Good Relationships

The Spring Data Graph Guidebook

1.0.0.RC1

Copyright © 2010 - 2011 Michael Hunger, David Montag, Mark Pollack, Thomas Risberg

Copies of this document may be made for your own use and for distribution to others,
provided that you do not charge any fee for such copies and further provided that
each copy contains this Copyright Notice, whether distributed in print or electronically.

1. Foreword: Rod Johnson, CEO Of SPriNGSOUICEeeeveeeiiieiiiiiieeiee e e e s ceivvee e e e e e v
2. Foreword: Emil Eifrem, CEO of Neo Technologycccccvvevieeiiiiiiiiiiiieecee e, v
3. About thiS GUIAE BOOKcoiiiiiiiiiiie et e e e e %
R T (] = S S 1
1. Allow me to introduce - CINEASIS.NELcevvieeeii e e e e e e 2
S 0] o s o] oo SRR PPPRPN 3
2.1. Preparations - REQUITEd SELUDuvvvviireeeei it e ettt e e e eeirvee e e e e e e e 3

3. Setting the Stage - MoVIES DOMAINcoieeiiiiiiiiieee e 5
4. Graphs ahead - Learning NEOAuuuuuuuueruurunirinerinnmrnrnmemnremnnnmnmnmemrmnme. 7
5. Conjuring Magic - Spring Data Graphceeviiiiiiiii e 8
6. Decorations - ANNOtated DOMEINceeiiiiiiiiiiiiie e e e e e e e e e e eeeeeas 10
7. DO | KNOW YOU? = INAEXING ...eeeiiiiiieeiiiiiee ettt e s e e e snnee e e e e 11
8. Serving a good CaUSE - REPOSITONYvvviiieeeeiiiiiiiiiie e e e e e ectree e e e e s ssr e e e e e e s e eaanenes 12
9. A convincing act - REIAONSNIPSoccuiiiiiiee e 13
9.1. Value in Relationships - Creating themccccccvvvviiiiiiieeeeeeeeeeeee 13

9.2. Who's there ? - Accessing related entitieScooeeiviiiciiiiiiie e 13

9.3. May | introduce ? - Accessing Relationships themselves............ccccceiiiiieeeeee 14

10. Curtains Up! - GEL It FUNNINGeeoiiiiiieeiiiei et 15
10.1. Requisites - Populating the databasecooevviiieiiee e 15

10.2. Behind the scenes - Peeking at the Datastoreceeveeeeviiciviieeeie e, 16
10.2.1. Eye candy - Neoclipse visuaizationcccccceeeeieeiiie e, 16

10.2.2. Hardcore "Hacking" - Neo4j Shell ..o 16

11. SNOWING OFf - WED VIBWScoeiiiiiiieiiiiee ettt e e 18
11.1. What was his Name? - SEArChiNGoccueeeeiiiiiieiiiiee e 18

11.2. Look what we've found - Listing RESUILScccovviiiiiiiieee e, 19

12. Movies 2.0 - Adding SOCIAcccuviiiiiiiee e 21
12.1. Look, MOM @ CINEBSEL = USEIS . .eeeeeeeeee ettt e e e e e e e e 21
12.2. Beware, CritiCS - RaLUNGvvveeieiieiiiiiiiiieieieieieeeeeeeeseeesrereersnrernrrrremrmrrrrrr. 22

13. Protecting ASSELS - AddiNG SECUNTYvveeiiiiiiiie e 23
14. Oh the GIamour - MOrE Uluuiiiiiee it e s e e e e e e s nnnrraneeeee s 27
15. The dusty archives - Importing Daaccooiuiiiiiiiiiiee e 30
16. Movies! Friends! Bargains! - Recommendationsccceovviiiiiiiiieeie e eiiciiieeeee e 33
I = = (= o PR OUPPRRRP 34
(= =0 SR XXXV
17, SPIING DBLA ...ttt e 36
18. INtroduCtiON T0 NEBOA ...ttt e e e 37
18.1. What is a graph database?cccuueiiiiiiiiie e 37
18.2. ADOUL NBOJeeeieiiiiiie ettt ettt et e et e e e e e e s sbreeeeaas 37
18.3. GraphDatabhaSESEIVICEcccuvvieieiie ettt e e e e e areaeas 37
18.4. Creating Nodes and RelalionShiSuuuruviiuiiiiiiiiieiiiiiiieiiiernrernn. 38
18.5. Graph traVerSaloveiiiiiiiie et 38
18.6. INUEXING ...vveeeiiiiiie ettt e e st e e e e e e e s s e e e s annneas 38

19. Programming model for Spring Data Graphc.eevveiiiiiiiiiiiiee e 40
19.1. Overview of the ASPECLI SUPPOITvvveieeeeei i e e 40
19.1.1. IDE-ASPECLI SUPPOIT ..eeeerereeieeeeeeeeeiiiese s e e e e eeeeetins s e e e e e e eeebeaa s e e e eseeeees 40

19.2. Using annotations to define POJO Node Entities............cccceeeeeeeeeeee e, 40
19.2.1. @NodeEntity: The basic building bIOCK ..o 41

19.2.2. @GraphProperty: Optional Annotation for Property Fields..................... 41

Spring Data Graph (1.0.0.RC1) ii

Good Relationships

19.2.3. @Indexed: Making entities searchable by field value..............cccvvveeeee. 41

19.2.4. @GraphTraversal: fields providing direct access to traversal results........ 41
19.3. How to relate Node Entities using RElationshipsceeeeeeiiiiiiiieeeciee e, 42
19.3.1. @RelatedTo: Connecting NOdeENtItiesccevvvvvvvvviiiiiiiiccececeeeeeeee, 42
19.3.2. @RelationshipEntity: Rich relationshipsccoooveiiiiiieeiniieceien 43

19.3.3. @RelatedToVia: Connecting Node Entitites via Relationship Entities.... 43
RS 1o (=] oo O PP PPPP 44
19.4.1. Exact and NUMEXiC INAEXcooiiiiiiiieiiiiiee e 44
19.4.2. FUIITEXE INAEXESvveeeeeiiiiee ettt 45
19.4.3. RAW INUEX ACCESS ...ooeeeeiiiieiiieiee e et e e e e e e e e e e e e e aeeeeaaaeeas 45
19.4.4. Indexing iN NeOA TEMPIELEccvviveiiiiiiee e 46
19.5. GraphRepositories for basic CRUD and find-operations...........ccccccevveeeeiicennenee. 46
19.5.1. COomMPOSING REPOSITONESccouvviieeiiiiiiee ettt 47
19.6. Transactions in Spring Data Graphcceeeviiiiiiiieeie e 48
19.7. Session handling - attached and detached entities ..., 50
19.8. Storing type information in the graph ..., 50
19.9. Methods added to entity ClasSESceeiiieeiiiiiieiee e 51
19.10. Dynamic typing - Projection to unrelated, fitting typesccccveeeviiciiienenennn. 52
19.11. Bean Validation - JSR-303cuuuuuiuiiiiiiiiiiririiiiieirierririerrre ..., 52
20. Setup required for Spring Data Graphceevvveeiiiiiiiiiee e 54
20.1. Maven ConfigUIationccoiiiiiiiieieee e e e e r e e e e 54
P20 I T (= 01) (] == 54
20.1.2. DEPENUENCIESceeeiieeeieeeeeeee e ettt e e e e e s ettt e e e e e e e easneeeeeeeeaeeesannneeeas 54
20.1.3. Aspectd build configuIrationcocceeeeiiiiiieeiiieee e 54
20.2. Setting Up Spring Data Graph - Spring Configurationcccccevvvvveeeeniinnenn. 55
20.2.1. XML-NEIMESPECEevvvvereriiiririiieiiirireeereeeeeeeseeeereereereererereererarr 55
20.2.2. Java based Configurationcccvvvieiiee i 56
21. Cross-store persistence with a graph databaseoooeeeiiiiiiiiiiiec e, 58
21.1. Partial graph PersiStENCEueeeiiieeeiiiiiiiee e e e e e e e e e 58
21.1.1. @NodeEntity(partial = "trUE™)ccoiiuiieeiiiiiiee e 58
21.1.2. @GIaphPrOPEITY ...eoeiieieeieeiiiiie ettt 58
21.2. Configuring CroSS-StOre PErSISLENCEc.vvveeeiiirieeeaiieee e st e e e e 59
P 1] 0 = PP 61
P28 W 1 11 0o 1 1 o o SRR 61
22.2. HEllO WOrlAS SAMPIEuuuiiiiiiiiiiiiiiiiiiiuiuinenineninrnrnrnrnrnrnenrnrnrnenrnrnrnrnnnrnrnnnnn. 61
22.3. IMDB SBMPIE .ecciiiieie ettt e e e e e e e e e e e e e e e anaeaeeans 61
22.4. MYREStAUrant SAMPIEveiiiiiiiiie ettt e e 62
22.5. MyRestaurant-Social SAMPIEcoeiiiiiiiiiiiiiie e 62
23. Performance CONSIAEIELIONSuueieiiiiiiie ittt e s nbaeee e 64
23.1. WhHeN t0 USE SDG? ...ttt e e e s 64
B N\ = o 2T = 117] = = 65
24.1. BASIC OPEIGLIONSevveieiiiiieee ettt e ettt e ettt e e e e s e e e e s b e e e e s nanneee s 65
24.2. INAEXING ...evveeeeiiiiee ettt e e et e e e e e e e e e s e e e e as 65
24.3. TFAVEISAl ...eiiieiiiie et e a e e e e e s aaaas 65
24.4. Path abstraction and PathMapperc.cvveieveee i 65
24.5. Transaction handling/managementcccvveeeeeeee e 66
ST AN o< ox AU I g 110 L1 o] o Y 67
26. NEOJ SEIVEN ...oeeiiiiiee et et e e e et e e e et e e e e s st e e e e ste e e e e asbeeaeeansteeeeaanseeeeeannseeeeennnes 68
26.1. SEIVEr EXTENSION ...uviiiiiieiiiiiiiiieeeee e e e ettt e e e e e e s e s e e e e e e s ssneraeeeeeaeeessannneeees 68

Spring Data Graph (1.0.0.RC1) i

Good Relationships

26.2. Using Spring Data Graph as a REST-Client

Spring Data Graph (1.0.0.RC1)

Preface

.‘ springdatagraph

1. Foreword: Rod Johnson, CEO of SpringSource
2. Foreword: Emil Eifrem, CEO of Neo Technology

3. About this Guide Book

Welcome to the Spring Data Graph Guide Book. Thank you for taking the time to get an in depth look
into Spring Data Graph Library. Spring Data Graph is part of the Spring Data project which brings
the convenient programming model of the Spring Framework to modern (mainly NoSQL) datastores.
Spring Data Graph currently provides integration for the Neo4j Graph Database.

It was written by developers for devel opers. So hopefully we've created a documentation that is well
received by our peers.

If you have any feedback to the Spring Data Graph Library or this book, please provide it via
SpringSource JIRA, the SpringSource NoSQL Forum, github comments or issues or the Neodj mailing
list.

This book is presented as a duplex book, aterm coined by Martin Fowler. A duplex book consists of
at least two parts. The first part is an easily accessible narrative, that gives the reader an overview of
the topics contained in the book. It contains |ots of examples and more general discussion topics. This
should be the only part of the book that is required to be read cover-to-cover.

We chose a tutorial describing the creation of a web applicaton (cineasts.net) that allows movie
enthusiasts to find the favorites, rate them, connect with each other and enjoy social features. The
application is running on Neo4j using Spring Data Graph and the well known Spring Web Stack.

The second part is the classic reference documentation containing the detailed information about the
library. It discusses the programming model, the underlying assumptions, used toolset (like aspectj) as
well as the APIs for the object-graph mapping and the template approach. The reference docs should
be mainly used to look up concrete bits of information or to dig deeper into certain topics.

Spring Data Graph (1.0.0.RC1) Y

https://github.com/SpringSource/spring-data-graph
http://springsource.org/spring-data
http://neo4j.org
https://jira.springsource.org/browse/DATAGRAPH
http://forum.springsource.org/forumdisplay.php?f=80
https://github.com/SpringSource/spring-data-graph/issues
http://neo4j.org/community/list/
http://neo4j.org/community/list/
http://martinfowler.com/bliki/DuplexBook.html
http://martinfowler.com/bliki/DuplexBook.html

Part |. Tutorial

Thefirst part of the book provides atutorial that walks through the creation of a complete Web application called
cineasts.net built with Spring Data Graph and Neo4j. It uses a domain that should be familiar - movies. So for
cineasts.net we decided to add a social touch to rating movies, allowing friends to share their scores and get
recommendations for new friends and movies.

The tutorial walks the steps necessary to create the application. It provides the configuration and code examples
that are needed to understand what's happening in Spring Data Graph. Of course the complete source code for
the app is available at github.

Spring Data Graph (1.0.0.RC1) 1

http://github.com/jexp/cineasts

Chapter 1. Allow me to introduce - Cineasts.net

Once upon a time we wanted to build a social movie database. First things first - we had a name:
"Cineasts" - the cinemaenthusiasts who are crazy about movies. So we went ahead and got the domain,
cineasts.net and the project was almost compl ete.

We had some ideas about the domain too. Of course there should be actors who play rolesin movies.
We needed the Cineast, too, someone to rate the movies. And while they were there, they could also
make friends. Find someone to accompany them to the cinema or share movie preferences. Even
better, the engine behind al that should recommend new friends and moviesto cineasts, based on their
interests and existing friends.

CINEASTS

When welooked for possible sourcesfor data, IMDB wasour first stop, but they'realittle expensivefor
our tastes, charging 15k USD for data access. Fortunately we found TheM oviedb.org which provides
user-generated data for free. The also have liberal terms and conditions and a nice API for fetching
the data.

There were many more ideas but we wanted to get something done quickly. And thisis how it should
look.

\ X}

¥ CINEASTS

b spring — ‘ | ‘: springdatagraph

Spring Data Graph (1.0.0.RC1) 2

http://themoviedb.org

Chapter 2. Scope: Spring

Being Spring developers, we would, of course, choose components of the Spring Framework to do
most of the work. We'd already come up with the ideas - that should be enough.

What database would fit both the complex network of cineasts, movies, actors, roles, ratings and
friends? And also be able to support the recommendation algorithms that we had in mind? We had
no idea

But, wait, there is the new Spring Data project, started in 2010, which brings the convenience of
the Spring programming model to NoSQL databases. That should fit our experience and help us to
get started. We looked at the list of projects supporting the different NoSQL databases. Only one
mentioned the kind of social network we were thinking of - Spring Data Graph for Neo4j, a graph
database. Neo4j's pitch of "value in relationships’ and the accompanying docs looked like what we
needed. We decided to giveit atry.

2.1. Preparations - Required Setup

To setup the project we created a public github account and began setting up the infrastructure for
a spring web project using Maven as build system. So we added the dependencies for the Spring
Framework libraries, put the web.xml for the DispatcherServlet and the applicationContext.xml in the
webapp directory.

Example 2.1. pom.xml

<properties>
<spring. versi on>3. 0. 5. RELEASE</ spri ng. ver si on>
</ properties>

<dependenci es>

<dependency>
<gr oupl d>or g. spri ngf ramewor k</ gr oupl d>
<I-- abbreviated for all the dependencies -->

<artifactld>spring-(core, context, aop, aspects, tx, webnmvc) </ artifactld>
<ver si on>${spri ng. ver si on} </ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-test</artifactld>
<versi on>${spri ng. ver si on} </ ver si on>
<scope>t est </ scope>

</ dependency>

</ dependenci es>

<bui | d><pl ugi ns>
<pl ugi n>
<groupl d>or g. nort bay. j etty</ groupl d>
<artifactld>jetty-maven-plugin</artifactld>
<version>7. 1. 2.v20100523</ ver si on>
<confi guration>
<webAppConfi g>
<cont ext Pat h>/ </ cont ext Pat h>
</ webAppConfi g>
</ confi guration>
</ pl ugi n>
</ pl ugi ns></ bui | d>

Spring Data Graph (1.0.0.RC1) 3

Scope: Spring

Example 2.2. web.xml

<l i stener>
<l i stener-cl ass>org. spri ngfranewor k. web. cont ext . Cont ext Loader Li st ener</1i st ener-cl ass>
</listener>

<servl et >
<ser vl et - nane>di spat cher Ser vl et </ servl et - nane>
<servl et - cl ass>or g. spri ngf ranewor k. web. servl et . Di spat cher Servl et </ servl et - cl ass>
<| oad- on- st artup>1</1| oad-on-start up>

</servl et>

<servl et - mappi ng>
<ser vl et - nane>di spat cher Ser vl et </ servl et - nane>
<url -pattern>/</url-pattern>

</ servl et - mappi ng>

With this setup we were ready for the first spike: creating a simple MovieController showing a static
view. Check. Next was the setup for Spring Data Graph. We looked at the README at github and
then checked it with the manual. Quite alot of Maven setup for AspectJ but otherwise not so much to

add. Time to add afew linesto our Spring configuration.

