Spring Data Commons - Reference Documentation

1.6.3.RELEASE

MarkPollack, ThomasRisberg, OliverGierke

Copyright ©

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

please define productname in your docbook file!

Table of Contents

Pr T A .t et iii
TR = 1= =Y TP 1
1. Working with Spring Data REPOSITONIESuiiiiiiiiiieii e e e e e e 2
I o (= I o]0] g [l =T o] S PP UPTPPRTPRN 2

1.2. QUENY MELNOUS ...ttt e et e e et e e e et eeeees 3
Defining repository INTErfACESiivvieiiii e e 4
Fine-tuning repository definitionoooiiiiiiiii e 4

Defining query MEtNOGSuuiiiiiii e 4

Query 100KUP SITAtEOIES ...ucvvviieeii e e e e e e e e e e e e eaans 5

QUETY CrEALION .vuiii ittt ettt e et et e e e e e e ean e 5

Property @XPreSSIONScccuuuuieiiiiiiee ettt e et e e et e ettt e e et e eeaae e eeee 6

Special parameter handlingcoooiiiii i 6

Creating repoSItOry INSTANCESiiiti i 7

XML CONFIQUIALTION ...t 7

JAVACONTIG it 8

StanNdaloNe USAQEcoevniiiiiii e 8

1.3. Custom implementations for Spring Data repoSitoriescovvevevviiieiiiiinneeiiineeeens 8
Adding custom behavior to single repoSItoriescocvvviviiiiiii i, 9

Adding custom behavior to all repPOSItOrESc..uviiviiiiiiieii e 10

1.4. SPring Data @XIENSIONScccuuuieiiiii ettt ettt et e e e e s 12

RV AT =T & T =T UT o] o T o P 12

BaSIC WED SUPPOITeieeieei et 12

Hypermedia support for Pageables ..o, 14

=T 0T 1S 1 (0] YA o 1o 01U] = 1 (] ¢ 15

Legacy WeD SUPPOIT ... 16

Domain class web binding for Spring MVCccooiiiiiiiiiecei e 16

WED PAgINALION ...oveiiiice e 18

Spring Data Commons -
1.6.3.RELEASE Reference Documentation ii

please define productname in your docbook file!

Preface

The Spring Data Commons project applies core Spring concepts to the development of solutions using
many non-relational data stores.

Spring Data Commons -
1.6.3.RELEASE Reference Documentation iii

Part |. Reference

This part of the reference documentation details the ...

please define productname in your docbook file!

1. Working with Spring Data Repositories

The goal of Spring Data repository abstraction is to significantly reduce the amount of boilerplate code
required to implement data access layers for various persistence stores.

© Important

Spring Data repository documentation and your module

This chapter explains the core concepts and interfaces of Spring Data repositories. The
information in this chapter is pulled from the Spring Data Commons module. It uses the
configuration and code samples for the Java Persistence APl (JPA) module. Adapt the XML
namespace declaration and the types to be extended to the equivalents of the particular
module that you are using. ??? covers XML configuration which is supported across all Spring
Data modules supporting the repository API, ??? covers the query method method keywords
supported by the repository abstraction in general. For detailed information on the specific
features of your module, consult the chapter on that module of this document.

1.1 Core concepts

The central interface in Spring Data repository abstraction is Reposi t or y (probably not that much of
a surprise). It takes the the domain class to manage as well as the id type of the domain class as type
arguments. This interface acts primarily as a marker interface to capture the types to work with and
to help you to discover interfaces that extend this one. The Cr udReposi t or y provides sophisticated
CRUD functionality for the entity class that is being managed.

public interface CrudRepository<T, ID extends Serializabl e>
ext ends Repository<T, |ID> {
O
<S extends T> S save(S entity);
O
T findOne(I D pri maryKey);
O
Iterabl e<T> findAll();
Long count () ;
O
void delete(T entity);
O
bool ean exi sts(ID pri maryKey);
O
/'l ...nmore functionality omtted.
}

Saves the given entity.

Returns the entity identified by the given id.
Returns all entities.

Returns the number of entities.

Deletes the given entity.

Indicates whether an entity with the given id exists.

Oo0Ooogogo

Example 1.1 Cr udReposi t ory interface

Spring Data Commons -
1.6.3.RELEASE Reference Documentation 2

please define productname in your docbook file!

Usually we will have persistence technology specific sub-interfaces to include additional technology
specific methods. We will now ship implementations for a variety of Spring Data modules that implement
CrudRepository.

On top of the Cr udReposi t ory there is a Pagi ngAndSor t i ngReposi t ory abstraction that adds
additional methods to ease paginated access to entities:

public interface Pagi ngAndSorti ngRepository<T, |D extends Serializabl e>
extends CrudRepository<T, |D> {

Iterabl e<T> findAl | (Sort sort);

Page<T> fi ndAl | (Pageabl e pageabl e);
}

Example 1.2 PagingAndSortingRepository

Accessing the second page of User by a page size of 20 you could simply do something like this:

Pagi ngAndSorti ngReposi t ory<User, Long> repository = // ..get access to a bean
Page<User > users = repository.findAl | (new PageRequest (1, 20));

1.2 Query methods

Standard CRUD functionality repositories usually have queries on the underlying datastore. With Spring
Data, declaring those queries becomes a four-step process:

1. Declare an interface extending Reposi t ory or one of its subinterfaces and type it to the domain
class that it will handle.

