
Good Relationships

The Spring Data Graph Guide Book

1.0.0.RELEASE

Copyright © 2010 - 2011 Michael Hunger, David Montag, Mark Pollack, Thomas Risberg

Copies of this document may be made for your own use and for distribution to others,
provided that you do not charge any fee for such copies and further provided that

each copy contains this Copyright Notice, whether distributed in print or electronically.

ii

Spring Data Graph

(1.0.0.RELEASE)

Foreword by Rod Johnson .. v

Foreword by Emil Eifrem .. vi

About this guide book .. vii

I. Tutorial .. 1

1. Introducing our project ... 2

2. The Spring stack .. 3

2.1. Required setup .. 3

3. The domain model ... 5

4. Learning Neo4j .. 7

5. Spring Data Graph ... 8

6. Annotating the domain ... 11

7. Indexing .. 12

8. Repositories ... 13

9. Relationships .. 14

9.1. Creating relationships .. 14

9.2. Accessing related entities ... 14

9.3. Accessing the relationship entities .. 15

10. Get it running .. 16

10.1. Populating the database .. 16

10.2. Inspecting the datastore .. 17

10.2.1. Neoclipse visualization .. 17

10.2.2. The Neo4j Shell .. 18

11. Web views ... 20

11.1. Searching .. 20

11.2. Listing results .. 21

12. Adding social ... 23

12.1. Users ... 23

12.2. Ratings for movies ... 24

13. Adding Security ... 25

14. More UI ... 29

15. Importing Data ... 32

16. Recommendations ... 35

II. Reference .. 36

Preface ... xxxvii

17. About Spring Data ... 38

18. Introduction to Neo4j ... 39

18.1. What is a graph database? .. 39

18.2. About Neo4j .. 39

18.3. GraphDatabaseService .. 39

18.4. Creating nodes and relationships ... 40

18.5. Graph traversal .. 40

18.6. Indexing .. 40

19. Programming model ... 42

19.1. AspectJ support ... 42

19.1.1. AspectJ IDE support ... 42

19.2. Defining node entities .. 42

19.2.1. @NodeEntity: The basic building block .. 43

19.2.2. @GraphProperty: Optional annotation for property fields 43

19.2.3. @Indexed: Making entities searchable by field value 43

Good Relationships

iii

Spring Data Graph

(1.0.0.RELEASE)

19.2.4. @GraphTraversal: fields as traversal result views 43

19.3. Relating node entities ... 44

19.3.1. @RelatedTo: Connecting node entities ... 44

19.3.2. @RelationshipEntity: Rich relationships ... 45

19.3.3. @RelatedToVia: Accessing relationship entities 46

19.4. Indexing .. 46

19.4.1. Exact and numeric index ... 46

19.4.2. Fulltext indexes ... 47

19.4.3. Manual index access ... 48

19.4.4. Indexing in Neo4jTemplate .. 48

19.5. CRUD with repositories ... 48

19.5.1. CRUDRepository .. 48

19.5.2. IndexRepository and NamedIndexRepository .. 49

19.5.3. TraversalRepository ... 49

19.5.4. Creating repositories .. 49

19.5.5. Composing repositories ... 50

19.6. Transactions .. 51

19.7. Detached node entities ... 53

19.7.1. Relating detached entities .. 54

19.8. Entity type representation ... 55

19.9. Introduced methods .. 55

19.10. Projecting entities .. 56

19.11. Bean validation (JSR-303) .. 57

20. Environment setup .. 58

20.1. Maven configuration .. 58

20.1.1. Repositories .. 58

20.1.2. Dependencies .. 58

20.1.3. AspectJ build configuration ... 58

20.2. Spring configuration .. 59

20.2.1. XML namespace ... 59

20.2.2. Java-based bean configuration .. 60

21. Cross-store persistence .. 62

21.1. Partial entities .. 62

21.2. Cross-store annotations .. 62

21.2.1. @NodeEntity(partial = "true") .. 62

21.2.2. @GraphProperty ... 62

21.3. Configuring cross-store persistence ... 63

22. Sample code ... 65

22.1. Introduction ... 65

22.2. Hello Worlds sample application .. 65

22.3. IMDB sample application ... 65

22.4. MyRestaurants sample application .. 66

22.5. MyRestaurant-Social sample application ... 66

23. Performance considerations ... 68

23.1. When is Spring Data Graph right .. 68

24. Neo4jTemplate ... 69

24.1. Basic operations .. 69

24.2. Indexing .. 69

24.3. Graph traversal .. 69

Good Relationships

iv

Spring Data Graph

(1.0.0.RELEASE)

24.4. Path abstraction and PathMapper .. 69

24.5. Transactions .. 70

25. AspectJ details ... 71

26. Neo4j Server .. 72

26.1. Server Extension .. 72

26.2. Using Spring Data Graph as a REST client ... 73

v

Spring Data Graph

(1.0.0.RELEASE)

Foreword by Rod Johnson
I’m excited about Spring Data Graph for several reasons.

First, this project is in a very important space. We are in an era of transition. A very few years

ago, a relational database was a given for storing nearly all the data in nearly all applications. While

relational databases remain important, new application requirements and massive data proliferation

have prompted a richer choice of data stores. Graph databases have some very interesting strengths,

and Neo4j is proving itself valuable in many applications. It's a choice you should add to your toolbox.

Second, Spring Data Graph is an innovative project, which makes it easy to work with one of the most

interesting new data stores. Unfortunately, the proliferation of new data stores has not been matched

by innovation in programming models to work with them. Ironically, just after modern ORM mapping

made working with relational data in Java relatively easy, the data store disruption occurred, and

developers were back to square one: struggling once more with clumsy, low level APIs. Working with

most non-relational technologies is overly complex and imposes too much work on developers. Spring

Data Graph makes working with Neo4j amazingly easy, and therefore has the potential to make you

more successful as a developer. Its use of AspectJ to eliminate persistence code from your domain

model is truly innovative, and on the cutting edge of today’s Java technologies.

Third, I'm excited about Spring Data Graph for personal reasons. I no longer get to write code as often

as I would like. My initial convictions that Spring and AspectJ could both make building applications

with Neo4j dramatically easier and cross-store object navigation possible gave me an excuse for a

much-needed coding binge early in 2010. This led to a prototype of what became Spring Data Graph —

at times written paired with Emil. I’m sure the vast majority of my code has long since been replaced

(probably for the better) by coders who aren't rusty — thanks Michael and Thomas! — but I retain

my pleasant memories.

Finally, Spring Data Graph is part of the broader Spring Data project: one of the key areas in which

Spring is innovating to help meet new application requirements. I encourage you to explore Spring

Data, and — better still — become involved in the community and contribute.

Enjoy the Spring Data Graph book, and happy coding!

Rod Johnson, Founder, Spring and SVP, Application Platform, VMware

vi

Spring Data Graph

(1.0.0.RELEASE)

Foreword by Emil Eifrem
"Spring is the most popular middleware on the planet," I thought to myself as I walked up to Rod

Johnson in late 2009 at the JAOO conference in Aarhus, Denmark. Rod had just given an introductory

presentation about Spring Roo and when he was done I told him "Great talk. You're clearly building

a stack for the future. What about support for non-relational databases?"

We started talking and quickly agreed that NOSQL will play an important role in emerging stacks.

Now, a year and half later, Spring Data Graph is available in its first stable release and I'm blown away

by the result. Never before in any environment, in any programming framework, in any stack, has it

been so easy and intuitive to tap into the power of a graph database like Neo4j. It's a testament to the

efforts by an awesome team of four hackers from Neo Technology and VMware: Michael Hunger,

David Montag, Thomas Risberg and Mark Pollack.

The Spring framework revolutionized how we all wrote enterprise Java applications and today it's

used by millions of enterprise developers. Graph databases also stand out in the NOSQL crowd when

it comes to enterprise adoption. You can find graph databases used in areas as diverse as network

management, fraud detection, cloud management, anything with social data, geo and location services,

master data management, bioinformatics, configuration databases, and much more.

Spring developers deserve access to the best tools available to solve their problem. Sometimes that's

a relational database accessed through JPA. But more often than not, a graph database like Neo4j is

the perfect fit for your project. I hope that Spring Data Graph will give you access to the power and

flexibility of graph databases while retaining the familiar productivity and convenience of the Spring

framework.

Enjoy the Spring Data Graph guide book and welcome to the wonderful world of graph databases!

Emil Eifrem, CEO of Neo Technology

vii

Spring Data Graph

(1.0.0.RELEASE)

About this guide book
Welcome to the Spring Data Graph Guide Book. Thank you for taking the time to get an in depth look

into Spring Data Graph. This project is part of the Spring Data project, which brings the convenient

programming model of the Spring Framework to modern NOSQL databases. Spring Data Graph, as

the name alludes to, aims to provide support for graph databases. It currently supports Neo4j.

It was written by developers for developers. Hopefully we've created a document that is well received

by our peers.

If you have any feedback on Spring Data Graph or this book, please provide it via the SpringSource

JIRA, the SpringSource NOSQL Forum, github comments or issues, or the Neo4j mailing list.

This book is presented as a duplex book, a term coined by Martin Fowler. A duplex book consists of

at least two parts. The first part is an easily accessible tutorial that gives the reader an overview of the

topics contained in the book. It contains lots of examples and discussion topics. This part of the book

is highly suited for cover-to-cover reading.

We chose a tutorial describing the creation of a web application that allows movie enthusiasts to find

their favorite movies, rate them, connect with fellow movie geeks, and enjoy social features such as

recommendations. The application is running on Neo4j using Spring Data Graph and the well-known

Spring Web Stack.

The second part of the book is the classic reference documentation, containing detailed information

about the library. It discusses the programming model, the underlying assumptions, and internals, as

well as the APIs for the object-graph mapping. The reference documentation is typically used to look

up concrete bits of information, or to drill down into certain topics. For hackers wanting to really delve

into Spring Data Graph, it can of course also be read cover-to-cover.

Enjoy the book!

https://github.com/SpringSource/spring-data-graph
http://springsource.org/spring-data
http://neo4j.org
https://jira.springsource.org/browse/DATAGRAPH
https://jira.springsource.org/browse/DATAGRAPH
http://forum.springsource.org/forumdisplay.php?f=80
https://github.com/SpringSource/spring-data-graph/issues
http://neo4j.org/community/list/
http://martinfowler.com/bliki/DuplexBook.html

1

Spring Data Graph

(1.0.0.RELEASE)

Part I. Tutorial
The first part of the book provides a tutorial that walks through the creation of a complete web application called

cineasts.net, built with Spring Data Graph and Neo4j. Cineasts are people who love movies, and the site is a

gathering place for these people. For cineasts.net we decided to add a social aspect to the rating of movies, allowing

friends to share their scores and get recommendations for new friends and movies.

The tutorial takes the reader through the steps necessary to create the application. It provides the configuration

and code examples that are needed to understand what's happening in Spring Data Graph. The complete source

code for the app is available on Github.

http://github.com/jexp/cineasts

2

Spring Data Graph

(1.0.0.RELEASE)

Chapter 1. Introducing our project

Allow me to introduce Cineasts.net

Once upon a time we wanted to build a social movie database. At first there was only the name:

Cineasts, the cinema enthusiasts who have a burning passion for movies. So we went ahead and bought

the domain cineasts.net, and the project was almost done.

We had some ideas about the domain model too. There would obviously be actors playing roles in

movies. We also needed someone to rate the movies - enter the cineast. And cineasts being the social

people they are, they wanted to make friends with other fellow cineasts. Imagine instantly finding

someone to watch a movie with, or share movie preferences with. Even better, finding new friends and

movies based on what you and your friends like.

When we looked for possible sources of data, IMDB was our first stop. But they're a bit expensive for

our taste, charging $15k USD for data access. Fortunately, we found TheMoviedb.org which provides

user-generated data for free. They also have liberal terms and conditions, and a nice API for retrieving

the data.

We had many more ideas, but we wanted to get something out there quickly. Here is how we envisioned

the final website:

http://cineasts.net
http://themoviedb.org

3

Spring Data Graph

(1.0.0.RELEASE)

Chapter 2. The Spring stack

Being Spring developers, we naturally choose components from the Spring stack to do all the heavy

lifting. After all, we have the concept etched out, so we're already halfway there.

What database would fit both the complex network of cineasts, movies, actors, roles, ratings, and

friends, while also being able to support the recommendation algorithms that we had in mind? We

had no idea.

But hold your horses, there is this new Spring Data project, started in 2010, which brings the

convenience of the Spring programming model to NOSQL databases. That should be in line with what

we already know, providing us with a quick start. We had a look at the list of projects supporting the

different NOSQL databases out there. Only one of them mentioned the kind of social network we were

thinking of - Spring Data Graph for Neo4j, a graph database. Neo4j's slogan of "value in relationships"

and the accompanying docs looked like what we needed. We decided to give it a try.

2.1. Required setup

To set up the project we created a public github account and began setting up the infrastructure for

a spring web project using Maven as the build system. So we added the dependencies for the Spring

Framework libraries, added the web.xml for the DispatcherServlet, and the applicationContext.xml in

the webapp directory.

Example 2.1. Project pom.xml

<properties>

 <spring.version>3.0.5.RELEASE</spring.version>

</properties>

<dependencies>

<dependency>

 <groupId>org.springframework</groupId>

 <!-- abbreviated for all the dependencies -->

 <artifactId>spring-(core,context,aop,aspects,tx,webmvc)</artifactId>

 <version>${spring.version}</version>

</dependency>

<dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-test</artifactId>

 <version>${spring.version}</version>

 <scope>test</scope>

</dependency>

</dependencies>

<build><plugins>

 <plugin>

 <groupId>org.mortbay.jetty</groupId>

 <artifactId>jetty-maven-plugin</artifactId>

 <version>7.1.2.v20100523</version>

 <configuration>

 <webAppConfig>

 <contextPath>/</contextPath>

 </webAppConfig>

 </configuration>

 </plugin>

</plugins></build>

The Spring stack

4

Spring Data Graph

(1.0.0.RELEASE)

Example 2.2. Project web.xml

<listener>

 <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>

</listener>

<servlet>

 <servlet-name>dispatcherServlet</servlet-name>

 <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>

 <load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

 <servlet-name>dispatcherServlet</servlet-name>

 <url-pattern>/</url-pattern>

</servlet-mapping>

With this setup in place we were ready for the first spike: creating a simple MovieController showing

a static view. See the Spring Framework documentation for information on doing this.

