. This was by design, though subject to
change.

The Spring team highly recommends that the replicated-region, partitioned-
region, local-region and client-region elements be strictly used only for
defining new regions. One of the problems with these elements doing a lookup
first is, if the developer assumed that defining a bean definition for a

WARNING REPLICATE region would create a new region, however, consequently a region
with the same name already exists having different semantics for eviction,
expiration, subscription and/or other attributes, this could adversely affect
application logic and/or expectations thereby violating application
requirements.

Recommended Practice - Only use the replicated-region, partitioned-region,
IMPORTANT local-region and client-region XML namespace elements for defining new
regions.

However, because the high-level region elements perform a lookup first, this can cause problems
for dependency injected region resources to application code, like DAOs or Repositories.

Take for instance the following native GemFire configuration file (e.g. cachel.xml)...

<?xml version="1.0" encoding="UTF-8"7>
<IDOCTYPE cache PUBLIC "-//GemStone Systems, Inc.//GemFire Declarative Caching
7.0//EN"
"http://www.gemstone.com/dtd/cache7_0.dtd">
<cache>
<region name="Customers" refid="REPLICATE">
<region name="Accounts" refid="REPLICATE">
<region name="Orders" refid="REPLICATE">
<region name="Items" refid="REPLICATE"/>
</region>
</region>
</region>
</cache>

Also, consider that you might have defined a DAO as follows...

public class CustomerAccountDao extends GemDaoSupport {

(name = "Customers/Accounts")
private Region customersAccounts;

29

Here, we are injecting a reference to the Customers/Accounts GemFire Region in our DAO. As such, it
is not uncommon for a developer to define beans for all or some of these regions in Spring XML
configuration meta-data as follows...

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:gfe="http://www.springframework.org/schema/gemfire"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/gemfire
http://www.springframework.org/schema/gemfire/spring-gemfire.xsd">

<gfe:cache cache-xml-location="classpath:cache.xml"/>

<gfe:lookup-region name="Customers/Accounts"/>
<gfe:lookup-region name="Customers/Accounts/Orders"/>
</beans>

Here the Customers/Accounts and Customers/Accounts/Orders GemFire Regions are referenced as
beans in the Spring context as "Customers/Accounts" and "Customers/Accounts/Orders",
respectively. The nice thing about using the lookup-region element and the corresponding syntax
above is that it allows a developer to reference a subregion directly without unnecessarily defining
a bean for the parent region (e.g. Customers).

However, if now the developer changes his/her configuration meta-data syntax to using the nested
format, like so...

<gfe:lookup-region name="Customers">
<gfe:lookup-region name="Accounts">
<gfe:lookup-region name="Orders"/>
</gfe:lookup-region>
</gfe:lookup-region>

Or, perhaps the developer erroneously chooses to use the high-level replicated-region element,
which will do a lookup first, as in...

<gfe:replicated-region name="Customers" persistent="true">
<gfe:replicated-region name="Accounts" persistent="true">
<gfe:replicated-region name="Orders" persistent="true"/>
</gfe:replicated-region>
</gfe:replicated-region>

Then the region beans defined in the Spring context will consist of the following: { "Customers",
"/Customers/Accounts”, "/Customers/Accounts/Orders" }. This means the dependency injected
reference (i.e. @Resource(name = "Customers/Accounts")) is now broken since no bean with name

30

"Customers/Accounts" is defined.

GemFire is flexible in referencing both parent regions and subregions. The parent can be
referenced as "/Customers" or "Customers" and the child as "/Customers/Accounts” or just
"Customers/Accounts". However, Spring Data GemFire is very specific when it comes to naming
beans after regions, typically always using the forward slash (/) to represents subregions (e.g.
"/Customers/Accounts”).

Therefore, it is recommended that users use either the nested lookup-region syntax as illustrated
above, or define direct references with a leading forward slash (/) like so...

<gfe:lookup-region name="/Customers/Accounts"/>
<gfe:lookup-region name="/Customers/Accounts/Orders"/>

The example above where the nested replicated-region elements were used to reference the
subregions serves to illustrate the problem stated earlier. Are the Customers, Accounts and Orders
Regions/Subregions persistent or not? Not, since the regions were defined in native GemFire
configuration (i.e. cache.xml) and will exist by the time the cache is initialized, or once the
<gfe:cache> bean is created. Since the high-level region XML namespace abstractions, like
replicated-region, perform the lookup first, it uses the regions as defined in the cache.xml
configuration file.

5.5.6. Data Persistence

Regions can be made persistent. GemFire ensures that all the data you put into a region that is
configured for persistence will be written to disk in a way that it can be recovered the next time
you create the region. This allows data to be recovered after a machine or process failure or after
an orderly shutdown and restart of GemFire.

To enable persistence with Spring Data GemFire, simply set the persistent attribute to true:

<gfe:partitioned-region id="persitent-partition" persistent="true"/>

Persistence for partitioned regions is supported from GemFire 6.5 onwards -
IMPORTANT configuring this option on a previous release will trigger an initialization
exception.

Persistence may also be configured using the data-policy attribute, set to one of GemFire’s data
policy settings. For instance...

<gfe:partitioned-region id="persitent-partition" data-policy="PERSISTENT_PARTITION"/>

The data policy must match the region type and must also agree with the persistent attribute if
explicitly set. An initialization exception will be thrown if, for instance, the persistent attribute is
set to false, yet a persistent data policy was specified.

31

http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/cache/DataPolicy.html
http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/cache/DataPolicy.html

When persisting regions, it is recommended to configure the storage through the disk-store
element for maximum efficiency. The diskstore is referenced using the disk-store-ref attribute.
Additionally, the region may perform disk writes synchronously or asynchronously:

<gfe:partitioned-region id="persitent-partition" persistent="true" disk-store-ref=
"myDiskStore" disk-synchronous="true"/>

This is discussed further in Configuring a Disk Store

5.5.7. Subscription Interest Policy

GemFire allows configuration of subscriptions to control peer to peer event handling. Spring Data
GemFire provides a <gfe:subscription/> to set the interest policy on replicated and partitioned
regions to either ALL or CACHE_CONTENT.

<gfe:partitioned-region id="subscription-partition">
<gfe:subscription type="CACHE_CONTENT"/>
</gfe:partitioned-region>

5.5.8. Data Eviction and Overflowing

Based on various constraints, each region can have an eviction policy in place for evicting data
from memory. Currently, in GemFire, eviction applies to the least recently used entry (also known
as LRU). Evicted entries are either destroyed or paged to disk (also known as overflow).

Spring Data GemFire supports all eviction policies (entry count, memory and heap usage) for both
partitioned-region and replicated-region as well as client-region, through the nested eviction
element. For example, to configure a partition to overflow to disk if its size is more then 512 MB,
one could use the following configuration:

<gfe:partitioned-region id="overflow-partition">
<gfe:eviction type="MEMORY_SIZE" threshold="512" action="OVERFLOW_TO_DISK"/>
</gfe:partitioned-region>

Replicas cannot use a local destroy eviction since that would invalidate

IMPORTANT . . .
them. See the GemFire docs for more information.

When configuring regions for overflow, it is recommended to configure the storage through the
disk-store element for maximum efficiency.

For a detailed description of eviction policies, see the GemFire documentation (such as this page).

5.5.9. Data Expiration

GemFire allows you to control how long entries exist in the cache. Expiration is driven by elapsed
time, as opposed to Eviction, which is driven by memory usage. Once an entry expires it may no

32

http://gemfire.docs.pivotal.io/docs-gemfire/latest/developing/events/configure_p2p_event_messaging.html
http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used
http://gemfire.docs.pivotal.io/docs-gemfire/latest/developing/eviction/how_eviction_works.html

longer be accessed from the cache.
GemFire supports the following Expiration types:

* Time-to-Live (TTL) - The amount of time, in seconds, the object may remain in the cache after
the last creation or update. For entries, the counter is set to zero for create and put operations.
Region counters are reset when the Region is created and when an entry has its counter reset.

* Idle Timeout (TTI) - The amount of time, in seconds, the object may remain in the cache after
the last access. The Idle Timeout counter for an object is reset any time its TTL counter is reset.
In addition, an entry’s Idle Timeout counter is reset any time the entry is accessed through a get
operation or a netSearch . The Idle Timeout counter for a Region is reset whenever the Idle
Timeout is reset for one of its entries.

Each of these may be applied to the Region itself or entries in the Region. Spring Data GemFire
provides <region-ttl>, <region-tti>, <entry-ttl> and <entry-tti> Region child elements to specify
timeout values and expiration actions.

5.5.10. Annotation-based Data Expiration

As of Spring Data GemFire 1.7, a developer now has the ability to define Expiration policies and
settings on individual Region Entry values, or rather, application domain objects directly. For
instance, a developer might define Expiration settings on a Session-based application domain object
like so...

(timeout = "1800", action = "INVALIDATE")
public static class SessionBasedApplicationDomainObject {

}

In addition, a developer may also specify Expiration type specific settings on Region Entries using
@IdleTimeoutExpiration and @TimeTolLiveExpiration for Idle Timeout (TTI) and Time-to-Live (TTL)
Expiration, respectively...

(timeout = "3600", action = "LOCAL_DESTROY")
(timeout = "1800", action = "LOCAL INVALIDATE")
(timeout = "1800", action = "INVALIDATE")
public static class AnotherSessionBasedApplicationDomainObject {

}

Both @IdleTimeoutExpiration and @TimeTolLiveExpiration take precedence over the generic
@Expiration annotation when more than one Expiration annotation type is specified, as shown
above. Though, neither @IdleTimeoutExpiration nor @TimeTolLiveExpiration overrides the other;
rather they may compliment each other when different Region Entry Expiration types, such as TTL
and TTI, are configured.

33

All @Expiration-based annotations apply only to Region Entry values. Expiration
for a "Region" is not covered by Spring Data GemkFire’s Expiration annotation
support. However, GemFire and Spring Data GemFire do allow you to set Region
Expiration using the SDG XML namespace, like so...

NOTE
<gfe:*-region id="Example" persistent="false">
<gfe:region-ttl timeout="600" action="DESTROY"/>
<gfe:region-tti timeout="300" action="INVALIDATE"/>
</gfe:*-region>

Spring Data GemFire’s @Expiration annotation support is implemented with GemFire’s
CustomExpiry interface. See GemFire’s User Guide for more details

The Spring Data GemFire AnnotationBasedExpiration class (and CustomExpiry implementation) is
specifically responsible for processing the SDG @Expiration annotations and applying the
Expiration policy and settings appropriately for Region Entry Expiration on request.

To use Spring Data GemFire to configure specific GemFire Regions to appropriately apply the
Expiration policy and settings applied to your application domain objects annotated with
@Expiration-based annotations, you must...

1. Define a Spring bean in the Spring ApplicationContext of type AnnotationBasedExpiration using
the appropriate constructor or one of the convenient factory methods. When configuring
Expiration for a specific Expiration type, such as Idle Timeout or Time-to-Live, then you should
use one of the factory methods of the AnnotationBasedExpiration class, like so...

<bean id="ttlExpiration" class=
"org.springframework.data.gemfire.support.AnnotationBasedExpiration”
factory-method="forTimeToLive"/>

<gfe:partitioned-region id="Example" persistent="false">
<gfe:custom-entry-ttl ref="ttlExpiration"/>
</gfe:partitioned-region>

To configure Idle Timeout (TTI) Expiration instead, then you would of course use
NOTE the forIdleTimeout factory method along with the <gfe:custom-entry-tti
ref="ttiExpiration"/> element to set TTL.

2. (optional) Annotate your application domain objects that will be stored in the Region with
Expiration policies and custom settings using one of Spring Data GemFire’s @Expiration
annotations: @Expiration, @IdleTimeoutExpiration and/or @TimeToLiveExpiration

3. (optional) In cases where particular application domain objects have not been annotated with
Spring Data GemFire’s @Expiration annotations at all, but the GemFire Region is configured to
use SDG’s custom AnnotationBasedExpiration class to determine the Expiration policy and
settings for objects stored in the Region, then it is possible to set "default” Expiration attributes
on the AnnotationBasedExpiration bean by doing the following...

34

http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/cache/CustomExpiry.html
http://gemfire.docs.pivotal.io/docs-gemfire/latest/developing/expiration/configuring_data_expiration.html

<bean id="defaultExpirationAttributes" class=
"com.gemstone.gemfire.cache.ExpirationAttributes">

<constructor-arg value="600"/>

<constructor-arg value="#{T(com.gemstone.gemfire.cache.ExpirationAction).DESTROY}
"s
</bean>

<bean id="ttiExpiration" class=
"org.springframework.data.gemfire.support.AnnotationBasedExpiration”
factory-method="forIdleTimeout">
<constructor-arg ref="defaultExpirationAttributes"/>
</bean>

<gfe:partitioned-region id="Example" persistent="false">
<gfe:custom-entry-tti ref="ttikxpiration"/>
</gfe:partitioned-region>

You may have noticed that the Spring Data GemFire’s @Expiration annotations use String as the
attributes type, rather than and perhaps more appropriately being strongly typed, i.e. int for
'timeout' and SDG’S ExpirationActionType for 'action'. Why is that?