‘ public interface PersonRepository extends Repository<User, Long> { ...}

2. Declare query methods on the interface.

‘ Li st <Person> findByLastnane(String | astnane);

3. Set up Spring to create proxy instances for those interfaces.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans: beans xml ns: beans="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns="http://wwm. springfranmewor k. or g/ schema/ dat a/ j pa"
xsi : schemalLocati on="htt p://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springfranmewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. spri ngfranmewor k. or g/ schema/ dat a/ j pa
http://ww. springframework. org/ schema/ dat a/ j pa/ spri ng-j pa. xsd" >

<repositories base-package="com acne. repositories" />

</ beans>

© Note

The JPA namespace is used in this example. If you are using the repository abstraction for
any other store, you need to change this to the appropriate namespace declaration of your
store module which should be exchanging j pa in favor of, for example, nongodb.

Spring Data Commons -
1.6.3.RELEASE Reference Documentation 3

please define productname in your docbook file!

4. Get the repository instance injected and use it.

public class Sonedient {

@\ut owi r ed
private PersonRepository repository;

public void doSonet hi ng() {
Li st <Person> persons = repository.findByLastnanme("Matthews");

}

}

The sections that follow explain each step.
Defining repository interfaces

As a first step you define a domain class-specific repository interface. The interface must extend
Reposi t ory and be typed to the domain class and an ID type. If you want to expose CRUD methods
for that domain type, extend Cr udReposi t or y instead of Reposi t ory.

Fine-tuning repository definition

Typically, your repository interface will extend Repository, CrudRepository or
Pagi ngAndSor t i ngReposi t ory. Alternatively, if you do not want to extend Spring Data interfaces,
you can also annotate your repository interface with @RepositoryDefinition. Extending
CrudReposi tory exposes a complete set of methods to manipulate your entities. If you prefer
to be selective about the methods being exposed, simply copy the ones you want to expose from
Cr udReposi t ory into your domain repository.

interface MyBaseRepository<T, |ID extends Serializabl e> extends Repository<T, |ID> {
T findOne(ID id);
T save(T entity);

}

interface UserRepository extends MyBaseRepository<User, Long> {

User findByEnail Address(Enail Address enmi | Addr ess) ;
}

Example 1.3 Selectively exposing CRUD methods

In this first step you defined a common base interface for all your domain repositories and exposed
findOne(..) aswellassave(..) .These methods will be routed into the base repository implementation
of the store of your choice provided by Spring Data because they are matching the method signatures
in Cr udReposi t ory. So the User Reposi t ory will now be able to save users, and find single ones
by id, as well as triggering a query to find User s by their email address.

Defining query methods

The repository proxy has two ways to derive a store-specific query from the method name. It can derive
the query from the method name directly, or by using an additionally created query. Available options
depend on the actual store. However, there's got to be an strategy that decides what actual query is
created. Let's have a look at the available options.

Spring Data Commons -
1.6.3.RELEASE Reference Documentation 4

please define productname in your docbook file!

Query lookup strategies

The following strategies are available for the repository infrastructure to resolve the query. You can
configure the strategy at the namespace through the query-1 ookup- strategy attribute. Some
strategies may not be supported for particular datastores.

CREATE

CREATE attempts to construct a store-specific query from the query method name. The general approach
is to remove a given set of well-known prefixes from the method name and parse the rest of the method.
Read more about query construction in the section called “Query creation”.

USE_DECLARED_QUERY

USE_DECLARED_ QUERY tries to find a declared query and will throw an exception in case it can't find
one. The query can be defined by an annotation somewhere or declared by other means. Consult the
documentation of the specific store to find available options for that store. If the repository infrastructure
does not find a declared query for the method at bootstrap time, it fails.

CREATE_IF_NOT_FOUND (default)

CREATE_| F_NOT_FOUND combines CREATE and USE_DECL ARED QUERY. It looks up a declared query
first, and if no declared query is found, it creates a custom method name-based query. This is the default
lookup strategy and thus will be used if you do not configure anything explicitly. It allows quick query
definition by method names but also custom-tuning of these queries by introducing declared queries
as needed.

Query creation

The query builder mechanism built into Spring Data repository infrastructure is useful for building
constraining queries over entities of the repository. The mechanism strips the prefixes f i nd..By, r ead...
By, and get ..By from the method and starts parsing the rest of it. The introducing clause can contain
further expressions such as a Di sti nct to set a distinct flag on the query to be created. However, the
first By acts as delimiter to indicate the start of the actual criteria. At a very basic level you can define
conditions on entity properties and concatenate them with And and O

public interface PersonRepository extends Repository<User, Long> {
Li st <Per son> fi ndByEmai | Addr essAndLast nane(Enai | Addr ess enmi | Address, String | astnane);

/'l Enables the distinct flag for the query
Li st <Person> fi ndDi sti nct Peopl eByLast naneOr Fi rstname(String | astname, String firstnane);
Li st <Person> fi ndPeopl eDi sti nct ByLast nameOr Firstnane(String | astname, String firstnane);

/1 Enabling ignoring case for an individual property

Li st <Person> fi ndByLast nanel gnoreCase(String | astnane);

/] Enabling ignoring case for all suitable properties

Li st <Person> fi ndBylLast naneAndFi r st naneAl | | gnoreCase(String | astname, String firstnane);

/1 Enabling static ORDER BY for a query
Li st <Person> fi ndByLast naneOr der ByFi r st nanmeAsc(String | ast nane);
Li st <Per son> fi ndByLast naneOr der ByFi r st nameDesc(Stri ng | ast nane) ;

}

Example 1.4 Query creation from method names

The actual result of parsing the method depends on the persistence store for which you create the query.
However, there are some general things to notice.

