Spring Data Couchbase - Reference Documentation

1.1.0.RELEASE

Michael Nitschinger, Oliver Gierke

Copyright © 2014The original authors.

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Spring Data Couchbase - Reference Documentation

Table of Contents

L ==Vt PSPPSR iv
1. Project INfOrMEALIONooiiiuiiiii et iv
|. Reference DOCUMENTALIONiiieiiiieeiiti e e e et e ettt r e e e e e e en e na e e e e e eennnes 1
1. Installation & CONfIQUIALIONcouuniiiiii e e e e e 2
R 1S3 7= 11 = 11T PP 2

1.2. Annotation-based Configuration ("JavaConfig")cccccoiieiiiiiiii e 2

1.3. XML-based Configurationcoouioiiiiiie e 3

2. MOOEING ENILIES ..ovtneiiiiiiei ettt ettt e ettt e et et e e e e et aeeeenaaeeees 5
2.1. Documents and FIElUSouuuiiiiiiiiiiiii e 5

2.2. Datatypes and CONVEITEISoeuuiiiiiiii ettt et e et e e e eaa e eees 6

2.3. OptIMIStIC LOCKING ...ciiiiieiiii e 10

2.4, ValidAtiON ..o 11

3. Working with Spring Data REPOSItOMNESccuuuiiiiiiiiieei e ee e 13
T B O] (B o]0 (o7 =T o K= SRR 13

3.2. QUEIY MENOAS . .oviiiii e e 14
Defining repository INTErfACESoiiuu i e 15
Fine-tuning repository definition ..o 15

Defining query Methodsooviiiiiii e 16

Query I00KUP SITAtEOIESceuuiiiiiieiiie et eaa e 16

QUETY CIEALION ... eiiiii ettt e ettt e ettt e et e e e e et e e e eeba e eees 17

Property @XPreSSIONSiiiuuiiiiie e ee e e e e e e e e e e 18

Special parameter handlingcc.viiii e 18

Creating repoSItOry INSTANCESccuuuiiiiii it 19

XML CONFIQUIALION ..ovuiiii e e e e e e aens 19

JAVACONTIG et e 20

StaNAIONE USAGE ...ovvueiiiiiiei ittt 20

3.3. Custom implementations for Spring Data repoSitoriesccoovvvveveviiieviinieeieeennnn, 20
Adding custom behavior to single repoSItOriesovveiiiiiiiiiiiiee e 21

Adding custom behavior to all repOSItONIESiiiiiiiiiiiii e 22

3.4. SPring Data EXtENSIONSc.uuiieiiiiii e e et e e e e e e e e e e e et e e e eanaeeaen 24
VAT oYU o] o Lo] o AP TUPTPPT 24

BaSIiC WED SUPPOIT ..ot 24

Hypermedia support for Pageablescccoooviiiiii i, 26

REPOSILOrY POPUIALOTSceiiiieei et eees 27

Legacy WED SUPPOITu it 28

Domain class web binding for Spring MVCcoooiiiiiiiiii e, 28

WeED PagINALiONiiiiiei e 30

4. COUChDASE FEPOSITOMIESiiiiiiii ettt et e e et e e e aa s 33
o I o] o T U= 11 o I 33

o © L T= Vo PP 33

4.3. BACKING VIBWS ...ttt ettt e e et e e e et eene 34

5. Template & direCt OPEIatiONSccvvuiiieiieii e e e e e e e e e e e e aanaees 37
5.1. SUPPOrted OPEIratiONScieuniiiiieiiie ettt e e e e e e et e et aeenas 37

B. CACNING ottt e e 38
6.1. Configuration & USAQEcveuuiiiiiiiii e e e et e e e e e e e e e e e 38

1IN o] o 1T o To | PSPPI 39
A. NaMESPACE FEFEIEINCE ...t et e e e eeaaens 40

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation ii

Spring Data Couchbase - Reference Documentation

A.l. The <reposSi tori €s /> elemMentcooiiiiiiiiii e 40
B. RePOSItOry qQUENY KEYWOITSuuniiiiiiiiee ittt et e et e e et e e e eaa s 41
B.1. Supported qUErY KEYWOITSccouuiiiiiiiiii et e e e e e e e e e aens 41
Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation iii

Spring Data Couchbase - Reference Documentation

Preface

This reference documentation describes the general usage of the Spring Data Couchbase library.

1 Project Information

» Version control - git://github.com/spring-projects/spring-data-couchbase.qit
» Bugtracker - https://jira.springsource.org/browse/DATACOUCH

» Release repository - http://repo.spring.io/libs-release

» Milestone repository - http://repo.spring.io/libs-milestone

» Snapshot repository - http://repo.spring.io/libs-snapshot

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation

git://github.com/spring-projects/spring-data-couchbase.git
https://jira.springsource.org/browse/DATACOUCH
http://repo.spring.io/libs-release
http://repo.spring.io/libs-milestone
http://repo.spring.io/libs-snapshot

Part I. Reference Documentation

Spring Data Couchbase - Reference Documentation

1. Installation & Configuration

This chapter describes the common installation and configuration steps needed when working with the
library.

1.1 Installation

All versions intented for production use are distributed across Maven Central and the Spring release
repository. As a result, the library can be included like any other maven dependency:

<dependency>
<gr oupl d>or g. spri ngf ramewor k. dat a</ gr oupl d>
<artifactld>spring-data-couchbase</artifactl|d>
<versi on>1. 0. 0. RELEASE</ ver si on>

</ dependency>

Example 1.1 Including the dependency through maven

This will pull in several dependencies, including the underlying Couchbase Java SDK, common Spring
dependencies and also Jackson as the JSON mapping infrastructure.

You can also grab snapshots from the spring snapshot repository and milestone releases from the
milestone repository. Here is an example on how to use the current SNAPSHOT dependency:

<dependency>
<gr oupl d>or g. spri ngf ramewor k. dat a</ gr oupl d>
<artifactld>spring-data-couchbase</artifactl|d>
<version=>1. 1. 0. BUl LD- SNAPSHOT</ ver si on>

</ dependency>

<reposi tory>

<i d>spring-1ibs-snapshot</id>

<name>Spri ng Snapshot Repository</nane>

<url >http://repo.spring.iollibs-snapshot</url>
</ repository>

Example 1.2 Using a snapshot version

Once you have all needed dependencies on the classpath, you can start configuring it. Both Java and
XML config are supported. The next sections describe both approaches in detail.

1.2 Annotation-based Configuration ("JavaConfig")

The annotation based configuration approach is getting more and more popular. It allows you to get rid
of XML configuration and treat configuration as part of your code directly. To get started, all you need
to do is sublcass the Abst r act CouchbaseConf i gur at i on and implement the abstract methods.

Please make sure to have cglib support in the classpath so that the annotation based configuration
works.

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation 2

http://repo.spring.io/libs-snapshot
http://repo.spring.io/libs-milestone

Spring Data Couchbase - Reference Documentation

@configuration
public class Config extends Abstract CouchbaseConfiguration {
@verride
protected List<String> bootstrapHosts() {
return Col |l ections. singl etonList("127.0.0.1");

}

@verride
protected String getBucket Nane() {
return "beer-sanple";

}

@verride
protected String getBucket Password() ({
return "";

}

Example 1.3 Extending the Abst r act CouchbaseConfi gur ati on

All you need to provide is a list of Couchbase nodes to bootstrap into (without any ports, just the IP
address or hostname). Please note that while one host is sufficient in development, it is recommended
to add 3 to 5 bootstrap nodes here. Couchbase will pick up all nodes from the cluster automatically, but
it could be the case that the only node you've provided is experiencing issues while you are starting
the application.

The bucket Nane and passwor d should be the same as configured in Couchbase Server itself. In the
example given, we are connecting to the beer - sanpl e bucket which is one of the sample buckets
shipped with Couchbase Server and has no password set by default.

Depending on how your environment is setup, the configuration will be automatically picked up by the
context or you need to instantiate your own one. How to manage configurations is not scope of this
manual, please refer to the spring documentation for more information on that topic.

While not immediately obvious, much more things can be customized and overriden as custom beans
from this configuration - we'll touch them in the individual manual sections as needed (for example
repositories, validation and custom converters).

1.3 XML-based Configuration

The library provides a custom namespace that you can use in your XML configuration:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans: beans xm ns: beans="http://ww. spri ngframework. or g/ schenma/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns="http://ww. springframework. or g/ schema/ dat a/ couchbase
xsi : schemalLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http: //ww. spri ngfranewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schema/ dat a/ couchbase
http://ww. springframewor k. or g/ schema/ dat a/ couchbase/ spri ng- couchbase. xsd" >

<couchbase: couchbase bucket ="beer-sanpl e" password="" host="127.0.0.1" />
</ beans: beans>

Example 1.4 Basic XML configuration

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation 3

Spring Data Couchbase - Reference Documentation

This code is equivalent to the java configuration approach shown above. It is also possible to configure
templates and repositories, which is shown in the appropriate sections.

If you start your application, you should see Couchbase INFO level logging in the logs, indicating that
the underlying Couchbase Java SDK is connecting to the database. If any errors are reported, make
sure that the given credentials and host information is correct.