Example 2.3. Project applicationContext.xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:context="http://www.springframework.org/schema/context"

 xmlns:tx="http://www.springframework.org/schema/tx"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

 http://www.springframework.org/schema/tx

 http://www.springframework.org/schema/tx/spring-tx-3.0.xsd

 http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-context-3.0.xsd">

 <context:annotation-config/>

 <context:spring-configured/>

 <context:component-scan base-package="org.neo4j.cineasts">

 <context:exclude-filter type="annotation" expression="org.springframework.stereotype.Controller"/>

 </context:component-scan>

 <tx:annotation-driven mode="aspectj"/>

</beans>

Example 2.4. Project dispatcherServlet-servlet.xml

<mvc:annotation-driven/>

<mvc:resources mapping="/images/**" location="/images/"/>

<mvc:resources mapping="/resources/**" location="/resources/"/>

<context:component-scan base-package="org.neo4j.cineasts.controller"/>

<bean id="viewResolver" class="org.springframework.web.servlet.view.InternalResourceViewResolver" p:prefix="/WEB-INF/views/" p:suffix=".jsp"/>

<tx:annotation-driven mode="aspectj"/>

We spun up Jetty by doing mvn jetty:run to see if there were any obvious issues with the config.

It all seemed to work just fine.

5

Spring Data Graph

(1.0.0.RELEASE)

Chapter 3. The domain model

Setting the stage

We wanted to outline the domain model before diving into library details. We also looked at the data

model of the TheMoviedb.org data to confirm that it matched our expectations.

In Java code this looks pretty straightforward:

The domain model

6

Spring Data Graph

(1.0.0.RELEASE)

Example 3.1. Domain model

class Movie {

 int id;

 String title;

 int year;

 Set<Role> cast;

}

class Actor {

 int id;

 String name;

 Set<Movie> filmography;

 Role playedIn(Movie movie, String role) { ... }

}

class Role {

 Movie movie;

 Actor actor;

 String role;

}

class User {

 String login;

 String name;

 String password;

 Set<Rating> ratings;

 Set<User> friends;

 Rating rate(Movie movie, int stars, String comment) { ... }

 void befriend(User user) { ... }

}

class Rating {

 User user;

 Movie movie;

 int stars;

 String comment;

}

Then we wrote some tests to show how the basic plumbing works.

7

Spring Data Graph

(1.0.0.RELEASE)

Chapter 4. Learning Neo4j

Graphs ahead

Now we needed to figure out how to store our chosen domain model in the chosen database. First we

read up about graph databases, in particular our chosen one, Neo4j. The Neo4j data model consists of

nodes and relationships, both of which can have key/value-style properties. Relationships are first-class

citizens in Neo4j, meaning we can link together nodes into semantically rich networks. This really

appealed to us. Then we found that we were also able to index nodes and relationships by {key, value}

pairs. We also found that we could traverse relationships both imperatively using the core API, and

declaratively using a query-like Traversal Description.

We also learned that Neo4j is fully transactional and therefore upholds ACID guarantees for our data.

This is unusual for NOSQL databases, but easier for us to get our head around than non-transactional

eventual consistency. It also made us feel safe, though it also meant that we had to manage transactions.

Something to keep in mind for later.

We started out by doing some prototyping with the Neo4j core API to get a feeling for that. And also

to see, what the domain might look like when it's saved in the graph database. After adding the Maven

dependency for Neo4j, we were ready to go.

Example 4.1. Neo4j Maven dependency

<dependency>

 <groupId>org.neo4j</groupId>

 <artifactId>neo4j</artifactId>

 <version>1.3.M05</version>

</dependency>

Example 4.2. Neo4j core API (transaction code omitted)

enum RelationshipTypes implements RelationshipType { ACTS_IN };

GraphDatabaseService gds = new EmbeddedGraphDatabase("/path/to/store");

Node forrest=gds.createNode();

forrest.setProperty("title","Forrest Gump");

forrest.setProperty("year",1994);

gds.index().forNodes("movies").add(forrest,"id",1);

Node tom=gds.createNode();

tom.setProperty("Tom Hanks");

Relationship role=tom.createRelationshipTo(forrest,ACTS_IN);

role.setProperty("role","Forrest Gump");

Node movie=gds.index().forNodes("movies").get("id",1).getSingle();

print(movie.getProperty("title"));

for (Relationship role : movie.getRelationships(ACTS_IN,INCOMING)) {

 Node actor=role.getOtherNode(movie);

 print(actor.getProperty("name") +" as " + role.getProperty("role"));

}

http://neo4j.org
http://docs.neo4j.org/chunked/snapshot/indexing.html
http://wiki.neo4j.org/content/Traversal_Framework

8

Spring Data Graph

(1.0.0.RELEASE)

Chapter 5. Spring Data Graph

Conjuring magic

So far it had all been pure Spring Framework and Neo4j. However, using the Neo4j code in our

domain classes polluted them with graph database details. For this application, we wanted to keep the

domain classes clean. Spring Data Graph promised to do the heavy lifting for us, so we continued with

investigating it.

Spring Data Graph depends heavily on AspectJ weaving. Some parts of our classes would get new

behavior, but it would not be visible in our code. The upside of this is that you get rid of a lot of

boilerplate code.

The first step was to configure Maven:

Spring Data Graph

9

Spring Data Graph

(1.0.0.RELEASE)

Example 5.1. Spring Data Graph Maven configuration

<properties>

 <aspectj.version>1.6.11.RELEASE</aspectj.version>

</properties>

<dependency>

 <groupId>org.springframework.data</groupId>

 <artifactId>spring-data-neo4j</artifactId>

 <version>1.0.0.RELEASE</version>

</dependency>

<dependency>

 <groupId>org.aspectj</groupId>

 <artifactId>aspectjrt</artifactId>

 <version>${aspectj.version}</version>

</dependency>

<build> <plugins> <plugin>

 <groupId>org.codehaus.mojo</groupId>

 <artifactId>aspectj-maven-plugin</artifactId>

 <version>1.2</version>

 <dependencies>

 <dependency>

 <groupId>org.aspectj</groupId>

 <artifactId>aspectjrt</artifactId>

 <version>${aspectj.version}</version>

 </dependency>

 <dependency>

 <groupId>org.aspectj</groupId>

 <artifactId>aspectjtools</artifactId>

 <version>${aspectj.version}</version>

 </dependency>

 </dependencies>

 <executions>

 <execution>

 <goals>

 <goal>compile</goal>

 <goal>test-compile</goal>

 </goals>

 </execution>

 </executions>

 <configuration>

 <outxml>true</outxml>

 <aspectLibraries>

 <aspectLibrary>

 <groupId>org.springframework</groupId>

 <artifactId>spring-aspects</artifactId>

 </aspectLibrary>

 <aspectLibrary>

 <groupId>org.springframework.data</groupId>

 <artifactId>spring-data-neo4j</artifactId>

 </aspectLibrary>

 </aspectLibraries>

 <source>1.6</source>

 <target>1.6</target>

 </configuration>

</plugin> </plugins> </build>

The Spring context configuration was much easier, thanks to a provided namespace:

Spring Data Graph

10

Spring Data Graph

(1.0.0.RELEASE)

Example 5.2. Spring Data Graph context configuration

<beans xmlns="http://www.springframework.org/schema/beans" ...

 xmlns:datagraph="http://www.springframework.org/schema/data/graph"

 xsi:schemaLocation="... http://www.springframework.org/schema/data/graph

 http://www.springframework.org/schema/data/graph/datagraph-1.0.xsd">

 ...

 <datagraph:config storeDirectory="data/graph.db"/>

 ...

</beans>

11

Spring Data Graph

(1.0.0.RELEASE)

Chapter 6. Annotating the domain

Decorations

Looking at the Spring Data Graph documentation, we found a simple Hello World example and tried to

understand it. The entity classes were annotated with @NodeEntity. That was simple, so we added the

annotation to our domain classes too. Entity classes representing relationships were instead annotated

with @RelationshipEntity. Property fields were taken care of automatically.

It was time to put our entities to a test. How could we now be assured that a attribute really was

persisted to the graph store? We wanted to load the entity and check the attribute. Either we could have

a GraphDatabaseContext injected and use its getById(entityId) method to load the entity. Or use a

more versatile Repository. We decided to keep things simple for now. Looking at the documentation

revealed that there are a bunch of methods introduced to the entities by the aspects to support working

with the entities. That's not entirely obvious. We found two that would do the job: entity.persist()

entity.getNodeId().

So here's what our test ended up looking like:

Example 6.1. First test case

@Autowired GraphDatabaseContext graphDatabaseContext;

@Test public void persistedMovieShouldBeRetrievableFromGraphDb() {

 Movie forrestGump = new Movie("Forrest Gump", 1994).persist();

 Movie retrievedMovie = graphDatabaseContext.getById(forrestGump.getNodeId());

 assertEqual("retrieved movie matches persisted one", forrestGump, retrievedMovie);

 assertEqual("retrieved movie title matches", "Forrest Gump", retrievedMovie.getTitle());

}

It worked! But hold on, what about transactions? After all, we had not declared the test to be

transactional. After some further reading we learned that calling persist() outside of a transaction

automatically creates an implicit transaction. Very much like an EntityManager would behave. We also

learned that when performing more complex operations on the entities we'd need external transactions,

but not for this simple test.

Our domain model had now evolved.

Example 6.2. Movie class

@NodeEntity

class Movie {

 int id;

 String title;

 int year;

 Set<Role> cast;

}

http://github.com/SpringSource/spring-data-graph-examples/tree/master/hello-worlds

12

Spring Data Graph

(1.0.0.RELEASE)

Chapter 7. Indexing

Do I know you?

There is an @Indexed annotation for fields. We wanted to try this out, and use it to guide the next test.

We added @Indexed to the ID field of the Movie class. This field is intended to represent the external

ID that will be used in URIs and will be stable across database imports and updates. This time we went

with the default GraphRepository (previously Finder) to retrieve the indexed movie.

Example 7.1. Exact Indexing for Movie id

@NodeEntity class Movie {

 @Indexed int id;

 String title;

 int year;

}

@Autowired DirectGraphRepositoryFactory graphRepositoryFactory;

@Test public void persistedMovieShouldBeRetrievableFromGraphDb() {

 int id = 1;

 Movie forrestGump = new Movie(id, "Forrest Gump", 1994).persist();

 GraphRepository<Movie> movieRepository = graphRepositoryFactory.createGraphRepository(Movie.class);

 Movie retrievedMovie = movieRepository.findByPropertyValue("id", id);

 assertEqual("retrieved movie matches persisted one", forrestGump, retrievedMovie);

 assertEqual("retrieved movie title matches", "Forrest Gump", retrievedMovie.getTitle());

}

13

Spring Data Graph

(1.0.0.RELEASE)

Chapter 8. Repositories

Serving a good cause

We wanted to add repositories with domain-specific operations. We started by creating a

movie-specific repository, simply by creating an empty interface. It is more convenient to work with

a named interface rather than different versions of a generic one.

Example 8.1. Movie repository

package org.neo4j.cineasts.repository;

public interface MovieRepository extends GraphRepository<Movie> {}

Then we added it to the Spring context configuration by simply adding:

Example 8.2. Repository context configuration

<datagraph:repositories base-package="org.neo4j.cineasts.repository"/>

We then created the domain-specific repository class, annotating it with @Repository and

@Transactional, and injected the movie repository.

Example 8.3. Domain-specific repository

@Repository @Transactional

public class CineastsRepostory {

 @Autowired MovieRepository movieRepository;

 public Movie getMovie(int id) {

 return movieRepository.findByPropertyValue("id", id);

 }

}

We did the same for the actors and users.

14

Spring Data Graph

(1.0.0.RELEASE)

Chapter 9. Relationships

A convincing act

Our application was not yet very much fun, just storing movies and actors. After all, the power is in the

relationships between them. Fortunately Neo4j treats relationships as first class citizens allowing them

to be addressed individually and assigned properties. That allows for representing them as entities if

needed.

9.1. Creating relationships

Relationships without properties ("anonymous" relationships) don't require any @RelationshipEntity

classes. Unfortunately we had none of those, because our relationships were richer. Therefore we went

with the Role relationship between Movie and Actor. It had to be annotated with @RelationshipEntity

and the @StartNode and @EndNode had to be marked. So our Role looked like this:

Example 9.1. Role class

@RelationshipEntity

class Role {

 @StartNode Actor actor;

 @EndNode Movie movie;

 String role;

}

When writing a test for that we tried to create the relationship entity with the new keyword, but we

got an exception saying that it was not allowed. At first this surprised us, but then we realized that

a relationship entity must have a starting entity and ending entity. It turned out that the aspect had

introduced a entity.relateTo method in the node entities. It turned out to be exactly what we needed.

We simply added a method to the Actor class, connecting it to movies.

Example 9.2. Relating actors to movies

class Actor {

...

 public Role playedIn(Movie movie, String roleName) {

 Role role = relateTo(movie, Role.class, "ACTS_IN");

 role.setRole(roleName);

 return role;

 }

}

9.2. Accessing related entities

Now we wanted to find connected entities. We already had fields for the relationships in both classes.

Now it was time to annotate them correctly. It turned out that we needed to provide the target type

of the fields again, due to Java's type erasure. The Neo4j relationship type and direction were easy to

figure out. The direction even defaulted to outgoing, so we only had to specify it for the movie.

Relationships

15

Spring Data Graph

(1.0.0.RELEASE)

Example 9.3. @RelatedTo usage

@NodeEntity

class Movie {

 @Indexed int id;

 String title;

 int year;

 @RelatedTo(elementClass = Actor.class, type = "ACTS_IN", direction = Direction.INCOMING)

 Set<Actor> cast;

}

@NodeEntity

class Actor {

 @Indexed int id;

 String name;

 @RelatedTo(elementClass = Movie.class, type = "ACTS_IN")

 Set<Movie> movies;

 public Role playedIn(Movie movie, String roleName) {

 Role role = relateTo(movie, Role.class, "ACTS_IN");

 role.setRole(roleName);

 return role;

 }

}

While reading about these relationship collections, we learned that they are actually Spring Data

Graph-managed sets. So whenever we add or remove something from the set, it automatically gets

reflected in the underlying relationships. That's neat! But this also meant we did not need to initialize

the fields. That could be easy to forget.

We made sure to add a test for those, so we were assured that the collections worked as advertised.

9.3. Accessing the relationship entities

But we still couldn't access the Role relationships. It turned out that there was a separate annotation

@RelatedToVia for accessing the actual relationship entities . And we had to declare the field as

an Iterable<Role>, with read-only semantics. This appeared to mean that we were not able to add

new roles though the field. Adding relationship entities seemed like it had to be done by using

entity.relateTo(). The annotation attributes were similar to those used for @RelatedTo. So off we

went, creating our first real relationship (just kidding).

Example 9.4. @RelatedToVia usage

@NodeEntity

class Movie {

 @Indexed int id;

 String title;

 int year;

 @RelatedTo(elementClass = Actor.class, type = "ACTS_IN", direction = Direction.INCOMING)

 Set<Actor> cast;

 @RelatedToVia(elementClass = Role.class, type = "ACTS_IN", direction = Direction.INCOMING)

 Iterable<Roles> roles;

}

After watching the tests pass, we were confident that the relationship fields really mirrored the

underlying relationships in the graph. We were pretty satisfied with our domain.

16

Spring Data Graph

(1.0.0.RELEASE)

Chapter 10. Get it running

Curtains up!

Now we had a pretty complete application. It was time to put it to the test.

10.1. Populating the database

Before we opened the gates we needed to add some movie data. So we wrote a small class for populating

the database which could be called from our controller. To make it safe to call several times we added

index lookups to check for existing entries. A simple /populate endpoint for the controller that called

it would be enough for now.

