
Spring Data JPA - Reference Documentation

1.3.4.RELEASE

OliverGierkeSenior ConsultantSpringSource - a division of VMwareogierke@vmware.com

Copyright © 2008-2013The original authors

Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee
for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation ii

Table of Contents

Preface ... iv
1. Project metadata ... iv

I. Reference Documentation ... 1
1. Working with Spring Data Repositories .. 2

1.1. Core concepts ... 2
1.2. Query methods ... 3

Defining repository interfaces .. 4
Fine-tuning repository definition ... 4

Defining query methods .. 4
Query lookup strategies .. 5
Query creation ... 5
Property expressions .. 6
Special parameter handling .. 6

Creating repository instances .. 7
XML configuration .. 7
JavaConfig ... 8
Standalone usage .. 8

1.3. Custom implementations for Spring Data repositories .. 8
Adding custom behavior to single repositories .. 9
Adding custom behavior to all repositories ... 10

1.4. Spring Data extensions .. 12
Domain class web binding for Spring MVC .. 12
Web pagination .. 14
Repository populators ... 15

2. JPA Repositories .. 17
2.1. Introduction ... 17

Spring namespace .. 17
Annotation based configuration ... 18

2.2. Query methods .. 19
Query lookup strategies .. 19
Query creation ... 19
Using JPA NamedQueries .. 20
Using @Query ... 21
Using named parameters .. 22
Modifying queries ... 22
Applying query hints ... 23

2.3. Specifications .. 23
2.4. Transactionality ... 25

Transactional query methods .. 26
2.5. Locking ... 27
2.6. Auditing ... 27

Basics .. 27
Annotation based auditing metadata .. 27
Interface-based auditing metadata ... 28
AuditorAware .. 28

General auditing configuration ... 28
2.7. Miscellaneous .. 29

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation iii

Merging persistence units ... 29
Classpath scanning for @Entity classes and JPA mapping files 29
CDI integration ... 30

II. Appendix .. 32
A. Namespace reference .. 33

A.1. The <repositories /> element ... 33
B. Repository query keywords ... 34

B.1. Supported query keywords .. 34
C. Frequently asked questions .. 36
Glossary .. 37

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation iv

Preface

1 Project metadata
• Version control - git://github.com/SpringSource/spring-data-jpa.git
• Bugtracker - https://jira.springsource.org/browse/DATAJPA
• Release repository - http://repo.springsource.org/libs-release
• Milestone repository - http://repo.springsource.org/libs-milestone
• Snapshot repository - http://repo.springsource.org/libs-snapshot

git://github.com/SpringSource/spring-data-jpa.git
https://jira.springsource.org/browse/DATAJPA
http://repo.springsource.org/libs-release
http://repo.springsource.org/libs-milestone
http://repo.springsource.org/libs-snapshot

Part I. Reference Documentation

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation 2

1. Working with Spring Data Repositories

The goal of Spring Data repository abstraction is to significantly reduce the amount of boilerplate code
required to implement data access layers for various persistence stores.

Important

Spring Data repository documentation and your module

This chapter explains the core concepts and interfaces of Spring Data repositories. The
information in this chapter is pulled from the Spring Data Commons module. It uses the
configuration and code samples for the Java Persistence API (JPA) module. Adapt the XML
namespace declaration and the types to be extended to the equivalents of the particular module
that you are using. Appendix A, Namespace reference covers XML configuration which is
supported across all Spring Data modules supporting the repository API, Appendix B, Repository
query keywords covers the query method method keywords supported by the repository
abstraction in general. For detailed information on the specific features of your module, consult
the chapter on that module of this document.

1.1 Core concepts

The central interface in Spring Data repository abstraction is Repository (probably not that much of
a surprise). It takes the the domain class to manage as well as the id type of the domain class as type
arguments. This interface acts primarily as a marker interface to capture the types to work with and
to help you to discover interfaces that extend this one. The CrudRepository provides sophisticated
CRUD functionality for the entity class that is being managed.

public interface CrudRepository<T, ID extends Serializable>

 extends Repository<T, ID> {

 ❶

 <S extends T> S save(S entity);

 ❷

 T findOne(ID primaryKey);

 ❸

 Iterable<T> findAll();

 Long count();

 ❹

 void delete(T entity);

 ❺

 boolean exists(ID primaryKey);

 ❻

 // … more functionality omitted.

}

❶ Saves the given entity.

❷ Returns the entity identified by the given id.

❸ Returns all entities.

❹ Returns the number of entities.

❺ Deletes the given entity.

❻ Indicates whether an entity with the given id exists.

Example 1.1 CrudRepository interface

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation 3

Usually we will have persistence technology specific sub-interfaces to include additional technology
specific methods. We will now ship implementations for a variety of Spring Data modules that implement
CrudRepository.

On top of the CrudRepository there is a PagingAndSortingRepository abstraction that adds
additional methods to ease paginated access to entities:

public interface PagingAndSortingRepository<T, ID extends Serializable>

 extends CrudRepository<T, ID> {

 Iterable<T> findAll(Sort sort);

 Page<T> findAll(Pageable pageable);

}

Example 1.2 PagingAndSortingRepository

Accessing the second page of User by a page size of 20 you could simply do something like this:

PagingAndSortingRepository<User, Long> repository = // … get access to a bean

Page<User> users = repository.findAll(new PageRequest(1, 20));

1.2 Query methods

Standard CRUD functionality repositories usually have queries on the underlying datastore. With Spring
Data, declaring those queries becomes a four-step process:

1. Declare an interface extending Repository or one of its subinterfaces and type it to the domain
class that it will handle.

public interface PersonRepository extends Repository<User, Long> { … }

2. Declare query methods on the interface.

List<Person> findByLastname(String lastname);

3. Set up Spring to create proxy instances for those interfaces.

<?xml version="1.0" encoding="UTF-8"?>

<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://www.springframework.org/schema/data/jpa"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/data/jpa

 http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

 <repositories base-package="com.acme.repositories" />

</beans>

Note

The JPA namespace is used in this example. If you are using the repository abstraction for
any other store, you need to change this to the appropriate namespace declaration of your
store module which should be exchanging jpa in favor of, for example, mongodb.

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation 4

4. Get the repository instance injected and use it.

public class SomeClient {

 @Autowired

 private PersonRepository repository;

 public void doSomething() {

 List<Person> persons = repository.findByLastname("Matthews");

 }

}

The sections that follow explain each step.

Defining repository interfaces

As a first step you define a domain class-specific repository interface. The interface must extend
Repository and be typed to the domain class and an ID type. If you want to expose CRUD methods
for that domain type, extend CrudRepository instead of Repository.

Fine-tuning repository definition

Typically, your repository interface will extend Repository, CrudRepository or
PagingAndSortingRepository. Alternatively, if you do not want to extend Spring Data interfaces,
you can also annotate your repository interface with @RepositoryDefinition. Extending
CrudRepository exposes a complete set of methods to manipulate your entities. If you prefer
to be selective about the methods being exposed, simply copy the ones you want to expose from
CrudRepository into your domain repository.

interface MyBaseRepository<T, ID extends Serializable> extends Repository<T, ID> {

 T findOne(ID id);

 T save(T entity);

}

interface UserRepository extends MyBaseRepository<User, Long> {

 User findByEmailAddress(EmailAddress emailAddress);

}

Example 1.3 Selectively exposing CRUD methods

In this first step you defined a common base interface for all your domain repositories and exposed
findOne(…) as well as save(…).These methods will be routed into the base repository implementation
of the store of your choice provided by Spring Data because they are matching the method signatures
in CrudRepository. So the UserRepository will now be able to save users, and find single ones
by id, as well as triggering a query to find Users by their email address.

Defining query methods

The repository proxy has two ways to derive a store-specific query from the method name. It can derive
the query from the method name directly, or by using an additionally created query. Available options
depend on the actual store. However, there's got to be an strategy that decides what actual query is
created. Let's have a look at the available options.

