Spring Data Commons - Reference
Documentation

Oliver Gierke, Thomas Darimont, Christoph Strobl, Mark Pollack, Thomas Risberg

Version 1.10.2.RELEASE
2015-07-28

Table of Contents

| = Lol PP PP 1
O o) [=Te 1 L = o - L - R PP 2
Reference dOCUIMENTATION t.o.iuieieiiiiiinininiiiiiiiiiieii ettt e e ee et e e ensasasttenenensasans 2
A D 1<) 011 e L) 4 Lol 1= S PP PP 3
2.1. Dependency management With SPring BOOT.......couiuiiiiiiiiiiiiiiii e reeeeenees 4
2.2. SPTING FrameWOTK .. .o e ettt et et e et e et e e e e e e e aeeeeanann 4

3. Working with Spring Data REPOSITOTIES ...uuuiuininiiiiieieieietiieererneenerretrerereeneererrernsneenrenaenes)
B R 0) I o0} 1 (6L <] 0] £ PN 5

R IV 021 1=) 7 1 =4 1 (o o £ PP TP PPN 7
3.3. Defining repoSitOry INTEITaCES . uvuen ittt ererieirr e eeee et re e eenreteererasneenrersanesasnsnsnnes 9
3.3.1. Fine-tuning repository defiNitionc.vuiieiiiiiiiiii i e e e re e nes 9

3.4. Defining qUETY MEthOAS «.uvvriirt it iirit et eiet et tee et eereeneenenesnentenenesnensenennenennenes 10
3.4.1. QUETY LOOKUP SITATEZIES .eueinineeniretiee et ttee et eten et raeataneeraeateneeaneaeeneaeaneneeneanenns 10
RIS 010 1) g A0 =T L6 (0] | PP 10
3.4.3. PO eIty EXPIESSIONIS . eutututnerernenenereererernenereraeaerasnenenserarsesasnenenseronsesnsnsnenseronsesnsns 12
3.4.4. Special parameter handling........ccoviiuieiiniiiiiii e 12
3.4.5. LIMItING QUETY TESULLS +.uineinitiireiiet et tiiet et eeten et raeataneeraeaeaneeaneaeaneaeaneaneneaeenns 13
3.4.6. Streaming QUETY TeSULTS ... uuie ittt ettt et et e et e et e et e eaeaneaeanes 14

3.5. Creating repOSItOrY INSTATICES «.uiuiuiniretrereineeeeetetrerneneerretaereratneeararenrasnenenearersesesnenenns 15
3.5.1. XML CONTIGUIATION 1.t tuttnttinieteeretnteteeraeterenernenterenerntatenenesnensenensenensenennsnennenennenes 15

R TA F= A 2 16(0) 1 ¥ i - PP 16
3.5.3. StANAAlONIE USAZE ... uineiniit ittt ettt ettt ettt e et et et et et et e aaan 17

3.6. Custom implementations for Spring Data rePOSItOrIescceeverereieiiriiirerieneneereerererenenss 17
3.6.1. Adding custom behavior to Single rePOSItOTIeS . ..vviuiuininiiiiiieiieiiiierrireereeeeereaens 17
3.6.2. Adding custom behavior to all rePOSItOriesS.....ccvuvuieiniiiiiiiiiiiiriir e, 19

3.7. SPriNG DAta EXTEIISIONIS 1. e uuenetnie et e ettt et aa et e et teaeeareetaeaeentaaeaeraetaneanrneaeaneaneneaeenens 22

R T B V=] o B D1) 06 o APPSR 22
3.7.2. REPOSITOTY POPULATOTS 1.uentinitintreiniereereentereneraeneerenerneatenenesnensenenssnennsnenssnssnenennenes 26
RIS T B-T=F: Ty /A 7= oIS 0§ o) 0 T0) o SR PPN 28

N (e N LW o ¥ PP 31
R 5 - 1 (3 31
4.1.1. Annotation based auditing Metadata......cv.vuieriiiiiiiieiiiiiiiiii e eeeeeane 31
4.1.2. Interface-based auditing Metadata....c.veveeuerienireeereeneeneneeeeeeererenenenrersesesnsnenensannens 31
S S T (o B L) 7N 1 32

PN 0] 015] 4 o - QPPN 32
Appendix A: NamMeSPACE T OTEIICE .. uvtiitieirterirtrteeterenteneeteeneeeateeneenteseneenetesensenensenenseneneens 33
The <repOSItOries /> ClEIMEIT .. .uuiiie ettt ettt ettt eaereeaeeeenteeeaaeeneaneaerneaeanenenns 33
Appendix B: Populators Namespace FefereNCecovvirirereiiiiiiieirereteereiretrerereteneaeernererasnsnenns 34
The <populator /> EleIMENT.c.iiiiieiie i ettt st ee et e resnsnenesenenaesnsns 34
Appendix C: RepoSitory qUETY KEYWOTES .u.uiutirirtinirtinirtiieteeneeeeteeneeeaseeeneneeseneeneneenenesneneens 35
SUPPOTTEd QUETY KEYWOTAS . .envinineinitiiie ettt et ettt eten et e eeteneeraeataneeaneaeeneaeanenneneaeenes 35

Appendix D: RePOSItOTY UETY FETUTTL TYPOS uvuuenttnet ettt aeeteeeatre ittt eteeeaaaeentaneaerneaeanennnas 37

Supported query return types

© 2008-2015 The original authors.

Copies of this document may be made for your own use and for
distribution to others, provided that you do not charge any fee for
such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

NOTE

Preface

The Spring Data Commons project applies core Spring concepts to the development of solutions using
many relational and non-relational data stores.