Well, enter one of Spring Data GemFire’s other features, leveraging Spring’s core infrastructure for
configuration convenience: Property Placeholders and Spring Expression Language (SpEL).

For instance, a developer can specify both the Expiration 'timeout' and 'action' using Property
Placeholders in the @Expiration annotation attributes...

@TimeTolLiveExpiration(timeout = "${gemfire.region.entry.expiration.ttl.timeout}"
action = "${gemfire.region.entry.expiration.ttl.action}")

public class ExampleApplicationDomainObject {

}

Then, in your Spring context XML or in JavaConfig, you would declare the following beans...

<util:properties id="expirationSettings">
<prop key="gemfire.region.entry.expiration.ttl.timeout">600</prop>
<prop key="gemfire.region.entry.expiration.ttl.action">INVALIDATE</prop>

</util:properties>

<context:property-placeholder properties-ref="expirationProperties"/>

This is both convenient when multiple application domain objects might share similar Expiration
policies and settings, or when you wish to externalize the configuration.

However, a developer may want more dynamic Expiration configuration determined by the state of
the running system. This is where the power of SpEL comes in and is the recommended approach.

35

Not only can you refer to beans in the Spring context and access bean properties, invoke methods,
etc, the values for Expiration 'timeout' and 'action’' can be strongly typed. For example (building on
the example above)...

<util:properties id="expirationSettings">

<prop key="gemfire.region.entry.expiration.ttl.timeout">600</prop>

<prop key="gemfire.region.entry.expiration.ttl.action"
>#{T(org.springframework.data.gemfire.ExpirationActionType).DESTROY}</prop>

<prop key="gemfire.region.entry.expiration.tti.action"
>#{T(com.gemstone.gemfire.cache.ExpirationAction).INVALIDATE}</prop>

</util:properties>

<context:property-placeholder properties-ref="expirationProperties"/>
Then, on your application domain object...

(timeout =
"@expirationSettings['gemfire.region.entry.expiration.ttl.timeout"]"
action = "@expirationSetting['gemfire.region.entry.expiration.ttl.action"']")
public class ExampleApplicationDomainObject {
}

You can imagine that the 'expirationSettings' bean could be a more interesting and useful object
rather than a simple instance of java.util.Properties. In this example, even the Properties
(‘expirationSettings') using using SpEL to based the action value on the actual Expiration action
enumerated types leading to more quickly identified failures if the types ever change.

All of this has been demonstrated and tested in the Spring Data GemFire test suite, by way of
example. See the source for further details.

5.5.11. Local Region

Spring Data GemFire offers a dedicated local-region element for creating local regions. Local
regions, as the name implies, are standalone meaning they do not share data with any other
distributed system member. Other than that, all common region configuration options are
supported. A minimal declaration looks as follows (again, the example relies on the Spring Data
GemFire namespace naming conventions to wire the cache):

<gfe:local-region id="myLocalRegion" />

Here, a local region is created (if one doesn’t exist already). The name of the region is the same as
the bean id (myLocalRegion) and the bean assumes the existence of a GemFire cache named
gemfireCache.

36

https://github.com/spring-projects/spring-data-gemfire

5.5.12. Replicated Region

One of the common region types is a replicated region or replica. In short, when a region is
configured to be a replicated region, every member that hosts that region stores a copy of the
region’s entries locally. Any update to a replicated region is distributed to all copies of the region.
When a replica is created, it goes through an initialization stage in which it discovers other replicas
and automatically copies all the entries. While one replica is initializing you can still continue to
use the other replica.

Spring Data GemFire offers a replicated-region element. A minimal declaration looks as follows. All
common configuration options are available for replicated regions.

<gfe:replicated-region id="simpleReplica" />

5.5.13. Partitioned Region

Another region type supported out of the box by the Spring Data GemFire namespace is the
partitioned region. To quote the GemFire docs:

"A partitioned region is a region where data is divided between peer servers hosting the region so
that each peer stores a subset of the data. When using a partitioned region, applications are
presented with a logical view of the region that looks like a single map containing all of the data in
the region. Reads or writes to this map are transparently routed to the peer that hosts the entry that
is the target of the operation. [...] GemFire divides the domain of hashcodes into buckets. Each
bucket is assigned to a specific peer, but may be relocated at any time to another peer in order to
improve the utilization of resources across the cluster.”

A partition is created using the partitioned-region element. Its configuration options are similar to
that of the replicated-region plus the partion specific features such as the number of redundant
copies, total maximum memory, number of buckets, partition resolver and so on. Below is a quick
example on setting up a partition region with 2 redundant copies:

<!-- bean definition named 'distributed-partition' backed by a region named
'redundant’ with 2 copies
and a nested resolver declaration -->
<gfe:partitioned-region id="distributed-partition" copies="2" total-buckets="4" name=
"redundant">

<gfe:partition-resolver>

<bean class="some.pkg.SimplePartitionResolver"/>

</gfe:partition-resolver>

</gfe:partitioned-region>

partitioned-region Options

The following table offers a quick overview of configuration options specific to partitioned regions.
These are in addition to the common region configuration options described above.

Table 3. partitioned-region options

37

Name Values

partition-resolver bean name

partition-listener bean name

copies 0.4

colocated-with valid region name

local-max-memory positive integer

total-max-memory any integer value

recovery-delay any long value

startup-recovery- any long value
delay

5.5.14. Client Region

Description

The name of the partitioned resolver
used by this region, for custom
partitioning.

The name of the partitioned listener
used by this region, for handling
partition events.

The number of copies for each
partition for high-availability. By
default, no copies are created meaning
there is no redundancy. Each copy
provides extra backup at the expense
of extra storage.

The name of the partitioned region
with which this newly created
partitioned region is colocated.

The maximum amount of memory, in
megabytes, to be used by the region in
this process.

The maximum amount of memory, in
megabytes, to be used by the region in
all processes.

The delay in milliseconds that existing
members will wait before satisfying
redundancy after another member
crashes. -1 (the default) indicates that
redundancy will not be recovered
after a failure.

The delay in milliseconds that new
members will wait before satisfying
redundancy. -1 indicates that adding
new members will not trigger
redundancy recovery. The default is to
recover redundancy immediately
when a new member is added.

GemFire supports various deployment topologies for managing and distributing data. The topic is
outside the scope of this documentation however to quickly recap, they can be classified in short in:
peer-to-peer (p2p), client-server, and wide area cache network (or WAN). In the last two scenarios,
it is common to declare client regions which connect to a cache server. Spring Data GemFire offers
dedicated support for such configuration through Configuring a GemFire Client Cache, client-
region and pool elements. As the names imply, the former defines a client region while the latter
defines connection pools to be used/shared by the various client regions.

38

Below is a typical client region configuration:

<!-- client region using the default client-cache pool -->
<gfe:client-region id="simple">

<gfe:cache-listener ref="c-listener"/>
</gfe:client-region>

<!-- region using its own dedicated pool -->
<gfe:client-region id="complex" pool-name="gemfire-pool">

<gfe:cache-listener ref="c-listener"/>
</gfe:client-region>

<bean id="c-listener" class="some.pkg.SimpleCachelistener"/>

<!-- pool declaration -->

<gfe:pool id="gemfire-pool" subscription-enabled="true">
<gfe:locator host="someHost" port="40403"/>

</gfe:pool>

As with the other region types, client-region supports Cachelistener''s as well as a single
Cacheloader or Cacheliriter. It also requires a connection pool for connecting to a server. Each client
can have its own pool or they can share the same one.

In the above example, the pool is configured with a locator. The locator is a separate
process used to discover cache servers in the distributed system and are
recommended for production systems. It is also possible to configure the pool to
connect directly to one or more cache servers using the server element.

NOTE

For a full list of options to set on the client and especially on the pool, please refer to the Spring
Data GemFire schema (Spring Data GemFire Schema) and the GemFire documentation.

Client Interests

To minimize network traffic, each client can define its own 'interest’, pointing out to GemFire, the
data it actually needs. In Spring Data GemFire, interests can be defined for each client, both key-
based and regular-expression-based types being supported; for example:

<gfe:client-region id="complex" pool-name="gemfire-pool">
<gfe:key-interest durable="true" result-policy="KEYS">
<bean id="key" class="java.lang.String">
<constructor-arg value="someKey" />
</bean>
</gfe:key-interest>
<gfe:regex-interest pattern=".*" receive-values="false"/>
</gfe:client-region>

A special key ALL_KEYS means interest is registered for all keys (identical to a regex interest of .*).
The receive-values attribute indicates whether or not the values are received for create and update

39

events. If true, values are received; if false, only invalidation events are received - refer to the
GemTFire documentation for more details.

5.5.15. JSON Support

Gemfire 7.0 introduced support for caching JSON documents with OQL query support. These are
stored internally as PdxInstance types using the JSONFormatter to perform conversion to and from
JSON strings. Spring Data GemFire provides a <gfe-data:json-region-autoproxy/> tag to enable a
AOP with Spring component to advise appropriate region operations, effectively encapsulating the
JSONFormatter, allowing your application to work directly with JSON strings. In addition, Java
objects written to JSON configured regions will be automatically converted to JSON using the
Jackson ObjectMapper. Reading these values will return a JSON string.

By default, <gfe-data:json-region-autoproxy/> will perform the conversion on all regions. To apply
this feature to selected regions, provide a comma delimited list of their ids via the region-refs
attribute. Other attributes include a pretty-print flag (false by default) and convert-returned-
collections. By default the results of region operations getAll() and values() will be converted for
configured regions. This is done by creating a parallel structure in local memory. This can incur
significant overhead for large collections. Set this flag to false to disable automatic conversion for
these operation. NOTE: Certain region operations, specifically those that use GemFire’s proprietary
Region.Entry such as entries(boolean), entrySet(boolean) and getEntry() type are not targeted for
AQP advice. In addition, the entrySet() method which returns a Set<java.util. Map.Entry<?,?>> is not
affected.

<gfe-data:json-region-autoproxy pretty-print="true" region-refs="myJsonRegion"
convert-returned-collections="true"/>

This feature also works with seamlessly with GemfireTemplate operations, provided that the
template is declared as a Spring bean. Currently native QueryService operations are not supported.

5.6. Creating an Index

GemFire allows the creation of indexes (or indices) to improve the performance of (common)
queries. Spring Data GemFire allows indices to be declared through the index element:

<gfe:index id="myIndex" expression="someField" from="/someRegion"/>

Before creating an Index, Spring Data GemFire will verify whether an Index with the same name
already exists. If an Index with the same name does exist, by default, SDG will "override" the
existing Index by removing the old Index first followed by creating a new Index with the same
name based on the new definition, regardless if the old definition was the same or not. To prevent
the named Index definition change, especially when the old and new Index definitions may not
match, set the override property to false, which effectively returns the existing Index definition by
name.

Note that index declarations are not bound to a Region but rather are top-level elements (just like

40

http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/pdx/PdxInstance.html
http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/pdx/JSONFormatter.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#aop-introduction

gfe:cache). This allows one to declare any number of indices on any Region whether they are just
created or already exist - an improvement over GemFire’s native cache.xml. By default, the index
relies on the default cache declaration but one can customize it accordingly or use a pool (if need
be) - see the namespace schema for the full set of options.

5.7. Configuring a Disk Store

As of Release 1.2.0, Spring Data GemFire supports disk store configuration via a top level disk-store
element.

Prior to Release 1.2.0, disk-store was a child element of *-region. If you have
regions configured with disk storage using a prior release of Spring Data GemFire

NOTE and want to upgrade to the latest release, move the disk-store element to the top
level, assign an id and use the region’s disk-store-ref attribute. Also, disk-
synchronous is now a region level attribute.

<gfe:disk-store id="diskStore1" queue-size="50@" auto-compact="true"
max-oplog-size="10" time-interval="9999">
<gfe:disk-dir location="/gemfire/store1/" max-size="20"/>
<gfe:disk-dir location="/gemfire/store2/" max-size="20"/>
</gfe:disk-store>

Disk stores are used by regions for file system persistent backup or overflow storage of evicted
entries, and persistent backup of WAN gateways. Note that multiple components may share the
same disk store. Also multiple directories may be defined for a single disk store. Please refer to the
GemFire documentation for an explanation of the configuration options.

5.8. Using the GemFire Snapshot Service

Spring Data GemFire supports Cache and Region snapshots using GemFire’s Snapshot Service. The
out-of-the-box Snapshot Service support offers several convenient features to simply the use of
GemFire’s Cache and Region Snapshot Service APIs.

As GemFire documentation describes, snapshots allow you to save and subsequently reload the
data later, which can be useful for moving data between environments, say from production to a
staging or test environment in order to reproduce data-related issues in a controlled context. You
can imagine combining Spring Data GemFire’s Snapshot Service support with Spring’s bean
definition profiles to load snapshot data specific to the environment as necessary.