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation 5

Query lookup strategies

The following strategies are available for the repository infrastructure to resolve the query. You can
configure the strategy at the namespace through the query-lookup-strategy attribute. Some
strategies may not be supported for particular datastores.

CREATE

CREATE attempts to construct a store-specific query from the query method name. The general approach
is to remove a given set of well-known prefixes from the method name and parse the rest of the method.
Read more about query construction in the section called “Query creation”.

USE_DECLARED_QUERY

USE_DECLARED_QUERY tries to find a declared query and will throw an exception in case it can't find
one. The query can be defined by an annotation somewhere or declared by other means. Consult the
documentation of the specific store to find available options for that store. If the repository infrastructure
does not find a declared query for the method at bootstrap time, it fails.

CREATE_IF_NOT_FOUND (default)

CREATE_IF_NOT_FOUND combines CREATE and USE_DECLARED_QUERY. It looks up a declared query
first, and if no declared query is found, it creates a custom method name-based query. This is the default
lookup strategy and thus will be used if you do not configure anything explicitly. It allows quick query
definition by method names but also custom-tuning of these queries by introducing declared queries
as needed.

Query creation

The query builder mechanism built into Spring Data repository infrastructure is useful for building
constraining queries over entities of the repository. The mechanism strips the prefixes find…By, read…
By, and get…By from the method and starts parsing the rest of it. The introducing clause can contain
further expressions such as a Distinct to set a distinct flag on the query to be created. However, the
first By acts as delimiter to indicate the start of the actual criteria. At a very basic level you can define
conditions on entity properties and concatenate them with And and Or .

public interface PersonRepository extends Repository<User, Long> {

 List<Person> findByEmailAddressAndLastname(EmailAddress emailAddress, String lastname);

 // Enables the distinct flag for the query

 List<Person> findDistinctPeopleByLastnameOrFirstname(String lastname, String firstname);

 List<Person> findPeopleDistinctByLastnameOrFirstname(String lastname, String firstname);

 // Enabling ignoring case for an individual property

 List<Person> findByLastnameIgnoreCase(String lastname);

 // Enabling ignoring case for all suitable properties

 List<Person> findByLastnameAndFirstnameAllIgnoreCase(String lastname, String firstname);

 // Enabling static ORDER BY for a query

 List<Person> findByLastnameOrderByFirstnameAsc(String lastname);

 List<Person> findByLastnameOrderByFirstnameDesc(String lastname);

}

Example 1.4 Query creation from method names

The actual result of parsing the method depends on the persistence store for which you create the query.
However, there are some general things to notice.

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation 6

• The expressions are usually property traversals combined with operators that can be concatenated.
You can combine property expressions with AND and OR. You also get support for operators such as
Between, LessThan, GreaterThan, Like for the property expressions. The supported operators
can vary by datastore, so consult the appropriate part of your reference documentation.

• The method parser supports setting an IgnoreCase flag for individual properties, for
example,findByLastnameIgnoreCase(…)) or for all properties of a type that support ignoring case
(usually Strings, for example, findByLastnameAndFirstnameAllIgnoreCase(…)). Whether
ignoring cases is supported may vary by store, so consult the relevant sections in the reference
documentation for the store-specific query method.

• You can apply static ordering by appending an OrderBy clause to the query method that references
a property and by providing a sorting direction (Asc or Desc). To create a query method that supports
dynamic sorting, see the section called “Special parameter handling”.

Property expressions

Property expressions can refer only to a direct property of the managed entity, as shown in the preceding
example. At query creation time you already make sure that the parsed property is a property of the
managed domain class. However, you can also define constraints by traversing nested properties.
Assume Persons have Addresses with ZipCodes. In that case a method name of

List<Person> findByAddressZipCode(ZipCode zipCode);

creates the property traversal x.address.zipCode. The resolution algorithm starts with interpreting
the entire part (AddressZipCode) as the property and checks the domain class for a property with
that name (uncapitalized). If the algorithm succeeds it uses that property. If not, the algorithm splits
up the source at the camel case parts from the right side into a head and a tail and tries to find the
corresponding property, in our example, AddressZip and Code. If the algorithm finds a property with
that head it takes the tail and continue building the tree down from there, splitting the tail up in the way
just described. If the first split does not match, the algorithm move the split point to the left (Address,
ZipCode) and continues.

Although this should work for most cases, it is possible for the algorithm to select the wrong property.
Suppose the Person class has an addressZip property as well. The algorithm would match in the first
split round already and essentially choose the wrong property and finally fail (as the type of addressZip
probably has no code property). To resolve this ambiguity you can use _ inside your method name to
manually define traversal points. So our method name would end up like so:

List<Person> findByAddress_ZipCode(ZipCode zipCode);

Special parameter handling

To handle parameters to your query you simply define method parameters as already seen in the
examples above. Besides that the infrastructure will recognize certain specific types like Pageable and
Sort to apply pagination and sorting to your queries dynamically.

Page<User> findByLastname(String lastname, Pageable pageable);

List<User> findByLastname(String lastname, Sort sort);

List<User> findByLastname(String lastname, Pageable pageable);

Example 1.5 Using Pageable and Sort in query methods

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation 7

The first method allows you to pass an org.springframework.data.domain.Pageable instance
to the query method to dynamically add paging to your statically defined query. Sorting options
are handled through the Pageable instance too. If you only need sorting, simply add an
org.springframework.data.domain.Sort parameter to your method. As you also can see,
simply returning a List is possible as well. In this case the additional metadata required to build the
actual Page instance will not be created (which in turn means that the additional count query that would
have been necessary not being issued) but rather simply restricts the query to look up only the given
range of entities.

Note

To find out how many pages you get for a query entirely you have to trigger an additional count
query. By default this query will be derived from the query you actually trigger.

Creating repository instances

In this section you create instances and bean definitions for the repository interfaces defined. The easiest
way to do so is by using the Spring namespace that is shipped with each Spring Data module that
supports the repository mechanism.

XML configuration

Each Spring Data module includes a repositories element that allows you to simply define a base
package that Spring scans for you.

<?xml version="1.0" encoding="UTF-8"?>

<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://www.springframework.org/schema/data/jpa"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/data/jpa

 http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

 <repositories base-package="com.acme.repositories" />

</beans:beans>

In the preceding example, Spring is instructed to scan com.acme.repositories and all its subpackages
for interfaces extending Repository or one of its subinterfaces. For each interface found, the
infrastructure registers the persistence technology-specific FactoryBean to create the appropriate
proxies that handle invocations of the query methods. Each bean is registered under a bean name that
is derived from the interface name, so an interface of UserRepository would be registered under
userRepository. The base-package attribute allows wildcards, so that you can have a pattern of
scanned packages.

Using filters

By default the infrastructure picks up every interface extending the persistence technology-specific
Repository subinterface located under the configured base package and creates a bean instance
for it. However, you might want more fine-grained control over which interfaces bean instances get
created for. To do this you use <include-filter /> and <exclude-filter /> elements
inside <repositories />. The semantics are exactly equivalent to the elements in Spring's context
namespace. For details, see Spring reference documentation on these elements.

http://static.springsource.org/spring/docs/2.5.x/reference/beans.html#beans-scanning-filters

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation 8

For example, to exclude certain interfaces from instantiation as repository, you could use the following
configuration:

<repositories base-package="com.acme.repositories">

 <context:exclude-filter type="regex" expression=".*SomeRepository" />

</repositories>

This example excludes all interfaces ending in SomeRepository from being instantiated.

Example 1.6 Using exclude-filter element

JavaConfig

The repository infrastructure can also be triggered using a store-specific @Enable

${store}Repositories annotation on a JavaConfig class. For an introduction into Java-based
configuration of the Spring container, see the reference documentation.2

A sample configuration to enable Spring Data repositories looks something like this.