Chapter 1. Project metadata

* Version control - http://github.com/spring-projects/spring-data-commons
* Bugtracker - https://jira.spring.io/browse/DATACMNS

* Release repository - https://repo.spring.io/libs-release

* Milestone repository - https://repo.spring.io/libs-milestone

* Snapshot repository - https://repo.spring.io/libs-snapshot

Reference documentation

http://github.com/spring-projects/spring-data-commons
https://jira.spring.io/browse/DATACMNS
https://repo.spring.io/libs-release
https://repo.spring.io/libs-milestone
https://repo.spring.io/libs-snapshot

Chapter 2. Dependencies

Due to different inception dates of individual Spring Data modules, most of them carry different major
and minor version numbers. The easiest way to find compatible ones is by relying on the Spring Data
Release Train BOM we ship with the compatible versions defined. In a Maven project you’d declare this
dependency in the <dependencyManagement /> section of your POM:

Example 1. Using the Spring Data release train BOM

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.data</groupld>
<artifactId>spring-data-releasetrain</artifactId>
<version>${release-train}</version>
<scope>import</scope>
<type>pom</type>
</dependency>
<dependencies>
</dependencyManagement>

The current release train version is Fowler-BUILD-SNAPSHOT. The train names are ascending
alphabetically and currently available ones are listed here. The version name follows the following
pattern: §{name}-${release} where release can be one of the following:

o BUILD-SNAPSHOT - current snapshots

M1, M2 etc. - milestones

RC1, RC2 etc. - release candidates

RELEASE - GA release

SR1, SR2 etc. - service releases
A working example of using the BOMs can be found in our Spring Data examples repository.

If that’s in place declare the Spring Data modules you’d like to use without a version in the
<dependencies /> block.

https://github.com/spring-projects/spring-data-commons/wiki/Release-planning
https://github.com/spring-projects/spring-data-examples/tree/master/bom

Example 2. Declaring a dependency to a Spring Data module

<dependencies>
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-jpa</artifactld>
</dependency>
<dependencies>

2.1. Dependency management with Spring Boot

Spring Boot already selects a very recent version of Spring Data modules for you. In case you want to
upgrade to a newer version nonetheless, simply configure the property spring-data-
releasetrain.version to the train name and iteration you’d like to use.

2.2. Spring Framework

The current version of Spring Data modules require Spring Framework in version 4.0.9.RELEASE or
better. The modules might also work with an older bugfix version of that minor version. However,
using the most recent version within that generation is highly recommended.

Chapter 3. Working with Spring Data
Repositories

The goal of Spring Data repository abstraction is to significantly reduce the amount of boilerplate code
required to implement data access layers for various persistence stores.

Spring Data repository documentation and your module

This chapter explains the core concepts and interfaces of Spring Data
repositories. The information in this chapter is pulled from the Spring Data
Commons module. It uses the configuration and code samples for the Java
Persistence API (JPA) module. Adapt the XML namespace declaration and the
types to be extended to the equivalents of the particular module that you are
using. Namespace reference covers XML configuration which is supported
across all Spring Data modules supporting the repository API, Repository query
keywords covers the query method keywords supported by the repository
abstraction in general. For detailed information on the specific features of your
module, consult the chapter on that module of this document.

IMPORTANT

3.1. Core concepts

The central interface in Spring Data repository abstraction is Repository (probably not that much of a
surprise). It takes the domain class to manage as well as the id type of the domain class as type
arguments. This interface acts primarily as a marker interface to capture the types to work with and to
help you to discover interfaces that extend this one. The CrudRepository provides sophisticated CRUD
functionality for the entity class that is being managed.

Example 3. CrudRepository interface

public interface CrudRepository<T, ID extends Serializable>
extends Repository<T, ID> {

<S extends T> S save(S entity); <1>

T findOne(ID primaryKey); <2>
Iterable<T> findAl1l(); <3>
Long count(); <4>
void delete(T entity); <5>

boolean exists(ID primaryKey); <6>

// more functionality omitted.

@ Saves the given entity.

@ Returns the entity identified by the given id.
® Returns all entities.

@ Returns the number of entities.

® Deletes the given entity.

® Indicates whether an entity with the given id exists.

We also provide persistence technology-specific abstractions like e.g. JpaRepository or
MongoRepository. Those interfaces extend CrudRepository and expose the capabilities of
the underlying persistence technology in addition to the rather generic persistence
technology-agnostic interfaces like e.g. CrudRepository.

NOTE

On top of the CrudRepository there is a PagingAndSortingRepository abstraction that adds additional
methods to ease paginated access to entities:

Example 4. PagingAndSortingRepository

public interface PagingAndSortingRepository<T, ID extends Serializable>
extends CrudRepository<T, ID> {

Iterable<T> findAl11l(Sort sort);

Page<T> findAl1(Pageable pageable);
}

Accessing the second page of User by a page size of 20 you could simply do something like this:

PagingAndSortingRepository<User, Long> repository = // get access to a bean
Page<User> users = repository.findAll(new PageRequest(1, 20));

In addition to query methods, query derivation for both count and delete queries, is available.

Example 5. Derived Count Query

public interface UserRepository extends CrudRepository<User, Long> {

Long countBylLastname(String lastname);

}

Example 6. Derived Delete Query

public interface UserRepository extends CrudRepository<User, Long> {
Long deleteBylLastname(String lastname);

List<User> removeBylLastname(String lastname);

3.2. Query methods

Standard CRUD functionality repositories usually have queries on the underlying datastore. With
Spring Data, declaring those queries becomes a four-step process:

1. Declare an interface extending Repository or one of its subinterfaces and type it to the domain class
and ID type that it will handle.

interface PersonRepository extends Repository<User, Long> { }

2. Declare query methods on the interface.

interface PersonRepository extends Repository<User, Long> {
List<Person> findBylLastname(String lastname);

}

3. Set up Spring to create proxy instances for those interfaces. Either via JavaConfig:

import org.springframework.data.jpa.repository.config.Enable]paRepositories;

@EnablelpaRepositories
class Config {}

or via XML configuration:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jpa="http://www.springframework.org/schema/data/jpa"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/jpa
http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

<jpa:repositories base-package="com.acme.repositories"/>

</beans>

The JPA namespace is used in this example. If you are using the repository abstraction for any other
store, you need to change this to the appropriate namespace declaration of your store module
which should be exchanging jpa in favor of, for example, mongodb.

Also, note that the JavaConfig variant doesn’t configure a package explictly as the package of the
annotated class is used by default. To customize the package to scan use one of the basePackage
attribute of the data-store specific repository @Enable -annotation.

1. Get the repository instance injected and use it.

public class SomeClient {

private PersonRepository repository;

public void doSomething() {
List<Person> persons = repository.findByLastname("Matthews");
}
}

The sections that follow explain each step in detail.