Spring Data Commons -
1.6.3.RELEASE Reference Documentation 5

please define productname in your docbook file!

* The expressions are usually property traversals combined with operators that can be concatenated.
You can combine property expressions with AND and OR. You also get support for operators such as
Bet ween, LessThan, Gr eat er Than, Li ke for the property expressions. The supported operators
can vary by datastore, so consult the appropriate part of your reference documentation.

* The method parser supports setting an |gnoreCase flag for individual properties, for
example,fi ndByLast nanmel gnhor eCase(..)) or for all properties of a type that support ignoring case
(usually St ri ngs, for example, f i ndByLast nameAndFi r st naneAl | | gnor eCase(..)). Whether
ignoring cases is supported may vary by store, so consult the relevant sections in the reference
documentation for the store-specific query method.

* You can apply static ordering by appending an Or der By clause to the query method that references
a property and by providing a sorting direction (Asc or Desc). To create a query method that supports
dynamic sorting, see the section called “Special parameter handling”.

Property expressions

Property expressions can refer only to a direct property of the managed entity, as shown in the preceding
example. At query creation time you already make sure that the parsed property is a property of the
managed domain class. However, you can also define constraints by traversing nested properties.
Assume Per sons have Addr esses with Zi pCodes. In that case a method name of

Li st <Per son> fi ndByAddr essZi pCode(Zi pCode zi pCode);

creates the property traversal x. addr ess. zi pCode. The resolution algorithm starts with interpreting
the entire part (Addr essZi pCode) as the property and checks the domain class for a property with
that name (uncapitalized). If the algorithm succeeds it uses that property. If not, the algorithm splits
up the source at the camel case parts from the right side into a head and a tail and tries to find the
corresponding property, in our example, Addr essZi p and Code. If the algorithm finds a property with
that head it takes the tail and continue building the tree down from there, splitting the tail up in the way
just described. If the first split does not match, the algorithm move the split point to the left (Addr ess,
Zi pCode) and continues.

Although this should work for most cases, it is possible for the algorithm to select the wrong property.
Suppose the Per son class has an addr essZi p property as well. The algorithm would match in the first
split round already and essentially choose the wrong property and finally fail (as the type of addr essZi p
probably has no code property). To resolve this ambiguity you can use _ inside your method name to
manually define traversal points. So our method name would end up like so:

Li st <Per son> fi ndByAddr ess_Zi pCode(Zi pCode zi pCode);

Special parameter handling

To handle parameters to your query you simply define method parameters as already seen in the
examples above. Besides that the infrastructure will recognize certain specific types like Pageabl e and
Sor t to apply pagination and sorting to your queries dynamically.

Page<User > findByLast name(String | astname, Pageabl e pageabl e);
Li st<User> findByLastnane(String |astnanme, Sort sort);

Li st<User> findByLastnane(String | astnane, Pageabl e pageabl e);

Example 1.5 Using Pageable and Sort in query methods

Spring Data Commons -
1.6.3.RELEASE Reference Documentation 6

please define productname in your docbook file!

The first method allows you to pass an or g. spri ngf r amewor k. dat a. donai n. Pageabl e instance
to the query method to dynamically add paging to your statically defined query. Sorting options
are handled through the Pageabl e instance too. If you only need sorting, simply add an
org. springfranmewor k. dat a. domai n. Sort parameter to your method. As you also can see,
simply returning a Li st is possible as well. In this case the additional metadata required to build the
actual Page instance will not be created (which in turn means that the additional count query that would
have been necessary not being issued) but rather simply restricts the query to look up only the given
range of entities.

@ Note

To find out how many pages you get for a query entirely you have to trigger an additional count
query. By default this query will be derived from the query you actually trigger.

Creating repository instances

In this section you create instances and bean definitions for the repository interfaces defined. The easiest
way to do so is by using the Spring namespace that is shipped with each Spring Data module that
supports the repository mechanism.

XML configuration

Each Spring Data module includes a repositories element that allows you to simply define a base
package that Spring scans for you.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans: beans xm ns: beans="http://ww. spri ngfranmework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns="http://ww. spri ngframewor k. org/ schena/ dat a/ j pa"
xsi : schemalLocati on="htt p://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. org/ schema/ dat a/ j pa
http://ww. springframework. org/ schema/ dat a/ j pa/ spri ng-j pa. xsd" >

<repositori es base-package="com acne. repositories" />

</ beans: beans>

In the preceding example, Spring is instructed to scan com.acme.repositories and all its subpackages
for interfaces extending Repository or one of its subinterfaces. For each interface found, the
infrastructure registers the persistence technology-specific Fact or yBean to create the appropriate
proxies that handle invocations of the query methods. Each bean is registered under a bean name that
is derived from the interface name, so an interface of User Reposi t ory would be registered under
user Reposi tory. The base- package attribute allows wildcards, so that you can have a pattern of
scanned packages.

Using filters

By default the infrastructure picks up every interface extending the persistence technology-specific
Reposi t ory subinterface located under the configured base package and creates a bean instance
for it. However, you might want more fine-grained control over which interfaces bean instances get
created for. To do this you use <include-filter /> and <exclude-filter /> elements
inside <r eposi tori es />. The semantics are exactly equivalent to the elements in Spring's context
namespace. For details, see Spring reference documentation on these elements.

