Spring Data MongoDB - Reference Documentation

Mark Pollack, Thomas Risberg, Oliver Gierke, Costin Leau, Jon Brishin

Copyright © 2011

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

(T Lo [FTox i o o PRSPPI 1
1. Why Spring Data - DOCUMENL?cuuiiieiiiieeeiiiie et e s e st e s s e e e e e e s nnnneees 2
2. REQUITEIMENES ..ottt e e e e e e e e et e e e e e e e e s s e ettt e e et eeaeesssasnteaeeeaaeeseannnreens 3
3. Additional HEIP RESOUITEScoiiuiiiiieiiieiie ettt s e e e e nnbnee e e 4
G T o 0 PR 4
3. 1.1 COMMUNITY FOMUM Lottt e e es 4
3.1.2. ProfessionNal SUPPOITeeerieeeeiiiiiiiieeeee e e e e ettt ee e e e e e s s s eeeeaeeesasnnnneeeeeaaeeaans 4
3.2. FOOWING DEVEIOPMENLveiiiieeiiieiiieiee et s e e e e e s et r e e e e e e e e ennenees 4
T L 00 (0] £ = PP PP PP T PUPPPPRPPPPRPN 5
Ot I g1 oo (1 o1 o TSRS 5
4.2. COME COMOEPLS ..eeeeieeeeiiauiitttieeteeeseaautbbe et e e e e e s s s snbbbe et e e e e e s s s aabbbbe e et e e e e e e e nbbbe e et eaeeeseannnnnnes 5
G @ 1 = VA 111 0o 6
4.3.1. Defining repository INTEITaCESccuveiiiiiiiiie e 7
4.3.2. Defining query MELNOOSoooieeiiiiiiie e e e e 7
4.3.3. Creating repoSitOry iNSLANCESuvvviiieeeeiieiiiirieee e e e e s sserirre e e e e e e s sssrrrraeraaaeeaans 9
4.4. Custom iMPlEMENTBLIONSccoiiiiiieiiiiiie e e e 11
4.4.1. Adding behaviour t0 SINgIE rEPOSITONEScvvveviieeeiiciiiiieiee e e 11
4.4.2. Adding custom behaviour to all repOSItONIESeveeiiiiieeiiiieee e 12
[1. Reference DOCUMEINTALIONeiiiiieiiiiiiee it e e e e e et e e e e e e e e e et e e e e e e e e s annteeeeeeeaeeeaannnneneeaaaeeaans 15
5. MONGODB SUPPOIT ... 16
I I €T 1T 0 RS = = o PSSP 16
5.1.1. REQUITEA JAI'Siiiiiiieee ettt e e e e e e s et e e e e e e s s st raneeeaaeeeaas 18
5.1.2. Migrating from M2 10 M3oeiiieiiiie e 19

5.2, EXaMPIES REPOSITOIY ...vveeiiiiiiiiiiiiiiei e e e ettt e e e ettt e e e e e e e e s st re e e e e e e e s s snrbraneeeeas 19

5.3. Connecting to MongoDB With SPringeeeeiiiiiiiiiiiiiee e 19
5.3.1. Registering a Mongo instance using Java based metadata 20
5.3.2. Registering aMongo instance using XML based metadataccccceveeeeennns 21
5.3.3. The MongoDDBFaCctory iNtErfatecooueeeeiiiiiiie e 22
5.3.4. Registering a MongoDbFactory instance using Java based metadata 22
5.3.5. Registering a MongoDbFactory instance using XML based metadata 23

5.4. Introduction to MONQOTEMPIELEcceeeeeiiiiiiieiee e et 24
5.4.1. Instantiating MONgOTEMPIELEc.uvviiiiiiiiie e 25

5.5. Saving, Updating, and Removing DOCUMENEScooeeeeeieie e, 26
5.5.1. How the' id' field is handled in the mapping layercccceveeeiiiiiiiiiieneeeeee, 28
5.5.2. Methods for saving and inserting doCUMENTSccveveiiiiiieeniiieee e 28
5.5.3. Updating documentsin acollectioncccccvevieeiiiiiciiiieece e 30
5.5.4. Methods for removing OCUMENTSocvrieeiiiiiiee et 31

5.6. QUENYING DOCUMENLSccceeieeee e 31
5.6.1. Querying documentsin aCollECtioNoovviiieieiiiiiii e 32
5.6.2. Methods for querying for documentsccccceeee e, 34
5.6.3. GEOSPatial QUENTESueiiieeei i ittt e s e e e e e e e e e e e e 34

5.7. MAD-REUUCE ..ottt e e et e s s e e e s e e e 36
5.7.0. EXaMPlE USBOEcviiiiiiiii ettt a e e e et e e e e e 36

5.8. Overriding default mapping with CUSIOM CONVEITENSccoviiiiiiiiiiiee e 38
5.8.1. Saving using aregistered Spring Converterccccoeeeeeee e, 38
5.8.2. Reading using @ Spring CONVENTEYccuuviiiiiiriieiiiiiee et 38
5.8.3. Registering Spring Converters with the MongoConverterocccceeveeeeenns 38

5.9. Index and Collection ManagMmENtcocciiieiieeee e e e e eas 39
5.9.1. Methods for Creating an INOEXoooiiiiiiiiiiiiiee e 39
5.9.2. Methods for working with @a ColleCtioncccceeeviiiciiiieiicee e 39

5.10. EXECULING COMMIBNGSeeeeiiuiiiieeiiiieie ettt e ettt e ettt e e et e e s s e e e s e e e e 40

Spring Data Document ()

Spring Data MongoDB - Reference Documentation

5.10.1. Methods for executing COMMANGSeveeiriirieeiiiiree et e e e 40

5,11, LIfECYCIE EVENESttt e e e e e et eeeeas 40

5.. EXCEPLION TranSI@ioNueeiiiiiiiie et 41
5.13. EXECULION CallDACKcoiiiiiiiiiiiiiiiiee e e 41

6. MONQO FEPOSITONESveiieiiiiiie ettt e e ettt ettt s bt e e e et e e e e st e e e e e st et e e e sabe e e e e e enbneeeeennbneeeeans 43
G300 I 1 1o L o 1 oo SO 43

B.2. USA0E i 43

6.3, QUENY MELNOOS ...ttt e e e e e e e e e e 44
6.3.1. Geo-spatial rePOSITOrY QUETESuvveeiieeeeiiiciiieeee e e e e e e ecirre e e e e e e s esarrareeeaee e e 45

6.3.2. Mongo JSON based query methods and field restrictionccccvvvvieveeeennns 46

6.3.3. Type-safe Query methods ... 46

A\ = o1 o [PP PO P PR OPPPPTPPPPRN 48
7.1. Convention based MapPingueeiiiieioiie e 48
7.1.1. How the ' id field ishandled in the mapping layerccccceveeeiiiiiiiiiieeeeeeee, 48

7.2. MappPiNg CONFIQUIBLIONcoiiiiiieiiiiiee ettt e e s e e 49

7.3. Metadata based MappinNgocccviiiiiiie e e et 51
7.3.1. Mapping anNNOLatiON OVEIVIEWvvvieiiiiiieeeiiiieee sttt e et e e e 51

7.3.2. Compound INAEXESccoeeeeeeeeeee e, 53

7.3.3. USING DBREFS ...t a e e e 53

7.3.4. Mapping Framework EVENESccooiiiiiiiiiiiieee e 54

7.3.5. Overriding Mapping with explicit CONVEITErScocciiieeieeee e 54

8. CrOSS SEOME SUPPIOITieieeeeeee e e sttt et e e e e sttt e e e e s s s e e e e e e e s s s s e n e e e e e e e s e sanrrrnneeeaeeeanans 56
8.1. Cross Store ConfigUIationc..uvieiiieeeiicciiiiee e e e e e e e e e s et reeeeeeas 56

8.2. Writing the Cross Store APPlICaLIONc.ueieeiiiiiieeiiiie e 58

9. LOQOING SUPPOIT ... 60
9.1. MongoDB Log4] ConfigUrationccoiieiiiieiieeee i e e e s siree e e e e e e eanraeeeaeas 60

O Q=T o] oo g PP 61
10.1. MongoDB JMX CONfigUIELIONccoiiiiiiiiiieeee e e s ettt ee e e e e e e e e e e e s ennrbrneeeeeas 61

H LY o] 1< £ o) OO OPPRPP PP 63
E N A 1SS 0T ol L 1 (= 10 64
A.l. The<repositories /> EEOMENiiiiuiiiiiiiiiii e ————a—————————— 64

A.2. The<repository /> EOMENoooiiiiiiee et eeeaas 64

Spring Data Document ()

Preface

The Spring Data MongoDB project applies core Spring concepts to the development of solutions using the
MongoDB document style data store. We provide a "template" as a high-level abstraction for storing and
querying documents. Y ou will notice similarities to the JIDBC support in the Spring Framework.

Spring Data Document ()

Part |. Introduction

This document is the reference guide for Spring Data - Document Support. It explains Document module
concepts and semantics and the syntax for various stores namespaces.

This section provides some basic introduction to Spring and Document database. The rest of the document
refers only to Spring Data Document features and assumes the user is familiar with document databases such as
MongoDB and CouchDB as well as Spring concepts.

1. Knowing Spring

Spring Data uses Spring framework's core functionality, such as the 10C container, type conv_ersion system,
expression language, JMX integration, and portable DAO exception hierarchy. While it is not important to
know the Spring APIs, understanding the concepts behind them is. At a minimum, the idea behind I0oC should
be familiar for whatever 10C container you choose to use.

The core functionality of the MongoDB and CouchDB support can be used directly, with no need to invoke the
10C services of the Spring Container. This is much like JdbcTenpl at e which can be used 'standalone’ without
any other services of the Spring container. To leverage all the features of Spring Data document, such as the
repository support, you will need to configure some parts of the library using Spring.

To learn more about Spring, you can refer to the comprehensive (and sometimes disarming) documentation that
explains in detail the Spring Framework. There are a lot of articles, blog entries and books on the matter - take
alook at the Spring framework home page for more information.

2. Knowing NoSQL and Document databases

NoSQL stores have taken the storage world by storm. It is a vast domain with a plethora of solutions, terms and
patterns (to make things worth even the term itself has multiple meanings). While some of the principles are
common, it iscrucia that the user isfamiliar to some degree with the stores supported by DATADOC. The best
way to get acquainted to this solutions is to read their documentation and follow their examples - it usually
doesn't take more then 5-10 minutes to go through them and if you are coming from an RDMBS-only
background many times these exercises can be an eye opener.

The jumping off ground for learning about MongoDB is www.mongodb.org. Here is a list of other useful
resources.

The online shell provides a convenient way to interact with a MongoDB instance in combination with the
online tutorial.

MongoDB Java L anguage Center

Several books available for purchase

Karl Seguin's online book: "The Little MongoDB Book"

Spring Data Document () 1

http://static.springframework.org/spring/docs/3.0.x/reference/spring-core.html
http://static.springframework.org/spring/docs/3.0.x/reference/beans.html
http://static.springsource.org/spring/docs/3.0.x/reference/validation.html#core-convert
http://static.springsource.org/spring/docs/3.0.x/reference/expressions.html
http://static.springsource.org/spring/docs/3.0.x/reference/jmx.html
http://static.springsource.org/spring/docs/3.0.x/reference/dao.html#dao-exceptions
http://www.springsource.org/documentation
http://www.google.com/search?q=nosoql+acronym
http://www.mongodb.org/
http://www.mongodb.org/#
http://www.mongodb.org/display/DOCS/Tutorial
http://www.mongodb.org/display/DOCS/Java+Language+Center
http://www.mongodb.org/display/DOCS/Books

Chapter 1. Why Spring Data - Document?

The Spring Framework is the leading full-stack Java/JEE application framework. It provides a lightweight
container and a non-invasive programming model enabled by the use of dependency injection, AOP, and
portable service abstractions.

NoSQL storages provide an alternative to classica RDBMS for horizontal scalability and speed. In terms of
implementation, Document stores represent one of the most popular types of stores in the NoSQL space. The
document database supported by Spring Data are MongoDB and CouchDB, though just MongoDB integration
has been released to date.

The goa of the Spring Data Document (or DATADOC) framework is to provide an extension to the Spring
programming model that supports writing applications that use Document databases. The Spring framework has
always promoted a POJO programming model with a strong emphasis on portability and productivity. These
values are caried over into Spring Data Document.

Notable features that are used in Spring Data Document from the Spring framework are the Features that
particular, features from the Spring framework that are used are the Conversion Service, IMX Exporters,
portable Data Access Exception hierarchy, Spring Expression Language, and Java based 10C container
configuration. The programming model follows the familiar Spring 'template’ style, so if you are familar with
Spring template classes such as JdbcTemplate, JInsTemplate, RestTemplate, you will feel right at home. For
example, MongoTemplate removes much of the boilerplate code you would have to write when using the
MongoDB driver to save POJOs as well as a rich java based query interface to retrieve POJOs. The
programming model also offers a new Repository approach in which the Spring container will provide an
implementation of a Repository based soley off an interface definition which can aso include custom finder
methods.

Spring Data Document () 2

http://en.wikipedia.org/wiki/NoSQL

Chapter 2. Requirements

Spring Data Document 1.x binaries requires JDK level 6.0 and above, and Spring Framework 3.0.x and above.

In terms of document stores, MongoDB preferably version 1.6.5 or later or CouchDB 1.0.1 or later are
required.

Spring Data Document () 3

http://www.springsource.org/documentation
http://www.mongodb.org/
http://couchdb.apache.org/

Chapter 3. Additional Help Resources

Learning a new framework is not always straight forward. In this section, we try to provide what we think is an
easy to follow guide for starting with Spring Data Document module. However, if you encounter issues or you
are just looking for an advice, feel freeto use one of the links below:

3.1. Support

There are afew support options available:

3.1.1. Community Forum

The Spring Data forum is a message board for all Spring Data (not just Document) users to share information
and help each other. Note that registration is needed only for posting.

3.1.2. Professional Support

Professional, from-the-source support, with guaranteed response time, is available from SpringSource, the
company behind Spring Data and Spring.
3.2. Following Development

For information on the Spring Data Mongo source code repository, nightly builds and snapshot artifacts please
see the Spring Data M ongo homepage.

You can help make Spring Data best serve the needs of the Spring community by interacting with developers
through the Spring Community forums. To follow developer activity look for the mailing list information on
the Spring Data Mongo homepage.

If you encounter a bug or want to suggest an improvement, please create a ticket on the Spring Data issue
tracker.

To stay up to date with the latest news and announcements in the Spring eco system, subscribe to the Spring
Community Portal.

Lastly, you can follow the SpringSource Data blog or the project team on Twitter (SpringData)

Spring Data Document () 4

http://forum.springframework.org/forumdisplay.php?f=80
http://www.springsource.com
http://www.springsource.org/spring-data/mongodb
http://forum.springsource.org
https://jira.springframework.org/browse/DATAKV
http://www.springframework.org/
http://blog.springsource.com/category/data-access/
http://twitter.com/SpringData

Chapter 4. Repositories

4.1. Introduction

Implementing a data access layer of an application has been cumbersome for quite a while. Too much
boilerplate code had to be written. Domain classes were anemic and not designed in a real object oriented or
domain driven manner.

Using both of these technologies makes developers life alot easier regarding rich domain model's persistence.
Nevertheless the amount of boilerplate code to implement repositories especialy is till quite high. So the goal
of the repository abstraction of Spring Data is to reduce the effort to implement data access layers for various
persistence stores significantly.

The following chapters will introduce the core concepts and interfaces of Spring Data repositories.

4.2. Core concepts

The central interface in Spring Data repository abstraction is Repository (probably not that much of a
surprise). It is typeable to the domain class to manage as well as the id type of the domain class. This interface
mainly acts as marker interface to capture the types to deal with and help us when discovering interfaces that
extend this one. Beyond that there's cr udReposi t ory which provides some sophisticated functionality around
CRUD for the entity being managed.

Example 4.1. Repository interface

public interface CrudRepository<T, |ID extends Serializabl e>
ext ends Repository<T, |D> {

T save(T entity);

T findOne(l D primaryKey);
I'terabl e<T> findAll();

Long count ();

void delete(T entity);

bool ean exi sts(1D pri maryKey);

// ...nmore functionality om tted.

Saves the given entity.

Returns the entity identified by the given id.
Returns all entities.

Returns the number of entities.

Deletes the given entity.

Returns whether an entity with the given id exists.

I

Usually we will have persistence technology specific sub-interfaces to include additional technology specific
methods. We will now ship implementations for avariety of Spring Data modules that implement this interface.

