Copyright © 2010 - 2011

Foreword Dy Emil BIfFEM ... Vi
ADOUL thiS GUIAE DOOKeiiiiiiiiie it s Vii
1. The Spring Data NEO4J PrOJECEvveiiiiiiiiee it Vii
2. FEEADACKoiiiiieiie et vii
3. FOrmat Of the BOOKcooiiiiiiiieiiiiiie ettt e e e e st e e e e nnnaee s vii
N o7 0] =0 [0 1 4=] £ vii
R T (] = S 1
1. INtrOdUCING OUF PIOJECE ...eeeiutiieeeiittiee e ettt e e e sttt e ettt e e ettt e e et e e e e s e e e s ansr e e e e e nnnneeeeans 2
2. TNE SPING SACK ...eiiiiiiiiie ettt e e e e e e e e ebneeeeeae 3
2.1, REQUITEO SELUP ..evveeeeeiieiiiee it e ettt e e e s e e e e e e s e et ee e e e e e e e e s snanbnaaeeeaeeesans 3

3. The domain MOELoooiiiiiie et e e ennes 5
I = 1o T A= ZZ 7
5. SPriNG DaA NEOAJ ...ttt 9
6. ANNOLALiNg the JOMBINeiiiiiiiie e eeaaes 10
A 1116 (=] oo PP OUPPRPOPPPRP 11
Lo = 001] (0] (1= SRR 12
9. REGLIONSNIPS ... e e e e e s et e e e e e e e e e rarraaaeas 14
9.1. Creating relatioNSNiPSuuuuieiiiiiiiiiiiii e rararnnararanarannnns 14

9.2. Accessing related entitieSccoiiiieieiiiiie e 15

9.3. Accessing the relationship entitieSc.oceviiiiiiiiee e 16

(O T L A 10101011 oo RSP UUPRTRPPPPRPN 17
10.1. Populating the datahasec.cvvveiiiiiii e 17
10.2. InSpecting the dataStOrecccuvvieiiee e 17
10.2.1. Neoclipse VISUAlIZALIONcccceeeiiiiieieieeci s e 17

10.2.2. The NEOA] ShEll ...oooieieieee e 18

L0 WED VIBIWS ..ttt ettt e e e e e ettt e e e e e e e e s et e e e e e e e s e aannsnrnneeaaeeenans 20
111, SEAICNING ettt 21
12,2, LiStiNG FESUILSeeeiiieieiee ettt e et e e e e s et e e e e e e e s e eeeaeeeeaaanes 21

2 N (o [0o IE=To o - | U 24
I T U R 24
12.2. RaAtiNgS TOr MOVIES ...oeiieiiieiiieiee et e et e e e e e e e e e e e e e e e nnnneees 25

13, AQTING SECUNMTY ..eeeeeiiiieie ettt ettt e e e e e e e e et e e e e anneeees 26
T4, MOTE UL et e e et e bbb e e e e e e e e e era e e e e e e e e eeerbanaas 30
15, IMPOIING DAevvieiieiie e et e e e e s s r e e e e e e s st e e e e e e e s e snnrraeeeeaeeas 33
16. RECOMMENELIONSeieiiiiiieeiiieie ettt e e ettt e et e e e st e e s et e e e s anbb e e e e e nbeeeeeannees 36
17, INBOA] SEIVES ...ttt ettt e e ettt e e e et e e e e st et e e e atb e e e e annseeeeanseeeeeannneeas 37
17.1. Getting NEOJ -SEIVEYcccoe e 37
17.2. Other @PPrOBCHESoiiiiiiiie et 38

18. CONCIUSIONeiiiiieiiee e sttt e e e e e e e e e e e e e e e s s s nt e eeeaaeeessnnsnsaaneeaeeesnannnes 39
[1. Reference DOCUMENTALIONccuuvriieiieeees ittt ee e e e s sesit e e e e e e e s st ereeaeeesaanneaaneeeeaeeenanes 40
Reference DOCUMENTALIONcuviieeiiiiiee sttt e e e s e e e anneeas xli
1. Spring Data and Spring Data NEOJ]ccoocciiiiiiiiiie e Xli

2. Reference Documentation OVEINVIEWceuveiiiiieeeisiiieieee e e xli

19. INtroduCtioN T0 NBOA ...ttt e e 44
19.1. What is a graph database?ccueieoiiiiieiiiie e 44
19.2. ADOUL NBOZJeeeieiieiiee ettt e e e e e e e nnbr e e e ans 44
19.3. GraphDatabhaSESEIVICEccuviieiiiie e ettt s e e e e e e e e e e e e e s eanaaaes 44
19.4. Creating nodes and relationshipsccuvveeeieieiiiiiee e 45

Good Relationships

RS T =T o T 1= Y= =" | 45
19,6, INUEXING ...veeeeiiitiee ettt e e e e e e e e e e e e e e s e e e s anne s 45
19.7. Querying the Graph With Cyphercceiiiiiii e 46
19.8. Gremlin - a Graph Traversal DSLccveviiiiiiiieeeieee e 47
20. Programming MOAE!coiiiiiiiiiiir e e s e e e s e e e e e e s e aneeaaeeas 48
20.1. Object Graph MappinNgccccvvieiiee e e e e e aneaes 48
20.2. Advanced Mapping With ASPECtdcoooeiiiiii i, 48
20.2.1. ASPECLI IDE SUPPOITeiieeeeeee e 49
20.3. Simple Object Graph MapPIiNgeeeeeiiirieeiiiie e 50
20.4. DefiNiNg NOUE ENITIEScoiuveiieiiiiiii e 51
20.4.1. @NodeEntity: The basic building blockccccccooiiiiie e, 51
20.4.2. @Graphld: Neodj -id fieldccceveiiiiiieiiiiee e 51
20.4.3. @GraphProperty: Optional annotation for property fields...........cccc.uu...e. 53
20.4.4. @Indexed: Making entities searchable by field valuec.ccceee. 54
20.4.5. @Query: fields as query result VIBWSccceveeiiiieeeeniiieee e 54
20.4.6. @GraphTraversal: fields as traversal result VIeWSccccvveveeeeeiicnnnnee, 54
20.5. Relating NOOE ENLITIEScccii e e s e e e e 55
20.5.1. @RelatedTo: Connecting node entitieSccvvveeeeiieeeiccciiiieeeee e, 55
20.5.2. @ReationshipEntity: Rich relationships..........ccccceeeeeeieieeeeeee, 57
20.5.3. @RelatedToVia: Accessing relationship entitiescccveevvveveiiiieeeens 57
20.5.4. Relationship Type PreCedenCecoouiiiiieiiiiiiee e 58
20.5.5. Discriminating Relationships Based On End Node Type........cccoccvveeennee 59
P20 ST 4 To (=] o S EPRR 60
20.6.1. Exact and NUMENIC iNAEXcuvvveeiiiiiiieiiiiiie ettt e 60
20.6.2. FUITEXE INAEXES 61
20.6.3. UNIiQUE INTEXESeeeeiiieieee ettt e e e et ee e e e e e e e e enneees 61
20.6.4. Manual INGEX BCCESSuveeeiiiiiiee et e et 62
20.6.5. Index queries in Neodj TempPlateccuveeeiiiiieeeiiiieee e 63
20.6.6. NEOJj] AULO INUEXES ... 63
20.6.7. Spatial INUEXESoooiiiiiiieeiiiiie e 63
20.7. NEOA TEMPIELEeeeeeiiiiiee et e e et e e e s e e e e nreeeeenneees 63
20.7.1. BASIC OPEFELIONS ... eeeiieeiee e e et e e e e e e e et ee e e e e e e s s snneeaee e e e e e e s e ennees 63
20.7.2. COTE-OPEIAIONScoiuveieeeiiiiete e et e e ettt et e e e s e e ennees 64
20.7.3. ENtity-PerSISLENCEccoiiiiiii ittt 64
20.7.4. RESUIL .t 64
20.7.5. INUEXING .oeeiieeiiiiiiieee e e e e e e e e e e s s e e e eaaens 64
20.7.6. Graph traversaloooiiiiiiieie e 65
20.7.7. CYPNEr QUENTESeeieieeeiieiiiieiee e ettt e e e e e e e e e e e e e s e eeeeeeeeeaeeeas 65
20.7.8. Gremlin SCIPLSvviiieiiiee et 65
20.7.9. TraNSACHIONSevviiieiieeeeeeieiiieeer e e e e s s et e e e e e e e s s seeraa e e e e e e e e s ennnenraeeeeens 65
20.7.10. NEO4j REST SEIVEN ...uvviiiiieeeiiiiiiieiieeee e e esiittrre e e e e e e e s ssararaeeea e e e s e nnneens 65
20.7.11. LifeCyCle EVENLSovviieiie et 65
20.8. CRUD With rEPOSITONEScuviieiieei e eciciiiiiee e et e e e e e e e e e e e e s ennnees 66
20.8.1. CRUDREPOSITONY ...eeeeiiuviieeeiiiiiressiiieeeannteeeesssseeessssneeessnssenesssseeessanes 67
20.8.2. IndexRepository and NamedindexRePOSItOryccceeeviiieveeiiiiieeennnns 67
20.8.3. TraverSalREPOSITONYuvvieeiiiiieeiiiiiee e ettt s e e anes 68
20.8.4. Query and Finder Methodscc.eeviiiiiiiiiiiiee e 68
20.8.5. Cypher-DSL rePOSITONY ...cccceiiiciiiiiiee e e e et e s e e 71
20.8.6. Cypher-DSL and QUENYDSLccoiviiiiiiiiiieeeeee et 72

Good Relationships

20.8.7. Creating rePOSItONES ..ccvvveiieiiieeeieieee et e e e e e e e eeeees 73

20.8.8. COMPOSING FEPOSITONESvveeeeiiieiee e e e et e e e e 73

20.9. ProjeCting ENLITIESocuvviieiiiiiie et 75
20.10. Geospatial QUENESccoiiiiiee ittt e e e e eas 75
20.11. Active Record Methods for Advanced Mapping Mode.........ccccceveeeiiiiiiieennnnn. 76
20.12. TrANSACHIONS ...eeiiiiiiieeeeiieiee et e e ettt e e e st e e s st e e e e snaeeeessnseeeeeannneeeeeanneeeeaas 78
20.13. Detached node entities in advanced mapping mode...........ccccevvvvevvveeeeeeeeene, 79
20.13.1. Relating detached EntitieScccoiiiiiieiiiiiee e 80

20.14. Entity type repreSentalioncc.eeveiiueeeeriiiiie e 81
20.15. Bean validation (JSR-303)ceeeeiiiiieieiiiiiee et s et 82

21, ENVIFONMENE SELUD ©vvvviieeeiiiiiiiieeeee e e e s sttt e e e e e e s e et eeaaee e s s eaabaaeeeaaeesssannsanneeaeeesaannns 84
21.1. Dependencies for Spring Data Neodj Simple Mappingccceeeevvvviiiivvieeeeeennnnn, 84
21.2. Gradle configuration for Advanced Mapping (ASpPectd) ..., 84
21.3. Ant/lvy configuration for Advanced Mapping (ASPECL)vvvveviiveeeeriiiiieeenns 85
21.4. Maven configuration for Advanced Mappingcccovvvreeernireeeinieeeessiieeeeaes 85
21.4.1. REPOSITOMIESvveieeiiiiiee ittt ettt e et e e e e e et e e e nnne s 85

21.4.2. DEPENUENCIESceeeieeiiieiiie e e e e e ettt e e e e e e e e e e s e et e e e e e e e e s snnanees 85

21.4.3. Maven Aspectd build configurationccccceeeeeeiiiiiiieeee e, 86

21.5. SPring CONFIQUIBLIONuuurururururururnrunnrnrnrnrnenrnrnrnrnrnrnrnrnrnrnnnenrnrnrarnnnnnnnnnnnnnnn 87
21.5.1. XML NBIMESPACEcevveieiiiiiiiieieeiee e st e s e e e e 87

21.5.2. RepoSItory ConfigUIaLioNc.eeeeeiirereeriiiieee et 88

21.5.3. Java-based bean configurationccceveiiiieiee i 89

22. CroSS-StOre PEISISLENCEcccvvvieeieeeeeeee ettt e e e e e e e e s sttt e e e eaeeessssatbbaeeeeeeeessssssraaeeeaaeeanans 20
22.1. Partial NLITIESeveeeiiiiiiie et 90
22.2. CroSS-StOre annNOALiONSveeeiieeeesiiiiitieieeeee e e ettt ee e e e e e s s enbreeeee e e e e e e s aneeeeeeas 90
22.2.1. @NodeEntity(partial = "trUE™)c.eeeieiiieee e 90

22.2.2. @GIapNPrOPEITY ...ceeieiiieeeiiiiee ettt 90

22.2.3. EXAMPIE ..o 91

22.3. Configuring Cross-Store PErSItENCEccvvviieiieee e et e e e e e e e e 91

23, SAMPIE COUE ... e e e e e e s et ae e e e e e e e e e s nrraaaee s 93
220 T I [g1 0o 8o o o PP OPPURRPR 93
23.2. Hello Worlds sample appliCationooocuiieiiiiie e 93
23.3. IMDB sample appliCationcoicurriieiiiieee e 93
23.4. MyRestaurants sample appliCationcceeveiiiiiieeriiiiie e 94
23.5. MyRestaurant-Social sample appliCationoooccviieeeeee e 9
23.6. Cineasts social MOVie dat@basecccveiieiiiiiie e 95

24, Heroku: Seeding the ClOUdooiiiiiiiiiieice e e e 97
24.1. Create a Self-Hosted Web Applicationccoeeiiiiiiiiiiiiieeeieeeee e 97
24.2. DEPIOY 10 HEMOKU ...t 100

25. Performance CONSIAEIaLIONSccuvvviiiiieeee s ettt eee e e e e es st e e e e e e e s sneaeaereeaeeeseenneees 101
25.1. When to use Spring Data NEOJJccovuveiiiiiiiiieeieieee e 101

ST ANS o/ ol A I (= = T PP 102
P = o S Y R TRRR 103
27.1. SErVEr EXTENSION ...oeiiiiieiiiiieiiiiiee e e e e e ettt et e e e e s e et eeeae e e e s snneeeneeaaeeeeannnes 103
27.2. Using Spring Data Neodj as a REST Clientcoooviiiieiiiiiieeiieeee e 104

Foreword by Rod Johnson

I’m excited about Spring Data Neo4j for several reasons.

First, this project is in a very important space. We are in an era of transition. A very few years
ago, arelational database was a given for storing nearly all the data in nearly all applications. While
relational databases remain important, new application requirements and massive data proliferation
have prompted aricher choice of data stores. Graph databases have some very interesting strengths,
and Neodj isproving itself valuablein many applications. It's a choice you should add to your toolbox.

Second, Spring Data Neo4j is an innovative project, which makesit easy to work with one of the most
interesting new data stores. Unfortunately, the proliferation of new data stores has not been matched
by innovation in programming modelsto work with them. Ironically, just after modern ORM mapping
made working with relational data in Java relatively easy, the data store disruption occurred, and
devel opers were back to sguare one: struggling once more with clumsy, low level APIs. Working with
most non-relational technologiesisoverly complex and imposes too much work on devel opers. Spring
Data Neodj makes working with Neodj amazingly easy, and therefore has the potential to make you
more successful as a developer. Its use of Aspect] to eliminate persistence code from your domain
model is truly innovative, and on the cutting edge of today’ s Java technol ogies.

Third, I'm excited about Spring Data Neo4j for personal reasons. | no longer get to write code as often
as| would like. My initial convictions that Spring and AspectJ could both make building applications
with Neo4j dramatically easier and cross-store object navigation possible gave me an excuse for a
much-needed coding binge early in 2010. Thisled to aprototype of what became Spring Data Neo4j —
at times written paired with Emil. I’m sure the vast majority of my code has long since been replaced
(probably for the better) by coders who aren't rusty — thanks Michael and Thomas! — but | retain
my pleasant memories.

Finally, Spring Data Neo4j is part of the broader Spring Data project: one of the key areas in which
Spring is innovating to help meet new application requirements. | encourage you to explore Spring
Data, and — better still — become involved in the community and contribute.

Enjoy the Spring Data Neo4j book, and happy coding!

Rod Johnson, Founder, Spring and SVP, Application Platform, VMware

Foreword by Emil Eifrem

"Spring is the most popular middieware on the planet,” | thought to myself as | walked up to Rod
Johnson in late 2009 at the JAOO conferencein Aarhus, Denmark. Rod had just given an introductory
presentation about Spring Roo and when he was done | told him "Great talk. You're clearly building
astack for the future. What about support for non-relational databases?"

We started talking and quickly agreed that NOSQL will play an important role in emerging stacks.
Now, ayear and half later, Spring DataNeo4j isavailableinitsfirst stable release and I'm blown away
by the result. Never before in any environment, in any programming framework, in any stack, has it
been so easy and intuitive to tap into the power of a graph database like Neo4j. It's a testament to the
efforts by an awesome team of four hackers from Neo Technology and VMware: Michael Hunger,
David Montag, Thomas Risberg and Mark Pollack.

The Spring framework revolutionized how we all wrote enterprise Java applications and today it's
used by millions of enterprise developers. Graph databases also stand out in the NOSQL crowd when
it comes to enterprise adoption. You can find graph databases used in areas as diverse as network
management, fraud detection, cloud management, anything with social data, geo and location services,
master data management, bioinformatics, configuration databases, and much more.

Spring developers deserve access to the best tools available to solve their problem. Sometimes that's
arelational database accessed through JPA. But more often than not, a graph database like Neo4j is
the perfect fit for your project. | hope that Spring Data Neo4j will give you access to the power and
flexibility of graph databases while retaining the familiar productivity and convenience of the Spring
framework.

Enjoy the Spring Data Neo4j guide book and welcome to the wonderful world of graph databases!

Emil Eifrem, CEO of Neo Technology

Vi

About this guide book

1. The Spring Data Neo4j Project

Welcome to the Spring Data Neo4j Guide Book. Thank you for taking the time to get an in-depth
look into Spring Data Neo4j [http://spring.neodj.org]. This project is part of the Spring Data project
[http://springsource.org/spring-data], which brings the convenient programming model of the Spring
Framework to modern NOSQL databases. Spring Data Neo4j, as the name alludesto, aimsto provide
support for the graph database Neo4j [http://neo4j.org].

2. Feedback

It was written by developers for developers. Hopefully we've created a guide that is well received by
our peers.

If you have any feedback on Spring Data Neo4j or this book, please provide it via the SpringSource
JRA [http://spring.neodj.org/issues|, the SpringSource NOSQL Forum [http://spring.neo4j.org/
discussion], github comments or issues [http://github.com/SpringSource/spring-data-neod;j/issues], or
the Neo4j mailing list [http://neo4j.org/forums/].

3. Format of the Book

This book is presented as a duplex book [http://martinfowler.com/bliki/DuplexBook.html], a term
coined by Martin Fowler. A duplex book consists of at least two parts. The first part is an easily
accessible tutoria or narrative that gives the reader an overview of the topics contained in the book.
It contains lots of examples and discussion topics. This part of the book is highly suited for cover-
to-cover reading.

We chose atutorial describing the creation of aweb application that allows movie enthusiasts to find
their favorite movies, rate them, connect with fellow movie geeks, and enjoy social features such as
recommendations. The application is running on Neodj using Spring Data Neo4j and the well-known
Spring Web Stack.

The second part of the book is the classic reference documentation, containing detailed information
about the library. It discusses the programming model, the underlying assumptions, and internals, as
well asthe APIsfor the object-graph mapping. The reference documentation is typically used to look
up concrete bits of information, or to drill down into certain topics. For hackerswanting to really delve
into Spring Data Neo4j, it can of course also be read cover-to-cover.

4. Acknowledgements

We would like to thank everyone who contributed to this book, especialy Mark Pollack and Thomas
Risberg, the leads of the Spring Data Project, who helped alot during the development of the library
as well as sharing great feedback about the book. Also Oliver Gierke, our local German VMWare/
SpringSource engineer, who invested a lot of time discussing various aspects of the library as well
as providing the superb foundations for the Spring Data Repositories. We tortured Andy Clement,
the AspectJ project lead, with many questions and issues around our advanced AspectJ usage which
caused some headaches. He always quickly solved our issues and gave us excellent answers.

Vii

http://spring.neo4j.org
http://spring.neo4j.org
http://springsource.org/spring-data
http://springsource.org/spring-data
http://neo4j.org
http://neo4j.org
http://spring.neo4j.org/issues
http://spring.neo4j.org/issues
http://spring.neo4j.org/issues
http://spring.neo4j.org/discussion
http://spring.neo4j.org/discussion
http://spring.neo4j.org/discussion
http://github.com/SpringSource/spring-data-neo4j/issues
http://github.com/SpringSource/spring-data-neo4j/issues
http://neo4j.org/forums/
http://neo4j.org/forums/
http://martinfowler.com/bliki/DuplexBook.html
http://martinfowler.com/bliki/DuplexBook.html

About this guide book

Many thanks to our colleagues David Montag, Andreas Kollegger and Rickard Oberg who not only
contributed to Spring Data Neo4j but also provided content and feedback for this book.

We also appreciate very much the foresight of Rod Johnson and Emil Eifrem to initiate the project, and
now also providing great forewords. Their leadership inspired collaboration between the engineering
teams at SpringSource and Neo Technology, a tremendous help during the making of Spring Data
Neo4j.

Last but not least we thank our vibrant community, both in the Spring Forums as well as on the
Neodj Mailing list and on many other places on the internet for giving us feedback, reporting issues
and suggesting improvements. Without that important feedback we wouldn't be where we are today.
Especialy Jean-Pierre Bergamin and Alfredas Chmieliauskas provided exceptional feedback and
contributions.

Enjoy the book!

viii

Part I. Tutorial

CINEASTS

Thefirst part of the book provides atutorial that walks through the creation of a complete web application called
cineasts.net, built with Spring Data Neo4j. Cineasts are people who love movies, and the site isa gathering place
for moviegoers. For cineasts.net we decided to add a social aspect to the rating of movies, allowing friends to
share their scores and get recommendations for new friends and movies.

The tutorial takes the reader through the steps necessary to create the application. It provides the configuration
and code examples that are needed to understand what's happening in Spring Data Neo4j. The complete source
code for the app is available on Github [http://spring.neodj.org/cineasts).

http://spring.neo4j.org/cineasts
http://spring.neo4j.org/cineasts

Chapter 1. Introducing our project

Allow me to introduce Cineasts.net

Once upon a time we wanted to build a social movie database. At first there was only the name:
Cineasts, the movie enthusiasts who have a burning passion for movies. So we went ahead and bought
the domain cineasts.net [http://cineasts.net], and so we were off to agood start.

We had some ideas about the domain model too. There would obviously be actors playing roles in
movies. We also heeded someone to rate the movies - enter the cineast. And cineasts, being the socia
people they are, they wanted to make friends with other fellow cineasts. Imagine instantly finding
someone to watch amovie with, or share movie preferences with. Even better, finding new friends and
movies based on what you and your friends like.

When we looked for possible sources of data, IMDB was our first stop. But they're a bit expensive
for our taste, charging $15k USD for data access. Fortunately, we found themoviedb.org [http:/
themoviedb.org] which provides user-generated data for free. They aso have liberal terms and
conditions, and anice API for retrieving the data.

We had many moreideas, but wewanted to get something out there quickly. Hereishow we envisioned
the final website:

-
=

\ 2}

§ CINEASTS

" spring = ‘ t ': springdatagraph

http://cineasts.net
http://cineasts.net
http://themoviedb.org
http://themoviedb.org
http://themoviedb.org

Chapter 2. The Spring stack

Being Spring developers, we naturally choose components from the Spring stack to do all the heavy
lifting. After all, we have the concept etched out, so we're already halfway there.

What database would fit both the complex network of cineasts, movies, actors, roles, ratings, and
friends, while also being able to support the recommendation algorithms that we had in mind? We
had no idea.

But hold your horses, there is this new Spring Data project, started in 2010, which brings the
convenience of the Spring programming model to NOSQL databases. That should bein line with what
we aready know, providing us with a quick start. We had a look at the list of projects supporting
the different NOSQL databases out there. Only one of them mentioned the kind of social network
we were thinking of - Spring Data Neodj for the Neo4j graph database. Neo4j's slogan of "value in
relationships’ plus "Enterprise NOSQL" and the accompanying docs looked like what we needed. We
decided to giveit atry.

2.1. Required setup

To set up the project we created a public Github account and began setting up the infrastructure
for a Spring web project using Maven as the build system. So we added the dependencies
for the Spring Framework libraries, added the web. xmi for the Di spatcherServiet, and the
appl i cati onCont ext . xni in the webapp directory.

Example 2.1. Project pom.xml

<properties>
<spring. version>3. 0. 7. RELEASE</ spri ng. ver si on>
</ properties>

<dependenci es>

<dependency>
<gr oupl d>or g. spri ngf r amewor k</ gr oupl d>
<!-- abbreviated for all the dependencies -->

<artifactld>spring-(core, context, aop, aspects, tx,webmsc)</artifactld>
<versi on>${spri ng. ver si on} </ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. spri ngf r amewor k</ gr oupl d>
<artifactld>spring-test</artifactld>
<ver si on>${spring. ver si on} </ ver si on>
<scope>t est </ scope>

</ dependency>

</ dependenci es>

The Spring stack

Example 2.2. Project web.xml

<listener>
<l i stener-cl ass>org. springfranmewor k. web. cont ext. Cont ext Loader Li st ener</1i st ener-cl ass>
</listener>

<servl et >
<servl et - nane>di spat cher Ser vl et </ servl et - nane>
<servl et - cl ass>or g. spri ngf ranewor k. web. servl et . Di spat cher Ser vl et </ servl et - cl ass>
<l oad- on- st art up>1</| oad- on- st art up>

</ servl et>

<servl et - mappi ng>
<servl et - nane>di spat cher Ser vl et </ servl et - nane>
<url -pattern>/</url-pattern>

</ servl et - mappi ng>

With this setup in place we were ready for the first spike: creating a simple MovieController showing
astatic view. See the Spring Framework documentation for information on doing this.

Example 2.3. applicationContext.xml

<?xm version="1.0" encodi ng="UTF-8" standal one="no" ?>
<beans xm ns="http://ww. springframewor k. or g/ schema/ beans"
xm ns: cont ext ="http://ww. spri ngfranework. or g/ schema/ cont ext "
xm ns: tx="http://ww. springframework. org/ schenma/tx"
xsi : schemalLocat i on="
http://ww. spri ngfranework. or g/ schena/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
htt p: // ww. spri ngfranewor k. or g/ schena/ t x
http: //ww. spri ngfranework. or g/ schema/ t x/ spring-tx-3. 0. xsd
http://ww. springframework. or g/ schema/ cont ext
htt p: // ww. spri ngf ranewor k. or g/ schena/ cont ext / spri ng- cont ext - 3. 0. xsd" >

<cont ext : annot ati on- confi g/ >
<cont ext: spring- confi gured/ >
<cont ext : conponent - scan base- package="or g. neo4j . ci neast s" >
<cont ext: excl ude-filter type="annotation"
expressi on="org. spri ngf ramewor k. st ereotype. Control l er"/>
</ cont ext : conponent - scan>

<t x: annot ati on-driven node="proxy"/>
</ beans>

Example 2.4. dispatcher Servlet-servlet.xml

<mvc: annot ati on-driven/ >

<mvc:resources mappi ng="/i mages/**" |ocation="/inages/"/>
<nmvc:resources mappi ng="/resources/**" | ocation="/resources/"/>

<cont ext : conponent - scan base- package="or g. neo4j . ci neasts.controller"/>

<bean i d="vi ewResol ver"
cl ass="org. spri ngfranmewor k. web. servl et. vi ew. | nt er nal Resour ceVi ewResol ver"
p: prefix="/VEB-| NF/vi ews/" p:suffix=".jsp"/>

We spun up Tomcat in STS with the App and it worked fine. For completeness we also added Jetty
to the maven-config and tested it by invoking mvn j etty: run to seeif there were any obvious issues
with the config. It all seemed to work just fine.

Chapter 3. The domain model

Setting the stage

We wanted to outline the domain model before diving into library details. We also looked at the data
model of the themoviedb.org data to confirm that it matched our expectations.

