
Spring Data Commons - Reference
Documentation

1.1.0.RELEASE

Copyright © 2010 Mark Pollack, Thomas Risberg, Oliver Gierke

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether

distributed in print or electronically.

Preface .. iii
I. Reference .. 1

1. Repositories .. 2
1.1. Introduction ... 2
1.2. Core concepts .. 2
1.3. Query methods ... 3

1.3.1. Defining repository interfaces .. 4
1.3.2. Defining query methods ... 4
1.3.3. Creating repository instances .. 6

1.4. Custom implementations .. 8
1.4.1. Adding behaviour to single repositories .. 8
1.4.2. Adding custom behaviour to all repositories .. 9

Spring Data Commons ii

Preface
The Spring Data Commons project applies core Spring concepts to the development of solutions using many
non-relational data stores.

Spring Data Commons iii

Part I. Reference
This part of the reference documentation details the ...

Spring Data Commons 1

Chapter 1. Repositories

1.1. Introduction

Implementing a data access layer of an application has been cumbersome for quite a while. Too much
boilerplate code had to be written. Domain classes were anemic and haven't been designed in a real object
oriented or domain driven manner.

Using both of these technologies makes developers life a lot easier regarding rich domain model's persistence.
Nevertheless the amount of boilerplate code to implement repositories especially is still quite high. So the goal
of the repository abstraction of Spring Data is to reduce the effort to implement data access layers for various
persistence stores significantly.

The following chapters will introduce the core concepts and interfaces of Spring Data repositories.

1.2. Core concepts

The central interface in Spring Data repository abstraction is Repository (probably not that much of a
surprise). It is typeable to the domain class to manage as well as the id type of the domain class. This interface
mainly acts as marker interface to capture the types to deal with and helps us discovering interface that extend
this one. Beyond that there's CrudRepository which provides some sophisticated functionality around CRUD
for the entity managed.

Example 1.1. Repository interface

public interface CrudRepository<T, ID extends Serializable>
extends Repository<T, ID> {

❶
T save(T entity);

❷
T findOne(ID primaryKey);

❸
Iterable<T> findAll();

Long count();
❹

void delete(T entity);
❺

boolean exists(ID primaryKey);
❻

// … more functionality omitted.
}

❶ Saves the given entity.
❷ Returns the entity identified by the given id.
❸ Returns all entities.
❹ Returns the number of entities.
❺ Deletes the given entity.
❻ Returns whether an entity with the given id exists.

Usually we will have persistence technology specific sub-interfaces to include additional technology specific
methods. We will now ship implementations for a variety of Spring Data modules that implement that interface.

Spring Data Commons 2

On top of the CrudRepository there is a PagingAndSortingRepository abstraction that adds additional
methods to ease paginated access to entities:

Example 1.2. PagingAndSortingRepository

public interface PagingAndSortingRepository<T, ID extends Serializable> extends CrudRepository<T, ID> {

Iterable<T> findAll(Sort sort);

Page<T> findAll(Pageable pageable);
}

Accessing the second page of User by a page size of 20 you could simply do something like this:

PagingAndSortingRepository<User, Long> repository = // … get access to a bean
Page<User> users = repository.findAll(new PageRequest(1, 20);

1.3. Query methods

Next to standard CRUD functionality repositories are usually query the underlying datastore. With Spring Data
declaring those queries becomes a four-step process.

1. Declare an interface extending Repository or one of it's sub-interfaces and type it to the domain class it
shall handle.

public interface PersonRepository extends Repository<User, Long> { … }

2. Declare query methods on the interface.

List<Person> findByLastname(String lastname);

3. Setup Spring to create proxy instances for those interfaces.

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.springframework.org/schema/data/jpa
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/jpa
http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

<repositories base-package="com.acme.repositories" />

</beans>

4. Get the repository instance injected and use it.

public class SomeClient {

@Autowired
private PersonRepository repository;

public void doSomething() {
List<Person> persons = repository.findByLastname("Matthews");

}

Repositories

Spring Data Commons 3

At this stage we barely scratched the surface of what's possible with the repositories but the general approach
should be clear. Let's go through each of these steps and and figure out details and various options that you
have at each stage.

1.3.1. Defining repository interfaces

As a very first step you define a domain class specific repository interface to start with. It's got to extend
Repository and be typed to the domain class and an ID type. If you want to expose CRUD methods for that
domain type, extend CrudRepository instead of Repository.

1.3.1.1. Fine tuning repository definition

Usually you will have your repository interface extend Repository, CrudRepository or
PagingAndSortingRepository. If you don't like extending Spring Data interfaces at all you can also annotate
your repository interface with @RepositoryDefinition. Extending CrudRepository will expose a complete set
of methods to manipulate your entities. If you rather want to be selective about the methods being expose
simply copy the ones you want to expose from CrudRepository into your domain repository.