Example 2.3. applicationContext.xml

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: cont ext ="http://ww. spri ngfranmework. or g/ schema/ cont ext "
xm ns: tx="http://ww:. springframework. org/ schenma/tx"
xsi : schemalLocat i on="
http://ww. spri ngframework. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
http://ww. spri ngfranework. org/ schena/ t x
http://ww. springframework. org/ schema/t x/ spring-tx-3. 0. xsd
http://ww. springframework. or g/ schema/ cont ext
http: //ww. spri ngfranewor k. or g/ schena/ cont ext/ spri ng- cont ext - 3. 0. xsd" >

<cont ext : annot ati on- confi g/ >
<cont ext: spri ng-confi gured/ >
<cont ext : conponent - scan base- package="or g. neo4j . ci neasts">
<cont ext: exclude-filter type="annotation" expression="org.springfranework. stereotype
</ cont ext : conponent - scan>

<t x: annot ati on-driven node="aspectj"/>
</ beans>

Controller"/

Example 2.4. dispatcher Servlet-servlet.xml

<mvc: annot ati on-driven/ >

<mvc:resources mappi ng="/imges/**" |ocation="/inages/"/>

<mvc: resources mappi ng="/resources/**" | ocati on="/resources/"/>

<cont ext : conponent - scan base- package="or g. neo4j . ci neasts.controller"/>

<bean i d="vi ewResol ver" cl ass="org. springfranmewor k. web. servl et.vi ew. | nt er nal Resour ceVi enRe

<t x: annot ati on-driven node="aspectj"/>

sol ver"

We spun up Jetty to see if there were any obvious issues with the config. It all seemed to work just

fine. Check.

Spring Data Graph (1.0.0.RC1)

p:pr

Chapter 3. Setting the Stage - Movies Domain

The domain model was the next thing we planned to work on. We wanted to sketch it out first before
diving into library details. We also looked at the datamodel of core themoviedb data to confirm that
it matched our expectations.

FRIEND®

User

qu[m
name
passioo rd

L Lefriend()

vate()

[Actr |

Warme

| Fldt-i.eélhﬂ{)

In Java code this looks pretty straightforward:

class Mvie {

}

class Actor {

}

class Role {

}

class User {

}

class Rating {

int id;

String title;
int year;

Set <Rol e> cast;

int id;

String nane;

Set <Movi e> fi | nogr aphy;

Rol e pl ayedl n(Movie novie, String role);

Movi e novi e;
Actor actor;
String role;

String | ogin;

String nane;

String password;

Set <Rati ng> ratings;

Set <User > fri ends;

Rating rate(Mvie novie, int stars, String comment);
voi d befriend(User user);

User user;

Movi e novi g;
int stars;
String coment;

Spring Data Graph (1.0.0.RC1) 5

Setting the Stage - Movies Domain

}

We then wrote some tests to show the basic plumbing works.

Spring Data Graph (1.0.0.RC1)

Chapter 4. Graphs ahead - Learning Neo4j

Now came the unknown - how to put these domain objects into the graph. First we read up about
graph databases, especialy Neodj. The Neodj datamodel consists of nodes and relationships, both of
which can have properties. Relationships arefirst class citizensin Neo4j, meaning we can link together
nodes into semantically rich networks - we really liked that. Then we found we could index nodes
and relationships by {name, value} pairs to quickly get hold of them as starting points for further
processing. We also found we could imperatively traverse of relationships using the core API, and in
adeclarative way using a query-like Traversal Description.

We aso learned that Neodj was fully transactional and completely upholds ACID guarantees for
out data. This is unusual for NOoSQL databases, but easier for us to get our head around than
non-transactional eventual consistency. It also makes us feel safe, though it also means that we had
to manage transactions. Keep that in mind.

Initially we used the core Neo4j API to get a feeling for that. And also to see, how (probably) the
domain might look when it's saved in the graph store. After adding the Maven dependency, it was
ready to go.

<dependency>
<gr oupl d>or g. neo4j </ gr oupl d>
<artifactld>neodj</artifactld>
<ver si on>1. 3. M)5</ ver si on>

</ dependency>

enum Rel ati onshi pTypes i npl enents Rel ati onshi pType { ACTS IN };

G aphDat abaseServi ce gds = new EnbeddedG aphDat abase("/ path/to/store");
Node forrest=gds. creat eNode();

forrest.setProperty("title","Forrest Gunp");
forrest.setProperty("year", 1994);

gds. i ndex().for Nodes("novi es").add(forrest,"id", 1);

Node t onrgds. cr eat eNode();
tom set Property("Tom Hanks");

Rel at i onshi p rol e=t om creat eRel ati onshi pTo(forrest, ACTS_IN);
rol e.setProperty("role","Forrest Gunmp");

Node novi e=gds. i ndex() . for Nodes("novi es").get("id", 1).getSingle();

print (nmovie.getProperty("“title"));

for (Relationship role : novie.getRelationshi ps(ACTS_I N, | NCOM NG) {
Node act or=rol e. get & her Node(novi e) ;
print (actor.getProperty("nanme") +" as " + role.getProperty("role"));

Spring Data Graph (1.0.0.RC1) 7

http://neo4j.org
http://docs.neo4j.org/chunked/snapshot/indexing.html
http://docs.neo4j.org/chunked/snapshot/indexing.html
http://wiki.neo4j.org/content/Traversal_Framework

Chapter 5. Conjuring Magic - Spring Data Graph

That wasthe pure graph database. Using thisin our domain would pollute our classeswith lots of graph
database details. We don't want that. Spring Data Graph promised to do the heavy lifting for us. So we
checked that next. Spring Data Graph depends heavily on AspectJ magic. Some parts of our classes
would behave differently, but it would not be visible in our code. We were going to giveit atry.

First step was lots of Maven configuration.

<properties>
<aspectj.version>1. 6. 11. RELEASE</ aspectj . ver si on>
</ properties>

<dependency>
<gr oupl d>or g. spri ngf ramewor k. dat a</ gr oupl d>
<artifactld>spring-data-neodj</artifactld>
<ver si on>1. 0. 0. RC1</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. aspectj </ groupl d>
<artifactld>aspectjrt</artifactld>
<versi on>${ aspectj . versi on} </ versi on>
</ dependency>

<bui | d> <pl ugi ns> <pl ugi n>
<gr oupl d>or g. codehaus. noj o</ gr oupl d>
<artifactld>aspectj-maven-plugin</artifactld>
<versi on>1. 2</ ver si on>
<dependenci es>
<dependency>
<gr oupl d>or g. aspectj </ gr oupl d>
<artifactld>aspectjrt</artifactld>
<versi on>${ aspectj . versi on} </ versi on>
</ dependency>
<dependency>
<gr oupl d>or g. aspectj </ groupl d>
<artifactld>aspectjtool s</artifactld>
<ver si on>${ aspectj . versi on} </ versi on>
</ dependency>
</ dependenci es>
<executions>
<execution>
<goal s>
<goal >conpi | e</ goal >
<goal >t est - conpi | e</ goal >
</ goal s>
</ executi on>
</ executions>
<configuration>
<out xm >t r ue</ out xm >
<aspect Li brari es>
<aspect Li brary>
<gr oupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-aspects</artifactld>
</ aspect Li brary>
<aspect Li brary>
<gr oupl d>or g. spri ngf r anewor k. dat a</ gr oupl d>
<artifactld>spring-data-neodj</artifactld>
</ aspect Li brary>
</ aspect Li brari es>
<sour ce>1. 6</ sour ce>

Spring Data Graph (1.0.0.RC1) 8

Conjuring Magic - Spring Data Graph

<t arget >1. 6</t ar get >
</ confi guration>
</ plugi n> </ plugins> </buil d>

The Spring configuration was much easier, thanks to a provided namespace.

<beans xm ns="http://ww. springframework. or g/ schema/ beans"
xm ns: dat agr aph="ht t p: / / www. spri ngf ramewor k. or g/ schenw/ dat a/ gr aph"
xsi : schemaLocation="... http://ww.springfranmework. org/ schena/ dat a/ graph
htt p: // ww. spri ngf ranmewor k. or g/ schena/ dat a/ gr aph/ dat agr aph- 1. 0. xsd" >

<dat agr aph: confi g storeDirectory="data/ graph. db"/>
</ beans>

Spring Data Graph (1.0.0.RC1)

Chapter 6. Decorations - Annotated Domain

Looking at the documentation again, we found a simple Hello-World example and tried to understand
it. The entities were annotated with @NodeEntity, that was simple, so we added the annotation to
our domain classes too. Relationships got their own annotation named @Rel ationshipEntity. Property
fields are taken care of automatically.

It's time to put thisto atest. How can we be assured that afield is persisted to the graph store? There
seemed to be two possibilities. First wasto get a GraphDatabaseContext injected and useits getByld()
method. The other one was a Repository approach. But let's try to keep things simple. How can we
persist an entity and how to get itsid? Looking at the documentation revealed that there are a bunch of
methods introduced to the entities by the aspects. That's not obvious, but we found the two that would
help here - entity.persist() and entity.getNodel d().

So our test looked like this.

@\ut owi red G aphDat abaseCont ext gr aphDat abaseCont ext ;

@est public void persistedMvovi eShoul dBeRetri evabl eFr onGraphDb() {
Movi e forrest Gunp = new Movi e("Forrest Gunp", 1994).persist();
Movi e retri evedMovi e = graphDat abaseCont ext . get Byl d(f orrest Gunp. get Nodel d());
assert Equal ("retrieved novi e matches persisted one",forrestGunp, retri evedMyvi e);
assertEqual ("retrieved novie title nmatches","Forrest Gunp",retrievedMovie.getTitle());

That worked! But what about transactions? We didn't declare the test to be transactional. After further
reading we learned that persist() creates an implicit transaction - so that was like an EntityManager
would behave. Ok, now we're getting somewhere. We also learned that for more complex operations
on the entities we'd need external transactions.

Spring Data Graph (1.0.0.RC1) 10

http://github.com/SpringSource/spring-data-graph-examples/tree/master/hello-worlds

Chapter 7. Do | know you? - Indexing

There an @Indexed annotation for fields. We wanted to try this out, and use it to guide the next test.
We added an @Indexed to the id field of the movie. Thisfield isintended to represent the external id
that will be used in URIs and will stable over database imports and updates. This time we went with
the default NodeGraphRepository (previously Finder) to retrieve the indexed movie.

@NodeEntity
class Myvie {
@ ndexed
int id;
String title;
int year;
}

@\ut owi red Direct GaphRepositoryFactory graphRepositoryFactory;

@est [@ransactional] public void persistedvbvi eShoul dBeRet ri evabl eFronGraphDb() {
int id=1,
Movi e forrestGunp = new Movie(id, "Forrest Gunp", 1994).persist();
NodeG aphReposi t or y<Movi e> novi eRepository = graphRepositoryFactory. creat eNodeEntityRepository(My
// REM NDER, the "null" stands for an optional index nane
Movi e retri evedMovi e = novi eReposi tory. fi ndByPropertyVal ue(null, "id",id);
assert Equal ("retrieved novi e natches persisted one",forrestGunp, retri evedMovie);
assert Equal ("retrieved novie title nmatches","Forrest Gunp",retrievedMovie.getTitle());

Surprisingly, this failed with an exception about not being in a transaction, which means we forgot
to add the @Transactional annotation. That's easy enough to add to the test, and resume the test/code
cycle.

Spring Data Graph (1.0.0.RC1) 11

Chapter 8. Serving a good cause - Repository

That was the first method to add to the brand new cineasts repository. First step was to create an
(still empty) repository interface for Movie (and Actor). We added the repository configuration to our
application context. Then we created a repository for the application, annotated it with @Repository
and @Transactional and injected the movie repository. We did the same for the Actor.

public interface Myvi eRepository extends NodeG aphRepository<Mvie> {
// findByld(String id) - automatic derived finder for a future SDG rel ease
}

<dat agr aph: reposi tori es base- package="or g. neo4j . ci neasts.repository"/>

@Repository @ransacti onal
public class C neastsRepostory {
@\ut owi red Movi eRepository novi eRepository;

public Movie getMvie(int id) {
return novi eRepository. findByPropertyValue(null,"id", id);
}
}

Spring Data Graph (1.0.0.RC1) 12

Chapter 9. A convincing act - Relationships

9.1. Value in Relationships - Creating them

Next were relationships. Direct relationships didn't require any annotation. Unfortunately we had none
of those, because ours had more semantics. So we went for the Role relationship between Movie and
Actor. It had to be annotated with @RelationshipEntity and the @StartNode and @EndNode had to

be marked. So our Role looked like this;

@Rel ati onshi pEntity

class Role {
@t art Node Actor actor;
@ndNode Mbvi e novi e;
String role;

When writing atest for that we tried to create the relationship entity with new, but got an exception
saying that this is not allowed. This must be a strange restriction about having only correctly
constructed RelationshipEntities. To fix it, we had to recall the relateTo method from the introduced
methods on the NodeEntities. After checking it turned out to be exactly what we needed. We then

added the method for connecting movies and actors to the actor - which seems a more natural fit.

class Actor {

public Role playedln(Mvie novie, String rol eName) {
Rol e role = rel ateTo(novi e, Role.class, "ACTS_IN');
rol e. set Rol e(rol eNan®) ;
return role;

1}

9.2. Who's there ? - Accessing related entities

What was left? Accessing those relationships. We already had the appropriate fields in both classes.
Time to annotate them correctly. For the fields providing access to the entities on the each side of the
relationship thiswas straightforward. Providing thetarget type again (thanksto Java'stype erasure) and
the relationship type (Iearned from the Neo4j lesson before) there was only the direction left. Which

defaults to OUTGOING so only for the movie we had to specify it.

@NodeEntity
class Mvie {
@ ndexed
int id;
String title;
int year;

@Rel at edTo(el ement 0 ass = Actor.class, type = "ACTS_IN', direction = Direction. | NCOM NG

Set <Act or > cast ;

}

@NodeEntity

class Actor {
@ ndexed
int id;

Spring Data Graph (1.0.0.RC1)

13

A convincing act - Relationships

String nane;
@Rel at edTo(el ement 0 ass = Movie.class, type = "ACTS_IN')
Set <Movi e> cast;

public Role playedln(Mvie novie, String rol eNanme) {
Role role = rel ateTo(novie, Role.class, "ACTS_IN');
rol e. set Rol e(rol eNane) ;
return role;

While reading about those rel ationshi p-setswe learned that they are handled by managed collections of
Spring Data Graph. So whenever we add something to the set or removeit, it automatically reflectsthat
in the underlying relationships. Neat. But this also meant we mustn't initialize the fields. Something
we will certainly forget not to do in the future, so watch out for it.

We made sure to add atest for those, so are assured that the collections worked as advertised (and also
ran into the intialization problem above).

9.3. May | introduce ? - Accessing Relationships themselves

But we still couldn't access the Role relationships. There was more to read about this. For accessing
the relationship in between the nodes there was a separate annotation @RelatedToVia. And we had to
declare the field as readonly Iterable<Role>. That should make sure that we never tried to add Roles
(which I couldn't create on my own anyway) to this field. Otherwise the annotation attributes were
similar to those used for @RelatedTo. So off we went, creating our first real relationship (just kidding).

@NodeEntity
class Mvie {
@ ndexed
int id;
String title;
int year;
@Rel at edTo(el ement 0 ass = Actor.class, type = "ACTS_IN', direction = Direction.| NCOM NG
Set <Act or > cast;

@Rel at edToVi a(el enent Cl ass = Role.class, type = "ACTS_IN', direction = Direction.| NCOM NG
| t er abl e<Rol es> rol es;

After the tests proved that those relationship fields really mirrored the underlying relationshipsin the
graph and instantly reflected additions and removals we were pretty satisfied with our domain.

Spring Data Graph (1.0.0.RC1) 14

Chapter 10. Curtains Up! - Get it running

10.1. Requisites - Populating the database

Timeto put thison display. But we needed sometest datafirst. Sowewroteasmall classfor populating
the database which could be called from our controller. To make it safe to call several times we added
index lookups to check for existing entries. A simple /populate endpoint for the controller that called
it would be enough for now.