3.3. Defining repository interfaces

As a first step you define a domain class-specific repository interface. The interface must extend
Repository and be typed to the domain class and an ID type. If you want to expose CRUD methods for
that domain type, extend CrudRepository instead of Repository.

3.3.1. Fine-tuning repository definition

Typicallyy, your repository interface will extend Repository, CrudRepository or
PagingAndSortingRepository. Alternatively, if you do not want to extend Spring Data interfaces, you can
also annotate your repository interface with @RepositoryDefinition. Extending CrudRepository exposes
a complete set of methods to manipulate your entities. If you prefer to be selective about the methods
being exposed, simply copy the ones you want to expose from CrudRepository into your domain
repository.

This allows you to define your own abstractions on top of the provided Spring Data

NOTE o . .
Repositories functionality.

Example 7. Selectively exposing CRUD methods

interface MyBaseRepository<T, ID extends Serializable> extends Repository<T, ID> {
T findOne(ID id);

T save(T entity);
}

interface UserRepository extends MyBaseRepository<User, Long> {
User findByEmailAddress(EmailAddress emailAddress);

}

In this first step you defined a common base interface for all your domain repositories and exposed
findOne() as well as save().These methods will be routed into the base repository implementation
of the store of your choice provided by Spring Data ,e.g. in the case if JPA SimpleJpaRepository, because
they are matching the method signatures in CrudRepository. So the UserRepository will now be able to
save users, and find single ones by id, as well as triggering a query to find Users by their email address.

Note, that the intermediate repository interface is annotated with @NoRepositoryBean.
NOTE Make sure you add that annotation to all repository interfaces that Spring Data should
not create instances for at runtime.

3.4. Defining query methods

The repository proxy has two ways to derive a store-specific query from the method name. It can
derive the query from the method name directly, or by using a manually defined query. Available
options depend on the actual store. However, there’s got to be a strategy that decides what actual query
is created. Let’s have a look at the available options.

3.4.1. Query lookup strategies

The following strategies are available for the repository infrastructure to resolve the query. You can
configure the strategy at the namespace through the query-lookup-strategy attribute in case of XML
configuration or via the querylLookupStrategy attribute of the Enable${store}Repositories annotation in
case of Java config. Some strategies may not be supported for particular datastores.

* CREATE attempts to construct a store-specific query from the query method name. The general
approach is to remove a given set of well-known prefixes from the method name and parse the rest
of the method. Read more about query construction in Query creation.

o USE_DECLARED_QUERY tries to find a declared query and will throw an exception in case it can’t find
one. The query can be defined by an annotation somewhere or declared by other means. Consult
the documentation of the specific store to find available options for that store. If the repository
infrastructure does not find a declared query for the method at bootstrap time, it fails.

o CREATE_IF_NOT_FOUND (default) combines CREATE and USE_DECLARED_QUERY. It looks up a declared query
first, and if no declared query is found, it creates a custom method name-based query. This is the
default lookup strategy and thus will be used if you do not configure anything explicitly. It allows
quick query definition by method names but also custom-tuning of these queries by introducing
declared queries as needed.

3.4.2. Query creation

The query builder mechanism built into Spring Data repository infrastructure is useful for building
constraining queries over entities of the repository. The mechanism strips the prefixes find By,
read By, query By, count By, and get By from the method and starts parsing the rest of it. The
introducing clause can contain further expressions such as a Distinct to set a distinct flag on the query

to be created. However, the first By acts as delimiter to indicate the start of the actual criteria. At a very
basic level you can define conditions on entity properties and concatenate them with And and Or.

Example 8. Query creation from method names

public interface PersonRepository extends Repository<User, Long> {

List<Person> findByEmailAddressAndLastname(EmailAddress emailAddress, String
lastname);

// Enables the distinct flag for the query

List<Person> findDistinctPeopleBylLastnameOrFirstname(String lastname, String
firstname);

List<Person> findPeopleDistinctBylLastnameOrFirstname(String lastname, String
firstname);

// Enabling ignoring case for an individual property

List<Person> findByLastnameIgnoreCase(String lastname);

// Enabling ignoring case for all suitable properties

List<Person> findByLastnameAndFirstnameAllIgnoreCase(String lastname, String
firstname);

// Enabling static ORDER BY for a query
List<Person> findByLastnameOrderByFirstnameAsc(String lastname);
List<Person> findByLastnameOrderByFirstnameDesc(String lastname);

}

The actual result of parsing the method depends on the persistence store for which you create the
query. However, there are some general things to notice.

* The expressions are usually property traversals combined with operators that can be concatenated.
You can combine property expressions with AND and OR. You also get support for operators such as
Between, LessThan, GreaterThan, Like for the property expressions. The supported operators can vary
by datastore, so consult the appropriate part of your reference documentation.

* The method parser supports setting an IgnoreCase flag for individual properties (for example,
findByLastnameIgnoreCase()) or for all properties of a type that support ignoring case (usually
String instances, for example, findBylLastnameAndFirstnameAllIgnoreCase()). Whether ignoring
cases is supported may vary by store, so consult the relevant sections in the reference
documentation for the store-specific query method.

* You can apply static ordering by appending an OrderBy clause to the query method that references a
property and by providing a sorting direction (Asc or Desc). To create a query method that supports
dynamic sorting, see Special parameter handling.

3.4.3. Property expressions

Property expressions can refer only to a direct property of the managed entity, as shown in the
preceding example. At query creation time you already make sure that the parsed property is a
property of the managed domain class. However, you can also define constraints by traversing nested
properties. Assume a Person has an Address with a ZipCode. In that case a method name of

List<Person> findByAddressZipCode(ZipCode zipCode);

creates the property traversal x.address.zipCode. The resolution algorithm starts with interpreting the
entire part (AddressZipCode) as the property and checks the domain class for a property with that name
(uncapitalized). If the algorithm succeeds it uses that property. If not, the algorithm splits up the source
at the camel case parts from the right side into a head and a tail and tries to find the corresponding
property, in our example, AddressZip and Code. If the algorithm finds a property with that head it takes
the tail and continue building the tree down from there, splitting the tail up in the way just described.
If the first split does not match, the algorithm move the split point to the left (Address, ZipCode) and
continues.