Spring Data GemFire’s support for GemFire’s Snapshot Service begins with the <gfe-data:snapshot-
service> element from the GFE Data Access Namespace. For example, I might define Cache-wide
snapshots to be loaded as well as saved with a couple snapshot imports and a single data export
definition as follows:

41

http://gemfire81.docs.pivotal.io/latest/userguide/index.html#managing/cache_snapshots/chapter_overview.html
http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/cache/snapshot/CacheSnapshotService.html
http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/cache/snapshot/RegionSnapshotService.html
http://gemfire.docs.pivotal.io/docs-gemfire/latest/managing/cache_snapshots/chapter_overview.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#beans-definition-profiles
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#beans-definition-profiles

<gfe-data:snapshot-service id="gemfireCacheSnapshotService">
<gfe-data:snapshot-import location=

"/absolute/filesystem/path/to/import/fileOne.snapshot"/>
<gfe-data:snapshot-import location=

"relative/filesystem/path/to/import/fileTwo.snapshot"/>
<gfe-data:snapshot-export

location="/absolute/or/relative/filesystem/path/to/export/directory"/>
</gfe-data:snapshot-service>

You can define as many imports and/or exports as you like. You can define just imports or just
exports. The file locations and directory paths can be absolute, or relative to the Spring Data
GemFire application JVM process’s working directory.

This is a pretty simple example and the snapshot service defined in this case refers to the GemFire
Cache, having a default name of gemfireCache (as described in Configuring a GemFire Cache). If you
name your cache bean definition something different, than you can use the cache-ref attribute to
refer to the cache bean by name:

<gfe:cache id="myCache"/>
<gfe-data:snapshot-service id="mySnapshotService" cache-ref="myCache">

</gfe-data:snapshot-service>

It is also straightforward to define a snapshot service for a GemFire Region by specifying the
region-ref attribute:

<gfe:partitioned-region id="Example" persistent="false" .../>

<gfe-data:snapshot-service id="gemfireCacheRegionSnapshotService" region-ref="Example
||>
<gfe-data:snapshot-import location="relative/path/to/import/example.snapshot/>
<gfe-data:snapshot-export location="/path/to/export/example.snapshot/>
</gfe-data:snapshot-service>

When the region-ref attribute is specified the Spring Data GemFire SnapshotServiceFactoryBean
resolves the region-ref attribute to a Region bean defined in the Spring context and then proceeds
to create a RegionSnapshotService. Again, the snapshot import and export definitions function the
same way, however, the location must refer to a file on export.

GemFire is strict about imported snapshot files actually existing before they are

NOTE referenced. For exports, GemFire will create the snapshot file if it does not already
exist. If the snapshot file for export already exists, the data will be overwritten.

42

http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/cache/snapshot/RegionSnapshotService.html

Spring Data GemFire includes a suppress-import-on-init attribute to the <gfe-
data:snapshot-service> element to suppress the configured snapshot service from

NOTE trying to import data into the Cache or a Region on initialization. This is useful when
data exported from 1 Region is used to feed the import of another Region, for
example.

5.8.1. Snapshot Location

For a (Cache-based SnapshotService (i.e. a GemFire CacheSnapshotService) a developer would
typically pass it a directory containing all the snapshot files to load rather than individual snapshot
files, as the overloaded load method in the CacheSnapshotService API indicates.

Of course, a developer may wuse the other, overloaded 1load(:File[],
NOTE :SnapshotFormat, :SnapshotOptions) method variant to get specific about which
snapshot files are to be loaded into the GemFire Cache.

However, Spring Data GemFire recognizes that a typical developer workflow might be to extract
and export data from one environment into several snapshot files, zip all of them up, and then
conveniently move the ZIP file to another environment for import.

As such, Spring Data GemFire enables the developer to specify a JAR or ZIP file on import for a
Cache-based SnapshotService as follows:

<gfe-data:snapshot-service id="cacheBasedSnapshotService" cache-ref="gemfireCache">
<gfe-data:snapshot-import location="/path/to/snapshots.zip"/>
</gfe-data:snapshot-service>

Spring Data GemFire will conveniently extract the provided ZIP file and treat it like a directory
import (load).

5.8.2. Snapshot Filters

The real power of defining multiple snapshot imports and exports is realized through the use of
snapshot filters. Snapshot filters implement GemFire’s SnapshotFilter interface and are used to
filter Region entries for inclusion into the Region on import and for inclusion into the snapshot on
export.

Spring Data GemFire makes it brain dead simple to utilize snapshot filters on import and export
using the filter-ref attribute or an anonymous, nested bean definition:

43

http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/cache/snapshot/CacheSnapshotService.html
http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/cache/snapshot/CacheSnapshotService.html#load(java.io.File,%20com.gemstone.gemfire.cache.snapshot.SnapshotOptions.SnapshotFormat)
http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/cache/snapshot/SnapshotFilter.html

In

to

<gfe:cache/>

<gfe:partitioned-region id="Admins" persistent="false"/>
<gfe:partitioned-region id="Guests" persistent="false"/>

<bean id="activeUsersFilter" class=
"org.example.app.gemfire.snapshot.filter.ActiveUsersFilter/>

<gfe-data:snapshot-service id="adminsSnapshotService" region-ref="Admins">
<gfe-data:snapshot-import location="/path/to/import/users.snapshot">
<bean class="org.example.app.gemfire.snapshot.filter.AdminsFilter/>
</gfe-data:snapshot-import>
<gfe-data:snapshot-export location="/path/to/export/active/admins.snapshot"
filter-ref="activeUsersFilter"/>
</gfe-data:snapshot-service>

<gfe-data:snapshot-service id="qguestsSnapshotService" region-ref="Guests">
<gfe-data:snapshot-import location="/path/to/import/users.snapshot">
<bean class="org.example.app.gemfire.snapshot.filter.GuestsFilter/>
</gfe-data:snapshot-import>
<gfe-data:snapshot-export location="/path/to/export/active/quests.snapshot”
filter-ref="activeUsersFilter"/>
</gfe-data:snapshot-service>

addition, more complex snapshot filters can be expressed with the ComposableSnapshotFilter
Spring Data GemFire class. This class implements GemFire’s SnapshotFilter interface as well as the
Composite software design pattern. In a nutshell, the Composite design pattern allows developers
compose multiple objects of the same type and treat the conglomerate as single instance of the

object type, a very powerful and useful abstraction to be sure.

The ComposableSnapshotFilter has two factory methods, 'and' and 'or', allowing developers to
logically combine individual snapshot filters using the AND and OR logical operators, respectively.

The factory methods just take a list of snapshot filters.

One is only limited by his/her imagination to leverage this powerful construct, for instance:

44

<bean id="activeUsersSinceFilter" class=
"org.springframework.data.gemfire.snapshot.filter.ComposableSnapshotFilter"
factory-method="and">
<constructor-arg index="0">
<list>
<bean class="org.example.app.gemfire.snapshot.filter.ActiveUsersFilter"/>
<bean class="org.example.app.gemfire.snapshot.filter.UsersSinceFilter"
p:since="2015-01-01"/>
</list>
</constructor-arg>
</bean>

http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/cache/snapshot/SnapshotFilter.html
https://en.wikipedia.org/wiki/Composite_pattern
https://en.wikipedia.org/wiki/Composite_pattern

You could then go onto combine the activesUsersSinceFilter with another filter using 'or' like so:

<bean id="covertOrActiveUsersSinceFilter" class=
"org.springframework.data.gemfire.snapshot.filter.ComposableSnapshotFilter"
factory-method="or">
<constructor-arg index="0">
<list>
<ref bean="activeUsersSinceFilter"/>
<bean class="org.example.app.gemfire.snapshot.filter.CovertUsersFilter"/>
</list>
</constructor-arg>
</bean>

5.8.3. Snapshot Events

By default, Spring Data GemFire uses GemFire’s Snapshot Services on startup to import data and
shutdown to export data. However, you may want to trigger periodic, event-based snapshots, for
either import or export from within your application.

For this purpose, Spring Data GemFire defines two additional Spring application events (extending
Spring’s ApplicationEvent class) for imports and exports, respectively:
ImportSnapshotApplicationEvent and ExportSnapshotApplicationEvent.

The two application events can be targeted at the entire GemFire Cache, or individual GemFire
Regions. The constructors of these ApplicationEvent classes accept an optional Region pathname
(e.g. "/Example") as well as 0 or more SnapshotMetadata instances.

The array of SnapshotMetadata is used to override the snapshot meta-data defined by <gfe-
data:snapshot-import> and <gfe-data:snapshot-export> sub-elements in XML, which will be used in
cases where snapshot application events do not explicitly provide SnapshotMetadata. Each
individual SnapshotMetadata instance can define it’s own location and filters properties.

Import/export snapshot application events are received by all snapshot service beans defined in the
Spring application context. However, import/export events are only processed by "matching"
snapshot service beans.

A Region-based [Import|Export]SnapshotApplicationEvent matches if the snapshot service bean
defined is a RegionSnapshotService and it’s Region reference (as determined by region-ref) matches
the Region’s pathname specified by the snapshot application event. A Cache-based
[Import|Export]SnapshotApplicationEvent (i.e. a snapshot application event without a Region
pathname) triggers all snapshot service beans, including any RegionSnapshotService beans, to
perform either an import or export, respectively.

It is very easy to use Spring’s ApplicationEventPublisher interface to fire import and/or export
snapshot application events from your application like so:

45

http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/ApplicationEvent.html
http://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/context/ApplicationEventPublisher.html

public class ExampleApplicationComponent {

private ApplicationEventPublisher eventPublisher;

(name = "Example")
private Region<?, 7> example;

public void someMethod() {

SnapshotFilter myFilter = ...;

SnapshotMetadata exportSnapshotMetadata = new SnapshotMetadata(new File(System
.getProperty("user.dir"),
"/path/to/export/data.snapshot"), myFilter, null);

eventPublisher.publishEvent(new ExportSnapshotApplicationEvent(this, example
.getFullPath(), exportSnapshotMetadata);

In this particular example, only the "/Example" Region’s SnapshotService bean will pick up and
handle the export event, saving the filtered "/Example" Region’s data to the "data.snapshot" file in a
sub-direcrtory of the application’s working directory.

Using Spring application events and messaging subsystem is a good way to keep your application
loosely coupled. It is also not difficult to imagine that the snapshot application events could be
fired on a periodic basis using Spring’s Scheduling services.

5.9. Configuring GemFire’s Function Service

As of Release 1.3.0, Spring Data GemFire provides annotation support for implementing and
registering functions. Spring Data GemFire also provides namespace support for registering
GemFire Functions for remote function execution. Please refer to the GemFire documentation for
more information on the function execution framework. Functions are declared as Spring beans
and must implement the com.gemstone.gemfire.cache.execute.Function interface or extend
com.gemstone.gemfire.cache.execute.FunctionAdapter. The namespace uses a familiar pattern to
declare functions:

46

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#scheduling-task-scheduler
http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/cache/execute/Function.html

<gfe:function-service>
<gfe:function>
<bean class="com.company.example.Function1"/>
<ref bean="function2"/>
</gfe:function>
</gfe:function-service>

<bean id="function2" class="com.company.example.Function2"/>

5.10. Configuring WAN Gateways

WAN gateways provide a way to synchronize GemFire distributed systems across geographic
distributed areas. As of Release 1.2.0, Spring Data GemFire provides namespace support for
configuring WAN gateways as illustrated in the following examples:

5.10.1. WAN Configuration in GemFire 7.0

GemFire 7.0 introduces new APIs for WAN configuration. While the original APIs provided in
GemFire 6 are still supported, it is recommended that you use the new APIs if you are using

GemFire 7.0. The Spring Data GemFire namespace supports either. In the example below,
GatewaySender's are configured for a partitioned region by adding child elements to the region

(‘gateway-sender and gateway-sender-ref). The GatewaySender may register EventFilter's and
‘TransportFilters. Also shown below is an example configuration of an AsyncEventQueue which must
also be wired into a region (not shown).

47

<gfe:partitioned-region id="region-inner-gateway-sender" >
<gfe:gateway-sender
remote-distributed-system-id="1">
<gfe:event-filter>
<bean class="org.springframework.data.gemfire.example.SomeEventFilter

</gfe:event-filter>
<gfe:transport-filter>
<bean class=
"org.springframework.data.gemfire.example.SomeTransportFilter"/>
</gfe:transport-filter>
</gfe:gateway-sender>
<gfe:gateway-sender-ref bean="gateway-sender"/>
</gfe:partitioned-region>

<gfe:async-event-queue id="async-event-queue" batch-size="10" persistent="true" disk-
store-ref="diskstore"
maximum-queue-memory="50">
<gfe:async-event-listener>
<bean class="org.springframework.data.gemfire.example.SomeAsyncEventListener
"/>
</gfe:async-event-listener>
</gfe:async-event-queue>

<gfe:gateway-sender id="gateway-sender" remote-distributed-system-id="2">
<gfe:event-filter>
<ref bean="event-filter"/>
<bean class="org.springframework.data.gemfire.example.SomeEventFilter"/>
</gfe:event-filter>
<gfe:transport-filter>
<ref bean="transport-filter"/>
<bean class="org.springframework.data.gemfire.example.SomeTransportFilter"/>
</gfe:transport-filter>
</gfe:gateway-sender>

<bean id="event-filter" class=
"org.springframework.data.gemfire.example.AnotherEventFilter"/>
<bean id="transport-filter" class=
"org.springframework.data.gemfire.example.AnotherTransportFilter"/>

On the other end of a GatewaySender is a corresponding GatewayReceiver to receive gateway events.
The GatewayReceiver may also be configured with "EventFilter 's and "TransportFilters.

