Good Relationships

The Spring Data Graph Guide Book

1.1.0.RELEASE

Copyright © 2010 - 2011 Michael Hunger, David Montag

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically. Copyright 2010-2011 Neo Technology

Foreword Dy RO JONNSONoiiiiiiiii et e e e e e e e e e e e e e s e et bt e e e e aeeeseannneeees \Y;

Foreword by Emil EIfFEmMooe e Vi
ADOUL this QUIE DOOK ... e e e st e e e e e s e et reeeeaeeas Vii
1. The Spring Data Graph Projectcooovvvviiiiiiii vii
2. FEEADACKei e e e e e e e e e anreeeeans Vii
3. FOrmat Of the BOOKccuuiiiiiiiiie ettt e e s e e e e e e e st r e e e e e e e e annnes Vii
4. ACKNOWIEUGEMENTS ...ttt e e e e nnee e e e Vii
I U 1o = PSP PPPRPPPPPPRP 1
O T g oo [0 Tor o To T U o] o =" A PEPRR 2
A I T TR o 1 0T = o 3
2.1, REQUITEH SELUP ...eeiiiiiiiieeeiiiee ettt et e e e e e e e e e s nnrn e e e 3

3. The domain MOGELueiiiiee e e e e e s e e e e e e e e eneeeeas 5
4. LEAIMNING NEOAeeiiiiiiiiee ettt et et e e et e e e st et e e e sbe e e e e ennbe e e e s anrnreeeans 7
5. SPring Data Graphcooeiiiiiiiiiies e e aa e e 8
6. ANNotating the dOMEINooiiiiiiie e e 11
T INAEXING oo 12
o = o0 1=] (0] 1 = PSP 13
9. REIBLIONSNIPS ...eeeeeiiiiie ettt e et e e et e e e e e e e e e e e nnnees 14
9.1. Creating rel@tionShiPSccuiiiiiie s 14

9.2. Accessing related entitieSuvveieeeee e 14

9.3. Accessing the relationship entitieScoooiiiiiiiiiiiie e 15

10, GEL T TUNNING .o 16
10.1. Populating the datalaseccevveeiiiiiei e 16
10.2. INSPECLiNg the datBSIOrec..viiiiiiiiiee e 17
10.2.1. NeoClipse VISUAIZALIONcoviiiiiiiieiiiiiie e 17

10.2.2. The NEO4) Shellooooiiiiee e 18

L1 WED VIBIWS ettt ettt e ettt e ettt e e e sttt e e e et e e e e nnbe e e e s anbn e e e e e nnnneeas 20
I S = o o 11 o SRR 20
11.2. LiStiNG FESUILS ..o 21

12, AAING SOCIEL ...t 23
0 R U L 23
12.2. RENGS FOr MOVIESveiiiiiiieie ettt s 24

G AN (o T 0o IS = ol PSRRI 25
T4, IMIOFE UL ettt n e b e ne e 29
BT o o 1T I T - Y 32
16. RECOMMENUALIONSveeeeieeeei ittt e e e e e e s et e e e e e e e s e st ae e e e e e e e s s ansbeaeeeaeeeeseannseeeeeeeens 35
[1. Reference DOCUMENLALIONcccuuviiiiiieeees ittt e e e e e e s s sttt e e e e e e e e s sennbereeeeeeeessannenaneneeaeeenanes 36
Reference DOCUMENTELIONuvviiiiieeee e e e s e e e e e e s rrre e e e e e s et raaeeeeeas XXXVil
1. Spring Data and Spring Data Grapheeevieeeeiiiiiiiiiiecee e XXXVil

2. Reference DocumMentation OVEIVIEWeeeeiuieeeeiiiiieeeaniieeeessieeeesnieeeeeans XXXVil

17. Introduction 10 NEOA| .ccoeeeiie e, 40
17.1. What is a graph dataDase?ccveeeiiiiiieeiieee e 40
17.2. ADOUE NOA] ...ttt en st en s es et seneneneeens 40
17.3. GraphDatalDaSESEIVICEccoiuviiie ettt e e 40
17.4. Creating nodes and relationshipsc.cvvveiiieeeii i 41
17.5. Graph traVerSalcooocciiiieeiee e s 41
G T 1 o 1= (] T 41
17.7. Querying With CYPRENceviieeie s 42
17.8. Gremlin a Graph Traversal DSLcoocuiiiiiiiiee e 43

Good Relationships

18. Programming MOE]coooiiiiiiiiieii e 44
MRS TN o <o AU JES U o] 00 44
18.1.1. ASPECtI IDE SUPPOI ..covvviieieieiie ettt e e e e e eeeneaaes 44
18.2. DefiNiNg NOUE ENEITIES ...uuvvviiiiiiiiiiiriiiieieiiieierererarernrernrerrrrrrrrrrrrrarnrarnrnrarnrarnnnne 45
18.2.1. @NodeEntity: The basic building bIOCK ..o 45
18.2.2. @GraphProperty: Optional annotation for property fields....................... 45
18.2.3. @Indexed: Making entities searchable by field value..............ccccvveeee. 45
18.2.4. @Query: fields as query result VIEWSccccvvveeeieeeeiiiciiiieeee e, 46
18.2.5. @GraphTraversal: fields as traversal result VIeWsScccceeeeeeeeeiiennnne, 46
18.3. Relaling NOOE ENLITIESuuuuuuiuiiiiii e rnrarnrarasnnnrnnnnns 46
18.3.1. @RelatedTo: Connecting node entitiescccceeeviiiciiiiieeeeee e, 47
18.3.2. @RelationshipEntity: Rich relationshipscccoeveeviiiieeiiiiiec e, 48
18.3.3. @RelatedToVia: Accessing relationship entitiescccvevvivveeeiiiieeeens 49
18.4. INntroduced MELNOUSccoiiiiiiieiiiiie e 49
18.5. INAEXING ..ottt et e e e e e e e e e e e e e e e s s et r e e e e e e e e e e s nanrraaeeeas 50
18.5.1. Exact and NUMENTC INAEXuveieiiieeeiiiiiiiee e 50
18.5.2. FUITEXE TNAEXESeeeiiieeei ettt e e 51
18.5.3. Manual iNdEX CCESSuuviiiiiieeeiiiciiiieiee e e e e et e e e e e e e st eeeaeeeeennes 51
18.5.4. Indexing in NeOA TEMPIELEccvreieiiiiiiee e 52
18.6. CRUD WIith r€POSITONESuuveiiieeeii ittt e e e naee s 52
18.6.1. CRUDREPOSITOIYuvvvieiieeeeiiiiiiiiiieee e e e s eeciiieee e e e e e e s e ssintraee e e e e e e e e ssanssnees 52
18.6.2. IndexRepository and NamedindexRepositoryceeeeeeeveveeeeeeeeeeeeeen, 53
18.6.3. TraversalREPOSITONYc.oooiiiiiiiiiiee e 53
18.6.4. CypPNEr-QUENESeeiiiiiiiieeiiiee et 53
18.6.5. Creating rePOSITONEScciiirreieiiiieie et 54
18.6.6. COMPOSING FEPOSITONESvvveieiieeeeiiiiiiiieeee e e e e e s e e e e e s arrrrreaa e 55
S I = 10 o o PP 56
18.8. Detached NOUE ENLITIESccuvviie it 58
18.8.1. Relating detached entities ... 59
18.9. Entity type repreSENtalioNoeeiiurreeeiiiieeeeaiiee e e st e e e s e e sneree e 60
18.10. Projecting ENTITIEScccuveeeeeiiieiee ettt e e 60
18.11. Bean validation (JSR-303)cceiiiiiriieiiiiiieesiiiee et 61
19, ENVIFONMENE SEIUD .oeeeeiiiiiiiiiiieeee e e e e ceitttee e e e e e s e s s staba e e e eaeessssattbeneeeaeeesssnsnnraeeeeaeeesaannes 62
19.1. Gradle CoNfigUIioNocciiiiiiiei e e e e eanes 62
19.2. Ant/lvy configurationcccovvviiiiiiii 62
19.3. Maven CONFIQUIBLIONocuvrieeeiiiiee e ettt e e e e e e 63
19.3.1. REPOSITONES ..eeieiiiriieeeiieiee ettt e e e e e nnbneeeean 63
19.3.2. DEPENUENCIESeeveeiiiiiiee ettt ettt e e sbe e e e eaes 63
19.3.3. Aspect build configurationcccuveeeeeeeiiiiiiiiee e 64

19.4. SPring CONFIQUIALIONuviiieeeeei i e e e et e e e e s s e arrraeeeeeas 64
19.4.1. XML NAMESPACEceevvvueiieeeeeeeeeiitie e e e e e e e eeetan s e e e e e e eeeaaaa e e e e e e e e eeenennnan 64
19.4.2. Javarbased bean configurationccceeeiiiiieenniieeee e 65

20. CrOSS-StOrE PEISISLENCEeeeeiuriieeeiiteee e ettt e e st e e e s sbee e e s ssb e e e e abbe e e e s snbe e e e e asbneeesannneeas 67
20.1. Partial @NtIIESvvvveieiiee i e e e e e e e a e e e nnneees 67
20.2. CroSS-StOre @nNNOLATIONSveeeeiiiiieeeeiiteee ettt e e st e et e e et e e e e e e eneees 67
20.2.1. @NodeEntity(partial = "trUE™)ccvveeeieeee e 67
20.2.2. @GraphPropertyccooeeeeeeeee 67
20.3. Configuring CroSS-StOre PErSISLENCEvvveeeiiiieieeaireee et e e e 68
21, SAMPIE COUE ..ottt e e e e e e e e e e e e e e ennes 70

Good Relationships

P24 0 I 1 11 0o 1 o o o USSP PPESPR 70
21.2. Hello Worlds sample appliCationcocccviiieiiie e e e 70
21.3. IMDB sample appliCationceeeeeiiiiiiiiiiiee e e e e eerrree e e e e ennees 70
21.4. MyRestaurants sample appliCationccevveeeeieiieeeeeeeeeeeeeeeeeeeeeee e 71
21.5. MyRestaurant-Social sample appliCationccooiiiieiiiiiiec e 71
22. Performance CONSIAEIELIONScccvrririirieeeesieiiiee e e e e e s e st e e e e e e e s s snenneraeeeaeeesennneees 73
22.1. When is Spring Data Graph rightccoveiiiiiiiiieee e 73
23, NEOA TEMPIALE e e e e e e s e e e r e e e e e e s eennbraeeeeeas 74
23.1. BASIC OPEraLIONSccoeieiiiiiee e e e ettt e e s e e e e e e e s et e e e e e e e e raaa e 74
23.2. QUENYRESUILeeieiiiiiie ettt e e s e e et e e e et e e s snne e e e e ennaeeeeennrneeeeans 74
23.3. INAEXING ...ttt 74
23.4. Graph traVErSaAlooceeiie s 75
23.5. CyPNEr QUETTESooiiiiiiiie et e ettt et e e et e e st e e s eneeeas 75
23.6. GIreMIiN SCHPLS .ovviiei it e e e e r e e e e e e s raeeaaaeeas 75
23.7. TIANSACHONS ...civeeiee ettt et e ettt e e et e e e st e e e s snnne e e e e nnsaeeeeanees 75
23.8. NEOA] REST SEIVEN ...cciiiiieiiiieee ettt e ettt e e stee e e e e et e e e s snnee e e e annneeeeennnes 75
24, ASPECEI ELAIISeveeeeiiiiee ettt e e e et e e e e e e e e e e nnnees 76
25. NBOA] SEIVETovveeeeeeeeeee e ee st ee sttt en s sa et es s ne s ass s en s enenneeeees 77
25.1. SEIVEr EXENSION ...uviiiiieeeiiiiiiiiieeee e e s e sieiete et e e e e s s st e e e e e e e s snntsaeeeeaaeeesnasnnneees 77
25.2. Using Spring Data Graph as a REST clientcccceeveeeeiiiiiiiiieee e 78

Foreword by Rod Johnson

I’m excited about Spring Data Graph for several reasons.

First, this project is in a very important space. We are in an era of transition. A very few years
ago, arelational database was a given for storing nearly all the datain nearly all applications. While
relational databases remain important, new application requirements and massive data proliferation
have prompted a richer choice of data stores. Graph databases have some very interesting strengths,
and Neodj isproving itself valuable in many applications. It's a choice you should add to your tool box.

Second, Spring Data Graph is an innovative project, which makesit easy to work with one of the most
interesting new data stores. Unfortunately, the proliferation of new data stores has not been matched
by innovation in programming models to work with them. Ironically, just after modern ORM mapping
made working with relational data in Java relatively easy, the data store disruption occurred, and
devel opers were back to sguare one: struggling once more with clumsy, low level APIs. Working with
most non-relational technologiesisoverly complex and imposestoo much work on developers. Spring
Data Graph makes working with Neo4j amazingly easy, and therefore has the potential to make you
more successful as a developer. Its use of Aspect] to eliminate persistence code from your domain
model is truly innovative, and on the cutting edge of today’ s Java technol ogies.

Third, I'm excited about Spring Data Graph for personal reasons. | no longer get to write code as often
as| would like. My initial convictions that Spring and AspectJ could both make building applications
with Neodj dramatically easier and cross-store object navigation possible gave me an excuse for a
much-needed coding binge early in 2010. Thisled to aprototype of what became Spring Data Graph —
at times written paired with Emil. I’m sure the vast majority of my code has long since been replaced
(probably for the better) by coders who aren't rusty — thanks Michael and Thomas! — but | retain
my pleasant memories.

Finally, Spring Data Graph is part of the broader Spring Data project: one of the key areas in which
Spring is innovating to help meet new application requirements. | encourage you to explore Spring
Data, and — better still — become involved in the community and contribute.

Enjoy the Spring Data Graph book, and happy coding!

Rod Johnson, Founder, Spring and SV P, Application Platform, VMware

Foreword by Emil Eifrem

"Spring is the most popular middleware on the planet,” | thought to myself as | walked up to Rod
Johnson in late 2009 at the JAOO conference in Aarhus, Denmark. Rod had just given an introductory
presentation about Spring Roo and when he was done | told him "Great talk. You're clearly building
astack for the future. What about support for non-relational databases?'

We started talking and quickly agreed that NOSQL will play an important role in emerging stacks.
Now, ayear and half |ater, Spring Data Graph isavailableinitsfirst stable release and I'm blown away
by the result. Never before in any environment, in any programming framework, in any stack, has it
been so easy and intuitive to tap into the power of a graph database like Neo4j. It's a testament to the
efforts by an awesome team of four hackers from Neo Technology and VMware: Michael Hunger,
David Montag, Thomas Risberg and Mark Pollack.

The Spring framework revolutionized how we all wrote enterprise Java applications and today it's
used by millions of enterprise developers. Graph databases al so stand out in the NOSQL crowd when
it comes to enterprise adoption. You can find graph databases used in areas as diverse as network
management, fraud detection, cloud management, anything with social data, geo and location services,
master data management, bioinformatics, configuration databases, and much more.

Spring developers deserve access to the best tools available to solve their problem. Sometimes that's
arelational database accessed through JPA. But more often than not, a graph database like Neo4j is
the perfect fit for your project. | hope that Spring Data Graph will give you access to the power and
flexibility of graph databases while retaining the familiar productivity and convenience of the Spring
framework.

Enjoy the Spring Data Graph guide book and welcome to the wonderful world of graph databases!

Emil Eifrem, CEO of Neo Technology

Vi

About this guide book

1. The Spring Data Graph Project

Welcome to the Spring Data Graph Guide Book. Thank you for taking the time to get an in depth ook
into Spring Data Graph. This project is part of the Spring Data project, which brings the convenient
programming model of the Spring Framework to modern NOSQL databases. Spring Data Graph, as
the name alludes to, aims to provide support for graph databases. It currently supports Neo4;.

2. Feedback

It was written by developers for developers. Hopefully we've created a guide that is well received by
our peers.

If you have any feedback on Spring Data Graph or this book, please provide it via the SpringSource
JRA, the SpringSource NOSQL Forum, github comments or issues, or the Neo4j mailing list.

3. Format of the Book

This book is presented as a duplex book, aterm coined by Martin Fowler. A duplex book consists of
at least two parts. Thefirst part is an easily accessible tutorial that gives the reader an overview of the
topics contained in the book. It contains lots of examples and discussion topics. This part of the book
is highly suited for cover-to-cover reading.

We chose atutorial describing the creation of aweb application that allows movie enthusiasts to find
their favorite movies, rate them, connect with fellow movie geeks, and enjoy social features such as
recommendations. The application is running on Neo4j using Spring Data Graph and the well-known
Spring Web Stack.

The second part of the book is the classic reference documentation, containing detailed information
about the library. It discusses the programming model, the underlying assumptions, and internals, as
well as the APIsfor the object-graph mapping. The reference documentation istypically used to look
up concrete bits of information, or to drill down into certain topics. For hackerswanting to really delve
into Spring Data Graph, it can of course also be read cover-to-cover.

4. Acknowledgements

We would like to thank everyone who contributed to this book, especially Mark Pollack and Thomas
Risberg, the leads of the Spring Data Project, who helped a lot during the development of the
library as well as sharing great feedback about the book. Also Oliver Gierke, our local German
VMWare/SpringSource engineer, who invested alot of time discussing various aspectsof thelibrary as
well as providing the superb foundations for the Spring Data Repositories. Wetortured Andy Clement,
the AspectJ project lead, with many questions and issues around our advanced Aspect] usage which
caused some headaches. He always quickly solved our issues and gave us excellent answers.

We also appreciate very much the foresight of Rod Johnson and Emil Eifrem to initiate the project, and
now also providing great forewords. Their leadership inspired collaboration between the engineering
teams at SpringSource and Neo Technology, a tremendous help during the making of Spring Data
Graph.

Vii

https://github.com/SpringSource/spring-data-graph
http://springsource.org/spring-data
http://neo4j.org
https://jira.springsource.org/browse/DATAGRAPH
https://jira.springsource.org/browse/DATAGRAPH
http://forum.springsource.org/forumdisplay.php?f=80
https://github.com/SpringSource/spring-data-graph/issues
http://neo4j.org/community/list/
http://martinfowler.com/bliki/DuplexBook.html

About this guide book

Last but not least we thank our vibrant community, both in the Spring Forums as well as on the Neo4j
Mailing list and on many other places on the internet for giving us feedback, reporting issues and
suggesting improvements. Without that important feedback we wouldn't be where we are today.

Enjoy the book!

viii

Part |. Tutorial

CINEASTS

Thefirst part of the book provides atutorial that walks through the creation of a complete web application called
cineasts.net, built with Spring Data Graph and Neo4j. Cineasts are people who love movies, and the site is a
gathering place for moviegoers. For cineasts.net we decided to add a social aspect to therating of movies, allowing
friendsto share their scores and get recommendations for new friends and movies.

The tutorial takes the reader through the steps necessary to create the application. It provides the configuration
and code examples that are needed to understand what's happening in Spring Data Graph. The complete source
code for the app is available on Github.

http://github.com/jexp/cineasts

Chapter 1. Introducing our project

Allow me to introduce Cineasts.net

Once upon a time we wanted to build a social movie database. At first there was only the name:
Cineasts, the cinemaenthusiasts who have aburning passion for movies. So we went ahead and bought
the domain cineasts.net, and the project was almost done.

We had some ideas about the domain model too. There would obviously be actors playing roles in
movies. We also needed someone to rate the movies - enter the cineast. And cineasts being the social
people they are, they wanted to make friends with other fellow cineasts. Imagine instantly finding
someone to watch amovie with, or share movie preferences with. Even better, finding new friends and
movies based on what you and your friends like.

When we looked for possible sources of data, IMDB was our first stop. But they're a bit expensive for
our taste, charging $15k USD for data access. Fortunately, we found TheM oviedb.org which provides
user-generated datafor free. They also have liberal terms and conditions, and anice API for retrieving
the data.

We had many moreideas, but wewanted to get something out there quickly. Hereishow we envisioned
the final website:

-
-

\ X}

¥ CINEASTS

b spring — ‘ | :.‘ springdatagraph

http://cineasts.net
http://themoviedb.org

Chapter 2. The Spring stack

Being Spring developers, we naturally choose components from the Spring stack to do all the heavy
lifting. After al, we have the concept etched out, so we're aready halfway there.

