
Spring Data Commons - Reference Documentation

1.6.4.RELEASE

MarkPollack, ThomasRisberg, OliverGierke

Copyright ©

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

please define productname in your docbook file!

1.6.4.RELEASE
Spring Data Commons -

Reference Documentation ii

Table of Contents

Preface ... iii
I. Reference ... 1

1. Working with Spring Data Repositories .. 2
1.1. Core concepts ... 2
1.2. Query methods ... 3

Defining repository interfaces .. 4
Fine-tuning repository definition ... 4

Defining query methods .. 4
Query lookup strategies .. 5
Query creation ... 5
Property expressions .. 6
Special parameter handling .. 6

Creating repository instances .. 7
XML configuration .. 7
JavaConfig ... 8
Standalone usage .. 8

1.3. Custom implementations for Spring Data repositories .. 8
Adding custom behavior to single repositories .. 9
Adding custom behavior to all repositories ... 10

1.4. Spring Data extensions .. 12
Web support .. 12

Basic web support .. 12
Hypermedia support for Pageables .. 14

Repository populators ... 15
Legacy web support ... 16

Domain class web binding for Spring MVC .. 16
Web pagination .. 18

please define productname in your docbook file!

1.6.4.RELEASE
Spring Data Commons -

Reference Documentation iii

Preface
The Spring Data Commons project applies core Spring concepts to the development of solutions using
many non-relational data stores.

Part I. Reference
This part of the reference documentation details the ...

please define productname in your docbook file!

1.6.4.RELEASE
Spring Data Commons -

Reference Documentation 2

1. Working with Spring Data Repositories

The goal of Spring Data repository abstraction is to significantly reduce the amount of boilerplate code
required to implement data access layers for various persistence stores.

Important

Spring Data repository documentation and your module

This chapter explains the core concepts and interfaces of Spring Data repositories. The
information in this chapter is pulled from the Spring Data Commons module. It uses the
configuration and code samples for the Java Persistence API (JPA) module. Adapt the XML
namespace declaration and the types to be extended to the equivalents of the particular
module that you are using. ??? covers XML configuration which is supported across all Spring
Data modules supporting the repository API, ??? covers the query method method keywords
supported by the repository abstraction in general. For detailed information on the specific
features of your module, consult the chapter on that module of this document.

1.1 Core concepts

The central interface in Spring Data repository abstraction is Repository (probably not that much of
a surprise). It takes the the domain class to manage as well as the id type of the domain class as type
arguments. This interface acts primarily as a marker interface to capture the types to work with and
to help you to discover interfaces that extend this one. The CrudRepository provides sophisticated
CRUD functionality for the entity class that is being managed.

public interface CrudRepository<T, ID extends Serializable>

 extends Repository<T, ID> {

 ❶

 <S extends T> S save(S entity);

 ❷

 T findOne(ID primaryKey);

 ❸

 Iterable<T> findAll();

 Long count();

 ❹

 void delete(T entity);

 ❺

 boolean exists(ID primaryKey);

 ❻

 // … more functionality omitted.

}

❶ Saves the given entity.

❷ Returns the entity identified by the given id.

❸ Returns all entities.

❹ Returns the number of entities.

❺ Deletes the given entity.

❻ Indicates whether an entity with the given id exists.

Example 1.1 CrudRepository interface

please define productname in your docbook file!

1.6.4.RELEASE
Spring Data Commons -

Reference Documentation 3

Usually we will have persistence technology specific sub-interfaces to include additional technology
specific methods. We will now ship implementations for a variety of Spring Data modules that implement
CrudRepository.

On top of the CrudRepository there is a PagingAndSortingRepository abstraction that adds
additional methods to ease paginated access to entities:

public interface PagingAndSortingRepository<T, ID extends Serializable>

 extends CrudRepository<T, ID> {

 Iterable<T> findAll(Sort sort);

 Page<T> findAll(Pageable pageable);

}

Example 1.2 PagingAndSortingRepository

Accessing the second page of User by a page size of 20 you could simply do something like this:

PagingAndSortingRepository<User, Long> repository = // … get access to a bean

Page<User> users = repository.findAll(new PageRequest(1, 20));

1.2 Query methods

Standard CRUD functionality repositories usually have queries on the underlying datastore. With Spring
Data, declaring those queries becomes a four-step process:

1. Declare an interface extending Repository or one of its subinterfaces and type it to the domain
class that it will handle.

public interface PersonRepository extends Repository<User, Long> { … }

2. Declare query methods on the interface.

List<Person> findByLastname(String lastname);

3. Set up Spring to create proxy instances for those interfaces.

<?xml version="1.0" encoding="UTF-8"?>

<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://www.springframework.org/schema/data/jpa"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/data/jpa

 http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

 <repositories base-package="com.acme.repositories" />

</beans>

Note

The JPA namespace is used in this example. If you are using the repository abstraction for
any other store, you need to change this to the appropriate namespace declaration of your
store module which should be exchanging jpa in favor of, for example, mongodb.

please define productname in your docbook file!