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation 4

Spring Data Couchbase - Reference Documentation

2. Modeling Entities

This chapter describes how to model Entities and explains their counterpart representation in
Couchbase Server itself.

2.1 Documents and Fields

All entities should be annotated with the @ocunent annotation. Also, every field in the entity should
be annotated with the @i el d annotation. While this is - strictly speaking - optional, it helps to reduce
edge cases and clearly shows the intent and design of the entity.

There is also a special @ d annotation which needs to be always in place. Best practice is to also name
the property i d. Here is a very simple User entity:

i nport org.springfranework. dat a. annot ati on. | d;
i mport org.springframework. dat a. couchbase. cor e. mappi ng. Docunent ;
i mport org.springframework. dat a. couchbase. cor e. mappi ng. Fi el d;

@ocumnment
public class User {

@d
private String id;

@ield
private String firstnane;

@ield
private String | astnane;

public User(String id, String firstnane, String |astnanme) {

this.id =id;
this.firstname = firstnaneg;
this.lastnanme = | ast nane;

}

public String getld() {
return id;

}

public String getFirstnane() {
return firstnane;

}

public String getLastnane() {
return | ast nane;

}

Example 2.1 A simple Document with Fields

Couchbase Server supports automatic expiration for documents. The library implements support for it
through the @ocunent annotation. You can set a expi ry value which translates to the number of
seconds until the document gets removed automatically. If you want to make it expire in 10 seconds
after mutation, set it like @ocunent (expiry = 10).

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation 5

Spring Data Couchbase - Reference Documentation

If you want a different representation of the field name inside the document in contrast to the field name
used in your entity, you can set a different name on the @i el d annotation. For example if you want
to keep your documents small you can set the firsthname field to @i el d(" f name") . In the JSON
document, you'll see {"fname": ".."} instead of {"firstnane": ".."}.

The @ d annotation needs to be present because every document in Couchbase needs a unique key.
This key needs to be any string with a length of maximum 250 characters. Feel free to use whatever
fits your use case, be it a UUID, an email address or anything else.

2.2 Datatypes and Converters

The storage format of choice is JSON. It is great, but like many data representations it allows less
datatypes than you could express in Java directly. Therefore, for all non-primitive types some form of
conversion to and from supported types needs to happen.

For the following entity field types, you don't need to add special handling:

Table 2.1. Primitive Types

Java Type JSON Representation
string string

boolean boolean

byte number

short number

int number

long number

float number

double number

null Ignored on write

Since JSON supports objects ("maps”) and lists, Map and Li st types can be converted naturally. If
they only contain primitive field types from the last paragraph, you don't need to add special handling
too. Here is an example:

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation 6

Spring Data Couchbase - Reference Documentation

@ocunment
public class User {

@d
private String id;

@ield
private List<String> firstnanes;

@ield
private Map<String, |nteger> chil drenAges;

public User(String id, List<String> firstnanes, Map<String, |nteger> childrenAges) ({
this.id =id,
this.firstnames = firstnanes;
this.childrenAges = chil drenAges;

Example 2.2 A Document with Map and List

Storing a user with some sample data could look like this as a JSON representation:

" _class": "foo.User",

“chil drenAges": ({
"Alice": 10,
"Bob": 5

}

i rstnames": [
" Foo",
"Bar",
"Baz"

Example 2.3 A Document with Map and List - JSON

You don't need to break everything down to primitive types and Lists/Maps all the time. Of course, you
can also compose other objects out of those primitive values. Let's modify the last example so that we
want to store a Li st of Chi | dren:

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation 7

Spring Data Couchbase - Reference Documentation

@ocunment
public class User {

@d
private String id;

@ield
private List<String> firstnanes;

@ield
private List<Child> children;

public User(String id, List<String> firstnanes, List<Child> children) {
this.id =id;
this.firstnames = firstnanes;
this.children = children;

}

static class Child {
private String nane;
private int age;

Child(String nane, int age) {
this. nane = nang;
this.age = age;

Example 2.4 A Document with composed objects

A populated object can look like:

" _class": "foo.User",
“children": [
{
"age": 4,
"name": "Alice"
Ba
{
"age": 3,
"nane": "Bob"
}
e
"firstnames": [
"Foo",
"Bar",
"Baz"

Example 2.5 A Document with composed objects - JSON

Most of the time, you also need to store a temporal value like a Dat e. Since it can't be stored directly in
JSON, a conversion needs to happen. The library implements default converters for Dat e, Cal endar

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation 8

Spring Data Couchbase - Reference Documentation

and JodaTime types (if on the classpath). All of those are represented by default in the document as
a unix timestamp (number). You can always override the default behavior with custom converters as
shown later. Here is an example:

@ocumnent
public class Bl ogPost {

@d
private String id;

@ield
private Date created,;

@ield
private Cal endar updat ed;

@ield
private String title;

public BlogPost(String id, Date created, Calendar updated, String title) {
this.id =id;
this.created = created;
this.updated = updat ed;
this.title = title;

Example 2.6 A Document with Date and Calendar

A populated object can look like:

{
"title": "a blog post title",
" _class": "foo. Bl ogPost",
"updat ed": 1394610843,
"created": 1394610843897

}

Example 2.7 A Document with Date and Calendar - JSON

If you want to override a converter or implement your own one, this is also possible. The
library implements the general Spring Converter pattern. You can plug in custom converters on
bean creation time in your configuration. Here's how you can configure it (in your overriden
Abst ract CouchbaseConf i gurati on):

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation 9

Spring Data Couchbase - Reference Documentation

@verride
publ i ¢ CustonConversi ons custonConversions() {

return new CustonConversions(Arrays. asLi st (FooToBar Convert er. | NSTANCE,
Bar ToFooConverter. | NSTANCE)) ;

}

@\VitingConverter
public static enum FooToBar Converter inplenments Converter<Foo, Bar> {
| NSTANCE

@verride
public Bar convert(Foo source) {
return /* do your conversion here */;

}
}

@readi ngConvert er
public static enum Bar ToFooConverter inplenents Converter<Bar, Foo> {
| NSTANCE

@verride
public Foo convert(Bar source) ({
return /* do your conversion here */;

}

Example 2.8 Custom Converters
There are a few things to keep in mind with custom conversions:

 To make it unambiguous, always use the @Viti ngConverter and @Readi ngConverter
annotations on your converters. Especially if you are dealing with primitive type conversions, this will
help to reduce possible wrong conversions.

« If you implement a writing converter, make sure to decode into primitive types, maps and lists only.
If you need more complex object types, use the CouchbaseDocurent and CouchbaselLi st types,
which are also understood by the underlying translation engine. Your best bet is to stick with as simple
as possible conversions.

» Always put more special converters before generic converters to avoid the case where the wrong
converter gets executed.

2.3 Optimistic Locking

Couchbase Server does not support multi-document transactions or rollback. To implement optimistic
locking, Couchbase uses a CAS (compare and swap) approach. When a document is mutated, the CAS
value also changes. The CAS is opaque to the client, the only thing you need to know is that it changes
when the content or a meta information changes too.

In other datastores, similar behavior can be achieved through an arbitrary version field whith a
incrementing counter. Since Couchbase supports this in a much better fashion, it is easy to implement.
If you want automatic optimistic locking support, all you need to do is add a @/er si on annotation on
a long field like this:

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation 10

Spring Data Couchbase - Reference Documentation

@ocunment
public class User {

@/er si on
private | ong version

/'l constructor, getters, setters..

Example 2.9 A Document with optimistic locking.

If you load a document through the template or repository, the version field will be automatically
populated with the current CAS value. It is important to note that you shouldn't access the field or
even change it on your own. Once you save the document back, it will either succeed or fail with
a OptimsticlLockingFail ureException. If you get such an exception, the further approach
depends on what you want to achieve application wise. You should either retry the complete load-
update-write cycle or propagate the error to the upper layers for proper handling.

2.4 Validation

The library supports JSR 303 validation, which is based on annotations directly in your entities. Of
course you can add all kinds of validation in your service layer, but this way its nicely coupled to your
actual entities.

To make it work, you need to include two additional dependencies. JSR 303 and a library that implements
it, like the one supported by hibernate:

<dependency>
<gr oupl d>j avax. val i dati on</ gr oupl d>
<artifactld>validation-api</artifactld>
</ dependency>
<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactld>hi bernate-validator</artifactld>
</ dependency>

Example 2.10 Validation dependencies

Now you need to add two beans to your configuration:

@ean
publ i c Local Val i dat or Fact oryBean val i dator() {
return new Local Val i dat or Fact or yBean() ;

}

@ean

public ValidatingCouchbaseEventLi stener validati onEventListener() {
return new Val i datingCouchbaseEvent Li st ener(validator());

}

Example 2.11 Validation beans

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation 11

Spring Data Couchbase - Reference Documentation

Now you can annotate your fields with JSR303 annotations. If a validation on save() fails, a
Constrai nt Vi ol ati onExcepti on is thrown.

@i ze(mn = 10)
@ield
private String nane;

Example 2.12 Sample Validation Annotation

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation 12

Spring Data Couchbase - Reference Documentation

3. Working with Spring Data Repositories

The goal of Spring Data repository abstraction is to significantly reduce the amount of boilerplate code
required to implement data access layers for various persistence stores.

