

 PREFACE

Spring Data GemFire focuses on integrating the Spring Framework’s powerful, non-invasive programming model
and concepts with Pivotal GemFire to simplify configuration and development of Java applications using GemFire.

This document assumes the reader already has a basic familiarity with the Spring Framework and Pivotal GemFire
concepts and APIs.

While every effort has been made to ensure this documentation is comprehensive and complete, with no errors,
some topics are beyond the scope of this document and may require more explanation (e.g. data distribution management
with partitioning for HA while still preserving consistency). Additionally, some typos might have crept in.
If you do spot mistakes or even more serious errors and you can spare a few cycles, please do bring these issues
to the attention of the Spring Data GemFire team by raising an appropriate
issue.

Thank you.

 INTRODUCTION

This reference guide for Spring Data GemFire explains how to use the Spring Framework to configure and develop
applications with Pivotal GemFire. It presents the basic concepts, semantics and provides numerous examples
to help you get started.

 REQUIREMENTS

Spring Data GemFire requires JDK 8.0, Spring Framework 5
and Pivotal GemFire 9.0.x.

 NEW FEATURES

As of the 1.2.0.RELEASE, this project, formerly known as Spring GemFire, has been renamed to
Spring Data GemFire to reflect that it is now a module of the
Spring Data project.

New in the 1.2 Release

	
Full support for GemFire configuration via the SDG gfe namespace. Now GemFire components may be configured completely without requiring a native cache.xml file.

	
WAN Gateway support for GemFire 6.6.x. See [bootstrap:gateway].

	
Spring Data Repository support using a dedicated SDG namespace, gfe-data. See [gemfire-repositories]

	
Namespace support for registering GemFire Functions. See [bootstrap:function]

	
A top-level <disk-store> element has been added to the SDG gfe namespace to allow sharing of persist stores among Regions,
and other components that support persistent backup or overflow. See [bootstrap-diskstore]

The <*-region> elements no longer allow a nested <disk-store> element.

	
GemFire Sub-Regions are supported via nested <*-region> elements.

	
A <local-region> element has been added to configure a Local Region.

	
Support for the re-designed WAN Gateway in GemFire 7.0.

New in the 1.3 Release

	
Annotation support for GemFire Functions. It is now possible to declare and register Functions written as POJOs using annotations. In addition, Function executions are defined as
annotated interfaces, similar to the way Spring Data Repositories work. See [function-annotations].

	
Added a <datasource> element to the SDG gfe-data namespace to simplify establishing a basic client connection to a GemFire data grid.

	
Added a <json-region-autoproxy> element to the SDG gfe-data namespace to support JSON features introduced
in GemFire 7.0, enabling Spring AOP to perform the necessary conversions automatically on Region operations.

	
Upgraded to GemFire 7.0.1 and added namespace support for new AsyncEventQueue attributes.

	
Added support for setting subscription interest policy on Regions.

	
Support for void returns on Function executions. See [function-annotations] for complete details.

	
Support for persisting Local Regions. See [bootstrap:region:local] and [bootstrap:region:common:attributes].

	
Support for entry time-to-live and entry idle-time on a GemFire Client Cache. See [bootstrap:cache:client].

	
Support for multiple Spring Data GemFire web-based applications using a single GemFire cluster, operating concurrently inside tc Server.

	
Support for concurrency-checks-enabled on all GemFire Cache Region definitions using the SDG gfe namespace. See [bootstrap:region:common:attributes].

	
Support for Cache Loaders and Cache Writers on Client, Local Regions. See [bootstrap:region:common:loaders-writers].

	
Support for registering CacheListeners, AsyncEventQueues and Gateway Senders on GemFire Cache Sub-Regions.

	
Support for PDX persistent keys in GemFire Regions.

	
Support for correct Partition Region bean creation in a Spring context when collocation is specified with the colocated-with attribute.

	
Full support for GemFire Cache Sub-Regions using proper, nested <*-region> element syntax in the SDG gfe namespace.

	
Upgraded Spring Data GemFire to Spring Framework 3.2.8.

	
Upgraded Spring Data GemFire to Spring Data Commons 1.7.1.

New in the 1.4 Release

	
Upgrades to Pivotal GemFire 7.0.2.

	
Upgrades to Spring Data Commons 1.8.x.RELEASE.

	
Upgrades to Spring Framework 3.2.x.RELEASE.

	
Integrates Spring Data GemFire with Spring Boot, which includes both a spring-boot-starter-data-gemfire POM
along with a Spring Boot sample application demonstrating GemFire Cache Transactions configured with SDG
and bootstrapped with Spring Boot.

	
Support for bootstrapping a Spring ApplicationContext in a GemFire Server when started from Gfsh.
See [gemfire-bootstrap] for more details.

	
Support for persisting application domain object/entities to multiple GemFire Cache Regions.
See [mapping.entities] for more details.

	
Support for persisting application domain object/entities to GemFire Cache Sub-Regions, avoiding collisions
when Sub-Regions are uniquely identifiable, but identically named.
See [mapping.entities] for more details.

	
Adds strict XSD type rules to, and full support for, Data Policies and Region Shortcuts
on all GemFire Cache Region types.

	
Changed the default behavior of SDG <*-region> elements from lookup to always create a new Region
along with an option to restore old behavior using the ignore-if-exists attribute.
See Common Region Attributes
and [bootstrap:region:common:regions-subregions-lookups-caution]
for more details.

	
Spring Data GemFire can now be fully built and ran on JDK 7 and JDK 8.

Pivotal GemFire has not yet been fully tested and certified to run JDK 8; See
GemFire User Guide
for additional details.

New in the 1.5 Release

	
Maintains support for Pivotal GemFire 7.0.2.

	
Upgrades to Spring Data Commons 1.9.x.RELEASE.

	
Upgrades to Spring Framework 4.0.x.RELEASE.

	
Reference Guide migrated to Asciidoc.

	
Renewed support for deploying Spring Data GemFire in an OSGi container.

	
Removed all default values in the Spring Data GemFire XML namespace Region-type elements to
rely on GemFire defaults instead.

	
Added convenience to automatically create Disk Store directory locations.

	
SDG annotated Function implementations can now be executed from Gfsh.

	
Enable GemFire GatewayReceivers to be started manually.

	
Support for Auto Region Lookups. See [bootstrap:region:auto-lookup] for further details.

	
Support for Region Templates. See [bootstrap:region:common:region-templates] for further details.

New in the 1.6 Release

	
Upgrades to Pivotal GemFire 8.0.0.

	
Upgrades to Spring Data Commons 1.10.x.RELEASE.

	
Maintains support on Spring Framework 4.0.x.RELEASE.

	
Adds support for GemFire 8’s new Cluster-based Configuration.

	
Enables 'auto-reconnect' functionality to be employed in Spring-configured GemFire Servers.

	
Allows the creation of concurrent and parallel Async Event Queues and Gateway Senders.

	
Adds support for GemFire 8’s Region data compression.

	
Adds attributes to set both critical and warning percentages on Disk Store usage.

	
Supports the capability to add the new EventSubstitutionFilters to GatewaySenders.

New in the 1.7 Release

	
Upgrades to Pivotal GemFire 8.1.0.

	
Upgrades to Spring Data Commons 1.11.x.RELEASE.

	
Upgrades to Spring Framework 4.1.x.RELEASE.

	
Early access support for Pivotal GemFire.

	
Support for adding Spring-defined Cache Listeners, Loaders and Writers on "existing" GemFire Regions
configured in Spring XML, cache.xml or even with Pivotal GemFire’s Cluster Config.

	
Spring JavaConfig support added to SpringContextBootstrappingInitializer.

	
Support for custom ClassLoaders in SpringContextBootstrappingInitializer to load Spring-defined bean classes.

	
Support for LazyWiringDeclarableSupport re-initialization and complete replacement for WiringDeclarableSupport.

	
Adds locators and servers attributes to the <gfe:pool> element allowing variable Locator/Server
endpoint lists configured with Spring’s property placeholders.

	
Enables the use of <gfe-data:datasource> element with non-Spring configured Pivotal GemFire Servers.

	
Multi-Index definition and creation support.

	
[bootstrap:region:expiration:annotation]

	
[gemfire-repositories:oql-extensions]

	
[bootstrap:snapshot]

New in the 1.8 Release

	
Upgrades to Pivotal GemFire 8.2.0.

	
Upgrades to Spring Data Commons 1.12.x.RELEASE.

	
Upgrades to Spring Framework 4.2.x.RELEASE.

	
Adds Maven POM to build SDG with Maven.

	
Adds support for CDI.

	
Enables a ClientCache to be configured without a Pool.

	
<gfe:cache> and <gfe:client-cache> elements use-bean-factory-locator attributes now default to false.

	
Adds durable-client-id and durable-client-timeout attributes to <gfe:client-cache>.

	
GemfirePersistentProperty now properly handles other non-entity, scalar-like types (e.g. BigDecimal, BigInteger).

	
Prevents SDG-defined Pools from being destroyed before Regions that use those Pools.

	
Handles case-insensitive GemFire OQL queries defined as Repository query methods.

	
Changes GemFireCache.evict(key) to call Region.remove(key) in SDG’s Spring Cache Abstraction support.

	
Fixes RegionNotFoundException with Repository queries on a client Region associated with a specific Pool
configured for GemFire server groups.

	
Changes Gateway Senders/Receivers to no longer be tied to the Spring container.

New in the 1.9 Release

	
Upgrades to Pivotal GemFire 8.2.4.

	
Upgrades to Spring Data Commons 1.13.x.RELEASE.

	
Upgrades to Spring Framework 4.3.x.RELEASE.

	
Introduces an entirely new Annotation-based configuration model inspired by Spring Boot.

	
Adds support for suspend and resume in the GemfireTransactionManager.

	
Adds support in Repositories to use the bean id property as the Region key when the @Id annotation
is not present.

	
Uses MappingPdxSerializer as the default GemFire serialization strategy when @EnablePdx is used.

	
Enables GemfireCacheManager to explicitly list Region names to be used in the Spring’s Caching Abstraction.

	
Configure GemFire Caches, CacheServers, Locators, Pools, Regions, Indexes, DiskStores, Expiration, Eviction,
Statistics, Mcast, HttpService, Auth, SSL, Logging, System Properties.

	
Repository support with multiple Spring Data modules on the classpath.

New in the 2.0 Release

	
Upgrades to Pivotal GemFire 9.0.x.

	
Upgrades to Spring Data Commons 2.0.x.RELEASE.

	
Upgrades to Spring Framework 5.0.x.RELEASE.

	
Reorganizes the SDG codebase by better packaging different classes and components by concern.

	
Adds extensive support for Java 8 types, particularly in the SD Repository abstraction.

	
Changes to the Repository interface and abstraction, e.g. IDs are no longer required to be java.io.Serializable.

	
Sets @EnableEntityDefinedRegions annotation ignoreIfExists attribute to true by default.

	
Sets @Indexed annotation override attribute to false by default.

	
Renames @EnableIndexes to @EnableIndexing.

	
Introduces a InterestsBuilder class to easily and conveniently express Interests in keys/values between client
and server when using JavaConfig.

	
Adds support for Off-Heap, Redis Adapter and GemFire’s new Security framework to the Annotation configuration model.

 DOCUMENT STRUCTURE

The following chapters explain the core functionality offered by Spring Data GemFire for Pivotal GemFire.

[bootstrap] describes the configuration support provided for bootstrapping, configuring, initializing
and accessing Pivotal GemFire Caches, Regions, and related Distributed System components.

[apis] explains the integration between the Pivotal GemFire APIs and the various data access features
available in Spring, such as transaction management and exception translation.

[serialization] describes the enhancements for Pivotal GemFire (de)serialization and management of associated objects.

[mapping] describes persistence mapping for POJOs stored in Pivotal GemFire using Spring Data.

[gemfire-repositories] describes how to create and use Spring Data Repositories to access data in Pivotal GemFire.

[function-annotations] describes how to create and use Pivotal GemFire Functions using Annotations.

[gemfire-bootstrap] describes how to bootstrap a Spring ApplicationContext running in an Pivotal GemFire server
using Gfsh.

[samples] describes the examples provided with the distribution to illustrate the various features
available in Spring Data GemFire.

 BOOTSTRAPPING PIVOTAL GEMFIRE WITH THE SPRING CONTAINER

Spring Data GemFire provides full configuration and initialization of the Pivotal GemFire In-Memory Data Grid (IMDG)
using the Spring IoC container. The framework includes several classes to help simplify the configuration of
Pivotal GemFire components including: Caches, Regions, Indexes, DiskStores, Functions, WAN Gateways, persistence backup
along with several other Distributed System components in order to support a variety of use cases with minimal effort.

This section assumes basic familiarity with Pivotal GemFire. For more information,
see the Pivotal GemFire product documentation.

Advantages of using Spring over Pivotal GemFire cache.xml

Spring Data GemFire’s XML namespace supports full configuration of the Pivotal GemFire In-Memory Data Grid (IMDG).
The XML namespace is the preferred way to configure Pivotal GemFire in a Spring context in order to properly
manage GemFire’s lifecycle inside the Spring container. While support for GemFire’s native cache.xml persists
for legacy reasons, GemFire application developers are encouraged to do everything in Spring XML to take advantage of
the many wonderful things Spring has to offer such as modular XML configuration, property placeholders and overrides,
SpEL, and environment profiles. Behind the XML namespace, Spring Data GemFire makes extensive use of Spring’s
FactoryBean pattern to simplify the creation, configuration and initialization of GemFire components.

Pivotal GemFire provides several callback interfaces, such as CacheListener, CacheLoader and CacheWriter,
that allow developers to add custom event handlers. Using Spring’s IoC container, these callbacks may be configured
as normal Spring beans and injected into GemFire components. This is a significant improvement over native cache.xml,
which provides relatively limited configuration options and requires callbacks to implement GemFire’s Declarable
interface (see [apis:declarable] to see how you can still use Declarables within Spring’s IoC/DI container).

In addition, IDEs, such as the Spring Tool Suite (STS), provide excellent support for Spring XML namespaces
including code completion, pop-up annotations, and real time validation, making them easy to use.

Using the Core Namespace

To simplify configuration, Spring Data GemFire provides a dedicated XML namespace for configuring core Pivotal GemFire
components. It is possible to configure beans directly using Spring’s standard <bean> definition. However,
all bean properties are exposed via the XML namespace so there is little benefit to using raw bean definitions.
For more information about XML Schema-based configuration in Spring, see the
appendix
in the Spring Framework reference documentation.

Spring Data Repository support uses a separate XML namespace. See [gemfire-repositories] for more information
on how to configure Spring Data GemFire Repositories.

To use the Spring Data GemFire XML namespace, simply declare it in your Spring XML configuration meta-data:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:gfe="http://www.springframework.org/schema/geode" ① ②
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/geode http://www.springframework.org/schema/gemfire/spring-geode.xsd"> ③

 <bean id ... >

 <gfe:cache ...> ④

</beans>

	① Spring Data GemFire XML namespace prefix. Any name will do but through out this reference documentation,
gfe will be used.

	② The XML namespace prefix is mapped to the URI.

	③ The XML namespace URI location. Note that even though the location points to an external address (which does exist
and is valid), Spring will resolve the schema locally as it is included in the Spring Data GemFire library.

	④ Example declaration using the XML namespace with the gfe prefix.

It is possible to change the default namespace from beans to gfe. This is useful for XML configuration
composed mainly of GemFire components as it avoids declaring the prefix. To achieve this, simply swap the namespace
prefix declaration above:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/geode" ①
 xmlns:beans="http://www.springframework.org/schema/beans" ②
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/geode http://www.springframework.org/schema/gemfire/spring-geode.xsd">

 <beans:bean id ... > ③

 <cache ...> ④

</beans>

	① The default namespace declaration for this XML document points to the Spring Data GemFire XML namespace.

	② The beans namespace prefix declaration for Spring’s raw bean definitions.

	③ Bean declaration using the beans namespace. Notice the prefix.

	④ Bean declaration using the gfe namespace. Notice the lack of prefix since gfe is the default namespace.

Using the Data Access Namespace

In addition to the core XML namespace (gfe), Spring Data GemFire provides a gfe-data XML namespace
primarily intended to simplify the development of Pivotal GemFire client applications. This namespace currently contains
support for GemFire Repositories and function execution as well as
includes a <datasource> tag that offers a convenient way to connect to the Pivotal GemFire data grid.

An Easy Way to Connect to GemFire

For many applications, a basic connection to a GemFire data grid using default values is sufficient.
Spring Data GemFire’s <datasource> tag provides a simple way to access data. The data source creates
a ClientCache and connection Pool. In addition, it will query the cluster servers for all existing root Regions
and create an (empty) client Region proxy for each one.

<gfe-data:datasource>
 <locator host="remotehost" port="1234"/>
</gfe-data:datasource>

The <datasource> tag is syntactically similar to <gfe:pool>. It may be configured with one or more nested locator
or server tags to connect to an existing data grid. Additionally, all attributes available to configure a Pool
are supported. This configuration will automatically create client Region beans for each Region defined on
cluster members connected to the Locator, so they may be seamlessly referenced by Spring Data mapping annotations,
GemfireTemplate, and wired into application classes.

Of course, you can explicitly configure client Regions. For example, if you want to cache data in local memory:

<gfe-data:datasource>
 <locator host="remotehost" port="1234"/>
</gfe-data:datasource>

<gfe:client-region id="Example" shortcut="CACHING_PROXY"/>

Configuring a Cache

To use Pivotal GemFire, a developer needs to either create a new Cache or connect to an existing one.
With the current version of GemFire, there can be only one open Cache per VM (technically, per ClassLoader).
In most cases, the Cache should only be created once.

This section describes the creation and configuration of a peer cache member, appropriate in
peer-to-peer (P2P) topologies and cache servers. A cache member can also be used in standalone applications
and integration tests. However, in most typical production systems, most application processes will act as
cache clients, creating a ClientCache instance instead. This is described in the sections Configuring a GemFire ClientCache
and Client Region.

A peer cache with default configuration can be created with a very simple declaration:

<gfe:cache/>

During Spring container initialization, any application context containing this cache definition will register
a CacheFactoryBean that creates a Spring bean named gemfireCache referencing a GemFire Cache instance.
This bean will refer to either an existing cache, or if one does not already exist, a newly created one. Since no
additional properties were specified, a newly created cache will apply the default cache configuration.

All Spring Data GemFire components that depend on the cache respect this naming convention, so there is no need
to explicitly declare the cache dependency. If you prefer, you can make the dependency explicit via the cache-ref
attribute provided by various SDG XML namespace elements. Also, you can easily override the cache’s bean name using
the id attribute:

<gfe:cache id="myCache"/>

A GemFire Cache can be fully configured using Spring, however, GemFire’s native XML configuration file, cache.xml,
is also supported. For situations where the GemFire cache needs to be configured natively, simply provide a reference
to the GemFire XML configuration file using the cache-xml-location attribute:

<gfe:cache id="cacheConfiguredWithNativeXml" cache-xml-location="classpath:cache.xml"/>

In this example, if a cache needs to be created, it will use a file named cache.xml located in the classpath root
to configure it.

The configuration makes use of Spring’s Resource
abstraction to locate the file. This allows various search patterns to be used, depending on the runtime environment
or the prefix specified (if any) in the resource location.

In addition to referencing an external XML configuration file, a developer may also specify GemFire System
properties
using any of Spring’s Properties support features.

For example, the developer may use the properties element defined in the util namespace to define Properties
directly or load properties from a properties file:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:gfe="http://www.springframework.org/schema/gemfire"
 xmlns:util="http://www.springframework.org/schema/util"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/gemfire http://www.springframework.org/schema/gemfire/spring-gemfire.xsd
 http://www.springframework.org/schema/util http://www.springframework.org/schema/util/spring-util.xsd">

 <util:properties id="gemfireProperties" location="file:/path/to/gemfire.properties"/>

 <gfe:cache properties-ref="gemfireProperties"/>

</beans>

Using a properties file is recommended for externalizing environment specific settings outside
the application configuration.

Cache settings apply only if a new cache needs to be created. If an open cache already exists in the VM,
these settings are ignored.

Advanced Cache Configuration

For advanced cache configuration, the cache element provides a number of configuration options exposed as attributes
or child elements:

 ①
<gfe:cache
 cache-xml-location=".."
 properties-ref=".."
 close="false"
 copy-on-read="true"
 critical-heap-percentage="90"
 eviction-heap-percentage="70"
 enable-auto-reconnect="false" ②
 lock-lease="120"
 lock-timeout="60"
 message-sync-interval="1"
 pdx-serializer-ref="myPdxSerializer"
 pdx-persistent="true"
 pdx-disk-store="diskStore"
 pdx-read-serialized="false"
 pdx-ignore-unread-fields="true"
 search-timeout="300"
 use-bean-factory-locator="true" ③
 use-cluster-configuration="false" ④
>

 <gfe:transaction-listener ref="myTransactionListener"/> ⑤

 <gfe:transaction-writer> ⑥
 <bean class="org.example.app.gemfire.transaction.TransactionWriter"/>
 </gfe:transaction-writer>

 <gfe:gateway-conflict-resolver ref="myGatewayConflictResolver"/> ⑦

 <gfe:dynamic-region-factory/> ⑧

 <gfe:jndi-binding jndi-name="myDataSource" type="ManagedDataSource"/> ⑨

</gfe:cache>

	① Various cache options are supported by attributes. For further information regarding anything shown in this example,
please consult the GemFire product documentation.
The close attribute determines whether the cache should be closed when the Spring application context is closed.
The default is true, however, for use cases in which multiple application contexts use the cache
(common in web applications), set this value to false.

	② Setting the enable-auto-reconnect attribute to true (default is false), allows a disconnected GemFire member to
automatically reconnect and rejoin the GemFire cluster.
See the GemFire product documentation
for more details.

	③ Setting the use-bean-factory-locator attribute to true (defaults to false) is only applicable when both
Spring (XML) configuration meta-data and GemFire cache.xml is used to configure the GemFire cache node
(whether client or peer). This option allows GemFire components (e.g. CacheLoader) expressed in cache.xml
to be auto-wired with beans (e.g. DataSource) defined in the Spring application context. This option is typically
used in conjunction with cache-xml-location.

	④ Setting the use-cluster-configuration attribute to true (default is false) enables a GemFire member to
retrieve the common, shared Cluster-based configuration from a Locator.
See the GemFire product documentation
for more details.

	⑤ Example of a TransactionListener callback declaration using a bean reference. The referenced bean must implement
TransactionListener.
A TransactionListener can be implemented to handle transaction related events (e.g. afterCommit, afterRollback).

	⑥ Example of a TransactionWriter callback declaration using an inner bean declaration. The bean must implement
TransactionWriter.
The TransactionWriter is a callback that is allowed to veto a transaction.

	⑦ Example of a GatewayConflictResolver callback declaration using a bean reference. The referenced bean
must implement http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/util/GatewayConflictResolver.html
[GatewayConflictResolver].
A GatewayConflictResolver is a Cache-level plugin that is called upon to decide what to do with events that originate
in other systems and arrive through the WAN Gateway.

	⑧ Enable GemFire’s DynamicRegionFactory,
which provides a distributed Region creation service.

	⑨ Declares a JNDI binding to enlist an external DataSource in a GemFire transaction.

Enabling PDX Serialization

The example above includes a number of attributes related to GemFire’s enhanced serialization framework, PDX.
While a complete discussion of PDX is beyond the scope of this reference guide, it is important to note that PDX
is enabled by registering a PdxSerializer which is specified via the pdx-serializer attribute. GemFire provides
an implementing class org.apache.geode.pdx.ReflectionBasedAutoSerializer that uses Java Reflection, however, it is
common for developers to provide their own implementation. The value of the attribute is simply a reference to
a Spring bean that implements the PdxSerializer interface.

More information on serialization support can be found in [serialization]

Enabling auto-reconnect

Setting the <gfe:cache enable-auto-reconnect="[true|false*]> attribute to true should be done with care.

Generally, 'auto-reconnect' should only be enabled in cases where Spring Data GemFire’s XML namespace is used to
configure and bootstrap a new, non-application GemFire Server to add to a cluster. In other words, 'auto-reconnect'
should not be enabled when Spring Data GemFire is used to develop and build an GemFire application that also happens
to be a peer cache member of the GemFire cluster.

The main reason for this is that most GemFire applications use references to the GemFire cache or Regions in order to
perform data access operations. These references are "injected" by the Spring container into application components
(e.g. DAOs or Repositories) for use by the application. When a peer member is forcefully disconnected from the rest
of the cluster, presumably because the peer member has become unresponsive or a network partition separates one or more
peer members into a group too small to function as an independent distributed system, the peer member will shutdown
and all GemFire component references (e.g. Cache, Regions, etc) become invalid.

Essentially, the current forced-disconnect processing logic in each peer member dismantles the system from the ground up.
The JGroups stack shuts down, the Distributed System is put in a shutdown state and finally, the Cache is closed.
Effectively, all memory references become stale and are lost.

After being disconnected from the Distributed System a peer member enters a "reconnecting" state and periodically
attempts to rejoin the Distributed System. If the peer member succeeds in reconnecting, the member rebuilds
its "view" of the Distributed System from existing members and receives a new Distributed System ID. Additionally, all
Cache, Regions and other GemFire components are reconstructed. Therefore, all old references, which may have been
injected into application by the Spring container are now stale and no longer valid.

GemFire makes no guarantee, even when using the GemFire public Java API, that application Cache, Region or other
component references will be automatically refreshed by the reconnect operation. As such, GemFire applications
must take care to refresh their own references.

Unfortunately, there is no way to be notified of a disconnect event, and subsequently, a reconnect event.
If that were the case, the application developer would have a clean way to know when to call
ConfigurableApplicationContext.refresh(), if even applicable for an application to do so, which is why
this "feature" of Pivotal GemFire is not recommended for peer cache GemFire applications.

For more information about 'auto-reconnect', see GemFire’s
product documentation.

Using Cluster-based Configuration

Pivotal GemFire’s Cluster Configuration Service is a convenient way for any peer member joining the cluster to get
a "consistent view" of the cluster by using the shared, persistent configuration maintained by a Locator.
Using the Cluster-based Configuration ensures the peer member’s configuration will be compatible with
the GemFire Distributed System when the member joins.

This feature of Spring Data GemFire (setting the use-cluster-configuration attribute to true) works in the same way
as the cache-xml-location attribute, except the source of the GemFire configuration meta-data comes from the network
via a Locator as opposed to a native cache.xml file residing in the local file system.

All GemFire native configuration meta-data, whether from cache.xml or from the Cluster Configuration Service,
gets applied before any Spring (XML) configuration meta-data. As such, Spring’s config serves to "augment" the
native GemFire configuration meta-data and would most likely be specific to the application.

Again, to enable this feature, just specify the following in the Spring XML config:

 <gfe:cache use-cluster-configuration="true"/>

While certain GemFire tools, like Gfsh, have their actions "recorded" when schema-like changes are made
(e.g. gfsh>create region --name=Example --type=PARTITION), Spring Data GemFire’s configuration meta-data
is not recorded. The same is true when using GemFire’s public Java API directly; it too is not recorded.

For more information on GemFire’s Cluster Configuration Service, see the
product documentation.

Configuring a GemFire CacheServer

Spring Data GemFire includes dedicated support for configuring a
CacheServer,
allowing complete configuration through the Spring container:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:gfe="http://www.springframework.org/schema/gemfire"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/gemfire http://www.springframework.org/schema/gemfire/spring-gemfire.xsd
">

 <gfe:cache/>

 <!-- Example depicting serveral GemFire CacheServer configuration options -->
 <gfe:cache-server id="advanced-config" auto-startup="true"
 bind-address="localhost" host-name-for-clients="localhost" port="${gemfire.cache.server.port}"
 load-poll-interval="2000" max-connections="22" max-message-count="1000" max-threads="16"
 max-time-between-pings="30000" groups="test-server">

 <gfe:subscription-config eviction-type="ENTRY" capacity="1000" disk-store="file://${java.io.tmpdir}"/>

 </gfe:cache-server>

 <context:property-placeholder location="classpath:cache-server.properties"/>

</beans>

The configuration above illustrates the cache-server element and the many options available.

Rather than hard-coding the port, this configuration uses Spring’s
context
namespace to declare a property-placeholder.
property placeholder
reads one or more properties files and then replaces property placeholders with values at runtime. This allows administrators
to change values without having to touch the main application configuration. Spring also provides the
SpEL
and the environment abstraction
to support externalization of environment-specific properties from the main codebase, easing deployment
across multiple machines.

To avoid initialization problems, the CacheServer started by Spring Data GemFire will start after
the Spring container has been fully initialized. This allows potential Regions, Listeners, Writers or Instantiators
defined declaratively to be fully initialized and registered before the server starts accepting connections.
Keep this in mind when programmatically configuring these elements as the server might start after your components
and thus not be seen by the clients connecting right away.

Configuring a GemFire ClientCache

In addition to defining a GemFire peer Cache,
Spring Data GemFire also supports the definition of a GemFire ClientCache
in a Spring context. A ClientCache definition is very similar in configuration and use to
the GemFire peer Cache and is supported by the org.springframework.data.gemfire.client.ClientCacheFactoryBean.

The simplest definition of a GemFire cache client using default configuration can be accomplished with the following
declaration:

<beans>
 <gfe:client-cache/>
</beans>

client-cache supports many of the same options as the cache element. However, as opposed
to a full-fledged peer cache member, a cache client connects to a remote cache server through a Pool. By default,
a Pool is created to connect to a server running on localhost, listening to port 40404. The default Pool is used
by all client Regions unless the Region is configured to use a specific Pool.

Pools can be defined with the pool element. This client-side Pool can be used to configure connectivity directly to
a server for individual entities or the entire cache through one or more Locators.

For example, to customize the default Pool used by the client-cache, the developer needs to define a Pool and wire it
to the cache definition:

<beans>
 <gfe:client-cache id="my-cache" pool-name="myPool"/>

 <gfe:pool id="myPool" subscription-enabled="true">
 <gfe:locator host="${gemfire.locator.host}" port="${gemfire.locator.port}"/>
 </gfe:pool>
</beans>

The <client-cache> element also has a ready-for-events attribute. If set to true, the client cache
initialization will include a call to ClientCache.readyForEvents().

Client-side configuration is covered in more detail in Client Region.

GemFire’s DEFAULT Pool and Spring Data GemFire Pool Definitions

If a GemFire ClientCache is local-only, then no Pool definition is required. For instance, a developer may define:

<gfe:client-cache/>

<gfe:client-region id="Example" shortcut="LOCAL"/>

In this case, the "Example" Region is LOCAL and no data is distributed between the client and a server, therefore,
no Pool is necessary. This is true for any client-side, local-only Region, as defined by the GemFire’s
ClientRegionShortcut
(all LOCAL_* shortcuts).

However, if a client Region is a (caching) proxy to a server-side Region, then a Pool is required. There are several
ways to define and use a Pool in this case.

When a client cache, Pool and proxy-based Region are all defined, but not explicitly identified, Spring Data GemFire
will resolve the references automatically for you.

For example:

<gfe:client-cache/>

<gfe:pool>
 <gfe:locator host="${geode.locator.host}" port="${geode.locator.port}"/>
</gfe:pool>

<gfe:client-region id="Example" shortcut="PROXY"/>

In the example above, the client cache is identified as gemfireCache, the Pool as gemfirePool and the client Region
as "Example". However, the client cache will initialize GemFire’s DEFAULT Pool from gemfirePool and the client Region
will use the gemfirePool when distributing data between the client and the server.

Basically, Spring Data GemFire resolves the above configuration to the following:

<gfe:client-cache id="gemfireCache" pool-name="gemfirePool"/>

<gfe:pool id="gemfirePool">
 <gfe:locator host="${geode.locator.host}" port="${geode.locator.port}"/>
</gfe:pool>

<gfe:client-region id="Example" cache-ref="gemfireCache" pool-name="gemfirePool" shortcut="PROXY"/>

GemFire still creates a Pool called "DEFAULT". Spring Data GemFire will just cause the "DEFAULT" Pool to be
initialized from the gemfirePool. This is useful in situations where multiple Pools are defined and client Regions
are using separate Pools.

Consider the following:

<gfe:client-cache pool-name="locatorPool"/>

<gfe:pool id="locatorPool">
 <gfe:locator host="${geode.locator.host}" port="${geode.locator.port}"/>
</gfe:pool>

<gfe:pool id="serverPool">
 <gfe:server host="${geode.server.host}" port="${geode.server.port}"/>
</gfe:pool>

<gfe:client-region id="Example" pool-name="serverPool" shortcut="PROXY"/>

<gfe:client-region id="AnotherExample" shortcut="CACHING_PROXY"/>

<gfe:client-region id="YetAnotherExample" shortcut="LOCAL"/>

In this setup, the GemFire client cache’s "DEFAULT" Pool is initialized from "locatorPool" as specified with the
pool-name attribute. There is no Spring Data GemFire-defined gemfirePool since both Pools were explicitly
identified (named) "locatorPool" and "serverPool", respectively.

The "Example" Region explicitly refers to and uses the "serverPool" exclusively. The "AnotherExample" Region uses
GemFire’s "DEFAULT" Pool, which was configured from the "locatorPool" based on the client cache bean definition’s
pool-name attribute.

Finally, the "YetAnotherExample" Region will not use a Pool since it is LOCAL.