Example 10.1. Populating the database - Controller

@Service

public class DatabasePopulator {

 @Autowired GraphDatabaseContext ctx;

 @Autowired CineastsRepository repository;

 @Transactional

 public List<Movie> populateDatabase() {

 Actor tomHanks = new Actor("1", "Tom Hanks").persist();

 Movie forestGump = new Movie("1", "Forrest Gump").persist();

 tomHanks.playedIn(forestGump,"Forrest");

 return asList(forestGump);

 }

}

@Controller

public class MovieController {

 private DatabasePopulator populator;

 @Autowired

 public MovieController(DatabasePopulator populator) {

 this.populator = populator;

 }

 @RequestMapping(value = "/populate", method = RequestMethod.GET)

 public String populateDatabase(Model model) {

 Collection<Movie> movies = populator.populateDatabase();

 model.addAttribute("movies",movies);

 return "/movies/list";

 }

}

Get it running

17

Spring Data Graph

(1.0.0.RELEASE)

Example 10.2. Populating the database - JSP

<%@ page session="false" %>

<%@ taglib uri="http://www.springframework.org/tags" prefix="s" %>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

<c:choose>

 <c:when test="${not empty movie}">

 <h2>${movie.title}</h2>

 <c:if test="${not empty movie.roles}">

 <c:forEach items="${movie.roles}" var="role">

 <c:out value="${role.actor.name}" /> as <c:out value="${role.name}" />

 </c:forEach>

 </c:if>

 </c:when>

 <c:otherwise>

 No Movie with id ${id} found!

 </c:otherwise>

</c:choose>

Accessing the URI showed the single added movie on screen.

Note
Pardon the misused GET parameter for that (don't try this at home, the REST guys will

be hunt you down). This is only for running it from the browser address line. The next

iteration of this website would use a button with POST.

10.2. Inspecting the datastore

Being the geeks we are, we also wanted to inspect the raw data in the database. Reading the Neo4j

docs, there were a couple of different ways of going about this.

10.2.1. Neoclipse visualization

First we tried Neoclipse, an Eclipse RCP application/plugin that opens an existing graph store and

visualizes its content. After getting an exception about concurrent access, we learned that we have to

use Neoclipse in read-only mode when our webapp was still running. Good to know.

http://restinpractice.com

Get it running

18

Spring Data Graph

(1.0.0.RELEASE)

10.2.2. The Neo4j Shell

For console junkies there was also a shell that was able to connect to a running Neo4j instance (if it

was started with enable_remote_shell=true), or directly open an existing graph store.

Example 10.3. Starting the Neo4j Shell

neo4j-shell -readonly -path data/graph.db

The shell was very similar to a standard Bash shell. We were able to cd to between the nodes, and ls the

relationships and properties. There were also more advanced commands for indexing and traversals.

Get it running

19

Spring Data Graph

(1.0.0.RELEASE)

Example 10.4. Neo4j Shell usage

neo4j-sh[readonly] (0)$ help

Available commands: index dbinfo ls rm alias set eval mv gsh env rmrel mkrel

 trav help pwd paths ... man cd

Use man <command> for info about each command.

neo4j-sh[readonly] (0)$ index --cd -g User login micha

neo4j-sh[readonly] (Micha,1)$ ls

*__type__ =[org.neo4j.cineasts.domain.User]

*login =[micha]

*name =[Micha]

*roles =[ROLE_ADMIN,ROLE_USER]

(me) --[FRIEND]-> (Olliver,2)

(me) --[RATED]-> (The Matrix,3)

neo4j-sh[readonly] (Micha,1)$ ls 2

*__type__ =[org.neo4j.cineasts.domain.User]

*login =[ollie]

*name =[Olliver]

*roles =[ROLE_USER]

(Olliver,2) <-[FRIEND]-- (me)

neo4j-sh[readonly] (Micha,1)$ cd 3

neo4j-sh[readonly] (The Matrix,3)$ ls

*__type__ =[org.neo4j.cineasts.domain.Movie]

*description =[Neo is a young software engineer and part-time hacker who is singled ...]

*genre =[Action]

*homepage =[http://whatisthematrix.warnerbros.com/]

...

*studio =[Warner Bros. Pictures]

*tagline =[Welcome to the Real World.]

*title =[The Matrix]

*trailer =[http://www.youtube.com/watch?v=UM5yepZ21pI]

*version =[324]

(me) <-[ACTS_IN]-- (Marc Aden,19)

(me) <-[ACTS_IN]-- (David Aston,18)

...

(me) <-[ACTS_IN]-- (Keanu Reeves,6)

(me) <-[DIRECTED]-- (Andy Wachowski,5)

(me) <-[DIRECTED]-- (Lana Wachowski,4)

(me) <-[RATED]-- (Micha,1)

20

Spring Data Graph

(1.0.0.RELEASE)

Chapter 11. Web views

Showing off

After having put some data in the graph database, we also wanted to show it to the user. Adding the

controller method to show a single movie with its attributes and cast in a JSP was straightforward.

It basically just involved using the repository to look the movie up and add it to the model, and then

forwarding to the /movies/show view and voilá.

Example 11.1. Controller for showing movies

@RequestMapping(value = "/movies/{movieId}", method = RequestMethod.GET, headers = "Accept=text/html")

public String singleMovieView(final Model model, @PathVariable String movieId) {

 Movie movie = repository.getMovie(movieId);

 model.addAttribute("id", movieId);

 if (movie != null) {

 model.addAttribute("movie", movie);

 model.addAttribute("stars", movie.getStars());

 }

 return "/movies/show";

}

The UI had now evolved to this:

11.1. Searching

The next thing was to allow users to search for movies, so we needed some fulltext search capabilities.

As the index provider implementation of Neo4j is based on Apache Lucene, we were delighted to see

that fulltext indexes were supported out of the box.

Web views

21

Spring Data Graph

(1.0.0.RELEASE)

We happily annotated the title field of the Movie class with @Indexed(fulltext = true). We got an

exception back telling us that we have to specify a separate index name. So we simply changed it

to @Indexed(fulltext = true, indexName = "search"). The corresponding repository method is called

findAllByQuery. To restrict the size of the returned set we simply added a limit that truncates the result.

Example 11.2. Searching for movies

public class CineastRepository {

 public void List<Movie> findMovies(String query, int count) {

 List<Movie> movies=new ArrayList<Movie>(count);

 ClosableIterable<Movie> searchResults = movieRepository.findAllByQuery("title", query);

 for (Movie movie : searchResults) {

 movies.add(movie);

 if (count-- == 0) break;

 }

 searchResults.close();

 return movies;

 }

}

11.2. Listing results

We then used this result in the controller to render a list of movies, driven by a search box. The movie

properties and the cast were accessible through the getters in the domain classes.

Example 11.3. Search controller

@RequestMapping(value = "/movies", method = RequestMethod.GET, headers = "Accept=text/html")

public String findMovies(Model model, @RequestParam("q") String query) {

 List<Movie> movies = repository.findMovies(query, 20);

 model.addAttribute("movies", movies);

 model.addAttribute("query", query);

 return "/movies/list";

}

Example 11.4. Search Results JSP

<h2>Movies</h2>

<c:choose>

 <c:when test="${not empty movies}">

 <dl class="listings">

 <c:forEach items="${movies}" var="movie">

 <dt>

 <c:out value="${movie.title}" />

 </dt>

 <dd>

 <c:out value="${movie.description}" escapeXml="true" />

 </dd>

 </c:forEach>

 </dl>

 </c:when>

 <c:otherwise>

 No movies found for query "${query}".

 </c:otherwise>

</c:choose>

The UI now looked like this:

Web views

22

Spring Data Graph

(1.0.0.RELEASE)

23

Spring Data Graph

(1.0.0.RELEASE)

Chapter 12. Adding social

Movies 2.0

So far, the website had only been a plain old movie database (POMD?). We now wanted to add a

touch of social to it.

12.1. Users

So we started out by taking the User class that we'd already coded and made it a full-fledged Spring

Data Graph entity. We added the ability to make friends and to rate movies. With that we also added

a simple UserRepository that was able to look up users by ID.

Example 12.1. Social entities

@NodeEntity

class User {

 @Indexed String login;

 String name;

 String password;

 @RelatedToVia(elementClass = Rating.class, type = RATED)

 Iterable<Rating> ratings;

 @RelatedTo(elementClass = User.class, type = "FRIEND", direction=Direction.BOTH)

 Set<User> friends;

 public Rating rate(Movie movie, int stars, String comment) {

 return relateTo(movie, Rating.class, "RATED").rate(stars, comment);

 }

 public void befriend(User user) {

 this.friends.add(user);

 }

}

@RelationshipEntity

class Rating {

 @StartNode User user;

 @EndNode Movie movie;

 int stars;

 String comment;

 public Rating rate(int stars, String comment) {

 this.stars = stars; this.comment = comment;

 return this;

 }

}

We extended the DatabasePopulator to add some users and ratings to the initial setup.

Adding social

24

Spring Data Graph

(1.0.0.RELEASE)

Example 12.2. Populate users and ratings

@Transactional

public List<Movie> populateDatabase() {

 Actor tomHanks = new Actor("1", "Tom Hanks").persist();

 Movie forestGump = new Movie("1", "Forrest Gump").persist();

 tomHanks.playedIn(forestGump, "Forrest");

 User me = new User("micha", "Micha", "password",

 User.Roles.ROLE_ADMIN, User.Roles.ROLE_USER).persist();

 Rating awesome = me.rate(forestGump, 5, "Awesome");

 User ollie = new User("ollie", "Olliver", "password", User.Roles.ROLE_USER).persist();

 ollie.rate(forestGump, 2, "ok");

 me.addFriend(ollie);

 return asList(forestGump);

}

12.2. Ratings for movies

We also put a ratings field into the Movie class to be able to get a movie's ratings, and also a method

to average its star rating.

Example 12.3. Getting the rating of a movie

class Movie {

 ...

 @RelatedToVia(elementClass=Rating.class, type="RATED", direction = Direction.INCOMING)

 Iterable<Rating> ratings;

 public int getStars() {

 int stars = 0, count = 0;

 for (Rating rating : ratings) {

 stars += rating.getStars(); count++;

 }

 return count == 0 ? 0 : stars / count;

 }

}

Fortunately our tests highlighted the division by zero error when calculating the stars for a movie

without ratings. The next steps were to add this information to the movie presentation in the UI, and

creating a user profile page. But for that to happen, users must first be able to log in.

25

Spring Data Graph

(1.0.0.RELEASE)

Chapter 13. Adding Security

Protecting assets

To have a user in the webapp we had to put it in the session and add login and registration pages. Of

course the pages that were only meant for logged-in users had to be secured as well.

Being Spring users, we naturally used Spring Security for this. We wrote a simple UserDetailsService

that used a repository for looking up the users and validating their credentials. The config is located in

a separate applicationContext-security.xml. But first, as always, Maven and web.xml setup.

Example 13.1. Spring Security pom.xml

<dependency>

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-web</artifactId>

 <version>${spring.version}</version>

</dependency>

<dependency>

 <groupId>org.springframework.security</groupId>

 <artifactId>spring-security-config</artifactId>

 <version>${spring.version}</version>

</dependency>

Example 13.2. Spring Security web.xml

<context-param>

 <param-name>contextConfigLocation</param-name>

 <param-value>

 /WEB-INF/applicationContext-security.xml

 /WEB-INF/applicationContext.xml

 </param-value>

</context-param>

<listener>

 <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>

</listener>

<filter>

 <filter-name>springSecurityFilterChain</filter-name>

 <filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>

</filter>

<filter-mapping>

 <filter-name>springSecurityFilterChain</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

Adding Security

26

Spring Data Graph

(1.0.0.RELEASE)

Example 13.3. Spring Security applicationContext-security.xml

<security:global-method-security secured-annotations="enabled">

</security:global-method-security>

<security:http auto-config="true" access-denied-page="/auth/denied"> <!-- use-expressions="true" -->

 <security:intercept-url pattern="/admin/*" access="ROLE_ADMIN"/>

 <security:intercept-url pattern="/import/*" access="ROLE_ADMIN"/>

 <security:intercept-url pattern="/user/*" access="ROLE_USER"/>

 <security:intercept-url pattern="/auth/login" access="IS_AUTHENTICATED_ANONYMOUSLY"/>

 <security:intercept-url pattern="/auth/register" access="IS_AUTHENTICATED_ANONYMOUSLY"/>

 <security:intercept-url pattern="/**" access="IS_AUTHENTICATED_ANONYMOUSLY"/>

 <security:form-login login-page="/auth/login" authentication-failure-url="/auth/login?login_error=true"

 default-target-url="/user"/>

 <security:logout logout-url="/auth/logout" logout-success-url="/" invalidate-session="true"/>

</security:http>

<security:authentication-manager>

 <security:authentication-provider user-service-ref="userDetailsService">

 <security:password-encoder hash="md5">

 <security:salt-source system-wide="cewuiqwzie"/>

 </security:password-encoder>

 </security:authentication-provider>

</security:authentication-manager>

<bean id="userDetailsService" class="org.neo4j.movies.service.CineastsUserDetailsService"/>

Adding Security

27

Spring Data Graph

(1.0.0.RELEASE)

Example 13.4. UserDetailsService and UserDetails implementation

@Service

public class CineastsUserDetailsService implements UserDetailsService, InitializingBean {

 @Autowired private UserRepository userRepository;

 @Override

 public UserDetails loadUserByUsername(String login) throws UsernameNotFoundException, DataAccessException {

 final User user = findUser(login);

 if (user==null) throw new UsernameNotFoundException("Username not found",login);

 return new CineastsUserDetails(user);

 }

 public User findUser(String login) {

 return userRepository.findByPropertyValue("login",login);

 }

 public User getUserFromSession() {

 SecurityContext context = SecurityContextHolder.getContext();

 Authentication authentication = context.getAuthentication();

 Object principal = authentication.getPrincipal();

 if (principal instanceof CineastsUserDetails) {

 CineastsUserDetails userDetails = (CineastsUserDetails) principal;

 return userDetails.getUser();

 }

 return null;

 }

}

public class CineastsUserDetails implements UserDetails {

 private final User user;

 public CineastsUserDetails(User user) {

 this.user = user;

 }

 @Override

 public Collection<GrantedAuthority> getAuthorities() {

 User.Roles[] roles = user.getRoles();

 if (roles ==null) return Collections.emptyList();

 return Arrays.<GrantedAuthority>asList(roles);

 }

 @Override

 public String getPassword() {

 return user.getPassword();

 }

 @Override

 public String getUsername() {

 return user.getLogin();

 }

 ...

 public User getUser() {

 return user;

 }

}

Any logged-in user was now available in the session, and could be used for all the social interactions.