@servi ce
public class Dat abasePopul ator {

@\ut owi red G aphDat abaseCont ext ctx;
@\ut owi red Ci neast sRepository repository;

@r ansacti onal
public List<Myvie> popul at eDat abase() {
Act or tonHanks = new Actor("1", "Tom Hanks").persist();
Movi e forestGunp = new Movie("1", "Forrest Gunp").persist();
t omHanks. pl ayedl n(f orest Gunp, "Forrest");
return aslLi st (forestGunp);
1}

@controll er

public class MyvieController {
privat e Dat abasePopul at or popul at or;

@\ut owi r ed
public MovieController(DatabasePopul ator popul ator) {
t hi s. popul at or = popul at or;

}

@Request Mappi ng(val ue = "/popul ate", nethod = Request Met hod. GET)
public String popul at eDat abase(Model nodel) {

Col | ecti on<Movi e> novi es=popul at or. popul at eDat abase();

nodel . addAt tri but e(" nmovi es", novi es) ;

return "/novies/list";

<%@ page session="fal se" %
<v@taglib uri="http://ww.springfranework.org/tags" prefix="s" %
<v@taglib prefix="c" uri="http://java.sun.conljsp/jstl/core" %

<c: choose>
<c:when test="${not enpty novie}">
<h2>${novie.title}</h2>
<c:if test="${not enpty novie.rol es}">

<c:forEach itens="${novie.roles}" var="rol e">

<c:out value="%${role.actor.nane}" /> as <c:out val ue="${rol

</ c: forEach>
</ ul >
</fc:if>
</ c: when>

Spring Data Graph (1.0.0.RC1) 15

Curtains Up! - Get it running

<c: ot herw se>
No Movie with id ${id} found!
</c: ot herw se>
</ c: choose>

See the misused GET parameter for that (don't do this at home, the REST guys will be upset). Thisis
only for running it from the browser address line. Better use POST and curl for the call. So we called
the URI and it showed the single added movie on screen.

10.2. Behind the scenes - Peeking at the Datastore

10.2.1. Eye candy - Neoclipse visualization

After filling the database we wanted to see what the graph looked like. So we checked out two tools
that are available for inspecting the graph. First Neoclipse, an eclipse RCP application or plugin
that connects to existing graph stores and visualizes their content. After getting an exception about
concurrent access, | learned that | have to use Neoclipse in readonly mode when my webapp had an
active connection to the store. Good to know.

! neoclipse

anon Neoclipse —
le|BYyBD

2 parabase graph = | %1 iy & =|&-[+a0EY "0

{2 Reference Node

|* . SUBREF Javasang.Object 0 Lana Wachowski

i
‘ 112 java Jang.Object 7 Andy Wachowski

T A w @) Keanu Reeves
SUBREF_org.neodj c|ncasts domaig, s p g 3 / / -
suncmss oF SUBCDASS, OF / ?QMan Doran
SUBREF, +u neod cunmsts dofmain.Movie RS)] @cﬂne -Anne Moss
1o AN T ___e—,«—'—ffi -
[} N su ‘E‘CLASS OF - —— EEJU? 0 David Asmn

0 org.neodj.cineasts.domain.User

/

/

| \ / s B
{2 org.neodj.cineasts.domain Movie 70 Belinda McClory ~ ———

\Nsm»fcz oF e) 0 Marc Aden

/ / . ==
2 olliver | | - - -
- @Juhan Arahanga @Jﬂe Pantoliano
FMNQ / -
0 Micha sTance o V-Vﬁ)\iuren(e Fishburne 5 Anthony Ray Parker
_ T2 Marcus Chong
RA
I Properties 2 B B ¥ = O || %® Relationship types 3 ¥ =0
Property Value Relationship type W In % Qut
Node = %
C:) DIRECTED v % |
Properties FRIEND "] |
. . |
description @ Neo is a young software engineer and part-time hacker INSTANCE_OF v] |
genre () Action
RATED v vl
homepage (#) http:f fwhatisthematrix.warnerbros.com/
J
id @ 603 . SUBCLASS_OF vd vl .
imageUr| (#) htp:f jcflimgobject.com/posters/606,/4bc309d0017,]| SUBREF_Jav ‘“""9 Object L ks ny

Traversal depth: 3 Nodes: 24 Relationships: 44

10.2.2. Hardcore "Hacking" - Neo4j Shell

Besides our moviesand actors connected by ACTS _IN relationshipsthere were some other nodes. The
reference node which is an automatically provided "root node" in Neo4j and can be used to anchor
subgraphsfor easier access. And Spring Data Graph also represented the type hierarchy of my entities
in the graph. Obviously for some internal housekeeping and type checking.

Spring Data Graph (1.0.0.RC1) 16

http://restinpractice.com

Curtains Up! - Get it running

For console junkiesthereisaso ashell that can reach into arunning neodj store (if that one was started

with enableRemoteShell) or provide readonly access to a graph store directory.

neodj -shel|l -readonly -path data/graph.db

It uses some shell metaphors like cd and Is to navigate the graph. There are also more advanced

commands like using indexes and traversals. | tried to play around with them in this shell sesson.

neodj -sh[readonly] (0)$ Is
(me) --[SUBREF_j ava. |l ang. Obj ect]-> (3)

(me) --[SUBREF_org. neo4j . ci neasts. donmai n. Movi e]-> (6)
(me) --[SUBREF_org. neo4j . ci neasts. donmai n. Person] -> (8)
(me) --[SUBREF_org. neodj.cineasts. domain. User]-> (2)

neo4j -sh[readonly] (0)$ cd 6

neodj -sh[readonly] (6)$ Is

*cl ass =[org. neodj.cineasts. domai n. Movi e]

*count =[39]

(me) <-[INSTANCE OF]-- (The Matrix Revol utions, 123)
(me) <-[INSTANCE OF]-- (The Matrix Rel oaded, 110)
(me) <-[INSTANCE_OF]-- (The Matrix, 93)

neodj - sh[readonly] (6)$ cd 93
neo4j - sh[readonly] (The Matrix, 93)$ Is

*description =[Neo is a young software engi neer and part-tine hacker who is singled out by sone nyste
*genre =[Acti on]

*honmepage =[http://whatisthematrix.warnerbros. con]

*id =[603]

*i mageUr | =[http://cfl. ingobject.conl posters/606/4bc909d0017a3c57f e003606/the-matri x-m d.j pg]

*i ndbl d =[tt0133093]

*| anguage =[en]

*| ast Modi fied =[1299968642000]
*rel easeDate =[922831200000]

*runtime =[136]

*studio =[Warner Bros. Pictures]

*tagline =[Wel come to the Real World.]

*title =[The Matri x]

*trailer =[http: // ww. yout ube. conf wat ch?v=UVbyepZ21pl]
*version =[324]

(me) <-[ACTS_IN-- (Marc Aden, 109)

(nme) <-[ACTS_IN -- (Keanu Reeves, 96)
(nme) <-[DI RECTED]-- (Andy Wachowski , 95)
(me) <-[DIRECTED]-- (Lana Wachowski , 94)
(me) --[INSTANCE OF] -> (6)

(ne) <-[RATED]-- (Mcha, 1)

Spring Data Graph (1.0.0.RC1)

17

Chapter 11. Showing off - Web views

After we had the means to put some data in the graph database, we also wanted to show it. So adding
the controller method to show a single movie with its attributes and cast in a jsp was straightforward.
Actually just using the repository to look the movie up and add it to the model. Then forward to the

/movies/show view and voil&

@Request Mappi ng(val ue = "/ novi es/ {novi el d}",

public String singleMvieViewfinal Mdel nodel, @PathVariable String novield) {
Movi e novi e = repository. get Movi e(novi el d);
nodel . addAttri bute("id", novield);

if (movie !'= null) {

nodel . addAt tri but e(" novi e",
nodel . addAttri bute("stars",

}

return "/ novi es/ show';

Later the nice Ul would look like that:

3 CINEASTS

TheMovieDb.org
IMDb

Amazon
CineButler

Google Movies

Homepage

novi e) ;
novi e. get Stars());

Login Register

- - f A - -
% ol - % %
L b L b > L
- - g - -
]]]]

Anthony Ray Paul Goddard as Joe Pantoliano asMatt Doranas Julian Arahanga
Parker as Dozer Agent Brown Cypher Mouse as Apoc
r

-

-
- . - ¥
\ 24 A
= !
= ot E
Belinda McClory Marcus Chong asGloria Foster as Carrie-Anne Keanu Reeves as
as Switch Tank Oracle Moss as Trinity Neo
- -—

\ a

- -

v &

-
\ B} \ B}
j"\ 3 = 5

Hugo Weaving asLaurence David Aston as Marc Aden as
Agent Smith Fishburne as Rhineheart Choi
Morpheus

rEEes
S R R R | Micha

11.1. What was his name? - Searching

nmet hod = Request Met hod. GET, headers = "Accept

stext/htm ™)

The next thing was to allow users to search for some movies. So we needed some fulltext-search
capabilities. Asthe index provider implementation of Neo4j builds on lucene we were delighted to see
that fulltext indexes are supported out of the box.

We happily annotated the title field of my Movie class with @Index(fulltext=true) and was told with
an exception that we have to specify a separateindex name for that. So it became @Indexed(fulltext =
true, indexName = "search"). The corresponding graphRepository method is called findAlIByQuery.

Spring Data Graph (1.0.0.RC1)

18

Showing off - Web views

So there was our second repository method for searching movies. To restrict the size of the returned
set we just added a limit for now that truncates the result after so many entries.

public void List<Myvie> findMvies(String query, int count) {
Li st <Mbvi e> novi es=new ArrayLi st <Mbvi e>(count);
for (Mwie novie : novieRepository. findAlByQuery("title", query)) {
novi es. add(novi e) ;
if (count-- == 0) break;
}

return novies;

11.2. Look what we've found - Listing Results

We then used this result in the controller to render alist of movies driven by a search box. The movie
properties and the cast was accessed by the gettersin the domain classes.

@Request Mappi ng(val ue = "/ novi es", nethod = Request Met hod. GET, headers = "Accept=text/htm |)
public String findMovi es(Mddel nodel, @RequestParan{"q") String query) {
Li st <Mbvi e> novi es = repository.findMvies(query, 20);
nodel . addAt tri but e(" novi es", novies);
nodel . addAt tri but e("query", query);
return "/ nmovies/list";

<h2>Movi es</ h2>

<c: choose>
<c:when test="${not enpty novies}">

<dl class="Ilistings">
<c:forEach itenms="${novi es}" var="novie">
<dt >
<c: out value="${novie.title}" />

</ dt>
<dd>
<c:out value="${novie.description}" escapeXm ="true" />
</ dd>
</ c:forEach>
</dl >
</ c: when>

<c: ot herw se>
No novies found for query " ${query}"
</ c: ot herw se>
</ c: choose>

Hereis another teaser, what the final UX would look like for that:

Spring Data Graph (1.0.0.RC1) 19

Showing off - Web views

Micha Logout

-—
-
-

"

3 CINEASTS

%

' e

b3) h b b3
O
The Matrix @ 2 @ @ 4

53

| e i
RE {.nh.ﬂ-:u
i

The Matrix Reloaded

The Matrix Revolutions

Spring Data Graph (1.0.0.RC1) 20

Chapter 12. Movies 2.0 - Adding social

But this was just a plain old movie database (POMD). Our idea of sociaizing this business wasn't

yet redlized.

12.1. Look, mom a Cineast! - Users

So we took the User class that we'd already coded and made it a full fledged Spring Data Graph
member. We added the ability to make friends and to rate movies. With that there was also asimple

UserRepository that was able to look up users by id.

@NodeEntity
class User {
@ ndexed
String |ogin;
String nane;
String password;
@Rel at edTo(el enment O ass=Movi e. cl ass, type="RATED")
Set <Rating> ratings;

@Rel at edTo(el ement d ass=User. cl ass, type="FRI END")
Set <User > fri ends;

public Rating rate(Mwvie novie, int stars, String comment) {
return rel ateTo(novie, Rating.class, "RATED').rate(stars,
}
public void befriend(User user) {
this.friends. add(user);
}

}
@Rel ati onshi pEntity

class Rating {

@5t art Node User user;

@ndNode Movi e novi e;

int stars;

String comment;

public Rating rate(int stars, String coment) {
this.stars=stars; this.coment = coment;
return this;

coment) ;

We extended my DatabasePopul ator to add some users and ratings to the initial setup.

@r ansacti onal

public List<Myvie> popul at eDat abase() {
Act or tonHanks = new Actor("1", "Tom Hanks").persist();
Movi e forestGunp = new Movie("1", "Forrest Gunp").persist();
t omHanks. pl ayedl n(f or est Gunp, "Forrest");

User ne = new User("mcha", "M cha", "password", User.Roles. ROLE_ADM N, User. Rol es. ROLE_ USER) . per si

Rati ng awesone = ne.rate(forestGnp, 5 "Awesone");

User ollie = new User("ollie", "Aliver", "password", User. Rol es. ROLE_USER) . persi st ();

ollie.rate(forestGunp, 2, "ok");
ne. addFri end(ol lie);
return asLi st (forestGunp);

Spring Data Graph (1.0.0.RC1)

21

Movies 2.0 - Adding social

12.2. Beware, Critics - Rating

We also put a ratings field into the movie to be able to show its ratings. And a method to average
its star rating.

class Myvie {
@Rel at edToVi a(el ement Cl ass=Rati ng. cl ass, type="RATED', direction = Direction.| NCOM NG
I terabl e<Rating> ratings;

public int getStars() {
int stars, int count;
for (Rating rating : ratings) {
stars += rating.getStars(); count++;

}

return count == 0 ? 0 : stars / count;

Fortunately our tests highlighted the division by zero error when calculating the stars for a movie
without ratings. Next steps were to add this information to the Ul of movie and create a user profile
page. But for that to happen they must be ableto log in.

Spring Data Graph (1.0.0.RC1) 22

Chapter 13. Protecting Assets - Adding Security

To have a user in the webapp we had to put it in the session and add login and registration pages. Of
course the pages that only worked with avalid user account had to be secured as well.

We used Spring Security for that, writing a simple UserDetailsService that used a repository
for looking up the users and validating their credentials. The config is located in a separate
applicationContext-security.xml. But first, as always, Maven and web.xml setup.

Example 13.1. pom.xml for spring-security

<dependency>
<gr oupl d>or g. spri ngf ramewor k. securi t y</ gr oupl d>
<artifactld>spring-security-web</artifactld>
<ver si on>${spring. ver si on} </ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. spri ngf ramewor k. securi t y</ gr oupl d>
<artifactld>spring-security-config</artifactld>
<versi on>${spri ng. ver si on} </ ver si on>

</ dependency>

Example 13.2. web.xml

<cont ext - par an>
<par am nane>cont ext Conf i gLocat i on</ par am nane>
<par am val ue>
/ VEEB- | NF/ appl i cati oCont ext - security. xm
/ VEB- | NF/ appl i cat i onCont ext . xm
</ par am val ue>
</ cont ext - par an>

<li stener>
<l i st ener-cl ass>org. spri ngf ranewor k. web. cont ext . Cont ext Loader Li st ener</1i st ener-cl ass>
</listener>

<filter>
<filter-name>springSecurityFilterChain</filter-nanme>
<filter-class>org.springframework.web.filter.Del egatingFilterProxy</filter-class>
</filter>

<filter-mppi ng>
<filter-nane>springSecurityFilterChain</filter-nane>
<url-pattern>/*</url-pattern>

</filter-mppi ng>

Spring Data Graph (1.0.0.RC1) 23

Protecting Assets - Adding Security

Example 13.3. applicationContext-security.xml

<security: gl obal - net hod-security secured-annotati ons="enabl ed">
</security: gl obal - met hod-security>

<security:http

<security:i
<security:i

<security:
<security:

<security:i

<security:
<security:

aut o-config="true" access-denied-page="/auth/deni ed"> <!-- use-expressions=true" -->

ntercept-url pattern="/adm n/*" access="ROLE_ADM N'/>
ntercept-url pattern="/inport/*" access="ROLE_ADM N'/ >
ntercept-url pattern="/user/*" access="ROLE _USER'/>

intercept-url pattern="/auth/login" access="1S AUTHENTI CATED_ANONYMOUSLY"/ >

ntercept-url pattern="/auth/register" access="1S AUTHENTI CATED ANONYMOUSLY"/[>

ntercept-url pattern="/**" access="|S_AUTHENTI CATED ANONYMOUSLY"/ >

form | ogin | ogin-page="/auth/logi n" authentication-failure-url="/auth/l ogin?| ogin_error-
defaul t-target-url="/user"/>
<security:logout |ogout-url="/auth/logout" |ogout-success-url="/" invalidate-session="true"/>
</security:http>

<security:authentication-manager >
<security:authentication-provider user-service-ref="userDetail sService">
<security: password- encoder hash="nd5">
<security:salt-source systemw de="cewui quzi e"/>
</ security: password- encoder >
</ security:authentication-provider>
</security:authentication-nmanager>

<bean i d="userDetail sServi ce" class="org. neo4j. novi es. servi ce. C neast sUserDetai | sServi ce"/>

Spring Data Graph (1.0.0.RC1)

24

Protecting Assets - Adding Security

Example 13.4. User DetailsService and User Details implementation

@servi ce

public class CineastsUserDetail sService inplenments UserDetail sService, InitializingBean {

@\t owi red private User Repository userRepository;

@verride

public UserDetails |oadUserByUsernane(String | ogin) throws UsernanmeNot FoundExcepti on,

final User user = findUser(login);

if (user==null) throw new User naneNot FoundExcepti on(" Usernane not found",| ogin);

return new G neastsUserDetail s(user);

public User findUser(String |ogin) {
return userRepository.findByPropertyVal ue(null, "l ogin",!|ogin);

public User getUserFrontession() {
SecurityCont ext context = SecurityContextHol der. get Context();
Aut henti cati on authentication = context.getAuthentication();
oj ect principal = authentication. getPrincipal();
if (principal instanceof G neastsUserDetails) {
CineastsUserDetails userDetails = (Ci neastsUserDetails) principal;
return userDetails.getUser();

}

return null;

}

public class C neastsUserDetails inplenments UserDetails {
private final User user;

public C neastsUserDetail s(User user) {
this.user = user;

}

@verride

public Collection<G antedAuthority> getAuthorities() {
User. Rol es[] roles = user.getRoles();
if (roles ==null) return Collections.enptyList();
return Arrays. <G ant edAut hority>asLi st(roles);

}

@verride
public String getPassword() ({
return user.getPassword();

}

@verride
public String getUsernane() {
return user.getlLogin();

public User getUser() {
return user;

}

Pat aAccessEx

After that a logged in user was available in the session and could so be used for al the socia
interactions. Most of the work done next was adding controller methods and JSPs for the views. We
used the helper method get User FronBessi on() inthe controllersto access the logged in user and put

Spring Data Graph (1.0.0.RC1)

25

Protecting Assets - Adding Security

it in the model for rendering. As a teaser wed like to show off the user profile page, as it will be
rendered after UX heavy lifting.