The "AnotherExample" Region would first look for a Pool bean named gemfirePool, but that would require
the definition of an anonymous Pool bean (i.e. <gfe:pool/>) or a Pool bean explicitly named gemfirePool
(e.g. <gfe:pool id="gemfirePool"/>).

We could have either named "locatorPool", "gemfirePool", or made the Pool bean definition anonymous
and it would have the same effect as the above configuration.

Configuring a Region

A Region is required to store and retrieve data from the cache. org.apache.geode.cache.Region is an interface
extending java.util.Map and enables basic data access using familiar key-value semantics. The Region interface
is wired into application classes that require it so the actual Region type is decoupled from the programming model.
Typically, each Region is associated with one domain object, similar to a table in a relational database.

GemFire implements the following types of Regions:

	
REPLICATE - Data is replicated across all cache members that define the Region. This provides very high
read performance but writes take longer to perform the replication.

	
PARTITION - Data is partitioned into buckets (sharded) among cache members that define the Region. This provides
high read and write performance and is suitable for large data sets that are too big for a single node.

	
LOCAL - Data only exists on the local node.

	
Client - Technically, a client Region is a LOCAL Region that acts as a PROXY to a REPLICATE or PARTITION Region
hosted on cache servers in a cluster. It may hold data created or fetched locally. Alternately, it can be empty.
Local updates are synchronized to the cache server. Also, a client Region may subscribe to events in order to
stay up-to-date (synchronized) with changes originating from remote processes that access the same server Region.

For more information about the various Region types and their capabilities as well as configuration options,
please refer to Pivotal GemFire’s documentation on
Region Types.

Using an externally configured Region

To reference Regions already configured in a GemFire native cache.xml file, use the lookup-region element.
Simply declare the target Region name with the name attribute. For example, to declare a bean definition identified
as ordersRegion for an existing Region named Orders, you can use the following bean definition:

<gfe:lookup-region id="ordersRegion" name="Orders"/>

If name is not specified, the bean’s id will be used as the name of the Region.
The example above becomes:

<!-- lookup for a Region called 'Orders' -->
<gfe:lookup-region id="Orders"/>

If the Region does not exist, an initialization exception will be thrown. To configure new Regions,
proceed to the appropriate sections below.

In the previous examples, since no cache name was explicitly defined, the default naming convention (gemfireCache)
was used. Alternately, one can reference the cache bean with the cache-ref attribute:

<gfe:cache id="myCache"/>
<gfe:lookup-region id="ordersRegion" name="Orders" cache-ref="myCache"/>

lookup-region provides a simple way of retrieving existing, pre-configured Regions without exposing
the Region semantics or setup infrastructure.

Auto Region Lookup

"auto-lookup" allows all Regions defined in a GemFire native cache.xml file to be imported into a Spring
application context when using the`cache-xml-location` attribute on the <gfe:cache> element.

For instance, given a cache.xml file of…​

<?xml version="1.0" encoding="UTF-8"?>
<cache xmlns="http://geode.apache.org/schema/cache"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://geode.apache.org/schema/cache http://geode.apache.org/schema/cache/cache-1.0.xsd"
 version="1.0">

 <region name="Parent" refid="REPLICATE">
 <region name="Child" refid="REPLICATE"/>
 </region>

</cache>

A developer may import the cache.xml file as follows…​

<gfe:cache cache-xml-location="cache.xml"/>

The developer may then use the <gfe:lookup-region> element (e.g. <gfe:lookup-region id="Parent"/>) to reference
specific Regions as beans in the Spring context, or the user may choose to import all Regions defined in cache.xml
with:

<gfe:auto-region-lookup/>

Spring Data GemFire will automatically create beans for all GemFire Regions defined in cache.xml that have not been
explicitly added to the Spring context with explicit <gfe:lookup-region> bean declarations.

It is important to realize that Spring Data GemFire uses a Spring
BeanPostProcessor
to post process the cache after it is both created and initialized to determine the Regions defined in GemFire to add
as beans in the Spring application context.

You may inject these "auto-looked-up" Regions like any other bean defined in the Spring application context with
1 exception; you may need to define a depends-on association with the ‘gemfireCache’ bean as follows…​

package example;

import ...

@Repository("appDao")
@DependsOn("gemfireCache")
public class ApplicationDao extends DaoSupport {

 @Resource(name = "Parent")
 private Region<?, ?> parent;

 @Resource(name = "/Parent/Child")
 private Region<?, ?> child;

 ...
}

The example above is applicable when using Spring’s component-scan functionality.

If you are declaring your components using Spring XML config, then you would do…​

<bean class="example.ApplicationDao" depends-on="gemfireCache"/>

This ensures the GemFire cache and all the Regions defined in cache.xml get created before any components
with auto-wire references when using the new <gfe:auto-region-lookup> element.

Configuring Regions

Spring Data GemFire provides comprehensive support for configuring any type of Region via the following elements:

	
LOCAL Region: <local-region>

	
PARTITION Region: <partitioned-region>

	
REPLICATE Region: <replicated-region>

	
Client Region: <client-region>

Please see the Pivotal GemFire documentation for a comprehensive description of
Region Types.

Common Region Attributes

The following table lists attributes available for all Region types:

Table 1. Common Region Attributes

	Name
	Values
	Description

	cache-ref

	GemFire Cache bean reference

	The name of the bean defining the GemFire Cache (by default 'gemfireCache').

	cloning-enabled

	boolean, default:false

	When true, the updates are applied to a clone of the value and then the clone is saved to the cache. When false, the value is modified in place in the cache.

	close

	boolean, default:false

	Determines whether the Region should be closed at shutdown.

	concurrency-checks-enabled

	boolean, default:true

	Determines whether members perform checks to provide consistent handling for concurrent or out-of-order updates to distributed Regions.

	data-policy

	See GemFire’s Data Policy

	The Region’s Data Policy. Note, not all Data Policies are supported for every Region type.

	destroy

	boolean, default:false

	Determines whether the Region should be destroyed at shutdown.

	disk-store-ref

	The name of a configured Disk Store.

	A reference to a bean created via the disk-store element.

	disk-synchronous

	boolean, default:true

	Determines whether Disk Store writes are synchronous.

	id

	Any valid bean name.

	Will be the Region name by default if no name attribute is specified.

	ignore-if-exists

	boolean, default:false

	Ignores this bean definition if the Region already exists in the cache, resulting in a lookup instead.

	ignore-jta

	boolean, default:false

	Determines whether this Region will participate in JTA transactions.

	index-update-type

	synchronous or asynchronous, default:synchronous

	Determines whether Indices will be updated synchronously or asynchronously on entry creation.

	initial-capacity

	integer, default:16

	The initial memory allocation for the number of Region entries.

	key-constraint

	Any valid, fully-qualified Java class name.

	Expected key type.

	load-factor

	float, default:.75

	Sets the initial parameters on the underlying java.util.ConcurrentHashMap used for storing Region entries.

	name

	Any valid Region name.

	The name of the Region. If not specified, it will assume the value of the id attribute (a.k.a. bean name).

	persistent

	*boolean, default:false

	Determines whether the Region will persist entries to local disk (Disk Store).

	shortcut

	See http://geode.apache.org/releases/latest/javadoc/org/apache/geode/cache/RegionShortcut.html

	The RegionShortcut for this Region. Allows easy initialization of the Region based on pre-defined defaults.

	statistics

	boolean, default:false

	Determines whether the Region reports statistics.

	template

	The name of a Region Template.

	A reference to a bean created via one of the *region-template elements.

	value-constraint

	Any valid, fully-qualified Java class name.

	Expected value type.

CacheListeners

CacheListeners are registered with a Region to handle Region events such as when entries are created, updated,
destroyed and so on. A CacheListener can be any bean that implements the
CacheListener interface.
A Region may have multiple listeners, declared using the cache-listener element nested in the containing
*-region element.

In the example below, there are two CacheListener’s declared. The first references a named, top-level Spring bean;
the second is an anonymous inner bean definition.

<gfe:replicated-region id="regionWithListeners">
 <gfe:cache-listener>
 <!-- nested CacheListener bean reference -->
 <ref bean="myListener"/>
 <!-- nested CacheListener bean definition -->
 <bean class="org.example.app.geode.cache.AnotherSimpleCacheListener"/>
 </gfe:cache-listener>

 <bean id="myListener" class="org.example.app.geode.cache.SimpleCacheListener"/>
</gfe:replicated-region>

The following example uses an alternate form of the cache-listener element with the ref attribute.
This allows for more concise configuration when defining a single CacheListener. Note, the namespace only allows
a single cache-listener element so either the style above or below must be used.

Using ref and a nested declaration in the cache-listener element is illegal. The two options are
mutually exclusive and using both in the same element will result in an exception.

<beans>
 <gfe:replicated-region id="exampleReplicateRegionWithCacheListener">
 <gfe:cache-listener ref="myListener"/>
 </gfe:replicated-region>

 <bean id="myListener" class="example.CacheListener"/>
</beans>

Bean Reference Conventions

The cache-listener element is an example of a common pattern used in the namespace anywhere GemFire provides
a callback interface to be implemented in order to invoke custom code in response to Cache or Region events.
Using Spring’s IoC container, the implementation is a standard Spring bean. In order to simplify the configuration,
the schema allows a single occurrence of the cache-listener element, but it may contain nested bean references
and inner bean definitions in any combination if multiple instances are permitted. The convention is to use
the singular form (i.e., cache-listener vs cache-listeners) reflecting that the most common scenario will in fact
be a single instance. We have already seen examples of this pattern in the advanced cache
configuration example.

CacheLoaders and CacheWriters

Similar to cache-listener, the namespace provides cache-loader and cache-writer elements to register
these GemFire components respectively for a Region.

A CacheLoader is invoked on a cache miss to allow an entry to be loaded from an external data source, such as a
database. A CacheWriter is invoked before an entry is created or updated, intended for synchronizing to
an external data source. The difference is GemFire only supports at most a single instance CacheLoader and CacheWriter
per Region. However, either declaration style may be used.

Example:

<beans>
 <gfe:replicated-region id="exampleReplicateRegionWithCacheLoaderAndCacheWriter">
 <gfe:cache-loader ref="myLoader"/>
 <gfe:cache-writer>
 <bean class="example.CacheWriter"/>
 </gfe:cache-writer>
 </gfe:replicated-region>

 <bean id="myLoader" class="example.CacheLoader">
 <property name="dataSource" ref="mySqlDataSource"/>
 </bean>

 <!-- DataSource bean definition -->
</beans>

See CacheLoader
and CacheWriter
in the Pivotal GemFire documentation for more details.

Compression

GemFire Regions may also be compressed in order to reduce JVM memory consumption and pressure to possibly avoid
stop the world GCs. When you enable compression for a Region, all values stored in the Region, in-memory
are compressed while keys and indexes remain uncompressed. New values are compressed when put into Region
and all values are decompressed automatically when read back from the Region. Values are not compressed when
persisted to disk or when sent over the wire to other peer members or clients.

Example:

<beans>
 <gfe:replicated-region id="exampleReplicateRegionWithCompression">
 <gfe:compressor>
 <bean class="org.apache.geode.compression.SnappyCompressor"/>
 </gfe:compressor>
 </gfe:replicated-region>
</beans>

Please refer to Pivotal GemFire’s documentation for more information on
Region Compression.

Subregions

Spring Data GemFire also supports Subregions, allowing Regions to be arranged in a hierarchical relationship.

For example, GemFire allows for a /Customer/Address Region and a different /Employee/Address Region. Additionally,
a Subregion may have it’s own Subregions and its own configuration. A Subregion does not inherit attributes from
the parent Region. Regions types may be mixed and matched subject to GemFire constraints. A Subregion is naturally
declared as a child element of a Region. The Subregion’s name attribute is the simple name. The above example
might be configured as:

<beans>
 <gfe:replicated-region name="Customer">
 <gfe:replicated-region name="Address"/>
 </gfe:replicated-region>

 <gfe:replicated-region name="Employee">
 <gfe:replicated-region name="Address"/>
 </gfe:replicated-region>
</beans>

Note that the Monospaced ([id]) attribute is not permitted for a Subregion. The Subregions will be created with
bean names /Customer/Address and /Employee/Address, respectively. So they may be injected using the full path name
into other application beans that need them, such as GemfireTemplate. The full path should also be used in
OQL query strings.

Region Templates

Spring Data GemFire also supports Region Templates. This feature allows developers to define common Region
configuration settings and attributes once and reuse the configuration among many Region bean definitions declared
in the Spring application context.

Spring Data GemFire includes 5 Region template tags in namespace:

Table 2. Region Template Tags

	Tag Name
	Description

	<gfe:region-template>

	Defines common, generic Region attributes; extends regionType in the namespace.

	<gfe:local-region-template>

	Defines common, 'Local' Region attributes; extends localRegionType in the namespace.

	<gfe:partitioned-region-template>

	Defines common, 'PARTITION' Region attributes; extends partitionedRegionType in the namespace.

	<gfe:replicated-region-template>

	Defines common, 'REPLICATE' Region attributes; extends replicatedRegionType in the namespace.

	<gfe:client-region-template>

	Defines common, 'Client' Region attributes; extends clientRegionType in the namespace.

In addition to the tags, concrete <gfe:*-region> elements along with the abstract <gfe:*-region-template> elements
have a template attribute used to define the Region Template from which the Region will inherit its configuration.
Region Templates may even inherit from other Region Templates.

Here is an example of 1 possible configuration…​

<beans>
 <gfe:async-event-queue id="AEQ" persistent="false" parallel="false" dispatcher-threads="4">
 <gfe:async-event-listener>
 <bean class="example.AeqListener"/>
 </gfe:async-event-listener>
 </gfe:async-event-queue>

 <gfe:region-template id="BaseRegionTemplate" initial-capacity="51" load-factor="0.85" persistent="false" statistics="true"
 key-constraint="java.lang.Long" value-constraint="java.lang.String">
 <gfe:cache-listener>
 <bean class="example.CacheListenerOne"/>
 <bean class="example.CacheListenerTwo"/>
 </gfe:cache-listener>
 <gfe:entry-ttl timeout="600" action="DESTROY"/>
 <gfe:entry-tti timeout="300 action="INVLIDATE"/>
 </gfe:region-template>

 <gfe:region-template id="ExtendedRegionTemplate" template="BaseRegionTemplate" load-factor="0.55">
 <gfe:cache-loader>
 <bean class="example.CacheLoader"/>
 </gfe:cache-loader>
 <gfe:cache-writer>
 <bean class="example.CacheWriter"/>
 </gfe:cache-writer>
 <gfe:async-event-queue-ref bean="AEQ"/>
 </gfe:region-template>

 <gfe:partitioned-region-template id="PartitionRegionTemplate" template="ExtendedRegionTemplate"
 copies="1" load-factor="0.70" local-max-memory="1024" total-max-memory="16384" value-constraint="java.lang.Object">
 <gfe:partition-resolver>
 <bean class="example.PartitionResolver"/>
 </gfe:partition-resolver>
 <gfe:eviction type="ENTRY_COUNT" threshold="8192000" action="OVERFLOW_TO_DISK"/>
 </gfe:partitioned-region-template>

 <gfe:partitioned-region id="TemplateBasedPartitionRegion" template="PartitionRegionTemplate"
 copies="2" local-max-memory="8192" persistent="true" total-buckets="91"/>
</beans>

Region Templates work for Subregions as well. Notice that 'TemplateBasedPartitionRegion'
extends 'PartitionRegionTemplate', which extends 'ExtendedRegionTemplate' that extends 'BaseRegionTemplate'.
Attributes and sub-elements defined in subsequent, inherited Region bean definitions override what is in the parent.

How Templating Works

Spring Data GemFire applies Region Templates when the Spring application context configuration meta-data is parsed,
and therefore, must be declared in the order of inheritance. In other words, parent templates must be defined
before children. This ensures the proper configuration is applied, especially when element attributes or sub-elements
are "overridden".

It is equally important to remember the Region types must only inherit from other similar typed Regions.
For instance, it is not possible for a <gfe:replicated-region> to inherit from a <gfe:partitioned-region-template>.

Region Templates are single-inheritance.

Caution concerning Regions, Subregions and Lookups

Previously, one of the underlying properties of the replicated-region, partitioned-region, local-region
and client-region elements in the Spring Data GemFire XML namespace was to perform a lookup first before
attempting to create a Region. This was done in case the Region already existed, which would be the case
if the Region was defined in an imported GemFire native cache.xml configuration file. Therefore, the lookup
was performed first to avoid any errors. This was by design and subject to change.

This behavior has been altered and the default behavior is now to create the Region first. If the Region
already exists, then the creation logic fails-fast and an appropriate exception is thrown. However, much like the
CREATE TABLE IF NOT EXISTS …​ DDL syntax, the Spring Data GemFire <*-region> namespace elements now includes
a ignore-if-exists attribute, which re-instates the old behavior by performing a lookup of an existing Region
identified by name, first. If an existing Region by name is found and ignore-if-exists is set to true, then
the Region bean definition defined in Spring config is ignored.

The Spring team highly recommends that the replicated-region, partitioned-region, local-region
and client-region namespace elements be strictly used for defining new Regions only. One problem that could arise
if the Regions defined by these elements already existed and the Region elements performed a lookup first is if
the developer defined different Region semantics and behaviors for eviction, expiration, subscription, etc in his/her
application config, then the Region definition may not match and could exhibit contrary behaviors to those required
by the application. Even worse, the application developer may want to define the Region as a distributed Region
(e.g. PARTITION) but in fact the existing Region definition is LOCAL.

Recommended Practice - Only use replicated-region, partitioned-region, local-region and client-region
namespace elements to define new Regions.

Consider the following native GemFire cache.xml configuration file…​

<?xml version="1.0" encoding="UTF-8"?>
<cache xmlns="http://geode.apache.org/schema/cache"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://geode.apache.org/schema/cache http://geode.apache.org/schema/cache/cache-1.0.xsd"
 version="1.0">

 <region name="Customers" refid="REPLICATE">
 <region name="Accounts" refid="REPLICATE">
 <region name="Orders" refid="REPLICATE">
 <region name="Items" refid="REPLICATE"/>
 </region>
 </region>
 </region>

</cache>

Also consider that you may have defined an application DAO as follows…​

public class CustomerAccountDao extends GemDaoSupport {

 @Resource(name = "Customers/Accounts")
 private Region customersAccounts;

 ...
}

Here, we are injecting a reference to the Customers/Accounts Region in our application DAO. As such, it is
not uncommon for a developer to define beans for all or even some of these Regions in Spring XML configuration
meta-data as follows…​

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:gfe="http://www.springframework.org/schema/gemfire"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/geode http://www.springframework.org/schema/gemfire/spring-geode.xsd
">

 <gfe:cache cache-xml-location="classpath:cache.xml"/>

 <gfe:lookup-region name="Customers/Accounts"/>
 <gfe:lookup-region name="Customers/Accounts/Orders"/>

</beans>

The Customers/Accounts and Customers/Accounts/Orders Regions are referenced as beans in the Spring
application context as "Customers/Accounts" and "Customers/Accounts/Orders", respectively. The nice thing about
using the lookup-region element and the corresponding syntax above is that it allows a developer
to reference a Subregion directly without unnecessarily defining a bean for the parent Region (i.e. Customers).

However, if now the developer changes his/her configuration meta-data syntax to using the nested format, like so…​

<gfe:lookup-region name="Customers">
 <gfe:lookup-region name="Accounts">
 <gfe:lookup-region name="Orders"/>
 </gfe:lookup-region>
</gfe:lookup-region>

Or, perhaps the developer erroneously chooses to use the top-level replicated-region element along with
the ignore-if-exists attribute set to perform a lookup first, as in…​

<gfe:replicated-region name="Customers" persistent="true" ignore-if-exists="true">
 <gfe:replicated-region name="Accounts" persistent="true" ignore-if-exists="true">
 <gfe:replicated-region name="Orders" persistent="true" ignore-if-exists="true"/>
 </gfe:replicated-region>
</gfe:replicated-region>

Then the Region beans defined in the Spring application context will consist of the following:
{ "Customers", "/Customers/Accounts", "/Customers/Accounts/Orders" }. This means the dependency injected reference
above (i.e. @Resource(name = "Customers/Accounts")) is now broken since no bean with name "Customers/Accounts"
is actually defined.

GemFire is flexible in referencing both parent Regions and Subregions with or without the leading forward slash.
For example, the parent can be referenced as "/Customers" or "Customers" and the child as "/Customers/Accounts"
or just "Customers/Accounts". However, _Spring Data _GemFire is very specific when it comes to naming beans after Regions,
typically always using the forward slash (/) to represent Subregions (e.g. "/Customers/Accounts").

Therefore, it is recommended that users either use the nested lookup-region syntax as shown above,
or define direct references with a leading forward slash (/) like so…​

<gfe:lookup-region name="/Customers/Accounts"/>
<gfe:lookup-region name="/Customers/Accounts/Orders"/>

The example above where the nested replicated-region elements were used to reference the Subregions serves to
illustrate the problem stated earlier. Are the Customers, Accounts and Orders Regions/Subregions persistent or not?
Not, since the Regions were defined in the native GemFire cache.xml configuration file as REPLICATES and will exist
by the time the cache is initialized, or once the <gfe:cache> bean is processed.

Data Eviction (with Overflow)

Based on various constraints, each Region can have an eviction policy in place for evicting data from memory.
Currently, in GemFire, eviction applies to the Least Recently Used entry (also known as
LRU). Evicted entries are either destroyed
or paged to disk (referred to as overflow to disk).

Spring Data GemFire supports all eviction policies (entry count, memory and heap usage) for PARTITION Regions,
REPLICATE Regions and client, local Regions using the nested eviction element.

For example, to configure a PARTITION Region to overflow to disk if the memory size exceeds more than 512 MB,
a developer would specify the following configuration:

<gfe:partitioned-region id="examplePartitionRegionWithEviction">
 <gfe:eviction type="MEMORY_SIZE" threshold="512" action="OVERFLOW_TO_DISK"/>
</gfe:partitioned-region>

Replicas cannot use local destroy eviction since that would invalidate them.
See the GemFire docs for more information.

When configuring Regions for overflow, it is recommended to configure the storage through the disk-store element
for maximum efficiency.

For a detailed description of eviction policies, please refer to the GemFire documentation on
Eviction.

Data Expiration

Pivotal GemFire allows you to control how long entries exist in the cache. Expiration is driven by elapsed time,
as opposed to Eviction, which is driven by the entry count or heap/memory usage. Once an entry expires
it may no longer be accessed from the cache.

GemFire supports the following Expiration types:

	
Time-to-Live (TTL) - The amount of time in seconds that an object may remain in the cache after the last creation
or update. For entries, the counter is set to zero for create and put operations. Region counters are reset when
the Region is created and when an entry has its counter reset.

	
Idle Timeout (TTI) - The amount of time in seconds that an object may remain in the cache after the last access.
The Idle Timeout counter for an object is reset any time its TTL counter is reset. In addition, an entry’s
Idle Timeout counter is reset any time the entry is accessed through a get operation or a netSearch.
The Idle Timeout counter for a Region is reset whenever the Idle Timeout is reset for one of its entries.

Each of these may be applied to the Region itself or entries in the Region. Spring Data GemFire provides <region-ttl>,
<region-tti>, <entry-ttl> and <entry-tti> Region child elements to specify timeout values and expiration actions.

For example:

<gfe:partitioned-region id="examplePartitionRegionWithExpiration">
 <gfe:region-ttl timeout="30000" action="INVALIDATE"/>
 <gfe:entry-tti timeout="600" action="LOCAL_DESTROY"/>
</gfe:replicated-region>

For a detailed description of expiration policies, please refer to the GemFire documentation on
Expiration.

Annotation-based Data Expiration

With Spring Data GemFire, a developer has the ability to define Expiration policies and settings on individual
Region Entry values, or rather, application domain objects directly. For instance, a developer might define Expiration
settings on a Session-based application domain object like so…​

@Expiration(timeout = "1800", action = "INVALIDATE")
public class SessionBasedApplicationDomainObject {
 ...
}

In addition, a developer may also specify Expiration type specific settings on Region Entries using
@IdleTimeoutExpiration and @TimeToLiveExpiration annotations for Idle Timeout (TTI) and Time-to-Live (TTL)
Expiration, respectively…​

@TimeToLiveExpiration(timeout = "3600", action = "LOCAL_DESTROY")
@IdleTimeoutExpiration(timeout = "1800", action = "LOCAL_INVALIDATE")
@Expiration(timeout = "1800", action = "INVALIDATE")
public class AnotherSessionBasedApplicationDomainObject {
 ...
}

Both @IdleTimeoutExpiration and @TimeToLiveExpiration take precedence over the generic @Expiration annotation
when more than one Expiration annotation type is specified, as shown above. Though, neither @IdleTimeoutExpiration
nor @TimeToLiveExpiration overrides the other; rather they may compliment each other when different Region Entry
Expiration types, such as TTL and TTI, are configured.

All @Expiration-based annotations apply only to Region Entry values. Expiration for a "Region" is not covered
by Spring Data GemFire’s Expiration annotation support. However, Pivotal GemFire and Spring Data GemFire do allow you
to set Region Expiration using the SDG XML namespace, like so…​

<gfe:*-region id="Example" persistent="false">
 <gfe:region-ttl timeout="600" action="DESTROY"/>
 <gfe:region-tti timeout="300" action="INVALIDATE"/>
</gfe:*-region>

Spring Data GemFire’s @Expiration annotation support is implemented with GemFire’s
CustomExpiry interface.
Refer to GemFire’s documentation on Configuring Data Expiration
for more details

The Spring Data GemFire AnnotationBasedExpiration class (and CustomExpiry implementation) is responsible
for processing the SDG @Expiration annotations and applying the Expiration policy and settings appropriately
for Region Entry Expiration on request.

To use Spring Data GemFire to configure specific GemFire Regions to appropriately apply the Expiration policy
and settings applied to your application domain objects annotated with @Expiration-based annotations, you must…​

	
Define a bean in the Spring ApplicationContext of type AnnotationBasedExpiration using the appropriate
constructor or one of the convenient factory methods. When configuring Expiration for a specific Expiration type,
such as Idle Timeout or Time-to-Live, then you should use one of the factory methods in the
AnnotationBasedExpiration class, like so…​

<bean id="ttlExpiration" class="org.springframework.data.gemfire.expiration.AnnotationBasedExpiration"
 factory-method="forTimeToLive"/>

<gfe:partitioned-region id="Example" persistent="false">
 <gfe:custom-entry-ttl ref="ttlExpiration"/>
</gfe:partitioned-region>

To configure Idle Timeout (TTI) Expiration instead, then you would of course use the forIdleTimeout factory method
along with the <gfe:custom-entry-tti ref="ttiExpiration"/> element to set TTI.

	
(optional) Annotate your application domain objects that will be stored in the Region with Expiration policies
and custom settings using one of Spring Data GemFire’s @Expiration annotations: @Expiration,
@IdleTimeoutExpiration and/or @TimeToLiveExpiration

	
(optional) In cases where particular application domain objects have not been annotated with Spring Data GemFire’s
@Expiration annotations at all, but the GemFire Region is configured to use SDG’s custom AnnotationBasedExpiration
class to determine the Expiration policy and settings for objects stored in the Region, then it is possible to set
"default" Expiration attributes on the AnnotationBasedExpiration bean by doing the following…​

<bean id="defaultExpirationAttributes" class="org.apache.geode.cache.ExpirationAttributes">
 <constructor-arg value="600"/>
 <constructor-arg value="#{T(org.apache.geode.cache.ExpirationAction).DESTROY}"/>
</bean>

<bean id="ttiExpiration" class="org.springframework.data.gemfire.expiration.AnnotationBasedExpiration"
 factory-method="forIdleTimeout">
 <constructor-arg ref="defaultExpirationAttributes"/>
</bean>

<gfe:partitioned-region id="Example" persistent="false">
 <gfe:custom-entry-tti ref="ttiExpiration"/>
</gfe:partitioned-region>

You may have noticed that Spring Data GemFire’s @Expiration annotations use a String as the attributes type rather
than, and perhaps more appropriately, being strongly typed, i.e. int for 'timeout' and SDG’S ExpirationActionType
for 'action'. Why is that?

Well, enter one of Spring Data GemFire’s other features, leveraging Spring’s core infrastructure
for configuration convenience: Property Placeholders and Spring Expression Language (SpEL).

For instance, a developer can specify both the Expiration 'timeout' and 'action' using Property Placeholders
in the @Expiration annotation attributes…​

@TimeToLiveExpiration(timeout = "${geode.region.entry.expiration.ttl.timeout}"
 action = "${geode.region.entry.expiration.ttl.action}")
public class ExampleApplicationDomainObject {
 ...
}

Then, in your Spring XML config or in JavaConfig, you would declare the following beans…​

<util:properties id="expirationSettings">
 <prop key="geode.region.entry.expiration.ttl.timeout">600</prop>
 <prop key="geode.region.entry.expiration.ttl.action">INVALIDATE</prop>
 ...
</util:properties>

<context:property-placeholder properties-ref="expirationProperties"/>

This is both convenient when multiple application domain objects might share similar Expiration policies and settings,
or when you wish to externalize the configuration.

However, a developer may want more dynamic Expiration configuration determined by the state of the running system.
This is where the power of SpEL comes in and is the recommended approach, actually. Not only can you refer to beans
in the Spring context and access bean properties, invoke methods, etc, the values for Expiration 'timeout'
and 'action' can be strongly typed. For example (building on the example above)…​

<util:properties id="expirationSettings">
 <prop key="geode.region.entry.expiration.ttl.timeout">600</prop>
 <prop key="geode.region.entry.expiration.ttl.action">#{T(org.springframework.data.gemfire.expiration.ExpirationActionType).DESTROY}</prop>
 <prop key="geode.region.entry.expiration.tti.action">#{T(org.apache.geode.cache.ExpirationAction).INVALIDATE}</prop>
 ...
</util:properties>

<context:property-placeholder properties-ref="expirationProperties"/>

Then, on your application domain object…​

@TimeToLiveExpiration(timeout = "@expirationSettings['geode.region.entry.expiration.ttl.timeout']"
 action = "@expirationSetting['geode.region.entry.expiration.ttl.action']")
public class ExampleApplicationDomainObject {
 ...
}

You can imagine that the 'expirationSettings' bean could be a more interesting and useful object rather than a simple
instance of java.util.Properties. In this example, even the Properties (expirationSettings) uses SpEL to base
the action value on the actual Expiration action enumerated type leading to more quickly identified failures
if the types ever change.

All of this has been demonstrated and tested in the Spring Data GemFire test suite, by way of example. See the
source for further details.

Data Persistence

Regions can be persistent. GemFire ensures that all the data you put into a Region that is configured for persistence
will be written to disk in a way that is recoverable the next time you recreate the Region. This allows data
to be recovered after machine or process failure, or even after an orderly shutdown and subsequent restart of
the GemFire data node.

To enable persistence with Spring Data GemFire, simply set the persistent attribute to true on
any of the <*-region> elements. For example…​

<gfe:partitioned-region id="examplePersitentPartitionRegion" persistent="true"/>

Persistence may also be configured using the data-policy attribute; set the attribute’s value to one of
GemFire’s DataPolicy settings.
For example…​

<gfe:partitioned-region id="anotherExamplePersistentPartitionRegion" data-policy="PERSISTENT_PARTITION"/>

The DataPolicy must match the Region type and must also agree with the persistent attribute if also explicitly set.
An initialization exception will be thrown if the persistent attribute is set to false yet a persistent DataPolicy
was specified (e.g. PERSISTENT_REPLICATE, PERSISTENT_PARTITION).

When persisting Regions, it is recommended to configure the storage through the disk-store element
for maximum efficiency. The DiskStore is referenced using the disk-store-ref attribute. Additionally, the Region
may perform disk writes synchronously or asynchronously:

<gfe:partitioned-region id="yetAnotherExamplePersistentPartitionRegion" persistent="true"
 disk-store-ref="myDiskStore" disk-synchronous="true"/>

This is discussed further in Configuring a DiskStore

Subscription Policy

GemFire allows configuration of peer-to-peer (P2P) event messaging
to control the entry events that the Region will receive. Spring Data GemFire provides the <gfe:subscription/>
sub-element to set the subscription policy on REPLICATE and PARTITION Regions to either ALL or CACHE_CONTENT.

<gfe:partitioned-region id="examplePartitionRegionWithCustomSubscription">
 <gfe:subscription type="CACHE_CONTENT"/>
</gfe:partitioned-region>

Local Region

Spring Data GemFire offers a dedicated local-region element for creating local Regions. Local Regions, as the name
implies, are standalone, meaning they do not share data with any other distributed system member. Other than that,
all common Region configuration options apply.

A minimal declaration looks as follows (again, the example relies on the Spring Data GemFire namespace
naming conventions to wire the cache):

<gfe:local-region id="exampleLocalRegion"/>

Here, a local Region is created (if one doesn’t exist already). The name of the Region is the same as the bean id
(exampleLocalRegion) and the bean assumes the existence of a GemFire cache named gemfireCache.

Replicated Region

One of the common Region types is a REPLICATE Region or replica. In short, when a Region is configured to be
a REPLICATE, every member that hosts the Region stores a copy of the Region’s entries locally. Any update to
a REPLICATE Region is distributed to all copies of the Region. When a replica is created, it goes through
an initialization stage in which it discovers other replicas and automatically copies all the entries.
While one replica is initializing you can still continue to use the other replica.