Spring Data Commons -
1.6.3.RELEASE Reference Documentation 7

http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#beans-scanning-filters

please define productname in your docbook file!

For example, to exclude certain interfaces from instantiation as repository, you could use the following
configuration:

<repositories base-package="com acne. repositories">
<context:exclude-filter type="regex" expression=".*SomeRepository" />
</repositories>

This example excludes all interfaces ending in SonmeReposi t or y from being instantiated.
Example 1.6 Using exclude-filter element

JavaConfig

The repository infrastructure can also be triggered using a store-specific @&tnabl e
${ st ore} Reposi t ori es annotation on a JavaConfig class. For an introduction into Java-based
configuration of the Spring container, see the reference documentation.?

A sample configuration to enable Spring Data repositories looks something like this.

@conf i guration
@nabl eJpaReposi tori es("com acne. repositories")
cl ass ApplicationConfiguration {

@ean
public EntityManager Factory entityManagerFactory() ({
I/
}
}

Example 1.7 Sample annotation based repository configuration

@ Note

The sample uses the JPA-specific annotation, which you would change according to the store
module you actually use. The same applies to the definition of the Enti t yManager Fact ory
bean. Consult the sections covering the store-specific configuration.

Standalone usage

You can also use the repository infrastructure outside of a Spring container. You still need some
Spring libraries in your classpath, but generally you can set up repositories programmatically as
well. The Spring Data modules that provide repository support ship a persistence technology-specific
Reposi t or yFact ory that you can use as follows.

Reposi t oryFact orySupport factory = ...// Instantiate factory here
User Repository repository = factory. get Repository(UserRepository.class);

Example 1.8 Standalone usage of repository factory

1.3 Custom implementations for Spring Data repositories

Often it is necessary to provide a custom implementation for a few repository methods. Spring Data
repositories easily allow you to provide custom repository code and integrate it with generic CRUD
abstraction and query method functionality.

2.]avaConfig in the Spring reference documentation - http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/
html/beans.html#beans-java

Spring Data Commons -
1.6.3.RELEASE Reference Documentation 8

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-java
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-java

please define productname in your docbook file!

Adding custom behavior to single repositories

To enrich a repository with custom functionality you first define an interface and an implementation for
the custom functionality. Use the repository interface you provided to extend the custom interface.

interface UserRepositoryCustom {

public voi d soneCust omVet hod(User user);
}

Example 1.9 Interface for custom repository functionality

cl ass UserRepositorylnmpl inplenments UserRepositoryCustom {

public voi d sonmeCust omvet hod(User user) {
/1 Your custom i npl enentation
}
}

© Note

The implementation itself does not depend on Spring Data and can be a regular Spring bean. So
you can use standard dependency injection behavior to inject references to other beans, take
part in aspects, and so on.

Example 1.10 Implementation of custom repository functionality

public interface UserRepository extends CrudRepository<User, Long> UserRepositoryCustom {

/| Decl are query nethods here

}

Let your standard repository interface extend the custom one. Doing so makes CRUD and custom
functionality available to clients.
Example 1.11 Changes to the your basic repository interface

Configuration

If you use namespace configuration, the repository infrastructure tries to autodetect custom
implementations by scanning for classes below the package we found a repository in. These classes
need to follow the naming convention of appending the namespace element's attribute r eposi t or y-
i mpl - post fi x to the found repository interface name. This postfix defaults to | npl .

<repositories base-package="com acne. repository" />

<repositories base-package="com acne. repository" repository-inpl-postfix="FooBar" />

Example 1.12 Configuration example

The first configuration example will try to look up a class
com acne. reposi tory. User Reposi t oryl npl to act as custom repository implementation, where
the second example will try to lookup com acne. reposi t ory. User Reposi t or yFooBar .

Manual wiring

The preceding approach works well if your custom implementation uses annotation-based configuration
and autowiring only, as it will be treated as any other Spring bean. If your custom implementation bean

Spring Data Commons -
1.6.3.RELEASE Reference Documentation 9

please define productname in your docbook file!

needs special wiring, you simply declare the bean and name it after the conventions just described.
The infrastructure will then refer to the manually defined bean definition by name instead of creating
one itself.

<repositori es base-package="com acne. repository" />

<beans: bean i d="userRepositoryl npl" class=".">
<l-- further configuration -->
</ beans: bean>

Example 1.13 Manual wiring of custom implementations (1)

Adding custom behavior to all repositories

The preceding approach is not feasible when you want to add a single method to all your repository
interfaces.

1. To add custom behavior to all repositories, you first add an intermediate interface to declare the
shared behavior.

public interface MyRepository<T, |D extends Serializable>
ext ends JpaRepository<T, |D> {

voi d sharedCust omvet hod(I D id);

}
Example 1.14 An interface declaring custom shared behavior

Now your individual repository interfaces will extend this intermediate interface instead of the
Reposi t ory interface to include the functionality declared.