1.6.4.RELEASE
Spring Data Commons -

Reference Documentation 4

4. Get the repository instance injected and use it.

public class SomeClient {

 @Autowired

 private PersonRepository repository;

 public void doSomething() {

 List<Person> persons = repository.findByLastname("Matthews");

 }

}

The sections that follow explain each step.

Defining repository interfaces

As a first step you define a domain class-specific repository interface. The interface must extend
Repository and be typed to the domain class and an ID type. If you want to expose CRUD methods
for that domain type, extend CrudRepository instead of Repository.

Fine-tuning repository definition

Typically, your repository interface will extend Repository, CrudRepository or
PagingAndSortingRepository. Alternatively, if you do not want to extend Spring Data interfaces,
you can also annotate your repository interface with @RepositoryDefinition. Extending
CrudRepository exposes a complete set of methods to manipulate your entities. If you prefer
to be selective about the methods being exposed, simply copy the ones you want to expose from
CrudRepository into your domain repository.

interface MyBaseRepository<T, ID extends Serializable> extends Repository<T, ID> {

 T findOne(ID id);

 T save(T entity);

}

interface UserRepository extends MyBaseRepository<User, Long> {

 User findByEmailAddress(EmailAddress emailAddress);

}

Example 1.3 Selectively exposing CRUD methods

In this first step you defined a common base interface for all your domain repositories and exposed
findOne(…) as well as save(…).These methods will be routed into the base repository implementation
of the store of your choice provided by Spring Data because they are matching the method signatures
in CrudRepository. So the UserRepository will now be able to save users, and find single ones
by id, as well as triggering a query to find Users by their email address.

Defining query methods

The repository proxy has two ways to derive a store-specific query from the method name. It can derive
the query from the method name directly, or by using an additionally created query. Available options
depend on the actual store. However, there's got to be an strategy that decides what actual query is
created. Let's have a look at the available options.

please define productname in your docbook file!

1.6.4.RELEASE
Spring Data Commons -

Reference Documentation 5

Query lookup strategies

The following strategies are available for the repository infrastructure to resolve the query. You can
configure the strategy at the namespace through the query-lookup-strategy attribute. Some
strategies may not be supported for particular datastores.

CREATE

CREATE attempts to construct a store-specific query from the query method name. The general approach
is to remove a given set of well-known prefixes from the method name and parse the rest of the method.
Read more about query construction in the section called “Query creation”.

USE_DECLARED_QUERY

USE_DECLARED_QUERY tries to find a declared query and will throw an exception in case it can't find
one. The query can be defined by an annotation somewhere or declared by other means. Consult the
documentation of the specific store to find available options for that store. If the repository infrastructure
does not find a declared query for the method at bootstrap time, it fails.

CREATE_IF_NOT_FOUND (default)

CREATE_IF_NOT_FOUND combines CREATE and USE_DECLARED_QUERY. It looks up a declared query
first, and if no declared query is found, it creates a custom method name-based query. This is the default
lookup strategy and thus will be used if you do not configure anything explicitly. It allows quick query
definition by method names but also custom-tuning of these queries by introducing declared queries
as needed.

Query creation

The query builder mechanism built into Spring Data repository infrastructure is useful for building
constraining queries over entities of the repository. The mechanism strips the prefixes find…By, read…
By, and get…By from the method and starts parsing the rest of it. The introducing clause can contain
further expressions such as a Distinct to set a distinct flag on the query to be created. However, the
first By acts as delimiter to indicate the start of the actual criteria. At a very basic level you can define
conditions on entity properties and concatenate them with And and Or .

public interface PersonRepository extends Repository<User, Long> {

 List<Person> findByEmailAddressAndLastname(EmailAddress emailAddress, String lastname);

 // Enables the distinct flag for the query

 List<Person> findDistinctPeopleByLastnameOrFirstname(String lastname, String firstname);

 List<Person> findPeopleDistinctByLastnameOrFirstname(String lastname, String firstname);

 // Enabling ignoring case for an individual property

 List<Person> findByLastnameIgnoreCase(String lastname);

 // Enabling ignoring case for all suitable properties

 List<Person> findByLastnameAndFirstnameAllIgnoreCase(String lastname, String firstname);

 // Enabling static ORDER BY for a query

 List<Person> findByLastnameOrderByFirstnameAsc(String lastname);

 List<Person> findByLastnameOrderByFirstnameDesc(String lastname);

}

Example 1.4 Query creation from method names

The actual result of parsing the method depends on the persistence store for which you create the query.
However, there are some general things to notice.

please define productname in your docbook file!

1.6.4.RELEASE
Spring Data Commons -

Reference Documentation 6

• The expressions are usually property traversals combined with operators that can be concatenated.
You can combine property expressions with AND and OR. You also get support for operators such as
Between, LessThan, GreaterThan, Like for the property expressions. The supported operators
can vary by datastore, so consult the appropriate part of your reference documentation.