Although this should work for most cases, it is possible for the algorithm to select the wrong property.
Suppose the Person class has an addressZip property as well. The algorithm would match in the first
split round already and essentially choose the wrong property and finally fail (as the type of addressZip
probably has no code property).

To resolve this ambiguity you can use _ inside your method name to manually define traversal points.
So our method name would end up like so:

List<Person> findByAddress_ZipCode(ZipCode zipCode);

As we treat underscore as a reserved character we stongly advise to follow standard Java naming
conventions (i.e. not using underscores in property names but camel case instead).

3.4.4. Special parameter handling

To handle parameters in your query you simply define method parameters as already seen in the
examples above. Besides that the infrastructure will recognize certain specific types like Pageable and
Sort to apply pagination and sorting to your queries dynamically.

Example 9. Using Pageable, Slice and Sort in query methods

Page<User> findByLastname(String lastname, Pageable pageable);
Slice<User> findByLastname(String lastname, Pageable pageable);
List<User> findByLastname(String lastname, Sort sort);

List<User> findByLastname(String lastname, Pageable pageable);

The first method allows you to pass an org.springframework.data.domain.Pageable instance to the query
method to dynamically add paging to your statically defined query. A Page knows about the total
number of elements and pages available. It does so by the infrastructure triggering a count query to
calculate the overall number. As this might be expensive depending on the store used, Slice can be
used as return instead. A Slice only knows about whether there’s a next Slice available which might
be just sufficient when walking thought a larger result set.

Sorting options are handled through the Pageable instance too. If you only need sorting, simply add an
org.springframework.data.domain.Sort parameter to your method. As you also can see, simply returning
a List is possible as well. In this case the additional metadata required to build the actual Page instance
will not be created (which in turn means that the additional count query that would have been
necessary not being issued) but rather simply restricts the query to look up only the given range of
entities.

To find out how many pages you get for a query entirely you have to trigger an
NOTE additional count query. By default this query will be derived from the query you
actually trigger.

3.4.5. Limiting query results

The results of query methods can be limited via the keywords first or top, which can be used
interchangeably. An optional numeric value can be appended to top/first to specify the maximum
result size to be returned. If the number is left out, a result size of 1 is assumed.

Example 10. Limiting the result size of a query with Top and First

User findFirstByOrderByLastnameAsc();

User findTopByOrderByAgeDesc();

Page<User> queryFirst10ByLastname(String lastname, Pageable pageable);
Slice<User> findTop3BylLastname(String lastname, Pageable pageable);
List<User> findFirst10BylLastname(String lastname, Sort sort);

List<User> findTop10ByLastname(String lastname, Pageable pageable);

The limiting expressions also support the Distinct keyword. Also, for the queries limiting the result set
to one instance, wrapping the result into an Optional is supported.

If pagination or slicing is applied to a limiting query pagination (and the calculation of the number of
pages available) then it is applied within the limited result.

Note that limiting the results in combination with dynamic sorting via a Sort parameter
NOTE allows to express query methods for the 'K' smallest as well as for the 'K' biggest
elements.

3.4.6. Streaming query results

The results of query methods can be processed incrementally by using a Java 8 Stream<T> as return
type. Instead of simply wrapping the query results in a Stream data store specific methods are used to
perform the streaming.

Example 11. Stream the result of a query with Java 8 Stream<T>
("select u from User u")
Stream<User> findA11ByCustomQueryAndStream();
Stream<User> readAl1ByFirstnameNotNull();

("select u from User u")
Stream<User> streamAl1Paged(Pageable pageable);

A Stream potentially wraps underlying data store specific resources and must therefore
NOTE be closed after usage. You can either manually close the Stream using the close()
method or by using a Java 7 try-with-resources block.

Example 12. Working with a Stream<T> result in a try-with-resources block

try (Stream<User> stream = repository.findA11ByCustomQueryAndStream()) {
stream.forEach();

}

NOTE Not all Spring Data modules currently support Stream<T> as a return type.

3.5. Creating repository instances

In this section you create instances and bean definitions for the repository interfaces defined. One way
to do so is using the Spring namespace that is shipped with each Spring Data module that supports the
repository mechanism although we generally recommend to use the Java-Config style configuration.

3.5.1. XML configuration

Each Spring Data module includes a repositories element that allows you to simply define a base
package that Spring scans for you.

Example 13. Enabling Spring Data repositories via XML

<?xml version="1.0" encoding="UTF-8"7>
<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns="http://www.springframework.org/schema/data/jpa"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/jpa
http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

<repositories base-package="com.acme.repositories" />

</beans:beans>

In the preceding example, Spring is instructed to scan com.acme.repositories and all its sub-packages
for interfaces extending Repository or one of its sub-interfaces. For each interface found, the
infrastructure registers the persistence technology-specific FactoryBean to create the appropriate
proxies that handle invocations of the query methods. Each bean is registered under a bean name that
is derived from the interface name, so an interface of UserRepository would be registered under
userRepository. The base-package attribute allows wildcards, so that you can define a pattern of
scanned packages.

Using filters

By default the infrastructure picks up every interface extending the persistence technology-specific
Repository sub-interface located under the configured base package and creates a bean instance for it.
However, you might want more fine-grained control over which interfaces bean instances get created
for. To do this you use <include-filter /> and <exclude-filter /> elements inside <repositories />.
The semantics are exactly equivalent to the elements in Spring’s context namespace. For details, see
Spring reference documentation on these elements.

For example, to exclude certain interfaces from instantiation as repository, you could use the following
configuration:

Example 14. Using exclude-filter element
<repositories base-package="com.acme.repositories">

<context:exclude-filter type="regex" expression=".*SomeRepository" />
</repositories>

This example excludes all interfaces ending in SomeRepository from being instantiated.

3.5.2. JavaConfig

The repository infrastructure can also be triggered using a store-specific @Enable${store}Repositories
annotation on a JavaConfig class. For an introduction into Java-based configuration of the Spring
container, see the reference documentation. [JavaConfig in the Spring reference documentation]

A sample configuration to enable Spring Data repositories looks something like this.
Example 15. Sample annotation based repository configuration
@Configuration

@EnableJpaRepositories("com.acme.repositories")
class ApplicationConfiguration {

@Bean

public EntityManagerFactory entityManagerFactory() {
//

{spring-framework-docs}/beans.html#beans-scanning-filters
{spring-framework-docs}/beans.html#beans-java

The sample uses the JPA-specific annotation, which you would change according to the
store module you actually use. The same applies to the definition of the
EntityManagerFactory bean. Consult the sections covering the store-specific
configuration.