FRIEMD

[User \
Iuﬂlim
name

Faﬁmara

vate()
| Lefriend()

In Java code this looks pretty straightforward:

The domain model

Example 3.1. Domain model

class Myvie {
String id;
String title;
int year;
Set <Rol e> cast;

}

class Actor {

String id;

String nane;

Set <Movi e> fi | nogr aphy;

Rol e pl ayedl n(Movie novie, String role) { ... }
}

class Role {
Movi e novi e;
Actor actor;
String role;

}

class User {
String | ogin;
String nane;
String password;
Set <Rati ng> ratings;
Set <User > fri ends;
Rating rate(Myvie novie, int stars, String comment) { ... }
voi d befriend(User user) { ... }
}

class Rating {
User user;
Movi e novi e;
int stars;
String comment;

Then we wrote some simple tests to show that the basic design of the domain is good enough so far.
Just creating amovie, populating it with actors, and allowing usersto rate it.

Chapter 4. Learning Neo4|

Graphs ahead

Now we needed to figure out how to store our chosen domain model in the chosen database. First we
read up about graph databases, in particular our chosen one, Neo4j [http://neodj.org]. The Neodj data
model consists of nodes and relationships, both of which can have key/value-style properties. What
does that mean, exactly? Nodes are the graph database name for records, with property keys instead
of column names. That's normal enough. Relationships are the special part. In Neo4j, relationships
are first-class citizens, meaning they are more than a simple foreign-key reference to another record,
relationships carry information. So we can link together nodes into semantically rich networks.
This really appealed to us. Then we found that we were aso able to index nodes and relationships
[http://docs.neodj.org/chunked/milestone/indexing.html] by {key, value} pairs. We aso found that
we could traverse relationships both imperatively using the core API, and declaratively using a
query-like Traversal Description [http://docs.neodj.org/chunked/milestone/tutorial s-java-embedded-
traversal.html]. Besides those programmatic traversals there was the powerful graph query language
called Cypher [http://docs.neodj.org/chunked/milestone/cypher-query-lang.html] and an interesting
looking DSL named Gremlin [https://github.com/tinkerpop/gremlin/wiki]. So lots of ways of working
with the graph.

We a'so learned that Neo4j isfully transactional and therefore upholds ACID [http://en.wikipedia.org/
wiki/ACID] guarantees for our data. Durability is actually a good thing and we didn't have to scale to
trillionsof usersand moviesyet. Thisisunusual for NOSQL databases, but easier for usto get our head
around than non-transactional eventual consistency. It also made usfeel safe, though it also meant that
we had to manage transactions. Something to keep in mind later.

We started out by doing some prototyping with the Neo4j core API to get afeeling for how it works.
And also, to see what the domain might look like when it's saved in the graph database. After adding
the Maven dependency for Neo4j, we were ready to go.

Example 4.1. Neo4j Maven dependency

<dependency>
<gr oupl d>or g. neo4j </ gr oupl d>
<artifactld>neo4j</artifactld>
<ver si on>1. 8</ ver si on>

</ dependency>

http://neo4j.org
http://neo4j.org
http://docs.neo4j.org/chunked/milestone/indexing.html
http://docs.neo4j.org/chunked/milestone/indexing.html
http://docs.neo4j.org/chunked/milestone/tutorials-java-embedded-traversal.html
http://docs.neo4j.org/chunked/milestone/tutorials-java-embedded-traversal.html
http://docs.neo4j.org/chunked/milestone/tutorials-java-embedded-traversal.html
http://docs.neo4j.org/chunked/milestone/cypher-query-lang.html
http://docs.neo4j.org/chunked/milestone/cypher-query-lang.html
https://github.com/tinkerpop/gremlin/wiki
https://github.com/tinkerpop/gremlin/wiki
http://en.wikipedia.org/wiki/ACID
http://en.wikipedia.org/wiki/ACID
http://en.wikipedia.org/wiki/ACID

Learning Neo4j

Example 4.2. Neo4j core API (transaction code omitted)

enum Rel ati onshi pTypes i npl enents Rel ati onshi pType { ACTS_IN };

G aphDat abaseSer vi ce gds = new EnbeddedG aphDat abase("/ path/to/store");
Node forrest=gds. creat eNode();

forrest.setProperty("title","Forrest Gunp");
forrest.setProperty("year", 1994);

gds. i ndex() . for Nodes("novi es").add(forrest,"id", 1);

Node t omegds. cr eat eNode();
tom set Property("name", " Tom Hanks");

Rel ati onshi p rol e=t om creat eRel ati onshi pTo(forrest, ACTS_IN);
rol e.setProperty("role","Forrest");

Node novi e=gds. i ndex().for Nodes("novi es").get("id",1).getSingle();
assert Equal s("Forrest Gunp", novie.getProperty("title"));
for (Relationship role : novie.getRelati onshi ps(ACTS_I N, | NCOM NG) {
Node act or =rol e. get & her Node(novi e) ;
assert Equal s(" Tom Hanks", actor.getProperty("name"));
assert Equal s("Forrest", role.getProperty(“role"));

Chapter 5. Spring Data Neo4;

Conjuring magic

Sofar it had all been pure Spring Framework and Neo4j. However, using the Neo4j codein our domain
classes polluted them with graph database details. For this application, we wanted to keep the domain
classes clean. Spring Data Neo4j promised to do the heavy lifting for us, so we continued investigating
it.

Spring Data Neo4j comes with two mapping modes. The more powerful one depends heavily on
Aspect], see Chapter 26, AspectJ details, so we ignored it for the time being. The simple direct POJO-
mapping copies the data out of the graph and into our entities. Good enough for a web-application
like ours.

Thefirst step wasto configure Maven;

Example 5.1. Spring Data Neo4j Maven configuration

<dependency>
<gr oupl d>or g. spri ngf ramewor k. dat a</ gr oupl d>
<artifactld>spring-data-neodj</artifactld>
<versi on>2. 1. 0. RELEASE</ ver si on>

</ dependency>

The Spring context configuration was even easier, thanks to a provided namespace:

Example 5.2. Spring Data Neo4j context configuration

<beans xm ns="http://ww. springfranmewor k. or g/ schema/ beans" ...
xm ns: neo4j ="http://ww. spri ngfranewor k. or g/ schema/ dat a/ neo4j "
xsi : schemaLocation="... http://ww. springframework. org/ schena/ dat a/ neo4j
ht t p: / / ww. spri ngf ranewor k. or g/ schena/ dat a/ neo4j / spri ng- neo4j . xsd" >

<neodj: config storeDirectory="data/graph. db"/>

</ beans>

Chapter 6. Annotating the domain

Decorations

Looking at the Spring Data Neodj documentation, we found a simple Hello World example
[http://spring.neodj.org/helloworld] and tried to understand it. We aso spotted a compact reference
card [http://spring.neodj.org/notes] which helped us a lot. The entity classes were annotated with
@bodeEnt i ty. That was smple, so we added the annotation to our domain classes too. Entity classes
representing relationships were instead annotated with @rel at i onshi pEnti ty. Property fields were
taken care of automatically. The only additional field we had to provide for all entitieswas an id-field
to store the node- and relationship-ids.

Example 6.1. Movie classwith annotation

@NodeEntity
class Mvie {
@ aphl d Long nodel d;
String id;
String title;
int year;
Set <Rol e> cast;

It was time to put our entities to the test. How could we now be assured that an attribute really was
persisted to the graph store? We wanted to load the entity and check the attribute. Either we could
haveaNeo4j Tenpl at e injected and useitsfi ndone(i d, t ype) method to load the entity. Or useamore
versatile Reposi t ory. The same goes for persisting entities, both Neo4j Tenpl at e or the Reposi tory
could be used. We decided to keep things simple for now.

So here'swhat our test ended up looking like:

Example 6.2. First test case

@A\ut owi red Neo4j Tenpl ate tenpl ate;

@est @ransactional public void persistedMvovi eShoul dBeRetri evabl eFr onGraphDb() {
Movi e forrestGunp = tenpl ate. save(new Myvi e("Forrest Gunp", 1994));
Movie retri evedMovie = tenpl ate. fi ndOne(forrest Gunp. get Nodel d(), Movi e. cl ass);
assert Equal s("retri eved novi e mat ches persisted one", forrestGunp, retri evedMvie);
assert Equal s("retrieved novie title matches", "Forrest Gunp", retrievedMovie.getTitle(

~

As Neo4j istransactional, we have to provide the transactional boundaries for mutating operations.

10

http://spring.neo4j.org/helloworld
http://spring.neo4j.org/helloworld
http://spring.neo4j.org/notes
http://spring.neo4j.org/notes
http://spring.neo4j.org/notes

Chapter 7. Indexing

Do | know you?

Thereis an @I ndexed annotation for fields. We wanted to try this out, and useit to guide the next test.
We added @Indexed to thei d field of the Movie class. Thisfield isintended to represent the external
ID that will be used in URIsand will be stable across database imports and updates. That'swhy we also
declareit as unique. Thistime we went with a simple GraphRepository to retrieve the indexed movie.

Example 7.1. Exact Indexing for Movieid

@NodeEntity class Mvie {
@ ndexed(uni que=true) String id;
String title;
int year;

}
@Aut owi red Neo4j Tenpl ate tenpl ate;
@est @ransactional

public void persistedMyvi eShoul dBeRetri evabl eFr onGraphDb() {
int id=1;

Movi e forrestGunp = tenpl ate. save(new Mvie(id, "Forrest Gunp", 1994));

G aphReposi t or y<Movi e> novi eRepository =

tenpl at e. reposi t or yFor (Movi e. cl ass) ;
Movi e retri evedMovi e = novi eRepository. fi ndByPropertyVal ue("id", id);
assert Equal ("retrieved novi e matches persi sted one", forrestQunp, retrievedMvie);

assert Equal ("retrieved novie title nmatches", "Forrest Gunp",

retrievedMovie.getTitle()

11

Chapter 8. Repositories

Serving a good cause

We wanted to add repositories with domain-specific operations. Interestingly there was support for a
very advanced repository infrastructure. Y ou just declare an entity specific repository interface and
get all commonly used methods for free without implementing any of boilerplate code.

So we started by creating a movie-related repository, simply by creating an empty interface.

Example 8.1. Movierepository

package org.neo4j.cineasts.repository;
public interface Myvi eRepository extends G aphRepository<Mvie> {}

Then we enabled repository support in the Spring context configuration by simply adding:

Example 8.2. Repository context configuration

<neodj :repositories base-package="org. neodj.cineasts.repository"/>

Besides the existing repository operations (like CRUD, and many standard queries) it was possible
to declare custom methods, which we explored later. Those methods names could be more domain
centric and expressive than the generic operations. For simple use-caseslike finding by id'sthisisgood
enough. So we first let Spring autowire our Mvi eCont rol | er with the Movi eReposi t ory. That way
we could perform simple persistence operations.

Example 8.3. Usage of a repository

@\ut owi red Movi eRepository repo;

Movi e novie = repo. findByPropertyVal ue("id", novi el d);

We went on exploring the repository infrastructure. A very cool feature was something that we so far
only heard about from Grails developers. Deriving queries from method names. Impressive! So we
had a more explicit method for the id lookup.

Example 8.4. Derived movie-repository query method

public interface Myvi eRepository extends G aphRepository<Mvie> {
Movi e get Movi eByl d(String id);
}

In our wildest dreams we imagined the method names we would come up with, and what kinds of
queries those could generate. But some, more complex gueries would be cumbersome to read and
write. So in those cases it is better to just annotate the finder method. We did this much later, and
just wanted to give you a peek into the future. There is much more, you can do with repositories, it
isworthwhile to explore.

12

Repositories

Example 8.5. Annotated movie-repository query method

public interface Myvi eRepository extends G aphRepository<Myvie> {

@uery("start user=node: User ({0}) nmatch user-[r: RATED] ->npvie return novie order by r.stars desc lim

It er abl e<Movi e> get TopRat edMovi es(User uer);
}

13

Chapter 9. Relationships

A convincing act

Our application was not very much fun yet, just storing movies and actors. After all, the power isin
the relationships between them. Fortunately, Neo4j treats relationships asfirst class citizens, allowing
them to be addressed individually and have properties assigned to them. That allows for representing
them as entities if needed.

9.1. Creating relationships

Relationshipswithout properties ("anonymous' relationships) don't requireany @rel at i onshi pEntity
classes. "Unfortunately” we had none of those, because our relationships were richer. Therefore
we went with the Rol e relationship between mvie and Actor. It had to be annotated with

@Rel ati onshi pEntity and the @t art Node and @ndNode had to be marked. So our Role looked like
this:

Actor Role |
ttle
name > ALTS_IN it
movies htle A
| cast

Example 9.1. Role class

@Rel ati onshi pEntity

class Role {
@3t art Node Actor actor;
@ndNode Movi e novi e;
String role;

When writing atest for the Rol e we tried to create the relationship entity just by instantiating it with
new and saving it with the template, but we got an exception saying that it misses the relationship-type.

We had to add it to the @rel ati onshi pEnti ty as an attribute (or as a @RelationshipType annotated
field in the RelationshipEntity). Another way to create instances of relationship-entities is to use the
methods provided by the template, like cr eat eRel at i onshi pBet ween.

14

Relationships

Example 9.2. Relating actorsto movies

@Rel ati onshi pEntity(type="ACTS_IN")
class Role {
@bt art Node Actor actor;
@ndNode Mbvi e novi e;
String role;

}

class Actor {

public Role playedln(Mvie novie, String rol eNanme) {
Rol e role = new Role(this, novie, rol eNane);
this.rol es.add(role);
return role;

Rol e rol e = tonmHanks. pl ayedl n(forrest Gunp, "Forrest Gump");

/] either save the actor
t enpl at e. save(t onHanks) ;
/'l or the role

tenpl at e. save(rol e);

/1 alternative approach
Rol e rol e = tenpl ate. creat eRel ati onshi pBet ween(act or, novi e,
Rol e. cl ass, "ACTS_IN');

Saving just the actor would take care of relationships with the same type between two entities and
remove the duplicates. Whereas just saving the role happily creates another relationship with the same

type.
9.2. Accessing related entities

Now we wanted to find connected entities. We already had fields for the relationships in both classes.
It was time to annotate them correctly. The Neo4j relationship type and direction were easy to figure
out. The direction even defaulted to outgoing, so we only had to specify it for the movie. If we want to
use the same relationship between the two entities we have to make sure to provide a dedicated type,
otherwise the field-names would be used resulting in different relationships.

15

Relationships

Example 9.3. @RelatedT o usage

@NodeEntity
class Mvie {
@ ndexed(uni que=true) String id,
String title;
int year;
@Rel at edTo(type = "ACTS_IN', direction = Direction.| NCOM NG
Set <Act or > cast;

}

@NodeEntity

class Actor {
@ ndexed(uni que=true) int id;
String nane;
@Rel at edTo(type = "ACTS_I N')
Set <Movi e> novi es;

public Role playedl n(Mvie novie, String rol eNane) {
return new Rol e(this, novie, rol eNane);

}

Changesto the collections of related entities are reflected into the graph on saving of the entity.

We made sure to add some tests for using the relationshhips, so we were assured that the collections
worked as advertised.

9.3. Accessing the relationship entities

But we still couldn't access the Role relationship entities themselves. It turned out that there was a
separate annotation @rel at edToVi a for accessing the actual relationship entities. And we could declare
thefieldasan it er abl e<Rol e>, with read-only semanticsor on acol | ect i on Of Set <Rol e> field with
modifying semantics. So off we went, creating our first real relationship (just kidding).

To have the collections of relationships being read eagerly during the loading of the Movie we have
to annotate it with the @Fetch annotation. Otherwise Spring Data Neo4j refrains from following
relationships automatically. The risk of loading the whole graph into memory would be too high.

Example 9.4. @RelatedToVia usage

@NodeEntity

class Mvie {
@ ndexed(uni que=true) String id,;
String title;
int year;

@etch @Rel atedToVi a(type = "ACTS_IN', direction = Direction.| NCOM NG
| t er abl e<Rol es> rol es;

After watching the tests pass, we were confident that the changes to the relationship fields were realy
stored to the underlying relationshipsin the graph. Wewere pretty satisfied with persisting our domain.

16

Chapter 10. Get it running

Curtains up!

Now we had a pretty complete application. It was time to put it to the test.

10.1. Populating the database

Beforewe opened the gateswe needed to add somemoviedata. Sowewroteasmall classfor populating
the database which could be called from our controller. A simple/ popul at e endpoint for the controller
that called it would be enough for now.

Example 10.1. Populating the database - Controller

@servi ce
public class Dat abasePopul ator {

@r ansacti onal
public List<Myvie> popul at eDat abase() {
Act or tonHanks = new Actor("1", "Tom Hanks");
Movi e forrest Gunp = new Movie("1", "Forrest Gunp");
t omHanks. pl ayedl n(forrest Gunp, "Forrest");
tenpl at e. save(forrest Gunp);
return asLi st (forrestGunp);

}

@ontrol | er
public class MyvieController {

@\ut owi red private Dat abasePopul at or popul at or;

@Request Mappi ng(val ue = "/popul ate", nmethod = Request Met hod. POST)
public String popul at eDat abase(Model nodel) {

Col | ecti on<Movi e> novi es = popul at or. popul at eDat abase() ;

nodel . addAt tri but e(" nmovi es", novi es) ;

return "/novies/list";

Accessing the URI we could see the list of movies we had added.

10.2. Inspecting the datastore

Being the geeks we are, we also wanted to inspect the raw data in the database. Reading the Neo4j
docs [http://docs.neodj.org/], there were a couple of different ways of going about this.

10.2.1. Neoclipse visualization
First wetried Neoclipse, an Eclipse RCP application that opens an existing graph store and visualizesits

content. After getting an exception about concurrent access, we learned that we have to use Neoclipse
in read-only mode when our webapp was still running. Good to know.

17

http://docs.neo4j.org/
http://docs.neo4j.org/
http://docs.neo4j.org/

Get it running

a8nNno

Neoclipse

=

E=-RA=R iG]

| pambasegraph

[¢2 i &le=|A-|+aBET "0

EQ Marcus Chong

i T Micha
__ERIENDT

2 Olliver il

RATED

0\-9 Belinda McClory

@ Carrie-Anne Moss

@ Laurence Fishburne

EQ? The Matrix

\,\w.‘

% paul Goddard

0 Marc Aden

@ Joe Pantaoliano

@ Keanu Reeves

5 Matt Doran DIREETED
@ Anthony Ray Parker DIREETED I E\p Gloria Foster
%0 David Aston
@ Julian Arahanga \ @ Andy Wachowski
D Hugo Weaving ? Lana Wachowski
= properties 3 R ¥ = O || % relationship types 32 14 ¥4 24 | b | ¥ =0
Prope Value Relationship type W In R Out

v Properties -

typz.z. % org.nen4J.(|neas|:s.doma|n.h-'.lowe m DIRECTED

description @ NED. is a young software engineer and part-time ha FRIEND

genre Action RATED

homepage @ http:/ fwhatisthematrix.warnerbros.com/

id () 603 .

imagelr| @ http://cfl.imgobject.com/posters /606 /4bc509d0i ¥
e e e e e e e ————— — ————— D <>

Traversal depth: 3 Nodes: 19 Relationships: 18

10.2.2. The Neo4j Shell

For console junkies there was also a shell that was able to connect to a running Neo4j instance (if it
was started with theenabl e_r enot e_shel | =t r ue parameter), or reads an existing graph store directly.

Example 10.2. Starting the Neo4j Shell

bash# neo4j - shel
bash# neo4j - shel

-readonly -path data/graph. db
-readonly -port 1337

The shell was very similar to a standard Bash shell. We were able to cd to between the nodes, and
| s the relationships and properties. There were also more advanced commands for indexing, queries

and traversals.

18

Get it running

Example 10.3. Neo4j Shell usage

neo4j - sh[readonly] (0)$ help

Avai | abl e commands: index dbinfo |Is rmalias set eval nmv gsh env rnrel nkrel
trav help pwd paths ... man cd

Use man <command> for info about each command.

neodj -sh[readonly] (0)$ index --cd -g User |login micha

neodj -sh[readonly] (Mcha,1)$ |s

* type__ =[org.neodj.cineasts. donmain. User]
*| ogi n =[mi cha]

*nane =[M cha]

*rol es =[ROLE_ADM N, ROLE_USER]

(me) --[FRIEND]-> (A liver, 2)
(nme) --[RATED]-> (The Matrix, 3)

neodj -sh[readonly] (Mcha,1)$ Is 2

* __type__ =[org.neodj.cineasts. domain. User]
*| ogin =[ollie]

*name =[dliver]

*rol es =[ROLE_USER]

(Aliver,2) <-[FRIEND|-- (ne)
neo4j -sh[readonly] (Mcha,1)$ cd 3

neo4dj - sh[readonly] (The Matrix,3)$ Is

*_ _type__ =[or g. neo4j . ci neast s. domai n. Mvi €]

*description =[Neo is a young software engi neer and part-tine hacker who is singled
*genre =[Acti on]

*honepage =[http://whatisthematrix. war nerbros. cont]

*studi o =[Warner Bros. Pictures]

*tagline =[Wel cone to the Real World.]

*title =[The Matri x]

*trailer =[htt p: // ww. yout ube. coml wat ch?v=UMbyepZ21pl]

*version =[324]

(me) <-[ACTS_IN]-- (Marc Aden, 19)
(me) <-[ACTS_IN]-- (David Aston, 18)

(nme) <-[ACTS_IN-- (Keanu Reeves, 6)
(nme) <-[DI RECTED] -- (Andy Wachowski, 5)
(me) <-[DIRECTED]-- (Lana Wachowski , 4)
(ne) <-[RATED]-- (Mcha, 1)

-

19

Chapter 11. Web views

Showing off

After having put some data in the graph database, we also wanted to show it to the user. Adding the
controller method to show a single movie with its attributes and cast in a JSP was straightforward.
It basically just involved using the repository to look the movie up and add it to the model, and then
forwarding to the/ movi es/ show view and voil&

Example 11.1. Controller for showing movies

@Request Mappi ng(val ue = "/ novi es/ {novield}",
nmet hod = Request Met hod. CET, headers = "Accept=text/htm ")
public String singleMvieViewfinal Mdel nodel, @PathVariable String novield) {
Movi e novie = repository.findByld(novield);
nodel . addAttri bute("id", novield);
if (nmovie != null) {
nodel . addAttri but e(" novi e", novie);
nodel . addAttri bute("stars", novie.getStars());

}

return "/ novi es/ show'

Example 11.2. Populating the database - JSP /movies/show

<% page session="fal se" %
<vg@taglib uri="http://ww.springframework.org/tags" prefix="s" %
<U@taglib prefix="c" uri="http://java.sun.conljsp/jstl/core" %

<c: choose>
<c:when test="%${not enpty novie}">
<h2>${nmovie.title} (${stars} Stars)</h2>
<c:if test="${not enpty novie.rol es}">

<c:forEach itenms="${novie.roles}" var="rol e">

<c:out value="%${rol e.actor.nane}" /> as
<c:out value="${role.nane}" />

</ c: for Each>
</ ul >
</c:if>
</ c: when>
<c: ot herwi se>
No Movie with id ${id} found
</ c: ot herw se>
</ c: choose>

The Ul had now evolved to this:

20

Web views

Login Register

i

3 CINEASTS

A - Y
L A L -

- - - - -
H H 2 2
Anthony Ray Paul Goddard as Joe Pantoliano asMatt Doranas Julian Arahanga
TheMovieDb.org d Parker as Dozer Agent Brown Cypher Mouse as Apoc
IMDb . F
-

Amazon - ‘“ - .

CineButler - . -

Google Movies =] ' ‘
= ot =

Belinda McClory Marcus Chong asGloria Foster as Carrie-Anne Keanu Reeves as

as Switch Tank] Oracle Moss as Trinity Neo

\ . =
Homepage ')

v

\ B
j"\ § 5 s

Hugo Weaving asLaurence David Aston as Marc Aden as
Agent Smith Fishburne as Rhineheart Chol
Morpheus

11.1. Searching

The next thing was to allow users to search for movies, so we needed some fulltext search
capabilities. Asthe default index provider implementation of Neo4j isbased on Apache Lucene[http://
lucene.apache.org/javaldocs/index.html], we were delighted to see that fulltext indexeswere supported
out of the box.

We happily annotated thetitle field of the Movie classwith @ ndexed(type = FULLTEXT) . Next thing
we got an exception telling us that we had to specify a separate index name. So we simply changed it
to @ ndexed(type = FULLTEXT, indexName = "search").

With derived finder methods, finding things became easy. By simply declaring a finder-method name
that expressed the required properties, it worked without annotations. Cool stuff and you could even
tell it that it should return pages of movies, its size and offset specified by a Pageabl e which also
contains sort information. Using thel i ke operator indicatesthat fulltext search should be used, instead
of an exact search.

Example 11.3. Sear ching for movies

public interface MvieRepository ... {
Movi e findByld(String id);
Page<Movi e> findByTitleLike(String title, Pageabl e page);

11.2. Listing results

Wethen used thisresult in the controller to render a page of movies, driven by a search box. Themovie
properties and the cast were accessible through the getters in the domain classes.

21

http://lucene.apache.org/java/docs/index.html
http://lucene.apache.org/java/docs/index.html
http://lucene.apache.org/java/docs/index.html

Web views

Example 11.4. Search controller

@Request Mappi ng(val ue = "/ novi es",

net hod = Request Met hod. GET, headers = "Accept=text/htm ")

public String findMovi es(Mdel nodel, @RequestParan{"qg") String query) {
Page<Movi e> novies = repository.findByTitleLike(query, new PageRequest (0, 20));
nodel . addAt tri but e(" novi es", novies);
nodel . addAttri but e("query", query);
return "/ nmovies/list";

Example 11.5. Search Results JSP

<h2>Movi es</ h2>

<c: choose>
<c:when test="${not enpty novies}">

<dl class="listings">
<c: forEach itenms="${novies}" var="novie">
<dt >
<c: out value="${novie.title}" />

</ dt >
<dd>
<c:out value="${novie.description}" escapeXm ="true" />
</ dd>
</ c:forEach>
</dl >
</ c: when>

<c: ot herwi se>
No novies found for query " ${query}"
</ c: ot herw se>
</ c: choose>

The Ul now looked like this:

22

Web views

-
-
-

A L}

3 CINEASTS

=
The Matrix “?)

&5

T i
RE {.nh.ﬂ-:u
i

The Matrix Reloaded

The Matrix Revolutions

Micha Logout

23

Chapter 12. Adding social

Movies 2.0

So far, the website had only been a plain old movie database. We now wanted to add a touch of social
toit.

12.1. Users

So we started out by taking the User class that we'd already coded and made it a full-fledged Spring
Data Neo4j entity. We added the ability to create friends and to rate movies. With that we also added
asimple UserRepository that was able to look up users by ID.

The relationships of the user are hisfriends and the movie-ratingswhich isimplemented with aRrat i ng
Relationship-Entity. This time we used a different approach (for educational and curiosity purposes)
to createthe Rat i ng relationships. Thecr eat eRel at i onshi pBet ween operation of the Neodj Template
was our matchmaker of choice.

Example 12.1. Social entities

@NodeEntity

class User {
@ ndexed(uni que=true) String |ogin;
String nane;
String password;

@Rel at edToVi a(type = RATED)
@retch Set<Rating> ratings;

@Rel at edTo(type = "FRI END', direction=Direction. BOTH)
@etch Set<User> friends;

public Rating rate(Neo4jOperations tenplate, Myvie novie, int stars, String comrent) {
final Rating rating = tenpl ate. createRel ati onshi pBetween(this, novie, Rating.class, RATED, fal
rating.rate(stars, comment);
return tenpl ate. save(rating);

}

public void addFriend(User user) {
this.friends.add(user);
}
}

@Rel ati onshi pEntity
class Rating {
@bt art Node User user;
@ndNode Movi e novi e;
int stars;
String comment;
public Rating rate(int stars, String coment) {
this.stars = stars; this.comment = coment;
return this;

We extended the DatabasePopulator to add some users and ratings to theinitial setup.

24

Adding social

Example 12.2. Populate usersand ratings

@r ansacti onal
public List<Myvie> popul at eDat abase() {
Act or tonHanks = new Actor("1", "Tom Hanks");
Movi e forestGunp = new Movie("1", "Forrest Gunp");
t omHanks. pl ayedl n(f orest Gunp, "Forrest");
t enpl at e. save(t onHanks) ;

User ne = tenpl ate. save(new User ("m cha", "Mcha", "password"));
Rati ng awesone = ne.rate(tenpl ate, forestGunp, 5, "Awesone");

User ollie = tenpl ate. save(new User("ollie", "Aiver", "password"));
ollie.rate(tenpl ate, forestGunp, 2, "ok");

nme. addFri end(ol lie);

tenpl at e. save(ne);

return asLi st (forestGunp);

12.2. Ratings for movies

We a'so put aratings field into the Movie class to be able to get amovie's ratings, and also a method
to average its star rating.