• The method parser supports setting an IgnoreCase flag for individual properties, for
example,findByLastnameIgnoreCase(…)) or for all properties of a type that support ignoring case
(usually Strings, for example, findByLastnameAndFirstnameAllIgnoreCase(…)). Whether
ignoring cases is supported may vary by store, so consult the relevant sections in the reference
documentation for the store-specific query method.

• You can apply static ordering by appending an OrderBy clause to the query method that references
a property and by providing a sorting direction (Asc or Desc). To create a query method that supports
dynamic sorting, see the section called “Special parameter handling”.

Property expressions

Property expressions can refer only to a direct property of the managed entity, as shown in the preceding
example. At query creation time you already make sure that the parsed property is a property of the
managed domain class. However, you can also define constraints by traversing nested properties.
Assume Persons have Addresses with ZipCodes. In that case a method name of

List<Person> findByAddressZipCode(ZipCode zipCode);

creates the property traversal x.address.zipCode. The resolution algorithm starts with interpreting
the entire part (AddressZipCode) as the property and checks the domain class for a property with
that name (uncapitalized). If the algorithm succeeds it uses that property. If not, the algorithm splits
up the source at the camel case parts from the right side into a head and a tail and tries to find the
corresponding property, in our example, AddressZip and Code. If the algorithm finds a property with
that head it takes the tail and continue building the tree down from there, splitting the tail up in the way
just described. If the first split does not match, the algorithm move the split point to the left (Address,
ZipCode) and continues.

Although this should work for most cases, it is possible for the algorithm to select the wrong property.
Suppose the Person class has an addressZip property as well. The algorithm would match in the first
split round already and essentially choose the wrong property and finally fail (as the type of addressZip
probably has no code property). To resolve this ambiguity you can use _ inside your method name to
manually define traversal points. So our method name would end up like so:

List<Person> findByAddress_ZipCode(ZipCode zipCode);

Special parameter handling

To handle parameters to your query you simply define method parameters as already seen in the
examples above. Besides that the infrastructure will recognize certain specific types like Pageable and
Sort to apply pagination and sorting to your queries dynamically.

Page<User> findByLastname(String lastname, Pageable pageable);

List<User> findByLastname(String lastname, Sort sort);

List<User> findByLastname(String lastname, Pageable pageable);

Example 1.5 Using Pageable and Sort in query methods

please define productname in your docbook file!

1.6.4.RELEASE
Spring Data Commons -

Reference Documentation 7

The first method allows you to pass an org.springframework.data.domain.Pageable instance
to the query method to dynamically add paging to your statically defined query. Sorting options
are handled through the Pageable instance too. If you only need sorting, simply add an
org.springframework.data.domain.Sort parameter to your method. As you also can see,
simply returning a List is possible as well. In this case the additional metadata required to build the
actual Page instance will not be created (which in turn means that the additional count query that would
have been necessary not being issued) but rather simply restricts the query to look up only the given
range of entities.

Note

To find out how many pages you get for a query entirely you have to trigger an additional count
query. By default this query will be derived from the query you actually trigger.

Creating repository instances

In this section you create instances and bean definitions for the repository interfaces defined. The easiest
way to do so is by using the Spring namespace that is shipped with each Spring Data module that
supports the repository mechanism.

XML configuration

Each Spring Data module includes a repositories element that allows you to simply define a base
package that Spring scans for you.

<?xml version="1.0" encoding="UTF-8"?>

<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://www.springframework.org/schema/data/jpa"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/data/jpa

 http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

 <repositories base-package="com.acme.repositories" />

</beans:beans>

In the preceding example, Spring is instructed to scan com.acme.repositories and all its subpackages
for interfaces extending Repository or one of its subinterfaces. For each interface found, the
infrastructure registers the persistence technology-specific FactoryBean to create the appropriate
proxies that handle invocations of the query methods. Each bean is registered under a bean name that
is derived from the interface name, so an interface of UserRepository would be registered under
userRepository. The base-package attribute allows wildcards, so that you can have a pattern of
scanned packages.

Using filters

By default the infrastructure picks up every interface extending the persistence technology-specific
Repository subinterface located under the configured base package and creates a bean instance
for it. However, you might want more fine-grained control over which interfaces bean instances get
created for. To do this you use <include-filter /> and <exclude-filter /> elements
inside <repositories />. The semantics are exactly equivalent to the elements in Spring's context
namespace. For details, see Spring reference documentation on these elements.

http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#beans-scanning-filters

please define productname in your docbook file!

1.6.4.RELEASE
Spring Data Commons -

Reference Documentation 8

For example, to exclude certain interfaces from instantiation as repository, you could use the following
configuration:

<repositories base-package="com.acme.repositories">

 <context:exclude-filter type="regex" expression=".*SomeRepository" />

</repositories>

This example excludes all interfaces ending in SomeRepository from being instantiated.