Micha Logout

-
-
-

\ L

3 CINEASTS

Forrest Gump (1994) - "Inspiring"

The Matrix (1999) - "Best of the series”

Spring Data Graph (1.0.0.RC1) 26

Chapter 14. Oh the Glamour - More Ul

To create anice user experience, we wanted to have anice looking app, not something that looked like
atoddler madeit. So we got some UX people involved and the results were impressive. This sections
presents some of the remaining screenshots of cineasts.net.

Some of the noteworthy things. As Spring Data Graph does aread-through to the datastore for property
and relationship access we tried to minimize that by using <c: var/ > several times. The app contains
very little javascript / gjax code right now, that will change when it moves ahead.

-

\ X}

! CINEASTS

H L]
A spring = : springdatagraph

Spring Data Graph (1.0.0.RC1) 27

Oh the Glamour - More Ul

-—
-
-

| L4

3 CINEASTS

) h b b3)
TR eEAes
The Matrix @ @ 9 @ 4

53

| i i
]!‘J'l-“xl.ﬁ':l!
1

The Matrix Reloaded

The Matrix Revolutions

Miche. Logout

Spring Data Graph (1.0.0.RC1)

28

Oh the Glamour - More Ul

TheMovieDb.org
IMDb

Amazon
CineButler

Google Movies

Homepage

-
-
-

-

3 CINEASTS

Login Regster

-
-
-
-

Anthony Ray Paul Goddard as Joe Pantoliano asMatt Doran as Julian Arahanga
Parker as Dozer Agent Brown Cypher Mouse as Apoc
E F

% | &
- 3 \L 54 q ‘
|~}

- -
]

Belinda McClory Marcus Chong asGloria Foster as Carrie-Anne Keanu Reeves as
as Switch Tank Oracle Moss as Trinity Neo

Hugo Weaving asLaur;ence David Aston as Marc Aden as
Agent Smith Fishburne as Rhineheart Chol
Morpheus

Micha

Find maovie

The Matrix as Neo in 1999
The Matrix Revolutions as Neo in 2003
The Matrix Reloaded as Neo in 2003

Spring Data Graph (1.0.0.RC1)

29

Chapter 15. The dusty archives - Importing Data

Then it was time to pull the data from themoviedb.org. Registering there and getting an API key was
simple, using the APl on the command line with curl too. Looking at the JSON returned for movies

and people we decided to enhance our domain model and add some more fields to enrich the Ul.

[{"popul arity":3,
"translated":true, "adult":false, "language":"en",
“original _name":"[Rec]", "name":"[Rec]", "alternative_nane":"[REC]",
"nmovi e_type": "novi e",
"id":8329, "inmdb_id":"tt1038988", "url":"http://ww:.thenovi edb. org/ novi e/ 8329",
"votes":11, "rating":7.2,
"status":"Rel eased",
"tagline":"One Wtness. One Canera",
"“certification":"R',
"overview':"\"REQ\" turns on a young TV reporter and her caneraman who cover the night shi
"keywords":["terror", "lebende |eichen", "obsession", "cancorder", "firemen", "reality tv
"attenpt to escape", "virus", "lodger", "live-reportage", "schwerverletzt"],
"rel eased": "2007- 08- 29",
"runtinme":78,
"budget ": 0,
"revenue": 0,
"homepage": "http://ww. 3l -filmerleih. de/rec",
“trailer":"http://ww.yout ube. con wat ch?v=YQUkX_Xowgl ",
"genres":[{"type":"genre",

“url":"http://thenovi edb. org/ genre/ horror",
"nanme": " Horror",
"id":27}],

"studios":[{"url":"http://ww.thenovi edb. or g/ conpany/ 2270", "nane":"Fil max G oup", "id":22
"l anguages_spoken": [{"code": "es", "name":"Spanish", "native_nane":"Espa\u00f 1ol "}],
"countries":[{"code":"ES", "name":"Spain", "url":"http://ww.thenovi edb. org/country/es"}],
"posters":[{"image":{"type": "poster",

"size":"original", "height":1000, "w dth": 706,

"url":"http://cfl. ingobject.conl posters/3a0/4cc8df 415e73d650240003a0/ rec-original.jpg", "i

"cast":[{"name": " Manuel a Vel asco",

"job":"Actor", "departnment":"Actors",

"character":"Angela Vidal",

"id":34793, "order":0, "cast_id":1,

“url":"http://ww.thenovi edb. or g/ per son/ 34793",

"profile":"http://cfl.ingobject.con profiles/390/4c0157fa017a3c702d001390/ manuel a- vel asco-

{"name":"d \uO0Of 2ria Viguer",

"job":"Costunme Design", "departnent":"Costune \u0026 Make-Up",
"character":"",

"id":54531, "order":0, "cast_id":21,

"url":"http://ww.thenovi edb. or g/ per son/ 54531",
"profile":""}],

"version":150, "last_nodified_at":"2011-02-20 23:16:57"}]

t at the Ic
 vpite", "

70}],

d":"4cc8df 41

hurb. j pg"},

[{"popularity":3,

"name":"d enn Strange", "known_as":[{"name":"George denn Strange"}, {"name":"d en Strange!
{"name":"d en ' Peewee' Strange"}, {"nane":"Peewee Strange"}, {"nane":"'Peewee' Strange"}],
"id":30112,

"bi ography":"",

"known_novi es": 4,

"birthday":"1899-08-16", "birthplace":"Wed, New Mexico, USA",
“url":"http://ww.thenovi edb. or g/ per son/ 30112",

"fil nography":[{"name":"Bud Abbott Lou Costell o Meet Frankenstein",
"id":3073,

"job":"Actor", "departnment":"Actors",

Spring Data Graph (1.0.0.RC1) 30

http://themoviedb.org

The dusty archives - Importing Data

"character":"The Frankenstein Mnster",
"cast _id":23,

"url":"http://ww.thenovi edb. or g/ novi e/ 3073",
"poster":"http://cfl.ingobject.conf posters/4cal 4bc9185d017a3c57f e0094ca/ bud- abbott-I| ou-costell o-neet-f
"adult":fal se, "rel ease":"1948-06- 15"},

o]

"profile":[],

"version":19, "last_nodified_at":"2011-03-07 13:02:35"}]

For the import process we created a separate importer using Jackson (a JSON library) to fetch and
parse the data and then some transactional methods in the MovieDblmportService to actually insert
it as movies, roles and actors. The importer used a simple caching mechanism, to keep downloaded
actor and movie data on the filesystem, so that we didn't have to overload the remote API. In the code
below you can see, that we've changed the actor to a person so that we can also accommodate the other
folks that participate in movie production.

@ ansact i onal
public Movie inmportMvie(String novield) {
Movi e novi e = repository. get Mvi e(novi el d);
if (nmovie == null) { // Not found: Create fresh
novi e = new Movi e(novield, null);

}

Map data = | oadMovi eDat a(novi el d) ;
i f (data.containsKey("not_found")) throw new Runti neException("Data for Myvie "+noviel d+" not four
novi eDbJsonMapper . mapToMvi e(dat a, novi e);
novi e. persist();

rel at ePer sonsToMovi e(novi e, data);

return novie;

}

private void rel at ePer sonsToMovi e(Movi e novi e, Map data) {
Col | ecti on<Map> cast = (Col |l ecti on<Map>) data.get("cast");
for (Map entry : cast) {
String id = entry.get("id");
Rol es job = entry.get("job");
Per son person = inportPerson(id);
switch (job) {
case DI RECTED:
person. di rect ed(novi e) ;
br eak;
case ACTS_I N
person. pl ayedl n(novie, (String) entry.get("character"));
br eak;

}

public void mapToMovi e(Map data, Movie novie) {
novie.setTitle((String) data.get("nane"));
novi e. set Language((String) data.get("language"));
novi e. set Tagl i ne((String) data.get("tagline"));
novi e. set Rel easeDat e(t oDat e(data, "rel eased", "yyyy-Mvdd"));

novi e. set | mageUr | (sel ect | mageUr | ((Li st<Map>) data.get("posters"), "poster", "nmid"));

Spring Data Graph (1.0.0.RC1) 31

The dusty archives - Importing Data

The last part involved adding a protected URI to the MovieController to allow importing ranges of
movies. During testing it became obvious that the calls to themoviedb were alimiting factor. As soon
as the data was stored locally it took only subseconds to create the data in the Neo4j graph database.

Spring Data Graph (1.0.0.RC1) 32

Chapter 16. Movies! Friends! Bargains! -
Recommendations

In the last part of this exercise we wanted to add recommendations to the app. One obvious
recommendation is movies that our friends liked (and their friends too, but with less importance). The
second was recommendations for new friends that also liked the movies that we liked most.

Doing thiskind of ranking algorithmsisreally fun with graph databases. They are applied to the graph
by traversing it in a certain order, collecting information on the go and deciding which paths to follow
and what to include in the results.

Lets say we're only interested in the recommendations of a certain degree of friends.

publ i c Map<Movi e, I nt eger > recommendMovi es(User user, final int ratingDi stance) {
final Dynam cRel ati onshi pType RATED = wi t hNanme(User . RATED) ;
final Map<Long,int[]> ratings=new HashMap<Long, int[]>();
Traversal Description traversal = Traversal . description(). breadthFirst()
.rel ationshi ps(wi thNane(User. FRI END)) . rel ati onshi ps(RATED, OUTGO NG) . eval uat or (new Eval uat or ()

public Eval uation eval uate(Path path) {
final int length = path.length() - 1;
if (length > ratingDi stance) return Eval uati on. EXCLUDE_AND PRUNE; // only as far|as requeste
Rel ationship rating = path.|astRel ati onship();
if (rating !'= null && rating.getType().equal s(RATED)) { // process RATED rel ati onshi ps, not
if (length == 0) return Eval uation. EXCLUDE_AND PRUNE; // ny rated novies
final long nmovield = rating. get EndNode().getld();
int[] stars = ratings.get(novield);
if (stars == null) {
stars = new int[2];
ratings. put (novield, stars);
}
int weight = ratingDistance - length; // aggregate for averaging, inverse to|distance
stars[0] += weight * (Integer) rating.getProperty("stars", 0);
stars[1] += weight;
return Eval uati on. | NCLUDE_AND_PRUNE;
}
return Eval uati on. EXCLUDE_AND_CONTI NUE;
}
B

Map<Movi e, | nt eger > resul t =new HashMap<Movi e, |nteger>();
final Iterabl e<Movi e> novies = novi eRepository.findAl|ByTraversal (user, traversal); // |azy traverse
for (Movie novie : novies) { // assign novie to averaged rating
final int[] stars = ratings. get(novie.getNodeld());
resul t.put (novie, stars[0]/stars[1]);

}

return result;

The UserController just calls this method, adds it's results to the the model and the view renders the
recommendation alongside with your own ratings.

Spring Data Graph (1.0.0.RC1) 33

Part Il. Reference

This is the reference part of the book. It has information about the programming model, APIs, concepts, and
annotations of Spring Data Graph.

Spring Data Graph (1.0.0.RC1) 34

Preface

The Spring Data Graph project applies core Spring concepts to the development of solutions using a
graph style data store. The basic approach is to mark simple POJO entities with Spring Data Graph
annotations. That enables the AspectJ aspects that are contained with the framework to adapt the
instantiation and field access to have them stored and retrieved from the graph store. Entities are
mapped to nodes of the graph, references to other entities are represented by relationships. There are
also special relationship entities that provide access to the properties of graph relationships.

For the devel oper of a Spring Data Graph backed application only the public annotations (Section 19.2,
“Using annotations to define POJO Node Entities’) and the additional, added entity methods
(Section 19.9, “Methods added to entity classes’) are relevant. Basic knowledge of graph stores is
needed to access advanced functionality like traversals. Traversal results can also be mapped to fields
of entities.

Spring Data Graph (1.0.0.RC1) XXXV

Chapter 17. Spring Data

Spring Data is a SpringSource project that aims to provide Spring's convenient programming model
and well known conventions for NoSQL databases. Currently there is support for Graph (e.g. Neo4j),
Key-Vaue (e.g. Redis), Document (e.g. MongoDB) and Relationa (e.g. Oracle) databases. Mark
Pollack, the author of Spring.NET is the project lead for the Spring Data project.

Spring Data Graph (1.0.0.RC1) 36

http://springsource.org/spring-data

Chapter 18. Introduction to Neo4j

18.1. What is a graph database?

A graph database is a storage engine that is specialized in storing and retrieving vast networks of data.
It efficiently stores nodes and relationships and allows high performance traversal of those structures.
With property graphsit is possible to add an arbitrary number of properties to nodes and rel ationships.

Graph databases are well suited to model most kinds of domains. In amost all domains there are
certain things connected to other things. The classes of things are not the most important aspect, rather
that each invidual instance is represented correctly (with al its necessary properties) in the domain
model. In most other modelling approaches the relationships between things are reduced to a single
link without identity and attributes. Graph databases allow to keep the rich relationshiopsthat originate
from the domain equally well represented in the model without resorting to model relationships as
"things". So there is ho impedance mismatch when putting real life domainsinto graph databases.

18.2. About Neo4j

Neodj isagraph database. Itisafully ACID transactional database that stores data structured asgraphs.
A graph consists of nodes, connected by relationships. It isaflexible data structure that allowsfor high
query performance on complex data, while being intuitive for the developer.

Neodj has been in commercial development for 10 years and in production for over 7 years. It is a
mature and robust graph database that:

« hasanintuitive graph-oriented model for data representation. Instead of tables, rows, and columns,
you work with aflexible graph network consisting of nodes, relationships, and properties.

» has a disk-based, native storage manager completely optimized for storing graph structures for
maximum performance and scal ability.

* is scalable. Neodj can handle graphs of several hillion nodes/relationships/properties on a single
machine, but can also be scaled out across multiple machines for high availability.

» has apowerful traversal framework for fast traversalsin the node space.

* can be deployed as a standal one server or an embedded database with avery small footprint (~700k
jar).

« hasasimple and convenient API.

In addition, Neo4j includes the usual database characteristics: ACID transactions, durable persistence,
concurrency control, transaction recovery, high availability and everything else you' d expect from an
enterprise database. Neo4j isreleased under a dua free software/commercial license model.

18.3. GraphDatabaseService

The interface org.neo4j.graphdb.GraphDatabaseService provides access to the storage engine. Its
features include creating and retrieving Nodes and Relationships, managing indexes, via an
IndexManager, database lifecycle callbacks, transation management and more.

Spring Data Graph (1.0.0.RC1) 37

http://neo4j.org/
http://wiki.neo4j.org/content/Getting_Started
http://api.neo4j.org/

Introduction to Neo4j

The EmbeddedGraphDatabaseService is an implementation of GraphDatabaseService that is used to
embed Neodj in aJavaapplication. Thisimplmentation isused so asto provide the highest and tightest
integration. Besides the embedded mode, the Neo4j server provides access to the graph database via
aconvenient REST-API.

18.4. Creating Nodes and Relationships

Using the API of GraphDatabaseService it is easy to create nodes and relate them to each other.
Relationships are named. Both nodes and relationships can have properties. Property values can be
primitive Java types and Strings, byte arrays for binary data, or arrays of other Java primitives or
Strings. Node creation and modification has to happen within a transaction, while reading from the
graph store can be achieved with or without a transaction.