Spring Data Document () 5

Repositories

On top of the CrudRepository there is a Pagi ngAndSorti ngRepository abstraction that adds additional
methods to ease paginated access to entities:

Example 4.2. PagingAndSortingRepository

public interface Pagi ngAndSorti ngRepository<T, |ID extends Serializabl e> extends CrudRepository<T, |ID> {
Iterabl e<T> findAll (Sort sort);

Page<T> fi ndAl | (Pageabl e pageabl e);

Accessing the second page of user by a page size of 20 you could simply do something like this:

Pagi ngAndSort i ngReposi t ory<User, Long> repository = // ...get access to a bean
Page<User > users = repository.findAl |l (new PageRequest (1, 20);

4.3. Query methods

Next to standard CRUD functionality repositories are usually queries on the underlying datastore. With Spring
Data declaring those queries becomes a four-step process:

1. Declare an interface extending Reposi t ory or one of its sub-interfaces and type it to the domain classit shall
handle.

public interface PersonRepository extends Repository<User, Long> { ...}

2. Declare query methods on the interface.

Li st <Person> findByLast nane(String | astnane);

3. Setup Spring to create proxy instances for those interfaces.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans: beans xml ns: beans="htt p://ww. spri ngfranmewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns="http://ww. springfranework. org/ schema/ dat a/ j pa
xsi : schemaLocati on="http://ww. spri ngfranewor k. or g/ schema/ beans
http: //ww. spri ngfranework. or g/ schena/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schena/ dat a/ j pa
http://ww. spri ngframework. or g/ schena/ dat a/ j pa/ spri ng-j pa. xsd" >

<reposi tori es base-package="com acne.repositories" />

</ beans>

4. Get the repository instance injected and useit.

public class Sonedient {

@\ut owi r ed
private PersonRepository repository;

public void doSoret hi ng() {
Li st <Per son> persons = repository.findByLastnane("Matthews");

}

Spring Data Document () 6

Repositories

At this stage we barely scratched the surface of what's possible with the repositories but the general approach
should be clear. Let's go through each of these steps and figure out details and various options that you have at
each stage.

4.3.1. Defining repository interfaces

Asavery first step you define adomain class specific repository interface. It's got to extend Reposi t ory and be
typed to the domain class and an ID type. If you want to expose CRUD methods for that domain type, extend
CrudReposi t ory instead of Reposi tory.

4.3.1.1. Fine tuning repository definition

Usually you will have your repository interfface extend Repository, CrudRepository Of
Pagi ngAndSor t i ngReposi tory. If you don't like extending Spring Data interfaces at all you can also annotate
your repository interface with @eposi t or yDef i ni ti on. Extending Cr udReposi t ory Will expose a complete set
of methods to manipulate your entities. If you would rather be selective about the methods being exposed,
simply copy the ones you want to expose from Cr udReposi t ory into your domain repository.

Example 4.3. Selectively exposing CRUD methods

i nterface MyBaseRepository<T, |ID extends Serializabl e> extends Repository<T, |ID> {
T findOne(ID id);
T save(T entity);

}

interface UserRepository extends MyBaseRepository<User, Long> {

User findByEnail Address(Enai |l Address enai | Address);
}

In the first step we define a common base interface for al our domain repositories and expose fi ndone(..) as
well as save(..) .These methods will be routed into the base repository implementation of the store of your
choice because they are matching the method signatures in Cr udReposi t ory. SO OUr User Reposi t ory Will now
be able to save users, find single ones by id as well astriggering a query to find User s by their email address.

4.3.2. Defining query methods

4.3.2.1. Query lookup strategies

The next thing we have to discuss is the definition of query methods. There are two main ways that the
repository proxy is able to come up with the store specific query from the method name. The first option isto
derive the query from the method name directly, the second is using some kind of additionally created query.
What detailed options are available pretty much depends on the actual store, however, there's got to be some
algorithm that decides what actual query is created.

There are three strategies available for the repository infrastructure to resolve the query. The strategy to be used
can be configured at the namespace through the query- 1 ookup- st rat egy attribute. However, It might be the
case that some of the strategies are not supported for specific datastores. Here are your options:

CREATE

This strategy will try to construct a store specific query from the query method's name. The general approach is

Spring Data Document () 7

Repositories

to remove a given set of well-known prefixes from the method name and parse the rest of the method. Read
more about query construction in Section 4.3.2.2, “ Query creation”.

USE_DECLARED_QUERY

This strategy tries to find a declared query which will be used for execution first. The query could be defined
by an annotation somewhere or declared by other means. Please consult the documentation of the specific store
to find out what options are available for that store. If the repository infrastructure does not find a declared
query for the method at bootstrap time it will fail.

CREATE_IF_NOT_FOUND (default)

This strategy is actualy a combination of CREATE and USE_DECLARED QUERY. It will try to lookup a declared
query first but create a custom method name based query if no declared query was found. This is the default
lookup strategy and thus will be used if you don't configure anything explicitly. It allows quick query definition
by method names but also custom tuning of these queries by introducing declared queries as needed.

4.3.2.2. Query creation

The query builder mechanism built into Spring Data repository infrastructure is useful to build constraining
queries over entities of the repository. We will strip the prefixes fi ndBy, fi nd, readBy, r ead, get By as well as
get from the method and start parsing the rest of it. At avery basic level you can define conditions on entity
properties and concatenate them with AND and CR.

Example 4.4. Query creation from method names

public interface PersonRepository extends Repository<User, Long> {

Li st <Per son> fi ndByEnai | Addr essAndLast nane(Enai | Addr ess enui | Address, String | astnane);

}

The actual result of parsing that method will of course depend on the persistence store we create the query for,
however, there are some general things to notice. The expressions are usually property traversals combined
with operators that can be concatenated. As you can see in the example you can combine property expressions
with And and Or. Beyond that you also get support for various operators like Bet ween, LessThan, G eat er Than,
Li ke for the property expressions. As the operators supported can vary from datastore to datastore please
consult the according part of the reference documentation.

4.3.2.2.1. Property expressions

Property expressions can just refer to a direct property of the managed entity (as you just saw in the example
above). On query creation time we already make sure that the parsed property is at a property of the managed
domain class. However, you can also define constraints by traversing nested properties. Assume Per sons have
Addr esseswith zi pCodes. In that case a method name of

Li st <Per son> fi ndByAddr essZi pCode(Zi pCode zi pCode) ;

will create the property traversal x. addr ess. zi pCode. The resolution agorithm starts with interpreting the
entire part (Addresszi pCode) as property and checks the domain class for a property with that name
(uncapitalized). If it succeeds it just uses that. If not it starts splitting up the source at the camel case parts from
the right side into a head and a tail and tries to find the according property, €.g. Addr esszi p and Code. If we

Spring Data Document () 8

Repositories

find a property with that head we take the tail and continue building the tree down from there. Asin our case
the first split does not match we move the split point to the left (Addr ess, zi pCode).

Although this should work for most cases, there might be cases where the algorithm could select the wrong
property. Suppose our Per son class has an addr esszi p property as well. Then our algorithm would match in
the first split round aready and essentially choose the wrong property and finaly fail (as the type of
addr essZzi p probably has no code property). To resolve this ambiguity you can use _ inside your method name
to manually define traversal points. So our method name would end up like so:

Li st <Per son> fi ndByAddr ess_Zi pCode(Zi pCode zi pCode) ;

4.3.2.3. Special parameter handling

To hand parameters to your query you simply define method parameters as already seen in the examples above.
Besides that we will recognizes certain specific types to apply pagination and sorting to your queries
dynamically.

Example 4.5. Using Pageable and Sort in query methods

Page<User > findByLastname(String | ast nane, Pageabl e pageabl e);
Li st <User > findByLastname(String | astname, Sort sort);

Li st <User > findByLastname(String | ast nane, Pageabl e pageabl e);

The first method allows you to pass a Pageabl e instance to the query method to dynamically add paging to
your statically defined query. Sorting options are handed via the Pageabl e instance too. If you only need
sorting, simply add a Sort parameter to your method. As you also can see, simply returning a Li st is possible
as well. We will then not retrieve the additional metadata required to build the actual Page instance but rather
simply restrict the query to lookup only the given range of entities.

Note

"o
To find out how many pages you get for a query entirely we have to trigger an additional count
query. Thiswill be derived from the query you actually trigger by default.

4.3.3. Creating repository instances

So now the question is how to create instances and bean definitions for the repository interfaces defined.

4.3.3.1. Spring

The easiest way to do so is by using the Spring namespace that is shipped with each Spring Data module that
supports the repository mechanism. Each of those includes a repositories element that allows you to simply
define a base package that Spring will scan for you.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans: beans xm ns: beans="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns="http://ww. springfranework. org/ schema/ dat a/ j pa
xsi : schemaLocati on="http://ww. spri ngframework. org/ schenma/ beans
http://ww. springfranmework. or g/ schema/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ schena/ dat a/ j pa
http://ww. springfranmework. or g/ schena/ dat a/ j pa/ spri ng-j pa. xsd" >

Spring Data Document () 9

Repositories

<reposi tories base-package="com acne.repositories" />

</ beans: beans>

In this case we instruct Spring to scan com.acme.repositories and all its sub packages for interfaces extending
Reposi tory or one of its sub-interfaces. For each interface found it will register the persistence technology
specific Fact oryBean to create the according proxies that handle invocations of the query methods. Each of
these beans will be registered under a bean name that is derived from the interface name, so an interface of
User Reposi t ory would be registered under user Repository. The base- package attribute allows the use of
wildcards, so that you can have a pattern of scanned packages.

Using filters

By default we will pick up every interface extending the persistence technology specific Repository
sub-interface located underneath the configured base package and create a bean instance for it. However, you
might want finer grained control over which interfaces bean instances get created for. To do this we support the
use of <include-filter /> and <exclude-filter /> elementsinside <repositories />. The semantics are
exactly equivalent to the elements in Spring's context namespace. For detaills see Spring reference
documentation on these elements.

E.g. to exclude certain interfaces from instantiation as repository, you could use the following configuration:

Example 4.6. Using exclude-filter element

<repositories base-package="com acne. repositories">
<cont ext: exclude-filter type="regex" expression=".*SoneRepository" />
</repositories>

Thiswould exclude all interfaces ending in SoneReposi t ory from being instantiated.

Manual configuration

If you'd rather like to manually define which repository instances to create you can do this with nested
<repository /> elements.

<repositories base-package="com acne. repositories">
<repository id="userRepository" />
</ repositories>

4.3.3.2. Standalone usage

You can aso use the repository infrastructure outside of a Spring container usage. You will till need to have
some of the Spring libraries on your classpath but you can generally setup repositories programmaticaly as
well. The Spring Data modules providing repository support ship a persistence technology specific
Reposi t or yFact ory that can be used as follows:

Example 4.7. Standalone usage of repository factory

Reposi t oryFact orySupport factory = ...// Instantiate factory here
User Repository repository = factory. get Repository(UserRepository.class);

Spring Data Document () 10

http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#beans-scanning-filters
http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#beans-scanning-filters

Repositories

4.4. Custom implementations

4.4.1. Adding behaviour to single repositories

Often it is necessary to provide a custom implementation for a few repository methods. Spring Data
repositories easily allow you to provide custom repository code and integrate it with generic CRUD abstraction
and query method functionality. To enrich a repository with custom functionality you have to define an
interface and an implementation for that functionality first and let the repository interface you provided so far
extend that custom interface.

Example 4.8. Interface for custom repository functionality

interface UserRepositoryCustom {

public void sonmeCust omVet hod(User user);
}

Example 4.9. Implementation of custom repository functionality

cl ass UserRepositoryl nmpl inplenents UserRepositoryCustom {

public void soneCust omvet hod(User user) {
/1 Your custom inpl enentation

}
}

Note that the implementation itself does not depend on Spring Data and can be a regular Spring bean. So you
can use standard dependency injection behaviour to inject references to other beans, take part in aspects and so
on.

Example 4.10. Changesto the your basic repository interface

public interface UserRepository extends CrudRepository<User, Long>, UserRepositoryCustom {

/| Declare query nethods here

}

Let your standard repository interface extend the custom one. This makes CRUD and custom functionality
availableto clients.

Configuration

If you use namespace configuration the repository infrastructure tries to autodetect custom implementations by
looking up classes in the package we found a repository using the naming conventions appending the
namespace element's attribute r eposi t ory- i npl - post f i x to the classname. This suffix defaultsto | npl .

Example 4.11. Configuration example

Spring Data Document () 11

Repositories

<reposi tories base-package="com acne. repository">
<repository id="userRepository" />
</repositories>

<reposi tories base-package="com acne.repository" repository-inpl-postfix="FooBar">
<repository id="userRepository" />
</repositories>

The first configuration example will try to lookup a class com acne. reposi t ory. User Reposi t oryl mpl to act as
custom repository implementation, where the second example will try to lookup
com acne. reposi tory. User Reposi t or yFooBar .

Manual wiring

The approach above works perfectly well if your custom implementation uses annotation based configuration
and autowiring entirely as it will be treated as any other Spring bean. If your custom implementation bean
needs some special wiring you simply declare the bean and name it after the conventions just described. We
will then pick up the custom bean by name rather than creating an instance.

Example 4.12. Manual wiring of custom implementations (1)

<reposi tories base-package="com acne. repository">
<repository id="userRepository" />
</repositories>

<beans: bean i d="user Repositorylnpl" class="..">
<l-- further configuration -->
</ beans: bean>

This also works if you use automatic repository lookup without defining single <reposi tory /> elements.

In case you are not in control of the implementation bean name (e.g. if you wrap a generic repository facade
around an existing repository implementation) you can explicitly tell the <r eposi tory /> element which bean
to use as custom implementation by using ther eposi tory-i npl - ref attribute.

Example 4.13. Manual wiring of custom implementations (1)

<repositories base-package="com acne. repository">
<repository id="userRepository" repository-inpl-ref="custonRepositorylnpl enentation" />
</repositories>

<bean i d="cust onReposi toryl npl enentation" class="..">
<l-- further configuration -->
</ bean>

4.4.2. Adding custom behaviour to all repositories

In other cases you might want to add a single method to all of your repository interfaces. So the approach just
shown is not feasible. The first step to achieve this is adding and intermediate interface to declare the shared
behaviour

Spring Data Document () 12

Repositories

Example 4.14. An interface declaring custom shared behaviour

public interface MyRepository<T, |ID extends Serializabl e>
ext ends JpaRepository<T, |D> {

voi d shar edCust omvet hod(I D id);
}

Now your individual repository interfaces will extend this intermediate interface to include the functionality
declared. The second step is to create an implementation of this interface that extends the persistence

technology specific repository base class which will act as custom base class for the repository proxies then.

Note

s

"8

If you're using automatic repository interface detection using the Spring namespace using the
interface just as is will cause Spring to create an instance of MyReposi tory. Thisis of course not
desired as it just acts as intermediary between Reposi t ory and the actual repository interfaces you
want to define for each entity. To exclude an interface extending Repository from being

instantiated as repository instance annotate it with @oReposi t or yBean.

Example 4.15. Custom repository base class

public class MyRepositorylnpl <T, |ID extends Serializabl e>
extends Si npl eJpaRepository<T, |D> inplenments MyRepository<T, |D> {

public void sharedCust omvet hod(ID id) {
/'l inplenmentation goes here
}
}

The last step to get this implementation used as base class for Spring Data repositories is replacing the standard
Reposi t or yFact or yBean With a custom one using a custom Reposi t or yFact ory that in turn creates instances

of your MyReposi t oryl npl class.

Example 4.16. Custom repository factory bean

public class MyRepositoryFact oryBean<T extends JpaRepository<?, ?>
ext ends JpaRepositoryFact or yBean<T> {

prot ect ed RepositoryFactorySupport get RepositoryFactory(.) {
return new MyRepositoryFactory(..);

}

private static class M/RepositoryFactory extends JpaRepositoryFactory{

public MyRepositoryl npl getTarget Repository(.) {
return new MyRepositorylnpl (.);
}

public C ass<? extends RepositorySupport> getRepositoryd ass() {
return MyRepositorylnpl.class;
}
}
}

Spring Data Document ()

13

Repositories

Finally you can either declare beans of the custom factory directly or use the f act ory- ¢l ass attribute of the
Spring namespace to tell the repository infrastructure to use your custom factory implementation.

Example 4.17. Using the custom factory with the namespace

<reposi tories base-package="com acne. repository"
factory-cl ass="com acne. M/Reposi t or yFact or yBean" />

Spring Data Document () 14

Part |Il. Reference Documentation

Document Structure

This part of the reference documentation explains the core functionality offered by Spring Data Document.

Chapter 5, MongoDB support introduces the MongoDB module feature set.

Chapter 6, Mongo repositories introduces the repository support for MongoDB.

Spring Data Document ()

15

Chapter 5. MongoDB support

The MongoDB support contains a wide range of features which are summarized below.

» Spring configuration support using Java based @Configuration classes or an XML namespace for a Mongo
driver instance and replica sets

* MongoTemplate helper class that increases productivity performing common Mongo operations. Includes
integrated object mapping between documents and POJOs.

» Exception translation into Spring's portable Data Access Exception hierarchy

 Feature Rich Object Mapping integrated with Spring's Conversion Service

< Annotation based mapping metadata but extensible to support other metadata formats
 Persistence and mapping lifecycle events

» Javabased Query, Criteria, and Update DSLs

« Automatic implementatin of Repository interfaces including support for custom finder methods.
* QueryDSL integration to support type-safe queries.