@Configuration

@EnableJpaRepositories("com.acme.repositories")

class ApplicationConfiguration {

 @Bean

 public EntityManagerFactory entityManagerFactory() {

 // …

 }

}

Example 1.7 Sample annotation based repository configuration

Note

The sample uses the JPA-specific annotation, which you would change according to the store
module you actually use. The same applies to the definition of the EntityManagerFactory
bean. Consult the sections covering the store-specific configuration.

Standalone usage

You can also use the repository infrastructure outside of a Spring container. You still need some
Spring libraries in your classpath, but generally you can set up repositories programmatically as
well. The Spring Data modules that provide repository support ship a persistence technology-specific
RepositoryFactory that you can use as follows.

RepositoryFactorySupport factory = … // Instantiate factory here

UserRepository repository = factory.getRepository(UserRepository.class);

Example 1.8 Standalone usage of repository factory

1.3 Custom implementations for Spring Data repositories

Often it is necessary to provide a custom implementation for a few repository methods. Spring Data
repositories easily allow you to provide custom repository code and integrate it with generic CRUD
abstraction and query method functionality.

2JavaConfig in the Spring reference documentation - http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/
html/beans.html#beans-java

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-java
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/beans.html#beans-java

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation 9

Adding custom behavior to single repositories

To enrich a repository with custom functionality you first define an interface and an implementation for
the custom functionality. Use the repository interface you provided to extend the custom interface.

interface UserRepositoryCustom {

 public void someCustomMethod(User user);

}

Example 1.9 Interface for custom repository functionality

class UserRepositoryImpl implements UserRepositoryCustom {

 public void someCustomMethod(User user) {

 // Your custom implementation

 }

}

Note

The implementation itself does not depend on Spring Data and can be a regular Spring bean. So
you can use standard dependency injection behavior to inject references to other beans, take
part in aspects, and so on.

Example 1.10 Implementation of custom repository functionality

public interface UserRepository extends CrudRepository<User, Long>, UserRepositoryCustom {

 // Declare query methods here

}

Let your standard repository interface extend the custom one. Doing so makes CRUD and custom
functionality available to clients.

Example 1.11 Changes to the your basic repository interface

Configuration

If you use namespace configuration, the repository infrastructure tries to autodetect custom
implementations by scanning for classes below the package we found a repository in. These classes
need to follow the naming convention of appending the namespace element's attribute repository-
impl-postfix to the found repository interface name. This postfix defaults to Impl.

<repositories base-package="com.acme.repository" />

<repositories base-package="com.acme.repository" repository-impl-postfix="FooBar" />

Example 1.12 Configuration example

The first configuration example will try to look up a class
com.acme.repository.UserRepositoryImpl to act as custom repository implementation, where
the second example will try to lookup com.acme.repository.UserRepositoryFooBar.

Manual wiring

The preceding approach works well if your custom implementation uses annotation-based configuration
and autowiring only, as it will be treated as any other Spring bean. If your custom implementation bean

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation 10

needs special wiring, you simply declare the bean and name it after the conventions just described.
The infrastructure will then refer to the manually defined bean definition by name instead of creating
one itself.

<repositories base-package="com.acme.repository" />

<beans:bean id="userRepositoryImpl" class="…">

 <!-- further configuration -->

</beans:bean>

Example 1.13 Manual wiring of custom implementations (I)

Adding custom behavior to all repositories

The preceding approach is not feasible when you want to add a single method to all your repository
interfaces.

1. To add custom behavior to all repositories, you first add an intermediate interface to declare the
shared behavior.

public interface MyRepository<T, ID extends Serializable>

 extends JpaRepository<T, ID> {

 void sharedCustomMethod(ID id);

}

Example 1.14 An interface declaring custom shared behavior

Now your individual repository interfaces will extend this intermediate interface instead of the
Repository interface to include the functionality declared.

2. Next, create an implementation of the intermediate interface that extends the persistence technology-
specific repository base class. This class will then act as a custom base class for the repository
proxies.

public class MyRepositoryImpl<T, ID extends Serializable>

 extends SimpleJpaRepository<T, ID> implements MyRepository<T, ID> {

 private EntityManager entityManager;

 // There are two constructors to choose from, either can be used.

 public MyRepositoryImpl(Class<T> domainClass, EntityManager entityManager) {

 super(domainClass, entityManager);

 // This is the recommended method for accessing inherited class dependencies.

 this.entityManager = entityManager;

 }

 public void sharedCustomMethod(ID id) {

 // implementation goes here

 }

}

Example 1.15 Custom repository base class

The default behavior of the Spring <repositories /> namespace is to provide an implementation
for all interfaces that fall under the base-package. This means that if left in its current state, an

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation 11

implementation instance of MyRepository will be created by Spring. This is of course not desired
as it is just supposed to act as an intermediary between Repository and the actual repository
interfaces you want to define for each entity. To exclude an interface that extends Repository from
being instantiated as a repository instance, you can either annotate it with @NoRepositoryBean or
move it outside of the configured base-package.

3. Then create a custom repository factory to replace the default RepositoryFactoryBean that will
in turn produce a custom RepositoryFactory. The new repository factory will then provide your
MyRepositoryImpl as the implementation of any interfaces that extend the Repository interface,
replacing the SimpleJpaRepository implementation you just extended.

public class MyRepositoryFactoryBean<R extends JpaRepository<T, I>, T, I extends

 Serializable>

 extends JpaRepositoryFactoryBean<R, T, I> {

 protected RepositoryFactorySupport createRepositoryFactory(EntityManager

 entityManager) {

 return new MyRepositoryFactory(entityManager);

 }

 private static class MyRepositoryFactory<T, I extends Serializable> extends

 JpaRepositoryFactory {

 private EntityManager entityManager;

 public MyRepositoryFactory(EntityManager entityManager) {

 super(entityManager);

 this.entityManager = entityManager;

 }

 protected Object getTargetRepository(RepositoryMetadata metadata) {

 return new MyRepositoryImpl<T, I>((Class<T>) metadata.getDomainClass(),

 entityManager);

 }

 protected Class<?> getRepositoryBaseClass(RepositoryMetadata metadata) {

 // The RepositoryMetadata can be safely ignored, it is used by the

 JpaRepositoryFactory

 //to check for QueryDslJpaRepository's which is out of scope.

 return MyRepository.class;

 }

 }

}

Example 1.16 Custom repository factory bean

4. Finally, either declare beans of the custom factory directly or use the factory-class attribute of
the Spring namespace to tell the repository infrastructure to use your custom factory implementation.

<repositories base-package="com.acme.repository"

 factory-class="com.acme.MyRepositoryFactoryBean" />

Example 1.17 Using the custom factory with the namespace

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation 12

1.4 Spring Data extensions

This section documents a set of Spring Data extensions that enable Spring Data usage in a variety of
contexts. Currently most of the integration is targeted towards Spring MVC.

Domain class web binding for Spring MVC

Given you are developing a Spring MVC web application you typically have to resolve domain class
ids from URLs. By default your task is to transform that request parameter or URL part into the domain
class to hand it to layers below then or execute business logic on the entities directly. This would look
something like this:

@Controller

@RequestMapping("/users")

public class UserController {

 private final UserRepository userRepository;

 @Autowired

 public UserController(UserRepository userRepository) {

 Assert.notNull(repository, "Repository must not be null!");

 userRepository = userRepository;

 }

 @RequestMapping("/{id}")

 public String showUserForm(@PathVariable("id") Long id, Model model) {

 // Do null check for id

 User user = userRepository.findOne(id);

 // Do null check for user

 model.addAttribute("user", user);

 return "user";

 }

}

First you declare a repository dependency for each controller to look up the entity managed by
the controller or repository respectively. Looking up the entity is boilerplate as well, as it's always
a findOne(…) call. Fortunately Spring provides means to register custom components that allow
conversion between a String value to an arbitrary type.