G aphDat abaseServi ce graphDb = new EnbeddedG aphDat abase("hel |l oworld");
Transaction tx = graphDb. begi nTx();
try {

Node firstNode = graphDb. creat eNode();

Node secondNode = graphDb. creat eNode();
firstNode. set Property("nmessage", "Hello, ");
secondNode. set Property("message", "world!");

Rel ati onship rel ati onship = firstNode. createRel ati onshi pTo(secondNode,
Dynami cRel ati onshi pType. of (" KNOAS"));
rel ationshi p. set Property("message", "brave Neo4j ");
t x. success();
} finally {
tx. finish();

}

18.5. Graph traversal

Getting a single node or relationship and examining it is not the main use case of a graph database.
Fast graph traversal and application of graph algorithms are. Neo4j provides meansviaaconcise DSL
to define Traversal Descriptions that can then be applied to a start node and will produce a stream of
nodes and/or relationships as alazy result using an Iterable.

Traversal Description traversal Description = Traversal .description()
.dept hFirst ()
.rel ationshi ps(KNOAS)
.relationships(LIKES, Direction.|NCOM NG)
.prune(Traversal.pruneAfterDepth(5));
for (Path position : traversal Description.traverse(nyStartNode)) {
Systemout.println("Path fromstart node to current position is " + position);

}

18.6. Indexing

The best way for retrieving start nodes for traversals is using Neo4j's index facilities. The
GraphDatabaseService provides access to the IndexManager which in turn retrieves named indexes
for nodes and relationships. Both can be indexed with property names and values. Retrieval is done
by query methods on Index to return an IndexHits iterator.

Spring Data Graph (1.0.0.RC1) 38

http://wiki.neo4j.org/content/Getting_Started_With_Neo4j_Server

Introduction to Neo4j

| ndexManager i ndexManager = graphDb.i ndex();

| ndex<Node> nodel ndex = i ndexManager . f or Nodes("a- node-i ndex");

nodel ndex. add(node, "property", "val ue");

for (Node foundNode = nodel ndex. get ("property", "value")) {
assert node. get Property("property").equal s("val ue");

}

Note: Spring Data Graph provides auto-indexing via the @Indexed annotation, while this still is a
manual process when using the Neo4j API.

Spring Data Graph (1.0.0.RC1) 39

Chapter 19. Programming model for Spring Data
Graph

This chapter covers the fundamentals of the programming model behind Spring Data Graph. It
discusses the AspectJ features used and the annotations provided by Spring Data Graph and how to
use them. Examples for this section are taken from the imdb project of Spring Data Graph examples.

19.1. Overview of the Aspectd support

Behind the scenes Spring Data Graph leverages AspectJ (Chapter 25, AspectJ introduction) aspectsto
modify the behavior of simple POJO entitiesto be able to be backed by agraph store. Each node entity
is backed by a graph node that holds its properties and relationships to other entities. AspectJis used
to intercept field access and to retrieve the information from the backing node (either its properties
or relationships or dynamic traversals starting from the node). For relationship entities the fields are
similarly mapped to properties. There are two specially annotated fields for the start and the end node
of the relationship.

The aspect introduces some interna fields and some public methods (Section 19.9, “Methods added
to entity classes’) to the entities for accessing the backing state via get Persi stent State() and
creating relationships with rel at eTo and retrieving relationship entities via get Rel ati onshi pTo.
It also introduces graphRepository methods like find(Cdass<? extends NodeEntity>,
Traver sal Descri pti on) and equals and hashCode delegation.

Spring Data Graph internally uses an abstraction called EntityState that the field access and
instantiation advices of the aspect delegate to, keeping the aspect code very small and focused to the
pointcuts and delegation code. The Ent i t ySt at e then uses a number of Fi el dAccessor Factori es t0
createaFi el dAccessor instance per field that does the specific handling needed for the concrete field

type.

19.1.1. IDE-Aspectd Support

As Spring Data Graph uses some advanced aspects of Aspect], there might beissueswith IDE reporting
errorswhere there are none. Features that might be reported are: introduction of methodsto interfaces,
declaration of additional interfaces for annotated classes, generified introduced methods.

Eclipse and STS support Aspect] viathe AJDT plugin which can be installed from the update-site:
http://downl oad.eclipse.org/tool s/ajdt/36/update/ (or for the latest devel opment snapshot of the plugin
http://downl oad.eclipse.org/tool §/ajdt/36/dev/update).

The AspectJ support in IntelliJ IDEA lacks some of the features. JetBrains is working to improve the
situation with the upcoming 10.5 release of the IDE (which is currently available as EAP). Building
the project with Aj ¢ worksin the IDE (Options -> Compiler -> Java-Compiler should show Ajc, please
add 512 MB RAM for the compiler to run).

19.2. Using annotations to define POJO Node Entities

Entities are declared using the @wodeEntity annotation. Relationship entities use the
@Rel at i onshi pEnt i ty annotation.

Spring Data Graph (1.0.0.RC1) 40

http://github.com/SpringSource/spring-data-graph-examples
http://www.eclipse.org/aspectj/
http://download.eclipse.org/tools/ajdt/36/update/
http://download.eclipse.org/tools/ajdt/36/dev/update

Programming model for Spring Data Graph

19.2.1. @NodeEntity: The basic building block

The @odeEnt ity annotation is used to declare a POJO entity to be backed by a node in the graph
store. Simple fields on the entity are mapped by default to properties of the node. Object references
to other NodeEntities (whether single or Collection) are mapped via relationships. If the annotation
parameter useShor t Nares S set to false, the properties and rel ationship names used will be prepended
with the class name of the entity.

If the partial parameter is set to true, this entity takes part in a cross-store setting /Chapter 21,
Cross-store persistence with a graph database) where only the specifically annotated parts of the entity
not handled by JPA will be mapped to the graph store.

Entity fields can be annotated with @GraphProperty, @RelatedTo, @RelatedToVia, @Indexed,
@Graphld and @GraphTraversal.

Example 19.1. Simple Node Entity

/'l sinplest exanple

@NodeEntity
public class Myvie {
String title;

}

19.2.2. @GraphProperty: Optional Annotation for Property Fields

It is not necessary to annotate fields as they are persisted by default; all fields that contain primitive
values are persisted directly to the graph. All fields convertible to String using the Spring conversion
services will be stored as a string. (Spring Data Graph adds a custom conversion factory that comes
with converters for Enums and Dates). Transient fields are not persisted. This annotation is mainly
used for cross-store persistence.

19.2.3. @Indexed: Making entities searchable by field value

The @Indexed annotation can be declared on fields that are intended to be indexed by the Neo4j
indexing facilities, triggered by value modification. The resulting index can be used to later retrieve
nodes or relationships that contain a certain property value (for example a name). Often an index is
used to establish the start node for a traversal. Indexes are accessed by a Reposi t ory for a particular
node or relationship entity, created viaabi r ect G aphReposi t or yFact ory.

GraphDatabaseContext exposes the indexes for Nodes and Relationships via the get | ndex method.
Index names default to the domain class name, but can a so be named (i ndexNane attribute)individually
to reflect domain concepts. be named, for instance to keep separate domain concepts in separate
indexes.

Numerical values are indexed as such by default, allowing for range queries. Fulltext indexing is aso
possible by setting the f ul | t ext attribute to true. For details see the indexing section Section 19.4,
“Indexing”.

19.2.4. @GraphTraversal: fields providing direct access to traversal results

The @GraphTraversal annotation leverages the delegation infrastructure used by the Spring Data
Graph aspects. It provides dynamic fieldswhich, when accessed, return an Iterabl e of NodeEntitiesthat
aretheresult of atraversal starting at the current NodeEntity. The TraversalDescription used for thisis

Spring Data Graph (1.0.0.RC1) 41

Programming model for Spring Data Graph

created by a Traversal DescriptionBuilder whose classisreferred to by thet r aver sal Bui | der attribute
of the annotation. The class of the expected NodeEntitiesis provided with theel enent d ass attribute.

Example 19.2. @GraphTraversal in a Node Entity

@\odeEntity

public class Goup {

@& aphTraversal (traversal Bui | der = Peopl eTraver sal Bui | der. cl ass,
el enent Cl ass = Person.cl ass, params = "persons")

private |terabl e<Person> peopl e;

private static class Peopl eTraversal Buil der inplenents Fiel dTraversal Descri pti onBuil der {
@verride
public Traversal Description buil d(NodeBacked start, Field field, String...parans) {
return new Traversal Descri ptionl npl ()
.rel ationshi ps(Dynam cRel ati onshi pType. wi t hName(par ans[0]))
.filter(Traversal.returnAll ButStartNode());

19.3. How to relate Node Entities using Relationships

As relationships are first level citizens in Neodj, associations between Node-Entities are represented
by relationships. In general, relationships are categorized by atype and start and end-nodes (which aso
imply its direction). They can have an arbitrary number of properties. Spring Data Graph has special
support to represent Neo4j relationships as Relationship Entities but thisis not mandatory.

19.3.1. @RelatedTo: Connecting NodeEntities

Every attribute of a Node Entity that refersto one or more Node Entity represents relationshipsand is
handled by the field-aspects to be reflected in the graph.

Those can either be single relationships (1:1) or multiple relationships (1:N). In most cases single
relationships to other node entities don't have to be annotated, as Spring Data Graph can extract
all necessary information from the field using reflection. In the case of multiple relationships, the
el ement O ass parameter of @RelatedTo must be specified because of type erasure. The di recti on
(default OUTGOING) and t ype (inferred from field name) parameters of the annotation are optional.

Single Relationships to other node entities are created when setting the field (deleting previously set
relationships) and deleted when setting it to null.

References to a set of Node Entities are declared as fields with a set <T> type, where T is a concrete
Node-Entity. @RelatedTo is used again to provide information about type-name, elementClass and
direction. Itisnot necessary to initialize the set asit is managed by Spring Data Graph, representing the
relationships from (to) this entity with the given type. Adding and removing from the set is reflected
on the graph.

Spring Data Graph also ensures that there is only one rel ationship of the given type between two given
entities.

Note

By setting direction to BOTH, relationshipsare created in the outgoing direction, but when
the 1:N field isread, it will include relationships in both directions. A cardinality of M:N
IS not necessary because relationships can be navigated in both directions.

Spring Data Graph (1.0.0.RC1) 42

Programming model for Spring Data Graph

Example 19.3. Node Entity with Relationships

@NodeEntity
public class Myvie {
private Actor topActor;

}

@NodeEntity

public class Person {

@Rel at edTo(type = "topActor"”, direction = Direction.| NCOM NG
private Movie wasTopActorln;

}

@NodeEntity

public class Actor {

@Rel at edTo(type = "ACTS_IN', elenentC ass = Mvi e. cl ass)
private Set<Myvie> novi es;

}

Other means of handling relationships aretheintroduced enti t y. get Rel at i onshi pTo(t ar get , t ype)
andentity.rel ateTo(target,type) methodsthat are available on each NodeEntity. Those methods
create and return Neodj relationships. It is possible to remove relationships manually using
entity.renoveRel ati onshi pTo(tar get, t ype) . For creating and accessing rel ationship-entities, their
equivalents are available.

19.3.2. @RelationshipEntity: Rich relationships

To access the full data model of graph relationships, POJOs can aso be
annotated with @RelationshipEntity. Relationship entities can not be instantiated
directly but are rather accessed via node entities, either by @RelatedToVia
fields or by the introduced entity.relateTo(target,relationshipd ass,type) and
entity. get Rel ati onshi pTo(target, rel ati onshi pd ass, type) methods (Section 19.9, “Methods
added to entity classes’).

Relationship entities may contain fields that are mapped to simple properties and two special fields
that are annotated with @t art Node and @ndNode which point to the start and end node entities
respectively. These fields are treated as read only fields.

Example 19.4. Relationship Entity

@Rel ati onshi pEntity
public class Role {
String title;

@5t art Node private Actor actor;
@ndNode private Mvie novie;
}

19.3.3. @RelatedToVia: Connecting Node Entitites via Relationship Entities

To provide easy programmatic access to the richer relationship entities of the data model, a different
annotation @rel at edToVi a can bedeclared onfieldsof | t er abl esof therelationship entity type. These
Iterables then provide read only access to instances of the entity that backs the relationship of this
relationship type. Those instances are initialized with the properties of the relationship and the start
and end node.

Spring Data Graph (1.0.0.RC1) 43

Programming model for Spring Data Graph

Example 19.5. Using Relationship Entities and @RelatedToVia

@NodeEntity

public class Actor {

@Rel atedToVi a(type = "ACTS_IN', el enentC ass = Rol e. cl ass)
private I|terabl e<Rol e> rol es;

public Role playedln(Mvie novie, String title) {
Rol e rol e=rel at eTo(novi e, Rol e. cl ass, "ACTS_|I N');
role.setTitle(title);
return role;

19.4. Indexing

The Neodj graph database can use different index providers for exact lookups and fulltext searches.
Lucene is used as default index provider implementation. There is support for distinct indexes for
nodes and rel ationships which can be configured to be of fulltext or exact types.

19.4.1. Exact and Numeric Index

Using the standard Neo4j API, Nodes and Relationships and their indexed field-value combinations
have to be added manually to the appropriate index. When using Spring Data Graph, this task is
simplified by eased by applying an @ ndexed annotation on entity fields. This will result in updates
to the index on every change.

Numerical fields are indexed numerically so that they are available for range queries. All other fields
areindexed with their string representation.

The @Indexed annotation can also set the index-name to be used the default index nameisthe smple
class name of the entity. So the same field names from different classes don't end up in the sameindex
by default. That would return different domain objects for asingle index query.

Query access to the index happens with the Node- and
Rel ationship-Repostories that are created via an instance of
org. spri ngframewor k. dat a. gr aph. neo4j . reposi tory. Di rect G aphReposi t oryFactory. The

methods f i ndByPr oper t yVval ue and fi ndAl | ByPr oper t yVal ue work on the exact indexes and return
the first or all matches. To do range queries, use fi ndAl | ByRange (please note that currently both
values areinclusive).

@NodeEntity

cl ass Person {
@ ndexed(i ndexNane = "peopl e")
String nane;

/1 autonmatically indexed nunerically
@ ndexed
int age;

}

NodeG aphReposi t or y<Per son> gr aphRepository = graphRepositoryFactory. creat eNodeEntityRepos|tory(Persor

/| exact graphRepository
Person mark = graphRepository. findByProperyVal ue("peopl e", "nane", "mark");

Spring Data Graph (1.0.0.RC1) 44

Programming model for Spring Data Graph

/'l nuneric range queries
for (Person m ddl eAgedDevel oper : graphRepository.findA |ByRange(null, "age", 20, 40)) {
Devel oper devel oper=m ddl eAgedDevel oper . proj ect To(Devel oper. cl ass);

}

19.4.2. Fulltext Indexes

Spring Data Graph aso supports full-text indexes. By default indexed fields are stored in an
exact-lookup index. To have them analyzed and prepared for fulltext search, the @ ndexed annotation
has the boolean f ul I t ext attribute. Please note that fulltext-indexes require a separate index name as
the fulltext-configuration is stored in the index itself.

Access to the fulltext index is provided by the fi ndAl | ByQuer y method of the repositories. Wildcard
like * are allowed. Otherwise the fulltext querying rules of the underlying index provider apply. (In
most cases thiswill be lucene.

@NodeEntity

cl ass Person {
@ ndexed(i ndexName = "person-nane", fulltext=true)
String nang;

}
NodeGr aphReposi t or y<Per son> gr aphRepository = graphRepositoryFactory. creat eNodeEntityRepository(Persor

/'l exact graphRepository
Person mark = graphRepository.findAl | ByQuery("peopl e-search", "nane", "ma*");

Note

Please notethat indexes are currently created on demand, so whenever anindex that doesn't
exist is requested from a query or get operation it is created. This is subject to change
but has currently the implication that those indexes won't be configured as fulltext which
causes subsequent fulltext- updates to those indexesto fail.

19.4.3. Raw Index Access

The raw index for a domain class is also available from G- aphDat abaseCont ext Vvia the get | ndex
method. The second parameter is optional and takes the index-name if it doesn't default to the ssimple
domain class name. It returns the Index implementation that is provided by Neo4j.

@\ut owi red G aphDat abaseCont ext gdc;

/'l exact index
I ndex<Node> per sonl ndex=gdc. get | ndex(Person. cl ass, nul |);
per sonl ndex. add(node, "nane", " Mar k") ;

| ndex<Node> nanedPer sonl ndex=gdc. get | ndex(Per son. cl ass, " peopl ") ;
nanmedPer sonl ndex. get (" nane", "Mark");

// conplex range & sort query
namedPer sonl ndex. query(new QueryCont ext (Numeri cRangeQuery. newi nt Range("age", 20, 40, true, true))
.sort(new Sort(new SortField("age", SortField.INT, false))));

[/ fulltext index
I ndex<Node> per sonFul | t ext | ndex=gdc. get | ndex(Per son. cl ass, " person- nane", true);
nanedPer sonl ndex. quer y(" name", "Ma*");

Spring Data Graph (1.0.0.RC1) 45

Programming model for Spring Data Graph

namedPer sonl ndex. query(" {name: Ma*}");

19.4.4. Indexing in Neo4jTemplate

NeodjTemplate also offersindex support, providing auto-indexing for fields at creation time of nodes
and relationships. Thereisan aut ol ndex method that can also add indexes for aset of fieldsin one go.