©

Important

Spring Data repository documentation and your module

This chapter explains the core concepts and interfaces of Spring Data repositories. The
information in this chapter is pulled from the Spring Data Commons module. It uses the
configuration and code samples for the Java Persistence APl (JPA) module. Adapt the XML
namespace declaration and the types to be extended to the equivalents of the particular module
that you are using. Appendix A, Namespace reference covers XML configuration which is
supported across all Spring Data modules supporting the repository API, Appendix B, Repository
guery keywords covers the query method keywords supported by the repository abstraction in
general. For detailed information on the specific features of your module, consult the chapter on
that module of this document.

3.1 Core concepts

The central interface in Spring Data repository abstraction is Reposi t or y (probably not that much of
a surprise). It takes the domain class to manage as well as the id type of the domain class as type
arguments. This interface acts primarily as a marker interface to capture the types to work with and
to help you to discover interfaces that extend this one. The Cr udReposi t or y provides sophisticated
CRUD functionality for the entity class that is being managed.

Oo0Ooogogo

public interface CrudRepository<T, |ID extends Serializable>

ext ends Repository<T, |ID> {

<S extends T> S save(S entity);

T findOne(ID pri maryKey);

Iterabl e<T> findAll ();

Long count () ;

void delete(T entity);

bool ean exi sts(1D pri maryKey);

/1 ..nmore functionality omtted.

Saves the given entity.

Returns the entity identified by the given id.
Returns all entities.

Returns the number of entities.

Deletes the given entity.

Indicates whether an entity with the given id exists.

Example 3.1 Cr udReposi t ory interface

Spring Data Couchbase -

1.1.0.RELEASE Reference Documentation

13

Spring Data Couchbase - Reference Documentation

© Note

We also provide persistence technology-specific abstractions like e.g. JpaRepository or
MongoReposi t ory. Those interfaces extend Cr udReposi t or y and expose the capabilities of
the underlying persistence technology in addition to the rather generic persistence technology-
agnostic interfaces like e.g. Cr udReposi t ory.

On top of the Cr udReposi t ory there is a Pagi ngAndSor t i ngReposi t ory abstraction that adds
additional methods to ease paginated access to entities:

public interface Pagi ngAndSorti ngRepository<T, |D extends Serializabl e>
extends CrudRepository<T, |D> {

Iterabl e<T> findAl |l (Sort sort);

Page<T> fi ndAl | (Pageabl e pageabl e);
}

Example 3.2 PagingAndSortingRepository

Accessing the second page of User by a page size of 20 you could simply do something like this:

Pagi ngAndSort i ngReposi t ory<User, Long> repository = // ...get access to a bean
Page<User > users = repository.findAl | (new PageRequest (1, 20));

In addition to finder methods, query derivation for both count and delete queries, is available.

public interface UserRepository extends CrudRepository<User, Long> {

Long count ByLast nane(String | astnane);

}
Example 3.3 Derived Count Query

public interface UserRRepository extends CrudRepository<User, Long> {
Long del et eByLast name(String | ast nane) ;
Li st <User > renpveBylLast nane(String | astnane);

}
Example 3.4 Derived Delete Query

3.2 Query methods

Standard CRUD functionality repositories usually have queries on the underlying datastore. With Spring
Data, declaring those queries becomes a four-step process:

1. Declare an interface extending Reposi t ory or one of its subinterfaces and type it to the domain
class and ID type that it will handle.

‘ public interface PersonRepository extends Repository<User, Long> { ...}

2. Declare query methods on the interface.

‘ Li st <Person> findByLast nane(String | astnane);

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation 14

Spring Data Couchbase - Reference Documentation

3. Set up Spring to create proxy instances for those interfaces. Either via JavaConfig:

i nport org.springfranmework. data.jpa.repository.config. Enabl eJpaRepositori es;

@nabl eJpaReposi tori es
class Config {}

or via XML configuration:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"

xm ns:j pa="http://ww. springframewor k. org/ schena/ dat a/ j pa"

xsi : schemaLocati on="htt p://wmv springfranmewor k. or g/ schema/ beans http://
www. spri ngframewor k. or g/ schena/ beans/ spri ng- beans. xsd

http://ww. springframework. org/ schema/ data/j pa http://ww. springframework. org/

schema/ dat a/ j pa/ spri ng-j pa. xsd" >

<j pa: reposi tori es base-package="com acne. repositories"/>

</ beans>

The JPA namespace is used in this example. If you are using the repository abstraction for any other
store, you need to change this to the appropriate namespace declaration of your store module which
should be exchanging j pa in favor of, for example, mongodb. Also, note that the JavaConfig variant
doesn't configure a package explictly as the package of the annotated class is used by default. To
customize the package to scan

4. Get the repository instance injected and use it.

public class Somedient {

@\ut owi r ed
private PersonRepository repository;

public void doSonething() {
Li st <Person> persons = repository.findByLastnanme("Matthews");
}
}

The sections that follow explain each step.
Defining repository interfaces

As a first step you define a domain class-specific repository interface. The interface must extend
Reposi t ory and be typed to the domain class and an ID type. If you want to expose CRUD methods
for that domain type, extend Cr udReposi t or y instead of Reposi t ory.

Fine-tuning repository definition

Typically, your repository interface will extend Repository, CrudRepository or
Pagi ngAndSor ti ngReposi t ory. Alternatively, if you do not want to extend Spring Data interfaces,
you can also annotate your repository interface with @RepositoryDefinition. Extending
CrudReposi tory exposes a complete set of methods to manipulate your entities. If you prefer
to be selective about the methods being exposed, simply copy the ones you want to expose from
Cr udReposi t ory into your domain repository.

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation 15

Spring Data Couchbase - Reference Documentation

© Note

This allows you to define your own abstractions on top of the provided Spring Data Repositories
functionality.

@\oReposi t or yBean
interface MyBaseRepository<T, |D extends Serializabl e> extends Repository<T, |D> {

T findOne(ID id);

T save(T entity);
}

interface UserRepository extends MyBaseRepository<User, Long> {

User findByEnmi |l Address(Emai | Address emai | Addr ess);
}

Example 3.5 Selectively exposing CRUD methods

In this first step you defined a common base interface for all your domain repositories and exposed
fi ndOne(..) aswellassave(..) .These methods will be routed into the base repository implementation
of the store of your choice provided by Spring Data ,e.g. in the case if JPA Si npl eJpaReposi tory,
because they are matching the method signatures in Cr udReposi t or y. So the User Reposi t or y will
now be able to save users, and find single ones by id, as well as triggering a query to find User s by
their email address.

© Note

Note, that the intermediate repository interface is annotated with @NoReposi t or yBean. Make
sure you add that annotation to all repository interfaces that Spring Data should not create
instances for at runtime.

Defining query methods

The repository proxy has two ways to derive a store-specific query from the method name. It can derive
the query from the method name directly, or by using an manually defined query. Available options
depend on the actual store. However, there's got to be an strategy that decides what actual query is
created. Let's have a look at the available options.

Query lookup strategies

The following strategies are available for the repository infrastructure to resolve the query. You
can configure the strategy at the namespace through the query-| ookup-strategy attribute
in case of XML configuration or via the queryLookupStrategy attribute of the Enable
${ st or e} Reposi t ori es annotation in case of Java config. Some strategies may not be supported
for particular datastores.

CREATE

CREATE attempts to construct a store-specific query from the query method name. The general approach
is to remove a given set of well-known prefixes from the method name and parse the rest of the method.
Read more about query construction in the section called “Query creation”.

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation 16

Spring Data Couchbase - Reference Documentation

USE_DECLARED_QUERY

USE_DECLARED_QUERY tries to find a declared query and will throw an exception in case it can't find
one. The query can be defined by an annotation somewhere or declared by other means. Consult the
documentation of the specific store to find available options for that store. If the repository infrastructure
does not find a declared query for the method at bootstrap time, it fails.

CREATE_IF_NOT_FOUND (default)

CREATE | F_NOT_FOUND combines CREATE and USE_DECLARED QUERY. It looks up a declared query
first, and if no declared query is found, it creates a custom method name-based query. This is the default
lookup strategy and thus will be used if you do not configure anything explicitly. It allows quick query
definition by method names but also custom-tuning of these queries by introducing declared queries
as needed.

Query creation

The query builder mechanism built into Spring Data repository infrastructure is useful for building
constraining queries over entities of the repository. The mechanism strips the prefixes fi nd..By,
read..By, query..By, count ..By, and get ..By from the method and starts parsing the rest of it. The
introducing clause can contain further expressions such as a Di sti nct to set a distinct flag on the
query to be created. However, the first By acts as delimiter to indicate the start of the actual criteria. At a
very basic level you can define conditions on entity properties and concatenate them with And and Or .

public interface PersonRepository extends Repository<User, Long> {
Li st <Per son> fi ndByEmai | Addr essAndLast nanme(Enai | Addr ess enmi | Address, String | astnane);

/] Enables the distinct flag for the query
Li st <Person> fi ndDi sti nct Peopl eByLast nameOr Firstnane(String | astname, String firstnane);
Li st <Person> fi ndPeopl eDi sti nct ByLast nameOr Firstnane(String | astname, String firstnane);

/'l Enabling ignoring case for an individual property

Li st <Person> fi ndByLast nanel gnoreCase(String | astnane);

/] Enabling ignoring case for all suitable properties

Li st <Person> fi ndByLast naneAndFi r st naneAl | | gnoreCase(String | astname, String firstnane);

/] Enabling static ORDER BY for a query
Li st <Person> fi ndByLast naneOr der ByFi r st nanmeAsc(String | ast nane);
Li st <Per son> fi ndByLast naneOr der ByFi r st nanmeDesc(Stri ng | ast nane) ;

}
Example 3.6 Query creation from method names

The actual result of parsing the method depends on the persistence store for which you create the query.
However, there are some general things to notice.