Spring Data GemFire offers a replicated-region element. A minimal declaration looks as follows.
All common configuration options are available for REPLICATE Regions.

<gfe:replicated-region id="exampleReplica"/>

Refer to GemFire’s documentation on
Distributed and Replicated Regions
for more details.

Partitioned Region

Another Region type supported out-of-the-box by the Spring Data GemFire namespace is the PARTITION Region.

To quote the GemFire docs:

"A partitioned region is a region where data is divided between peer servers hosting the region so that
each peer stores a subset of the data. When using a partitioned region, applications are presented with
a logical view of the region that looks like a single map containing all of the data in the region.
Reads or writes to this map are transparently routed to the peer that hosts the entry that is the target of
the operation. GemFire divides the domain of hashcodes into buckets. Each bucket is assigned to a specific peer,
but may be relocated at any time to another peer in order to improve the utilization of resources across the cluster."

A partition is created using the partitioned-region element. Its configuration options are similar to that of
the replicated-region plus the partition specific features such as the number of redundant copies,
total maximum memory, number of buckets, partition resolver and so on.

Below is a quick example on setting up a PARTITION Region with 2 redundant copies:

<gfe:partitioned-region id="examplePartitionRegion" copies="2" total-buckets="17">
 <gfe:partition-resolver>
 <bean class="example.PartitionResolver"/>
 </gfe:partition-resolver>
</gfe:partitioned-region>

Refer to GemFire’s documentation on
Partitioned Regions
for more details.

Partitioned Region Attributes

The following table offers a quick overview of configuration options specific to PARTITION Regions.
These are in addition to the common Region configuration options described above.

Table 3. partitioned-region attributes

	Name
	Values
	Description

	copies

	0..4

	The number of copies for each partition for high-availability. By default, no copies are created
meaning there is no redundancy. Each copy provides extra backup at the expense of extra storage.

	colocated-with

	valid region name

	The name of the PARTITION Region with which this newly created PARTITION Region is collocated.

	local-max-memory

	positive integer

	The maximum amount of memory in megabytes used by the Region in this process.

	total-max-memory

	any integer value

	The maximum amount of memory in megabytes used by the Region in all processes.

	partition-listener

	bean name

	The name of the PartitionListener used by this Region, for handling partition events.

	partition-resolver

	bean name

	The name of the PartitionResolver used by this Region, for custom partitioning.

	recovery-delay

	any long value

	The delay in milliseconds that existing members will wait before satisfying redundancy after another member crashes.
-1 (the default) indicates that redundancy will not be recovered after a failure.

	startup-recovery-delay

	any long value

	The delay in milliseconds that new members will wait before satisfying redundancy.
-1 indicates that adding new members will not trigger redundancy recovery. The default is to recover redundancy
immediately when a new member is added.

Client Region

Pivotal GemFire supports various deployment topologies for managing and distributing data. GemFire topologies is outside
the scope of this documentation. However, to quickly recap, GemFire’s supported topologies can be classified in short as:
peer-to-peer (p2p), client-server, and wide area network (WAN). In the last two configurations, it is common
to declare client Regions which connect to a cache server.

Spring Data GemFire offers dedicated support for such configuration through client-cache,
client-region and pool elements. As the names imply, the former defines a client Region while the latter defines
a Pool of connections to be used/shared by the various client Regions.

Below is a typical client Region configuration:

<bean id="myListener" class="example.CacheListener"/>

<!-- client Region using the default SDG gemfirePool Pool -->
<gfe:client-region id="Example">
 <gfe:cache-listener ref="myListener"/>
</gfe:client-region>

<!-- client Region using its own dedicated Pool -->
<gfe:client-region id="AnotherExample" pool-name="myPool">
 <gfe:cache-listener ref="myListener"/>
</gfe:client-region>

<!-- Pool definition -->
<gfe:pool id="myPool" subscription-enabled="true">
 <gfe:locator host="remoteHost" port="12345"/>
</gfe:pool>

As with the other Region types, client-region supports CacheListener``s as well as a CacheLoader and CacheWriter.
It also requires a connection Pool for connecting to either a set of Locators or Servers.
Each client Region can have its own Pool or they can share the same one.

In the above example, the Pool is configured with locator. A Locator is a separate process used to discover
cache servers and peer data members in the distributed system and are recommended for production systems. It is also
possible to configure the Pool to connect directly to one or more cache servers using the server element.

For a full list of options to set on the client and especially on the Pool, please refer to
the Spring Data GemFire schema ([appendix-schema]) and GemFire’s documentation on
Client/Server Configuration.

Client Interests

To minimize network traffic, each client can separately define its own 'interests' policies, indicating to GemFire
the data it actually requires. In Spring Data GemFire, 'interests' can be defined for each client Region separately.
Both Key-based and Regular Expression-based interest types are supported.

For example:

<gfe:client-region id="Example" pool-name="myPool">
 <gfe:key-interest durable="true" result-policy="KEYS">
 <bean id="key" class="java.lang.String">
 <constructor-arg value="someKey"/>
 </bean>
 </gfe:key-interest>
 <gfe:regex-interest pattern=".*" receive-values="false"/>
</gfe:client-region>

A special key, ALL_KEYS, means 'interest' is registered for all keys. The same can be accomplished using a regex
of ".*".

The <gfe:*-interest> Key and Regular Expression elements support 3 attributes: durable, receive-values
and result-policy.

durable indicates whether the 'interest' policy and subscription queue created for the client when the client connects
to 1 or more servers in the cluster is maintained across client sessions. If the client goes away and comes back,
a "durable" subscription queue on the server(s) for the client is maintained while the client is disconnected,
and when the client reconnects, the client will receive any events that occurred while the client was disconnected
from the servers(s) in the cluster.

A subscription queue on the servers in the cluster is maintained for each Pool of connections defined in the client
where subscription has also been "enabled" for that Pool. The subscription queue is used to store, and possibly
conflate, events sent to the client. If the subscription queue is durable, it persists between client sessions
(i.e. connections), potentially up to a specified timeout (if the client does not return within a given time frame
in order to reduce resource consumption on servers in the cluster). If the subscription queue is not "durable",
then it will be destroyed when the client disconnects. All you need to decide is, for your application use case,
is it important for the cache client to receive events while it is disconnected, or is it only important for
the application (cache client) to receive the "latest" events after it reconnects.

The receive-values attribute indicates whether or not the entry values are received for create and update events.
If true, values are received; if false, only invalidation events are received.

And finally, the 'result-policy` is an enumeration of: KEYS, KEYS_VALUE and NONE. The default is KEYS_VALUES.
The result-policy controls the initial dump when the client first connects to initialize the local cache,
essentially seeding the client with events for all the entries that match the interest policy.

Client-side interests registration does not do much good without enabling subscription on the Pool as mentioned above.
In fact, it is an error to attempt interests registration without subscription enabled. To do so, you simply…​

<gfe:pool ... subscription-enabled="true">
 ...
</gfe:pool>

In addition to subscription-enabled, can you also set subscription-ack-interval,
subscription-message-tracking-timeout and subscription-redundancy. subscription-redundancy is used to control
how many copies of the subscription queue should be maintained by the servers in the cluster. If redundancy
is greater than 1, and the "primary" subscription queue (i.e. server) goes down, then a "secondary" subscription queue
will take over, keeping the client from missing events in a HA scenario.

In addition to the Pool settings, the server-side Regions use an additional attribute,
enable-subscription-conflation, to control the conflation of events that will be sent to the clients. This can also
help further minimize network traffic and is useful in situations where the application only cares about
the latest value of an entry. However, in cases where the application is keeping a time series of events that occurred,
conflation is going to hinder that use case. The default value is false. An example Region configuration
on the server for which the client contains a corresponding client [CACHING_]PROXY Region with interests in Keys
in this server Region, would look like…​

<gfe:partitioned-region name="ServerSideRegion" enable-subscription-conflation="true">
 ...
</gfe:partitioned-region>

To control the amount of time in seconds that "durable" subscription queue is maintained after a client is disconnected
from the server(s) in the cluster, set the durable-client-timeout attribute on the <gfe:client-cache> element
like so…​

<gfe:client-cache durable-client-timeout="600">
 ...
</gfe:client-cache>

A full, in-depth discussion of how client interests work and capabilities is beyond the scope of this document.

Please refer to Pivotal GemFire’s documentation on
Client-to-Server Event Distribution
for more details.

JSON Support

Pivotal GemFire has support for caching JSON documents in Regions along with the ability to query stored JSON documents
using the GemFire OQL. JSON documents are stored internally as
PdxInstance types
using the JSONFormatter class
to perform conversion to and from JSON documents (as a String).

Spring Data GemFire provides the <gfe-data:json-region-autoproxy/> element to enable a
AOP, Spring
component to advise appropriate, proxied Region operations, which effectively encapsulates the JSONFormatter,
thereby allowing your applications to work directly with JSON Strings.

In addition, Java objects written to JSON configured Regions will be automatically converted to JSON using Jackson’s
ObjectMapper. Reading these values back will be returned as a JSON String.

By default, <gfe-data:json-region-autoproxy/> performs the conversion for all Regions. To apply this feature
to selected Regions, provide a comma delimited list of Region bean ids via the region-refs attribute.
Other attributes include a pretty-print flag (defaults to false) and convert-returned-collections.

Also by default, the results of the getAll() and values() Region operations will be converted for
configured Regions. This is done by creating a parallel data structure in local memory. This can incur
significant overhead for large collections, so set the convert-returned-collections to false
if you would like to disable automatic conversion for these Region operations.

Certain Region operations, specifically those that use GemFire’s proprietary Region.Entry such as:
entries(boolean), entrySet(boolean) and getEntry() type are not targeted for AOP advice. In addition,
the entrySet() method which returns a Set<java.util.Map.Entry<?, ?>> is also not affected.

Example configuration:

<gfe-data:json-region-autoproxy region-refs="myJsonRegion" pretty-print="true" convert-returned-collections="false"/>

This feature also works seamlessly with GemfireTemplate operations, provided that the template is declared
as a Spring bean. Currently, the native QueryService operations are not supported.

Configuring an Index

Pivotal GemFire allows Indexes (or Indices) to be created on Region data to improve the performance of OQL queries.

In Spring Data GemFire (SDG), Indexes are declared with the index element:

<gfe:index id="myIndex" expression="someField" from="/SomeRegion" type="HASH"/>

In Spring Data GemFire’s XML schema (a.k.a. SDG namespace), Index bean declarations are not bound to a Region,
unlike GemFire’s native cache.xml. Rather, they are top-level elements just like <gfe:cache>. This allows
a developer to declare any number of Indexes on any Region whether they were just created or already exist,
a significant improvement over GemFire’s native cache.xml format.

An Index must have a name. A developer may give the Index an explicit name using the name attribute,
otherwise the bean name (i.e. value of the id attribute) of the Index bean definition is used as
the Index name.

The expression and from clause form the main components of an Index, identifying the data to index
(i.e. the Region identified in the from clause) along with what criteria (i.e. expression) is used
to index the data. The expression should be based on what application domain object fields are used
in the predicate of application-defined OQL queries used to query and lookup the objects stored
in the Region.

For example, if I have a Customer that has a lastName property…​

@Region("Customers")
class Customer {

 @Id
 Long id;

 String lastName;
 String firstName;

 ...
}

And, I also have an application defined SD[G] Repository to query for Customers…​

interface CustomerRepository extends GemfireRepository<Customer, Long> {

 Customer findByLastName(String lastName);

 ...
}

Then, the SD[G] Repository finder/query method would result in the following OQL statement being executed…​

SELECT * FROM /Customers c WHERE c.lastName = '$1'

Therefore, I might want to create an Index like so…​

<gfe:index id="myIndex" name="CustomersLastNameIndex" expression="lastName" from="/Customers" type="HASH"/>

The from clause must refer to a valid, existing Region and is how an Index gets applied to a Region.
This is not Sprig Data GemFire specific; this is a feature of Pivotal GemFire.

The Index type maybe 1 of 3 enumerated values defined by Spring Data GemFire’s
IndexType
enumeration: FUNCTIONAL, HASH and PRIMARY_KEY.

Each of the enumerated values correspond to one of the QueryService
create[|Key|Hash]Index methods invoked when the actual Index is to be created (or "defined"; more on "defining"
Indexes below). For instance, if the IndexType is PRIMARY_KEY, then the
QueryService.createKeyIndex(..)
is invoked to create a KEY Index.

The default is FUNCTIONAL and results in one of the QueryService.createIndex(..) methods
being invoked.

See the Spring Data GemFire XML schema for a full set of options.

For more information on Indexing in Pivotal GemFire, see Working with Indexes
in Pivotal GemFire’s User Guide.

Defining Indexes

In addition to creating Indexes upfront as Index bean definitions are processed by Spring Data GemFire
on Spring container initialization, you may also define all of your application Indexes prior to creating
them by using the define attribute, like so…​

<gfe:index id="myDefinedIndex" expression="someField" from="/SomeRegion" define="true"/>

When define is set to true (defaults to false), this will not actually create the Index right then and there.
All "defined" Indexes are created all at once, when the Spring ApplicationContext is "refreshed", or, that is,
when a ContextRefreshedEvent is published by the Spring container. Spring Data GemFire registers itself as
an ApplicationListener listening for the ContextRefreshedEvent. When fired, Spring Data GemFire will call
QueryService.createDefinedIndexes().

Defining Indexes and creating them all at once helps promote speed and efficiency when creating Indexes.

See Creating Multiple Indexes at Once
for more details.

IgnoreIfExists and Override

Two Spring Data GemFire Index configuration options warrant special mention here: ignoreIfExists and override.

These options correspond to the ignore-if-exists and override attributes on the <gfe:index> element
in Spring Data GemFire’s XML schema, respectively.

Make sure you absolutely understand what you are doing before using either of these options. These options can
affect the performance and/or resources (e.g. memory) consumed by your application at runtime. As such, both of
these options are disabled (i.e. set to false) in SDG by default.

These options are only available in Spring Data GemFire and exist to workaround known limitations
with Pivotal GemFire; there are no equivalent options or functionality available in GemFire itself.

Each option significantly differs in behavior and entirely depends on the type of GemFire Index Exception thrown.
This also means that neither option has any effect if a GemFire Index-type Exception is not thrown. These options
are meant to specifically handle GemFire IndexExistsExceptions and IndexNameConflictExceptions, which can occur
for various, sometimes obscure reasons. But, in general…​

	
An IndexExistsException
is thrown when there exists another Index with the same definition but different name when attempting to
create an Index.

	
An IndexNameConflictException
is thrown when there exists another Index with the same name but possibly different definition when attempting to
create an Index.

Spring Data GemFire’s default behavior is to fail-fast, always! So, neither Index Exception will be "handled"
by default; these Index Exceptions are simply wrapped in a SDG GemfireIndexException and rethrown. If you wish
for Spring Data GemFire to handle them for you, then you can set either of these Index bean definition options.

IgnoreIfExists always takes precedence over Override, primarily because it uses less resources given it returns
the "existing" Index in both exceptional cases.

IgnoreIfExists Behavior

When an IndexExistsException is thrown and ignoreIfExists is set to true (or <gfe:index ignore-if-exists="true">),
then the Index that would have been created by this Index bean definition / declaration will be "ignored",
and the "existing" Index will be returned.

There is very little consequence in returning the "existing" Index since the Index "definition" is the same,
as deemed by GemFire itself, not SDG.

However, this also means that no Index with the “name” specified in your Index bean definition / declaration
will "actually" exist from GemFire’s perspective either (i.e. with
QueryService.getIndexes()).
Therefore, you should be careful when writing OQL query statements that use Query Hints, especially Hints that refer
to the application Index being "ignored". Those Query Hints will need to be changed.

Now, when an IndexNameConflictException is thrown and ignoreIfExists is set to true (or <gfe:index ignore-if-exists="true">),
then the Index that would have been created by this Index bean definition / declaration will also be "ignored",
and the "existing" Index will be returned, just like when an IndexExistsException is thrown.

However, there is more risk in returning the "existing" Index and "ignoring" the application’s definition
of the Index when an IndexNameConflictException is thrown since, for a IndexNameConflictException, while the "names"
of the conflicting Indexes are the same, the "definitions" could very well be different! This obviously could have
implications for OQL queries specific to the application, where you would presume the Indexes were defined specifically
with the application data access patterns and queries in mind. However, if like named Indexes differ in definition,
this might not be the case. So, make sure you verify.

SDG makes a best effort to inform the user when the Index being ignored is significantly different
in its definition from the "existing" Index. However, in order for SDG to accomplish this, it must be able to "find"
the existing Index, which is looked up using the GemFire API (the only means available).

Override Behavior

When an IndexExistsException is thrown and override is set to true (or <gfe:index override="true">), then
the Index is effectively "renamed". Remember, IndexExistsExceptions are thrown when multiple Indexes exist,
all having the same "definition" but different "names".

Spring Data GemFire can only accomplish this using GemFire’s API, by first "removing" the "existing" Index
and then "recreating" the Index with the new name. It is possible that either the remove or subsequent
create invocation could fail. There is no way to execute both actions atomically and rollback this joint operation
if either fails.

However, if it succeeds, then you have the same problem as before with the "ignoreIfExists" option. Any existing OQL
query statement using "Query Hints" referring to the old Index by name must be changed.

Now, when an IndexNameConflictException is thrown and override is set to true (or <gfe:index override="true">),
then potentially the "existing" Index will be "re-defined". I say "potentially", because it is possible for the
"like-named", "existing" Index to have exactly the same definition and name when an IndexNameConflictException
is thrown.

If so, SDG is smart and will just return the "existing" Index as is, even on override. There is no harm in this
since both the "name" and the "definition" are exactly the same. Of course, SDG can only accomplish this when
SDG is able to "find" the "existing" Index, which is dependent on GemFire’s APIs. If it cannot find it,
nothing happens and a SDG GemfireIndexException is thrown wrapping the IndexNameConflictException.

However, when the "definition" of the "existing" Index is different, then SDG will attempt to "recreate" the Index
using the Index definition specified in the Index bean definition /declaration. Make sure this is what you want
and make sure the Index definition matches your expectations and application requirements.

How does IndexNameConflictExceptions actually happen?

It is probably not all that uncommon for IndexExistsExceptions to be thrown, especially when
multiple configuration sources are used to configure GemFire (e.g. Spring Data GemFire, GemFire Cluster Config,
maybe GemFire native cache.xml, the API, etc, etc). You should definitely prefer 1 configuration method here
and stick with it.

However, when does an IndexNameConflictException get thrown?

One particular case is an Index defined on a PARTITION Region (PR). When an Index is defined on
a PARTITION Region (e.g. "X"), GemFire distributes the Index definition (and name) to other peer members
in the cluster that also host the same PARTITION Region (i.e. "X"). The distribution of this Index definition
to and subsequent creation of this Index by peer members on a "need-to-know" basis (i.e. those hosting the same PR)
is performed asynchronously.

During this window of time, it is possible that these "pending" PR Indexes will not be identifiable by GemFire,
such as with a call to QueryService.getIndexes()
or with QueryService.getIndexes(:Region),
or even with QueryService.getIndex(:Region, indexName:String).

As such, the only way for SDG or other GemFire cache client applications (not involving Spring) to know for sure,
is to just attempt to create the Index. If it fails with either an IndexNameConflictException,
or even an IndexExistsException, then you will know. This is because the QueryService Index creation waits on
"pending" Index definitions, where as the other GemFire API calls do not.

In any case, SDG makes a best effort and attempts to inform the user what has or is happening along with
the corrective action. Given all GemFire QueryService.createIndex(..) methods are synchronous, "blocking" operations,
then the state of GemFire should be consistent and accessible after either of these Index-type Exceptions are thrown,
in which case, SDG can inspect the state of the system and respond/act accordingly, based on the user’s
desired configuration.

In all other cases, SDG will simply fail-fast!

Configuring a DiskStore

Spring Data GemFire supports DiskStore configuration via the disk-store element.

For example:

<gfe:disk-store id="diskStore1" queue-size="50" auto-compact="true"
 max-oplog-size="10" time-interval="9999">
 <gfe:disk-dir location="/gemfire/store1/" max-size="20"/>
 <gfe:disk-dir location="/gemfire/store2/" max-size="20"/>
</gfe:disk-store>

DiskStores are used by Regions for file system persistent backup and overflow of evicted entries
as well as persistent backup of WAN Gateways. Multiple GemFire components may share the same DiskStore.
Additionally, multiple file system directories may be defined for a single DiskStore.

Please refer to Pivotal GemFire’s documentation for a complete explanation of the
configuration options.

Configuring the Snapshot Service

Spring Data GemFire supports Cache and Region snapshots using
Pivotal GemFire’s Snapshot Service.
The out-of-the-box Snapshot Service support offers several convenient features to simplify the use of GemFire’s
Cache
and Region
Snapshot Service APIs.

As the Pivotal GemFire documentation
describes, snapshots allow you to save and subsequently reload the cached data later, which can be useful for
moving data between environments, such as from production to a staging or test environment in order to reproduce
data-related issues in a controlled context. You can imagine combining Spring Data GemFire’s Snapshot Service support
with Spring’s bean definition profiles
to load snapshot data specific to the environment as necessary.

Spring Data GemFire’s support for Pivotal GemFire’s Snapshot Service begins with the <gfe-data:snapshot-service> element
from the <gfe-data> namespace.

For example, I might want to define Cache-wide snapshots to be loaded as well as saved using a couple snapshot imports
and a data export definition as follows:

<gfe-data:snapshot-service id="gemfireCacheSnapshotService">
 <gfe-data:snapshot-import location="/absolute/filesystem/path/to/import/fileOne.snapshot"/>
 <gfe-data:snapshot-import location="relative/filesystem/path/to/import/fileTwo.snapshot"/>
 <gfe-data:snapshot-export
 location="/absolute/or/relative/filesystem/path/to/export/directory"/>
</gfe-data:snapshot-service>

You can define as many imports and/or exports as you like. You can define just imports or just exports.
The file locations and directory paths can be absolute, or relative to the Spring Data GemFire application,
JVM process’s working directory.

This is a pretty simple example and the Snapshot Service defined in this case refers to the GemFire Cache with
the default name of gemfireCache (as described in Configuring a Cache). If you name your cache bean definition
something other than the default, than you can use the cache-ref attribute to refer to the cache bean by name:

<gfe:cache id="myCache"/>
...
<gfe-data:snapshot-service id="mySnapshotService" cache-ref="myCache">
 ...
</gfe-data:snapshot-service>

It is also straightforward to define a Snapshot Service for a particular GemFire Region by specifying
the region-ref attribute:

<gfe:partitioned-region id="Example" persistent="false" .../>
...
<gfe-data:snapshot-service id="gemfireCacheRegionSnapshotService" region-ref="Example">
 <gfe-data:snapshot-import location="relative/path/to/import/example.snapshot/>
 <gfe-data:snapshot-export location="/absolute/path/to/export/example.snapshot/>
</gfe-data:snapshot-service>

When the region-ref attribute is specified, Spring Data GemFire’s SnapshotServiceFactoryBean resolves
the region-ref attribute value to a Region bean defined in the Spring context and proceeds to create a
RegionSnapshotService.
The snapshot import and export definitions function the same way, however, the location must refer to a file
on export.

GemFire is strict about imported snapshot files actually existing before they are referenced. For exports,
GemFire will create the snapshot file if it does not already exist. If the snapshot file for export already exists,
the data will be overwritten.

Spring Data GemFire includes a suppress-import-on-init attribute on the <gfe-data:snapshot-service> element
to suppress the configured Snapshot Service from trying to import data into the Cache or Region on initialization.
This is useful when data exported from 1 Region is used to feed the import of another Region, for example.

Snapshot Location

For a Cache-based Snapshot Service
(i.e. CacheSnapshotService)
a developer would typically pass it a directory containing all the snapshot files to load rather than
individual snapshot files, as the overloaded
load
method in the CacheSnapshotService API indicates.

Of course, a developer may use the other, overloaded load(:File[], :SnapshotFormat, :SnapshotOptions) method
variant to get specific about which snapshot files are to be loaded into the GemFire Cache.

However, Spring Data GemFire recognizes that a typical developer workflow might be to extract and export data
from one environment into several snapshot files, zip all of them up, and then conveniently move the ZIP file
to another environment for import.

Therefore, Spring Data GemFire enables the developer to specify a JAR or ZIP file on import for a Cache-based
Snapshot Service as follows:

 <gfe-data:snapshot-service id="cacheBasedSnapshotService" cache-ref="gemfireCache">
 <gfe-data:snapshot-import location="/path/to/snapshots.zip"/>
 </gfe-data:snapshot-service>

Spring Data GemFire will conveniently extract the provided ZIP file and treat it like a directory import (load).

Snapshot Filters

The real power of defining multiple snapshot imports and exports is realized through the use of snapshot filters.
Snapshot filters implement Pivotal GemFire’s
SnapshotFilter
interface and are used to filter Region entries for inclusion into the Region on import
and for inclusion into the snapshot on export.

Spring Data GemFire makes it brain dead simple to utilize snapshot filters on import and export using the filter-ref
attribute or an anonymous, nested bean definition:

<gfe:cache/>

<gfe:partitioned-region id="Admins" persistent="false"/>
<gfe:partitioned-region id="Guests" persistent="false"/>

<bean id="activeUsersFilter" class="example.gemfire.snapshot.filter.ActiveUsersFilter/>

<gfe-data:snapshot-service id="adminsSnapshotService" region-ref="Admins">
 <gfe-data:snapshot-import location="/path/to/import/users.snapshot">
 <bean class="example.gemfire.snapshot.filter.AdminsFilter/>
 </gfe-data:snapshot-import>
 <gfe-data:snapshot-export location="/path/to/export/active/admins.snapshot" filter-ref="activeUsersFilter"/>
</gfe-data:snapshot-service>

<gfe-data:snapshot-service id="guestsSnapshotService" region-ref="Guests">
 <gfe-data:snapshot-import location="/path/to/import/users.snapshot">
 <bean class="example.gemfire.snapshot.filter.GuestsFilter/>
 </gfe-data:snapshot-import>
 <gfe-data:snapshot-export location="/path/to/export/active/guests.snapshot" filter-ref="activeUsersFilter"/>
</gfe-data:snapshot-service>

In addition, more complex snapshot filters can be expressed with the ComposableSnapshotFilter Spring Data GemFire
provided class. This class implements GemFire’s
SnapshotFilter
interface as well as the Composite software design pattern.

In a nutshell, the Composite software design pattern allows developers
to compose multiple objects of the same type and treat the aggregate as single instance of the object type,
a very powerful and useful abstraction.

ComposableSnapshotFilter has two factory methods, 'and' and 'or', allowing developers to logically combine
individual snapshot filters using the AND and OR logical operators, respectively. The factory methods take a
list of SnapshotFilters.

In this case, the developer is only limited by his/her imagination to leverage this powerful construct.

For instance:

<bean id="activeUsersSinceFilter" class="org.springframework.data.gemfire.snapshot.filter.ComposableSnapshotFilter"
 factory-method="and">
 <constructor-arg index="0">
 <list>
 <bean class="org.example.app.gemfire.snapshot.filter.ActiveUsersFilter"/>
 <bean class="org.example.app.gemfire.snapshot.filter.UsersSinceFilter"
 p:since="2015-01-01"/>
 </list>
 </constructor-arg>
</bean>

The developer could then go onto combine the activesUsersSinceFilter with another filter using 'or' like so:

<bean id="covertOrActiveUsersSinceFilter" class="org.springframework.data.gemfire.snapshot.filter.ComposableSnapshotFilter"
 factory-method="or">
 <constructor-arg index="0">
 <list>
 <ref bean="activeUsersSinceFilter"/>
 <bean class="example.gemfire.snapshot.filter.CovertUsersFilter"/>
 </list>
 </constructor-arg>
</bean>

Snapshot Events

By default, Spring Data GemFire uses Pivotal GemFire’s Snapshot Services on startup to import data and shutdown
to export data. However, you may want to trigger periodic, event-based snapshots, for either import or export
from within your Spring application.

For this purpose, Spring Data GemFire defines two additional Spring application events, extending Spring’s
ApplicationEvent
class for imports and exports, respectively: ImportSnapshotApplicationEvent and ExportSnapshotApplicationEvent.

The two application events can be targeted at the entire GemFire Cache, or individual GemFire Regions. The constructors
in these classes accept an optional Region pathname (e.g. "/Example") as well as 0 or more SnapshotMetadata instances.

The array of SnapshotMetadata is used to override the snapshot meta-data defined by <gfe-data:snapshot-import>
and <gfe-data:snapshot-export> sub-elements in XML, which will be used in cases where snapshot application events
do not explicitly provide SnapshotMetadata. Each individual SnapshotMetadata instance can define it’s own
location and filters properties.

Import/export snapshot application events are received by all snapshot service beans defined in the Spring
ApplicationContext. However, import/export events are only processed by "matching" Snapshot Service beans.

A Region-based [Import|Export]SnapshotApplicationEvent matches if the Snapshot Service bean defined
is a RegionSnapshotService and it’s Region reference (as determined by the region-ref attribute) matches
the Region’s pathname specified by the snapshot application event.

A Cache-based [Import|Export]SnapshotApplicationEvent (i.e. a snapshot application event without a Region pathname)
triggers all Snapshot Service beans, including any RegionSnapshotService beans, to perform either an import or export,
respectively.

It is very easy to use Spring’s
ApplicationEventPublisher
interface to fire import and/or export snapshot application events from your application like so:

@Component
public class ExampleApplicationComponent {

 @Autowired
 private ApplicationEventPublisher eventPublisher;

 @Resource(name = "Example")
 private Region<?, ?> example;

 public void someMethod() {
 ...

 SnapshotFilter myFilter = ...;

 SnapshotMetadata exportSnapshotMetadata = new SnapshotMetadata(new File(System.getProperty("user.dir"),
 "/path/to/export/data.snapshot"), myFilter, null);

 eventPublisher.publishEvent(new ExportSnapshotApplicationEvent(this, example.getFullPath(), exportSnapshotMetadata);

 ...
 }
}

In this particular example, only the "/Example" Region’s Snapshot Service bean will pick up and handle the export event,
saving the filtered, "/Example" Region’s data to the "data.snapshot" file in a sub-direcrtory
of the application’s working directory.

Using Spring application events and messaging subsystem is a good way to keep your application loosely coupled.
It is also not difficult to imagine that the snapshot application events could be fired on a periodic basis
using Spring’s
Scheduling
services.

Configuring the Function Service

Spring Data GemFire provides annotation support for implementing and registering
Pivotal GemFire Functions.

Spring Data GemFire also provides namespace support for registering Pivotal GemFire
Functions
for remote Function execution.

Please refer to Pivotal GemFire' documentation
for more information on the Function execution framework.

GemFire Functions are declared as Spring beans and must implement the org.apache.geode.cache.execute.Function
interface or extend org.apache.geode.cache.execute.FunctionAdapter.

The namespace uses a familiar pattern to declare functions:

<gfe:function-service>
 <gfe:function>
 <bean class="example.FunctionOne"/>
 <ref bean="function2"/>
 </gfe:function>
</gfe:function-service>

<bean id="function2" class="example.FunctionTwo"/>

Configuring WAN Gateways

WAN Gateways provide a way to synchronize Pivotal GemFire Distributed Systems across geographic areas.
Spring Data GemFire provides namespace support for configuring WAN Gateways as illustrated in the following examples.

WAN Configuration in GemFire 7.0

In the example below, GatewaySenders are configured for a PARTITION Region by adding child elements to the Region
(gateway-sender and gateway-sender-ref).

A GatewaySender may register EventFilters and TransportFilters. Also shown below is an example configuration
of an AsyncEventQueue which must also be wired into a Region (not shown).

<gfe:partitioned-region id="region-with-inner-gateway-sender" >
 <gfe:gateway-sender remote-distributed-system-id="1">
 <gfe:event-filter>
 <bean class="org.springframework.data.gemfire.example.SomeEventFilter"/>
 </gfe:event-filter>
 <gfe:transport-filter>
 <bean class="org.springframework.data.gemfire.example.SomeTransportFilter"/>
 </gfe:transport-filter>
 </gfe:gateway-sender>
 <gfe:gateway-sender-ref bean="gateway-sender"/>
</gfe:partitioned-region>

<gfe:async-event-queue id="async-event-queue" batch-size="10" persistent="true" disk-store-ref="diskstore"
 maximum-queue-memory="50">
 <gfe:async-event-listener>
 <bean class="example.AsyncEventListener"/>
 </gfe:async-event-listener>
</gfe:async-event-queue>

<gfe:gateway-sender id="gateway-sender" remote-distributed-system-id="2">
 <gfe:event-filter>
 <ref bean="event-filter"/>
 <bean class="org.springframework.data.gemfire.example.SomeEventFilter"/>
 </gfe:event-filter>
 <gfe:transport-filter>
 <ref bean="transport-filter"/>
 <bean class="org.springframework.data.gemfire.example.SomeTransportFilter"/>
 </gfe:transport-filter>
</gfe:gateway-sender>

<bean id="event-filter" class="org.springframework.data.gemfire.example.AnotherEventFilter"/>
<bean id="transport-filter" class="org.springframework.data.gemfire.example.AnotherTransportFilter"/>

On the other end of a GatewaySender is a corresponding GatewayReceiver to receive Gateway events.
The GatewayReceiver may also be configured with EventFilters and TransportFilters.

