Spring Data Commons - Reference
Documentation

Copyright © 2010 Mark Pollack, Thomas Risberg, Oliver Gierke

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

[REFEIBINCE ...ttt 1
L REPOSITONES ...ttt ettt e e ettt e e e e e e st e e e ek et e e s bn e e e e e s b et e e e annrr e e e e as 2
L2 INEFOTUCTION ..ttt ettt e et e et e e e s e e nnnee e 2

1.2, COrE CONCEPESueeeireeeeeee e e ettt e e e e s e st e et e e e e e s et e et e e e e e s s s snb b e e e e e e e e e sannbbrnneeeaeeeaaans 2

1.3, QUENY MELNOUS s nnannnnnnnnnnnnnns 3
1.3.1. Defining repository iNtEITACESeeiiiieiiieiiiiiee e 4

1.3.2. Defining query MEthOOSueeiiiieeiiiiieiee e e 5

1.3.3. Creating rePOSItOry INSIANCES ...vvvviiieeei it e e s e e e e e e e e e e e eaneeees 7

1.4, Custom imMPIEMENLELIONSveeeeiiiiiiee ettt e et e e e e et e e e s annneeas 8
1.4.1. Adding behaviour to SINgle rePOSItONESeevvieeiiiiiiiiieeee e 8

1.4.2. Adding custom behaviour to all rePOSITONEScocuvveeeiiiiiieeieee e 10

L5, EXEEBNSIONS ...ooiiiiiiiiie ettt ettt et e e e e e e et e e e e e e e e e e e e 12
1.5.1. Domain class web binding for Spring MV C ..o 12

1.5.2. WED PAGINALTIONeeeiiiieeiiiiiiiii ettt e e e e e e e s e e e e e e e e e ennneees 13

Spring Data Commons ()

Preface

The Spring Data Commons project applies core Spring concepts to the development of solutions using many
non-relational data stores.

Spring Data Commons () i

Part |. Reference

This part of the reference documentation detailsthe ...

Spring Data Commons ()

Chapter 1. Repositories

1.1. Introduction

Implementing a data access layer of an application has been cumbersome for quite a while. Too much
boilerplate code had to be written. Domain classes were anemic and not designed in a real object oriented or
domain driven manner.

Using both of these technologies makes developers life alot easier regarding rich domain model's persistence.
Nevertheless the amount of boilerplate code to implement repositories especialy is till quite high. So the goal
of the repository abstraction of Spring Data is to reduce the effort to implement data access layers for various
persistence stores significantly.

The following chapters will introduce the core concepts and interfaces of Spring Data repositoriesin general for
detailled information on the specific features of a particular store consult the later chapters of this document.

Note

As this part of the documentation is pulled in from Spring Data Commons we have to decide for a
particular module to be used as example. The configuration and code samples in this chapter are
using the JPA module. Make sure you adapt e.g. the XML namespace declaration, types to be
extended to the equivalents of the module you're actually using.

1.2. Core concepts

The central interface in Spring Data repository abstraction is Repository (probably not that much of a
surprise). It is typeable to the domain class to manage as well as the id type of the domain class. This interface
mainly acts as marker interface to capture the types to deal with and help us when discovering interfaces that
extend this one. Beyond that there's cr udReposi t ory which provides some sophisticated functionality around
CRUD for the entity being managed.

Example 1.1. ¢ udReposi t ory interface

public interface CrudRepository<T, ID extends Serializabl e>
ext ends Repository<T, ID> {

O
T save(T entity);

O
T findOne(l D primaryKey);

O
Iterabl e<T> findAl();
Long count ();

O
void delete(T entity);

O
bool ean exi sts(ID primaryKey);

O

// ..nmore functionality omtted.

0 Savesthegiven entity.
0 Returnsthe entity identified by the given id.

Spring Data Commons () 2

Repositories

Returns all entities.

Returns the number of entities.

Deletes the given entity.

Returns whether an entity with the given id exists.

[B B B

Usually we will have persistence technology specific sub-interfaces to include additional technology specific
methods. We will now ship implementations for avariety of Spring Data modules that implement this interface.