» The expressions are usually property traversals combined with operators that can be concatenated.
You can combine property expressions with AND and OR. You also get support for operators such as
Bet ween, LessThan, Gr eat er Than, Li ke for the property expressions. The supported operators
can vary by datastore, so consult the appropriate part of your reference documentation.

« The method parser supports setting an |gnoreCase flag for individual properties, for
example,fi ndByLast namel gnor eCase(..)) or for all properties of a type that support ignoring case
(usually St ri ngs, for example, fi ndByLast nanmeAndFi r st naneAl | | gnor eCase(..)). Whether
ignoring cases is supported may vary by store, so consult the relevant sections in the reference
documentation for the store-specific query method.

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation 17

Spring Data Couchbase - Reference Documentation

* You can apply static ordering by appending an Or der By clause to the query method that references
a property and by providing a sorting direction (Asc or Desc). To create a query method that supports
dynamic sorting, see the section called “Special parameter handling”.

Property expressions

Property expressions can refer only to a direct property of the managed entity, as shown in the preceding
example. At query creation time you already make sure that the parsed property is a property of the
managed domain class. However, you can also define constraints by traversing nested properties.
Assume Per sons have Addr esses with Zi pCodes. In that case a method name of

Li st <Person> fi ndByAddr essZi pCode(Zi pCode zi pCode);

creates the property traversal x. addr ess. zi pCode. The resolution algorithm starts with interpreting
the entire part (Addr essZi pCode) as the property and checks the domain class for a property with
that name (uncapitalized). If the algorithm succeeds it uses that property. If not, the algorithm splits
up the source at the camel case parts from the right side into a head and a tail and tries to find the
corresponding property, in our example, Addr essZi p and Code. If the algorithm finds a property with
that head it takes the tail and continue building the tree down from there, splitting the tail up in the way
just described. If the first split does not match, the algorithm move the split point to the left (Addr ess,
Zi pCode) and continues.

Although this should work for most cases, it is possible for the algorithm to select the wrong property.
Suppose the Per son class has an addr essZi p property as well. The algorithm would match in the first
split round already and essentially choose the wrong property and finally fail (as the type of addr essZi p
probably has no code property). To resolve this ambiguity you can use _ inside your method name to
manually define traversal points. So our method name would end up like so:

Li st <Per son> fi ndByAddress_Zi pCode(Zi pCode zi pCode) ;

If your property names contain underscores (e.g. f i r st _nane) you can escape the underscore in the
method name with a second underscore. For a fi rst _nane property the query method would have
to be named f i ndByFi rst __name(..).

Special parameter handling

To handle parameters in your query you simply define method parameters as already seen in the
examples above. Besides that the infrastructure will recognize certain specific types like Pageabl e and
Sort to apply pagination and sorting to your queries dynamically.

Page<User > findByLast nanme(String | ast name, Pageabl e pageabl e);
Li st <User> findByLastnane(String | astname, Sort sort);

Li st<User> findByLastname(String | astname, Pageabl e pageabl e);

Example 3.7 Using Pageable and Sort in query methods

The first method allows you to pass an or g. spri ngf r amewor k. dat a. donai n. Pageabl e instance
to the query method to dynamically add paging to your statically defined query. Sorting options
are handled through the Pageabl e instance too. If you only need sorting, simply add an
org. springframewor k. dat a. donai n. Sort parameter to your method. As you also can see,
simply returning a Li st is possible as well. In this case the additional metadata required to build the
actual Page instance will not be created (which in turn means that the additional count query that would

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation 18

Spring Data Couchbase - Reference Documentation

have been necessary not being issued) but rather simply restricts the query to look up only the given
range of entities.

© Note

To find out how many pages you get for a query entirely you have to trigger an additional count
query. By default this query will be derived from the query you actually trigger.

Creating repository instances

In this section you create instances and bean definitions for the repository interfaces defined. One way
to do so is using the Spring namespace that is shipped with each Spring Data module that supports the
repository mechanism although we generally recommend to use the Java-Config style configuration.

XML configuration

Each Spring Data module includes a repositories element that allows you to simply define a base
package that Spring scans for you.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans: beans xm ns: beans="http://ww. spri ngfranmewor k. or g/ schenma/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns="http://ww. spri ngframewor k. org/ schena/ dat a/ j pa"
xsi : schemaLocati on="http://ww. spri ngf ramewor k. or g/ schena/ beans
http://ww. springfranmewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. org/ schema/ dat a/ j pa
http://ww. springframework. org/ schema/ dat a/ j pa/ spri ng-j pa. xsd" >

<repositori es base-package="com acne. repositories" />

</ beans: beans>

In the preceding example, Spring is instructed to scan com.acme.repositories and all its subpackages
for interfaces extending Repository or one of its subinterfaces. For each interface found, the
infrastructure registers the persistence technology-specific Fact or yBean to create the appropriate
proxies that handle invocations of the query methods. Each bean is registered under a bean name that
is derived from the interface name, so an interface of User Reposi t or y would be registered under
user Reposi t ory. The base- package attribute allows wildcards, so that you can define a pattern of
scanned packages.

Using filters

By default the infrastructure picks up every interface extending the persistence technology-specific
Reposi t ory subinterface located under the configured base package and creates a bean instance
for it. However, you might want more fine-grained control over which interfaces bean instances get
created for. To do this you use <include-filter /> and <exclude-filter /> elements
inside <r eposi tori es />. The semantics are exactly equivalent to the elements in Spring's context
namespace. For details, see Spring reference documentation on these elements.

For example, to exclude certain interfaces from instantiation as repository, you could use the following
configuration:

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation 19

http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#beans-scanning-filters

Spring Data Couchbase - Reference Documentation

<repositories base-package="com acne. repositories">
<context:exclude-filter type="regex" expression=".*SomeRepository" />
</repositories>

This example excludes all interfaces ending in SomeReposi t or y from being instantiated.
Example 3.8 Using exclude-filter element

JavaConfig

The repository infrastructure can also be triggered using a store-specific @tnabl e
${st ore} Reposi tori es annotation on a JavaConfig class. For an introduction into Java-based
configuration of the Spring container, see the reference documentation.?

A sample configuration to enable Spring Data repositories looks something like this.

@Configuration
@nabl eJpaReposi tori es("com acne. repositories")
cl ass ApplicationConfiguration {

@ean
public EntityManager Factory entityManagerFactory() ({
/1

}

}
Example 3.9 Sample annotation based repository configuration

© Note

The sample uses the JPA-specific annotation, which you would change according to the store
module you actually use. The same applies to the definition of the Ent i t yManager Fact ory
bean. Consult the sections covering the store-specific configuration.

Standalone usage

You can also use the repository infrastructure outside of a Spring container, e.g. in CDI environments.
You still need some Spring libraries in your classpath, but generally you can set up repositories
programmatically as well. The Spring Data modules that provide repository support ship a persistence
technology-specific Reposi t or yFact or y that you can use as follows.

Reposi t oryFact orySupport factory = ...// Instantiate factory here
User Repository repository = factory. get Repository(UserRepository.class);

Example 3.10 Standalone usage of repository factory

3.3 Custom implementations for Spring Data repositories

Often it is necessary to provide a custom implementation for a few repository methods. Spring Data
repositories easily allow you to provide custom repository code and integrate it with generic CRUD
abstraction and query method functionality.

2.]avaConfig in the Spring reference documentation - http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/
html/beans.html#beans-java

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation 20

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-java
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-java

Spring Data Couchbase - Reference Documentation

Adding custom behavior to single repositories

To enrich a repository with custom functionality you first define an interface and an implementation for
the custom functionality. Use the repository interface you provided to extend the custom interface.

interface UserRepositoryCustom {

public voi d soneCust omVet hod(User user);
}

Example 3.11 Interface for custom repository functionality

cl ass UserRepositorylnmpl inplenments UserRepositoryCustom {

public voi d sonmeCust omvet hod(User user) {
/1 Your custom i npl enentation
}
}

© Note

The implementation itself does not depend on Spring Data and can be a regular Spring bean.
So you can use standard dependency injection behavior to inject references to other beans like
a JdbTenpl at e, take part in aspects, and so on.