PropertyEditors

For Spring versions before 3.0 simple Java PropertyEditors had to be used. To integrate with
that, Spring Data offers a DomainClassPropertyEditorRegistrar, which looks up all Spring Data
repositories registered in the ApplicationContext and registers a custom PropertyEditor for
the managed domain class.

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation 13

<bean class="….web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter">

 <property name="webBindingInitializer">

 <bean class="….web.bind.support.ConfigurableWebBindingInitializer">

 <property name="propertyEditorRegistrars">

 <bean class="org.springframework.data.repository.support.DomainClassPropertyEditorRegistrar"

 />

 </property>

 </bean>

 </property>

</bean>

If you have configured Spring MVC as in the preceding example, you can configure your controller as
follows, which reduces a lot of the clutter and boilerplate.

@Controller

@RequestMapping("/users")

public class UserController {

 @RequestMapping("/{id}")

 public String showUserForm(@PathVariable("id") User user, Model model) {

 model.addAttribute("user", user);

 return "userForm";

 }

}

ConversionService

In Spring 3.0 and later the PropertyEditor support is superseded by a new conversion infrastructure
that eliminates the drawbacks of PropertyEditors and uses a stateless X to Y conversion
approach. Spring Data now ships with a DomainClassConverter that mimics the behavior of
DomainClassPropertyEditorRegistrar. To configure, simply declare a bean instance and pipe
the ConversionService being used into its constructor:

<mvc:annotation-driven conversion-service="conversionService" />

<bean class="org.springframework.data.repository.support.DomainClassConverter">

 <constructor-arg ref="conversionService" />

</bean>

If you are using JavaConfig, you can simply extend Spring MVC's WebMvcConfigurationSupport
and hand the FormatingConversionService that the configuration superclass provides into the
DomainClassConverter instance you create.

class WebConfiguration extends WebMvcConfigurationSupport {

 // Other configuration omitted

 @Bean

 public DomainClassConverter<?> domainClassConverter() {

 return new DomainClassConverter<FormattingConversionService>(mvcConversionService());

 }

}

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation 14

Web pagination

When working with pagination in the web layer you usually have to write a lot of boilerplate code yourself
to extract the necessary metadata from the request. The less desirable approach shown in the example
below requires the method to contain an HttpServletRequest parameter that has to be parsed
manually. This example also omits appropriate failure handling, which would make the code even more
verbose.

@Controller

@RequestMapping("/users")

public class UserController {

 // DI code omitted

 @RequestMapping

 public String showUsers(Model model, HttpServletRequest request) {

 int page = Integer.parseInt(request.getParameter("page"));

 int pageSize = Integer.parseInt(request.getParameter("pageSize"));

 Pageable pageable = new PageRequest(page, pageSize);

 model.addAttribute("users", userService.getUsers(pageable));

 return "users";

 }

}

The bottom line is that the controller should not have to handle the functionality of extracting pagination
information from the request. So Spring includes a PageableArgumentResolver that will do the work
for you.

<bean class="….web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter">

 <property name="customArgumentResolvers">

 <list>

 <bean class="org.springframework.data.web.PageableArgumentResolver" />

 </list>

 </property>

</bean>

This configuration allows you to simplify controllers down to something like this:

@Controller

@RequestMapping("/users")

public class UserController {

 @RequestMapping

 public String showUsers(Model model, Pageable pageable) {

 model.addAttribute("users", userRepository.findAll(pageable));

 return "users";

 }

}

The PageableArgumentResolver automatically resolves request parameters to build a
PageRequest instance. By default it expects the following structure for the request parameters.

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation 15

Table 1.1. Request parameters evaluated by PageableArgumentResolver

page Page you want to retrieve.

page.size Size of the page you want to retrieve.

page.sort Property that should be sorted by.

page.sort.dir Direction that should be used for sorting.

In case you need multiple Pageables to be resolved from the request (for multiple tables, for example)
you can use Spring's @Qualifier annotation to distinguish one from another. The request parameters
then have to be prefixed with ${qualifier}_. So for a method signature like this:

public String showUsers(Model model,

 @Qualifier("foo") Pageable first,

 @Qualifier("bar") Pageable second) { … }

you have to populate foo_page and bar_page and the related subproperties.

Configuring a global default on bean declaration

The PageableArgumentResolver will use a PageRequest with the first page and a page size of 10
by default. It will use that value if it cannot resolve a PageRequest from the request (because of missing
parameters, for example). You can configure a global default on the bean declaration directly. If you
might need controller method specific defaults for the Pageable, annotate the method parameter with
@PageableDefaults and specify page (through pageNumber), page size (through value), sort (list
of properties to sort by), and sortDir (the direction to sort by) as annotation attributes:

public String showUsers(Model model,

 @PageableDefaults(pageNumber = 0, value = 30) Pageable pageable) { … }

Repository populators

If you work with the Spring JDBC module, you probably are familiar with the support to populate a
DataSource using SQL scripts. A similar abstraction is available on the repositories level, although
it does not use SQL as the data definition language because it must be store-independent. Thus the
populators support XML (through Spring's OXM abstraction) and JSON (through Jackson) to define data
with which to populate the repositories.

Assume you have a file data.json with the following content:

[{ "_class" : "com.acme.Person",

 "firstname" : "Dave",

 "lastname" : "Matthews" },

 { "_class" : "com.acme.Person",

 "firstname" : "Carter",

 "lastname" : "Beauford" }]

Example 1.18 Data defined in JSON

You can easily populate your repositories by using the populator elements of the repository namespace
provided in Spring Data Commons. To populate the preceding data to your PersonRepository , do
the following:

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation 16

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:repository="http://www.springframework.org/schema/data/repository"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/data/repository

 http://www.springframework.org/schema/data/repository/spring-repository.xsd">

 <repository:jackson-populator location="classpath:data.json" />

</beans>

Example 1.19 Declaring a Jackson repository populator

This declaration causes the data.json file being read, deserialized by a Jackson ObjectMapper.
The type to which the JSON object will be unmarshalled to will be determined by inspecting the _class
attribute of the JSON document. The infrastructure will eventually select the appropriate repository to
handle the object just deserialized.

To rather use XML to define the data the repositories shall be populated with, you can use the
unmarshaller-populator element. You configure it to use one of the XML marshaller options Spring
OXM provides you with. See the Spring reference documentation for details.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:repository="http://www.springframework.org/schema/data/repository"

 xmlns:oxm="http://www.springframework.org/schema/oxm"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/data/repository

 http://www.springframework.org/schema/data/repository/spring-repository.xsd

 http://www.springframework.org/schema/oxm

 http://www.springframework.org/schema/oxm/spring-oxm.xsd">

 <repository:unmarshaller-populator location="classpath:data.json" unmarshaller-

ref="unmarshaller" />

 <oxm:jaxb2-marshaller contextPath="com.acme" />

</beans>

Example 1.20 Declaring an unmarshalling repository populator (using JAXB)

???

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation 17

2. JPA Repositories

This chapter includes details of the JPA repository implementation.

2.1 Introduction

Spring namespace

The JPA module of Spring Data contains a custom namespace that allows defining repository beans.
It also contains certain features and element attributes that are special to JPA. Generally the JPA
repositories can be set up using the repositories element:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:jpa="http://www.springframework.org/schema/data/jpa"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/data/jpa

 http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

 <jpa:repositories base-package="com.acme.repositories" />

</beans>

Example 2.1 Setting up JPA repositories using the namespace

Using this element looks up Spring Data repositories as described in the section called “Creating
repository instances”. Beyond that it activates persistence exception translation for all beans annotated
with @Repository to let exceptions being thrown by the JPA presistence providers be converted into
Spring's DataAccessException hierarchy.