Example 1.6 Using exclude-filter element

JavaConfig

The repository infrastructure can also be triggered using a store-specific @Enable

${store}Repositories annotation on a JavaConfig class. For an introduction into Java-based
configuration of the Spring container, see the reference documentation.2

A sample configuration to enable Spring Data repositories looks something like this.

@Configuration

@EnableJpaRepositories("com.acme.repositories")

class ApplicationConfiguration {

 @Bean

 public EntityManagerFactory entityManagerFactory() {

 // …

 }

}

Example 1.7 Sample annotation based repository configuration

Note

The sample uses the JPA-specific annotation, which you would change according to the store
module you actually use. The same applies to the definition of the EntityManagerFactory
bean. Consult the sections covering the store-specific configuration.

Standalone usage

You can also use the repository infrastructure outside of a Spring container. You still need some
Spring libraries in your classpath, but generally you can set up repositories programmatically as
well. The Spring Data modules that provide repository support ship a persistence technology-specific
RepositoryFactory that you can use as follows.

RepositoryFactorySupport factory = … // Instantiate factory here

UserRepository repository = factory.getRepository(UserRepository.class);

Example 1.8 Standalone usage of repository factory

1.3 Custom implementations for Spring Data repositories

Often it is necessary to provide a custom implementation for a few repository methods. Spring Data
repositories easily allow you to provide custom repository code and integrate it with generic CRUD
abstraction and query method functionality.

2JavaConfig in the Spring reference documentation - http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/
html/beans.html#beans-java

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-java
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-java

please define productname in your docbook file!

1.6.4.RELEASE
Spring Data Commons -

Reference Documentation 9

Adding custom behavior to single repositories

To enrich a repository with custom functionality you first define an interface and an implementation for
the custom functionality. Use the repository interface you provided to extend the custom interface.

interface UserRepositoryCustom {

 public void someCustomMethod(User user);

}

Example 1.9 Interface for custom repository functionality

class UserRepositoryImpl implements UserRepositoryCustom {

 public void someCustomMethod(User user) {

 // Your custom implementation

 }

}

Note

The implementation itself does not depend on Spring Data and can be a regular Spring bean. So
you can use standard dependency injection behavior to inject references to other beans, take
part in aspects, and so on.

Example 1.10 Implementation of custom repository functionality

public interface UserRepository extends CrudRepository<User, Long>, UserRepositoryCustom {

 // Declare query methods here

}

Let your standard repository interface extend the custom one. Doing so makes CRUD and custom
functionality available to clients.

Example 1.11 Changes to the your basic repository interface

Configuration

If you use namespace configuration, the repository infrastructure tries to autodetect custom
implementations by scanning for classes below the package we found a repository in. These classes
need to follow the naming convention of appending the namespace element's attribute repository-
impl-postfix to the found repository interface name. This postfix defaults to Impl.

<repositories base-package="com.acme.repository" />

<repositories base-package="com.acme.repository" repository-impl-postfix="FooBar" />

Example 1.12 Configuration example

The first configuration example will try to look up a class
com.acme.repository.UserRepositoryImpl to act as custom repository implementation, where
the second example will try to lookup com.acme.repository.UserRepositoryFooBar.

Manual wiring

The preceding approach works well if your custom implementation uses annotation-based configuration
and autowiring only, as it will be treated as any other Spring bean. If your custom implementation bean

please define productname in your docbook file!

1.6.4.RELEASE
Spring Data Commons -

Reference Documentation 10

needs special wiring, you simply declare the bean and name it after the conventions just described.
The infrastructure will then refer to the manually defined bean definition by name instead of creating
one itself.

<repositories base-package="com.acme.repository" />

<beans:bean id="userRepositoryImpl" class="…">

 <!-- further configuration -->

</beans:bean>

Example 1.13 Manual wiring of custom implementations (I)

Adding custom behavior to all repositories

The preceding approach is not feasible when you want to add a single method to all your repository
interfaces.

1. To add custom behavior to all repositories, you first add an intermediate interface to declare the
shared behavior.

public interface MyRepository<T, ID extends Serializable>

 extends JpaRepository<T, ID> {

 void sharedCustomMethod(ID id);

}

Example 1.14 An interface declaring custom shared behavior

Now your individual repository interfaces will extend this intermediate interface instead of the
Repository interface to include the functionality declared.

2. Next, create an implementation of the intermediate interface that extends the persistence technology-
specific repository base class. This class will then act as a custom base class for the repository
proxies.

public class MyRepositoryImpl<T, ID extends Serializable>

 extends SimpleJpaRepository<T, ID> implements MyRepository<T, ID> {

 private EntityManager entityManager;

 // There are two constructors to choose from, either can be used.

 public MyRepositoryImpl(Class<T> domainClass, EntityManager entityManager) {

 super(domainClass, entityManager);

 // This is the recommended method for accessing inherited class dependencies.

 this.entityManager = entityManager;

 }

 public void sharedCustomMethod(ID id) {

 // implementation goes here

 }

}

Example 1.15 Custom repository base class

The default behavior of the Spring <repositories /> namespace is to provide an implementation
for all interfaces that fall under the base-package. This means that if left in its current state, an

please define productname in your docbook file!