What database would fit both the complex network of cineasts, movies, actors, roles, ratings, and
friends, while also being able to support the recommendation algorithms that we had in mind? We
had no idea

But hold your horses, there is this new Spring Data project, started in 2010, which brings the
convenience of the Spring programming model to NOSQL databases. That should bein line with what
we already know, providing us with a quick start. We had alook at the list of projects supporting the
different NOSQL databases out there. Only one of them mentioned the kind of social network wewere
thinking of - Spring Data Graph for Neo4j, agraph database. Neo4j's slogan of "valuein relationships’
and the accompanying docs looked like what we needed. We decided to give it atry.

2.1. Required setup

To set up the project we created a public github account and began setting up the infrastructure for
a spring web project using Maven as the build system. So we added the dependencies for the Spring
Framework libraries, added the web.xml for the DispatcherServlet, and the applicationContext.xml in
the webapp directory.

Example 2.1. Project pom.xml

<properties>
<spring. versi on>3. 0. 5. RELEASE</ spri ng. ver si on>
</ properties>

<dependenci es>

<dependency>
<gr oupl d>or g. spri ngf ramewor k</ gr oupl d>
<!-- abbreviated for all the dependencies -->

<artifactld>spring-(core, context, aop, aspects, tx,webmvc)</artifactld>
<versi on>${spring. ver si on} </ versi on>

</ dependency>

<dependency>
<gr oupl d>or g. spri ngf ramewor k</ gr oupl d>
<artifactld>spring-test</artifactld>
<versi on>${spri ng. ver si on} </ versi on>
<scope>t est </ scope>

</ dependency>

</ dependenci es>

<bui | d><pl ugi ns>
<pl ugi n>
<groupl d>org. nortbay. jetty</groupl d>
<artifactld>jetty-maven-plugin</artifact|d>
<version>7.1.2.v20100523</ ver si on>
<confi guration>
<webAppConfi g>
<cont ext Pat h>/ </ cont ext Pat h>
</ webAppConfi g>
</ confi gurati on>
</ pl ugi n>
</ pl ugi ns></ bui | d>

The Spring stack

Example 2.2. Project web.xml

<l i stener>
<l i stener-class>org. springframewor k. web. cont ext. Cont ext Loader Li st ener</|i stener-cl ass>
</listener>

<servl et >
<servl et - nane>di spat cher Ser vl et </ ser vl et - nane>
<servl et -cl ass>org. spri ngfranmewor k. web. servl et. Di spat cher Servl et </ servl et -cl ass>
<l oad- on- st art up>1</1| oad-on-start up>

</ servl et >

<servl et - mappi ng>
<servl et - nane>di spat cher Ser vl et </ ser vl et - nane>
<url-pattern>/</url-pattern>

</ servl et - mappi ng>

With this setup in place we were ready for the first spike: creating a simple MovieController showing

astatic view. See the Spring Framework documentation for information on doing this.

Example 2.3. Project applicationContext.xml

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: cont ext ="http://ww. springfranmework. or g/ schema/ cont ext "
xm ns: tx="http://ww. springframework. or g/ schenma/ t x"
xsi : schemalLocat i on="
http://ww. springframework. or g/ schenma/ beans
http://ww. springframework. or g/ schenma/ beans/ spri ng- beans- 3. 0. xsd
http://ww. springframework. or g/ schema/ t x
http://ww. springframework. or g/ schema/t x/ spring-tx-3.0.xsd
http://ww. spri ngfranework. or g/ schena/ cont ext
http://ww. springframework. or g/ schenma/ cont ext/ spri ng-cont ext - 3. 0. xsd" >

<cont ext: annot ati on-confi g/ >
<cont ext: spri ng- confi gured/ >
<cont ext : conponent - scan base- package="or g. neo4j . ci neasts">
<context:exclude-filter type="annotation" expression="org.springfranmework. st ereotype
</ cont ext : conponent - scan>

<t x: annot ati on-driven node="aspectj"/>
</ beans>

Example 2.4. Project dispatcher Servlet-servlet.xml

<mvc: annot ati on-driven/ >

<nmvc:resources mappi ng="/imges/**" |ocation="/inages/"/>
<mvc:resources mappi ng="/resources/**" | ocati on="/resources/"/>

<cont ext: conponent - scan base- package="or g. neo4j . ci neasts.controller"/>

<bean i d="vi ewResol ver" cl ass="org. spri ngfranmewor k. web. servl et. vi ew. | nt er nal Resour ceVi enRe

<t x: annot ati on-driven node="aspectj"/>

Controller"/

sol ver"

We spun up Jetty by doing mvn jetty: run to seeif there were any obvious issues with the config.

It all seemed to work just fine.

p:

pr

Chapter 3. The domain model
Setting the stage

We wanted to outline the domain model before diving into library details. We also looked at the data
model of the TheMoviedb.org data to confirm that it matched our expectations.

FRIEND®

User
Iualiln
name g RATED i_ E;:Hml
F’A‘E‘E&JF Y. * aTdrs
vate() |

L Lefriend()

[Acter)

Wiarme

| Flﬂﬂ&&lﬂ()

In Java code this looks pretty straightforward:

The domain model

Example 3.1. Domain model

class Myvie {
int id;
String title;
int year;
Set <Rol e> cast;

}

class Actor {

int id,

String nang;

Set <Mbvi e> fi | mogr aphy;

Rol e pl ayedl n(Movie novie, String role) { ... }
}

class Role {
Movi e novi e;
Actor actor;
String role;

}

class User {
String |ogin;
String nane;
String password;
Set <Rati ng> ratings;
Set <User > friends;
Rating rate(Movie novie, int stars, String comment) { ... }
voi d befriend(User user) { ... }
}

class Rating {
User user;
Movi e novi e;
int stars;
String coment;

Then we wrote some simpl e tests to show that the basic design of the domain is good enough so far.
Just creating a movie populating it with actors and having it rated by a user and its friends.

Chapter 4. Learning Neo4j
Graphs ahead

Now we needed to figure out how to store our chosen domain model in the chosen database. First we
read up about graph databases, in particular our chosen one, Neo4j. The Neodj data model consists of
nodes and rel ationships, both of which can have key/value-style properties. Relationshipsarefirst-class
citizens in Neo4j, meaning we can link together nodes into semantically rich networks. This really
appealed to us. Then we found that we were also able to index nodes and rel ationships by { key, value}
pairs. We also found that we could traverse relationships both imperatively using the core API, and
declaratively using a query-like Traversal Description.

We also learned that Neo4j isfully transactional and therefore upholds ACID guarantees for our data.
Thisis unusual for NOSQL databases, but easier for us to get our head around than non-transactional
eventual consistency. It also made usfeel safe, though it a so meant that we had to manage transactions.
Something to keep in mind for later.

We started out by doing some prototyping with the Neo4j core API to get afeeling for that. And also
to see, what the domain might look like when it's saved in the graph database. After adding the Maven
dependency for Neo4j, we were ready to go.

Example 4.1. Neodj Maven dependency

<dependency>
<gr oupl d>or g. neo4j </ gr oupl d>
<artifactld>neodj</artifactld>
<versi on>1. 3. M)5</ ver si on>

</ dependency>

Example 4.2. Neo4j core API (transaction code omitted)

enum Rel ati onshi pTypes i npl enents Rel ati onshi pType { ACTS IN };

G aphDat abaseServi ce gds = new EnbeddedG aphDat abase("/ path/to/store");
Node forrest=gds. creat eNode();

forrest.setProperty("title","Forrest Gunp");
forrest.setProperty("year", 1994);

gds. i ndex().for Nodes("novi es").add(forrest,"id", 1);

Node t onrgds. cr eat eNode();
tom set Property("Tom Hanks");

Rel ati onshi p rol e=t om creat eRel ati onshi pTo(forrest, ACTS_IN);
rol e.setProperty("role","Forrest Gunp");

Node novi e=gds. i ndex() . for Nodes("novi es").get("id", 1).getSingle();

print (nmovie.getProperty("title"));

for (Relationship role : novie.getRelationshi ps(ACTS_I N, | NCOM NG) {
Node act or=rol e. get & her Node(novi e) ;
print (actor.getProperty("nane") +" as " + role.getProperty("role"));

http://neo4j.org
http://docs.neo4j.org/chunked/snapshot/indexing.html
http://wiki.neo4j.org/content/Traversal_Framework
http://en.wikipedia.org/wiki/ACID

Chapter 5. Spring Data Graph
Conjuring magic

Sofar it had all been pure Spring Framework and Neo4j. However, using the Neo4j code in our domain
classes polluted them with graph database details. For this application, we wanted to keep the domain
classes clean. Spring Data Graph promised to do the heavy lifting for us, so we continued investigating
it.

Spring Data Graph depends heavily on AspectJ Chapter 24, Aspect] details. Some parts of our classes
would get new behavior, but it would not be visible in our code. The upside of thisisthat you get rid
of alot of boilerplate code.

Thefirst step was to configure Maven:

Spring Data Graph

Example 5.1. Spring Data Graph Maven configuration

<properties>
<aspectj.version>1. 6. 12. Mi</ aspectj . versi on>
</ properties>

<dependency>
<gr oupl d>or g. spri ngf ramewor k. dat a</ gr oupl d>
<artifact!|d>spring-data-neodj</artifactld>
<ver si on>1. 1. 0</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. aspect j </ gr oupl d>
<artifactld>aspectjrt</artifactld>
<versi on>${aspectj . version}</versi on>
</ dependency>

<bui | d> <pl ugi ns> <pl ugi n>
<gr oupl d>or g. codehaus. noj o</ gr oupl d>
<artifact|d>aspectj-maven-plugin</artifact|d>
<ver si on>1. 2</ ver si on>
<dependenci es>
<dependency>
<gr oupl d>or g. aspect j </ gr oupl d>
<artifactld>aspectjrt</artifactld>
<versi on>${aspectj . version}</version>
</ dependency>
<dependency>
<gr oupl d>or g. aspectj </ gr oupl d>
<artifact|d>aspectjtool s</artifactld>
<versi on>${aspectj . version}</version>
</ dependency>
</ dependenci es>
<executi ons>
<executi on>
<goal s>
<goal >conpi | e</ goal >
<goal >t est - conpi | e</ goal >
</ goal s>
</ executi on>
</ executi ons>
<confi guration>
<out xm >t rue</ out xm >
<aspect Li brari es>
<aspect Li brary>
<gr oupl d>or g. spri ngf r amewor k</ gr oupl d>
<artifact!|d>spring-aspects</artifactld>
</ aspect Li brary>
<aspect Li brary>
<gr oupl d>or g. spri ngf ramewor k. dat a</ gr oupl d>
<artifact!|d>spring-data-neod4j</artifactld>
</ aspect Li brary>
</ aspect Li brari es>
<sour ce>1. 6</ sour ce>
<t ar get >1. 6</t ar get >
</ configuration>
</ plugi n> </ plugi ns> </ bui |l d>

The Spring context configuration was much easier, thanks to a provided namespace:

Spring Data Graph

Example 5.2. Spring Data Graph context configuration

<beans xm ns="http://ww. springfranmewor k. or g/ schena/ beans"
xm ns: dat agr aph="ht t p: / / www. spri ngf ramewor k. or g/ schenwa/ dat a/ gr aph"
xsi :schemaLocation="... http://ww:.springframework. org/ schena/ dat a/ graph
http://ww. spri ngframework. or g/ schena/ dat a/ gr aph/ dat agr aph- 1. 0. xsd" >

<dat agr aph: confi g storeDirectory="data/ graph. db"/ >

</ beans>

10

Chapter 6. Annotating the domain

Decorations

L ooking at the Spring Data Graph documentation, we found asimple Hello World example and tried to
understand it. The entity classes were annotated with @odeEnt i t y. That was simple, so we added the
annotation to our domain classes too. Entity classes representing rel ationships were instead annotated
with @rel at i onshi pEnti ty. Property fields were taken care of automatically.

It was time to put our entities to a test. How could we now be assured that an attribute really was
persisted to the graph store? We wanted to load the entity and check the attribute. Either we could have
a GraphDatabaseContext injected and use its get Byl d(enti t yl d) method to load the entity. Or use a
more versatile Repository. We decided to keep things simple for now. Looking at the documentation
reveal ed that there are a bunch of methods introduced to the entities by the aspects to support working
with the entities. That's not entirely obvious. We found two that would do the job: enti ty. persi st ()
entity. get Nodel d() .

So here'swhat our test ended up looking like:

Example 6.1. First test case

@\ut owi red G aphDat abaseCont ext graphDat abaseCont ext ;

@est public void persistedMvovi eShoul dBeRetri evabl eFr onGraphDb() {
Movi e forrestGunp = new Movi e("Forrest Gunp", 1994).persist();
Movi e retri evedMovi e = graphDat abaseCont ext . get Byl d(f orrest Gunp. get Nodel d());
assert Equal ("retri eved novi e matches persisted one", forrestGunp, retrievedMvie);
assertEqual ("retrieved novie title matches", "Forrest Gunp", retrievedMovie.getTitle());

It worked! But hold on, what about transactions? After al, we had not declared the test to be
transactional. After some further reading we learned that calling per si st () outside of a transaction
automatically createsanimplicit transaction. Very much like an EntityM anager would behave. Wea so
learned that when performing more complex operations on the entitieswe'd need external transactions,
but not for this simple test.

Example 6.2. Movie class with annotation

@NodeEntity

class Mvie {
String id;
String title;
int year;
Set <Rol e> cast;

11

http://github.com/SpringSource/spring-data-graph-examples/tree/master/hello-worlds

Chapter 7. Indexing

Do | know you?

Thereisan @Indexed annotation for fields. We wanted to try this out, and use it to guide the next test.
We added @Indexed to the ID field of the Movie class. Thisfield isintended to represent the external
ID that will be used in URIsand will be stable across database imports and updates. Thistime we went
with the default GraphRepository (previously Finder) to retrieve the indexed movie.

Example 7.1. Exact Indexing for Movieid

@\odeEntity class Mvie {
@ ndexed int id;
String title;
int year;

}
@\ut owi red Direct GaphRepositoryFactory graphRepositoryFactory;

@est public void persistedMvovi eShoul dBeRetri evabl eFr onGraphDb() {
int id=1;
Movi e forrestGunp = new Movie(id, "Forrest Gunp", 1994).persist();
G aphReposi t or y<Movi e> novi eRepository =
gr aphReposi t oryFact ory. cr eat eG aphReposi t ory(Mvi e. cl ass);
Movi e retri evedMovi e = novi eRepository. fi ndByPropertyVal ue("id", id);
assert Equal ("retri eved novi e matches persisted one", forrestGunp, retrievedMvie);
assertEqual ("retrieved novie title matches", "Forrest Gunp", retrievedMovie.getTitle()

12

Chapter 8. Repositories

Serving a good cause

We wanted to add repositories with domain-specific operations. We started by creating a
movie-specific repository, ssmply by creating an empty interface. It is more convenient to work with
anamed interface rather than different versions of a generic one.

Example 8.1. Movierepository

package org.neodj.cineasts.repository;
public interface MvieRepository extends G aphRepository<Mvie> {}

Then we added it to the Spring context configuration by simply adding:

Example 8.2. Repository context configuration

<dat agraph: reposi tori es base- package="or g. neo4j . ci neasts. repository"/>

We then created the domain-specific repository class, annotating it with @repository and
@r ansact i onal , and injected the movie repository.

Example 8.3. Domain-specific repository

@Repository @ransacti onal
public class Ci neastsRepostory {
@\ut owi red Mbvi eRepository novi eRepository;

public Movie getMvie(int id) {
return novi eRepository. findByPropertyValue("id", id);
}
}

We did the same for the actors and users.

13

Chapter 9. Relationships

A convincing act

Our application was not yet very much fun yet, just storing movies and actors. After al, the power isin
the relationships between them. Fortunately, Neo4j treats relationships as first class citizens, allowing
them to be addressed individually and assigned properties. That allowsfor representing them asentities
if needed.

9.1. Creating relationships

Relationships without properties ("anonymous" relationships) don't require any @Rel ationshi pEntity
classes. Unfortunately we had none of those, because our relationships werericher. Therefore we went
with the Rol e relationship between Movie and Actor. It had to be annotated with @Relationshi pEntity
and the @StartNode and @EndNode had to be marked. So our Role looked like this:

Actor Role |
title
name 3 ACTS N i
movies htle A
) cast

Example 9.1. Roleclass

@Rel ati onshi pEntity

class Role {
@t art Node Actor actor;
@ndNode Mvi e novie;
String role;

}

When writing a test for that we tried to create the relationship entity with the new keyword, but we
got an exception saying that it was not alowed. At first this surprised us, but then we realized that
a relationship entity must have a starting entity and ending entity. It turned out that the aspect had
introduced aent i ty. rel at eTo method in the node entities. It turned out to be exactly what we needed.
We simply added a method to the Actor class, connecting it to movies.

Example 9.2. Relating actorsto movies

class Actor {

public Role playedl n(Mvie novie, String rol eNanme) {
Rol e role = rel ateTo(novi e, Role.class, "ACTS_IN');
rol e. set Rol e(rol eNane) ;
return role;

9.2. Accessing related entities

Now we wanted to find connected entities. We already had fields for the relationships in both classes.
It was time to annotate them correctly. It turned out that we needed to provide the target type of the
fields again, due to Java's type erasure. The Neodj relationship type and direction were easy to figure
out. The direction even defaulted to outgoing, so we only had to specify it for the movie.

14

Relationships

Example 9.3. @RelatedTo usage

@NodeEntity

class Movie {
@ndexed int id;
String title;
int year;

@Rel at edTo(el ement 0 ass = Actor.class, type = "ACTS_IN', direction = Direction. | NCOM NG

Set <Act or > cast ;

}

@NodeEntity
class Actor {
@ndexed int id;
String nang;
@Rel at edTo(el ement 0 ass = Movie.class, type = "ACTS_IN'")
Set <Mbvi e> novi es;

public Role playedl n(Mvie novie, String rol eNanme) {
Role role = rel ateTo(novie, Role.class, "ACTS_IN');
rol e. set Rol e(rol eNan®) ;
return role;

While reading about these relationship collections, we learned that they are actually Spring Data
Graph-managed sets. So whenever we add or remove something from the set, it automatically gets
reflected in the underlying relationships. That's neat! But this also meant we did not need to initialize

the fields. That could be easy to forget.

We made sure to add atest for those, so we were assured that the collections worked as advertised.

9.3. Accessing the relationship entities

But we gtill couldn't access the Role relationships. It turned out that there was a separate annotation
@el at edToVi a for accessing the actual relationship entities. And we had to declare the field as
an lterable<Role>, with read-only semantics. This appeared to mean that we were not able to add
new roles through the field. Adding relationship entities seemed like it had to be done by using
entity.rel ateTo() . The annotation attributes were similar to those used for @rel at edTo. So off we

went, creating our first real relationship (just kidding).
Example 9.4. @RelatedToVia usage

@NodeEntity

class Myvie {
@ ndexed int id;
String title;
int year;

@Rel at edTo(el ement d ass = Actor.class, type = "ACTS_ IN', direction = Direction.| NCOM NG

Set <Act or> cast;

@Rel at edToVi a(el enent Cl ass = Role.class, type = "ACTS IN', direction = Direction.| NCOM NG

I t er abl e<Rol es> rol es;

After watching the tests pass, we were confident that the relationship fields really mirrored the

underlying relationships in the graph. We were pretty satisfied with our domain.

15

Chapter 10. Get it running
Curtains up!

Now we had a pretty complete application. It wastime to put it to the test.

10.1. Populating the database

Beforewe opened the gateswe needed to add some moviedata. So wewroteasmall classfor populating
the database which could be called from our controller. To makeit safe to call several times we added
index lookupsto check for existing entries. A simple/ popul at e endpoint for the controller that called

it would be enough for now.