Example 3.12 Implementation of custom repository functionality

public interface UserRepository extends CrudRepository<User, Long> UserRepositoryCustom {
/| Decl are query nethods here

}

Let your standard repository interface extend the custom one. Doing so combines the CRUD and custom
functionality and makes it available to clients.
Example 3.13 Changes to the your basic repository interface

Configuration

If you use namespace configuration, the repository infrastructure tries to autodetect custom
implementations by scanning for classes below the package we found a repository in. These classes
need to follow the naming convention of appending the namespace element's attribute r eposi t or y-
i mpl - post fi x to the found repository interface name. This postfix defaults to | npl .

<repositories base-package="com acne. repository" />

<repositories base-package="com acne. repository" repository-inpl-postfix="FooBar" />

Example 3.14 Configuration example

The first configuration example will try to look up a class
com acne. repository. User Reposi toryl npl to act as custom repository implementation,
whereas the second example will try to lookup com acne. r eposi t ory. User Reposi t or yFooBar .

Manual wiring

The preceding approach works well if your custom implementation uses annotation-based configuration
and autowiring only, as it will be treated as any other Spring bean. If your custom implementation bean

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation 21

Spring Data Couchbase - Reference Documentation

needs special wiring, you simply declare the bean and name it after the conventions just described.
The infrastructure will then refer to the manually defined bean definition by name instead of creating
one itself.

<repositori es base-package="com acne. repository" />

<beans: bean i d="userRepositoryl npl" class=".">
<l-- further configuration -->
</ beans: bean>

Example 3.15 Manual wiring of custom implementations (1)

Adding custom behavior to all repositories

The preceding approach is not feasible when you want to add a single method to all your repository
interfaces.

1. To add custom behavior to all repositories, you first add an intermediate interface to declare the
shared behavior.

public interface MyRepository<T, |D extends Serializable>
ext ends JpaRepository<T, |D> {

voi d sharedCust omvet hod(I D id);

}
Example 3.16 An interface declaring custom shared behavior

Now your individual repository interfaces will extend this intermediate interface instead of the
Reposi t ory interface to include the functionality declared.

2. Next, create an implementation of the intermediate interface that extends the persistence technology-
specific repository base class. This class will then act as a custom base class for the repository
proxies.

public class MyRepositoryl mpl <T, |D extends Serializable>
extends Si npl eJpaRepository<T, |D> inplenments M/Repository<T, |D> {

private EntityManager entityManager;

/'l There are two constructors to choose from either can be used.
public MyRepositorylnpl (O ass<T> donmi nd ass, EntityManager entityManager) {
super (donmi nCl ass, entityManager);

/1 This is the recormended nethod for accessing inherited class dependenci es.
this.entityManager = entityManager;
}

public voi d sharedCustomvet hod(ID id) {
/1 inmplenentation goes here

}
}

Example 3.17 Custom repository base class

The default behavior of the Spring <r eposi t ori es / > namespace is to provide an implementation
for all interfaces that fall under the base- package. This means that if left in its current state, an

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation 22

Spring Data Couchbase - Reference Documentation

implementation instance of MyReposi t or y will be created by Spring. This is of course not desired
as it is just supposed to act as an intermediary between Reposi t ory and the actual repository
interfaces you want to define for each entity. To exclude an interface that extends Reposi t or y from
being instantiated as a repository instance, you can either annotate it with @loReposi t or yBean or
move it outside of the configured base- package.

3. Then create a custom repository factory to replace the default Reposi t or yFact or yBean that will
in turn produce a custom Reposi t or yFact ory. The new repository factory will then provide your
MyReposi t oryl npl asthe implementation of any interfaces that extend the Reposi t or y interface,
replacing the Si npl eJpaReposi t ory implementation you just extended.

public class M/RepositoryFact oryBean<R ext ends JpaRepository<T, |> T, | extends
Seri al i zabl e>
ext ends JpaRepositoryFactoryBean<R, T, |> {

protect ed RepositoryFactorySupport createRepositoryFactory(EntityManager
entityManager) ({

return new MyRepositoryFactory(entityManager);
}

private static class M/RepositoryFactory<T, | extends Serializabl e> extends
JpaReposi toryFactory {

private EntityManager entityManager;

publ i c MyRepositoryFactory(EntityManager entityManager) {
super (entityManager);

this.entityManager = entityManager;
}

protected Object get Target Repository(RepositoryMtadata netadata) {

return new MyRepositorylnpl <T, 1>((Cd ass<T>) netadat a. get Domai nCl ass(),
entityManager);
}

protected C ass<?> get Reposi t or yBased ass(Reposi t or yMet adat a net adata) {

/'l The RepositoryMetadata can be safely ignored, it is used by the
JpaReposi t or yFact ory
//to check for QueryDsl JpaRepository's which is out of scope.
return MyRepository. cl ass;
}
}
}

Example 3.18 Custom repository factory bean

4. Finally, either declare beans of the custom factory directly or use the f act ory- cl ass attribute of
the Spring namespace to tell the repository infrastructure to use your custom factory implementation.

<repositories base-package="com acne. repository"
factory-cl ass="com acne. M/Reposi t or yFact or yBean" />

Example 3.19 Using the custom factory with the namespace

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation 23

Spring Data Couchbase - Reference Documentation

3.4 Spring Data extensions

This section documents a set of Spring Data extensions that enable Spring Data usage in a variety of
contexts. Currently most of the integration is targeted towards Spring MVC.

Web support
© Note

This section contains the documentation for the Spring Data web support as it is implemented
as of Spring Data Commons in the 1.6 range. As it the newly introduced support changes quite
a lot of things we kept the documentation of the former behavior in the section called “Legacy
web support”.

Also note that the JavaConfig support introduced in Spring Data Commons 1.6 requires Spring
3.2 due to some issues with JavaConfig and overridden methods in Spring 3.1.

Spring Data modules ships with a variety of web support if the module supports the repository
programming model. The web related stuff requires Spring MVC JARs on the classpath, some of them
even provide integration with Spring HATEOAS.

®In general, the integration support is enabled by using the @tnabl eSpri ngDat aWwebSupport
annotation in your JavaConfig configuration class.

@onfiguration

@tnabl eWebM/c

@nabl eSpri ngDat aWebSuppor t
class WebConfiguration { }

Example 3.20 Enabling Spring Data web support

The @EnableSpringDataWebSupport annotation registers a few components we will discuss in a bit.
It will also detect Spring HATEOAS on the classpath and register integration components for it as well
if present.

Alternatively, if you are using XML configuration, register either SpringDataWebSupport or
HateoasAwareSpringDataWebSupport as Spring beans:

<bean cl ass="org. spri ngfranewor k. dat a. web. confi g. Spri ngDat aWebConfi gurati on" />

<l-- |f you're using Spring HATEOAS as wel| register this one *instead* of the forner -->
<bean cl ass="org. spri ngfranewor k. dat a. web. confi g. Hat eoasAwar eSpr i ngDat aWebConf i gurati on" /
>

Example 3.21 Enabling Spring Data web support in XML
Basic web support
The configuration setup shown above will register a few basic components:

* A Domai nCl assConvert er to enable Spring MVC to resolve instances of repository managed
domain classes from request parameters or path variables.

» Handl er Met hodAr gunrent Resol ver implementations to let Spring MVC resolve Pageabl e and
Sort instances from request parameters.

3Spring HATEOAS - https://github.com/SpringSource/spring-hateoas

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation 24

https://github.com/SpringSource/spring-hateoas

Spring Data Couchbase - Reference Documentation

DomainClassConverter

The Domai nCl assConvert er allows you to use domain types in your Spring MVC controller method
signatures directly, so that you don't have to manually lookup the instances via the repository:

@ontrol | er
@request Mappi ng("/ users")
public class UserController {

@request Mappi ng("/{id}")
public String showUser For n{ @at hVari abl e("id") User user, Mdel nodel) {

nodel . addAttri bute("user", user);
return "userForm';

}
}

Example 3.22 A Spring MVC controller using domain types in method signatures

As you can see the method receives a User instance directly and no further lookup is necessary. The
instance can be resolved by letting Spring MVC convert the path variable into the id type of the domain
class first and eventually access the instance through calling fi ndOne(..) on the repository instance
registered for the domain type.

© Note

Currently the repository has to implement Cr udReposi t or y to be eligible to be discovered for
conversion.

HandlerMethodArgumentResolvers for Pageable and Sort

The configuration snippet above also registers a Pageabl eHandl er Met hodAr gunent Resol ver
as well as an instance of Sort Handl er Met hodAr gunent Resol ver. The registration enables
Pageabl e and Sort being valid controller method arguments

@ontrol ler
@Request Mappi ng("/ users")
public class UserController {

@\ut owi red User Repository repository;

@Request Mappi ng
public String showUsers(Mdel nodel, Pageable pageable) {

nmodel . addAttri bute("users", repository.findAll (pageable));
return "users";

}

}
Example 3.23 Using Pageable as controller method argument

This method signature will cause Spring MVC try to derive a Pageabl e instance from the request
parameters using the following default configuration:

Table 3.1. Request parameters evaluated for Pageable instances

page Page you want to retrieve.

si ze Size of the page you want to retrieve.

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation 25

Spring Data Couchbase - Reference Documentation

sort Properties that should be sorted by in the format pr operty, property(, ASC
DESC) . Default sort direction is ascending. Use multiple sort parameters if you
want to switch directions, e.g. ?sort =f i r st nane&sort =l ast nane, asc.