Example 12.3. Getting therating of a movie

class Myvie {

@Rel at edToVi a(type="RATED', direction = Direction.| NCOM NG
@etch Iterabl e<Rating> ratings;

public int getStars() {
int stars = 0, count = O;
for (Rating rating : ratings) {
stars += rating.getStars(); count++;

}

return count == 0 ? 0 : stars / count;

Fortunately our tests highlighted the division by zero error when calculating the stars for a movie
without ratings. The next steps were to add this information to the movie presentation in the Ul, and
creating a user profile page. But for that to happen, users must first be ableto log in.

25

Chapter 13. Adding Security

Protecting assets

To handle an active user in the webapp we had to put it in the session and add login and registration

pages. Of course the pages that were only meant for logged-in users had to be secured as well.

Being Spring users, we naturally used Spring Security for this. We wrote a simple
User Det ai | sServi ce by extending a repository with a custom implementation that takes care
of looking up the users and validating their credentials. The config is located in a separate

appl i cationCont ext -security.xm . But first, as always, Maven and web. xni setup.

Example 13.1. Spring Security pom.xml

<dependency>
<gr oupl d>or g. spri ngf ramewor k. securi t y</ gr oupl d>
<artifactld>spring-security-web</artifactld>
<versi on>${spri ng. ver si on} </ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. spri ngf ramewor k. securi t y</ gr oupl d>
<artifactld>spring-security-config</artifactld>
<ver si on>${spri ng. ver si on} </ ver si on>

</ dependency>

Example 13.2. Spring Security web.xml

<cont ext - par an>
<par am nane>cont ext Conf i gLocat i on</ par am nane>
<par am val ue>
/ VEEB- | NF/ appl i cati onCont ext - security. xm
/ VEEB- | NF/ appl i cat i onCont ext . xn
</ par am val ue>
</ cont ext - par an®>

<listener>

<l i stener-class>org. springfranmewor k. web. cont ext. Cont ext Loader Li st ener</1i st ener-cl ass>

</listener>

<filter>
<filter-nane>springSecurityFilterChain</filter-nane>

<filter-class>org.springframework.web.filter.Del egatingFilterProxy</filter-class>

</filter>

<filter-mppi ng>
<filter-name>springSecurityFilterChain</filter-nanme>
<url-pattern>/*</url-pattern>

</filter-mappi ng>

26

Adding Security

Example 13.3. Spring Security applicationContext-security.xml

<security: gl obal - net hod-security secured-annotati ons="enabl ed">
</ security: gl obal - ret hod- security>

<security:http auto-config="true" access-deni ed- page="/aut h/ deni ed" >
<security:intercept-url pattern="/adm n/*" access="ROLE_ ADM N'/>
<security:intercept-url pattern="/inport/*" access="ROLE_ADM N'/ >
<security:intercept-url pattern="/user/*" access="ROLE_USER'/>
<security:i
<security:i

<security:intercept-url pattern="/**" access="|S_AUTHENTI CATED ANONYMOUSLY"/ >

<security:formlogin | ogin-page="/auth/login"

aut hentication-failure-url="/auth/login?l ogi n_error=true"

defaul t-target-url="/user"/>

<security:|ogout |ogout-url="/auth/logout" |ogout-success-url="/" invalidate-session="

</security:http>

<security: aut henticati on- manager >
<security:authentication-provider user-service-ref="userRepository">
<security: password- encoder hash="nd5">
<security:salt-source systemw de="cewi gwzi e"/>
</ security: password- encoder >
</security:authentication-provider>
</ security: authenticati on- manager >

ntercept-url pattern="/auth/login" access="1S_AUTHENTI CATED ANONYMOUSLY"/ >
ntercept-url pattern="/auth/register" access="1S AUTHENTI CATED ANONYMOUSLY"

27

rue"/>

Adding Security

Example 13.4. CinceastUserDetailsService interface and UserRepository
implementation

public interface G neastsUserDetail sService extends UserDetail sService {
@verride
Ci neast sUser Det ai | s | oadUser ByUser nane(String | ogin)
t hrows User nameNot FoundExcepti on, DataAccessExcepti on;

User get User FronSessi on();

@ransacti onal
Rating rate(Myvie novie, User user, int stars, String coment);

@ransacti onal
User register(String login, String name, String password);

@ransacti onal
voi d addFriend(String login, final User userFronSession);

public interface UserRepository extends G aphRepository<User>,
Rel ati onshi pOper ati onsReposi t ory<User >,
Ci neast sUser Det ai | sService {

User findByLogin(String |ogin);

public class UserRepositorylnpl inplenments Ci neastsUserDetail sService {
@\t owi red private Neodj Operations tenplate;

@verride
public C neastsUserDetails | oadUserByUsernanme(String | ogin)
t hrows User naneNot FoundExcepti on, DataAccessException {
final User user = findByLogin(l ogin);
if (user==null) throw
new User nameNot FoundExcepti on(" User name not found: "+l ogin);
return new G neast sUserDetail s(user);

private User findByLogin(String |login) {
return tenpl ate.l ookup(User. cl ass, "l ogin", | ogin)
.to(User.class).single();

@verride
public User getUserFrontession() {
SecurityCont ext context = SecurityContextHol der. get Context();
Aut henti cati on aut hentication = context.getAuthentication();
Obj ect principal = authentication.getPrincipal();
if (principal instanceof G neastsUserDetails) {
Ci neastsUserDetails userDetails = (G neastsUserDetails) principal;
return userDetails.getUser();

}

return null;

public class C neastsUserDetails inplenments UserDetails {
private final User user;

public CineastsUserDetail s(User user) {
t his. user = user;

@verride

public Coll ecti on<G ant edAut hority> getAuthorities() {
User. Rol es[] roles = user.getRoles();
if (roles ==null) return Collections.enptyList();

ratiirn Arr ave <(x ant adAnit hari +t vsaclict(ranl ac) -+

custom

Qo1

Adding Security

Any logged-in user was now available in the session, and could be used for all the social interactions.
The remaining work for this was mainly adding controller methods and JSPs for the views. We used
the helper method get User Fr onSessi on() in the controllers to access the logged-in user and put it in
the model for rendering. Here's what the Ul had evolved to:

Mcha Logout

A T3

3 CINEASTS

-
-
A K |

=

=

Forrest Gump (1994) - "Inspiring"

The Matrix (1999) - "Best of the series”™

EMIL EIFREM

The Simpsons Movie (2007) - "See our family. And feel better about yours,” 3 = & & %

The Matrix Reloaded (2003) - "Free your mind."

This site is running on SpringFramework and Spring Data Graph powered by the Neo4j graph database. All movie data is provided by themoviedb.org.

. ..-‘ L = .
spring o springdatagraph IR ENeAx I

A division of VITIWEIE

29

Chapter 14. More Ul

Oh the glamour

To create anice user experience, we wanted to have anice looking app. Not something that looked like
atoddler made it. So we got some user experience people involved and the results were impressive.
This sections presents some of the remaining screen shots of Cineasts.net.

-
“

\ X4

¥ CINEASTS

" spring = ‘ i :.‘ springdatagraph

30

More Ul

-
-
-

\ T}

3 CINEASTS

The Matrix Reloaded

The Matrix Revolutions

Miche Logout

31

More Ul

TheMovieDb.org
]

Amazon
CineButler

Google Movies

Homepage

L L]

3 CINEASTS

Anthony Ray Paul Goddard as Joe Pantoliano asMatt Doran as Jullan Arahanga
Cypher Mouse as Apoc
r

Parker as Dozer Agent Brown

= s
\ K 4 -
|~

-
-
-

» q |

-
]

Belinda McClory Marcus Chong asGloria Foster as Carrie-Anne Keanu Reeves as

as Switch Tank

Hugo Weaving asLaurence
Agent Smith Fishburne as
Morpheus

Micha

The Matrix as Neo in 1999
The Matrix Revolutions as Neo in 2003
The Matrix Reloaded as Neo in 2003

Oracle Moss as Trinity Neo

-
\ K4

David Aston as Marc Aden as
Rhineheart Chol

Find movie

32

Chapter 15. Importing Data

The dusty archives

It was now time to pull the data from themoviedb.org [http://themoviedb.org]. Registering there and
getting an API key was simple, as was using the APl on the command-line with cur | . Looking at the
JSON returned for movies and people, we decided to enhance our domain model and add some more
fieldsto enrich the UI.

Example 15.1. JSON movie response

[{"popularity":3,

"translated":true, "adult":fal se, "language":"en",

"original _name":"[Rec]", "nanme":"[Rec]", "alternative_nane":"[REC]",

"movi e_type": " novie",

"id":8329, "indb_id":"tt1038988", "url":"http://ww.thenovi edb. org/ novi e/ 8329",

"votes":11, "rating":7.2,

"status":"Rel eased",

"tagline":"One Wtness. One Canera",

"certification":"R',

"overview':"\"RECQ\" turns on a young TV reporter and her caneraman who cover the night shi
at the local fire station...

"keywords":["terror", "lebende |eichen", "obsession", "cancorder", "firemen", "reality tv |,
"bite", "cinematographer",

"attenpt to escape", "virus", "lodger", "live-reportage", "schwerverletzt"],

"rel eased": "2007-08- 29",

“runtime":78,

"budget ": 0,

"revenue": 0,

"“honepage": "http://ww. 3l -filnverleih.de/rec",

"trailer":"http://ww.yout ube. con wat ch?v=YQUkX_Xowgl ",

"genres":[{"type":"genre",

—

“url":"http://thenovi edb. org/ genre/ horror",
"nanme": " Horror",
"id":27}],

"studios":[{"url":"http://ww.thenovi edb. or g/ conpany/ 2270", "nanme":"Fil max Goup", "id":22[0}],
"l anguages_spoken": [{"code":"es", "name":"Spani sh", "native_nane":"Espa\u00f 1ol "}],
"countries":[{"code":"ES", "nane":"Spain", "url":"http://ww.thenovi edb. org/country/es"}],
"posters":[{"image":{"type": "poster",

"size":"original", "height":1000, "w dth": 706,

"url":"http://cfl.ingobject.conl posters/3al/4cc8df 415e73d650240003a0/ rec-origi nal . pg",
"id":"4cc8df 415e73d650240003a0"} },

"cast":[{"name": " Manuel a Vel asco",

"job":"Actor", "departnent":"Actors",

"character":"Angela Vidal",

"id":34793, "order":0, "cast_id":1,

“url":"http://ww.thenovi edb. or g/ person/ 34793",
"profile":"http://cfl.ingobject.com profiles/390/.../manuel a-vel asco-thunb.jpg"},

{"name":"d \uO0Of 2ria Viguer",

"job":"Costume Design", "departnent":"Costune \u0026 Make-Up",
"character":"",

"id":54531, "order":0, "cast_id":21,

"url":"http://ww.thenovi edb. or g/ per son/ 54531",
"profile":""}],

"version": 150, "last_nodified_at":"2011-02-20 23: 16:57"}]

33

http://themoviedb.org
http://themoviedb.org

Importing Data

Example 15.2. JSON actor response

[{"popularity":3,

"name":"d enn Strange", "known_as":[{"nanme":"George G enn Strange"}, {"name":"d en Strangel},
{"name":"d en ' Peewee' Strange"}, {"nane":"Peewee Strange"}, {"nane":"'Peewee' Strange"}],
"id":30112,

"bi ography":"",

"known_novi es": 4,

"birthday":"1899-08-16", "birthplace":"Wed, New Mexico, USA",
“url":"http://ww.thenovi edb. or g/ per son/ 30112",

"fil nography":[{"name":"Bud Abbott Lou Costell o Meet Frankenstein",
"id":3073,

"job":"Actor", "departnment":"Actors",

"character":"The Frankenstein Mnster",

"cast _id":23,

"url":"http://ww.thenovi edb. or g/ novi e/ 3073",
"poster":"http://cfl.ingobject.conf posters/4cal.../bud-abbott-I|ou-costello-neet-frankenste|n-cover.jpg
"adult":fal se, "rel ease":"1948-06- 15"},

R

"profile":[],

"version":19, "last_nodified_at":"2011-03-07 13: 02:35"}]

For the import process we created a separate importer using Jackson (a JSON library) to fetch and
parse the data, and then some transactional methods in the Movi eDbl npor t Ser vi ce to actually import
it as movies, roles, and actors. The importer used a simple caching mechanism to keep downloaded
actor and movie data on the filesystem, so that we didn't have to overload the remote API. In the code
below you can see that we've changed the actor to a person so that we can also accommodate the other
folks that participate in movie production.

34

Importing Data

Example 15.3. Importing the data

@r ansacti onal
public Movie inportMyvie(String novield) {
Movi e novie = novi eRepository. findByld(novield);
if (nmovie == null) { // Not found: Create fresh
novi e = new Mvi e(novield, null);

}

Map data = | oadMbvi eDat a(novi el d) ;
if (data.containsKey("not_found")) throw
new Runti meException("Data for Mvie "+novield+" not found.");
novi eDbJsonMapper . mapToMvi e(dat a, novi e);
novi eReposi tory. save(novi e) ;
rel at ePer sonsToMovi e(novi e, data);
return novie;

}

private void rel at ePer sonsToMovi e(Movi e novi e, Map data) {
Col | ecti on<Map> cast = (Col | ecti on<Map>) data.get("cast");
for (Map entry : cast) {
String id = "" + entry.get("id");
String jobName = (String) entry.get("job");
Rol es job = novi eDbJsonMapper . mapToRol e(j obNane) ;
if (job==null) {
conti nue;
}
switch (job) {
case DI RECTED:
final Director director = dolnportPerson(id, new Director(id));
director.directed(novie);
di rector Reposi tory. save(director);
br eak;
case ACTS IN:
final Actor actor = dol nportPerson(id, new Actor(id));
actor.playedln(novie, (String) entry.get("character"));
act or Reposi tory. save(actor);
br eak;
}
}
}

public void mapToMovi e(Map data, Movie novie) {
novie.setTitle((String) data.get("nanme"));
novi e. set Language((String) data.get("language"));
novi e. set Tagl i ne((String) data.get("tagline"));
novi e. set Rel easeDat e(t oDat e(data, "rel eased", "yyyy-Mvidd"));

novi e. set | mageUr | (sel ect | mageUr | ((Li st <Map>) dat a. get ("posters"), "poster", "md"));

The last part involved adding a protected URI to the MovieController to allow importing ranges of
movies. During testing, it became obvious that the calls to themoviedb.org were a limiting factor. As
soon as the data was stored locally, the Neo4j import was a sub-second deal.

35

Chapter 16. Recommendations

Movies! Friends! Bargains!

In the last part of this exercise we wanted to add recommendations to the app. One obvious
recommendation was movies that our fiends liked.

There was this query language called Cypher that looked a bit like SQL but expressed graph matching
queries. Sowegaveit atry, usingtheneo4j - shel | , toincrementally expand the query, just by declaring
what rel ationships we wanted to be taken into account and which properties of nodes and relationships
to filter and sort on.

Example 16.1. Cypher based movie recommendation on Repository

interface Mvi eRepository extends G aphRepository<Mvie> {
@uery("
start user=node({0})
mat ch user-[: FRIEND] -fri end-[r: RATED)] - >novi e
return novie
order by avg(r.stars) desc, count(*) desc
limt 10
")

I t er abl e<Movi e> recommendMovi es(User ne);

But we didn't have enough friends, so it was time to get some suggested. That would be like-minded
cineaststhat rated moviessimilarly to us. Again Cypher to therescue, thistime only abit more complex.
Something that became obvious with both queriesis that graph queries are always local, so they start
from anode, or set of nodes or relationships, and then expand outwards from there.

Example 16.2. Cypher - Friend Recommendation on Repository

interface UserRepository extends G aphRepository<User> {
@uery("
start user=node({0})
mat ch user-[r: RATED) - >novi e<-[r2: RATED) - | i keni nded,
user-[: FRIEND] -friend
where r.stars > 3 and r2.stars >= 3
return |ikeni nded
order by count(*) desc
limt 10
")

| t er abl e<User > suggest Fri ends(User ne);

The controllers simply called these methods, added their results to the model, and the view rendered
the recommendations al ongside the user's own ratings.

36

Chapter 17. Neo4j Server

Remotely related

Right now our application was running with the embedded mode of Neo4j which was fine and highly
performant. In certain environments you don't have the luxury of file-system access for your webapps
and have to talk to a remote database service instead. Neodj can also run as a server. It exposes its
operationsviaaHTTP based REST API.

We decided to have alook, to be at least knowledgeable about this deployment scenario. We were
aware of the difference of local, in-memory calls and higher latency network hops. That would be
something we would also take into careful consideration.

17.1. Getting Neo4j-Server

Getting the Neodj-Server was easy, we just went to neodj.org [http://neodj.org/] and downloaded the
latest version. Starting it on the command-line (or installing it as a service) was ano-brainer as well.

We copied our store-directory into the dat a/ gr aph. db directory of the server and started it up again.
The admin console of Neodj-Server, called 'web-admin' is pretty. Using JavaScript, it rendersthe graph
visually in a highly configurable way. It also gave us the possibility to issue queries over a console,
another handy feature.

So, how would we get our app connected to this server? It turned out the changes in configuration
and setup where minimal. Spring Data Neo4j already came with a module that took care of the
remote protocol. We added that maven dependency and changed the graph database used in the Spring
Configuration.

Example 17.1. Maven Dependency

<dependency>
<gr oupl d>or g. spri ngf r amewor k. dat a</ gr oupl d>
<artifactld>spring-data-neo4j-rest</artifactld>
<version>2. 1. 0. RELEASE</ ver si on>

</ dependency>

Example 17.2. Spring Config

<neodj: confi g graphDat abaseServi ce="graphDat abaseServi ce"/ >

<bean i d="gr aphDat abaseServi ce"

cl ass="org. spri ngframewor k. dat a. neo4j . rest . Spri ngRest G aphDat abase" >
<constructor-arg index="0" value="http://|ocal host: 7474/ db/ data" />

</ bean>

After those two changes we restarted the app, and ... it worked. The transparent handling of the remote
APl was impressive. We learned that it uses a library called java-rest-binding [https://github.com/
neodj/java-rest-binding] under the hood which is also usable without the Spring Framework.

Of course we noticed performance implications. Especialy after moving the server to a remote
machine. It turned out that the server supported remote execution of many operations, allowing usto

37

http://neo4j.org/
http://neo4j.org/
https://github.com/neo4j/java-rest-binding
https://github.com/neo4j/java-rest-binding
https://github.com/neo4j/java-rest-binding

Neodj Server

run the graph traversal and querying inside the server. That means looking at our graph interactions
and changing them in away that switched from the transparent, direct graph access via the entities to
adifferent interaction pattern.

We looked into the different modes of remotely executed operations and found traversals, Cypher
and Gremlin queries and index lookups. Most of them already matched our needs but the Cypher and
Gremlin approacheswere best suited, because they al so handled index operations and allowed to return
partial attribute sets and subgraphs.

So we looked at our use-case (aka page)-based interactions with the graph entities and converted them
to Cypher queries on repositories where appropriate, measuring the performance improvements as we
went.

There was also a nice mechanism of mapping Cypher query resultsto Domain Concepts. Y ou just had
to declare and annotate an interface that represents the query results as domain entities and the nodes
and relationships returned by Cypher were converted into the appropriate entities.

Example 17.3. Example of query result mapping

public interface Movi eRepository extends G aphRepository<Mvie> {

@uer y(" START novi e=node: Movi e(i d={0})
MATCH novi e-[rating?:rating]->(),
novi e<-[: ACTS_I N] - act or
RETURN novi e, COLLECT(actor), AV@rating.stars)")
Movi eDat a get Movi eDat a(String novi el d);

@apResul t

public interface MvieData {
@Resul t Col um(" novi e")
Movi e get Movi e();

@Resul t Col um("AVErating.stars)")
Doubl e get Rating();

@Resul t Col um(" COLLECT(actor)")
It erabl e<Act or> get Cast ();

This allowed us to get all the data needed for rendering a page in a single call to the server, greatly
diminishing the chatter between the client and the server.

17.2. Other approaches

Another approach to using the Neo4j-Server would be to write a custom server extension using the
SpringPl ugi ninitializer provided by spri ng- dat a- neo4j - r est . Thisextension would usethewell
known entities and approaches asit runs inside the server atop an embedded graph database. From the
extension we would expose custom, domain and use-case oriented REST endpoints that could then be
consumed by any kind of webapp, even a pure Javascript based browser app.

38

Chapter 18. Conclusion

To new frontiers

Pretty neat. We were satisfied with what we got here, with little effort and high performance. Lots of
opportunities to expand the social movie database showed up during development. Like adding more
social featuresliketagging, communication streams, location based features (cinemas) and much more.

But we leave you with that as an exercise to enjoy and explore. Thanks for following the tutorial
and make sure to get back to us with suggestions for improvements or reports about unexpected
behaviours at the discussion forums [http://spring.neodj.org/discussions], or the issue tracker [http://
spring.neodj.org/issues).

39

http://spring.neo4j.org/discussions
http://spring.neo4j.org/discussions
http://spring.neo4j.org/issues
http://spring.neo4j.org/issues
http://spring.neo4j.org/issues

Part |Il. Reference Documentation
g
: » springdataNeo4j

-

This part of the Spring Data Neo4j Guide book provides the reference documentation. It details many aspects of
the tutorial and also explains concepts that were only just mentioned there.

Its content covers information about the programming model, APIs, concepts, annotations and technical details
of Spring Data Neo4j.

Whenever you look for the meansto empl oy thefull power of the Spring DataNeo4j library you find your answers
in the reference section. If you don't, please inform us about missing or incorrect content so that we can fix that.

40

Reference Documentation

1. Spring Data and Spring Data Neo4j

Spring Data [http://springsource.org/spring-data] is a SpringSource project that aims to provide
Spring's convenient programming model and well known conventions for NOSQL databases.
Currently there is support for graph (Neo4j), key-value (Redis, Riak), document (MongoDB) and
relational (Oracle) databases. Mark Pollack, the author of Spring.NET, isthe project lead for the Spring
Data project.

The Spring Data Neo4j project, as part of the Spring Data initiative, aims to simplify development
with the Neo4j graph database. Like JPA, it uses annotations on ssmple POJO domain objects. The
annotations activate one of the supported mapping approaches, either the simple mapping or the
advanced AspectJ mapping. Both use the annotation and reflection metadata for mapping the POJO
entities and their fields to nodes, relationships, and properties in the graph database.

Spring Data Neodj alows, at any time, to drop down to the Neo4dj-API level, see Chapter 19,
Introduction to Neo4j to execute functionality with the highest performance possible.

For integration of Neodj and GrailGORM please refer to the Neodj grails plugin [http://
www.grails.org/plugin/neodj]. There are also Python bindings [http://docs.neodj.org/chunked/
milestone/python-embedded.html] aswell as community-provided bindingsto use Neo4j in embedded
[http://docs.neodj.org/chunked/milestone/languages.ntml] or REST mode [http://docs.neodj.org/
chunked/milestone/tutorial s-rest.html].

2. Reference Documentation Overview

The explanation of Spring Data Neo4j's programming model starts with some underlying details. The
basic internal workings of the two mapping modes are explained in the initial chapter. Section 20.1,
“Object Graph Mapping” covers the simple mapping and Section 20.2, “Advanced Mapping with
Aspect’ contains details about the advanced mapping. It also explains some of the common issues
around AspectJ tooling with the current IDEs.

To get started with a simple application, you need only your domain model and the annotations (see
Section 20.4, “ Defining node entities”) provided by the library. Y ou use annotations to mark domain
objects to be reflected by nodes and relationships of the graph database. For individua fields the
annotations allow you to declare how they should be processed and mapped to the graph. For property
fields and references to other entities thisis straightforward.

To use advanced functionality like traversals, Cypher and Gremlin, a basic understanding of the graph
datamodel isrequired. The graph datamodel is explained in the chapter about Neo4j, see Chapter 19,
Introduction to Neo4j.

Relationships between entities arefirst class citizensin agraph database and therefore worth a separate
chapter (Section 20.5, “Relating node entities”) describing their usage in Spring Data Neo4j.

Indexing operations are useful for finding individual nodes and relationships in a graph. They can be
used to start graph operations or to be processed in your application. Indexing in the plain Neo4j AP
isabit moreinvolved. Spring Data Neo4j maintains automatic indexes per entity class, with @ ndexed
annotations on relevant fields. (Section 20.6, “Indexing”)

xli

http://springsource.org/spring-data
http://springsource.org/spring-data
http://www.grails.org/plugin/neo4j
http://www.grails.org/plugin/neo4j
http://www.grails.org/plugin/neo4j
http://docs.neo4j.org/chunked/milestone/python-embedded.html
http://docs.neo4j.org/chunked/milestone/python-embedded.html
http://docs.neo4j.org/chunked/milestone/python-embedded.html
http://docs.neo4j.org/chunked/milestone/languages.html
http://docs.neo4j.org/chunked/milestone/languages.html
http://docs.neo4j.org/chunked/milestone/tutorials-rest.html
http://docs.neo4j.org/chunked/milestone/tutorials-rest.html
http://docs.neo4j.org/chunked/milestone/tutorials-rest.html

Reference Documentation

Being aSpring Datalibrary, Spring DataNeo4j offersacomprehensive Neodj-Template (Section 20.7,
“NeodjTemplate”) for interacting with the mapped entities and the Neo4j graph database. The
operations provided by Spring Data Neo4j - Repositories per mapped entity class are based on the
APl offered by the Neodj-Template. It aso provides the operations of the Neodj Core APl in a
more convenient way. Especialy the querying (Indexes, Cypher, Gremlin and Traversals) and result
conversion facilities allow writing very concise code.

Spring Data Commons provides a very powerful repository infrastructure that is also leveraged in
Spring Data Neo4j. Those repositories consist only of a composition of interfaces that declare the
available functionality in each repository. The implementation details of commonly used persistence
methods are handled by thelibrary. At least for typical CRUD, index- and query-operationsthat isvery
convenient. Therepositories are extensible by annotated, named or derived finder methods. For custom
implementations of repository methods you are free to add your own code. (Section 20.8, “CRUD
with repositories’).

To be able to leverage the schema-free nature of Neodj it is possible to project any entity to any
other entity type. That is useful aslong as they share some properties (or relationships). The entities
don't have to share any super-types or hierarchies. How that works is explained here: Section 20.9,
“Projecting entities’.

Spring Data Neodj also allows you to integrate with the powerful geospatial graph library Neo4j-
Spatial that offers full support for working with any kind of geo-data. Spring Data Neo4j repositories
expose a couple of those operations via bounding-box and near-location searches. Section 20.10,
“Geospatial Queries’.

Using computed fields that are dynamically backed by graph operations is a bit more involved. First
you should know about traversals, Cypher queries and Gremlin expressions. Those are explained in
Chapter 19, Introduction to Neo4j. Then you can start using virtual, computed fields in your entities
Section 20.9, “Projecting entities’ .

If you like the ActiveRecord approach that uses persistence methods mixed into the domain classes,
you will want to look at the description of the additional entity methods (see Section 20.11, “Active
Record Methods for Advanced Mapping Mode”) that are added to your domain objects by Spring
Data Neo4j Aspects. Those allow you to manage the entity lifecycle as well as to connect entities.
Those methods also provide the means to execute the mentioned graph operations with your entity
as a starting point.