Example 1.3. Selectively exposing CRUD methods

interface MyBaseRepository<T, ID extends Serializable> extends Repository<T, ID> {
T findOne(ID id);
T save(T entity);

}

interface UserRepository extends MyBaseRepository<User, Long> {

User findByEmailAddress(EmailAddress emailAddress);
}

In the first step we define a common base interface for all our domain repositories and expose findOne(…) as
well as save(…).These methods will be routed into the base repository implementation of the store of your
choice because they are matching the method signatures in CrudRepository. So our UserRepository will now
be able to save users, find single ones by id as well as triggering a query to find Users by their email address.

1.3.2. Defining query methods

1.3.2.1. Query lookup strategies

The next thing we have to discuss is the definition of query methods. There's roughly two main ways how the
repository proxy is generally able to come up with the store specific query from the method name. The first
option is to derive the quer from the method name directly, the second is using some kind of additionally
created query. What detailed options are available pretty much depends on the actual store. However there's got
to be some algorithm the decision which actual query to is made.

There's three strategies for the repository infrastructure to resolve the query. The strategy to be used can be
configured at the namespace through the query-lookup-strategy attribute. However might be the case that
some of the strategies are not supported for the specific datastore. Here are your options:

CREATE

This strategy will try to construct a store specific query from the query method's name. The general approach is

Repositories

(1.1.0.RELEASE)

to remove a given set of well-known prefixes from the method name and parse the rest of the method. Read
more about query construction in Section 1.3.2.2, “Query creation”.

USE_DECLARED_QUERY

This strategy tries to find a declared query which will be used for execution first. The query could be defined
by an annotation somwhere or declared by other means. Please consult the documentation of the specific store
to find out what options are available for that store. If the repository infrastructure does not find a declared
query for the method at bootstrap time it will fail.

CREATE_IF_NOT_FOUND (default)

This strategy is actually a combination of the both mentioned above. It will try to lookup a declared query first
but create a custom method name based query if no declared query was found. This is default lookup strategy
and thus will be used if you don't configure anything explicitly. It allows quick query definition by method
names but also custom tuning of these queries by introducing declared queries for those who need explicit
tuning.

1.3.2.2. Query creation

The query builder mechanism built into Spring Data repository infrastructue is useful to build constraining
queries over entities of the repository. We will strip the prefixes findBy, find, readBy, read, getBy as well as
get from the method and start parsing the rest of it. At a very basic level you can define conditions on entity
properties and concatenate them with AND and OR.

Example 1.4. Query creation from method names

public interface PersonRepository extends Repository<User, Long> {

List<Person> findByEmailAddressAndLastname(EmailAddress emailAddress, String lastname);
}

The actual result of parsing that method will of course depend on the persistence store we create the query for.
However there are some general things to notice. The expression are usually property traversals combined with
operators that can be concatenated. As you can see in the example you can combine property expressions with
And and Or. Beyond that you will get support for various operators like Between, LessThan, GreaterThan,
Like for the property expressions. As the operators supported can vary from datastore to datastore please
consult the according part of the reference documentation.

1.3.2.2.1. Property expressions

Property expressions can just refer to a direct property of the managed entity (as you just saw in the example
above. On query creation time we already make sure that the parsed property is at a property of the managed
domain class. However you can also traverse nested properties to define constraints on. Assume Persons have
Addresses with ZipCodes. In that case a method name of

List<Person> findByAddressZipCode(ZipCode zipCode);

will create the property traversal x.address.zipCode. The resolution algorithm starts with interpreting the
entire part (AddressZipCode) as property and checks the domain class for a property with that name
(uncapitalized). If it succeeds it just uses that. If not it starts splitting up the source at the camel case parts from

Repositories

Spring Data Commons 5

the right side into a head and a tail and tries to find the according property, e.g. AddressZip and Code. If we
find a property with that head we take the tail and continue building the tree down from there. As in our case
the first split does not match we move the split point to the left (Address, ZipCode).

Now although this should work for most cases, there might be cases where the algorithm could select the wrong
property. Suppose our Person class has a addressZip property as well. Then our algorithm would match in the
first split round already and essentially choose the wrong property and finally fail (as the type of addressZip
probably has no code property). To resolve this ambiguity you can use _ inside your method name to manually
define traversal points. So our method name would end up like so:

List<Person> findByAddress_ZipCode(ZipCode zipCode);

1.3.2.3. Special parameter handling

To hand parameters to your query you simply define method parameters as already seen in in examples above.
Besides that we will recognizes certain specific types to apply pagination and sorting to your queries
dynamically.