On top of the CrudRepository there is a Pagi ngAndSorti ngRepository abstraction that adds additional
methods to ease paginated access to entities:

Example 1.2. PagingAndSortingRepository

public interface Pagi ngAndSortingRepository<T, |D extends Serializabl e> extends CrudRepository<T, |D> {
Iterabl e<T> findAll (Sort sort);

Page<T> findAl | (Pageabl e pageabl e);

Accessing the second page of user by a page size of 20 you could simply do something like this:

Pagi ngAndSort i ngReposi t ory<User, Long> repository = // ...get access to a bean
Page<User > users = repository.findAl |l (new PageRequest (1, 20);

1.3. Query methods

Next to standard CRUD functionality repositories are usually queries on the underlying datastore. With Spring
Data declaring those queries becomes a four-step process:

1. Declare an interface extending Reposi t ory or one of its sub-interfaces and type it to the domain classit shall
handle.

public interface PersonRepository extends Repository<User, Long> { ...}

2. Declare query methods on the interface.

Li st <Person> findByLast nane(String | astnane);

3. Setup Spring to create proxy instances for those interfaces.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans: beans xm ns: beans="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xm ns="http://ww. springfranmework. org/ schema/ dat a/ j pa"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. spri ngframework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schena/ dat a/ j pa
htt p: // ww. spri ngf ranewor k. or g/ schena/ dat a/ j pa/ spri ng-j pa. xsd" >

<repositories base-package="com acne.repositories" />

</ beans>

Spring Data Commons () 3

Repositories

Note

Note that we use the JPA namespace here just by example. If you're using the repository
abstraction for any other store you need to change this to the appropriate namespace declaration
of your store module which should be exchanging j pa in favor of e.g. nongodb.

4. Get the repository instance injected and use it.

public class Sonedient {

@\ut owi r ed
private PersonRepository repository;

public void doSonething() {
Li st <Person> persons = repository.findByLastname("Mtthews");

}

At this stage we barely scratched the surface of what's possible with the repositories but the general approach
should be clear. Let's go through each of these steps and figure out details and various options that you have at
each stage.

1.3.1. Defining repository interfaces

Asavery first step you define adomain class specific repository interface. It's got to extend Reposi t ory and be
typed to the domain class and an ID type. If you want to expose CRUD methods for that domain type, extend
CrudReposi t ory instead of Repository.

1.3.1.1. Fine tuning repository definition

Usually you will have your repository interface extend Repository, CrudRepository Of
Pagi ngAndSort i ngReposi t ory. If you don't like extending Spring Data interfaces at all you can also annotate
your repository interface with @eposi t or yDef i ni ti on. Extending Cr udReposi t ory Will expose a complete set
of methods to manipulate your entities. If you would rather be selective about the methods being exposed,
simply copy the ones you want to expose from Cr udReposi t ory into your domain repository.

Example 1.3. Selectively exposing CRUD methods

interface MyBaseRepository<T, |ID extends Serializabl e> extends Repository<T, |ID> {
T findOne(ID id);
T save(T entity);

}

i nterface UserRepository extends MyBaseRepository<User, Long> {

User findByEnail Address(Enai |l Address enai | Address);
}

In the first step we define a common base interface for al our domain repositories and expose fi ndone(..) as
well as save(..).These methods will be routed into the base repository implementation of the store of your
choice because they are matching the method signatures in Cr udReposi t ory. SO OUr User Reposi t ory Will now
be able to save users, find single ones by id as well as triggering a query to find User s by their email address.

Spring Data Commons () 4

Repositories

1.3.2. Defining query methods

1.3.2.1. Query lookup strategies

The next thing we have to discuss is the definition of query methods. There are two main ways that the
repository proxy is able to come up with the store specific query from the method name. The first option is to
derive the query from the method name directly, the second is using some kind of additionally created query.
What detailed options are available pretty much depends on the actual store, however, there's got to be some
algorithm that decides what actual query is created.

There are three strategies available for the repository infrastructure to resolve the query. The strategy to be used
can be configured at the namespace through the query- 1 ookup- st rat egy attribute. However, It might be the
case that some of the strategies are not supported for specific datastores. Here are your options:

CREATE

This strategy will try to construct a store specific query from the query method's name. The general approach is
to remove a given set of well-known prefixes from the method name and parse the rest of the method. Read
more about query construction in Section 1.3.2.2, “ Query creation”.