* Cross-store persistance - support for JPA Entities with fields transparently persisted/retrieved using
MongoDB

* Log4j log appender
» GeoSpatial integration

For most tasks you will find yourself using MongoTenpl at e or the Repository support that both leverage the rich
mapping functionality. MongoTemplate is the place to look for accessing functionality such as incrementing
counters or ad-hoc CRUD operations. MongoTemplate also provides callback methods so that it is easy for you
to get a hold of the low level API artifacts such as or g. mongo. DB to communicate directly with MongoDB. The
goal with naming conventions on various API artifacts is to copy those in the base MongoDB Java driver so
you can easily map your existing knowledge onto the Spring APIs.

5.1. Getting Started

Spring MongoDB support requires MongoDB 1.4 or higher and Java SE 5 or higher. The latest production
release (2.0.x as of this writing) is recommended. An easy way to bootstrap setting up a working environment
isto create a Spring based project in STS.

First you need to set up arunning Mongodb server. Refer to the Mongodb Quick Start guide for an explanation
on how to startup a Mongo instance. Once installed starting Mongo is typically a matter of executing the
following command: MONGO_HOVE/ bi n/ nongod

To create a Spring project in STS go to File -> New -> Spring Template Project -> Simple Spring Utility
Project --> press Yes when prompted. Then enter a project and a package name such as
org.spring.mongodb.example.

Then add the following to pom.xml dependencies section.

Spring Data Document () 16

http://www.springsource.com/developer/sts
http://www.mongodb.org/display/DOCS/Quickstart

MongoDB support

<dependenci es>
<l-- other dependency elenents onmtted -->

<dependency>
<groupl d>or g. spri ngf ramewor k. dat a</ gr oupl d>
<artifactld>spring-data-nongodb</artifactld>
<ver si on>1. 0. 0. Mb</ ver si on>

</ dependency>

</ dependenci es>

Also change the version of Spring in the pom.xml to be

<spring. f ramewor k. ver si on>3. 0. 6. RELEASE</ spri ng. f r amewor k. ver si on>

You will also need to add the location of the Spring Milestone repository for maven to your pom.xml which is
at the same level of your <dependencies/> element

<reposi tories>
<reposi tory>
<i d>spring-m | estone</id>
<nane>Spring Maven M LESTONE Repository</ nane>
<ur| >http:// maven. springframewor k. org/ m | est one</ ur| >
</repository>
</repositories>

The repository is also browseable here.

You may aso want to set the logging level to DEBUG to see some additional information, edit the
log4j.propertiesfile to have

| 0g4j . cat egory. org. spri ngfranmewor k. dat a. docunent . nrongodb=DEBUG
| og4j . appender . st dout . | ayout . Conver si onPat t er n=%ad{ ABSOLUTE} %p %40.40c: %L - Y%Pm

Create asimple Person class to persist

package org. spring. nongodb. exanpl e;
public class Person {

private String id;
private String naneg;
private int age;

public Person(String nane, int age) {
thi s. name = narme;
this. age = age;

}

public String getld() {
return id;

}

public String get Name() ({
return nane;

}

public int getAge() {
return age;

}
@verride
public String toString() {
return "Person [id=" +id + ", name=" + name + ", age=" + age + "]";
}

Spring Data Document () 17

http://shrub.appspot.com/maven.springframework.org/milestone/org/springframework/data/

MongoDB support

And amain application to run

package org. spring. nongodb. exanpl e;
inport static org.springfranework. dat a. nongodb. core. query. Criteri a. where;
i nport org.apache. coomons. | oggi ng. Log;
i mport org. apache. conmons. | oggi ng. LogFact ory;
i nport org. springfranework. dat a. nongodb. cor e. MongoOper at i ons;
i mport org.springframework. dat a. nongodb. cor e. MongoTenpl at e;
i nport org. springfranework. dat a. nongodb. core. query. Query;
i nport com nongodb. Mbngo;
public class MongoApp {
private static final Log |og = LogFactory. get Log(MongoApp. cl ass);
public static void main(String[] args) throws Exception {
MongoOper at i ons nbngoOps = new MongoTenpl at e(new Mongo(), "database");
nongoOps. i nsert (new Person("Joe", 34));

| 0g. i nfo(nmongoOps. fi ndOne(new Query(where("nane").is("Joe")), Person.class));

nongoOps. dr opCol | ecti on(" person”);

Thiswill produce the following output

10: 01: 32, 062 DEBUG appi ng. MongoPer si stent Entityl ndexCreator: 80 - Anal yzing class class org.spring. exanpl e. Per s
10: 01: 32, 265 DEBUG wor k. dat a. nrongodb. cor e. MongoTenpl ate: 631 - insert DBObject containing fields: [_class, age,
10: 01: 32, 765 DEBUG wor k. dat a. nrongodb. cor e. MongoTenpl at e: 1243 - findOne using query: { "name" : "Joe"} in db.coll
10: 01: 32,953 | NFO org. spring. nongodb. exanpl e. MongoApp: 25 - Person [i d=4ddbba3c0be56b7e1b210166, nane=Joe
10: 01: 32, 984 DEBUG wor k. dat a. nrongodb. cor e. MongoTenpl ate: 375 - Dropped col |l ection [database. person]

Even in this simple example, there are few things to take notice of

* You can instantiate the central helper class of Spring Mongo, MongoTemplate, using the standard
com nongodb. Mongo object and the name of the database to use.

« The mapper works against standard POJO objects without the need for any additional metadata (though you
can optionally provide that information. See here.).

« Conventions are used for handling the id field, converting it to be a Objectld when stored in the database.
« Mapping conventions can use field access. Notice the Person class has only getters.
* If the constructor argument names match the field names of the stored document, they will be used to

instantiate the object

5.1.1. Required Jars
Thefollowing jars are required to use Spring Data Mongo
¢ gpring-data-mongodb-1.0.0.M4.jar

* spring-data-commons-1.2.0.M 1.jar
In addition to the above listed Spring Data jars you need to provide the following dependencies:

Spring Data Document () 18

MongoDB support

e aopalliance-1.0.0.jar

» commons-logging-1.1.1.jar

* mongo-java-driver-2.5.3.jar

* spring-aop-3.0.6.RELEASE jar

e gpring-asm-3.0.6.RELEASE jar

* gpring-beans-3.0.7.RELEASE jar
* spring-context-3.0.6.RELEASE jar
¢ spring-core-3.0.6.RELEASE . jar

* spring-expression-3.0.6.RELEASE jar

5.1.2. Migrating from M2 to M3

There were several API changes introduced in the M3 release. To upgrade from M2 to M3 you will need to
make. For afull listing of API changes please refer to this JDiff Report.

The major changes are with respect to MongoTemplate

¢ Constructors have changed on MongoTenpl ate. MongoTenpl ate(Mongo, String, String) and
MongoTenpl at e(Mongo, String, String, MngoConverter) were removed. MongoTenpl at e(Mongo,
String, User Credenti al s), MongoTenpl at e(MongoDbFact ory), MongoTenpl at e(MongoDbFact ory,
MongoConvert er) were added. These changes will also effect usage of wiring up MongoTenpl at e in <bean/>
XML defintions.

e MongoTenpl at e NO longer takes a default collection name. The collection name is now either specified when
the method isinvoked or inferred from the Java class, either the class hame or via mapping metadata.

¢ Reordered parameters in some MongoTenpl at e methods to make signatures more consistent across the board.

¢ Removed MongoTenpl at e methods that use MongoReader and Mongowiter. As an aternative register a
Spring converter with the MappingMongoConverter. See here for details.

e Added fi ndByl d methodsto MongoTenpl at e.

5.2. Examples Repository

There is an github repository with several examples that you can download and play around with to get a feel
for how the library works.

5.3. Connecting to MongoDB with Spring

One of the first tasks when using MongoDB and Spring is to create a com mongodb. Mongo object using the [oC
container. There are two main ways to do this, either using Java based bean metadata or XML based bean
metadata. These are discussed in the following sections.

Spring Data Document () 19

http://static.springsource.org/spring-data/data-document/docs/jdiff-mongo-m2-m3/mongo-report/
https://github.com/SpringSource/spring-data-document-examples

MongoDB support

Note

For those not familiar with how to configure the Spring container using Java based bean metadata
instead of XML based metadata see the high level introduction in the reference docs here as well as
the detailed documentation here.

5.3.1. Registering a Mongo instance using Java based metadata

An example of using Java based bean metadata to register an instance of acom nongodb. Mongo is shown below

Example 5.1. Registering a com.mongodb.M ongo object using Java based bean metadata

@Configuration
public class AppConfig {

/*
* Use the standard Mongo driver APl to create a com nongodb. Mbngo i nstance.
*
/
public @ean Mongo nongo() throws UnknownHost Exception {
return new Mongo("l ocal host");
}

}

This approach allows you to use the standard com nongodb. Mongo API that you may aready be used to using
but also pollutes the code with the UnknownHostException checked exception. The use of the checked
exception is not desirable as Java based bean metadata uses methods as a means to set object dependencies,
making the calling code cluttered.

An aternative is to register an instance of com nongodb. Mongo instance with the container using Spring's
MongoFact or yBean. AS compared to instantiating a com nongodb. Mongo instance directly, the FactoryBean
approach does not throw a checked exception and has the added advantage of also providing the container with
an ExceptionTranglator implementation that translates Mongo exceptions to exceptions in Spring's portable
Dat aAccessException hierarchy for data access classes annoated with the @Repository annotation. This
hierarchy and use of @reposi t ory isdescribed in Spring's DAO support features.

An example of a Java based bean metadata that supports exception transation on @Reposi t ory annotated
classesis shown below:

Example 5.2. Registering a com.mongodb.M ongo object using Spring's M ongoFactoryBean and enabling
Spring's exception trandation support

@Conf i guration
public class AppConfig {

/*
* Factory bean that creates the com nobngodb. Mongo i nstance
*
/
publ i c @ean MngoFact oryBean nmongo() ({
MongoFact or yBean nongo = new MongoFact or yBean() ;
nongo. set Host ("1 ocal host");
return nongo;

To access the com nongodb. Mongo Object created by the MongoFact or yBean in other @onfi gurati on Or your

Spring Data Document () 20

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/new-in-3.html#new-java-configuration
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-java-instantiating-container
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/dao.html

MongoDB support

own classes, usea'private @wutow red Mongo nongo; " field.

5.3.2. Registering a Mongo instance using XML based metadata

While you can use Spring's traditional <beans/> XML namespace to register an instance of
com nongodb. Mongo with the container, the XML can be quite verbose as it is genera purpose. XML
namespaces are a better alternative to configuring commonly used objects such as the Mongo instance. The
mongo namespace alows you to create a Mongo instance server location, replica-sets, and options.

To use the Mongo namespace el ements you will need to reference the Mongo schema:

Example 5.3. XML schemato configure MongoDB

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: cont ext ="http://ww. springfranework. or g/ schema/ cont ext "
xm ns: nmongo="htt p://ww. spri ngfranmewor k. or g/ schema/ dat a/ nongo"
xsi : schemalLocat i on=
"http://ww. springfranmework. or g/ schema/ cont ext
http://ww. springframework. or g/ schenma/ cont ext/ spri ng-cont ext - 3. 0. xsd
htt p: // ww. spri ngf ranewor k. or g/ schena/ dat a/ nongo
http://ww. spri ngfranework. or g/ schena/ dat a/ nongo/ spri ng- nongo- 1. 0. xsd
htt p: // ww. spri ngf ranewor k. or g/ schena/ beans
http://ww. spri ngfranework. or g/ schena/ beans/ spri ng- beans- 3. 0. xsd" >

<!-- Default bean nane is 'nongo' -->
<nmongo: nongo host ="1 ocal host" port="27017"/>

</ beans>

A more advanced configuration with MongoOptionsis shown below (note these are not recommended values)

Example 5.4. XML schema to configure a com.mongodb.M ongo object with MongoOptions

<beans>

<nmongo: nongo host ="1 ocal host" port="27017">
<nongo: opti ons connecti ons- per - host =" 8"

t hr eads- al | owed-t o- bl ock-f or-connection-nul tiplier="4"
connect - ti meout =" 1000"
mex-wai t - ti me="1500} "
aut o-connect-retry="true"
socket - keep-al i ve="true"
socket - ti neout =" 1500"
sl ave- ok="t rue"
write-nunber="1"
write-timeout="0"
wite-fsync="true"/>

</ nongo: nongo/ >

</ beans>

A configuration using replica sets is shown below.

Example 5.5. XML schemato configure com.mongodb.Mongo object with Replica Sets

Spring Data Document () 21

MongoDB support

<nongo: nongo i d="replicaSet Mongo" replica-set="127.0.0.1: 27017, | ocal host: 27018"/ >

5.3.3. The MongoDbFactory interface

While com.mongodb.Mongo is the entry point to the MongoDB driver API, connecting to a specific MongoDB
database instance requires additional information such as the database name and an optional username and
password. With that information you can obtain a com.mongodb.DB object and access all the functionality of a
specific MongoDB database instance. Spring provides the
org. spri ngframewor k. dat a. nongodb. cor e. MongoDbFact ory interface shown below to bootstrap connectivity
to the database.
public interface MongoDbFactory {
DB get Db() throws DataAccessExcepti on;

DB get Db(String dbNanme) throws DataAccessException;

The following sections show how you can use the contiainer with either Java or the XML based metadata to
configure an instance of the MongoDbFact ory interface. In turn, you can use the MongoDbFact ory instance to
configure MongoTemplate.

The class org. springframewor k. dat a. mongodb. cor e. Si npl eMongoDbFact ory provides implements the
MongoDbFactory interface and is created with a standard com nongodb. Mongo instance, the database name and
an optional or g. spri ngf ramewor k. dat a. aut hent i cat i on. User Cr edent i al s constructor argument.

Instead of using the IoC container to create an instance of MongoTemplate, you can just use them in standard
Java code as shown below.
public class MongoApp {
private static final Log | og = LogFactory. get Log(MongoApp. cl ass);
public static void main(String[] args) throws Exception {
MongoQper ati ons nmongoOps = new MongoTenpl at e(new Si npl eMongoDbFact ory(new Mongo(), "database"));
nmongoOps. i nsert (new Person("Joe", 34));
| 0g. i nfo(nmongoOps. fi ndOne(new Query(where("nane").is("Joe")), Person.class));

nongoOps. dr opCol | ecti on(" person");

The code in bold highlights the use of SimpleMongoDbFactory and is the only difference between the listing
shown in the getting started section.

5.3.4. Registering a MongoDbFactory instance using Java based metadata

To register a MongoDbFactory instance with the container, you write code much like what was highlighted in
the previous code listing. A simple example is shown below

@Configuration
public class MingoConfiguration {

public @ean MongoDbFactory nmongoDbFactory() throws Exception {

Spring Data Document () 22

MongoDB support

return new Si npl eMongoDbFact ory(new Mongo(), "database");
}

To define the username and password create an instance of
org. springframewor k. dat a. aut henti cation. User Credentials and pass it into the constructor as shown
below. This listing also shows using MongoDbFactory register an instance of MongoTemplate with the
container.

@Configuration
public class MongoConfiguration {

publ i c @ean MongoDbFactory nongoDbFactory() throws Exception {
User Credenti al s userCredentials = new UserCredential s("joe", "secret");
return new Si npl eMongoDbFact ory(new Mongo(), "database", userCredentials);

}

public @ean MongoTenpl at e nongoTenpl ate() throws Exception {
return new MongoTenpl at e(nongoDbFact ory())

}

5.3.5. Registering a MongoDbFactory instance using XML based metadata

The mongo namespace provides a convient way to create a Si mpl eMongoDbFact ory as compared to using
the<beans/ > namespace. Simple usage is shown below

<nongo: db- f act ory dbnanme="dat abase" >

In the above example a com nmongodb. Mongo instance is created using the default host and port number. The
Si mpl eMbngoDbFact ory registered with the container is identified by the id 'mongoDbFactory' unless a value
for theid attribute is specified.

You can also provide the host and port for the underlying com.mongodb.Mongo instance as shown below, in
addition to username and password for the database.

<nongo: db-factory id="anot her MongoDbFact or y"
host ="| ocal host "
port="27017"
dbnane="dat abase"
user nane="j oe"
passwor d="secret"/>

If you need to configure additional options on the com nongodb. Mongo instance that is used to create a
Si npl eMongoDbFact ory you can refer to an existing bean using the nongo-ref attribute as shown below. To
show another common usage pattern, this listing show the use of a property placeholder to parameterise the
configuration and creating MongoTenpl at e.

<cont ext: property-pl acehol der | ocation="cl asspath:/com nyapp/ nongodb/ confi g/ nongo. properties"/>

<nongo: nongo host =" ${ nongo. host}" port="${nongo. port}">
<nongo: opt i ons

connecti ons- per - host =" ${ nbngo. connect i onsPer Host } *
t hreads- al | owed-t o- bl ock-for-connection-nul tiplier="${nmongo.threadsAl | owedToBl ockFor Connecti onMul tiplier}"
connect - ti meout =" ${ nongo. connect Ti neout } "
max- wai t - ti ne="${ nongo. naxWai t Ti ne}"
aut o- connect - ret ry="${ nongo. aut oConnect Retry}"
socket - keep- al i ve="${nmongo. socket KeepAl i ve}"
socket - ti neout =" ${ nongo. socket Ti neout } "
sl ave- ok="${nmongo. sl aveCk}"

Spring Data Document () 23

MongoDB support

wri t e- number ="1"

wite-tineout="0"

wite-fsync="true"/>
</ mongo: nongo>

<nmongo: db-f act ory dbnane="dat abase" nongo-ref="nmongo"/>

<bean i d="anot her MongoTenpl ate" cl ass="org. spri ngfranmewor k. dat a. nrongodb. cor e. MongoTenpl at e" >
<constructor-arg nane="nongoDbFactory" ref="nobngoDbFactory"/>
</ bean>

5.4. Introduction to MongoTemplate

The class mMongoTenpl ate, located in the package org. spri ngf ramewor k. dat a. docunent . nongodb, iS the
central class of the Spring's MongoDB support providng a rich feature set to interact with the database. The
template offers convenience operations to create, update, delete and query for MongoDB documents and
provides a mapping between your domain objects and MongoDB documents.