Example 1.5. Using Pageable and Sort in query methods

Page<User> findByLastname(String lastname, Pageable pageable);

List<User> findByLastname(String lastname, Sort sort);

List<User> findByLastname(String lastname, Pageable pageable);

The first method allows you to pass a Pageable instance to the query method to dynamically add paging to
your statically defined query. Sorting options are handed via the Pageable instance, too. If you only need
sorting, simply add a Sort parameter to your method. As you also can see, simply returning a List is possible
as well. We will then not retrieve the additional metadata required to build the actual Page instance but rather
simply restrict the query to lookup only the given range of entities.

Note

To find out how many pages you get for a query entirely we have to trigger an additional count
query. This will be derived from the query you actually trigger by default.

1.3.3. Creating repository instances

So now the question is how to create instances and bean definitions for the repository interfaces defined.

1.3.3.1. Spring

The easiest way to do so is by using the Spring namespace that is shipped with each Spring Data module that
supports the repository mechanism. Each of those includes a repositories element that allows you to simply
define a base packge Spring shall scan for you.

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.springframework.org/schema/data/jpa
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/data/jpa

Repositories

(1.1.0.RELEASE)

http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

<repositories base-package="com.acme.repositories" />

</beans:beans>

In this case we instruct Spring to scan com.acme.repositories and all it's sub packages for interfaces extending
Repository or one of its sub-interfaces. For each interface found it will register the presistence technology
specific FactoryBean to create the according proxies that handle invocations of the query methods. Each of
these beans will be registered under a bean name that is derived from the interface name, so an interface of
UserRepository would be registered under userRepository. The base-package attribute allows to use
wildcards, so that you can have a pattern of packages parsed.

Using filters

By default we will pick up every interface extending the persistence technology specific Repository

sub-interface located underneath the configured base package and create a bean instance for it. However, you
might want to gain finer grained control over which interfaces bean instances get created for. To do this we
support the use of <include-filter /> and <exclude-filter /> elements inside <repositories />. The
semantics are exactly equivalent to the elements in Spring's context namespace. For details see Spring reference
documentation on these elements.

E.g. to exclude certain interfaces from instantiation as repository, you could use the following configuration:

Example 1.6. Using exclude-filter element

<repositories base-package="com.acme.repositories">
<context:exclude-filter type="regex" expression=".*SomeRepository" />

</repositories>

This would exclude all interface ending on SomeRepository from being instantiated.

Manual configuration

If you'd rather like to manually define which repository instances to create you can do this with nested
<repository /> elements.

<repositories base-package="com.acme.repositories">
<repository id="userRepository" />

</repositories>

1.3.3.2. Standalone usage

You can also use the repository infrastructure outside of a Spring container usage. You will still need to have
some of the Spring libraries on your classpath but you can generally setup repositories programatically as well.
The Spring Data modules providing repository support ship a persistence technology specific
RepositoryFactory that can be used as follows:

Example 1.7. Standalone usage of repository factory

RepositoryFactorySupport factory = … // Instantiate factory here
UserRepository repository = factory.getRepository(UserRepository.class);

Repositories

Spring Data Commons 7

http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#beans-scanning-filters
http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#beans-scanning-filters

1.4. Custom implementations

1.4.1. Adding behaviour to single repositories

Often it is necessary to provide a custom implementation for a few repository methods. Spring Data
repositories easily allow provide custom repository code and integrate it with generic CRUD abstraction and
query method functionality. To enrich a repository with custom functionality you have to define an interface
and an implementation for that functionality first and let the repository interface you provided so far extend that
custom interface.

Example 1.8. Interface for custom repository functionality

interface UserRepositoryCustom {

public void someCustomMethod(User user);
}

Example 1.9. Implementation of custom repository functionality

class UserRepositoryImpl implements UserRepositoryCustom {

public void someCustomMethod(User user) {
// Your custom implementation

}
}

Note that the implementation itself does not depend on Spring Data and can be a regular Spring bean. So you
can either use standard dependency injection behaviour to inject references to other beans, take part in aspects
and so on.

Example 1.10. Changes to the your basic repository interface

public interface UserRepository extends CrudRepository<User, Long>, UserRepositoryCustom {

// Declare query methods here
}

Let your standard repository interface extend the custom one. This makes CRUD and custom functionality
available to clients.

Configuration

If you use namespace configuration the repository infrastructure tries to autodetect custom implementations by
looking up classes in the package we found a repository using the naming conventions appending the
namespace element's attribute repository-impl-postfix to the classname. This suffix defaults to Impl.