USE_DECLARED_QUERY

This strategy tries to find a declared query which will be used for execution first. The query could be defined
by an annotation somewhere or declared by other means. Please consult the documentation of the specific store
to find out what options are available for that store. If the repository infrastructure does not find a declared
query for the method at bootstrap time it will fail.

CREATE_IF_NOT_FOUND (default)

This strategy is actualy a combination of CREATE and USE_DECLARED QUERY. It will try to lookup a declared
query first but create a custom method name based query if no declared query was found. This is the default
lookup strategy and thus will be used if you don't configure anything explicitly. It allows quick query definition
by method names but also custom tuning of these queries by introducing declared queries as needed.

1.3.2.2. Query creation

The query builder mechanism built into Spring Data repository infrastructure is useful to build constraining
queries over entities of the repository. We will strip the prefixes fi ndBy, fi nd, readBy, r ead, get By as well as
get from the method and start parsing the rest of it. At avery basic level you can define conditions on entity
properties and concatenate them with AND and CR.

Example 1.4. Query creation from method names

public interface PersonRepository extends Repository<User, Long> {

Li st <Person> fi ndByEmai | Addr essAndLast nane(Enai | Addr ess enmi | Address, String | astnane);

}

The actual result of parsing that method will of course depend on the persistence store we create the query for,
however, there are some general things to notice. The expressions are usually property traversals combined
with operators that can be concatenated. As you can see in the example you can combine property expressions

Spring Data Commons () 5

Repositories

with And and Or. Beyond that you also get support for various operators like Bet ween, LessThan, Gr eat er Than,
Li ke for the property expressions. As the operators supported can vary from datastore to datastore please
consult the according part of the reference documentation.

1.3.2.2.1. Property expressions

Property expressions can just refer to a direct property of the managed entity (as you just saw in the example
above). On query creation time we already make sure that the parsed property is at a property of the managed
domain class. However, you can also define constraints by traversing nested properties. Assume Per sons have
Addr esseswith zi pCodes. In that case a method name of

Li st <Person> fi ndByAddr essZi pCode(Zi pCode zi pCode);

will create the property traversal x. address. zi pCode. The resolution algorithm starts with interpreting the
entire part (Addresszi pCode) as property and checks the domain class for a property with that name
(uncapitalized). If it succeedsiit just uses that. If not it starts splitting up the source at the camel case parts from
the right side into a head and a tail and tries to find the according property, e.g. Addr esszi p and Code. If we
find a property with that head we take the tail and continue building the tree down from there. Asin our case
the first split does not match we move the split point to the left (Addr ess, zi pCode).

Although this should work for most cases, there might be cases where the algorithm could select the wrong
property. Suppose our Per son class has an addr esszi p property as well. Then our algorithm would match in
the first split round aready and essentially choose the wrong property and finaly fail (as the type of
addr esszi p probably has no code property). To resolve this ambiguity you can use _ inside your method name
to manually define traversal points. So our method name would end up like so:

Li st <Person> fi ndByAddr ess_Zi pCode(Zi pCode zi pCode);

1.3.2.3. Special parameter handling

To hand parameters to your query you simply define method parameters as already seen in the examples above.
Besides that we will recognizes certain specific types to apply pagination and sorting to your queries
dynamically.

Example 1.5. Using Pageable and Sort in query methods

Page<User > findBylLast nane(String | ast nane, Pageabl e pageabl e);
Li st <User > findByLastname(String | astname, Sort sort);

Li st <User > findByLastname(String | ast nane, Pageabl e pageabl e);

The first method allows you to pass a Pageabl e instance to the query method to dynamically add paging to
your statically defined query. Sorti ng options are handed via the Pageabl e instance too. If you only need
sorting, simply add a Sort parameter to your method. As you also can see, simply returning a Li st is possible
as well. We will then not retrieve the additional metadata required to build the actual Page instance but rather
simply restrict the query to lookup only the given range of entities.

Note

To find out how many pages you get for a query entirely we have to trigger an additional count

Spring Data Commons () 6

Repositories

query. Thiswill be derived from the query you actually trigger by default.