<gfe:gateway-receiver id="gateway-receiver" start-port="12345" end-port="23456" bind-address="192.168.0.1">
 <gfe:transport-filter>
 <bean class="org.springframework.data.gemfire.example.SomeTransportFilter"/>
 </gfe:transport-filter>
</gfe:gateway-receiver>

Please refer to the Pivotal GemFire
documentation
for a detailed explanation of all the configuration options.

 BOOTSTRAPPING PIVOTAL GEMFIRE USING SPRING ANNOTATIONS

Spring Data GemFire (SDG) 2.0 introduces a new Annotation-based configuration model to bootstrap Pivotal GemFire
with the Spring container.

The primary motivation for introducing an Annotation-based approach to the configuration of Pivotal GemFire in
a Spring context is to enable application developers to get up and running as quickly and as easily
as possible.

Introduction

Pivotal GemFire can be very difficult to setup and use successfully given all the
configuration properties,
configuration options
(cache.xml,
Gfsh
+ Cluster Configuration,
Spring XML/Java-based configuration)
along with different supported topologies
(client/server,
P2P,
WAN)
and Distributed System Design Patterns
(e.g. shared-nothing architecture). The Annotation-based configuration model aims to simplify all this plus more.

The Annotation-based configuration model is an alternative to XML-based configuration using Spring Data GemFire’s
XML Namespace. With XML, an application developer would use the spring-gemfire (gfe) schema for configuration
and the spring-data-gemfire (gfe-data) schema for data access related concerns. See Bootstrapping
Pivotal GemFire with the Spring Container for more details.

As of SDG 2.0, the new Annotation-based configuration model does not yet have configuration support
for Pivotal GemFire’s WAN components and topology.

Like Spring Boot, Spring Data GemFire’s Annotation-based configuration model was designed as an opinionated,
convention over configuration approach for using Pivotal GemFire. Indeed, the Annotation-based configuration model
was inspired by Spring Boot as well as several other Spring and Spring Data projects.

By following convention, all Annotations provide reasonable and sensible defaults for all the attributes out-of-the-box.
The default value for a given Annotation attribute directly corresponds to the default value provided in Pivotal GemFire
for the same configuration property or setting.

The intention is to let an application developer enable an Pivotal GemFire feature or an embedded service by simply
declaring the Annotation on his/her Spring @Configuration or @SpringBootApplcation class without needing to
unnecessarily configure a large number of attributes or properties just to use the feature.

Again, getting up and running as quickly and as easily as possible is the primary objective.

However, the option to customize the configuration meta-data and behavior of Pivotal GemFire is there should an application
developer need it and Spring Data GemFire’s Annotation-based configuration will quietly back away. The application
developer simply just needs to specify the configuration attributes s/he wishes to adjust. And, as we will see below,
there are several ways to configure an Pivotal GemFire feature or embedded service using Annotations.

All the new SDG Annotations can be found in the org.springframework.data.gemfire.config.annotation package.

Bootstrapping Pivotal GemFire applications with Spring

Like all Spring Boot applications that begin by annotating the application class with @SpringBootApplication,
a Spring Boot application can easily become an Pivotal GemFire cache application simply by declaring
1 of 3 main Annotations:

	
@ClientCacheApplication

	
@PeerCacheApplication

	
@CacheServerApplication

These 3 Annotations are the Spring/Pivotal GemFire application developer’s starting point.

To realize the intent behind these Annotations, a user must understand that there are 2 types of cache instances
that can be created with Pivotal GemFire: a client or a peer.

A Spring Boot application can be configured as an Pivotal GemFire cache client (i.e. with an instance of ClientCache),
which communicates with an existing, standalone cluster of Pivotal GemFire servers used to manage the application’s data.
The client/server topology is the most typical system architecture employed when using Pivotal GemFire and the user
can make her Spring Boot application a cache client simply by annotating it with @ClientCacheApplication.

Alternatively, a Spring Boot application may be a peer member of an Pivotal GemFire cluster. That is, the application
itself is just another server in the cluster of servers that will manage data. The application creates an "embedded"
peer Cache instance when a developer annotates his/her application class with @PeerCacheApplication.

By extension, the application may also serve as a CacheServer for cache clients, allowing clients to connect
and perform data access operations on the server. This is accomplished by annotating the application class with
@CacheServerApplication in place of @PeerCacheApplication, which will create a peer Cache instance along with
the CacheServer.

An Pivotal GemFire Server is not necessarily a "Cache Server" by default. That is, it is not necessarily setup to
service cache clients just because it is a "server". A GemFire Server can just be a peer member/data node of the cluster
that manages data without servicing any clients while other peer members in the cluster are setup to service
clients in addition to managing data. It also possible to setup certain peer members as non-data node,
data accessors
that can service clients as CacheServers as well, but is well beyond the scope of this document.

By way of example, if I wanted to create a Spring Boot, Pivotal GemFire cache client application, I would start with…​

Listing 1. Spring-based Pivotal GemFire ClientCache application
@SpringBootApplication
@ClientCacheApplication
class ClientApplication { .. }

And, if I wanted to create a Spring Boot application with an embedded peer Cache instance, where my application
will be a server and peer member of a cluster, or distributed system formed by Pivotal GemFire, then I would start with…​

Listing 2. Spring-based Pivotal GemFire embedded peer Cache application
@SpringBootApplication
@PeerCacheApplication
class ServerApplication { .. }

Alternatively, a user may use the @CacheServerApplication annotation in place of @PeerCacheApplication,
which will create both an "embedded" peer Cache instance along with a CacheServer running on "localhost",
listening on the default cache server port, 40404…​

Listing 3. Spring-based Pivotal GemFire embedded CacheServer Application
@SpringBootApplication
@CacheServerApplication
class ServerApplication { .. }

Going in-detail on client/server applications

There are multiple ways that a client can connect to and communicate with servers in a GemFire cluster. The most common
and recommended approach is to use Pivotal GemFire Locators.

A cache client can connect to 1 or more Locators in the GemFire cluster instead of directly to a
CacheServer. The advantage of using Locators over direct CacheServer connections is that Locators provide meta-data
about the cluster to which clients are connected. This meta-data includes information like which servers have the least
amount of load, or which servers contain the data of interests to the client. A Locator also provides fail-over
capabilities in case a CacheServer goes down. By enabling the PR single-hop capability in the client Pool,
the client is routed directly to the server containing the data the client needs access to.

Locators are also peer members in a cluster. Locators actually constitute what makes up a cluster of GemFire nodes;
i.e. all nodes connected by a Locator make up a cluster of peers and new members use Locators to join a cluster
and find other members.

Since Pivotal GemFire sets up a "DEFAULT" Pool connected to a CacheServer running on "localhost", listening on port
40404 by default when a ClientCache instance is created, there is nothing special a user need do to utilize
the client/server topology. Simply annotate your server-side Spring Boot application with
@CacheServerApplication and your client-side Spring Boot application with @ClientCacheApplication
and you are all set.

You can even start your servers using Gfsh’s start server command if you prefer. Your Spring Boot
@ClientCacheApplication will still connect to the server regardless of how it is started. Although, we think you
will prefer to configure and start your servers using the Spring Data GemFire approach, with Annotations.

However, as an application developer, you will no doubt want to customize the "DEFAULT" Pool setup by Pivotal GemFire
to possibly connect to 1 or more Locators, for instance…​

Listing 4. Spring-based Pivotal GemFire ClientCache application using Locators
@SpringBootApplication
@ClientCacheApplication(locators = {
 @Locator(host = "boombox" port = 11235),
 @Locator(host = "skullbox", port = 12480)
})
class ClientApplication { .. }

Along with the locators attribute, the @ClientCacheApplication annotation has a servers attribute that can be used
to specify 1 or more nested @Server annotations that enable the cache client to connect directly to 1 or more servers.

You can only use either the locators or servers attribute, but not both, which is enforced by Pivotal GemFire.

A user may also configure additional Pools, other than the "DEFAULT" Pool provided by Pivotal GemFire when
a ClientCache instance is created with the @ClientCacheApplication annotation, by using the @EnablePool
and @EnablePools annotations.

@EnablePools is a composite annotation that aggregates several nested @EnablePool annotations on
a single class. Java 8 and earlier does not allow more than 1 annotation of the same type to be declared on a class.

Listing 5. Spring-based Pivotal GemFire ClientCache application using multiple named Pools
@SpringBootApplication
@ClientCacheApplication(logLevel = "info")
@EnablePool(name = "VenusPool", servers = @Server(host = "venus", port = 48484),
 min-connections = 50, max-connections = 200, ping-internal = 15000,
 prSingleHopEnabled = true, readTimeout = 20000, retryAttempts = 1,
 subscription-enable = true)
@EnablePools(pools = {
 @EnablePool(name = "SaturnPool", locators = @Locator(host="skullbox", port=20668),
 subsription-enabled = true),
 @EnablePool(name = "NeptunePool", severs = {
 @Server(host = "saturn", port = 41414),
 @Server(host = "neptune", port = 42424)
 }, min-connections = 25))
})
class ClientApplication { .. }

The name attribute is the only required attribute of the @EnablePool annotation. As we will see below, the value
of name corresponds to both the name of the Pool bean created in the Spring context as well as the name used to
reference the corresponding configuration properties. It is also the name of the Pool registered and used
in Pivotal GemFire.

Similarly, on the server, a user can configure multiple CacheServers that a client can connect to…​

Listing 6. Spring-based Pivotal GemFire CacheServer application using multiple named CacheServers
@SpringBootApplication
@CacheSeverApplication(logLevel = "info", autoStartup = true, maxConnections = 100)
@EnableCacheServer(name = "Venus", autoStartup = true,
 hostnameForClients = "venus", port = 48484)
@EnableCacheServers(servers = {
 @EnableCacheServer(name = "Saturn", hostnameForClients = "saturn", port = 41414),
 @EnableCacheServer(name = "Neptune", hostnameForClients = "neptune", port = 42424)
})
class ServerApplication { .. }

Like @EnablePools, @EnableCacheServers is a composite annotation for aggregating multiple @EnableCacheServer
annotations on a single class.

One thing an observant reader may have noticed is, in all cases, the user is specifying hard-coded values for hostnames,
ports as well other configuration-oriented Annotation attributes. This is not ideal when a user’s application gets
promoted and deployed to different environments, such as from DEV to QA to STAGING to PROD.

How does an application developer handle dynamic configuration determined at runtime?

Runtime configuration using Configurers

Another goal when designing the Annotation-based configuration model was to preserve Type-Safety in the Annotation
attributes. For example, if an attribute could be expressed as an int, like a port number, then the attribute’s type
should be an int.

Unfortunately, this is not conducive to dynamic and resolvable configuration at runtime.

One of the finer features of Spring is the ability to use property placeholders or SpEL expressions in properties
or attributes of the configuration meta-data when configuring beans in a Spring context. Although, this would require
all Annotation attributes be Strings thereby giving up Type-Safety; not acceptable!

So, Spring Data GemFire borrows from another commonly used pattern in Spring, Configurers. Many different
Configurer interfaces are provided out-of-the-box in Spring Web MVC, such as the
org.springframework.web.servlet.config.annotation.ContentNegotiationConfigurer.

Configurers are a way to allow application developers to receive a callback and customize the configuration of a
component on startup. The framework calls back to user-provided code to adjust the configuration at runtime. One of
the more common uses of this pattern is to supply conditional configuration based on the application’s
runtime environment.

Spring Data GemFire provides several Configurer callback interfaces to customize different aspects of Annotation-based
configuration meta-data at runtime, before the Sring managed beans that the Annotations create are initialized:

	
ClientCacheConfigurer

	
PeerCacheConfigurer

	
CacheServerConfigurer

	
ContinuousQueryListenerContainerConfigurer

	
DiskStoreConfigurer

	
IndexConfigurer

	
PoolConfigurer

	
RegionConfigurer

For example, we can use the CacheServerConfigurer and ClientCacheConfigurer to customize the port numbers
used by our CacheServer and ClientCache applications, respectively.

First, in our server application…​

Listing 7. Customizing a Spring Boot CacheServer application with a CacheServerConfigurer
@SpringBootApplication
@CacheServerApplication(name = "SpringApplication", logLevel = "info")
class ServerApplication {

 @Bean
 CacheServerConfigurer cacheServerPortConfigurer(
 @Value("${gemfire.cache.server.host:localhost}") String cacheServerHost
 @Value("${gemfire.cache.server.port:40404}") int cacheServerPort) {

 return (beanName, cacheServerFactoryBean) -> {
 cacheServerFactoryBean.setBindAddress(cacheServerHost);
 cacheServerFactoryBean.setHostnameForClients(cacheServerHost);
 cacheServerFactoryBean.setPort(cacheServerPort);
 };
 }
}

Then, in our client application…​

Listing 8. Customizing a Spring Boot ClientCache application with a ClientCacheConfigurer
@SpringBootApplication
@ClientCacheApplication(logLevel = "info")
class ClientApplication {

 @Bean
 ClientCacheConfigurer clientCachePoolPortConfigurer(
 @Value("${gemfire.cache.server.host:localhost}") String cacheServerHost
 @Value("${gemfire.cache.server.port:40404}") int cacheServerPort) {

 return (beanName, clientCacheFactoryBean) ->
 clientCacheFactoryBean.setServers(Collections.singletonList(
 new ConnectionEndpoint(cacheServerHost, cacheServerPort)));
 }
}

By using the provided Configurers, a user is able to receive a callback in order to further customize
the configuration that is enabled by the associated Annotation.

In addition, when the Configurer is declared as a bean in the Spring context, the bean definition can take advantage
of other Spring container features, such as property placeholders, or SpEL expressions in @Value annotations
on factory method parameters, and so on.

All Spring Data GemFire-provided Configurers take 2 bits of information in the callback: the name of the bean created
in the Spring context by the Annotation along with a reference to the FactoryBean used by the Annotation to
configure the GemFire component (e.g. a ClientCache instance with SDG’s ClientCacheFactoryBean).

SDG FactoryBeans are part of the SDG public API and are what an application developer would use in Spring’s
Java-based container configuration
if this new Annotation-based configuration model were not provided. Indeed, the Annotations themselves are using
these very same FactoryBeans for their configuration.

Given a Configurer can be declared as a regular bean definition like any other, it is not difficult to imagine
a user combining different Spring configuration options, such as the use of Spring Profiles with Conditions
as well as other features to create even more sophisticated and flexible configuration.

However, Configurers are not the only option.

Runtime configuration using Properties

In addition to Configurers, each Annotation attribute in the Annotation-based configuration model is associated
with a corresponding configuration property, prefixed with spring.data.gemfire., that can be declared in
Spring Boot application.properties.

Building on our examples above, the client’s application.properties would define…​

Listing 9. Client application.properties
spring.data.gemfire.cache.log-level=info
spring.data.gemfire.cache.pool.venus.servers=venus[48484]
spring.data.gemfire.cache.pool.venus.max-connections=200
spring.data.gemfire.cache.pool.venus.min-connections=50
spring.data.gemfire.cache.pool.venus.ping-interval=15000
spring.data.gemfire.cache.pool.venus.pr-single-hop-enabled=true
spring.data.gemfire.cache.pool.venus.read-timeout=20000
spring.data.gemfire.cache.pool.venus.subscription-enabled=true
spring.data.gemfire.cache.pool.saturn.locators=skullbox[20668]
spring.data.gemfire.cache.pool.saturn.subscription-enabled=true
spring.data.gemfire.cache.pool.neptune.servers=saturn[41414],neptune[42424]
spring.data.gemfire.cache.pool.neptune.min-connections=25

And, the server’s application.properties would define…​

Listing 10. Server application.properties
spring.data.gemfire.cache.log-level=info
spring.data.gemfire.cache.server.port=40404
spring.data.gemfire.cache.server.Venus.port=43434
spring.data.gemfire.cache.server.Saturn.port=41414
spring.data.gemfire.cache.server.Neptune.port=41414

Then, we can simplify the @ClientCacheApplication class to…​

Listing 11. Spring @ClientCacheApplication class
@SpringBootApplication
@ClientCacheApplication
@EnablePools(pools = {
 @EnablePool(name = "VenusPool"),
 @EnablePool(name = "SaturnPool"),
 @EnablePool(name = "NeptunePool")
})
class ClientApplication { .. }

And, the @CacheServerApplication class as…​

Listing 12. Spring @CacheServerApplication class
@SpringBootApplication
@CacheServerApplication(name = "SpringApplication")
@EnableCacheServers(servers = {
 @EnableCacheServer(name = "Venus"),
 @EnableCacheServer(name = "Saturn"),
 @EnableCacheServer(name = "Neptune")
})
class ServerApplication { .. }

The example above illustrates why it is import to "name" your Annotation-based beans (other than it is required
in certain cases). Doing so makes it possible to reference the bean in a Spring context from XML, properties
and even Java. It is even possible to inject Annotation-defined beans into an application class,
for whatever purpose; for example…​

@Component
class MyApplicationComponent {

 @Resource(name = "Saturn")
 CacheServer saturnCacheServer;

 ...
}

Likewise, naming a Annotated-defined bean allows you to code a Configurer to customize a specific, "named" bean
since the beanName is 1 of 2 arguments passed to the callback.

Often times, an associated Annotation attribute property takes 2 forms: a "named" property along with
an "unnamed" property.

For example…​

spring.data.gemfire.cache.server.bind-address=10.105.20.1
spring.data.gemfire.cache.server.Venus.bind-address=10.105.20.2
spring.data.gemfire.cache.server.Saturn...
spring.data.gemfire.cache.server.Neptune...

While there are 3 named CacheServers above, there is 1 unnamed CacheServer property that serves as the default
value for any unspecified value for that property even for "named" CacheServers. So, while "Venus" sets
and overrides its own bind-address, "Saturn" and "Neptune" inherit from the unnamed
spring.data.gemfire.cache.server.bind-address property.

Refer to an Annotation’s Javadoc for which Annotation attributes support property-based configuration, and whether
they support "named" properties over just "default", unnamed properties.

Properties of Properties

Of course, in Spring fashion, you can even express Properties in terms of other Properties, whether that is
using a Spring Boot application.properties file or by using the @Value annotation in your Java class…​

Listing 13. Properties of Properties
spring.data.gemfire.cache.server.port=${gemfire.cache.server.port:40404}

Or, in Java…​

 @Bean
 CacheServerConfigurer cacheServerPortConfigurer(
 @Value("${gemfire.cache.server.port:${some.other.property:40404}}") int cacheServerPort) {

 ...
 }
}

Property placeholder nesting can be arbitrarily deep.

Configuring embedded services

Pivotal GemFire provides the ability to start many different embedded services required by an application depending on
the use case.

Configuring an embedded Locator

As mentioned previously, Pivotal GemFire Locators are used by clients to connect with and find servers in a cluster
as well as by new members joining an existing cluster to find other peers.

It is often convenient for application developers as they are developing their Spring Boot, Spring Data GemFire
applications to startup up a small cluster of 2 or 3 Pivotal GemFire servers. Rather than starting a separate Locator
process, a user can simply annotate her @CacheServerApplication class with @EnableLocator.

Listing 14. Spring, Pivotal GemFire CacheServer application running an embedded Locator
@SpringBootApplication
@CacheServerApplication
@EnableLocator
class ServerApplication { .. }

The @EnableLocator annotation starts and embedded Locator in the Spring, Pivotal GemFire CacheServer application
process running on "localhost", listening on the default Locator port 10334. It is possible to customize
the host (a.k.a bind address) and port that the embedded Locator binds to using the corresponding
Annotation attributes.

Then, it is possible to start other Spring Boot, @CacheServerApplication enabled applications connecting to this
Locator with…​

Listing 15. Spring, Pivotal GemFire CacheServer application connecting to a Locator
@SpringBootApplication
@CacheServerApplication(locators = "localhost[10334]")
class ServerApplication { .. }

You may even combine both application classes shown above into a single class and use your IDE feature to create
different run profile configurations to create and run different instances of the same class with slightly modified
configuration using Java System Properties…​

Listing 16. Spring CacheServer application running an embedded Locator and connecting to the Locator
@SpringBootApplication
@CacheServerApplication(locators = "localhost[10334]")
public class ServerApplication {

 public static void main(String[] args) {
 SpringApplication.run(ServerApplication.class);
 }

 @EnableLocator
 @Profile("embedded-locator")
 static class Configuration {
 }
}

Then, for each run profile, a user simply sets and changes the following System properties…​

Listing 17. IDE run profile configuration
spring.data.gemfire.cache.name=SpringCacheServerOne
spring.data.gemfire.cache.server.port=41414
spring.profiles.active=embedded-locator

Only 1 of the run profiles for the ServerApplication class should be set with the
-Dspring.profiles.active=embedded-locator Java System Property. Then, simply change the name and cache.server.port
for each of the other run profiles and you’ll have yourself a small cluster/distributed system of GemFire Servers.

The @EnableLocator annotation was meant to be a development-time annotation only and not something
an application developer should use in production. It is recommended that Locators be stand-alone, independent
processes in the cluster.

More details on how Pivotal GemFire Locators work can be found
here.

Configuring an embedded Manager

An Pivotal GemFire Manager is another peer member/node in the cluster that is responsible for "management" activities.
Management activities include things like creating Regions, Indexes, DiskStores, etc. The Manager allows a JMX-enabled
client (e.g. Gfsh shell tool) to connect to the manager to manage the cluster. It is also possible to connect to
a Manager with JDK provided tools like JConsole or JVisualVM, given these are both JMX-enabled clients as well.

Perhaps we would also like to make our Spring @CacheServerApplication shown above a Manager as well. Simply annotate
your Spring @Configurtion or @SpringBootApplication class with @EnableManager and you are done. By default,
the Manager binds to "localhost" listening on the default Pivotal GemFire Manager port 1099. Several aspects of
the Manager can be configured with the Annotation attributes or corresponding properties.

Listing 18. Spring CacheServer application running an embedded Manager
@SpringBootApplication
@CacheServerApplication(locators = "localhost[10334]")
public class ServerApplication {

 public static void main(String[] args) {
 SpringApplication.run(ServerApplication.class);
 }

 @EnableLocator
 @EnableManager
 @Profile("embedded-locator-manager")
 static class Configuration {
 }
}

With the above class, you can even use Gfsh to connect to this server and manage it.

$ gfsh
 _________________________ __
 / _____/ ______/ ______/ /____/ /
 / / __/ /___ /_____ / _____ /
 / /__/ / ____/ _____/ / / / /
/______/_/ /______/_/ /_/ 1.2.1

Monitor and Manage Pivotal GemFire

gfsh>connect
Connecting to Locator at [host=localhost, port=10334] ..
Connecting to Manager at [host=10.99.199.5, port=1099] ..
Successfully connected to: [host=10.99.199.5, port=1099]

gfsh>list members
 Name | Id
---------------------- | --
SpringCacheServerOne | 10.99.199.5(SpringCacheServerOne:14842)<ec><v0>:1024
SpringCacheServerTwo | 10.99.199.5(SpringCacheServerTwo:14844)<v1>:1025
SpringCacheServerThree | 10.99.199.5(SpringCacheServerThree:14846)<v2>:1026

Because we also have the embedded Locator enabled, we were able to connect indirectly to the Manager through
the Locator. The Locator allows JMX clients to connect and find a Manager node in the cluster. If none exist,
the Locator will assume the role of the Manager. However, if no Locator existed, then we would need to connect
directly to the Manager using…​

Listing 19. Gfsh connect command connecting directly to the Manager
gfsh>connect --jmx-manager=localhost[1099]

Like the @EnableLocator annotation, the @EnableManager annotation was also meant to be a development-time
only and not something an application developer should use in production. It is recommended that Managers,
like Locators, be stand-alone, independent processes in the cluster.

More details on Pivotal GemFire Management and Monitoring can be found
here.

Configuring the embedded HTTP Server

Pivotal GemFire is also capable of running an embedded HTTP server. The current implementation is backed by
Eclipse Jetty.

The embedded HTTP server is used to host Pivotal GemFire’s Management (Admin) REST API (not a publicly advertised API),
the Developer REST API
and the Pulse Monitoring Web Application.

However, to use any of these Pivotal GemFire provided Web applications, you must have a full installation of Pivotal GemFire
installed on your system, and you must set the GEMFIRE environment variable to your installation directory.

To enable the embedded HTTP server, simply add the @EnableHttpService annotation to any @PeerCacheApplication
or @CacheServerApplication annotated class…​

Listing 20. Spring CacheServer application running an embedded HTTP server
@SpringBootApplication
@CacheServerApplication
@EnableHttpService
public class ServerApplication { .. }

By default, the embedded HTTP server listens on port 7070 for HTTP client requests. Of course, you can use
the Annotation attributes or corresponding configuration properties to adjust the configuration as needed.

Follow the links above for more details on HTTP support.

Configuring the embedded Memcached Server (Gemcached)

Pivotal GemFire also implements the Memcached protocol with the ability to service Memcached clients. That is Memcached
clients can connect to an Pivotal GemFire cluster and perform Memcached operations as if the Pivotal GemFire Servers
in the cluster were actual Memcached Servers.

To enable the embedded Memcached Service, simply add the @EnableMemcachedServer annotation to any
@PeerCacheApplication or @CacheServerApplication annotated class…​

Listing 21. Spring CacheServer application running an embedded Memcached Server
@SpringBootApplication
@CacheServerApplication
@EnabledMemcachedServer
public class ServerApplication { .. }

More details on Pivotal GemFire’s Gemcached service can be found
here.

Configuring the embedded Redis Server

Pivotal GemFire also implements the Redis Server protocol, which enables Redis clients to communicate with a cluster
of Pivotal GemFire Servers and issue Redis commands. As of this writing, the Redis Server protocol support in Pivotal GemFire
is still experimental.

To enable the embedded Redis Service, simply add the @EnableRedisServer annotation to any @PeerCacheApplication
or @CacheServerApplication annotated class…​

Listing 22. Spring CacheServer application running an embedded Redis Server
@SpringBootApplication
@CacheServerApplication
@EnableRedisServer
public class ServerApplication { .. }

More details on Pivotal GemFire’s Redis Adapter can be found
here.

Configuring Logging

Often times it is necessary to turn up logging in order to understand exactly what Pivotal GemFire is doing and when.

To enable Logging, simply annotate your application class with @EnableLogging and set the appropriate attributes
or associated properties…​

Listing 23. Spring ClientCache application with Logging enabled
@SpringBootApplication
@ClientCacheApplication
@EnableLogging(logLevel="info", logFile="/absolute/file/system/path/to/application.log)
public class ClientApplication { .. }

While the logLevel attribute can be specified with all the cache-based application annotations
(e.g. @ClientCacheApplication(logLevel="info")), it is easier to customize logging behavior with
the @EnableLogging annotation.

See the @EnableLogging annotation Javadoc for more details.

Configuring Statistics

To gain even deeper insight into Pivotal GemFire during runtime, an application developer can enable Statistics.
Gathering statistical data facilitates system analysis and troubleshooting when complex problems occur, which
are often distributed in nature and timing is a factor.

When Statistics are enabled, a user can use Pivotal GemFire’s
VSD (Visual Statistics Display) tool
to analyze the statistical data that is collected.

To enable Statistics, simply annotate your application class with @EnableStatistics…​

Listing 24. Spring ClientCache application with Statistics enabled
@SpringBootApplication
@ClientCacheApplication
@EnableStatistics
public class ClientApplication { .. }

Enabling Statistics on a server is particularly valuable when evaluating performance, which is as simple as
annotating your @PeerCacheApplication or @CacheServerApplication class with @EnableStatistics.

Use the @EnableStatistics annotation attributes or associated properties to customize the Statistics gathering
and collection process.

See the @EnableStatistics annotation Javadoc for more details.

More details on Pivotal GemFire’s Statistics can be found
here.

Configuring PDX

One of the more powerful features of Pivotal GemFire is
PDX Serialization.
While a complete discussion on PDX is well beyond the scope of this document, serialization using PDX is a much better
alternative to Java Serialization, with the following benefits…​

	
PDX uses a centralized Type Registry to keep the serialized bytes of an object more compact.

	
PDX is a neutral serialization format allowing both Java and Native Clients to operate on the same data set.

	
PDX supports versioning and allows object fields to be added or removed with affecting applications using either
older or newer versions of the PDX serialized, application domain object types that change, without data loss.

	
PDX allows object fields to be accessed individually or in OQL query projections and predicates without
the object needing to be de-serialized first.

In general, serialization in Pivotal GemFire is needed anytime data is transferred to/from clients and servers or between
peers in a cluster for normal distribution and replication processes as well as when data is overflowed or persisted
to disk.

To enable PDX, simply annotate your application class with @EnablePdx…​

Listing 25. Spring ClientCache application with PDX enabled
@SpringBootApplication
@ClientCacheApplication
@EnablePdx
public class ClientApplication { .. }

Typically, an application’s domain object types will either implement the
org.apache.geode.pdx.PdxSerializable
interface, or an application developer will choose to implement and register the non-invasive
org.apache.geode.pdx.PdxSerializer
interface to handle the application domain object types that need to be serialized.

Unfortunately, Pivotal GemFire only allows one PdxSerializer to be registered, which suggests that all application
domain object types should be handled by a "single" PdxSerializer instance. But, that is a serious anti-pattern
and foolish practice to be sure.

Even though only a single PdxSerializer instance can be registered with Pivotal GemFire, it makes sense to create a
PdxSerializer implementation per application domain object type.

By using the Composite Software Design Pattern, the application
developer can provide an implementation of the PdxSerializer interface that aggregates of all application
domain object type-specific PdxSerializer instances but acts as a single PdxSerializer instance, and register it.

You can declare this Composite PdxSerializer as a managed bean in the Spring context and refer to this
Composite PdxSerializer by bean name in the @EnablePdx annotation using the serializerBeanName attribute.
Spring Data GemFire will take care of registering it with Pivotal GemFire on the user’s behalf.

Listing 26. Spring ClientCache application with PDX enabled, using a custom, composite PdxSerializer
@SpringBootApplication
@ClientCacheApplication
@EnablePdx(serializerBeanName = "compositePdxSerializer")
public class ClientApplication {

 @Bean
 PdxSerializer compositePdxSerializer() {
 return new CompositePdxSerializerBuilder()...
 }
}

It is also possible to declare Pivotal GemFire’s
org.apache.geode.pdx.ReflectionBasedAutoSerializer
as a bean definition in a Spring context. Alternatively, you can use Spring Data GemFire’s more robust,
org.springframework.data.gemfire.mapping.MappingPdxSerializer,
which uses Spring Data mapping meta-data and infrastructure applied to the serialization process for more efficient
handling than reflection alone.

Many other aspects and features of PDX can be adjusted with the @EnablePdx annotation attributes
or associated configuration properties.

See the @EnablePdx annotation Javadoc for more details.

Configuring SSL

Equally important to serializing data to be transferred over-the-wire is securing the data while in transit.
Of course, the common way to accomplish this in Java is using the Secure Sockets Extension (SSE)
and Transport Layer Security (TLS).

To enable SSL, simply annotate your application class with @EnableSsl and set the necessary SSL configuration
attributes (e.g. keystores, usernames/passwords, etc)…​

Listing 27. Spring ClientCache application with SSL enabled
@SpringBootApplication
@ClientCacheApplication
@EnableSsl
public class ClientApplication { .. }

Different Pivotal GemFire components: GATEWAY, HTTP, JMX, LOCATOR, SERVER can be individually configured
with SSL, or they can all be collectively configured all at once to use SSL using the CLUSTER enumerated value.

It is easy to specify which Pivotal GemFire components that the SSL configuration settings should applied to using
the nested @EnableSsl annotation Component enum…​

Listing 28. Spring ClientCache application with SSL enabled by Aache GemFire component
@SpringBootApplication
@ClientCacheApplication
@EnableSsl(components = { GATEWAY, LOCATOR, SERVER })
public class ClientApplication { .. }

In addition component-level SSL configuration, ciphers, protocols and keystore/truststore information can
also be specified using the corresponding Annotation attribute or associated configuration properties.

See the @EnableSsl annotation Javadoc for more details.

More details on Pivotal GemFire SSL support can be found
here.

Configuring GemFire Properties

While many of the gemfire.properties
are conveniently encapsulated in and abstracted with an Annotation in the SDG Annotation-based configuration model,
the less commonly used GemFire Properties are still accessible from the @EnableGemFireProperties annotation.

Using the @EnableGemFireProperties annotation on your application class is convenient and a nice alternative to
creating a gemfire.properties file or setting GemFire Properties as Java System properties on the command-line
when launching your application.

It is recommended that these GemFire Properties be set in a gemfire.properties file when deploying
your application to production. But, at development-time, it can be convenient to set these properties individually,
as needed, for prototyping and/or testing purposes.

A few examples of some of the less common GemFire Properties that a user usually need not worry about include,
but are not limited to: ack-wait-threshold, disable-tcp, socket-buffer-size, etc.