Example 10.1. Populating the database - Controller

@servi ce
public cl ass Dat abasePopul ator {

@\ut owi red G aphDat abaseCont ext ctx;
@\ut owi red Ci neast sRepository repository;

@r ansacti onal
public List<Mvie> popul at eDat abase() {
Act or tonHanks = new Actor("1", "Tom Hanks").persist();
Movi e forestGunp = new Movie("1", "Forrest Gunp").persist();
t omHanks. pl ayedl n(f or est Gunp, "Forrest");
return asLi st (forestGunp);

}

@ontroller

public class MvieController {
privat e Dat abasePopul at or popul at or;

@\ut owi r ed
publ i c Movi eControl | er (Dat abasePopul at or popul ator) {
this. popul ator = popul ator;

}

@Request Mappi ng(val ue = "/ popul ate", nethod = Request Met hod. GET)
public String popul at eDat abase(Model nodel) {
Col | ecti on<Movi e> novi es = popul at or. popul at eDat abase() ;
nodel . addAt tri but e(" novi es", novi es);
return "/novies/list";

16

Get it running

Example 10.2. Populating the database - JSP

<% page sessi on="fal se" %
<U@taglib uri="http://ww.springfranework. org/tags" prefix="s" %
<U@taglib prefix="c" uri="http://java.sun.conijsp/jstl/core" %

<c: choose>
<c:when test="%${not enpty novie}">
<h2>${novie.title}</h2>
<c:if test="${not enpty novie.rol es}">

<c:forEach items="${novie.rol es}" var="rol e">

<c:out value="$%${rol e.actor.nane}" /> as
<c:out value="${role.nane}" />

</ c:forEach>
</ ul >
</c:if>
</ c: when>
<c: ot herw se>
No Movie with id ${id} found
</ c: ot herw se>
</ c: choose>

Accessing the URI showed the single added movie on screen.

Note

““u Pardon the misused GET parameter for that (don't try thisat home, the REST guyswill hunt
you down). Thisis only for running it from the browser address line. The next iteration
of this website would use a button with POST.

10.2. Inspecting the datastore

Being the geeks we are, we also wanted to inspect the raw data in the database. Reading the Neo4j
docs, there were a couple of different ways of going about this.

10.2.1. Neoclipse visualization

First we tried Neoclipse, an Eclipse RCP application/plugin that opens an existing graph store and
visualizes its content. After getting an exception about concurrent access, we learned that we have to
use Neoclipse in read-only mode when our webapp was still running. Good to know.

17

http://restinpractice.com

Get it running

anon Neoclipse

=

le|E®y B

[Cot e+ =R [Fapm~ -0

2 Micha 7 Belinda McClory 0 Marc Aden
o ERIENTT
0 olliver
RATED
@ Carrie-Anne Moss @Jce Pantoliano
D Laurence Fishburne
70 Marcus Chong 72 The Marrix 0 Keanu Reeves
LA 2 Paul Goddard
% Maw Doran \ DIREET]
2 Anthony Ray Parker DIRE? 0 Gloria Foster
0 David Aston
0 Julian Arahanga \ % Andy Wachowski
T Hugo Weaving D Lana Wachowski
] Properties &3 B T = O |[%® relationship types 14 ¥4 X | ¥ & | [=
Property Walue Relationship type W In % Out

¥ Properties -

typt.a. % org.neu4J.c|neasts.domam.M.uv|e m DIRECTED

description @ Meo is a young software engineer and part-time har FRIEND

genre Action RATED

homepage @ http:/ fwhatisthematrix.warnerbros.com/

id () 603 4

imageUr| @ http:/ fcfl.imgobject.com/posters/606/4bc309d0I ¥
F= =1
€ D Jal»

Traversal depth: 3 Nodes: 19 Relationships: 18

10.2.2. The Neo4j Shell

For console junkies there was also a shell that was able to connect to a running Neo4j instance (if it
was started with enable_remote_shell=true), or directly open an existing graph store.

Example 10.3. Starting the Neo4j Shell

neodj -shell -readonly -path data/graph. db

Theshell wasvery similar to astandard Bash shell. Wewere ableto cd to between the nodes, and | s the
relationships and properties. There were also more advanced commands for indexing and traversals.

18

Get it running

Example 10.4. Neodj Shell usage

neo4j - sh[readonly] (0)$ hel p

Avai |l abl e commands: index dbinfo Is rmalias set eval mv gsh env rnrel nkrel
trav help pwd paths ... man cd

Use man <conmand> for info about each conmand.

neodj - sh[readonly] (0)$ index --cd -g User |ogin mcha

neodj -sh[readonly] (Mcha,1)$ Is

* __type__ =[org.neodj.cineasts. donmain. User]
*| ogin =[m cha]

*name =[M cha]

*rol es =[ROLE_ADM N, ROLE_USER]

(nme) --[FRIEND]-> (Qliver, 2)

(me) --[RATED]-> (The Matri x, 3)

neo4j -sh[readonly] (Mcha,1)$ Is 2

* _type__ =[org.neodj.cineasts. donmain. User]
*| ogi n =[ollie]

*name =[Aliver]

*rol es =[ROLE_USER]

(Aliver,2) <-[FRIEND]-- (ne)
neo4dj - sh[readonly] (Mcha,1)$ cd 3

neo4j - sh[readonly] (The Matrix,3)$ Is

* _ _type__ =[org. neo4j . ci neast s. donai n. Movi e]

*description =[Neo is a young software engi neer and part-tine hacker who is singled
*genre =[Acti on]

*homepage =[http://whatisthematri x. war ner bros. coni]
*studi o =[Warner Bros. Pictures]

*tagline =[Wel come to the Real World.]

*title =[The Matri x]

*trailer =[htt p: // ww. yout ube. conf wat ch?v=UVbyepZ21pl]
*version =[324]

(me) <-[ACTS_IN]-- (Marc Aden, 19)
(nme) <-[ACTS_IN-- (David Aston, 18)

(nme) <-[ACTS_IN-- (Keanu Reeves, 6)
(nme) <-[DI RECTED]-- (Andy Wachowski, 5)
(nme) <-[DI RECTED] -- (Lana Wachowski , 4)
(nme) <-[RATED]-- (Mcha, 1)

-

19

Chapter 11. Web views
Showing off

After having put some data in the graph database, we also wanted to show it to the user. Adding the
controller method to show a single movie with its attributes and cast in a JSP was straightforward.
It basically just involved using the repository to look the movie up and add it to the model, and then
forwarding to the /movies/show view and voil&

Example 11.1. Controller for showing movies

@Request Mappi ng(val ue = "/ novi es/ {novi el d}",
net hod = Request Met hod. GET, headers = "Accept=text/htm ")
public String singleMvieViewfinal Mdel nodel, @athVariable String novield) {
Movi e novie = repository.get Movi e(novi el d);
nodel . addAttri bute("id", novield);
if (novie !'= null) {
nodel . addAttri but e(" novi e", novie);
nodel . addAttri bute("stars", novie.getStars());

}

return "/ novi es/ show';

The Ul had now evolved to this:
Login Register

-
-
-

3y CINEASTS

- - f A - -
- - - i) =
e | L J
- - i -
H = = H
Anthony Ray Paul Goddard as Joe Pantoliano asMatt Doranas Jullan Arahanga

TheMovieDb.org ; d Parker as Dozer Agent Brown Cypher Mouse as Apoc
IMDb - ’
-

-
Amazon - - - A
CineButler > 3 -«
Google Movies = q '
= =
Belinda McClory Marcus Chong asGloria Foster as Carrie-Anne Keanu Reeves as
as Switch Tank Oracle Moss as Trinity Neo

- - -
Homepage | “ 2 .‘ .‘
-« \ L}
A i - -
i -] =
Hugo Weaving asLaurence David Aston as Marc Aden as
Agent Smith Fishburne as Rhineheart Chol
Morpheus

11.1. Searching

The next thing was to allow usersto search for movies, so we needed some fulltext search capabilities.
Astheindex provider implementation of Neo4j is based on Apache L ucene, we were delighted to see
that fulltext indexes were supported out of the box.

20

http://lucene.apache.org/java/docs/index.html

Web views

We happily annotated the title field of the Movie class with @Indexed(fulltext = true). We got an
exception back telling us that we have to specify a separate index name. So we simply changed it
to @Indexed(fulltext = true, indexName = "search"). The corresponding repository method is called
findAlIByQuery. Torestrict the size of the returned set we simply added alimit that truncatestheresult.

Example 11.2. Searching for movies

public class Ci neastRepository {

public void List<Mvie> findVovies(String query, int count) {
Li st <Movi e> novi es=new Arrayli st <Movi e>(count);
Cl osabl el t er abl e<Movi e> searchResults = novi eRepository.findAl | ByQuery("title",
for (Mwvie novie : searchResults) {
novi es. add(novi e) ;
if (count-- == 0) break;
}
sear chResul ts. cl ose();
return novies;

11.2. Listing results

query);

We then used thisresult in the controller to render alist of movies, driven by a search box. The movie

properties and the cast were accessible through the getters in the domain classes.

Example 11.3. Sear ch controller

@Request Mappi ng(val ue = "/ novi es",
net hod = Request Met hod. GET, headers = "Accept=text/htm ")
public String findMvovi es(Mbdel nopdel, @RequestParan{"qg") String query) {
Li st <Movi e> novies = repository.findMvies(query, 20);
nodel . addAt tri but e(" novi es", novi es);
nodel . addAttri but e("query", query);
return "/ nmovies/list";

Example 11.4. Search Results JSP

<h2>Movi es</ h2>

<c: choose>
<c:when test="${not enpty novies}">

<dl class="listings">
<c:forEach itenms="${novies}" var="novie">
<dt >
<c: out value="${novie.title}" />

</ dt >
<dd>
<c:out value="${novi e.description}" escapeXm ="true" />
</ dd>
</ c: forEach>
</ dl >
</ c: when>

<c: ot herw se>
No novies found for query " ${query}"
</ c: ot herw se>
</ c: choose>

The Ul now looked like this:

21

Web views

-—
-
-

"

3 CINEASTS

X X]
The Matrix =V 7 9

&

| e i
RE {.nh.ﬂ-:u
i

The Matrix Reloaded

The Matrix Revolutions

Micha Logout

22

Chapter 12. Adding social
Movies 2.0

So far, the website had only been a plain old movie database (POMD?). We now wanted to add a
touch of social to it.

12.1. Users

So we started out by taking the User class that we'd aready coded and made it a full-fledged Spring
Data Graph entity. We added the ability to make friends and to rate movies. With that we also added
asimple UserRepository that was able to look up users by ID.

Example 12.1. Social entities

@NodeEntity

class User {
@ ndexed String |ogin;
String nane;
String password;

@Rel at edToVi a(el ement Gl ass = Rating. cl ass, type = RATED)
It er abl e<Rati ng> rati ngs;

@Rel at edTo(el ement d ass = User.class, type = "FRIEND', direction=Direction. BOTH)
Set <User > fri ends;

public Rating rate(Movie novie, int stars, String coment) {
return rel ateTo(novi e, Rating.class, "RATED').rate(stars, comment);
}
public void befriend(User user) {
this.friends.add(user);
}
}

@Rel ati onshi pEntity
class Rating {
@5t art Node User user;
@ndNode Movi e novi e;
int stars;
String comment;
public Rating rate(int stars, String coment) {
this.stars = stars; this.comment = coment;
return this;

We extended the DatabasePopulator to add some users and ratings to theinitial setup.

23

Adding socia

Example 12.2. Populate users and ratings

@ransacti onal

public List<Mvie> popul at eDat abase() {
Act or tonHanks = new Actor("1", "Tom Hanks").persist();
Movi e forestGunp = new Movie("1", "Forrest Gunp").persist();
t onHanks. pl ayedl n(f orest Gunp, "Forrest");

User ne = new User("m cha", "M cha", "password",
User. Rol es. ROLE_ADM N, User. Rol es. ROLE_USER) . persi st ();
Rati ng awesone = ne.rate(forest@np, 5, "Awesone");

User ollie = new User("ollie", "Aliver", "password", User.Roles. ROLE_USER). persist();
ollie.rate(forestGnmp, 2, "ok");

ne. addFri end(ol lie);

return asLi st (forestGunp);

12.2. Ratings for movies

We aso put aratings field into the Movie class to be able to get amovie's ratings, and also a method
to average its star rating.

Example 12.3. Getting therating of a movie

class Mvie {

@Rel at edToVi a(el enent Cl ass=Rati ng. cl ass, type="RATED', direction = Direction.| NCOM NG
I terabl e<Rating> ratings;

public int getStars() {
int stars = 0, count = 0;
for (Rating rating : ratings) {
stars += rating.getStars(); count++;

}

return count == 0 ? 0 : stars / count;

Fortunately our tests highlighted the division by zero error when calculating the stars for a movie
without ratings. The next steps were to add this information to the movie presentation in the Ul, and
creating a user profile page. But for that to happen, users must first be able to log in.

24

Chapter 13. Adding Security
Protecting assets

To have a user in the webapp we had to put it in the session and add login and registration pages. Of
course the pages that were only meant for logged-in users had to be secured as well.

Being Spring users, we naturally used Spring Security for this. We wrote asimple UserDetailsService
that used arepository for looking up the users and validating their credentials. The config islocated in
a separate applicationContext-security.xml. But first, as always, Maven and web.xml setup.

Example 13.1. Spring Security pom.xml

<dependency>
<groupl d>or g. spri ngf ramewor k. securi ty</ groupl d>
<artifactld>spring-security-web</artifactld>
<versi on>${spring. ver si on} </ versi on>

</ dependency>

<dependency>
<gr oupl d>or g. spri ngf ramewor k. securi ty</ groupl d>
<artifactl|d>spring-security-config</artifactld>
<versi on>${spring. versi on} </ versi on>

</ dependency>

Example 13.2. Spring Security web.xml

<cont ext - par an>
<par am nane>cont ext Conf i gLocat i on</ par am nane>
<par am val ue>
/ VEEB- | NF/ appl i cati onCont ext - security. xm
/ VEB- | NF/ appl i cat i onCont ext . xm
</ par am val ue>
</ cont ext - par an>

<listener>
<l istener-class>org. springfranework. web. cont ext. Cont ext Loader Li stener</|i stener-class>
</listener>

<filter>
<filter-nane>springSecurityFilterChain</filter-nane>
<filter-class>org.springframework.web.filter.Del egatingFilterProxy</filter-class>
</filter>

<filter-mppi ng>
<filter-nane>springSecurityFilterChain</filter-nane>
<url-pattern>/*</url -pattern>

</filter-mappi ng>

25

Adding Security

Example 13.3. Spring Security applicationContext-security.xml

<security: gl obal - net hod-security secured-annot ati ons="enabl ed">
</security: gl obal - met hod-security>

<security:http auto-config="true" access-deni ed- page="/aut h/ deni ed"> <!-- use-expressions=/'true" -->
<security:intercept-url pattern="/adm n/*" access="ROLE_ADM N'/>

<security:intercept-url pattern="/inport/*" access="ROLE ADM N'/>
<security:intercept-url pattern="/user/*" access="ROLE _USER'/>

<security:intercept-url pattern="/auth/login" access="|S AUTHENTI CATED_ ANONYMOUSLY"/ >
<security:intercept-url pattern="/auth/register" access="1S AUTHENTI CATED ANONYMOUSLY" /[>
<security:intercept-url pattern="/**" access="|S_AUTHENTI CATED ANONYMOUSLY"/ >

<security:formlogin |ogin-page="/auth/login" authentication-failure-url="/auth/login?|ogin_error:
defaul t-target-url ="/user"/>
<security:|logout |ogout-url="/auth/logout" |ogout-success-url="/" invalidate-session="true"/>
</security:http>

<security: authenticati on- manager >
<security:authentication-provider user-service-ref="userDetail sService">
<security: passwor d- encoder hash="nd5">
<security:salt-source systemw de="cewui quzi e"/>
</ security: password- encoder >
</security:authentication-provider>
</ security:authentication- manager >

<bean id="userDetail sService" class="org. neo4j.novies. servi ce. C neast sUser Det ai | sServi ce"/ >

26

Adding Security

Example 13.4. User DetailsService and User Details implementation

@vervi ce
public class CineastsUserDetail sService inplenents UserDetail sService, InitializingBean {

@\ut owi red private User Repository userRepository;

@verride

publ

publ

publ

}

public class CineastsUserDetails inplenents UserDetails {
private final User user;

publ

}

@verride

publ

}

@verride

publ

}

@verride

publ

publ

}

ic UserDetails |oadUserByUsernane(String |ogin)

t hrows User naneNot FoundExcepti on, Dat aAccessException {
final User user = findUser(login);
if (user==null) throw new User naneNot FoundExcepti on(" Usernane not found", | ogin);
return new G neastsUserDetail s(user);

ic User findUser(String |ogin) {
return userRepository.findByPropertyVal ue("login",|ogin);

ic User getUserFrontession() {

SecurityCont ext context = SecurityContextHol der. get Context();

Aut henti cati on authentication = context.getAuthentication();

oj ect principal = authentication. getPrincipal();

if (principal instanceof G neastsUserDetails) {
CineastsUserDetails userDetails = (Ci neastsUserDetails) principal;
return userDetails.getUser();

}

return null;

i c C neastsUserDetail s(User user) {
this.user = user;

ic Collection<G antedAuthority> getAuthorities() {
User. Rol es[] roles = user.getRoles();

if (roles ==null) return Collections.enptyList();
return Arrays. <G ant edAut hority>asLi st(roles);

ic String getPassword() {
return user.getPassword();

ic String getUsernane() {
return user.getlLogin();

ic User getUser() {
return user;

Any logged-in user was now available in the session, and could be used for al the social interactions.
The remaining work for this was mainly adding controller methods and JSPs for the views. We used

the helper

method get User Fr onSessi on() in the controllers to access the logged-in user and put it in

the model for rendering. Here's what the Ul had evolved to:

27

Adding Security

-
-
-

EMIL EIFREM

spring

e I

Forrest Gump (1994) - "Inspiring”

The Matrix (1999) - "Best of the series”

The Simpsons Movie (2007) - "See our family. And feel better about yours."

The Matrix Reloaded (2003) - "Free your mind."

hemoviedb.org.

Neogj

the graph database

28

Chapter 14. More Ul
Oh the glamour

To create anice user experience, we wanted to have a nice looking app. Not something that looked like
atoddler made it. So we got some user experience people involved and the results were impressive.
This sections presents some of the remaining screen shots of Cineasts.net.

Some noteworthy things. Since Spring Data Graph reads through down to the database for property
and relationship access, we tried to minimize that by using <c: var / > several times. The app contains
very little javascript / ajax code right now, that will change when it moves ahead.

-

\ X}

! CINEASTS

H L]
A spring = : springdatagraph T

29

More Ul

-—
-
-

| L4

3 CINEASTS

'

Y

B 4 B B B
e wr | wx | x| we
}

The Matrix @ 9 9 9
The Matrix Reloaded

The Matrix Revolutions

Miche. Logout

30

More Ul

TheMovieDb.org
IMDb

Amazon
CineButler

Google Movies

Homepage

-
-
-

»
H

-

CINEASTS

Login Regster

Anthony Ray Paul Goddard as Joe Pantoliano asMatt Doran as Julian Arahanga

Parker as Dozer Agent Brown

Yt

Cypher Mouse as Apoc
7 7

Belinda McClory Marcus Chong asGloria Foster as Carrie-Anne Keanu Reeves as

as Switch Tank

Hugo Weaving asLaurence
Agent Smith Fishburne as
Morpheus

Micha

The Matrix as Neo in 1999
The Matrix Revolutions as Neo in 2003
The Matrix Reloaded as Neo in 2003

Oracle Moss as Trinity Neo
-
A K 4
-
-

David Aston as Marc Aden as
Rhineheart Choi

Find maovie

31

Chapter 15. Importing Data
The dusty archives

It was now time to pull the data from themoviedb.org. Registering there and getting an APl key was
simple, aswas using the APl onthe command-linewith cur I . Looking at the JSON returned for movies
and people, we decided to enhance our domain model and add some more fields to enrich the Ul.

Example 15.1. JSON movieresponse

[{"popularity":3,

"translated":true, "adult":false, "language":"en",

“original _name":"[Rec]", "nanme":"[Rec]", "alternative_nane":"[REC]",

"nmovi e_type": "novie",

"id":8329, "indb_id":"tt1038988", "url":"http://ww.thenovi edb. org/ novi e/ 8329",

"votes":11, "rating":7.2,

"status":"Rel eased",

"tagline":"One Wtness. One Canera",

"certification":"R",

"overview':"\"REC\" turns on a young TV reporter and her caneranman who cover the night shi
at the local fire station...