1.3.3. Creating repository instances

So now the question is how to create instances and bean definitions for the repository interfaces defined.

1.3.3.1. Spring

The easiest way to do so is by using the Spring namespace that is shipped with each Spring Data module that
supports the repository mechanism. Each of those includes a repositories element that allows you to simply
define a base package that Spring will scan for you.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans: beans xml ns: beans="htt p://ww. spri ngfranmewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns="http://wwm. spri ngframewor k. or g/ schena/ dat a/ j pa"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
htt p: // ww. spri ngf ranewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. spri ngfranework. org/ schenma/ dat a/ j pa
http://ww. springframework. or g/ schenma/ dat a/ j pa/ spri ng-j pa. xsd">

<reposi tories base-package="com acne.repositories" />

</ beans: beans>

In this case we instruct Spring to scan com.acme.repositories and all its sub packages for interfaces extending
Reposi tory or one of its sub-interfaces. For each interface found it will register the persistence technology
specific Fact oryBean to create the according proxies that handle invocations of the query methods. Each of
these beans will be registered under a bean name that is derived from the interface name, so an interface of
User Reposi t ory would be registered under user Reposit ory. The base- package attribute allows the use of
wildcards, so that you can have a pattern of scanned packages.

Using filters

By default we will pick up every interface extending the persistence technology specific Repository
sub-interface located underneath the configured base package and create a bean instance for it. However, you
might want finer grained control over which interfaces bean instances get created for. To do this we support the
use of <include-filter /> and <exclude-filter /> elementsinside <repositories />. The semantics are
exactly equivalent to the elements in Spring's context namespace. For detaills see Spring reference
documentation on these elements.

E.g. to exclude certain interfaces from instantiation as repository, you could use the following configuration:

Example 1.6. Using exclude-filter element

<reposi tories base-package="com acne. repositories">
<cont ext: exclude-filter type="regex" expression=".*SoneRepository" />
</repositories>

Thiswould exclude all interfaces ending in SoneReposi t ory from being instantiated.

Manual configuration

Spring Data Commons () 7

http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#beans-scanning-filters
http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#beans-scanning-filters

Repositories

If you'd rather like to manually define which repository instances to create you can do this with nested
<repository /> elements.

<repositories base-package="com acne. repositories">
<repository id="userRepository" />
</repositories>

1.3.3.2. Standalone usage

You can also use the repository infrastructure outside of a Spring container usage. Y ou will still need to have
some of the Spring libraries on your classpath but you can generally setup repositories programmaticaly as
well. The Spring Data modules providing repository support ship a persistence technology specific
Reposi t or yFact ory that can be used as follows:

Example 1.7. Standalone usage of repository factory

Reposi t oryFact orySupport factory = ...// Instantiate factory here
User Repository repository = factory. get Repository(UserRepository.class);

1.4. Custom implementations

1.4.1. Adding behaviour to single repositories

Often it is necessary to provide a custom implementation for a few repository methods. Spring Data
repositories easily allow you to provide custom repository code and integrate it with generic CRUD abstraction
and query method functionality. To enrich a repository with custom functionality you have to define an
interface and an implementation for that functionality first and let the repository interface you provided so far
extend that custom interface.

Example 1.8. Interface for custom repository functionality

i nterface User RepositoryCust om {

public void soneCust omVet hod(User user);
}

Example 1.9. Implementation of custom repository functionality

cl ass UserRepositorylnpl inplenents User RepositoryCustom {

public void sonmeCust om\vet hod(User user) {
/1 Your custom inplenentation

}
}

Note that the implementation itself does not depend on Spring Data and can be a regular Spring bean. So you
can use standard dependency injection behaviour to inject references to other beans, take part in aspects and so
on.

Spring Data Commons () 8

Repositories

Example 1.10. Changesto the your basic repository interface

public interface UserRepository extends CrudRepository<User, Long>, UserRepositoryCustom {

/] Declare query nethods here

}

Let your standard repository interface extend the custom one. This makes CRUD and custom functionality
availableto clients.

Configuration

If you use namespace configuration the repository infrastructure tries to autodetect custom implementations by
looking up classes in the package we found a repository using the naming conventions appending the
namespace element's attribute r eposi t or y- i npl - post f i x to the classname. This suffix defaultsto | npl .