48

<gfe:gateway-receiver id="gateway-receiver"
start-port="12345" end-port="23456" bind-address="192.168.0.1">
<gfe:transport-filter>
<bean class="org.springframework.data.gemfire.example.SomeTransportFilter
"/
</gfe:transport-filter>
</gfe:qgateway-receiver>

Please refer to the GemFire product document for a detailed explanation of all the configuration
options.

5.10.2. WAN Configuration in GemFire 6.6

<gfe:cache/>

<gfe:replicated-region id="region-with-gateway" enable-gateway="true" hub-id="gateway-
hub"/>

<gfe:gateway-hub id="gateway-hub" manual-start="true">
<gfe:gateway gateway-id="gateway">
<gfe:gateway-listener>
<bean class="com.company.example.MyGatewaylListener"/>
</gfe:gateway-listener>
<gfe:gateway-queue maximum-queue-memory="5" batch-size="3"
batch-time-interval="10" />
</gfe:gateway>

<gfe:gateway gateway-id="gateway2">
<gfe:gateway-endpoint port="1234" host="host1" endpoint-id="endpoint1"/>
<gfe:gateway-endpoint port="2345" host="host2" endpoint-id="endpoint2"/>
</gfe:gateway>
</gfe:gateway-hub>

A region may synchronize all or part of its contents to a gateway hub used to access one or more
remote systems. The region must set enable-gateway to true and specify the hub-id.

If just a hub-id is specified, Spring Data GemFire automatically assumes that the

NOTE
gateway should be enabled.

Please refer to the GemFire product document for a detailed explanation of all the configuration
options.

49

Chapter 6. Working with the GemFire APIs

Once the GemFire Cache and Regions have been configured they can be injected and used inside
application objects. This chapter describes the integration with Spring’s Transaction Management
functionality and DaoException hierarchy. It also covers support for dependency injection of
GemFire managed objects.

6.1. Exception Translation

Using a new data access technology requires not only accommodating a new API but also handling
exceptions specific to that technology. To accommodate this case, Spring Framework provides a
technology agnostic, consistent exception hierarchy that abstracts the application from proprietary
(and usually checked) exceptions to a set of focused runtime exceptions. As mentioned in the Spring
Framework documentation, exception translation can be applied transparently to your data access
objects through the wuse of the @Repository annotation and AOP by defining a
PersistenceExceptionTranslationPostProcessor bean. The same exception translation functionality is
enabled when using GemFire as long as at least a CacheFactoryBean is declared, e.g. using a
<gfe:cache/> declaration, as it acts as an exception translator which is automatically detected by the
Spring infrastructure and used accordingly.

6.2. GemfireTemplate

As with many other high-level abstractions provided by the Spring projects, Spring Data GemFire
provides a template that simplifies GemFire data access. The class provides several one-line
methods, for common region operations but also the ability to execute code against the native
GemFire API without having to deal with GemFire checked exceptions for example through the
GemfireCallback.

The template class requires a GemFire Region instance and once configured is thread-safe and
should be reused across multiple classes:

<bean id="gemfireTemplate" class="org.springframework.data.gemfire.GemfireTemplate"
p:region-ref="someRegion"/>

Once the template is configured, one can use it alongside GemfireCallback to work directly with the
GemFire Region, without having to deal with checked exceptions, threading or resource
management concerns:

50

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#dao-exceptions
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#orm-exception-translation

template.execute(new GemfireCallback<Iterable<String>>() {
public Iterable<String> doInGemfire(Region reg) throws GemFireCheckedException,
GemFireException {
// working against a Region of String
Region<String, String> region = reg;

region.put("1", "one");
region.put("3", "three");

return region.query("length < 5");
}
};

For accessing the full power of the GemFire query language, one can use the find and findUnique
which, as opposed to the query method, can execute queries across multiple regions, execute
projections, and the like. The find method should be used when the query selects multiple items
(through "SelectResults *) and the latter, findUnique, as the name suggests, when only one object is
returned.

6.3. Support for Spring Cache Abstraction

Since 1.1, Spring Data GemFire provides an implementation of the Spring 3.1 cache abstraction. To
use GemFire as a backing implementation, simply add GemfireCacheManager to your configuration:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:cache="http://www.springframework.org/schema/cache"
xmlns:gfe="http://www.springframework.org/schema/gemfire"
xmlns:p="http://www.springframework.org/schema/p"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/gemfire
http://www.springframework.org/schema/gemfire/spring-gemfire.xsd
http://www.springframework.org/schema/cache
http://www.springframework.org/schema/cache/spring-cache.xsd">

<!-- turn on declarative caching -->
<cache:annotation-driven/>

<gfe:cache id="gemfire-cache"/>

<!-- declare GemFire Cache Manager -->

<bean id="cacheManager" class=
"org.springframework.data.gemfire.support.GemfireCacheManager" p:cache-ref="gemfire-
cache">
</beans>

51

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#cache

6.4. Transaction Management

One of the most popular features of Spring Framework is transaction management. If you are not
familiar with it, we strongly recommend reading about it as it offers a consistent programming
model that works transparently across multiple APIs and can be configured either
programmatically or declaratively (the most popular choice).

For GemFire, Spring Data GemFire provides a dedicated, per-cache, transaction manager that, once
declared, allows Region operations to be executed atomically through Spring:

<gfe:transaction-manager id="tx-manager" cache-ref="cache"/>

The example above can be simplified even more by eliminating the cache-ref
attribute if the GemFire Cache is defined under the default name "gemfireCache . As
with the other Spring Data GemFire namespace elements, if the Cache bean name is
not configured, the aforementioned naming convention will used. Additionally, the
transaction manager name is gemfireTransactionManager™ if not explicitly
specified.

NOTE

Currently, GemFire supports optimistic transactions with read committed isolation. Furthermore,
to guarantee this isolation, developers should avoid making in-place changes that manually modify
values present in the Cache. To prevent this from happening, the transaction manager configures
the Cache to use copy on read semantics, meaning a clone of the actual value is created, each time
a read is performed. This behavior can be disabled if needed through the copyOnRead property. For
more information on the semantics of the underlying GemFire transaction manager, see the
GemFire documentation.

6.5. GemFire Continuous Query Container

A powerful functionality offered by GemFire is continuous querying (or CQ). In short, CQ allows
one to create a query and automatically be notified when new data that gets added to GemFire
matches the query. Spring GemFire provides dedicated support for CQs through the
org.springframework.data.gemfire.listener package and its listener container; very similar in
functionality and naming to the JMS integration in Spring Framework; in fact, users familiar with
the JMS support in Spring, should feel right at home. Basically Spring Data GemFire allows methods
on POJOs to become end-points for CQ - simply define the query and indicate the method that
should be notified when there is a match - Spring Data GemFire takes care of the rest. This is similar
Java EE’s message-driven bean style, but without any requirement for base class or interface
implementations, based on GemFire.

Currently, continuous queries are supported by GemFire only in client/server

NOTE topologies. Additionally the pool used is required to have the subscription property
enabled. Please refer to the documentation for more information.

52

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#transaction
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#transaction-motivation
http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/cache/CacheTransactionManager.html
http://community.gemstone.com/display/gemfire/Continuous+Querying

6.5.1. Continuous Query Listener Container

Spring Data GemFire simplifies the creation, registration, life-cycle and dispatch of CQs by taking
care of the infrastructure around them through ContinuousQueryListenerContainer which does all
the heavy lifting on behalf of the user - users familiar with EJB and JMS should find the concepts
familiar as it is designed as close as possible to the support in Spring Framework and its message-
driven POJOs (MDPs)

ContinuousQueryListenerContainer acts as an event (or message) listener container; it is used to
receive the events from the registered CQs and drive the POJOs that are injected into it. The listener
container is responsible for all threading of message reception and dispatches into the listener for
processing. It acts as the intermediary between an EDP (Event Driven POJO) and the event provider
and takes care of creation and registration of CQs (to receive events), resource acquisition and
release, exception conversion and the like. This allows you as an application developer to write the
(possibly complex) business logic associated with receiving an event (and reacting to it), and
delegates boilerplate GemFire infrastructure concerns to the framework.

The container is fully customizable - one can chose either to use the CQ thread to perform the
dispatch (synchronous delivery) or a new thread (from an existing pool for examples) for an
asynchronous approach by defining the suitable java.util.concurrent.Executor (or Spring’s
TaskExecutor). Depending on the load, the number of listeners or the runtime environment, one
should change or tweak the executor to better serve her needs - in particular in managed
environments (such as app servers), it is highly recommended to pick a a proper TaskExecutor to
take advantage of its runtime.

6.5.2. The ContinuousQuerylListenerAdapter and ContinuousQueryListener

The ContinuousQueryListenerAdapter class is the final component in Spring Data GemFire CQ
support: in a nutshell, it allows you to expose almost any class as a EDP (there are of course some
constraints) - it implements ContinuousQueryListener, a simpler listener interface similar to GemFire
CqListener.

Consider the following interface definition. Notice the various event handling methods and their
parameters:

public interface EventDelegate {
void handleEvent(CqEvent event);
void handleEvent(Operation baseOp);
void handleEvent(Object key);
void handleEvent(Object key, Object newValue);
void handleEvent(Throwable th);
void handleQuery(CqQuery cq);
void handleEvent(CqEvent event, Operation baseOp, byte[] deltaValue);
void handleEvent(CqEvent event, Operation baseOp, Operation queryOp, Object key,
Object newValue);
}

53

http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/cache/query/CqListener.html

public class DefaultEventDelegate implements EventDelegate {
// implementation elided for clarity...
}

In particular, note how the above implementation of the EventDelegate interface (the above
DefaultEventDelegate class) has no GemFire dependencies at all. It truly is a POJO that we will make
into an EDP via the following configuration (note that the class doesn’t have to implement an
interface, one is present only to better show case the decoupling between contract and
implementation).

<?xml version="1.0" encoding="UTF-8"7>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:gfe="http://www.springframework.org/schema/gemfire"
xsi:schemalocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd

http://www.springframework.org/schema/gemfire
http://www.springframework.org/schema/gemfire/spring-gemfire.xsd">

<gfe:client-cache pool-name="client"/>

<gfe:pool id="client" subscription-enabled="true">
<gfe:server host="localhost" port="40404"/>
</gfe:pool>

<gfe:cg-listener-container>
<!-- default handle method -->
<gfe:listener ref="listener" query="SELECT * from /region"/ >
<gfe:listener ref="another-listener" query="SELECT * from /another-region"
name="my-query" method="handleQuery"/>
</gfe:cq-listener-container>

<bean id="listener" class="gemfireexample.DefaultMessageDelegate"/>
<bean id="another-listener" class="gemfireexample.DefaultMessageDelegate"/>

<beans>

The example above shows some of the various forms that a listener can have; at its
minimum the listener reference and the actual query definition are required. It’s
NOTE possible however to specify a name for the resulting continuous query (useful for

monitoring) but also the name of the method (the default is handleEvent). The
specified method can have various argument types, the EventDelegate interface lists
the allowed types.

The example above uses the Spring Data GemFire namespace to declare the event listener

container and automatically register the listeners. The full blown, beans definition is displayed
below:

54

<!-- this is the Event Driven P0JO (MDP) -->
<bean id="eventListener" class=
"org.springframework.data.gemfire.listener.adapter.ContinuousQuerylListenerAdapter">
<constructor-arg>
<bean class="gemfireexample.DefaultEventDelegate"/>
</constructor-arg>
</bean>

<!-- and this is the event listener container... -->
<bean id="gemfirelListenerContainer" class=
"org.springframework.data.gemfire.listener.ContinuousQueryListenerContainer">
<property name="cache" ref="gemfireCache"/>
<property name="querylListeners">
<!-- set of listeners -->
<set>
<bean class=
"org.springframework.data.gemfire.listener.ContinuousQueryDefinition" >
<constructor-arg value="SELECT * from /region" />
<constructor-arg ref="eventListener" />
</bean>
</set>
</property>
</bean>

Each time an event is received, the adapter automatically performs type translation between the
GemFire event and the required method argument(s) transparently. Any exception caused by the
method invocation is caught and handled by the container (by default, being logged).

6.6. Wiring Declarable components

GemFire XML configuration (usually named cache.xml allows user objects to be declared as part of

the configuration. Usually these objects are Cacheloader's or other pluggable callback components
supported by GemFire. Using native GemFire configuration, each user type declared through XML

must implement the ‘Declarable interface which allows arbitrary parameters to be passed to the
declared class through a Properties instance.