"keywords":["terror", "lebende |eichen", "obsession", "cancorder", "firemen", "reality tv |,
"bite", "cinematographer",

"attenpt to escape", "virus", "lodger", "live-reportage", "schwerverletzt"],

"rel eased":"2007-08- 29",

"runtine":78,

"budget ": 0,

"revenue":0,

"honmepage": "http://ww. 3l -filmverleih. de/rec",

"trailer":"http://ww.yout ube. conf wat ch?v=YQUkX_Xowgl ",

"genres":[{"type":"genre",

—

“url":"http://thenovi edb. org/ genre/ horror",
"nanme":"Horror",
"id":27}],

"studios":[{"url":"http://ww.thenovi edb. or g/ conpany/ 2270", "nane":"Fil max G oup", "id":22[0}],
"l anguages_spoken": [{"code":"es", "nanme":"Spanish", "native_nane":"Espa\u00f 1ol "}],
“countries":[{"code":"ES", "nane":"Spain", "url":"http://ww.thenovi edb. org/country/es"}],
"posters":[{"image":{"type": "poster",

"size":"original", "height":1000, "w dth": 706,

“url":"http://cfl.ingobject.conl posters/3al/4cc8df 415e73d650240003a0/ rec-origi nal.jpg",
"id":"4cc8df 415e73d650240003a0"}},

"cast":[{"name": " Manuel a Vel asco",

"job":"Actor", "departnent":"Actors",

"character":"Angela Vidal",

"id":34793, "order":0, "cast_id":1,

“url":"http://ww.thenovi edb. or g/ person/ 34793",
"profile":"http://cfl.ingobject.com profiles/390/.../manuel a-vel asco-thunb.jpg"},

{"nanme":"d \uO0f 2ria Viguer",

"job":" Costunme Design", "departnent":"Costune \u0026 Make-Up",
“character":"",

"id":54531, "order":0, "cast_id":21,

“url":"http://ww.thenovi edb. or g/ per son/ 54531",
"profile":""}],

"version":150, "last_nodified_at":"2011-02-20 23:16:57"}]

32

http://themoviedb.org

Importing Data

Example 15.2. JSON actor response

[{"popularity":3,

"nane":"d enn Strange", "known_as":[{"nanme":"George G enn Strange"}, {"name":"d en Strangel
{"nanme":"d en ' Peewee' Strange"}, {"nane":"Peewee Strange"}, {"nane":"'Peewee' Strange"}],
"id":30112,

"bi ography":"",

"known_novi es": 4,

"birthday":"1899-08-16", "birthplace":"Wed, New Mexico, USA",
“url":"http://ww.thenovi edb. or g/ person/ 30112",
“filnography":[{"nanme":"Bud Abbott Lou Costell o Meet Frankenstein",
"id":3073,

"job":"Actor", "departnent":"Actors",

"character":"The Frankenstein Mnster",

"cast _id":23,

“url":"http://ww.thenovi edb. or g/ novi e/ 3073",
"poster":"http://cfl.ingobject.conf posters/4cal.../bud-abbott-I|ou-costello-neet-frankenste
"adult":fal se, "rel ease":"1948-06- 15"},

R

"profile":[],

"version":19, "last_nodified_at":"2011-03-07 13: 02: 35"}]

n- cover. j pc

For the import process we created a separate importer using Jackson (a JSON library) to fetch and
parse the data, and then some transactional methods in the MovieDblmportService to actually import
it as movies, roles, and actors. The importer used a simple caching mechanism to keep downloaded
actor and movie data on the filesystem, so that we didn't have to overload the remote API. In the code
below you can see that we've changed the actor to a person so that we can also accommodate the other

folks that participate in movie production.

33

Importing Data

Example 15.3. Importing the data

@ransacti onal
public Movie inportMvie(String novield) {
Movi e novie = repository. get Mvi e(novi el d);
if (nmovie == null) { // Not found: Create fresh
nmovi e = new Movi e(novi eld, null);

}

Map data = | oadMovi eDat a(novi el d) ;
i f (data.contai nsKey("not_found"))
t hrow new Runti neException("Data for Mvie "+nmovield+" not found.");
novi eDbJsonMapper . mapToMovi e(data, novie);
novi e. persist();
r el at ePer sonsToMovi e(novi e, data);
return novie;

}

private void rel at ePer sonsToMovi e(Movi e novi e, Map data) {
Col | ecti on<Map> cast = (Col | ecti on<Map>) data.get("cast");
for (Map entry : cast) {
String id = entry.get("id");
Rol es job = entry.get("job");
Person person = inportPerson(id);
switch (job) {
case DI RECTED:
person. di rect ed(novi e) ;
br eak;
case ACTS IN:
person. pl ayedl n(novi e, (String) entry.get("character"));
br eak;

}

public void mapToMovi e(Map data, Myvie novie) {
novi e.setTitle((String) data.get("nanme"));
novi e. set Language((String) data.get("language"));
novi e. set Tagl i ne((String) data.get("tagline"));
novi e. set Rel easeDat e(t oDat e(data, "rel eased", "yyyy-Mvidd"));

novi e. set | mageUr | (sel ect | mageUr | ((Li st <Map>) dat a. get ("posters"), "poster", "md"));

The last part involved adding a protected URI to the MovieController to allow importing ranges of
movies. During testing, it became obvious that the calls to TheMoviedb.org were alimiting factor. As
soon as the data was stored locally, the Neo4j import was a sub-second deal.

34

Chapter 16. Recommendations

Movies! Friends! Bargains!

In the last part of this exercise we wanted to add recommendations to the app. One obvious
recommendation was movies that our friends liked (and their friends too, but with less importance).
The second recommendation was for new friends that also liked the movies that we liked most.

Doing these kinds of ranking algorithms is a lot of fun with graph databases. The agorithms are
implemented by traversing the graph in a certain order, collecting information on the go, and deciding

which pathsto follow and what to include in the results.
We were only interested in recommendations of a certain degree of friends.

Example 16.1. Recommendations

publ i c Map<Movi e, | nt eger > recomendMovi es(User user, final int ratingDi stance) {

final Dynam cRel ati onshi pType RATED = wi t hName(User . RATED) ;

final Map<Long,int[]> ratings=new HashMap<Long, int[]>();

Traversal Description traversal = Traversal .description().breadthFirst()
.rel ationshi ps(w t hName(User. FRI END)) . rel ati onshi ps(RATED, OUTGO NG
.eval uat or (new Eval uator () {

publ i c Eval uation eval uate(Path path) {

final int length = path.length() - 1;

/'l only as far as requested

if (length > ratingDi stance) return Eval uati on. EXCLUDE_AND_PRUNE;

Rel ati onship rating = path.|astRel ationship();

/'l process RATED rel ati onshi ps, not FRI END

if (rating !'= null && rating.getType().equal s(RATED)) {
/'l ny rated novies
if (length == 0) return Eval uati on. EXCLUDE_AND_PRUNE;
final long novield = rating.get EndNode().getld();
int[] stars = ratings.get(novield);
if (stars == null) {

stars = new int[2];
ratings. put (novield, stars);

}
/'l aggregate for averaging, inverse to distance
int weight = ratingDistance - |ength;
stars[0] += weight * (Integer) rating.getProperty(“stars", 0);
stars[1] += weight;
return Eval uati on. | NCLUDE_AND_PRUNE;

}

return Eval uati on. EXCLUDE_AND_CONTI NUE;

}
1)

Map<Mbvi e, | nt eger > resul t =new HashMap<Mbvi e, | nteger>();
/'l lazy traversal results
final Iterabl e<Mbvi e> novies = novi eRepository.findAl | ByTraversal (user,
for (Mvie nmovie : nmovies) { // assign novie to averaged rating
final int[] stars = ratings. get(novie.getNodeld());
resul t.put(novie, stars[0]/stars[1]);

}

return result;

traversal);

The UserController simply called this method, added its results to the model, and the view rendered

the recommendation alongside the user's own ratings.

35

Part Il. Reference Documentation

.y

Q‘- springdatagraph

This part of the Spring Data Graph Guide book provides the reference documentation. It details many aspects of
the tutorial and also explains concepts that were only just mentioned there.

Its content covers information about the programming model, APIs, concepts, annotations and technical details
of Spring Data Graph.

Whenever you look for the meansto employ thefull power of the Spring Data Graph library you find your answers
in the reference section. If you don't, please inform us about missing or incorrect content so that we can fix that.

36

Reference Documentation

1. Spring Data and Spring Data Graph

Spring Data is a SpringSource project that aims to provide Spring's convenient programming model
and well known conventions for NOSQL databases. Currently there is support for graph (Neo4j),
key-vaue (Redis, Riak), document (MongoDB) and relational (Oracle) databases. Mark Pollack, the
author of Spring.NET, isthe project lead for the Spring Data project.

The Spring Data Graph project, as part of the Spring Data initiative, ams to simplify development
with the Neo4j graph database. Like JPA, it uses annotations on simple POJO domain objects. The
annotations activate the AspectJ aspects in the Spring Data Graph framework, mapping the POJO
entities and their fields to nodes, relationships, and properties in the graph database.

Spring Data Graph allows, at anytime, to drop down to the Chapter 17, Introduction to Neo4j level to
execute functionality with the highest performance possible.

For Integration of Neo4j and Grailsy GORM please refer to the Neo4j grails plugin. For other language
bindings or frameworks visit the Neo4j Wiki.

2. Reference Documentation Overview

The explanation of Spring Data Graphs programming model starts with some underlying details.
The basic internal workings of Spring Data Graph are explained in the initial chapter about AspectJ
Section 18.1, “ Aspect] support”. It also explains some of the common issues around AspectJ tooling
with the current IDEs.

To get started with a simple application, you need only your domain model and the annotations
(see Section 18.2, “Defining node entities’) provided by the library. You use annotations to mark
domain aobjectsto be backed by nodes and relationships of the graph database. For individual fieldsthe
annotations allow you to declare how they should be processed and mapped to the graph. For property
fields and references to other entities thisis straightforward.

To use advanced functionality like traversals, Cypher and Gremlin, a basic understanding of the graph
datamodel isrequired. The graph datamodel isexplained in the chapter about Chapter 17, Introduction
to Neo4j.

Relationships between entities arefirst class citizensin agraph database and therefore worth a separate
Section 18.3, “Relating node entities” describing their usage in Spring Data Graph.

To add fields that are just backed by graph operations is a bit more involved. First you should know
about traversals, Cypher queries and Gremlin expressions. Those are explained in the Chapter 17,
Introduction to Neo4j chapter. Then you can start adding purely dynamically gathered fields to your
entities.

Y ou might probably usethe additional entity methods (see Section 18.4, “Introduced methods”) that are
added to your domain objects by Spring Data Graph. Those allow you to manage the entity lifecycles
as well as to connect entities. Those methods also provide the means to execute the mentioned graph
operations with your entity as a starting point.

XXXVii

http://springsource.org/spring-data
http://www.grails.org/plugin/neo4j
http://wiki.neo4j.org/content/Main_Page#Language_and_framework_bindings

Reference Documentation

Indexing operations are useful for finding individual hodes and relationships in a graph. They can be
used to start graph operations or to be processed in your application. Indexing in the plain Neo4j APl is
abit more involved. Spring Data Graph maintains automatic indexes per entity class, with @Indexed
annotations on relevant fields. (Section 18.5, “Indexing”)

If you don't want to go the path of persistence aware domain objects (Active-Record) but rather use a
DAO layer, Spring DataCommons provides arepository abstraction that isalsoimplemented in Spring
Data Graph. Those repositories just consist of a composition of interfaces that declare the available
methods on the concrete repository. The implementation details are handled by the library. At least for
typical CRUD, Index- and Query-operatoins that is very convenient. For custom implementations of
repository methods you are free to add your own code. (Section 18.6, “CRUD with repositories’).

Neodj isan ACID database, it uses Java transactions (and internally even a 2 phase commit protocol)
to guarantee the safety of your data. The implications of that are described in the chapter around
transactions. (Section 18.7, “ Transactions”)

The need of an active transaction for mutating the state of nodes or relationships implies that direct
changes to the graph are only possible in a transactional context. Unfortunately many higher level
application layers don't want to care about transactions and the open-session-in-view pattern is not
widely used. Therefore Spring Data Graph introduced an entity lifecyle and added support for detached
entitieswhich can be used for temporary domain objects that are not intended to be stored in the graph
or which will be attached to the graph only later. (Section 18.8, “ Detached node entities”)

Unlike Neo4j which is a schema free database, Spring Data Graph works on Java domain objects. So
it needs to store the type information of the entities in the graph to be able to reconstruct them when
just nodes are retrieved. To achieve that it employs type-representation-strategies which are described
in a separate chapter. (Section 18.9, “Entity type representation”)

To be able to leverage the schema-free nature of Neo4j it is possible to project any entity to another
entity type. That is useful as long as they share some properties (or relationships). The entities
don't have to share any super-types or hierarchies. How that works is explained here: Section 18.10,
“Projecting entities’.

Spring Data Graph offers basic support for bean property validation (JSR-303). Annotations from that
JSR are recognized and evaluated whenever a property is set, or when a previously detached entity is
persisted to the graph. (see Section 18.11, “Bean validation (JSR-303)")

Unfortunately the setup of Spring Data Graph is more involved than we'd like. That is partly dueto the
maven setup and dependencies, which can be alleviated by using different build systems like gradle
or ant/ivy. The Spring configuration itself boils down to two lines of <dat agr aph> namespace setup.
(see Chapter 19, Environment setup)

Spring Data Graph can also be used in a JPA environment to add graph features to your JPA entities.
In the Chapter 20, Cross-store persistence the dightly different behavior and setup of a Graph-JPA
interaction are described.

The provided samples, which are also publicly hosted on github are explained in Chapter 21, Sample
code.

The performance implications of using Spring Data Graph are detailed in Chapter 22, Performance
considerations. This chapter also discusses which usecases should be handled with Spring Data Graph
and when it should not be used.

XXXViii

http://github.com/springsource/spring-data-graph-examples

Reference Documentation

Being a Spring Data library, Spring Data Graph also implements a comprehensive template for
interacting with the Neo4j graph database. The Chapter 23, Neo4j Template provides all basic graph
operations as well as advanced querying with Indexes, Cypher, Gremlin and Traversals with a
convenient API.

As Aspect] might not come that easy to everyone, some of the core concepts of this Aspect oriented
programming implementation for Java are explained in Chapter 24, AspectJ details.

How to consumethe REST-API of aNeo4j-Server isthetopic of Chapter 25, Neo4j Server. But Spring
Data Graph can also be used to create custom Extensions for the Neo4j Server which would serve
domain model abstractions to a suitable front-end. So instead of talking low level primitives to a
database, the front-end would communicate via a domain level protocol with endpoints implemented
in Jersey and Spring Data Graph.

Note

» | |
As Spring Data Graph is based on A spectJ and uses some advanced features of that tool set,
please be aware of that. Please seethe section on AspectJ (Section 18.1, “ AspectJ support”)
for detailsif you run into any problems,

XXXiIX

Chapter 17. Introduction to Neo4j

17.1. What is a graph database?

A graph database is a storage engine that is specialized in storing and retrieving vast networks of data.
It efficiently stores nodes and relationships and allows high performance traversal of those structures.
Properties can be added to nodes and rel ationships.

Graph databases are well suited for storing most kinds of domain models. In ailmost all domain models,
there are certain things connected to other things. In most other modeling approaches, the relationships
between things are reduced to asingle link without identity and attributes. Graph databases allow one
to keep the rich relationships that originate from the domain, equally well-represented in the database
without resorting to also modeling the relationships as "things'. There is very little "impedance
mismatch" when putting real-life domains into a graph database.

17.2. About Neo4j

Neodj is a graph database. It is a fully transactional database (ACID) that stores data structured as
graphs. A graph consists of nodes, connected by relationships. Inspired by the structure of the human
brain, it allows for high query performance on complex data, while remaining intuitive and simple
for the developer.

Neodj has been in commercia development for 10 years and in production for over 7 years. Most
importantly it has a helpful and contributing community surrounding it, but it also:

« hasanintuitive graph-oriented model for data representation. Instead of tables, rows, and columns,
you work with a graph consisting of nodes, relationships, and properties.

» has a disk-based, native storage manager optimized for storing graph structures with maximum
performance and scalability.

* isscalable. Neodj can handle graphswith many billions of nodes/rel ationships/propertiesonasingle
machine, but can also be scaled out across multiple machines for high availability.

» has apowerful traversal framework for traversing in the node space.

« can be deployed as a standalone server or an embedded database with a very small distribution
footprint (~700Kk jar).

* hasaJavaAPl.

In addition, Neo4j has ACID transactions, durable persistence, concurrency control, transaction
recovery, high availability, and more. Neo4j is released under adual free software/commercial license
model.

17.3. GraphDatabaseService

The interface or g. neo4j . gr aphdb. G- aphDat abaseSer vi ce provides access to the storage engine.
Its features include creating and retrieving nodes and relationships, managing indexes (via the
IndexManager), database life cycle callbacks, transaction management, and more.

40

http://neo4j.org/
http://wiki.neo4j.org/content/Getting_Started
http://api.neo4j.org/

Introduction to Neo4j

The EnbeddedG aphDat abase is an implementation of GraphDatabaseService that is used to embed
Neodj in a Java application. This implementation is used so as to provide the highest and tightest
integration with the database. Besides the embedded mode, the Neodj server provides access to the
graph database viaan HTTP-based REST API.

17.4. Creating nodes and relationships

Using the API of GraphDatabaseService, it is easy to create nodes and relate them to each other.
Relationships are typed. Both nodes and relationships can have properties. Property values can be
primitive Javatypesand Strings, or arraysof Javaprimitivesor Strings. Node creation and modification
has to happen within a transaction, while reading from the graph store can be done with or without
atransaction.

Example 17.1. Neo4j usage

GraphDat abaseSer vi ce graphDb = new EnbeddedG aphDat abase("hel | oworl d");
Transaction tx = graphDb. begi nTx();
try {

Node firstNode = graphDb. creat eNode();

Node secondNode = graphDb. creat eNode();

firstNode. set Property("nessage", "Hello, ");

secondNode. set Property("nessage", "world!");

Rel ationship rel ationship = firstNode. createRel ati onshi pTo(secondNode,
Dynani cRel ati onshi pType. of ("KNOAS"));
rel ationshi p. set Property("nmessage", "brave Neo4j ");
t x. success();
} finally {
tx.finish();
}

17.5. Graph traversal

Getting a single node or relationship and examining it is not the main use case of a graph
database. Fast graph traversal and application of graph agorithms are. Neo4j provides a DSL for
defining Traver sal Descri pti onS that can then be applied to a start node and will produce a lazy
java.l ang. | t erabl e result of nodes and/or relationships.

Example 17.2. Traversal usage

Traversal Description traversal Description = Traversal . description()
.dept hFirst()
. rel ati onshi ps(KNOAS)
.rel ationshi ps(LI KES, Direction.|NCOM NG
.eval uat or (Eval uat ors. t oDept h(5));
for (Path position : traversal Description.traverse(nyStartNode)) ({
Systemout.println("Path fromstart node to current position is " + position);

}

17.6. Indexing

The best way for retrieving start nodesfor traversalsis by using Neo4j'sintegrated index facilities. The
GraphDatabaseService provides access to the IndexManager which in turn provides named indexes
for nodes and relationships. Both can be indexed with property names and values. Retrieval is done
with query methods on indexes, returning an IndexHits iterator.

41

http://wiki.neo4j.org/content/Getting_Started_With_Neo4j_Server

Introduction to Neo4j

Spring Data Graph provides automatic indexing via the @Indexed annotation, eliminating the need
for manual index management.

Note
H“ Modifying Neo4j indexes also requires transactions.