Custom namespace attributes

Beyond the default attributes of the repositories element the JPA namespace offers additional
attributes to gain more detailled control over the setup of the repositories:

Table 2.1. Custom JPA-specific attributes of the repositories element

entity-manager-factory-ref Explicitly wire the EntityManagerFactory to
be used with the repositories being detected
by the repositories element. Usually used
if multiple EntityManagerFactory beans
are used within the application. If not
configured we will automatically lookup the
single EntityManagerFactory configured in
the ApplicationContext.

transaction-manager-ref Explicitly wire the
PlatformTransactionManager to be used
with the repositories being detected by
the repositories element. Usually only
necessary if multiple transaction managers

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation 18

and/or EntityManagerFactory beans have
been configured. Default to a single defined
PlatformTransactionManager inside the
current ApplicationContext.

Annotation based configuration

The Spring Data JPA repositories support cannot only be activated through an XML namespace but
also using an annotation through JavaConfig.

@Configuration

@EnableJpaRepositories

@EnableTransactionManagement

class ApplicationConfig {

 @Bean

 public DataSource dataSource() {

 EmbeddedDatabaseBuilder builder = new EmbeddedDatabaseBuilder();

 return builder.setType(EmbeddedDatabaseType.HSQL).build();

 }

 @Bean

 public EntityManagerFactory entityManagerFactory() {

 HibernateJpaVendorAdapter vendorAdapter = new HibernateJpaVendorAdapter();

 vendorAdapter.setGenerateDdl(true);

 LocalContainerEntityManagerFactoryBean factory = new

 LocalContainerEntityManagerFactoryBean();

 factory.setJpaVendorAdapter(vendorAdapter);

 factory.setPackagesToScan("com.acme.domain");

 factory.setDataSource(dataSource());

 factory.afterPropertiesSet();

 return factory.getObject();

 }

 @Bean

 public PlatformTransactionManager transactionManager() {

 JpaTransactionManager txManager = new JpaTransactionManager();

 txManager.setEntityManagerFactory(entityManagerFactory());

 return txManager;

 }

}

Example 2.2 Spring Data JPA repositories using JavaConfig

The just shown configuration class sets up an embedded HSQL database using the
EmbeddedDatabaseBuilder API of spring-jdbc. We then set up a EntityManagerFactory and
use Hibernate as sample persistence provider. The last infrastructure component declared here
is the JpaTransactionManager. We eventually activate Spring Data JPA repositories using the
@EnableJpaRepositories annotation which essentially carries the same attributes as the XML
namespace does. If no base package is configured it will use the one the configuration class resides in.

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation 19

2.2 Query methods

Query lookup strategies

The JPA module supports defining a query manually as String or have it being derived from the method
name.

Declared queries

Although getting a query derived from the method name is quite convenient, one might face the situation
in which either the method name parser does not support the keyword one wants to use or the method
name would get unnecessarily ugly. So you can either use JPA named queries through a naming
convention (see the section called “Using JPA NamedQueries” for more information) or rather annotate
your query method with @Query (see the section called “Using @Query” for details).

Query creation

Generally the query creation mechanism for JPA works as described in Section 1.2, “Query methods”.
Here's a short example of what a JPA query method translates into:

public interface UserRepository extends Repository<User, Long> {

 List<User> findByEmailAddressAndLastname(String emailAddress, String lastname);

}

We will create a query using the JPA criteria API from this but essentially this translates into the following
query:

select u from User u where u.emailAddress = ?1 and u.lastname = ?2

Spring Data JPA will do a property check and traverse nested properties as described in ???. Here's
an overview of the keywords supported for JPA and what a method containing that keyword essentially
translates to.

Example 2.3 Query creation from method names

Table 2.2. Supported keywords inside method names

Keyword Sample JPQL snippet

And findByLastnameAndFirstname… where x.lastname = ?1 and

x.firstname = ?2

Or findByLastnameOrFirstname… where x.lastname = ?1 or x.firstname

= ?2

Between findByStartDateBetween … where x.startDate between 1? and ?2

LessThan findByAgeLessThan … where x.age < ?1

GreaterThan findByAgeGreaterThan … where x.age > ?1

After findByStartDateAfter … where x.startDate > ?1

Before findByStartDateBefore … where x.startDate < ?1

IsNull findByAgeIsNull … where x.age is null

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation 20

Keyword Sample JPQL snippet

IsNotNull,NotNullfindByAge(Is)NotNull … where x.age not null

Like findByFirstnameLike … where x.firstname like ?1

NotLike findByFirstnameNotLike … where x.firstname not like ?1

StartingWith findByFirstnameStartingWith… where x.firstname like ?1 (parameter
bound with appended %)

EndingWith findByFirstnameEndingWith… where x.firstname like ?1 (parameter
bound with prepended %)

Containing findByFirstnameContaining… where x.firstname like ?1 (parameter
bound wrapped in %)

OrderBy findByAgeOrderByLastnameDesc… where x.age = ?1 order by x.lastname

desc

Not findByLastnameNot … where x.lastname <> ?1

In findByAgeIn(Collection<Age>

ages)

… where x.age in ?1

NotIn findByAgeNotIn(Collection<Age>

age)

… where x.age not in ?1

True findByActiveTrue() … where x.active = true

False findByActiveFalse() … where x.active = false

Note

In and NotIn also take any subclass of Collection as parameter as well as arrays or varargs.
For other syntactical versions of the very same logical operator check Appendix B, Repository
query keywords.

Using JPA NamedQueries

Note

The examples use simple <named-query /> element and @NamedQuery annotation. The
queries for these configuration elements have to be defined in JPA query language. Of course
you can use <named-native-query /> or @NamedNativeQuery too. These elements allow
you to define the query in native SQL by losing the database platform independence.

XML named query definition

To use XML configuration simply add the necessary <named-query /> element to the orm.xml JPA
configuration file located in META-INF folder of your classpath. Automatic invocation of named queries
is enabled by using some defined naming convention. For more details see below.

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation 21

<named-query name="User.findByLastname">

 <query>select u from User u where u.lastname = ?1</query>

</named-query>

Example 2.4 XML named query configuration

As you can see the query has a special name which will be used to resolve it at runtime.

Annotation configuration

Annotation configuration has the advantage of not needing another configuration file to be edited,
probably lowering maintenance costs. You pay for that benefit by the need to recompile your domain
class for every new query declaration.

@Entity

@NamedQuery(name = "User.findByEmailAddress",

 query = "select u from User u where u.emailAddress = ?1")

public class User {

}

Example 2.5 Annotation based named query configuration

Declaring interfaces

To allow execution of these named queries all you need to do is to specify the UserRepository as
follows:

public interface UserRepository extends JpaRepository<User, Long> {

 List<User> findByLastname(String lastname);

 User findByEmailAddress(String emailAddress);

}

Example 2.6 Query method declaration in UserRepository

Spring Data will try to resolve a call to these methods to a named query, starting with the simple name
of the configured domain class, followed by the method name separated by a dot. So the example here
would use the named queries defined above instead of trying to create a query from the method name.

Using @Query

Using named queries to declare queries for entities is a valid approach and works fine for a small number
of queries. As the queries themselves are tied to the Java method that executes them you actually can
bind them directly using the Spring Data JPA @Query annotation rather than annotating them to the
domain class. This will free the domain class from persistence specific information and co-locate the
query to the repository interface.

Queries annotated to the query method will take precedence over queries defined using @NamedQuery
or named queries declared in orm.xml.

public interface UserRepository extends JpaRepository<User, Long> {

 @Query("select u from User u where u.emailAddress = ?1")

 User findByEmailAddress(String emailAddress);

}

Example 2.7 Declare query at the query method using @Query

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation 22

Using advanced LIKE expressions

The query execution mechanism for manually defined queries using @Query allow the definition of
advanced LIKE expressions inside the query definition.

public interface UserRepository extends JpaRepository<User, Long> {

 @Query("select u from User u where u.firstname like %?1")

 List<User> findByFirstnameEndsWith(String firstname);

}

Example 2.8 Advanced LIKE expressions in @Query

In the just shown sample LIKE delimiter character % is recognized and the query transformed into a
valid JPQL query (removing the %). Upon query execution the parameter handed into the method call
gets augmented with the previously recognized LIKE pattern.