Example 1.11. Configuration example

<reposi tories base-package="com acre. repository">
<repository id="userRepository" />
</repositories>

<reposi tories base-package="com acne. repository" repository-inpl-postfix="FooBar">
<repository id="userRepository" />
</repositories>

The first configuration example will try to lookup a class com acne. reposi t ory. User Reposi t oryl mpl to act as
custom repository implementation, where the second example will try to lookup
com acme. reposi tory. User Reposi t or yFooBar .

Manual wiring

The approach above works perfectly well if your custom implementation uses annotation based configuration
and autowiring entirely as it will be treated as any other Spring bean. If your custom implementation bean
needs some special wiring you simply declare the bean and name it after the conventions just described. We
will then pick up the custom bean by name rather than creating an instance.

Example 1.12. Manual wiring of custom implementations (1)

<reposi tori es base-package="com acne. repository">
<repository id="userRepository" />
</repositories>

<beans: bean i d="userRepositorylnpl" class=".">
<!-- further configuration -->
</ beans: bean>

This also works if you use automatic repository lookup without defining single <r eposi tory /> elements.

In case you are not in control of the implementation bean name (e.g. if you wrap a generic repository facade

Spring Data Commons () 9

Repositories

around an existing repository implementation) you can explicitly tell the <r epository /> element which bean
to use as custom implementation by using ther eposi tory-i npl - ref attribute.

Example 1.13. Manual wiring of custom implementations (11)

<reposi tories base-package="com acne. repository">
<repository id="userRepository" repository-inpl-ref="custonRepositorylnpl enentation" />
</repositories>

<bean i d="cust onReposi toryl npl ement ati on" class="..">
<I-- further configuration -->
</ bean>

1.4.2. Adding custom behaviour to all repositories

In other cases you might want to add a single method to all of your repository interfaces. So the approach just
shown is not feasible. The first step to achieve this is adding and intermediate interface to declare the shared
behaviour

Example 1.14. An interface declaring custom shared behaviour

public interface MyRepository<T, |ID extends Serializabl e>
ext ends JpaRepository<T, |D> {

voi d shar edCust omvet hod(I D id);
}

Now your individual repository interfaces will extend this intermediate interface instead of the Repository
interface to include the functionality declared. The second step is to create an implementation of this interface
that extends the persistence technology specific repository base class which will then act as a custom base class
for the repository proxies.

Note

The default behaviour of the Spring <r eposi tori es /> namespaceisto provide an implementation
for al interfaces that fall under the base- package. This means that if left in it's current state, an
implementation instance of MyReposi t ory will be created by Spring. This is of course not desired
as it is just supposed to act as an intermediary between Repository and the actua repository
interfaces you want to define for each entity. To exclude an interface extending Reposi t ory from
being instantiated as a repository instance it can either be annotate it with @oReposi t or yBean or
moved out side of the configured base- package.

Example 1.15. Custom repository base class

public class MyRepositoryl npl <T, |D extends Serializabl e>
ext ends Si npl eJpaRepository<T, |D> inplenments MyRepository<T, |ID> {

private EntityManager entityManager;

Spring Data Commons () 10

Repositories

// There are two constructors to choose from either can be used.
public MyRepositoryl npl (Cl ass<T> domai nCl ass, EntityManager entityManager) {
super (domai nCl ass, entityManager);

/1 This is the recomended nmethod for accessing inherited class dependenci es.
this.entityManager = entityManager;
}

public void sharedCustomvet hod(ID id) {
[/ inplenentation goes here

}
}

The last step is to create a custom repository factory to replace the default Reposi t or yFact or yBean that will in
turn produce a custom RepositoryFactory. The new repository factory will then provide your
MyReposi t oryl npl as the implementation of any interfaces that extend the Reposi t ory interface, replacing the
Si npl eJpaReposi t ory implementation you just extended.