NOTE

3.5.3. Standalone usage

You can also use the repository infrastructure outside of a Spring container, e.g. in CDI environments.
You still need some Spring libraries in your classpath, but generally you can set up repositories
programmatically as well. The Spring Data modules that provide repository support ship a persistence
technology-specific RepositoryFactory that you can use as follows.

Example 16. Standalone usage of repository factory

RepositoryFactorySupport factory = // Instantiate factory here
UserRepository repository = factory.getRepository(UserRepository.class);

3.6. Custom implementations for Spring Data
repositories

Often it is necessary to provide a custom implementation for a few repository methods. Spring Data
repositories easily allow you to provide custom repository code and integrate it with generic CRUD
abstraction and query method functionality.

3.6.1. Adding custom behavior to single repositories

To enrich a repository with custom functionality you first define an interface and an implementation
for the custom functionality. Use the repository interface you provided to extend the custom interface.

Example 17. Interface for custom repository functionality

interface UserRepositoryCustom {
public void someCustomMethod(User user);

}

Example 18. Implementation of custom repository functionality

class UserRepositoryImpl implements UserRepositoryCustom {

public void someCustomMethod(User user) {
// Your custom implementation

}
}

The most important bit for the class to be found is the Impl postfix of the name on it

NOTE
compared to the core repository interface (see below).

The implementation itself does not depend on Spring Data and can be a regular Spring bean. So you
can use standard dependency injection behavior to inject references to other beans like a JdbTemplate,
take part in aspects, and so on.

Example 19. Changes to the your basic repository interface

interface UserRepository extends CrudRepository<User, Long>, UserRepositoryCustom {

// Declare query methods here
}

Let your standard repository interface extend the custom one. Doing so combines the CRUD and
custom functionality and makes it available to clients.

Configuration

If you use namespace configuration, the repository infrastructure tries to autodetect custom
implementations by scanning for classes below the package we found a repository in. These classes
need to follow the naming convention of appending the namespace element’s attribute repository-
impl-postfix to the found repository interface name. This postfix defaults to Impl.

Example 20. Configuration example

<repositories base-package="com.acme.repository" />

<repositories base-package="com.acme.repository" repository-impl-postfix="FooBar" />

The first configuration example will try to look up a class com.acme.repository.UserRepositoryImpl to
act as custom repository implementation, whereas the second example will try to lookup

com.acme.repository.UserRepositoryFooBar.

Manual wiring

The approach just shown works well if your custom implementation uses annotation-based
configuration and autowiring only, as it will be treated as any other Spring bean. If your custom
implementation bean needs special wiring, you simply declare the bean and name it after the
conventions just described. The infrastructure will then refer to the manually defined bean definition
by name instead of creating one itself.

Example 21. Manual wiring of custom implementations

<repositories base-package="com.acme.repository" />

<beans:bean id="userRepositoryImpl" class=" ">

<!-- further configuration -->
</beans:bean>

3.6.2. Adding custom behavior to all repositories

The preceding approach is not feasible when you want to add a single method to all your repository
interfaces.

1. To add custom behavior to all repositories, you first add an intermediate interface to declare the
shared behavior.

Example 22. An interface declaring custom shared behavior

public interface MyRepository<T, ID extends Serializable>
extends PagingAndSortingRepository<T, ID> {

void sharedCustomMethod(ID id);
}

2. Now your individual repository interfaces will extend this intermediate interface instead of the
Repository interface to include the functionality declared.

3. Next, create an implementation of the intermediate interface that extends the persistence
technology-specific repository base class. This class will then act as a custom base class for the
repository proxies.

Example 23. Custom repository base class

public class MyRepositoryImpl<T, ID extends Serializable>
extends SimplelpaRepository<T, ID> implements MyRepository<T, ID> {

private final EntityManager entityManager;

public MyRepositoryImpl(Class<T> domainClass, EntityManager entityManager) {
super (domainClass, entityManager);

// Keep the EntityManager around to used from the newly introduced methods.
this.entityManager = entityManager;
}

public void sharedCustomMethod(ID id) {
// implementation goes here
}
}

The default behavior of the Spring <repositories />namespace is to provide an implementation for
all interfaces that fall under the base-package. This means that if left in its current state, an
implementation instance of MyRepository will be created by Spring. This is of course not desired as it
is just supposed to act as an intermediary between Repository and the actual repository interfaces
you want to define for each entity. To exclude an interface that extends Repository from being
instantiated as a repository instance, you can either annotate it with @NoRepositoryBean (as seen
above) or move it outside of the configured base-package.

. Then create a custom repository factory to replace the default RepositoryFactoryBean that will in
turn produce a custom RepositoryFactory. The new repository factory will then provide your
MyRepositoryImpl as the implementation of any interfaces that extend the Repository interface,
replacing the SimpleJpaRepository implementation you just extended.

Example 24. Custom repository factory bean

public class MyRepositoryFactoryBean<R extends JpaRepository<T, I>, T,
I extends Serializable> extends JpaRepositoryFactoryBean<R, T, I> {

protected RepositoryFactorySupport createRepositoryFactory(EntityManager em) {
return new MyRepositoryFactory(em);

}

private static class MyRepositoryFactory<T, I extends Serializable>
extends JpaRepositoryFactory {

private final EntityManager em;
public MyRepositoryFactory(EntityManager em) {

super(em);
this.em = em;

}

protected Object getTargetRepository(RepositoryMetadata metadata) {
return new MyRepositoryImpl<T, I>((Class<T>) metadata.getDomainClass(), em);

}

protected Class<?> getRepositoryBase(lass(RepositoryMetadata metadata) {
return MyRepositoryImpl.class;
}
}
}

5. Finally, either declare beans of the custom factory directly or use the factory-class attribute of the
Spring namespace or @Enable annotation to instruct the repository infrastructure to use your
custom factory implementation.