The remaining work for this was mainly adding controller methods and JSPs for the views. We used

the helper method getUserFromSession() in the controllers to access the logged-in user and put it in

the model for rendering. Here's what the UI had evolved to:

Adding Security

28

Spring Data Graph

(1.0.0.RELEASE)

29

Spring Data Graph

(1.0.0.RELEASE)

Chapter 14. More UI

Oh the glamour

To create a nice user experience, we wanted to have a nice looking app. Not something that looked like

a toddler made it. So we got some user experience people involved and the results were impressive.

This sections presents some of the remaining screen shots of Cineasts.net.

Some noteworthy things. Since Spring Data Graph reads through down to the database for property

and relationship access, we tried to minimize that by using <c:var/> several times. The app contains

very little javascript / ajax code right now, that will change when it moves ahead.

More UI

30

Spring Data Graph

(1.0.0.RELEASE)

More UI

31

Spring Data Graph

(1.0.0.RELEASE)

32

Spring Data Graph

(1.0.0.RELEASE)

Chapter 15. Importing Data

The dusty archives

It was now time to pull the data from themoviedb.org. Registering there and getting an API key was

simple, as was using the API on the command-line with curl. Looking at the JSON returned for movies

and people, we decided to enhance our domain model and add some more fields to enrich the UI.

Example 15.1. JSON movie response

[{"popularity":3,

"translated":true, "adult":false, "language":"en",

"original_name":"[Rec]", "name":"[Rec]", "alternative_name":"[REC]",

"movie_type":"movie",

"id":8329, "imdb_id":"tt1038988", "url":"http://www.themoviedb.org/movie/8329",

"votes":11, "rating":7.2,

"status":"Released",

"tagline":"One Witness. One Camera",

"certification":"R",

"overview":"\"REC\" turns on a young TV reporter and her cameraman who cover the night shift at the local fire station...

"keywords":["terror", "lebende leichen", "obsession", "camcorder", "firemen", "reality tv ", "bite", "cinematographer",

"attempt to escape", "virus", "lodger", "live-reportage", "schwerverletzt"],

"released":"2007-08-29",

"runtime":78,

"budget":0,

"revenue":0,

"homepage":"http://www.3l-filmverleih.de/rec",

"trailer":"http://www.youtube.com/watch?v=YQUkX_XowqI",

"genres":[{"type":"genre",

"url":"http://themoviedb.org/genre/horror",

"name":"Horror",

"id":27}],

"studios":[{"url":"http://www.themoviedb.org/company/2270", "name":"Filmax Group", "id":2270}],

"languages_spoken":[{"code":"es", "name":"Spanish", "native_name":"Espa\u00f1ol"}],

"countries":[{"code":"ES", "name":"Spain", "url":"http://www.themoviedb.org/country/es"}],

"posters":[{"image":{"type":"poster",

"size":"original", "height":1000, "width":706,

"url":"http://cf1.imgobject.com/posters/3a0/4cc8df415e73d650240003a0/rec-original.jpg", "id":"4cc8df415e73d650240003a0"}},

....

"cast":[{"name":"Manuela Velasco",

"job":"Actor", "department":"Actors",

"character":"Angela Vidal",

"id":34793, "order":0, "cast_id":1,

"url":"http://www.themoviedb.org/person/34793",

"profile":"http://cf1.imgobject.com/profiles/390/4c0157fa017a3c702d001390/manuela-velasco-thumb.jpg"},

...

{"name":"Gl\u00f2ria Viguer",

"job":"Costume Design", "department":"Costume \u0026 Make-Up",

"character":"",

"id":54531, "order":0, "cast_id":21,

"url":"http://www.themoviedb.org/person/54531",

"profile":""}],

"version":150, "last_modified_at":"2011-02-20 23:16:57"}]

http://themoviedb.org

Importing Data

33

Spring Data Graph

(1.0.0.RELEASE)

Example 15.2. JSON actor response

[{"popularity":3,

"name":"Glenn Strange", "known_as":[{"name":"George Glenn Strange"}, {"name":"Glen Strange"},

{"name":"Glen 'Peewee' Strange"}, {"name":"Peewee Strange"}, {"name":"'Peewee' Strange"}],

"id":30112,

"biography":"",

"known_movies":4,

"birthday":"1899-08-16", "birthplace":"Weed, New Mexico, USA",

"url":"http://www.themoviedb.org/person/30112",

"filmography":[{"name":"Bud Abbott Lou Costello Meet Frankenstein",

"id":3073,

"job":"Actor", "department":"Actors",

"character":"The Frankenstein Monster",

"cast_id":23,

"url":"http://www.themoviedb.org/movie/3073",

"poster":"http://cf1.imgobject.com/posters/4ca/4bc9185d017a3c57fe0094ca/bud-abbott-lou-costello-meet-frankenstein-cover.jpg",

"adult":false, "release":"1948-06-15"},

...],

"profile":[],

"version":19, "last_modified_at":"2011-03-07 13:02:35"}]

For the import process we created a separate importer using Jackson (a JSON library) to fetch and

parse the data, and then some transactional methods in the MovieDbImportService to actually import

it as movies, roles, and actors. The importer used a simple caching mechanism to keep downloaded

actor and movie data on the filesystem, so that we didn't have to overload the remote API. In the code

below you can see that we've changed the actor to a person so that we can also accommodate the other

folks that participate in movie production.

Importing Data

34

Spring Data Graph

(1.0.0.RELEASE)

Example 15.3. Importing the data

@Transactional

public Movie importMovie(String movieId) {

 Movie movie = repository.getMovie(movieId);

 if (movie == null) { // Not found: Create fresh

 movie = new Movie(movieId,null);

 }

 Map data = loadMovieData(movieId);

 if (data.containsKey("not_found")) throw new RuntimeException("Data for Movie "+movieId+" not found.");

 movieDbJsonMapper.mapToMovie(data, movie);

 movie.persist();

 relatePersonsToMovie(movie, data);

 return movie;

}

private void relatePersonsToMovie(Movie movie, Map data) {

 Collection<Map> cast = (Collection<Map>) data.get("cast");

 for (Map entry : cast) {

 String id = entry.get("id");

 Roles job = entry.get("job");

 Person person = importPerson(id);

 switch (job) {

 case DIRECTED:

 person.directed(movie);

 break;

 case ACTS_IN:

 person.playedIn(movie, (String) entry.get("character"));

 break;

 }

 }

}

public void mapToMovie(Map data, Movie movie) {

 movie.setTitle((String) data.get("name"));

 movie.setLanguage((String) data.get("language"));

 movie.setTagline((String) data.get("tagline"));

 movie.setReleaseDate(toDate(data, "released", "yyyy-MM-dd"));

...

 movie.setImageUrl(selectImageUrl((List<Map>) data.get("posters"), "poster", "mid"));

}

The last part involved adding a protected URI to the MovieController to allow importing ranges of

movies. During testing, it became obvious that the calls to TheMoviedb.org were a limiting factor. As

soon as the data was stored locally, the Neo4j import was a sub-second deal.

35

Spring Data Graph

(1.0.0.RELEASE)

Chapter 16. Recommendations

Movies! Friends! Bargains!

In the last part of this exercise we wanted to add recommendations to the app. One obvious

recommendation was movies that our friends liked (and their friends too, but with less importance).

The second recommendation was for new friends that also liked the movies that we liked most.

Doing these kinds of ranking algorithms is a lot of fun with graph databases. The algorithms are

implemented by traversing the graph in a certain order, collecting information on the go, and deciding

which paths to follow and what to include in the results.

We were only interested in recommendations of a certain degree of friends.

Example 16.1. Recommendations

public Map<Movie,Integer> recommendMovies(User user, final int ratingDistance) {

 final DynamicRelationshipType RATED = withName(User.RATED);

 final Map<Long,int[]> ratings=new HashMap<Long, int[]>();

 TraversalDescription traversal= Traversal.description().breadthFirst()

 .relationships(withName(User.FRIEND)).relationships(RATED, OUTGOING).evaluator(new Evaluator() {

 public Evaluation evaluate(Path path) {

 final int length = path.length() - 1;

 if (length > ratingDistance) return Evaluation.EXCLUDE_AND_PRUNE; // only as far as requested

 Relationship rating = path.lastRelationship();

 if (rating != null && rating.getType().equals(RATED)) { // process RATED relationships, not FRIEND

 if (length == 0) return Evaluation.EXCLUDE_AND_PRUNE; // my rated movies

 final long movieId = rating.getEndNode().getId();

 int[] stars = ratings.get(movieId);

 if (stars == null) {

 stars = new int[2];

 ratings.put(movieId, stars);

 }

 int weight = ratingDistance - length; // aggregate for averaging, inverse to distance

 stars[0] += weight * (Integer) rating.getProperty("stars", 0);

 stars[1] += weight;

 return Evaluation.INCLUDE_AND_PRUNE;

 }

 return Evaluation.EXCLUDE_AND_CONTINUE;

 }

 });

 Map<Movie,Integer> result=new HashMap<Movie, Integer>();

 final Iterable<Movie> movies = movieRepository.findAllByTraversal(user, traversal); // lazy traversal results

 for (Movie movie : movies) { // assign movie to averaged rating

 final int[] stars = ratings.get(movie.getNodeId());

 result.put(movie, stars[0]/stars[1]);

 }

 return result;

}

The UserController simply called this method, added its results to the model, and the view rendered

the recommendation alongside the user's own ratings.

36

Spring Data Graph

(1.0.0.RELEASE)

Part II. Reference
This is the reference part of the book. It has information about the programming model, APIs, concepts, and

annotations of Spring Data Graph.

xxxvii

Spring Data Graph

(1.0.0.RELEASE)

Preface
The Spring Data Graph project, as part of the Spring Data initiative, aims to simplify development

with graph databases. Like JPA, it uses annotations on simple POJO beans. The annotations activate

the AspectJ aspects in the Spring Data Graph framework, mapping the POJO entities and their fields

to nodes, relationships, and properties in the graph database.

To get started with a simple application, only the basic annotations (see Section 19.2, “Defining

node entities”) and the additional aspect-introduced entity methods (see Section 19.9, “Introduced

methods”) are required. Basic knowledge of graph stores is needed to access advanced functionality

like traversals.

38

Spring Data Graph

(1.0.0.RELEASE)

Chapter 17. About Spring Data

Spring Data is a SpringSource project that aims to provide Spring's convenient programming model

and well known conventions for NOSQL databases. Currently there is support for graph (e.g. Neo4j),

key-value (e.g. Redis), document (e.g. MongoDB) and relational (e.g. Oracle) databases. Mark Pollack,

the author of Spring.NET, is the project lead for the Spring Data project.

http://springsource.org/spring-data

39

Spring Data Graph

(1.0.0.RELEASE)

Chapter 18. Introduction to Neo4j

18.1. What is a graph database?

A graph database is a storage engine that is specialized in storing and retrieving vast networks of data.

It efficiently stores nodes and relationships and allows high performance traversal of those structures.

Properties can be added to nodes and relationships.

Graph databases are well suited for storing most kinds of domain models. In almost all domain models,

there are certain things connected to other things. In most other modeling approaches, the relationships

between things are reduced to a single link without identity and attributes. Graph databases allow one

to keep the rich relationships that originate from the domain, equally well-represented in the database

without resorting to also modeling the relationships as "things". There is very little "impedance

mismatch" when putting real-life domains into a graph database.

18.2. About Neo4j

Neo4j is a graph database. It is a fully transactional database (ACID) that stores data structured as

graphs. A graph consists of nodes, connected by relationships. Inspired by the structure of the human

brain, it allows for high query performance on complex data, while remaining intuitive and simple

for the developer.

Neo4j has been in commercial development for 10 years and in production for over 7 years. Most

importantly it has a helpful and contributing community surrounding it, but it also:

• has an intuitive graph-oriented model for data representation. Instead of tables, rows, and columns,

you work with a graph consisting of nodes, relationships, and properties.

• has a disk-based, native storage manager optimized for storing graph structures with maximum

performance and scalability.

• is scalable. Neo4j can handle graphs with many billions of nodes/relationships/properties on a single

machine, but can also be scaled out across multiple machines for high availability.

• has a powerful traversal framework for traversing in the node space.

• can be deployed as a standalone server or an embedded database with a very small distribution

footprint (~700k jar).

• has a Java API.

In addition, Neo4j has ACID transactions, durable persistence, concurrency control, transaction

recovery, high availability, and more. Neo4j is released under a dual free software/commercial license

model.

18.3. GraphDatabaseService

The interface org.neo4j.graphdb.GraphDatabaseService provides access to the storage engine.

Its features include creating and retrieving nodes and relationships, managing indexes (via the

IndexManager), database life cycle callbacks, transaction management, and more.

http://neo4j.org/
http://wiki.neo4j.org/content/Getting_Started
http://api.neo4j.org/

Introduction to Neo4j

40

Spring Data Graph

(1.0.0.RELEASE)

The EmbeddedGraphDatabase is an implementation of GraphDatabaseService that is used to embed

Neo4j in a Java application. This implementation is used so as to provide the highest and tightest

integration with the database. Besides the embedded mode, the Neo4j server provides access to the

graph database via an HTTP-based REST API.

18.4. Creating nodes and relationships

Using the API of GraphDatabaseService, it is easy to create nodes and relate them to each other.

Relationships are typed. Both nodes and relationships can have properties. Property values can be

primitive Java types and Strings, or arrays of Java primitives or Strings. Node creation and modification

has to happen within a transaction, while reading from the graph store can be done with or without

a transaction.

Example 18.1. Neo4j usage

GraphDatabaseService graphDb = new EmbeddedGraphDatabase("helloworld");

Transaction tx = graphDb.beginTx();

try {

 Node firstNode = graphDb.createNode();

 Node secondNode = graphDb.createNode();

 firstNode.setProperty("message", "Hello, ");

 secondNode.setProperty("message", "world!");

 Relationship relationship = firstNode.createRelationshipTo(secondNode,

 DynamicRelationshipType.of("KNOWS"));

 relationship.setProperty("message", "brave Neo4j ");

 tx.success();

} finally {

 tx.finish();

}

18.5. Graph traversal

Getting a single node or relationship and examining it is not the main use case of a graph

database. Fast graph traversal and application of graph algorithms are. Neo4j provides a DSL for

defining TraversalDescriptions that can then be applied to a start node and will produce a lazy

java.lang.Iterable result of nodes and/or relationships.

Example 18.2. Traversal usage

TraversalDescription traversalDescription = Traversal.description()

 .depthFirst()

 .relationships(KNOWS)

 .relationships(LIKES, Direction.INCOMING)

 .evaluator(Evaluators.toDepth(5));

for (Path position : traversalDescription.traverse(myStartNode)) {

 System.out.println("Path from start node to current position is " + position);

}

18.6. Indexing

The best way for retrieving start nodes for traversals is by using Neo4j's integrated index facilities. The

GraphDatabaseService provides access to the IndexManager which in turn provides named indexes

for nodes and relationships. Both can be indexed with property names and values. Retrieval is done

with query methods on indexes, returning an IndexHits iterator.

http://wiki.neo4j.org/content/Getting_Started_With_Neo4j_Server

Introduction to Neo4j

41

Spring Data Graph

(1.0.0.RELEASE)

Spring Data Graph provides automatic indexing via the @Indexed annotation, eliminating the need

for manual index management.