- Note
"8

Once configured, MongoTenpl at e is thread-safe and can be reused across multiple instances.

The mapping between Mongo documents and domain classes is done by delegating to an implementation of the
interface MongoConverter. Spring provides two implementations, Sinpl eMappi ngConverter —and
MongoMappi ngConverter, but you can aso write your own converter. Please refer to the section on
MongoCoverters for more detailed information.

The MongoTenpl at e class implements the interface MongoOper at i ons. In as much as possible, the methods on
MongoQper at i ons are named after methods available on the MongoDB driver Col | ecti on object as as to make
the API familiar to existing MongoDB devel opers who are used to the driver API. For example, you will find
methods such as "find", "findAndModify", "findOne", "insert", "remove’, "save", "update” and "updateMulti".
The design goa was to make it as easy as possible to transition between the use of the base MongoDB driver
and MongoQper ati ons. A major difference in between the two APIs is that MongOperations can be passed
domain abjects instead of DBvj ect and there are fluent APIs for Query, Criteria, and Updat e operations
instead of populating a DBj ect to specify the parameters for those operatiosn.

Note

. | | o
The preferred way to reference the operations on MongoTenpl ate instance is via its interface
MongoQper at i ons.

The default converter implementation used by MngoTenpl ate iS MongoMappingConverter. While the
MbongoMappi ngConver t er can make use of additional metadata to specify the mapping of objects to documents
it is aso capable of converting objects that contain no additonal metadata by using some conventions for the
mapping of IDs and collection names. These conventions as well as the use of mapping annotations is
explained in the Mapping chapter.

Note

“a
Inthe M2 release Si npl eMappi ngConvert er, was the default and this class is now deprecated asits
functionality has been subsumed by the MongoM appingConverter.

Spring Data Document () 24

MongoDB support

Another central feature of MongoTemplate is exception trandation of exceptions thrown in the Mongo Java
driver into Spring's portable Data Access Exception hierarchy. Refer to the section on exception trandation for
more information.

While there are many convenience methods on MongoTenpl at e to help you easily perform common tasksif you
should need to access the Mongo driver APl directly to access functionality not explicitly exposed by the
MongoTemplate you can use one of several Execute callback methods to access underlying driver APIs. The
execute callbacks will give you a reference to either a com nongodb. Col | ecti on OF @ com nongodb. DB Object.
Please see the section Execution Callbacks for more information.

Now let'slook at a examples of how to work with the MongoTenpl at e in the context of the Spring container.

5.4.1. Instantiating MongoTemplate

Y ou can use Javato create and register an instance of MongoTemplate as shown below.

Example 5.6. Registering a com.mongodb.Mongo object and enabling Spring's exception trandation
support

@Configuration
public class AppConfig {
public @ean Mongo nongo() throws Exception {

return new Mongo("l ocal host");
}

public @ean MongoTenpl ate nongoTenpl ate() throws Exception {
return new MongoTenpl at e(nobngo(), "nydatabase");
}

There are severa overloaded constructors of MongoTemplate. These are

 MongoTemplate (Mongo nongo, String dat abaseNane) - takes the com.mongodb.Mongo object and the
default database name to operate against.

 MongoTemplate (Mngo nongo, String dat abaseName, User Credential s userCredentials) -addsthe
username and password for authenticating with the database.

« MongoTemplate (MngoDbFact ory nobngoDbFact ory) - takes a MongoDbFactory object that encapsulated
the com.mongodb.Mongo abject, database name, and username and password.

 MongoTemplate (MongoDbFactory nongoDbFactory, MongoConverter nongoConverter) - adds a
MongoConverter to use for mapping.

Y ou can also configure a MongoTemplate using Spring's XML <beans/> schema.

<nmongo: nongo host ="1 ocal host" port="27017"/>

<bean i d="nongoTenpl ate" cl ass="org. spri ngfranmewor k. dat a. nongodb. cor e. MongoTenpl at e" >
<constructor-arg ref="nongo"/>
<constructor-arg nanme="dat abaseNane" val ue="geospatial "/>

</ bean>

Spring Data Document () 25

mongo.executioncallback

MongoDB support

Other optional properties that you might like to set when creating a MngoTenpl ate are the default
Wit eResul t Checki ngPol i cy, Wi t eConcer n, and Sl aveCk write option.

Note

. | | o
The preferred way to reference the operations on MongoTenpl ate instance is via its interface
MongoQper at i ons.

5.4.1.1. WriteResultChecking Policy

When in development it is very handy to either log or throw an exception if the com nongodb. Wi t eResul t
returned from any MongoDB operation contains an error. It is quite common to forget to do this during
development and then end up with an application that looks like it runs successfully but in fact the database was
not modified according to your expectations. Set MongoTemplate's WriteResultChecking property to an enum
with the following values, LOG, EXCEPTION, or NONE to either log the error, throw and exception or do
nothing. The default isto useaw i t eResul t Checki ng value of NONE.

5.4.1.2. WriteConcern

Y ou can set the com nongodb. Wi t eConcer n property that the MongoTenpl at e will use for write operations if it
has not yet been specified via the driver at a higher level such as com.mongodb.Mongo. If MongoTemplate's
WiteConcern property is not set it will default to the one set in the MongoDB driver's DB or Collection
Setting.

Note

Ta
Setting the wi t eConcer n to different values when saving an object will be provided in a future
release. This will most likely be handled using mapping metadata provided either in the form of
annotations on the domain object or by an external fluent DSL.

5.5. Saving, Updating, and Removing Documents

MongoTenpl at e provides a simple way for you to save, update, and delete your domain aobjects and map those
objects to documents stored in MongoDB.

Given asimple class such as Person

public class Person {

private String id;
private String nane;
private int age;

public Person(String name, int age) {
thi s. name = nane;
this. age = age;

}

public String getld() {
return id;

}

public String getName() {
return name;

}

public int getAge() {
return age;

}

Spring Data Document () 26

MongoDB support

@verride
public String toString() {

return "Person [id=" +id + ", nane=" + nane + ", age=" + age + "]"
}

Y ou can save, update and del ete the object as shown below.

Note

s

"8

MongoQper at i ons iSthe interface that MongoTenpl at e implements.

package org. spring. exanpl e;
inport static org.springfranework. dat a. nongodb. core. query. Criteri a. where;
import static org.springframework. dat a. nongodb. core. query. Updat e. updat e;
import static org.springframework. dat a. nongodb. core. query. Query. query;
i nport java.util.List;
i nport org.apache. coomons. | oggi ng. Log;
i mport org. apache. conmons. | oggi ng. LogFact ory;
i mport org. springframewor k. dat a. nbngodb. cor e. MongoQper at i ons;
i mport org.springframework. dat a. nongodb. core. MongoTenpl at e;
i mport org. springframewor k. dat a. nongodb. cor e. Si npl eMongoDbFact ory;
i nport com npngodb. Mbngo;
public class MongoApp {
private static final Log | og = LogFactory. get Log(MongoApp. cl ass);
public static void main(String[] args) throws Exception {
MongoQper ati ons nmongoOps = new MongoTenpl at e(new Si npl eMongoDbFact ory(new Mongo(), "database"));
Person p = new Person("Joe", 34);
/] Insert is used to initially store the object into the database.
nongoQps. i nsert (p);
log.info("Insert: " + p);
/1 Find
p = nongoOps. findByld(p.getld(), Person.class);
| og.info("Found: " + p);
/] Update
nongoOps. updat eFi r st (query(where("nanme").is("Joe")), update("age", 35), Person.class);
p = nongoQps. fi ndOne(query(where("nane").is("Joe")), Person.class);
| 0og.info("Updated: " + p);

/| Delete
nongoOps. renove(p);

/] Check that del etion worked
Li st <Person> people = nongoQps. fi ndAl |l (Person. cl ass);
| og. i nfo("Nunber of people =: " + people.size());

nongoOps. dr opCol | ecti on(Person. cl ass);

Thiswould produce the following log output (including debug messages from MongoTenpl at e itself)

DEBUG appi ng. MongoPer si stent Entityl ndexCreator: 80 - Anal yzing class class org. spring. exanpl e. Person for index

DEBUG wor k. dat a. nongodb. cor e. MongoTenpl ate: 632 - insert DBObject containing fields: [_class, age, nane] in coll
I NFO org. spring. exanpl e. MongoApp: 30 - Insert: Person [id=4ddc6e784ce5bleba3ceaf 5c, nane=Joe, age
DEBUG wor k. dat a. nongodb. cor e. MongoTenpl at e: 1246 - findOne using query: { "_id" : { "$oid" : "4ddc6e784ce5bleba3c
I NFO org. spring. exanpl e. MongoApp: 34 - Found: Person [id=4ddc6e784ce5bleba3ceaf 5¢c, nane=Joe, age-

Spring Data Document () 27

MongoDB support

DEBUG wor k. dat a. nongodb. cor e. MongoTenpl ate: 778 - calling update using query: { "nane" : "Joe"} and update
DEBUG wor k. dat a. nongodb. cor e. MongoTenpl at e: 1246 - findOne using query: { "nane" : "Joe"} in db.collection:

{ "9
dat ak

I NFO org. spring. exanpl e. MongoApp: 39 - Updated: Person [id=4ddc6e784ce5bleba3ceaf 5c, nane=Joe, ac
DEBUG wor k. dat a. nrongodb. cor e. MongoTenpl ate: 823 - renpve using query: { "id" : "4ddc6e784ce5bleba3ceaf5c"} in cc

I NFO org. spring. exanpl e. MongoApp: 46 - Nunber of people =: O
DEBUG wor k. dat a. nrongodb. cor e. MongoTenpl ate: 376 - Dropped col |l ection [database. person]

There was implicit conversion using the MongoConverter between a String and Objectld as stored in the
database and recognizing a convention of the property "l1d" name.

Note

"9
This example is meant to show the use of save, update and remove operations on MongoTemplate
and not to show complex mapping functionality

The query stynax used in the example is explained in more detail in the section Querying Documents.

5.5.1. How the ' _id' field is handled in the mapping layer

Mongo requires that you have an'_id' field for all documents. If you don't provide one the driver will assign a
Objectld with a generated value. When using the MongoMappi ngConver t er there are certain rules that govern
how properties from the Java class is mapped to this'_id' field.

The following outlines what property will be mapped to the'_id' document field:

» A property or field annotated with @d (or g. spri ngf r amewor k. dat a. annot at i on. | d) will be mapped to the
'id field.

* A property or field without an annotation but named i d will be mapped to the'_id' field.

The following outlines what type conversion, if any, will be done on the property mapped to the _id document
field when using the Mappi ngMbngoConvert er, the default for MongoTenpl at e.

* Anid property or field declared as a String in the Java class will be converted to and stored as an Objectld if
possible using a Spring Converter<String, Objectld>. Valid conversion rules are delegated to the Mongo
Javadriver. If it cannot be converted to an Objectld, then the value will be stored as a string in the database.

» Anid property or field declared as Biglnteger in the Java class will be converted to and stored as an Objectid
using a Spring Converter<BiglInteger, Objectld>.

If no field or property specified above is present in the Java class then an implicit *_id' file will be generated by
the driver but not mapped to a property or field of the Java class.

When querying and updating MongoTenpl at e will use the converter to handle conversions of the Query and
Updat e Objects that correspond to the above rules for saving documents so field names and types used in your
queries will be able to match what is in your domain classes.

5.5.2. Methods for saving and inserting documents

There are several convenient methods on MongoTenpl at e for saving and inserting your objects. To have more
fine grained control over the conversion process you can register Spring converters with the

Spring Data Document () 28

MongoDB support

MappingMongoConverter, for example Converter<Person, DBObject> and Converter<DBObject, Person>.

Note

9
The difference between insert and save operations is that a save operation will perform an insert if
the object is not already present.

The simple case of using the save operation is to save a POJO. In this case the collection name will be
determined by name (not fully qualfied) of the class. You may also call the save operation with a specific
collection name. The collection to store the object can be overriden using mapping metadata.

When inserting or saving, if the Id property is not set, the assumption is that its value will be autogenerated by
the database. As such, for autogeneration of an Objectld to succeed the type of the Id property/field in your
class must be either ast ri ng, Obj ect 1 d, Or Bi gl nt eger.

Hereis a basic example of using the save operation and retrieving its contents.

Example 5.7. Inserting and retrieving documents using the MongoT emplate

import static org.springframework. dat a. nongodb. core. query. Criteria. where;
i nport static org.springfranework. dat a. nongodb. core. query. Criteria. query;

Person p = new Person("Bob", 33);
nongoTenpl ate. i nsert (p);

Person gp = nobngoTenpl ate. fi ndOne(query(where("age").is(33)), Person.class);

The insert/save operations available to you are listed below.

e voi d save (bj ect obj ect ToSave) Save the object to the default collection.
e void save(Ohj ect obj ect ToSave, String collectionNarme) Save the object to the specified collection.

A similar set of insert operationsis listed below

e voidinsert (j ect object ToSave) Insert the object to the default collection.

e voidinsert (Gbj ect object ToSave, String collectionName) Insertthe object to the specified collection.

5.5.2.1. Which collection will my documents be saved into?

There are two ways to manage the collection name that is used for operating on the documents. The default
collection name that is used is the class name changed to start with alower-case letter. SO acom t est. Person
class would be stored in the "person” collection. You can customize this by providing a different collection
name using the @Document annotation. You can also override the collection name by providing your own
collection name as the last parameter for the selected MongoTemplate method calls.

5.5.2.2. Inserting or saving individual objects

Spring Data Document () 29

MongoDB support

The MongoDB driver supports inserting a collection of documents in one operation. The methods in the
MongoOperations interface that support this functionality are listed below

e insert Insert an object. If thereis an existing document with the same id then an error is generated.

e insertAll Takesacol | ecti on of objects asthe first parameter. This method ispects each object and inserts it
to the appropriate collection based on the rules specified above.

« save Save the object ovewriting any object that might exist with the sameid.

5.5.2.3. Inserting several objects in a batch

The MongoDB driver supports inserting a collection of documents in one operation. The methods in the
MongoOperations interface that support this functionality are listed below

e insert nethods that take a Collection as the first argunent. Thisinsertsalist of objectsinasingle
batch write to the database.

5.5.3. Updating documents in a collection

For updates we can elect to update the first document found using MongoQper at i on's method updat eFi rst or
we can update all documents that were found to match the query using the method updat emul ti . Here is an
example of an update of all SAVINGS accounts where we are adding a one time $50.00 bonus to the balance
using the $i nc operator.

Example 5.8. Updating documents using the MongoTemplate

import static org.springframework. dat a. nongodb. core. query. Criteria. where;
import static org.springframework. dat a. nbngodb. core. query. Query;
import static org.springfranmework. dat a. nrongodb. core. query. Updat e;

WiteResult w = nongoTenpl at e. updat eMul ti (new Query(where("accounts. account Type").is(Account. Type. SAVI NGS)),
new Update().inc("accounts.$. bal ance", 50.00),
Account . cl ass);

In addition to the quer y discussed above we provide the update definition using an Updat e object. The Updat e
class has methods that match the update modifiers available for MongoDB.

Asyou can see most methods return the Updat e object to provide afluent style for the API.
5.5.3.1. Methods for executing updates for documents

e updateFirst Updates the first document that matches the query document criteria with the provided updated
document.

e updateMulti Updates al objects that match the query document criteria with the provided updated

Spring Data Document () 30

MongoDB support

document.

5.5.3.2. Methods for the Update class

The Update class can be used with a little 'syntax sugar' as its methods are meant to be chained together and
you can kickstart the creation of a new Update instance via the static method public static Update
update(String key, Ovject val ue) and using static imports.

Hereisalisting of methods on the Update class

e Update addToSet (String key, Object val ue) Update using the $addToSet update modifier

e Updateinc(String key, Nunber inc) Update using the $i nc update modifier

e Update POp (String key, Update.Position pos) Update using the $pop update modifier

* Update pull (String key, Object value) Update usingthe $pul | update modifier

e Update pPuUllAll (String key, oject[] values) Updateusingthes$pul | Al update modifier

e Update push (String key, Object value) Update usingthe $push update modifier

e Update pushAll (string key, Object[] val ues) Update using the $pushAl | update modifier

e Update rename(String ol dNanme, String newName) Update using the $rename update modifier
e Update Set (String key, Object value) Update using the $set update modifier

e Update unset (String key) Update using the $unset update modifier

5.5.4. Methods for removing documents

Y ou can use several overloaded methods to remove an object from the database.