Example 17.3. Index usage

| ndexManager i ndexManager = graphDb. i ndex();
| ndex<Node> nodel ndex = i ndexManager . f or Nodes("a- node-i ndex");
Node node = ...;
Transaction tx = graphDb. begi nTx();
try {
nodel ndex. add(node, "property", "val ue");
t x. success();
} finally {
tx. finish();
}
for (Node foundNode : nodel ndex. get ("property", "value")) {
// found node

}

17.7. Querying with Cypher

With version 1.4.M04 Neo4j introduced atextual query language called "Cypher" which draws from
many sources. From graph matching likein SPARQL, some keywordsand query structurethat reminds
of SQL and some iconic representation. A screencast presenting cypher queries on the cineasts.net
dataset isavailable at video.neodj.org. Cypher waswrittenin Scalato leverage the high expressiveness
for lazy sequence operations of the language and the great parser combinator library.

Cypher queries always begin with ast art set of nodes. Those can be either expressed by their id's or
by aindex lookup expression. Those start-nodes are then related to other nodes in the mat ch clause
to other nodes. Start and match clause can introduce new identifiers for nodes and relationships. In
the wher e clause additional filtering of the result set is applied by evaluating boolean expressions. The
r et ur n clause defines which part of the query result will be available. Aggregation also happensin the
return clause by using aggregation functions on some of the values. Sorting can happen in the or der
by clause and theski p and 1i mi t partsrestrict the result set to a certain window.

Cypher can be executed on an embedded graph db using Execut i onEngi ne and Cypher Par ser. This
is encapsulated in Spring Data Graph with Cypher Quer yEngi ne. The Neo4j-REST-Server comes with
a Cypher-Plugin that is accessible remotely and is available in the Spring Data Graph REST-Binding.

42

http://docs.neo4j.org/chunked/milestone/cypher-query-lang.html
http://video.neo4j.org/U2Y/introduction-to-cypher

Introduction to Neo4j

Example 17.4. Cypher Examples on the Cineasts.net Dataset

/'l Actors of Forrest Gunp:
start novie=(Mvie,id,'13") match (novie)<-[: ACTS_I N - (actor)
return actor.nanme, actor.birthplace?

/'l User-Ratings:
start user=(User,login,'mcha') match (user)-[r,:RATED - >(novie) where r.stars > 3
return novie.title, r.stars, r.coment

// Mutual Friend recomendations:
start user=(User,login,'mcha') match (user)-[:FRIEND]-(friend)-[r,:RATED] ->(novie) where f.stars > 3
return friend.name, novie.title, r.stars, r.coment?

/1 Movi e suggestions based on a novie:
start novie=(Mvie,id,'13") match (nmovie)<-[: ACTS_IN]-()-[:ACTS_I N - >(suggesti on)
return suggestion.title, count(*) order by count(*) desc limt 5

/'l Co-Actors, sorted by count and name of Lucy Liu
start lucy=(1000) match (lucy)-[:ACTS IN ->(novie)<-[:ACTS_IN -(co_actor)
return count(*), co_actor.nanme order by count(*) desc,co_actor.name limt 20

/'l recomrendati ons including counts, grouping and sorting
start user=(User,login,'mcha') match (user)-[:FRI END]-(friend)-[r,:RATED)] - >(novi e)
return novie.title, AVEr.stars), count(*) order by AVEr.stars) desc, count(*) desc

17.8. Gremlin a Graph Traversal DSL

Gremlinis an expressive Groovy DSL developed by Marko Rodriguez as part of the tinkerpop stack.
It builds on top of a pipe implementation (Blueprints Pipes) that uses connected operationsto traverse
agraph. Gremlin has a concise syntax but is turing compl ete.

Gremlin can be executed by including the tinkerpop and blueprints dependencies and then requesting
a Scri pt Engi ne of type "gremlin" from the j avax. Scri pt * facilities. In Spring Data Graph this is
encapsulated in Gr em i nQuer yEngi ne. The Neo4j-REST -Server also comeswith aGremlin-Plugin that
is accessible remotely and is available in the Spring Data Graph REST-Binding.

Example 17.5. Sample Gremlin Queries

/1l Vertex withid 1
v = g.v(1)

/1 determi ne the nane of the vertices that vertex 1 knows and that are ol der than 30 years|of age
v.outE{it.|abel =="knows'}.inVit.age > 30}.nane

/1 cal cul ate basic collaborative filtering for vertex 1
m=[:]
g-v(1l).out('likes").in('likes').out('likes").groupCount(m
msort{a,b -> a.value <=> b. val ue}

43

http://markorodriguez.com
http://tinkerpop.com

Chapter 18. Programming model

This chapter covers the fundamentals of the programming model behind Spring Data Graph. It
discussesthe AspectJ features used and the annotations provided by Spring Data Graph and how to use
them. Examples for this section are taken from the "IMDB" project of Spring Data Graph examples.

18.1. Aspectd support

Behind the scenes, Spring Data Graph leverages AspectJ aspects to modify the behavior of simple
annotated POJO entities (see Chapter 24, AspectJ details). Each node entity is backed by a graph node
that holdsits properties and relationships to other entities. AspectJisused for intercepting field access,
so that Spring Data Graph can retrieve the information from the entity's backing node or relationship
in the database.

The aspect introduces some internal fields and some public methods (see Section 18.4, “Introduced
methods”’) to the entities, such as entity. get PersistentState() and entity.rel ateTo. It also
introduces repository methods likef i nd(O ass<? ext ends NodeEntity>, Traversal Description).
Introduced methods for equal s() and hashCode() use the underlying node or relationship.

Spring Data Graph internally uses an abstraction called EntityState that the field access and
instantiation advices of the aspect delegate to. This way, the aspect code is kept to a minimum,
focusing mainly on the pointcuts and delegation code. The EntityState then uses a number of
Fi el dAccessor Fact ori es tO create aFi el dAccessor instance per field that doesthe specific handling
needed for the concrete field type. There are various layers of caching involved as well, so it handles
repeated instantiation efficiently.

18.1.1. Aspectd IDE support

As Spring Data Graph uses some advanced features of AspectJ, users may experienceissueswith their
IDE reporting errors where in fact there are none. Features that might be reported wrongfully include:
introduction of methods to interfaces, declaration of additional interfaces for annotated classes, and
generified introduced methods.

IDE's not providing the full AJ support might mark parts of your code as errors. You should rely on
your build-system and test to verify the correctness of the code. Y ou might also have your Entities
(or their interfaces) implement the NodeBacked and Rel at i onshi pBacked interfaces directly to benefit
from completion support and error checking.

Eclipse and STS support Aspect] viathe AJDT plugin which can be installed from the update-site:
http://downl oad.eclipse.org/tool s/ajdit/36/update/ (it might be necessary to use the latest development
snapshot of the plugin http://download.eclipse.org/tool /ajdt/36/dev/update). The current version that
does not show incorrect errors is Aspectd 1.6.12.M1 (included in STS 2.7.0.M2), previous versions
are reported to mislead the user.

Note

There might be some issues with the eclipse maven plugin not adding Aspect] files
correctly to the build path. If you encounter issues, please try the following: Try editing
the build path to i ncl ude **/*. aj for the spring-data-neo4j project. Y ou can do this by
selecting "Build Path -> Configure Build Path ..." from the Package Explorer. Then for
the spri ng- dat a- neo4j / src/ mai n/ j ava add **/ *. aj to the Included path.

http://github.com/SpringSource/spring-data-graph-examples
http://www.eclipse.org/aspectj/
http://download.eclipse.org/tools/ajdt/36/update/
http://download.eclipse.org/tools/ajdt/36/dev/update

Programming model

The AspectJ support in IntelliJ IDEA lacks some of the features. JetBrains is working on improving
the situation in their upcoming 11 release of their popular IDE. Their latest work is available under
their early access program (EAP). Building the project with the Aspect] compiler aj ¢ worksin IDEA
(Options -> Compiler -> Java Compiler should show gjc). Make sure to give the compiler at least 512
MB of RAM.

18.2. Defining node entities

Node entities are declared using the @odeEntity annotation. Relationship entities use the
@Rel ati onshi pEnti ty annotation.

18.2.1. @NodeEntity: The basic building block

The @lodeEnt ity annotation is used to turn a POJO class into an entity backed by a node in the
graph database. Fields on the entity are by default mapped to properties of the node. Fieldsreferencing
other node entities (or collectionsthereof) arelinked with relationships. If theuseshor t Nanes attribute
overridden to false, the property and relationship names will have the class name of the entity
prepended.

@lodeEnt i t y annotations are inherited from super-types and interfaces. It is not hecessary to annotate
your domain objects at every inheritance level.

If thepartial attributeisset totrue, thisentity takes part in a cross-store setting, where the entity lives
in both the graph database and a JPA data source. See ??? for more information.

Entity fields can be annotated with @ aphProperty, @rel atedTo, @Rel atedToVia, @ ndexed,
@ aphl d and @ aphTraver sal .

Example 18.1. Simple node entity

@NodeEntity

public class Mvie {
String title;

}

18.2.2. @GraphProperty: Optional annotation for property fields

Itisnot necessary to annotate datafields, asthey are persisted by default; all fieldsthat contain primitive
values are persisted directly to the graph. All fields convertible to String using the Spring conversion
serviceswill be stored as a string. Spring Data Graph includes a custom conversion factory that comes
with converters for Enuns and Dat eS. Transient fields are not persisted.

Currently there is no support for handling arbitrary collections of primitive or convertable values.
Support for thiswill be added by the 1.1. release.

This annotation is typicaly used with cross-store persistence. When a node entity is configured
as partia, then al fields that should be persisted to the graph must be explicitly annotated with
@ aphProperty.

18.2.3. @Indexed: Making entities searchable by field value

The @Indexed annotation can be declared on fields that are intended to be indexed by the Neo4j
indexing facilities. The resulting index can be used to later retrieve nodes or relationships that contain
acertain property value, e.g. aname. Often an index is used to establish the start node for atraversal.

45

Programming model

Indexes are accessed by arepository for aparticular node or relationship entity type. See Section 18.5,
“Indexing” and Section 18.6, “CRUD with repositories’ for more information.

18.2.4. @Query: fields as query result views

The @uer y annotation leverages the delegation infrastructure used by the Spring Data Graph aspects.
It provides dynamic fields which, when accessed, return the values selected by the provided query
language expression. The provided query must contain a placeholder named %t art for the id of the
current entity. For instancestart n=(%tart) match n-[: FRIEND]->friend return friend. Graph
queriescan return variable number of entities. That'swhy annotation can be put onto fieldswith asingle
value, an Iterable of aconcrete type or an Iterable of Map<Stri ng, Obj ect >. Additional parameters are
taken from the params attribute of the @uery annotation. The tuples form key-value pairs that are
provided to the query at execution time.

Example 18.2. @Graph on a node entity field

@NodeEntity
public class Goup {
@uery(value = "start n=(%tart) match (n)-[: % el Type] ->(friend) return friend",
parans = {"rel Type", "FRIEND'})
private |terabl e<Person> friends;

Note
M“"a Please note that this annotation can also be used on repository methods.

18.2.5. @GraphTraversal: fields as traversal result views

The @ aphTraversal annotation leverages the delegation infrastructure used by the Spring Data
Graph aspects. It provides dynamic fields which, when accessed, return an Iterable of node entities that
aretheresult of atraversal starting at the entity containing the field. The Tr aver sal Descri pti on used
for thisiscreated by theFi el dTr aver sal Descri pti onBui | der classdefined by thet r aver sal Bui | der

attribute. The class of the resulting node entities must be provided with the el enent O ass attribute.

Example 18.3. @GraphTraversal from a node entity

@NodeEntity
public class Goup {
@& aphTraversal (traversal Bui | der = Peopl eTraver sal Bui | der. cl ass,
el enent Cl ass = Person.cl ass, params = "persons")
private |terabl e<Person> peopl e;

private static class Peopl eTraversal Buil der inpl enents Fiel dTraversal Descri pti onBuil de
@verride
public Traversal Description buil d(NodeBacked start, Field field, String... parans)
return new Traversal Descri ptionl npl ()
.rel ationshi ps(Dynam cRel ati onshi pType. wi t hName(par ans[0]))
.filter(Traversal.returnAll ButStartNode());

18.3. Relating node entities

Since relationships are first-class citizens in Neodj, associations between node entities are represented
by relationships. In general, relationships are categorized by atype, and start and end nodes (which

46

Programming model

imply the direction of the relationship). Relationships can have an arbitrary number of properties.
Spring Data Graph has special support to represent Neodj relationships as entities too, but it is often
not needed.

Note

.

2
As of Neodj 1.4.M03, circular references are alowed. Spring Data Graph reflects this

accordingly.
18.3.1. @RelatedTo: Connecting node entities

Every field of anode entity that references one or more other node entities is backed by relationships
in the graph. These relationships are managed by Spring Data Graph automatically.

The simplest kind of relationship isasinglefield pointing to another node entity (1:1). In this case, the
field does not have to be annotated at al, although the annotation may be used to control the direction
and type of the relationship. When setting the field, ardationship is created. If thefieldisset tonul I,
the relationship is removed.

Example 18.4. Single relationship field

@NodeEntity
public class Myvie {
private Actor nostPai dActor;

}

It is also possible to have fields that reference a set of node entities (1:N). These fields come in two
forms, modifiable or read-only. Modifiable fields are of the typej ava. util. Set <T>, and read-only
fieldsarej ava. | ang. I t er abl e<T>, where T is a @NodeEntity-annotated class.

Example 18.5. Node entity with relationships

@NodeEntity

public class Actor {
@Rel at edTo(type = "nost Pai dActor", direction = Direction.| NCOM NG
private Set<Myvie> nost Pai dl n;

@Rel at edTo(type = "ACTS_I N')
private Set<Myvie> novies;

Fieldsreferencing other entities should not be manually initialized, asthey are managed by Spring Data
Graph under the hood. 1:N fields can be accessed immediately, and Spring Data Graph will provide a
java.util.Set representing the relationships. If the returned set is modified, the changes are reflected in
the graph. Spring Data Graph also ensures that there is only one relationship of a given type between
any two given entities.

Note

a
Before an entity has been attached with persi st () for the first time, it will not have its
state managed by Spring Data Graph. For example, given the Actor class defined above,
if act or. movi es was accessed in a hon-persisted entity, it would return nul |, whereas if
it was accessed in a persisted entity, it would return an empty managed set.

47

Programming model

When you use an Interface as target type for the set and/or as el enent d ass please make sure that
it implements NodeBacked either by extending that Super-Interface manually or by annotating the
Interface with @odeEnt i t y too.

By setting direction to BOTH, rel ationships are created in the outgoing direction, but when the 1:N field
isread, it will include relationships in both directions. A cardinality of M:N is not necessary because
relationships can be navigated in both directions.

The relationships can aso be accessed by using the aspect-introduced methods
entity.getRel ationshi pTo(target, type) and entity.relateTo(target, type) available on
each NodeEntity. These methods find and create Neo4j relationships. It is aso possible to manually
removerelationshipsby usingenti ty. removeRel ati onshi pTo(target, type).Usingthese methods
is significantly faster than adding/removing from the collection of relationships as it doesn't have to
re-synchronize awhole set of relationships with the graph.

Note

A" .
Other collection types than set are not supported so far, also currently NO
Map<Rel at i onshi pType, Set <NodeBacked>>.

18.3.2. @RelationshipEntity: Rich relationships

To access the full data model of graph relationships, POJOs can also be annotated with
@rel ati onshi pEntity, making them relationship entities. Just as node entities represent nodes in
the graph, relationship entities represent relationships. As described above, fields annotated with
@el at edTo provide away to link node entities together via relationships, but it provides no way of
accessing the relationships themselves.

Relationship entities cannot be instantiated directly but are rather created via node entities, either
by @RelatedToVia-annotated fields (see Section 18.3.3, “@RelatedToVia: Accessing relationship
entities’), or by the introduced entity.rel ateTo(target, relationshipdass, type) and
entity. get Rel ationshi pTo(target, relationshipdass, type) methods (see Section 18.4,
“Introduced methods”).

Fieldsin relationship entities are, similarly to node entities, persisted as properties on the relationship.
For accessing the two endpoints of the relationship, two special annotations are available: @t ar t Node
and @ndNode. A field annotated with one of these annotations will provide read-only access to the
corresponding endpoint, depending on the chosen annotation.

Example 18.6. Relationship entity

@\odeEntity
public class Actor {
public Role playedln(Mvie novie, String title) {
return rel atedTo(novi e, Role.class, "ACTS_IN');
}
}

@Rel ati onshi pEntity
public class Role {
String title;

@5t art Node private Actor actor;
@ndNode private Movie novie;

48

Programming model

18.3.3. @RelatedToVia: Accessing relationship entities

To provide easy programmatic access to the richer relationship entities of the data model, the
annotation @el at edToVi a can be added on fields of type java.l ang. Iterabl e<T>, where T is a
@rel ati onshi pEnt i t y-annotated class. These fields provide read-only access to relationship entities.

Example 18.7. Accessing relationship entitiesusing @RelatedToVia

@NodeEntity

public class Actor {
@Rel at edToVi a(type = "ACTS_I N')
private |terabl e<Rol e> rol es;

public Role playedln(Mvie novie, String title) {
Rol e role = rel ateTo(novie, Role.class, "ACTS_IN');
role.setTitle(title);
return role;

18.4. Introduced methods

The node and rel ationship aspectsintroduce (viaAspectJ I TD - inter type declaration) several methods
to the entities.

Persisting the node entity after creation and after changes outside of a transaction. Participatesin an
open transaction, or creates its own implicit transaction otherwise.
nodeEntity. persist()

Accessing node and relationship IDs
nodeEntity. get Nodel d() andrel ati onshi pEntity. get Rel ati onshi pl d()

Accessing the node or relationship backing the entity
entity.getPersistentState()

equals() and hashCode() are delegated to the underlying state
entity.equal s() andentity. hashCode()

Creating relationships to a target node entity, and returning the relationship entity instance
nodeEntity.rel ateTo(targetEntity, relationshi pd ass, rel ationshipType)

Retrieving a single relationship entity
nodeEntity. get Rel ati onshi pTo(targetEntity, relationshipd ass, relationshipType)

Creating relationships to atarget node entity and returning the relationship
nodeEntity.rel ateTo(targetEntity, relationshipType)

Retrieving a single relationship
nodeEntity. get Rel ati onshi pTo(targetEnttiy, relationshipType)

Removing a single relationship
nodeEntity. renpveRel ati onshi pTo(targetEntity, relationshipType)

Remove the node entity, its relationships, and all index entries for it

nodeEntity. remove() andrel ati onshi pEntity.renmpve()

49

Programming model

Project entity to adifferent target type, using the same backing state
entity.projectTo(targetC ass)

Traverse, starting from the current node. Returnsend nodes of traversal converted to the provided type.
nodeEntity. findAl | ByTraversal (target Type, traversal Description)

Traverse, starting from the current node. Returns Ent i t yPat hs of the traversal result bound to the
provided start and end-node-entity types
I terabl e<EntityPat h> findAll Pat hsByTraversal (traversal Descri ption)

Executes the given query, replacing st art with the node-id and returning the results converted to
the target type.
<T> |Iterabl e<T> NodeBacked.findAl|lByQuery(final String query, final « ass<T>
t ar get Type)

Executesthe given query, replacing %st ar t with the node-id and returning the original result, but with
nodes and rel ationships replaced by their appropriate entities.
I t erabl e<Map<String, Cbj ect >> NodeBacked. fi ndAl | ByQuery(final String query)

Executes the given query, replacing %t art with the node-id and returns a single result converted to
the target type.
<T> T NodeBacked. fi ndByQuery(final String query, final O ass<T> targetType)

18.5. Indexing

The Neo4j graph database can use different so-called index providers for exact lookups and fulltext
searches. Luceneisthe default index provider implementation. Each named index is configured to be
fulltext or exact.

18.5.1. Exact and numeric index

When using the standard Neodj API, nodes and relationships have to be manually indexed with
key-vaue pairs, typicaly being the property name and value. When using Spring Data Graph, this
task issimplified to just adding an @ ndexed annotation on entity fields by which the entity should be
searchable. Thiswill result in automatic updates of the index every time an indexed field changes.

Numerical fields are indexed numerically so that they are available for range queries. All other fields
are indexed with their string representation.

The @Indexed annotation also provides the option of using a custom index. The default index nameis
the simple class name of the entity, so that each class typically getsits own index. It is recommended
to not have two entity classes with the same class name, regardless of package.