Neodj isafully ACID, enterprise grade database. It uses Java transactions, and internally a 2-phase
commit protocol, to guarantee the safety of your data. The implications of that are described in the
chapter around transactions. (Section 20.12, “ Transactions”)

The need of an active transaction for mutating the state of nodes or relationships implies that direct
changes to the graph are only possible in a transactional context. Unfortunately many higher level
application layers don't want to care about transactions and the open-session-in-view pattern is not
widely used. Therefore Spring Data Neodj's advanced mappings introduced an entity lifecyle and
added support for detached entities which can be used for temporary domain objects that are not
intended to be stored in the graph or which will be attached to the graph only later. (Section 20.13,
“Detached node entities in advanced mapping mode”)

For the smple mapping this is not heccessary as domain objects are detached by default and have to
be explicitly reattached to the graph to store the changes.

xlii

Reference Documentation

Unlike Neo4j which is a schemafree database, Spring Data Neo4j works on Java domain objects. So it
needsto store the type information in the graph to be able to reconstruct the entitieswhen just nodes are
retrieved. To achieve that it employs type-representation-strategies which are described in a separate
chapter. (see Section 20.14, “Entity type representation”)

Spring Data Neo4j offers basic support for bean property validation (JSR-303). Annotations from that
JSR are recognized and evaluated whenever a property is set, or when a previously detached entity is
persisted to the graph. (see Section 20.15, “Bean validation (JSR-303)")

Unfortunately the setup of Spring Data Neo4j advanced mapping mode is more involved than we'd
like. That is partly due to the Maven setup and dependencies for AspectJ, which can be alleviated by
using different build systemslike Gradle or Ant/lvy. The Spring configuration itself boils down to two
lines of <spri ng- neo4j > namespace setup. (see Chapter 21, Environment setup)

In a polyglot persistence context Spring Data Neo4j can also be used in a JPA environment to add
graph features to your JPA entities. In the Chapter 22, Cross-store persistence the dlightly different
behavior and setup of a Graph-JPA interaction are described.

The provided samples, which are also publicly hosted on Github [http://spring.neodj.org/examples],
are explained in Chapter 23, Sample code.

The performance implications of using Spring Data Neo4j are detailed in Chapter 25, Performance
considerations. This chapter also discusses which use cases should not be handled with Spring Data
Neo4.

As Aspectd might not be well known to everyone, some of the core concepts of the aspect oriented,
advanced mapping mode for Java are explained in Chapter 26, AspectJ details.

How to consume the REST-API of a Neo4j-Server is the topic of Chapter 27, Neodj Server. But
Spring Data Neo4j can also be used to create custom Extensions for the Neo4j Server which would
serve domain model abstractions to a suitable front-end. So instead of talking low level primitives to
a database, the front-end or web-app would communicate via a domain level protocol with endpoints
implemented in Jersey and Spring Data Neo4.

Note

.

3
Please be awarethat the advanced mapping mode of Spring DataNeo4j isbased on AspectJ

and uses some advanced features of that tool set. See the section on AspectJ (Section 20.2,
“ Advanced Mapping with AspectJ’) for details if you run into any problems.

xliii

http://spring.neo4j.org/examples
http://spring.neo4j.org/examples

Chapter 19. Introduction to Neo4;

19.1. What is a graph database?

A graph database is a storage engine that is specialized in storing and retrieving vast networks of data.
It efficiently stores nodes and relationships and allows high performance traversal of those structures.
Properties can be added to nodes and relationships.

Graph databases are well suited for storing most kinds of domain models. In amost all domains, there
are certain things connected to other things. In most other modeling approaches, the relationships
between things are reduced to a single link without identity and attributes. Graph databases allow to
keep the rich relationships that originate from the domain, equally well-represented in the database
without resorting to also modeling the relationships as "things'. There is very little "impedance
mismatch™" when putting real-life domains into a graph database.

19.2. About Neo4;

Neo4j [http://neodj.org/] isaNOSQL graph database. It is afully transactional database (ACID) that
stores data structured as graphs. A graph consists of nodes, connected by relationships. Inspired by the
structure of the human mind, it allows for high query performance on complex data, while remaining
intuitive and simple for the devel oper.

Neodj has been in commercia development for 10 years and in production for over 7 years. Most
importantly it has a helpful and contributing community surrounding it, but it also:

e has an intuitive, rich graph-oriented model for data representation. Instead of tables, rows,
and columns, you work with a graph consisting of nodes, relationships, and properties [http://
docs.neo4j.org/chunked/milestone/what-is-a-graphdb.html].

* has a disk-based, native storage manager optimized for storing graph structures with maximum
performance and scalability.

« isscalable. Neodj can handle graphswith many billions of nodes/rel ationships/propertiesonasingle
machine, but can also be scaled out across multiple machines for high availability.

« has apowerful traversal framework and query languages for traversing the graph.

« can be deployed as a standalone server or an embedded database with a very small distribution
footprint.

« hasacore Java API [http://api.neodj.org/].

In addition, Neod4j has ACID transactions, durable persistence, concurrency control, transaction
recovery, high availability, and more. Neo4j isreleased under adual free software/commercial license
model.

19.3. GraphDatabaseService

The APl of org. neo4j . graphdb. GraphDat abaseServi ce provides access to the storage engine.
Its features include creating and retrieving nodes and relationships, managing indexes (via the
IndexManager), database life cycle callbacks, transaction management, and more.

http://neo4j.org/
http://neo4j.org/
http://docs.neo4j.org/chunked/milestone/what-is-a-graphdb.html
http://docs.neo4j.org/chunked/milestone/what-is-a-graphdb.html
http://docs.neo4j.org/chunked/milestone/what-is-a-graphdb.html
http://api.neo4j.org/
http://api.neo4j.org/

Introduction to Neo4j

The EnbeddedGr aphDat abase IS an implementation of GraphDatabaseService that is used to embed
Neo4j in a Java application. This implementation is used so as to provide the highest and tightest
integration with the database. Besides the embedded mode, the Neo4j server [http://wiki.neodj.org/
content/Getting_Started With_Neo4j_Server] provides access to the graph database via an HTTP-
based REST API.

19.4. Creating nodes and relationships

Using the API of GraphDatabaseService, it is easy to create nodes and relate them to each other.
Relationships are typed. Both nodes and relationships can have properties. Property values can be
primitive Java types and Strings, or arrays of both. Node creation and modification has to happen
within atransaction, while reading from the graph store can be done with or without a transaction.

Example 19.1. Neo4j usage

G aphDat abaseServi ce graphDb = new EnbeddedG aphDat abase("hel |l oworld");
Transaction tx = graphDb. begi nTx();
try {

Node firstNode = graphDb. creat eNode();

firstNode. set Property("nmessage", "Hello, ");

Node secondNode = graphDb. creat eNode();

secondNode. set Property("nmessage", "world!");

Rel ationship rel ationship = firstNode. createRel ati onshi pTo(secondNode,
Dynami cRel ati onshi pType. of (" KNOWS"));
rel ationshi p. set Property("message", "brave Neo4j");
t x. success();
} finally {
tx. finish();
}

19.5. Graph traversal

Getting a single node or relationship and examining it is not the main use case of a graph database.
Fast graph traversal of complex, interconnected data and application of graph agorithms are. Neo4j
providesaDSL for defining Tr aver sal Descri pt i onSthat can then be applied to a start node and will
produce alazy j ava. | ang. I t er abl e result of nodes and/or relationships.

Example 19.2. Traversal usage

Traversal Description traversal Description = Traversal .description()
.dept hFirst ()
. rel ati onshi ps(KNOAS)
.rel ationshi ps(LI KES, Direction.| NCOM NG
. eval uat or (Eval uat ors. t oDept h(5));
for (Path position : traversal Description.traverse(nyStartNode)) {
Systemout.println("Path fromstart node to current position is " + position);

}

19.6. Indexing

The best way for retrieving start nodes for traversals and queriesis by using Neo4j's integrated index
facilities. The Gr aphDat abaseSer vi ce provides access to the | ndexManager which in turn provides
named indexes for nodes and relationships. Both can be indexed with property names and values.
Retrieval is done with query methods on indexes, returning an | ndexHi t s iterator.

45

http://wiki.neo4j.org/content/Getting_Started_With_Neo4j_Server
http://wiki.neo4j.org/content/Getting_Started_With_Neo4j_Server
http://wiki.neo4j.org/content/Getting_Started_With_Neo4j_Server

Introduction to Neo4j

Spring Data Neo4j provides automatic indexing viathe @ ndexed annotation, eliminating the need for
manual index management.

Note
a

Modifying Neodj indexes also requires transactions.

Example 19.3. Index usage

| ndexManager indexManager = graphDb.i ndex();
I ndex<Node> nodel ndex = i ndexManager . for Nodes("a-node-i ndex");
Node node = ...;
Transaction tx = graphDb. begi nTx();
try {
nodel ndex. add(node, "property", "val ue");
t x. success();
} finally {
tx. finish();
}
for (Node foundNode : nodel ndex. get ("property”, "value")) {
/1 found node

}

19.7. Querying the Graph with Cypher

Neodj provides a graph query language called "Cypher" [http://docs.neodj.org/chunked/milestone/
cypher-query-lang.html] which draws from many sources. It resembles SQL but with an iconic
representation of patternsin the graph (concepts drawn from SPARQL). The Cypher execution engine
was written in Scalato leverage the high expressiveness for lazy sequence operations of the language
and the parser combinator library. A screencast explaining the possibilities in detail can be found on
the Neodj video site [http://video.neodj.org/ybM bf/screencast-introduction-to-cypher/].

Cypher queries always begin with ast art set of nodes. Those can be either expressed by their IDs or
by an index lookup expression. Those start-nodes are then related to other nodes in the mat ch clause.
Start and match clauses can introduce new identifiers for nodes and relationships. In the wher e clause
additional filtering of the result set is applied by evaluating expressions. The r et ur n clause defines
which part of the query result will be available. Aggregation also happensin the return clause by using
aggregation functions on some of the values. Sorting can happen inthe or der by clause and the ski p
andinit partsrestrict the result set to a certain window.

Cypher can be executed on an embedded graph database using an ExecutionEngine and
Cypher Parser. This is encapsulated in Spring Data Neo4j with Cypher Quer yEngi ne. The Neo4j-
REST-Server comes with a Cypher-Plugin that is accessible remotely and is available in the Spring
Data Neo4j REST-Binding.

46

http://docs.neo4j.org/chunked/milestone/cypher-query-lang.html
http://docs.neo4j.org/chunked/milestone/cypher-query-lang.html
http://docs.neo4j.org/chunked/milestone/cypher-query-lang.html
http://video.neo4j.org/ybMbf/screencast-introduction-to-cypher/
http://video.neo4j.org/ybMbf/screencast-introduction-to-cypher/

Introduction to Neo4j

Example 19.4. Cypher Exampleson the Cineasts.net Dataset

/1 Actors who played a Matrix novie:
start novi e=node: Movi e("title: Matrix*") match novie<-[: ACTS_I N] - act or
return actor.nanme, actor.birthplace?

/'l User-Ratings:
start user=node: User (|l ogi n="m cha') match user-[r: RATED)] - >novi e where r.stars > 3
return novie.title, r.stars, r.comment

// Mutual Friend recomrendati ons:
start user=node: M cha(l ogin="m cha') match user-[: FRIEND]-friend-[r: RATED] - >novi e where r.stars > 3
return friend.nane, novie.title, r.stars, r.coment?

/1 Movi e suggestions based on a novi e:
start novi e=node: Movi e(i d='13") match (novie)<-[: ACTS_IN-()-[: ACTS_I N - >(suggesti on)
return suggestion.title, count(*) order by count(*) desc limt 5

/'l Co-Actors, sorted by count and name of Lucy Liu
start |ucy=node(1000) match lucy-[:ACTS_I N - >novi e<-[: ACTS_I N - co_act or
return count(*), co_actor.nane order by count(*) desc,co_actor.nane limt 20

// Recommendat i ons including counts, grouping and sorting
start user=node: User (|l ogin="m cha') match user-[: FRIEND]-()-[r: RATED] - >novi e
return novie.title, AVEr.stars), count(*) order by AVEr.stars) desc, count(*) desc

19.8. Gremlin - a Graph Traversal DSL

Gremlinisan expressive Groovy DSL devel oped by Marko Rodriguez [http://markorodriguez.com] as
part of the Tinkerpop [http://tinkerpop.com] stack. It buildsontop of apipeimplementation (Blueprints
Pipes) that uses connected operations to traverse a graph. Gremlin has a concise syntax but is Turing
complete.

Gremlin can be executed by including the Tinkerpop and Blueprints dependencies and then requesting
a Scri pt Engi ne of type "gremlin" from the j avax. Scri pt * facilities. In Spring Data Neo4j this is
encapsulatedinG em i nQuer yEngi ne. The Neo4j-REST-Server also comeswith aGremlin-Plugin that
is accessible remotely and is available in the Spring Data Neodj REST-Binding.

Example 19.5. Sample Gremlin Queries

// Vertex with id 1
v = g.v(1)

// determ ne the name of the vertices that vertex 1 knows and that are ol der than 30 years| of age
v.outE{it.|abel =="knows'}.inVit.age > 30}.nane

/'l cal cul ate basic collaborative filtering for vertex 1
m=[:]
g.v(1l).out('likes").in('likes").out('likes").groupCount(m
msort{a,b -> a.value <=> b. val ue}

47

http://markorodriguez.com
http://markorodriguez.com
http://tinkerpop.com
http://tinkerpop.com

Chapter 20. Programming model

This chapter covers the fundamentals of the programming model behind Spring Data Neo4j. It
discusses the simple and advanced mapping modes, the annotations provided by Spring Data Neo4
and how to use them. Examples for this section are taken from the "IMDB" project of Spring Data
Neo4j examples [http://spring.neodj.org/examples).

20.1. Object Graph Mapping

Up until recently Spring Data Neo4j supported only the more advanced and flexible AspectJ based
mapping approach, see Section 20.2, “ Advanced Mapping with AspectJ’. Feedback about issues with
the AspectJ tooling and other implications persuaded us to add a simpler mapping (see Section 20.3,
“ Simple Object Graph Mapping”) to Spring DataNeo4j. Both versionswork with the same annotations
and provide similar API's, but differ in behaviour.

Reflection and Annotation-based metadata is collected about persistent entities in the
Neo4j Mappi ngCont ext which provides it to any part of the library. The information is stored in
Neo4j Per si st ent Ent i ty instances which hold all the Neo4j Per si st ent Propert y's of the type. Each
entity can be checked to determine whether it represents a Node or a Relationship. Properties declare
detailed data about their indexing and relationship information as well as type information that also
covers nested generic types. With all that information available it is simple to select the appropriate
strategy for mapping each entity and field to elements, relationships and properties of the graph.

The main difference is in the way of accessing the graph. In the ssmple mapping the required
information is copied into the entity on load and only stored back when an explicit save operation
occurs. In the advanced mapping (AspectJ-enhanced) approach a node or relationship is attached via
an additional field to the entity and all read- and write-operations (inside of Transactions) happen
through that.

For the simple mapping mode, declaration of fetch strategies for related entities is necessary
to avoid loading the whole graph eagerly into memory. The initial approach uses just a simple
@etch annotations on relationship properties. The resulting Mappi ngPol i cy is provided to the
infrastructure methods to ensure the correct loading behaviour. Both, Neo4j Persi stent Entiy and
Neo4j Per si st ent Property can be queried for the Mappi ngPol i cy.

Otherwise the two approaches share much of the infrastructure. E.g. for creating new entity
instances from type information store in the graph (Section 20.14, “Entity type representation”), the
infrastructurefor mapping individual fieldsto graph propertiesand relationshipsand everything rel ated
to indexing and querying. A certain part of that is also exposed via the Neodj Template for direct use.

20.2. Advanced Mapping with AspectJ

Behind the scenes, Spring Data Neodj leverages Aspectd [http://www.eclipse.org/aspectj/] aspects to
modify the behavior of annotated POJO entities (see Chapter 26, AspectJ details). Each node entity
is backed by a graph node that holds its properties and relationships to other entities. AspectJis used
for intercepting field access, so that Spring Data Neo4j can retrieve the appropriate information from
the entity's backing node or relationship.

The aspect introduces an internal field (entityState) and some public methods (see
Section 20.11, “Active Record Methods for Advanced Mapping Maode”) to the entities, for instance

48

http://spring.neo4j.org/examples
http://spring.neo4j.org/examples
http://spring.neo4j.org/examples
http://www.eclipse.org/aspectj/
http://www.eclipse.org/aspectj/

Programming model

entity.getPersistentState() and entity.rel ateTo. It aso introduces some methods for graph
operations that start at the current entity. Introduced methods for equal s() and hashCode() use the
underlying node or relationship. Please take the introduced field into account when serializing your
entities and exclude it from the serialization process.

Spring Data Neo4j internally uses an abstraction called Entitystate that the field access and
instantiation advices of the aspect delegate to. This way, the aspect code is kept to a minimum,
focusing mainly on the pointcuts and delegation. The EntityState then uses a number of
Fi el dAccessor Fact ori es t0 createaFi el dAccessor instance per field that doesthe specific handling
needed for the concrete field type. There is some caching involved as well, so it handles repeated
instantiation efficiently.

To use the advanced, Aspect] based mapping, please add spri ng-dat a- neo4j - aspects as a
dependency and set up the AspectJintegration in Maven or other build toolsasexplained in Chapter 21,
Environment setup. Some hints for your |DE setup are described below.

20.2.1. Aspectd IDE support

As Spring Data Neo4j uses some advanced features of AspectJ, users may experience issueswith their
IDE reporting errors where in fact there are none. Features that might be reported wrongfully include:
introduction of methods to interfaces, declaration of additional interfaces for annotated classes, and
generified introduced methods.

IDEs not providing full AspectJ support might mark parts of your code as having errors. Y ou should
rely on your build-system and tests to verify the correctness of the code. Y ou might also have your
Entities (or their interfaces) implement the NodeBacked and Rel at i onshi pBacked interfaces directly
to benefit from completion support and error checking.

Eclipse and STS support Aspect] via the AIJDT plugin which can be installed from the update-site
listed at http://www.eclipse.org/gjdt/downloads/ (it might be necessary to use the latest development
snapshot of the plugin). The current version that does not show incorrect errors is Aspect] 1.6.12
(included in STS 2.8.0), previous versions are reported to mislead the user. Note that AJDT (as of
September 2012) requires projects to be rebuild after Eclipse is started to fully support all advanced
features.

Note

There might be some issues with the eclipse maven plugin not adding Aspect] files
correctly to the build path. If you encounter issues, please try the following: Try editing
the build path to include **/*.aj for the spring-data-neodj-aspects project. You
can do this by selecting "Build Path -> Configure Build Path ..." from the Package
Explorer. Then for the spri ng- dat a- neo4j - aspect s/ src/ mai n/ j ava add **/ *. aj tothe
Included path. When importing a Spring Data Neo4j project into Eclipse with m2e, please
make sure the Aspectd Configurator is installed from the following update-site: http://
dist.springsource.org/release/AJDT/configurator

The AspectJ support in IntelliJ IDEA lacks some of the features. JetBrains is working on improving
the situation in their upcoming 11 release of their popular IDE. Their latest work is available under
their early access program (EAP). Building the project with the Aspect] compiler aj ¢ worksin IDEA
(Options -> Compiler -> Java Compiler should show ajc). Make sure to give the compiler at least 512
MB of RAM.

49

http://www.eclipse.org/ajdt/downloads/
http://dist.springsource.org/release/AJDT/configurator
http://dist.springsource.org/release/AJDT/configurator

Programming model

20.3. Simple Object Graph Mapping

In addition to the advanced object graph mapping using AspectJ, Spring Data Neo4j also supports
a simpler mode that converts graph data into domain objects and vice versa. It does not require
any additional set up and should work out of the box. The simple mapping approach uses the same
annotations (?7??) as the advanced mapping to declare mapping meta-information.

The simple object graph mapping comes into play whenever an entity is constructed from a node
or relationship. This could be done explicitly like during the lookup- or create-operations of the
repositoriesand theNeo4j Tenpl at e but al soimplicitly while executing any graph operation that returns
nodes or relationships and expecting mapped entities to be returned.

It uses the available meta-information about the persistent entity to iterate over its properties and
relationships, fetching their data from the graph while doing so. It also executes computed fields and
stores the resulting values in the properties.

We try to avoid loading the whole graph into memory by not following relationships eagerly. A
dedicated @et ch annotation controls instead if related entities are loaded or not. Whenever an entity
is not fully loaded, then only itsid is stored. Those entities or collections of entities can then later be
loaded explicitly using thet enpl at e. f et ch() operation.

The additional fetch information is stored in a Mappi ngPol i cy which can be retrieved via the
Neo4j Tenpl at e for classes. Both Neo4j Persi stentEntitity aswell as Neo4j Per si st ent Property
provide access to that information on their scope.

Note

Please note that if you have two collectionsin an entity pointing to the same relationship
and one of them has data and the other is empty due to the nature of persisting it, one
will override the other in the graph so that you might end up with no data. If you want a
relationship-collection to be ignored on save set it to null.

Example 20.1. Examplesfor loading entities from the graph

@\ut owi red Neo4j Operations tenplate;

@NodeEntity class Person {
String nane;
@etch Person boss;
Person spouse;

@Rel atedTo(type = "FRIEND', directi on = BOTH)
@etch Set<Person> friends;
}
Person person = tenpl ate.findOne(personld);
assert Not Nul | (person. get Boss() . get Nane());

assert Not Nul | (person. get Spouse().getld());
assert Nul | (person. get Spouse().get Name());

tenpl at e. f et ch(per son. get Spouse());
assert Not Nul | (person. get Spouse(). get Nane());

assert Equal s(10, person. getFriends().size());
assertNot Nul | (firstFriend. get Nanme());

50

Programming model

Note

2 Both the simple mapping approach aswell asthefetch strategies (Mappi ngPol i cy) debuted
in Spring Data Neo4j 2.0. So there might be rough edges and there are certainly many
areas for improvement and extension. We look forward to your feedback on thistopic.

Aswetried to encapsul ate each aspect of the mapping process into a separate class the resulting fabric
of responsibilitiesis quite intricate. All of them are set up in the Mappi ngl nf rast ruct ur e that is part
of the Neo4j Tenpl at e Setup.

20.4. Defining node entities

Node entities are declared using the @wodeEntity annotation. Relationship entities use the
@rel at i onshi pEnti ty annotation.

20.4.1. @NodeEntity: The basic building block

The @lodeEnt i ty annotation is used to turn a POJO class into an entity backed by anode in the graph
database. Fields on the entity are by default mapped to properties of the node. Fields referencing other
node entities (or collections thereof) are linked with relationships. If the useshort Nanes attribute is
set to false, the property and relationship names will have the class name of the entity prepended.

@lodeEnt i t y annotations are inherited from super-types and interfaces. It is not hecessary to annotate
your domain objects at every inheritance level.

If the partial attribute is set to true, this entity takes part in a cross-store setting, where the entity
lives in both the graph database and a JPA data source. See Chapter 22, Cross-store persistence for
more information.

Entity fields can be annotated with @ aphProperty, @rel atedTo, @Rel atedToVia, @ ndexed,
@ aphl d, @uery and @x aphTraversal .

Example 20.2. Simplest node entity

@NodeEntity

public class Myvie {
String title;

}

20.4.2. @Graphld: Neo4j -id field

For the ssmple mapping thisis a required field which must be of type Long. It isused by Spring Data
Neodj to store the node or relationship-id to re-connect the entity to the graph.

Note

e -
It must not be aprimitive type because then the "non-attached" case can not be represented
as the default value 0 would point to the reference node. Please make aso sure that an
equal s() andhashCode() method haveto be provided which takethei d fieldinto account
(and & so handle the "non-attached”, null case).

For the advanced mapping such a field is optional. Only if the underlying id has to be accessed, it
is needed.

51

Programming model

20.4.2.1. Entity Equality

Entity equality can beagrey area, and it is debatable whether natural keys or database ids best describe
equality, there is the issue of versioning over time, etc. For Spring Data Neo4j we have adopted the
convention that database-issued ids are the basis for equality, and that has some consequences:

1. Before you attach an entity to the database, i.e. before the entity has had itsid-field populated, we
suggest you rely on object identity for comparisons

2. Once an entity is attached, we suggest you rely solely on theid-field for equality

3. Whenyou attach an entity, its hashcode changes - because you keep equal s and hashcode consistent
and rely on the database 1D, and because Spring Data Neo4j populates the database ID on save

That causes problems if you had inserted the newly created entity into a hash-based collection before
saving. While that can be worked around, we strongly advise you adopt a convention of not working
with un-attached entities, to keep your code simple. Thisis best illustrated in code.

Example 20.3. Entity using id-field for equality and attaching new entity immediately

@NodeEntity
public class Studio {

@ aphl d
Long id

String nane;

publ i c bool ean equal s(Obj ect other) {
if (this == other) return true;

if (id==null) return fal se;
if (! (other instanceof Studio)) return false;

return id.equal s(((Studio) other).id);
}

public int hashCode() {
return id == null ? SystemidentityHashCode(this) : id.hashCode();

}

Set <St udi 0> studi os = new HashSet <St udi 0>() ;

Studi o studi o = studi oRepository. save(new Studi o("Ghibli"));
st udi os. add(st udi 0) ;

St udi o sameStudi o = studi oRepository.findOne(studio.id);
assert That (studi o, is(equal To(sanmeStudio));

assert That (st udi os. cont ai ns(sanmeStudi 0), is(true);

assert That (st udi os. renove(sanmeStudi o), is(true);

A work-around for the problem of un-attached entities having their hashcode change when they get
saved is to cache the hashcode. The hashcode will change next time you load the entity, but at least if
you have the entity sitting in a collection, you will still be able to find it:

52

Programming model

Example 20.4. Caching hashcode

@NodeEntity
public class Studio {

@ aphl d
Long id

String nang;
transient private Integer hash;

publ i c bool ean equal s(Cbj ect other) {
if (this == other) return true;

if (id == null) return fal se;
if (! (other instanceof Studio)) return fal se;

return id.equal s(((Studio) other).id);
}

public int hashCode() {
if (hash == null) hash = id == null ? SystemidentityHashCode(this) : id.hashCode();

return hash. hashCode();

Set <St udi 0> studi os = new HashSet <St udi 0>() ;

Studio studio = new Studio("Gnribli")

st udi os. add(st udi 0);

st udi oReposi tory. save(studi 0);

assert That (studi os. contai ns(studio), is(true);

assert That (st udi os. renove(studi o), is(true);

Studi o saneStudi o = studi oRepository. findOne(studio.id);

assert That (studi o, is(equal To(sanmeStudio));

assert That (st udi 0. hashCode(), is(not(equal To(sanmeStudi o. hashCode())));

Note
a

Remember, transient fields are not saved.

20.4.3. @GraphProperty: Optional annotation for property fields

It is not necessary to annotate property fields, as they are persisted by default; all fields that contain
primitive values are persisted directly to the graph. All fields convertibleto a st ri ng using the Spring
conversion serviceswill be stored asa string. Spring Data Neo4j includes a custom conversion factory
that comes with converters for Enuns and Dat eS. Transient fields are not persisted.

Collections of collections of primitive or convertable values are stored as well. They are converted to
arrays of their type or strings respectively.

This annotation is typically used with cross-store persistence. When a node entity is configured
as partial, then al fields that should be persisted to the graph must be explicitly annotated with

@ aphProperty.

@ aphPr oper t y can specify default values for properties that are not in the graph. Default values are
specified as String representations and will be converted to the correct target type using the existing
conversion facilities. For example @ aphPr oper t y(def aul t Val ue="20") | nteger age.

53

Programming model

Itisalso possibleto declare the type that should be used for the storage inside of Neod4j. For instance if
aDat e property should be stored as an Long value instead of the default String, the annotation would
look like @ aphProperty(propertyType = Long. cl ass) For the actual mapping of the Field-Type
to the Neodj-Property type there has to be a Converter registered in the Spring-Config.

20.4.4. @Indexed: Making entities searchable by field value

The @Indexed annotation can be declared on fields that are intended to be indexed by the Neo4j
indexing facilities. The resulting index can be used to later retrieve nodes or relationships that contain
acertain property value, e.g. aname. Often an index is used to establish the start node for atraversal.
Indexes are accessed by arepository for aparticular node or relationship entity type. See Section 20.6,
“Indexing” and Section 20.8, “CRUD with repositories’ for more information.

20.4.5. @Query: fields as query result views

The @ery annotation leverages the delegation infrastructure supported by Spring Data Neo4j. It
provides dynamic fields which, when accessed, return the values selected by the provided query
language expression. The provided query must contain a placeholder named { sel f} for the the current
entity. For instancethe query st art n=node({sel f}) match n-[: FRIEND] ->friend return friend.
Graph queries can return variable number of entities. That's why annotation can be put onto fields
with a single value, a subclass of Iterable of a concrete type or an Iterable of Map<Stri ng, Gbj ect >.
Additional parameters are taken from the params attribute of the @uer y annotation. These parameter
tuples form key-value pairs that are provided to the query at execution time.