Example 1.11. Configuration example

Repositories

(1.1.0.RELEASE)

<repositories base-package="com.acme.repository">
<repository id="userRepository" />

</repositories>

<repositories base-package="com.acme.repository" repository-impl-postfix="FooBar">
<repository id="userRepository" />

</repositories>

The first configuration example will try to lookup a class com.acme.repository.UserRepositoryImpl to act as
custom repository implementation, where the second example will try to lookup
com.acme.repository.UserRepositoryFooBar.

Manual wiring

The approach above works perfectly well if your custom implementation uses annotation based configuration
and autowring entirely as will be trated as any other Spring bean. If your customly implemented bean needs
some special wiring you simply declare the bean and name it after the conventions just descibed. We will then
pick up the custom bean by name rather than creating an own instance.

Example 1.12. Manual wiring of custom implementations (I)

<repositories base-package="com.acme.repository">
<repository id="userRepository" />

</repositories>

<beans:bean id="userRepositoryImpl" class="…">
<!-- further configuration -->

</beans:bean>

This also works if you use automatic repository lookup without defining single <repository /> elements.

In case you are not in control of the implementation bean name (e.g. if you wrap a generic repository facade
around an existing repository implementation) you can explicitly tell the <repository /> element which bean
to use as custom implementation by using the repository-impl-ref attribute.

Example 1.13. Manual wiring of custom implementations (II)

<repositories base-package="com.acme.repository">
<repository id="userRepository" repository-impl-ref="customRepositoryImplementation" />

</repositories>

<bean id="customRepositoryImplementation" class="…">
<!-- further configuration -->

</bean>

1.4.2. Adding custom behaviour to all repositories

In other cases you might want to add a single method to all of your repository interfaces. So the approach just
shown is not feasible. The first step to achieve this is adding and intermediate interface to declare the shared
behaviour

Repositories

Spring Data Commons 9

Example 1.14. An interface declaring custom shared behaviour

public interface MyRepository<T, ID extends Serializable>
extends JpaRepository<T, ID> {

void sharedCustomMethod(ID id);
}

Now your individual repository interfaces will extend this intermediate interface to include the functionality
declared. The second step is to create an implementation of this interface that extends the persistence
technology specific repository base class which will act as custom base class for the repository proxies then.

Note

If you're using automatic repository interface detection using the Spring namespace using the
interface just as is will cause Spring trying to create an instance of MyRepository. This is of course
not desired as it just acts as indermediate between Repository and the actual repository interfaces
you want to define for each entity. To exclude an interface extending Repository from being
instantiated as repository instance annotate it with @NoRepositoryBean.

Example 1.15. Custom repository base class

public class MyRepositoryImpl<T, ID extends Serializable>
extends SimpleJpaRepository<T, ID> implements MyRepository<T, ID> {

public void sharedCustomMethod(ID id) {
// implementation goes here

}
}

The last step to get this implementation used as base class for Spring Data repositores is replacing the standard
RepositoryFactoryBean with a custom one using a custom RepositoryFactory that in turn creates instances
of your MyRepositoryImpl class.

Example 1.16. Custom repository factory bean

public class MyRepositoryFactoryBean<T extends JpaRepository<?, ?>
extends JpaRepositoryFactoryBean<T> {

protected RepositoryFactorySupport getRepositoryFactory(…) {
return new MyRepositoryFactory(…);

}

private static class MyRepositoryFactory extends JpaRepositoryFactory{

public MyRepositoryImpl getTargetRepository(…) {
return new MyRepositoryImpl(…);

}

public Class<? extends RepositorySupport> getRepositoryClass() {
return MyRepositoryImpl.class;

}
}

}

Repositories

(1.1.0.RELEASE)

Finally you can either declare beans of the custom factory directly or use the factory-class attribute of the
Spring namespace to tell the repository infrastructure to use your custom factory implementation.

Example 1.17. Using the custom factory with the namespace

<repositories base-package="com.acme.repository"
factory-class="com.acme.MyRepositoryFactoryBean" />

Repositories

Spring Data Commons 11

	Spring Data Commons - Reference Documentation
	Table of Contents
	Preface
	Part I. Reference
	Chapter 1. Repositories
	1.1. Introduction
	1.2. Core concepts
	1.3. Query methods
	1.3.1. Defining repository interfaces
	1.3.1.1. Fine tuning repository definition

	1.3.2. Defining query methods
	1.3.2.1. Query lookup strategies
	1.3.2.2. Query creation
	1.3.2.2.1. Property expressions

	1.3.2.3. Special parameter handling

	1.3.3. Creating repository instances
	1.3.3.1. Spring
	1.3.3.2. Standalone usage

	1.4. Custom implementations
	1.4.1. Adding behaviour to single repositories
	1.4.2. Adding custom behaviour to all repositories