For querying the index, the template offers query-methods that take either the exact match parameters
or aquery object / query expression and push the results wrapped uniformly as Paths to the supplied
Pat hvapper to be converted or collected.

19.5. GraphRepositories for basic CRUD and find-operations

The repositories provided by Spring Data Graph build on the composable repository infrastructure
contained in Spring Data Commons. Those repositories allow the interface based composition of the
final repository consisting of provided default implementations for certain interfaces and additional
custom implementations for other methods.

Note

Spring Data Graph provides only the infrastructure and some default repository
implementations so far. In future releases support for finders derived from
method names, named queries and annotated query methods will be added.
(e.g. findByName(name), @Query(name = "find-by-name-query") findByName(name),
@Query(query = "{name:%s}") findByName(name))

Spring Data Graph comes with typed repository implementations that provide methods for
locating node and relationship entities. There are 3 types of basic repository interfaces and
implementations. One CRUD-Repository (CRUDG aphReposi t or y<T>) that provides basic operations,
al ndexQuer yExecut or that delegates to Neo4j's internal indexing subsystem for executing queries.
And last but not least a Tr aver sal Quer yExecut or that handles Neo4J Traversals.

CRUDGr aphReposi tory delegates to the configured TypeRepresentationStrategy (Section 19.8,
“Storing type information in the graph”) for type based queries.

loading an instance via the Neo4j nodeid
T findOne(id)

checks for existence viathe Neo4j nodeid

bool ean exi sts(id)

iterating over al nodes of a node entity type
I terabl e<T> findAl I () (supportedinfutureversions: |t erabl e<T> findAl | (Sort) andPage<T>
findAl | (Pageabl e))

counting the instances of a node entity type

Long count ()

saves the graph entities
T save(T) and I terabl e<T> save(lterabl e<T>)

Spring Data Graph (1.0.0.RC1) 46

http://static.springsource.org/spring-data/data-jpa/docs/1.0.0.M2/reference/html/#repositories.custom-implementations

Programming model for Spring Data Graph

deletes the graph entities
void del ete(T),void; delete(lterable<T>) anddeleteAll ()

I ndexQuer yExecut or works with the indexing subsystem and provides methods to find entities by

indexed properties, ranged queries of combination thereof.

iterating over all indexed instances with a certain property value
I terabl e<T> findAl I ByPropertyVal ue(i ndexNane, keyNane, val ue)

getting a single instance with a certain property value
T findByPropertyVal ue(i ndexNanme, keyNane, val ue)

iterating over al indexed instances within a certain numerical range (inclusive)
I'terabl e<T> findAl | ByRange(i ndexNanme, keyNane, from to)

iterating over al indexed instances matching the given fulltext (or QueryContext query)
I terabl e<T> findAl | ByQuery(i ndexNanme, keyNanme, queryOr QueryContext)

Tr aver sal Quer yExecut or Works with the traversal framework.

iterating over atraversal result

Iterabl e<T> findAl | ByTraversal (startNode, traversal Description)

TheReposi t ory instancesare either created manually viaa DirectGraphRepositoryFactory to be bound
0 aconcrete node or relationship entity class. The Di rect GraphReposi t or yFact ory is configured in

the Spring context and can be injected.

Example 19.6. Using GraphRepositories

NodeG aphReposi t or y<Per son> graphRepository = graphRepositoryFactory. creat eNodeEntityRepos

Person m chael = graphRepository.save(new Person("M chael ", 36));
Per son dave=gr aphReposi tory. fi ndOne(123);

Long nunber O Peopl e = graphRepository. count();

Person mark = graphRepository. findByPropertyVal ue(null,"nane", "mark");

I t er abl e<Person> devs = graphRepository.findAl | ByProperyVal ue(null, "occupation", "devel oper"
It er abl e<Per son> m ddl eAgedPeopl e = graphRepository. findAl | ByRange(null, "age", 20, 40);

I t er abl e<Per son> aTeam = gr aphRepository. findAl | ByQuery(null, "nane","A*");

I t erabl e<Person> davesFri ends = graphRepository.findAllByTraversal (dave,
Traversal . description(). pruneAfterDepth(1)
.relationshi ps(KNOAS) . filter(returnAl | ButStartNode()));

19.5.1. Composing Repositories

tory(Persor

The recommended way of providing repositories is to define a repository-interface per domain class
and have the mechanisms provided by the repository infrastructure automatically detect them and
additional implementation classes and create an injectable repository implementation to be used in

services or other spring beans.

Spring Data Graph (1.0.0.RC1)

47

Programming model for Spring Data Graph

Example 19.7. Composing Repositories

public interface PersonRepository extends NodeG aphRepository<Person>, PersonRepositoryExtension {

}

I/ alternatively select some of the required repositories individually

public interface PersonRepository extends CRUDG aphRepository<Node, Person>, |ndexQueryExecut or<Node, Pe

Traver sal Quer yExecut or <Node, Per son>, PersonReposi t or yExt ensi on {

}

/] provide a custom extension if needed

public interface PersonRepositoryExtension {
It erabl e<Person> findFri ends(Person person);

}

public class PersonRepositorylnpl inplenments PersonRepositoryExtension {
// optionally inject default repository, or use DirectG aphRepositoryFactory
@\ut owi red PersonRepository baseRepository;

public |terabl e<Person> findFriends(Person person) {
return baseRepository.findAllByTraversal (person, friendsTraversal);

/1 configure the repositories, preferably via the datagraph:repositories namespace (graphDx
<dat agr aph: reposi tori es base- package="org. spri ngf ramewor k. dat a. gr aph. neo4j " gr aph- dat abase

/1 have it injected
@\ut owi r ed
Per sonReposi tory personRepository
Person m chael = personRepository.save(new Person("M chael ", 36));
Per son dave=per sonReposi tory. fi ndOne(123);
I t erabl e<Person> devs = personRepository.findAllByProperyVal ue(null, "occupation","dev

It er abl e<Per son> aTeam = graphRepository. findAl | ByQuery(null, "nane","A*");

I t erabl e<Person> friends = personRepository.findFriends(dave);

19.6. Transactions in Spring Data Graph

at abaseCont €
context -ref

el oper");

Neo4j is atransactional datastore which only allows modifications within transaction boundaries and

fullfillsthe ACID properties. Reading from the store is also possible outside of transactions.

Spring Data Graph integrates with transaction managers configured using Spring. The simplest
scenario of just running the graph database uses a SpringTransactionManager provided by the Neo4j
kernel to be used with Spring's JaTransactionManager. Note: The explicit XML configuration given
below is encoded in the Neo4j Conf i gur ati on configuration bean that uses Spring's @Configuration

functioanlity. This simplifies the configuration. An example is shown further below.

<bean i d="transacti onManager" class="org.springfranmework.transaction.jta.JtaTransacti onMan
<property nanme="transacti onManager">
<bean cl ass="org. neo4j . kernel .inpl.transaction. Spri ngTransacti onManager" >
<constructor-arg ref="graphDat abaseServi ce"/>
</ bean>
</ property>
<property nanme="user Transacti on">
<bean cl ass="org. neo4j . kernel .inpl.transaction. User Transacti onl npl ">
<constructor-arg ref="graphDat abaseServi ce"/>
</ bean>
</ property>

ager" >

Spring Data Graph (1.0.0.RC1) 48

Programming model for Spring Data Graph

</ bean>

<t x:annotation-driven node="aspectj" transaction-manager="transacti onManager"/>

For scenarios running multiple transactional resources there are two options. First of al you can
have Neo4j participate in the externally set up transaction manager using the new SpringProvider
by enabling the configuration parameter for your graph database. Either via the spring config or the
configuration file (neodj.properties).

<cont ext:annotation-config />
<cont ext: spring-confi gured/ >

<bean id="transacti onManager" class="org. springframework.transaction.jta.JtaTransacti onManager">
<property name="transacti onManager" >

<bean i d="jotn' class="org.springfranework. dat a. graph. neo4j.transacti on. Jot nfFact oryBean"/>
</ property>
</ bean>

<bean cl ass="org. neodj . ker nel . EnbeddedG aphDat abase" destroy- nmet hod="shut down" >
<constructor-arg value="target/test-db"/>
<const ruct or - ar g>

<map>
<entry key="tx_manager _i npl " val ue="spring-jta"/>
</ map>
</ constructor-arg>
</ bean>

<t x:annot ati on-driven node="aspectj" transacti on-manager="transacti onManager"/>

You can configure a stock XA transaction manager to be used with Neo4j and the other resources
(e.g. Atomikos, JOTM, App-Server-TM). For a bit less secure but fast 1 phase commit best effort,
use the implementation coming with Spring Data Graph (Chai nedTr ansact i onManager). It takesalist
of transaction-managers as constructor params and will handle them in order for transaction start and
commit (or rollback) in the reverse order.

<bean i d="transacti onManager"
cl ass="org. spri ngfranmewor k. dat a. gr aph. neo4j . transacti on. Chai nedTr ansact i onManager " | >
<const ruct or - ar g>
<list>
<bean cl ass="org. spri ngfranmewor k. orm j pa. JpaTransacti onManager" id="j paTransacti onManager" >
<property name="entityManager Factory" ref="entityManagerFactory"/>
</ bean>
<bean
cl ass="org. springframework. transaction.jta.JtaTransacti onManager" >
<property name="transacti onManager" >
<bean cl ass="org. neo4j . kernel .inpl.transaction. Spri ngTransacti onManager" >
<constructor-arg ref="graphDat abaseServi ce" />
</ bean>
</ property>
<property name="user Transaction">
<bean cl ass="org.neodj.kernel.inpl.transaction.UserTransactionl npl">
<constructor-arg ref="graphDat abaseServi ce" />
</ bean>
</ property>
</ bean>
</list>
</ constructor-arg>
</ bean>

Spring Data Graph (1.0.0.RC1) 49

Programming model for Spring Data Graph

19.7. Session handling - attached and detached entities

By default newly created node entities are in a detached state. When per si st () is called on the entity
it is attached to the graph store and its properties and relationships are persisted as well. Changing an
attached entity inside atransaction will write through the changes to the datastore. Whenever an entity
is changed outside of a transaction it will be considered detached. The changed data is stored in the
entity itself and not written back to the datastore.

All entities that are returned by library functions are initially in an attached state. Changing them
outside of atransaction detaches them. For writing the changes back it is necessary to per si st () them

again.

Persisting an entity not only persiststhat singleentity but will traverseitsexisting and new relationships
and persist the cluster of detached entities that it is part of. The borders of this cluster are formed by
attached entities. The persist operation creates its own, implicit transaction. When it is called withina
external transaction it participates otherwise it is an atomic operation.

Please keep in mind that the session handling behaviour is still heavily developed. The defaults and
also other aspects of the behaviour are likely to change in subsequent releases. At the moment thereis
no support for the creation of relationships outside of transactions and also more complex operations
like creating whole subgraphs outside of transactions is not supported.

@\odeEntity
class Person {

String nane;
}

Person p = new Person(). persist();

19.8. Storing type information in the graph

There are several ways to represent the Java type hierarchy of the data model in the graph. In
general, for all node and relationship entities, type information is needed to perform certain repository
operations. Some of thistype information is saved in the graph database.

Implementations of TypeRepr esent ati onStrat egy take care of persisting this information on entity
instance creation. They also provide the repository methods that use this type information to perform
their operations, like findAll and count.

There are three available implementations for node entities to choose from.
* | ndexi ngNodeTypeRepresent ati onStr at egy

Stores entity types in the integrated index. Each entity node gets indexed with its type and any
supertypesthat are also@odeEnt i t y-annotated. The special index used for thisiscalled__types_ .
Additionally, in order to get the type of an entity node, each node has a property __type__ with
the type of that entity.

* SubRef erenceNodeTypeRepresent ati onStrat egy

Stores entity types in a tree in the graph representing the type hierarchy. Each entity has a
INSTANCE_OF relationship to a type node representing that entity's type. The type may or may
not have a SUBCLASS_OF relationship to another type node.

Spring Data Graph (1.0.0.RC1) 50

Programming model for Spring Data Graph

* NoopNodeTypeRepresent ati onStrat egy

Does not store any type information, and does hence not support finding by type, counting by type,
or retrieving the type of any entity.

There are two implementations for relationship entities available, same behavior as the corresponding
ones above:

* | ndexi ngRel ati onshi pTypeRepresent ati onStrat egy
* NoopRel ati onshi pTypeRepresent ati onStr at egy

Spring Data Graph will by default autodetect which are the most suitable strategies for node and
relationship entities. For new data stores, it will always opt for the indexing strategies. If a data store
was created with the oldersubRef er enceNodeTypeRepr esent at i onSt r at egy, then it will continue to
use that strategy for node entities. It will however in that case use the no-op strategy for relationship
entities, which means that the old data stores have no support for searching for relationship entities.
The indexing strategies are recommended for al new users.

19.9. Methods added to entity classes

The node and relationship aspects introduce (vial TD - inter type declaration) several methods to the
entities that make common tasks easier.

persisting the node-entity initially and after changes outside of a transaction, persist participatesin a
transaction or creates its own implict transaction.
nodeEntity. persist()

accessing node and relationship ids
nodeEntity. get Nodel d() and rel ati onshi pEntity.getRel ati onshi pld()

accessing the node or relationship backing the entity
entity. getPersistentState()

equals and hashcode are delegated to the underlying state
entity.equal s() and entity. hashCode()

creating relationships to atarget node entity and returning the relationship-entity instance
nodeEntity.rel ateTo(targetEntity, relationshi pd ass, relationshipType)

retrieving a single relationship-entity
nodeEntity. get Rel ati onshi pTo(targetEnttiy, relationshipC ass, relationshipType)

creating relationships to atarget node entity and returning the relationship
nodeEntity.relateTo(targetEntity, relationshipType)

retrieving a single relationship
nodeEntity. get Rel ati onshi pTo(targetEnttiy, relationshipType)

removing asingle relationship
nodeEntity. renpveRel ati onshi pTo(targetEntity, relationshipType)

remove the node entity, its relationships and index entries

entity.renmove()

Spring Data Graph (1.0.0.RC1) 51

Programming model for Spring Data Graph

projecting to a different target type
entity.projectTo(targetC ass)

traversing, starting at the current node, returns end-nodes of traversal converted to provided type
nodeEntity. findAl | ByTraversal (target Type, traversal Description)

traversing, starting at the current node, returns Enti tyPat h's of the traversal result bound to the
provided start and end-node-entity types
I terabl e<EntityPat h> findAll Pat hsByTraversal (traversal Descri ption)

19.10. Dynamic typing - Projection to unrelated, fitting types

As the underlying data model of a graph database doesn't imply and enforce strict type constraints
like arelational model does, it offers much more flexibility on how to model your domain classes and
which of those to use in different contexts.

For instance an order can be used in these contexts. customer, procurement, logistics, billing,
fulfillment and many more. Each of those contexts requiresits distinct set of attributes and operations.
As Java doesn't support mixins one would put the sum of all of those into the entity class and thereby
making it very big, brittle and hard to understand. Being able to take a basic order and project it to a
different (not related in the inheritance hierarchy or even an interface) order type that is valid in the
current context and only offers the attributes and methods needed here would be very benefitial.

Spring Data Graph offersinitial support for projecting node and relationship entitiesto different target
types. All instances of this projected entity share the same backing node or relationship, so datachanges
are reflected immediately.

This could for instance also be used to handle nodes of atraversal with a unified (simpler) type (e.g.
for reporting or auditing) and only project them to a concrete, more functional target type when the
business logic requiresit.

/1 not related to Person at all

@NodeEntity

cl ass Trainee {
String nane;
@Rel at edTo(el ement d ass=Tr ai ni ng. cl ass);
Set <Tr ai ni ng> trainings;

}

for (Person person : graphRepository.findAl | ByProperyVal ue("occupation", "devel oper")) {
Devel oper devel oper = person. proj ect To(Devel oper. cl ass);
i f (devel oper.isJavaDevel oper()) {
trainl nSpri ngDat a(devel oper. proj ect To(Tr ai nee. cl ass));

}

19.11. Bean Validation - JSR-303

Spring Data Graph supports property based validation support. So, whenever a property is changed, it
is checked against the annotated constraints (.e.g @Min, @Max, @Size, etc). Validation errors throw
a ValidationException. For evaluating the constraints the validation support that comes with Spring
isused. To useit avalidator has to be registered with the GraphDatabaseContext, if there is none, no
validation will be performed (any registered Validator or (Local)ValidatorFactoryBean will be used).