To individually set any GemFire Property, simply annotate your application class with @EnableGemFireProperties
and set the GemFire Properties you want to change from the default, out-of-the-box value set by Pivotal GemFire…​

Listing 29. Spring ClientCache application with specific GemFire Properties set
@SpringBootApplication
@ClientCacheApplication
@EnableGemFireProperties(conflateEvents = true, socketBufferSize = 16384)
public class ClientApplication { .. }

Keep in mind, some of the GemFire Properties are client specific (e.g. conflateEvents) while others are
server specific (e.g. distributedSystemId, enableNetworkPartitionDetection, enforceUniqueHost, memberTimeout,
redundancyZone).

More details on Pivotal GemFire properties can be found
here.

Configuring Regions

So far, outside of PDX, our discussion has centered around configuring Pivotal GemFire’s more administrative functions:
creating a cache instance, starting embedded services, enabling Logging, Statistics and SSL, using gemfire.properties
to affect very low-level configuration and behavior. While all these configuration options are important, none of them
relate directly to the application. In other words, we still need some place to store our application data and make it
generally available and accessible.

Pivotal GemFire organizes data in a cache into
Regions. You can think of a
Region as a table in a relational database. Generally, a Region should only store a single type of object making it
more conducive for building effective Indexes. We will talk about Indexing
later.

Previously, Spring Data GemFire users needed to explicitly define and declare the Regions used in their applications
to store data by writing very verbose Spring configuration meta-data, whether a user was using SDG’s FactoryBeans
from the API in Spring’s
Java-based container configuration…​

Listing 30. Example Region bean definition using Spring Java-based container configuration
@Configuration
class GemFireConfiguration {

 @Bean("Example")
 PartitionedRegionFactoryBean exampleRegion(GemFireCache gemfireCache) {

 PartitionedRegionFactoryBean<Long, Example> exampleRegion =
 new PartitionedRegionFactoryBean<>();

 exampleRegion.setCache(gemfireCache);
 exampleRegion.setClose(false);
 exampleRegion.setPersistent(true);

 return exampleRegion;
 }

 ...
}

Or, using XML…​

Listing 31. Example Region bean definition using the SDG XML Namespace
 <gfe:partitioned-region id="exampleRegion" name="Example" persistent="true">
 ...
 </gfe:partitioned-region>

While neither Java nor XML configuration is hard to do, it is cumbersome, especially if an application has a large
number of Regions that need to be defined. Many relational database-based applications can literally have 100s
or even 1000s of tables.

Ugh!

Now users can define and configure Regions based on their application domain objects (entities). No longer does
a user need to explicitly define Region bean definitions in Spring configuration meta-data, unless finer-grained
control is required.

To simplify Region creation, Spring Data GemFire combines the use of SD Repositories with the expressive power of
Annotation-based configuration using the new @EnableEntityDefinedRegions annotation.

Most Spring Data application developers should already be familiar with the
Spring Data Repository abstraction
and Spring Data GemFire’s implementation/extension of the SD Repository abstraction, which
has been specifically customized to optimize data access operations for Pivotal GemFire.

First, an application developer starts by defining the application domain objects…​

Listing 32. Application domain object type modeling a Book
@Region("Books")
class Book {

 @Id
 private ISBN isbn;

 private Author author;

 private Category category;

 private LocalDate releaseDate;

 private Publisher publisher;

 private String title;

}

Next, the application developer would define a basic Repository for Books by extending Spring Data Commons
org.springframework.data.repository.CrudRepository interface…​

Listing 33. Repository for Books
interface BookRepository extends CrudRepository<Book, ISBN> { .. }

The org.springframe.data.repository.CrudRepository is a Data Access Object (DAO) providing basic data access
operations (CRUD) along with support for simple queries (e.g. findById(..)). The user can define additional,
more sophisticated queries simply by declaring query methods on the Repository interface
(e.g. List<BooK> findByAuthor(Author author);).

Under-the-hood, Spring Data GemFire provides an implementation of this interface when the Spring container is
bootstrapped. SDG will even implement the query methods defined by the user so long as the user follows simple
conventions.

Now, when a user defined the Book class, she also specified the Region in which instances of Book will be mapped
and stored by declaring the Spring Data GemFire mapping annotation, @Region on the entity’s type. Of course, if
the entity type (i.e. Book) referenced in the type parameter of the Repository interface (i.e. BookRepository)
is not annotated with @Region, the name is derived from the simple class name of the entity type (i.e. "Book").

Spring Data GemFire uses the mapping context containing mapping meta-data for all the entities defined in your
application to determine all the Regions that will be needed at runtime.

To enable and use this feature, simply annotate the application class with @EnableEntityDefinedRegions…​

Listing 34. Entity-defined Region Configuration
@SpringBootApplication
@ClientCacheApplication
@EnableGemfireRepositories
@EnableEntityDefinedRegions(basePackages = "example.app.domain")
class ClientApplication { .. }

Creating Regions from entity classes is the most useful when using Spring Data Repositories in your application.
Spring Data GemFire’s Repository support is enabled with the @EnableGemfireRepositories annotation.

By default, the @EnableEntityDefinedRegions annotation will scan for entity classes recursively starting from
the package of the configuration class on which the @EnableEntityDefinedRegions annotation is defined.

However, it is common to limit the search during the scan by setting the basePackages attribute with the package names
containing your application entity classes.

Alternatively, a user can use the more type-safe basePackageClasses attribute for specifying the package to scan
by setting the attribute to an entity type in the package containing the entity’s class, or by using a non-entity
placeholder class in the package specifically created for identifying the package to scan. For example…​

Listing 35. Entity-defined Region Configuration using the Entity class type
@SpringBootApplication
@ClientCacheApplication
@EnableGemfireRepositories
@EnableEntityDefinedRegions(basePackageClasses = {
 example.app.books.domain.Book.class,
 example.app.customers.domain.Customer.class
})
class ClientApplication { .. }

In addition to specifying the location where to begin the scan, like Spring’s @ComponentScan annotation, a user can
specify include and exclude filters with all the same semantics of the
org.springframework.context.annotation.ComponentScan.Filter annotation.

See the @EnableEntityDefinedRegion annotation Javadoc for more details.

Configuring Type-specific Regions

Pivotal GemFire supports many different
types of Regions.
Each type corresponds to the Region’s
DataPolicy,
which determines exactly how the data in the Region will be managed (e.g. distributed/replicated, etc).

Other configuration settings also can affect how data is managed like the Region’s scope.
See Storage and Distribution Options
in the Pivotal GemFire User Guide for more details.

When user annotate their application domain object types with the generic @Region mapping annotation,
Spring Data GemFire will decide which type of Region to create. SDG’s default strategy takes the cache type into
consideration when determining the type of Region to create.

For example, if the application was declared as a ClientCache using the @ClientCacheApplication annotation,
then SDG would create a client PROXY Region. Or, if the application was declared as a peer Cache using either the
@PeerCacheApplication or @CacheServerApplication annotations, then SDG would create a server PARTITION Region.

Of course, an application developer is always able to override the default when necessary. To override the default
applied by Spring Data GemFire, 4 new Region mapping annotations have been introduced:

	
ClientRegion

	
LocalRegion

	
PartitionRegion

	
ReplicateRegion

The ClientRegion mapping annotation is specific to client applications. All other Region mapping annotations
listed above can only be used in server applications.

It is sometimes necessary for client applications to create and use "local-only" Regions, perhaps to aggregate data
from other Regions in order to analyze the data locally and carry out some function performed by the application
for the user. In this case, the data may not necessarily need to be distributed back to the server, not unless other
applications need access to the results. This Region might even be temporary and discarded after use, which could
be accomplished with Idle-Timeout (TTI) and Time-To-Live (TTL) expiration policies on the Region itself (NOTE: this is
independent of and different from "entry" TTI/TTL expiration policies).

In any case, if a user wanted to create a local-only, client Region where the data is not gong to be distributed to
a corresponding Region with the same name on the server, the user would specify the @ClientRegion mapping annotation
and set the shortcut attribute to ClientRegionShortcut.LOCAL…​

Listing 36. Spring ClientCache application with a local-only, client Region
@ClientRegion(shortcut = ClientRegionShortcut.LOCAL)
class ClientLocalEntityType { .. }

All Region type-specific annotations provide additional attributes that are both common across Region types
as well as specific to only that type of Region (e.g. the collocatedWith and redundantCopies attributes
in the PartitionRegion annotation apply to PARTITION Regions only).

More details on Pivotal GemFire Region Types can be found
here.

Configuring Eviction

Managing data with Pivotal GemFire is an active task. More than likely, tuning will be required and a combination
of features (e.g. both Eviction and Expiration) will need to
be employed to effectively manage your data in memory with Pivotal GemFire.

Given that Pivotal GemFire is an In-Memory Data Grid (IMDG), data is managed in "memory" and distributed to other nodes
that participate in a cluster in order to minimize latency, maximize throughput and ensure that data is highly available.
Since not all of an application’s data is going to typically fit in memory, even across an entire cluster of nodes,
much less on a single node, capacity can be increased by adding new nodes to the cluster. This is commonly referred to
as linear scale-out (rather than scaling up, which means to add more memory, more CPU, more disk, more network bandwidth,
basically more of every system resource in order to handle the load).

Still, even with a cluster of nodes, it is usually imperative that only the most important data be kept in memory.
Running out-of-memory, or even nearing full capacity, is rarely, if ever, a good thing. Stop-the-world GCs or worse,
OutOfMemoryErrors, will bring your application to a screaming halt.

So, to help manage memory and keep the most important data around, Pivotal GemFire supports LRU-based Eviction.
That is, Pivotal GemFire evicts Region entries based on when those entries were last accessed by using
the Least Recently Used algorithm.

To enable Eviction, simply annotate the application class with @EnableEviction…​

Listing 37. Spring application with Eviction enabled
@SpringBootApplication
@PeerCacheApplication
@EnableEviction(policies = {
 @EvictionPolicy(regionNames = "Books", action = EvictionActionType.INVALIDATE),
 @EvictionPolicy(regionNames = { "Customers", "Orders" }, maximum = 90,
 action = EvictionActionType.OVERFLOW_TO_DISK,
 type = EvictonPolicyType.HEAP_PERCENTAGE)
})
class ServerApplication { .. }

Eviction policies are usually set on the Regions in the server(s).

As shown above, the policies attribute can specify 1 or more nested @EvictionPolicy annotations, each 1 individually
catered to 1 or more Regions where the Eviction policy needs to be applied.

Additionally, a user can reference a custom implementation of Pivotal GemFire’s
org.apache.geode.cache.util.ObjectSizer interface
defined as a bean in the Spring context and referenced by name using the objectSizerName attribute.

An ObjectSizer allows the user to define the criteria used to evaluate and determine the the size of objects stored
in the Region.

See the @EnableEviction annotation Javadoc for a complete list of Eviction configuration options.

More details on Pivotal GemFire Eviction can be found
here.

Configuring Expiration

Along with Eviction, Expiration can also be used to manage memory by allowing entries stored in a Region to expire.
Both Time-to-Live (TTL) and Idle-Timeout (TTI) based entry expiration policies are supported in Pivotal GemFire.

Spring Data GemFire’s Annotation-based Expiration configuration is based on
earlier, existing entry expiration annotation support that was added in
Spring Data GemFire many releases ago.

Essentially, Spring Data GemFire’s Expiration annotation support is based on a provided, custom implementation of
Pivotal GemFire’s org.apache.geode.cache.CustomExpiry interface.
This custom implementation inspects the user’s application domain objects stored in a Region for the presence of
type-level Expiration annotations.

Spring Data GemFire provides the following Expiration annotations used on application domain object types,
out-of-the-box…​

	
Expiration

	
IdleTimeoutExpiration

	
TimeToLiveExpiration

An application domain object type can be annotated with 1 or more of the Expiration annotations, like so…​

Listing 38. Applicaton domain object specific Expiration policy
@Region("Books")
@TimeToLiveExpiration(timeout = 30000, action = "INVALIDATE")
class Book { .. }

To enable Expiration, simply annotate the application class with @EnableExpiration…​

Listing 39. Spring application with Expiration enabled
@SpringBootApplication
@PeerCacheApplication
@EnableExpiration
class ServerApplication { .. }

In addition to application domain object type-level Expiration policies, individual Expiration policies on a
Region-by-Region basis can be configured directly with the @EnableExpiration annotation as well.

Listing 40. Spring application with global Expiration policies
@SpringBootApplication
@PeerCacheApplication
@EnableExpiration(policies = {
 @ExpirationPolicy(regionNames = "Books", types = ExpirationType.TIME_TO_LIVE),
 @ExpirationPolicy(regionNames = { "Customers", "Orders" }, timeout = 30000,
 action = ExpirationActionType.LOCAL_DESTROY)
})
class ServerApplication { .. }

Expiration policies are usually set on the Regions in the server(s).

See the @EnableExpiration annotation Javadoc for a complete list of Expiration configuration options.

More details on Pivotal GemFire Expiration can be found
here.

Configuring Compression

In addition to Eviction
and Expiration a user may also configure her data Regions
to use Compression in order to reduce memory consumption.

Pivotal GemFire allows users to compress in-memory Region values using pluggable
Compressors,
or different compression codecs. Out-of-the-box, Pivotal GemFire uses Google’s Snappy
library.

To enable Compression support, simply annotate the application class with @EnableCompression…​

Listing 41. Spring application with Compression enabled
@SpringBootApplication
@ClientCacheApplication
@EnableCompression(compressorBeanName = "MyCompressor", regionNames = { "Customers", "Orders" })
class ClientApplication { .. }

Neither the compressorBeanName nor the regionNames attributes are required.

The compressorBeanName defaults to “SnappyCompressor” enabling Pivotal GemFire’s provided
SnappyCompressor
by default.

The regionNames attribute is an array of Region names specifying the Regions that will have compression enabled.
By default, all Regions will compress values if the regionNames attribute is not explicitly set.

Alternatively, a user may use the spring.data.gemfire.cache.compression.compressor-bean-name
and spring.data.gemfire.cache.compression.region-names properties in the application.properties file
to set and configure the values of these @EnableCompression annotation attributes.

To use Pivotal GemFire’s Region Compression feature, you must include the org.iq80.snappy:snappy dependency
in your Maven pom.xml or build.gradle file when using Gradle. This is only necessary if you use Pivotal GemFire’s
default, out-of-the-box support for Region Compression, which uses the
SnappyCompressor
by default. Of course, if you are using another compression library, you will need to include dependencies
for that compression library on your application’s classpath. Additionally, you will need to implement Pivotal GemFire’s
Compressors to adapt
your compression library of choice, define it as a bean in the Spring context, and then set the compressorBeanName
to this custom bean definition.

See the @EnableCompression annotation Javadoc for more details.

More details on Pivotal GemFire Compression can be found
here.

Configuring Off-Heap

Another effective means for reducing pressure on the JVM’s Heap memory and minimize GC activity is to use
Pivotal GemFire’s Off-Heap memory support. Rather than storing Region entries on the JVM Heap, entries are stored
in the system’s main memory.

To enable Off-Heap support, simple annotate the application class with @EnableOffHeap…​

Listing 42. Spring application with Off-Heap enabled
@SpringBootApplication
@PeerCacheApplication
@EnableOffHeap(memorySize = 8192m regionNames = { "Customers", "Orders" })
class ServerApplication { .. }

The memorySize attribute is required. The value for the memorySize attribute specifies the amount of main memory
a Region is allowed to use in either megabytes (m) or gigabytes (g).

The regionNames attribute is an array of Region names specifying the Regions that will store entries in main memory.
By default, all Regions will use main memory if the regionNames attribute is not explicitly set.

Alternatively, a user may use the spring.data.gemfire.cache.off-heap.memory-size
and spring.data.gemfire.cache.off-heap.region-names properties in the application.properties file
to set and configure the values of these @EnableOffHeap annotation attributes.

See the @EnableOffHeap annotation Javadoc for more details.

Configuring Indexes

There is not much use in storing data in Regions unless the data can be retrieved.

In addition to Region.get(key) operations, particularly when the key of the value of interest is known in advance,
data is commonly retrieved by executing queries on the Regions containing the data. With Pivotal GemFire, queries are
written using the Object Query Language (OQL), and the specific data set that a client wishes to access is expressed
in the query’s predicate (e.g. SELECT * FROM /Books b WHERE b.author.name = 'Jon Doe').

Generally, querying without Indexes is not very efficient. When executing queries without an Index, Pivotal GemFire
performs the equivalent of a full table scan.

Indexes are created and maintained for fields on objects used in query predicates to match the data of interests,
expressed by the query’s projection. Different types of Indexes can be created, such as
Key
and Hash Indexes.

Spring Data GemFire makes it very easy to create Indexes on Regions where the data is stored and accessed.
Rather than explicitly declaring Index bean definitions using Spring config as before…​

Listing 43. Index bean definition using Java config
@Bean("BookIsbnIndex")
IndexFactoryBean bookIsbnIndex(GemFireCache gemfireCache) {

 IndexFactoryBean bookIsbnIndex = new IndexFactoryBean();

 bookIsbnIndex.setCache(gemfireCache);
 bookIsbnIndex.setName("BookIsbnIndex");
 bookIsbnIndex.setExpression("isbn");
 bookIsbnIndex.setFrom("/Books"));
 bookIsbnIndex.setType(IndexType.KEY);

 return bookIsbnIndex;
}

Or, in XML…​

Listing 44. Index bean definition using XML
 <gfe:index id="BooksIsbnIndex" expression="isbn" from="/Books" type="KEY"/>

Indexes can now be created directly from the fields defined on application domain object types that a user knows
will be used in query predicates to speedup those queries. Indexes will be applied even for OQL queries generated
from user-defined query methods on an application’s Repository interfaces.

Re-using the example Book class from above, we can annotate the fields on Book that we know will be used in queries
we define with query methods in the BookRepository interface…​

Listing 45. Application domain object type modeling a Book using Indexes
@Region("Books")
class Book {

 @Id
 private ISBN isbn;

 @Indexed
 private Author author;

 private Category category;

 private LocalDate releaseDate;

 private Publisher publisher;

 @LuceneIndexed
 private String title;

}

In our new Book class definition, we annotated the author field with @Indexed and the title field
with @LuceneIndexed. Also, the isbn field had previously been annotated with Spring Data’s @Id annotation,
which identifies the field containing the unique identifier for Book instances, and in Spring Data GemFire,
the @Id annotated field or property is used as the key in the Region when storing the entry.

	
@Id annotated fields/properties result in the creation of an Pivotal GemFire KEY Index.

	
@Indexed annotated fields/properties result in the creation of an Pivotal GemFire HASH Index (default).

	
@LuceneIndexed annotated fields/properties result in the creation of an Pivotal GemFire Lucene Index, used in
text-based searches with Pivotal GemFire’s Lucene Integration and support.

When the @Indexed annotation is used without setting any attributes, the Index name, expression, and fromClause
are derived from the field/property of the object on which the @Indexed annotation has been added. The expression
is exactly the name of the field or property. The fromClause is derived from the @Region annotation on the object’s
class (or the simple name of the domain object class if the @Region annotation was not specified).

Of course, any of the @Indexed annotation attributes may be explicitly set to override the default values provided by
Spring Data GemFire.

Listing 46. Application domain object type modeling a Book using cutomized Indexes
@Region("Books")
class Book {

 @Id
 private ISBN isbn;

 @Indexed(name = "BookAuthorNameIndex", expression = "author.name", type = "FUNCTIONAL")
 private Author author;

 private Category category;

 private LocalDate releaseDate;

 private Publisher publisher;

 @LuceneIndexed(name = "BookTitleIndex", destory = true)
 private String title;

}

The name of the Index, which is auto-generated when not explicitly set, is also used as the name of the bean
registered in the Spring context for the Index. If necessary, this Index bean could even be injected by name
into another application component.

The generated name of the Index follows the pattern: <Region Name><Field/Property Name><Index Type>Idx.
For example, the name of the author Index would be, “BooksAuthorHashIdx”.

To enable Indexing, simply annotate the application class with @EnableIndexing…​

Listing 47. Spring application with Indexing enabled
@SpringBootApplication
@PeerCacheApplication
@EnableEntityDefinedRegions
@EnableIndexing
class ServerApplication { .. }

The @EnablingIndexing annotation has no effect unless the @EnableEntityDefinedRegions is also declared.
Essentially, Indexes are defined from entity class types, and entity classes must be scanned in order to inspect
the entity’s fields and properties for the presence of Index annotations. Without this scan, Index annotations
would not be found. It is also imperative that you limit the scope of the scan.

While Lucene queries are not supported on Spring Data GemFire Repositories (yet), SDG does provide comprehensive
support for Pivotal GemFire
Lucene queries using the familiar Spring Template pattern.

Finally, we close with a few extra things to keep in mind when using Indexes:

	
While OQL Indexes are not required to execute OQL Queries, Lucene Indexes are required to execute Lucene,
text-based searches.

	
In addition, OQL Indexes are not persisted to disk; they are maintained only in memory. So, when an Pivotal GemFire
node is restarted, the Index must be rebuilt.

	
You also need to be aware of the overhead associated in maintaining Indexes, particularly since an Index is stored
exclusively in memory, and especially when Region entries are updated. Index "maintenance" can be
configured
as an asynchronous task.

Another optimization that can be utilized when re-starting your Spring application where Indexes have to be rebuilt
is to first define all the Indexes upfront and then create them all at once, which, in Spring Data GemFire, happens
when the Spring context is refreshed.

Indexes can be defined upfront then created all at once by setting the define attribute on the @EnableIndexing
annotation to true.

See Creating Multiple Indexes at Once
in Pivotal GemFire’s User Guide for more details.

Creating sensible Indexes is an important task since it is possible for an Index to do more harm than good
if not properly designed.

See both the @Indexed annotation and @LuceneIndexed annotation Javadoc for complete list of configuration options.

More details on Pivotal GemFire OQL Queries can be found
here.

More details on Pivotal GemFire Indexes can be found
here.

More details on Pivotal GemFire Lucene Queries can be found
here.

Configuring Disk Stores

Regions can be configured to persist data to disk. Regions can also be configured to overflow data to disk when
Region entries are evicted. In both cases, a DiskStore is required to persist or overflow the data. When an
explicit DiskStore has not been set on a Region with persistence or overflow configured, then Pivotal GemFire will
use the "DEFAULT" DiskStore.

However, it is possible and recommended to define Region-specific DiskStores when persisting or overflowing data
to disk.

Spring Data GemFire provides Annotation support for defining and creating application Region DiskStores by
annotating the application class with the @EnableDiskStore and @EnableDiskStores annotations.

@EnableDiskStores is a composite annotation for aggregating 1 or more @EnableDiskStore annotations.

For example, while Book product information might mostly consist of reference data, from some external data source
(e.g. Amazon), Order data is most likely going to be transactional in nature and something the application is going to
need to retain, maybe even overflow to disk if the transaction volume is high enough, or so any Book publisher hopes,
anyway.

Using the @EnableDiskStore annotation, I can define and create a DiskStore as follows…​

Listing 48. Spring application defining a DiskStore
@SpringBootApplication
@PeerCacheApplication
@EnableDiskStore(name = "OrdersDiskStore", autoCompact = true, compactionThreshold = 70,
 maxOplogSize = 512, diskDirectories = @DiskDiretory(location = "/absolute/path/to/order/disk/files"))
class ServerApplication { .. }

Again, more than 1 DiskStore can be defined using the composite, @EnableDiskStores annotation.

Like other Annotations in Spring Data GemFire’s Annotation-based configuration model, both @EnableDiskStore
and @EnableDiskStores have many attributes along with associated configuration properties to apply additional
configuration to DiskStores created at runtime.

Additionally, the @EnableDiskStores annotation defines certain common DiskStore attributes that apply to all
DiskStores created from @EnableDiskStore annotations composed with the @EnableDiskStores annotation itself.
Individual DiskStore configuration can override a particular global setting, but the @EnableDiskStores
annotation defines common configuration attributes for all DiskStores out of convenience.

Spring Data GemFire also provides the DiskStoreConfigurer callback interface that can be declared in Java config
and used instead of configuration properties to customize a DiskStore at runtime…​

Listing 49. Spring application with custom DiskStore configuration
@SpringBootApplication
@PeerCacheApplication
@EnableDiskStore(name = "OrdersDiskStore", autoCompact = true, compactionThreshold = 70,
 maxOplogSize = 512, diskDirectories = @DiskDiretory(location = "/absolute/path/to/order/disk/files"))
class ServerApplication {

 @Bean
 DiskStoreConfigurer ordersDiskStoreDiretoryConfigurer(
 @Value("${orders.disk.store.location}") String location) {

 return (beanName, diskStoreFactoryBean) -> {

 if ("OrdersDiskStore".equals(beanName) {
 diskStoreFactoryBean.setDiskDirs(Collections.singletonList(new DiskDir(location));
 }
 }
 }
}

See the @EnableDiskStore and @EnableDiskStores annotation Javadoc for more details on the available
attributes as well as associated configuration properties.

More details on Pivotal GemFire Region Persistence and Overflow (using Disk Stores) can be found
here.

Configuring Continuous Queries

Another very important and useful feature of Pivotal GemFire is
Continuous Querying.

In a world of Internet-enabled things, events and streams of data are coming in from everywhere. Being able to handle
and process a large stream of data and react to events in real-time, as they happen, is becoming an increasingly
important requirement for many applications. One example is self-driving vehicles. Being able to receive, filter,
transform, analyze and act on data in real-time is a key differentiator and characteristic of real-time enabled
applications.

Fortunately, Pivotal GemFire was ahead of its time in this regard. Using Continuous Queries (CQ) a client application
can express the data, or events it is interested in and register listeners to handle and process the events as they
arrive. The data that a client application may be interested in is expressed in a OQL query, where the query predicate
is used to filter, or identify the data of interests. When data is changed or added and it matches the criteria defined
in the query predicate of the registered CQ, the client application is notified.

Spring Data GemFire makes defining and registering CQs along with an associated listener to handler and process CQ
events without all the cruft of Pivotal GemFire’s plumbing, a non-event (no pun intended). SDG’s new Annotation-based
configuration for CQs builds on the already existing Continuous Query support in the
Continuous Query Listener Container.

For instance, say a Book publisher wants to register interests in and receive notification anytime orders (demand)
for a Book exceeds the current inventory (supply), then the publisher’s print application might register
the following CQ…​

Listing 50. Spring ClientCache application with registered CQ and Listener.
@SpringBootApplication
@ClientCacheApplication(subcriptionEnabled = true)
@EnableContinuousQueries
class PublisherPrintApplication {

 @ContinuousQuery(name = "DemandExceedsSupply", query =
 "SELECT book.* FROM /Books book, /Inventory inventory
 WHERE book.title = 'How to crush it in the Book business like Amazon"
 AND inventory.isbn = book.isbn
 AND inventory.available < (
 SELECT sum(order.lineItems.quantity)
 FROM /Orders order
 WHERE order.status = 'pending'
 AND order.lineItems.isbn = book.isbn
)
 ")
 void handleSupplyProblem(CqEvent event) {
 // start printing more Books, fast!
 }
}

To enable Continuous Queries, simply annotate your application class with @EnableContinuousQueries.

Defining Continuous Queries is as simple as annotating any Spring @Component annotated POJO class methods
with the @ContinuousQuery annotation, in similar fashion to SDG’s Function annotated POJO methods. A method
defined with a CQ using the @ContinuousQuery annotation will be called anytime data matching the query predicate
is added or changed.

Additionally, the POJO method signature should adhere to the requirements outlined in the section on
ContinuousQueryListener and ContinuousQueryListenerAdapter.

See the @EnableContinuousQueries and @ContinuousQuery annotation Javadoc for more details on available attributes
and configuration settings.

More details on Spring Data GemFire’s Continuous Query support can be found
here.

More details on Pivotal GemFire’s Continuous Queries can be found
here.

Configuring Spring’s Cache Abstraction

With Spring Data GemFire, Pivotal GemFire can be used as a caching provider in Spring’s
Cache Abstraction.

In Spring’s Cache Abstraction, the caching annotations (e.g. @Cacheable) identify the cache on which a cache lookup
is performed before invoking a potentially expensive operation, or where the results of an application service method
are cached after the operation is invoked.

In Spring Data GemFire, a Spring Cache corresponds directly to a Region. The Region must exist before any
@Cacheable application service method is called. This is true for any of Spring’s caching annotations
(i.e. @Cacheable, @CachePut and @CacheEvict) that identify the cache to use in the operation.

For instance, our publisher’s Point-of-Sale (POS) application might have a feature to determine, or lookup
the Price of a Book during a sales transaction.

@Service
class PointOfSaleService

 @Cacheable("BookPrices")
 Price runPriceCheckFor(Book book) {
 ...
 }

 @Transactional
 Receipt checkout(Order order) {
 ...
 }

 ...
}

To make the application developer’s life easier when using Spring Data GemFire and Pivotal GemFire with
Spring’s Cache Abstraction, 2 new features have been added to the new Annotation-based configuration model.

Given the following Spring caching configuration…​

Listing 51. Enabling Caching using Pivotal GemFire with Spring Data GemFire
@EnableCaching
class CachingConfiguration {

 @Bean
 GemfireCacheManager cacheManager(GemFireCache gemfireCache) {

 GemfireCacheManager cacheManager = new GemfireCacheManager();

 cacheManager.setCache(gemfireCache);

 return cacheManager;
 }

 @Bean("BookPricesCache")
 PartitionedRegionFactoryBean<Book, Price> bookPricesRegion(GemFireCache gemfireCache) {

 PartitionedRegionFactoryBean<Book, Price> bookPricesRegion =
 new PartitionedRegionFactoryBean<>();

 bookPricesRegion.setCache(gemfireCache);
 bookPricesRegion.setClose(false);
 bookPricesRegion.setPersistent(false);

 return bookPricesRegion;
 }

 @Bean("PointOfSaleService")
 PointOfSaleService pointOfSaleService(..) {
 return new PointOfSaleService(..);
 }
}

Using Spring Data GemFire’s new features, the same caching configuration can be simplified to…​

Listing 52. Enabling GemFire Caching
@EnableGemfireCaching
@EnableCachingDefinedRegions
class CachingConfiguration {

 @Bean("PointOfSaleService")
 PointOfSaleService pointOfSaleService(..) {
 return new PointOfSaleService(..);
 }
}

First, the @EnableGemfireCaching annotation replaces both the Spring EnableCaching annotation along with
the need to declare an explicit cacheManager bean definition in the Spring config.

Second, the @EnableCachingDefinedRegions annotation, like the @EnableEntityDefinedRegions annotation described in
Configuring Regions, inspects all the Spring caching annotated application
service components to identify all the caches that will be needed by the application at runtime and creates Regions
in Pivotal GemFire for these caches on application startup.

The Region created is local to the application process that created the Region. If the application is a peer Cache,
then the Region will only exist on the application node. If the application is a ClientCache, then SDG creates
a client PROXY Region and expects that a Region with the same name already exists on the servers in the cluster.

SDG cannot determine the cache required by a service method using a Spring CacheResolver to resolve the cache
used in the operation at runtime.

SDG does not currently identify JCache, JSR-107 cache annotations used on application service components.
Refer to the core Spring Framework Reference Guide
for the equivalent Spring caching annotation to use in place of JCache, JSR-107 caching annotations.

Refer to the section, Support for the Spring Cache Abstraction for more details on
using Pivotal GemFire as a caching provider in Spring’s Cache Abstraction.

More details on Spring’s Cache Abstraction can be found
here.

Configuring Cluster Configuration Push

This may be the most exciting new feature in Spring Data GemFire.

When a client application class is annotated with @EnableClusterConfiguration, any Regions or Indexes defined
and declared as beans in the Spring context by the client application are "pushed" to the cluster of servers to which
the client is connected. Not only that, but this "push" is performed in such a way that Pivotal GemFire will remember
the configuration pushed by the client. If all the nodes in the cluster go down, they will come back up with
the same configuration as before.

In a sense, this feature is not much different than if a user were to use Gfsh to create the Regions and Indexes
on all the servers in the cluster. Except now, with Spring Data GemFire, users does not need to use Gfsh
to create Regions and Indexes. The user’s Spring Boot application, enabled with the power of Spring Data GemFire,
already contains all the configuration meta-data SDG needs to create Regions and Indexes for the user.

When users are using the Spring Data Repository abstraction, we know all the Regions (e.g. @Region annotated
entity types) and Indexes (e.g. @Indexed annotated entity fields and properties) that the users' application
will need. When users are using Spring’s Cache Abstraction, we also know all the Regions for all the caches
identified in the caching annotations that the application is going to need. Essentially, the user is already
telling us everything we need to know just by developing her application with the entire Spring Framework and all
of its provided services, infrastructure, etc, whether expressed in Annotation meta-data, Java, XML or otherwise,
and whether for configuration, for mapping, or whatever purpose.

The user can focus on her application business logic along with using the framework provided services and
supporting infrastructure (e.g. Spring Data Repositories, Spring’s Transaction Management, Spring Caching, etc)
and Spring Data GemFire will take care of all the Pivotal GemFire plumbing required by those framework services
on the user’s behalf.

Pushing configuration from the client to the servers in the cluster and having the cluster remember it is made possible
in part by the use of Pivotal GemFire’s Cluster Configuration
service. Pivotal GemFire’s Cluster Configuration service is also the same service used by Gfsh to record
schema-related changes issued by the user to the cluster from the shell.

Of course, since the cluster "remembers" the prior configuration pushed by a client from a previous run perhaps,
Spring Data GemFire is careful not to stomp on any existing Regions and Indexes already defined in the servers.
This is especially important when Regions already contain data.