* remove Remove the given document based on one of the following: a specific object instance, a query
document criteria combined with a class or a query document criteria combined with a specific collection
name.

5.6. Querying Documents

Y ou can express your queries using the Query and Cri t eri a classes which have method names that mirror the
native MongoDB operator names such as 1 t, I'te, i s, and others. The Query and Criteria classes follow a
fluent APl style so that you can easily chain together multiple method criteria and queries while having easy to
understand code. Static imports in Java are used to help remove the need to see the 'new' keyword for creating
Query and Criteriainstances so as to improve readability.

GeoSpatial queries are aso supported and are described more in the section GeoSpatial Queries.

Spring Data Document () 31

MongoDB support

Map-Reduce operations are al so supported and are described more in the section Map-Reduce.

5.6.1. Querying documents in a collection

We saw how to retrieve a single document using the findOne and findByld methods on MongoTemplate in
previous sections which return a single domain object. We can also query for a collection of documents to be
returned as a list of domain objects. Assuming that we have a number of Person objects with hame and age
stored as documents in a collection and that each person has an embedded account document with a balance.
We can now run a query using the following code.

Example 5.9. Querying for documents using the MongoT emplate

i mport static org.springframework. dat a. nbngodb. core. query. Criteria.were
import static org.springfranmework. dat a. nongodb. core. query. Query. query;

Li st <Person> result = nongoTenpl ate. fi nd(query(where("age").It(50).and("accounts. bal ance"). gt (1000.00d)),

All find methods take a Query object as a parameter. This object defines the criteria and options used to
perform the query. The criteria is specified using a Criteri a object that has a static factory method named
where used to instantiate a new Criteria object. We recommend using a static import for
org. spri ngframewor k. dat a. mongodb. core. query. Criteri a. where and Query. query to make the query more
readable.

This query should return a list of Person objects that meet the specified criteria. The Criteria class has the
following methods that correspond to the operators provided in MongoDB.

Asyou can see most methods returnthe cri t eri a object to provide a fluent style for the API.

5.6.1.1. Methods for the Criteria class

e Criteriaall (mject o)Createsacriterion using the $al | operator

e Criteriaand (String key) Addsachaned criteria with the specified key to the current criteria and
retuns the newly created one

e CriteriaandOperator (Criteria... criteria)Createsan and query using the sand operator for all of the
provided criteria (requires MongoDB 2.0 or |ater)

e CriteriaelemMatch (Criteria c) Createsacriterion using the $el emvat ch operator

* CiteriaexXists(bool ean b) Createsacriterion using the $exi st s operator

e Criteriagt(Object o)Createsacriterion usingthe $gt operator

e Criteriagte(ject o)Createsacriterion using the $gt e operator

e Criteriain(Object... o) Createsacriterion using the $i n operator for a varargs argument.

e Criteriain(Collection<?> collection) Createsacriterion usingthe $i n operator using a collection

Spring Data Document () 32

MongoDB support

e Criterialis(bject o)Createsacriterion using the $i s operator

e Criterialt (ject o) Createsacriterion using the $i t operator

e Criterialte(ject o)Createsacriterion using the $i t e operator

e Criteriamod (Nunber val ue, Number remai nder) Createsa criterion using the $nod operator
e Criteriane(bject o) Createsacriterion using the $ne operator

e Criterianin(Object... o) Createsacriterion using the $ni n operator

e CriterianorOperator (Criteria... criteria)Createsan nor query using the $nor operator for all of the
provided criteria

* Citerianot () Createsacriterion using the $not meta operator which affects the clause directly following

e Criteria orOperator (Criteria... criteria)Creates an or query using the sor operator for al of the
provided criteria

e Criteriaregex(String re) Createsacriterion using asregex
e Criteriasize(int s)Createsacriterion using the $si ze operator
e Criteriatype(int t)Createsacriterion using the $t ype operator

There are also methods on the Criteria class for geospatial queries. Here is al isting but look at the section on
GeoSpatial Queriesto see them in action.

e CriteriawithinCenter (Gircle circle) Createsageospatia criterion using $wi t hi n $cent er operators

e Criteria withinCenterSphere (Gircle circle) Creates a geospatial criterion using $within S$center
operators. Thisisonly available for Mongo 1.7 and higher.

e CriteriawithinBox (Box box) Createsageospatial criterion using aswi t hi n $box operation
e Citerianear (Point point) Createsageospatial criterion using a$near operation

e Criteria nearSphere (Point point) Createsageospatial criterion using $near Spher e$cent er operations.
Thisisonly available for Mongo 1.7 and higher.

e Criteria maxDistance (doubl e maxDistance) Creates a geospatial criterion using the $nmaxDbDi st ance
operation, for use with $near.

The Query class has some additional methods used to provide options for the query.

5.6.1.2. Methods for the Query class

e query addCriteria(Criteria criteria) usedtoadd additional criteriato the query
* Fieldfields() usedto definefieldsto beincluded in the query results
e Query limit (int Iimt) usedtolimit the size of the returned results to the provided limit (used for paging)

e Query SKip (int skip) usedto skip the provided number of documents in the results (used for paging)

Spring Data Document () 33

MongoDB support

e Sort sort () used to provide sort definition for the results

5.6.2. Methods for querying for documents

The query methods need to specify the target type T that will be returned and they are also overloaded with an
explicit collection name for queries that should operate on a collection other than the one indicated by the
return type.

« findAll Query for alist of objects of type T from the collection.

« findOne Map the results of an ad-hoc query on the collection to a single instance of an object of the
specified type.

« findByld Return an object of the given id and target class.
 find Map the results of an ad-hoc query on the collection to a List of the specified type.

« findAndRemove Map the results of an ad-hoc query on the collection to a single instance of an object of the
specified type. The first document that matches the query is returned and also removed from the collection in
the database.

5.6.3. GeoSpatial Queries

MongoDB supports GeoSpatia queries through the use of operators such as $near , $wi t hi n, and $near Spher e.
Methods specific to geospatial queries are available onthe criteri a class. There are also a few shape classes,
Box, G rcl e, and Poi nt that are used in conjunction with geospatial related Criteria methods.

To understand how to perform GeoSpatial queries we will use the following Venue class taken from the
integration tests.which relies on using the rich Mappi ngMongoConverter .

@ocunent (col | ecti on="newyor k")
public class Venue {

@d

private String id;
private String nane;
private doubl e[] |ocation;

@Per si st enceConst ruct or

Venue(String nane, double[] location) {
super () ;
t hi s. nane = nane;
this.location = |ocation;

}

public Venue(String nanme, double x, double y) {
super () ;
this. name = nang;
this.location = new double[] { x, y };

}

public String get Nane() {
return name;

}

publ i c doubl e[] getLocation() {
return | ocation;

}

@verride
public String toString() {
return "Venue [id=" +id + ", name=" + name + ", |ocation="

Spring Data Document () 34

MongoDB support

+ Arrays.toString(location) + "]";

To find locations within aci r ¢l e, the following query can be used.

Crcle circle = new Crcle(-73.99171, 40.738868, 0.01);
Li st <Venue> venues =
tenpl ate. find(new Query(Criteria.where("location").w thinCenter(circle)), Venue.class);

To find venues within aci r cl e using spherical coordinates the following query can be used

Circle circle = new Circle(-73.99171, 40.738868, 0.003712240453784);
Li st <Venue> venues =
tenpl ate. find(new Query(Criteria.where("location").w thinCenterSphere(circle)), Venue.class);

To find venues within a Box the following query can be used

/11 ower-left then upper-right
Box box = new Box(new Poi nt (-73.99756, 40.73083), new Point(-73.988135, 40.741404));
Li st <Venue> venues =

tenpl ate. find(new Query(Criteria.where("location").w thinBox(box)), Venue.class);

To find venues near a Poi nt , the following query can be used

Poi nt point = new Point(-73.99171, 40.738868);
Li st <Venue> venues =
tenpl ate. find(new Query(Criteria.where("location").near(point).nmxDi stance(0.01)), Venue.cl ass);

To find venues near a Poi nt using spherical coordines the following query can be used

Poi nt point = new Point(-73.99171, 40.738868);
Li st <Venue> venues =
tenpl ate. find(new Query(
Criteria.where("location").nearSphere(point).maxDi stance(0.003712240453784)),
Venue. cl ass) ;

5.6.3.1. Geo near queries

MongoDB supports querying the database for geo locations and calculation the distance from a given origin at
the very same time. With geo-near queries it's possible to express queries like: "find all restaurants in the
surrounding 10 miles'. To do so MongoQperations provides geoNear (.) methods taking a Near Query as
argument as well as the already familiar entity type and collection

Poi nt location = new Point(-73.99171, 40.738868);
Near Query query = Near Query. near (| ocation).maxDi stance(new Di stance(10, Metrics.MLES));

GeoResul t s<Rest aur ant > = operati ons. geoNear (query, Restaurant.cl ass);

As you can see we use the Near Query builder APl to set up a query to return all Restaurant instances
surrounding the given poi nt by 10 miles maximum. The Metrics enum used here actually implements an
interface so that other metrics could be plugged into a distance as well. A metri ¢ is backed by a multiplier to
transform the distance value of the given metric into native distances. The sample shown here would consider
the 10 to be miles. Using one of the pre-built in metrics (miles and kilometers) will automatically trigger the
spherical flag to be set on the query. If you want to avoid that, smply hand in plain doubl e values into
maxDi st ance(..) . For more information see the JavaDoc of Near Query and Di st ance.

Spring Data Document () 35

MongoDB support

The geo near operations return a GeoResul ts wrapper object that encapsulates GeoResul t instances. The
wrapping GeoResul ts allows to access the average distance of al results. A single GeoResul t object simply
carries the entity found plus its distance from the origin.

5.7. Map-Reduce

You can query MongoDB using Map-Reduce which is useful for batch processing, data aggregation, and for
when the query language doesn't fulfill your needs. Spring provides integration with MongoDB's map reduce
by providing methods on MongoOperations to simplify the creation and execution of Map-Reduce operations.
It also integrates with Spring's Resource abstraction abstraction. This will let you place your JavaScript files on
the file system, classpath, http server or any other Spring Resource implementation and then reference the
JavaScript resources via an easy URI style syntax, e.g. 'classpath:reduce.js;. Externalizing JavaScript code in
files is preferable to embedding them as Java strings in your code. You can till pass JavaScript code as Java
stringsif you prefer.

5.7.1. Example Usage

To understand how to perform Map-Reduce operations an example from the book 'MongoDB - The definitive
guide' is used. In this example we will create three documents that have the values [ab], [b,c], and [c,d]
respectfully. The values in each document are associated with the key 'x' as shown below. For this example
assume these documents are in the collection named "jmr1".

{ " _id" : Object!d("4e5ff893c0277826074ec533"), "x" : ["a*, "b"] }
{ "_id" : Objectld("4e5ff893c0277826074ec534"), "x" : ["b", "c"] }
{ "_id" : Object!d("4e5ff893c0277826074ec535"), "x" : ["c*, "d"] }

A map function that will count the occurance of each letter in the array for each document is shown below

function () {
for (var i =0; i <this.x.length; i++) {
emt(this. x[i], 1);
}

}

The reduce function that will sum up the occurance of each letter across all the documentsis shown below

function (key, values) {
var sum = 0;
for (var i = 0; i < values.length; i++)
sum += val ues[i];
return sum

}

Executing thiswill result in a collection as shown below.

{ "_id" "a", "value" : 1}
{ "_id" "b", "value" : 2}
{ "_id" "c", "value" : 2}
{ "_id" "d", "value" : 1}

Assuming that the map and reduce functions are located in map.js and reduce.js and bundled in your jar so they
are available on the classpath, you can execute a map-reduce operation and obtain the results as shown below

MapReduceResul t s<Val uebj ect > resul ts = nmongoOper ati ons. mapReduce("j nr1", "classpath: map.js", "classpath:reduce.
for (Val ueObject valueObject : results) {
System out . printl n(val ueQbj ect);

}

Spring Data Document () 36

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/resources.html

MongoDB support

The output of the above codeis

Val ueoj ect [id=a, value=1.0]
Val ueoj ect [id=b, val ue=2.0]
Val ueoj ect [id=c, value=2.0]
Val ueoj ect [id=d, val ue=1.0]

The MapReduceResults class implements | t er abl e and provides access to the raw output, as well as timing
and count statistics. The val ueObj ect classissimply

public class Val ueCbject {
private String id;
private float val ue;

public String getld() {
return id;

}

public float getValue() {
return val ue;

}

public void setVal ue(float value) {
this.val ue = val ue;

}
@verride
public String toString() {
return "ValueObject [id=" +id + ", value=" + value + "]";
}
}

By default the output type of INLINE is used so you don't have to specify an output collection. To specify
additiona map-reduce options use an overloaded method that takes an additional MapReduceOpt i ons argument.
The class MapReduceOpt i ons has a fluent APl so adding additional options can be done in a very compact
syntax. Here an example that sets the output collection to "jmrl out". Note that setting only the output
collection assumes a default output type of REPLACE.

MapReduceResul t s<Val uebj ect > resul ts = nmongoOper ati ons. mapReduce("j nr1", "classpath: map.js", "classpath:reduce.
new MapReduceOpti ons(). output Col I ection("jr

There is aso a static import i mport static
or g. spri ngf ramewor k. dat a. rongodb. cor e. mapr educe. MapReduceOpti ons. options; that can be used to
make the syntax slightly more compact

MapReduceResul t s<Val ueObj ect > resul ts = npbngoOper ati ons. mapReduce("jnr 1", "cl asspath: map.js", "classpath:reduce.
options().outputCollection("jnrl out"), Val

Y ou can aso specify a query to reduce the set of data that will be used to feed into the map-reduce operation.
Thiswill remove the document that contains [a,b] from consideration for map-reduce operations.

Query query = new Query(where("x").ne(new String[] { "a", "b" }));
MapReduceResul t s<Val uebj ect > resul ts = nmongoOper ati ons. mapReduce(query, "jnrl", "classpath: map.js", "classpath:
options().outputCollection("jnrl _out"), Val

Note that you can specify additional limit and sort values as well on the query but not skip values.

Spring Data Document () 37

MongoDB support

5.8. Overriding default mapping with custom converters

In order to have more fine grained control over the mapping process you can register Spring converters with the
MongoConver t er implementations such as the Mappi ngMbngoConvert er .

The Mappi ngMbngoConvert er checks to see if there are any Spring converters that can handle a specific class
before attempting to map the object itself. To ‘hijack' the normal mapping strategies of the
Mappi ngMbongoConver t er , perhaps for increased performance or other custom mapping needs, you first need to
create an implementation of the Spring Conver t er interface and then register it with the MappingConverter.

5 Note
“a

For more information on the Spring type conversion service see the reference docs here.

5.8.1. Saving using aregistered Spring Converter

An example implementation of the Converter that converts from a Person object to a com mongodb. DBObj ect
is shown below
i mport org.springframework. core. convert.converter. Converter;

i nport com nongodb. Basi cDBObj ect ;
i nport com nongodb. DBObj ect ;

public class PersonWiteConverter inplenents Converter<Person, DBObject> {
publ i c DBObject convert(Person source) {
DBObj ect dbo = new Basi cDBObj ect () ;
dbo. put ("_id", source.getld());
dbo. put ("name", source.getFirstName());

dbo. put ("age", source.getAge());
return dbo;

5.8.2. Reading using a Spring Converter

An example implemention of a Converter that converts from a DBObject ot a Person object is shownn below

public class PersonReadConverter inplenents Converter<DBCbject, Person> {
public Person convert (DBObj ect source) {
Person p = new Person((Objectld) source.get("_id"), (String) source.get("nane"));
p. set Age((I nteger) source.get("age"));
return p;

}

5.8.3. Registering Spring Converters with the MongoConverter

The mongo XSD namespace provides a convenience way to register Spring Converters as shown below as well
as configuring it into aMongoTemplate.

<nmongo: db-fact ory dbnane="dat abase"/>

<nongo: neppi ng- convert er >

Spring Data Document () 38

http://static.springsource.org/spring/docs/3.0.x/reference/validation.html#core-convert

MongoDB support

<nongo: cust om converters>
<nmongo: converter ref="readConverter"/>
<nongo: converter>
<bean cl ass="org. spri ngframewor k. dat a. nrongodb. t est . Per sonWi t eConverter"/>
</ mongo: converter>
</ nongo: cust om converters>
</ mongo: mappi ng- converter >
<bean i d="readConverter" class="org.springfranmework. dat a. nongodb. t est . Per sonReadConverter"/>
<bean i d="nobngoTenpl ate" cl ass="org. spri ngfranmewor k. dat a. nongodb. cor e. MongoTenpl at e" >
<constructor-arg name="nongoDbFactory" ref="nongoDbFactory"/>

<constructor-arg name="nongoConverter" ref="mappi ngConverter"/>
</ bean>

5.9. Index and Collection managment

MongoTemplate provides a few methods for managing indexes and collections.

5.9.1. Methods for creating an Index

We can create an index on a collection to improve query performance.

Example 5.10. Creating an index using the MongoT emplate

nongoTenpl at e. ensur el ndex(new | ndex().on("nane", Order. ASCENDI NG, Person. cl ass);

« ensurelndex Ensure that an index for the provided IndexDefinition exists for the collection.