1.6.4.RELEASE
Spring Data Commons -

Reference Documentation 11

implementation instance of MyRepository will be created by Spring. This is of course not desired
as it is just supposed to act as an intermediary between Repository and the actual repository
interfaces you want to define for each entity. To exclude an interface that extends Repository from
being instantiated as a repository instance, you can either annotate it with @NoRepositoryBean or
move it outside of the configured base-package.

3. Then create a custom repository factory to replace the default RepositoryFactoryBean that will
in turn produce a custom RepositoryFactory. The new repository factory will then provide your
MyRepositoryImpl as the implementation of any interfaces that extend the Repository interface,
replacing the SimpleJpaRepository implementation you just extended.

public class MyRepositoryFactoryBean<R extends JpaRepository<T, I>, T, I extends

 Serializable>

 extends JpaRepositoryFactoryBean<R, T, I> {

 protected RepositoryFactorySupport createRepositoryFactory(EntityManager

 entityManager) {

 return new MyRepositoryFactory(entityManager);

 }

 private static class MyRepositoryFactory<T, I extends Serializable> extends

 JpaRepositoryFactory {

 private EntityManager entityManager;

 public MyRepositoryFactory(EntityManager entityManager) {

 super(entityManager);

 this.entityManager = entityManager;

 }

 protected Object getTargetRepository(RepositoryMetadata metadata) {

 return new MyRepositoryImpl<T, I>((Class<T>) metadata.getDomainClass(),

 entityManager);

 }

 protected Class<?> getRepositoryBaseClass(RepositoryMetadata metadata) {

 // The RepositoryMetadata can be safely ignored, it is used by the

 JpaRepositoryFactory

 //to check for QueryDslJpaRepository's which is out of scope.

 return MyRepository.class;

 }

 }

}

Example 1.16 Custom repository factory bean

4. Finally, either declare beans of the custom factory directly or use the factory-class attribute of
the Spring namespace to tell the repository infrastructure to use your custom factory implementation.

<repositories base-package="com.acme.repository"

 factory-class="com.acme.MyRepositoryFactoryBean" />

Example 1.17 Using the custom factory with the namespace

please define productname in your docbook file!

1.6.4.RELEASE
Spring Data Commons -

Reference Documentation 12

1.4 Spring Data extensions

This section documents a set of Spring Data extensions that enable Spring Data usage in a variety of
contexts. Currently most of the integration is targeted towards Spring MVC.

Web support

Note

This section contains the documentation for the Spring Data web support as it is implemented
as of Spring Data Commons in the 1.6 range. As it the newly introduced support changes quite
a lot of things we kept the documentation of the former behavior in the section called “Legacy
web support”.

Also note that the JavaConfig support introduced in Spring Data Commons 1.6 requires Spring
3.2 due to some issues with JavaConfig and overridden methods in Spring 3.1.

Spring Data modules ships with a variety of web support if the module supports the repository
programming model. The web related stuff requires Spring MVC JARs on the classpath, some of them
even provide integration with Spring HATEOAS.

3In general, the integration support is enabled by using the @EnableSpringDataWebSupport
annotation in your JavaConfig configuration class.

@Configuration

@EnableWebMvc

@EnableSpringDataWebSupport

class WebConfiguration { }

Example 1.18 Enabling Spring Data web support

The @EnableSpringDataWebSupport annotation registers a few components we will discuss in a bit.
It will also detect Spring HATEOAS on the classpath and register integration components for it as well
if present.

Alternatively, if you are using XML configuration, register either SpringDataWebSupport or
HateoasAwareSpringDataWebSupport as Spring beans:

<bean class="org.springframework.data.web.config.SpringDataWebConfiguration" />

<!-- If you're using Spring HATEOAS as well register this one *instead* of the former -->

<bean class="org.springframework.data.web.config.HateoasAwareSpringDataWebConfiguration" /

>

Example 1.19 Enabling Spring Data web support in XML

Basic web support

The configuration setup shown above will register a few basic components:

• A DomainClassConverter to enable Spring MVC to resolve instances of repository managed
domain classes from request parameters or path variables.

• HandlerMethodArgumentResolver implementations to let Spring MVC resolve Pageable and
Sort instances from request parameters.

3Spring HATEOAS - https://github.com/SpringSource/spring-hateoas

https://github.com/SpringSource/spring-hateoas

please define productname in your docbook file!