Note
Modifying Neo4j indexes also requires transactions.

Example 18.3. Index usage

IndexManager indexManager = graphDb.index();

Index<Node> nodeIndex = indexManager.forNodes("a-node-index");

Node node = ...;

Transaction tx = graphDb.beginTx();

try {

 nodeIndex.add(node, "property","value");

 tx.success();

} finally {

 tx.finish();

}

for (Node foundNode : nodeIndex.get("property","value")) {

 // found node

}

42

Spring Data Graph

(1.0.0.RELEASE)

Chapter 19. Programming model

This chapter covers the fundamentals of the programming model behind Spring Data Graph. It

discusses the AspectJ features used and the annotations provided by Spring Data Graph and how to

use them. Examples for this section are taken from the imdb project of Spring Data Graph examples.

19.1. AspectJ support

Behind the scenes, Spring Data Graph leverages AspectJ aspects to modify the behavior of simple

annotated POJO entities (see Chapter 25, AspectJ details). Each node entity is backed by a graph node

that holds its properties and relationships to other entities. AspectJ is used for intercepting field access,

so that Spring Data Graph can retrieve the information from the entity's backing node or relationship

in the database.

The aspect introduces some internal fields and some public methods (see Section 19.9, “Introduced

methods”) in the entities, such as entity.getPersistentState() and entity.relateTo. It also

introduces repository methods like find(Class<? extends NodeEntity>, TraversalDescription),

and equals() and hashCode delegation, making equals() honor the backing state.

Spring Data Graph internally uses an abstraction called EntityState that the field access and

instantiation advices of the aspect delegate to. This way, the aspect code is kept to a minimum,

focusing mainly on the pointcuts and delegation code. The EntityState then uses a number of

FieldAccessorFactories to create a FieldAccessor instance per field that does the specific handling

needed for the concrete field type. There are various layers of caching involved as well, so it handles

repeat instantiation efficiently.

19.1.1. AspectJ IDE support

As Spring Data Graph uses some advanced features of AspectJ, users may experience issues with their

IDE reporting errors where there in fact are none. Features that might be reported wrongfully include:

introduction of methods to interfaces, declaration of additional interfaces for annotated classes, and

generified introduced methods.

Eclipse and STS support AspectJ via the AJDT plugin which can be installed from the update-site:

http://download.eclipse.org/tools/ajdt/36/update/ (or for the latest development snapshot of the plugin

http://download.eclipse.org/tools/ajdt/36/dev/update).

The AspectJ support in IntelliJ IDEA lacks some of the features. JetBrains is working on improving

the situation in their upcoming 10.5 release of their popular IDE. Their latest work is available under

their early access program (EAP). Building the project with the AspectJ compiler ajc works in IDEA

(Options -> Compiler -> Java Compiler should show ajc). Make sure to give the compiler at least 512

MB of RAM.

19.2. Defining node entities

Node entities are declared using the @NodeEntity annotation. Relationship entities use the

@RelationshipEntity annotation.

http://github.com/SpringSource/spring-data-graph-examples
http://www.eclipse.org/aspectj/
http://download.eclipse.org/tools/ajdt/36/update/
http://download.eclipse.org/tools/ajdt/36/dev/update

Programming model

43

Spring Data Graph

(1.0.0.RELEASE)

19.2.1. @NodeEntity: The basic building block

The @NodeEntity annotation is used to turn a POJO class into an entity backed by a node in the

graph database. Fields on the entity are by default mapped to properties of the node. Fields referencing

other node entities (or collections thereof) are linked with relationships. If the useShortNames attribute

overridden to false, the property and relationship names will have the class name of the entity

prepended.

If the partial attribute is set to true, this entity takes part in a cross-store setting, where the entity

lives in both the graph database and a JPA data source. See Chapter 21, Cross-store persistence for

more information.

Entity fields can be annotated with @GraphProperty, @RelatedTo, @RelatedToVia, @Indexed,

@GraphId and @GraphTraversal.

Example 19.1. Simple node entity

@NodeEntity

public class Movie {

 String title;

}

19.2.2. @GraphProperty: Optional annotation for property fields

It is not necessary to annotate data fields, as they are persisted by default; all fields that contain primitive

values are persisted directly to the graph. All fields convertible to String using the Spring conversion

services will be stored as a string. Spring Data Graph includes a custom conversion factory that comes

with converters for Enums and Dates. Transient fields are not persisted.

This annotation is typically used with cross-store persistence. When a node entity is configured

as partial, then all fields that should be persisted to the graph must be explicitly annotated with

@GraphProperty.

19.2.3. @Indexed: Making entities searchable by field value

The @Indexed annotation can be declared on fields that are intended to be indexed by the Neo4j

indexing facilities. The resulting index can be used to later retrieve nodes or relationships that contain

a certain property value, e.g. a name. Often an index is used to establish the start node for a traversal.

Indexes are accessed by a repository for a particular node or relationship entity type. See Section 19.4,

“Indexing” and Section 19.5, “CRUD with repositories” for more information.

19.2.4. @GraphTraversal: fields as traversal result views

The @GraphTraversal annotation leverages the delegation infrastructure used by the Spring Data

Graph aspects. It provides dynamic fields which, when accessed, return an Iterable of node entities that

are the result of a traversal starting at the entity containing the field. The TraversalDescription used

for this is created by the FieldTraversalDescriptionBuilder class defined by the traversalBuilder

attribute. The class of the resulting node entities must be provided with the elementClass attribute.

Programming model

44

Spring Data Graph

(1.0.0.RELEASE)

Example 19.2. @GraphTraversal from a node entity

@NodeEntity

public class Group {

 @GraphTraversal(traversalBuilder = PeopleTraversalBuilder.class,

 elementClass = Person.class, params = "persons")

 private Iterable<Person> people;

 private static class PeopleTraversalBuilder implements FieldTraversalDescriptionBuilder {

 @Override

 public TraversalDescription build(NodeBacked start, Field field, String... params) {

 return new TraversalDescriptionImpl()

 .relationships(DynamicRelationshipType.withName(params[0]))

 .filter(Traversal.returnAllButStartNode());

 }

 }

}

19.3. Relating node entities

Since relationships are first-class citizens in Neo4j, associations between node entities are represented

by relationships. In general, relationships are categorized by a type, and start and end nodes (which

imply the direction of the relationship). Relationships can have an arbitrary number of properties.

Spring Data Graph has special support to represent Neo4j relationships as entities too, but it is often

not needed.

19.3.1. @RelatedTo: Connecting node entities

Every field of a node entity that references one or more other node entities is backed by relationships

in the graph. These relationships are managed by Spring Data Graph automatically.

The simplest kind of relationship is a single field pointing to another node entity (1:1). In this case, the

field does not have to be annotated at all, although the annotation may be used to control the direction

and type of the relationship. When setting the field, a relationship is created. If the field is set to null,

the relationship is removed.

Example 19.3. Single relationship field

@NodeEntity

public class Movie {

 private Actor mostPaidActor;

}

It is also possible to have fields that reference a set of node entities (1:N). These fields come

in two forms, modifiable or read-only. Modifiable fields are of the type java.util.Set<T>, and

read-only fields are java.lang.Iterable<T>, where T is a @NodeEntity-annotated class. The Java

implementation of generics uses type erasure, meaning that the type parameters are typically not

available at runtime. Therefore, the elementClass attribute must be specified on the annotation, which

must always be present for 1:N fields.

Programming model

45

Spring Data Graph

(1.0.0.RELEASE)

Example 19.4. Node entity with relationships

@NodeEntity

public class Actor {

 @RelatedTo(type = "mostPaidActor", direction = Direction.INCOMING,

 elementClass = Movie.class)

 private Set<Movie> mostPaidIn;

 @RelatedTo(type = "ACTS_IN", elementClass = Movie.class)

 private Set<Movie> movies;

}

Fields referencing other entities should not be manually initialized, as they are managed by Spring Data

Graph under the hood. 1:N fields can be accessed immediately, and Spring Data Graph will provide a

java.util.Set representing the relationships. If the returned set is modified, the changes are reflected in

the graph. Spring Data Graph also ensures that there is only one relationship of a given type between

any two given entities.

Note

Before an entity has been attached with persist() for the first time, it will not have its

state managed by Spring Data Graph. For example, given the Actor class defined above,

if actor.movies was accessed in a non-persisted entity, it would return null, whereas if

it was accessed in a persisted entity, it would return an empty managed set.

By setting direction to BOTH, relationships are created in the outgoing direction, but when the 1:N

field is read, it will include relationships in both directions. A cardinality of M:N is not necessary

because relationships can be navigated in both directions.

The relationships can also be accessed by using the aspect-introduced methods

entity.getRelationshipTo(target, type) and entity.relateTo(target, type) available on

each NodeEntity. These methods find and create Neo4j relationships. It is also possible to manually

remove relationships by using entity.removeRelationshipTo(target, type). Using these methods

is rarely necessary though.

19.3.2. @RelationshipEntity: Rich relationships

To access the full data model of graph relationships, POJOs can also be annotated with

@RelationshipEntity, making them relationship entities. Just as node entities represent nodes in

the graph, relationship entities represent relationships. As described above, fields annotated with

@RelatedTo provide a way to link node entities together via relationships, but it provides no way of

accessing the relationships themselves.

Relationship entities cannot be instantiated directly but are rather created via node entities, either

by @RelatedToVia-annotated fields (see Section 19.3.3, “@RelatedToVia: Accessing relationship

entities”), or by the introduced entity.relateTo(target, relationshipClass, type) and

entity.getRelationshipTo(target, relationshipClass, type) methods (see Section 19.9,

“Introduced methods”).

Fields in relationship entities are, similarly to node entities, persisted as properties on the relationship.

For accessing the two endpoints of the relationship, two special annotations are available: @StartNode

and @EndNode. A field annotated with one of these annotations will provide read-only access to the

corresponding endpoint, depending on the chosen annotation.

Programming model

46

Spring Data Graph

(1.0.0.RELEASE)

Example 19.5. Relationship entity

@NodeEntity

public class Actor {

 public Role playedIn(Movie movie, String title) {

 return relatedTo(movie, Role.class, "ACTS_IN");

 }

}

@RelationshipEntity

public class Role {

 String title;

 @StartNode private Actor actor;

 @EndNode private Movie movie;

}

19.3.3. @RelatedToVia: Accessing relationship entities

To provide easy programmatic access to the richer relationship entities of the data model, the

annotation @RelatedToVia can be added on fields of type java.lang.Iterable<T>, where T is a

@RelationshipEntity-annotated class. These fields provide read-only access to relationship entities.

Example 19.6. Accessing relationship entities using @RelatedToVia

@NodeEntity

public class Actor {

 @RelatedToVia(type = "ACTS_IN", elementClass = Role.class)

 private Iterable<Role> roles;

 public Role playedIn(Movie movie, String title) {

 Role role = relateTo(movie, Role.class, "ACTS_IN");

 role.setTitle(title);

 return role;

 }

}

19.4. Indexing

The Neo4j graph database can use different so-called index providers for exact lookups and fulltext

searches. Lucene is the default index provider implementation. Each named index is configured to be

fulltext or exact.

19.4.1. Exact and numeric index

When using the standard Neo4j API, nodes and relationships have to be manually indexed with

key-value pairs, typically being the property name and value. When using Spring Data Graph, this

task is simplified to just adding an @Indexed annotation on entity fields by which the entity should be

searchable. This will result in automatic updates of the index every time an indexed field changes.

Numerical fields are indexed numerically so that they are available for range queries. All other fields

are indexed with their string representation.

The @Indexed annotation also provides the option of using a custom index. The default index name is

the simple class name of the entity, so that each class typically gets its own index. It is recommended

to not have two entity classes with the same class name, regardless of package.

Programming model

47

Spring Data Graph

(1.0.0.RELEASE)

The indexes can be queried by using a repository (see Section 19.5,

“CRUD with repositories”). Typically, the repository is an instance

of org.springframework.data.graph.neo4j.repository.DirectGraphRepositoryFactory. The

methods findByPropertyValue() and findAllByPropertyValue() work on the exact indexes and

return the first or all matches. To do range queries, use findAllByRange() (please note that currently

both values are inclusive).

Example 19.7. Indexing entities

@NodeEntity

class Person {

 @Indexed(indexName = "people") String name;

 @Indexed int age;

}

GraphRepository<Person> graphRepository = graphRepositoryFactory

 .createGraphRepository(Person.class);

// Exact match, in named index

Person mark = graphRepository.findByPropertyValue("people", "name", "mark");

// Numeric range query, index name inferred automatically

for (Person middleAgedDeveloper : graphRepository.findAllByRange("age", 20, 40)) {

 Developer developer=middleAgedDeveloper.projectTo(Developer.class);

}

19.4.2. Fulltext indexes

Spring Data Graph also supports fulltext indexes. By default, indexed fields are stored in an exact

lookup index. To have them analyzed and prepared for fulltext search, the @Indexed annotation has

the boolean fulltext attribute. Please note that fulltext indexes require a separate index name as the

fulltext configuration is stored in the index itself.

Access to the fulltext index is provided by the findAllByQuery() repository method. Wildcards like *

are allowed. Generally though, the fulltext querying rules of the underlying index provider apply. See

the Lucene documentation for more information on this.

Example 19.8. Fulltext indexing

@NodeEntity

class Person {

 @Indexed(indexName = "person-name", fulltext=true) String name;

}

GraphRepository<Person> graphRepository = graphRepositoryFactory

 .createGraphRepository(Person.class);

Person mark = graphRepository.findAllByQuery("people-search", "name", "ma*");

Note
Please note that indexes are currently created on demand, so whenever an index that doesn't

exist is requested from a query or get operation it is created. This is subject to change

but has currently the implication that those indexes won't be configured as fulltext which

causes subsequent fulltext updates to those indexes to fail.

http://lucene.apache.org/java/3_0_1/

Programming model

48

Spring Data Graph

(1.0.0.RELEASE)

19.4.3. Manual index access

The index for a domain class is also available from GraphDatabaseContext via the getIndex()

method. The second parameter is optional and takes the index name if it should not be inferred from

the class name. It returns the index implementation that is provided by Neo4j.

Example 19.9. Manual index usage

@Autowired GraphDatabaseContext gdc;

// Default index

Index<Node> personIndex = gdc.getIndex(Person.class);

personIndex.query(new QueryContext(NumericRangeQuery.newÍntRange("age", 20, 40, true, true))

 .sort(new Sort(new SortField("age", SortField.INT, false))));

// Named index

Index<Node> namedPersonIndex = gdc.getIndex(Person.class, "people");

namedPersonIndex.get("name", "Mark");

// Fulltext index

Index<Node> personFulltextIndex = gdc.getIndex(Person.class, "person-name", true);

personFulltextIndex.query("name", "*cha*");

personFulltextIndex.query("{name:*cha*}");

19.4.4. Indexing in Neo4jTemplate

Neo4jTemplate also offers index support, providing auto-indexing for fields at creation time. There is

an autoIndex method that can also add indexes for a set of fields in one go.