Example 25. Using the custom factory with the namespace

<repositories base-package="com.acme.repository"
factory-class="com.acme.MyRepositoryFactoryBean" />

Example 26. Using the custom factory with the @Enable annotation

(factoryClass = "com.acme.MyRepositoryFactoryBean")
class Config {}

3.7. Spring Data extensions

This section documents a set of Spring Data extensions that enable Spring Data usage in a variety of
contexts. Currently most of the integration is targeted towards Spring MVC.

3.7.1. Web support

This section contains the documentation for the Spring Data web support as it is
implemented as of Spring Data Commons in the 1.6 range. As it the newly introduced
support changes quite a lot of things we kept the documentation of the former behavior
in Legacy web support.

NOTE

Spring Data modules ships with a variety of web support if the module supports the repository
programming model. The web related stuff requires Spring MVC JARs on the classpath, some of them
even provide integration with Spring HATEOAS [Spring HATEOAS -
https://github.com/SpringSource/spring-hateoas]. In general, the integration support is enabled by
using the @EnableSpringDataWebSupport annotation in your JavaConfig configuration class.

Example 27. Enabling Spring Data web support

class WebConfiguration { }

The @EnableSpringDataWebSupport annotation registers a few components we will discuss in a bit. It will
also detect Spring HATEOAS on the classpath and register integration components for it as well if
present.

Alternatively, if you are using XML configuration, register either SpringDataWebSupport or
HateoasAwareSpringDataWebSupport as Spring beans:

https://github.com/SpringSource/spring-hateoas

Example 28. Enabling Spring Data web support in XML

<bean class="org.springframework.data.web.config.SpringDataWebConfiguration" />

<!-- If you're using Spring HATEOAS as well register this one *instead* of the former
-->

<bean class=
"org.springframework.data.web.config.HateoasAwareSpringDataWebConfiguration" />

Basic web support

The configuration setup shown above will register a few basic components:

* A DomainClassConverter to enable Spring MVC to resolve instances of repository managed domain
classes from request parameters or path variables.

* HandlerMethodArgumentResolver implementations to let Spring MVC resolve Pageable and Sort
instances from request parameters.

DomainClassConverter

The DomainClassConverter allows you to use domain types in your Spring MVC controller method
signatures directly, so that you don’t have to manually lookup the instances via the repository:

Example 29. A Spring MVC controller using domain types in method signatures

@Controller
@RequestMapping("/users")
public class UserController {

@RequestMapping("/{id}")
public String showUserForm(@PathVariable("id") User user, Model model) {

model.addAttribute("user", user);
return "userForm";

}
}

As you can see the method receives a User instance directly and no further lookup is necessary. The
instance can be resolved by letting Spring MVC convert the path variable into the id type of the domain
class first and eventually access the instance through calling findOne() on the repository instance
registered for the domain type.

Currently the repository has to implement CrudRepository to be eligible to be discovered

NOTE .
for conversion.

HandlerMethodArgumentResolvers for Pageable and Sort

The configuration snippet above also registers a PageableHandlerMethodArgumentResolver as well as an
instance of SortHandlerMethodArgumentResolver. The registration enables Pageable and Sort being valid
controller method arguments

Example 30. Using Pageable as controller method argument

("/users")
public class UserController {

UserRepository repository;

public String showUsers(Model model, Pageable pageable) {

model.addAttribute("users", repository.findAll(pageable));
return "users";

}
}

This method signature will cause Spring MVC try to derive a Pageable instance from the request
parameters using the following default configuration:

Table 1. Request parameters evaluated for Pageable instances

page Page you want to retrieve, 0 indexed and defaults
to 0.

size Size of the page you want to retrieve, defaults to
20.

sort Properties that should be sorted by in the format

property,property(,ASC|DESC). Default sort
direction is ascending. Use multiple sort
parameters if you want to switch directions, e.g.
?sort=firstname&sort=1astname,asc.

To customize this behavior extend either SpringDataWebConfiguration or the HATEOAS-enabled
equivalent and override the pageableResolver() or sortResolver() methods and import your
customized configuration file instead of using the @Enable-annotation.

In case you need multiple Pageable or Sort instances to be resolved from the request (for multiple

tables, for example) you can use Spring’s @Qualifier annotation to distinguish one from another. The
request parameters then have to be prefixed with ${qualifier}_. So for a method signature like this:

public String showUsers(Model model,
("foo") Pageable first,
("bar") Pageable second) { }

you have to populate foo_page and bar_page etc.

The default Pageable handed into the method is equivalent to a new PageRequest(@, 20) but can be
customized using the @PageableDefaults annotation on the Pageable parameter.

Hypermedia support for Pageables

Spring HATEOAS ships with a representation model class PagedResources that allows enrichting the
content of a Page instance with the necessary Page metadata as well as links to let the clients easily
navigate the pages. The conversion of a Page to a PagedResources is done by an implementation of the
Spring HATEOAS ResourceAssembler interface, the PagedResourcesAssembler.

Example 31. Using a PagedResourcesAssembler as controller method argument

class PersonController {
PersonRepository repository;

(value = "/persons", method = RequestMethod.GET)
HttpEntity<PagedResources<Person>> persons(Pageable pageable,
PagedResourcesAssembler assembler) {

Page<Person> persons = repository.findAll(pageable);
return new ResponseEntity<>(assembler.toResources(persons), HttpStatus.0K);
}
}

Enabling the configuration as shown above allows the PagedResourcesAssembler to be used as controller
method argument. Calling toResources() on it will cause the following:

* The content of the Page will become the content of the PagedResources instance.

» The PagedResources will get a PageMetadata instance attached populated with information form the
Page and the underlying PageRequest.

* The PagedResources gets prev and next links attached depending on the page’s state. The links will

point to the URI the method invoked is mapped to. The pagination parameters added to the method
will match the setup of the PageableHandlerMethodArgumentResolver to make sure the links can be
resolved later on.

Assume we have 30 Person instances in the database. You can now trigger a request GET
http://localhost:8080/persons and you’ll see something similar to this:

{ "links" : [{ "rel" : "next",
"href" : "http://localhost:8080/persons?page=1&size=20 }

1,
"content" : [
// 20 Person instances rendered here
1,
"pageMetadata” : {
"size" : 20,

"totalElements" : 30,
"totalPages" : 2,
"number" : 0

You see that the assembler produced the correct URI and also picks up the default configuration
present to resolve the parameters into a Pageable for an upcoming request. This means, if you change
that configuration, the links will automatically adhere to the change. By default the assembler points to
the controller method it was invoked in but that can be customized by handing in a custom Link to be
used as base to build the pagination links to overloads of the PagedResourcesAssembler.toResource()
method.