Currently there is no option to overwrite any existing Region or Index definitions. To recreate a Region
or Index, the user must use Gfsh to destroy the Region or Index first and then restart the client application
so that configuration will be pushed up to the server again. Alternatively a user can just use Gfsh to
(re-)define the Regions and Indexes manually.

Unlike Gfsh, Spring Data GemFire only supports the creation of Regions and Indexes on the servers from a client.
For advanced configuration and use cases, Gfsh should be used to manage the cluster.

For a moment, imagine the power expressed in the following configuration…​

Listing 53. Spring ClientCache application
@SpringBootApplication
@ClientCacheApplication
@EnableCachingDefinedRegions
@EnableEntityDefinedRegions
@EnableIndexing
@EnableGemfireCaching
@EnableGemfireRepositories
@EnableClusterConfiguration
class ClientApplication { .. }

An application developer instantly gets a Spring Boot, Pivotal GemFire ClientCache application using
Spring Data Repositories with Spring’s Cache Abstraction, using Pivotal GemFire as the caching provider,
where Regions and Indexes are not only created on the client, but pushed to the servers in the cluster.

All the application developer need do is define the application’s domain model objects annotated with mapping
and Index annotations, define Repository interfaces supporting basic data access operations and querying
for each of the entity types, define the service components containing the business logic manipulating
the entities, declare the appropriate annotations on service methods that require caching, transactional
behavior, etc, and the developer is in business. Nothing the user did in this case pertains to infrastructure
and plumbing required in the application’s back-end services (e.g. Pivotal GemFire). Database users have similar
features, no Spring, Pivotal GemFire developers can too.

When combined with a couple more Spring Data GemFire Annotations…​

	
@EnableContinuousQueries

	
@EnableGemfireFunctionExecutions

	
@EnableGemfireCacheTransactions

Then, the application is really going to start to take flight.

See the @EnableClusterConfiguration annotation Javadoc for more details.

Configuring Security

Without a doubt, application Security is extremely important and Spring Data GemFire provides comprehensive support
for securing both Pivotal GemFire clients and servers.

Recently, Pivotal GemFire introduced a new Integrated Security framework,
replacing its old Authentication and Authorization Security model, for handling authentication and authorization.
One of the main features and benefits of this new Security framework is that it integrates with
Apache Shiro and can therefore delegate both authentication and authorization requests
to Apache Shiro when enforcing security.

The following demonstrates how Spring Data GemFire can simplify Pivotal GemFire’s Security story even further.

Configuring Server Security

There are several different ways in which a user can configure Security for servers in an Pivotal GemFire cluster.

	
Implement the Pivotal GemFire org.apache.geode.security.SecurityManager interface and set Pivotal GemFire’s
security-manager property to refer to your application SecurityManager implementation by the FQCN.
Alternatively, users can construct and initialize an instance of their SecurityManager implementation and set it
with CacheFactory.setSecurityManager(:SecurityManager)
method when creating an instance of an Pivotal GemFire peer Cache.

	
Create an Apache Shiro shiro.ini file with the users, roles
and permissions defined for your application, then set the Pivotal GemFire security-shiro-init property to refer
to this shiro.ini file, which must be available in the CLASSPATH.

	
Using just Apache Shiro, annotate your Spring Boot application class with Spring Data GemFire’s new
@EnableSecurity annotation and define 1 or more Apache Shiro Realms (as needed)
as beans in the Spring context for accessing your application’s Security meta-data (i.e. authorized users, roles
and permissions), and your done!

The problem with the first approach is that a user must implement his/her own SecurityManager, which can be quite
tedious and error prone. Implementing a custom SecurityManager does afford a user some flexibility in accessing
Security meta-data from whatever data source stores the meta-data, such as LDAP or even a proprietary, internal
data source, but then that is a problem already solved by configuring and using Apache Shiro Realms, which is more
universally known and non-Pivotal GemFire specific.

See Pivotal GemFire’s Security examples for Authentication
and Authorization as 1 possible way
to implement your own custom, application specific SecurityManager.

The second approach using an Apache Shiro INI file is marginally better, but a user still needs to be familiar with
the INI file format in the first place. Additionally, an INI file is static and not easily updatable at runtime.

The third approach is the most ideal since it adheres to widely known and industry accepted concepts
(i.e. Apache Shiro’s Security framework) and is easy to setup…​

Listing 54. Spring server application using Apache Shiro
@SpringBootApplication
@CacheServerApplication
@EnableSecurity
class ServerApplication {

 @Bean
 PropertiesRealm shiroRealm() {
 PropertiesRealm propertiesRealm = new PropertiesRealm();
 propertiesRealm.setResourcePath("classpath:shiro.properties");
 propertiesRealm.setPermissionResolver(new GemFirePermissionResolver());
 return propertiesRealm;
 }
}

The configured Realm shown in the example above could have easily been any of Apache Shiro’s supported
Realms out-of-the-box (ActiveDirectory,
JDBC,
JNDI,
LDAP,
or even a Realm supporting the INI format)
or even a custom implementation of an Apache Shiro Realm implemented by the user. See Apache Shiro’s
documentation on Realms
for more details.

When Apache Shiro is on the CLASSPATH of the servers in the cluster and 1 or more Apache Shiro Realms have been
defined as beans in the Spring context, Spring Data GemFire will detect this configuration and use Apache Shiro
as the Security provider to secure your Pivotal GemFire servers when the @EnableSecurity annotation is used.

Earlier, information was posted on Spring Data GemFire’s support for Pivotal GemFire’s new Integrated Security
framework using Apache Shiro in this
spring.io blob post.

See the @EnableSecurity annotation Javadoc for more details on available attributes and associated
configuration properties.

More details on Pivotal GemFire Security can be found
here.

Configuring Client Security

The Security story would not be complete without discussing how to secure Spring-based, Pivotal GemFire cache client
applications.

Pivotal GemFire’s process to securing a client application is, well, rather involved. In a nutshell, a user essentially
needs to…​

	
Provide an implementation of the
org.apache.geode.security.AuthInitialize interface.

	
Set the Pivotal GemFire security-client-auth-init (System) property to refer to the custom, application-provided
AuthInitialize interface.

	
And finally, a user would typically specify the user credentials in a proprietary, Pivotal GemFire
gfsecurity.properties file.

Spring Data GemFire simplifies all of that using the same @EnableSecurity annotation as applied to
server applications. In other words, the same @EnableSecurity annotation handles Security for both client
and server applications. This makes it easier for users when they decide to switch their applications from
an embedded peer Cache application to a ClientCache application, for instance. Simply change the SDG annotation
from @PeerCacheApplication or @CacheServerApplication to @ClientCacheApplication and you are done.

Effectively, all a user need do on the client is…​

Listing 55. Spring client application using @EnableSecurity
@SpringBootApplication
@ClientCacheApplication
@EnableSecurity
class ClientApplication { .. }

Then define the familiar Spring Boot application.properties file containing the required username and password
Security properties and you are all set.

Listing 56. Spring Boot application.properties file with the required Security credentials
spring.data.gemfire.security.username=jackBlack
spring.data.gemfire.security.password=b@cK!nB1@cK

That was easy!

By default, Spring Boot can find an application.properties file when placed in the root of
the application’s CLASSPATH. Of course, Spring supports may ways to to locate resources using its
Resource abstraction.

See the @EnableSecurity annotation Javadoc for more details on available attributes and associated
configuration properties.

More details on Pivotal GemFire Security can be found
here.

Configuration Tips

The following tips will help users get the most out of using the new Annotation-based configuration model.

Configuration Organization

As we saw in the section on Configuring Cluster Configuration Push, when
many Pivotal GemFire and/or Spring Data GemFire features are enabled using Annotations, we start to stack a lot of
Annotations on the Spring @Configuration or @SpringBootApplication class. In this situation, it makes sense
to start compartmentalizing the configuration a bit.

For instance, given…​

Listing 57. Spring ClientCache application with the kitcken sink to boot
@SpringBootApplication
@ClientCacheApplication
@EnableContinuousQueries
@EnableCachingDefinedRegions
@EnableEntityDefinedRegions
@EnableIndexing
@EnableGemfireCaching
@EnableGemfireFunctionExecutions
@EnableGemfireRepositories
@EnableGemfireCacheTransactions
@EnableClusterConfiguration
class ClientApplication { .. }

We could break this configuration down by concern. For example…​

Listing 58. Spring ClientCache application with the kitcken sink to boot
@SpringBootApplication
@Import({ CachingConfiguration.class, GemFireConfiguration.class,
 QueriesAndFunctionsConfiguration.class, RepositoryConfiguration.class })
class ClientApplication { .. }

@EnableGemfireCaching
@EnableCachingDefinedRegions
class CachingConfiguration { .. }

@ClientCacheApplication
@EnableClusterConfiguration
@EnableGemfireCacheTransactions
class GemFireConfiguration { .. }

@EnableContinuousQueries
@EnableGemfireFunctionExecutions
class QueriesAndFunctionsConfiguration {

 @ContinuousQuery(..)
 void processCqEvent(CqEvent event) {
 ...
 }
}

@EnableGemfireRepositories
@EnableEntityDefinedRegions
@EnableIndexing
class RepositoryConfiguration { .. }

Spring does not care. Organize your application configuration as you see fit.

Additional Configuration-based Annotations

SDG Annotations you never heard of…​

The following SDG Annotations were not discussed in this reference documentation either because the Annotation supports
a deprecated feature of Pivotal GemFire, or there are better, alternative ways to accomplishing the function that
the Annotation provides.

	
@EnableAuth - enable Pivotal GemFire’s old Authentication/Authorization Security model. (Deprecated;
use Pivotal GemFire’s new Integrated Security framework discussed here).

	
@EnableAutoRegionLookup - Not recommended. Essentially, this Annotation supports finding Regions defined in
external configuration meta-data (e.g. cache.xml, or Cluster Configuration when applied to a server) and registers
those Regions as beans in the Spring context automatically. Users should generally prefer Spring config when
using Spring and Spring Data GemFire. See Configuring Regions
and Configuring Cluster Configuration Push instead.

	
@EnableBeanFactoryLocator - enables the SDG GemfireBeanFactoryLocator feature, which is only useful, again, when
using external configuration meta-data (e.g. cache.xml). For example, if a user defines a CacheLoader on a
Region defined in cache.xml, the user can still auto-wire this CacheLoader with say, a relational database
DataSource bean defined in Spring confif. This Annotation takes advantage of this SDG feature
and might be useful for users who have a large amount of legacy configuration meta-data, like cache.xml files.

	
@EnableGemFireAsLastResource - is actually discussed in
Global - JTA Transaction Management with Pivotal GemFire.

	
@EnableMcast - enables Pivotal GemFire’s old peer discovery mechanism using UDP-based Multi-cast Networking.
(Deprecated; users should be using Pivotal GemFire Locators instead; see
Configuring Locators.

	
@EnableRegionDataAccessTracing - is useful for debugging purposes; the Annotation enables tracing for all
data access operations performed on a Region by registering an AOP Aspect that proxies all Regions declared
as beans in the Spring context, intercepting the Region op and logging the event.

Conclusion

As we learned in the previous sections, there is a tremendous amount of power provided by Spring Data GemFire's
new Annotation-based configuration model. Hopefully, it lives up to its goal of making it easier for users
to get started quickly when using Pivotal GemFire with Spring.

Keep in mind when using the new Annotations that it does not preclude you, the application developer, from using
Java config, or even XML, if you prefer. You can even combine all 3 approaches by using Spring’s
@Import
and @ImportResource
annotations on a Spring @Configuration or @SpringBootApplication class, if you like. The moment you explicitly
provide a bean definition that would otherwise be provided by Spring Data GemFire using an Annotation,
the Annotation-based configuration backs away.

In certain cases you may even need to fallback to Java config, as in the Configurers case, to handle more complex
or conditional configuration logic that is not easily expressed in or cannot be accomplished using Annotations.
Do not be alarmed; this is to be expected.

For example, another case where Java config or XML will be needed is when configuring Pivotal GemFire WAN components,
which currently do not have any Annotation configuration support. However, defining and registering WAN components
is as simple as using the org.springframework.data.gemfire.wan.GatewaReceiverFactoryBean
and org.springframework.data.gemfire.wan.GatewaySenderFactoryBean API classes in Java configuration on your Spring
@Configuration or @SpringBootApplication classes (recommended).

The Annotations were not meant to handle every situation; the Annotations were meant to help application developers
get up and running as quickly and as easily as possible, especially during development.

 WORKING WITH PIVOTAL GEMFIRE APIS

Once the Pivotal GemFire Cache and Regions have been configured, they can be injected and used inside application objects.
This chapter describes the integration with Spring’s Transaction Management functionality and DAO exception hierarchy.
This chapter also covers support for dependency injection of GemFire managed objects.

GemfireTemplate

As with many other high-level abstractions provided by Spring projects, Spring Data GemFire provides a template
to simplify GemFire data access. The class provides several one-liner methods containing common Region operations,
but also has the ability to execute code against the native GemFire API without having to deal with GemFire checked
exceptions by using a GemfireCallback.

The template class requires a GemFire Region instance, and once configured, is thread-safe and can be reused
across multiple application classes:

<bean id="gemfireTemplate" class="org.springframework.data.gemfire.GemfireTemplate" p:region-ref="SomeRegion"/>

Once the template is configured, a developer can use it alongside GemfireCallback to work directly with
the GemFire Region without having to deal with checked exceptions, threading or resource management concerns:

template.execute(new GemfireCallback<Iterable<String>>() {
 public Iterable<String> doInGemfire(Region region) throws GemFireCheckedException, GemFireException {
 Region<String, String> localRegion = (Region<String, String>) region;

 localRegion.put("1", "one");
 localRegion.put("3", "three");

 return localRegion.query("length < 5");
 }
});

For accessing the full power of the Pivotal GemFire query language, a developer can use the find and findUnique
methods, which, as opposed to the query method, can execute queries across multiple Regions, execute projections,
and the like.

The find method should be used when the query selects multiple items (through`SelectResults`) and the latter,
findUnique, as the name suggests, when only one object is returned.

Exception Translation

Using a new data access technology requires not only accommodating a new API but also handling exceptions
specific to that technology.

To accommodate the exception handling case, the Spring Framework provides a technology agnostic and consistent
exception hierarchy
that abstracts the application from proprietary, and usually "checked", exceptions to a set of focused runtime
exceptions.

As mentioned in Spring Framework’s documentation,
Exception translation
can be applied transparently to your Data Access Objects (DAO) through the use of the @Repository annotation and AOP
by defining a PersistenceExceptionTranslationPostProcessor bean. The same exception translation functionality
is enabled when using GemFire as long as the CacheFactoryBean is declared, e.g. using either a <gfe:cache/>
or <gfe:client-cache> declaration, which acts as an exception translator and is automatically detected by
the Spring infrastructure and used accordingly.

Local, Cache Transaction Management

One of the most popular features of the Spring Framework is
Transaction Management.

If you are not familiar with Spring’s transaction abstraction then we strongly recommend
reading
about Spring’s Transaction Management infrastructure as it offers a consistent programming model that works
transparently across multiple APIs and can be configured either programmatically or declaratively
(the most popular choice).

For Pivotal GemFire, Spring Data GemFire provides a dedicated, per-cache, PlatformTransactionManager that,
once declared, allows Region operations to be executed atomically through Spring:

<gfe:transaction-manager id="txManager" cache-ref="myCache"/>

The example above can be simplified even further by eliminating the cache-ref attribute if the GemFire cache
is defined under the default name, gemfireCache. As with the other Spring Data GemFire namespace elements,
if the cache bean name is not configured, the aforementioned naming convention will be used.
Additionally, the transaction manager name is “gemfireTransactionManager” if not explicitly specified.

Currently, Pivotal GemFire supports optimistic transactions with read committed isolation. Furthermore, to guarantee
this isolation, developers should avoid making in-place changes that manually modify values present in the cache.
To prevent this from happening, the transaction manager configures the cache to use copy on read semantics by default,
meaning a clone of the actual value is created each time a read is performed. This behavior can be disabled if needed
through the copyOnRead property.

For more information on the semantics and behavior of the underlying Geode transaction manager, please refer to the Geode
CacheTransactionManager Javadoc
as well as the documentation.

Global, JTA Transaction Management

It is also possible for Pivotal GemFire to participate in a Global, JTA based transaction, such as a transaction managed
by an Java EE Application Server (e.g. WebSphere Application Server, a.k.a. WAS) using Container Managed Transactions
(CMT) along with other JTA resources.

However, unlike many other JTA "compliant" resources (e.g. JMS Message Brokers like ActiveMQ), Pivotal GemFire is not
an XA compliant resource. Therefore, Pivotal GemFire must be positioned as the "Last Resource" in a JTA transaction
(prepare phase) since it does not implement the 2-phase commit protocol, or rather does not handle
distributed transactions.

Many managed environments with CMT maintain support for "Last Resource", non-XA compliant resources in JTA transactions
though it is not actually required in the JTA spec. More information on what a non-XA compliant, "Last Resource" means
can be found in Red Hat’s documentation.
In fact, Red Hat’s JBoss project, Narayana is one such LGPL Open Source implementation. Narayana
refers to this as "Last Resource Commit Optimization" (LRCO). More details can be found
here.

However, whether you are using Pivotal GemFire in a standalone environment with an Open Source JTA Transaction Management
implementation that supports "Last Resource", or a managed environment (e.g. Java EE AS such as WAS),
Spring Data Geode has you covered.

There are a series of steps you must complete to properly use Pivotal GemFire as a "Last Resource" in a JTA transaction
involving more than 1 transactional resource. Additionally, there can only be 1 non-XA compliant resource
(e.g. Pivotal GemFire) in such an arrangement.

1) First, you must complete Steps 1-4 in GemFire’s documentation
here.

#1 above is independent of your Spring [Boot] and/or [Data GemFire] application
and must be completed successfully.

2) Referring to Step 5 in GemFire’s documentation,
Spring Data GemFire’s Annotation support will attempt to set the GemFireCache, copyOnRead
property for you when using the @EnableGemFireAsLastResource annotation.

However, if SDG’s auto-configuration is unsuccessful then you must explicitly set the copy-on-read attribute on the
<gfe:cache> or <gfe:client-cache> element in XML or the copyOnRead property of the SDG CacheFactoryBean class
in JavaConfig to true. For example…​

Peer Cache XML:

 <gfe:cache ... copy-on-read="true"/>

Peer Cache JavaConfig:

 @Bean
 CacheFacatoryBean gemfireCache() {

 CacheFactoryBean gemfireCache = new CacheFactoryBean();

 gemfireCache.setClose(true);
 gemfireCache.setCopyOnRead(true);

 return gemfireCache;
 }

Client Cache XML:

 <gfe:client-cache ... copy-on-read="true"/>

Client Cache JavaConfig:

 @Bean
 ClientCacheFacatoryBean gemfireCache() {

 ClientCacheFactoryBean gemfireCache = new ClientCacheFactoryBean();

 gemfireCache.setClose(true);
 gemfireCache.setCopyOnRead(true);

 return gemfireCache;
 }

explicitly setting the copy-on-read attribute or optionally the copyOnRead property
really should not be necessary.

3) At this point, you skip Steps 6-8 in GemFire’s documentation
and let Spring Data Geode work its magic. All you need do is annotate your Spring @Configuration class
with Spring Data GemFire’s new @EnableGemFireAsLastResource annotation and a combination of Spring’s
Transaction Management
infrastructure and Spring Data GemFire’s @EnableGemFireAsLastResource configuration does the trick.

The configuration looks like this…​

@Configuration
@EnableGemFireAsLastResource
@EnableTransactionManagement(order = 1)
class GeodeConfiguration {

 ...
}

The only requirements are…​

3.1) The @EnableGemFireAsLastResource annotation must be declared on the same Spring @Configuration class
where Spring’s @EnableTransactionManagement annotation is also specified.

3.2) The order attribute of the @EnableTransactionManagement annotation must be explicitly set to an integer value
that is not Integer.MAX_VALUE or Integer.MIN_VALUE (defaults to Integer.MAX_VALUE).

Of course, hopefully you are aware that you also need to configure Spring’s JtaTransactionManager
when using JTA Transactions like so..

@Bean
public JtaTransactionManager transactionManager(UserTransaction userTransaction) {

 JtaTransactionManager transactionManager = new JtaTransactionManager();

 transactionManager.setUserTransaction(userTransaction);

 return transactionManager;
}

The configuration in section Local, Cache Transaction Management does not apply here.
The use of Spring Data GemFire’s GemfireTransactionManager is applicable only in "Local", Cache Transactions,
not "Global", JTA Transactions. Therefore, you do not configure the SDG GemfireTransactionManager in this case.
You configure Spring’s JtaTransactionManager as shown above.

For more details on using Spring’s Transaction Management with JTA,
see here.

Effectively, Spring Data GemFire’s @EnableGemFireAsLastResource annotation imports configuration containing 2 Aspect
bean definitions that handles the GemFire o.a.g.ra.GFConnectionFactory.getConnection()
and o.a.g.ra.GFConnection.close() operations at the appropriate points during the transactional operation.

Specifically, the correct sequence of events are…​

	
jtaTransation.begin()

	
GFConnectionFactory.getConnection()

	
Call the application’s @Transactional service method

	
Either jtaTransaction.commit() or jtaTransaction.rollback()

	
Finally, GFConnection.close()

This is consistent with how you, as the application developer, would code this manually if you had to use the JTA API
+ GemFire API yourself, as shown in the
GemFire example.

Thankfully, Spring does the heavy lifting for you and all you need do after applying the appropriate configuration
(shown above) is…​

@Service
class MyTransactionalService ... {

 @Transactional
 public <Return-Type> someTransactionalMethod() {
 // perform business logic interacting with and accessing multiple JTA resources atomically, here
 }

 ...
}

#1 & #4 above are appropriately handled for you by Spring’s JTA based PlatformTransactionManager once the
@Transactional boundary is entered by your application (i.e. when the MyTransactionSerivce.someTransactionalMethod()
is called).

#2 & #3 are handled by Spring Data GemFire’s new Aspects enabled with the @EnableGemFireAsLastResource annotation.

#3 of course is the responsibility of your application.

Indeed, with the appropriate logging configured, you will see the correct sequence of events…​

2017-Jun-22 11:11:37 TRACE TransactionInterceptor - Getting transaction for [example.app.service.MessageService.send]

2017-Jun-22 11:11:37 TRACE GemFireAsLastResourceConnectionAcquiringAspect - Acquiring GemFire Connection
from GemFire JCA ResourceAdapter registered at [gfe/jca]

2017-Jun-22 11:11:37 TRACE MessageService - PRODUCER [Message :
[{ @type = example.app.domain.Message, id= MSG0000000000, message = SENT }],
JSON : [{"id":"MSG0000000000","message":"SENT"}]]

2017-Jun-22 11:11:37 TRACE TransactionInterceptor - Completing transaction for [example.app.service.MessageService.send]

2017-Jun-22 11:11:37 TRACE GemFireAsLastResourceConnectionClosingAspect - Closed GemFire Connection @ [Reference [...]]

For more details on using Pivotal GemFire in JTA transactions,
see here.

For more details on configuring Pivotal GemFire as a "Last Resource",
see here.

Continuous Query (CQ)

A powerful functionality offered by Pivotal GemFire is
Continuous Query (or CQ).
In short, CQ allows one to create and register an OQL query, and then automatically be notified when new data
that gets added to GemFire matches the query predicate. Spring Data GemFire provides dedicated support for CQs through
the org.springframework.data.gemfire.listener package and its listener container; very similar in functionality
and naming to the JMS integration in the Spring Framework; in fact, users familiar with the JMS support in Spring,
should feel right at home.

Basically Spring Data GemFire allows methods on POJOs to become end-points for CQ. Simply define the query
and indicate the method that should be called to be notified when there is a match. Spring Data GemFire takes care
of the rest. This is very similar to Java EE’s message-driven bean style, but without any requirement for base class
or interface implementations, based on Pivotal GemFire.

Currently, Continuous Query is only supported in GemFire’s client/server topology. Additionally, the client Pool
used is required to have the subscription enabled. Please refer to the GemFire
documentation
for more information.

Continuous Query Listener Container

Spring Data GemFire simplifies creation, registration, life-cycle and dispatch of CQ events by taking care of
the infrastructure around CQ with the use of SDG’s ContinuousQueryListenerContainer, which does all the heavy lifting
on behalf of the user. Users familiar with EJB and JMS should find the concepts familiar as it is designed
as close as possible to the support provided in the Spring Framework with its Message-driven POJOs (MDPs).

The SDG ContinuousQueryListenerContainer acts as an event (or message) listener container; it is used to
receive the events from the registered CQs and invoke the POJOs that are injected into it. The listener container
is responsible for all threading of message reception and dispatches into the listener for processing. It acts as
the intermediary between an EDP (Event-driven POJO) and the event provider and takes care of creation and registration
of CQs (to receive events), resource acquisition and release, exception conversion and the like. This allows you,
as an application developer, to write the (possibly complex) business logic associated with receiving an event
(and reacting to it), and delegate the boilerplate GemFire infrastructure concerns to the framework.

The listener container is fully customizable. A developer can chose either to use the CQ thread to perform the dispatch
(synchronous delivery) or a new thread (from an existing pool) for an asynchronous approach by defining the suitable
java.util.concurrent.Executor (or Spring’s TaskExecutor). Depending on the load, the number of listeners
or the runtime environment, the developer should change or tweak the executor to better serve her needs. In particular,
in managed environments (such as app servers), it is highly recommended to pick a proper TaskExecutor
to take advantage of its runtime.

The ContinuousQueryListener and ContinuousQueryListenerAdapter

The ContinuousQueryListenerAdapter class is the final component in Spring Data GemFire CQ support. In a nutshell,
class allows you to expose almost any implementing class as an EDP with minimal constraints.
ContinuousQueryListenerAdapter implements the ContinuousQueryListener interface, a simple listener interface
similar to GemFire’s CqListener.

Consider the following interface definition. Notice the various event handling methods and their parameters:

public interface EventDelegate {
 void handleEvent(CqEvent event);
 void handleEvent(Operation baseOp);
 void handleEvent(Object key);
 void handleEvent(Object key, Object newValue);
 void handleEvent(Throwable throwable);
 void handleQuery(CqQuery cq);
 void handleEvent(CqEvent event, Operation baseOp, byte[] deltaValue);
 void handleEvent(CqEvent event, Operation baseOp, Operation queryOp, Object key, Object newValue);
}

package example;

class DefaultEventDelegate implements EventDelegate {
 // implementation elided for clarity...
}

In particular, note how the above implementation of the EventDelegate interface has no GemFire dependencies at all.
It truly is a POJO that we can and will make into an EDP via the following configuration.

the class does not have to implement an interface; an interface is only used to better showcase the decoupling
between the contract and the implementation.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:gfe="http://www.springframework.org/schema/gemfire"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/gemfire http://www.springframework.org/schema/gemfire/spring-gemfire.xsd
">

 <gfe:client-cache/>

 <gfe:pool subscription-enabled="true">
 <gfe:server host="localhost" port="40404"/>
 </gfe:pool>

 <gfe:cq-listener-container>
 <!-- default handle method -->
 <gfe:listener ref="listener" query="SELECT * FROM /SomeRegion"/>
 <gfe:listener ref="another-listener" query="SELECT * FROM /AnotherRegion" name="myQuery" method="handleQuery"/>
 </gfe:cq-listener-container>

 <bean id="listener" class="example.DefaultMessageDelegate"/>
 <bean id="another-listener" class="example.DefaultMessageDelegate"/>
 ...
<beans>

The example above shows a few of the various forms that a listener can have; at its minimum, the listener
reference and the actual query definition are required. It’s possible, however, to specify a name for
the resulting Continuous Query (useful for monitoring) but also the name of the method (the default is handleEvent).
The specified method can have various argument types, the EventDelegate interface lists the allowed types.

The example above uses the Spring Data GemFire namespace to declare the event listener container
and automatically register the listeners. The full blown, beans definition is displayed below:

<!-- this is the Event Driven POJO (MDP) -->
<bean id="eventListener" class="org.springframework.data.gemfire.listener.adapter.ContinuousQueryListenerAdapter">
 <constructor-arg>
 <bean class="gemfireexample.DefaultEventDelegate"/>
 </constructor-arg>
</bean>

<!-- and this is the event listener container... -->
<bean id="gemfireListenerContainer" class="org.springframework.data.gemfire.listener.ContinuousQueryListenerContainer">
 <property name="cache" ref="gemfireCache"/>
 <property name="queryListeners">
 <!-- set of CQ listeners -->
 <set>
 <bean class="org.springframework.data.gemfire.listener.ContinuousQueryDefinition" >
 <constructor-arg value="SELECT * FROM /SomeRegion" />
 <constructor-arg ref="eventListener"/>
 </bean>
 </set>
 </property>
</bean>

Each time an event is received, the adapter automatically performs type translation between the GemFire event
and the required method argument(s) transparently. Any exception caused by the method invocation is caught
and handled by the container (by default, being logged).

Wiring Declarable Components

Pivotal GemFire XML configuration (usually referred to as cache.xml) allows user objects to be declared
as part of the configuration. Usually these objects are CacheLoaders or other pluggable callback components
supported by GemFire. Using native GemFire configuration, each user type declared through XML must implement
the Declarable interface, which allows arbitrary parameters to be passed to the declared class
through a Properties instance.

In this section, we describe how you can configure these pluggable components when defined in cache.xml
using Spring while keeping your Cache/Region configuration defined in cache.xml. This allows your
pluggable components to focus on the application logic and not the location or creation of DataSources
or other collaborators.

However, if you are starting a green field project, it is recommended that you configure Cache, Region,
and other pluggable GemFire components directly in Spring. This avoids inheriting from the Declarable interface
or the base class presented in this section.

See the following sidebar for more information on this approach.

ELIMINATE DECLARABLE COMPONENTS

A developer can configure custom types entirely through Spring as mentioned in [bootstrap:region].
That way, a developer does not have to implement the Declarable interface, and also benefits from
all the features of the Spring IoC container (not just dependency injection but also life-cycle
and instance management).

As an example of configuring a Declarable component using Spring, consider the following declaration
(taken from the Declarable Javadoc):

<cache-loader>
 <class-name>com.company.app.DBLoader</class-name>
 <parameter name="URL">
 <string>jdbc://12.34.56.78/mydb</string>
 </parameter>
</cache-loader>

To simplify the task of parsing, converting the parameters and initializing the object, Spring Data GemFire offers
a base class (WiringDeclarableSupport) that allows GemFire user objects to be wired through a template bean definition
or, in case that is missing, perform auto-wiring through the Spring IoC container. To take advantage of this feature,
the user objects need to extend WiringDeclarableSupport, which automatically locates the declaring BeanFactory
and performs wiring as part of the initialization process.

WHY IS A BASE CLASS NEEDED?

In the current GemFire release there is no concept of an object factory and the types declared are instantiated
and used as is. In other words, there is no easy way to manage object creation outside Pivotal GemFire.

Configuration using template bean definitions

When used, WiringDeclarableSupport tries to first locate an existing bean definition and use that
as the wiring template. Unless specified, the component class name will be used as an implicit bean definition name.

Let’s see how our DBLoader declaration would look in that case:

class DBLoader extends WiringDeclarableSupport implements CacheLoader {

 private DataSource dataSource;

 public void setDataSource(DataSource dataSource){
 this.dataSource = dataSource;
 }

 public Object load(LoaderHelper helper) { ... }
}

<cache-loader>
 <class-name>com.company.app.DBLoader</class-name>
 <!-- no parameter is passed (use the bean's implicit name, which is the class name) -->
</cache-loader>

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
">

 <bean id="dataSource" ... />

 <!-- template bean definition -->
 <bean id="com.company.app.DBLoader" abstract="true" p:dataSource-ref="dataSource"/>
</beans>

In the scenario above, as no parameter was specified, a bean with the id/name com.company.app.DBLoader was used
as a template for wiring the instance created by GemFire. For cases where the bean name uses a different convention,
one can pass in the bean-name parameter in the GemFire configuration:

<cache-loader>
 <class-name>com.company.app.DBLoader</class-name>
 <!-- pass the bean definition template name as parameter -->
 <parameter name="bean-name">
 <string>template-bean</string>
 </parameter>
</cache-loader>

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
">

 <bean id="dataSource" ... />

 <!-- template bean definition -->
 <bean id="template-bean" abstract="true" p:dataSource-ref="dataSource"/>

</beans>

The template bean definitions do not have to be declared in XML.
Any format is allowed (Groovy, annotations, etc).

Configuration using auto-wiring and annotations

By default, if no bean definition is found, WiringDeclarableSupport will
autowire
the declaring instance. This means that unless any dependency injection metadata is offered by the instance,
the container will find the object setters and try to automatically satisfy these dependencies.
However, a developer can also use JDK 5 annotations to provide additional information to the auto-wiring process.

We strongly recommend reading the dedicated
chapter
in the Spring documentation for more information on the supported annotations and enabling factors.