2. Next, create an implementation of the intermediate interface that extends the persistence technology-
specific repository base class. This class will then act as a custom base class for the repository
proxies.

public class MyRepositoryl mpl <T, |D extends Serializable>
extends Si npl eJpaRepository<T, |D> inplenments M/Repository<T, |D> {

private EntityManager entityManager;

/'l There are two constructors to choose from either can be used.
public MyRepositorylnpl (O ass<T> donmi nd ass, EntityManager entityManager) {
super (donmi nCl ass, entityManager);

/1 This is the recormended nethod for accessing inherited class dependenci es.
this.entityManager = entityManager;
}

public voi d sharedCustomvet hod(ID id) {
/1 inmplenentation goes here

}
}

Example 1.15 Custom repository base class

The default behavior of the Spring <r eposi t ori es / > namespace is to provide an implementation
for all interfaces that fall under the base- package. This means that if left in its current state, an

Spring Data Commons -
1.6.3.RELEASE Reference Documentation 10

please define productname in your docbook file!

implementation instance of MyReposi t or y will be created by Spring. This is of course not desired
as it is just supposed to act as an intermediary between Reposi t ory and the actual repository
interfaces you want to define for each entity. To exclude an interface that extends Reposi t or y from
being instantiated as a repository instance, you can either annotate it with @loReposi t or yBean or
move it outside of the configured base- package.

3. Then create a custom repository factory to replace the default Reposi t or yFact or yBean that will
in turn produce a custom Reposi t or yFact ory. The new repository factory will then provide your
MyReposi t oryl npl asthe implementation of any interfaces that extend the Reposi t or y interface,
replacing the Si npl eJpaReposi t ory implementation you just extended.

public class M/RepositoryFact oryBean<R ext ends JpaRepository<T, |> T, | extends
Seri al i zabl e>
ext ends JpaRepositoryFactoryBean<R, T, |> {

protect ed RepositoryFactorySupport createRepositoryFactory(EntityManager
entityManager) ({

return new MyRepositoryFactory(entityManager);
}

private static class M/RepositoryFactory<T, | extends Serializabl e> extends
JpaReposi toryFactory {

private EntityManager entityManager;

publ i c MyRepositoryFactory(EntityManager entityManager) {
super (entityManager);

this.entityManager = entityManager;
}

protected Object get Target Repository(RepositoryMtadata netadata) {

return new MyRepositorylnpl <T, 1>((Cd ass<T>) netadat a. get Domai nCl ass(),
entityManager);
}

protected C ass<?> get Reposi t or yBased ass(Reposi t or yMet adat a net adata) {

/'l The RepositoryMetadata can be safely ignored, it is used by the
JpaReposi t or yFact ory
//to check for QueryDsl JpaRepository's which is out of scope.
return MyRepository. cl ass;
}
}
}

Example 1.16 Custom repository factory bean

4. Finally, either declare beans of the custom factory directly or use the f act ory- cl ass attribute of
the Spring namespace to tell the repository infrastructure to use your custom factory implementation.

<repositories base-package="com acne. repository"
factory-cl ass="com acne. M/Reposi t or yFact or yBean" />

Example 1.17 Using the custom factory with the namespace

Spring Data Commons -
1.6.3.RELEASE Reference Documentation 11

please define productname in your docbook file!

1.4 Spring Data extensions

This section documents a set of Spring Data extensions that enable Spring Data usage in a variety of
contexts. Currently most of the integration is targeted towards Spring MVC.

Web support
© Note

This section contains the documentation for the Spring Data web support as it is implemented
as of Spring Data Commons in the 1.6 range. As it the newly introduced support changes quite
a lot of things we kept the documentation of the former behavior in the section called “Legacy
web support”.

Also note that the JavaConfig support introduced in Spring Data Commons 1.6 requires Spring
3.2 due to some issues with JavaConfig and overridden methods in Spring 3.1.

Spring Data modules ships with a variety of web support if the module supports the repository
programming model. The web related stuff requires Spring MVC JARs on the classpath, some of them
even provide integration with Spring HATEOAS.

®In general, the integration support is enabled by using the @tnabl eSpri ngDat aWwebSupport
annotation in your JavaConfig configuration class.

@onfiguration

@tnabl eWebM/c

@nabl eSpri ngDat aWebSuppor t
class WebConfiguration { }

Example 1.18 Enabling Spring Data web support

The @EnableSpringDataWebSupport annotation registers a few components we will discuss in a bit.
It will also detect Spring HATEOAS on the classpath and register integration components for it as well
if present.

Alternatively, if you are using XML configuration, register either SpringDataWebSupport or
HateoasAwareSpringDataWebSupport as Spring beans:

<bean cl ass="org. spri ngfranewor k. dat a. web. confi g. Spri ngDat aWebConfi gurati on" />

<l-- |f you're using Spring HATEOAS as wel| register this one *instead* of the forner -->
<bean cl ass="org. spri ngfranewor k. dat a. web. confi g. Hat eoasAwar eSpr i ngDat aWebConf i gurati on" /
>

Example 1.19 Enabling Spring Data web support in XML
Basic web support
The configuration setup shown above will register a few basic components:

* A Domai nCl assConvert er to enable Spring MVC to resolve instances of repository managed
domain classes from request parameters or path variables.

» Handl er Met hodAr gunrent Resol ver implementations to let Spring MVC resolve Pageabl e and
Sort instances from request parameters.

3Spring HATEOAS - https://github.com/SpringSource/spring-hateoas

Spring Data Commons -
1.6.3.RELEASE Reference Documentation 12

https://github.com/SpringSource/spring-hateoas

please define productname in your docbook file!