For querying the index, the template offers query methods that take either the exact match parameters or

a query object/expression, and push the results wrapped uniformly as Paths to the supplied PathMapper

to be converted or collected.

19.5. CRUD with repositories

The repositories provided by Spring Data Graph build on the composable repository infrastructure

in Spring Data Commons. They allow for interface based composition of repositories consisting of

provided default implementations for certain interfaces and additional custom implementations for

other methods.

Spring Data Graph comes with typed repository implementations that provide methods for locating

node and relationship entities. There are 3 types of basic repository interfaces and implementations.

CRUDRepository provides basic operations, IndexRepository and NamedIndexRepository delegate to

Neo4j's internal indexing subsystem for queries, and TraversalRepository handles Neo4j traversals.

GraphRepository is a convenience repository interface, extending CRUDRepository,

IndexRepository, and TraversalRepository. Generally, it has all the desired repository methods. If

named index operations are required, then NamedIndexRepository may also be included.

19.5.1. CRUDRepository

CRUDRepository delegates to the configured TypeRepresentationStrategy (see Section 19.8, “Entity

type representation”) for type based queries.

Load an instance via a Neo4j node id

T findOne(id)

http://static.springsource.org/spring-data/data-jpa/docs/1.0.0.M2/reference/html/#repositories.custom-implementations

Programming model

49

Spring Data Graph

(1.0.0.RELEASE)

Check for existence of a Neo4j node id

boolean exists(id)

Iterate over all nodes of a node entity type

Iterable<T> findAll() (supported in future versions: Iterable<T> findAll(Sort) and Page<T>

findAll(Pageable))

Count the instances of a node entity type

Long count()

Save a graph entity

T save(T) and Iterable<T> save(Iterable<T>)

Delete a graph entity

void delete(T), void; delete(Iterable<T>), and deleteAll()

Important to note here is that the save, delete, and deleteAll methods are only there to conform to the

org.springframework.data.repository.Repository interface. The recommended way of saving

and deleting entities is by using entity.persist() and entity.remove().

19.5.2. IndexRepository and NamedIndexRepository

IndexRepository works with the indexing subsystem and provides methods to find entities by indexed

properties, ranged queries, and combinations thereof. The index key is the name of the indexed entity

field, unless overridden in the @Indexed annotation.

Iterate over all indexed entity instances with a certain field value

Iterable<T> findAllByPropertyValue(key, value)

Get a single entity instance with a certain field value

T findByPropertyValue(key, value)

Iterate over all indexed entity instances with field values in a certain numerical range (inclusive)

Iterable<T> findAllByRange(key, from, to)

Iterate over all indexed entity instances with field values matching the given fulltext string or

QueryContext query

Iterable<T> findAllByQuery(key, queryOrQueryContext)

There is also a NamedIndexRepository with the same methods, but with an additional index name

parameter, making it possible to query any index.

19.5.3. TraversalRepository

TraversalRepository delegates to the Neo4j traversal framework.

Iterate over a traversal result

Iterable<T> findAllByTraversal(startEntity, traversalDescription)

19.5.4. Creating repositories

The Repository instances are either created manually via a DirectGraphRepositoryFactory, bound

to a concrete node or relationship entity class. The DirectGraphRepositoryFactory is configured in

the Spring context and can be injected.

Programming model

50

Spring Data Graph

(1.0.0.RELEASE)

Example 19.10. Using GraphRepositories

GraphRepository<Person> graphRepository = graphRepositoryFactory

 .createGraphRepository(Person.class);

Person michael = graphRepository.save(new Person("Michael", 36));

Person dave = graphRepository.findOne(123);

Long numberOfPeople = graphRepository.count();

Person mark = graphRepository.findByPropertyValue("name", "mark");

Iterable<Person> devs = graphRepository.findAllByProperyValue("occupation", "developer");

Iterable<Person> middleAgedPeople = graphRepository.findAllByRange("age", 20, 40);

Iterable<Person> aTeam = graphRepository.findAllByQuery("name", "A*");

Iterable<Person> davesFriends = graphRepository.findAllByTraversal(dave,

 Traversal.description().pruneAfterDepth(1)

 .relationships(KNOWS).filter(returnAllButStartNode()));

19.5.5. Composing repositories

The recommended way of providing repositories is to define a repository interface per domain class.

The mechanisms provided by the repository infrastructure will automatically detect them, along with

additional implementation classes, and create an injectable repository implementation to be used in

services or other spring beans.

Programming model

51

Spring Data Graph

(1.0.0.RELEASE)

Example 19.11. Composing repositories

public interface PersonRepository extends GraphRepository<Person>, PersonRepositoryExtension {}

// alternatively select some of the required repositories individually

public interface PersonRepository extends CRUDGraphRepository<Node,Person>,

 IndexQueryExecutor<Node,Person>, TraversalQueryExecutor<Node,Person>,

 PersonRepositoryExtension {}

// provide a custom extension if needed

public interface PersonRepositoryExtension {

 Iterable<Person> findFriends(Person person);

}

public class PersonRepositoryImpl implements PersonRepositoryExtension {

 // optionally inject default repository, or use DirectGraphRepositoryFactory

 @Autowired PersonRepository baseRepository;

 public Iterable<Person> findFriends(Person person) {

 return baseRepository.findAllByTraversal(person, friendsTraversal);

 }

}

// configure the repositories, preferably via the datagraph:repositories namespace

// (graphDatabaseContext reference is optional)

<datagraph:repositories base-package="org.springframework.data.graph.neo4j"

 graph-database-context-ref="graphDatabaseContext"/>

// have it injected

@Autowired

PersonRepository personRepository;

Person michael = personRepository.save(new Person("Michael",36));

Person dave=personRepository.findOne(123);

Iterable<Person> devs = personRepository.findAllByProperyValue("occupation","developer");

Iterable<Person> aTeam = graphRepository.findAllByQuery("name","A*");

Iterable<Person> friends = personRepository.findFriends(dave);

19.6. Transactions

Neo4j is a transactional database, only allowing modifications to be performed within transaction

boundaries. Reading data does however not require transactions.

Spring Data Graph integrates with transaction managers configured using Spring. The simplest

scenario of just running the graph database uses a SpringTransactionManager provided by the Neo4j

kernel to be used with Spring's JtaTransactionManager. That is, configuring Spring to use Neo4j's

transaction manager.

Note

The explicit XML configuration given below is encoded in the Neo4jConfiguration

configuration bean that uses Spring's @Configuration feature. This greatly simplifies the

configuration of Spring Data Graph.

Programming model

52

Spring Data Graph

(1.0.0.RELEASE)

Example 19.12. Simple transaction manager configuration

<bean id="transactionManager" class="org.springframework.transaction.jta.JtaTransactionManager">

 <property name="transactionManager">

 <bean class="org.neo4j.kernel.impl.transaction.SpringTransactionManager">

 <constructor-arg ref="graphDatabaseService"/>

 </bean>

 </property>

 <property name="userTransaction">

 <bean class="org.neo4j.kernel.impl.transaction.UserTransactionImpl">

 <constructor-arg ref="graphDatabaseService"/>

 </bean>

 </property>

</bean>

<tx:annotation-driven mode="aspectj" transaction-manager="transactionManager"/>

For scenarios with multiple transactional resources there are two options. The first option is to have

Neo4j participate in the externally configured transaction manager by using the Spring support in

Neo4j by enabling the configuration parameter for your graph database. Neo4j will then use Spring's

transaction manager instead of its own.

Example 19.13. Neo4j Spring integration

<context:annotation-config />

<context:spring-configured/>

<bean id="transactionManager" class="org.springframework.transaction.jta.JtaTransactionManager">

 <property name="transactionManager">

 <bean id="jotm" class="org.springframework.data.graph.neo4j.transaction.JotmFactoryBean"/>

 </property>

</bean>

<bean class="org.neo4j.kernel.EmbeddedGraphDatabase" destroy-method="shutdown">

 <constructor-arg value="target/test-db"/>

 <constructor-arg>

 <map>

 <entry key="tx_manager_impl" value="spring-jta"/>

 </map>

 </constructor-arg>

</bean>

<tx:annotation-driven mode="aspectj" transaction-manager="transactionManager"/>

One can also configure a stock XA transaction manager (e.g. Atomikos, JOTM, App-Server-TM) to

be used with Neo4j and the other resources. For a bit less secure but fast 1 phase commit best effort,

use ChainedTransactionManager, which comes bundled with Spring Data Graph. It takes a list of

transaction managers as constructor params and will handle them in order for transaction start and

commit (or rollback) in the reverse order.

Programming model

53

Spring Data Graph

(1.0.0.RELEASE)

Example 19.14. ChainedTransactionManager example

<bean id="jpaTransactionManager"

 class="org.springframework.orm.jpa.JpaTransactionManager">

 <property name="entityManagerFactory" ref="entityManagerFactory"/>

</bean>

<bean id="jtaTransactionManager"

 class="org.springframework.transaction.jta.JtaTransactionManager">

 <property name="transactionManager">

 <bean class="org.neo4j.kernel.impl.transaction.SpringTransactionManager">

 <constructor-arg ref="graphDatabaseService" />

 </bean>

 </property>

 <property name="userTransaction">

 <bean class="org.neo4j.kernel.impl.transaction.UserTransactionImpl">

 <constructor-arg ref="graphDatabaseService" />

 </bean>

 </property>

</bean>

<bean id="transactionManager"

 class="org.springframework.data.graph.neo4j.transaction.ChainedTransactionManager">

 <constructor-arg>

 <list>

 <ref bean="jpaTransactionManager"/>

 <ref bean="jtaTransactionManager"/>

 </list>

 </constructor-arg>

</bean>

<tx:annotation-driven mode="aspectj" transaction-manager="transactionManager"/>

19.7. Detached node entities

Node entities can be in two different persistence state: attached or detached. By default, newly created

node entities are in the detached state. When persist() is called on the entity, it becomes attached

to the graph, and its properties and relationships are stores in the database. If persist() is not called

within a transaction, it automatically creates an implicit transaction for the operation.

Changing an attached entity inside a transaction will immediately write through the changes to the

datastore. Whenever an entity is changed outside of a transaction it becomes detached. The changes

are stored in the entity itself until the next call to persist().

All entities returned by library functions are initially in an attached state. Just as with any other entity,

changing them outside of a transaction detaches them, and they must be reattached with persist()

for the data to be saved.

Example 19.15. Persisting entities

@NodeEntity

class Person {

 String name;

 Person(String name) { this.name = name; }

}

// Store Michael in the database.

Person p = new Person("Michael").persist();

Programming model

54

Spring Data Graph

(1.0.0.RELEASE)

19.7.1. Relating detached entities

As mentioned above, an entity simply created with the new keyword starts out detached. It also has

no state assigned to it. If you create a new entity with new and then throw it away, the database won't

be touched at all.

Now consider this scenario:

Example 19.16. Relationships outside of transactions

@NodeEntity

class Movie {

 private Actor topActor;

 public void setTopActor(Actor actor) {

 topActor = actor;

 }

}

@NodeEntity

class Actor {

}

Movie movie = new Movie();

Actor actor = new Actor();

movie.setTopActor(actor);

Neither the actor nor the movie has been assigned a node in the graph. If we were to call

movie.persist(), then Spring Data Graph would first create a node for the movie. It would then note

that there is a relationship to an actor, so it would call actor.persist() in a cascading fashion. Once the

actor has been persisted, it will create the relationship from the movie to the actor. All of this will be

done atomically in one transaction.

Important to note here is that if actor.persist() is called instead, then only the actor will be persisted.

The reason for this is that the actor entity knows nothing about the movie entity. It is the movie entity

that has the reference to the actor. Also note that this behavior is not dependent on any configured

relationship direction on the annotations. It is a matter of Java references and is not related to the data

model in the database.

If the relationships form a cycle, then the entities will first all be assigned a node in the database, and

then the relationships will be created. The cascading of persist() is however only cascaded to related

entity fields that have been modified.

In the following example, the actor and the movie are both attached entites, having both been previously

persisted to the graph:

Example 19.17. Cascade for modified fields

actor.setName("Billy Bob");

movie.persist();

In this case, even though the movie has a reference to the actor, the name change on the actor will not

be persisted by the call to movie.persist(). The reason for this is, as mentioned above, that cascading

will only be done for fields that have been modified. Since the movie.topActor field has not been

modified, it will not cascade the persist operation to the actor.

Programming model

55

Spring Data Graph

(1.0.0.RELEASE)

19.8. Entity type representation

There are several ways to represent the Java type hierarchy of the data model in the graph. In

general, for all node and relationship entities, type information is needed to perform certain repository

operations. Some of this type information is saved in the graph database.

Implementations of TypeRepresentationStrategy take care of persisting this information on entity

instance creation. They also provide the repository methods that use this type information to perform

their operations, like findAll and count.

There are three available implementations for node entities to choose from.

• IndexingNodeTypeRepresentationStrategy

Stores entity types in the integrated index. Each entity node gets indexed with its type and any

supertypes that are also@NodeEntity-annotated. The special index used for this is called__types__.

Additionally, in order to get the type of an entity node, each node has a property __type__ with

the type of that entity.

• SubReferenceNodeTypeRepresentationStrategy

Stores entity types in a tree in the graph representing the type hierarchy. Each entity has a

INSTANCE_OF relationship to a type node representing that entity's type. The type may or may

not have a SUBCLASS_OF relationship to another type node.

• NoopNodeTypeRepresentationStrategy

Does not store any type information, and does hence not support finding by type, counting by type,

or retrieving the type of any entity.

There are two implementations for relationship entities available, same behavior as the corresponding

ones above:

• IndexingRelationshipTypeRepresentationStrategy

• NoopRelationshipTypeRepresentationStrategy

Spring Data Graph will by default autodetect which are the most suitable strategies for node and

relationship entities. For new data stores, it will always opt for the indexing strategies. If a data store

was created with the olderSubReferenceNodeTypeRepresentationStrategy, then it will continue to

use that strategy for node entities. It will however in that case use the no-op strategy for relationship

entities, which means that the old data stores have no support for searching for relationship entities.

The indexing strategies are recommended for all new users.

19.9. Introduced methods

The node and relationship aspects introduce (via AspectJ ITD - inter type declaration) several methods

to the entities.