For example, the hypothetical DBLoader declaration above can be injected with a Spring-configured DataSource
in the following way:

class DBLoader extends WiringDeclarableSupport implements CacheLoader {

 // use annotations to 'mark' the needed dependencies
 @javax.inject.Inject
 private DataSource dataSource;

 public Object load(LoaderHelper helper) { ... }
}

<cache-loader>
 <class-name>com.company.app.DBLoader</class-name>
 <!-- no need to declare any parameters since the class is auto-wired -->
</cache-loader>

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context.xsd
">

 <!-- enable annotation processing -->
 <context:annotation-config/>

</beans>

By using the JSR-330 annotations, the CacheLoader code has been simplified since the location and creation
of the DataSource has been externalized and the user code is concerned only with the loading process.
The DataSource might be transactional, created lazily, shared between multiple objects or retrieved from JNDI.
These aspects can easily be configured and changed through the Spring container without touching
the DBLoader code.

Support for the Spring Cache Abstraction

Spring Data GemFire provides an implementation of the Spring
Cache Abstraction
to position Pivotal GemFire as a caching provider in Spring’s caching infrastructure.

To use Pivotal GemFire as a backing implementation, a "caching provider" in Spring’s Cache Abstraction,
simply add GemfireCacheManager to your configuration:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:cache="http://www.springframework.org/schema/cache"
 xmlns:gfe="http://www.springframework.org/schema/gemfire"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/gemfire http://www.springframework.org/schema/gemfire/spring-gemfire.xsd
 http://www.springframework.org/schema/cache http://www.springframework.org/schema/cache/spring-cache.xsd">

 <!-- enable declarative caching -->
 <cache:annotation-driven/>

 <gfe:cache id="gemfire-cache"/>

 <!-- declare GemfireCacheManager; must have a bean ID of 'cacheManager' -->
 <bean id="cacheManager" class="org.springframework.data.gemfire.cache.GemfireCacheManager"
 p:cache-ref="gemfire-cache">

</beans>

The cache-ref attribute on the CacheManager bean definition is not necessary if the default cache bean name
is used (i.e. "gemfireCache"), i.e. <gfe:cache> without an explicit ID.

When the GemfireCacheManager (Singleton) bean instance is declared and declarative caching is enabled
(either in XML with <cache:annotation-driven/> or in JavaConfig with Spring’s @EnableCaching annotation),
the Spring caching annotations (e.g. @Cacheable) identify the "caches" that will cache data in-memory
using GemFire Regions.

These caches (i.e. Regions) must exist before the caching annotations that use them otherwise an error will occur.

By way of example, suppose you have a Customer Service application with a CustomerService application component
that performs caching…​

@Service
class CustomerService {

@Cacheable(cacheNames="Accounts", key="#customer.id")
Account createAccount(Customer customer) {
 ...
}

Then you will need the following config.

XML:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:cache="http://www.springframework.org/schema/cache"
 xmlns:gfe="http://www.springframework.org/schema/gemfire"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/gemfire http://www.springframework.org/schema/gemfire/spring-gemfire.xsd
 http://www.springframework.org/schema/cache http://www.springframework.org/schema/cache/spring-cache.xsd">

 <!-- enable declarative caching -->
 <cache:annotation-driven/>

 <bean id="cacheManager" class="org.springframework.data.gemfire.cache.GemfireCacheManager">

 <gfe:cache/>

 <gfe:partitioned-region id="accountsRegion" name="Accounts" persistent="true" ...>
 ...
 </gfe:partitioned-region>
</beans>

JavaConfig:

@Configuration
@EnableCaching
class ApplicationConfiguration {

 @Bean
 CacheFactoryBean gemfireCache() {
 return new CacheFactoryBean();
 }

 @Bean
 GemfireCacheManager cacheManager() {
 GemfireCacheManager cacheManager = GemfireCacheManager();
 cacheManager.setCache(gemfireCache());
 return cacheManager;
 }

 @Bean("Accounts")
 PartitionedRegionFactoryBean accountsRegion() {
 PartitionedRegionFactoryBean accounts = new PartitionedRegionFactoryBean();

 accounts.setCache(gemfireCache());
 accounts.setClose(false);
 accounts.setPersistent(true);

 return accounts;
 }
}

Of course, you are free to choose whatever Region type you like (e.g. REPLICATE, PARTITION, LOCAL, etc).

For more details on Spring’s Cache Abstraction, again, please refer to the
documentation.

 WORKING WITH PIVOTAL GEMFIRE SERIALIZATION

To improve overall performance of the Pivotal GemFire In-memory Data Grid, GemFire supports a dedicated
serialization protocol, called PDX, that is both faster and offers more compact results over
standard Java serialization in addition to works transparently across various language platforms (Java, C++, .NET).
Please refer to
PDX Serialization Features
and
PDX Serialization Internals
for more details.

This chapter discusses the various ways in which Spring Data GemFire simplifies and improves GemFire’s
custom serialization in Java.

Wiring deserialized instances

It is fairly common for serialized objects to have transient data. Transient data is often dependent on the system
or environment where it lives at a certain point in time. For instance, a DataSource is environment specific.
Serializing such information is useless, and potentially even dangerous, since it is local to a certain VM/machine.
For such cases, Spring Data GemFire offers a special
Instantiator
that performs wiring for each new instance created by GemFire during deserialization.

Through such a mechanism, one can rely on the Spring container to inject and manage certain dependencies
making it easy to split transient from persistent data and have rich domain objects in a transparent manner.

Spring users might find this approach similar to that of
@Configurable).
The WiringInstantiator works just like WiringDeclarableSupport, trying to first locate a bean definition
as a wiring template and falling back to autowiring otherwise.

Please refer to the previous section ([apis:declarable]) for more details on wiring functionality.

To use this SDG Instantiator, simply declare it as a bean:

<bean id="instantiator" class="org.springframework.data.gemfire.serialization.WiringInstantiator">
 <!-- DataSerializable type -->
 <constructor-arg>org.pkg.SomeDataSerializableClass</constructor-arg>
 <!-- type id -->
 <constructor-arg>95</constructor-arg>
</bean>

During the Spring container startup, once it is being initialized, the Instantiator will, by default, register
itself with the GemFire serialization system and perform wiring on all instances of SomeDataSerializableClass
created by GemFire during deserialization.

Auto-generating custom Instantiators

For data intensive applications, a large number of instances might be created on each machine as data flows in.
Out-of-the-box, GemFire uses reflection to create new types, but for some scenarios, this might prove to be expensive.
As always, it is good to perform profiling to quantify whether this is the case or not. For such cases,
Spring Data GemFire allows the automatic generation of Instatiator classes which instantiate a new type
(using the default constructor) without the use of reflection:

<bean id="instantiatorFactory" class="org.springframework.data.gemfire.serialization.InstantiatorFactoryBean">
 <property name="customTypes">
 <map>
 <entry key="org.pkg.CustomTypeA" value="1025"/>
 <entry key="org.pkg.CustomTypeB" value="1026"/>
 </map>
 </property>
</bean>

The definition above, automatically generates two Instantiators for two classes, namely CustomTypeA
and CustomTypeB and registers them with GemFire, under user id 1025 and 1026. The two Instantiators avoid
the use of reflection and create the instances directly through Java code.

 POJO MAPPING

Entity Mapping

Spring Data GemFire provides support to map entities that will be stored in a Region in the GemFire In-Memory Data Grid.
The mapping metadata is defined using annotations on application domain classes just like this:

Mapping a domain class to a GemFire Region

@Region("People")
public class Person {

 @Id Long id;

 String firstname;
 String lastname;

 @PersistenceConstructor
 public Person(String firstname, String lastname) {
 // …
 }

 …
}

The first thing you notice here is the @Region annotation that can be used to customize the Region
in which an instance of the Person class is stored. The @Id annotation can be used to annotate the property
that shall be used as the cache (Region) key, identifying the Region entry. The @PersistenceConstructor annotation
helps to disambiguate multiple, potentially available constructors taking parameters and explicitly marking
the constructor annotated as the constructor to be used to construct entities. In an application domain class with no
or only a single constructor you can omit the annotation.

In addition to storing entities in top-level Regions, entities can be stored in Sub-Regions as well.

For instance:

@Region("/Users/Admin")
public class Admin extends User {
 …
}

@Region("/Users/Guest")
public class Guest extends User {
 …
}

Be sure to use the full-path of the GemFire Region, as defined with the Spring Data GemFire XML namespace
using the id or name attributes of the <*-region> element.

Entity Mapping by Region Type

In addition to the @Region annotation, Spring Data GemFire also recognizes the Region type-specific
mapping annotations: @ClientRegion, @LocalRegion, @PartitionRegion and @ReplicateRegion.

Functionally, these annotations are treated exactly the same as the generic @Region annotation in the SDG
mapping infrastructure. However, these additional mapping annotations are useful in Spring Data GemFire’s`
Annotation configuration model. When combined with the @EnableEntityDefinedRegions configuration annotation
on _Spring @Configuration annotated class, it is possible to generate Regions in the local cache, whether
the application is a client or peer.

These annotations allow you, the developer, to be more specific about what type of Region that your application
entity class should be mapped to, and also has an impact on the data management policies of the Region
(e.g. partition (a.k.a. sharding) vs. just replicating data).

Using these Region type-specific mapping annotations with the SDG Annotation config model saves you from having to
explicitly define these Regions in config.

The details of the new Annotation configuration model will be discussed in more detail in a subsequent releaase.

Repository Mapping

As an alternative to specifying the Region in which the entity will be stored using the @Region annotation
on the entity class, you can also specify the @Region annotation on the entity’s Repository.
See [gemfire-repositories] for more details.

However, let’s say you want to store a Person in multiple GemFire Regions (e.g. People and Customers),
then you can define your corresponding Repository interface extensions like so:

@Region("People")
public interface PersonRepository extends GemfireRepository<Person, String> {
…
}

@Region("Customers")
public interface CustomerRepository extends GemfireRepository<Person, String> {
...
}

Then, using each Repository individually, you can store the entity in multiple GemFire Regions.

@Service
class CustomerService {

 CustomerRepository customerRepo;

 PersonRepository personRepo;

 Customer update(Customer customer) {
 customerRepo.save(customer);
 personRepo.save(customer);
 return customer;
 }

It is not difficult to imagine wrapping the update service method in a Spring managed transaction,
either as a local cache transaction or a global transaction.

Mapping PDX Serializer

Spring Data GemFire provides a custom
PdxSerializer implementation
that uses the mapping information to customize entity serialization. Beyond that, it allows customizing
the entity instantiation by using the Spring Data EntityInstantiator abstraction. By default the serializer
uses a ReflectionEntityInstantiator that will use the persistence constructor of the mapped entity
(either the default constructor, a singly declared constructor or an explicitly annotated constructor annotated with
the @PersistenceConstructor annotation).

To provide values for constructor parameters it will read fields with name of the constructor parameters from
the supplied PdxReader.

Using @Value on entity constructor parameters

public class Person {

 public Person(@Value("#root.foo") String firstname, @Value("bean") String lastname) {
 // …
 }
}

An entity class annotated in this way will have the field foo read from the PdxReader and passed to the constructor
parameter value for firstname. The value for lastname will be the Spring bean with the name bean.

 SPRING DATA GEMFIRE REPOSITORIES

Introduction

Spring Data GemFire provides support to use the Spring Data Repository abstraction to easily persist entities
into GemFire along with execute queries. A general introduction to the Repository programming model is provided
here.

Spring XML Configuration

To bootstrap Spring Data Repositories, you use the <repositories/> element from the Spring Data GemFire
Data namespace:

Bootstrap Spring Data GemFire Repositories in XML

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:gfe-data="http://www.springframework.org/schema/data/gemfire"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/data/gemfire http://www.springframework.org/schema/data/gemfire/spring-data-gemfire.xsd>

 <gfe-data:repositories base-package="com.example.acme.repository"/>

</beans>

This configuration snippet looks for interfaces below the configured base package and creates Repository instances
for those interfaces backed by a SimpleGemFireRepository.

You must have your application domain classes correctly mapped to configured Regions
or the bootstrap process will fail otherwise.

Spring Java-based Configuration

Alternatively, many users prefer to use Spring’s
Java-based container configuration.

Using this approach, it is a simple matter to bootstrap Spring Data Repositories using the SDG @EnableGemfireRepositories
annotation:

Bootstrap Spring Data Geode Repositories with @EnableGemfireRepositories

@SpringBootApplication
@EnableGemfireRepositories(basePackages = "com.example.acme.repository")
class SpringDataApplication {
 ...
}

Rather than use the basePackages attribute, you may prefer to use the type-safe basePackageClasses attribute instead.
The basePackageClasses allows you to specify the package containing all your application Repository classes
by specifying just one of your application Repository interface types. Consider creating a special no-op marker class
or interface in each package that serves no other purpose than to identify the location of application Repositories
referenced by this attribute.

In addition to the basePackage[sClasses] attributes, like Spring’s
@ComponentScan annotation,
the @EnableGemfireRepositories annotation provides include and exclude filters, based on Spring’s
ComponentScan.Filter type.
You can use the filterType attribute to filter by different aspects, such as whether an application Repository type
is annotated with a particular Annotation or extends a particular class type, and so on. See the
FilterType Javadoc
for more details.

The @EnableGemfireRepositories annotation also provides the ability to specify the location of named OQL queries,
which reside in a Java Properties file, using the namedQueriesLocation attribute. The property name must match
the name of a Repository query method and the property value is the OQL query you want executed when
the Repository query method is called.

The repositoryImplementationPostfix attribute can be set to an alternate value (defaults to "Impl") if your
application requires 1 or more custom Repository implementations.
This feature is commonly used to extend the Spring Data Repository infrastructure in order to implement a feature
not provided out-of-the-box (OOTB) by the data store (e.g. SDG).

One example of where custom Repository implementations are needed with Pivotal GemFire is when performing Joins.
Joins are not supported by SDG Repositories OOTB. With a Pivotal GemFire PARTITION Region, the Join must be
performed on collocated PARTITION Regions even, since Pivotal GemFire does not support "distributed" Joins.
In addition, the Equi-Join OQL Query must be performed inside a GemFire Function.
See here
for more details on Pivotal GemFire Equi-Join Queries.

Many other aspects of the SDG’s Repository infrastructure extension maybe customized as well. See the
@EnableGemfireRepositories Javadoc
for more details on all configuration settings.

Executing OQL Queries

Spring Data GemFire Repositories enable the definition of query methods to easily execute GemFire OQL Queries
against the Region the managed entity is mapped to.

Sample Repository

@Region("People")
public class Person { … }

public interface PersonRepository extends CrudRepository<Person, Long> {

 Person findByEmailAddress(String emailAddress);

 Collection<Person> findByFirstname(String firstname);

 @Query("SELECT * FROM /People p WHERE p.firstname = $1")
 Collection<Person> findByFirstnameAnnotated(String firstname);

 @Query("SELECT * FROM /People p WHERE p.firstname IN SET $1")
 Collection<Person> findByFirstnamesAnnotated(Collection<String> firstnames);
}

The first query method listed here will cause the following OQL query to be derived:
SELECT x FROM /People x WHERE x.emailAddress = $1. The second query method works the same way except
it’s returning all entities found whereas the first query method expects a single result to be found.

In case the supported keywords are not sufficient to expresss and declare your OQL query, or the method name
becomes too verbose, you can annotate the query methods with @Query as seen for methods 3 and 4.

Table 1. Supported keywords for query methods

	Keyword
	Sample
	Logical result

	GreaterThan

	findByAgeGreaterThan(int age)

	x.age > $1

	GreaterThanEqual

	findByAgeGreaterThanEqual(int age)

	x.age >= $1

	LessThan

	findByAgeLessThan(int age)

	x.age < $1

	LessThanEqual

	findByAgeLessThanEqual(int age)

	x.age ⇐ $1

	IsNotNull, NotNull

	findByFirstnameNotNull()

	x.firstname =! NULL

	IsNull, Null

	findByFirstnameNull()

	x.firstname = NULL

	In

	findByFirstnameIn(Collection<String> x)

	x.firstname IN SET $1

	NotIn

	findByFirstnameNotIn(Collection<String> x)

	x.firstname NOT IN SET $1

	IgnoreCase

	findByFirstnameIgnoreCase(String firstName)

	x.firstname.equalsIgnoreCase($1)

	(No keyword)

	findByFirstname(String name)

	x.firstname = $1

	Like

	findByFirstnameLike(String name)

	x.firstname LIKE $1

	Not

	findByFirstnameNot(String name)

	x.firstname != $1

	IsTrue, True

	findByActiveIsTrue()

	x.active = true

	IsFalse, False

	findByActiveIsFalse()

	x.active = false

OQL Query Extensions using Annotations

Many query languages, such as Pivotal GemFire’s OQL (Object Query Language), have extensions that are not directly
supported by Spring Data Commons' Repository infrastructure.

One of Spring Data Commons' Repository infrastructure goals is to function as the lowest common denominator
in order to maintain support for and portability across the widest array of data stores available and in use
for application development today. Technically, this means developers can access multiple different data stores
supported by Spring Data Commons within their applications by reusing their existing application-specific
Repository interfaces, a very convenient and powerful abstraction.

To support GemFire’s OQL Query language extensions and preserve portability across different data stores,
Spring Data GemFire adds support for OQL Query extensions using Java Annotations. These Annotations will be ignored
by other Spring Data Repository implementations (e.g. Spring Data JPA or Spring Data Redis) that do not have
similar query language extensions.

For instance, many data stores will most likely not implement GemFire’s OQL IMPORT keyword. By implementing IMPORT
as an Annotation (i.e. @Import) rather than as part of the query method signature (specifically, the method 'name'),
then this will not interfere with the parsing infrastructure when evaluating the query method name to construct
another data store language appropriate query.

Currently, the set of GemFire OQL Query language extensions that are supported by Spring Data GemFire include:

Table 2. Supported GemFire OQL extensions for Repository query methods

	Keyword
	Annotation
	Description
	Arguments

	HINT

	@Hint

	OQL Query Index Hints

	String[] (e.g. @Hint({ "IdIdx", "TxDateIdx" }))

	IMPORT

	@Import

	Qualify application-specific types.

	String (e.g. @Import("org.example.app.domain.Type"))

	LIMIT

	@Limit

	Limit the returned query result set.

	Integer (e.g. @Limit(10); default is Integer.MAX_VALUE)

	TRACE

	@Trace

	Enable OQL Query specific debugging.

	NA

As an example, suppose you have a Customers application domain class and corresponding GemFire Region along with a
CustomerRepository and a query method to lookup Customers by last name, like so…​

Sample Customers Repository

package ...;

import org.springframework.data.annotation.Id;
import org.springframework.data.gemfire.mapping.annotation.Region;
...

@Region("Customers")
public class Customer ... {

 @Id
 private Long id;

 ...
}

package ...;

import org.springframework.data.gemfire.repository.GemfireRepository;
...

public interface CustomerRepository extends GemfireRepository<Customer, Long> {

 @Trace
 @Limit(10)
 @Hint("LastNameIdx")
 @Import("org.example.app.domain.Customer")
 List<Customer> findByLastName(String lastName);

 ...
}

This will result in the following OQL Query:

<TRACE> <HINT 'LastNameIdx'> IMPORT org.example.app.domain.Customer; SELECT * FROM /Customers x WHERE x.lastName = $1 LIMIT 10

Spring Data GemFire’s Repository extension and support is careful not to create conflicting declarations when
the OQL Annotation extensions are used in combination with the @Query annotation.

As another example, suppose you have a raw @Query annotated query method defined in your CustomerRepository
like so…​

CustomerRepository

public interface CustomerRepository extends GemfireRepository<Customer, Long> {

 @Trace
 @Limit(10)
 @Hint("CustomerIdx")
 @Import("org.example.app.domain.Customer")
 @Query("<TRACE> <HINT 'ReputationIdx'> SELECT DISTINCT * FROM /Customers c WHERE c.reputation > $1 ORDER BY c.reputation DESC LIMIT 5")
 List<Customer> findDistinctCustomersByReputationGreaterThanOrderByReputationDesc(Integer reputation);
}

This query method results in the following OQL Query:

IMPORT org.example.app.domain.Customer; <TRACE> <HINT 'ReputationIdx'> SELECT DISTINCT * FROM /Customers x
WHERE x.reputation > $1 ORDER BY c.reputation DESC LIMIT 5

As you can see, the @Limit(10) annotation will not override the LIMIT defined explicitly in the raw query.
As well, @Hint("CustomerIdx") annotation does not override the HINT explicitly defined in the raw query.
Finally, the @Trace annotation is redundant and has no additional effect.

The "ReputationIdx" Index is probably not the most sensible index given the number of Customers who will possibly have
the same value for their reputation, which will effectively reduce the effectiveness of the index. Please choose
indexes and other optimizations wisely as an improper or poorly choosen index can have the opposite effect on your
performance given the overhead in maintaining the index. The "ReputationIdx" was only used to serve the purpose
of the example.

 ANNOTATION SUPPORT FOR FUNCTION EXECUTION

Introduction

Spring Data GemFire includes annotation support to simplify working with GemFire
Function Execution.
Under-the-hood, the Pivotal GemFire API provides classes to implement and register GemFire
Functions
that are deployed on GemFire servers, which may then be invoked by other peer member applications
or remotely from cache clients.

Functions can execute in parallel, distributed among multiple GemFire servers in the cluster, aggregating results
with the map-reduce pattern that are sent back to the caller. Functions can also be targeted to run on a single server
or Region. The Pivotal GemFire API supports remote execution of Functions targeted using various predefined scopes:
on Region, on members [in groups], on servers, etc. The implementation and execution of remote Functions,
as with any RPC protocol, requires some boilerplate code.

Spring Data GemFire, true to Spring’s core value proposition, aims to hide the mechanics of remote Function execution
and allow developers to focus on core POJO programming and business logic. To this end, Spring Data GemFire introduces
annotations to declaratively register public methods of a POJO class as GemFire Functions along with the ability to
invoke registered Functions [remotely] via annotated interfaces.

Implementation vs Execution

There are two separate concerns to address implementation and execution.

First is Function implementation (server-side), which must interact with the
FunctionContext
to access the invocation arguments,
ResultsSender
as well as other execution context information. The Function implementation typically accesses the Cache and/or Regions
and is registered with the
FunctionService
under a unique Id.

A cache client application invoking a Function does not depend on the implementation. To invoke a Function,
the application instantiates an
Execution
providing the Function ID, invocation arguments and the Function target, which defines its scope:
Region, server, servers, member or members. If the Function produces a result, the invoker uses a
ResultCollector
to aggregate and acquire the execution results. In certain cases, a custom ResultCollector implementation
is required and may be registered with the Execution.

'Client' and 'Server' are used here in the context of Function execution, which may have a different meaning
than client and server in GemFire’s client-server topology. While it is common for an application using a ClientCache
to invoke a Function on one or more GemFire servers in a cluster, it is also possible to execute Functions
in a peer-to-peer (P2P) configuration, where the application is a member of the cluster hosting a peer Cache.
Keep in mind that a peer member cache application is subject to all the same constraints of being a peer member
of the cluster.

Implementing a Function

Using GemFire APIs, the FunctionContext provides a runtime invocation context that includes the client’s
calling arguments and a ResultSender implementation to send results back to the client. Additionally,
if the Function is executed on a Region, the FunctionContext is actually an instance of RegionFunctionContext,
which provides additional information such as the target Region on which the Function was invoked
and any Filter (set of specific keys) associated with the Execution, etc. If the Region is a PARTITION Region,
the Function should use the PartitionRegionHelper to extract only the local data.

Using Spring, a developer can write a simple POJO and use the Spring container to bind one or more of it’s
public methods to a Function. The signature for a POJO method intended to be used as a Function must generally
conform to the client’s execution arguments. However, in the case of a Region execution, the Region data
may also be provided (presumably the data held in the local partition if the Region is a PARTITION Region).
Additionally, the Function may require the Filter that was applied, if any. This suggests that the client and server
share a contract for the calling arguments but that the method signature may include additional parameters
to pass values provided by the FunctionContext. One possibility is for the client and server to share
a common interface, but this is not strictly required. The only constraint is that the method signature includes
the same sequence of calling arguments with which the Function was invoked after the additional parameters
are resolved.

For example, suppose the client provides a String and int as the calling arguments. These are provided
in the FunctionContext as an array:

Object[] args = new Object[] { "test", 123 };

Then, the Spring container should be able to bind to any method signature similar to the following.
Let’s ignore the return type for the moment:

public Object method1(String s1, int i2) {...}
public Object method2(Map<?, ?> data, String s1, int i2) {...}
public Object method3(String s1, Map<?, ?> data, int i2) {...}
public Object method4(String s1, Map<?, ?> data, Set<?> filter, int i2) {...}
public void method4(String s1, Set<?> filter, int i2, Region<?,?> data) {...}
public void method5(String s1, ResultSender rs, int i2);
public void method6(FunctionContest context);

The general rule is that once any additional arguments, i.e. Region data and Filter, are resolved,
the remaining arguments must correspond exactly, in order and type, to the expected Function method parameters.
The method’s return type must be void or a type that may be serialized (either as a java.io.Serializable,
DataSerializable or PdxSerializable). The latter is also a requirement for the calling arguments.
The Region data should normally be defined as a Map, to facilitate unit testing, but may also be of type Region
if necessary. As shown in the example above, it is also valid to pass the FunctionContext itself,
or the ResultSender, if you need to control how the results are returned to the client.

Annotations for Function Implementation

The following example illustrates how SDG’s Function annotations are used to expose POJO methods
as GemFire Functions:

@Component
public class ApplicationFunctions {

 @GemfireFunction
 public String function1(String value, @RegionData Map<?, ?> data, int i2) { ... }

 @GemfireFunction("myFunction", batchSize=100, HA=true, optimizedForWrite=true)
 public List<String> function2(String value, @RegionData Map<?, ?> data, int i2, @Filter Set<?> keys) { ... }

 @GemfireFunction(hasResult=true)
 public void functionWithContext(FunctionContext functionContext) { ... }

}

Note, the class itself must be registered as a Spring bean and each GemFire Function is annotated
with @GemfireFunction. In this example, Spring’s @Component annotation was used, but you may register the bean
by any method supported by Spring (e.g. XML configuration or with a Java configuration class using Spring Boot).
This allows the Spring container to create an instance of this class and wrap it in a
PojoFunctionWrapper.
Spring creates a wrapper instance for each method annotated with @GemfireFunction. Each wrapper instance shares
the same target object instance to invoke the corresponding method.

The fact that the POJO Function class is a Spring bean may offer other benefits since it shares
the ApplicationContext with GemFire components such as the Cache and Regions. These may be injected into the class
if necessary.

Spring creates the wrapper class and registers the Function(s) with GemFire’s Function Service. The Function id used
to register the Functions must be unique. Using convention it defaults to the simple (unqualified) method name.
The name can be explicitly defined using the id attribute of the @GemfireFunction annotation.
The @GemfireFunction annotation also provides other configuration attributes, HA and optimizedForWrite,
which correspond to properties defined by GemFire’s
Function interface.
If the method’s return type is void, then the hasResult property is automatically set to false;
otherwise, if the method returns a value the hasResult attributes is set to true.

Even for void return types, the annotation’s hasResult attribute can be set to true to override this convention,
as shown in the functionWithContext method above. Presumably, the intention is to use the ResultSender directly
to send results to the caller.

The PojoFunctionWrapper implements GemFire’s Function interface, binds method parameters and invokes the target method
in its execute() method. It also sends the method’s return value using the ResultSender.

Batching Results

If the return type is an array or Collection, then some consideration must be given to how the results are returned.
By default, the PojoFunctionWrapper returns the entire array or Collection at once. If the number of elements
in the array or Collection quite is large, it may incur a performance penalty. To divide the payload into smaller,
more maneable chunks, you can set the batchSize attribute, as illustrated in function2, above.

If you need more control of the ResultSender, especially if the method itself would use too much memory
to create the Collection, you can pass the ResultSender, or access it via the FunctionContext and use it directly
within the method to sends results back to the caller.

Enabling Annotation Processing

In accordance with Spring standards, you must explicitly activate annotation processing for @GemfireFunction
annotations.

Using XML:

<gfe:annotation-driven/>

Or by annotating a Java configuration class:

@Configuration
@EnableGemfireFunctions
class ApplicationConfiguration { .. }

Executing a Function

A process invoking a remote Function needs to provide the Function’s ID, calling arguments, the execution target
(onRegion, onServers, onServer, onMember, onMembers) and optionally, a Filter set. Using Spring Data GemFire,
all a developer need do is define an interface supported by annotations. Spring will create a dynamic proxy
for the interface, which will use the FunctionService to create an Execution, invoke the Execution and coerce
the results to the defined return type, if necessary. This technique is very similar to the way
Spring Data GemFire’s Repository extension works, thus some of the configuration and concepts should be familiar.
Generally, a single interface definition maps to multiple Function executions, one corresponding to each method
defined in the interface.

Annotations for Function Execution

To support client-side Function execution, the following SDG Function annotations are provided: @OnRegion,
@OnServer, @OnServers, @OnMember, @OnMembers. These annotations correspond to the Execution implementations
prodided by GemFire’s
FunctionService.
Each annotation exposes the appropriate attributes. These annotations also provide an optional
resultCollector attribute whose value is the name of a Spring bean implementing the
ResultCollector
to use for the execution.

The proxy interface binds all declared methods to the same execution configuration. Although, it is expected
that single method interfaces will be common, all methods in the interface are backed by the same proxy instance
and therefore all share the same configuration.

Here are a few examples:

@OnRegion(region="SomeRegion", resultCollector="myCollector")
public interface FunctionExecution {

 @FunctionId("function1")
 String doIt(String s1, int i2);

 String getString(Object arg1, @Filter Set<Object> keys);

}

By default, the Function ID is the simple (unqualified) method name. The @FunctionId annotation can be used
to bind this invocation to a different Function ID.

Enabling Annotation Processing

The client-side uses Spring’s classpath component scanning capability to discover annotated interfaces. To enable
Function execution annotation processing in XML:

<gfe-data:function-executions base-package="org.example.myapp.gemfire.functions"/>

The function-executions element is provided in the gfe-data namespace. The base-package attribute is required
to avoid scanning the entire classpath. Additional filters are provided as described in the Spring
reference documentation.

Optionally, a developer can annotate her Java configuration class:

@EnableGemfireFunctionExecutions(basePackages = "org.example.myapp.gemfire.functions")

Programmatic Function Execution

Using the Function execution annotated interface defined in the previous section, simply auto-wire your interface
into an application bean that will invoke the Function:

@Component
public class MyApplication {

 @Autowired
 FunctionExecution functionExecution;

 public void doSomething() {
 functionExecution.doIt("hello", 123);
 }
}

Alternately, you can use a Function execution template directly. For example, GemfireOnRegionFunctionTemplate
creates an onRegion Function Execution.

Using the GemfireOnRegionFunctionTemplate

Set<?, ?> myFilter = getFilter();
Region<?, ?> myRegion = getRegion();
GemfireOnRegionOperations template = new GemfireOnRegionFunctionTemplate(myRegion);
String result = template.executeAndExtract("someFunction", myFilter, "hello", "world", 1234);

Internally, Function Executions always return a List. executeAndExtract assumes a singleton List
containing the result and will attempt to coerce that value into the requested type. There is also
an execute method that returns the List as is. The first parameter is the Function ID.
The Filter argument is optional. The following arguments are a variable argument List.

Function Execution with PDX

When using Spring Data GemFire’s Function annotation support combined with Pivotal GemFire’s
PDX Serialization,
there are a few logistical things to keep in mind.

As explained above, and by way of example, typically developers will define GemFire Functions using POJO classes
annotated with Spring Data GemFire
Function annotations
like so…​

public class OrderFunctions {

 @GemfireFunction(...)
 Order process(@RegionData data, Order order, OrderSource orderSourceEnum, Integer count) { ... }

}

The Integer type, count parameter is arbitrary as is the separation of the Order class and OrderSource Enum,
which might be logical to combine. However, the arguments were setup this way to demonstrate the problem with
Function executions in the context of PDX.

Your Order and OrderSource enum might be as follows…​

public class Order ... {

 private Long orderNumber;
 private Calendar orderDateTime;
 private Customer customer;
 private List<Item> items

 ...
}

public enum OrderSource {
 ONLINE,
 PHONE,
 POINT_OF_SALE
 ...
}

Of course, a developer may define a Function Execution interface to call the 'process' GemFire Server Function…​

@OnServer
public interface OrderProcessingFunctions {
 Order process(Order order, OrderSource orderSourceEnum, Integer count);
}

Clearly, this process(..) Order Function is being called from a client-side with a ClientCache
(i.e. <gfe:client-cache/>) based application. This implies that the Function arguments must also be serializable.
The same is true when invoking peer-to-peer member Functions (e.g. @OnMember(s)) between peers in the cluster.
Any form of `distribution requires the data transmitted between client and server, or peers, to be serialized.

Now, if the developer has configured GemFire to use PDX for serialization (instead of Java serialization, for instance)
it is common for developers to also set the pdx-read-serialized attribute to true in their configuration
of the GemFire server(s)…​

<gfe:cache ... pdx-read-serialized="true"/>

Or from a GemFire cache client application…​

<gfe:client-cache ... pdx-read-serialized="true"/>

This causes all values read from the cache (i.e. Regions) as well as information passed between client and servers,
or peers, to remain in serialized form, including, but not limited to, Function arguments.

GemFire will only serialize application domain object types that you have specifically configured (registered),
with either GemFire’s
ReflectionBasedAutoSerializer,
or specifically (and recommended) using a "custom" GemFire
PdxSerializer. If you are using
Spring Data GemFire’s Repository extension to Spring Data Common’s Repository abstraction and infrastructure,
you might even want to consider using Spring Data GemFire’s
MappingPdxSerializer,
which uses a entity’s mapping meta-data to determine data from the application domain object that will be serialized
to the PDX instance.