Example 20.5. @Graph on a node entity field

@NodeEntity
public class Goup {
@uery(value = "start n=node({self}) match (n)-[r]->(friend) where r.type = {rel Type} return frier
parans = {"rel Type", "FRIEND'})
private |terabl e<Person> friends;

Note

e
Please note that this annotation can also be used on repository methods. (Section 20.8,
“CRUD with repositories’)

20.4.6. @GraphTraversal: fields as traversal result views

The @ aphTraversal annotation also leverages the delegation infrastructure supported by Spring
Data aspects. It provides dynamic fields which, when accessed, return an I terabl e of node or
relationship entities that are the result of a traversal starting at the entity containing the field. The
Traver sal Descri ption used for this is created by the Fi el dTr aver sal Descri pti onBui | der class
defined by thet raversal attribute. The class of the resulting node entities must be provided with the
el enent O ass attribute.

Programming model

Example 20.6. @GraphTraversal from a node entity

@NodeEntity
public class Goup {
@ aphTraversal (traversal = Peopl eTraversal Bui | der. cl ass,
el enent Cl ass = Person.cl ass, params = "persons")

private |terabl e<Person> peopl e;

private static class Peopl eTraversal Buil der inplenents Fiel dTraversal Descri pti onBuil de
@verride
public Traversal Description buil d(NodeBacked start, Field field, String... parans)|{
return new Traversal Descri ptionl npl ()
.rel ationshi ps(Dynam cRel ati onshi pType. wi t hNane(par ans[0]))
.filter(Traversal.returnAll ButStartNode());

20.5. Relating node entities

Since relationships arefirst-class citizensin Neo4j, associations between node entities are represented
by relationships. In general, relationships are categorized by atype, and start and end nodes (which
imply the direction of the relationship). Relationships can have an arbitrary number of properties.
Spring Data Neo4j has specia support to represent Neo4j relationships as entities too, but it is often
not needed.

Note

"o
As of Neodj 1.4.MO03, circular references are alowed. Spring Data Neo4j reflects this
accordingly.

20.5.1. @RelatedTo: Connecting node entities

Every field of anode entity that references one or more other node entities is backed by relationships
in the graph. These relationships are managed by Spring Data Neo4j automatically.

The simplest kind of relationship isasinglefield pointing to another node entity (1:1). In this case, the
field does not have to be annotated at al, although the annotation may be used to control the direction
and type of therelationship. When setting thefield, arelationship is created when the entity is persisted.
If thefield isset tonul I, the relationship is removed.

Example 20.7. Singlerelationship field

@NodeEntity
public class Myvie {
private Actor topActor;

}

It is also possible to have fields that reference a set of node entities (1:N). These fields come in two
forms, modifiable or read-only. Modifiable fields are of the type Set <T>, and read-only fields are
I t er abl e<T>, where T is a @NodeEntity-annotated class.

55

Programming model

Example 20.8. Node entity with relationships

@NodeEntity

public class Actor {
@Rel atedTo(type = "topActor"”, direction = Direction.| NCOM NG
private Set<Mvie> topActorln;

@Rel at edTo(type = "ACTS_IN')
private Set <Movi e> novi es;

For the simple mapping, the automatic transitive loading of related entities depends on declaration of
@et ch at the property. Otherwise the related node or relationship entities will just be initialized with
their id for later loading.

When using the advanced mapping, Fieldsreferencing other entities should not be manually initialized,
as they are managed by Spring Data Neo4j Aspects under the hood. 1:N fields can be accessed
immediately, and Spring Data Neo4j will provide aset representing the relationships.

If thisset of related entitiesis modified, the changes arereflected in the graph, relationships are added,
removed or updated accordingly.

Note

2
Spring Data Neodj ensures by default that there is only one relationship of a
given type between any two given entities. This can be circumvented by using
the creat eRel ati onshi pBet ween() method with the al | owbupl i cat es parameter on
repositories or entities.
Note

2

Before an entity has been persisted for the first time, it will not have its state managed by
Spring Data Neo4j. For example, given the Actor class defined above, if act or. novi es
was accessed in a non-persisted entity, it would return nul 1, whereasif it was accessed in
apersisted entity, it would return an empty managed set.

When an Interface is used as target type for the set and/or as el ement d ass it should be marked as
@\odeEnt i ty toO.

By setting direction to BOTH, rel ationships are created in the outgoing direction, but when the 1:N field
isread, it will include relationships in both directions. A cardinality of M:N is not necessary because
relationships can be navigated in both directions.

In the advanced mapping mode, the relationships can also be accessed by using the methods
entity. getRel ati onshi pBetween(target, type) andentity.relateTo(target, type) available
on each NodeEntity. These methods find and create Neo4j relationships. It isalso possible to manually
removerelationshipsby using enti ty. removeRel ati onshi pTo(target, type).Usingthese methods
is significantly faster than adding/removing from the collection of relationships as it doesn't have to
re-synchronize awhole set of relationships with the graph.

Methods of the same semantics exist in the repositories to be used in the simple mapping mode.

56

Programming model

Note

.

e

Other collection types than set are not supported so far, also currently NO
Map<Rel at i onshi pType, Set <NodeBacked>>.

20.5.2. @RelationshipEntity: Rich relationships

To access the full data model of graph relationships, POJOs can aso be annotated with
@rel ati onshi pEnti ty, making them relationship entities. Just as node entities represent nodes in
the graph, relationship entities represent relationships. As described above, fields annotated with
@el at edTo provide a way to only link node entities via relationships, but it provides no way of
accessing the relationships themselves.

Relationship entities can be accessed via by @RelatedToVia-annotated (Section 20.5.3,
“@ReatedToVia Accessing relationship entities’) fields or methods like
entity. getRel ati onshi pTo() Or tenpl ate| reposi tory. get Rel ati onshi p(s) Bet ween() .

Relationship entities either be instantiated directly and set or added to @rel at edToVi a-
annotated fields or created by the introduced entity.relateTo(), tenpl at e|
repository. creat eRel ati onshi pBetween() methods (see alos Section 20.11, “Active Record
Methods for Advanced Mapping Mode”)

Fieldsin relationship entities are, similarly to node entities, persisted as properties on the relationship.
For accessing the two endpoints of the relationship, two special annotations are available: @t ar t Node
and @ndnNode. A field annotated with one of these annotations will provide read-only access to the
corresponding endpoint, depending on the chosen annotation.

For the relationship-type astri ng or Rel at i onshi pType field annotated with @rel at i onshi pType iS
available. When Relationship-Entities are instantiated directly, the rel ationship type hasto be provided
either in this annotated field or as part of the @rel at i onshi pEnt i t y annotation.

Example 20.9. Relationship entity (in advanced mapping)

@NodeEntity
public class Actor {
public Role playedln(Mvie novie, String title) {
return rel ateTo(novi e, Role.class, "ACTS_IN');
}
}

@Rel ati onshi pEntity
public class Role {
String title;

@5t art Node private Actor actor;
@ndNode private Movie novie;

20.5.3. @RelatedToVia: Accessing relationship entities

To provide easy programmatic access to the richer relationship entities of the data model, the
annotation @rel at edToVi a can be added on fields of type | t er abl e<T> or Set<T>or T, where T isa
@rel ati onshi pEnt i t y-annotated class. These fields provide access to relationship entities.

57

Programming model

Example 20.10. Relationship entity (in smple mapping)

@NodeEntity
public class Actor {
@Rel at edToVi a
@et <Rol e> rol es=new HashSet <Rol e>();
public Role playedln(Mvie novie, String title) {
Rol e rol e=new Rol e(this, novie, title);
rol es. add(rol e);
return role;
}
@Rel at edToVi a(type="FRI END_OF", direction=Direction.| NCOM NG
Fri endshi p best Fri end;
}

@Rel ati onshi pEntity(type = "ACTS_I N')
public class Role {
String title;

@5t art Node private Actor actor;
@ndNode private Mvie novie;

}

@Rel ati onshi pEntity

public class Friendship {
Dat e since;

@5t art Node private Actor actor;
@ndNode private Person buddy;

20.5.4. Relationship Type Precedence

In the example above we show how to specify a default relationship type, and how to provide the
relationship type using an annotation property. Here is an example of using the @RelationshipType
annotation on a member variable on the relationship entity; we call this dynamic relationship type.

Example 20.11. Dynamic Relationship Type (ssmple mapping)

@Rel ati onshi pEntity(type = "col | eague")
public class Acquaintance {
@5t art Node private Actor actor;
@ndNode private Person acquai ntance;
@Rel ati onshi pType private String connection;

publ i ¢ Acquai nt ance(Actor actor, Person acquai ntance, String connection) {
Actor frankSinatra = ...

Person carl oGnbino = ...
new Acquai ntance(frankSi natra, carloGanbino, "its_conplicated")

Note

2 Because dynamic type information is, well, dynamic, it is generally not possible to read
the mapping backwards using SDN. The relationship still exists, but SDN cannot help
you access it because it does not know what type you gave it. Also, for this reason, we
require you to specify adefault relationship type, so that we can at |east attempt thereverse
mapping.

58

Programming model

Should you happen to provide conflicting relationship types, we have established the following
precedence, in priority order:

1. Dynamic
2. Annotation-provided

3. Default

20.5.5. Discriminating Relationships Based On End Node Type

In some cases, you want to model two different aspects of a conceptual relationship using the same
relationship type. Here is a canonical example:

Example 20.12. Clashing Relationship Types

@NodeEntity

cl ass Person {
@Rel at edTo(t ype="OMS")
Car car;

@Rel at edTo(t ype="OMS")
Pet pet;

It is clear how we can map these relationships. by looking at the type of the end node. To enable
this, we have introduced an boolean annotation parameter enf or ceTar get Type, which is disabled by
default. Our example now reads:

Example 20.13. Discriminating Relationship Types Using End Node Type

@NodeEntity

cl ass Person {
@Rel at edTo(t ype="OMS", enforceTarget Type=true)
Car car;

@Rel at edTo(t ype="OMWS", enforceTarget Type=true)
Pet pet;

The example easily generalises to collections too of course, but there are afew note-worthy rules and
corner cases:

* You need to annotate all clashing relationships.

* You can't have two fields, two collections, or afield and a collection, with the same relationship
type and identical end node types. SDN does not store metadata about the origin of arelationship.
So when saving the entity, the first field or collection would be overwritten by the second, with the
processing order being non-deterministic.

* You can have clashing relation ship types when end nodes share a supertype.

59

Programming model

< A variation on the above, you cannot have two fields or two collections with the same relationship
type and substitutable end node types.

* You can however have afield and a collection where end node types inherit from each other.

20.6. Indexing

Indexing isused in Neodj to quickly find nodes and relationshipsto start graph operations from. Either
for manually traversing the graph, using the traversal framework, cypher or gremlin queries or for
"global" graph operations. Indexes are a'so employed to ensure uniqueness of elements with certain
properties.

The Neo4j graph database employs different index providers for exact lookups and fulltext searches.
Luceneisthe default index provider implementation. Each named index is configured to be fulltext or
exact. Thereisalso a spatial index provider for geo-searches.

20.6.1. Exact and numeric index

When using the standard Neo4j API, nodes and relationships have to be manually indexed with key-
value pairs, typically being the property name and value. When using Spring Data Neo4j, this task
is simplified to just adding an @ ndexed annotation on entity fields by which the entity should be
searchable. Thiswill result in automatic updates of the index every time an indexed field changes.

Numerical fields are indexed numerically so that they are available for range queries. All other fields
are indexed with their string representation. If anumeric field should not be indexed numerically, itis
possibleto switch it off with @ ndexed(nuneri c=fal se).

The @ ndexed annotation also provides the option of using a custom index name. The default index
name is the smple class name of the entity, so that each class typically gets its own index. It is
recommended to not have two entity classes with the same class name, regardless of package.

If afield isdeclared in asuperclass but different indexes for subclasses are needed, thel evel attribute
declares what will be used as index. Level . CLASS uses the class where the field was declared and
Level . I NSTANCE uses the classthat is provided or of the actual entity instance.

The indexes can be queried by using arepository (see Section 20.8, “CRUD with repositories’). The
repository is an instance of or g. spri ngf r amewor k. dat a. neo4j . r eposi t ory. | ndexReposi t ory. The
methods f i ndByPr oper t yVval ue() and fi ndAl | ByPropertyVal ue() work on the exact indexes and
return the first or all matches. To do range queries, usefi ndAl | ByRange() (please note that currently
both values are inclusive).

For providing explicit index names the repository hasto extend Naned| ndexReposi t ory. Thisaddsthe
shown methods with another signature that take the index name asfirst parameter.

60

Programming model

Example 20.14. Indexing entities

@NodeEntity

cl ass Person {
@ ndexed(i ndexName = "people") String nane;
@ ndexed int age;

}
G aphReposi t ory<Person> graphRepository = tenpl ate. repositoryFor (Person. cl ass);

/'l Exact match, in named index
Person mark = graphRepository.findByPropertyVal ue("people", "nane", "nmark");

// Nuneric range query, index name inferred automatically
for (Person m ddl eAgedDevel oper : graphRepository.findAl | ByRange("age", 20, 40)) {
Devel oper devel oper =m ddl eAgedDevel oper . proj ect To(Devel oper. cl ass);

}

20.6.2. Fulltext indexes

Spring Data Neo4j also supports fulltext indexes. By default, indexed fields are stored in an exact
lookup index. To have them analyzed and prepared for fulltext search, the @ ndexed annotation has
the t ype attribute which can be set to | ndexType. FULLTEXT. Please note that fulltext indexes require
a separate index name as the fulltext configuration is stored in the index itself.

Accessto thefulltext index isprovided by thef i ndAl | ByQuery() repository method. Wildcardslike *
are allowed. Generally though, the fulltext querying rules of the underlying index provider apply. See
the Lucene documentation [http://lucene.apache.org] for more information on this.

Example 20.15. Fulltext indexing

@NodeEntity
class Person {

@ ndexed(i ndexName = "peopl e-search", type=FULLTEXT) String nane;
}

GraphReposi t ory<Per son> graphRepository =
tenpl at e. reposi t or yFor (Person. cl ass) ;

Person mark = graphRepository.findAl |l ByQuery("peopl e-search", "nane", "ma*");

Note

a
Please notethat indexesare currently created on demand, so whenever anindex that doesn't
exist is requested from a query or get operation it is created. This is subject to change
but has currently the implication that those indexes won't be configured as fulltext which
causes subsequent fulltext updates to those indexes to fail.

20.6.3. Unique indexes

Unique indexing with index. put|fAbsent and Uni queFactory was introduced in Neo4dj 1.6.
It is dso available via the REST API. In Spring Data Neo4j this is made available via
Neo4j Tenpl at e. get Or Cr eat eNode and Neo4j Tenpl at e. get Or Cr eat eRel at i onshi p.

In an entity at most one field can be annotated with @ ndexed(uni que=t r ue) regardliess of the index-
type used. The uniqueness will be taken into account when creating the entity by reusing an existing
entity if that unique key-combination already exists. On saving of the field it will be cross-checked

61

http://lucene.apache.org
http://lucene.apache.org

Programming model

against theindex and fail with aDatal ntegrityViolationException if the field was changed to an already
existing unique value. Null values are no longer allowed for these properties.

Note

"2 This works for both Node-Entities as well as Relationship-Entities. Relationship-
Uniquenessin Neo4j is global so that an existing unique instance of this relationship may
connect two completely different nodes and might also have a different type.

Example 20.16. Unique indexing

/] creates or finds a node with the uni que i ndex-key-val ue conbi nation
/1 and initializes it with the properties given
tenpl at e. get O Cr eat eNode("users", "login", "nmh", map("nanme","M chael ", "age", 37));

@NodeEntity class Person {
@ ndexed(uni que = true) String nane;

}

Per son mar k1l repository. save(new Person("mark"));
Person mark2 = repository.save(new Person("mark"));

// just one node is created
assert Equal s(mar k1, mark2) ;
assert Equal s(1, personRepository.count());

Person thomas = repository. save(new Person("thomas"));
t homas. set Name(" mar k") ;
repository.save(thomas); // fails with a DatalntegrityViolati onException

20.6.4. Manual index access

The index for adomain class is also available from Neo4j Tenpl at e viathe get | ndex() method. The
second parameter is optional and takesthe index nameif it should not be inferred from the class name.
It returns the index implementation that is provided by Neo4j.

Example 20.17. Manual index retrieval by type and name

@\ut owi red Neo4j Tenpl ate tenpl ate;

/1 Default index

I ndex<Node> personl ndex = tenpl ate. getlndex(null, Person.class);

per sonl ndex. quer y(new Quer yCont ext (Nurrer i cRangeQuer y. newi nt Range(" age", 20, 40, true, true))
.sort(new Sort(new SortField("age", SortField.INT, false))));

/1 Naned i ndex

| ndex<Node> nanmedPer sonl ndex = tenpl ate. get | ndex("peopl e", Person. cl ass);
nanmedPer sonl ndex. get ("nane", "Mark");

/1 Fulltext index

I ndex<Node> personFul | text I ndex = tenpl ate. get| ndex("peopl e-search", Person.cl ass);
personFul | t ext | ndex. query("nane", "*cha*");

personFul | t ext | ndex. query("{nane: *cha*}");

It isalso possible to passin the property name of the entity with an @ ndexed annotation whose index
should be returned.

62

Programming model

Example 20.18. Manual index retrieval by property configuration

@\ut owi red Neo4dj Tenpl ate tenpl ate;

I ndex<Node> personl ndex = tenpl ate. getl ndex(Person.class, "age");
per sonl ndex. quer y(new Quer yCont ext (Nurrer i cRangeQuery. newi nt Range("age", 20, 40, true, true))
.sort(new Sort(new SortField("age", SortField.INT, false))));

/1 Fulltext index

| ndex<Node> per sonFul | t ext | ndex = tenpl at e. get | ndex(Per son. cl ass, "nane");
personFul | t ext | ndex. query("nane", "*cha*");

personFul | t ext | ndex. query("{nane: *cha*}");

20.6.5. Index queries in Neo4jTemplate

For querying the index, the template offers query methods that take either the exact match parameters
or a query object/expression, return the results as Resul t objects which can then be converted and
projected further using the result-conversion-dsl (see Section 20.7, “Neodj Template”).

20.6.6. Neo4j Auto Indexes

Neod4j adlows to configure auto-indexing [http://docs.neodj.org/chunked/milestone/auto-
indexing.html] for certain properties on nodes and relationships. This auto-indexing differs from the
approach used in Spring Data Neodj because it only updates the indexes when the transaction is
committed. So theindex modificationswill only be availabl e after the successful commit. It ispossible
to use the specific index names node_aut o_i ndex and rel ati onshi p_aut o_i ndex when querying
indexesin Spring Data Neo4j either with the query methodsin template and repositories or via Cypher
and Gremlin.

20.6.7. Spatial Indexes

Spring Data Neo4j offers limited support for spatial queries using the neo4;j - spati al library. Seethe
separate chapter Section 20.10, “ Geospatial Queries’ for details.

20.7. Neo4djTemplate

The Neo4j Tenpl at e offers the convenient API of Spring templates for the Neo4j graph database. The
Spring Data Neo4j Object Graph mapping builds upon the core functionality of the template to persist
objectsto the graph and load them in avariety of ways. The template handles the active mapping mode
(Section 20.1, “Object Graph Mapping”) transparently.

Besides methods for creating, storing and deleting entities, nodes and relationships in the graph,
Neo4j Tenpl at e also offers a wide range of query methods. To reduce the proliferation of query
methods a simple result handling DSL was added.

20.7.1. Basic operations

For direct retrieval of nodes and relationships, the get Ref erenceNode(), get Node() and
get Rel ati onshi p() methods can be used.

There are methods (cr eat eNode() and creat eRel at i onshi p()) for creating nodes and relationships
that automatically set provided properties.

63

http://docs.neo4j.org/chunked/milestone/auto-indexing.html
http://docs.neo4j.org/chunked/milestone/auto-indexing.html
http://docs.neo4j.org/chunked/milestone/auto-indexing.html

Programming model

Example 20.19. Neo4j template

Neo4j Oper ati ons neo = new Neo4j Tenpl at e(gr aphDat abase) ;

Node mark = neo. creat eNode(map("nanme", "Mark"));
Node t homas = neo. cr eat eNode(map("nane", "Thomas"));

neo. creat eRel ati onshi p(mark, thomas, WORKS W TH, nmap("project", "spring-data"));

neo. i ndex("devs", thomas, "nane", "Thonmas");

/1 Cypher TODO

assert Equal s("Mark", neo.query("start p=node({person}) match p<-[: WORKS W TH] - ot her return ot
map(" person", asList(thomas.getld()))).to(String.class).single());

Il Gemin
assert Equal s(t homas, neo. execute("g.v(person).out (' WORKS WTH)",
map(" person”, nmark.getld())).to(Node.class).single());

/1 1 ndex | ookup
assert Equal s(t homas, neo. | ookup("devs", "nanme", "Thomas").to(Node.class).single())

/1 Index | ookup with Result Converter
assert Equal s(" Thomas", neo.| ookup("devs", "nanme", "Thomas").to(String.class, new ResultConvert
public String convert(PropertyContainer elenent, Cass<String> type) {
return (String) el enent.getProperty("nanme");
}
}).single());

20.7.2. Core-Operations

Neo4j Tenpl ate provides access to some of the methods of the Neo4j-Core-API directly.
So accessing nodes and relationships (get Ref er enceNode, get Node, get Rel ati onshi p,
get Rel at i onshi pBet ween), creating nodes and relationships (createNode, creat eNodeAs,
creat eRel at i onshi pBet ween) and deleting them (del ete, del et eRel ati onshi pBet ween) are
supported. It also provides access to the underlying GraphDatabase via get G- aphDat abase.

20.7.3. Entity-Persistence

Neo4j Tenpl at e alows to save, find(One/ Al l), count, del ete and pr oj ect To entities. It provides
the stored type information via get St or edJavaType and can f et ch lazy-loaded entities or | oad them
altogether.

20.7.4. Result

All querying methods of the template return a uniform result type: Resul t <T> which is also
an Iterabl e<T>. The query result offers methods of converting each element to a target type
resul t.to(Type. cl ass) optionally supplying a Resul t Convert er <FROM TG> which takes care of
custom conversions. By default most query methods can already handle conversions from and
to: Paths, Nodes, Relationship and GraphEntities as well as conversions backed by registered
ConversionServices. A converted Resul t <FROM>iSan| t er abl e<TO>. Resultscan belimitedtoasingle
value using theresul t.singl e() or result.singleONull () methods. It aso offers support for a
pure callback function using aHandl er <T>.

20.7.5. Indexing

Adding nodes and relationships to an index is done with thei ndex() method.

64

Programming model

20.7.6.

20.7.7.

20.7.8.

20.7.9.

Thel ookup() methods either take a field/value combination to look for exact matches in the index,
or a Lucene query object or string to handle more complex queries. All | ookup() methods return a
Resul t <Pr oper t yCont ai ner > to be used or transformed.

Graph traversal

The traversal methods are at the core of graph operations. The traverse() method covers
the full traversal operation that takes a Traversal Description (typically built with the
tenpl at e. get G aphDat abase() . traversal Descri ption() DSL) and runs it from the given start
node. t r aver se refurns aResul t <Pat h> to be used or transformed.

Cypher Queries

The Neo4j Tenpl ate also allows execution of arbitrary Cypher queries. Via the query methods
the statement and parameter-Map are provided. Cypher Queries return tabular results, so the
Resul t <Map<Stri ng, Cbj ect >> contains the rows which can be either used as they are or converted
as needed.

Gremlin Scripts

Gremlin Scripts can run with the execut e method, which aso takes the parameters that will be
available as variables inside the script. The result of the executions is a generic Resul t <Obj ect > fit
for conversion or usage.

Transactions

The Neo4j Tenpl at e provides implicit transactions for some of its methods. For instance save
uses them. For other modifying operations please provide Spring Transaction management using
@r ansacti onal or the Tr ansact i onTenpl at e.

20.7.10. Neo4j REST Server

If the template is configured to use a SpringRest GraphDat abase the operations that would be
expensive over the wire, like traversals and querying are executed efficiently on the server side by
using the REST API to forward those calls. All the other template methods require individual network
operations.

The REST-batch-mode of the Spri ngRest Gr aphDat abase IS not yet exposed via the template, but it
is available viathe graph database.

20.7.11. Lifecycle Events

Neodj Template offers basic lifecycle events via Spring's event mechanism using ApplicationListener
and ApplicationEvent. The following hooks are available in the form of types of application event:

+ BeforeSaveEvent
* AfterSaveEvent
* DeleteEvent - after the event has been deleted

The following example demonstrates how to hook into the application lifecycle and register listeners
that perform behaviour across types of entities during thislife cycle:

65

Programming model

Example 20.20. Auditing Entities and Generating Unique Application-level 1Ds

@Confi guration
@nabl eNeo4j Reposi tori es
public class ApplicationConfig extends Neo4j Configuration {
@ean
Appl i cati onLi st ener <Bef or eSaveEvent > bef or eSaveEvent Appl i cati onLi stener () {
return new Appl i cationLi st ener <Bef or eSaveEvent >() {
@verride
public void onApplicationEvent (Bef oreSaveEvent event) {
AcrmeEntity entity = (AcneEntity) event.getEntity();
entity. setUni quel d(acnel dFactory.create());

}

@Bean
Appl i cati onLi st ener <Aft er SaveEvent > aft er SaveEvent Appl i cati onLi stener () {
return new ApplicationLi st ener <After SaveEvent >() {
@verride
public void onApplicationEvent (AfterSaveEvent event) {
AcneEntity entity = (AcnmeEntity) event.getEntity();
audi t Log. onEvent Saved(entity);

}

@Bean
Appl i cati onLi st ener <Del et eEvent > del et eEvent Appl i cati onLi stener () {
return new ApplicationLi st ener<Del et eEvent >() {
@verride
public void onApplicationEvent (Del et eEvent event) {
AcneEntity entity = (AcmeEntity) event.getEntity();
audi t Log. onEvent Del et ed(entity);

Changes made to entities in the before-save event handler are reflected in the stored entity - after-save
ones are not.

20.8. CRUD with repositories

The repositories provided by Spring Data Neo4j build on the composable repository infrastructure
in Spring Data Commons [http://static.springsource.org/spring-data/data-commons/docs/current/
reference/html/#repositories]. They alow for interface based composition of repositories consisting
of provided default implementations for certain interfaces and additional custom implementations for
other methods.

Spring Data Neo4j repositories support annotated and named queries for the Neo4j Cypher [http://
docs.neo4j.org/chunked/milestone/query-lang.html] query-language and Grent i n graph DSL.

Spring Data Neo4j comes with typed repository implementations that provide methods
for locating node and relationship entities. There are several types of basic repository
interfaces and implementations. CRUDRepository provides basic operations, | ndexRepository
and Namedl ndexReposi tory delegate to Neodj's interna indexing subsystem for queries, and
Traver sal Reposi t ory handles Neo4j traversals.

66

http://static.springsource.org/spring-data/data-commons/docs/current/reference/html/#repositories
http://static.springsource.org/spring-data/data-commons/docs/current/reference/html/#repositories
http://static.springsource.org/spring-data/data-commons/docs/current/reference/html/#repositories
http://docs.neo4j.org/chunked/milestone/query-lang.html
http://docs.neo4j.org/chunked/milestone/query-lang.html
http://docs.neo4j.org/chunked/milestone/query-lang.html

Programming model

With the Rel at i onshi pQper at i onsReposi t ory it ispossible to access, create and del ete relationships
between entitites or nodes. The Spati al Reposi tory allows geographic searches (Section 20.10,
“Geogpatia Queries’)

GraphRepository IS a convenience repository interface, combining CRUDRepository,
I ndexReposi t ory, and Tr aver sal Reposi t ory. Generally, it has all the desired repository methods. If
other operations are required then the additional repository interfaces should be added to the individual
interface declaration.

20.8.1. CRUDRepository

CRUDReposi tory delegates to the configured TypeRepresentationStrategy (see Section 20.14,
“Entity type representation”) for type based queries.

Load an entity instance viaan id
T findOne(id)

Check for existence of anid in the graph

bool ean exi sts(id)

Iterate over al nodes of a node entity type
EndResul t <T> findAl | () (supported in future versions: EndResul t <T> findAll(Sort) and
Page<T> fi ndAl | (Pageabl e))

Count the instances of the repository entity type

Long count ()

Save entities
T save(T) andIterabl e<T> save(lterabl e<T>)

Delete graph entities
voi d del ete(T),void; delete(lterable<T>),anddeleteAl l()

20.8.2. IndexRepository and NamedIndexRepository

I ndexReposi t or y workswith theindexing subsystem and provides methodsto find entities by indexed
properties, ranged queries, and combinations thereof. The index key is the name of the indexed entity
field, unless overridden in the @ ndexed annotation.