You can create both standard indexes and geospatial indexes using the classes IndexDefinition and
GeoSpati al | ndex respectfully. For example, given the Venue class defined in a previous section, you would
declare a geospatial query as shown below

nongoTenpl at e. ensur el ndex(new CGeospati al | ndex("l ocation"), Venue.cl ass);

5.9.2. Methods for working with a Collection

It's time to look at some code examples showing how to use the MongoTenpl at e. First we look at creating our
first collection.

Example 5.11. Working with collections using the MongoTemplate

DBCol | ection collection = null;

i f (!nongoTenpl at e. get Col | ecti onNanmes() . contai ns(" M/NewCol | ection")) {
col l ection = nongoTenpl ate. creat eCol | ecti on("M/NewCol | ection");

}

nmongoTenpl at e. dr opCol | ecti on(" MyNewCol | ecti on");

Spring Data Document () 39

MongoDB support

» getCollectionNames Returns a set of collection names.

* collectionExists Check to seeif a collection with a given name exists.
 createCollection Create an uncapped collection

« dropCollection Drop the collection

« getCollection Get acollection by hame, creating it if it doesn't exist.

5.10. Executing Commands

You can also get at the Mongo driver's DB. command() method using the executeCommand methods on
MongoTemplate. These will also perform exception trand ation into Spring's Data Access Exception hierarchy.

5.10.1. Methods for executing commands

e CommandResul t executeCommand (DBObj ect command) Execute a MongoDB command.

e CommandResul t executeCommand (String jsonConmand) Execute the a MongoDB command expressed
asaJSON string.

5.11. Lifecycle Events

Built into the MongoDB mapping framework are several or g. spri ngf r amewor k. cont ext . Appl i cati onEvent
events that your application can respond to by registering special beans in the Appl i cati onCont ext . By being
based off Spring's ApplicationContext event infastructure this enables other products, such as Spring
Integration, to easily receive these events as they are a well known eventing mechanism in Spring based
applications.

To intercept an object before it goes through the conversion process (which turns your domain object into a
com nongodb. DBObj ect), you'd register a subclass of Abstract MongoEvent Li stener that overrides the
onBef or eConvert method. When the event is dispatched, your listener will be called and passed the domain
object before it goesinto the converter.

Example 5.12.

public class BeforeConvertListener extends Abstract MongoEventLi st ener <Person> {

@verride
public voi d onBef oreConvert (Person p) {

. does sone auditing manipul ation, set tinestanps, whatever ...
}

}

To intercept an object before it goes into the database, you'd register a subclass of
or g. spri ngf ramewor k. dat a. rongodb. cor e. mappi ng. event . Abst r act MongoEvent Li st ener that overrides the
onBef or eSave method. When the event is dispatched, your listener will be called and passed the domain object
and the converted com nongodb. DBObj ect .

Spring Data Document () 40

MongoDB support

Example 5.13.

public class BeforeSaveLi stener extends Abstract MongoEvent Li st ener <Per son> {

@verride
public void onBeforeSave(Person p, DBObject dbo) {
...change val ues, delete them whatever ...

}
}

Simply declaring these beans in your Spring ApplicationContext will cause them to be invoked whenever the
event is dispatched.

Thelist of callback methods that are present in AbstractM appingEventListener are

» onBeforeConvert - called in MongoTemplate insert, insertList and save operations before the object is
converted to a DBObject using a MongoConveter.

» onBef oreSave - called in MongoTemplate insert, insertList and save operations before inserting/saving the
DBObject in the database.

» onAfterSave - called in MongoTemplate insert, insertList and save operations after inserting/saving the
DBObject in the database.

* onAfterLoad - caled in MongoTempnlate find, findAndRemove, findOne and getCollection methods after
the DBODbject is retrieved from the database.

* onAfterConvert - called in MongoTempnlate find, findAndRemove, findOne and getCollection methods
after the DBODbject retrieved from the database was converted to a POJO.

5.. Exception Translation

The Spring framework provides exception translation for awide variety of database and mapping technologies.
This has traditionally been for JDBC and JPA. The Spring support for Mongo extends this feature to the
MongoDB Database by providing an implementation of the
org. spri ngf ramewor k. dao. support. Per si st enceExcepti onTransl at or interface.

The motivation behind mapping to Spring's consistent data access exception hierarchy is that you are then able
to write portable and descriptive exception handling code without resorting to coding against MongoDB error
codes. All of Spring's data access exceptions are inherited from the root Dat aAccessExcept i on €lass so you can
be sure that you will be able to catch all database related exception within a single try-catch block. Note, that
not all exceptions thrown by the MongoDB driver inherit from the MongoException class. The inner exception
and message are preserved so no information islost.

Some of the mappings performed by the MongoExceptionTrandator are: com.mongodb.Network to
DataA ccessResourceFailureException and MongoException error codes 1003, 12001, 12010, 12011, 12012 to
InvalidDataA ccessA piUsageException. Look into the implementation for more details on the mapping.

5.13. Execution Callback

One common design feature of al Spring template classes is that all functionality is routed into one of the

Spring Data Document () 41

http://static.springsource.org/spring/docs/3.0.x/reference/dao.html#dao-exceptions
http://www.mongodb.org/display/DOCS/Error+Codes
http://www.mongodb.org/display/DOCS/Error+Codes

MongoDB support

templates execute callback methods. This helps ensure that exceptions and any resource management that
maybe required are performed consistency. While this was of much greater need in the case of JDBC and IMS
than with MongoDB, it still offers a single spot for exception translation and logging to occur. As such, using
thexe execute callback is the preferred way to access the Mongo driver's DB and Collection objects to perform
uncommon operations that were not exposed as methods on MongoTenpl at e.

Hereisalist of execute callback methods.

e <T> T execute (dass<?> entityCass, OCollectionCallback<T> action) Executes the given
CollectionCallback for the entity collection of the specified class.

e <T> T execute (String collectionName, CollectionCallback<T> action) Executes the given
CollectionCallback on the collection of the given name.

e <T> T execute (DbCal | back<T> action) ExecutesaDbCallback translating any exceptions as necessary.

e <T> T execute (String collectionName, DbCallback<T> action) Executes a DbCallback on the
collection of the given name translating any exceptions as necessary.

e <T> T executelnSession (DbCal | back<T> action) Executes the given DbCallback within the same
connection to the database so as to ensure consistency in awrite heavy environment where you may read the
data that you wrote.

Hereis an example that uses the CollectionCallback to return information about an index.

bool ean hasl ndex = tenpl at e. execut e("geol ocation", new Col | ecti onCal | back<Bool ean>() {
publ i c Bool ean dol nCol | ecti on(Venue. cl ass, DBCol | ection collection) throws MongoException, DataAccessExcer
Li st <DBObj ect > i ndexes = col | ection. getlndexlnfo();
for (DBObject dbo : indexes) {
if ("location_2d".equal s(dbo.get("nane"))) {
return true;
}
}
return fal se;
}
1

Spring Data Document () 42

Chapter 6. Mongo repositories

6.1. Introduction

This chapter will point out the specialties for repository support for MongoDB. This builds on the core
repository support explained in Chapter 4, Repositories. So make sure you've got a sound understanding of the
basic concepts explained there.

6.2. Usage

To access domain entities stored in a MongoDB you can leverage our sophisticated repository support that
eases implementing those quite significantly. To do so, simply create an interface for your repository:

Example 6.1. Sample Person entity

public class Person {

@d

private String id,;
private String firstnane;
private String |astnaneg;
private Address address;

/] ..getters and setters omtted

We have a quite simple domain object here. Note that it has a property named i d of typebj ect | d. The default
seridlization mechanism used in MongoTenpl at e (which is backing the repository support) regards properties
named id as document id. Currently we supportst ri ng, Obj ect | d and Bi gl nt eger asid-types.

Example 6.2. Basic repository interfaceto persist Person entities

public interface PersonRepository extends Pagi ngAndSorti ngRepository<Person, Long> {

// additional custom finder methods go here

}

Right now this interface simply serves typing purposes but we will add additional methods to it later. In your
Spring configuration simply add

Example 6.3. General mongo repository Spring configuration

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springfranmewor k. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: nmongo="htt p: // ww. spri ngf ranmewor k. or g/ schema/ dat a/ nongo"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
http://ww. springframework. or g/ schena/ dat a/ nongo
http://ww. springframework. or g/ schema/ dat a/ nongo/ spri ng- nongo- 1. 0. xsd" >

Spring Data Document () 43

Mongo repositories

<nmongo: nongo i d="nongo" />

<bean i d="nopngoTenpl ate" cl ass="org. spri ngfranmewor k. dat a. nrongodb. cor e. MongoTenpl at e" >
<constructor-arg ref="nongo" />
<constructor-arg val ue="dat abaseNanme" />

</ bean>

<nongo: reposi tori es base- package="com acne. *.repositories" />

</ beans>

This namespace element will cause the base packages to be scanned for interfaces extending MongoReposi t ory
and create Spring beans for each of them found. By default the repositories will get a MongoTenpl at e Spring
bean wired that is called nongoTenpl at e, SO you only need to configure nongo- t enpl at e- ref explicitly if you
deviate from this convention.

As our domain repository extends Pagi ngAndSorti ngReposi tory it provides you with CRUD operations as
well as methods for paginated and sorted access to the entities. Working with the repository instance is just a
matter of dependency injecting it into a client. So accessing the second page of Persons at a page size of 10
would simply look something like this:

Example 6.4. Paging access to Person entities

@unW t h(Spri ngJUni t 4Cl assRunner. cl ass)
@Cont ext Confi guration
public class PersonRepositoryTests {

@\ut owi red PersonRepository repository;

@est
public void readsFirstPageCorrectly() {

Page<Per son> persons = repository.findAl | (new PageRequest (0, 10));

assert That (persons. i sFirstPage(), is(true));

}

The sample creates an application context with Spring's unit test support which will perform annotation based
dependency injection into test cases. Inside the test method we simply use the repository to query the datastore.
We hand the repository a PageRequest instance that requests the first page of persons at a page size of 10.

6.3. Query methods

Most of the data access operations you usualy trigger on a repository result a query being executed against the
Mongo databases. Defining such a query isjust a matter of declaring a method on the repository interface

Example 6.5. PersonRepository with query methods

public interface PersonRepository extends Pagi ngAndSorti ngRepository<Person, String> {
Li st <Person> findByLastnane(String | astnane);
Page<Per son> findByFirstname(String firstnanme, Pageabl e pageabl e);

Per son fi ndByShi ppi ngAddr esses(Addr ess addr ess);

Spring Data Document () 44

Mongo repositories

The first method shows a query for all people with the given lastname. The query will be derived parsing the
method name for constraints which can be concatenated with And and o . Thus the method name will result in a
query expression of{"| astname" : |astnane}. The second example shows how pagination is applied to a
query. Just equip your method signature with a Pageabl e parameter and let the method return a Page instance
and we will automatically page the query accordingly. The third examples shows that you can query based on
properties which are not a primitive type.

Table 6.1. Supported keywordsfor query methods

Keyword Sample Logical result

Great er Than fi ndByAgeG eat er Than(int age) {"age" : {"$gt" : age}}

LessThan fi ndByAgeLessThan(int age) {"age" : {"$It" : age}}

Bet ween fi ndByAgeBet ween(int from int to) {"age" : {"$gt" : from "S$It"
to}}

I sNot Nul I, Not Nul | | findByFi rstnaneNot Nul | () {"age" : {"$ne" : null}}

I sNul I, Nul I findByFirstnameNul | () {"age" : null}

Li ke findByFi r st naneLi ke(String name) {"age" : age} (age asregex)

(No keyword) findByFi rstnane(String name) {"age" : nane}

Not findByFi rst naneNot (Stri ng nane) {"age" : {"$ne" : nane}}

Near findByLocati onNear (Poi nt point) {"location" : {"$near" : [x,y]}}

W t hin findByLocationWthin(Crcle circle) {"location" : {"%wi t hin"
{"$center" : [[x, y], distance]}}}

Wt hin findByLocati onWt hi n(Box box) {"location" : {"$within" : {"$box"

[[x1, yl], x2, y2]}}}

6.3.1. Geo-spatial repository queries

As you've just seen there are a few keywords triggering geo-spatial operations within a MongoDB query. The
Near keyword allows some further modification. Let's have look at some examples:

Example 6.6. Advanced Near queries

public interface PersonRepository extends MongoRepository<Person, String>
/1 { 'location' : { '"$near' : [point.x, point.y], '$maxDi stance' : distance}}

Li st <Person> fi ndByLocati onNear (Poi nt | ocation, Distance distance);

}

Adding a bi st ance parameter to the query method allows restricting results to those within the given distance.
If the Di st ance was Set up containing aMet ri ¢ we will transparently use $near Spher e instead of $code.

Example 6.7. Using Di st ance with Metri cs

Spring Data Document () 45

Mongo repositories

Poi nt point = new Point (43.7, 48.8);

Di st ance di stance = new Di st ance(200, Metrics. KI LOVETERS) ;

...= repository.findByLocati onNear (poi nt, distance);

/1 {'location' : {'$nearSphere' : [43.7, 48.8], '$maxD stance' : 0.03135711885774796}}

As you can see using a Di st ance equipped with aMetri ¢ causes $near Spher e clause to be added instead of a
plain $near . Beyond that the actual distance gets calculated according to the Met ri cs used.

Geo-near queries

public interface PersonRepository extends MongoRepository<Person, String>

/1 {"geoNear' : 'location', 'near' : [x, y] }
GeoResul t s<Per son> findByLocati onNear (Poi nt | ocation);

/1 No metric: {'geoNear' : 'person', 'near' : [X, y], naxDistance : distance }
/1 Metric: {'geoNear' : 'person', 'near' : [x, y], 'nexDistance' : distance,
/1 "distanceMul tiplier' : netric.nultiplier, 'spherical' : true }

GeoResul t s<Per son> findByLocati onNear (Poi nt | ocation, Distance distance);

/'l {'"geoNear' : 'location', 'near' : [x, y] }
GeoResul t s<Per son> findByLocati onNear (Poi nt | ocation);

6.3.2. Mongo JSON based query methods and field restriction

By adding the annotation or g. spri ngf r amewor k. dat a. nongodb. r eposi t ory. Query repository finder methods
you can specify aMongo JSON query string to use instead of having the query derived from the method name.
For example

public interface PersonRepository extends MongoRepository<Person, String>

@uery("{ 'firstnane' : 2?0 }")
Li st <Person> fi ndByThePer sonsFirstnane(String firstnane);

The placeholder 20 lets you substitute the value from the method arguments into the JSON query string.

Y ou can aso use the filter property to restrict the set of properties that will be mapped into the Java object. For
example,
public interface PersonRepository extends MongoRepository<Person, String>

@uery(value="{ 'firstnane' : ?0 }", fields="{ 'firstnane' : 1, 'lastnane' : 1}")
Li st <Person> fi ndByThePer sonsFirstname(String firstnane);

This will return only the firstname, lasthame and Id properties of the Person objects. The age property, a
javalang.Integer, will not be set and its value will therefore be null.

6.3.3. Type-safe Query methods

Mongo repository support integrates with the QueryDSL project which provides a means to perform type-safe
queries in Java. To quote from the project description, "Instead of writing queries as inline strings or
externalizing them into XML filesthey are constructed viaafluent API." It provides the following features

Spring Data Document () 46

http://www.querydsl.com/

Mongo repositories

e Code completionin IDE (all properties, methods and operations can be expanded in your favorite Java IDE)
e Almost no syntacticaly invalid queries allowed (type-safe on all levels)

» Domain types and properties can be referenced safely (no Strings involved!)

Adopts better to refactoring changes in domain types
 Incremental query definition iseasier

Please refer to the QueryDSL documentation which describes how to bootstrap your environment for APT
based code generation using Maven or using Ant.

Using QueryDSL you will be able to write queries as shown below

QPer son person = new QPerson("person");
Li st <Person> result = repository.findAll (person. address. zi pCode. eq("C0123"));

Page<Per son> page = repository.findAl Il (person.|astnane. contains("a"),
new PageRequest (0, 2, Direction. ASC, "l astnane"));

QPer son is a class that is generated (via the Java annotation post processing tool) which is a Pr edi cat e that
allows you to write type safe queries. Notice that there are no strings in the query other than the value "C0123".

You can use the generated Predi cate class via the interface QueryDsl Predi cat eExecut or Which is shown
below
public interface QueryDsl Predi cat eExecut or <T> {
T findOne(Predicate predicate);
Li st<T> findAl | (Predi cate predicate);
Li st<T> findAl | (Predi cate predicate, OrderSpecifier<?> .. orders);
Page<T> findAl | (Predi cate predicate, Pageabl e pageabl e);

Long count (Predi cate predicate);

To use thisin your repository implementation, simply inherit from it in additiion to other repository interfaces.
Thisis shown below

public interface PersonRepository extends MongoRepository<Person, String> QueryDsl Predi cateExecutor<Person> {

// additional finder nethods go here

We think you will find this an extremely powerful tool for writing MongoDB queries.