DomainClassConverter

The Domai nCl assConvert er allows you to use domain types in your Spring MVC controller method
signatures directly, so that you don't have to manually lookup the instances via the repository:

@ontrol | er
@request Mappi ng("/ users")
public class UserController {

@request Mappi ng("/{id}")
public String showUser For n{ @at hVari abl e("id") User user, Mdel nodel) {

nodel . addAttri bute("user", user);
return "userForm';

}
}

Example 1.20 A Spring MVC controller using domain types in method signatures

As you can see the method receives a User instance directly and no further lookup is necessary. The
instance can be resolved by letting Spring MVC convert the path variable into the id type of the domain
class first and eventually access the instance through calling fi ndOne(..) on the repository instance
registered for the domain type.

© Note

Currently the repository has to implement Cr udReposi t or y to be eligible to be discovered for
conversion.

HandlerMethodArgumentResolvers for Pageable and Sort

The configuration snippet above also registers a Pageabl eHandl er Met hodAr gunent Resol ver
as well as an instance of Sort Handl er Met hodAr gunent Resol ver. The registration enables
Pageabl e and Sort being valid controller method arguments

@ontrol ler
@Request Mappi ng("/ users")
public class UserController {

@\ut owi red User Repository repository;

@Request Mappi ng
public String showUsers(Mdel nodel, Pageable pageable) {

nmodel . addAttri bute("users", repository.findAll (pageable));
return "users";

}

}
Example 1.21 Using Pageable as controller method argument

This method signature will cause Spring MVC try to derive a Pageabl e instance from the request
parameters using the following default configuration:

Table 1.1. Request parameters evaluated for Pageable instances

page Page you want to retrieve.

si ze Size of the page you want to retrieve.

Spring Data Commons -
1.6.3.RELEASE Reference Documentation 13

please define productname in your docbook file!

sort Properties that should be sorted by in the format pr operty, property(, ASC
DESC) . Default sort direction is ascending. Use multiple sort parameters if you
want to switch directions, e.g. ?sort =f i r st nane&sort =l ast nane, asc.

To customize this behavior extend either Spr i ngDat aWebConf i gur at i on or the HATEOAS-enabled
equivalent and override the pageabl eResol ver () or sort Resol ver () methods and import your
customized configuration file instead of using the @nabl e-annotation.

In case you need multiple Pageabl es or Sor t s to be resolved from the request (for multiple tables, for
example) you can use Spring's @al i fi er annotation to distinguish one from another. The request
parameters then have to be prefixed with ${ qual i fi er} _. So for a method signature like this:

public String showUsers(Mdel nodel,
@ualifier("foo") Pageable first,
@ualifier("bar") Pageable second) { ...}

you have to populate f oo_page and bar _page etc.

The default Pageabl e handed into the method is equivalent to a new PageRequest (0, 20) but can
be customized using the @Pageabl eDef aul t s annotation on the Pageabl e parameter.

Hypermedia support for Pageables

Spring HATEOAS ships with a representation model class PagedResources that allows enrichting the
content of a Page instance with the necessary Page metadata as well as links to let the clients easily
navigate the pages. The conversion of a Page to a PagedResources is done by an implementation of
the Spring HATEOAS ResourceAssembler interface, the PagedResourcesAssembler.

@ontrol | er
cl ass PersonController {

@\ut owi red PersonRepository repository;

@request Mappi ng(val ue = "/ persons", nethod = Request Met hod. GET)
Ht t pEnt i t y<PagedResour ces<Per son>> per sons(Pageabl e pageabl e,
PagedResour cesAssenbl er assenbl er) {

Page<Per son> persons = repository.findAll (pageable);
return new ResponseEntity<>(assenbl er.toResources(persons), HtpStatus. K);

}

}
Example 1.22 Using a PagedResourcesAssembler as controller method argument

Enabling the configuration as shown above allows the PagedResour cesAssenbl er to be used as
controller method argument. Calling t oResour ces(..) on it will cause the following:

* The content of the Page will become the content of the PagedResour ces instance.

» The PagedResour ces will get a PageMet adat a instance attached populated with information form
the Page and the underlying PageRequest .

» The PagedResour ces gets pr ev and next links attached depending on the page's state. The links
will point to the URI the method invoked is mapped to. The pagination parameters added to the method
will match the setup of the Pageabl eHandl er Met hodAr gunent Resol ver to make sure the links
can be resolved later on.

Spring Data Commons -
1.6.3.RELEASE Reference Documentation 14

please define productname in your docbook file!

Assume we have 30 Per son instances in the database. You can now trigger a request GET http://
| ocal host : 8080/ per sons and you'll see something similar to this:

{ "links" : [{ "rel" : "next",
“href" : "http://|ocal host: 8080/ per sons?page=1&si ze=20 }
]

"content" : [
...I'l 20 Person instances rendered here

1.
"pageMet adat a" : {
"size" : 20,
“total El enents" : 30,
"t ot al Pages" : 2,
"nunber" : 0

}
}
You see that the assembler produced the correct URI and also picks up the default configuration
present to resolve the parameters into a Pageabl e for an upcoming request. This means, if
you change that configuration, the links will automatically adhere to the change. By default the
assembler points to the controller method it was invoked in but that can be customized by
handing in a custom Li nk to be used as base to build the pagination links to overloads of the
PagedResour cesAssenbl er. t oResour ce(..) method.

Repository populators

If you work with the Spring JDBC module, you probably are familiar with the support to populate a
Dat aSour ce using SQL scripts. A similar abstraction is available on the repositories level, although
it does not use SQL as the data definition language because it must be store-independent. Thus the
populators support XML (through Spring's OXM abstraction) and JSON (through Jackson) to define data
with which to populate the repositories.