Iterate over al indexed entity instances with a certain field value
EndResul t <T> fi ndAl | ByPropertyVal ue(key, val ue)

Get a single entity instance with a certain field value
T findByPropertyVal ue(key, val ue)

Iterate over al indexed entity instances with field values in a certain numerical range (inclusive)
EndResul t <T> findAl | ByRange(key, from to)

Iterate over al indexed entity instances with field values matching the given fulltext string or
QueryContext query
EndResul t <T> fi ndAl | ByQuery(key, queryOr QueryCont ext)

67

Programming model

There is adso a Nanedl ndexReposi t ory with the same methods, but with an additional index name
parameter, making it possible to query any index.

20.8.3. TraversalRepository

Traver sal Reposi t ory delegates to the Neodj traversal framework.

Iterate over atraversal result
Iterabl e<T> findAl | ByTraversal (startEntity, traversal Description)

20.8.4. Query and Finder Methods
20.8.4.1. Annotated queries

Queries using the Cypher graph query language can be supplied with the @uery annotation. That
means every method annotated with @uery("start n=node: | ndexName(key={ node or 0}) match
(n)-->(m return m') will usethesupplied query string. The named or indexed parameter { node} will
be substituted by the actual method parameter. Node and Relationship-Entities are handled directly,
Iterables thereof as well. All other parameters are replaced directly (i.e. Strings, Longs, etc). There
is specia support for the sort and Pageabl e parameters from Spring Data Commons, which are
supported to add programmatic paging and sorting (alternatively static paging and sorting can be
supplied in the query string itself). For using the named parameters you have to either annotate the
parameters of the method with the @ar an(" node") annotation or enable debug symbols. Indexed
parameters are always usable.

Gremlin queries can be used similarly, the @wery annotation would just need a
t ype=Quer yType. GREMLI N attribute. Parameters are supported in the same way.

20.8.4.2. Named queries

Spring Data Neodj also supports the notion of named queries which are externalized in
property-config-files (VETA- | NF/ neo4j - named- queri es. properti es). Those files have the format:
Entity. finder Name=query (e.g. Person. fi ndBoss=start p=node({0}) match (p)<-[:BOSS]-
(boss) return boss). Otherwise named queries support the same parameters as annotated queries.

20.8.4.3. Query results

Typical results for queries are | terabl e<Type>, |terabl e<Map<String, Object>> Type and
Page<Type>. Nodes and Relationships are converted to their respective Entities (if they exist). Other
values are converted using the registered Spring conversion services (e.g. enums).

20.8.4.4. Cypher examples

There is a screencast [http://video.neodj.org/ybM bf/screencast-introduction-to-cypher] available
showing many features of the query language. The following examples are taken from the cineasts
dataset of the tutorial section.

start n=node(0) return n
returns the node with id O

start novi e=node: Movi e(title="Matrix') return novie
returns the nodes which are indexed with title equal to ‘Matrix’

68

http://video.neo4j.org/ybMbf/screencast-introduction-to-cypher
http://video.neo4j.org/ybMbf/screencast-introduction-to-cypher

Programming model

start novi e=node: Movie(title="Matrix') match (novie)<-[:ACTS_IN-(actor) return
act or. nane

returns the names of the actors that have a ACTS _IN relationship to the movie node for ‘Matrix'

start novi e=node: Movie(title="Matrix') match (novie)<-[r:RATED]-(user) where r.stars
> 3 return user.nane, r.stars, r.comment
returns users names and their ratings (>3) of the movietitled ‘Matrix'

start user =node: User (1 ogi n=" m cha') nmat ch (user)-[: FRIEND] - (friend)-[r: RATED) -
>(novie) return novie.title, AVQ@r.stars), COUNT(*) order by AVQEr.stars) desc,
COUNT(*) desc
returnsthe moviesrated by the friends of the user 'micha, aggregated by movietitle, with averaged
ratings and rating-counts sorted by both

Example 20.21. Examples of Cypher queries placed on repository methods with @Query where
values are replaced with method parameters, as described in the Section 20.8.4.1, “ Annotated
queries’) section.

public interface Mvi eRepository extends G aphRepository<Mvie> {

/'l returns the node with id equal to idO Mvie paraneter
@uery("start n=node({0}) return n")
Movi e get Movi eFrom d(| nt eger i dOf Movi e) ;

/'l returns the nodes which will use index nanmed title equal to novieTitle paraneter
/1 novieTitle String nust not contain any spaces, otherw se you will receive a Null PointerExcepti
@uery("start novi e=node: Movi e(title={0}) return novie")
Movi e get Movi eFronflitl e(String novieTitle);

// returns the Actors that have a ACTS IN relationship to the novie node with the title equal to
/'l (The parenthesis around 'novie' and 'actor' in the match clause are optional.)
@uery("start novi e=node: Movi e(title={0}) match (novie)& t;-[: ACTS_IN -(actor) return actor")
Page<Act or > get Act or sThat Act | nMovi eFronTitl e(String novieTitl e, PageRequest);

/1 returns users who rated a novie (novie paraneter) higher than rating (rating paraneter)
@uery("start novi e=node: ({0}) " +

"match (nmovie)&t;-[r:RATED] - (user) " +

"where r.stars > {1} " +

"return user")
It erabl e<User > get User sWhoRat edMbvi eFronTi t| e(Movi e novie, Integer rating);

/'l returns users who rated a novie based on novie title (novieTitle paranmeter) higher than rating
@uery("start novi e=node: Movi e(title={0}) " +

"match (novie)& t;-[r: RATED] - (user) " +

"where r.stars > {1} " +

"return user")
It er abl e<User > get User s\WhoRat edMbvi eFronTitl e(String novieTitle, Integer rating);

20.8.4.5. Queries derived from finder-method names

As known from Rails or Grailsit is possible to derive queries for domain entities from finder method
nameslike t er abl e<Per son> fi ndByNanmeAndAgeGr eat er Than(String name, int age).Usingthe
infrastructure in Spring Data Commons that alows to collect the meta information about entities and
their properties a finder method name can be split into its semantic parts and converted into a cypher
query. @ ndexed fields will be converted into index-lookups of the start clause, navigation along
relationships will be reflected in the mat ch clause properties with operators will end up as expressions

69

C

N

Programming model

in the wher e clause. Order and limiting of the query will by handled by provided pageabl e Or Sort
parameters. The other parameterswill be used in the order they appear in the method signature so they
should align with the expressions stated in the method name.

Example 20.22. Some examples of methods and resulting Cypher queries of a Per sonRepository

public interface PersonRepository
ext ends G aphRepository<Person> {

/] start person=node: Person(id={0}) return person
Person findByld(String id)

/] start person=node: Person({0}) return person - {0} will be "id:"+name
I t er abl e<Per son> findByNaneLi ke(String nane)

/] start person=node: __types__ ("classNane"="com .. Person")

/'l where person.age = {0} and person.married = {1}

/'l return person

I t erabl e<Person> findByAgeAndMarri ed(int age, bool ean marri ed)

/'l start person=node: _types__ ("classNane"="com .. Person")

// match person<-[:CHI LD] - par ent

/'l where parent.age > {0} and person.married = {1}

/'l return person

I t erabl e<Per son> fi ndByPar ent AgeAndMarri ed(int age, bool ean marri ed)

}

20.8.4.6. Derived Finder Methods

Use the meta information of your domain model classes to declare repository finders that navigate
along relationships and compare properties. The path defined with the method name is used to create
a Cypher query that is executed on the graph.

70

Programming model

Example 20.23. Repository and usage of derived finder methods

@NodeEntity

public static class Person {
@& aphl d Long id;
private String nane;
private G oup group;

private Person(){}
public Person(String nane) {
thi s. name = nane;
}
}
@NodeEntity
public static class Goup {
@5 aphld Long i d;
private String title;
/1 incom ng relationship for the person -> group
@Rel at edTo(type = "group", direction = Direction.|NCOM NG
private Set<Person> nmenber s=new HashSet <Per son>() ;

private Goup(){}
public Goup(String title, Person...people) {
this.title = title;
nenber s. addAl | (asLi st (peopl e));
}
}

public interface PersonRepository extends G aphRepository<Person> {
It erabl e<Person> findByG oupTitle(String nane);
}

@\ut owi red PersonRepository personRepository;
Per son ol i ver =per sonReposi tory. save(new Person("QOiver"));
final Goup springData = new G oup("spring-data", oliver);

gr oupReposi tory. save(spri ngDat a) ;

final I|terabl e<Person> nmenbers = personRepository.findByG oupTitle("spring-data");
assert That (menbers.iterator().next().name, is(oliver.nane));

20.8.5. Cypher-DSL repository

Spring DataNeodj supportsthe new Cypher-DSL towrite Cypher queriesin astatically typed way. Just
by including Cypher Dsl Reposi t ory t0 your repository you get the Page<T> query(Execute query,

params, Pageabl e page) and the EndResul t <T> query(Execute query, parans);. Theresult type
of the Cypher-DSL builder is called Execut e.

71

Programming model

Example 20.24. Examplesfor Cypher-DSL repository

i nport static org.neo4j.cypherdsl|.CypherQuery. *;
i nport static org.neo4j.cypherdsl.querydsl.Cypher QueryDSL. *;

public interface PersonRepository extends G aphRepository<Person>
Cypher Dsl Reposi t ory<Per son> {}

@A\ut owi red Per sonRepository repo
/| START conpany=node: Conpany(name={ nane}) MATCH conpany<-[: WORKS_AT] - >per son RETURN per son

Execute query = start(|ookup("conpany", "Conpany", "nane", paran{"nane"))).
mat ch(path().fron("conpany").in("WORKS_AT").to("person")
returns(identifier("person"))

Page<Per son> peopl e = repo. query(query , nmap("nane","Neo4j"), new PageRequest (1, 10));

QPerson person = QPerson. person;

QConpany conpany = QConpany. conpany;

Execute query = start(|ookup(conpany, "Conpany", conpany.nane, paran("nanme"))).
mat ch(path().from(conpany).in("WORKS_AT").to(person).
.where(person. firstNane.|ike("P*").and(person. age.gt(25))).
returns(identifier(person))

EndResul t <Per son> peopl e = repo. query(query , map("nanme", "Neo4j"));

20.8.6. Cypher-DSL and QueryDSL

To use Cypher-DSL with Query-DSL the Mysema dependencies have to be declared explicitly asthey
are optiona in the Cypher-DSL project.

<dependency>
<gr oupl d>com nysema. quer ydsl </ gr oupl d>
<artifactld>querydsl-core</artifactld>
<ver si on>2. 2. 3</ versi on>
<optional >t rue</ opti onal >

</ dependency>

<dependency>
<gr oupl d>com nysema. quer ydsl </ gr oupl d>
<artifactld>querydsl-lucene</artifactld>
<versi on>2. 2. 3</ versi on>
<opti onal >t rue</ opti onal >
<excl usi ons>

<excl usi on>
<gr oupl d>or g. apache. | ucene</ gr oupl d>
<artifactld>l ucene-core</artifactld>
</ excl usi on>

</ excl usi ons>

</ dependency>

<dependency>
<gr oupl d>com nysema. quer ydsl </ gr oupl d>
<artifactld>querydsl-apt</artifactld>
<ver si on>2. 2. 3</ versi on>
<scope>pr ovi ded</ scope>

</ dependency>

It is possible to use the Cypher-DSL along with the predicates and code generation features of the
QueryDSL project. Thiswill allow you to use Java objects as part of the query, rather than strings, for
the names of properties and such. In order to get this to work you first have to add a code processor
to your Maven build, which will parse your domain entities marked with @NodeEntity, and from that
generate QPerson-style classes, as shown in the previous section. Here is what you need to include
inyour Maven POM file.

72

Programming model

<pl ugi n>
<gr oupl d>com nysema. maven</ gr oupl d>
<artifactld>maven-apt-plugin</artifactld>
<versi on>1. 0. 2</ ver si on>
<confi guration>
<processor >or g. spri ngf ramewor k. dat a. neo4j . quer ydsl . SDNAnnot at i onPr ocessor </ pr ocess
</ confi guration>
<executions>
<executi on>
<i d>t est - sour ces</i d>
<phase>gener at e- t est - sour ces</ phase>
<goal s>
<goal >t est - process</ goal >
</ goal s>
<confi guration>
<out put Di rect or y>t ar get / gener at ed- sour ces/ t est </ out put Di r ect or y>
</ configuration>
</ executi on>
</ executi ons>
</ pl ugi n>

This custom QueryDSL AnnotationProcessor will generate the query classes that can be used when
constructing Cypher-DSL queries, asin the previous section.

20.8.7. Creating repositories

The Reposi tory instances should normally be injected but can also be created manually via the
Neo4j Tenpl at e.

Example 20.25. Using basic GraphRepository methods

public interface PersonRepository extends G aphRepository<Person> {}
@\ut owi red PersonRepository repo
/1 OR
G aphReposi t ory<Person> repo = tenpl ate
. reposi toryFor (Person. cl ass)
Person m chael = repo.save(new Person("M chael ", 36));
Person dave = repo.findOne(123);
Long nunber O Peopl e = repo. count();
EndResul t <Per son> devs = graphRepository. findAl | ByPropertyVal ue("occupation", "devel oper")
EndResul t <Per son> ni ddl eAgedPeopl e = graphRepository. findAl | ByRange("age", 20, 40);
EndResul t <Per son> aTeam = graphReposi tory. fi ndAl | ByQuery("name", "A*");
I t er abl e<Per son> aTeam = repo. fi ndAl | ByQuery("nane", "A*");
I t er abl e<Person> davesFri ends = repo.findAl | ByTraversal (dave

Traversal . descri ption(). pruneAfterDepth(1)
.rel ationshi ps(KNOAS) . filter(returnAl | ButStartNode()));

20.8.8. Composing repositories

The recommended way of providing repositories is to define a repository interface per domain class.
The mechanisms provided by the repository infrastructure will automatically detect them, along with

73

Programming model

additional implementation classes, and create an injectable repository implementation to be used in
services or other spring beans.

Example 20.26. Composing repositories

public interface PersonRepository extends G aphRepository<Person>, PersonRepositoryExtension {}

/'l configure the repositories, preferably via the neo4j:repositories nanespace
/1 (tenplate reference is optional)
<neodj :repositories base-package="org. exanpl e. repository"

gr aph- dat abase- context-ref ="tenpl ate"/ >

/'l have it injected

@A\ut owi r ed

Per sonReposi tory personRepository;

/'l or created via the tenplate

Per sonReposi tory personRepository = tenpl ate.repositoryFor(Person.cl ass);

Person m chael = personRepository. save(new Person("M chael ", 36));
Per son dave=per sonReposi tory. fi ndOne(123);
I t erabl e<Person> devs = personRepository.findAllByPropertyVal ue("occupation", "devel oper");
I t erabl e<Per son> aTeam = graphReposi tory. fi ndAl | ByQuery("nanme","A*");
It erabl e<Person> friends = personRepository.findFriends(dave);
/'l alternatively select sone of the required repositories individually
public interface PersonRepository extends CRUDG aphRepository<Node, Person>,
I ndexQuer yExecut or <Node, Per son>, Traver sal Quer yExecut or <Node, Per son>,
Per sonReposi t or yExt ensi on {}
// provide a custom extension if needed

public interface PersonRepositoryExtension {
It erabl e<Person> findFri ends(Person person);

public class PersonRepositorylnpl inplenments PersonRepositoryExtension {
// optionally inject default repository, or use Direct G aphRepositoryFactory
@\ut owi red PersonRepository baseRepository;
public |terabl e<Person> findFriends(Person person) {
return baseRepository. findAl | ByTraversal (person, friendsTraversal);

/'l configure the repositories, preferably via the datagraph:repositories namespace
/'l (tenplate reference is optional)
<neo4j :repositories base-package="org.springframework. dat a. neo4j "
gr aph- dat abase- context-ref ="tenpl ate"/ >
// have it injected
@\ut owi red
Per sonReposi tory personRepository;
Person m chael = personRepository.save(new Person("M chael ", 36));
Per son dave=per sonReposi tory. fi ndOne(123);
EndResul t <Per son> devs = personReposi tory. findAl | ByPropertyVal ue("occupation", “devel oper")

EndResul t <Per son> aTeam = graphReposi tory. fi ndAl | ByQuery("name","A*");

It erabl e<Person> friends = personRepository.findFriends(dave);

74

Programming model

Note

If you use <cont ext : conponent - scan> in your spring config, please make sure to put it
behind <neo4j : reposi t ori es>, asthe RepositoryFactoryBean adds new bean definitions
for all the declared repositories, the context scan doesn't pick them up otherwise.

20.9. Projecting entities

20.10.

As the underlying data model of a graph database doesn't imply and enforce strict type constraints
like arelational model does, it offers much more flexibility on how to model your domain classes and
which of those to use in different contexts.

For instance an order can be used in these contexts. customer, procurement, logistics, billing,
fulfillment and many more. Each of those contexts requiresits distinct set of attributes and operations.
As Java doesn't support mixins one would put the sum of all of those into the entity class and thereby
making it very big, brittle and hard to understand. Being able to take a basic order and project it to a
different (not related in the inheritance hierarchy or even an interface) order type that is valid in the
current context and only offers the attributes and methods needed here would be very beneficial.

Spring DataNeo4j offersinitial support for projecting node and relationship entitiesto different target
types. All instances of this projected entity share the same backing node or relationship, so changes
are reflected on the same data.

This could for instance also be used to handle nodes of a traversal with a unified (simpler) type (e.g.
for reporting or auditing) and only project them to a concrete, more functional target type when the
business logic requiresit.

Example 20.27. Projection of entities

@NodeEntity
cl ass Trainee {
String nane;
@Rel at edTo
Set <Tr ai ni ng> trainings;

}

for (Person person : graphRepository.findAllByPropertyVal ue("occupation”, "devel oper")) {
Devel oper devel oper = person. proj ect To(Devel oper. cl ass);
i f (devel oper.isJavaDevel oper()) {
trainl nSpringDat a(devel oper. proj ect To(Tr ai nee. cl ass));

}

Geospatial Queries

Spat i al Reposi tory is a dedicated Repository for spatial queries. Spring Data Neo4j provides an
optional dependency to neodj-spatial [https://github.com/neodj/spatial] which is an advanced library
for GIS operations. So if you include the maven dependency in your pom xm , Neodj-Spatial and the
required SPATI AL index provider is available.

75

https://github.com/neo4j/spatial
https://github.com/neo4j/spatial

Programming model

20.11.

Example 20.28. Neo4j-Spatial Dependencies

<dependency>
<gr oupl d>or g. neo4j </ gr oupl d>
<artifactld>neo4j-spatial </artifactld>
<ver si on>0. 7- SNAPSHOT</ ver si on>

</ dependency>

To have your entities available for spatial index queries, please include a String property containing
a "well known text", location string. WKT is the Well Known Text Spatial Format [http://
en.wikipedia.org/wiki/Well-known_text] eg. PO NT(LON LAT) or POLYGON ((LON1 LAT1 LON2
LAT2 LON3 LAT3 LONL LAT1))

Example 20.29. Fields of Well Known Text

@NodeEntity
cl ass Venue {
String nane;
@ ndexed(type = PO NT, indexName = "VenuelLocation") String wkt
public void setLocation(float lon, float lat) {
this.wkt = String.format ("PONT(% 2f %2f)",lon,lat)
}
}

venue. set Locat i on(56, 15) ;

After adding the Spat i al Reposi t ory t0 your repository you can use the fi ndw t hi nBoundi ngBox,
findWthinDi stance, findWthinWll KnownText.

Example 20.30. Spatial Queries

| t er abl e<Per son> t eamVenbers = personRepository. fi ndWthi nBoundi ngBox("personLayer", 55, 15, 57, 1
I t er abl e<Per son> t eam\Venbers = personRepository.findWthi nVl | KnownText (" personLayer", "PCLYGON ((15 &
| t er abl e<Per son> t eanmMenbers = personRepository.findWthinDi stance("personLayer", 16,56, 70);

Example 20.31. Methods of the Spatial Repository

public interface Spatial Repository<T> {
Cl osabl el t er abl e<T> fi ndW t hi nBoundi ngBox(Stri ng i ndexNane, doubl e |owerlLeftlLat,
doubl e | ower Left Lon,
doubl e upper Ri ght Lat,
doubl e upper Ri ght Lon);

Cl osabl el terabl e<T> findWthinDi stance(final String i ndexNanme, final double |at, doub|le |on, douk

Cl osabl el terabl e<T> fi ndWt hi nWel | KnownText (final String indexName, String well KnownText);

Active Record Methods for Advanced Mapping Mode

This chapter only applies to the advanced mapping. Currently the Aspects introduce the following
methods by default, this will change in the future, there will be separate Mixin-Interfaces that can
selectively be mixed into the domain entities if needed. Otherwise the AspectJ interaction will be
restricted to field access interception and post-constructor handling.

The node and rel ationship aspectsintroduce (viaAspectJ I TD - inter-type declaration) several methods
to the entities.

76

http://en.wikipedia.org/wiki/Well-known_text
http://en.wikipedia.org/wiki/Well-known_text
http://en.wikipedia.org/wiki/Well-known_text

Programming model

Persisting the node entity after creation and after changes outside of a transaction. Participates in an
open transaction, or creates its own implicit transaction otherwise.
nodeEntity. persist()

Accessing node and relationship IDs
nodeEntity. get Nodel d() andrel ati onshi pEntity. getRel ati onshi pl d()

Accessing the node or relationship backing the entity
entity. getPersistentState()

equals() and hashCode() are delegated to the underlying state
entity.equal s() andentity. hashCode()

Creating relationships to atarget node entity, and returning the relationship entity instance
nodeEntity.rel ateTo(targetEntity, relationshipC ass, relationshipType)

Retrieving a single relationship entity
nodeEntity. get Rel ati onshi pTo(targetEntity, relationshipC ass, relationshipType)

Creating relationships to atarget node entity and returning the relationship
nodeEntity.relateTo(targetEntity, relationshipType)

Retrieving a single relationship
nodeEntity. get Rel ati onshi pTo(targetEnttiy, relationshipType)

Removing a single relationship
nodeEntity.renoveRel ati onshi pTo(targetEntity, relationshipType)

Remove the node entity, its relationships, and all index entries for it

nodeEntity. remove() andrel ati onshi pEntity.renove()

Project entity to adifferent target type, using the same backing state
entity. projectTo(targetC ass)

Traverse, starting from the current node. Returns end nodes of traversal converted to the provided type.
nodeEntity. findAl | ByTraversal (target Type, traversal Description)

Traverse, starting from the current node. Returns Ent i t yPat hs of the traversal result bound to the
provided start and end-node-entity types
I terabl e<EntityPat h> findAl | Pat hsByTraversal (traversal Descri ption)

Executes the given Cypher query, providing the { sel f} variable with the node-id and returning the
results converted to the target type.
<T> |Iterabl e<T> NodeBacked.findAl |l ByQuery(final String query, final d ass<T>
tar get Type)

Executesthe given query, providing { sel f} variable with the node-id and returning the original resuilt,
but with nodes and relationships replaced by their appropriate entities.
It erabl e<Map<String, Obj ect >> NodeBacked. fi ndAl | ByQuery(final String query)

Executes the given query, providing {sel f} variable with the node-id and returns a single result
converted to the target type.
<T> T NodeBacked. fi ndByQuery(final String query, final C ass<T> targetType)

77

Programming model

20.12. Transactions

Neo4j is a transactional database, only allowing modifications to be performed within transaction
boundaries. Reading data does however not require transactions. Spring Data Neo4j integrates nicely
with both the declarative transaction support with @r ansacti onal aswell asthe manual transaction
handling with Tr ansact i onTenpl at e. It aso supports the rollback mechanisms of the Spring Testing
library.

Spring Data Neo4j integrates with transaction managers configured using Spring. The simplest
scenario of just running the graph database uses a Spri ngTr ansact i onManager provided by the Neo4
kernel to be used with Spring's Jt aTr ansact i onManager . That is, configuring Spring to use Neo4j's
transaction manager.

Note

"o
To avoid name collisons the transaction manager configured by Spring Data Neo4j is
called neo4j Transact i onManager and is aliased to transacti onManager. S0 defining
a separate transacti onManager bean should not interfere with Spring Data Neo4j
operations.
Note

2

The explicit XML configuration given below is encoded in the Neo4j Confi gurati on
configuration bean that uses Spring's @onf i gur at i on feature. This greatly simplifiesthe
configuration of Spring Data Neo4j.

Example 20.32. Simple transaction manager configuration

<bean i d="neo4j Transacti onManager"
cl ass="org. spri ngframewor k. dat a. neo4j . confi g. Jt aTransact i onManager Fact or yBean" >
<constructor-arg ref="graphDat abaseServi ce"/>
</ bean>

<t x: annot ati on-dri ven node="aspectj" transacti on-manager="neo4j Transacti onManager"/>

For scenarios with multiple transactional resources there are two options. The first option is to have
Neo4j participatein the externally configured transaction manager using the Spring support in Neo4j by
enabling the configuration parameter for your graph database. Neo4j will then use Spring's transaction
manager instead of its own.

78

Programming model

Example 20.33. Neo4j Spring integration

<cont ext : annot ati on-config />
<cont ext: spring- confi gured/ >

<bean i d="transacti onManager"
cl ass="org. springframework. transaction.jta.JtaTransacti onManager" >
<property name="transacti onManager" >
<bean i d="jotm' class="org.springfranework. data. neodj.transaction. JotnFact oryBean"/>
</ property>
</ bean>

<bean i d="graphDat abaseServi ce" cl ass="org. neodj . kernel . EnbeddedG aphDat abase"
dest r oy- met hod="shut down" >
<constructor-arg val ue="target/test-db"/>
<constructor - ar g>

<map>
<entry key="tx_manager _i npl " val ue="spring-jta"/>
</ map>
</ constructor-arg>

</ bean>

<t x: annot ati on-driven node="aspectj" transaction-nanager="transacti onManager"/>

One can also configure a stock XA transaction manager (e.g. Atomikos, JOTM, App-Server-TM) to
be used with Neo4j and the other resources. For a bit less secure but fast 1-phase-commit-best-effort,
use Chai nedTr ansact i onManager , which comes bundled with Spring Data Neo4j. It takes a list of
transaction managers as constructor params and will handle them in order for transaction start and
commit (or rollback) in the reverse order.

Example 20.34. ChainedTransactionM anager example

<bean i d="j paTransacti onManager"
cl ass="org. springframework. orm j pa. JpaTr ansacti onManager" >
<property name="entityManager Factory" ref="entityManagerFactory"/>
</ bean>
<bean i d="jtaTransacti onManager"
cl ass="org. spri ngframewor k. dat a. neo4j . confi g. Jt aTr ansact i onManager Fact or yBean" >
<constructor-arg ref="graphDat abaseServi ce"/>
</ bean>
<bean i d="transacti onManager"
cl ass="org. spri ngfranmewor k. dat a. neo4j . transacti on. Chai nedTr ansact i onManager " >
<const ruct or - ar g>
<list>
<ref bean="j paTransacti onManager"/>
<ref bean="jtaTransacti onManager"/>
</list>
</ constructor-arg>
</ bean>

<t x: annot ati on-driven node="aspectj" transacti on-nmanager="transacti onManager"/>

20.13. Detached node entities in advanced mapping mode

This section only applies to the advanced mapping (AspectJ-backed). The simple mapping aways
detachesentitiesonload asit copiesthe dataout of the graphinto the entitiesand storesit back fully too.

Node entities can bein two different persistence states: attached or detached. By default, newly created
node entities are in the detached state. When persi st () or tenpl at e. save() iscalled on the entity,
it becomes attached to the graph, and its properties and relationships are stores in the database. If the

79

Programming model

save operation is not called within atransaction, it automatically creates an implicit transaction only
for the operation.

Changing an attached entity inside a transaction will immediately write through the changes to the
datastore. Whenever an entity is changed outside of a transaction it becomes detached. The changes
are stored in the entity (its fields) itself until the next call to a save operation.

All entities returned by library functions areinitially in an attached state. Just as with any other entity,
changing them outside of a transaction detaches them, and they must be reattached with per si st ()
for the data to be saved.