Native queries

The @Query annotation allows to execute native queries by setting the nativeQuery flag to true. Note,
that we currently don't support execution of pagination or dynamic sorting for native queries as we'd
have to manipulate the actual query declared and we cannot do this reliably for native SQL.

public interface UserRepository extends JpaRepository<User, Long> {

 @Query(value = "SELECT FROM USERS WHERE EMAIL_ADDRESS = ?0", nativeQuery = true)

 User findByEmailAddress(String emailAddress);

}

Example 2.9 Declare a native query at the query method using @Query

Using named parameters

By default Spring Data JPA will use position based parameter binding as described in all the samples
above. This makes query methods a little error prone to refactoring regarding the parameter position.
To solve this issue you can use @Param annotation to give a method parameter a concrete name and
bind the name in the query:

public interface UserRepository extends JpaRepository<User, Long> {

 @Query("select u from User u where u.firstname = :firstname or u.lastname = :lastname")

 User findByLastnameOrFirstname(@Param("lastname") String lastname,

 @Param("firstname") String firstname);

}

Note that the method parameters are switched according to the occurrence in the query defined.

Example 2.10 Using named parameters

Modifying queries

All the sections above describe how to declare queries to access a given entity or collection of entities.
Of course you can add custom modifying behaviour by using facilities described in Section 1.3, “Custom
implementations for Spring Data repositories”. As this approach is feasible for comprehensive custom
functionality, you can achieve the execution of modifying queries that actually only need parameter
binding by annotating the query method with @Modifying:

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation 23

@Modifying

@Query("update User u set u.firstname = ?1 where u.lastname = ?2")

int setFixedFirstnameFor(String firstname, String lastname);

Example 2.11 Declaring manipulating queries

This will trigger the query annotated to the method as updating query instead of a selecting one. As
the EntityManager might contain outdated entities after the execution of the modifying query, we
automatically clear it (see JavaDoc of EntityManager.clear() for details). This will effectively drop
all non-flushed changes still pending in the EntityManager. If you don't wish the EntityManager
to be cleared automatically you can set @Modifying annotation's clearAutomatically attribute to
false;

Applying query hints

To apply JPA QueryHints to the queries declared in your repository interface you can use the
QueryHints annotation. It takes an array of JPA QueryHint annotations plus a boolean flag to
potentially disable the hints applied to the addtional count query triggered when applying pagination.

public interface UserRepository extends Repository<User, Long> {

 @QueryHints(value = { @QueryHint(name = "name", value = "value")},

 forCounting = false)

 Page<User> findByLastname(String lastname, Pageable pageable);

}

The just shown declaration would apply the configured QueryHint for that actually query but omit
applying it to the count query triggered to calculate the total number of pages.

Example 2.12 Using QueryHints with a repository method

2.3 Specifications

JPA 2 introduces a criteria API that can be used to build queries programmatically. Writing a criteria
you actually define the where-clause of a query for a domain class. Taking another step back these
criteria can be regarded as predicate over the entity that is described by the JPA criteria API constraints.

Spring Data JPA takes the concept of a specification from Eric Evans' book "Domain Driven
Design", following the same semantics and providing an API to define such Specifications using
the JPA criteria API. To support specifications you can extend your repository interface with the
JpaSpecificationExecutor interface:

public interface CustomerRepository extends CrudRepository<Customer, Long>,

 JpaSpecificationExecutor {

 …

}

The additional interface carries methods that allow you to execute Specifications in a variety of
ways.

For example, the findAll method will return all entities that match the specification:

List<T> findAll(Specification<T> spec);

The Specification interface is as follows:

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation 24

public interface Specification<T> {

 Predicate toPredicate(Root<T> root, CriteriaQuery<?> query,

 CriteriaBuilder builder);

}

Okay, so what is the typical use case? Specifications can easily be used to build an extensible set
of predicates on top of an entity that then can be combined and used with JpaRepository without the
need to declare a query (method) for every needed combination. Here's an example:

public class CustomerSpecs {

 public static Specification<Customer> isLongTermCustomer() {

 return new Specification<Customer>() {

 public Predicate toPredicate(Root<Customer> root, CriteriaQuery<?> query,

 CriteriaBuilder builder) {

 LocalDate date = new LocalDate().minusYears(2);

 return builder.lessThan(root.get(Customer_.createdAt), date);

 }

 };

 }

 public static Specification<Customer> hasSalesOfMoreThan(MontaryAmount value) {

 return new Specification<Customer>() {

 public Predicate toPredicate(Root<T> root, CriteriaQuery<?> query,

 CriteriaBuilder builder) {

 // build query here

 }

 };

 }

}

Example 2.13 Specifications for a Customer

Admittedly the amount of boilerplate leaves room for improvement (that will hopefully be reduced by
Java 8 closures) but the client side becomes much nicer as you will see below. The Customer_ type is
a metamodel type generated using the JPA Metamodel generator (see the Hibernate implementation's
documentation for example). So the expression Customer_.createdAt is asuming the Customer
having a createdAt attribute of type Date. Besides that we have expressed some criteria on a
business requirement abstraction level and created executable Specifications. So a client might
use a Specification as follows:

List<Customer> customers = customerRepository.findAll(isLongTermCustomer());

Example 2.14 Using a simple Specification

Okay, why not simply create a query for this kind of data access? You're right. Using a single
Specification does not gain a lot of benefit over a plain query declaration. The power of
Specifications really shines when you combine them to create new Specification objects. You
can achieve this through the Specifications helper class we provide to build expressions like this:

http://docs.jboss.org/hibernate/jpamodelgen/1.0/reference/en-US/html_single/#whatisit
http://docs.jboss.org/hibernate/jpamodelgen/1.0/reference/en-US/html_single/#whatisit

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation 25

MonetaryAmount amount = new MonetaryAmount(200.0, Currencies.DOLLAR);

List<Customer> customers = customerRepository.findAll(

 where(isLongTermCustomer()).or(hasSalesOfMoreThan(amount)));

As you can see, Specifications offers some glue-code methods to chain and combine
Specifications. Thus extending your data access layer is just a matter of creating new
Specification implementations and combining them with ones already existing.

Example 2.15 Combined Specifications

2.4 Transactionality

CRUD methods on repository instances are transactional by default. For reading operations the
transaction configuration readOnly flag is set to true, all others are configured with a plain
@Transactional so that default transaction configuration applies. For details see JavaDoc of
Repository. If you need to tweak transaction configuration for one of the methods declared in
Repository simply redeclare the method in your repository interface as follows:

public interface UserRepository extends JpaRepository<User, Long> {

 @Override

 @Transactional(timeout = 10)

 public List<User> findAll();

 // Further query method declarations

}

This will cause the findAll() method to be executed with a timeout of 10 seconds and without the
readOnly flag.

Example 2.16 Custom transaction configuration for CRUD

Another possibility to alter transactional behaviour is using a facade or service implementation that
typically covers more than one repository. Its purpose is to define transactional boundaries for non-
CRUD operations:

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation 26

@Service

class UserManagementImpl implements UserManagement {

 private final UserRepository userRepository;

 private final RoleRepository roleRepository;

 @Autowired

 public UserManagementImpl(UserRepository userRepository,

 RoleRepository roleRepository) {

 this.userRepository = userRepository;

 this.roleRepository = roleRepository;

 }

 @Transactional

 public void addRoleToAllUsers(String roleName) {

 Role role = roleRepository.findByName(roleName);

 for (User user : userRepository.findAll()) {

 user.addRole(role);

 userRepository.save(user);

 }

}

This will cause call to addRoleToAllUsers(…) to run inside a transaction (participating in an existing
one or create a new one if none already running). The transaction configuration at the repositories will
be neglected then as the outer transaction configuration determines the actual one used. Note that you
will have to activate <tx:annotation-driven /> explicitly to get annotation based configuration at
facades working. The example above assumes you are using component scanning.