Example 1.16. Custom repository factory bean

public class MyRepositoryFact oryBean<R ext ends JpaRepository<T, 1> T, | extends Serializabl e>
ext ends JpaRepositoryFactoryBean<R, T, |> {

protect ed RepositoryFactorySupport createRepositoryFactory(EntityManager entityManager) {

return new MyRepositoryFactory(entityManager);
}

private static class MyRepositoryFactory<T, | extends Serializabl e> extends JpaRepositoryFactory {
private EntityManager entityManager;

public MyRepositoryFactory(EntityManager entityManager) {
super (entityManager);

this.entityManager = entityManager;
}

protected Obj ect get Target Repository(RepositoryMtadata netadata) {

return new MyRepositorylnpl <T, 1>((C ass<T>) net adat a. get Domai nCl ass(), entityManager);
}

protected O ass<?> get RepositoryBased ass(RepositoryMet adata net adata) {

// The RepositoryMetadata can be safely ignored, it is used by the JpaRepositoryFactory
//to check for QueryDsl JpaRepository's which is out of scope.
return MyRepository.class;
}
}
}

Finaly you can either declare beans of the custom factory directly or use the f act ory- cl ass attribute of the
Spring namespace to tell the repository infrastructure to use your custom factory implementation.

Example 1.17. Using the custom factory with the namespace

<reposi tories base-package="com acne. repository"
factory-cl ass="com acne. M/yReposi t or yFact or yBean" />

Spring Data Commons () 11

Repositories

1.5. Extensions

This chapter documents a set of Spring Data extensions that enable Spring Data usage in a variety of contexts.
Currently most of the integration is targeted towards Spring MV C.

1.5.1. Domain class web binding for Spring MVC

Given you are developing a Spring MV C web applications you typically have to resolve domain class ids from
URLSs. By default it's your task to transform that request parameter or URL part into the domain class to hand it
layers below then or execute business logic on the entities directly. This should look something like this:

@ontroller
@Request Mappi ng("/ users")
public class UserController {

private final UserRepository userRepository;

public UserController(UserRepository userRepository) {
user Repository = userRepository;
}

@Request Mappi ng("/{id}")
public String showUser For m(@at hVari abl e("id") Long id, Mdel nodel) {

/1 Do null check for id

User user = userRepository.findOne(id);
/1 Do null check for user

/| Popul at e nodel

return "user";

First you pretty much have to declare a repository dependency for each controller to lookup the entity managed
by the controller or repository respectively. Beyond that looking up the entity is boilerplate as well as it's
aways afindone(.) cal. Fortunately Spring provides means to register custom converting components that
allow conversion between a st ri ng value to an arbitrary type.

PropertyEditors

For versions up to Spring 3.0 simple Java PropertyEditors had to be used. Thus, we offer a
Domai nCl assPropert yEdi t or Regi strar, that will look up all Spring Data repositories registered in the
Appl i cati onCont ext and register a custom pr oper t yEdi t or for the managed domain class

<bean cl ass="...web. servl et. mvc. annot ati on. Annot at i onMet hodHandl| er Adapt er " >
<property nanme="webBi ndinglnitializer">
<bean cl ass="...web. bi nd. support. Confi gurabl eWebBi ndi nglnitializer">

<property nanme="propertyEditorRegistrars">
<bean cl ass="org. spri ngfranmework. dat a. reposi tory. support . Domai nCl assPropertyEdi t or Regi strar" />
</ property>
</ bean>
</ property>
</ bean>

If you have configured Spring MV C like this you can turn your controller into the following that reduces a lot
of the clutter and boilerplate.

@ontrol | er
@Request Mappi ng("/users")
public class UserController {

@Request Mappi ng("/{id}")
public String showUser For m(@&at hVari abl e("id") User user, Mdel nodel) {

Spring Data Commons () 12

Repositories

// Do null check for user
/! Popul at e nodel
return "userForni;

}
}

ConversionService

As of Spring 3.0 the Propert yEdi t or support is superseeded by a new conversion infrstructure that leaves all
the drawbacks of Propert yEdi t or S behind and uses a stateless X to Y conversion approach. We now ship with
a Domai nd assConverter that pretty much mimics the behaviour of Dormei nQ assPropertyEdi t or Regi strar.
To register the converter you have to declare Conver si onSer vi ceFact or yBean, register the converter and tell
the Spring MV C namespace to use the configured conversion service:

<mvc: annot ati on-driven conversi on-servi ce="conversi onServi ce" />

<bean i d="conversi onService" class="...context.support. Conversi onServi ceFact or yBean">
<property name="converters">
<list>

<bean cl ass="org. spri ngfranmewor k. dat a. reposi tory. support. Domai nCl assConverter">
<constructor-arg ref="conversionService" />
</ bean>
</list>
</ property>
</ bean>

1.5.2. Web pagination

@ontrol | er
@Request Mappi ng("/ users")
public class UserController {

/1 DI code omitted

@Request Mappi ng
public String showUsers(Mdel nodel, HttpServletRequest request) {

int page = Integer.parselnt(request. getParaneter("page"));

int pageSi ze = | nteger. parselnt(request.getParaneter("pageSi ze"));
nodel . addAt tri but e("users", userService. get Users(pageabl e));
return "users";

As you can see the naive approach requires the method to contain an H: t pSer vl et Request parameter that has
to be parsed manually. We even omitted an appropriate failure handling which would make the code even more
verbose. The bottom line is that the controller actually shouldn't have to handle the functionality of extracting
pagination information from the request. So we include a Pageabl eAr gumrent Resol ver that will do the work for
you.

<bean cl ass="...web. servl et. mvc. annot ati on. Annot at i onMet hodHandl er Adapt er " >
<property name="cust omAr gunent Resol vers">
<list>
<bean cl ass="org. spri ngf ranmewor k. dat a. web. Pageabl eAr gunent Resol ver" />
</list>
</ property>
</ bean>

This configuration alows you to simplify controllers down to something like this:

@ontroller
@Request Mappi ng("/ users")

Spring Data Commons () 13

Repositories

public class UserController {

@Request Mappi ng
public String showUsers(Mdel nopdel, Pageabl e pageabl e) {

nodel . addAt tri but e("users", userDao.readAl | (pageable));
return "users";

}
}

The Pageabl eAr gunent Resol ver Will automatically resolve request parameters to build a PageRequest
instance. By default it will expect the following structure for the request parameters:

Table 1.1. Request parameters evaluated by Pageabl eAr gunent Resol ver

page The page you want to retrieve

page. si ze The size of the page you want to retrieve
page. sort The property that should be sorted by
page.sort.dir The direction that should be used for sorting

In case you need multiple Pageabl es to be resolved from the request (for multiple tables e.g.) you can use
Spring's @ual i fi er annotation to distinguish one from another. The request parameters then have to be
prefixed with ${ qual i fi er}_. So amethod signature like this:

public String showUsers(Mdel nodel,
@ualifier("foo") Pageable first,
@ualifier("bar") Pageable second) { ...}

you'd have to populate f oo_page and bar _page and the according subproperties.

Defaulting

The Pageabl eAr gunent Resol ver Will use a PageRequest With the first page and a page size of 10 by default
and will use that in case it can't resolve a PageRequest from the request (because of missing parameters e.g.).
Y ou can configure a global default on the bean declaration directly. In case you might need controller method
specific defaults for the Pageabl e sSimply annotate the method parameter with @ageabl eDef aul t s and specify
page and page size as annotation attributes:

public String showUsers(Mdel nodel,
@Pageabl eDef aul t s(pageNunber = 0, value = 30) Pageabl e pageable) { ...}

Spring Data Commons () 14

	Spring Data Commons - Reference Documentation
	Table of Contents
	Preface
	Part I. Reference
	Chapter 1. Repositories
	1.1. Introduction
	1.2. Core concepts
	1.3. Query methods
	1.3.1. Defining repository interfaces
	1.3.1.1. Fine tuning repository definition

	1.3.2. Defining query methods
	1.3.2.1. Query lookup strategies
	1.3.2.2. Query creation
	1.3.2.2.1. Property expressions

	1.3.2.3. Special parameter handling

	1.3.3. Creating repository instances
	1.3.3.1. Spring
	1.3.3.2. Standalone usage

	1.4. Custom implementations
	1.4.1. Adding behaviour to single repositories
	1.4.2. Adding custom behaviour to all repositories

	1.5. Extensions
	1.5.1. Domain class web binding for Spring MVC
	1.5.2. Web pagination