Spring Data Document () a7

http://source.mysema.com/static/querydsl/2.1.2/reference/html/ch02.html#d0e112
http://source.mysema.com/static/querydsl/2.1.2/reference/html/ch02.html#d0e131

Chapter 7. Mapping

Rich maping support is provided by the MongoMappi ngConver t er . MongoMappi ngConver t er has arich metadata
model that provides a full feature set of functionality to map domain objects to MongoDB documents.The
mapping metadata model is populated using annotations on your domain objects. However, the infrastructure is
not limited to using annotations as the only source of metadata information. The MongoMappi ngConvert er aso
allows you to map objects to documents without providing any additional metadata, by following a set of
conventions.

In this section we will describe the features of the MongoMappingConverter. How to use conventions for
mapping objects to documents and how to override those conventions with annotation based mapping metadata.

Note

"9
Si npl eMbngoConverter has been deprecated in Spring Data MongoDB M3 as al of its
functionality has been subsumed into Mappi ngMbngoConver t er .

7.1. Convention based Mapping

MongoMappi ngConver t er has afew conventions for mapping objects to documents when no additional mapping
metadata is provided. The conventions are:

* The short Java class name is mapped to the collection name in the following manner. The class
'com bi gbank. Savi ngsAccount ' mapsto 'savi ngsAccount ' collection name.

* All nested objects are stored as nested objects in the document and * not* as DBRefs

« The converter will use any Spring Converters registered with it to override the default mapping of object
properties to document field/values.

« Thefields of an object are used to convert to and from fields in the document. Public JavaBean properties are
not used.

* You can have a single non-zero argument constructor whose constructor argument names match top level
field names of document, that constructor will be used. Otherewise the zero arg constructor will be used. if
there is more than one non-zero argument constructor an exception will be thrown.

7.1.1. How the ' _id' field is handled in the mapping layer

Mongo requires that you have an'_id' field for all documents. If you don't provide one the driver will assign a
Objectld with a generated value. The "_id" field can be of any type the, other than arrays, so long as it is
unique. The driver naturally supports al primitive types and Dates. When using the MongoMappi ngConver t er
there are certain rules that govern how properties from the Java class is mapped to this'_id' field.

The following outlines what field will be mapped to the' id' document field:

» A field annotated with @d (or g. spri ngf r amewor k. dat a. annot at i on. | d) will be mapped tothe'_id' field.

« A field without an annotation but named i d will be mapped to the'_id' field.

Spring Data Document () 48

Mapping

The following outlines what type conversion, if any, will be done on the property mapped to the _id document
field.

 If afield named 'id' is declared as a String or Biglnteger in the Java class it will be converted to and stored as
an Objectld if possible. Objectld as a field type is dso valid. If you specify a value for 'id' in your
application, the conversion to an Objectld is delected to the MongoDBdriver. If the specified 'id' value
cannot be converted to an Objectld, then the value will be stored asisin the document's _id field.

» If afield named ' id' id field is not declared as a String, Biglnteger, or ObjectID in the Java class then you
should assign it avaluein your application so it can be stored 'as-is' in the document's _id field.

 If no field named 'id' is present in the Java class then an implicit '_id' file will be generated by the driver but
not mapped to a property or field of the Java class.

When querying and updating MongoTenpl at e will use the converter to handle conversions of the Query and
Updat e objects that correspond to the above rules for saving documents so field names and types used in your
queries will be able to match what isin your domain classes.

7.2. Mapping Configuration

Unless explicitly configured, an instance of MongoMappi ngConverter is created by default when creating a
MongoTenpl at e. Y OU can create your own instance of the Mappi ngMongoConvert er S0 asto tell it where to scan
the classpath at startup your domain classes in order to extract metadata and construct indexes. Also, by
creating your own instance you can register Spring converters to use for mapping specific classes to and from
the database.

You can configure the MongoMappi ngConverter as well as com nongodb. Mongo and MongoTemplate either
using Java or XML based metadata. Here is an example using Spring's Java based configuration

Example 7.1. @Configuration classto configure M ongoDB mapping support

@Configuration
public class GeoSpati al AppConfi g extends Abstract MongoConfi guration {

@ean
public Mongo nongo() throws Exception {
return new Mongo("l ocal host");

}

@verride
public String getDatabaseNanme() {
return "database";

}

@verride
public String get Mappi ngBasePackage() {
return "com bi gbank. domai n";

}

/1 the follow ng are opti onal

@verride

protected void afterMappi ngMongoConvert er Cr eat i on(Mappi ngMongoConverter converter) {
Set <Converter<?, ?>> converterlList = new HashSet <Converter<?, ?>>();
converterlList.add(new org. springfranmework. dat a. nrongodb. t est. Per sonReadConverter());
converterlList.add(new org. springfranmework. dat a. mongodb. t est. PersonWiteConverter());
converter. set Cust onConverters(converterlList);

}
@Bean

Spring Data Document () 49

Mapping

publ i c Loggi ngEvent Li st ener <MongoMappi ngEvent > nappi ngEvent sLi st ener () {
return new Loggi ngEvent Li st ener <MbngoMappi ngEvent >();
}

Abst r act MongoConf i gur at i on requires you to implement methods that define a com nongodb. Mongo as well as
provide a database name. Abstract MongoConfiguration also has a method you can override named
'get Mappi ngBasePackage' which tells the converter where to scan for classes annotated with the
@r g. spri ngf ramewor k. dat a. mongodb. cor e. mappi ng. Docunent annotation.

You can add additional converters to the converter by overiding the method
afterMappingM ongoConverterCreation. Also shown in the above example is a Loggi ngEvent Li st ener wWhich
logs MongoMappi ngEvent Sthat are posted onto Spring's Appl i cat i onCont ext Event infrastructure.

Note
e

AbstractMongoConfiguration will create a MongoTemplate instance and registered with the
container under the name 'mongoTemplate'.

You can also override the method User Credential s get User Credenti al s() to provide the username and
password information to connect to the database.

Spring's Mongo namespace enables you to easily enable mapping functionality in XML

Example 7.2. XML schema to configure MongoDB mapping support

<?xm version="1.0" encodi ng="UTF- 8" ?>

<beans xm ns="http://ww. springfranmework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: cont ext ="http://wwmv springframewor k. or g/ schenma/ cont ext "
xm ns: mongo="ht t p: // www. spri ngf ramewor k. or g/ schena/ dat a/ nrongo"

xsi : schemaLocati on="http://wmv. spri ngfranmewor k. or g/ schenma/ cont ext http://wwmv. springfranmewor k. or g/ schenma/ c
http://ww. spri ngfranework. or g/ schena/ dat a/ nongo http://ww. spri ngfranework. or g/ schema/ dat a/ nongo/ spr
http://ww. springframework. or g/ schenma/ beans http://ww. springfranework. or g/ schema/ beans/ spri ng- beans-

<l-- Default bean nane is 'nmongo’ -->
<nongo: nongo host ="1 ocal host" port="27017"/>

<nmongo: db-f act ory dbnane="dat abase" nongo-ref="nongo"/>

<l-- by default | ook for a Mongo object naned 'nobngo' - default nanme used for the converter is 'mappi ngConvert

<nmongo: mappi ng- converter base-package="com bi gbank. domai n" >
<nongo: cust om converters>
<nmongo: converter ref="readConverter"/>
<nongo: converter >
<bean cl ass="org. spri ngfranmewor k. dat a. nrongodb. t est. PersonWit eConverter"/>
</ nongo: converter>
</ nongo: cust om converters>
</ nongo: mappi ng- converter >

<bean i d="readConverter" class="org.springfranmework. data. nongodb. t est. Per sonReadConverter"/>
<I-- set the mapping converter to be used by the MngoTenpl ate -->
<bean i d="nongoTenpl ate" cl ass="org. spri ngfranmewor k. dat a. nongodb. core. MongoTenpl at e" >
<constructor-arg name="nongoDbFactory" ref="nongoDbFactory"/>
<constructor-arg name="nongoConverter" ref="mappi ngConverter"/>
</ bean>
<bean cl ass="org. spri ngfranmewor k. dat a. nongodb. cor e. mappi ng. event . Loggi ngEvent Li st ener"/ >

</ beans

Spring Data Document () 50

Mapping

The base-package property tells it where to scan for classes annotated with the
@r g. spri ngf ramewor k. dat a. mongodb. cor e. mappi ng. Docunent annotation.

7.3. Metadata based Mapping

To take full advantage of the object mapping functionality inside the Spring DatalMongoDB support, you
should annotate your mapped objects with the
@r g. spri ngf ramewor k. dat a. mongodb. cor e. mappi ng. Document annotation. Although it is not necessary for
the mapping framework to have this annotation (your POJOs will be mapped correctly, even without any
annotations), it alows the classpath scanner to find and pre-process your domain objects to extract the
necessary metadata. If you don't use this annotation, your application will take a slight performance hit the first
time you store a domain object because the mapping framework needs to build up its internal metadata model
so it knows about the properties of your domain object and how to persist them.

Example 7.3. Example domain object

package com nyconpany. donai n;

@ocunent
public class Person {

@d
private Objectld id;

@ ndexed
private |nteger ssn;

private String firstNane;

@ ndexed
private String |ast Nane;

| mportant

The @d annotation tells the mapper which property you want to use for the MongoDB _i d
property and the @ ndexed annotation tells the mapping framework to cal ensurel ndex on that
property of your document, making searches faster.

7.3.1. Mapping annotation overview

The MappingMongoConverter can use metadata to drive the mapping of objects to documents. An overview of
the annotations is provided below

* @d - applied at the field level to mark the field used for identiy purpose.

e @ocunent - applied at the class level to indicate this class is a candidate for mapping to the database. Y ou
can specify the name of the collection where the database will be stored.

* @BRef - applied at thefield to indicateit isto be stored using a com.mongodb.DBRef.

Spring Data Document () 51

Mapping

e @ndexed - applied at the field level to describe how to index the field.

* @onpound! ndex - applied at the type level to declare Compound Indexes

* @meoSpati al I ndexed - applied at the field level to describe how to geoindex the field.

* @ransient - by default all private fields are mapped to the document, this annotation excludes the field

whereit is applied from being stored in the database

e @ersistenceConstructor - marks a given constructor - even a package protected one - to use when
instantiating the object from the database. Constructor arguments are mapped by name to the key values in

the retrieved DBObject.

* @al ue - this annotation is part of the Spring Framework . Within the mapping framework it can be applied
to constructor arguments. This lets you use a Spring Expression Language statement to transform a key's
value retrieved in the database before it is used to construct a domain object.

The mapping metadata infrastructure is defined in a seperate spring-data-commons project that is technology
agnostic. Specific subclasses are using in the Mongo support to support annotation based metadata. Other

strategies are also possible to put in place if there is demand.
Here is an example of a more complex mapping.

@ocunent
@Conpoundl ndexes({

}

public class Person<T extends Address> {

@onpound| ndex(nane = "age_idx", def = "{'lastNane': 1, '

@d

private String id,

@ ndexed(uni que = true)
private |nteger ssn;
private String firstNane;
@ ndexed

private String | astNane;
private |nteger age;

@r ansi ent
private |nteger accountTotal;
@BRef

private List<Account> accounts;
private T address;

public Person(lnteger ssn) {
this.ssn = ssn;

}

@ver si st enceConst ruct or

public Person(lnteger ssn, String firstNanme, String |astNane,

this.ssn = ssn;
this.firstName = firstNang;
this.lastName = | ast Nane;
this.age = age;

thi s. address = address;

}

public String getld() {
return id;

}

1)

I nteger age,

/1 no setter for Id. (getter is only exposed for sone unit testing)

public Integer getSsn() {
return ssn;

}

/| other getters/setters onmtted

T address) {

Spring Data Document ()

52

Mapping

7.3.2. Compound Indexes
Compound indexes are also supported. They are defined at the class level, rather than on indidvidual properties.

Note

"9
Compound indexes are very important to improve the performance of queries that involve criteria
on multiple fields

Here's an example that creates a compound index of | ast Nane in ascending order and age in descending order:

Example 7.4. Example Compound Index Usage

package com nyconpany. donai n;

@ocunent
@Conpoundl ndexes({

@onpoundl ndex(nanme = "age_i dx", def = "{'lastNanme': 1, 'age': -1}")
})

public class Person {

@d

private Qojectld id,
private |nteger age;
private String firstNane;
private String | ast Nane;

7.3.3. Using DBRefs

The mapping framework doesn't have to store child objects embedded within the document. Y ou can also store
them separately and use a DBRef to refer to that document. When the object is loaded from MongoDB, those
references will be eagerly resolved and you will get back a mapped object that looks the same as if it had been
stored embedded within your master document.

Here's an example of using a DBRef to refer to a specific document that exists independently of the object in
which it is referenced (both classes are shown in-line for brevity's sake):

Example 7.5.

@ocunent
public class Account {

@d
private Objectld id;
private Float total;

}

@ocunent
public class Person {

Spring Data Document () 53

Mapping

@d

private Oojectld id,
@ ndexed

private Integer ssn;
@BRef

private List<Account> accounts;

There's no need to use something like @neToMany because the mapping framework sees that you're wanting a
one-to-many relationship because there is a List of objects. When the object is stored in MongoDB, there will
be alist of DBRefs rather than the Account objects themselves.

| mportant

e
The mapping framework does not handle cascading saves. If you change an Account object that is
referenced by a Per son object, you must save the Account object separately. Calling save on the
Per son object will not automatically save the Account objectsin the property account s.

7.3.4. Mapping Framework Events

Events are fired throughout the lifecycle of the mapping process. This is described in the Lifecycle Events
section.

Simply declaring these beans in your Spring ApplicationContext will cause them to be invoked whenever the
event is dispatched.

7.3.5. Overriding Mapping with explicit Converters

When storing and querying your objects it is convenient to have a MngoConverter instance handle the
mapping of al Javatypes to DBObjects. However, sometimes you may want the MongoConvert er 's do most of
the work but allow you to selectivly handle the conversion for a particular type or to optimize performance.

To selectivly handle the conversion vyourself, register one or more one or more
org. springframewor k. core. convert. converter. Converter instanceswith the MongoConverter.

Note

Ta
Spring 3.0 introduced a core.convert package that provides a general type conversion system. This
is described in detail in the Spring reference documentation section entitled Spring 3 Type
Conversion.

The set Convert ers method on Si npl eMongoConverter and Mappi ngvbngoConvert er should be used for this
purpose. The method aft er Mappi ngMongoConverterCreation in Abstract MongoConfigurati on can be
overriden to configure a MappingMongoConverter. The examples here at the begining of this chapter show
how to perform the configuration using Javaand XML.

Below is an example of a Spring Converter implementation that converts from a DBODbject to a Person POJO.

public class PersonReadConverter inplenents Converter<DBCbject, Person> {

public Person convert (DBObj ect source) {
Person p = new Person((Objectld) source.get("_id"), (String) source.get("nane"));
p. set Age((I nteger) source.get("age"));

Spring Data Document () 54

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/validation.html#core-convert
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/validation.html#core-convert

Mapping

return p;

}

Here is an example that converts from a Person to a DBObject.

public class PersonWiteConverter inplenents Converter<Person,

publ i c DBOoj ect convert(Person source) {
DBOhj ect dbo = new Basi cDBObj ect () ;
dbo. put ("_id", source.getld());
dbo. put ("nanme", source.getFirstName());
dbo. put ("age", source.getAge());
return dbo;

DBnj ect > {

Spring Data Document ()

55

Chapter 8. Cross Store support

Sometimes you need to store data in multiple data stores and these data stores can be of different types. One
might be relational while the other a document store. For this use case we have created a separate module in the
MongoDB support that handles what we call cross-store support. The current implemenatation is based on JPA
as the driver for the relational database and we alow select fields in the Entities to be stored in a Mongo
database. In addition to allowing you to store your data in two stores we also coordinate persistence operations
for the non-transactional MongoDB store with the transaction life-cycle for the relational database.

8.1. Cross Store Configuration

Assuming that you have a working JPA application and would like to add some cross-store persistence for
MongoDB. What do you have to add to your configuration?