The indexes can be queied by wusing a repository (see Section 18.6,
“CRUD with repositories’). Typicaly, the repository is an instance of
org. springframewor k. dat a. neo4j . reposi tory. Di rect G aphReposi t oryFactory. The methods
fi ndByPropertyVal ue() and findAl | ByPropertyVal ue() work on the exact indexes and return the
first or all matches. To do range queries, usef i ndAl | ByRange() (please notethat currently both values
areinclusive).

50

Programming model

Example 18.8. Indexing entities

@NodeEntity

cl ass Person {
@ ndexed(i ndexName = "people") String nane;
@ ndexed int age;

}

G aphReposi t or y<Per son> graphReposi tory = graphRepositoryFactory
. creat eG aphReposi t ory(Person. cl ass);

/| Exact match, in nanmed index
Person mark = graphRepository.findByPropertyVal ue("people", "nane", "nark");

// Nunmeric range query, index nane inferred automatically
for (Person m ddl eAgedDevel oper : graphRepository.findAl | ByRange("age", 20, 40)) {
Devel oper devel oper=m ddl eAgedDevel oper . proj ect To(Devel oper. cl ass);

}

18.5.2. Fulltext indexes

Spring Data Graph also supports fulltext indexes. By default, indexed fields are stored in an exact
lookup index. To have them analyzed and prepared for fulltext search, the @ ndexed annotation has
the boolean f ul | t ext attribute. Please note that fulltext indexes require a separate index name as the
fulltext configuration is stored in the index itself.

Accessto thefulltext index isprovided by thef i ndAl | ByQuery() repository method. Wildcardslike *
are allowed. Generally though, the fulltext querying rules of the underlying index provider apply. See
the Lucene documentation for more information on this.

Example 18.9. Fulltext indexing

@NodeEntity
cl ass Person {

@ ndexed(i ndexName = "peopl e-search”, fulltext=true) String naneg;

}

G aphReposi t or y<Per son> graphReposi tory = graphRepositoryFactory
. creat eG aphReposi t ory(Person. cl ass);

Person mark = graphRepository.findAl | ByQuery("peopl e-search", "nane", "ma*");

Note

H“ Please notethat indexesare currently created on demand, so whenever anindex that doesn't
exist is requested from a query or get operation it is created. This is subject to change
but has currently the implication that those indexes won't be configured as fulltext which
causes subsequent fulltext updates to those indexes to fail.

18.5.3. Manual index access
The index for a domain class is aso available from GraphDat abaseCont ext Via the get | ndex()

method. The second parameter is optional and takes the index name if it should not be inferred from
the class name. It returns the index implementation that is provided by Neo4j.

51

http://lucene.apache.org/java/3_0_1/

Programming model

Example 18.10. Manual index usage

@A\ut owi red G aphDat abaseCont ext gdc;

/1 Default index

| ndex<Node> per sonl ndex = gdc. get | ndex(Person. cl ass);

per sonl ndex. quer y(new QueryCont ext (Nurrer i cRangeQuery. newi nt Range("age", 20, 40, true, true))
.sort(new Sort(new SortField("age", SortField.INT, false))));

/1 Named i ndex
I ndex<Node> namedPer sonl ndex = gdc. get| ndex(Person.cl ass, "people");
nanedPer sonl ndex. get (" nane", "“Mark");

/1 Fulltext index

| ndex<Node> personFul | t ext | ndex = gdc. get| ndex(Person. cl ass, "peopl e-search", true);
personFul | t ext | ndex. query("nane", "*cha*");

personFul | t ext | ndex. query("{nane: *cha*}");

18.5.4. Indexing in Neo4jTemplate

Neodj Template also offersindex support, providing auto-indexing for fields at creation time. Thereis
an aut ol ndex method that can also add indexes for a set of fields in one go.

For querying theindex, thetemplate offers query methodsthat take either the exact match parametersor
aquery object/expression, and push the resultswrapped uniformly as Pathsto the supplied Pat hvapper
to be converted or collected.

18.6. CRUD with repositories

The repositories provided by Spring Data Graph build on the composable repository infrastructure
in Spring Data Commons. They allow for interface based composition of repositories consisting of
provided default implementations for certain interfaces and additional custom implementations for
other methods.

Spring Data Graph repositories support annotated and named queries for the Neodj Cypher
query-language.

Spring Data Graph comes with typed repository implementations that provide methods for locating
node and relationship entities. There are 3 types of basic repository interfaces and implementations.
CRUDReposi t or y providesbasic operations, | ndexReposi t or y and Named! ndexReposi t or y delegateto
Neo4j'sinternal indexing subsystem for queries, and Tr aver sal Reposi t ory handles Neo4j traversals.

GraphRepository iS a convenience repository interface, extending CRUDRepository,
I ndexReposi t ory, and Tr aver sal Reposi t ory. Generally, it has all the desired repository methods. If
named index operations are required, then Nared! ndexReposi t ory may also be included.

18.6.1. CRUDRepository

CRUDReposi t or y delegatesto the configured TypeRepr esent at i onSt r at egy (See Section 18.9, “Entity
type representation”) for type based queries.

Load an instance viaa Neo4j nodeid
T findOne(id)

Check for existence of a Neodj node id

bool ean exi sts(id)

52

http://static.springsource.org/spring-data/data-jpa/docs/current/reference/html/#repositories.custom-implementations
http://docs.neo4j.org/chunked/milestone/query-lang.html

Programming model

Iterate over all nodes of anode entity type
I terabl e<T> findAl | () (supportedinfutureversions: |t erabl e<T> findAl | (Sort) andPage<T>
findAl | (Pageabl e))

Count the instances of a node entity type

Long count ()

Save agraph entity
T save(T) andIterabl e<T> save(lterabl e<T>)

Delete a graph entity
void del ete(T),void; delete(lterable<T>),anddeleteAll ()

Important to note hereisthat thesave, del et e, and del et eAl | methodsareonly thereto conformtothe
org. springframewor k. dat a. r eposi t ory. Reposi t ory interface. The recommended way of saving
and deleting entitiesisby usingentity. persist () andentity.remove().

18.6.2. IndexRepository and NamedIndexRepository

I ndexReposi t or y workswith theindexing subsystem and provides methodsto find entities by indexed
properties, ranged queries, and combinations thereof. The index key is the name of the indexed entity
field, unless overridden in the @ ndexed annotation.

Iterate over al indexed entity instances with a certain field value
I terabl e<T> findAl | ByPropertyVal ue(key, val ue)

Get asingle entity instance with a certain field value
T findByPropertyVal ue(key, val ue)

Iterate over all indexed entity instances with field values in a certain numerical range (inclusive)
Iterabl e<T> findAl | ByRange(key, from to)

Iterate over all indexed entity instances with field values matching the given fulltext string or
QueryContext query
I'terabl e<T> findAl | ByQuery(key, queryOr QueryContext)

There is dso a Naned! ndexReposi t ory with the same methods, but with an additional index name
parameter, making it possible to query any index.

18.6.3. TraversalRepository

Traver sal Reposi t ory delegates to the Neodj traversal framework.

Iterate over atraversal result

Iterabl e<T> findAl I ByTraversal (startEntity, traversal Description)

18.6.4. Cypher-Queries

18.6.4.1. Annotated Queries

Queriesfor the cypher graph-query language can be supplied with the @uer y annotation. That means
every method annotated with @uery(“start n=(%ode) mtch (n)-->(m return nt) will use
the query string. The named parameter vmode will be replaced by the actual method parameters. Node
and Relationship-Entities are resolved to their respective id's and al other parameters are replaced

53

Programming model

directly (i.e. Strings, Longs, etc). Thereis specia support for the Sort and Pageabl e parameters from
Spring Data Commons, which are supported to add programmatic paging and sorting (alternatively
static paging and sorting can be supplied in the query string itself). For using the named parametersyou
have to either annotate the parameters of the method with the @ar an(" node") annotation or enable
debug symbols.

18.6.4.2. Named Queries

Spring Data Graph also supports the notion of named queries which are externalized
in property-config-files (META-1 NF/ gr aph- naned- queri es. properties). Those files have the
format: Entity. finder Name=query (e.g. Per son. fi ndBoss=st art p=(%per son) mat ch
(p)<-[:BOSS]-(boss) return boss). Otherwise named queries support the same parameters as
annotated queries. For using the named parameters you have to either annotate the parameters of the
method with the @ar am(" per son") annotation or enable debug symbols.

18.6.4.3. Query results

Typica results for queries are | terabl e<Type>, |terabl e<Map<String, Cbject>> Type and
Page<Type>. Nodes and Relationships are converted to their respective Entities (if they exist). Other
values are converted using the registered Spring conversion services (e.g. enums).

18.6.4.4. Cypher Examples

Thereis ascreencast available showing many features of the query language. The following examples
are taken from the cineasts dataset of the tutorial section.

start n=(0) return n
returns the node withid O

start novie=(Mvie,title,'Matrix') return novie
returns the nodes which are indexed as 'Matrix'

start nmovi e=(Movi e, title,' Matrix') mat ch (movie)<-[: ACTS_I N - (actor) return
actor. nanme
returns the names of the actorsthat have a ACTS _IN relationship to the movie node for matrix

start novie=(Mwvie,title,"Matrix') match (rmovie)<-[r,:RATED]-(user) where r.stars >
3 return user.nane, r.stars, r.comment
returns users names and their ratings (>3) of the movie matrix

start user=(User,login,'mcha') match (user)-[:FRIEND]-(friend)-[r,:RATED] ->(novie)

return movie.title, AVEr.stars), count(*) order by AVEr.stars) desc, count(*) desc
returns the movies rate by the friends of the user 'micha, aggregated by movie.title, with averaged
ratings and rating-counts sorted by both

18.6.5. Creating repositories

The Reposi t ory instances are either created manually viaabi r ect G aphReposi t or yFact ory, bound
to a concrete node or relationship entity class. The Di r ect GraphReposi t or yFact ory isconfigured in
the Spring context and can be injected.

http://neo4j.vidcaster.com/U2Y/introduction-to-cypher

Programming model

Example 18.11. Using GraphRepositories

G aphReposi t or y<Per son> graphReposi tory = graphRepositoryFactory
. creat eG aphReposi t ory(Person. cl ass);

Person m chael = graphRepository.save(new Person("M chael", 36));

Person dave = graphRepository.findOne(123);

Long nunber Of Peopl e = graphRepository. count();

Person mark = graphRepository.findByPropertyVal ue("nanme", "mark");

I t erabl e<Person> devs = graphRepository.findAl | ByProperyVal ue("occupation", "devel oper");
It er abl e<Per son> mi ddl eAgedPeopl e = graphRepository. findAl | ByRange("age", 20, 40);

It erabl e<Per son> aTeam = graphReposi tory. fi ndAl | ByQuery("nanme", "A*");

I t er abl e<Person> davesFri ends = graphRepository.findAllByTraversal (dave,

Traversal . description(). pruneAfterDepth(1)
.relationshi ps(KNOAS) . filter(returnAll ButStartNode()));

18.6.6. Composing repositories

The recommended way of providing repositories is to define a repository interface per domain class.
The mechanisms provided by the repository infrastructure will automatically detect them, along with
additional implementation classes, and create an injectable repository implementation to be used in
services or other spring beans.

55

Programming model

Example 18.12. Composing repositories

public interface PersonRepository extends G aphRepository<Person>, PersonRepositoryExtension {}

/1 alternatively select sone of the required repositories individually
public interface PersonRepository extends CRUDG aphRepository<Node, Per son>,
I ndexQuer yExecut or <Node, Per son>, Traver sal Quer yExecut or <Node, Per son>,
Per sonReposi t or yExt ensi on {}

/] provide a custom extension if needed
public interface PersonRepositoryExtension {
It erabl e<Person> findFri ends(Person person);

}

public class PersonRepositorylnpl inplenents PersonRepositoryExtension {
/] optionally inject default repository, or use DirectG aphRepositoryFactory
@\ut owi red PersonRepository baseRepository;
public Iterabl e<Person> findFriends(Person person) {
return baseRepository.findAllByTraversal (person, friendsTraversal);

/1 configure the repositories, preferably via the datagraph:repositories nanespace
/'l (graphDat abaseCont ext reference is optional)
<dat agr aph: reposi tori es base- package="org. spri ngfranmewor k. dat a. neo4j "
gr aph- dat abase- cont ext - r ef =" gr aphDat abaseCont ext "/ >
/] have it injected
@\ut owi r ed
Per sonReposi tory personRepository;
Person m chael = personRepository.save(new Person("M chael ", 36));
Per son dave=per sonReposi tory. fi ndOne(123);

I t erabl e<Person> devs = personRepository. findAl |l ByProperyVal ue("occupation", "devel oper");

I t er abl e<Person> aTeam = graphReposi tory. fi ndAl | ByQuery("name","A*");

It erabl e<Person> friends = personRepository.findFriends(dave);

18.7. Transactions

Neo4j is a transactional database, only allowing modifications to be performed within transaction
boundaries. Reading data does however not require transactions.

Spring Data Graph integrates with transaction managers configured using Spring. The simplest
scenario of just running the graph database uses a SpringTransactionManager provided by the Neo4j
kernel to be used with Spring's JtaTransactionManager. That is, configuring Spring to use Neo4j's
transaction manager.

Note
"

The explicit XML configuration given below is encoded in the Neo4j Confi gurati on
configuration bean that uses Spring's @onf i gur at i on feature. This greatly simplifiesthe
configuration of Spring Data Graph.

56

Programming model

Example 18.13. Simple transaction manager configuration

<bean i d="transacti onManager" class="org.springfranework.transaction.jta.JtaTransacti onMan
<property name="transacti onManager" >
<bean cl ass="org. neo4j . kernel .inpl.transaction. SpringTransacti onManager ">
<constructor-arg ref="graphDat abaseServi ce"/>
</ bean>
</ property>
<property nanme="user Transaction">
<bean cl ass="org.neo4j . kernel .inpl.transaction. UserTransacti onl npl ">
<constructor-arg ref="graphDat abaseServi ce"/>
</ bean>
</ property>
</ bean>

<t x:annotation-driven node="aspectj" transaction-nanager="transacti onManager"/>

ager" >

For scenarios with multiple transactional resources there are two options. The first option is to have
Neodj participate in the externally configured transaction manager by using the Spring support in

Neodj by enabling the configuration parameter for your graph database. Neo4j will then use Spring'

transaction manager instead of its own.

Example 18.14. Neo4j Spring integration

<! [CDATA[<cont ext : annot ati on-config />
<cont ext : spri ng-confi gured/ >

<bean i d="transacti onManager" class="org.springfranework.transaction.jta.JtaTransacti onMan
<property name="transacti onManager" >
<bean id="jotnm' class="org.springfranework. data. neo4j.transaction. Jot nfFact or yBean"
</ property>
</ bean>

<bean cl ass="org. neo4j . ker nel . EnbeddedG aphDat abase" destroy- net hod="shut down">
<constructor-arg value="target/test-db"/>
<constructor - ar g>

<map>
<entry key="tx_manager _i npl " val ue="spring-jta"/>
</ map>
</ constructor-arg>

</ bean>

<t x:annotation-driven node="aspectj" transaction-nmanager="transacti onManager"/>

S

ager" >

One can also configure a stock XA transaction manager (e.g. Atomikos, JOTM, App-Server-TM) to
be used with Neo4j and the other resources. For a bit less secure but fast 1 phase commit best effort,
use Chai nedTr ansact i onManager , which comes bundled with Spring Data Graph. It takes a list of
transaction managers as constructor params and will handle them in order for transaction start and

commit (or rollback) in the reverse order.

57

Programming model

Example 18.15. ChainedTransactionM anager example

<! [CDATA[<bean i d="j paTransacti onManager"
cl ass="org. springframework. orm j pa. JpaTr ansacti onManager" >
<property name="entityManager Factory" ref="entityManagerFactory"/>
</ bean>
<bean i d="jtaTransacti onManager"
cl ass="org. springframework. transaction.jta.JtaTransacti onManager" >
<property name="transacti onManager" >
<bean cl ass="org. neo4j.kernel .inpl.transaction. SpringTransacti onManager" >
<constructor-arg ref="graphDat abaseServi ce" />
</ bean>
</ property>
<property nanme="user Transacti on">
<bean class="org.neodj.kernel.inpl.transaction.UserTransactionl npl">
<constructor-arg ref="graphDat abaseServi ce" />
</ bean>
</ property>
</ bean>
<bean id="transacti onManager"
cl ass="org. spri ngfranmewor k. dat a. neo4j . transacti on. Chai nedTr ansact i onManager " >
<const ructor - ar g>
<list>
<ref bean="jpaTransacti onManager"/>
<ref bean="jtaTransacti onManager"/>
</list>
</ constructor-arg>
</ bean>

<t x:annotation-driven node="aspectj" transacti on-nmanager="transacti onManager"/>

18.8. Detached node entities

Node entities can be in two different persistence state: attached or detached. By default, newly created
node entities are in the detached state. When persi st () is called on the entity, it becomes attached
to the graph, and its properties and relationships are stores in the database. If persi st () isnot called
within atransaction, it automatically creates an implicit transaction for the operation.

Changing an attached entity inside a transaction will immediately write through the changes to the
datastore. Whenever an entity is changed outside of a transaction it becomes detached. The changes
are stored in the entity itself until the next call to persi st ().

All entities returned by library functions areinitially in an attached state. Just as with any other entity,
changing them outside of a transaction detaches them, and they must be reattached with per si st ()
for the data to be saved.

Example 18.16. Persisting entities

@\odeEntity
cl ass Person {
String nane;
Person(String nane) { this.nane = nane; }

}

/1l Store Mchael in the database
Person p = new Person("M chael ") . persist();

58

Programming model

18.8.1. Relating detached entities

As mentioned above, an entity simply created with the new keyword starts out detached. It al'so has
no state assigned to it. If you create a new entity with new and then throw it away, the database won't
be touched at al.

Now consider this scenario:

Example 18.17. Relationships outside of transactions

@NodeEntity
class Mvie {
private Actor topActor;
public void set TopActor(Actor actor) {
topActor = actor;
}
}

@NodeEntity
class Actor {

}

Movi e novi e
Act or actor

new Movi e();
new Actor();

novi e. set TopAct or (actor);

Neither the actor nor the movie has been assigned a node in the graph. If we were to call
novi e. per si st (), then Spring Data Graph would first create a node for the movie. It would then note
that thereis arelationship to an actor, so it would call actor.persist() in a cascading fashion. Once the
actor has been persisted, it will create the relationship from the movie to the actor. All of thiswill be
done atomically in one transaction.

Important to note hereisthat if act or . persi st () iscalledinstead, then only the actor will be persisted.
Thereason for thisisthat the actor entity knows nothing about the movie entity. It isthe movie entity
that has the reference to the actor. Also note that this behavior is not dependent on any configured
relationship direction on the annotations. It is amatter of Java references and is not related to the data
model in the database.

The persist operation (merge) storesall properties of the entity to the graph database and putsthe entity
in attached mode. Thereis no need to update the reference to the Java POJO as the underlying backing
node handles the read-through transparently. If multiple object instances that point to the same node
are persisted, the ordering is not important as long as they contain distinct changes. For concurrent
changes a concurrent modification exception is thrown (subject to be parametrizable in the future).

If the relationships form a cycle, then the entities will first all be assigned a node in the database, and
then the relationships will be created. The cascading of per si st () ishowever only cascaded to related
entity fields that have been modified.

Inthefollowing example, the actor and the movie are both attached entites, having both been previously
persisted to the graph:

Example 18.18. Cascade for modified fields

actor.setName("Billy Bob");
novi e. persi st ();

59

Programming model

In this case, even though the movie has areference to the actor, the name change on the actor will not
be persisted by thecall to movi e. persi st () . Thereason for thisis, as mentioned above, that cascading
will only be done for fields that have been modified. Since the novi e. t opAct or field has not been
modified, it will not cascade the persist operation to the actor.

18.9. Entity type representation

18.10.

There are several ways to represent the Java type hierarchy of the data model in the graph. In
genera, for all node and relationship entities, type information is needed to perform certain repository
operations. Some of thistype information is saved in the graph database.

Implementations of TypeRepr esent ati onStrat egy take care of persisting this information on entity
instance creation. They also provide the repository methods that use this type information to perform
their operations, like findAll and count.