3.7.2. Repository populators

If you work with the Spring JDBC module, you probably are familiar with the support to populate a
DataSource using SQL scripts. A similar abstraction is available on the repositories level, although it
does not use SQL as the data definition language because it must be store-independent. Thus the
populators support XML (through Spring’s OXM abstraction) and JSON (through Jackson) to define data
with which to populate the repositories.

Assume you have a file data. json with the following content:

http://localhost:8080/persons

Example 32. Data defined in JSON

[{ "_class" : "com.acme.Person",
"firstname" : "Dave",

"lastname" : "Matthews" },

{ " class" : "com.acme.Person",
"firstname" : "Carter",

"lastname" : "Beauford" }]

You can easily populate your repositories by using the populator elements of the repository namespace
provided in Spring Data Commons. To populate the preceding data to your PersonRepository , do the
following:

Example 33. Declaring a Jackson repository populator

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xmlns:repository="http://www.springframework.org/schema/data/repository"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/repository
http://www.springframework.org/schema/data/repository/spring-repository.xsd">

<repository:jackson-populator locations="classpath:data.json" />

</beans>

This declaration causes the data.json file to be read and deserialized via a Jackson ObjectMapper.

The type to which the JSON object will be unmarshalled to will be determined by inspecting the _class
attribute of the JSON document. The infrastructure will eventually select the appropriate repository to
handle the object just deserialized.

To rather use XML to define the data the repositories shall be populated with, you can use the
unmarshaller-populator element. You configure it to use one of the XML marshaller options Spring OXM
provides you with. See the Spring reference documentation for details.

{spring-framework-docs}/oxm.html

Example 34. Declaring an unmarshalling repository populator (using JAXB)

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:repository="http://www.springframework.org/schema/data/repository"
xmlns:oxm="http://www.springframework.org/schema/oxm"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/repository
http://www.springframework.org/schema/data/repository/spring-repository.xsd
http://www.springframework.org/schema/oxm
http://www.springframework.org/schema/oxm/spring-oxm.xsd">

<repository:unmarshaller-populator locations="classpath:data.json"
unmarshaller-ref="unmarshaller" />

<oxm:jaxb2-marshaller contextPath="com.acme" />

</beans>

3.7.3. Legacy web support

Domain class web binding for Spring MVC

Given you are developing a Spring MVC web application you typically have to resolve domain class ids
from URLs. By default your task is to transform that request parameter or URL part into the domain
class to hand it to layers below then or execute business logic on the entities directly. This would look
something like this:

("/users")
public class UserController {

private final UserRepository userRepository;

public UserController(UserRepository userRepository) {
Assert.notNull(repository, "Repository must not be null!");
this.userRepository = userRepository;

}

(ll/{_id}")
public String showUserForm(("1d") Long id, Model model) {

// Do null check for id
User user = userRepository.findOne(id);
// Do null check for user

model.addAttribute("user", user);
return "user";

First you declare a repository dependency for each controller to look up the entity managed by the
controller or repository respectively. Looking up the entity is boilerplate as well, as it’s always a
findOne() call. Fortunately Spring provides means to register custom components that allow
conversion between a String value to an arbitrary type.

PropertyEditors

For Spring versions before 3.0 simple Java PropertyEditors had to be used. To integrate with that,
Spring Data offers a DomainClassPropertyEditorRegistrar, which looks up all Spring Data repositories
registered in the ApplicationContext and registers a custom PropertyEditor for the managed domain
class.

<bean class=" .web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter">
<property name="webBindingInitializer">
<bean class=" .web.bind.support.ConfigurableWebBindingInitializer">
<property name="propertyEditorRegistrars">
<bean class=
"org.springframework.data.repository.support.DomainClassPropertyEditorRegistrar" />
</property>
</bean>
</property>
</bean>

If you have configured Spring MVC as in the preceding example, you can configure your controller as
follows, which reduces a lot of the clutter and boilerplate.

@Controller
@RequestMapping("/users")
public class UserController {

@RequestMapping("/{id}")
public String showUserForm(@PathVariable("id") User user, Model model) {

model.addAttribute("user", user);
return "userForm";
}
}

Chapter 4. Auditing

4.1. Basics

Spring Data provides sophisticated support to transparently keep track of who created or changed an
entity and the point in time this happened. To benefit from that functionality you have to equip your
entity classes with auditing metadata that can be defined either using annotations or by implementing
an interface.

4.1.1. Annotation based auditing metadata

We provide @CreatedBy, @LastModifiedBy to capture the user who created or modified the entity as well
as @CreatedDate and @LastModifiedDate to capture the point in time this happened.

Example 35. An audited entity

class Customer {
private User user;

private DateTime createdDate;

// further properties omitted
¥

As you can see, the annotations can be applied selectively, depending on which information you’d like
to capture. For the annotations capturing the points in time can be used on properties of type
JodaTimes DateTime, legacy Java Date and Calendar, JDK8 date/time types as well as long/Long.

4.1.2. Interface-based auditing metadata

In case you don’t want to use annotations to define auditing metadata you can let your domain class
implement the Auditable interface. It exposes setter methods for all of the auditing properties.

There’s also a convenience base class AbstractAuditable which you can extend to avoid the need to
manually implement the interface methods. Be aware that this increases the coupling of your domain
classes to Spring Data which might be something you want to avoid. Usually the annotation based way
of defining auditing metadata is preferred as it is less invasive and more flexible.

4.1.3. AuditorAware

In case you use either @CreatedBy or @LastModifiedBy, the auditing infrastructure somehow needs to
become aware of the current principal. To do so, we provide an AuditorAware<T> SPI interface that you
have to implement to tell the infrastructure who the current user or system interacting with the
application is. The generic type T defines of what type the properties annotated with @CreatedBy or
@LastModifiedBy have to be.