To customize this behavior extend either Spr i ngDat aWebConf i gur at i on or the HATEOAS-enabled
equivalent and override the pageabl eResol ver () or sort Resol ver () methods and import your
customized configuration file instead of using the @nabl e-annotation.

In case you need multiple Pageabl es or Sor t s to be resolved from the request (for multiple tables, for
example) you can use Spring's @al i fi er annotation to distinguish one from another. The request
parameters then have to be prefixed with ${ qual i fi er} _. So for a method signature like this:

public String showUsers(Mdel nodel,
@ualifier("foo") Pageable first,
@ualifier("bar") Pageable second) { ...}

you have to populate f oo_page and bar _page etc.

The default Pageabl e handed into the method is equivalent to a new PageRequest (0, 20) but can
be customized using the @Pageabl eDef aul t s annotation on the Pageabl e parameter.

Hypermedia support for Pageables

Spring HATEOAS ships with a representation model class PagedResources that allows enrichting the
content of a Page instance with the necessary Page metadata as well as links to let the clients easily
navigate the pages. The conversion of a Page to a PagedResources is done by an implementation of
the Spring HATEOAS ResourceAssembler interface, the PagedResourcesAssembler.

@ontrol | er
cl ass PersonController {

@\ut owi red PersonRepository repository;

@request Mappi ng(val ue = "/ persons", nethod = Request Met hod. GET)
Ht t pEnt i t y<PagedResour ces<Per son>> per sons(Pageabl e pageabl e,
PagedResour cesAssenbl er assenbl er) {

Page<Per son> persons = repository.findAll (pageable);
return new ResponseEntity<>(assenbl er.toResources(persons), HtpStatus. K);

}

}
Example 3.24 Using a PagedResourcesAssembler as controller method argument

Enabling the configuration as shown above allows the PagedResour cesAssenbl er to be used as
controller method argument. Calling t oResour ces(..) on it will cause the following:

* The content of the Page will become the content of the PagedResour ces instance.

» The PagedResour ces will get a PageMet adat a instance attached populated with information form
the Page and the underlying PageRequest .

» The PagedResour ces gets pr ev and next links attached depending on the page's state. The links
will point to the URI the method invoked is mapped to. The pagination parameters added to the method
will match the setup of the Pageabl eHandl er Met hodAr gunent Resol ver to make sure the links
can be resolved later on.

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation 26

Spring Data Couchbase - Reference Documentation

Assume we have 30 Per son instances in the database. You can now trigger a request GET http://
| ocal host : 8080/ per sons and you'll see something similar to this:

{ "links" : [{ "rel" : "next",
“href" : "http://|ocal host: 8080/ per sons?page=1&si ze=20 }
]

"content" : [
...I'l 20 Person instances rendered here

1.
"pageMet adat a" : {
"size" : 20,
“total El enents" : 30,
"t ot al Pages" : 2,
"nunber" : 0

}
}
You see that the assembler produced the correct URI and also picks up the default configuration
present to resolve the parameters into a Pageabl e for an upcoming request. This means, if
you change that configuration, the links will automatically adhere to the change. By default the
assembler points to the controller method it was invoked in but that can be customized by
handing in a custom Li nk to be used as base to build the pagination links to overloads of the
PagedResour cesAssenbl er. t oResour ce(..) method.

Repository populators

If you work with the Spring JDBC module, you probably are familiar with the support to populate a
Dat aSour ce using SQL scripts. A similar abstraction is available on the repositories level, although
it does not use SQL as the data definition language because it must be store-independent. Thus the
populators support XML (through Spring's OXM abstraction) and JSON (through Jackson) to define data
with which to populate the repositories.

Assume you have a file dat a. j son with the following content:

[{ "_class" : "com acne. Person",
"firstname" : "Dave",
"l ast name" : "Matthews" },
{ "_class" : "com acne. Person",
"firstname" : "Carter",
"l ast name" : "Beauford" }]

Example 3.25 Data defined in JSON

You can easily populate your repositories by using the populator elements of the repository namespace
provided in Spring Data Commons. To populate the preceding data to your Per sonReposi tory , do
the following:

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation 27

Spring Data Couchbase - Reference Documentation

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: repository="http://ww. springfranmework. or g/ schema/ dat a/ r eposi tory"
xsi:schemaLocati on="http://ww. spri ngframework. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. spri ngfranewor k. or g/ schena/ dat a/ reposi tory
http://ww. springframework. org/ scherma/ dat a/ reposi tory/ spring-repository.xsd">

<reposi tory:jackson-popul ator |ocation="cl asspath: data.json" />

</ beans>

Example 3.26 Declaring a Jackson repository populator

This declaration causes the dat a. j son file to be read and deserialized via a Jackson Obj ect Mapper.
The type to which the JSON object will be unmarshalled to will be determined by inspecting the _cl ass
attribute of the JSON document. The infrastructure will eventually select the appropriate repository to
handle the object just deserialized.

To rather use XML to define the data the repositories shall be populated with, you can use the
unmar shal | er - popul at or element. You configure it to use one of the XML marshaller options Spring
OXM provides you with. See the Spring reference documentation for details.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: reposi tory="http://ww. springframework. org/ scherma/ dat a/ r eposi t ory"
xm ns: oxm="ht t p: / / www. spri ngf ramewor k. or g/ schema/ oxni'
xsi :schemaLocati on="http://ww. spri ngframework. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. spri ngfranewor k. or g/ schena/ dat a/ reposi tory
http://ww. springframework. or g/ scherma/ dat a/ reposi tory/ spring-repository. xsd
http://ww. springframework. or g/ schema/ oxm
http: //ww. spri ngfranewor k. or g/ schema/ oxni spri ng- oxm xsd" >

<reposi tory: unmarshal | er-popul at or | ocati on="cl asspat h: dat a. j son" unmarshal | er -
ref ="unnarshal ler" />

<oxm j axb2- mar shal | er cont ext Pat h="com acnme" />

</ beans>

Example 3.27 Declaring an unmarshalling repository populator (using JAXB)

Legacy web support
Domain class web binding for Spring MVC

Given you are developing a Spring MVC web application you typically have to resolve domain class
ids from URLSs. By default your task is to transform that request parameter or URL part into the domain
class to hand it to layers below then or execute business logic on the entities directly. This would look
something like this:

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation 28

???

Spring Data Couchbase - Reference Documentation

@ontrol |l er
@Request Mappi ng("/ users")
public class UserController {

private final UserRepository userRepository;

@\ut owi r ed

public UserController(UserRepository userRepository) {
Assert.notNul | (repository, "Repository nust not be null!");
user Reposi tory = user Repository;

}

@request Mappi ng("/{id}")
public String showUser For n{ @at hVari abl e("id") Long id, Mdel nodel) {

/1 Do null check for id
User user = userRepository.findOne(id);
/1 Do null check for user

nmodel . addAttri bute("user", user);
return "user";

First you declare a repository dependency for each controller to look up the entity managed by
the controller or repository respectively. Looking up the entity is boilerplate as well, as it's always
a findOne(..) call. Fortunately Spring provides means to register custom components that allow
conversion between a St ri ng value to an arbitrary type.

PropertyEditors

For Spring versions before 3.0 simple Java PropertyEdi t ors had to be used. To integrate with
that, Spring Data offers a Dormai nCl assPr opert yEdi t or Regi st r ar, which looks up all Spring Data
repositories registered in the Appl i cati onCont ext and registers a custom Propert yEdi t or for
the managed domain class.

<bean cl ass="...web. servl et. nm/c. annot ati on. Annot at i onMet hodHand| er Adapt er" >
<property nanme="webBi ndinglnitializer">
<bean cl ass="...web. bi nd. support. Confi gurabl eWebBi ndi nglnitializer">

<property nane="propertyEditorRegistrars">

<bean cl ass="org. spri ngframework. dat a. repository. support. Domai nCl assPropertyEditorRegi strar"
/>
</ property>
</ bean>
</ property>
</ bean>

If you have configured Spring MVC as in the preceding example, you can configure your controller as
follows, which reduces a lot of the clutter and boilerplate.

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation 29

Spring Data Couchbase - Reference Documentation

@ontrol |l er
@Request Mappi ng("/ users")
public class UserController {

@Request Mappi ng("/{id}")
public String showUser For n(@at hVari abl e("id") User user, Mdel nodel) {

nmodel . addAttri bute("user", user);
return "userForn;

ConversionService

In Spring 3.0 and later the Pr oper t yEdi t or support is superseded by a new conversion infrastructure
that eliminates the drawbacks of PropertyEditors and uses a stateless X to Y conversion
approach. Spring Data now ships with a Domai nCl assConvert er that mimics the behavior of
Domai nCl assPropert yEdi t or Regi strar. To configure, simply declare a bean instance and pipe
the Conver si onSer vi ce being used into its constructor:

<mvc: annot ati on-dri ven conversi on-servi ce="conversi onService" />
<bean cl ass="org. spri ngframework. dat a. reposi tory. support. Domai nCl assConverter">

<constructor-arg ref="conversi onService" />
</ bean>

If you are using JavaConfig, you can simply extend Spring MVC's WebMrcConf i gur at i onSupport
and hand the For mat i ngConver si onSer vi ce that the configuration superclass provides into the
Domai nCl assConvert er instance you create.

cl ass WebConfiguration extends WebM/cConfi gurati onSupport {
/1 Qther configuration omtted

@Bean
publ i ¢ Domai nCl assConvert er<?> domai nCl assConverter () {
return new Domai nCl assConvert er <Formatti ngConver si onServi ce>(mvcConver si onService());
}
}

Web pagination

When working with pagination in the web layer you usually have to write a lot of boilerplate code yourself
to extract the necessary metadata from the request. The less desirable approach shown in the example
below requires the method to contain an Ht t pSer vl et Request parameter that has to be parsed
manually. This example also omits appropriate failure handling, which would make the code even more
verbose.