There are three available implementations for node entities to choose from.
* | ndexi ngNodeTypeRepr esent ati onSt r at egy

Stores entity types in the integrated index. Each entity node gets indexed with its type and any
supertypesthat are also@odeEnt i t y-annotated. The special index used for thisiscaled__types_ .
Additionally, in order to get the type of an entity node, each node has a property __type__ with
the type of that entity.

* SubRef erenceNodeTypeRepresent ati onStrat egy

Stores entity types in a tree in the graph representing the type hierarchy. Each entity has a
INSTANCE_OF relationship to a type node representing that entity's type. The type may or may
not have a SUBCLASS OF relationship to another type node.

* NoopNodeTypeRepresent ati onStrat egy

Does not store any type information, and does hence not support finding by type, counting by type,
or retrieving the type of any entity.

There are two implementations for relationship entities available, same behavior as the corresponding
ones above:

* | ndexi ngRel ati onshi pTypeRepresent ati onStr at egy
* NoopRel ati onshi pTypeRepresent ati onStr at egy

Spring Data Graph will by default autodetect which are the most suitable strategies for node and
relationship entities. For new data stores, it will always opt for the indexing strategies. If a data store
was created with the oldersubRef er enceNodeTypeRepr esent at i onSt r at egy, then it will continue to
use that strategy for node entities. It will however in that case use the no-op strategy for relationship
entities, which means that the old data stores have no support for searching for relationship entities.
The indexing strategies are recommended for al new users.

Projecting entities

As the underlying data model of a graph database doesn't imply and enforce strict type constraints
like arelational model does, it offers much more flexibility on how to model your domain classes and
which of those to usein different contexts.

60

Programming model

18.11.

For instance an order can be used in these contexts: customer, procurement, logistics, billing,
fulfillment and many more. Each of those contexts requiresits distinct set of attributes and operations.
As Java doesn't support mixins one would put the sum of all of those into the entity class and thereby
making it very big, brittle and hard to understand. Being able to take a basic order and project it to a
different (not related in the inheritance hierarchy or even an interface) order type that is valid in the
current context and only offers the attributes and methods needed here would be very benefitial.

Spring Data Graph offersinitial support for projecting node and relationship entitiesto different target
types. All instances of this projected entity share the same backing node or relationship, so datachanges
arereflected immediately.

This could for instance also be used to handle nodes of atraversal with a unified (simpler) type (e.g.
for reporting or auditing) and only project them to a concrete, more functional target type when the
business logic requiresiit.

Example 18.19. Projection of entities

@NodeEntity
class Trainee {
String nane;
@rel at edTo
Set <Tr ai ni ng> trainings;

}

for (Person person : graphRepository.findAl | ByProperyVal ue("occupation”, "devel oper")) {
Devel oper devel oper = person. proj ect To(Devel oper. cl ass);
i f (devel oper.isJavaDevel oper()) {
trai nl nSpri ngDat a(devel oper. proj ect To(Tr ai nee. cl ass));

}

Bean validation (JSR-303)

Spring Data Graph supports property-based validation support. When a property is changed, it is
checked against the annotated constraints, e.g. @ n, @ax, @i ze, etc. Validation errors throw a
Val i dati onExcept i on. The validation support that comes with Spring is used for evaluating the
constraints. To use this feature, avalidator has to be registered with the G- aphDat abaseCont ext .

Example 18.20. Bean validation

@NodeEntity

cl ass Person {
@i ze(mn = 3, max = 20)
String nane;

@1 n(0) @vax(100)

int age;

61

Chapter 19. Environment setup

Spring Data Graph dramatically simplifies development, but some setup is naturally required. For
building the application, Maven needsto be configured to include the Spring Data Graph dependencies,
and configure the AspectJ weaving. After the build setup is complete, the Spring application needs to
be configured to make use of Spring Data Graph.

Spring Data Graph projects can be built using maven, we also added means to build them with gradle
and ant/ivy.

19.1. Gradle configuration

The necessary build plugin to build Spring Data Graph projects with gradle is available as part of the
SDG distribution or on github which makes the usage as easy as:

Example 19.1. Gradle Build Configuration

sourceConpatibility
target Conpatibility

1.6
1.6
springVersion = "3.0.5. RELEASE"

spri ngbat aGr aphVersion = "1.1.0"
aspectj Version = "1.6.12. ML

apply from'https://github. com SpringSource/spring-data-graph/raw master/buil d/
gradl e/ spri ngdat agr aph. gradl e’

configurations {
runtine
t est Conpi |l e
}
repositories {
mavenCentral ()
mavenLocal ()
mavenRepo urls: "http://nmaven. springfranmework. org/ rel ease”

}

The actual springdatagraph.gradleis very simple just decorating the javac tasks with theigjc ant task.

19.2. Ant/lvy configuration

The supplied sample ant build configuration is mainly about resolving the dependencies for Spring
Data Graph and AspectJ using Ivy and integrating the igjc ant task in the build.

62

https://github.com/SpringSource/spring-data-graph/raw/master/build/ivy

Environment setup

Example 19.2. Ant/lvy Build Configuration

<t askdef resource="org/aspectj/tools/ant/taskdefs/aspectjTaskdefs.properties" classpath="${lib.dir}/e

<target nane="conpile" description="Conpile production classes" depends="lib.retrieve">
<nkdir dir="${main.target}" />

<iajc sourceroots="${main.src}" destDir="${nmin.target}" classpathref="path.libs" source='1.6">
<aspect pat h>
<pat hel enent | ocation="${lib.dir}/spring-aspects.jar"/>
</ aspect pat h>
<aspect pat h>
<pat hel enent | ocation="${lib.dir}/spring-data-neo4j.jar"/>
</ aspect pat h>
</iajc>
</target>

19.3. Maven configuration

Spring Data Graph projects are easiest to build with Apache Maven. The main dependencies are:

Spring Data Graph itself, Spring Data Commons, parts of the Spring Framework, and the Neo4j graph
database.

19.3.1. Repositories

The milestone releases of Spring Data Graph are available from the dedicated milestone repository.
Neo4j releases and milestones are available from Maven Central.

Example 19.3. Spring milestonerepository

<reposi tory>
<i d>spring- maven-m | est one</i d>
<nane>Spri ngframewor k Maven Repository</ nanme>

<ur| >http:// maven. spri ngf ramewor k. or g/ m | est one</ ur| >
</ repository>

19.3.2. Dependencies

The dependency on spri ng-dat a- neo4j Wwill transitively pull in the necessary parts of Spring
Framework (core, context, aop, aspects, tx), Aspectj, Neo4j, and Spring DataCommons. If you already
usethese (or different versions of these) in your project, then include those dependencies on your own.

Example 19.4. Maven dependencies

<dependency>
<groupl d>or g. spri ngf ranewor k. dat a</ gr oupl d>
<artifactl|d>spring-data-neodj</artifactld>
<ver si on>1. 1. 0</ ver si on>

</ dependency>

<dependency>
<groupl d>or g. aspectj </ groupl d>
<artifactld>aspectjrt</artifactld>
<versi on>1. 6. 12. ML</ ver si on>

</ dependency>

63

Environment setup

19.3.3. AspectJ build configuration

Since Spring Data Graph uses AspectJ for build-time aspect weaving of entities, it is necessary to hook

in the AspectJ Maven plugin to the build process. The plugin also hasits own dependencies. You also
need to explicitly specify the aspect libraries (spring-aspects and spring-data-neo4;).

Example 19.5. AspectJ configuration

<pl ugi n>
<gr oup! d>or g. codehaus. noj o</ gr oupl! d>

<artifact|d>aspectj-maven-plugin</artifact|d>
<ver si on>1. 0</ ver si on>

<dependenci es>
<l-- NB: You nust

use Maven 2.0.9 or above or these are ignored (see MNG 2972)
<dependency>

=B
<gr oupl d>or g. aspectj </ groupl d>
<artifactld>aspectjrt</artifactld>

<version>1.6.12. ML</ ver si on>
</ dependency>

<dependency>
<groupl d>or g. aspectj </ groupl d>
<artifactld>aspectjtool s</artifactld>
<ver si on>1. 6. 12. ML</ ver si on>
</ dependency>
</ dependenci es>
<executi ons>
<executi on>
<goal s>

<goal >conpi | e</ goal >
<goal >t est - conpi | e</ goal >
</ goal s>
</ executi on>
</ executi ons>
<confi guration>
<out xm >t rue</ out xm >
<aspect Li brari es>
<aspect Li brary>

<gr oupl d>or g. spri ngf ramewor k</ gr oup| d>

<artifactld>spring-aspects</artifactld>
</ aspect Li brary>

<aspect Li brary>

<groupl d>or g. spri ngf ranewor k. dat a</ gr oupl d>

<artifactld>spring-datastore-neodj</artifactld>
</ aspect Li brary>

</ aspect Li brari es>
<sour ce>1. 6</ sour ce>
<t ar get >1. 6</ t ar get >
</ confi gurati on>
</ pl ugi n>

19.4. Spring configuration

Users of Spring Data Graph have two ways of very concisely configuring it. Either they can use a
Spring Data Graph XML configuration namespace, or they can use a Java-based bean configuration.

19.4.1. XML namespace

The XML namespace can be used to configure Spring Data Graph. The config eement
provides an XML-based configuration of Spring Data Graph in one line. It has three attributes.
gr aphDat abaseSer vi ce pointsout the Neo4j instanceto use. For convenience, st or eDi r ect or y canbe

64

Environment setup

setinstead of gr aphDat abaseSer vi ce to point to adirectory whereanew EnbeddedG aphDat abase Will
be created. For cross-store configuration, theent i t yManager Fact or y attribute needsto be configured.

Example 19.6. XML configuration with store directory

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: cont ext ="http://wwm. spri ngframewor k. or g/ schenma/ cont ext "
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: dat agr aph="ht t p: / / www. spri ngf ramewor k. or g/ schenw/ dat a/ gr aph"
xsi : schemalLocat i on="
http://ww. spri ngfranework. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
htt p: // ww. spri ngf ranewor k. or g/ schena/ cont ext
http: // ww. spri ngfranework. or g/ schena/ cont ext / spri ng- cont ext - 3. 0. xsd
http://ww. springframework. or g/ schena/ dat a/ gr aph
htt p: // ww. spri ngf ranewor k. or g/ schenw/ dat a/ gr aph/ dat agr aph- 1. 0. xsd" >

<cont ext : annot ati on- confi g/ >
<dat agr aph: config storeDirectory="target/config-test"/>

</ beans>

Example 19.7. XML configuration with bean

<cont ext : annot ati on- confi g/ >

<bean i d="gr aphDat abaseServi ce" cl ass="org. neo4j . kernel . EnbeddedG aphDat abase"
dest r oy- met hod="shut down" >
<constructor-arg index="0" value="target/config-test" />
</ bean>

<dat agr aph: confi g graphDat abaseSer vi ce="gr aphDat abaseServi ce"/ >

Example 19.8. XML configuration with cross-store

<cont ext : annot ati on- confi g/ >

<bean cl ass="org. springframework. orm j pa. Local Cont ai ner Enti t yManager Fact or yBean"
i d="entit yManager Fact ory" >
<property name="dat aSour ce" ref="dataSource"/>
<property name="persistenceXn Location" val ue="cl asspat h: META- | NF/ per si st ence. xm "/ >
</ bean>

<dat agr aph: config storeDirectory="target/config-test"
entityManager Fact ory="ent it yManager Fact ory"/>

19.4.2. Java-based bean configuration

Y ou can aso configure Spring Data Graph using Java-based bean metadata.

Note

e

For those not familiar with Java-based bean metadata in Spring, we recommend that you
read up on it first. The Spring documentation has a high-level introduction as well as
detailed documentation on it.

In order to configure Spring Data Graph with Java-based bean metadata, the class
Neo4j Confi guration is registered with the context. This is either done explicitly in the context
configuration, or via classpath scanning for classes that have the @Configuration annotation.

65

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/new-in-3.html#new-java-configuration
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-java-instantiating-container

Environment setup

The only thing that must be provided is the G aphDatabaseService. The example below
shows how to register the @onfiguration Neo4jConfiguration class, as well as Spring's
Confi gurati ond assPost Processor that transforms the @onf i gur at i on class to bean definitions.

Example 19.9. Java-based bean configuration

<! [CDATA[<beans ...>

<t x:annotation-driven node="aspectj" transaction-nanager="transacti onManager"/>
<bean cl ass="org. springfranmewor k. dat a. neo4j . confi g. Neo4j Confi gurati on"/>

<bean cl ass="org. spri ngfranmewor k. cont ext. annot ati on. Confi gur ati onCl assPost Processor"/ >
<bean i d="gr aphDat abaseServi ce" cl ass="org. neodj . kernel . EnbeddedG aphDat abase"
dest r oy- met hod="shut down" scope="si ngl et on">
<constructor-arg index="0" value="target/config-test"/>

</ bean>

</ beans>

66

Chapter 20. Cross-store persistence

The Spring Data Graph project support cross-store persistence, which allows for parts of the data to
be stored in atraditional JPA data store (RDBMS), and other partsin a graph store. This means that
an entity can be partially stored in e.g. MySQL, and partially stored in Neo4j.

This allows existing JPA-based applications to embrace NOSQL data stores for evolving certain parts
of their data model. Possible use cases include adding social networking or geospatial information to
existing applications.

20.1. Partial entities

Partial graph persistence is achieved by restricting the Spring Data Graph aspects to manage only
explicitly annotated parts of the entity. Those fields will be made @ ansi ent by the aspect so that
JPA ignores them.

A backing node in the graph store is only created when the entity has been assigned a JPA ID. Only
then will the association between the two stores be established. Until the entity has been persisted, its
state is just kept inside the POJO (in detached state), and then flushed to the backing graph database
ONnpersist().

The association between the two entities is maintained via a FOREIGN _ID field in the node, that
contains the JPA ID. Currently only single-value I1Ds are supported. The entity class can be resolved
viathe TypeRepr esent at i onSt r at egy that managesthe Javatype hierarchy within the graph database.
Given the ID and class, you can then retrieve the appropriate JPA entity for a given node.

The other direction is handled by indexing the Node with the FOREIGN_ID index which contains a
concatenation of the fully qualified class name of the JPA entity and the ID. The matching node can
then be found using the indexing facilities, and the two entities can be reassociated.

Using these mechanisms and the Spring Data Graph aspects, a single POJO can contain some fields
handled by JPA and others handles by Spring Data Graph. This aso includes relationship fields
persisted in the graph database.

20.2. Cross-store annotations

Cross-store persistence only requiresthe use of one additional annotation: @ aphPr opert y. Seebelow
for details and an example.

20.2.1. @NodeEntity(partial = "true")

When annotating an entity with partial = true, thismarksit as a cross-store entity. Spring Data
Graph will thus only manage fields explicitly annotated with @ aphPr operty.

20.2.2. @GraphProperty

Fields of primitive or convertible types do not normally have to be annotated in order to be persisted
by Spring Data Graph. In cross-store mode, Spring Data Graph only persistsfields explicitly annotated
with @ aphProper t y. JPA will ignore these fields.

67

Cross-store persistence

The following exampleis taken from the Spring Data Graph examples myrestaurants-social project:

Example 20.1. Cross-stor e node entity

@ntity

@rabl e(nane = "user_account")

@NodeEntity(partial = true)

public class UserAccount {
private String user Nane;
private String firstNane;
private String |ast Nane;

@ aphProperty
String ni cknane;

@rel at edTo
Set <User Account > fri ends;

@Rel at edToVi a(type = "recommends")
| t er abl e<Recommendat i on> r ecommendat i ons;

@enpor al (Tenpor al Type. TI MESTAWP)
@at eTi neFor mat (style = "S-")
private Date birthDate;

@manyToMany(cascade = CascadeType. ALL)
private Set<Restaurant> favorites;

@d
@zener at edVal ue(strategy = Generati onType. AUTO)
@ol um(name = "id")

private Long id;

public void knows(UserAccount friend) {
relateTo(friend, "friends");

}

publ i c Reconmendation rate(Restaurant restaurant, int stars, String comment) {

Recommendat i on recommendati on = rel ateTo(rest aurant,
recommendation. rate(stars, conment);
return recommendati on;

}

public Iterabl e<Reconmendati on> get Reconmendati ons() {
return recommendati ons;

}

Recommendati on. cl ass,

"recommends");

20.3. Configuring cross-store persistence

Configuring cross-store persistence is done similarly to the default Spring Data Graph configuration.
All you need to do is to specify an ent i t yManager Fact ory in the XML namespace confi g element,

and Spring Data Graph will configure itself for cross-store use.

68

http://github.com/SpringSource/spring-data-graph-examples

Cross-store persistence

Example 20.2. Cross-stor e Spring configuration

<beans xm ns="http://ww. springfranmewor k. or g/ schena/ beans"
xm ns: cont ext ="http://ww. springfranework. or g/ schema/ cont ext "
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schenma- i nst ance"
xm ns: dat agr aph="ht t p: / / www. spri ngf ramewor k. or g/ schena/ dat a/ gr aph"
xsi : schenaLocat i on="
http://ww. spri ngframework. or g/ schenma/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
http://ww. springframework. or g/ schenma/ cont ext
http://ww. springframework. or g/ schema/ cont ext/ spri ng- cont ext - 3. 0. xsd
http: //ww. spri ngfranework. or g/ schena/ dat a/ gr aph
http://ww. springframework. or g/ schena/ dat a/ gr aph/ dat agr aph- 1. 0. xsd
">

<cont ext : annot ati on- confi g/ >

<dat agr aph: config storeDirectory="target/config-test"
entityManager Fact ory="entityManager Factory"/>

<bean cl ass="org. spri ngfranmework. orm j pa. Local Cont ai ner Enti t yManager Fact or yBean"
i d="entityManager Fact ory" >
<property nane="dat aSour ce" ref="dataSource"/>

<property nanme="persistenceXnl Location" val ue="cl asspat h: META- | NF/ per si st ence. xm "

</ bean>
</ beans>

69

Chapter 21. Sample code

21.1. Introduction

Spring Data Graph comes with a number of sample applications. The source code of the samples can
be found on Github. The different sample projects are introduced below.

21.2. Hello Worlds sample application

The Hello Worlds sample application is a simple console application. It creates some worlds (node
entities) and rocket routes (relationships) between worlds, al in a galaxy (the graph), and then prints
them.

The unit tests demonstrate some other features of Spring Data Graph as well. The sample comes with
aminimal configuration for Maven and Spring to get up and running quickly.

Executing the application creates the following graph in the graph database:

w class: java.lang.Object

o moons: 1 count: 13
name:Earth M
i SUBCL Fss_-::: -
REACHABLE/ BY_ROCKET w class: org.springframework.data.neo4j.examples.hellograph.world
count: 13
coons2 | INSTANEETOF 4
® name: Mars !
moons: 0 moons: 62
® name: Mercury ® name: Hel
=== E_OF NSTANCE_OF
: moons: 63
® name: Venus INSTONCE T CE_'HPTM CE_OF ® name: Asgard
Y
o moons: 63 o moons: 2

name: Jupiter name: Muspellheim

@ moons: 62

e moons: 0
name: Saturn

name: AlFheimr

moons: 27
name: Uranus 7 Moons: 13
name: Neptune

#p MOONS: 1
name: Midgard

21.3. IMDB sample application

ThelMDB sampleisaweb application that imports datasetsfrom the I nternet Movie Database (IMDB)
into the graph database. It allows the listing of movies with their actors, and of actors and their roles
in different movies. It also uses graph traversal operationsto cal culate the Bacon number of any given
actor. This sample application shows the usage of Spring Data Graph in amore complex setting, using
several annotated entities and relationships as well as indexes and graph traversals.

See the readme file for instructions on how to compile and run the application.