Example 20.35. Persisting entities

@NodeEntity
cl ass Person {
String nang;
Person(String nanme) { this.name = nanme; }

}

/1 Store Mchael in the database.
Person p = new Person("M chael ") . persist();

20.13.1. Relating detached entities

As mentioned above, an entity simply created with the new keyword starts out detached. It also has
no state assigned to it. If you create a new entity with new and then throw it away, the database won't
be touched at all.

Now consider this scenario:

Example 20.36. Relationships outside of transactions

@\odeEntity
class Myvie {
private Actor topActor;
public void set TopActor (Actor actor) {
topActor = actor;
}
}

@NodeEntity
class Actor {

}

Movi e novi e
Act or actor

new Movi e();
new Actor();

novi e. set TopAct or (actor);

Neither the actor nor the movie has been assigned a node in the graph. If we were to call
novi e. per si st (), then Spring Data Neo4j would first create a node for the movie. It would then note
that thereis arelationship to an actor, so it would call actor.persist() in a cascading fashion. Once the
actor has been persisted, it will create the relationship from the movie to the actor. All of thiswill be
done atomically in one transaction.

Important to note hereisthat if act or . persi st () iscaledinstead, then only the actor will be persisted.
Thereason for thisis that the actor entity knows nothing about the movie entity. It isthe movie entity

80

Programming model

20.14.

that has the reference to the actor. Also note that this behavior is not dependent on any configured
relationship direction on the annotations. It is amatter of Javareferences and is not related to the data
model in the database.

The save operation (merge) stores al properties of the entity to the graph database and puts the entity
in attached mode. Thereis no need to update the reference to the Java POJO as the underlying backing
node handles the read-through transparently. If multiple object instances that point to the same node
are persisted, the ordering is not important as long as they contain distinct changes. For concurrent
changes a concurrent modification exception is thrown (subject to be parameterized in the future).

If the relationships form a cycle, then the entities will first of all be assigned a node in the database,
and then the relationships will be created. The cascading of persi st () is however only cascaded to
related entity fields that have been modified.

Inthefollowing example, the actor and the movie are both attached entites, having both been previously
persisted to the graph:

Example 20.37. Cascade for modified fields

actor.setName("Billy Bob");
novi e. persi st ();

In this case, even though the movie has areference to the actor, the name change on the actor will not
be persisted by the call to movi e. persi st () . Thereasonfor thisis, as mentioned above, that cascading
will only be done for fields that have been modified. Since the novi e. t opAct or field has not been
modified, it will not cascade the persist operation to the actor.

Entity type representation

There are several ways to represent the Java type hierarchy of the data model in the graph. In
genera, for all node and relationship entities, type information is needed to perform certain repository
operations. Some of thistype information hierarchy is saved in the graph database.

Asthe type information is also stored in node/rel ationship-properties and/or indexes it might amount
to a substantial amount of data in the graph. It is possible to use an @ypeAl i as("nane") annotation
on nodes and relationships to have a short constant name for each type which is (unlike the
default approach) renaming-refactoring-safe. For using the simple class name by default, register a
Neo4j Mappi ngCont ext bean configured with an instance of Enti t yAl i as. It isaso possible to opt out
of storing type information using the NoopTypeRepr esent ati onSt r at egi es.

Implementations of TypeRepresent ati onStrat egy take care of persisting this information during
entity instance creation. They also provide the repository methods that use this type information
to perform their operations, like findAl | and count. The derived finderMethods also use the type
information for graph global queries.

There are three available implementations for node entities to choose from.
¢ | ndexi ngNodeTypeRepr esent ati onSt r at egy thisisthe default strategy used.

Stores entity types in the integrated index. Each entity node gets indexed with its type and all
supertypes and interfaces that are also @odeEnt i t y-annotated. The special index used for thisis

81

Programming model

20.15.

named _ types__. Additionally, in order to retrieve the type of an entity node, each node has a
property __type__ with the fully qualified type of that entity.

* SubRef erenceNodeTypeRepresent ati onStr at egy

Stores entity types in atree in the graph representing the type and interface hierarchy. Each entity
has a INSTANCE_OF relationship to a type node representing that entity's type. The type may or
may not have a SUBCLASS_OF relationship to another type node.

* NoopNodeTypeRepresent ati onStrat egy

Does not store any type information, and does hence not support finding by type, counting by type,
or retrieving the type of any entity.

There are two implementations for relationship entities available, with the same behavior as the
corresponding ones above:

* | ndexi ngRel ati onshi pTypeRepr esent ati onStr at egy

Stores relationship entity types in the integrated index. Each entity relationship gets indexed with
itstype and all supertypes and interfacesthat are also @rel at i onshi pEnti t y-annotated. The special
index used for thisisnamed __rel _types__. Additionally, in order to retrieve the type of an entity
relationship, each relationship has aproperty _ type__ with the fully qualified type of that entity.

* NoopRel ati onshi pTypeRepr esent ati onSt r at egy

Spring Data Neo4j will by default autodetect which are the most suitable strategies for node and
relationship entities. For new data stores, it will always opt for the indexing strategies. If a data store
was created with the oldersubRef er enceNodeTypeRepr esent at i onSt r at egy, then it will continue to
use that strategy for node entities. It will however in that case use the no-op strategy for relationship
entities, which means that the old data stores have no support for searching for relationship entities.
The indexing strategies are recommended for all new users.

Bean validation (JSR-303)

Spring Data Neodj supports property-based validation support. When a property is changed and
persisted, it is checked against the annotated constraints, e.g. @1 n, @ax, @i ze, etc. Validation errors
throw aval i dati onExcept i on. The validation support that comes with Spring is used for evaluating
the constraints. To use this feature, a validator has to be registered with the Neo4j Tenpl at e, whichis
done automatically by the Neo4j Confi gurati on if oneis present in the Spring Config.

Example 20.38. Bean validation

@NodeEntity

cl ass Person {
@i ze(mn = 3, max = 20)
String nane;

@1 n(0) @bx(100)

int age;

}

The validation supports needs the bean validation APl and a reference implementation configured.
Right now thisis the Hibernate Validator by default (which is not integrated with Hibernate ORM).
The maven dependency is:

82

Programming model

Example 20.39. Validation setup

<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactld>hi bernate-validator</artifactld>
<ver si on>4. 2. 0. Fi nal </ ver si on>

</ dependency>

/'l the application-context should contain a Local Vali dat or Fact or yBean

<bean id="val i dator"
cl ass="org. spri ngframewor k. val i dati on. beanval i dati on. Local Val i dat or Fact or yBean"/ >

83

Chapter 21. Environment setup

Spring Data Neo4j dramatically simplifies development, but some setup is naturally required. For
building the application, Maven needsto be configured to include the Spring Data Neo4j dependencies.
For the advanced mapping mode, it isnecessary to configure the AspectJweaving. After the build setup
iscomplete, the Spring application needsto be configured to make use of Spring DataNeo4j. Examples
for these different setups can be found in the Spring Data Neodj examples [http://spring.neodj.org/
examples).

Spring Data Neo4j projects can be built using Maven. There are also meansto build them with Gradle
or Ant/lvy.

21.1. Dependencies for Spring Data Neo4j Simple Mapping

For the simple POJO mapping it is enough to add the or g. spri ngf ramewor k. dat a: spri ng- dat a-
neo4j : 2. 1. 0. RELEASE dependency to your project.

Example 21.1. Maven dependenciesfor Spring Data Neo4j

<dependency>

<gr oupl d>or g. spri ngf r amewor k. dat a</ gr oupl d>
<artifactld>spring-data-neodj</artifactld>
<versi on>2. 1. 0. RELEASE</ ver si on>

</ dependency>

21.2. Gradle configuration for Advanced Mapping (AspectJ)

The necessary build plugin to build Spring Data Neo4j projects with Gradle is available as part of the
Spring Data Neo4j distribution or on Github which makes the usage as easy as:

Example 21.2. Gradle Build Configuration

sourceConpatibility
target Conpatibility

1.6
1.6

springVersion = "3.1.0. RELEASE"
spri ngDat aNeo4j Version = "2. 1. 0. RELEASE"
aspectj Version = "1.6.12"

apply from'https://github. com SpringSource/spring-data-neodj/raw master/buil d/
gr adl e/ spri ngdat aneo4j . gradl e

configurations {
runtine
t est Conpi |l e
}
repositories {
mavenCentral ()
mavenLocal ()
mavenRepo urls: "http://maven. spri ngframework. or g/ rel ease”

}

The actual springdat aneo4j . gradl e is very simple, just decorating the j avac tasks with the i aj ¢
ant task.

84

http://spring.neo4j.org/examples
http://spring.neo4j.org/examples
http://spring.neo4j.org/examples

Environment setup

21.3. Ant/lvy configuration for Advanced Mapping (AspectJ)

The supplied sample ant build configuration [https://github.com/SpringSource/spring-data-neodj/raw/
master/build/ivy] is mainly about resolving the dependencies for Spring Data Neo4j Aspects and
AspectJ using Ivy and integrating the igjc ant task in the build.

Example 21.3. Ant/Ivy Build Configuration

<t askdef resource="org/aspectj/tool s/ ant/taskdefs/aspectj Taskdefs. properties" classpath="%{lib.dir}/e

<target nane="conpile" description="Conpile production classes" depends="lib.retrieve">
<nkdir dir="${nmain.target}" />

<iajc sourceroots="${main.src}" destDir="${nmmin.target}" classpathref="path.libs" source=1.6">
<aspect pat h>
<pat hel ement | ocation="${lib.dir}/spring-aspects.jar"/>
</ aspect pat h>
<aspect pat h>
<pat hel ement | ocation="${lib.dir}/spring-data-neo4dj-aspects.jar"/>
</ aspect pat h>
</iajc>
</target>

21.4. Maven configuration for Advanced Mapping

Spring Data Neodj projects are easiest to build with Apache Maven. The core dependency is Spring
Data Neo4j Aspects which comes with transitive dependencies to Spring Data Neo4j, Spring Data
Commons, parts of the Spring Framework, Aspect] and the Neo4j graph database.

21.4.1. Repositories

The milestone releases of Spring Data Neo4j are available from the dedicated milestone repository.
Neo4j releases and milestones are available from Maven Central.

Example 21.4. Spring milestonerepository

<r eposi tory>
<i d>spring- maven-m | est one</i d>
<name>Spri ngf ramewor k Maven Reposit ory</nanme>

<url >http://maven. spri ngf ramewor k. org/ m | est one</ url >
</repository>

21.4.2. Dependencies

Thedependency onspri ng- dat a- neo4j - aspect s will transitively pull in the necessary parts of Spring
Framework (core, context, aop, aspects, tx), Aspect], Neodj, and Spring Data Commons. If you already
usethese (or different versions of these) in your project, then include those dependencies on your own.
In this case, please make sure that the versions match. If you want to use Gremlin, please add the
dependency (which isoptional in SDN) accordingly.

85

https://github.com/SpringSource/spring-data-neo4j/raw/master/build/ivy
https://github.com/SpringSource/spring-data-neo4j/raw/master/build/ivy
https://github.com/SpringSource/spring-data-neo4j/raw/master/build/ivy

Environment setup

Example 21.5. Maven dependencies

<dependency>

<gr oupl d>or g. spri ngf ramewor k. dat a</ gr oupl d>
<artifactld>spring-data-neodj-aspects</artifactld>
<versi on>2. 1. 0. RELEASE</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. aspectj </ gr oupl d>
<artifactld>aspectjrt</artifactld>
<versi on>1. 6. 12</ ver si on>

</ dependency>

21.4.3. Maven AspectJ build configuration

Since the advanced mapping uses AspectJ for build-time aspect weaving of entities, it is necessary to
hook the AspectJ Maven plugin into the build process. The plugin aso hasits own dependencies. Y ou
also need to explicitly specify the aspect libraries (spring-aspects and spring-data-neodj-aspects).

Example 21.6. AspectJ configuration

<pl ugi n>
<gr oupl d>or g. codehaus. noj o</ gr oupl d>
<artifactld>aspectj-maven-plugin</artifactld>
<ver si on>1. 2</ ver si on>
<dependenci es>
<l-- NB: You nust use Maven 2.0.9 or above or
<dependency>
<gr oupl d>or g. aspectj </ groupl d>
<artifactld>aspectjrt</artifactld>
<versi on>1. 6. 12</ ver si on>
</ dependency>
<dependency>
<gr oupl d>or g. aspectj </ gr oupl d>
<artifactld>aspectjtool s</artifactld>
<versi on>1. 6. 12</ ver si on>
</ dependency>
</ dependenci es>
<executions>
<executi on>
<goal s>
<goal >conpi | e</ goal >
<goal >t est - conpi | e</ goal >
</ goal s>
</ executi on>
</ executi ons>
<confi guration>
<out xm >t r ue</ out xm >
<aspect Li brari es>
<aspect Li brary>
<gr oupl d>or g. spri ngf r amewor k</ gr oupl d>
<artifactld>spring-aspects</artifactld>
</ aspect Li brary>
<aspect Li brary>
<gr oupl d>or g. spri ngf r amewor k. dat a</ gr oupl d>
<artifactld>spring-data-neodj-aspects</artifactld>
</ aspect Li brary>
</ aspectLi braries>
<sour ce>1. 6</ sour ce>
<t arget >1. 6</t arget >
</configuration>
</ pl ugi n>

these are ignored (see MNG 2972) -->

86

Environment setup

21.5. Spring configuration

Users of Spring Data Neo4j have two ways of very concisely configuring it. Either they can use a
Spring Data Neo4j XML configuration namespace, or they can use a Java-based bean configuration.

21.5.1. XML namespace

The XML namespace can be used to configure Spring Data Neodj. The config element
provides an XML-based configuration of Spring Data Neo4j in one line. It has three attributes.
gr aphDat abaseSer vi ce pointsout the Neo4j instanceto use. For convenience, st or eDi r ect or y can be
setinstead of gr aphDat abaseSer vi ce to point to adirectory whereanew EnbeddedG aphDat abase Wil
be created. For cross-store configuration, theent i t yManager Fact or y attribute needsto be configured.

Example 21.7. XML configuration with store directory

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: cont ext ="http://ww. springfranmework. or g/ schema/ cont ext "
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: neo4j ="htt p://ww. spri ngfranewor k. or g/ schema/ dat a/ neo4j "
xsi : schemaLocat i on="
htt p: // ww. spri ngf ranewor k. or g/ schena/ beans
http://ww. spri ngfranework. or g/ schenma/ beans/ spri ng- beans. xsd
http://ww. springframework. or g/ scherma/ cont ext
htt p: // ww. spri ngf ranewor k. or g/ schena/ cont ext / spri ng- cont ext . xsd
htt p: //ww. spri ngfranmewor k. or g/ schena/ dat a/ neo4j
http://ww. springframework. or g/ scherma/ dat a/ neo4j / spri ng- neo4j . xsd" >

<cont ext : annot ati on- confi g/ >
<neo4dj:config storeDirectory="target/config-test"/>

</ beans>

Example 21.8. XML configuration with GraphDatabaseService bean

<cont ext: annot ati on-confi g/ >

<bean i d="gr aphDat abaseServi ce" cl ass="org. neo4j . kernel . EnbeddedG aphDat abase"
dest r oy- net hod="shut down" >
<constructor-arg index="0" value="target/config-test"/>

<I-- optionally pass in neo4j-config paraneters to the graph database
<constructor-arg index="1">
<map>
<entry key="all ow_store_upgrade" val ue="true"/>
</ map>
</ constructor-arg>
-->
</ bean>

<neodj: confi g graphDat abaseServi ce="graphDat abaseServi ce"/ >

87

Environment setup

Example21.9. XML configuration with embedded Neo4j-Server [http://docs.neodj.or g/chunked/
milestone/ser ver -embedded.html]

<cont ext : annot ati on- confi g/ >

<bean i d="gr aphDat abaseServi ce" cl ass="org. neodj . kernel . EnbeddedG aphDat abase"
dest r oy- met hod="shut down" >

<constructor-arg index="0" val ue="foo/db" />

<constructor-arg index="1">

<map><entry key="enabl e_renote_shel|" val ue="true"/></map>
</ constructor-arg>
</ bean>

<bean i d="server Wapper" cl ass="org. neo4j.server. W appi ngNeoSer ver Boot st r apper "
init-nmethod="start" destroy-nethod="stop">

<constructor-arg ref="graphDat abaseServi ce"/>
</ bean>

// also add the static server-assets dependency to your pom xn
<dependency>
<gr oupl d>or g. neo4j . app</ gr oupl d>
<artifactld>neodj-server</artifactld>
<cl assifier>static-web</classifier>
<ver si on>${ neo4j - ver si on} </ ver si on>
</ dependency>

Example 21.10. XML configuration with cross-store

<cont ext : annot ati on- confi g/ >

<bean cl ass="org. spri ngframewor k. orm j pa. Local Cont ai ner Enti t yManager Fact or yBean"
i d="entityManager Fact ory" >
<property nanme="dat aSource" ref="dataSource"/>
<property name="persistenceXm Locati on" val ue="cl asspat h: META- | NF/ per si st ence. xm "/ >
</ bean>

<neo4j:config storeDirectory="target/config-test"
entityManager Fact ory="ent it yManager Factory"/>

21.5.2. Repository Configuration

Spring Data Neo4j repositories are configured using the <neo4j : reposi tori es> element which
defines the base-package (or packages) for the repositories. A reference to an existing Neo4j Tenpl at e
bean reference can be passed in aswell.

As Spring Data Neodj repositories build upon the infrastructure provided by Spring
Data Commons [http://static.springsource.org/spring-data/data-commons/docs/current/reference/
html/#repositories.create-instances], the configuration options for repositories described there work
here aswell.

Example 21.11. XML configuration for repositories

<neo4j :repositories base-package="org. exanpl e. repository"/>

<I-- with tenpl ate bean reference -->
<neodj :repositories base-package="org. exanpl e. repository" graph-database-context-ref="tenplate"/>

88

http://docs.neo4j.org/chunked/milestone/server-embedded.html
http://docs.neo4j.org/chunked/milestone/server-embedded.html
http://docs.neo4j.org/chunked/milestone/server-embedded.html
http://static.springsource.org/spring-data/data-commons/docs/current/reference/html/#repositories.create-instances
http://static.springsource.org/spring-data/data-commons/docs/current/reference/html/#repositories.create-instances
http://static.springsource.org/spring-data/data-commons/docs/current/reference/html/#repositories.create-instances
http://static.springsource.org/spring-data/data-commons/docs/current/reference/html/#repositories.create-instances

Environment setup

21.5.3. Java-based bean configuration

Y ou can also configure Spring Data Neo4j using Java-based bean metadata.

.

e

Note

For those not familiar with Javarbased bean configuration in Spring, we
recommend that you read up on it first. The Spring documentation
has a high-level introduction [http://static.springsource.org/spring/docs/3.1.x/
spring-framework-reference/html/new-in-3.0.html#new-java-configuration] as well
as detailed documentation [http://static.springsource.org/spring/docs/3.1.x/spring-
framework-reference/html/beans.html#beans-java-instanti ating-container] on it.

In order to configure Spring DataNeo4j with Java-based bean config, the classNeo4j Confi gurationis
registered with the context. Thisis either done explicitly in the context configuration, or via classpath
scanning for classes that have the @Configuration annotation. The only thing that must be provided
is the G aphDat abaseServi ce. The example below shows how to register the @onfiguration
Neo4j Confi gurati on class, as well as Spring's Conf i gur ati ond assPost Processor that transforms
the @onf i gur at i on class to bean definitions.

Example 21.12. Java-based bean configuration

<! [CDATA[<beans ...>

</ beans>

<t x:annot ation-driven node="aspectj" transacti on-nmanager="transacti onManager"/>
<bean cl ass="org. springfranmewor k. dat a. neo4j . confi g. Neo4j Confi gurati on"/>

<bean cl ass="org. spri ngfranmewor k. cont ext . annot ati on. Confi gur ati onCl assPost Processor"/ >

<bean i d="gr aphDat abaseServi ce" cl ass="org. neo4j . kernel . EnheddedG aphDat abase"

<constructor-arg index="0" value="target/config-test"/>
</ bean>

dest r oy- met hod="shut down" scope="si ngl et on" >

Additional beans can be configured to be included in the Neo4j-Configuration just by defining them
in the Spring context. ConversionService for custom conversions, Validators for bean validation,
TypeRepresentationStrategyFactory for configuring the in graph type representation, IndexProviders
for custom index handling (e.g. for multi-tenancy) or Entity-Instantiators (with their config) to have
more control over the creation of entity instances and much more.

89

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/new-in-3.0.html#new-java-configuration
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/new-in-3.0.html#new-java-configuration
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/new-in-3.0.html#new-java-configuration
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-java-instantiating-container
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-java-instantiating-container
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-java-instantiating-container

Chapter 22. Cross-store persistence

The Spring Data Neo4j project support cross-store persistence for the advanced mapping mode, which
allows for parts of the data to be stored in a traditional JPA data store (RDBMS), and other partsin
a graph store. This means that an entity can be partially stored in e.g. MySQL, and partially stored
in Neo4j.

This allows existing JPA-based applications to embrace NOSQL data storesfor evolving certain parts
of their data model. Possible use cases include adding socia networking or geospatial information to
existing applications.

22.1. Partial entities

Partial graph persistence is achieved by restricting the Spring Data Neo4j aspects to manage only
explicitly annotated parts of the entity. Those fields will be made @r ansi ent by the aspect so that
JPA ignores them.

A backing node in the graph store is only created when the entity has been assigned a JPA ID. Only
then will the association between the two stores be established. Until the entity has been persisted, its
state is just kept inside the POJO (in detached state), and then flushed to the backing graph database
on the persist operation.

The association between the two entities is maintained via a FOREIGN_ID field in the node, that
contains the JPA ID. Currently only single-value IDs are supported. The entity class can be resolved
viathe TypeRepr esent at i onSt r at egy that manages the Javatype hierarchy within the graph database.
Given the ID and class, you can then retrieve the appropriate JPA entity for a given node.

The other direction is handled by indexing the Node with the FOREIGN_ID index which contains a
concatenation of the fully qualified class name of the JPA entity and the ID. The matching node can
then be found using the indexing facilities, and the two entities can be reassociated.

Using these mechanisms and the Spring Data Neo4j aspects, a single POJO can contain some fields
handled by JPA and others handles by Spring Data Neo4j. This aso includes relationship fields
persisted in the graph database.

22.2. Cross-store annotations

Cross-store persistence only requiresthe use of one additional annotation: @ aphPr oper t y. Seebelow
for details and an example.

22.2.1. @NodeEntity(partial = "true")

When annotating an entity with partial = true, thismarksit as a cross-store entity. Spring Data
Neodj will thus only manage fields explicitly annotated with @ aphPr operty.

22.2.2. @GraphProperty

Fields of primitive or convertible types do not normally have to be annotated in order to be persisted
by Spring Data Neo4j. In cross-store mode, Spring DataNeo4j only persistsfields explicitly annotated
with @ aphPr oper t y. JPA will ignore these fields.

90

Cross-store persistence

22.2.3. Example

The following example is taken from the Spring Data Neodj examples [http://spring.neodj.org/

examples] myrestaurants-social project:
Example 22.1. Cross-stor e node entity

@ntity

@abl e(name = "user_account")

@NodeEntity(partial = true)

public class UserAccount {
private String userNane;
private String firstNang;
private String | ast Nang;

@ aphProperty
String ni cknaneg;

@=el at edTo
Set <User Account > fri ends;

@Rel at edToVi a(type = "reconmends")
| t er abl e<Recommendat i on> r ecommendat i ons;

@enpor al (Tenpor al Type. TI MESTAMP)
@pat eTi meFormat (style = "S-")
private Date birthDate;

@manyToMany(cascade = CascadeType. ALL)
private Set<Restaurant> favorites;

@d
@ener at edVal ue(strategy = GenerationType. AUTO)
@ol um(name = "id")

private Long id;

public void knows(UserAccount friend) {
rel ateTo(friend, "friends");

}

publ i c Recommendation rate(Restaurant restaurant, int stars, String comment) {

Recommendat i on recommendati on = rel at eTo(rest aurant,
recommendation. rate(stars, conment);
return recommendati on;

}

public |terabl e<Reconmendati on> get Recommendati ons() {
return recomendati ons;

}

Recommendati on. cl ass,

"recomends");

22.3. Configuring cross-store persistence

Configuring cross-store persistence is done similarly to the default Spring Data Neo4j configuration.
All you need to do is to specify an ent i t yManager Fact ory in the XML namespace confi g element,

and Spring Data Neo4j will configure itself for cross-store use.

91

http://spring.neo4j.org/examples
http://spring.neo4j.org/examples
http://spring.neo4j.org/examples

Cross-store persistence

Example 22.2. Cross-store Spring configuration

<beans xm ns="http://ww. spri ngframewor k. or g/ schena/ beans"
xm ns: cont ext ="http://wwm. spri ngframewor k. or g/ scherma/ cont ext "
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: dat agr aph="ht t p: / / www. spri ngf ramewor k. or g/ schena/ dat a/ neo4j "
xsi : schemalLocat i on="
http://ww. spri ngfranework. or g/ schena/ beans
http://ww. spri ngframework. or g/ schema/ beans/ spri ng- beans. xsd
htt p: // ww. spri ngf ranewor k. or g/ schenma/ cont ext
http://ww. spri ngfranework. or g/ schena/ cont ext/ spri ng- cont ext . xsd
http://ww. spri ngframework. or g/ schenma/ dat a/ neo4;
ht t p: // ww. spri ngf ranewor k. or g/ schena/ dat a/ neo4j / spri ng- neo4j . xsd
">

<cont ext: annot ati on-confi g/ >

<neo4dj:config storeDirectory="target/config-test"
entityManager Fact ory="enti t yManager Factory"/ >

<bean cl ass="org. springframework. orm j pa. Local Cont ai ner Enti t yManager Fact or yBean"
id="entityManager Factory">
<property nanme="dat aSource" ref="dataSource"/>

<property name="persistenceXnm Location" val ue="cl asspat h: META- | NF/ per si st ence. xm "

</ bean>
</ beans>

92

Chapter 23. Sample code

23.1. Introduction

Spring Data Neo4j comes with a number of sample applications. The source code of the samples can
be found on Github [http://spring.neodj.org/exampless]. The different sample projects are introduced
below.

23.2. Hello Worlds sample application

The Hello Worlds sample application is a simple console application. It creates some worlds (node
entities) and rocket routes (relationships) between worlds, al in agalaxy (the graph), and then prints
them.

The unit tests demonstrate some other features of Spring Data Neodj as well. The sample comes with
aminimal configuration for Maven and Spring to get up and running quickly.

The Hello Worlds application is available both for the simple mapping (hel | o- wor | ds) and for the
advanced mapping (hel | o- wor | d- aspect s).

Executing the application creates the following graph in the graph database:

™ class: java.lang.Object

i moons: 1 count: 13
Dafne: Earth M SUBC }r” OF
REACHABLE/BY_ROCKET o class: org.springframework.data.neo4j.examples.hellograph.World
count: 13
- moons:2 | INSTANEETOF 4
name: Mars !
o moon.s: V] o moons: 62
name: Mercury name: Hel
0 NSTANCE_OF
moons: moons: 63
® name: Venus INSTONCEara CE_'HIETM CE_OF ® name: Asgard
Y
moons: 63 moons: 2
® name: Jupiter ®

name: Muspellheim

99 moons: 62

o moons: 0
name: Saturn

name: AlFheimr

o moons: 27 moons: 1
name: Uranus ¢ Moons: 13 name: Midgard

name: Neptune

23.3. IMDB sample application

ThelMDB sampleisaweb application that imports datasets from the I nternet Movie Database (IMDB)
into the graph database. It allows the listing of movies with their actors, and of actors and their roles
in different movies. It also uses graph traversal operations to calculate the Bacon number [http://
en.wikipedia.org/wiki/Bacon_number] of any given actor. This sample application shows the usage
of Spring Data Neo4j in a more complex setting, using several annotated entities and relationships as
well asindexes and in-graph indexes and graph traversals.

See the readme file for instructions on how to compile and run the application.