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation 30

Spring Data Couchbase - Reference Documentation

@ontrol |l er
@Request Mappi ng("/ users")
public class UserController {

/1 DI code omtted

@request Mappi ng
public String showUsers(Mdel nodel, HttpServletRequest request) {

int page = |nteger. parselnt(request.getParaneter("page"));
int pageSi ze = |nteger. parselnt(request.getParaneter("pageSi ze"));

Pageabl e pageabl e = new PageRequest (page, pageSi ze);

nmodel . addAttri bute("users", userService. get Users(pageabl e));
return "users";

The bottom line is that the controller should not have to handle the functionality of extracting pagination
information from the request. So Spring Data ships with a Pageabl eHandl| er Ar gunent Resol ver
that will do the work for you. The Spring MVC JavaConfig support exposes a
WebMscConfi gurati onSupport helper class to customize the configuration as follows:

@Conf i guration
public class WebConfi g extends WebM/cConfi gurati onSupport {

@verride

public void configureMessageConverters(List<HttpMssageConverter<?>> converters) {
converters. add(new Pageabl eHandl er Ar gument Resol ver());

}

}

If you're stuck with XML configuration you can register the resolver as follows:

<bean cl ass="...web. servl et. nvc. net hod. annot at i on. Request Mappi ngHandl| er Adapt er" >
<property nanme="cust omAr gunent Resol vers" >
<list>
<bean cl ass="org. spri ngfranewor k. dat a. web. Pageabl eHand| er Ar gunent Resol ver" />
</list>
</ property>
</ bean>

When using Spring 3.0.x versions use the Pageabl eAr gunent Resol ver instead. Once you've
configured the resolver with Spring MVC it allows you to simplify controllers down to something like this:

@ontroller
@Request Mappi ng("/ users")
public class UserController {

@Request Mappi ng
public String showUsers(Mdel nodel, Pageable pageable) {

nmodel . addAttri bute("users", userRepository.findAll (pageable));
return "users";

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation 31

Spring Data Couchbase - Reference Documentation

The Pageabl eAr gurrent Resol ver automatically resolves request parameters to build a
PageRequest instance. By default it expects the following structure for the request parameters.

Table 3.2. Request parameters evaluated by Pageabl eAr gunent Resol ver

page Page you want to retrieve.

page. si ze Size of the page you want to retrieve.
page. sort Property that should be sorted by.
page.sort.dir Direction that should be used for sorting.

In case you need multiple Pageabl es to be resolved from the request (for multiple tables, for example)
you can use Spring's @ual i fi er annotation to distinguish one from another. The request parameters
then have to be prefixed with ${ qual i fi er} . So for a method signature like this:

public String showUsers(Mdel nodel,
@ualifier("foo") Pageable first,
@ualifier("bar") Pageable second) { ...}

you have to populate f oo_page and bar _page and the related subproperties.
Configuring a global default on bean declaration

The Pageabl eAr gunent Resol ver will use a PageRequest with the first page and a page size of 10
by default. It will use that value if it cannot resolve a PageRequest from the request (because of missing
parameters, for example). You can configure a global default on the bean declaration directly. If you
might need controller method specific defaults for the Pageabl e, annotate the method parameter with
@ageabl eDef aul t s and specify page (through pageNunber), page size (through val ue), sort (list
of properties to sort by), and sort Di r (the direction to sort by) as annotation attributes:

public String showUsers(Mdel nodel,
@ageabl eDef aul t s(pageNunber = 0, value = 30) Pageabl e pageable) { ...}

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation 32

Spring Data Couchbase - Reference Documentation

4. Couchbase repositories

The goal of Spring Data repository abstraction is to significantly reduce the amount of boilerplate code
required to implement data access layers for various persistence stores.

4.1 Configuration

While support for repositories is always present, you need to enable them in general or
for a specific namespace. If you extend Abstract CouchbaseConfi guration, just use the
@nabl eCouchbaseReposi t ori es annotation. It provides lots of possible options to narrow or
customize the search path, one of the most common ones is basePackages.

@onfiguration
@nabl eCouchbaseReposi t ori es(basePackages = {"com couchbase. exanpl e. repos"})
public class Config extends Abstract CouchbaseConfi guration {

/...

}

Example 4.1 Annotation-Based Repository Setup

XML-based configuration is also available:

<couchbase: reposi tori es base- package="com couchbase. exanpl e. repos" />
Example 4.2 XML-Based Repository Setup

4.2 Usage

In the simplest case, your repository will extend the Cr udReposi t or y<T, Stri ng>, where T is the
entity that you want to expose. Let's look at a repository for a user:

i mport org.springframework. data. repository. CrudRepository;

public interface UserRepository extends CrudRepository<User, String> {

}

Example 4.3 A User repository

Please note that this is just an interface and not an actual class. In the background, when your context
gets initialized, actual implementations for your repository descriptions get created and you can access
them through regular beans. This means you will save lots of boilerplate code while still exposing full
CRUD semantics to your service layer and application.

Now, let's imagine we @\ut owr i e the User Reposi t or y to a class that makes use of it. What methods
do we have available?

Table 4.1. Exposed methods on the UserRepository
Method Description

User save(User entity) Save the given entity.

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation 33

Spring Data Couchbase - Reference Documentation

Method
Iterable<User> save(lterable<User> entity)
User findOne(String id)

boolean exists(String id)

Description
Save the list of entities.
Find a entity by its unique id.

Check if a given entity exists by its unique id.

Iterable<User> findAll() (*)

Find all entities by this type in the bucket.

Iterable<User> findAll(Iterable<String> ids)

long count() (*)

void delete(String id)

void delete(User entity)

void delete(lterable<User> entities)

void deleteAll() (*)

Find all entities by this type and the given list of
ids.

Count the number of entities in the bucket.
Delete the entity by its id.

Delete the entity.

Delete all given entities.

Delete all entities by type in the bucket.

Now thats awesome! Just by defining an interface we get full CRUD functionality on top of our managed
entity. All methods suffixed with (*) in the table are backed by Views, which is explained later.

If you are coming from other datastore implementations, you might want to implement the
Pagi ngAndSorti ngReposi t ory as well. Note that as of now, it is not supported but will be in the
future.

While the exposed methods provide you with a great variety of access patterns, very often you need
to define custom ones. You can do this by adding method declarations to your interface, which will be
automatically resolved to view requests in the background. Here is an example:

public interface UserRepository extends CrudRepository<User, String> {
Li st <User> findAl | Adm ns();

Li st <User> findByFi rst name(Query query);

Example 4.4 An extended User repository

Since we've came across views now multiple times and the fi ndByFi r st name(Query query)
exposes a yet unknown parameter, let's cover that next.

4.3 Backing Views

As arule of thumb, all repository access methods which are not "by a specific key" require a backing view
to find the one or more matching entities. We'll only cover views to the extend which they are needed,
if you need in-depth information about them please refer to the official Couchbase Server manual and
the Couchbase Java SDK manual.

Spring Data Couchbase -

1.1.0.RELEASE Reference Documentation 34

Spring Data Couchbase - Reference Documentation

To cover the basic CRUD methods from the Cr udReposi t or y, one view needs to be implemented in
Couchbase Server. It basically returns all documents for the specific entity and also adds the optional
reduce function _count .

Since every view has a design document and view name, by convention we default to al | as the view
name and the lower-cased entity name as the design document name. So if your entity is named User ,
then the code expects the al | view in the user design document. It needs to look like this:

/1l do not forget the _count reduce function!
function (doc, neta) {
if (doc._class == "nanmespace.to.entity.User") {
emt(null, null);
}
}

Example 4.5 The all view map function

Note that the important part in this map function is to only include the document IDs which correspond
to our entity. Because the library always adds the _cl ass property, this is a quick and easy way to do
it. If you have another property in your JSON which does the same job (like a explicit t ype field), then
you can use that as well - you don't have to stick to _cl ass all the time.

Also make sure to publish your design documents into production so that they can be picked up by the
library! Also, if you are curious why we use enmi t (nul I, nul I') inthe view: the document id is always
sent over to the client implicitly, so we can shave off a view bytes in our view by not duplicating the id.
Ifyouuseenmt(neta.id, null) itwon'thurt much too.