In this section we describe how you can configure these pluggable components defined in cache.xml
using Spring while keeping your Cache/Region configuration defined in cache.xml This allows your
pluggable components to focus on the application logic and not the location or creation of
DataSources or other collaboration objects.

However, if you are starting a green field project, it is recommended that you configure Cache,
Region, and other pluggable components directly in Spring. This avoids inheriting from the
Declarable interface or the base class presented in this section. See the following sidebar for more
information on this approach.

55

Eliminate Declarable components

One can configure custom types entirely through Spring as mentioned in Configuring a
GemFire Region. That way, one does not have to implement the Declarable interface and also
benefits from all the features of the Spring IoC container (not just dependency injection but
also life-cycle and instance management).

As an example of configuring a Declarable component using Spring, consider the following
declaration (taken from the Declarable javadoc):

<cache-loader>
<class-name>com.company.app.DBLoader</class-name>
<parameter name="URL">
<string>jdbc://12.34.56.78/mydb</string>
</parameter>
</cache-loader>

To simplify the task of parsing, converting the parameters and initializing the object, Spring Data
GemFire offers a base class (WiringDeclarableSupport) that allows GemFire user objects to be wired
through a template bean definition or, in case that is missing, perform autowiring through the
Spring container. To take advantage of this feature, the user objects need to extend
WiringDeclarableSupport which automatically locates the declaring BeanFactory and performs wiring
as part of the initialization process.

Why is a base class needed?

In the current GemFire release there is no concept of an object factory and the types
declared are instantiated and used as is. In other words, there is no easy way to manage
object creation outside GemFire.

6.6.1. Configuration using template definitions

When used, WiringDeclarableSupport tries to first locate an existing bean definition and use that as
wiring template. Unless specified, the component class name will be used as an implicit bean
definition name. Let’s see how our DBLoader declaration would look in that case:

56

public class DBLoader extends WiringDeclarableSupport implements Cacheloader {
private DataSource dataSource;

public void setDataSource(DataSource ds){
this.dataSource = ds;

}

public Object load(LoaderHelper helper) { ... }
}

<cache-loader>
<class-name>com.company.app.DBLoader</class-name>
<!-- no parameter is passed (use the bean implicit name
that is the class name) -->

</cache-loader>

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="dataSource" ... />

<!-- template bean definition -->

<bean id="com.company.app.DBLoader" abstract="true" p:dataSource-ref="dataSource
"/
</beans>

In the scenario above, as no parameter was specified, a bean with the id/name
com.company.app.DBLoader was used as a template for wiring the instance created by GemFire. For
cases where the bean name uses a different convention, one can pass in the bean-name parameter in
the GemFire configuration:

<cache-loader>
<class-name>com.company.app.DBLoader</class-name>
<!-- pass the bean definition template name
as parameter -->
<parameter name="bean-name">
<string>template-bean</string>
</parameter>
</cache-loader>

57

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:p="http://www.springframework.org/schema/p"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="dataSource" ... />

<!-- template bean definition -->
<bean id="template-bean" abstract="true" p:dataSource-ref="dataSource"/>

</beans>

The template bean definitions do not have to be declared in XML - any format is

NOTE .
allowed (Groovy, annotations, etc..).

6.6.2. Configuration using auto-wiring and annotations

If no bean definition is found, by default, WiringDeclarableSupport will autowire the declaring
instance. This means that unless any dependency injection metadata is offered by the instance, the
container will find the object setters and try to automatically satisfy these dependencies. However,
one can also use JDK 5 annotations to provide additional information to the auto-wiring process.
We strongly recommend reading the dedicated chapter in the Spring documentation for more
information on the supported annotations and enabling factors.

For example, the hypothetical DBLoader declaration above can be injected with a Spring-configured
DataSource in the following way:

public class DBLoader extends WiringDeclarableSupport implements Cacheloader {
// use annotations to 'mark' the needed dependencies
@javax.inject.Inject
private DataSource dataSource;

public Object load(LoaderHelper helper) { ... }
+

<cache-loader>
<class-name>com.company.app.DBLoader</class-name>
<!-- no need to declare any parameters anymore
since the class is auto-wired -->
</cache-loader>

58

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#beans-factory-autowire
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#beans-annotation-config

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd">

<!-- enable annotation processing -->
<context:annotation-config/>

</beans>

By using the JSR-330 annotations, the cache loader code has been simplified since the location and
creation of the DataSource has been externalized and the user code is concerned only with the
loading process. The DataSource might be transactional, created lazily, shared between multiple
objects or retrieved from JNDI - these aspects can be easily configured and changed through the
Spring container without touching the DBLoader code.

59

Chapter 7. Working with GemFire
Serialization

To improve overall performance of the data grid, GemFire supports a dedicated serialization
protocol (PDX) that is both faster and offers more compact results over the standard Java
serialization and works transparently across various language platforms (such as Java, .NET and
C++). This chapter discusses the various ways in which Spring Data GemkFire simplifies and
improves GemkFire custom serialization in Java.

7.1. Wiring deserialized instances

It is fairly common for serialized objects to have transient data. Transient data is often dependent
on the node or environment where it lives at a certain point in time, for example a DataSource.
Serializing such information is useless (and potentially even dangerous) since it is local to a certain
VM/machine. For such cases, Spring Data GemFire offers a special Instantiator that performs
wiring for each new instance created by GemFire during deserialization.

Through such a mechanism, one can rely on the Spring container to inject (and manage) certain
dependencies making it easy to split transient from persistent data and have rich domain objects
in a transparent manner (Spring users might find this approach similar to that of @Configurable).
The WiringInstantiator works just like WiringDeclarableSupport, trying to first locate a bean
definition as a wiring template and following to autowiring otherwise. Please refer to the previous
section (Wiring Declarable components) for more details on wiring functionality.

To use this Instantiator, simply declare it as a usual bean:

<bean id="instantiator" class=

"org.springframework.data.gemfire.serialization.WiringInstantiator">
<!-- DataSerializable type -->
<constructor-arg>org.pkg.SomeDataSerializableClass</constructor-arg>
<I-- type id -->
<constructor-arg>95</constructor-arg>

</bean>

During the container startup, once it is being initialized, the instantiator will, by default, register
itself with the GemFire system and perform wiring on all instances of SomeDataSerializableClass
created by GemFire during deserialization.

7.2. Auto-generating custom "Instantiator's

For data intensive applications, a large number of instances might be created on each machine as
data flows in. Out of the box, GemFire uses reflection to create new types but for some scenarios,
this might prove to be expensive. As always, it is good to perform profiling to quantify whether this
is the case or not. For such cases, Spring Data GemFire allows the automatic generation of
Instatiator classes which instantiate a new type (using the default constructor) without the use of
reflection:

60

http://community.gemstone.com/display/gemfire/Interoperability
http://community.gemstone.com/display/gemfire/Serialization+in+Java
http://community.gemstone.com/display/gemfire/Serialization+in+.NET
http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/Instantiator.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#aop-atconfigurable

<bean id="instantiator-factory" class=
"org.springframework.data.gemfire.serialization.InstantiatorFactoryBean">
<property name="customTypes">
<map>
<entry key="org.pkg.CustomTypeA" value="1025"/>
<entry key="org.pkg.CustomTypeB" value="1026"/>
</map>
</property>
</bean>

The definition above, automatically generated two Instantiator's for two classes, namely
‘CustomTypeA and CustomTypeB and registers them with GemFire, under user id 1025 and 1026. The
two instantiators avoid the use of reflection and create the instances directly through Java code.

61

Chapter 8. POJO mapping

8.1. Entity Mapping

Spring Data GemFire provides support to map entities that will be stored in a GemFire data grid.
The mapping metadata is defined using annotations at the domain classes just like this:

Example 1. Mapping a domain class to a GemFire Region

("People")
public class Person {

Long id;
String firstname;
String lastname;

public Person(String firstname, String lastname) {
/]
}

The first thing you see here is the @Region annotation that can be used to customize the Region in
which the Person class is stored in. The @Id annotation can be used to annotate the property that
shall be used as the Cache Kkey. The @PersistenceConstructor annotation actually helps
disambiguating multiple potentially available constructors taking parameters and explicitly
marking the one annotated as the one to be used to create entities. With none or only a single
constructor you can omit the annotation.

In addition to storing entities in top-level Regions, entities can be stored in GemFire Sub-Regions, as

SO:

("/Users/Admin")
public class Admin extends User {

}

("/Users/Guest")
public class Guest extends User {

}

Be sure to use the full-path of the GemFire Region, as defined in Spring Data GemFire XML
namespace configuration meta-data, as specified in the id or name attributes of the <*-region> bean

62

definition.

As alternative to specifying the Region in which the entity will be stored using the @Region
annotation on the entity class, you can also specify the @Region annotation on the entity’s Repository
abstraction. See GemFire Repositories for more details.

However, let’s say you want to store a Person in multiple GemFire Regions (e.g. People and

Customers), then you can define your corresponding Repository interface abstractions like so:

("People")
public interface PersonRepository extends GemfireRepository<Person, String> {

}

("Customers")
public interface CustomerRepository extends GemfireRepository<Person, String> {

}

8.2. Mapping PDX Serializer

Spring Data GemkFire provides a custom PDXSerializer implementation that uses the mapping
information to customize entity serialization. Beyond that it allows customizing the entity
instantiation by using the Spring Data EntityInstantiator abstraction. By default the serializer uses
a ReflectionEntityInstantiator that will use the persistence constructor of the mapped entity
(either the single declared one or explicitly annoted with @PersistenceConstructor). To provide
values for constructor parameters it will read fields with name of the constructor parameters from
the PDXReader supplied.

Example 2. Using @Value on entity constructor parameters

public class Person {

public Person(("#root.foo") String firstname, ("bean") String
lastname) {

}
}

The entity annotated as such will get the field foo read from the PDXReader and handed as
constructor parameter value for firstname. The value for lastname will be the Spring bean with
name bean.

63

Chapter 9. GemFire Repositories

9.1. Introduction

Spring Data GemFire provides support to use the Spring Data Repository abstraction to easily
persist entities into GemFire and execute queries. A general introduction to the Repository
programming model has been provided here.

9.2. Spring Configuration

To bootstrap Spring Data Repositories you use the <repositories/> element from the GemFire Data
namespace:

Example 3. Bootstrap GemFire Repositories

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:gfe-data="http://www.springframework.org/schema/data/gemfire"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-
beans.xsd
http://www.springframework.org/schema/data/gemfire

http://www.springframework.org/schema/data/gemfire/spring-data-gemfire.xsd>
<gfe-data:repositories base-package="com.acme.repository" />

</beans>

This configuration snippet will look for interfaces below the configured base package and create
Repository instances for those interfaces backed by a SimpleGemFireRepository. Note that you have
to have your domain classes correctly mapped to configured Regions or the bootstrap process will
fail otherwise.

9.3. Executing OQL Queries

The GemFire Repositories allow the definition of query methods to easily execute OQL Queries
against the Region the managed entity is mapped to.

64

http://docs.spring.io/spring-data/data-commons/docs/current/reference/html/#repositories

Example 4. Sample Repository

@Region("myRegion™)
public class Person { -+ }

public interface PersonRepository extends CrudRepository<Person, Long> {

Person findByEmailAddress(String emailAddress);

Collection<Person> findByFirstname(String firstname);

@Query("SELECT * FROM /Person p WHERE p.firstname
Collection<Person> findByFirstnameAnnotated(String firstname);

= $1")

@Query("SELECT * FROM /Person p WHERE p.firstname IN SET $1")
Collection<Person> findByFirstnamesAnnotated(Collection<String> firstnames);

The first method listed here will cause the following query to be derived: SELECT x FROM /MyRegion x
WHERE x.emailAddress = $1. The second method works the same way except it’s returning all entities
found whereas the first one expects a single result value. In case the supported keywords are not

sufficient to declare your query or the method name gets to verbose you can annotate the query
methods with @Query as seen for methods 3 and 4.

Table 4. Supported keywords for query methods

Keyword
GreaterThan
GreaterThanEqual
LessThan
LessThanEqual
IsNotNull, NotNull

IsNull, Null
In

NotIn

IgnoreCase

(No keyword)
Like
Not

Sample

findByAgeGreaterThan(int age)
findByAgeGreaterThanEqual(int age)
findByAgelLessThan(int age)
findByAgeLessThanEqual(int age)
findByFirstnameNotNull()

findByFirstnameNull()

findByFirstnameIn(Collection<String>
X)

findByFirstnameNotIn(Collection<Strin
9> X)

findByFirstnameIgnoreCase(String
firstName)

findByFirstname(String name)

findByFirstnameLike(String name)
findByFirstnameNot(String name)

Logical result

X.

X.

X

X.

X.

age > $1
age >= §$1

.age < $1
.age < $1

.firstname

.firstname

firstname

firstname

.firstname.