1.6.4.RELEASE
Spring Data Commons -

Reference Documentation 13

DomainClassConverter

The DomainClassConverter allows you to use domain types in your Spring MVC controller method
signatures directly, so that you don't have to manually lookup the instances via the repository:

@Controller

@RequestMapping("/users")

public class UserController {

 @RequestMapping("/{id}")

 public String showUserForm(@PathVariable("id") User user, Model model) {

 model.addAttribute("user", user);

 return "userForm";

 }

}

Example 1.20 A Spring MVC controller using domain types in method signatures

As you can see the method receives a User instance directly and no further lookup is necessary. The
instance can be resolved by letting Spring MVC convert the path variable into the id type of the domain
class first and eventually access the instance through calling findOne(…) on the repository instance
registered for the domain type.

Note

Currently the repository has to implement CrudRepository to be eligible to be discovered for
conversion.

HandlerMethodArgumentResolvers for Pageable and Sort

The configuration snippet above also registers a PageableHandlerMethodArgumentResolver
as well as an instance of SortHandlerMethodArgumentResolver. The registration enables
Pageable and Sort being valid controller method arguments

@Controller

@RequestMapping("/users")

public class UserController {

 @Autowired UserRepository repository;

 @RequestMapping

 public String showUsers(Model model, Pageable pageable) {

 model.addAttribute("users", repository.findAll(pageable));

 return "users";

 }

}

Example 1.21 Using Pageable as controller method argument

This method signature will cause Spring MVC try to derive a Pageable instance from the request
parameters using the following default configuration:

Table 1.1. Request parameters evaluated for Pageable instances

page Page you want to retrieve.

size Size of the page you want to retrieve.

please define productname in your docbook file!

1.6.4.RELEASE
Spring Data Commons -

Reference Documentation 14

sort Properties that should be sorted by in the format property,property(,ASC|
DESC). Default sort direction is ascending. Use multiple sort parameters if you
want to switch directions, e.g. ?sort=firstname&sort=lastname,asc.

To customize this behavior extend either SpringDataWebConfiguration or the HATEOAS-enabled
equivalent and override the pageableResolver() or sortResolver() methods and import your
customized configuration file instead of using the @Enable-annotation.

In case you need multiple Pageables or Sorts to be resolved from the request (for multiple tables, for
example) you can use Spring's @Qualifier annotation to distinguish one from another. The request
parameters then have to be prefixed with ${qualifier}_. So for a method signature like this:

public String showUsers(Model model,

 @Qualifier("foo") Pageable first,

 @Qualifier("bar") Pageable second) { … }

you have to populate foo_page and bar_page etc.

The default Pageable handed into the method is equivalent to a new PageRequest(0, 20) but can
be customized using the @PageableDefaults annotation on the Pageable parameter.

Hypermedia support for Pageables

Spring HATEOAS ships with a representation model class PagedResources that allows enrichting the
content of a Page instance with the necessary Page metadata as well as links to let the clients easily
navigate the pages. The conversion of a Page to a PagedResources is done by an implementation of
the Spring HATEOAS ResourceAssembler interface, the PagedResourcesAssembler.

@Controller

class PersonController {

 @Autowired PersonRepository repository;

 @RequestMapping(value = "/persons", method = RequestMethod.GET)

 HttpEntity<PagedResources<Person>> persons(Pageable pageable,

 PagedResourcesAssembler assembler) {

 Page<Person> persons = repository.findAll(pageable);

 return new ResponseEntity<>(assembler.toResources(persons), HttpStatus.OK);

 }

}

Example 1.22 Using a PagedResourcesAssembler as controller method argument

Enabling the configuration as shown above allows the PagedResourcesAssembler to be used as
controller method argument. Calling toResources(…) on it will cause the following:

• The content of the Page will become the content of the PagedResources instance.

• The PagedResources will get a PageMetadata instance attached populated with information form
the Page and the underlying PageRequest.

• The PagedResources gets prev and next links attached depending on the page's state. The links
will point to the URI the method invoked is mapped to. The pagination parameters added to the method
will match the setup of the PageableHandlerMethodArgumentResolver to make sure the links
can be resolved later on.

please define productname in your docbook file!

1.6.4.RELEASE
Spring Data Commons -

Reference Documentation 15

Assume we have 30 Person instances in the database. You can now trigger a request GET http://
localhost:8080/persons and you'll see something similar to this:

{ "links" : [{ "rel" : "next",

 "href" : "http://localhost:8080/persons?page=1&size=20 }

],

 "content" : [

 … // 20 Person instances rendered here

],

 "pageMetadata" : {

 "size" : 20,

 "totalElements" : 30,

 "totalPages" : 2,

 "number" : 0

 }

}

You see that the assembler produced the correct URI and also picks up the default configuration
present to resolve the parameters into a Pageable for an upcoming request. This means, if
you change that configuration, the links will automatically adhere to the change. By default the
assembler points to the controller method it was invoked in but that can be customized by
handing in a custom Link to be used as base to build the pagination links to overloads of the
PagedResourcesAssembler.toResource(…) method.