What is less than apparent, though, is that GemFire automatically handles Java Enum types regardless of whether they are
explicitly configured or not (i.e. registered with a ReflectionBasedAutoSerializer using a regex pattern
and the classes parameter, or are handled by a "custom" GemFire PdxSerializer), despite the fact that Java Enums
implement java.io.Serializable.

So, when a developer sets pdx-read-serialized to true on GemFire Servers where the GemFire Functions
(including Spring Data GemFire Function annotated POJO classes) are registered, then the developer
may encounter surprising behavior when invoking the Function Execution.

What the developer may pass as arguments when invoking the Function is…​

orderProcessingFunctions.process(new Order(123, customer, Calendar.getInstance(), items), OrderSource.ONLINE, 400);

But, what the GemFire Function on the Server gets is…​

process(regionData, order:PdxInstance, :PdxInstanceEnum, 400);

The Order and OrderSource have been passed to the Function as
PDX instances.
Again, this is all because pdx-read-serialized is set to true, which may be necessary in cases where
the GemFire Servers are interacting with multiple different clients (e.g. Java, native clients, such as C++/C#, etc).

This flies in the face of Spring Data GemFire’s "strongly-typed", Function annotated POJO class method signatures,
as the developer is expecting application domain object types, not PDX serialized instances.

So, Spring Data GemFire includes enhanced Function support to automatically convert method arguments passed to
the Function that are of type PDX to the desired application domain object types defined by the Function method’s
parameter types.

However, this also requires the developer to explicitly register a GemFire PdxSerializer on the GemFire Servers
where Spring Data GemFire Function annotated POJOs are registered and used, e.g. …​

<bean id="customPdxSerializer" class="x.y.z.gemfire.serialization.pdx.MyCustomPdxSerializer"/>

<gfe:cache ... pdx-serializer-ref="customPdxSerializeer" pdx-read-serialized="true"/>

Alternatively, a developer my use GemFire’s
ReflectionBasedAutoSerializer
for convenience. Of course, it is recommended that you use a "custom" PdxSerializer where possible to maintain
finer grained control over your serialization strategy.

Finally, Spring Data GemFire is careful not to convert your Function arguments if you treat your Function arguments
generically, or as one of GemFire’s PDX types…​

@GemfireFunction
public Object genericFunction(String value, Object domainObject, PdxInstanceEnum enum) {
 ...
}

Spring Data GemFire only converts PDX type data to the corresponding application domain types if and only if
the corresponding application domain types are on the classpath the the Function annotated POJO method expects it.

For a good example of "custom", "composed" application-specific GemFire PdxSerializers as well as appropriate
POJO Function parameter type handling based on the method signatures, see Spring Data GemFire’s
ClientCacheFunctionExecutionWithPdxIntegrationTest class.

 APACHE LUCENE INTEGRATION

Pivotal GemFire integrates with Apache Lucene to allow developers
to index and search on data stored in Pivotal GemFire using Lucene queries. Search-based queries also includes
the capability to page through query results.

Additionally, Spring Data GemFire adds support for query projections based on Spring Data Commons
Projection infrastructure. This feature enables the query results to be projected into first-class,
application domain types as needed or required by the application use case.

However, a Lucene Index must be created first before any Lucene search-based query can be ran. A LuceneIndex
can be created in Spring (Data GemFire) XML config like so…​

<gfe:lucene-index id="IndexOne" fields="fieldOne, fieldTwo" region-path="/Example"/>

Additionally, Apache Lucene allows the specification of
Analyzers per field
and can be configured using…​

<gfe:lucene-index id="IndexTwo" lucene-service-ref="luceneService" region-path="/AnotherExample">
 <gfe:field-analyzers>
 <map>
 <entry key="fieldOne">
 <bean class="example.AnalyzerOne"/>
 </entry>
 <entry key="fieldTwo">
 <bean class="example.AnalyzerTwo"/>
 </entry>
 </map>
 </gfe:field-analyzers>
</gfe:lucene-index>

Of course, the Map can be specified as a top-level bean definition and referenced using the ref attribute
on the nested <gfe:field-analyzers> element like this, <gfe-field-analyzers ref="refToTopLevelMapBeanDefinition"/>.

Alternatively, a LuceneIndex can be declared in Spring Java config, inside a @Configuration class with…​

@Bean(name = "People")
@DependsOn("personTitleIndex")
PartitionedRegionFactoryBean<Long, Person> peopleRegion(GemFireCache gemfireCache) {
 PartitionedRegionFactoryBean<Long, Person> peopleRegion = new PartitionedRegionFactoryBean<>();

 peopleRegion.setCache(gemfireCache);
 peopleRegion.setClose(false);
 peopleRegion.setPersistent(false);

 return peopleRegion;
}

@Bean
LuceneIndexFactoryBean personTitleIndex(GemFireCache gemFireCache) {
 LuceneIndexFactoryBean luceneIndex = new LuceneIndexFactoryBean();

 luceneIndex.setCache(gemFireCache);
 luceneIndex.setFields("title");
 luceneIndex.setRegionPath("/People");

 return luceneIndex;
}

There are a few limitations of Pivotal GemFire’s, Apache Lucene integration support. First, a LuceneIndex can only
be created on a GemFire PARTITION Region. Second, all LuceneIndexes must be created before the the Region on which
the LuceneIndex is applied.

It is possible that these Pivotal GemFire restrictions will not apply in a future release which is why
the SDG LuceneIndexFactoryBean API takes a reference to the Region directly as well, rather than just the Region path.

This is more ideal if think about the case in which users may want to define a LuceneIndex on an existing Region
with data at a later point during the application’s lifecycle and as requirements demand. Where possible, SDG strives
to stick to strongly-typed objects.

Now that we have a LuceneIndex we can perform Lucene based data access operations, such as queries.

Lucene Template Data Accessors

Spring Data GemFire provides 2 primary templates for Lucene data access operations, depending on how low a level
your application is prepared to deal with.

The LuceneOperations interface defines query operations using Pivotal GemFire
Lucene types.

public interface LuceneOperations {

 <K, V> List<LuceneResultStruct<K, V>> query(String query, String defaultField [, int resultLimit]
 , String... projectionFields);

 <K, V> PageableLuceneQueryResults<K, V> query(String query, String defaultField,
 int resultLimit, int pageSize, String... projectionFields);

 <K, V> List<LuceneResultStruct<K, V>> query(LuceneQueryProvider queryProvider [, int resultLimit]
 , String... projectionFields);

 <K, V> PageableLuceneQueryResults<K, V> query(LuceneQueryProvider queryProvider,
 int resultLimit, int pageSize, String... projectionFields);

 <K> Collection<K> queryForKeys(String query, String defaultField [, int resultLimit]);

 <K> Collection<K> queryForKeys(LuceneQueryProvider queryProvider [, int resultLimit]);

 <V> Collection<V> queryForValues(String query, String defaultField [, int resultLimit]);

 <V> Collection<V> queryForValues(LuceneQueryProvider queryProvider [, int resultLimit]);
}

The [, int resultLimit] indicates that the resultLimit parameter is optional.

The operations in the LuceneOperations interface match the operations provided by the Pivotal GemFire’s
LuceneQuery interface.
However, SDG has the added value of translating proprietary GemFire or Lucene Exceptions into Spring’s highly
consistent and expressive DAO
Exception Hierarchy,
particularly as many modern data access operations involve more than single store or repository.

Additionally, SDG’s LuceneOperations interface can shield your application from interface breaking changes
introduced by the underlying Pivotal GemFire or Apache Lucene APIs when they do and will occur.

However, it would be remorse to only offer a Lucene Data Access Object that only uses Pivotal GemFire and Apache Lucene
data types (e.g. GemFire’s LuceneResultStruct), therefore SDG gives you the ProjectingLuceneOperations interface
to remedy these important application concerns.

public interface ProjectingLuceneOperations {

 <T> List<T> query(String query, String defaultField [, int resultLimit], Class<T> projectionType);

 <T> Page<T> query(String query, String defaultField, int resultLimit, int pageSize, Class<T> projectionType);

 <T> List<T> query(LuceneQueryProvider queryProvider [, int resultLimit], Class<T> projectionType);

 <T> Page<T> query(LuceneQueryProvider queryProvider, int resultLimit, int pageSize, Class<T> projectionType);
}

The ProjectingLuceneOperations interface primarily uses application domain object types to work with
your application data. The query method variants accept a projection type and the template applies
the query results to instances of the given projection type using the Spring Data Commons
Projection infrastructure.

Additionally, the template wraps the paged Lucene query results in an instance of the Spring Data Commons
abstraction representing a Page. The same projection logic can still be applied to the results in the page
and are lazily projected as each page in the collection is accessed.

By way of example, suppose I have a class representing a Person like so…​

class Person {

 Gender gender;

 LocalDate birthDate;

 String firstName;
 String lastName;

 ...

 String getName() {
 return String.format("%1$s %2$s", getFirstName(), getLastName());
 }
}

Additionally, I might have a single interface to represent people as Customers depending on my application view…​

interface Customer {

 String getName()
}

If I define the following LuceneIndex…​

@Bean
LuceneIndexFactoryBean personLastNameIndex(GemFireCache gemfireCache) {
 LuceneIndexFactoryBean personLastNameIndex = new LuceneIndexFactoryBean();

 personLastNameIndex.setCache(gemfireCache);
 personLastNameIndex.setFields("lastName");
 personLastNameIndex.setRegionPath("/People");

 return personLastNameIndex;
}

Then it is a simple matter to query for people as either Person objects…​

List<Person> people = luceneTemplate.query("lastName: D*", "lastName", Person.class);

Or as a Page of type Customer…​

Page<Customer> customers = luceneTemplate.query("lastName: D*", "lastName", 100, 20, Customer.class);

The Page can then be used to fetch individual pages of results…​

List<Customer> firstPage = customers.getContent();

Conveniently, the Spring Data Commons Page interface implements java.lang.Iterable<T> too making it very easy
to iterate over the content as well.

The only restriction to the Spring Data Commons Projection infrastructure is that the projection type
must be an interface. However, it is possible to extend the provided, out-of-the-box (OOTB)
SDC Projection infrastructure and provide a custom
ProjectionFactory
that uses CGLIB to generate proxy classes as the projected entity.

A custom ProjectionFactory can be set on a Lucene template using setProjectionFactory(:ProjectionFactory).

Annotation configuration support

Finally, Spring Data GemFire provides Annotation configuration support for LuceneIndexes. Eventually, the SDG Lucene
support will find its way into the Repository infrastructure extension for Pivotal GemFire so that Lucene queries
can be expressed as methods on an application Repository interface, much like the
OQL support
today.

However, in the meantime, if you want to conveniently express LuceneIndexes, you can do so directly on
your application domain objects like so…​

@PartitionRegion("People")
class Person {

 Gender gender;

 @Index
 LocalDate birthDate;

 String firstName;

 @LuceneIndex;
 String lastName;

 ...
}

You must be using the SDG Annotation configuration support along with the @EnableEntityDefineRegions
and @EnableIndexing Annotations to enable this feature…​

@PeerCacheApplication
@EnableEntityDefinedRegions
@EnableIndexing
class ApplicationConfiguration {

 ...
}

Given our definition of the Person class above, the SDG Annotation configuration support
will find the Person entity class definition, determine that people will be stored in
a PARTITION Region called "People" and that the Person will have an OQL Index on birthDate
along with a LuceneIndex on lastName.

More will be described with this feature in subsequent releases.

 BOOTSTRAPPING A SPRING APPLICATIONCONTEXT IN PIVOTAL GEMFIRE

Introduction

Normally, a Spring-based application will bootstrap Pivotal GemFire using Spring Data GemFire’s.
Just by specifying a <gfe:cache/> element using the _Spring Data GemFire XML namespace, a single, embedded GemFire
peer Cache instance is created and initialized with default settings in the same JVM process as your application.

However, it is sometimes necessary, perhaps a requirement imposed by your IT organization, that GemFire be fully managed
and operated using the provided Pivotal GemFire tool suite, such as with
Gfsh. By using Gfsh,
GemFire will bootstrap your Spring application context rather than the other way around. Instead of
an application server, or a Java main class using Spring Boot, whatever, GemFire does the bootstrapping and will
host your application.

Keep in mind, however, that GemFire is not an application server. In addition, there are limitations to using
this approach where GemFire cache configuration is concerned.

Using Pivotal GemFire to Bootstrap a Spring Context Started with Gfsh

In order to bootstrap a Spring application context in GemFire when starting a GemFire Server process using Gfsh,
a user must make use of GemFire’s
Initalizer functionality.
An Initializer block can declare a callback application that is launched after the cache is initialized by GemFire.

An Initializer is declared within an
initializer element
using a minimal snippet of GemFire’s native cache.xml. The cache.xml file is required in order to bootstrap
the Spring application context, much like a minimal snippet of Spring XML config is needed to bootstrap
a Spring application context configured with component scanning (e.g. <context:component-scan base-packages="…​"/>)

Fortunately, such an Initializer is already conveniently provided by the framework, the
SpringContextBootstrappingInitializer.
A typical, yet very minimal configuration for this class inside GemFires’s cache.xml file will look like this:

<?xml version="1.0" encoding="UTF-8"?>
<cache xmlns="http://geode.apache.org/schema/cache"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://geode.apache.org/schema/cache http://geode.apache.org/schema/cache/cache-1.0.xsd"
 version="1.0">

 <initializer>
 <class-name>org.springframework.data.gemfire.support.SpringContextBootstrappingInitializer</class-name>
 <parameter name="contextConfigLocations">
 <string>classpath:application-context.xml</string>
 </parameter>
 </initializer>

</cache>

The SpringContextBootstrappingInitializer class follows similar conventions as Spring’s ContextLoaderListener
class used to bootstrap a Spring application context inside a Web Application, where application context
configuration files are specified with the contextConfigLocations Servlet Context Parameter.

In addition, the SpringContextBootstrappingInitializer class can also be used with a basePackages parameter
to specify a comma-separated list of base packages containing appropriately annotated application components
that the Spring container will search in order to find and create Spring beans and other application components
on the classpath:

<?xml version="1.0" encoding="UTF-8"?>
<cache xmlns="http://geode.apache.org/schema/cache"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://geode.apache.org/schema/cache http://geode.apache.org/schema/cache/cache-1.0.xsd"
 version="1.0">

 <initializer>
 <class-name>org.springframework.data.gemfire.support.SpringContextBootstrappingInitializer</class-name>
 <parameter name="basePackages">
 <string>org.mycompany.myapp.services,org.mycompany.myapp.dao,...</string>
 </parameter>
 </initializer>

</cache>

Then, with a properly configured and constructed CLASSPATH along with cache.xml file shown above, specified as
a command-line option when starting a GemFire Server in Gfsh, the command-line would be:

gfsh>start server --name=Server1 --log-level=config ...
 --classpath="/path/to/application/classes.jar:/path/to/spring-data-geode-<major>.<minor>.<maint>.RELEASE.jar"
 --cache-xml-file="/path/to/geode/cache.xml"

The application-context.xml can be any valid Spring context configuration meta-data including all the SDG namespace
elements. The only limitation with this approach is that a GemFire cache cannot be configured using
the Spring Data GemFire namespace. In other words, none of the <gfe:cache/> element attributes,
such as cache-xml-location, properties-ref, critical-heap-percentage, pdx-serializer-ref, lock-lease, etc,
can be specified. If used, these attributes will be ignored.

The reason for this is that GemFire itself has already created an initialized the cache before the Initializer
gets invoked. As such, the cache will already exist and since it is a "Singleton", it cannot be re-initialized
or have any of it’s configuration augmented.

Lazy-Wiring GemFire Components

Spring Data GemFire already provides existing support for wiring GemFire components, such as CacheListeners,
CacheLoaders, CacheWriters and so on, that are declared and created by GemFire in cache.xml using
SDG’s WiringDeclarableSupport class as described in [apis:declarable:autowiring]. However, this only works
when Spring is the one doing the bootstrapping (i.e. bootstrapping GemFire).

When your Spring application context is bootstrapped by GemFire, then these GemFire application components go unnoticed
since the Spring application context does not even exist yet! The Spring application context will not get created
until GemFire calls the Initializer block, which only occurs after all the other GemFire components and configuration
have already been created and initialized.

So, in order to solve this problem, a new LazyWiringDeclarableSupport class was introduced that is, in a sense,
Spring application context aware. The intention of this abstract base class is that any implementing class
will register itself to be configured by the Spring container that will eventually be created by GemFire
once the Initializer is called. In essence, this give your GemFire defined application components a chance
to be configured and auto-wired with Spring beans defined in the Spring application context.

In order for your GemFire application components to be auto-wired by the Spring container, create an application class
that extends the LazyWiringDeclarableSupport and annotate any class member that needs to be provided as
a Spring bean dependency, similar to:

public class UserDataSourceCacheLoader extends LazyWiringDeclarableSupport
 implements CacheLoader<String, User> {

 @Autowired
 private DataSource userDataSource;

 ...
}

As implied in the CacheLoader example above, you might necessarily (although, rarely) have defined both
a Region and CacheListener component in GemFire cache.xml. The CacheLoader may need access to an application DAO,
or perhaps a Spring application context defined JDBC DataSource for loading Users into a GemFire REPLICATE Region
on start.

Be careful when mixing the different life-cycles of Pivotal GemFire and the Spring Container together
in this manner as not all use cases and scenarios are supported. The GemFire cache.xml configuration would be
similar to the following (which comes from SDG’s test suite):

<?xml version="1.0" encoding="UTF-8"?>
<cache xmlns="http://geode.apache.org/schema/cache"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://geode.apache.org/schema/cache http://geode.apache.org/schema/cache/cache-1.0.xsd"
 version="1.0">

 <region name="Users" refid="REPLICATE">
 <region-attributes initial-capacity="101" load-factor="0.85">
 <key-constraint>java.lang.String</key-constraint>
 <value-constraint>org.springframework.data.gemfire.repository.sample.User</value-constraint>
 <cache-loader>
 <class-name>
 org.springframework.data.gemfire.support.SpringContextBootstrappingInitializerIntegrationTest$UserDataStoreCacheLoader
 </class-name>
 </cache-loader>
 </region-attributes>
 </region>

 <initializer>
 <class-name>org.springframework.data.gemfire.support.SpringContextBootstrappingInitializer</class-name>
 <parameter name="basePackages">
 <string>org.springframework.data.gemfire.support.sample</string>
 </parameter>
 </initializer>

</cache>

 SAMPLE APPLICATIONS

Sample applications are now maintained in the
Spring GemFire Examples repository.

The Spring Data GemFire project also includes one sample application. Named "Hello World", the sample application
demonstrates how to configure and use Pivotal GemFire inside a Spring application. At runtime, the sample offers
a shell to the user allowing her to run various commands against the data grid. It provides an excellent
starting point for users unfamiliar with the essential components or with Spring and GemFire concepts.

The sample is bundled with the distribution and is Maven-based. A developer can easily import them into any
Maven-aware IDE (such as Spring Tool Suite) or run them from the command-line.

Hello World

The Hello World sample application demonstrates the core functionality of the Spring Data GemFire project.
It bootstraps GemFire, configures it, executes arbitrary commands against the cache and shuts it down
when the application exits. Multiple instances of the application can be started at the same time
and they will work together, sharing data without any user intervention.

Running under Linux

If you experience networking problems when starting GemFire or the samples, try adding the following
system property java.net.preferIPv4Stack=true to the command line (e.g. -Djava.net.preferIPv4Stack=true).
For an alternative (global) fix especially on Ubuntu see SGF-28.

Starting and stopping the sample

Hello World is designed as a stand-alone Java application. It features a main class which can be started
either from your IDE of choice (in Eclipse/STS through Run As/Java Application) or from the command-line
through Maven using mvn exec:java. A developer can also use java directly on the resulting artifact
if the classpath is properly set.

To stop the sample, simply type exit at the command-line or press Ctrl+C to stop the JVM and shutdown
the Spring container.

Using the sample

Once started, the sample will create a shared data grid and allow the user to issue commands against it.
The output will likely look as follows:

INFO: Created GemFire Cache [Spring GemFire World] v. X.Y.Z
INFO: Created new cache region [myWorld]
INFO: Member xxxxxx:50694/51611 connecting to region [myWorld]
Hello World!
Want to interact with the world ? ...
Supported commands are:

get <key> - retrieves an entry (by key) from the grid
put <key> <value> - puts a new entry into the grid
remove <key> - removes an entry (by key) from the grid
...

For example to add new items to the grid one can use:

-> Bold Section qName:emphasis level:5, chunks:[put 1 unu] attrs:[role:bold]
INFO: Added [1=unu] to the cache
null
-> Bold Section qName:emphasis level:5, chunks:[put 1 one] attrs:[role:bold]
INFO: Updated [1] from [unu] to [one]
unu
-> Bold Section qName:emphasis level:5, chunks:[size] attrs:[role:bold]
1
-> Bold Section qName:emphasis level:5, chunks:[put 2 two] attrs:[role:bold]
INFO: Added [2=two] to the cache
null
-> Bold Section qName:emphasis level:5, chunks:[size] attrs:[role:bold]
2

Multiple instances can be ran at the same time. Once started, the new VMs automatically see the existing Region
and its information:

INFO: Connected to Distributed System ['Spring GemFire World'=xxxx:56218/49320@yyyyy]
Hello World!
...

-> Bold Section qName:emphasis level:5, chunks:[size] attrs:[role:bold]
2
-> Bold Section qName:emphasis level:5, chunks:[map] attrs:[role:bold]
[2=two] [1=one]
-> Bold Section qName:emphasis level:5, chunks:[query length = 3] attrs:[role:bold]
[one, two]

Experiment with the example, start (and stop) as many instances as you want, run various commands in one instance
and see how the others react. To preserve data, at least one instance needs to be alive all times. If all instances
are shutdown, the grid data is completely destroyed.

Hello World Sample Explained

Hello World uses both Spring XML and annotations for its configuration. The initial bootstrapping configuration is
app-context.xml, which includes the cache configuration defined in the cache-context.xml file
and performs classpath
component scanning
for Spring
components.

The cache configuration defines the GemFire cache, Region and for illustrative purposes, a simple CacheListener
that acts as a logger.

The main beans are HelloWorld and CommandProcessor which rely on the GemfireTemplate to interact with
the distributed fabric. Both classes use annotations to define their dependency and life-cycle callbacks.

 USEFUL LINKS

	
Spring Data GemFire Project Page

	
Spring Data GemFire source code

	
Spring Data GemFire JIRA

	
Spring Data GemFire on StackOverflow

	
Archive of the Spring Data GemFire Forum on Spring IO

	
Pivotal GemFire Home Page

	
Pivotal GemFire Documentation

	
Apache Geode Community

	
Apache Geode source code

	
Apache Geode JIRA

	
Pivotal GemFire on StackOverflow

 NAMESPACE REFERENCE

The <repositories /> element

The <repositories /> element triggers the setup of the Spring Data repository infrastructure. The most important attribute is base-package which defines the package to scan for Spring Data repository interfaces.[1]

Table 1. Attributes

	Name
	Description

	base-package

	Defines the package to be used to be scanned for repository interfaces extending *Repository (actual interface is determined by specific Spring Data module) in auto detection mode. All packages below the configured package will be scanned, too. Wildcards are allowed.

	repository-impl-postfix

	Defines the postfix to autodetect custom repository implementations. Classes whose names end with the configured postfix will be considered as candidates. Defaults to Impl.

	query-lookup-strategy

	Determines the strategy to be used to create finder queries. See [repositories.query-methods.query-lookup-strategies] for details. Defaults to create-if-not-found.

	named-queries-location

	Defines the location to look for a Properties file containing externally defined queries.

	consider-nested-repositories

	Controls whether nested repository interface definitions should be considered. Defaults to false.

1 see [repositories.create-instances.spring]

 POPULATORS NAMESPACE REFERENCE

The <populator /> element

The <populator /> element allows to populate the a data store via the Spring Data repository infrastructure.[1]

Table 1. Attributes

	Name
	Description

	locations

	Where to find the files to read the objects from the repository shall be populated with.

1 see [repositories.create-instances.spring]

 REPOSITORY QUERY KEYWORDS

Supported query keywords

The following table lists the keywords generally supported by the Spring Data repository query derivation mechanism. However, consult the store-specific documentation for the exact list of supported keywords, because some listed here might not be supported in a particular store.

Table 1. Query keywords

	Logical keyword
	Keyword expressions

	AND

	And

	OR

	Or

	AFTER

	After, IsAfter

	BEFORE

	Before, IsBefore

	CONTAINING

	Containing, IsContaining, Contains

	BETWEEN

	Between, IsBetween

	ENDING_WITH

	EndingWith, IsEndingWith, EndsWith

	EXISTS

	Exists

	FALSE

	False, IsFalse

	GREATER_THAN

	GreaterThan, IsGreaterThan

	GREATER_THAN_EQUALS

	GreaterThanEqual, IsGreaterThanEqual

	IN

	In, IsIn

	IS

	Is, Equals, (or no keyword)

	IS_EMPTY

	IsEmpty, Empty

	IS_NOT_EMPTY

	IsNotEmpty, NotEmpty

	IS_NOT_NULL

	NotNull, IsNotNull

	IS_NULL

	Null, IsNull

	LESS_THAN

	LessThan, IsLessThan

	LESS_THAN_EQUAL

	LessThanEqual, IsLessThanEqual

	LIKE

	Like, IsLike

	NEAR

	Near, IsNear

	NOT

	Not, IsNot

	NOT_IN

	NotIn, IsNotIn

	NOT_LIKE

	NotLike, IsNotLike

	REGEX

	Regex, MatchesRegex, Matches

	STARTING_WITH

	StartingWith, IsStartingWith, StartsWith

	TRUE

	True, IsTrue

	WITHIN

	Within, IsWithin

 REPOSITORY QUERY RETURN TYPES

Supported query return types

The following table lists the return types generally supported by Spring Data repositories. However, consult the store-specific documentation for the exact list of supported return types, because some listed here might not be supported in a particular store.

Geospatial types like (GeoResult, GeoResults, GeoPage) are only available for data stores that support geospatial queries.

Table 1. Query return types

	Return type
	Description

	void

	Denotes no return value.

	Primitives

	Java primitives.

	Wrapper types

	Java wrapper types.

	T

	An unique entity. Expects the query method to return one result at most. In case no result is found null is returned. More than one result will trigger an IncorrectResultSizeDataAccessException.

	Iterator<T>

	An Iterator.

	Collection<T>

	A Collection.

	List<T>

	A List.

	Optional<T>

	A Java 8 or Guava Optional. Expects the query method to return one result at most. In case no result is found Optional.empty()/Optional.absent() is returned. More than one result will trigger an IncorrectResultSizeDataAccessException.

	Option<T>

	An either Scala or JavaSlang Option type. Semantically same behavior as Java 8’s Optional described above.

	Stream<T>

	A Java 8 Stream.

	Future<T>

	A Future. Expects method to be annotated with @Async and requires Spring’s asynchronous method execution capability enabled.

	CompletableFuture<T>

	A Java 8 CompletableFuture. Expects method to be annotated with @Async and requires Spring’s asynchronous method execution capability enabled.

	ListenableFuture

	A org.springframework.util.concurrent.ListenableFuture. Expects method to be annotated with @Async and requires Spring’s asynchronous method execution capability enabled.

	Slice

	A sized chunk of data with information whether there is more data available. Requires a Pageable method parameter.

	Page<T>

	A Slice with additional information, e.g. the total number of results. Requires a Pageable method parameter.

	GeoResult<T>

	A result entry with additional information, e.g. distance to a reference location.

	GeoResults<T>

	A list of GeoResult<T> with additional information, e.g. average distance to a reference location.

	GeoPage<T>

	A Page with GeoResult<T>, e.g. average distance to a reference location.

 SPRING DATA GEMFIRE SCHEMA

	
Spring Data GemFire Core Schema (gfe-namespace)

	
Spring Data GemFire Data Access Schema (gfe-data-namespace)

OEBPS/images/jacket/cover.png
Asciidoctor EPUB3

OEBPS/nav.xhtml

Spring Data GemFire Reference Guide

Table of Contents

		Preface

		Untitled

		Introduction

		Untitled

		Requirements

		Untitled

		New Features

		New in the 1.2 Release

		New in the 1.3 Release

		New in the 1.4 Release

		New in the 1.5 Release

		New in the 1.6 Release

		New in the 1.7 Release

		New in the 1.8 Release

		New in the 1.9 Release

		New in the 2.0 Release

		Untitled

		Document Structure

		Untitled

		Bootstrapping Pivotal GemFire with the Spring container

		Advantages of using Spring over Pivotal GemFire cache.xml

		Using the Core Namespace

		Using the Data Access Namespace

		An Easy Way to Connect to GemFire

		Configuring a Cache

		Advanced Cache Configuration

		Enabling PDX Serialization

		Enabling auto-reconnect

		Using Cluster-based Configuration

		Configuring a GemFire CacheServer

		Configuring a GemFire ClientCache

		GemFire’s DEFAULT Pool and Spring Data GemFire Pool Definitions

		Configuring a Region

		Using an externally configured Region

		Auto Region Lookup

		Configuring Regions

		Common Region Attributes

		CacheListeners

		CacheLoaders and CacheWriters

		Compression

		Subregions

		Region Templates

		How Templating Works

		Caution concerning Regions, Subregions and Lookups

		Data Eviction (with Overflow)

		Data Expiration

		Annotation-based Data Expiration

		Data Persistence

		Subscription Policy

		Local Region

		Replicated Region

		Partitioned Region

		Partitioned Region Attributes

		Client Region

		Client Interests

		JSON Support

		Configuring an Index

		Defining Indexes

		IgnoreIfExists and Override

		IgnoreIfExists Behavior

		Override Behavior

		How does IndexNameConflictExceptions actually happen?

		Configuring a DiskStore

		Configuring the Snapshot Service

		Snapshot Location

		Snapshot Filters

		Snapshot Events

		Configuring the Function Service

		Configuring WAN Gateways

		WAN Configuration in GemFire 7.0

		Untitled

		Bootstrapping Pivotal GemFire using Spring Annotations

		Introduction

		Bootstrapping Pivotal GemFire applications with Spring

		Going in-detail on client/server applications

		Runtime configuration using Configurers

		Runtime configuration using Properties

		Properties of Properties

		Configuring embedded services

		Configuring an embedded Locator

		Configuring an embedded Manager

		Configuring the embedded HTTP Server

		Configuring the embedded Memcached Server (Gemcached)

		Configuring the embedded Redis Server

		Configuring Logging

		Configuring Statistics

		Configuring PDX

		Configuring SSL

		Configuring GemFire Properties

		Configuring Regions

		Configuring Type-specific Regions

		Configuring Eviction

		Configuring Expiration

		Configuring Compression

		Configuring Off-Heap

		Configuring Indexes

		Configuring Disk Stores

		Configuring Continuous Queries

		Configuring Spring’s Cache Abstraction

		Configuring Cluster Configuration Push

		Configuring Security

		Configuring Server Security

		Configuring Client Security

		Configuration Tips

		Configuration Organization

		Additional Configuration-based Annotations

		Conclusion

		Untitled

		Working with Pivotal GemFire APIs

		GemfireTemplate

		Exception Translation

		Local, Cache Transaction Management

		Global, JTA Transaction Management

		Continuous Query (CQ)

		Continuous Query Listener Container

		The ContinuousQueryListener and ContinuousQueryListenerAdapter

		Wiring Declarable Components

		Configuration using template bean definitions

		Configuration using auto-wiring and annotations

		Support for the Spring Cache Abstraction

		Untitled

		Working with Pivotal GemFire Serialization

		Wiring deserialized instances

		Auto-generating custom Instantiators

		Untitled

		POJO mapping

		Entity Mapping

		Entity Mapping by Region Type

		Repository Mapping

		Mapping PDX Serializer

		Untitled

		Spring Data GemFire Repositories

		Introduction

		Spring XML Configuration

		Spring Java-based Configuration

		Executing OQL Queries

		OQL Query Extensions using Annotations

		Untitled

		Annotation Support for Function Execution

		Introduction

		Implementation vs Execution

		Implementing a Function

		Annotations for Function Implementation

		Batching Results

		Enabling Annotation Processing

		Executing a Function

		Annotations for Function Execution

		Enabling Annotation Processing

		Programmatic Function Execution

		Function Execution with PDX

		Untitled

		Apache Lucene Integration

		Lucene Template Data Accessors

		Annotation configuration support

		Untitled

		Bootstrapping a Spring ApplicationContext in Pivotal GemFire

		Introduction

		Using Pivotal GemFire to Bootstrap a Spring Context Started with Gfsh

		Lazy-Wiring GemFire Components

		Untitled

		Sample Applications

		Hello World

		Starting and stopping the sample

		Using the sample

		Hello World Sample Explained

		Untitled

		Useful Links

		Untitled

		Namespace reference

		The <repositories /> element

		Untitled

		Populators namespace reference

		The <populator /> element

		Untitled

		Repository query keywords

		Supported query keywords

		Untitled

		Repository query return types

		Supported query return types

		Untitled

		Spring Data GemFire Schema