An excerpt of the data stored in the graph database after executing the application:

93

http://spring.neo4j.org/exampless
http://spring.neo4j.org/exampless
http://en.wikipedia.org/wiki/Bacon_number
http://en.wikipedia.org/wiki/Bacon_number
http://en.wikipedia.org/wiki/Bacon_number

Sample code

& Lawrence, Harry (1) b Ball, Jeremy (1)

QA ur N
&b Witt, Eleanor & Jnhnsnn Flnna d Tjen, Natalie
d McClory, Bellnda AC
-y d Aden, Marc " dAstnn David (1)
ﬂ Butcher, Michael (1) i I ;,:___
a Harbach, Nigel ____—'_-—__“:“_:: 4_._-—_-1—'—'_'_ d Dodd, Steve

- Matrix, The (1999, TSN
l“-“ () d Pender, Janaya

&k Brown, Tamara / -1
a Nicodemou, Ada d Chong, Marl:us INSTANCE OF

a Goddard, Paul (1)

d Gordon, Dennl
Arahanga Julian < org.neodj.examples.imdb.domain.Movie

23.4. MyRestaurants sample application

Simple, JPA-based web application for managing users and restaurants, with the ability to add
restaurants asfavoritesto auser. It isbasically the foundation for the MyRestaurants-Social application
(seeSection 23.5, “MyRestaurant-Social sample application”), and does therefore not use Spring Data
Neo4j.

M MyRestaurants

a SpringOne Demo

= e T e
Log out Subway 53073 Plymouth) &
Boston Mar 20877 Gaithersbu MD i) &
List all Restaurants Subway Sub 88008 Santa Tere NM i) &
Manage favorite Restaurants Arby's Roa 97603 Klamath Fa OR) &
Bellefleur 92008 Carlsbad CA E] ﬁ
Huddle Hou 30701 Calhoun GA @ ﬁ
John Brown 46235 Indianapal IN @ ﬁ
Ling's Exp 53217 Milwaukee Wi @ @
Chubys's 87044 Cdell OR @ @
Bojangles 29203 Columbia sC) il

List results per page: 5 10 1520 25 | Page 10f5 p

Home | Logout | Language: gj= | Theme: standard | alt Sponsored by SpringSource §

23.5. MyRestaurant-Social sample application

Thisapplication extendsthe MyRestaurants sampl e application, adding social networking functionality
to it with cross-store persistence. The web application alows for users to add friends and rate
restaurants. A graph traversal provides recommendations based on your friends' (and their friends)
rating of restaurants.

Here's an excerpt of the data stored in the graph database after executing the application:

94

Sample code

MyRestaurants « wow with sociaL metworkine Spri}lg

a SpringOne Demo

USER ACCOUNT « List all Top Rated Restaurants

Log out

Nama ___Rocommandations vy Rating ______
RESTAURANT 3 -

Subway 2)

List all Restaurants
Manage favorite Restaurants

RECOMMENDATION Home | Logout | Language: gj= | Theme: standard | alt Sponsared by SpringSource

List my Recommendations

Create a new Friend

List my Friends
List Top Rated Restaurants

- . = @java.lang.object
Reference Node ——— SoBREFJavatanmOblect

\
\‘II --\-"‘--.
5UBREF_com.springone.m\rréftaurants.domain.Restaurant SUBE *5-0r
SUBREF_com ingone.nwr‘és*ea.l.l_[ants.domnin.UserAccount
\ T—
\

v

@ com.springone.myrestaurants.domain.Restaurant

SUBCLASS_OF

@)mm.spr QONe.myres s.d in.UserAccount

INSTANCE_OF

“Fends

. Tmicha

23.6. Cineasts social movie database

The cineasts.net application was introduced extensively in the first part of this guide, the tutorial. The
tutorial covers the development of the simple mapping version of cineasts.

To document the differences, versions for the advanced mapping (ci neast s- aspect s) and accessing
the remote server (ci neast s-rest) are also available.

A online version of cineasts can be found on cineasts.net [http://cineasts.net]. A sample dataset of the
cineasts databse is available at the neodj sample-data page [http://sample-data.neo4j.org].

Thisisasubset of the visualization of the cineasts graph for the "Matrix" movie.

95

http://cineasts.net
http://cineasts.net
http://sample-data.neo4j.org
http://sample-data.neo4j.org

Sample code

T Olliver | |
~ /

{5} Reference Node
) Lana Wachowski
ph

|
SUBREF_javaang Object

SUBREF_org ncodj.c‘ncasts domain, Wser

Yrancotse

v

T org.neodj.cineasts.domain.User

T Andy Wachowski 70 Keanu Reeves

@ Java.lang.Object
i

ol _—

SUBCL Z\“ OF

SUBCLASS_OF

h |
0 org.neo4j.cineasts.domain Movie

/
INSTANCE_OF

/ f
f |‘I

0 Laurence Fishburne

FRIEND
T Anthony Ray Parker

& Micha INSTAI
- %2 Marcus Chong

T The Matrix

Find mowvie

spring

96

Chapter 24. Heroku: Seeding the Cloud

Deploying your application into the cloud isagreat way to scale from from "wouldn't it be cool if.." to
givinginterviewsto Forbes, Fast Company, and Jimmy Fallon. Heroku makesit super easy to provision
everying you need, including aNeo4j Add-on. With afew simple adjustments, your Spring Data Neo4j
application is ready to take that first step into the cloud.

To deploy your Spring Data Neo4j web application to Heroku, you'll need:
« account on Heroku [http://heroku.com]

* git command line

¢ maven-based project

* standard Spring MV Servlet application

well, and Spring Data Neodj REST

For reference, the following sections detail the steps taken to make the Spring Data Neo4j Todos
example ready for deployment to Heroku.

24.1. Create a Self-Hosted Web Application

Usually, a Spring MV C application is bundled into a war and deployed to an application server like
Tomcat. But Heroku can host any kind of java application. It just needs to know what to launch. So,
well transform the war into a self-hosted servlet using an embedded Jetty server, then add a startup
script to launch it.

First, we'll add the dependencies for Jetty to the pom xmi :

Example 24.1. Jetty dependencies - pom.xml

<dependency>
<groupl d>org. ecl i pse. j etty</ groupl d>
<artifactld>jetty-webapp</artifactld>
<version>7.4.4.v20110707</ ver si on>

</ dependency>

<dependency>
<groupl d>or g. nort bay. j etty</ gr oupl d>
<artifactld>jsp-2.1-glassfish</artifactld>
<version>2. 1.v20100127</ ver si on>

</ dependency>

Then well change the scope of the serviet-api artifact from provi ded to conpil e. This library is
normally provided at runtime by the application container. Since we're self-hosting, it needs to be
included directly. Make sure the servlet-api dependency looks like this:

97

http://heroku.com
http://heroku.com

Heroku: Seeding the Cloud

Example 24.2. servlet-api dependencies - pom.xml

<dependency>
<gr oupl d>j avax. servl et </ gr oupl d>
<artifactld>servlet-api</artifactld>
<ver si on>2. 5</ ver si on>
<scope>conpi | e</ scope>

</ dependency>

We could provide a complicated command-line to Heroku to launch the app. Instead, we'll simplify
the command-line by using the appassenbl er - maven- pl ugi n to create alaunch script. Add the plugin

to your pom'sbui | d/ pl ugi ns section:

Example 24.3. appassembler-maven-plugin configuration pom.xml

<pl ugi n>
<gr oupl d>or g. codehaus. noj o</ gr oupl d>
<artifact|d>appassenbl er- maven- pl ugi n</artifactld>
<version>1. 1. 1</ ver si on>
<executions>
<execution>
<phase>package</ phase>
<goal s><goal >assenbl e</ goal ></ goal s>
<confi guration>
<assenbl eDi rect ory>t ar get </ assenbl eDi r ect ory>
<extraJvmAr gument s>- Xmx512nk/ ext r aJvmAr gunment s>
<pr ogr ans>
<pr ogr ank
<mai nCl ass>Mai n</ mai nCl ass>
<nanme>webapp</ nane>
</ progr an»
</ pr ogr ans>
</ configuration>
</ execution>
</ executions>
</ pl ugi n>

Finally, switch the packaging from war toj ar. That'sit for the pom.

Now that the application is ready to be self-hosted, create a simple mai n to bootstrap Jetty and host

the servlet.

98

Heroku: Seeding the Cloud

Example 24.4. src/main/java/M ain.java

i nport org.eclipse.jetty.server. Server;

import org.eclipse.jetty.webapp. WebAppCont ext ;

public class Main {

public static void main(String[] args) throws Exception {
String webappDirlLocation = "src/ main/webapp/";
String webPort = System getenv("PORT");
i f(webPort == null || webPort.isEnpty()) {
webPort = "8080";

}
Server server = new Server (| nteger.val ueX (webPort));
WebAppCont ext root = new WebAppCont ext () ;
root . set Context Path("/");
root . set Descri pt or (webappDi r Locat i on+"/WEB- | NF/ web. xm ") ;
root . set Resour ceBase(webappDi r Locat i on) ;
root . set Parent LoaderPriority(true);
server. set Handl er (root) ;
server.start();
server.join();

Notice the use of environment variable "PORT" for discovering which port to use. Heroku and the
Neo4j Add-on use a number of environment variable to configure the application. Next, we'll modify
the Spring application context to use the Neo4j variables for specifying the connection to Neo4j itself.

In the SDN Todos example, src/main/resources/ META- | NF/ spring/ applicationCont ext -
graph. xm was modified to look like this:

Example 24.5. Spring Data Neo4j REST configuration - applicationContext-graph.xml

<neo4j: confi g graphDat abaseServi ce="gr aphDat abaseServi ce"/ >

<bean i d="gr aphDat abaseServi ce"
cl ass="org. spri ngframewor k. dat a. neo4j . rest . Spri ngRest G aphDat abase" >
<constructor-arg index="0" val ue="${NEO4J_REST_URL}" />
<constructor-arg index="1" val ue="${NEX4J_LOG N}" />
<constructor-arg index="2" val ue="${ NEO4J_PASSWORD}" />

</ bean>

Before provisioning at Heroku, test the application locally. First make sure you've got Neo4j server
running locally, using default configuration. Then set the following environment variables:

Example 24.6. environment variables

export NEO4J_REST _URL=http://I|ocal host: 7474/ db/ dat a
export NEO4J_LOG N=""
export NEO4J_PASSWORD=""

Now you can launch the app by running sh t ar get/ bi n/ webapp. If running the SDN Todos example,
you cantestit by running . / bi n/ t odos | i st. That should return an empty JSON array, since no todos
have been created yet.

For details about the t odos script, see the r eadne included with the example.

99

Heroku: Seeding the Cloud

24.2. Deploy to Heroku

With a self-hosted application ready, deploying to Heroku needs a few more steps. First, create a
Procfil e a the top-level of the project, which will contain asingle lineidentifying the command line
which launches the application.

The contents of the Pr ocfi | e should contain:

Example 24.7. Procfile

web: sh target/bin/webapp

Example 24.8. deploy to heroku

Initialize a local git repository, adding all the project files
git init
git add .
git coomit -m"initial commt"

Provision a Heroku stack, add the Neo4j Add-on and depl oy the appication
heroku create --stack cedar

her oku addons: add neo4j
git push heroku naster

Note

Note that the stack must be "cedar" to support running Java. Check that the process is
running by using her oku ps, which should show a "web.1" process in the "up" state.
Success!

For the SDN Todos application, you can try out the remote application using the - r switch with the
bi n/ t odo script like this:

Example 24.9. Session with todo script

.I/bin/todo -r nk "tweet thanks for the good work @wesirii @kollegger"
./bin/todo -r |ist

To see the Neodj graph you just created through Heroku, use her oku conf i g to reveal the NEO4J_URL
environment variable, which will take you to Neo4j's Webadmin.

100

Chapter 25. Performance considerations

Although adding layers of abstraction is a common pattern in software development, each of these
layers generally adds overhead and performance penalties. This chapter discusses the performance
implications of using Spring Data Neo4j instead of the Neo4j API directly.

25.1. When to use Spring Data Neo4j

The focus of Spring Data Neo4j isto add a convenience layer on top of the Neo4j API. This enables
developers to get up and running with a graph database very quickly, having their domain objects
mapped to the graph with very little work. Building on this foundation, one can later explore other,
more efficient ways to explore and process the graph - if the performance requirements demand it.

Like with any other object mapping framework, the domain entities that are created, read, or persisted
represent only a small fraction of the data stored in the database. This is the set needed for a certain
use-case to be displayed, edited or processed in a low throughput fashion. The main advantages of
using an object mapper in this case are the ease of use of real domain objects in your business logic
and also the integration with existing frameworks and libraries that expect Java POJOs as input or
create them as results.

Spring Data Neo4j, however, was not designed with amajor focus on performance. It does add some
overhead to pure graph operations.

Most of the overhead comes from the use of the Java Reflection API, which is used to provide
information about annotations, fields and constructors. Some of the information is already cached by
the VM and the library infrastructure from Spring-Data-Commons, so that only the first access gets
a performance penalty. Other reflection penalties like field or method access will occur all the time.

For the simple mapping it is important to be aware of the size graph of data that is pulled out of the
graph database in a single read and copied to domain entities. That's why Spring Data Neo4j loads
related data not by default. You have to provide an indicator (@et ch) to do so. Alternatively the
Neo4j Tenpl at e. f et ch method offers means of of loading entities and collections of those.

For the advanced mapping mode keep in mind that any access of properties and relationships will in
general read through down to the database. To avoid multiple reads, it is sensible to store the result in
alocal variable in suitable scope (e.g. method, class or jsp).

To evaluate if the performance of Spring Data Neo4j impacts a certain use-caseit is sensible to define
performance requirements and measure the actual timein realistic test scenarios for the use-case. Only
if Spring Data Neo4j doesn't perform as fast as required it is recommended to drop down to the native
Neodj API.

101

Chapter 26. AspectJ details

The advanced mapping mode of Spring Data Neodj relies heavily on AspectJ. Aspect] is a Java
implementation of the aspect-oriented programming [https://secure.wikimedia.org/wikipedia/en/wiki/
Aspect-oriented_programming] paradigm that allows easy extraction and controlled application of so-
called cross-cutting concerns. Cross-cutting concerns are typically repetitive tasks in a system (e.g.
logging, security, auditing, caching, transaction scoping) that are difficult to extract using the normal
OO0 paradigms. Many OO concepts, such as subclassing, polymorphism, overriding and delegation are
still cumbersome to use with many of those concerns applied in the code base. Also, the flexibility
becomes limited, potentially adding quite a number of configuration options or parameters.

The AspectJ pointcut language can be intimidating, but a developer using Spring Data Neo4j will not
have to deal with that. Users don't have care about hooking into a framework mechanism, or having
to extend a framework superclass.

AspectJ uses a declarative approach, defining concrete "advice", which is just pieces of code that
contain the implementation of the "concern”, as it is called. An AspectJ advice can for instance be
applied before, after, or instead of a method or constructor call. It can aso be applied on variable and
field access. Thisisdeclared using AspectJsexpressive pointcut language, which isableto expressany
placewithinacodestructure or flow. AspectJisal so ableto introduce new methods, fields, annotations,
interfaces, and superclasses to existing classes.

Spring Data Neo4j uses a mix of these mechanisms internally. First, when encountering the
@bodeEntity Or @Rel ationshi pEntity annotations it introduces a new interface NodeBacked oOf
Rel at i onshi pBacked to the annotated class. Secondly, it introduces fields and methods to the
annotated class. See Section 20.11, “ Active Record Methods for Advanced Mapping Mode” for more
information on the methods introduced.

Spring DataNeodj also leverages AspectJto intercept accessto fields, delegating the callsto the graph
database instead. Under the hood, properties and relationships will be created.

So how is an aspect applied to a concrete class? At compile time, the AspectJ Java compiler (gjc)
takes source files and aspect definitions, and compiles the source files while adding all the necessary
interception code for the aspects to hook in where they're declared to. Thisis known as compile-time
weaving. At runtime only asmall AspectJruntimeisneeded, asthe byte code of the classes has already
been rewritten to delegate the appropriate calls via the declared advice in the aspects.

Note

. | . - |
A caveat of using compile-time weaving is that all source files that should be part of the
weaving process must be compiled with the Aspectd compiler. Fortunately, thisisall taken
care of seamlessly by the Aspectd Maven plugin.

AspectJ al so supports other types of weaving, e.g. load-time weaving and runtime weaving. These are
currently not supported by Spring Data Neo4;j.

102

https://secure.wikimedia.org/wikipedia/en/wiki/Aspect-oriented_programming
https://secure.wikimedia.org/wikipedia/en/wiki/Aspect-oriented_programming
https://secure.wikimedia.org/wikipedia/en/wiki/Aspect-oriented_programming

Chapter 27. Neo4j Server

Neo4j is not only available in embedded mode. It can also be installed and run as a stand-alone
server accessible viaa REST API. Developers can integrate Spring Data Neo4j into the Neo4j server
infrastructure in two ways:. in an unmanaged server extension, or viathe REST API.

27.1. Server Extension

When should you write a server extension? The default REST API is essentially a REST'ified
representation of the Neo4j core API. It is nice for getting started, and for simpler scenarios. For
more involved solutionsthat require high-volume access or more complex operations, writing aserver
extension that is able to process external parameters, do al the computationslocally in the plugin, and
then return just the relevant information to the calling client is preferable.

The Neodj Server has two built-in extension mechanisms. It is possible to extend existing URI
endpoints like the graph database, nodes, or relationships, adding new URIs or methods to those. This
is achieved by writing a server plugin [http://docs.neodj.org/chunked/milestone/server-plugins.html].
This plugin type has some restrictions however.

For complete freedom in theimplementation, an unmanaged extension [http://docs.neo4j .org/chunked/
milestone/server-unmanaged-extensions.html] can be used. Unmanaged extensions are essentially
Jersey [http://jersey.java.net/] resource implementations. The resource constructors or methods can
get the G- aphDat abaseSer vi ce injected to execute the necessary operations and return appropriate

Represent ati ons.

Both kinds of extensions have to be packaged as JAR files and added to the Neo4j Server's plugin
directory. Server Plugins are picked up by the server at startup if they provide the necessary META-
I NF. servi ces/ or g. neodj . server. pl ugi ns. Server Pl ugi n file for Javas ServiceLoader facility.
Unmanaged extensions have to be registered with the Neo4j Server configuration.

Example 27.1. Configuring an unmanaged extension

org.neodj .server.thirdparty_jaxrs_cl asses=com exanpl e. nypackage=/ my- cont ext

Running Spring Data Neo4j on the Neo4j Server iseasy. Y ou need to tell the server where to find the
Spring context configuration file, and which beans from it to expose:

Example 27.2. Server plugin initialization

public class HelloWrldlnitializer extends SpringPluginlnitializer {
public HelloWbrldinitializer() {
super (new String[]{"spring/helloWrldServer-Context.xm"},
Pai r. of ("wor| dReposi tory", Worl dRepository.class),
Pair. of ("tenpl ate", Neodj Tenpl ate. cl ass));

Now, your resources can require the Spring beans they need, annotated with @ont ext like this:

103

http://docs.neo4j.org/chunked/milestone/server-plugins.html
http://docs.neo4j.org/chunked/milestone/server-plugins.html
http://docs.neo4j.org/chunked/milestone/server-unmanaged-extensions.html
http://docs.neo4j.org/chunked/milestone/server-unmanaged-extensions.html
http://docs.neo4j.org/chunked/milestone/server-unmanaged-extensions.html
http://jersey.java.net/
http://jersey.java.net/

Neodj Server

Example 27.3. Jersey resource

@ath("/path")

@GosT

@°r oduces(Medi aType. APPLI CATI ON_JSON)

public void foo(@ontext Worl dRepository repo) {

}

The SpringPlugininitializer merges the server provided G aphbDatabaseService with the
Spring configuration and registers the named beans as Jersey | nj ectabl es. It is still necessary
to list the initializer's fully qualified class name in a file named META-1NF/ services/
org. neodj . server. pl ugi ns. Pl ugi nLi fecycl e. The Neodj Server can then pick up and run the
initialization classes before the extensions are loaded.

27.2. Using Spring Data Neo4j as a REST client

To use REST-API the Neodj Server exposes, one would either go with REST libraries on the lower
level or choose one of the Neo4j related REST driversin various languages. For Java Neo4j provides
the Neo4j Java REST bindings [https://github.com/neodj/java-rest-binding] which come asadrop in
replacement for the Gr aphDat abaseSer vi ce API. Spring Data Neo4j REST uses those bindings to
provide seamless access to a remote Neo4j Database.

By simply configuring the gr aphDat abaseSer vi ce t0 be a Spri ngRest Gr aphDat abase pointing to a
Neo4j Server instance and referring to that from <neo4;j : conf i g> Spring DataNeo4j will usethe server
side database for both the simple mapping as well as the advanced mapping.

Note

e
TheNeodj Server REST API doesnot allow for transactionsto span across requests, which
meansthat Spring DataNeo4j isnot transactional across multiple operationswhen running
with aSpri ngRest Gr aphDat abase.

Please also keep in mind that performing graph operations via the REST-API is about one order of
magnitude slower than local operations. Try to use the Neodj Cypher query language, server-side
traversals (Rest Tr aver sal) or Gremlin expressionswhenever possiblefor retrieving large sets of data.
Future versions of Spring Data Neo4j will use the more performant batch APl as well as a binary
protocol.

To set up your project to use the REST bindings, add this dependency to your pom.xml:

Example 27.4. REST-Client configuration - pom.xml

<dependency>
<gr oupl d>or g. spri ngf r anewor k. dat a</ gr oupl d>
<artifactld>spring-data-neodj-rest</artifactld>
<versi on>2. 1. 0. RELEASE</ ver si on>

</ dependency>

Now, you set up the normal Spring Data Neo4j configuration, but point the database to an URL instead
of alocal directory, like so:

104

https://github.com/neo4j/java-rest-binding
https://github.com/neo4j/java-rest-binding

Neodj Server

Example 27.5. REST client configuration - application context

<neodj: confi g graphDat abaseServi ce="gr aphDat abaseServi ce"/ >

<bean i d="gr aphDat abaseServi ce" cl ass="org. spri ngfranmework. dat a. neo4j . rest. SpringRest G aphDat abase" >
<constructor-arg value="http://|ocal host: 7474/ db/ data/" index="0"/>

<l-- for running against a server requiring authentication
<constructor-arg val ue="usernane" index="1"/>
<constructor-arg val ue="password" index="2"/>

-->

</ bean>

Y our project is how set up to work against aremote Neodj Server.

For traversals and Cypher and Gremlin graph queries it is sensible to forward those to
the remote endpoint and execute them there instead of walking the graph over the wire.
SpringRestGraphDatabase aready supports that by providing methods that forward to the remote
instance. (e.g. quer yEngi neFor (), index() and createTraversal Description()). Please usethose
methods when interacting with aremote server for optimal performance. Those methods are a so used
by the Neodj Template and the mapping infrastructure automatically.

105

	Good Relationships
	Table of Contents
	Foreword by Rod Johnson
	Foreword by Emil Eifrem
	About this guide book
	1. The Spring Data Neo4j Project
	2. Feedback
	3. Format of the Book
	4. Acknowledgements

	Part I. Tutorial
	Chapter 1. Introducing our project
	Chapter 2. The Spring stack
	2.1. Required setup

	Chapter 3. The domain model
	Chapter 4. Learning Neo4j
	Chapter 5. Spring Data Neo4j
	Chapter 6. Annotating the domain
	Chapter 7. Indexing
	Chapter 8. Repositories
	Chapter 9. Relationships
	9.1. Creating relationships
	9.2. Accessing related entities
	9.3. Accessing the relationship entities

	Chapter 10. Get it running
	10.1. Populating the database
	10.2. Inspecting the datastore
	10.2.1. Neoclipse visualization
	10.2.2. The Neo4j Shell

	Chapter 11. Web views
	11.1. Searching
	11.2. Listing results

	Chapter 12. Adding social
	12.1. Users
	12.2. Ratings for movies

	Chapter 13. Adding Security
	Chapter 14. More UI
	Chapter 15. Importing Data
	Chapter 16. Recommendations
	Chapter 17. Neo4j Server
	17.1. Getting Neo4j-Server
	17.2. Other approaches

	Chapter 18. Conclusion

	Part II. Reference Documentation
	Reference Documentation
	1. Spring Data and Spring Data Neo4j
	2. Reference Documentation Overview

	Chapter 19. Introduction to Neo4j
	19.1. What is a graph database?
	19.2. About Neo4j
	19.3. GraphDatabaseService
	19.4. Creating nodes and relationships
	19.5. Graph traversal
	19.6. Indexing
	19.7. Querying the Graph with Cypher
	19.8. Gremlin - a Graph Traversal DSL

	Chapter 20. Programming model
	20.1. Object Graph Mapping
	20.2. Advanced Mapping with AspectJ
	20.2.1. AspectJ IDE support

	20.3. Simple Object Graph Mapping
	20.4. Defining node entities
	20.4.1. @NodeEntity: The basic building block
	20.4.2. @GraphId: Neo4j -id field
	20.4.2.1. Entity Equality

	20.4.3. @GraphProperty: Optional annotation for property fields
	20.4.4. @Indexed: Making entities searchable by field value
	20.4.5. @Query: fields as query result views
	20.4.6. @GraphTraversal: fields as traversal result views

	20.5. Relating node entities
	20.5.1. @RelatedTo: Connecting node entities
	20.5.2. @RelationshipEntity: Rich relationships
	20.5.3. @RelatedToVia: Accessing relationship entities
	20.5.4. Relationship Type Precedence
	20.5.5. Discriminating Relationships Based On End Node Type

	20.6. Indexing
	20.6.1. Exact and numeric index
	20.6.2. Fulltext indexes
	20.6.3. Unique indexes
	20.6.4. Manual index access
	20.6.5. Index queries in Neo4jTemplate
	20.6.6. Neo4j Auto Indexes
	20.6.7. Spatial Indexes

	20.7. Neo4jTemplate
	20.7.1. Basic operations
	20.7.2. Core-Operations
	20.7.3. Entity-Persistence
	20.7.4. Result
	20.7.5. Indexing
	20.7.6. Graph traversal
	20.7.7. Cypher Queries
	20.7.8. Gremlin Scripts
	20.7.9. Transactions
	20.7.10. Neo4j REST Server
	20.7.11. Lifecycle Events

	20.8. CRUD with repositories
	20.8.1. CRUDRepository
	20.8.2. IndexRepository and NamedIndexRepository
	20.8.3. TraversalRepository
	20.8.4. Query and Finder Methods
	20.8.4.1. Annotated queries
	20.8.4.2. Named queries
	20.8.4.3. Query results
	20.8.4.4. Cypher examples
	20.8.4.5. Queries derived from finder-method names
	20.8.4.6. Derived Finder Methods

	20.8.5. Cypher-DSL repository
	20.8.6. Cypher-DSL and QueryDSL
	20.8.7. Creating repositories
	20.8.8. Composing repositories

	20.9. Projecting entities
	20.10. Geospatial Queries
	20.11. Active Record Methods for Advanced Mapping Mode
	20.12. Transactions
	20.13. Detached node entities in advanced mapping mode
	20.13.1. Relating detached entities

	20.14. Entity type representation
	20.15. Bean validation (JSR-303)

	Chapter 21. Environment setup
	21.1. Dependencies for Spring Data Neo4j Simple Mapping
	21.2. Gradle configuration for Advanced Mapping (AspectJ)
	21.3. Ant/Ivy configuration for Advanced Mapping (AspectJ)
	21.4. Maven configuration for Advanced Mapping
	21.4.1. Repositories
	21.4.2. Dependencies
	21.4.3. Maven AspectJ build configuration

	21.5. Spring configuration
	21.5.1. XML namespace
	21.5.2. Repository Configuration
	21.5.3. Java-based bean configuration

	Chapter 22. Cross-store persistence
	22.1. Partial entities
	22.2. Cross-store annotations
	22.2.1. @NodeEntity(partial = "true")
	22.2.2. @GraphProperty
	22.2.3. Example

	22.3. Configuring cross-store persistence

	Chapter 23. Sample code
	23.1. Introduction
	23.2. Hello Worlds sample application
	23.3. IMDB sample application
	23.4. MyRestaurants sample application
	23.5. MyRestaurant-Social sample application
	23.6. Cineasts social movie database

	Chapter 24. Heroku: Seeding the Cloud
	24.1. Create a Self-Hosted Web Application
	24.2. Deploy to Heroku

	Chapter 25. Performance considerations
	25.1. When to use Spring Data Neo4j

	Chapter 26. AspectJ details
	Chapter 27. Neo4j Server
	27.1. Server Extension
	27.2. Using Spring Data Neo4j as a REST client