Implementing your custom repository finder methods works the same way. The f i ndAl | Adni ns calls
the al | Adni ns view in the user design document. Imagine we have a field on our entity which looks
like bool ean i sAdm n. We can write a view like this to expose them (we don't need a reduce function
for this one):

function (doc, neta) ({
if (doc._class == "nanespace.to.entity. User" & doc.isAdm n) {
emt(null, null);
}
}

Example 4.6 A custom view map function

By now, we've never actually customized our view at query time. This is where the special Query
argument comes along - like in our f i ndByFi r st name(Query query) method.
By adding it we can customize the query at runtime. Let's write our view for this:

function (doc, neta) {
if (doc._class == "nanespace.to.entity.User") ({
emt(doc.firstnane, null);
}
}

Example 4.7 A parameterized view map function

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation 35

Spring Data Couchbase - Reference Documentation

This view not only emits the document id, but also the firstname of every user as the key. We can now

run a Query which returns us all users with a firsthame of "Michael" or "Thomas".

// Load the bean, or @utowire it
User Repository repo = ctx.getBean(UserRepository.cl ass);

/] Create the CouchbaseC ient Query object
Query query = new Query();

/1 Filter on those two keys
query. set Keys(Conpl exKey. of ("M chael ", "Thomas"));

/1 Run the query and get all matching users returned
Li st <User> users = repo. findByFirstnane(query));

Example 4.8 Query a repository method with custom params.

On all custom finder methods, you can use the @/i ewannotation to both customize the design document

and view name (to override the conventions).

Please keep in mind that by default, the St al e. UPDATE_AFTER mechanism is used. This means that
whatever is in the index gets returned, and then the index gets updated. This strikes a good balance
between performance and data freshness. You can tune the behavior through the set St al e() method
on the query object. For more details on behavior, please consult the Couchbase Server and Java SDK

documentation directly.

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation

36

Spring Data Couchbase - Reference Documentation

5. Template & direct Operations

The template provides lower level access to the underlying database and also serves as the foundation
for repositories. Any time a repository is too high-level for you needs chances are good that the templates
will serve you well.

5.1 Supported Operations

The template can be accessed through the couchbaseTenpl at e bean out of your context. Once
you've got a reference to it, you can run all kinds of operations against it. Other than through a repository,
in a template you need to always specifiy the target entity type which you want to get converted.

To mutate documents, you'll find save, i nsert and updat e methods exposed. Saving will insert
or update the document, insert will fail if it has been created already and update only works against
documents that have already been created.

Since Couchbase Server has different levels of persistence (by default you'll get a positive response if it
has been acknowledged in the managed cache), you can provide higher durability options through the
overloaded Per si st To and/or Repl i cat eTo options. The behaviour is part of the Couchbase Java
SDK, please refer to the official documentation for more details.

Remvoing docouments through the r enove methods works exactly the same.

If you want to load documents, you can do that through the f i ndBy| d method, which is the fastest and
if possible your tool of choice. The find methods for views are f i ndByVi ew which converts it into the
target entity, but also quer Vi ewwhich exposes lower level semantics.

If you really need low-level semantics, the couchbaseC i ent bean is also always in scope.

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation 37

Spring Data Couchbase - Reference Documentation

6. Caching

This chapter describes additional support for caching and @acheabl e.

6.1 Configuration & Usage

Technically, caching is not part of spring-data, but is implemented directly in the spring core. Most
database implementations in the spring-data package can't support @acheabl e, because it is not
possible to store arbitrary data.

Couchbase supports both binary and JSON data, so you can get both out of the same database.

To make it work, you need to add the @nabl eCachi ng annotation and configure the cacheManager
bean:

@Conf i guration

@nabl eCachi ng

public class Config extends Abstract CouchbaseConfiguration {
/| general methods

@ean
publ i ¢ CouchbaseCacheManager cacheManager () throws Exception {
HashMap<String, CouchbaseC ient> instances = new HashMap<Stri ng,
Couchbased i ent >();
i nstances. put ("persistent", couchbasedient());
return new CouchbaseCacheManager (i nst ances);

Example 6.1 Abst r act CouchbaseConf i gur at i on for Caching

The per si st ent identifier can then be used on the @acheabl e annotation to identify the cache
manager to use (you can have more than one configured).

Once it is set up, you can annotate every method with the @acheabl e annotation to transparently
cache it in your couchbase bucket. You can also customize how the key is generated.

@acheabl e(val ue="persistent”, key="'longrunsi m'+#time")
public String simulateLongRun(long tine) {
try {

Thr ead. sl eep(tine);
} catch(Exception ex) {

System out. println("This shoul dnt happen...");
}

return “lve slept " + tine + " mliseconds.;

Example 6.2 Caching example

If you run the method multiple times, you'll see a set operation happening first, followed by multiple get
operations and no sleep time (which fakes the expensive execution). You can store whatever you want,
if it is JISON of course you can access it through views and look at it in the Web Ul.

Spring Data Couchbase -
1.1.0.RELEASE Reference Documentation 38

Part Il. Appendix

Spring Data Couchbase - Reference Documentation

Appendix A. Namespace reference

A.1 The <repositori

es /> element

The <reposi tories /> element triggers the setup of the Spring Data repository infrastructure. The
most important attribute is base- package which defines the package to scan for Spring Data repository

interfaces.!

Table A.1. Attributes

Name

Description

base- package

repository-inpl-postfix

Defines the package to be used to be scanned for repository
interfaces extending * Reposi t or y (actual interface is determined
by specific Spring Data module) in auto detection mode. All
packages below the configured package will be scanned, too.
Wildcards are allowed.

Defines the postfix to autodetect custom repository
implementations. Classes whose names end with the configured
postfix will be considered as candidates. Defaults to | npl .

guery-| ookup-strat egy

Determines the strategy to be used to create finder queries. See
the section called “Query lookup strategies” for details. Defaults to
create-if-not-found.

naned- queri es-1ocation

consi der - nest ed-
repositories

Lsee the section called “XML configuration”

Defines the location to look for a Properties file containing externally
defined queries.

Controls whether nested repository interface definitions should be
considered. Defaults to f al se.

1.1.0.RELEASE

Spring Data Couchbase -
Reference Documentation 40

Spring Data Couchbase - Reference Documentation

Appendix B. Repository query
keywords

B.1 Supported query keywords

The following table lists the keywords generally supported by the Spring Data repository query derivation
mechanism. However, consult the store-specific documentation for the exact list of supported keywords,
because some listed here might not be supported in a particular store.

Table B.1. Query keywords

Logical keyword Keyword expressions

AND And

OR o

AFTER After,|sAfter

BEFCRE Before, | sBefore

CONTAI NI NG Cont ai ni ng, | sCont ai ni ng, Cont ai ns
BETWEEN Bet ween, | sBet ween

ENDI NG W TH Endi ngWt h, | seEndi ngWt h, EndsWt h
EXI STS Exi sts

FALSE Fal se, | sFal se

GREATER_THAN

G eat er Than, | sG eat er Than

GREATER_THAN EQGAESt er ThanEqual , | sGr eat er ThanEqual

I'N In,Isln

IS I s, Equal s, (or no keyword)
|' S _NOT_NULL Not Nul |, I sNot Nul |

'S NULL Nul |, I sNul |

LESS THAN LessThan, | sLessThan

LESS THAN EQUALLessThanEqual , | sLessThanEqual

LI KE
NEAR
NOT
NOT I N

NOT_LI KE

Li ke, I sLi ke
Near , | sNear
Not , | sNot

Not I n, I sNotln

Not Li ke, | sNot Li ke

1.1.0.RELEASE

Spring Data Couchbase -
Reference Documentation 41

Spring Data Couchbase - Reference Documentation

Logical keyword
REGEX
STARTI NG W TH

TRUE

Keyword expressions
Regex, Mat chesRegex, Mat ches
StartingWth,lsStartingWth, StartsWth

True, | sTrue

W THI N

Wthin,|sWthin

1.1.0.RELEASE

Spring Data Couchbase -
Reference Documentation

42

	Spring Data Couchbase - Reference Documentation
	Table of Contents
	Preface
	1 Project Information

	Part I. Reference Documentation
	1. Installation & Configuration
	1.1 Installation
	1.2 Annotation-based Configuration ("JavaConfig")
	1.3 XML-based Configuration

	2. Modeling Entities
	2.1 Documents and Fields
	2.2 Datatypes and Converters
	2.3 Optimistic Locking
	2.4 Validation

	3. Working with Spring Data Repositories
	3.1 Core concepts
	3.2 Query methods
	Defining repository interfaces
	Fine-tuning repository definition

	Defining query methods
	Query lookup strategies
	Query creation
	Property expressions
	Special parameter handling

	Creating repository instances
	XML configuration
	JavaConfig
	Standalone usage

	3.3 Custom implementations for Spring Data repositories
	Adding custom behavior to single repositories
	Adding custom behavior to all repositories

	3.4 Spring Data extensions
	Web support
	Basic web support
	Hypermedia support for Pageables

	Repository populators
	Legacy web support
	Domain class web binding for Spring MVC
	Web pagination

	4. Couchbase repositories
	4.1 Configuration
	4.2 Usage
	4.3 Backing Views

	5. Template & direct Operations
	5.1 Supported Operations

	6. Caching
	6.1 Configuration & Usage

	Part II. Appendix
	Appendix A. Namespace reference
	A.1 The <repositories /> element

	Appendix B. Repository query keywords
	B.1 Supported query keywords