Assume you have a file dat a. j son with the following content:

[{ "_class" : "com acne. Person",
"firstname" : "Dave",
"l ast name" : "Matthews" },
{ "_class" : "com acne. Person",
"firstname" : "Carter",
"l ast name" : "Beauford" }]

Example 1.23 Data defined in JSON

You can easily populate your repositories by using the populator elements of the repository namespace
provided in Spring Data Commons. To populate the preceding data to your Per sonReposi tory , do
the following:

Spring Data Commons -
1.6.3.RELEASE Reference Documentation 15

please define productname in your docbook file!

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: repository="http://ww. springfranmework. or g/ schema/ dat a/ r eposi tory"
xsi:schemaLocati on="http://ww. spri ngframework. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. spri ngfranewor k. or g/ schena/ dat a/ reposi tory
http://ww. springframework. org/ scherma/ dat a/ reposi tory/ spring-repository.xsd">

<reposi tory:jackson-popul ator |ocation="cl asspath: data.json" />

</ beans>

Example 1.24 Declaring a Jackson repository populator

This declaration causes the dat a. j son file being read, deserialized by a Jackson Obj ect Mapper.
The type to which the JSON object will be unmarshalled to will be determined by inspecting the _cl ass
attribute of the JSON document. The infrastructure will eventually select the appropriate repository to
handle the object just deserialized.

To rather use XML to define the data the repositories shall be populated with, you can use the
unmar shal | er - popul at or element. You configure it to use one of the XML marshaller options Spring
OXM provides you with. See the Spring reference documentation for details.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: reposi tory="http://ww. springframework. org/ scherma/ dat a/ r eposi t ory"
xm ns: oxm="ht t p: / / www. spri ngf ramewor k. or g/ schema/ oxni'
xsi :schemaLocati on="http://ww. spri ngframework. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. spri ngfranewor k. or g/ schena/ dat a/ reposi tory
http://ww. springframework. or g/ scherma/ dat a/ reposi tory/ spring-repository. xsd
http://ww. springframework. or g/ schema/ oxm
http: //ww. spri ngfranewor k. or g/ schema/ oxni spri ng- oxm xsd" >

<reposi tory: unmarshal | er-popul at or | ocati on="cl asspat h: dat a. j son" unmarshal | er -
ref ="unnarshal ler" />

<oxm j axb2- mar shal | er cont ext Pat h="com acnme" />

</ beans>

Example 1.25 Declaring an unmarshalling repository populator (using JAXB)

Legacy web support
Domain class web binding for Spring MVC

Given you are developing a Spring MVC web application you typically have to resolve domain class
ids from URLSs. By default your task is to transform that request parameter or URL part into the domain
class to hand it to layers below then or execute business logic on the entities directly. This would look
something like this:

Spring Data Commons -
1.6.3.RELEASE Reference Documentation 16

???

please define productname in your docbook file!

@ontrol |l er
@Request Mappi ng("/ users")
public class UserController {

private final UserRepository userRepository;

@\ut owi r ed

public UserController(UserRepository userRepository) {
Assert.notNul | (repository, "Repository nust not be null!");
user Reposi tory = user Repository;

}

@request Mappi ng("/{id}")
public String showUser For n{ @at hVari abl e("id") Long id, Mdel nodel) {

/1 Do null check for id
User user = userRepository.findOne(id);
/1 Do null check for user

nmodel . addAttri bute("user", user);
return "user";

First you declare a repository dependency for each controller to look up the entity managed by
the controller or repository respectively. Looking up the entity is boilerplate as well, as it's always
a findOne(..) call. Fortunately Spring provides means to register custom components that allow
conversion between a St ri ng value to an arbitrary type.

PropertyEditors

For Spring versions before 3.0 simple Java PropertyEdi t ors had to be used. To integrate with
that, Spring Data offers a Dormai nCl assPr opert yEdi t or Regi st r ar, which looks up all Spring Data
repositories registered in the Appl i cati onCont ext and registers a custom Propert yEdi t or for
the managed domain class.

<bean cl ass="...web. servl et. nm/c. annot ati on. Annot at i onMet hodHand| er Adapt er" >
<property nanme="webBi ndinglnitializer">
<bean cl ass="...web. bi nd. support. Confi gurabl eWebBi ndi nglnitializer">

<property nane="propertyEditorRegistrars">

<bean cl ass="org. spri ngframework. dat a. repository. support. Domai nCl assPropertyEditorRegi strar"
/>
</ property>
</ bean>
</ property>
</ bean>

If you have configured Spring MVC as in the preceding example, you can configure your controller as
follows, which reduces a lot of the clutter and boilerplate.

Spring Data Commons -
1.6.3.RELEASE Reference Documentation 17

please define productname in your docbook file!