Example 2.17 Using a facade to define transactions for multiple repository calls

Transactional query methods

To allow your query methods to be transactional simply use @Transactional at the repository
interface you define.

@Transactional(readOnly = true)

public interface UserRepository extends JpaRepository<User, Long> {

 List<User> findByLastname(String lastname);

 @Modifying

 @Transactional

 @Query("delete from User u where u.active = false")

 void deleteInactiveUsers();

}

Typically you will want the readOnly flag set to true as most of the query methods will only read data. In
contrast to that deleteInactiveUsers() makes use of the @Modifying annotation and overrides
the transaction configuration. Thus the method will be executed with readOnly flag set to false.

Example 2.18 Using @Transactional at query methods

Note

It's definitely reasonable to use transactions for read only queries and we can mark them as
such by setting the readOnly flag. This will not, however, act as check that you do not trigger a
manipulating query (although some databases reject INSERT and UPDATE statements inside a

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation 27

read only transaction). The readOnly flag instead is propagated as hint to the underlying JDBC
driver for performance optimizations. Furthermore, Spring will perform some optimizations on the
underlying JPA provider. E.g. when used with Hibernate the flush mode is set to NEVER when you
configure a transaction as readOnly which causes Hibernate to skip dirty checks (a noticeable
improvement on large object trees).

2.5 Locking

To specify the lock mode to be used the @Lock annotation can be used on query methods:

interface UserRepository extends Repository<User, Long> {

 // Plain query method

 @Lock(LockModeType.READ)

 List<User> findByLastname(String lastname);

}

Example 2.19 Defining lock metadata on query methods

This method declaration will cause the query being triggered to be equipped with the LockModeType
READ. You can also define locking for CRUD methods by redeclaring them in your repository interface
and adding the @Lock annotation:

interface UserRepository extends Repository<User, Long> {

 // Redeclaration of a CRUD method

 @Lock(LockModeType.READ);

 List<User> findAll();

}

Example 2.20 Defining lock metadata on CRUD methods

2.6 Auditing

Basics

Spring Data provides sophisticated support to transparently keep track of who created or changed an
entity and the point in time this happened. To benefit from that functionality you have to equip your
entity classes with auditing metadata that can be defined either using annotations or by implementing
an interface.

Annotation based auditing metadata

We provide @CreatedBy, @LastModifiedBy to capture the user who created or modified the entity
as well as @CreatedDate and @LastModifiedDate to capture the point in time this happened.

class Customer {

 @CreatedBy

 private User user;

 @CreatedDate

 private DateTime createdDate;

 // … further properties omitted

}

Example 2.21 An audited entity

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation 28

As you can see, the annotations can be applied selectively, depending on which information you'd
like to capture. For the annotations capturing the points in time can be used on properties of type
org.joda.time.DateTime, java.util.Date as well as long/Long.

Interface-based auditing metadata

In case you don't want to use annotations to define auditing metadata you can let your domain class
implement the Auditable interface. It exposes setter methods for all of the auditing properties.

There's also a convenience base class AbstractAuditable which you can extend to avoid the need
to manually implement the interface methods. Be aware that this increases the coupling of your domain
classes to Spring Data which might be something you want to avoid. Usually the annotation based way
of defining auditing metadata is preferred as it is less invasive and more flexible.

AuditorAware

In case you use either @CreatedBy or @LastModifiedBy, the auditing infrastructure somehow needs
to become aware of the current principal. To do so, we provide an AuditorAware<T> SPI interface
that you have to implement to tell the infrastructure who the current user or system interacting with the
application is. The generic type T defines of what type the properties annotated with @CreatedBy or
@LastModifiedBy have to be.

Here's an example implementation of the interface using Spring Security's Authentication object:

class SpringSecurityAuditorAware implements AuditorAware<User> {

 public User getCurrentAuditor() {

 Authentication authentication =

 SecurityContextHolder.getContext().getAuthentication();

 if (authentication == null || !authentication.isAuthenticated()) {

 return null;

 }

 return ((MyUserDetails) authentication.getPrincipal()).getUser();

 }

}

Example 2.22 Implementation of AuditorAware based on Spring Security

The implementation is accessing the Authentication object provided by Spring Security and looks
up the custom UserDetails instance from it that you have created in your UserDetailsService
implementation. We're assuming here that you are exposing the domain user through that
UserDetails implementation but you could also look it up from anywhere based on the
Authentication found.

General auditing configuration

Spring Data JPA ships with an entity listener that can be used to trigger capturing auditing information.
So first you have to register the AuditingEntityListener inside your orm.xml to be used for all
entities in your persistence contexts:

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation 29

<persistence-unit-metadata>

 <persistence-unit-defaults>

 <entity-listeners>

 <entity-listener class="….data.jpa.domain.support.AuditingEntityListener" />

 </entity-listeners>

 </persistence-unit-defaults>

</persistence-unit-metadata>

Example 2.23 Auditing configuration orm.xml

Now activating auditing functionality is just a matter of adding the Spring Data JPA auditing
namespace element to your configuration:

<jpa:auditing auditor-aware-ref="yourAuditorAwareBean" />

Example 2.24 Activating auditing in the Spring configuration

As you can see you have to provide a bean that implements the AuditorAware interface which looks
as follows:

public interface AuditorAware<T, ID extends Serializable> {

 T getCurrentAuditor();

}

Example 2.25 AuditorAware interface

Usually you will have some kind of authentication component in your application that tracks the user
currently working with the system. This component should be AuditorAware and thus allow seamless
tracking of the auditor.

2.7 Miscellaneous

Merging persistence units

Spring supports having multiple persistence units out of the box. Sometimes, however, you might want
to modularize your application but still make sure that all these modules run inside a single persistence
unit at runtime. To do so Spring Data JPA offers a PersistenceUnitManager implementation that
automatically merges persistence units based on their name.

<bean class="….LocalContainerEntityManagerFactoryBean">

 <property name="persistenceUnitManager">

 <bean class="….MergingPersistenceUnitManager" />

 </property

</bean>

Example 2.26 Using MergingPersistenceUnitmanager

Classpath scanning for @Entity classes and JPA mapping files

A plain JPA setup requires all annotation mapped entity classes listed in
orm.xml. Same applies to XML mapping files. Spring Data JPA provides a
ClasspathScanningPersistenceUnitPostProcessor that gets a base package configured and
optionally takes a mapping filename pattern. It will then scan the given package for classes annotated
with @Entity or @MappedSuperclass and also loads the configuration files matching the filename
pattern and hands them to the JPA configuration. The PostProcessor has to be configured like this

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation 30

<bean class="….LocalContainerEntityManagerFactoryBean">

 <property name="persistenceUnitPostProcessors">

 <list>

 <bean class="org.springframework.data.jpa.support.ClasspathScanningPersistenceUnitPostProcessor">

 <constructor-arg value="com.acme.domain" />

 <property name="mappingFileNamePattern" value="**/*Mapping.xml" />

 </bean>

 </list>

 </property>

</bean>

Example 2.27 Using ClasspathScanningPersistenceUnitPostProcessor

Note

As of Spring 3.1 a package to scan can be configured on the
LocalContainerEntityManagerFactoryBean directly to enable classpath scanning for
entity classes. See the JavaDoc for details.

CDI integration

Instances of the repository interfaces are usually created by a container, which Spring is the most natural
choice when working with Spring Data. There's sophisticated support to easily set up Spring to create
bean instances documented in the section called “Creating repository instances”. As of version 1.1.0
Spring Data JPA ships with a custom CDI extension that allows using the repository abstraction in CDI
environments. The extension is part of the JAR so all you need to do to activate it is dropping the Spring
Data JPA JAR into your classpath.