.firstname

.firstname

.firstname

=1 NULL
= NULL

IN SET $1
NOT IN SET $1

equalsIgnoreCase($1)

= $1
LIKE $1
= $1

65

Keyword Sample Logical result

true

IsTrue, True findByActivelsTrue() x.active

IsFalse, False findByActiveIsFalse() x.active = false

9.4. OQL Query Extensions with Annotations

Many query languages, such as Pivotal GemFire’s OQL (Object Query Language), have extensions
that are not directly supported by the Spring Data Commons Repository infrastructure.

One of Spring Data Commons' Repository infrastructure goals is to function as the lowest common
denominator to maintain support and portability across the widest array of data stores available
and in use for application development today. Technically, this means developers can access
multiple different data stores supported by Spring Data Commons within their applications by
reusing their existing application-specific Repository interfaces, a very convenient and powerful
abstraction.

To support GemFire’s OQL Query language extensions and maintain portability across data stores,
Spring Data GemFire adds support for OQL Query extensions by way of Java Annotations. These
new Annotations will be ignored by other Spring Data Repository implementations (e.g. Spring Data
Redis) that don’t have similar query language extensions.

For instance, many data stores will most likely not implement GemFire’s OQL IMPORT keyword. By
implementing IMPORT as an Annotation (@Import) rather than as part of the query method signature
(specifically, the method mame’), this will not interfere with the parsing infrastructure when
evaluating the query method name to construct the appropriate data store language appropriate

query.

Currently, the set of OQL Query language extensions that are supported by Spring Data GemFire
include:

Table 5. Supported OQL Query extensions for query methods

Keyword Annotation Description Arguments
HINT @Hint OQL Query Index Hints String[] (e.g. @Hint({
"IdIdx", "TxDateldx" }))
IMPORT @Import Qualify application- String (e.g.
specific types. @Import("org.example.app.
domain.Type"))
LIMIT eLimit Limit the returned query Integer (e.g. @Limit(10);
result set. default is

Integer.MAX_VALUE)

TRACE @Trace Enable OQL Query specific NA
debugging.

As an example, suppose you have a Customers application domain type and corresponding GemFire
Region along with a CustomerRepository and a query method to lookup Customers by last name, like

66

http://gemfire.docs.pivotal.io/docs-gemfire/latest/developing/query_index/query_index_hints.html#topic_cfb_mxn_jq
http://gemfire.docs.pivotal.io/docs-gemfire/latest/developing/query_select/the_import_statement.html#concept_2E9F15B2FE9041238B54736103396BF7
http://gemfire.docs.pivotal.io/docs-gemfire/latest/developing/query_select/the_select_statement.html#concept_85AE7D6B1E2941ED8BD2A8310A81753E__section_25D7055B33EC47B19B1B70264B39212F
http://gemfire.docs.pivotal.io/docs-gemfire/latest/developing/query_additional/query_debugging.html#concept_2D557E24AAB24044A3DB36B3124F6748

SO...

Example 5. Sample Repository

package ...;

import org.springframework.data.annotation.Id;
import org.springframework.data.gemfire.mapping.Region;

@Region("Customers")
public class Customer ... {

@Id
private Long id;

package ...;

import org.springframework.data.gemfire.repository.GemfireRepository;

public interface CustomerRepository extends GemfireRepository<Customer, Long> {

@lrace

@Limit(10)

@Hint("LastNameIdx")
@Import("org.example.app.domain.Customer")
List<Customer> findByLastName(String lastName);

This will result in the following OQL Query:

<TRACE> <HINT 'LastNameIdx'> IMPORT org.example.app.domain.Customer; SELECT * FROM /Customers c
WHERE c.lastName = $1 LIMIT 10

Spring Data GemFire’s Repository extension support is careful not to create conflicting declaratives
when the Query Annotation extensions are used in combination with the @Query annotation.

For instance, suppose you have a raw @Query annotated query method defined in your
CustomerRepository like so...

67

Example 6. CustomerRepository

public interface CustomerRepository extends GemfireRepository<Customer, Long> {

@Trace

eLimit(10)

@Hint("CustomerIdx")

@Import("org.example.app.domain.Customer")

@Query("<TRACE> <HINT 'ReputationIdx'> SELECT DISTINCT * FROM /Customers c WHERE
c.reputation > $1 ORDER BY c.reputation DESC LIMIT 5")

List<Customer>
findDistinctCustomersByReputationGreaterThanOrderByReputationDesc(Integer
reputation);

}

This query method results in the following OQL Query:

IMPORT org.example.app.domain.Customer; <TRACE> <HINT 'ReputationIdx'> SELECT DISTINCT * FROM
/Customers ¢ WHERE c.reputation > $1 ORDER BY c.reputation DESC LIMIT 5

As you can see, the @Limit(10) annotation will not override the LIMIT defined explicitly in the raw
query. As well, @Hint("CustomerIdx") annotation does not override the HINT explicitly defined in the
raw query. Finally, the @Trace annotation is redundant and has no additional effect.

The "Reputationldx" Index is probably not the most sensible index given the
number of Customers who will possibly have the same value for their reputation,
which will effectively reduce the effectiveness of the index. Please choose indexes
and other optimizations wisely as an improper or poorly choosen index and have
the opposite effect on your performance given the overhead in maintaining the
index. The "Reputationldx" was only used to serve the purpose of the example.

NOTE

68

Chapter 10. Annotation Support for Function
Execution

10.1. Introduction

Spring Data GemkFire 1.3.0 introduces annotation support to simplify working with GemFire
Function Execution. The GemFire API provides classes to implement and register Functions
deployed to Cache servers that may be invoked remotely by member applications, typically cache
clients. Functions may execute in parallel, distributed among multiple servers, combining results in
a map-reduce pattern, or may be targeted at a single server. A Function execution may be also be
targeted to a specific Region.

GemFire also provides APIs to support remote execution of Functions targeted to various defined
scopes (Region, member groups, servers, etc.) and the ability to aggregate results. The API also
provides certain runtime options. The implementation and execution of remote Functions, as with
any RPC protocol, requires some boilerplate code. Spring Data GemFire, true to Spring’s core value
proposition, aims to hide the mechanics of remote Function execution and allow developers to
focus on POJO programming and business logic. To this end, Spring Data GemFire introduces
annotations to declaratively register public methods as GemFire Functions, and the ability to
invoke registered Functions remotely via annotated interfaces.

10.2. Implementation vs Execution

There are two separate concerns to address. First is the Function implementation (server) which
must interact with the FunctionContext to obtain the invocation arguments, the ResultsSender and
other execution context information. The Function implementation typically accesses the Cache
and or Region and is typically registered with the FunctionService under a unique Id. The
application invoking a Function (the client) does not depend on the implementation. To invoke a
Function remotely, the application instantiates an Execution providing the Function ID, invocation
arguments, the Function target or scope (Region, server, servers, member, members). If the
Function produces a result, the invoker uses a ResultCollector to aggregate and acquire the
execution results. In certain scenarios, a custom ResultCollector implementation is required and
may be registered with the Execution.

'Client' and 'Server' are used here in the context of Function execution which may
have a different meaning than client and server in a client-server Cache topology.

NOTE While it is common for a member with a Client Cache to invoke a Function on one
or more Cache Server members it is also possible to execute Functions in a peer-to-
peer (P2P) configuration

10.3. Implementing a Function

Using GemFire APIs, the FunctionContext provides a runtime invocation context including the
client’s calling arguments and a ResultSender interface to send results back to the client.
Additionally, if the Function is executed on a Region, the FunctionContext is an instance of

69

http://gemfire.docs.pivotal.io/docs-gemfire/latest/developing/function_exec/chapter_overview.html
http://gemfire.docs.pivotal.io/docs-gemfire/latest/developing/function_exec/chapter_overview.html
http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/cache/execute/Function.html
http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/cache/execute/FunctionContext.html
http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/cache/execute/ResultSender.html
http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/cache/execute/FunctionService.html
http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/cache/execute/Execution.html
http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/cache/execute/ResultCollector.html

RegionFunctionContext which provides additional context such as the target Region and any Filter
(set of specific keys) associated with the Execution. If the Region is a PARTITION Region, the
Function should use the PartitionRegionHelper to extract only the local data.

Using Spring, a developer can write a simple POJO and enable the Spring container to bind one or
more of it’s public methods to a Function. The signature for a POJO method intended to be used as a
Function must generally conform to the the client’s execution arguments. However, in the case of a
Region execution, the Region data must also be provided (presumably the data held in the local
partition if the Region is a PARTITION Region). Additionally the Function may require the Filter that
was applied, if any. This suggests that the client and server may share a contract for the calling
arguments but that the method signature may include additional parameters to pass values
provided by the FunctionContext. One possibility is that the client and server share a common
interface, but this is not required. The only constraint is that the method signature includes the
same sequence of calling arguments with which the Function was invoked after the additional
parameters are resolved.

For example, suppose the client provides a String and int as the calling arguments. These are
provided by the FunctionContext as an array:

Object[] args = new Object[]{"hello", 123}

Then the Spring container should be able to bind to any method signature similar to the following.
Let’s ignore the return type for the moment:

public Object method1(String s1, int i2) {...}

public Object method2(Map<?,?> data, String s1, int i2) {...}

public Object method3(String s1, Map<?,?>data, int i2) {...}

public Object method4(String s1, Map<?,?> data, Set<?> filter, int i2) {...}
public void method4(String s1, Set<?> filter, int i2, Region<?,?> data) {...}
public void method5(String s1, ResultSender rs, int i2);

public void method6(FunctionContest fc);

The general rule is that once any additional arguments, i.e. Region data and Filter, are resolved, the
remaining arguments must correspond exactly, in order and type, to the expected calling
parameters. The method’s return type must be void or a type that may be serialized (either
java.o.Serializable, DataSerializable, or PDX serializable). The latter is also a requirement for the
calling arguments. The Region data should normally be defined as a Map, to facilitate unit testing,
but may also be of type Region if necessary. As shown in the example above, it is also valid to pass
the FunctionContext itself, or the ResultSender, if you need to control how the results are returned
to the client.

10.3.1. Annotations for Function Implementation

The following example illustrates how annotations are used to expose a POJO as a GemFire
Function:

70

public class ApplicationFunctions {

public String function1(String value, Map<?,?> data, int i2) { ... }

("myFunction", HA=true, optimizedForWrite=true, batchSize=100)
public List<String> function2(String value, Map<?,?> data, int i2,
Set<?> keys) { ... }

(hasResult=true)
public void functionWithContext(FunctionContext functionContext) { ... }

Note that the class itself must be registered as a Spring bean. Here the @Component annotation is
used, but you may register the bean by any method provided by Spring (e.g. XML configuration or
Java configuration class). This allows the Spring container to create an instance of this class and
wrap it in a PojoFunctionWrapper (PFW). Spring creates one PFW instance for each method
annotated with @GemfireFunction. Each will all share the same target object instance to invoke the
corresponding method.

The fact that the Function class is a Spring bean may offer other benefits since it
NOTE shares the ApplicationContext with GemFire components such as a Cache and
Regions. These may be injected into the class if necessary.

Spring creates the wrapper class and registers the Function with GemFire’s Function Service. The
Function id used to register the Functions must be unique. By convention it defaults to the simple
(unqualified) method name. Note that this annotation also provides configuration attributes, HA and
optimizedForWrite which correspond to properties defined by GemFire’s Function interface. If the
method’s return type is void, then the hasResult property is automatically set to false; otherwise it
is set to true.

For void return types, the annotation provides a hasResult attribute that can be set to true to
override this convention, as shown in the functionWithContext method above. Presumably, the
intention is to use the ResultSender directly to send results to the caller.

The PFW implements GemFire’s Function interface, binds the method parameters, and invokes the
target method in its execute() method. It also sends the method’s return value using the
ResultSender.

Batching Results

If the return type is a Collection or Array, then some consideration must be given to how the results
are returned. By default, the PFW returns the entire Collection at once. If the number of items is
large, this may incur a performance penalty. To divide the payload into small sections (sometimes
called chunking), you can set the batchSize attribute, as illustrated in function2, above.

71

https://github.com/spring-projects/spring-data-gemfire/blob/master/src/main/java/org/springframework/data/gemfire/function/PojoFunctionWrapper.java

If you need more control of the ResultSender, especially if the method itself would
NOTE use too much memory to create the Collection, you can pass the ResultSender, or
access it via the FunctionContext, to use it directly within the method.

Enabling Annotation Processing

In accordance with Spring standards, you must explicitly activate annotation processing for
@GemfireFunction using XML:

<gfe:annotation-driven/>

or by annotating a Java configuration class:

10.4. Executing a Function

A process invoking a remote Function needs to provide calling arguments, a Function id, the
execution target (onRegion, onServers, onServer, onMember, onMembers) and optionally a Filter
set. All a developer need do is define an interface supported by annotations. Spring will create a
dynamic proxy for the interface which will use the FunctionService to create an Execution, invoke
the Execution and coerce the results to a defined return type, if necessary. This technique is very
similar to the way Spring Data Repositories work, thus some of the configuration and concepts
should be familiar. Generally a single interface definition maps to multiple Function executions,
one corresponding to each method defined in the interface.