Spring Data Graph (1.0.0.RC1) 52

Programming model for Spring Data Graph

@\odeEntity

class Person {
@i ze(mn = 3, max = 20)
String nane;

@i n(0)
@vbx(100)
int age;

Spring Data Graph (1.0.0.RC1)

53

Chapter 20. Setup required for Spring Data Graph

To use Spring Data Graph in your application, some setup is required. For building the application
the necessary Maven dependencies must be included and for the AspectJ weaving some extensions of
the compile goal are necessary. This chapter also discusses the Spring configuration needed to set up
Spring Data Graph. Examples for this setup can be found in the Spring Data Graph examples.

20.1. Maven Configuration

As stated in the requirements chapter, Spring Data Graph projects are easiest to build with Apache
Maven. The main dependencies are Spring Data Graph itself, Spring Data Commons, some parts of
the Spring Framework and of course the Neo4j graph database.

20.1.1. Repositories

The milestone releases of Spring Data Graph are available from the dedicated milestone repository.
Neo4j releases and milestones are available from Maven Central.

<repository>

<i d>spring- maven-m | est one</i d>

<nanme>Spri ngf ramewor k Maven Repository</ nanme>

<url >http:// maven. spri ngframewor k. org/ m | est one</ url >
</ repository>

20.1.2. Dependencies

The dependency on spri ng- dat a- neo4j should transitively pull in Spring Framework (core, context,
aop, aspects, tx), Aspectj, Neodj and Spring Data Commons. If you already use these (or different
versions of these) in your project, then include those dependencies on your own.

<dependency>
<gr oupl d>or g. spri ngf r amewor k. dat a</ gr oupl d>
<artifactld>spring-data-neodj</artifactld>
<ver si on>1. 0. 0. RC1</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. aspectj </ gr oupl d>
<artifactld>aspectjrt</artifactld>
<versi on>1. 6. 11. RELEASE</ ver si on>
</ dependency>

20.1.3. AspectJ build configuration

As Spring Data Graph uses AspectJ for build time aspect weaving of your entities, it is necessary to
add the aspectj-plugin to the build phases. The plugin has its own dependencies. You aso need to
explicitely specifiy libraries contai ning aspects (spring-aspects and spring-data-neo4;)

<pl ugi n>
<gr oupl d>or g. codehaus. noj o</ gr oupl d>
<artifactld>aspectj-maven-plugin</artifactld>
<ver si on>1. 0</ ver si on>

Spring Data Graph (1.0.0.RC1) 54

http://github.com/SpringSource/spring-data-graph-examples

Setup required for Spring Data Graph

<dependenci es>
<l-- NB: You nust use Maven 2.0.9 or above or these are ignored (see MNG 2972) -->
<dependency>
<gr oupl d>or g. aspectj </ groupl d>
<artifactld>aspectjrt</artifactld>
<version>1. 6. 11. RELEASE</ ver si on>
</ dependency>
<dependency>
<gr oupl d>or g. aspectj </ groupl d>
<artifactld>aspectjtool s</artifactld>
<versi on>1. 6. 11. RELEASE</ ver si on>
</ dependency>
</ dependenci es>
<executions>
<execution>
<goal s>
<goal >conpi | e</ goal >
<goal >t est - conpi | e</ goal >
</ goal s>
</ executi on>
</ executions>
<confi guration>
<out xm >t rue</ out xm >
<aspect Li brari es>
<aspect Li brary>
<gr oupl d>or g. spri ngf r amewor k</ gr oupl d>
<artifactld>spring-aspects</artifactld>
</ aspect Li brary>
<aspect Li brary>
<gr oupl d>or g. spri ngf ramewor k. dat a</ gr oupl d>
<artifactld>spring-datastore-neodj</artifactld>
</ aspect Li brary>
</ aspect Li brari es>
<sour ce>1. 6</ sour ce>
<t arget >1. 6</target >
</ configuration>
</ pl ugi n>

20.2. Setting Up Spring Data Graph - Spring Configuration

The concrete configuration for Spring Data Graph is quite verbose as there is no autowiring involved.
It sets up the following parts.

» GraphDatabaseService for the embedded Neo4j storage engine
« Spring transaction manager, Neodj transaction manager
* aspects and instantiators for node and relationship entities
« EntityState and Fiel dAccessFactories needed for the different field handling
» Conversion services
* Repository support
» TypeRepresentationStrategies
20.2.1. XML-Namespace

To simplify the configuration we provide a xml namespace dat agr aph that allows configuration of
any Spring Data Graph project with a single line of xml code. There are three possible parameters.

Spring Data Graph (1.0.0.RC1) 55

Setup required for Spring Data Graph

20.2.2.

Youcanusest orebi rect ory Or thereferenceto gr aphDat abaseSer vi ce aternatively. For cross-store
configuration just refer to an ent i t yManager Fact ory.

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: cont ext ="http://ww. spri ngframewor k. or g/ schema/ cont ext "
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: dat agr aph="ht t p: / / www. spri ngf ramewor k. or g/ schenw/ dat a/ gr aph"
xsi : schemalLocat i on="
http://ww. spri ngfranework. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
htt p: // ww. spri ngf ranewor k. or g/ schenma/ cont ext
http://ww. spri ngfranework. or g/ schenma/ cont ext/ spri ng- cont ext - 3. 0. xsd
http://ww. spri ngframework. or g/ schena/ dat a/ gr aph
htt p: // ww. spri ngf ranmewor k. or g/ schena/ dat a/ gr aph/ dat agr aph- 1. 0. xsd
">

<cont ext: annot ati on-confi g/ >
<dat agr aph: config storeDirectory="target/config-test"/>

</ beans>

<cont ext : annot ati on- confi g/ >

<bean i d="gr aphDat abaseServi ce" cl ass="org. neodj . ker nel . EnbeddedG aphDat abase"
dest r oy- met hod="shut down" >
<constructor-arg index="0" value="target/config-test" />
</ bean>

<dat agr aph: confi g graphDat abaseSer vi ce="gr aphDat abaseSer vi ce"/>

<cont ext : annot ati on- confi g/ >

<dat agr aph: config storeDirectory="target/config-test"
entityManager Fact ory="ent it yManager Factory"/>

<bean cl ass="org. spri ngframewor k. orm j pa. Local Cont ai ner Enti t yManager Fact or yBean"
i d="entityManager Fact ory" >
<property nanme="dat aSource" ref="dataSource"/>
<property nanme="persistenceXn Locati on" val ue="cl asspat h: META- | NF/ per si st ence. xm "/ >
</ bean>

Java based Configuration

Y ou can aso configure Spring Data Graph using Java based bean metadata.

Note

For those not familiar with how to configure the Spring container using Java based bean
metadata instead of XML based metadata see the high level introduction in the reference
docs here aswell as the detailed documentation here.

To help configure Spring Data Graph using Java based bean metadata the class Neo4j Conf i gurati on
is registerd with the context either explicitly in the XML config or via classpath scanning
for classes that have the @Configuration annotation. The only thing that must be provided in

Spring Data Graph (1.0.0.RC1) 56

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/new-in-3.html#new-java-configuration
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-java-instantiating-container

Setup required for Spring Data Graph

addition is the GraphDat abaseServi ce configured with a datastore directory. The example below
shows using XML to register the Neo4j Confi guration @Configuration class as well as Spring's
Conf i gurati ond assPost Processor that transforms the @Configuration class to bean definitions.

<beans>
<t x: annot ati on-driven node="aspectj" transaction-nmanager="transacti onManager"/>
<bean cl ass="org. spri ngfranmewor k. dat a. gr aph. neo4j . confi g. Neo4j Confi gurati on"/>
<bean cl ass="org. spri ngfranmewor k. cont ext . annot ati on. Conf i gur ati onCl assPost Processor"/ >
<bean i d="gr aphDat abaseServi ce" cl ass="org. neo4j . kernel . EnheddedG aphDat abase"
dest r oy- met hod="shut down" scope="si ngl et on" >
<constructor-arg index="0" value="target/config-test"/>

</ bean>

</ beans>

Spring Data Graph (1.0.0.RC1) 57

Chapter 21. Cross-store persistence with a graph
database

The Spring Data Graph project support cross-store persistence which alows parts of the data mode
to be stored in atraditional JPA datastore (RDBMS) and other parts of the data model (even partia
entites, that is some properties or relationships) in agraph store.

This allows existing JPA-based applications to embrace NOSQL data stores to evolve certain parts
of their model. Possible use cases are adding social network or geospatial information to existing
applications.

21.1. Partial graph persistence

Partial graph persistence is achieved by restricting the Spring Data Graph aspects to explicitly
annotated parts of the entity. Those fields will be made transient by the aspect so that JPA ignores
them and won't try to persist those attributes.

A backing node in the graph store is only created when the entity has been assigned a JPA id. Only
then will the connection between the two stores be kept. Until the entity has been persisted, its stateis
just kept inside the POJO (detached state) and flushed to the backing graph store afterwards.

The connection between the two entities is kept via a FOREIGN_ID field in the node that contains
the JPA id (currently only single value ids are supported). The entity class can be resolved via the
TypeRepresentationStrategy that manages the Java type hierarchy within the graph. With the id and
class, you can then retrieve the appropriate JPA entity for a given node.

The other direction is handled by indexing the Node with the FOREIGN_ID index which contains
a concatenation of the fully qualified class name of the JPA entity and the id. So it is possible on
instantiation of aJPA id viathe entity manager (or some other meanslike creating the POJO and setting
itsid manually) to find the matching node using the index facilities and reconnect them.

Using those mechanisms and the Spring Data Graph aspects a single POJO can contain fields that are
handled by JPA and other fields (which might be relationships as well) that are handled by Spring
Data Graph.

21.1.1. @NodeEntity(partial = "true")

When annotating an entity with partial true, Spring Data Graph assumesthat thisis across-store entity.
So its only responsibility is for the fields annotated with Spring Data Graph annotations. JPA should
not take care of these fields (they should be annotated with @Transient). In this mode of operation
Spring Data Graph also handles the cross-store connection viathe content of the JPA id field.

21.1.2. @GraphProperty

For common fields containing primitive or convertible values that wouldn't have to be annotated in
exclusive Spring Data Graph operations this explicit declaration is necessary to be sure that they are
intended to be stored in the graph. These fields should then be made transient so that JPA doesn't try
to take care of them as well.

The following example is taken from the Spring Data Graph examples, it is contained in the
myrestaurant-social project.

Spring Data Graph (1.0.0.RC1) 58

http://github.com/SpringSource/spring-data-graph-examples

Cross-store persistence with a graph database

@ntity

@abl e(name = "user _account")

@NodeEntity(partial = true)

public class UserAccount {
private String userNane;
private String firstNang;
private String | astNane;

@ aphProperty
String ni cknane;

@Rel atedTo(type = "friends", elenentC ass = UserAccount. cl ass)
Set <User Account > fri ends;

@Rel at edToVi a(type = "reconmends”, el enentC ass = Recommendati on. cl ass)

| t er abl e<Recommendat i on> r ecommendat i ons;

@enpor al (Tenpor al Type. TI MESTAVP)
@at eTi neFor mat (style = "S-")
private Date birthDate;

@manyToMany(cascade = CascadeType. ALL)
private Set<Restaurant> favorites;

@d
@zener at edVal ue(strategy = Generati onType. AUTO)
@ol um(nanme = "id")
private Long id;

@r ansacti onal
public void knows(UserAccount friend) {
rel ateTo(friend, "friends");

}

@ransact i onal

public Recommendation rate(Restaurant restaurant, int stars, String coment) {
Reconmendat i on reconmendati on = rel ateTo(restaurant, Recommendati on. cl ass,

recommendation.rate(stars, comment);
return recommendati on;

}
public I|terabl e<Reconmendati on> get Reconmendati ons() {
return recomendati ons;

}

21.2. Configuring cross-store persistence

"reconmends") ;

Configuring cross-store persistence is done similarly to the default Spring Data Graph operations.
As soon as you refer to an ent i t yManager Fact ory in the xml-namespace it is set up for cross-store

persistence.

<beans xm ns="http://ww. springframewor k. or g/ schena/ beans"
xm ns: cont ext ="http://wwm. spri ngframewor k. or g/ schema/ cont ext "
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xm ns: dat agr aph="ht t p: / / www. spri ngf ramewor k. or g/ schenwa/ dat a/ gr aph"
xsi : schemaLocati on="
http://ww. spri ngframework. or g/ schema/ beans
http://ww. spri ngfranmework. or g/ schenma/ beans/ spri ng- beans- 3. 0. xsd
http://ww. spri ngfranmework. or g/ schema/ cont ext
http://ww. springframework. or g/ schema/ cont ext/ spri ng- cont ext - 3. 0. xsd
http://ww. spri ngframework. or g/ schena/ dat a/ gr aph

Spring Data Graph (1.0.0.RC1)

59

Cross-store persistence with a graph database

http://ww. spri ngframework. or g/ schenma/ dat a/ gr aph/ dat agr aph- 1. 0. xsd
"

<cont ext : annot ati on- confi g/ >

<dat agr aph: config storeDirectory="target/config-test"
entityManager Fact ory="entityManager Fact ory"/>

<bean cl ass="org. spri ngframewor k. orm j pa. Local Cont ai ner Enti t yManager Fact or yBean"
id="entityManager Factory" >
<property name="dat aSource" ref="dataSource"/>

<property name="persistenceXnl Location" val ue="cl asspat h: META- | NF/ per si stence. xm "

</ bean>
</ beans>

Spring Data Graph (1.0.0.RC1)

60

Chapter 22. Samples

22.1. Introduction

Spring Data Graph comes with a number of samples. The source code of the samples is found on
GitHub. The different sample projects are introduced below.

22.2. Hello Worlds sample

The Hello Worlds sample application is a simple console application with unit tests, that creates some
Worlds (entities / nodes) and Rocket Routes (relationships) in a Galaxy (graph) and then reads them
back and prints them out.

Theunit testsdemonstrate some other features of Spring Data Graph. The sample comeswithaminimal
configuration for Maven and Spring to get up and running quickly.

Executing the application creates the following graph in the Graph Database:

w class: java.lang.Object

 moons: 1 count: 13
name: Earth M cUBCL FSS_{::
REACHABLE/ BY_ROCKET w class: org.springframework.data.neo4j.examples.hellograph.world
count: 13
coons2 | INSTANEETOF 4
® name: Mars !
moons: 0 moons: 62
® name: Mercury ® name: Hel
—— E_OF NSTANCE_OF
: moons: 63
® name: Venus INSTANCE, A CE_'H?TM CE_OF ® name: Asgard

Y
o moons: 2

7 MOONS: 63
name: Muspellheim

name: Jupiter

o moons: 62
name: Saturn

7 moons: 0
name: AlFheimr

moons: 27

name: Uranus 7 Moons: 13
name: Neptune

#p MOONS: 1
name: Midgard

22.3. IMDB sample

A web application that imports datasets from the Internet Movie Database (IMDB) into the graph
database. It allows listings of movies with their actors and actors with their roles in different movies.
It also uses graph traversal operations to calculate the Kevin Bacon number (distance to an actor that
has acted with Kevin Bacon). This sample application shows the basic usage of Spring Data Graph in
a more complex setting with several annotated entities and relationships as well as usage of indices
and graph traversal.

See the readme file for instruction on how to compile and run the application.

An excerpt of the data stored in the Graph Database after executing the application:

Spring Data Graph (1.0.0.RC1) 61

http://github.com/SpringSource/spring-data-graph-examples

Samples

&b Lawrence, Harry (1) | Ball, J I
& d all, Jeremy (1)

&b Witt, Eleanor & Johnson, F||:|na & Tien, Natalie

a McClory, Belinda ~C
a Butcher, Michael (1) A o e \\ dAden Marc /
utcher, Michael _AcTs o

a Harbach, Nigel ___:__._'____*

a Aston, David (1)

) & Dodd, Steve
@Matnx The (1999) .._V_H___ & Pender, Janaya

&a Brown, Tamara /
4 Nicodemou, Ada ﬂ Chong, MBVCUS INSTANCE_OF

& Goddard, Paul (1)

d Gordon, Dennl -
d Arahanga Julian @ org.neodj.examples.imdb.domain.Movie

22.4. MyRestaurant sample

Simple, JPA based web application for managing users and restaurants, with the ability to add
restaurants as favorites to a user.

M MyRestaurants

a SpringOne Demo

= e T e
Log out Subway 53073 Plymouth) &
Boston Mar 20877 Gaithersbu MD &) v
List all Restaurants Subway Sub 88008 Santa Tere NM @ @
e Arby's Roa 97603 Klamath Fa OR) i
Bellefleur 92008 Carlsbad CA i) il
Huddle Hou 30701 Calhoun GA @ @
John Brown 46235 Indianapol IN @ ﬁ
Ling's Exp 53217 Milwaukee Wi @ @
Chubys's 87044 Cdell OR @ @
Bojangles 29203 Columbia sC) il

List results per page: 5 10 1520 25 | Page 10f5 p

Home | Logout | Language: gj= | Theme: standard | alt Sponsored by SpringSource

22.5. MyRestaurant-Social sample

An extended version of the MyRestaurant sampl e application that adds social networking functionality
toit. It is possible to have friends and to add rated relationships to restaurants. The relationships and
some of the properties of the entities are transparently stored in the graph database. There is aso a
graph traversal that provides a recommendation based on your friends (and their friends) rating of
restaurants.