You can now set up the infrastructure by implementing a CDI Producer for the
EntityManagerFactory:

class EntityManagerFactoryProducer {

 @Produces

 @ApplicationScoped

 public EntityManagerFactory createEntityManagerFactory() {

 return Persistence.createEntityManagerFactory("my-presistence-unit");

 }

 public void close(@Disposes EntityManagerFactory entityManagerFactory) {

 entityManagerFactory.close();

 }

}

The Spring Data JPA CDI extension will pick up all EntityManagers availables as CDI beans and
create a proxy for a Spring Data repository whenever an bean of a repository type is requested by the
container. Thus obtaining an instance of a Spring Data repository is a matter of declaring an @Injected
property:

http://static.springsource.org/spring/docs/3.1.x/javadoc-api/org/springframework/orm/jpa/LocalContainerEntityManagerFactoryBean.html#setPackagesToScan(java.lang.String...)

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation 31

class RepositoryClient {

 @Inject

 PersonRepository repository;

 public void businessMethod() {

 List<Person> people = repository.findAll();

 }

}

Part II. Appendix

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation 33

Appendix A. Namespace reference

A.1 The <repositories /> element

The <repositories /> element triggers the setup of the Spring Data repository infrastructure. The
most important attribute is base-package which defines the package to scan for Spring Data repository
interfaces.1

Table A.1. Attributes

Name Description

base-package Defines the package to be used to be scanned for repository
interfaces extending *Repository (actual interface is determined
by specific Spring Data module) in auto detection mode. All
packages below the configured package will be scanned, too.
Wildcards are allowed.

repository-impl-postfix Defines the postfix to autodetect custom repository
implementations. Classes whose names end with the configured
postfix will be considered as candidates. Defaults to Impl.

query-lookup-strategy Determines the strategy to be used to create finder queries. See
the section called “Query lookup strategies” for details. Defaults to
create-if-not-found.

1see the section called “XML configuration”

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation 34

Appendix B. Repository query
keywords

B.1 Supported query keywords

The following table lists the keywords generally supported by the Spring Data repository query derivation
mechanism. However, consult the store-specific documentation for the exact list of supported keywords,
because some listed here might not be supported in a particular store.

Table B.1. Query keywords

Logical keyword Keyword expressions

AND And

OR Or

AFTER After, IsAfter

BEFORE Before, IsBefore

CONTAINING Containing, IsContaining, Contains

BETWEEN Between, IsBetween

ENDING_WITH EndingWith, IsEndingWith, EndsWith

EXISTS Exists

FALSE False, IsFalse

GREATER_THAN GreaterThan, IsGreaterThan

GREATER_THAN_EQUALSGreaterThanEqual, IsGreaterThanEqual

IN In, IsIn

IS Is, Equals, (or no keyword)

IS_NOT_NULL NotNull, IsNotNull

IS_NULL Null, IsNull

LESS_THAN LessThan, IsLessThan

LESS_THAN_EQUALLessThanEqual, IsLessThanEqual

LIKE Like, IsLike

NEAR Near, IsNear

NOT Not, IsNot

NOT_IN NotIn, IsNotIn

NOT_LIKE NotLike, IsNotLike

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation 35

Logical keyword Keyword expressions

REGEX Regex, MatchesRegex, Matches

STARTING_WITH StartingWith, IsStartingWith, StartsWith

TRUE True, IsTrue

WITHIN Within, IsWithin

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation 36

Appendix C. Frequently asked
questions
C.1. Common

C.1.1. I'd like to get more detailed logging information on what methods are called inside
JpaRepository, e.g. How can I gain them?

You can make use of CustomizableTraceInterceptor provided by Spring:

<bean id="customizableTraceInterceptor" class="

 org.springframework.aop.interceptor.CustomizableTraceInterceptor">

 <property name="enterMessage" value="Entering $[methodName]($[arguments])"/>

 <property name="exitMessage" value="Leaving $[methodName](): $[returnValue]"/>

</bean>

<aop:config>

 <aop:advisor advice-ref="customizableTraceInterceptor"

 pointcut="execution(public *

 org.springframework.data.jpa.repository.JpaRepository+.*(..))"/>

</aop:config>

C.2. Infrastructure

C.2.1. Currently I have implemented a repository layer based on HibernateDaoSupport. I create a
SessionFactory by using Spring's AnnotationSessionFactoryBean. How do I get Spring
Data repositories working in this environment?

You have to replace AnnotationSessionFactoryBean with the
LocalContainerEntityManagerFactoryBean. Supposed you have registered it
under entityManagerFactory you can reference it in you repositories based on
HibernateDaoSupport as follows:

<bean class="com.acme.YourDaoBasedOnHibernateDaoSupport">

 <property name="sessionFactory">

 <bean factory-bean="entityManagerFactory" factory-method="getSessionFactory" />

 </property>

</bean>

Example C.1 Looking up a SessionFactory from an HibernateEntityManagerFactory

C.3. Auditing

C.3.1. I want to use Spring Data JPA auditing capabilities but have my database already set up to set
modification and creation date on entities. How to prevent Spring Data from setting the date
programmatically.

Just use the set-dates attribute of the auditing namespace element to false.

please define productname in your docbook file!

1.3.4.RELEASE
Spring Data JPA -

Reference Documentation 37

Glossary

A
AOP Aspect oriented programming

C
Commons DBCP Commons DataBase Connection Pools - Library of the Apache

foundation offering pooling implementations of the DataSource
interface.

CRUD Create, Read, Update, Delete - Basic persistence operations

D
DAO Data Access Object - Pattern to separate persisting logic from the

object to be persisted

Dependency Injection Pattern to hand a component's dependency to the component
from outside, freeing the component to lookup the dependant
itself. For more information see http://en.wikipedia.org/wiki/
Dependency_Injection.

E
EclipseLink Object relational mapper implementing JPA - http://

www.eclipselink.org

H
Hibernate Object relational mapper implementing JPA - http://www.hibernate.org

J
JPA Java Persistence Api

S
Spring Java application framework - http://www.springframework.org

http://en.wikipedia.org/wiki/Dependency_Injection
http://en.wikipedia.org/wiki/Dependency_Injection
http://www.eclipselink.org
http://www.eclipselink.org
http://www.hibernate.org
http://www.springframework.org

	Spring Data JPA - Reference Documentation
	Table of Contents
	Preface
	1 Project metadata

	Part I. Reference Documentation
	1. Working with Spring Data Repositories
	1.1 Core concepts
	1.2 Query methods
	Defining repository interfaces
	Fine-tuning repository definition

	Defining query methods
	Query lookup strategies
	Query creation
	Property expressions
	Special parameter handling

	Creating repository instances
	XML configuration
	JavaConfig
	Standalone usage

	1.3 Custom implementations for Spring Data repositories
	Adding custom behavior to single repositories
	Adding custom behavior to all repositories

	1.4 Spring Data extensions
	Domain class web binding for Spring MVC
	Web pagination
	Repository populators

	2. JPA Repositories
	2.1 Introduction
	Spring namespace
	Annotation based configuration

	2.2 Query methods
	Query lookup strategies
	Query creation
	Using JPA NamedQueries
	Using @Query
	Using named parameters
	Modifying queries
	Applying query hints

	2.3 Specifications
	2.4 Transactionality
	Transactional query methods

	2.5 Locking
	2.6 Auditing
	Basics
	Annotation based auditing metadata
	Interface-based auditing metadata
	AuditorAware

	General auditing configuration

	2.7 Miscellaneous
	Merging persistence units
	Classpath scanning for @Entity classes and JPA mapping files
	CDI integration

	Part II. Appendix
	Appendix A. Namespace reference
	A.1 The <repositories /> element

	Appendix B. Repository query keywords
	B.1 Supported query keywords

	Appendix C. Frequently asked questions
	Glossary