10.4.1. Annotations for Function Execution

To support client-side Function execution, the following annotations are provided: @0nRegion,
@0nServer, @0nServers, @0nMember, @0nMembers. These correspond to the Execution implementations
GemFire’s FunctionService provides. Each annotation exposes the appropriate attributes. These
annotations also provide an optional resultCollector attribute whose value is the name of a Spring
bean implementing ResultCollector to use for the execution.

The proxy interface binds all declared methods to the same execution configuration.
Although it is expected that single method interfaces will be common, all methods in
the interface are backed by the same proxy instance and therefore all share the
same configuration.

NOTE

Here are some examples:

72

http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/cache/execute/ResultCollector.html

(region="someRegion", resultCollector="myCollector")
public interface FunctionExecution {

("function1")
String doIt(String s1, int i2);

String getString(Object arg1, Set<Object> keys) ;

By default, the Function id is the simple (unqualified) method name. @FunctionId is used to bind this
invocation to a different Function id.

Enabling Annotation Processing

The client-side uses Spring’s component scanning capability to discover annotated interfaces. To
enable Function execution annotation processing, you can use XML:

<gfe-data:function-executions base-package="org.example.myapp.functions"/>

Note that the function-executions element is provided in the gfe-data namespace. The base-package
attribute is required to avoid scanning the entire classpath. Additional filters are provided as
described in the Spring reference.

Optionally, a developer can annotate her Java configuration class:

(basePackages = "org.example.myapp.functions")

10.5. Programmatic Function Execution

Using the annotated interface as described in the previous section, simply wire your interface into
a bean that will invoke the Function:

public class MyApp {
FunctionExecution functionExecution;
public void doSomething() {

functionExecution.doIt("hello", 123);
}

Alternately, you can wuse a Function Execution template directly. For example

73

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#beans-scanning-filters

GemfireOnRegionFunctionTemplate creates an onRegion Function execution. For example:

Set<?,?> myFilter = getFilter();

Region<?,?> myRegion = getRegion();

GemfireOnRegionOperations template = new GemfireOnRegionFunctionTemplate(myRegion);
String result = template.executeAndExtract("someFunction",myFilter,"hello", "world"
,1234);

Internally, Function executions always return a List. executeAndExtract assumes a singleton List
containing the result and will attempt to coerce that value into the requested type. There is also an
execute method that returns the List itself. The first parameter is the Function id. The Filter
argument is optional. The following arguments are a variable argument List.

10.6. Function Execution with PDX

When using Spring Data GemFire’s Function annotation support combined with GemFire’s PDX
serialization, there are a few logistical things to keep in mind.

As explained above, and by way of example, typically developers will define GemFire Functions
using POJO classes annotated with Spring Data GemFire Function annotations as so...

public class OrderFunctions {

(...)
Order process(data, Order order, OrderSource orderSourceEnum, Integer
count);
}
the Integer count parameter is an arbitrary argument as is the separation of the
NOTE Order and OrderSource Enum, which might be logical to combine. However, the

arguments were setup this way to demonstrate the problem with Function
executions in the context of PDX.

Your Order and OrderSource enum might be as follows...

74

http://gemfire.docs.pivotal.io/docs-gemfire/latest/developing/data_serialization/gemfire_pdx_serialization.html
http://gemfire.docs.pivotal.io/docs-gemfire/latest/developing/data_serialization/gemfire_pdx_serialization.html
http://docs.spring.io/spring-data-gemfire/docs/1.6.0.M1/api/org/springframework/data/gemfire/function/annotation/package-frame.html

public class Order ... {

private Long orderNumber;
private Calendar orderDateTime;
private Customer customer;
private List<Item> items

public enum OrderSource {
ONLINE,
PHONE,
POINT_OF _SALE

Of course, a developer may define a Function Execution interface to call the 'process’ GemFire
Server Function...

public interface OrderProcessingFunctions {
Order process(Order order, OrderSource orderSourceEnum, Integer count);

}

Clearly, this process(..) Order Function is being called from a client-side, client Cache (<gfe:client-
cache/>) member-based application. This means that the Function arguments must be serializable.
The same is true when invoking peer-to-peer member Functions (@0nMember(s)) between peers in
the cluster. Any form of ‘distribution requires the data transmitted between client and server,
or peers to be serializable.

Now, if the developer has configured GemFire to use PDX for serialization (instead of Java
serialization, for instance) it is common for developers to set the read-serialized attribute to true
on the GemFire server(s)...

<gfe:cache -+ pdx-read-serialized="true"/>

This causes all values read from the Cache (i.e. Regions) as well as information passed between
client and servers, or peers to remain in serialized form, include, but not limited to Function
arguments.

GemFire will only serialize application domain object types that you have specifically configured
(registered), either wusing GemFire’s ReflectionBasedAutoSerializer, or specifically (and
recommended) using a "custom" GemFire PdxSerializer for your application domain types.

What is less than apparent, is that GemFire automatically handles Java Enum types regardless of
whether they are explicitly configured (registered with a ReflectionBasedAutoSerializer regex

75

http://gemfire.docs.pivotal.io/docs-gemfire/latest/developing/data_serialization/auto_serialization.html
http://gemfire.docs.pivotal.io/docs-gemfire/latest/developing/data_serialization/use_pdx_serializer.html

pattern to the classes parameter, or handled by a "custom" GemFire PdxSerializer) or not, and
despite the fact that Java Enums implement java.io.Serializable.

So, when a developer has pdx-read-serialized set to true on the GemFire Servers on which the
GemFire Functions (including Spring Data GemFire registered, Function annotated POJO classes),
then the developer may encounter surprising behavior when invoking the Function Execution.

What the developer may pass as arguments when invoking the Function is...

orderProcessingFunctions.process(new Order(123, customer, Calendar.getInstance(),
items), OrderSource.ONLINE, 400);

But, in actuality, what GemFire executes the Function on the Server is...

process(regionData, order:PdxInstance, :PdxInstanceEnum, 400);

Notice that the Order and OrderSource have passed to the Function as PDX instances. Again, this is all
because read-serialized is set to true on the GemFire Server, which may be necessary in cases
where the GemFire Servers are interacting with multiple different client types (e.g. native clients).

This flies in the face of Spring Data GemFire’s, "strongly-typed", Function annotated POJO class
method signatures, as the developer is expecting application domain object types (not PDX
serialized objects).

So, as of Spring Data GemFire (SDG) 1.6, SDG introduces enhanced Function support to
automatically convert method arguments that are of type PDX to the desired application domain
object types when the developer of the Function expects his Function arguments to be "strongly-
typed".

However, this also requires the developer to explicitly register a GemFire PdxSerializer on the
GemFire Servers where the SDG annotated POJO Function is registered and used, e.g. ...

<bean id="customPdxSerializer" class="x.y.z.serialization.pdx.MyCustomPdxSerializer"/>

<gfe:cache ... pdx-serializer-ref="customPdxSerializeer" pdx-read-serialized="true"/>

Alternatively, a developer my use GemFire’s ReflectionBasedAutoSerializer. Of course, it is
recommend to use a "custom" PdxSerializer where possible to maintain finer grained control over
your serialization strategy.

Finally, Spring Data GemFire is careful not to convert your Function arguments if you really want
to treat your Function arguments generically, or as one of GemFire’s PDX types...

76

http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/pdx/PdxInstance.html
http://data-docs-samples.cfapps.io/docs-gemfire/latest/javadocs/japi/com/gemstone/gemfire/pdx/ReflectionBasedAutoSerializer.html

@GemfireFunction
public Object genericFunction(String value, Object domainObject, PdxInstanceEnum enum)

{

Spring Data GemFire will only convert PDX type data to corresponding application domain object
types if and only if the corresponding application domain object types are on the classpath the the
Function annotated POJO method expects it.

non

For a good example of "custom", "composed" application-specific GemFire PdxSerializers as well as
appropriate POJO Function parameter type handling based on the method signature, see Spring
Data GemFire’s ClientCacheFunctionExecutionWithPdxIntegrationTest class.

77

https://github.com/spring-projects/spring-data-gemfire/blob/master/src/test/java/org/springframework/data/gemfire/function/ClientCacheFunctionExecutionWithPdxIntegrationTest.java

Chapter 11. Bootstrapping a Spring
ApplicationContext in GemFire

11.1. Introduction

Normally, a Spring-based application will bootstrap GemFire using Spring Data GemkFire’s XML
namespace. Just by specifying a <gfe:cache/> element in Spring Data GemFire configuration meta-
data, a single, peer GemFire Cache instance will be created and initialized with default settings in
the same JVM process as your application.

However, sometimes it is a requirement, perhaps imposed by your IT operations team, that
GemFire must be fully managed and operated using the provided GemFire tool suite, such as with
Gfsh. Using Gfsh, even though the application and GemFire will share the same JVM process,
GemFire will bootstrap your Spring application context rather than the other way around. So, using
this approach GemFire, instead of an application server, or a Java main class using Spring Boot, will
bootstrap and host your application.

Keep in mind, however, that GemFire is not an application server. In addition, there are limitations
to using this approach where GemFire Cache configuration is concerned.

11.2. Using GemFire to Bootstrap a Spring Context
Started with Gfsh

In order to bootstrap a Spring application context in GemFire when starting a GemFire Server
process using Gfsh, a user must make use of GemFire’s Initalizer functionality. An Initializer can be
used to specify a callback application that is launched after the Cache is initialized by GemFire.

An Initializer is specified within an initializer element using a minimal snippet of GemFire’s native
configuration meta-data inside a cache.xml file. The cache.xml file is required in order to bootstrap
the Spring application context, much like a minimal snippet of Spring XML config is needed to
bootstrap a Spring application context configured with component scanning (e.g.
<context:component-scan base-packages="++-"/>)

As of Spring Data GemFire 1.4, such an Initializer is already conveniently provided by the
framework, the org.springframework.data.gemfire.support.SpringContextBootstrappingInitializer.
The typical, yet minimal configuration for this class inside GemFire’s cache.xml file will look like the
following:

78

http://gemfire.docs.pivotal.io/docs-gemfire/latest/tools_modules/gfsh/chapter_overview.html
http://gemfire.docs.pivotal.io/docs-gemfire/latest/basic_config/the_cache/setting_cache_initializer.html
http://gemfire.docs.pivotal.io/docs-gemfire/latest/reference/topics/cache_xml.html#initializer

<?xml version="1.0"7>
<!DOCTYPE cache PUBLIC "-//GemStone Systems, Inc.//GemFire Declarative Caching
7.0//EN"

"http://www.gemstone.com/dtd/cache7_0.dtd">

<cache>
<initializer>
<class-
name>org.springframework.data.gemfire.support.SpringContextBootstrappinglnitializer</c
lass-name>
<parameter name="contextConfiglLocations">
<string>classpath:application-context.xml</string>
</parameter>
</initializer>
</cache>

The SpringContextBootstrappingInitializer class follows similar conventions as Spring’s
ContextLoaderListener class for bootstrapping a Spring context inside a Web Application, where
application context configuration files are specified with the contextConfiglLocations Servlet Context
Parameter. In addition, the SpringContextBootstrappingInitializer class can also be used with a
basePackages parameter to specify a comma-separated list of base package containing the
appropriately annotated application components that the Spring container will search using
component scanning and create Spring beans for:

<?xml version="1.0"?>
<IDOCTYPE cache PUBLIC "-//GemStone Systems, Inc.//GemFire Declarative Caching
7.0//EN"

"http://www.gemstone.com/dtd/cache7_0.dtd">

<cache>
<initializer>
<class-
name>org.springframework.data.gemfire.support.SpringContextBootstrappinglnitializer</c
lass-name>
<parameter name="basePackages">
<string>org.mycompany.myapp.services,org.mycompany.myapp.dao,...</string>
</parameter>
</initializer>
</cache>

Then, with a properly configured and constructed CLASSPATH along with the cache.xml file shown
above specified as a command-line option when starting a GemFire Server in Gfsh, the command-
line would be:

79

gfsh>start server --name=Server1 --log-level=config ...
--classpath="/path/to/spring-data-gemfire

-1.4.0.jar:/path/to/application/classes.jar"
--cache-xml-file="/path/to/gemfire/cache.xml"

The application-context.xml can be any valid Spring context configuration meta-data including all
the SDG namespace elements. The only limitation with this approach is that the GemFire Cache
cannot be configured using the Spring Data GemFire namespace. In other words, none of the
<gfe:cache/> element attributes, such as cache-xml-location, properties-ref, critical-heap-
percentage, pdx-serializer-ref, lock-lease, etc can be specified. If used, these attributes will be
ignored. The main reason for this is that GemFire itself has already created an initialized the Cache
before the Initializer gets invoked. As such, the Cache will already exist and since it is a "Singleton",
it cannot be re-initialized or have any of it’s configuration augmented.