An excerpt of the data stored in the graph database after executing the application:

70

http://github.com/SpringSource/spring-data-graph-examples
http://en.wikipedia.org/wiki/Bacon_number

Sample code

&b Lawrence, Harry (1) | Ball, J I
& d all, Jeremy (1)

awitt Eleanor dJl:lhnsnn Fll:lna ﬂTjen R
d McClory, Bellnda AC
-l d Aden Marc u & Aston, David (1)
d Butcher, Michael (1} =TS ACIE B N _:__.
a Harbach, Nigel ————‘E_—"_i: _‘___—,‘____ ﬂ Dodd, Steve

- g'%’g Matrix, The (1999) <" 0" & pender, Jansys

&a Brown, Tamara /
4 Nicodemou, Ada ﬂ Chong, MBVCUS INSTANCE_OF

& Goddard, Paul (1)

d Gordon, Dennl -
d Arahanga Julian @ org.neodj.examples.imdb.domain.Movie

21.4. MyRestaurants sample application

Simple, JPA-based web application for managing users and restaurants, with the ability to add
restaurants asfavoritesto auser. Itisbasically the foundation for the MyRestaurants-Social application
(seeSection 21.5, “MyRestaurant-Social sample application™), and does therefore not use Spring Data
Graph.

@ MyRestauvrants

a SpringOne Demo

e T e e
Log out Subway 53073 Plymouth i) &
Boston Mar 20877 Gaithersbu MD i) &
List all Restaurants Subway Sub 88008 Santa Tere NM E] ﬁ
Manage favorite Restaurants Arby's Roa 97603 Klamath Fa OR @ ﬁ
Bellefleur 82008 Carlsbad CA @ @
Huddle Hou 30701 Calhoun GA @ @
John Brown 46235 Indianapol IN i) il
Ling's Exp 53217 Milwaukee Wi @ ﬁ
Chubys's 87044 Odell OR @ ﬁ
Bojangles 29203 Columbia 3C @ ﬁ

Listresults perpage: 510 1520 25 |Page 1015 |

Home | Logout | Language: =j= | Theme: standard | alt Sponsored by SpringSource #

21.5. MyRestaurant-Social sample application

Thisapplication extendsthe MyRestaurants sampl e application, adding social networking functionality
to it with cross-store persistence. The web application alows for users to add friends and rate
restaurants. A graph traversal provides recommendations based on your friends (and their friends)
rating of restaurants.

Here's an excerpt of the data stored in the graph database after executing the application:

71

Sample code

MYRQS‘I’&UI’& TS + \ow wiTH soCIAL NETwoRKING

Sprﬁlg

a SpringOne Demo

USER ACCOUNT w List all Top Rated Restaurants

Log out
pr— Name |Recommendations ____________ |Avg.Rating |
Subway 2 35 i)
List all Restaurants
Manage favorite Restaurants
RECOMMENDATION Home | Logout | Language: 5= | Theme: standard | alt Sponsored by SpringSource
List my Recommendations
Create a new Friend
List my Friends
List Top Rated Restaurants
(2 Reference Node ——————SuBREFjavafarmotiet > Bavaiang Object

SUBREF_com.springone.myrastaurants.domain.Restaurant
SUBREF_com

INSTANCE_OF

fri

72

Chapter 22. Performance considerations

Although adding layers of abstraction is a common pattern in software development, each of these
layers generally adds overhead and performance penalties. This chapter discusses the performance
implications of using Spring Data Graph instead of the Neo4j API directly.

22.1. When is Spring Data Graph right

The focus of Spring Data Graph isto add a convenience layer on top of the Neo4j API. This enables
developers to get up and running with a graph database very quickly, having their domain objects
mapped to the graph with very little work. Building on this foundation, one can later explore other,
more efficient ways to explore and process the graph - if the performance requirements demand it.

Like any other object mapping framework, the domain entities that are created, read, or persisted
represent only a small fraction of the data stored in the database. This is the set needed for a certain
use-case to be displayed, edited or processed in a low throughput fashion. The main advantages of
using an object mapper in this case are the ease of use of real domain objectsin your businesslogic and
also with existing frameworks and libraries that expect Java POJOs as input or create them as results.

Spring Data Graph, however, was not designed with a major focus on performance. It does add some
overhead to pure graph operations. Something to keep in mind is that any access of properties and
relationships will in general read through down to the database. To avoid multiple reads, it is sensible
to store the result in alocal variable in suitable scope (e.g. method, class or jsp).

Most of the overhead comes from the use of the Java Reflection API, which is used to provide
information about annotations, fields and constructors. Some of the information is already cached by
the VM and the library, so that only the first access gets a performance penalty.

73

Chapter 23. Neo4jTemplate

The Neo4j Tenpl at e offers the convenient API of Spring templates for the Neo4j graph database.

23.1. Basic operations

For direct retrieval of nodes and relationships, the get ReferenceNode(), getNode() and
get Rel at i onshi p() methods can be used.

There are methods (cr eat eNode() and cr eat eRel at i onshi p()) for creating nodes and relationships
that automatically set provided properties.

Example 23.1. Neo4j template

<I[CDATA[i nport static org.neo4j. hel pers.collection. MapUti . map;
Neo4j Oper ati ons neo = new Neodj Tenpl at e(gr aphDat abaseSer vi ce) ;

Node mi chael = neo.creat eNode(map("nane","M chael "));
Node mark = neo. cr eat eNode(map(" nanme", " Mark"));
Node t homas = neo. cr eat eNode(map(" nanme", " Thonas"));

neo. cr eat eRel ati onshi p(mark, t homas, WORKS W TH, map("project"”, "spring-data"));
neo. i ndex("devs", t homas, "nane","Thomas");

/| Cypher
assert "Mark".equal s(neo. query("start p=(%erson) match p<-[:WORKS_W TH] - ot her return other.nane",

map(" person”,thomas)).to(String.class).single());

/[l Genmin
assert thomas. equal s(neo. execute("g.v(person).out (' WORKS WTH)",
map(" person", mark)).to(Node. cl ass).single());

/1 I ndex | ookup
assert mark. equal s(neo. | ookup("devs", "nanme", "Mark").single());

/1 1ndex | ookup with Result Converter
assert "Mark".equal s(neo. | ookup("devs", "nane", "Mark").to(String.class, new ResultConverter <PropertyCor
public String convert (PropertyContainer elenent, C ass<String> type) {

return (String) elenent.getProperty("nane");

)

23.2. QueryResult

All querying methods of the template return a uniform result type: QueryResul t <T> which is
also an Iterabl e<T>. The query result offers methods of converting each element to a target
type quer yResul t . t o(Type. cl ass) optionally supplying aResul t Conver t er <FROM TG> Which takes
care of custom conversions. By default most query methods can aready handle conversions from
and to: Paths, Nodes, Relationship and GraphEntities as well as conversions backed by registered
ConversionServices. A converted Quer yResul t <FROM> iS an |t er abl e<TC>. QueryResults can be
limited to a single value using the quer yResul t. si ngl e() method. It also offers support for a pure
callback function using a Handl er <T>.

23.3. Indexing

Adding nodes and relationships to an index is done with thei ndex() method.

74

NeodjTemplate

Thel ookup() methods either take a field/value combination to look for exact matches in the index,
or a Lucene query abject or string to handle more complex queries. All | ookup() methods return a
Quer yResul t <Pr oper t yCont ai ner > to be used or transformed.

23.4. Graph traversal

The traversal methods are at the core of graph operations. The traverse() method covers
the full traversal operation that takes a Traversal Description (typicaly built with the
Traversal . description() DSL) and runs it from the given start node. traverse returns a
Quer yResul t <Pat h> to be used or transformed.

23.5. Cypher Queries

The Neo4j Tenpl ate also allows execution of arbitrary Cypher queries. Via the query methods
the statement and parameter-Map are provided. Cypher Queries return tabular results, so the
Quer yResul t <Map<St ri ng, Qbj ect >> contains the rows which can be either used as they are or
converted as needed.

23.6. Gremlin Scripts

Gremlin Scriptscan runwiththeexecut e method, which also takesthe parametersthat will beavailable
as variables inside the script. The result of the executions is a generic Quer yResul t <oj ect > fit for
conversion or usage.

23.7. Transactions

TheNeo4j Tenpl at e providesconfigurableimplicit transactionsfor al itsmethods. By default it creates
atransaction for each call (which isano-op if there is already a transaction running). If you call the
constructor with the useExpl i ci t Transact i ons parameter set to true, it won't create any transactions
S0 you have to provide them using @r ansact i onal or the Transacti onTenpl at e.

23.8. Neo4j REST Server

If thetemplateis configured to use aRest Gr aphDat abase the expensive operations like traversals and
querying are executed efficiently on the server side by using the REST API to forward those calls. All
the other template methods require single network operations.

75

Chapter 24. AspectJ details

The object graph mapper of Spring Data Graph relies heavily on Aspect). Aspect] is a Java
implementation of the aspect-oriented programming paradigm that allows easy extraction and
controlled application of so-called cross-cutting concerns. Cross-cutting concerns are typically
repetitive tasks in a system (e.g. logging, security, auditing, caching, transaction scoping) that
are difficult to extract using the normal OO paradigms. Many OO concepts, such as subclassing,
polymorphism, overriding and delegation are still cumbersome to use with many of those concerns
applied in the code base. Also, the flexibility becomes limited, potentially adding quite a number of
configuration options or parameters.

The AspectJ pointcut language can be intimidating, but a developer using Spring Data Graph will not
have to deal with that. Users don't have care about to hooking into aframework mechanism, or having
to extend a framework superclass.

AspectJ uses a declarative approach, defining concrete advice, which isjust pieces of code that contain
the implementation of the concern. AspectJ advice can for instance be applied before, after, or instead
of amethod or constructor call. It can aso be applied on variable and field access. This is declared
using AspectJs expressive pointcut language, able to express any place within a code structure or
flow. AspectJ is also able to introduce new methods, fields, annotations, interfaces, and superclasses
to existing classes.

Spring Data Graph uses a mix of these mechanisms internally. First, when encountering the
@bodeEntity Or @Rel ationshi pEntity annotations it introduces a new interface NodeBacked oOf
Rel ati onshi pBacked to the annotated class. Secondly, it introduces fields and methods to the
annotated class. See Section 18.4, “Introduced methods’ for more information on the methods
introduced.

Spring Data Graph also leverages AspectJto intercept accessto fields, del egating the callsto the graph
database instead. Under the hood, properties and relationships will be created.

So how is an aspect applied to a concrete class? At compile time, the Aspectd Java compiler (gc)
takes source files and aspect definitions, and compiles the source files while adding all the necessary
interception code for the aspects to hook in where they're declared to. Thisis known as compile-time
weaving. At runtime only asmall AspectJruntimeis needed, asthe byte code of the classes has already
been rewritten to delegate the appropriate calls via the declared advice in the aspects.

Note

» . _ - |
A caveat of using compile-time weaving isthat all source files that should be part of the
weaving process must be compiled with the Aspectd compiler. Fortunately, thisisall taken
care of seamlessly by the Aspectd Maven plugin.

AspectJ al so supports other types of weaving, e.g. load-time weaving and runtime weaving. These are
currently not supported by Spring Data Graph.

76

https://secure.wikimedia.org/wikipedia/en/wiki/Aspect-oriented_programming

Chapter 25. Neo4j Server

Neo4j is not only available in embedded mode. It can also be installed and run as a stand-alone
server accessible viaa REST API. Developers can integrate Spring Data Graph into the Neo4j server
infrastructure in two ways. in an unmanaged server extension, or viathe REST API.

25.1. Server Extension

When should you write a server extension? The default REST API is essentially a REST'ified
representation of the Neodj core API. It is nice for getting started, and for ssmpler scenarios. For
more involved solutionsthat require high-volume access or more complex operations, writing aserver
extension that is able to process external parameters, do all the computationslocally in the plugin, and
then return just the relevant information to the calling client is preferable.

The Neo4j Server has two built-in extension mechanisms. It is possible to extend existing URI
endpoints like the graph database, nodes, or relationships, adding new URIs or methods to those. This
is achieved by writing a server plugin. This plugin type has some restrictions though.

For complete freedom in the implementation, an unmanaged extension can be used. Unmanaged
extensions are essentially Jersey resource implementations. The resource constructors or methods can
get the G- aphDat abaseSer vi ce injected to execute the necessary operations and return appropriate

Represent ati ons.

Both kinds of extensions have to be packaged as JAR files and added to the Neodj
Server's plugin directory. Server Plugins are picked up by the server at startup if they
providethe necessary META- | NF. ser vi ces/ or g. neo4j . server. pl ugi ns. Server Pl ugi n filefor Java's
ServiceLoader facility. Unmanaged extensions have to be registered with the Neodj Server
configuration.

Example 25.1. Configuring an unmanaged extension

org.neodj .server.thirdparty_jaxrs_cl asses=com exanpl e. nypackage=/ my- cont ext

Running Spring Data Graph on the Neo4j Server iseasy. Y ou need to tell the server where to find the
Spring context configuration file, and which beans from it to expose:

Example 25.2. Server plugin initialization

public class Hellowrldlnitializer extends SpringPluginlnitializer {
public Hellowrldlinitializer() {
super (new String[]{"spring/hell oWrl dServer-Context.xm "},
Pai r. of ("wor| dReposi tory", Wbrl dRepository.cl ass),
Pai r. of (" graphReposi toryFactory", G aphRepositoryFactory.class));

}

Now, your resources can require the spring-beans they need, annotated with @ont ext like this:
Example 25.3. Jersey resource

@ath("/path")

@OosT

@°r oduces(Medi aType. APPLI CATI ON_JSON)

public void foo(@ontext Wirl dRepository repo) {

}

77

http://docs.neo4j.org/chunked/milestone/server-plugins.html
http://docs.neo4j.org/chunked/milestone/server-unmanaged-extensions.html
http://jersey.java.net/

Neo4j Server

The sSpringPlugininitializer merges the GraphDatabaseService with the Spring
configuration and registers the named beans as Jersey Injectables. It is dill
necessary to list the initidlizer's fully quaified class name in a file named
META- | NF/ servi ces/ or g. neo4j . server. pl ugi ns. Pl ugi nLi fecycl e. The Neodj Server can then
pick up and run the initialization classes before the extensions are |oaded.

25.2. Using Spring Data Graph as a REST client

Spring Data Graph can use a set of Java REST bindings which come as a drop in replacement
for the GraphDatabaseService API. By simply configuring the gr aphDat abaseServi ce t0 be a
Rest Gr aphDat abase pointing to a Neo4j Server instance.

Note

A _ .
The Neodj Server REST API does not alow for transactions to span across requests,
which means that Spring Data Graph is not transactional when running with a
Rest Gr aphDat abase.

Please also keep in mind that performing graph operations via the REST-API is about one order of
magnitude slower than location operations. Try to use the Neodj Cypher query language, server-side
traversals (Rest Tr aver sal) or Gremlin expressions whenever possiblefor retrieving large sets of data.
Future versions of Spring Data Graph will use the more performant batching as well as a binary
protocol.

To set up your project to use the REST bindings, add this dependency to your pom.xml:

Example 25.4. REST-Client configuration - pom.xml

<dependency>
<gr oupl d>or g. spri ngf ramewor k. dat a</ gr oupl d>
<artifactl|d>spring-data-neod4j-rest</artifactld>
<versi on>1. 1. 0</ ver si on>

</ dependency>

Now, you set up the normal Spring Data Graph configuration, but point the database to an URL instead
of alocal directory, like so:

Example 25.5. REST client configuration - application context

<dat agr aph: confi g graphDat abaseSer vi ce="gr aphDat abaseServi ce"/ >

<bean i d="graphDat abaseServi ce" cl ass="org. springfranmework. dat a. neo4j .rest. Rest G aphDat abase" >
<constructor-arg value="http://|ocal host: 7474/ db/ data/"/ >
</ bean>

Y our project is now set up to work against aremote Neo4j Server.

The remote REST implementation works for both the NeodjTemplate as well as the GraphEntities.
For traversals and cypher-graph-queries it is sensible to forward those to the remote and execute
them there instead of walking the graph over the wire. RestGraphDatabase aready supports that
by providing methods that forward to the remote instance. (e.g. quer yEngi neFor (), index() and
creat eTraver sal Descri ption()). Please use those methods when interacting with a remote server
for optimal performance.

78

Neo4j Server

79

	Good Relationships
	Table of Contents
	Foreword by Rod Johnson
	Foreword by Emil Eifrem
	About this guide book
	1. The Spring Data Graph Project
	2. Feedback
	3. Format of the Book
	4. Acknowledgements

	Part I. Tutorial
	Chapter 1. Introducing our project
	Chapter 2. The Spring stack
	2.1. Required setup

	Chapter 3. The domain model
	Chapter 4. Learning Neo4j
	Chapter 5. Spring Data Graph
	Chapter 6. Annotating the domain
	Chapter 7. Indexing
	Chapter 8. Repositories
	Chapter 9. Relationships
	9.1. Creating relationships
	9.2. Accessing related entities
	9.3. Accessing the relationship entities

	Chapter 10. Get it running
	10.1. Populating the database
	10.2. Inspecting the datastore
	10.2.1. Neoclipse visualization
	10.2.2. The Neo4j Shell

	Chapter 11. Web views
	11.1. Searching
	11.2. Listing results

	Chapter 12. Adding social
	12.1. Users
	12.2. Ratings for movies

	Chapter 13. Adding Security
	Chapter 14. More UI
	Chapter 15. Importing Data
	Chapter 16. Recommendations

	Part II. Reference Documentation
	Reference Documentation
	1. Spring Data and Spring Data Graph
	2. Reference Documentation Overview

	Chapter 17. Introduction to Neo4j
	17.1. What is a graph database?
	17.2. About Neo4j
	17.3. GraphDatabaseService
	17.4. Creating nodes and relationships
	17.5. Graph traversal
	17.6. Indexing
	17.7. Querying with Cypher
	17.8. Gremlin a Graph Traversal DSL

	Chapter 18. Programming model
	18.1. AspectJ support
	18.1.1. AspectJ IDE support

	18.2. Defining node entities
	18.2.1. @NodeEntity: The basic building block
	18.2.2. @GraphProperty: Optional annotation for property fields
	18.2.3. @Indexed: Making entities searchable by field value
	18.2.4. @Query: fields as query result views
	18.2.5. @GraphTraversal: fields as traversal result views

	18.3. Relating node entities
	18.3.1. @RelatedTo: Connecting node entities
	18.3.2. @RelationshipEntity: Rich relationships
	18.3.3. @RelatedToVia: Accessing relationship entities

	18.4. Introduced methods
	18.5. Indexing
	18.5.1. Exact and numeric index
	18.5.2. Fulltext indexes
	18.5.3. Manual index access
	18.5.4. Indexing in Neo4jTemplate

	18.6. CRUD with repositories
	18.6.1. CRUDRepository
	18.6.2. IndexRepository and NamedIndexRepository
	18.6.3. TraversalRepository
	18.6.4. Cypher-Queries
	18.6.4.1. Annotated Queries
	18.6.4.2. Named Queries
	18.6.4.3. Query results
	18.6.4.4. Cypher Examples

	18.6.5. Creating repositories
	18.6.6. Composing repositories

	18.7. Transactions
	18.8. Detached node entities
	18.8.1. Relating detached entities

	18.9. Entity type representation
	18.10. Projecting entities
	18.11. Bean validation (JSR-303)

	Chapter 19. Environment setup
	19.1. Gradle configuration
	19.2. Ant/Ivy configuration
	19.3. Maven configuration
	19.3.1. Repositories
	19.3.2. Dependencies
	19.3.3. AspectJ build configuration

	19.4. Spring configuration
	19.4.1. XML namespace
	19.4.2. Java-based bean configuration

	Chapter 20. Cross-store persistence
	20.1. Partial entities
	20.2. Cross-store annotations
	20.2.1. @NodeEntity(partial = "true")
	20.2.2. @GraphProperty

	20.3. Configuring cross-store persistence

	Chapter 21. Sample code
	21.1. Introduction
	21.2. Hello Worlds sample application
	21.3. IMDB sample application
	21.4. MyRestaurants sample application
	21.5. MyRestaurant-Social sample application

	Chapter 22. Performance considerations
	22.1. When is Spring Data Graph right

	Chapter 23. Neo4jTemplate
	23.1. Basic operations
	23.2. QueryResult
	23.3. Indexing
	23.4. Graph traversal
	23.5. Cypher Queries
	23.6. Gremlin Scripts
	23.7. Transactions
	23.8. Neo4j REST Server

	Chapter 24. AspectJ details
	Chapter 25. Neo4j Server
	25.1. Server Extension
	25.2. Using Spring Data Graph as a REST client