Persisting the node entity after creation and after changes outside of a transaction. Participates in an

open transaction, or creates its own implicit transaction otherwise.

nodeEntity.persist()

Programming model

56

Spring Data Graph

(1.0.0.RELEASE)

Accessing node and relationship IDs

nodeEntity.getNodeId() and relationshipEntity.getRelationshipId()

Accessing the node or relationship backing the entity

entity.getPersistentState()

equals() and hashCode() are delegated to the underlying state

entity.equals() and entity.hashCode()

Creating relationships to a target node entity, and returning the relationship entity instance

nodeEntity.relateTo(targetEntity, relationshipClass, relationshipType)

Retrieving a single relationship entity

nodeEntity.getRelationshipTo(targetEntity, relationshipClass, relationshipType)

Creating relationships to a target node entity and returning the relationship

nodeEntity.relateTo(targetEntity, relationshipType)

Retrieving a single relationship

nodeEntity.getRelationshipTo(targetEnttiy, relationshipType)

Removing a single relationship

nodeEntity.removeRelationshipTo(targetEntity, relationshipType)

Remove the node entity, its relationships, and all index entries for it

nodeEntity.remove() and relationshipEntity.remove()

Project entity to a different target type, using the same backing state

entity.projectTo(targetClass)

Traverse, starting from the current node. Returns end nodes of traversal converted to the provided type.

nodeEntity.findAllByTraversal(targetType, traversalDescription)

Traverse, starting from the current node. Returns EntityPaths of the traversal result bound to the

provided start and end-node-entity types

Iterable<EntityPath> findAllPathsByTraversal(traversalDescription)

19.10. Projecting entities

As the underlying data model of a graph database doesn't imply and enforce strict type constraints

like a relational model does, it offers much more flexibility on how to model your domain classes and

which of those to use in different contexts.

For instance an order can be used in these contexts: customer, procurement, logistics, billing,

fulfillment and many more. Each of those contexts requires its distinct set of attributes and operations.

As Java doesn't support mixins one would put the sum of all of those into the entity class and thereby

making it very big, brittle and hard to understand. Being able to take a basic order and project it to a

different (not related in the inheritance hierarchy or even an interface) order type that is valid in the

current context and only offers the attributes and methods needed here would be very benefitial.

Spring Data Graph offers initial support for projecting node and relationship entities to different target

types. All instances of this projected entity share the same backing node or relationship, so data changes

are reflected immediately.

Programming model

57

Spring Data Graph

(1.0.0.RELEASE)

This could for instance also be used to handle nodes of a traversal with a unified (simpler) type (e.g.

for reporting or auditing) and only project them to a concrete, more functional target type when the

business logic requires it.

Example 19.18. Projection of entities

@NodeEntity

class Trainee {

 String name;

 @RelatedTo(elementClass=Training.class);

 Set<Training> trainings;

}

for (Person person : graphRepository.findAllByProperyValue("occupation","developer")) {

 Developer developer = person.projectTo(Developer.class);

 if (developer.isJavaDeveloper()) {

 trainInSpringData(developer.projectTo(Trainee.class));

 }

}

19.11. Bean validation (JSR-303)

Spring Data Graph supports property-based validation support. When a property is changed, it is

checked against the annotated constraints, e.g. @Min, @Max, @Size, etc. Validation errors throw a

ValidationException. The validation support that comes with Spring is used for evaluating the

constraints. To use this feature, a validator has to be registered with the GraphDatabaseContext.

Example 19.19. Bean validation

@NodeEntity

class Person {

 @Size(min = 3, max = 20)

 String name;

 @Min(0) @Max(100)

 int age;

}

58

Spring Data Graph

(1.0.0.RELEASE)

Chapter 20. Environment setup

Spring Data Graph dramatically simplifies development, but some setup is naturally required. For

building the application, Maven needs to be configured to include the Spring Data Graph dependencies,

and configure the AspectJ weaving. After the build setup is complete, the Spring application needs to

be configured to make use of Spring Data Graph.

20.1. Maven configuration

Spring Data Graph projects are easiest to build with Apache Maven. The main dependencies are:

Spring Data Graph itself, Spring Data Commons, parts of the Spring Framework, and the Neo4j graph

database.

20.1.1. Repositories

The milestone releases of Spring Data Graph are available from the dedicated milestone repository.

Neo4j releases and milestones are available from Maven Central.

Example 20.1. Spring milestone repository

<repository>

 <id>spring-maven-milestone</id>

 <name>Springframework Maven Repository</name>

 <url>http://maven.springframework.org/milestone</url>

</repository>

20.1.2. Dependencies

The dependency on spring-data-neo4j will transitively pull in the necessary parts of Spring

Framework (core, context, aop, aspects, tx), Aspectj, Neo4j, and Spring Data Commons. If you already

use these (or different versions of these) in your project, then include those dependencies on your own.

Example 20.2. Maven dependencies

<dependency>

 <groupId>org.springframework.data</groupId>

 <artifactId>spring-data-neo4j</artifactId>

 <version>1.0.0.RELEASE</version>

</dependency>

<dependency>

 <groupId>org.aspectj</groupId>

 <artifactId>aspectjrt</artifactId>

 <version>1.6.11.RELEASE</version>

</dependency>

20.1.3. AspectJ build configuration

Since Spring Data Graph uses AspectJ for build-time aspect weaving of entities, it is necessary to hook

in the AspectJ Maven plugin to the build process. The plugin also has its own dependencies. You also

need to explicitly specify the aspect libraries (spring-aspects and spring-data-neo4j).

Environment setup

59

Spring Data Graph

(1.0.0.RELEASE)

Example 20.3. AspectJ configuration

<plugin>

 <groupId>org.codehaus.mojo</groupId>

 <artifactId>aspectj-maven-plugin</artifactId>

 <version>1.0</version>

 <dependencies>

 <!-- NB: You must use Maven 2.0.9 or above or these are ignored (see MNG-2972) -->

 <dependency>

 <groupId>org.aspectj</groupId>

 <artifactId>aspectjrt</artifactId>

 <version>1.6.11.RELEASE</version>

 </dependency>

 <dependency>

 <groupId>org.aspectj</groupId>

 <artifactId>aspectjtools</artifactId>

 <version>1.6.11.RELEASE</version>

 </dependency>

 </dependencies>

 <executions>

 <execution>

 <goals>

 <goal>compile</goal>

 <goal>test-compile</goal>

 </goals>

 </execution>

 </executions>

 <configuration>

 <outxml>true</outxml>

 <aspectLibraries>

 <aspectLibrary>

 <groupId>org.springframework</groupId>

 <artifactId>spring-aspects</artifactId>

 </aspectLibrary>

 <aspectLibrary>

 <groupId>org.springframework.data</groupId>

 <artifactId>spring-datastore-neo4j</artifactId>

 </aspectLibrary>

 </aspectLibraries>

 <source>1.6</source>

 <target>1.6</target>

 </configuration>

</plugin>

20.2. Spring configuration

Users of Spring Data Graph have two ways of very concisely configuring it. Either they can use a

Spring Data Graph XML configuration namespace, or they can use a Java-based bean configuration.

20.2.1. XML namespace

The XML namespace can be used to configure Spring Data Graph. The config element

provides an XML-based configuration of Spring Data Graph in one line. It has three attributes.

graphDatabaseService points out the Neo4j instance to use. For convenience, storeDirectory can be

set instead of graphDatabaseService to point to a directory where a new EmbeddedGraphDatabase will

be created. For cross-store configuration, the entityManagerFactory attribute needs to be configured.

Environment setup

60

Spring Data Graph

(1.0.0.RELEASE)

Example 20.4. XML configuration with store directory

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:context="http://www.springframework.org/schema/context"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:datagraph="http://www.springframework.org/schema/data/graph"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

 http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-context-3.0.xsd

 http://www.springframework.org/schema/data/graph

 http://www.springframework.org/schema/data/graph/datagraph-1.0.xsd">

 <context:annotation-config/>

 <datagraph:config storeDirectory="target/config-test"/>

</beans>

Example 20.5. XML configuration with bean

<context:annotation-config/>

<bean id="graphDatabaseService" class="org.neo4j.kernel.EmbeddedGraphDatabase"

 destroy-method="shutdown">

 <constructor-arg index="0" value="target/config-test" />

</bean>

<datagraph:config graphDatabaseService="graphDatabaseService"/>

Example 20.6. XML configuration with cross-store

<context:annotation-config/>

<bean class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean"

 id="entityManagerFactory">

 <property name="dataSource" ref="dataSource"/>

 <property name="persistenceXmlLocation" value="classpath:META-INF/persistence.xml"/>

</bean>

<datagraph:config storeDirectory="target/config-test"

 entityManagerFactory="entityManagerFactory"/>

20.2.2. Java-based bean configuration

You can also configure Spring Data Graph using Java-based bean metadata.

Note

For those not familiar with Java-based bean metadata in Spring, we recommend that you

read up on it first. The Spring documentation has a high-level introduction as well as

detailed documentation on it.

In order to configure Spring Data Graph with Java-based bean metadata, the class

Neo4jConfiguration is registered with the context. This is either done explicitly in the context

configuration, or via classpath scanning for classes that have the @Configuration annotation.

The only thing that must be provided is the GraphDatabaseService. The example below

shows how to register the @Configuration Neo4jConfiguration class, as well as Spring's

ConfigurationClassPostProcessor that transforms the @Configuration class to bean definitions.

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/new-in-3.html#new-java-configuration
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-java-instantiating-container

Environment setup

61

Spring Data Graph

(1.0.0.RELEASE)

Example 20.7. Java-based bean configuration

<beans ...>

 ...

 <tx:annotation-driven mode="aspectj" transaction-manager="transactionManager"/>

 <bean class="org.springframework.data.graph.neo4j.config.Neo4jConfiguration"/>

 <bean class="org.springframework.context.annotation.ConfigurationClassPostProcessor"/>

 <bean id="graphDatabaseService" class="org.neo4j.kernel.EmbeddedGraphDatabase"

 destroy-method="shutdown" scope="singleton">

 <constructor-arg index="0" value="target/config-test"/>

 </bean>

 ...

</beans>

62

Spring Data Graph

(1.0.0.RELEASE)

Chapter 21. Cross-store persistence

The Spring Data Graph project support cross-store persistence, which allows for parts of the data to

be stored in a traditional JPA data store (RDBMS), and other parts in a graph store. This means that

an entity can be partially stored in e.g. MySQL, and partially stored in Neo4j.

This allows existing JPA-based applications to embrace NOSQL data stores for evolving certain parts

of their data model. Possible use cases include adding social networking or geospatial information to

existing applications.

21.1. Partial entities

Partial graph persistence is achieved by restricting the Spring Data Graph aspects to manage only

explicitly annotated parts of the entity. Those fields will be made @Transient by the aspect so that

JPA ignores them.

A backing node in the graph store is only created when the entity has been assigned a JPA ID. Only

then will the association between the two stores be established. Until the entity has been persisted, its

state is just kept inside the POJO (in detached state), and then flushed to the backing graph database

on persist().

The association between the two entities is maintained via a FOREIGN_ID field in the node, that

contains the JPA ID. Currently only single-value IDs are supported. The entity class can be resolved

via the TypeRepresentationStrategy that manages the Java type hierarchy within the graph database.

Given the ID and class, you can then retrieve the appropriate JPA entity for a given node.

The other direction is handled by indexing the Node with the FOREIGN_ID index which contains a

concatenation of the fully qualified class name of the JPA entity and the ID. The matching node can

then be found using the indexing facilities, and the two entities can be reassociated.

Using these mechanisms and the Spring Data Graph aspects, a single POJO can contain some fields

handled by JPA and others handles by Spring Data Graph. This also includes relationship fields

persisted in the graph database.

21.2. Cross-store annotations

Cross-store persistence only requires the use of one additional annotation: @GraphProperty. See below

for details and an example.

21.2.1. @NodeEntity(partial = "true")

When annotating an entity with partial = true, this marks it as a cross-store entity. Spring Data

Graph will thus only manage fields explicitly annotated with @GraphProperty.

21.2.2. @GraphProperty

Fields of primitive or convertible types do not normally have to be annotated in order to be persisted

by Spring Data Graph. In cross-store mode, Spring Data Graph only persists fields explicitly annotated

with @GraphProperty. JPA will ignore these fields.

Cross-store persistence

63

Spring Data Graph

(1.0.0.RELEASE)

The following example is taken from the Spring Data Graph examples myrestaurants-social project:

Example 21.1. Cross-store node entity

@Entity

@Table(name = "user_account")

@NodeEntity(partial = true)

public class UserAccount {

 private String userName;

 private String firstName;

 private String lastName;

 @GraphProperty

 String nickname;

 @RelatedTo(type = "friends", elementClass = UserAccount.class)

 Set<UserAccount> friends;

 @RelatedToVia(type = "recommends", elementClass = Recommendation.class)

 Iterable<Recommendation> recommendations;

 @Temporal(TemporalType.TIMESTAMP)

 @DateTimeFormat(style = "S-")

 private Date birthDate;

 @ManyToMany(cascade = CascadeType.ALL)

 private Set<Restaurant> favorites;

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 @Column(name = "id")

 private Long id;

 @Transactional

 public void knows(UserAccount friend) {

 relateTo(friend, "friends");

 }

 @Transactional

 public Recommendation rate(Restaurant restaurant, int stars, String comment) {

 Recommendation recommendation = relateTo(restaurant, Recommendation.class, "recommends");

 recommendation.rate(stars, comment);

 return recommendation;

 }

 public Iterable<Recommendation> getRecommendations() {

 return recommendations;

 }

}

21.3. Configuring cross-store persistence

Configuring cross-store persistence is done similarly to the default Spring Data Graph configuration.

All you need to do is to specify an entityManagerFactory in the XML namespace config element,

and Spring Data Graph will configure itself for cross-store use.

http://github.com/SpringSource/spring-data-graph-examples

Cross-store persistence

64

Spring Data Graph

(1.0.0.RELEASE)

Example 21.2. Cross-store Spring configuration

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:context="http://www.springframework.org/schema/context"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:datagraph="http://www.springframework.org/schema/data/graph"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd

 http://www.springframework.org/schema/context

 http://www.springframework.org/schema/context/spring-context-3.0.xsd

 http://www.springframework.org/schema/data/graph

 http://www.springframework.org/schema/data/graph/datagraph-1.0.xsd

 ">

 <context:annotation-config/>

 <datagraph:config storeDirectory="target/config-test"

 entityManagerFactory="entityManagerFactory"/>

 <bean class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean"

 id="entityManagerFactory">

 <property name="dataSource" ref="dataSource"/>

 <property name="persistenceXmlLocation" value="classpath:META-INF/persistence.xml"/>

 </bean>

</beans>

65

Spring Data Graph

(1.0.0.RELEASE)

Chapter 22. Sample code

22.1. Introduction

Spring Data Graph comes with a number of sample applications. The source code of the samples can

be found on Github. The different sample projects are introduced below.

22.2. Hello Worlds sample application

The Hello Worlds sample application is a simple console application. It creates some worlds (node

entities) and rocket routes (relationships) between worlds, all in a galaxy (the graph), and then prints

them.

The unit tests demonstrate some other features of Spring Data Graph as well. The sample comes with

a minimal configuration for Maven and Spring to get up and running quickly.

Executing the application creates the following graph in the graph database:

22.3. IMDB sample application

The IMDB sample is a web application that imports datasets from the Internet Movie Database (IMDB)

into the graph database. It allows the listing of movies with their actors, and of actors and their roles

in different movies. It also uses graph traversal operations to calculate the Bacon number of any given

actor. This sample application shows the usage of Spring Data Graph in a more complex setting, using

several annotated entities and relationships as well as indexes and graph traversals.

See the readme file for instructions on how to compile and run the application.