Here’s an example implementation of the interface using Spring Security’s Authentication object:

Example 36. Implementation of AuditorAware based on Spring Security

class SpringSecurityAuditorAware implements AuditorAware<User> {
public User getCurrentAuditor() {

Authentication authentication = SecurityContextHolder.getContext()
.getAuthentication();

if (authentication == null || !authentication.isAuthenticated()) {
return null;

}

return ((MyUserDetails) authentication.getPrincipal()).getUser();
}
}

The implementation is accessing the Authentication object provided by Spring Security and looks up
the custom UserDetails instance from it that you have created in your UserDetailsService
implementation. We’re assuming here that you are exposing the domain user through that UserDetails
implementation but you could also look it up from anywhere based on the Authentication found.

Appendix

Appendix A: Namespace reference

The <repositories /> element

The <repositories /> element triggers the setup of the Spring Data repository infrastructure. The most
important attribute is base-package which defines the package to scan for Spring Data repository
interfaces. [see XML configuration]

Table 2. Attributes
Name Description

base-package Defines the package to be used to be scanned for repository interfaces
extending *Repository (actual interface is determined by specific Spring
Data module) in auto detection mode. All packages below the configured
package will be scanned, too. Wildcards are allowed.

repository-impl-postfix Defines the postfix to autodetect custom repository implementations.
Classes whose names end with the configured postfix will be considered as
candidates. Defaults to Impl.

query-lookup-strategy = Determines the strategy to be used to create finder queries. See Query
lookup strategies for details. Defaults to create-if-not-found.

named-queries-location Defines the location to look for a Properties file containing externally
defined queries.

consider-nested- Controls whether nested repository interface definitions should be
repositories considered. Defaults to false.

Appendix B: Populators namespace reference

The <populator /> element

The <populator /> element allows to populate the a data store via the Spring Data repository
infrastructure. [see XML configuration]

Table 3. Attributes
Name Description

locations Where to find the files to read the objects from the repository shall be
populated with.

Appendix C: Repository query keywords

Supported query keywords

The following table lists the keywords generally supported by the Spring Data repository query
derivation mechanism. However, consult the store-specific documentation for the exact list of
supported keywords, because some listed here might not be supported in a particular store.

Table 4. Query keywords

Logical keyword Keyword expressions

AND And

OR Or

AFTER After, IsAfter

BEFORE Before, IsBefore

CONTAINING Containing, IsContaining, Contains
BETWEEN

ENDING_WITH

EXISTS
FALSE

GREATER_THAN
GREATER_THAN_EQUALS

Between, IsBetween

EndingWith, IsEndingWith, EndsWith
Exists

False, IsFalse

GreaterThan, IsGreaterThan

GreaterThanEqual, IsGreaterThanEqual

IN In, IsIn

IS Is, Equals, (or no keyword)
IS_NOT_NULL NotNull, IsNotNull

IS_NULL Null, IsNull

LESS_THAN

LESS_THAN_EQUAL

LessThan, IsLessThan

LessThanEqual, IsLessThanEqual

LIKE Like, IsLike
NEAR Near, IsNear
NOT Not, IsNot
NOT_IN NotIn, IsNotIn
NOT_LIKE

NotLike, IsNotLike

Logical keyword
REGEX

STARTING_WITH
TRUE

WITHIN

Keyword expressions

Regex, MatchesRegex, Matches
StartingWith, IsStartingWith, StartsWith
True, IsTrue

Within, IsWithin

Appendix D: Repository query return types

Supported query return types

The following table lists the return types generally supported by Spring Data repositories. However,
consult the store-specific documentation for the exact list of supported return types, because some
listed here might not be supported in a particular store.

NOTE

Geospatial types like (GeoResult, GeoResults, GeoPage) are only available for data stores

that support geospatial queries.

Table 5. Query return types

Return type
void

Primitives
Wrapper types
I

Iterator<T>
Collection<T>
List<T>

Optional<T>

Stream<T>

Slice

Page<T>

GeoResult<T>

GeoResults<T>

GeoPage<T>

Description

Denotes no return value.
Java primitives.

Java wrapper types.

An unique entity. Expects the query method to return one result at most. In
case no result is found null is returned. More than one result will trigger an
IncorrectResultSizeDataAccessException.

An Iterator.
A Collection.
A List.

A Java 8 or Guava Optional. Expects the query method to return one result
at most. In case no result is found Optional.empty()/Optional.absent() is
returned. More than one result will trigger an
IncorrectResultSizeDataAccessException.

AJava 8 Stream.

A sized chunk of data with information whether there is more data
available. Requires a Pageable method parameter.

A Slice with additional information, e.g. the total number of results.
Requires a Pageable method parameter.

A result entry with additional information, e.g. distance to a reference
location.

A list of GeoResult<T> with additional information, e.g. average distance to a
reference location.

A Page with GeoResult<T>, e.g. average distance to a reference location.

	Spring Data Commons - Reference Documentation
	Table of Contents
	Preface
	Chapter 1. Project metadata

	Reference documentation
	Chapter 2. Dependencies
	2.1. Dependency management with Spring Boot
	2.2. Spring Framework

	Chapter 3. Working with Spring Data Repositories
	3.1. Core concepts
	3.2. Query methods
	3.3. Defining repository interfaces
	3.3.1. Fine-tuning repository definition

	3.4. Defining query methods
	3.4.1. Query lookup strategies
	3.4.2. Query creation
	3.4.3. Property expressions
	3.4.4. Special parameter handling
	3.4.5. Limiting query results
	3.4.6. Streaming query results

	3.5. Creating repository instances
	3.5.1. XML configuration
	3.5.2. JavaConfig
	3.5.3. Standalone usage

	3.6. Custom implementations for Spring Data repositories
	3.6.1. Adding custom behavior to single repositories
	3.6.2. Adding custom behavior to all repositories

	3.7. Spring Data extensions
	3.7.1. Web support
	3.7.2. Repository populators
	3.7.3. Legacy web support

	Chapter 4. Auditing
	4.1. Basics
	4.1.1. Annotation based auditing metadata
	4.1.2. Interface-based auditing metadata
	4.1.3. AuditorAware

	Appendix
	Appendix A: Namespace reference
	The <repositories /> element

	Appendix B: Populators namespace reference
	The <populator /> element

	Appendix C: Repository query keywords
	Supported query keywords

	Appendix D: Repository query return types
	Supported query return types