An excerpt of the data stored in the Graph Database after executing the application:

Spring Data Graph (1.0.0.RC1) 62

Samples

MYRQS‘MUI’&H{S + NOW WITH SOCIAL NETWORKING

Sprﬁlg

a SpringOne Demo

USER ACCOUNT w List all Top Rated Restaurants

Log out
Name " Recommendations _____|Avg.Rating |
RESTAURANT et -
Subway 2 35 i)
List all Restaurants
Manage favorite Restaurants

RECOMMENDATION Home | Logout | Language: EjZ | Theme: standard | alt Sponsared by SpringSource §
List my Recommendations
Create a new Friend
List my Friends
List Top Rated Restaurants
/51 Reference Node — —SuUBREFjavafarmgOtEt > Bavaiang Object

SUBREF_com.springone.myrastaurants.domain.Restaurant s

SUBREF_com SUBCLASS_OF

T .
|ngone.m\.rre‘sta.u@nts_domam.UserAccount

.

INSTANCE_OF

Spring Data Graph (1.0.0.RC1)

63

Chapter 23. Performance considerations

Although adding another layer of abstractionisawaysthe solutiontolook for in software devel opment,
each of those layers adds overhead and performance penalties. This chapter discusses the performance
implications of using Spring Data Graph on top of the native Neo4j API.

23.1. When to use SDG?

The focus of Spring Data Graph is to add a convenience layer on top of the native Neo4j API. This
should enable developers to get up and running with the graph database very quickly, having their
domain objects mapped to the graph. Building on this foundation one can later explore other, more
efficient waysto explore and process the graph - if the performance requirements demand it.

Like any other object mapping framework, the domain entities that are created, read or persisted
represent only a small fraction of the data stored in the database. This is the set needed for a certain
use-case to be displayed, edited or processed in a low throughput fashion. The main advantages of
using an object mapper in this case isthe ease of use of real domain objectsin your businesslogic and
also with existing frameworks and libraries that expect Java POJOs as input or create them as results.

Spring Data Graph was not designed with a major performance focus. It adds some overhead to pure
graph operations. Something to keep in mind is, that the access of properties and relationshipsisaread
trough in the attached case. So to avoid multiple read-throughsit is sensibleto store theresultin alocal
variable at the scope of use (method, class or jsp for example).

Most of the overhead comes from the use of the Java Reflection API, which is leveraged to provide
information about Annotations, Fields and Constructors. Some of the information is already cached
by the JVM and the library, so that only the first access gets a performance penalty.

Spring Data Graph (1.0.0.RC1) 64

Chapter 24. Neo4jTemplate

The Neo4j Tenpl at e offersthe convenient API of Spring templates for the Neo4j graph database. It is
initialized with a G- aphDat abaseSer vi ce Which is thread-safe to use.

24.1. Basic operations

For direct retrieval of nodes and relationships the get Ref er enceNode, get Node and get Rel ati onshi p
can be used.

There are methods (cr eat eNode and cr eat eRel at i onshi p) for creating nodes and relationships that
automatically set provided properties and optionally index certain fields.

Neo4j Oper ati ons neo = new Neo4j Tenpl at e(gr apDat abase) ;

Node mi chael = neo. createNode(_("nane", "M chael "));

Node mark = neo. creat eNode(_("nane", "Mark"));

Node t homas = neo. cr eat eNode(_("nane", " Thomas"));

neo. cr eat eRel ati onshi p(mark, t homas, WORKS WTH, _("project","spring-data"));

neo. i ndex("devs", t homas, "nane","Thomas");

assert "Mark".equal s(neo. query("devs", "nanme", "Mark", new NodeNanePat hivapper()));

24.2. Indexing

Adding nodes and relationships to an index is achieved using the i ndex method.

Quer y methods either take afield / value combination to look for exact matchesin theindex or alucene
query object or string to handle more complex queries. All query methods provide Pat h results to a
PathM apper.

24.3. Traversal

Traversal methods are at the core of graph operations. As such, they are fully supported in the
Neo4j Tenpl at e. Thet raver seNext method traversesto the direct neighbours of the start nodefiltering
the relationships according to its parameters.

Thet r aver se method coversthefull traversal operation that takesapowerful Tr aver sal Descri pti on
(most probably built from the Tr aver sal . descri pti on() DSL) and runsit from the start node. Each
path that is returned viathe traversal is passed to the Pat hMapper to be processed accordingly.

24.4. Path abstraction and PathMapper

For the querying operations Neo4j Template unifies the result with the pat h abstraction that comes
from Neodj. Much like a resultset a path contains nodes() and rel ationshi ps() starting at a
start Node() and ending with aendNode() , thel ast Rel ati onshi p() isalso available separately. The
Pat h abstraction also wraps results that contain just nodes or relationships.

Using implementations of Pat hMapper <T> and Pat hMapper. Wt hout Resul t (comparable with
Rowivapper and RowCal | backHandl er) the paths can be converted to arbitrary Java objects.

Spring Data Graph (1.0.0.RC1) 65

NeodjTemplate

With Enti tyPat h and Entit yMapper thereis also support for using annotation based NodeEntities
within the Pat h and Pat hMapper constructs.

24.5. Transaction handling/management

TheNeo4j Tenpl at e providesconfigurableimplicit transactionsfor al itsmethods. By default it creates
atransaction for each call (which is ano-op if there is already a transaction running). If you call the
constructor with the useExpl i ci t Transact i ons parameter set to true, it won't create any transactions
S0 you have to provide them using @Transactional or the TransactionTemplate.

Spring Data Graph (1.0.0.RC1) 66

Chapter 25. Aspectd introduction

The object graph mapper of Spring Data Graph relies heavily on Aspect]. Aspectd is the Java
implementation of the Aspect Oriented Programming paradigm that allows easy extraction and
controlled application of so called cross cutting concerns. Cross cutting concerns are repetitive tasksin
asystem (e.g. logging, security, auditing, caching, transaction scoping) that are difficult to extract using
the normal OO paradigms. The means of the OO paradigm, of subclassing, polymorphism, overriding
and delegation are still very cumbersome to use with many of those concerns applied in the codebase.
Also the flexibility is limited or would add quite a number of configuration options or parameters.

The learning curve for the AspectJ pointcut language is quite slow but the devel oper who uses Spring
Data Graph will not be confronted with that. Users do not have care about to hooking into aframework
mechanism or having to extend a framework superclass.

That's why AspectJ uses a declarative approach, defining concrete advice, which is just the piece
of code that contains the implementation of the concern. AspectJ advice can for instance be applied
before, after, or instead of a method or constructor cal, or variable access. This is declared using
AspectJs expressive pointcut language that is able to express any place within a code structure or
flow. AspectJis also able to introduce new methods, fields, annotations, interfaces, and superclasses
to existing classes.

Spring Data Graph uses both mechanisms internally. First, when encountering @odeEntity or
@rel at i onshi pEnti ty annotationsit introduces anew interface NodeBacked Or Rel at i onshi pBacked,
depending on the annotation type. Secondly, it introduces fields and methods to the annotated class.
See Section 19.9, “Methods added to entity classes” for more information on the methods introduced.

Spring Data Graph also leverages AspectJto intercept accessto fields, del egating the callsto the graph
database instead. Under the hood, properties and relationships will be created.

So how is an aspect applied to a concrete class? This can be either done at compile time with the
Aspect] Java compiler (gjc) that takes sourcefiles and aspect definitions, and then compilesthe source
fileswhile adding all the necessary interception code for the aspects to hook in where they're declared
to. Thisis known as compile-time weaving. At runtime only a small AspectJ runtime is needed, as
the bytecode of the classes has already been rewritten to delegate appropriate calls via the declared
advice in the aspects.

Note

A caveat of using compile-time weaving isthat all source files that should be part of the
weaving process must be compiled with the AspectJ compiler. Fortunately, thisisall taken
care of seamlessly by the Aspectd Maven plugin.

Aspect] also supports other types of weaving, for example load-time weaving and runtime weaving.
These are currently not supported by Spring Data Graph.

Spring Data Graph (1.0.0.RC1) 67

https://secure.wikimedia.org/wikipedia/en/wiki/Aspect-oriented_programming

Chapter 26. Neo4j Server

Neo4j is not only available in embedded mode, it can also be installed and run as a server that is
accessed viaa REST API. Spring Data Graph provides two-fold integration for infrastructure.

26.1. Server Extension

What isthe use-case for writing server extensions? The REST APl isa pretty generic representation of
the Neodj core API. Itisnicefor getting started and simple scenarios. For moreinvolved solutions that
require high speed and high volume access to the embedded graph database, writing a server extension
that is able to process external parameters and return just the relevant information to the calling client
is preferrable.

The Neodj server has two built in extension mechanisms. It is possible to add extensions to existing
endpoints like the graph database, nodes or relationships - add new URIs or methods to those. This
is achieved by writing Server Plugins.

For complete freedom in your implementation an unmanaged extension might be the right solution.
Unmanaged extensions are Jersey resource implementations. The resources constructors or methods
can get the & aphDat abaseSer vi ce injected to execute the necessary operations and return appropriate
Representations.

Both kinds of extensions have to be packaged as a jar and added to the Neodj-Server's
plugin directory. Server Plugins are picked up at server startup when they provide the
necessary META-| NF. servi ces/ or g. neo4j . server. pl ugi ns. Server Pl ugi n file for Javas service
loader mechanism. Unmanaged extensions have to be registered with the Neo4dj Server configuration.

org.neodj .server.thirdparty_jaxrs_cl asses=com exanpl e. nypackage=/ my- cont ext

Running Spring Data Graph on the server is easy. Y ou need to tell the server where to find the Spring
Context file, and which beans from it to expose, using what type:

public class HelloWwrldlinitializer extends SpringPluginlnitializer {
public HelloWrldlnitializer() {
super (new String[]{"spring/hell oWrldServer-Context.xm"},
Pai r. of ("wor| dReposi tory", Worl dRepository.cl ass),
Pai r . of (" graphReposi t oryFactory", G aphRepositoryFactory.class));

Now, your resources can be annotated with the beans they need, like this:

@at h("/path")

@QosT

@°r oduces(Medi aType. APPLI CATI ON_JSON)

public void foo(@ontext WrldRepository repo) {

}

The spri ngPl ugi nini tializer merges the graph database service with the spring configuration and
registers the named beans as jersey Injectables. It is still necessary to list the initiaizer fully qualified

Spring Data Graph (1.0.0.RC1) 68

http://docs.neo4j.org/chunked/milestone/server-plugins.html
http://docs.neo4j.org/chunked/milestone/server-unmanaged-extensions.html
http://jersey.java.net/

Neo4j Server

class name in a file named META-INF/services/org.neodj.server.plugins.PluginLifecycle. Then the
Neodj Server can pick up and run the initialization classes before the the extensions are loaded.

26.2. Using Spring Data Graph as a REST-Client

Spring Data Graph can use the Java Rest Bindings which come as a drop in replacement
for the GraphDatabaseService API. Just by configuring the graphDat abaseService t0o be a
Rest Gr aphDat abaseSer vi ce pointing to the correct URL, a Neo4j-REST server can be used.

Note

The Neodj REST API does not allow keeping transactions open, which means that SDG
is not transactional when running against REST.

To set up your project to use the REST bindings, add this dependency to your pom.xml:

Example 26.1. REST-Client configuration - pom.xml

<dependency>
<groupl d>or g. spri ngf ramewor k. dat a</ gr oupl d>
<artifactld>spring-data-neodj-rest</artifactld>
<versi on>1. 0. 0. RC1</ ver si on>

</ dependency>

Now, you set up the normal SDG configuration, but point the database to an URL instead of a local
file, likethis:

Example 26.2. REST-Client configuration - application context

<dat agr aph: confi g graphDat abaseSer vi ce="gr aphDat abaseServi ce"/ >

<bean i d="gr aphDat abaseServi ce" cl ass="org.neodj.rest.graphdb. Rest G aphDat abase" >
<constructor-arg value="http://|ocal host: 7474/ db/ data/"/ >
</ bean>

Y our project isnow set up to work against aremote Neodj Server.

Spring Data Graph (1.0.0.RC1) 69

	Good Relationships
	Table of Contents
	Preface
	1. Foreword: Rod Johnson, CEO of SpringSource
	2. Foreword: Emil Eifrem, CEO of Neo Technology
	3. About this Guide Book

	Part I. Tutorial
	Chapter 1. Allow me to introduce - Cineasts.net
	Chapter 2. Scope: Spring
	2.1. Preparations - Required Setup

	Chapter 3. Setting the Stage - Movies Domain
	Chapter 4. Graphs ahead - Learning Neo4j
	Chapter 5. Conjuring Magic - Spring Data Graph
	Chapter 6. Decorations - Annotated Domain
	Chapter 7. Do I know you? - Indexing
	Chapter 8. Serving a good cause - Repository
	Chapter 9. A convincing act - Relationships
	9.1. Value in Relationships - Creating them
	9.2. Who's there ? - Accessing related entities
	9.3. May I introduce ? - Accessing Relationships themselves

	Chapter 10. Curtains Up! - Get it running
	10.1. Requisites - Populating the database
	10.2. Behind the scenes - Peeking at the Datastore
	10.2.1. Eye candy - Neoclipse visualization
	10.2.2. Hardcore "Hacking" - Neo4j Shell

	Chapter 11. Showing off - Web views
	11.1. What was his name? - Searching
	11.2. Look what we've found - Listing Results

	Chapter 12. Movies 2.0 - Adding social
	12.1. Look, mom a Cineast! - Users
	12.2. Beware, Critics - Rating

	Chapter 13. Protecting Assets - Adding Security
	Chapter 14. Oh the Glamour - More UI
	Chapter 15. The dusty archives - Importing Data
	Chapter 16. Movies! Friends! Bargains! - Recommendations

	Part II. Reference
	Preface
	Chapter 17. Spring Data
	Chapter 18. Introduction to Neo4j
	18.1. What is a graph database?
	18.2. About Neo4j
	18.3. GraphDatabaseService
	18.4. Creating Nodes and Relationships
	18.5. Graph traversal
	18.6. Indexing

	Chapter 19. Programming model for Spring Data Graph
	19.1. Overview of the AspectJ support
	19.1.1. IDE-AspectJ Support

	19.2. Using annotations to define POJO Node Entities
	19.2.1. @NodeEntity: The basic building block
	19.2.2. @GraphProperty: Optional Annotation for Property Fields
	19.2.3. @Indexed: Making entities searchable by field value
	19.2.4. @GraphTraversal: fields providing direct access to traversal results

	19.3. How to relate Node Entities using Relationships
	19.3.1. @RelatedTo: Connecting NodeEntities
	19.3.2. @RelationshipEntity: Rich relationships
	19.3.3. @RelatedToVia: Connecting Node Entitites via Relationship Entities

	19.4. Indexing
	19.4.1. Exact and Numeric Index
	19.4.2. Fulltext Indexes
	19.4.3. Raw Index Access
	19.4.4. Indexing in Neo4jTemplate

	19.5. GraphRepositories for basic CRUD and find-operations
	19.5.1. Composing Repositories

	19.6. Transactions in Spring Data Graph
	19.7. Session handling - attached and detached entities
	19.8. Storing type information in the graph
	19.9. Methods added to entity classes
	19.10. Dynamic typing - Projection to unrelated, fitting types
	19.11. Bean Validation - JSR-303

	Chapter 20. Setup required for Spring Data Graph
	20.1. Maven Configuration
	20.1.1. Repositories
	20.1.2. Dependencies
	20.1.3. AspectJ build configuration

	20.2. Setting Up Spring Data Graph - Spring Configuration
	20.2.1. XML-Namespace
	20.2.2. Java based Configuration

	Chapter 21. Cross-store persistence with a graph database
	21.1. Partial graph persistence
	21.1.1. @NodeEntity(partial = "true")
	21.1.2. @GraphProperty

	21.2. Configuring cross-store persistence

	Chapter 22. Samples
	22.1. Introduction
	22.2. Hello Worlds sample
	22.3. IMDB sample
	22.4. MyRestaurant sample
	22.5. MyRestaurant-Social sample

	Chapter 23. Performance considerations
	23.1. When to use SDG?

	Chapter 24. Neo4jTemplate
	24.1. Basic operations
	24.2. Indexing
	24.3. Traversal
	24.4. Path abstraction and PathMapper
	24.5. Transaction handling/management

	Chapter 25. AspectJ introduction
	Chapter 26. Neo4j Server
	26.1. Server Extension
	26.2. Using Spring Data Graph as a REST-Client