An excerpt of the data stored in the graph database after executing the application:

http://github.com/SpringSource/spring-data-graph-examples
http://en.wikipedia.org/wiki/Bacon_number

Sample code

66

Spring Data Graph

(1.0.0.RELEASE)

22.4. MyRestaurants sample application

Simple, JPA-based web application for managing users and restaurants, with the ability to add

restaurants as favorites to a user. It is basically the foundation for the MyRestaurants-Social application

(seeSection 22.5, “MyRestaurant-Social sample application”), and does therefore not use Spring Data

Graph.

22.5. MyRestaurant-Social sample application

This application extends the MyRestaurants sample application, adding social networking functionality

to it with cross-store persistence. The web application allows for users to add friends and rate

restaurants. A graph traversal provides recommendations based on your friends' (and their friends')

rating of restaurants.

Here's an excerpt of the data stored in the graph database after executing the application:

Sample code

67

Spring Data Graph

(1.0.0.RELEASE)

68

Spring Data Graph

(1.0.0.RELEASE)

Chapter 23. Performance considerations

Although adding layers of abstraction is a common pattern in software development, each of these

layers generally adds overhead and performance penalties. This chapter discusses the performance

implications of using Spring Data Graph instead of the Neo4j API directly.

23.1. When is Spring Data Graph right

The focus of Spring Data Graph is to add a convenience layer on top of the Neo4j API. This enables

developers to get up and running with a graph database very quickly, having their domain objects

mapped to the graph with very little work. Building on this foundation, one can later explore other,

more efficient ways to explore and process the graph - if the performance requirements demand it.

Spring Data Graph was however not designed with a major focus on performance. It does add some

overhead to pure graph operations. Something to keep in mind is that any access of properties and

relationships will in general read through down to the database. To avoid multiple reads, it is sensible

to store the result in a local variable in suitable scope (e.g. method, class or jsp).

Most of the overhead comes from the use of the Java Reflection API, which is used to provide

information about annotations, fields and constructors. Some of the information is already cached by

the JVM and the library, so that only the first access gets a performance penalty.

69

Spring Data Graph

(1.0.0.RELEASE)

Chapter 24. Neo4jTemplate

The Neo4jTemplate offers the convenient API of Spring templates for the Neo4j graph database.

24.1. Basic operations

For direct retrieval of nodes and relationships, the getReferenceNode(), getNode() and

getRelationship() methods can be used.

There are methods (createNode() and createRelationship()) for creating nodes and relationships

that automatically set provided properties and optionally index certain fields.

Example 24.1. Neo4j template

import static org.springframework.data.graph.core.Property._;

Neo4jOperations neo = new Neo4jTemplate(graphDatabaseService);

Node michael = neo.createNode(_("name","Michael"));

Node mark = neo.createNode(_("name","Mark"));

Node thomas = neo.createNode(_("name","Thomas"));

neo.createRelationship(mark,thomas, WORKS_WITH, _("project","spring-data"));

neo.index("devs",thomas, "name","Thomas");

assert "Mark".equals(neo.query("devs","name","Mark",new NodeNamePathMapper()));

24.2. Indexing

Adding nodes and relationships to an index is done with the index() method.

The query() methods either take a field/value combination to look for exact matches in the index, or

a Lucene query object or string to handle more complex queries. All query() methods provide Path

results to a PathMapper.

24.3. Graph traversal

The traversal methods are at the core of graph operations. As such, they are fully supported in the

Neo4jTemplate. The traverseNext() method traverses to the direct neighbors of the start node,

filtering the relationships according to the parameters.

The traverse() method covers the full traversal operation that takes a TraversalDescription

(typically built with the Traversal.description() DSL) and runs it from the start node. Each path

that is returned by the traversal is passed to the PathMapper to be converted into the desired type.

24.4. Path abstraction and PathMapper

For the querying operations Neo4jTemplate unifies the result with the Path abstraction that comes

from Neo4j. Much like a result set, a path contains a chain of nodes() connected by relationships(),

starting at a startNode() and ending at a endNode(). The lastRelationship() is also available

separately. The Path abstraction also wraps results that contain just nodes or relationships.

Neo4jTemplate

70

Spring Data Graph

(1.0.0.RELEASE)

Using implementations of PathMapper<T> and PathMapper.WithoutResult (comparable with

RowMapper and RowCallbackHandler), the paths can be converted to arbitrary Java objects.

With EntityPath and EntityMapper there is also support for using node entities within the Path and

PathMapper constructs.

24.5. Transactions

The Neo4jTemplate provides configurable implicit transactions for all its methods. By default it creates

a transaction for each call (which is a no-op if there is already a transaction running). If you call the

constructor with the useExplicitTransactions parameter set to true, it won't create any transactions

so you have to provide them using @Transactional or the TransactionTemplate.

71

Spring Data Graph

(1.0.0.RELEASE)

Chapter 25. AspectJ details

The object graph mapper of Spring Data Graph relies heavily on AspectJ. AspectJ is a Java

implementation of the aspect-oriented programming paradigm that allows easy extraction and

controlled application of so-called cross-cutting concerns. Cross-cutting concerns are typically

repetitive tasks in a system (e.g. logging, security, auditing, caching, transaction scoping) that

are difficult to extract using the normal OO paradigms. Many OO concepts, such as subclassing,

polymorphism, overriding and delegation are still cumbersome to use with many of those concerns

applied in the code base. Also, the flexibility becomes limited, potentially adding quite a number of

configuration options or parameters.

The AspectJ pointcut language can be intimidating, but a developer using Spring Data Graph will not

have to deal with that. Users don't have care about to hooking into a framework mechanism, or having

to extend a framework superclass.

AspectJ uses a declarative approach, defining concrete advice, which is just pieces of code that contain

the implementation of the concern. AspectJ advice can for instance be applied before, after, or instead

of a method or constructor call. It can also be applied on variable and field access. This is declared

using AspectJ's expressive pointcut language, able to express any place within a code structure or

flow. AspectJ is also able to introduce new methods, fields, annotations, interfaces, and superclasses

to existing classes.

Spring Data Graph uses a mix of these mechanisms internally. First, when encountering the

@NodeEntity or @RelationshipEntity annotations it introduces a new interface NodeBacked or

RelationshipBacked to the annotated class. Secondly, it introduces fields and methods to the

annotated class. See Section 19.9, “Introduced methods” for more information on the methods

introduced.

Spring Data Graph also leverages AspectJ to intercept access to fields, delegating the calls to the graph

database instead. Under the hood, properties and relationships will be created.

So how is an aspect applied to a concrete class? At compile time , the AspectJ Java compiler (ajc)

takes source files and aspect definitions, and compiles the source files while adding all the necessary

interception code for the aspects to hook in where they're declared to. This is known as compile-time

weaving. At runtime only a small AspectJ runtime is needed, as the byte code of the classes has already

been rewritten to delegate the appropriate calls via the declared advice in the aspects.

Note

A caveat of using compile-time weaving is that all source files that should be part of the

weaving process must be compiled with the AspectJ compiler. Fortunately, this is all taken

care of seamlessly by the AspectJ Maven plugin.

AspectJ also supports other types of weaving, e.g. load-time weaving and runtime weaving. These are

currently not supported by Spring Data Graph.

https://secure.wikimedia.org/wikipedia/en/wiki/Aspect-oriented_programming

72

Spring Data Graph

(1.0.0.RELEASE)

Chapter 26. Neo4j Server
Neo4j is not only available in embedded mode. It can also be installed and run as a stand-alone

server accessible via a REST API. Developers can integrate Spring Data Graph into the Neo4j server

infrastructure in two ways: in an unmanaged server extension, or via the REST API.

26.1. Server Extension

When should you write a server extension? The default REST API is essentially a REST'ified

representation of the Neo4j core API. It is nice for getting started, and for simpler scenarios. For

more involved solutions that require high-volume access or more complex operations, writing a server

extension that is able to process external parameters, do all the computations locally in the plugin, and

then return just the relevant information to the calling client is preferable.

The Neo4j Server has two built-in extension mechanisms. It is possible to extend existing URI

endpoints like the graph database, nodes, or relationships, adding new URIs or methods to those. This

is achieved by writing a server plugin. This plugin type has some restrictions though.

For complete freedom in the implementation, an unmanaged extension can be used. Unmanaged

extensions are essentially Jersey resource implementations. The resource constructors or methods can

get the GraphDatabaseService injected to execute the necessary operations and return appropriate

Representations.

Both kinds of extensions have to be packaged as JAR files and added to the Neo4j

Server's plugin directory. Server Plugins are picked up by the server at startup if they

provide the necessary META-INF.services/org.neo4j.server.plugins.ServerPlugin file for Java's

ServiceLoader facility. Unmanaged extensions have to be registered with the Neo4j Server

configuration.

Example 26.1. Configuring an unmanaged extension

org.neo4j.server.thirdparty_jaxrs_classes=com.example.mypackage=/my-context

Running Spring Data Graph on the Neo4j Server is easy. You need to tell the server where to find the

Spring context configuration file, and which beans from it to expose:

Example 26.2. Server plugin initialization

public class HelloWorldInitializer extends SpringPluginInitializer {

 public HelloWorldInitializer() {

 super(new String[]{"spring/helloWorldServer-Context.xml"},

 Pair.of("worldRepository", WorldRepository.class),

 Pair.of("graphRepositoryFactory", GraphRepositoryFactory.class));

 }

}

Now, your resources can be annotated with the beans they need, like this:

Example 26.3. Jersey resource

@Path("/path")

@POST

@Produces(MediaType.APPLICATION_JSON)

public void foo(@Context WorldRepository repo) {

 ...

}

http://docs.neo4j.org/chunked/milestone/server-plugins.html
http://docs.neo4j.org/chunked/milestone/server-unmanaged-extensions.html
http://jersey.java.net/

Neo4j Server

73

Spring Data Graph

(1.0.0.RELEASE)

The SpringPluginInitializer merges the GraphDatabaseService with the Spring

configuration and registers the named beans as Jersey Injectables. It is still

necessary to list the initializer's fully qualified class name in a file named

META-INF/services/org.neo4j.server.plugins.PluginLifecycle. The Neo4j Server can then

pick up and run the initialization classes before the extensions are loaded.

26.2. Using Spring Data Graph as a REST client

Spring Data Graph can use a set of Java REST bindings which come as a drop in replacement

for the GraphDatabaseService API. By simply configuring the graphDatabaseService to be a

RestGraphDatabase pointing to a Neo4j Server instance.

Note

The Neo4j Server REST API does not allow for transactions to span across requests,

which means that Spring Data Graph is not transactional when running with a

RestGraphDatabase.

To set up your project to use the REST bindings, add this dependency to your pom.xml:

Example 26.4. REST-Client configuration - pom.xml

<dependency>

 <groupId>org.springframework.data</groupId>

 <artifactId>spring-data-neo4j-rest</artifactId>

 <version>1.0.0.RELEASE</version>

</dependency>

Now, you set up the normal Spring Data Graph configuration, but point the database to an URL instead

of a local directory, like so:

Example 26.5. REST client configuration - application context

<datagraph:config graphDatabaseService="graphDatabaseService"/>

<bean id="graphDatabaseService" class="org.neo4j.rest.graphdb.RestGraphDatabase">

 <constructor-arg value="http://localhost:7474/db/data/"/>

</bean>

Your project is now set up to work against a remote Neo4j Server.

	Good Relationships
	Table of Contents
	Foreword by Rod Johnson
	Foreword by Emil Eifrem
	About this guide book
	Part I. Tutorial
	Chapter 1. Introducing our project
	Chapter 2. The Spring stack
	2.1. Required setup

	Chapter 3. The domain model
	Chapter 4. Learning Neo4j
	Chapter 5. Spring Data Graph
	Chapter 6. Annotating the domain
	Chapter 7. Indexing
	Chapter 8. Repositories
	Chapter 9. Relationships
	9.1. Creating relationships
	9.2. Accessing related entities
	9.3. Accessing the relationship entities

	Chapter 10. Get it running
	10.1. Populating the database
	10.2. Inspecting the datastore
	10.2.1. Neoclipse visualization
	10.2.2. The Neo4j Shell

	Chapter 11. Web views
	11.1. Searching
	11.2. Listing results

	Chapter 12. Adding social
	12.1. Users
	12.2. Ratings for movies

	Chapter 13. Adding Security
	Chapter 14. More UI
	Chapter 15. Importing Data
	Chapter 16. Recommendations

	Part II. Reference
	Preface
	Chapter 17. About Spring Data
	Chapter 18. Introduction to Neo4j
	18.1. What is a graph database?
	18.2. About Neo4j
	18.3. GraphDatabaseService
	18.4. Creating nodes and relationships
	18.5. Graph traversal
	18.6. Indexing

	Chapter 19. Programming model
	19.1. AspectJ support
	19.1.1. AspectJ IDE support

	19.2. Defining node entities
	19.2.1. @NodeEntity: The basic building block
	19.2.2. @GraphProperty: Optional annotation for property fields
	19.2.3. @Indexed: Making entities searchable by field value
	19.2.4. @GraphTraversal: fields as traversal result views

	19.3. Relating node entities
	19.3.1. @RelatedTo: Connecting node entities
	19.3.2. @RelationshipEntity: Rich relationships
	19.3.3. @RelatedToVia: Accessing relationship entities

	19.4. Indexing
	19.4.1. Exact and numeric index
	19.4.2. Fulltext indexes
	19.4.3. Manual index access
	19.4.4. Indexing in Neo4jTemplate

	19.5. CRUD with repositories
	19.5.1. CRUDRepository
	19.5.2. IndexRepository and NamedIndexRepository
	19.5.3. TraversalRepository
	19.5.4. Creating repositories
	19.5.5. Composing repositories

	19.6. Transactions
	19.7. Detached node entities
	19.7.1. Relating detached entities

	19.8. Entity type representation
	19.9. Introduced methods
	19.10. Projecting entities
	19.11. Bean validation (JSR-303)

	Chapter 20. Environment setup
	20.1. Maven configuration
	20.1.1. Repositories
	20.1.2. Dependencies
	20.1.3. AspectJ build configuration

	20.2. Spring configuration
	20.2.1. XML namespace
	20.2.2. Java-based bean configuration

	Chapter 21. Cross-store persistence
	21.1. Partial entities
	21.2. Cross-store annotations
	21.2.1. @NodeEntity(partial = "true")
	21.2.2. @GraphProperty

	21.3. Configuring cross-store persistence

	Chapter 22. Sample code
	22.1. Introduction
	22.2. Hello Worlds sample application
	22.3. IMDB sample application
	22.4. MyRestaurants sample application
	22.5. MyRestaurant-Social sample application

	Chapter 23. Performance considerations
	23.1. When is Spring Data Graph right

	Chapter 24. Neo4jTemplate
	24.1. Basic operations
	24.2. Indexing
	24.3. Graph traversal
	24.4. Path abstraction and PathMapper
	24.5. Transactions

	Chapter 25. AspectJ details
	Chapter 26. Neo4j Server
	26.1. Server Extension
	26.2. Using Spring Data Graph as a REST client