Repository populators

If you work with the Spring JDBC module, you probably are familiar with the support to populate a
DataSource using SQL scripts. A similar abstraction is available on the repositories level, although
it does not use SQL as the data definition language because it must be store-independent. Thus the
populators support XML (through Spring's OXM abstraction) and JSON (through Jackson) to define data
with which to populate the repositories.

Assume you have a file data.json with the following content:

[{ "_class" : "com.acme.Person",

 "firstname" : "Dave",

 "lastname" : "Matthews" },

 { "_class" : "com.acme.Person",

 "firstname" : "Carter",

 "lastname" : "Beauford" }]

Example 1.23 Data defined in JSON

You can easily populate your repositories by using the populator elements of the repository namespace
provided in Spring Data Commons. To populate the preceding data to your PersonRepository , do
the following:

please define productname in your docbook file!

1.6.4.RELEASE
Spring Data Commons -

Reference Documentation 16

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:repository="http://www.springframework.org/schema/data/repository"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/data/repository

 http://www.springframework.org/schema/data/repository/spring-repository.xsd">

 <repository:jackson-populator location="classpath:data.json" />

</beans>

Example 1.24 Declaring a Jackson repository populator

This declaration causes the data.json file being read, deserialized by a Jackson ObjectMapper.
The type to which the JSON object will be unmarshalled to will be determined by inspecting the _class
attribute of the JSON document. The infrastructure will eventually select the appropriate repository to
handle the object just deserialized.

To rather use XML to define the data the repositories shall be populated with, you can use the
unmarshaller-populator element. You configure it to use one of the XML marshaller options Spring
OXM provides you with. See the Spring reference documentation for details.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:repository="http://www.springframework.org/schema/data/repository"

 xmlns:oxm="http://www.springframework.org/schema/oxm"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/data/repository

 http://www.springframework.org/schema/data/repository/spring-repository.xsd

 http://www.springframework.org/schema/oxm

 http://www.springframework.org/schema/oxm/spring-oxm.xsd">

 <repository:unmarshaller-populator location="classpath:data.json" unmarshaller-

ref="unmarshaller" />

 <oxm:jaxb2-marshaller contextPath="com.acme" />

</beans>

Example 1.25 Declaring an unmarshalling repository populator (using JAXB)

Legacy web support

Domain class web binding for Spring MVC

Given you are developing a Spring MVC web application you typically have to resolve domain class
ids from URLs. By default your task is to transform that request parameter or URL part into the domain
class to hand it to layers below then or execute business logic on the entities directly. This would look
something like this:

???

please define productname in your docbook file!

1.6.4.RELEASE
Spring Data Commons -

Reference Documentation 17

@Controller

@RequestMapping("/users")

public class UserController {

 private final UserRepository userRepository;

 @Autowired

 public UserController(UserRepository userRepository) {

 Assert.notNull(repository, "Repository must not be null!");

 userRepository = userRepository;

 }

 @RequestMapping("/{id}")

 public String showUserForm(@PathVariable("id") Long id, Model model) {

 // Do null check for id

 User user = userRepository.findOne(id);

 // Do null check for user

 model.addAttribute("user", user);

 return "user";

 }

}

First you declare a repository dependency for each controller to look up the entity managed by
the controller or repository respectively. Looking up the entity is boilerplate as well, as it's always
a findOne(…) call. Fortunately Spring provides means to register custom components that allow
conversion between a String value to an arbitrary type.

PropertyEditors

For Spring versions before 3.0 simple Java PropertyEditors had to be used. To integrate with
that, Spring Data offers a DomainClassPropertyEditorRegistrar, which looks up all Spring Data
repositories registered in the ApplicationContext and registers a custom PropertyEditor for
the managed domain class.

<bean class="….web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter">

 <property name="webBindingInitializer">

 <bean class="….web.bind.support.ConfigurableWebBindingInitializer">

 <property name="propertyEditorRegistrars">

 <bean class="org.springframework.data.repository.support.DomainClassPropertyEditorRegistrar"

 />

 </property>

 </bean>

 </property>

</bean>

If you have configured Spring MVC as in the preceding example, you can configure your controller as
follows, which reduces a lot of the clutter and boilerplate.

please define productname in your docbook file!

1.6.4.RELEASE
Spring Data Commons -

Reference Documentation 18

@Controller

@RequestMapping("/users")

public class UserController {

 @RequestMapping("/{id}")

 public String showUserForm(@PathVariable("id") User user, Model model) {

 model.addAttribute("user", user);

 return "userForm";

 }

}

ConversionService

In Spring 3.0 and later the PropertyEditor support is superseded by a new conversion infrastructure
that eliminates the drawbacks of PropertyEditors and uses a stateless X to Y conversion
approach. Spring Data now ships with a DomainClassConverter that mimics the behavior of
DomainClassPropertyEditorRegistrar. To configure, simply declare a bean instance and pipe
the ConversionService being used into its constructor:

<mvc:annotation-driven conversion-service="conversionService" />

<bean class="org.springframework.data.repository.support.DomainClassConverter">

 <constructor-arg ref="conversionService" />

</bean>

If you are using JavaConfig, you can simply extend Spring MVC's WebMvcConfigurationSupport
and hand the FormatingConversionService that the configuration superclass provides into the
DomainClassConverter instance you create.

class WebConfiguration extends WebMvcConfigurationSupport {

 // Other configuration omitted

 @Bean

 public DomainClassConverter<?> domainClassConverter() {

 return new DomainClassConverter<FormattingConversionService>(mvcConversionService());

 }

}

Web pagination

When working with pagination in the web layer you usually have to write a lot of boilerplate code yourself
to extract the necessary metadata from the request. The less desirable approach shown in the example
below requires the method to contain an HttpServletRequest parameter that has to be parsed
manually. This example also omits appropriate failure handling, which would make the code even more
verbose.

please define productname in your docbook file!

1.6.4.RELEASE
Spring Data Commons -

Reference Documentation 19

@Controller

@RequestMapping("/users")

public class UserController {

 // DI code omitted

 @RequestMapping

 public String showUsers(Model model, HttpServletRequest request) {

 int page = Integer.parseInt(request.getParameter("page"));

 int pageSize = Integer.parseInt(request.getParameter("pageSize"));

 Pageable pageable = new PageRequest(page, pageSize);

 model.addAttribute("users", userService.getUsers(pageable));

 return "users";

 }

}

The bottom line is that the controller should not have to handle the functionality of extracting pagination
information from the request. So Spring Data ships with a PageableHandlerArgumentResolver
that will do the work for you. The Spring MVC JavaConfig support exposes a
WebMvcConfigurationSupport helper class to customize the configuration as follows:

@Configuration

public class WebConfig extends WebMvcConfigurationSupport {

 @Override

 public void configureMessageConverters(List<HttpMessageConverter<?>> converters) {

 converters.add(new PageableHandlerArgumentResolver());

 }

}

If you're stuck with XML configuration you can register the resolver as follows:

<bean class="….web.servlet.mvc.method.annotation.RequestMappingHandlerAdapter">

 <property name="customArgumentResolvers">

 <list>

 <bean class="org.springframework.data.web.PageableHandlerArgumentResolver" />

 </list>

 </property>

</bean>

When using Spring 3.0.x versions use the PageableArgumentResolver instead. Once you've
configured the resolver with Spring MVC it allows you to simplify controllers down to something like this:

@Controller

@RequestMapping("/users")

public class UserController {

 @RequestMapping

 public String showUsers(Model model, Pageable pageable) {

 model.addAttribute("users", userRepository.findAll(pageable));

 return "users";

 }

}

please define productname in your docbook file!

1.6.4.RELEASE
Spring Data Commons -

Reference Documentation 20

The PageableArgumentResolver automatically resolves request parameters to build a
PageRequest instance. By default it expects the following structure for the request parameters.

Table 1.2. Request parameters evaluated by PageableArgumentResolver

page Page you want to retrieve.

page.size Size of the page you want to retrieve.

page.sort Property that should be sorted by.

page.sort.dir Direction that should be used for sorting.

In case you need multiple Pageables to be resolved from the request (for multiple tables, for example)
you can use Spring's @Qualifier annotation to distinguish one from another. The request parameters
then have to be prefixed with ${qualifier}_. So for a method signature like this:

public String showUsers(Model model,

 @Qualifier("foo") Pageable first,

 @Qualifier("bar") Pageable second) { … }

you have to populate foo_page and bar_page and the related subproperties.

Configuring a global default on bean declaration

The PageableArgumentResolver will use a PageRequest with the first page and a page size of 10
by default. It will use that value if it cannot resolve a PageRequest from the request (because of missing
parameters, for example). You can configure a global default on the bean declaration directly. If you
might need controller method specific defaults for the Pageable, annotate the method parameter with
@PageableDefaults and specify page (through pageNumber), page size (through value), sort (list
of properties to sort by), and sortDir (the direction to sort by) as annotation attributes:

public String showUsers(Model model,

 @PageableDefaults(pageNumber = 0, value = 30) Pageable pageable) { … }

	Spring Data Commons - Reference Documentation
	Table of Contents
	Preface
	Part I. Reference
	1. Working with Spring Data Repositories
	1.1 Core concepts
	1.2 Query methods
	Defining repository interfaces
	Fine-tuning repository definition

	Defining query methods
	Query lookup strategies
	Query creation
	Property expressions
	Special parameter handling

	Creating repository instances
	XML configuration
	JavaConfig
	Standalone usage

	1.3 Custom implementations for Spring Data repositories
	Adding custom behavior to single repositories
	Adding custom behavior to all repositories

	1.4 Spring Data extensions
	Web support
	Basic web support
	Hypermedia support for Pageables

	Repository populators
	Legacy web support
	Domain class web binding for Spring MVC
	Web pagination