11.3. Lazy-Wiring GemFire Components

Spring Data GemFire already provides existing support for wiring GemFire components (such as
CacheListeners, CacheLoaders or CacheWriters) that are declared and created by GemFire in
cache.xml using the WiringDeclarableSupport class as described in Configuration using auto-wiring
and annotations. However, this only works when Spring does the bootstrapping (i.e. bootstraps
GemFire). When your Spring application context is the one bootstrapped by GemFire, then these
GemFire components go unnoticed since the Spring application context does not even exist yet! The
Spring application context will not get created until GemFire calls the Initializer, which occurs
after all the other GemFire components and configuration have already been created and
initialized.

So, in order to solve this problem, a new LazyWiringDeclarableSupport class was introduced, that is,
in a sense, Spring application context aware. The intention of this abstract base class is that any
implementing class will register itself to be configured by the Spring application context created by
GemFire after the Initializer is called. In essence, this give your GemFire managed component a
chance to be configured and auto-wired with Spring beans defined in the Spring application
context.

In order for your GemFire application component to be auto-wired by the Spring container, create
a application class that extends the LazyWiringDeclarableSupport and annotate any class member
that needs to be provided as a Spring bean dependency, similar to:

public static final class UserDataSourceCachelLoader extends
LazyWiringDeclarableSupport implements Cacheloader<String, User> {

private DataSource userDataSource;

80

As implied by the CacheLoader example above, you might necessarily (although, rare) have defined
both a Region and CacheListener component in GemFire cache.xml. The CacheLoader may need
access to an application DAO, or perhaps Spring application context defined JDBC Data Source for
loading "Users" into a GemFire Cache REPLICATE Region on start. Of course, one should be careful in
mixing the different life-cycles of GemFire and the Spring Container together in this manner as not
all use cases and scenarios are supported. The GemFire cache.xml configuration would be similar to
the following (which comes from SDG’s test suite):

<?xml version="1.0"7>
<IDOCTYPE cache PUBLIC "-//GemStone Systems, Inc.//GemFire Declarative Caching
7.0//EN"

"http://www.gemstone.com/dtd/cache7_0.dtd">

<cache>
<region name="Users" refid="REPLICATE">
<region-attributes initial-capacity="101" load-factor="0.85">
<key-constraint>java.lang.String</key-constraint>
<value-constraint>
org.springframework.data.gemfire.repository.sample.User</value-constraint>
<cache-loader>
<class-
name>org.springframework.data.gemfire.support.SpringContextBootstrappingInitializerInt
egrationTest$UserDataStoreCacheloader</class-name>
</cache-loader>
</region-attributes>
</region>
<initializer>
<class-
name>org.springframework.data.gemfire.support.SpringContextBootstrappinglnitializer</c
lass-name>
<parameter name="basePackages">
<string>org.springframework.data.gemfire.support.sample</string>
</parameter>
</initializer>
</cache>

81

Chapter 12. Sample Applications

NOTE Sample applications are now maintained in the Spring Data GemFire Examples
repository.

The Spring Data GemFire project also includes one sample application. Named "Hello World", the

sample demonstrates how to configure and use GemFire inside a Spring application. At runtime,

the sample offers a shell to the user allowing him to run various commands against the grid. It

provides an excellent starting point for users unfamiliar with the essential components or the

Spring and GemFire concepts.

The sample is bundled with the distribution and is Maven-based. One can easily import them into
any Maven-aware IDE (such as Spring Tool Suite) or run them from the command-line.

12.1. Hello World

The Hello World sample demonstrates the core functionality of the Spring GemFire project. It
bootstraps GemFire, configures it, executes arbitrary commands against it and shuts it down when
the application exits. Multiple instances can be started at the same time as they will work with each
other sharing data without any user intervention.

Running under Linux

If you experience networking problems when starting GemFire or the samples, try

NOTE adding the following system property java.net.preferIPv4Stack=true to the
command line (insert -Djava.net.preferIPv4Stack=true). For an alternative (global)
fix especially on Ubuntu see this link

12.1.1. Starting and stopping the sample

Hello World is designed as a stand-alone java application. It features a Main class which can be
started either from your IDE of choice (in Eclipse/STS through Run As/Java Application) or from the
command line through Maven using mvn exec:java. One can also use java directly on the resulting
artifact if the classpath is properly set.

To stop the sample, simply type exit at the command line or press Ctrl+C to stop the VM and
shutdown the Spring container.

12.1.2. Using the sample

Once started, the sample will create a shared data grid and allow the user to issue commands
against it. The output will likely look as follows:

82

https://github.com/spring-projects/spring-gemfire-examples
https://spring.io/tools/sts
https://jira.spring.io/browse/SGF-28

INFO: Created GemFire Cache [Spring GemFire World] v. X.Y.Z
INFO: Created new cache region [myWorld]

INFO: Member xxxxxx:50694/51611 connecting to region [myWorld]
Hello World!

Want to interact with the world 7 ...

Supported commands are:

get <key> - retrieves an entry (by key) from the grid
put <key> <value> - puts a new entry into the grid
remove <key> - removes an entry (by key) from the grid

For example to add new items to the grid one can use:

-> Bold Section gName:emphasis level:5, chunks:[put 1 unu] attrs:[role:bold]
INFO: Added [1=unu] to the cache

null

-> Bold Section gName:emphasis level:5, chunks:[put 1 one] attrs:[role:bold]
INFO: Updated [1] from [unu] to [one]

unu

-> Bold Section gName:emphasis level:5, chunks:[size] attrs:[role:bold]

1

-> Bold Section gName:emphasis level:5, chunks:[put 2 two] attrs:[role:bold]
INFO: Added [2=two] to the cache

null

-> Bold Section gName:emphasis level:5, chunks:[size] attrs:[role:bold]

2

Multiple instances can be created at the same time. Once started, the new VMs automatically see
the existing region and its information:

INFO: Connected to Distributed System ['Spring GemFire World'=xxxx:56218/49320@yyyyy]
Hello World!

-> Bold Section gName:emphasis level:5, chunks:[size] attrs:[role:bold]

2

-> Bold Section gName:emphasis level:5, chunks:[map] attrs:[role:bold]

[2=two] [1=one]

-> Bold Section gName:emphasis level:5, chunks:[query length = 3] attrs:[role:bold]
[one, two]

Experiment with the example, start (and stop) as many instances as you want, run various
commands in one instance and see how the others react. To preserve data, at least one instance
needs to be alive all times - if all instances are shutdown, the grid data is completely destroyed (in
this example - to preserve data between runs, see the GemFire documentations).

83

12.1.3. Hello World Sample Explained

Hello World uses both Spring XML and annotations for its configuration. The initial boostrapping
configuration is app-context.xml which includes the cache configuration, defined under cache-
context.xml file and performs classpath scanning for Spring components. The cache configuration
defines the GemFire cache, region and for illustrative purposes a simple cache listener that acts as a
logger.

The main beans are HelloWorld and CommandProcessor which rely on the GemfireTemplate to interact
with the distributed fabric. Both classes use annotations to define their dependency and life-cycle
callbacks.

Other Resources

In addition to this reference documentation, there are a number of other resources that may help
you learn how to use GemFire and Spring framework. These additional, third-party resources are
enumerated in this section.

84

http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#beans-classpath-scanning
http://docs.spring.io/spring/docs/current/spring-framework-reference/htmlsingle/#beans-annotation-config

Chapter 13. Useful Links

» Spring Data GemFire Home Page

» Pivotal GemFire Home Page

» Pivotal GemFire Documentation

» Pivotal GemFire Knowledge Base

* Pivotal GemFire Community Home Page

* VMWare vFabric GemFire Community Home Page
* Spring Data GemFire Forum (StackOverflow)

» Spring Data GemFire Forum (spring.io archive)

Appendices

Unresolved directive in index.adoc - include::./../../../spring-data-
commons/src/main/asciidoc/repository-namespace-reference.adoc[] Unresolved directive in
index.adoc - include::./../../../spring-data-commons/src/main/asciidoc/repository-populator-

namespace-reference.adoc[] Unresolved directive in index.adoc - include::./../../../spring-data-
commons/src/main/asciidoc/repository-query-keywords-reference.adoc[] Unresolved directive in
index.adoc - include::./../../../spring-data-commons/src/main/asciidoc/repository-query-return-types-
reference.adoc|]

85

http://projects.spring.io/spring-data-gemfire
http://www.pivotal.io/big-data/pivotal-gemfire
http://gemfire.docs.pivotal.io/index.html
https://support.pivotal.io/hc/en-us/categories/200072748-Pivotal-GemFire-Knowledge-Base
https://support.pivotal.io/hc/communities/public/topics/200053218-Pivotal-GemFire-General
http://communities.vmware.com/community/vmtn/appplatform/vfabric_gemfire
http://stackoverflow.com/questions/tagged/spring-data-gemfire
http://forum.spring.io/forum/spring-projects/data/gemfire

Appendix A: Spring Data GemFire Schema

Spring Data GemFire Core Schema (gfe)

Unresolved directive in appendix/appendix-schema.adoc -
include::../../main/resources/org/springframework/data/gemfire/config/spring-gemfire-
1.3.xsd[]

Spring Data GemFire Data Access Schema (gfe-data)

Unresolved directive in appendix/appendix-schema.adoc -
include::../../main/resources/org/springframework/data/gemfire/config/spring-data-
gemfire-1.3.xsd[]

86

	Spring Data GemFire Reference Guide
	Table of Contents
	Preface
	Chapter 1. Introduction
	Chapter 2. Requirements
	Chapter 3. New Features
	3.1. New in the 1.2 Release
	3.2. New in the 1.3 Release
	3.3. New in the 1.4 Release
	3.4. New in the 1.5 Release
	3.5. New in the 1.6 Release
	3.6. New in the 1.7 Release

	Reference Guide
	Chapter 4. Document Structure
	Chapter 5. Bootstrapping GemFire through the Spring Container
	5.1. Advantages of using Spring over GemFire cache.xml
	5.2. Using the Core Spring Data GemFire Namespace
	5.3. Configuring a GemFire Cache
	5.3.1. Advanced Cache Configuration
	5.3.2. Configuring a GemFire Cache Server
	5.3.3. Configuring a GemFire Client Cache

	5.4. Using the GemFire Data Access Namespace
	5.4.1. An Easy Way to Connect to GemFire

	5.5. Configuring a GemFire Region
	5.5.1. Using an externally configured Region
	5.5.2. Auto Region Lookup
	5.5.3. Configuring Regions
	5.5.4. Region Templates
	5.5.5. A Word of Caution on Regions, Subregions and Lookups
	5.5.6. Data Persistence
	5.5.7. Subscription Interest Policy
	5.5.8. Data Eviction and Overflowing
	5.5.9. Data Expiration
	5.5.10. Annotation-based Data Expiration
	5.5.11. Local Region
	5.5.12. Replicated Region
	5.5.13. Partitioned Region
	5.5.14. Client Region
	5.5.15. JSON Support

	5.6. Creating an Index
	5.7. Configuring a Disk Store
	5.8. Using the GemFire Snapshot Service
	5.8.1. Snapshot Location
	5.8.2. Snapshot Filters
	5.8.3. Snapshot Events

	5.9. Configuring GemFire’s Function Service
	5.10. Configuring WAN Gateways
	5.10.1. WAN Configuration in GemFire 7.0
	5.10.2. WAN Configuration in GemFire 6.6

	Chapter 6. Working with the GemFire APIs
	6.1. Exception Translation
	6.2. GemfireTemplate
	6.3. Support for Spring Cache Abstraction
	6.4. Transaction Management
	6.5. GemFire Continuous Query Container
	6.5.1. Continuous Query Listener Container
	6.5.2. The ContinuousQueryListenerAdapter and ContinuousQueryListener

	6.6. Wiring Declarable components
	6.6.1. Configuration using template definitions
	6.6.2. Configuration using auto-wiring and annotations

	Chapter 7. Working with GemFire Serialization
	7.1. Wiring deserialized instances
	7.2. Auto-generating custom `Instantiator`s

	Chapter 8. POJO mapping
	8.1. Entity Mapping
	8.2. Mapping PDX Serializer

	Chapter 9. GemFire Repositories
	9.1. Introduction
	9.2. Spring Configuration
	9.3. Executing OQL Queries
	9.4. OQL Query Extensions with Annotations

	Chapter 10. Annotation Support for Function Execution
	10.1. Introduction
	10.2. Implementation vs Execution
	10.3. Implementing a Function
	10.3.1. Annotations for Function Implementation

	10.4. Executing a Function
	10.4.1. Annotations for Function Execution

	10.5. Programmatic Function Execution
	10.6. Function Execution with PDX

	Chapter 11. Bootstrapping a Spring ApplicationContext in GemFire
	11.1. Introduction
	11.2. Using GemFire to Bootstrap a Spring Context Started with Gfsh
	11.3. Lazy-Wiring GemFire Components

	Chapter 12. Sample Applications
	12.1. Hello World
	12.1.1. Starting and stopping the sample
	12.1.2. Using the sample
	12.1.3. Hello World Sample Explained

	Other Resources
	Chapter 13. Useful Links

	Appendices
	Appendix A: Spring Data GemFire Schema
	Spring Data GemFire Core Schema (gfe)
	Spring Data GemFire Data Access Schema (gfe-data)