@ontrol |l er
@Request Mappi ng("/ users")
public class UserController {

@Request Mappi ng("/{id}")
public String showUser For n(@at hVari abl e("id") User user, Mdel nodel) {

nmodel . addAttri bute("user", user);
return "userForn;

ConversionService

In Spring 3.0 and later the Pr oper t yEdi t or support is superseded by a new conversion infrastructure
that eliminates the drawbacks of PropertyEditors and uses a stateless X to Y conversion
approach. Spring Data now ships with a Domai nCl assConvert er that mimics the behavior of
Domai nCl assPropert yEdi t or Regi strar. To configure, simply declare a bean instance and pipe
the Conver si onSer vi ce being used into its constructor:

<mvc: annot ati on-dri ven conversi on-servi ce="conversi onService" />
<bean cl ass="org. spri ngframework. dat a. reposi tory. support. Domai nCl assConverter">

<constructor-arg ref="conversi onService" />
</ bean>

If you are using JavaConfig, you can simply extend Spring MVC's WebMrcConf i gur at i onSupport
and hand the For mat i ngConver si onSer vi ce that the configuration superclass provides into the
Domai nCl assConvert er instance you create.

cl ass WebConfiguration extends WebM/cConfi gurati onSupport {
/1 Qther configuration omtted

@Bean
publ i ¢ Domai nCl assConvert er<?> domai nCl assConverter () {
return new Domai nCl assConvert er <Formatti ngConver si onServi ce>(mvcConver si onService());
}
}

Web pagination

When working with pagination in the web layer you usually have to write a lot of boilerplate code yourself
to extract the necessary metadata from the request. The less desirable approach shown in the example
below requires the method to contain an Ht t pSer vl et Request parameter that has to be parsed
manually. This example also omits appropriate failure handling, which would make the code even more
verbose.

Spring Data Commons -
1.6.3.RELEASE Reference Documentation 18

please define productname in your docbook file!

@ontrol |l er
@Request Mappi ng("/ users")
public class UserController {

/1 DI code omtted

@request Mappi ng
public String showUsers(Mdel nodel, HttpServletRequest request) {

int page = |nteger. parselnt(request.getParaneter("page"));
int pageSi ze = |nteger. parselnt(request.getParaneter("pageSi ze"));

Pageabl e pageabl e = new PageRequest (page, pageSi ze);

nmodel . addAttri bute("users", userService. get Users(pageabl e));
return "users";

The bottom line is that the controller should not have to handle the functionality of extracting pagination
information from the request. So Spring Data ships with a Pageabl eHandl| er Ar gunent Resol ver
that will do the work for you. The Spring MVC JavaConfig support exposes a
WebMscConfi gurati onSupport helper class to customize the configuration as follows:

@Conf i guration
public class WebConfi g extends WebM/cConfi gurati onSupport {

@verride

public void configureMessageConverters(List<HttpMssageConverter<?>> converters) {
converters. add(new Pageabl eHandl er Ar gument Resol ver());

}

}

If you're stuck with XML configuration you can register the resolver as follows:

<bean cl ass="...web. servl et. nvc. net hod. annot at i on. Request Mappi ngHandl| er Adapt er" >
<property nanme="cust omAr gunent Resol vers" >
<list>
<bean cl ass="org. spri ngfranewor k. dat a. web. Pageabl eHand| er Ar gunent Resol ver" />
</list>
</ property>
</ bean>

When using Spring 3.0.x versions use the Pageabl eAr gunent Resol ver instead. Once you've
configured the resolver with Spring MVC it allows you to simplify controllers down to something like this:

@ontroller
@Request Mappi ng("/ users")
public class UserController {

@Request Mappi ng
public String showUsers(Mdel nodel, Pageable pageable) {

nmodel . addAttri bute("users", userRepository.findAll (pageable));
return "users";

Spring Data Commons -
1.6.3.RELEASE Reference Documentation 19

please define productname in your docbook file!

The Pageabl eAr gurrent Resol ver automatically resolves request parameters to build a
PageRequest instance. By default it expects the following structure for the request parameters.

Table 1.2. Request parameters evaluated by Pageabl eAr gunent Resol ver

page Page you want to retrieve.

page. si ze Size of the page you want to retrieve.
page. sort Property that should be sorted by.
page.sort.dir Direction that should be used for sorting.

In case you need multiple Pageabl es to be resolved from the request (for multiple tables, for example)
you can use Spring's @ual i fi er annotation to distinguish one from another. The request parameters
then have to be prefixed with ${ qual i fi er} . So for a method signature like this:

public String showUsers(Mdel nodel,
@ualifier("foo") Pageable first,
@ualifier("bar") Pageable second) { ...}

you have to populate f oo_page and bar _page and the related subproperties.
Configuring a global default on bean declaration

The Pageabl eAr gunent Resol ver will use a PageRequest with the first page and a page size of 10
by default. It will use that value if it cannot resolve a PageRequest from the request (because of missing
parameters, for example). You can configure a global default on the bean declaration directly. If you
might need controller method specific defaults for the Pageabl e, annotate the method parameter with
@ageabl eDef aul t s and specify page (through pageNunber), page size (through val ue), sort (list
of properties to sort by), and sort Di r (the direction to sort by) as annotation attributes:

public String showUsers(Mdel nodel,
@ageabl eDef aul t s(pageNunber = 0, value = 30) Pageabl e pageable) { ...}

Spring Data Commons -
1.6.3.RELEASE Reference Documentation 20

	Spring Data Commons - Reference Documentation
	Table of Contents
	Preface
	Part I. Reference
	1. Working with Spring Data Repositories
	1.1 Core concepts
	1.2 Query methods
	Defining repository interfaces
	Fine-tuning repository definition

	Defining query methods
	Query lookup strategies
	Query creation
	Property expressions
	Special parameter handling

	Creating repository instances
	XML configuration
	JavaConfig
	Standalone usage

	1.3 Custom implementations for Spring Data repositories
	Adding custom behavior to single repositories
	Adding custom behavior to all repositories

	1.4 Spring Data extensions
	Web support
	Basic web support
	Hypermedia support for Pageables

	Repository populators
	Legacy web support
	Domain class web binding for Spring MVC
	Web pagination