First of all you need to add a dependency on the spri ng- dat a- nongodb- cr oss- st or e module. Using Maven
thisis done by adding a dependency to your pom:

Example 8.1. Example Maven pom.xml with spring-data-mongodb-cr oss-stor e dependency

<project xm ns="http://maven. apache. org/ POM 4. 0. 0" xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schene- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0. 0 http:// maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<l-- Spring Data -->

<dependency>
<groupl d>or g. spri ngf ranewor k. dat a</ gr oupl d>
<artifact!|d>spring-data-nongodb-cross-store</artifactld>
<versi on>${spri ng. dat a. nongo. ver si on} </ ver si on>

</ dependency>

</ proj ect >

Once this is done we need to enable AspectJ for the project. The cross-store support is implemented using
Aspect] aspects so by enabling compile time AspectJ support the cross-store features will become available to
your project. In Maven you would add an additional plugin to the <build> section of the pom:

Example 8.2. Example Maven pom.xml with AspectJ plugin enabled

<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xm ns: xsi ="htt p: // ww. w3. or g/ 2001/ XM_Schene- i nst ance"
xsi : schemaLocati on="http:// maven. apache. org/ POM 4. 0. 0 http:// maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<bui | d>
<pl ugi ns>

<pl ugi n>
<gr oupl d>or g. codehaus. noj o</ gr oup| d>
<artifact!|d>aspectj-maven-plugin</artifactld>
<ver si on>1. 0</ ver si on>

Spring Data Document () 56

Cross Store support

<dependenci es>
<l-- NB: You nust use Maven 2.0.9 or above or these are ignored (see MNG 2972) -->
<dependency>
<gr oupl d>or g. aspectj </ groupl d>
<artifactld>aspectjrt</artifactld>
<versi on>${aspectj . version}</versi on>
</ dependency>
<dependency>
<gr oupl d>or g. aspect j </ gr oupl d>
<artifactl|d>aspectjtool s</artifactld>
<versi on>${aspectj . version}</versi on>
</ dependency>
</ dependenci es>
<executi ons>
<execution>
<goal s>
<goal >conpi | e</ goal >
<goal >t est - conpi | e</ goal >
</ goal s>
</ executi on>
</ executi ons>
<confi guration>
<out xm >t rue</ out xm >
<aspect Li brari es>
<aspect Li brary>
<gr oupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-aspects</artifactld>
</ aspect Li brary>
<aspect Li brary>
<gr oupl d>or g. spri ngf ramewor k. dat a</ gr oupl d>
<artifactld>spring-data-nongodb-cross-store</artifactld>
</ aspect Li brary>
</ aspect Li brari es>
<sour ce>1. 6</ sour ce>
<t arget >1. 6</t ar get >
</ confi guration>
</ pl ugi n>

</ pl ugi ns>
</ bui | d>

</ proj ect >

Finally, you need to configure your project to use MongoDB and also configure the aspects that are used. The
following XML snippet should be added to your application context:

Example 8.3. Example application context with MongoDB and cross-stor e aspect support

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xm ns:j dbc="http://ww. springfranmework. org/ schenma/j dbc"
xm ns:j pa="http://ww. springframework. or g/ schena/ dat a/ j pa"
xm ns: mongo="htt p: // ww. spri ngf ranewor k. or g/ schema/ dat a/ nrongo"
xsi : schemaLocati on="http://ww:. spri ngfranmewor k. or g/ schena/ dat a/ nongo
http://ww. spri ngfranework. or g/ schena/ dat a/ nongo/ spri ng- nongo. xsd
htt p: // ww. spri ngf ranewor k. or g/ schena/ j dbc
http://ww. spri ngfranework. org/ schena/ j dbc/ spri ng-j dbc-3. 0. xsd
http://ww. spri ngframework. or g/ scherma/ beans
http://ww. springframework. or g/ schenma/ beans/ spri ng- beans- 3. 0. xsd
http://ww. springframework. or g/ schena/ dat a/ j pa
http://ww. springframework. or g/ schenma/ dat a/ j pa/ spri ng-j pa-1. 0. xsd" >

<l-- Mongo config -->
<nongo: nongo host ="1 ocal host" port="27017"/>

<bean i d="nopngoTenpl ate" cl ass="org. spri ngfranmewor k. dat a. nrongodb. cor e. MongoTenpl at e" >

Spring Data Document () 57

Cross Store support

<constructor-arg nanme="nongo" ref="nongo"/>

<constructor-arg nane="dat abaseNane" val ue="test"/>

<constructor-arg nanme="def aul t Col | ecti onNane" val ue="cross-store"/>
</ bean>

<bean cl ass="org. spri ngfranmewor k. dat a. nrongodb. cor e. MongoExcepti onTransl ator"/ >

<l-- Mongo cross-store aspect config -->
<bean cl ass="org. springfranework. dat a. per si st ence. docunent . nongo. MongoDocunent Backi ng"
factory-net hod="aspect O " >
<property nanme="changeSet Persi ster" ref="npngoChangeSet Persister"/>
</ bean>
<bean i d="nopngoChangeSet Per si ster"
cl ass="org. spri ngfranmewor k. dat a. per si st ence. docunent . nongo. MongoChangeSet Per si st er ">
<property nanme="nongoTenpl ate" ref="nongoTenpl ate"/>
<property name="entityManager Factory" ref="entityManagerFactory"/>
</ bean>

</ beans>

8.2. Writing the Cross Store Application

We are assuming that you have aworking JPA application so we will only cover the additional steps needed to
persist part of your Entity in your Mongo database. First you need to identify the field you want persited. It
should be a domain class and follow the genera rules for the Mongo mapping support covered in previous
chapters. The field you want persisted in MongoDB should be annotated using the @rel at edDocunent

annotation. That is redly all you need to do!. The cross-store aspects take care of the rest. This includes
marking the field with @Transient so it won't be persisted using JPA, keeping track of any changes made to the
field value and writing them to the database on succesfull transaction completion, loading the document from
MongoDB the first time the value is used in your application. Here is an example of a simple Entity that has a
field annotated with @RelatedEntity.

Example 8.4. Example of Entity with @RelatedDocument
@ntity
public class Custoner {
@d
@ener at edVal ue(strategy = GenerationType. | DENTI TY)
private Long id;
private String firstNane;

private String |ast Nane;

@rel at edDocunent
private Surveylnfo surveyl nfo;

/] getters and setters omitted

Example 8.5. Example of domain classto be stored as document

public class Surveylnfo {

private Map<String, String> questionsAndAnswers;

Spring Data Document () 58

Cross Store support

public Surveylnfo() {
thi s. questi onsAndAnswers = new HashMap<String, String>();
}

public Surveylnfo(Mp<String, String> questionsAndAnswers) {
this. questi onsAndAnswers = questi onsAndAnswers;

}

public Map<String, String> getQuestionsAndAnswers() {
return questi onsAndAnswers;

}

public void set Questi onsAndAnswers(Map<String, String> questi onsAndAnswers) {
t hi s. questi onsAndAnswers = questi onsAndAnswers;

}

public Surveyl nfo addQuesti onAndAnswer (String question, String answer) {
t hi s. questi onsAndAnswer s. put (questi on, answer);
return this;
}
}

Once the Surveylnfo has been set on the Customer object above the MongoTemplate that was configured above
is used to save the Surveylnfo along with some metadata about the JPA Entity is stored in a MongoDB
collection named after the fully qualified name of the JPA Entity class. The following code:

Example 8.6. Example of code using the JPA Entity configured for cross-store persistence

Cust omer customer = new Customer();
cust oner . set Fi r st Nanme(" Sven") ;
cust omer . set Last Name(" O af sen") ;
Surveyl nfo surveylnfo = new Surveyl nfo()
. addQuest i onAndAnswer (" age", "22")
. addQuest i onAndAnswer ("married", "Yes")
. addQuest i onAndAnswer ("ci ti zenshi p*, "Norwegi an");
cust omer . set Surveyl nf o(surveyl nfo);
cust omer Reposi t ory. save(cust oner);

Executing the code above results in the following JSON document stored in MongoDB.

Example 8.7. Example of JSON document stored in MongoDB

{ " id" : Onjectld("4d9e8b6e3c55287f87d4b79e"),
" entity_id" : 1,

"_entity_class" : "org.springfranmework. dat a. nongodb. exanpl es. cust svc. domai n. Cust oner ",
" entity field _nane" : "surveylnfo",
"questi onsAndAnswers" : { "married" : "Yes",
"age" : "22",
"citizenship" : "Norwegian" },
"_entity field_class" : "org.springfranmework. dat a. nrongodb. exanpl es. cust svc. domai n. Surveyl nfo" }

Spring Data Document () 59

Chapter 9. Logging support

An appender for Log4j is provided in the maven module "spring-data-mongodb-log4j". Note, there is no
dependency on other Spring Mongo modules, only the MongoDB driver.

9.1. MongoDB Log4j Configuration

Here is an example configuration

| 0g4j . r oot Cat egor y=I NFO, st dout

| 0g4j . appender . st dout =or g. spri ngf ramewor k. dat a. docunent . nongodb. | og4j . MongoLog4j Appender
| og4j . appender . st dout . | ayout =or g. apache. | og4j . Patt er nLayout

| og4j . appender . st dout . | ayout . Conversi onPattern=% % [%] - <% %

| og4j . appender . st dout . host = | ocal host

| 0g4j . appender. stdout. port = 27017

| 0g4j . appender . st dout . dat abase = | ogs

| 0g4j . appender. stdout. col | ecti onPattern = 9%{year} %{ nont h}

| 0g4j . appender . stdout . applicationld = ny.application

| 0g4j . appender . st dout . war nOr H gher Wi t eConcern = FSYNC_SAFE

| 0g4j . cat egory. org. apache. acti veng=ERROR

| 0g4j . cat egory. org. spri ngf ramewor k. bat ch=DEBUG

| og4j . cat egory. org. spri ngfranmewor k. dat a. docunent . nrongodb=DEBUG
| 0g4j . cat egory. org. spri ngframework. transact i on=l NFO

The important configuration to look at aside from host and port is the database and collectionPattern. The
variables year, month, day and hour are available for you to usein forming a collection name. Thisis to support
the common convention of grouping log information in a collection that corresponds to a specific time period,
for example a collection per day.

There is also an applicationld which is put into the stored message. The document stored from logging as the
following keys: level, name, applicationld, timestamp, properties, traceback, and message.

Spring Data Document () 60

Chapter 10. JIMX support

The IMX support for MongoDB exposes the results of executing the 'serverStatus command on the admin
database for a single MongoDB server instance. It also exposes an administrative MBean, MongoAdmin which
will let you perform administrative operations such as drop or create a database. The IMX features build upon
the IMX feature set available in the Spring Framework. See here for more details.

10.1. MongoDB JMX Configuration

Spring's Mongo namespace enables you to easily enable IMX functionality

Example 10.1. XML schmeato configure M ongoDB

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://ww. springfranmewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xm ns: cont ext ="http://wwmv springframewor k. or g/ schenma/ cont ext "
xm ns: mongo="ht t p: // www. spri ngf ramewor k. or g/ schena/ dat a/ nrongo"
xsi : schemalLocati on=
"http://ww. springfranmework. or g/ schema/ cont ext
http://ww. springframework. or g/ schema/ cont ext/ spri ng-cont ext - 3. 0. xsd
http: //ww. spri ngfranework. or g/ schena/ dat a/ nongo
http://ww. springframework. or g/ schema/ dat a/ nongo/ spri ng- nongo- 1. 0. xsd
http://ww. springfranmework. or g/ schena/ beans http://ww. spri ngfranewor k. or g/ schema/ beans/ spri ng- beans- 3. C

<beans>

<l-- Default bean nane is 'nobngo’ -->
<nmongo: nongo host ="l ocal host" port="27017"/>

<l-- by default look for a Mongo object naned 'nongo' -->
<nongo: j nx/ >

<cont ext : mbean- export/ >

<l-- To translate any MongoExceptions thrown in @Repository annotated classes -->
<cont ext : annot ati on- confi g/ >

<bean id="registry" class="org.springframework.renopting.rm .Rm Regi stryFactoryBean" p:port="1099" />
<l-- Expose JMX over RM -->
<bean i d="serverConnector" class="org.springframework.jnx.support. Connect or Ser ver Fact or yBean"
depends- on="regi stry"
p: obj ect Name="connect or: nane=rm "
p: serviceUr|l ="service:jnx:rm ://|ocal host/jndi/rm://|ocal host: 1099/ nyconnector" />

</ beans>

Thiswill expose several MBeans

o AssertMetrics

BackgroundFlushingMetrics

Btreel ndexCounters

* ConnectionMetrics

GlobalLoclMetrics

Spring Data Document () 61

http://static.springsource.org/spring/docs/3.0.x/reference/jmx.html

JMX support

¢ MemoryMetrics

e OperationCounters
» Serverinfo

* MongoAdmin

Thisis shown below in a screenshot from JConsole

Spring Data Document ()

62

Part lll. Appendix

Spring Data Document ()

63

Appendix A. Namespace reference

A.1. The <repositories />element

The <repositories /> element acts as container for <reposi tory /> elements or can be left empty to trigger
auto detection! of repository instances. Attributes defined for <repositori es /> are propagated to contained
<repository /> elementsbut can be overridden of course.

Table A.1. Attributes

Name

base- package

reposi tory-inpl-postfix

Description

Defines the package to be used to be scanned for repository interfaces
extending *Repository (actual interface is determined by specific
Spring Data module) in auto detection mode. All packages below the
configured package will be scanned, too. In auto configuration mode (no
nested <r eposi tory /> elements) wildcards are also allowed.

Defines the postfix to autodetect custom repository implementations.
Classes whose names end with the configured postfix will be considered
as candidates. Defaultsto | npl .

qguery-| ookup-strategy

Determines the strategy to be used to create finder queries. See ??? for
details. Defaultsto creat e-i f - not - f ound.

A.2. The <repository /> element

The <repository /> element can contain all attributes of <repositories /> except base- package. This will
result in overriding the values configured in the surrounding <r eposi tories /> element. Thus here we will

only document extended attributes.

Table A.2. Attributes

id

custominpl -ref

Defines the id of the bean the repository instance will be registered
under as well asthe repository interface name.

Defines areference to a custom repository implementation bean.

Spring Data Document () 64

	Spring Data MongoDB - Reference Documentation
	Table of Contents
	Preface
	Part I. Introduction
	1. Knowing Spring
	2. Knowing NoSQL and Document databases
	Chapter 1. Why Spring Data - Document?
	Chapter 2. Requirements
	Chapter 3. Additional Help Resources
	3.1. Support
	3.1.1. Community Forum
	3.1.2. Professional Support

	3.2. Following Development

	Chapter 4. Repositories
	4.1. Introduction
	4.2. Core concepts
	4.3. Query methods
	4.3.1. Defining repository interfaces
	4.3.1.1. Fine tuning repository definition

	4.3.2. Defining query methods
	4.3.2.1. Query lookup strategies
	4.3.2.2. Query creation
	4.3.2.2.1. Property expressions

	4.3.2.3. Special parameter handling

	4.3.3. Creating repository instances
	4.3.3.1. Spring
	4.3.3.2. Standalone usage

	4.4. Custom implementations
	4.4.1. Adding behaviour to single repositories
	4.4.2. Adding custom behaviour to all repositories

	Part II. Reference Documentation
	Chapter 5. MongoDB support
	5.1. Getting Started
	5.1.1. Required Jars
	5.1.2. Migrating from M2 to M3

	5.2. Examples Repository
	5.3. Connecting to MongoDB with Spring
	5.3.1. Registering a Mongo instance using Java based metadata
	5.3.2. Registering a Mongo instance using XML based metadata
	5.3.3. The MongoDbFactory interface
	5.3.4. Registering a MongoDbFactory instance using Java based metadata
	5.3.5. Registering a MongoDbFactory instance using XML based metadata

	5.4. Introduction to MongoTemplate
	5.4.1. Instantiating MongoTemplate
	5.4.1.1. WriteResultChecking Policy
	5.4.1.2. WriteConcern

	5.5. Saving, Updating, and Removing Documents
	5.5.1. How the '_id' field is handled in the mapping layer
	5.5.2. Methods for saving and inserting documents
	5.5.2.1. Which collection will my documents be saved into?
	5.5.2.2. Inserting or saving individual objects
	5.5.2.3. Inserting several objects in a batch

	5.5.3. Updating documents in a collection
	5.5.3.1. Methods for executing updates for documents
	5.5.3.2. Methods for the Update class

	5.5.4. Methods for removing documents

	5.6. Querying Documents
	5.6.1. Querying documents in a collection
	5.6.1.1. Methods for the Criteria class
	5.6.1.2. Methods for the Query class

	5.6.2. Methods for querying for documents
	5.6.3. GeoSpatial Queries
	5.6.3.1. Geo near queries

	5.7. Map-Reduce
	5.7.1. Example Usage

	5.8. Overriding default mapping with custom converters
	5.8.1. Saving using a registered Spring Converter
	5.8.2. Reading using a Spring Converter
	5.8.3. Registering Spring Converters with the MongoConverter

	5.9. Index and Collection managment
	5.9.1. Methods for creating an Index
	5.9.2. Methods for working with a Collection

	5.10. Executing Commands
	5.10.1. Methods for executing commands

	5.11. Lifecycle Events
	5.. Exception Translation
	5.13. Execution Callback

	Chapter 6. Mongo repositories
	6.1. Introduction
	6.2. Usage
	6.3. Query methods
	6.3.1. Geo-spatial repository queries
	6.3.2. Mongo JSON based query methods and field restriction
	6.3.3. Type-safe Query methods

	Chapter 7. Mapping
	7.1. Convention based Mapping
	7.1.1. How the '_id' field is handled in the mapping layer

	7.2. Mapping Configuration
	7.3. Metadata based Mapping
	7.3.1. Mapping annotation overview
	7.3.2. Compound Indexes
	7.3.3. Using DBRefs
	7.3.4. Mapping Framework Events
	7.3.5. Overriding Mapping with explicit Converters

	Chapter 8. Cross Store support
	8.1. Cross Store Configuration
	8.2. Writing the Cross Store Application

	Chapter 9. Logging support
	9.1. MongoDB Log4j Configuration

	Chapter 10. JMX support
	10.1. MongoDB JMX Configuration

	Part III. Appendix
	Appendix A. Namespace reference
	A.1. The <repositories /> element
	A.2. The <repository /> element

